

Lecture Notes in Computer Science 5917
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Jianer Chen Fedor V. Fomin (Eds.)

Parameterized and
Exact Computation

4th International Workshop, IWPEC 2009
Copenhagen, Denmark, September 10-11, 2009
Revised Selected Papers

13

Volume Editors

Jianer Chen
Texas A&M University
Department of Computer Science and Engineering
College Station, Texas 77843, USA
E-mail: chen@cse.tamu.edu

Fedor V. Fomin
Universitetet i Bergen
Institutt for informatikk
Postboks 7803
5020 Bergen, Norway
E-mail: Fomin@ii.uib.no

Library of Congress Control Number: 2009941300

CR Subject Classification (1998): B.2.4, F.2, G.1, G.2, G.4, I.1, E.1, I.2.8

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-11268-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-11268-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12823598 06/3180 5 4 3 2 1 0

Preface

The Workshop on Parameterized and Exact Computation (IWPEC) is an in-
ternational workshop series that covers research in all aspects of parameterized
and exact algorithms and complexity, and especially encourages the study of
parameterized and exact computations for real-world applications and algorith-
mic engineering. The goal of the workshop is to present recent research results,
including significant work-in-progress, and to identify and explore directions for
future research.

IWPEC 2009 was the fourth workshop in the series, held in Copenhagen, Den-
mark, during September 10-11, 2009. The workshop was part of ALGO 2009,
which also hosted the 17th European Symposium on Algorithms (ESA 2009),
the 9th Workshop on Algorithmic Approaches for Transportation Modelling,
Optimization, and Systems (ATMOS 2009), and the 7th Workshop on Approx-
imation and Online Algorithms (WAOA 2009). Three previous meetings of the
IWPEC series were held in Bergen, Norway, 2004, Zürich, Switzerland, 2006,
and Victoria, Canada, 2008.

At IWPEC 2009, we had two plenary speakers, Noga Alon (Tel Aviv Univer-
sity, Israel) and Hans Bodlaender (Utrecht University, The Netherlands), giving
50-minute talks each. Professor Alon spoke on “Color Coding, Balanced Hashing
and Approximate Counting, ” and Professor Bodlaender on “Kernelization: New
Upper and Lower Bound Techniques.” Their respective abstracts accompanying
the talks are included in these proceedings.

In response to the Call for Papers, 52 papers were submitted. Each submission
was reviewed by at least three reviewers (most by at least four). The reviewers
were either Program Committee members or invited external reviewers. The
Program Committee held electronic meetings using the EasyChair system, went
through thorough discussions, and selected 25 of the submissions for presentation
at the workshop and inclusion in this LNCS volume.

We are very grateful to the Program Committee, and the external reviewers
they called on, for the hard work and expertise which they brought to the difficult
selection process. We also wish to thank all the authors who submitted their
work for our consideration. Special thanks go to Thore Husfeldt for the local
organization of the ALGO 2009 conference in Copenhagen.

Finally, we would like to thank the members of the Editorial Board of Lecture
Notes in Computer Science and the Editors at Springer for their encouragement
and cooperation throughout the preparation of these proceedings.

November 2009 Jianer Chen
Fedor Fomin

Organization

IWPEC 2009 Program Committee

Faisal Abu-Khzam Beirut, Lebanon
Hans Bodlaender Utrecht, The Netherlands
Jonathan Buss Waterloo, Canada
Leizhen Cai Hong Kong, China
Liming Cai Georgia, USA
Jianer Chen College Station, USA (Co-chair)
Michael Fellows Newcastle, Australia
Henning Fernau Trier, Germany
Jörg Flum Freiburg, Germany
Fedor Fomin Bergen, Norway, (Co-chair)
Jiong Guo Jena, Germany
Edward A. Hirsch St. Petersburg, Russia
Thore Husfeldt Copenhagen, Denmark
Iyad Kanj Chicago, USA
Dániel Marx Budapest, Hungary
Catherine McCartin Wellington, New Zealand
Igor Razgon Cork, Ireland
Saket Saurabh Bergen, Norway
Uwe Schöning Ulm, Germany
Stefan Szeider Durham, UK
Dimitrios Thilikos Athens, Greece
Mark Weyer Berlin, Germany

IWPEC Steering Committee

Jianer Chen College Station, USA
Frank Dehne Ottawa, Canada
Rod Downey Wellington, New Zealand
Michael Fellows Newcastle, Australia
Mike Langston Knoxville, USA
Rolf Niedermeier Jena, Germany
Venkatesh Raman Chennai, India

VIII Organization

External Reviewers

Adler, Isolde
Antipov, Dmitry
Betzler, Nadja
Chandrasekaran, Venkat
Chen, Xi
Chen, Yijia
Daligault, Jean
Dantchev, Stefan
Dom, Michael
Dorn, Frederic
Gao, Yong
Gaspers, Serge
Giannopoulou, Archontia
Gravin, Nikolai
Gutner, Shai
Hoang, Thanh Minh
Hoogeveen, Han
Huang, Xiuzhen
Itsykson, Dmitry
Jansen, Bart
Kaminski, Marcin
Kanté, Mamadou Moustapha
Kim, Eun Jung
Knauer, Christian
Kojevnikov, Arist
Kratochvil, Jan
Kratsch, Dieter
Kreutzer, Stephan
Krokhin, Andrei
Kuegel, Adrian
Kulikov, Alexander

Lampis, Michael
Liedloff, Mathieu
Liers, Frauke
Liu, Yang
Lokshtanov, Daniel
Mathieson, Luke
Meister, Daniel
Mnich, Matthias
Moser, Hannes
Mouawad, Amer
Müller, Moritz
Naeher, Stefan
Nederlof, Jesper
Ordyniak, Sebastian
Paturi, Ramamohan
Pelsmajer, Michael
Penninkx, Eelko
Philip, Geevarghese
Raible, Daniel
Rossmanith, Peter
Schaefer, Marcus
Serna, Maria
Shareghi, Pooya
Todinca, Ioan
Villanger, Yngve
Wagner, Fabian
Woltran, Stefan
Xia, Ge
Yang, Lin
Zhang, Fenghui
van Rooij, Johan M.M.

Table of Contents

Balanced Hashing, Color Coding and Approximate Counting
(Invited Talk) . 1

Noga Alon and Shai Gutner

Kernelization: New Upper and Lower Bound Techniques
(Invited Talk) . 17

Hans L. Bodlaender

A Faster Fixed-Parameter Approach to Drawing Binary Tanglegrams . . . 38
Sebastian Böcker, Falk Hüffner, Anke Truss, and Magnus Wahlström

Planar Capacitated Dominating Set Is W [1]-Hard . 50
Hans L. Bodlaender, Daniel Lokshtanov, and Eelko Penninkx

Boolean-Width of Graphs . 61
Binh-Minh Bui-Xuan, Jan Arne Telle, and Martin Vatshelle

The Complexity of Satisfiability of Small Depth Circuits 75
Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi

On Finding Directed Trees with Many Leaves . 86
Jean Daligault and Stéphan Thomassé

Bounded-Degree Techniques Accelerate Some Parameterized Graph
Algorithms . 98

Peter Damaschke

Pareto Complexity of Two-Parameter FPT Problems: A Case Study
for Partial Vertex Cover . 110

Peter Damaschke

What Makes Equitable Connected Partition Easy . 122
Rosa Enciso, Michael R. Fellows, Jiong Guo, Iyad Kanj,
Frances Rosamond, and Ondřej Suchý

Improved Induced Matchings in Sparse Graphs . 134
Rok Erman, �Lukasz Kowalik, Matjaž Krnc, and Tomasz Waleń

Well-Quasi-Orders in Subclasses of Bounded Treewidth Graphs 149
Michael R. Fellows, Danny Hermelin, and Frances A. Rosamond

An Exact Algorithm for the Maximum Leaf Spanning Tree Problem 161
Henning Fernau, Joachim Kneis, Dieter Kratsch, Alexander Langer,
Mathieu Liedloff, Daniel Raible, and Peter Rossmanith

X Table of Contents

An Exponential Time 2-Approximation Algorithm for Bandwidth 173
Martin Fürer, Serge Gaspers, and Shiva Prasad Kasiviswanathan

On Digraph Width Measures in Parameterized Algorithmics 185
Robert Ganian, Petr Hliněný, Joachim Kneis, Alexander Langer,
Jan Obdržálek, and Peter Rossmanith

The Parameterized Complexity of Some Geometric Problems in
Unbounded Dimension . 198

Panos Giannopoulos, Christian Knauer, and Günter Rote

Paths of Bounded Length and Their Cuts: Parameterized Complexity
and Algorithms . 210

Petr A. Golovach and Dimitrios M. Thilikos

Fixed-Parameter Algorithms in Analysis of Heuristics for Extracting
Networks in Linear Programs . 222

Gregory Gutin, Daniel Karapetyan, and Igor Razgon

A Probabilistic Approach to Problems Parameterized above or below
Tight Bounds . 234

Gregory Gutin, Eun Jung Kim, Stefan Szeider, and Anders Yeo

Polynomial Kernels and Faster Algorithms for the Dominating Set
Problem on Graphs with an Excluded Minor . 246

Shai Gutner

Partitioning into Sets of Bounded Cardinality . 258
Mikko Koivisto

Two Edge Modification Problems without Polynomial Kernels 264
Stefan Kratsch and Magnus Wahlström

On the Directed Degree-Preserving Spanning Tree Problem 276
Daniel Lokshtanov, Venkatesh Raman, Saket Saurabh, and
Somnath Sikdar

Even Faster Algorithm for Set Splitting! . 288
Daniel Lokshtanov and Saket Saurabh

Stable Assignment with Couples: Parameterized Complexity and Local
Search . 300

Dániel Marx and Ildikó Schlotter

Improved Parameterized Algorithms for the Kemeny Aggregation
Problem . 312

Narges Simjour

Computing Pathwidth Faster Than 2n . 324
Karol Suchan and Yngve Villanger

Author Index . 337

Balanced Hashing, Color Coding and
Approximate Counting

Noga Alon1,� and Shai Gutner2,��

1 Schools of Mathematics and Computer Science, Tel-Aviv University,
Tel-Aviv, 69978, Israel and IAS, Princeton, NJ, 08540, USA

nogaa@tau.ac.il
2 School of Computer Science, Tel-Aviv University, Tel-Aviv, 69978, Israel

gutner@tau.ac.il

Abstract. Color Coding is an algorithmic technique for deciding effi-
ciently if a given input graph contains a path of a given length (or another
small subgraph of constant tree-width). Applications of the method in
computational biology motivate the study of similar algorithms for count-
ing the number of copies of a given subgraph. While it is unlikely that
exact counting of this type can be performed efficiently, as the problem
is #W [1]-complete even for paths, approximate counting is possible, and
leads to the investigation of an intriguing variant of families of perfect
hash functions. A family of functions from [n] to [k] is an (ε, k)-balanced
family of hash functions, if there exists a positive T so that for every
K ⊂ [n] of size |K| = k, the number of functions in the family that are
one-to-one on K is between (1−ε)T and (1+ε)T . The family is perfectly
k-balanced if it is (0, k)-balanced.

We show that every such perfectly k-balanced family is of size at
least c(k)n�k/2�, and that for every ε > 1

poly(k)
there are explicit con-

structions of (ε, k)-balanced families of hash functions from [n] to [k] of
size e(1+o(1))k log n. This is tight up to the o(1)-term in the exponent,
and supplies deterministic polynomial time algorithms for approximately
counting the number of paths or cycles of a specified length k (or copies
of any graph H with k vertices and bounded tree-width) in a given input
graph of size n, up to relative error ε, for all k ≤ O(log n).

Keywords: Approximate counting of subgraphs, color-coding, deran-
domization, expanders, perfect hashing, k-wise. independence.

1 Introduction

1.1 Motivation and Background

Color Coding is an algorithmic technique for deciding efficiently if a given in-
put graph contains a path or a cycle of a given length, or any other prescribed
� Research supported in part by an ERC Advanced grant, by a USA-Israel BSF grant,

by NSF grant CCF 0832797 and by the Ambrose Monell Foundation.
�� This paper forms part of a Ph.D. thesis written by the author under the supervision

of Prof. N. Alon and Prof. Y. Azar in Tel Aviv University.

J. Chen and F.V. Fomin (Eds.): IWPEC 2009, LNCS 5917, pp. 1–16, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 N. Alon and S. Gutner

subgraph of bounded tree-width. Focusing, for simplicity, on paths, the method
supplies a deterministic algorithm for deciding, in time 2O(k)|E| log |V |, whether
or not a given input (directed or undirected) graph G = (V, E) contains a (sim-
ple) path on k vertices. The basic approach, introduced in [8], is very simple.
One first gives a randomized algorithm, and then converts it into a deterministic
one. The randomized algorithm works by first coloring the vertices of G ran-
domly by k colors. Call a path on k vertices (a k-path, for short) colorful if its
vertices get all the distinct k colors. It is not difficult to check in time O(k2k|E|),
using dynamic programming, if there is a colorful path. As the probability of a
k-path to become colorful in a random coloring is k!/kk > e−k, repeating the
above procedure some Cek times provides a randomized algorithm in which the
probability not to find a path in case one exists is smaller than e−C . The crucial
point in the derandomization of this algorithm is the observation that known
constructions of families of hash functions given by [22] following [14], supply
an explicit family of 2O(k) log |V | colorings of the vertices of G by k colors, so
that the members of every set of k vertices get distinct colors in at least one of
the colorings. Thus one can simply run the dynamic programming algorithm for
each of these colorings, getting a deterministic algorithm for the problem.

The above technique has found several recent applications in computational
biology (see [23], [24], [25], [17]), where it has been applied for detecting signaling
pathways in protein interaction networks. These applications suggest the problem
of counting, or approximating the number of k-paths (or other graphs of bounded
tree-width) in a given graph. As using dynamic programming it is easy to count
precisely the number of colorful k-paths in a given graph with colored vertices, the
existence of efficient randomized approximation algorithms for counting follows
quite easily by following the same approach; this is done in [2].

In order to derandomize the randomized counting (or approximate counting)
procedures, one needs a strengthening of the usual notion of hash functions. This
is given in the following definition.

A family of functions from [n] to [�] is an (ε, k)-balanced family of hash func-
tions, if for every S ⊂ [n], |S| = k, the number of functions that are one-to-one
on S is between (1 − ε)T and (1 + ε)T for some constant T > 0. The family is
perfectly k-balanced if it is (0, k)-balanced, that is, it is (ε, k)-balanced for ε = 0.

Note that with a perfectly k-balanced family one can count precisely the
number of k-paths in a graph on n vertices: we simply count, by dynamic pro-
gramming, the number of colorful k-paths for each of the functions (considered
as a coloring of the vertices), sum the results and divide by T . Similarly, an
(ε, k)-balanced family will enable us to approximate the number of paths up to
a relative error of ε. This suggests the study of the smallest possible size of such
families, and the problem of constructing explicitly such families.

1.2 Related Work

The problem of counting paths and cycles in graphs has been considered by
various researchers. In [9] the authors describe an O(|V |ω) algorithm for counting
the number of cycles of size at most 7, where ω < 2.38 is the exponent in fast

Balanced Hashing, Color Coding and Approximate Counting 3

matrix multiplication. The method of this paper does not extend to longer paths,
and indeed Flum and Grohe [13] proved that the problem of counting exactly
the number of paths and cycles of length k in both directed and undirected
graphs, considered as a problem parameterized by k, is #W [1]-complete. This
implies that it is unlikely that there is an f(k) · nc-time algorithm for counting
the precise number of paths or cycles of length k in a graph of size n for any
computable function f : IN → IN and constant c. The best known algorithms
for computing exactly the number of k-paths in an n vertex graph run in time
nk/2+O(1), see [11], [26].

However, the problem of approximating these numbers is more tractable.
Arvind and Raman (see [10]) obtained a randomized fixed-parameter tractable
algorithm to approximately count the number of copies of k-paths (or any fixed
subgraph with bounded tree-width) within a large graph. A similar approxima-
tion appears in [2].

In an earlier paper [4] we considered deterministic approximation counting
algorithms for this problem. To this end, we introduced the notion of (ε, k)-
balanced families of hash functions and used them to exhibit a deterministic
polynomial time algorithm for approximating the number of paths of length k up
to any k ≤ O(log n

log log log n) in a graph with n vertices. This was done by construct-
ing explicitly (ε, k)-balanced families from [n] to [k], where the size of the family
is 2O(k log log k) log n and the time for construction is 2O(k log log k)n log n. The main
open problem raised in [4] is to find such a construction of size 2O(k) log n (in
time 2O(k)nO(1)), which is optimal, even for standard (non-balanced) families
of hash functions, and will supply polynomial time deterministic approximation
algorithms for counting the number of paths of length k in a given graph of size
n, for all k ≤ O(log n). This problem is settled in the present paper.

1.3 The New Results

The results of Flum and Grohe mentioned above suggest that there is no perfectly
k-balanced family of hash functions from [n] to [k] of size f(k)nO(1). We prove a
stronger result, showing that every perfectly k-balanced family of hash functions
from [n] to [�] is of size at least c(k, �)n�k/2�, where c(k, �) is a positive constant
depending only on k and �. We also observe that this is not far from being tight,
as for every n > k there is a perfectly k-balanced family of functions from [n] to
[k] of size

(
n

k−1

)
. This shows that the Color Coding approach cannot supply an

algorithm for counting k-paths in an n vertex graph in time o(n�k/2�).
Our main positive result is an explicit construction, for every 1

poly(k) < ε ≤ 1,

of an (ε, k)-balanced family of hash functions from [n] to [k] of size ek+O(log3 k)

log n. The running time of the procedure that provides the construction is
ek+O(log3 k)n log n. Note that the size of the family is optimal up to the error term
O(log3 k) in the exponent, as there is a known lower bound of Ω(ek log n/

√
k)

for the size of any family of hash functions from [n] to [k], (even if it is not
balanced and the only requirement is that every set of size [k] is mapped in a
one-to-one fashion at least once).

4 N. Alon and S. Gutner

This supplies deterministic approximation algorithms for counting the number
of simple k-paths in a graph G = (V, E) up to a relative error of ε = 1

poly(k) in
time 2O(k)|E| log |V |. Similar results hold for counting approximately the number
of copies of any graph of size k with constant tree-width. Note that this is
polynomial for all k ≤ O(log n), and it is unlikely that one can do better, as
this would imply the existence of a 2o(n)-time algorithm for the Hamilton path
problem, contradicting the Exponential Time Hypothesis of [18,19].

1.4 Methods and Organization

Our lower bound for the size of perfectly balanced families are proved by Linear
Algebra tools, combining the basic approach of [1] in the proof of the lower bound
for the size of sample spaces supporting k-wise independent random variables
with two additional ideas.

The construction of (ε, k)-balanced families combines several ingredients. Two
of them are rather standard and are based on nearly pairwise independent ran-
dom variables and on the method of conditional expectations. The third one is
more challenging, and combines the approach of [21] with an iterative construc-
tion based on properties of expanders. It is convenient to apply here (some version
of) the expanders of [5], though other expanders could have been used as well.

Since our main motivation is the application for the subgraph approximate
counting problem using Color Coding, there is no reason to provide explicit con-
structions of (ε, k)-balanced families of functions which are more efficient than
the time of writing these functions down, as anyway our counting algorithm will
have to go through these functions. We thus describe the constructions in this
way, without trying to describe separately which parts of them admit more effi-
cient descriptions. It is worth noting, however, that the part of our construction
which applies the method of conditional expectations indeed requires the time
stated in its description.

The rest of this paper is organized as follows. In section 2 we describe the main
ingredients of the construction: balanced families of hash functions and balanced
splitters, a modified version of a notion introduced in [21]. Section 3 contains the
results concerning perfectly balanced families of hash functions. The explicit con-
struction of expanders presented in section 4 is used in section 5 for constructing
small sample spaces supporting a certain relaxed version of nearly k-wise inde-
pendent random variables. This is used to obtain a construction of what we call
balanced (n, k, �)-splitters, which is later applied in section 6 as a crucial ingredi-
ent in the construction of balanced families of hash functions. The constructions,
together with the color coding technique, are used for designing algorithms for ap-
proximately counting the number of copies of subgraphs of bounded tree-width in
given graphs. We conclude with some remarks and open problems.

2 The Ingredients of the Construction

In this section we formally define the notions of balanced families of hash func-
tions and balanced splitters. For a positive integer n, denote by [n] the set

Balanced Hashing, Color Coding and Approximate Counting 5

{1, . . . , n}. For any k, 1 ≤ k ≤ n, the family of k-sized subsets of [n] is de-
noted by

([n]
k

)
. As usual, k mod � denotes the unique integer 0 ≤ r < � so that

k = q� + r, for some integer q.

Definition 1. Suppose that 1 ≤ k ≤ � ≤ n and ε ≥ 0. A family of functions
from [n] to [�] is an (ε, k)-balanced family of hash functions if there exists a
constant T > 0, such that for every S ∈

([n]
k

)
, the number of functions that

are one-to-one on S is between (1 − ε)T and (1 + ε)T . The family is perfectly
k-balanced if it is (0, k)-balanced.

The following definition is motivated by a related notion defined and used in [21].

Definition 2. Suppose that 1 ≤ � < k ≤ n and ε ≥ 0, and let H be a family of
functions from [n] to [�]. For a set S ∈

([n]
k

)
, let splitH(S) denote the number of

functions h ∈ H so that for every j, 1 ≤ j ≤ k mod �, |h−1(j)∩S| = 	k/�
, and
for all k mod � < j ≤ �, |h−1(j) ∩ S| = �k/��. The family H is an ε-balanced
(n, k, �)-splitter if there exists a constant T > 0, such that for every S ∈

([n]
k

)
,

(1 − ε)T ≤ splitH(S) ≤ (1 + ε)T .

Note that if � divides k, then in the above definition splitH(S) is the number
of functions that split S into equal parts. The splitters of [21] differ from the
ones defined here, just as usual families of hash functions differ from balanced
families; in [21] it is only required that for every set S there will be some function
in H splitting it evenly, while in our splitters each S should be divided evenly
by roughly the same number of functions. The construction of balanced splitters
is thus much harder than the one of splitters in [21], and is in fact the most
challenging part in the explicit description of balanced families of hash functions.

Each function f in our explicit construction of balanced families of hash func-
tions is the composition of members from three families. The first one is an
(ε1, k)-balanced family of hash functions from [n] to [q], where q = Θ(k2

ε). The
second one is an ε2-balanced (q, k, �)-splitter from [q] to [�], where � = Θ(log k),
and the last one is an (ε3, k/�)-balanced family of hash functions from [q] to
[k/�] (for simplicity assume for now that � divides k). In order to define f we
actually need � members of the third family, with each of them being applied to
the elements mapped by the members of the second family to a single j ∈ [�].

3 Perfectly Balanced Families

Let n > � ≥ k > 0 be positive integers. Recall that a family F of functions from
[n] to [�] is perfectly k-balanced, if there exists a number T > 0 so that for every
set K ⊂ [n] of size |K| = k, |{f ∈ F : |f(K)| = k}| = T . In this section we show
that the size of each such family must be at least c(k, �)n�k/2�, where c(k, �) is a
positive constant depending only on k and �.

Theorem 1. Let F be a perfectly k-balanced family of functions from [n] to [�],
where
n > � ≥ k.

6 N. Alon and S. Gutner

(i) If k = 2r is even then

|F| ≥
(
n
r

)(
�
r

)(
�−r

r

) .
(ii) If k = 2r + 1 is odd then

|F| ≥
(
n−1

r

)(
�−1

r

)(
�−r−1

r

) .
(iii) If � = k = 2 then |F| ≥ n − 1, and equality can hold if and only if there
is a Hadamard matrix of order n. Otherwise, the smallest possible size of F is
precisely n.

Proof. (i) Let F be a perfectly 2r-balanced family of functions from [n] to [�].
For each R ⊂ [n] of size |R| = r, define two vectors uR and wR, each of

length |F|
(

�
r

)(
�−r

r

)
, whose coordinates are indexed by the set of all ordered triples

(f, S1, S2), with

f ∈ F , S1, S2 ⊂ [�], |S1| = |S2| = r, and S1 ∩ S2 = ∅.

These vectors are defined as follows:

uR(f, S1, S2) = 1 if f(R) = S1, and uR(f, S1, S2) = 0 otherwise.

wR(f, S1, S2) = 1 if f(R) = S2, and wR(f, S1, S2) = 0 otherwise.

Note that the inner product of two such vectors uR1 and wR2 is zero if R1∩R2 �=
∅. Indeed, in this case f(R1) must have a nonempty intersection with f(R2) for
all f ∈ F , and thus there is no coordinate (f, S1, S2) as above in which both vR1

and wR2 do not vanish. Similarly, if R1 ∩ R2 = ∅, the inner product of uR1 and
wR2 is precisely the number of functions f ∈ F which are one-to-one on R1∪R2.
Indeed, for each such f there is a unique pair of disjoint sets S1, S2, each of
size r, so that f(R1) = S1 and f(R2) = S2, while if f maps two elements of
R1∪R2 to the same image, there is no such pair. Since F is a perfectly balanced
2r-family, there exists a positive T so that for every disjoint R1, R2 as above,
the inner product of uR1 with wR2 is T .

Let U be the
(
n
r

)
by |F|

(
�
r

)(
�−r

r

)
matrix whose rows are all vectors uR with

R ⊂ [n], |R| = r, and let W be the matrix whose rows are all vectors wR. By
the above discussion, the product U · W t = T · DISn,r, where DISn,r is the
disjointness matrix whose rows and columns are indexed by the r-subsets of [n],
defined by DISn,r(R1, R2) = 1 if R1∩R2 = ∅ and DISn,r(R1, R2) = 0 otherwise.
It is well known (see, e.g., [20]) that the matrix DISn,r is nonsingular (over the
reals) for all n ≥ 2r, and as this is the case here and T is nonzero, it follows that
the rank of U is at least that of U ·W t which is

(
n
r

)
. As this rank is at most the

number of columns of U , we conclude that

|F|
(

�

r

)(
� − r

r

)
≥
(

n

r

)
,

completing the proof of part (i).

Balanced Hashing, Color Coding and Approximate Counting 7

(ii) The proof is similar to that of part (i), with a few modifications. Here are
the details. Let F be a perfectly 2r + 1-balanced family of functions from [n] to
[�].

For each R ⊂ [n − 1] of size |R| = r define two vectors uR and wR, each of
length |F|

(
�−1

r

)(
�−r−1

r

)
, whose coordinates are indexed by the set of all ordered

triples (f, S1, S2), satisfying

f ∈ F , S1, S2 ⊂ [�] − {f(n)}, |S1| = |S2| = r, and S1 ∩ S2 = ∅.

These vectors are defined as before:

uR(f, S1, S2) = 1 if f(R) = S1, and uR(f, S1, S2) = 0 otherwise.

wR(f, S1, S2) = 1 if f(R) = S2, and wR(f, S1, S2) = 0 otherwise.

It is clear that just as before, the inner product of two such vectors uR1 and wR2

is zero if R1 ∩ R2 �= ∅. Similarly, if R1 ∩ R2 = ∅, the inner product of uR1 and
wR2 is precisely the number of functions f ∈ F which are one-to-one on R1 ∪
R2 ∪ {n}. Indeed, for each such f there is a unique pair of disjoint subsets S1, S2
of [�]−{f(n)}, each of size r, so that f(R1) = S1 and f(R2) = S2, while if f does
not map R1 ∪ R2 ∪ {n} in a one-to-one manner, there is no such pair. As before,
since F is a perfectly balanced 2r + 1-family, there exists a positive T so that for
the matrices U and W whose rows are all vectors uR and wR, respectively, with
R ⊂ [n − 1], |R| = r, the product U · W t = T · DISn−1,r. The desired result
follows as before, since DISn−1,r is nonsingular and yet its rank cannot exceed
the number of columns of U . This completes the proof of part (ii).
(iii) Let F be a perfectly 2-balanced family of functions from [n] to [2]. Note that
by part (i), |F| ≥ n/2, but here one can improve the constant factor and obtain
a tight bound. To do so, define, for each i ∈ [n], a vector ui of length |F|, whose
coordinates are indexed by the elements of F , where here ui(f) = (−1)f(i)−1. It
is easy to check that the inner product of ui and uj is |F| if i = j, and is |F|−2T
if i �= j, where here T > 0 is the number of functions f ∈ F that map i and j
to distinct elements. (This number is the same for all i �= j, as F is perfectly
2-balanced.) We conclude that all diagonal elements of the gram matrix of the n
vectors ui are |F|, while all other elements are |F| − 2T . It is easy to check that
this matrix is nonsingular unless the sum of its elements in each row is zero, in
which case it has rank n− 1. In fact, all eigenvalues of this matrix are 2T , with
multiplicity n − 1, and the sum of all entries in a row, with multiplicity 1. (In
case this sum is also 2T , then the matrix is 2T times the identity matrix, and all
eigenvalues are equal). We conclude that the length of the vectors, |F| is always
at least n−1. Equality can hold only if the sum of elements in a row of the gram
matrix is 0. In this case, |F| = n − 1 and n − 1 − 2T = −1, that is, the inner
product of each two of our n vectors is −1. For each 1 ≤ i ≤ n, let ui denote
the vector obtained from ui by adding to it a coordinate in which its value is 1.
Then the vectors ui are n pairwise orthogonal vectors of length n with {−1, 1}
entries, that is, they form the rows of a Hadamard matrix of order n. Thus, if
there is no Hadamard matrix of order n then any family of perfectly 2-balanced

8 N. Alon and S. Gutner

functions from [n] to [2] has at least n functions. The family F = {f1, f2, . . . , fn}
in which fi(i) = 1 and fi(j) = 2 for all j �= i shows that this is tight, completing
the proof of the theorem. ��

Remarks:
(i) A well known conjecture (c.f., e.g., [15]) asserts that for n > 2 there is a
Hadamard matrix of order n iff n is divisible by 4. It is easy to see that if there
is such a matrix then n is indeed divisible by 4. The converse is not known, but
there are many infinite families of known Hadamard matrices, showing that the
(n − 1)-bound in part (iii) of the theorem is tight in many cases.
(ii) It is easy to see that for every n > k there is a perfectly k-balanced family
F of functions from [n] to [k] of size |F| =

(
n

k−1

)
. Indeed, for each subset R =

{r1, r2, . . . , rk−1} of [n], with r1 < r2 < . . . < rk−1 let fR denote the function
defined by fR(ri) = i for all 1 ≤ i ≤ k − 1, and fR(j) = k for all j ∈ [n] − R.
It is not difficult to check that the family of all these functions fR is perfectly
k-balanced (with T = k).
(iii) The lower bounds in Theorem 1 hold for weighted families as well, even if
the weight weight(f) of some of the functions f is negative, as long as there is
a real T �= 0 so that for every K ⊂ [n], |K| = k, the total weight of functions
which are one-to-one on K is exactly T . To see this, repeat the proof above,
modifying the definition of the vectors uR to be

uR(f, S1, S2) = weight(f) if f(R) = S1, and uR(f, S1, S2) = 0 otherwise,

keeping the definition of the vectors wR as before.

4 Expanders

In this section we describe a special case of the Cayley expanders of [5] that
we use later. Note that these are not bounded-degree graphs, and their degrees
grow with the number of vertices, but they suffice for our purpose. This is a
special case of a construction suggested in [5], which is based on one of the codes
described in [3].

The following are standard definitions and observations concerning eigenvalues
and expanders (c.f., e.g., [7],[16]).

Let G = (V, E) be a d-regular graph and let A = AG = (auv)u,v∈V be its
adjacency matrix. Since G is d-regular, the largest eigenvalue of A is d, cor-
responding to the all 1 eigenvector. Let λ = λ(G) denote the largest absolute
value of an eigenvalue other than the first one. For two (not necessarily disjoint)
subsets B and C of V , let e(B, C) denote the number of ordered pairs (u, v),
where u ∈ B, v ∈ C and uv is an edge of G. The following useful bound is the
Expander Mixing Lemma (c.f., e.g., [7], page 146).

Proposition 1. Let G be a d-regular graph with n vertices and set λ = λ(G).
For every two sets of vertices B and C of G, where |B| = bn and |C| = cn, we
have

|e(B, C) − bcdn| ≤ λ
√

bc n.

Balanced Hashing, Color Coding and Approximate Counting 9

We need the following explicit expanders, described, for example, in [6], following
[5]. Let bin : GF (2k) �→ {0, 1}k be a one-to-one mapping satisfying bin(0) = 0k

and bin(x + y) = bin(x) ⊕ bin(y), where α ⊕ β means the bit-by-bit xor of the
binary strings α and β. (The standard representation of GF (2k) as a vector space
satisfies the above conditions.) Given x, y ∈ GF (2k), let < x, y > denote the bit
(bin(x), bin(y))2, where (α, β)2 is the inner-product mod 2 of the binary vectors
α and β. For a fixed d and x, y ∈ GF (2k), the binary vector uxy is defined as
< x, y >< x2, y > · · · < xd, y >. For every d, k ≥ 1, we define a 4k-regular graph
Gd,k with 2d vertices, as follows. The vertex set is {0, 1}d and every vertex v is
adjacent to v ⊕ uxy for all x, y ∈ GF (2k).

Theorem 2. For every two positive integers d and k satisfying 4k < 2d there
is an explicit construction of a 4k-regular graph Gd,k on 2d vertices so that
λ(Gd,k) ≤ d · 2k.

Proof. Denote F = GF (2k), D = {0, 1}d, and let A be the 2d × 2d adjacency
matrix of Gd,k. For every a = a1a2 · · ·ad ∈ D, let va be the vector whose bth
entry, where b ∈ D, satisfies va(b) = (−1)(a,b)2 . Let pa(x) be the polynomial∑d

i=1 aix
i and denote λa =

∑
x,y∈F (−1)<pa(x),y>. We now prove that va is an

eigenvector of A over IR with eigenvalue λa.

(Ava)(b) =
∑
c∈D

Abcva(c) =
∑

x,y∈F

va(b ⊕ uxy) = va(b)
∑

x,y∈F

va(uxy)

= va(b)
∑

x,y∈F

(−1)(a,uxy)2 = λava(b).

It is easy to verify that the 2d vectors {va}a∈D are orthogonal, and therefore we
found all the eigenvalues of A. It remains to bound the absolute value of λa. For
a fixed x ∈ F , the term

∑
y∈F (−1)<pa(x),y> is equal to 2k if pa(x) = 0, and to

zero in case pa(x) �= 0. If a �= 0d, then pa(x) is a non-zero polynomial of degree
at most d, and therefore has at most d roots. Thus, |λa| ≤ d · 2k, as needed. ��

Note that this construction is applicable for a wide range of parameters, that
is, the number of vertices of the expander can be any power of 2, whereas the
degree can be any power of 4.

5 Partially Independent Variables

In this section we introduce a certain relaxation of almost k-wise independence
and describe an appropriate explicit construction, which will give the main build-
ing block required in the construction of balanced families of hash functions of
optimal size. For notational convenience, we give the following definitions related
to the probabilities implied by a multinomial distribution.

10 N. Alon and S. Gutner

Definition 3. Suppose that 1 ≤ � ≤ k and k = k1 + k2 + · · ·+ k�, where ki ≥ 0
for every i. Define m(k1, . . . , k�) to be the following probability:(

k
k1,k2,...,k�

)
�k

=
k!

k1!k2! · · · k�!�k
.

For random variables X1, . . . , Xk, let Yi denote the number of variables Xj that
are equal to i. Define M(X1, . . . Xk; k1, . . .k�) to be the event that Yi = ki for
every i, 1 ≤ i ≤ �.

We now construct probability distributions which are uniform over a set of strings
of length q in the alphabet [�]. In the standard notion of almost k-wise indepen-
dence, it is required that in any k positions, each substring of length k appears
with probability close to �−k. Here we are interested in a weaker condition. Our
objective is to construct small probability spaces of the following type.

Definition 4. A sequence X1, . . .Xq of random variables that take values from
[�] is (ε, k)-partially-independent if for any p ≤ k positions i1 < · · · < ip and any
� values k1, . . . , k� such that k1 + · · · + k� = p, we have

|Pr[M(Xi1 , . . .Xip ; k1, . . .k�)] − m(k1, . . . , k�)| < ε.

Observe that we require the property to hold for any p variables, where 1 ≤
p ≤ k. This is needed since the fact that the property is satisfied for a value
p does not imply that it holds for p′ < p. Furthermore, requiring that it ap-
plies for every value p ≤ k is crucial for the correctness of our recursive con-
struction. To demonstrate the definition, here is what it means for � = 2. A
sequence X1, . . . Xq of random Boolean variables (taking values from {0,1}) is
(ε, k)-partially-independent if for any p ≤ k positions i1 < · · · < ip and any r,
0 ≤ r ≤ p, we have

∣∣Pr[Xi1 + · · · + Xip = r] −
(
p
r

)
2−p

∣∣ < ε.

Theorem 3. For any � ≤ k ≤ q and 0 < ε ≤ 1, a sample space of size(
qk�

ε

)O(log q)
that supports q variables that take values from [�] and are (ε, k)-

partially-independent can be constructed in time
(

qk�

ε

)O(log q)
.

Proof. Assume, without loss of generality, that q is a power 2. Otherwise, q can
be simply rounded to the next power of 2. Assume also that ε ≤ 1

k� . If this is not
the case, then ε can be replaced by ε

k� . We recursively construct sample spaces
that support an increasing number of variables. For every t = 0, 1, . . . , log2 q, we
shall construct a sample space Ct that supports 2t variables that take values from
[�] and are

(
4tε
q2 , k

)
-partially-independent. The sample space Ct will consists of

strings of length 2t over the alphabet [�].
We start with t = 0. To support one variable, it is possible to simply define a

sample space that consists of the � strings of length 1, and there will be no error
at all in this case. For our purpose, the size of each sample space should be a

Balanced Hashing, Color Coding and Approximate Counting 11

power of 2, so let N0 be the result of rounding the value 4(20q2k�

ε)4 to the next
higher power of 2. The sample space consists of N0 strings, where each string of
length 1 appears either �N0

� � or 	N0
�
 times. Obviously N0 ≤ 8(20q2k�

ε)4 and we

have one variable which is certainly
(
1, ε

q2

)
-partially-independent.

Let D be the result of rounding the value
(

20q2k�

ε

)4
to the next higher power

of 4. Suppose that in step t, a sample space of size Nt ≤ 8Dt+1 that supports 2t

variables that are
(

4tε
q2 , k

)
-partially-independent has been constructed. We now

describe step t + 1. Let G be the D-regular expander with Nt vertices described
in section 4 (note that D < Nt). It follows from Theorem 2 that

λ(G)
D

≤ log2 Nt√
D

≤ 3 + (t + 1) log2 D√
D

≤ (log2 D)2√
D

≤ 20
D1/4 ≤ ε

q2k�
.

To every vertex of the graph G we assign one of the Nt strings of length 2t from
Ct that were constructed in step t. For every ordered pair (u, v) such that uv is
an edge of G, the concatenation of the string assigned to u followed by the string
assigned to v is added to the sample space Ct+1. The resulting sample space is
of size Nt+1 = DNt.

Suppose that in step t, a sample space Ct of size Nt that supports 2t variables
that are (γ, k)-partially-independent has been constructed, where γ = 4tε

q2 . We
now prove that the approximation error is increased in step t+1 by a multiplica-
tive factor of at most 4, that is, the sample space Ct+1 supports 2t+1 variables
that are (4γ, k)-partially-independent. Suppose that p ≤ k and take any p posi-
tions 1 ≤ i1 < · · · < ip ≤ 2t+1 and any � values k1, . . . , k� such that k1+· · ·+k� =
p. We further assume that among the p positions selected, exactly p′ posi-
tions are in the first half of the string. Therefore Pr[M(Xi1 , . . . Xip ; k1, . . . k�)] is
equal to

∑
k′
1+···+k′

�=p′
Pr[M(Xi1 , . . .Xip′ ; k′

1, . . . , k
′
�)∩M(Xip′+1

, . . . Xip ; k1−k′
1, . . . , k�−k′

�)].

We would like Pr[M(Xi1 , . . .Xip ; k1, . . .k�)] to be close to:

m(k1, . . . k�) =
∑

k′
1+···+k′

�=p′
m(k′

1, . . . , k
′
�)m(k1 − k′

1, . . . , k� − k′
�).

Note that the number of terms in the two summations above is at most k�

and that obviously
∑

k′
1+···+k′

�
=p′ m(k′

1, . . . , k
′
�) ≤ 1. Since Ct is (γ, k)-partially-

independent, it follows from Proposition 1 that the estimation error is as follows:

12 N. Alon and S. Gutner∣∣Pr[M(Xi1 , . . . Xip ; k1, . . .k�)] − m(k1, . . .k�)
∣∣ ≤∑

k′
1+···+k′

�=p′

[
(m(k′

1, . . . , k
′
�) + γ)(m(k1 − k′

1, . . . , k� − k′
�) + γ) +

λ(G)
D

]
−

∑
k′
1+···+k′

�=p′
m(k′

1, . . . , k
′
�)m(k1 − k′

1, . . . , k� − k′
�) =

∑
k′
1+···+k′

�=p′
γ[m(k′

1, . . . , k
′
�) + m(k1 − k′

1, . . . , k� − k′
�)] + γ2 +

λ(G)
D

≤

2γ + k�

(
γ2 +

λ(G)
D

)
≤ 4γ,

where the last inequality follows from the inequalities γ ≤ ε ≤ 1
k� and λ(G)

D ≤
ε

q2k� ≤ γ
k� . After step log2 q, the sample space constructed is (ε, k)-partially-

independent, as needed. ��

6 Balanced Families and Approximate Counting

The following inequality is Robbins’ formula [12] (a tight version of Stirling’s
formula).

Claim. For every integer n ≥ 1,
√

2πnn+1/2e−n+1/(12n+1) < n! <
√

2πnn+1/2e−n+1/(12n).

This supplies the following simple lower bound for the multinomial distribution
(recall Definition 3).

Lemma 1. If k ≥ � > 0, then

m(k/�
, . . . , 	k/�
︸ ︷︷ ︸
k mod �

, �k/��, . . . , �k/��︸ ︷︷ ︸
�−(k mod �)

) > (15k/�)−�/2.

Proof. (sketch) Assume first that � divides k. Using Robbins’ formula, we get:

m(k/�, . . . , k/�︸ ︷︷ ︸
�

) =
k!

(k/�)!��k
> (2πk/�)−�/2e−�2/12k

≥ (2πe1/6k/�)−�/2 > (7.5k/�)−�/2.

The result for general k and � follows similarly. ��

The previous Lemma shows that the events we would like to estimate have a
relatively high probability, enabling us to give the following construction.

Theorem 4. For any k ≥ � and 0 < ε ≤ 1, an ε-balanced (q, k, �)-splitter of size(
qk�

ε

)O(log q)
can be constructed in time

(
qk�

ε

)O(log q)
.

Balanced Hashing, Color Coding and Approximate Counting 13

Proof. As implied by Theorem 3, we use an explicit probability space of size(
qk�

γ

)O(log q)
that supports q random variables that take values from [�] and

are (γ, k)-partially-independent, where γ = (15k/�)−�/2ε. We attach one of the
random variables to each element of [q]. If follows from Lemma 1 that the splitter
achieves the required approximation. ��

We can now describe our main construction of balanced families of hash func-
tions, using the ingredients mentioned at the end of section 2. Recall that there
are three ingredients in this construction. Two of them are relatively simple, and
are given in the next two propositions.

Proposition 2. For any 0 < ε ≤ 1, an (ε, k)-balanced family of hash functions
from [n] to [q], where q = 	 2k2

ε
, of size kO(1) log n
εO(1) can be constructed in time

kO(1)n log n
εO(1) .

Proposition 3. For any 0 < ε ≤ 1, an (ε, g)-balanced family of hash functions
from [m] to [g] of size O(eg√g log m

ε2) can be constructed in time
(
m
g

)
eggO(1)m log m

ε2 .

The first proposition is proved using a standard construction of nearly pairwise
independent random variables. Here n is the number of variables, they attain
values in [q], and the number of functions is the size of the sample space. Since
every two variables are equal with probability close to 1/q, for every fixed set S
of k variables, the values of the random variables in S are pairwise distinct in at
least a fraction of (1 − ε) of the functions.

The second proposition is proved using the method of conditional expecta-
tions. The details appear in [4].

The main part of the construction is the balanced (q, k, �)-splitter described
in Theorem 4. The three ingredients are combined as follows. Each function f
of our final family is described by a member f1 of an (ε/6, k)-balanced family
of Proposition 2, a member f2 of the ε2-balanced splitter of Theorem 4 with
ε2 = ε

6 , q = 	 2k2

ε2

 and � = 	log k
, and � members φ1, . . . , φ� of the (ε

6� , g)-
balanced family of Proposition 3 with m = q and g = k/�. (For simplicity we
assume here that � divides k.) To compute the value of f on some x ∈ [n], we
first apply f1 to x, getting a value y in [q], then we apply f2 to y, getting as
a result some i ∈ [�], and finally we apply φi to y, where the final result is
(i − 1)k/� + φi(y). A k-set S ⊂ [n] can be mapped in a one-to-one manner by
such an f only if it is mapped in a one-to-one manner by f1, and then only if
it is split evenly into � parts by f2, and then only if its elements mapped to
each of the � parts are mapped in a one-to-one manner by each of the functions
φi. Since all the ingredients in the construction are sufficiently balanced, this
gives the required balanced family. The detailed computation, which yields the
following theorem, is postponed to the full version of the paper.

Theorem 5. For 1
poly(k) < ε ≤ 1, an (ε, k)-balanced family of hash functions

from [n] to [k] of size ek+O(log3 k) log n can be constructed deterministically in
time ek+O(log3 k)n logn.

14 N. Alon and S. Gutner

Using Color-Coding we can now approximate the number of paths and cycles (or
other fixed graphs of bounded tree-width) in a given input graph. Let G = (V, E)
be a directed or undirected graph. The algorithms use the construction of (ε, k)-
balanced families of hash functions from V to [k]. Each such function defines a
coloring of the vertices of the graph. Recall that a path is colorful if each vertex
on it is colored by a distinct color. Using dynamic programming one can count
efficiently the exact number of colorful paths in each of these colorings. The
properties of the balanced family of hash functions then provide the following
deterministic polynomial time algorithms for approximately counting the num-
ber of paths or cycles of size k in a given input graph of size n for all k ≤ log n
. Similar results apply for approximate counting of prescribed subgraphs of size
k and bounded tree-width.

Theorem 6. For any 1
poly(k) < ε ≤ 1, the number of simple (directed or undi-

rected) paths of k vertices in a (directed or undirected) graph G = (V, E) can be
approximated deterministically up to relative error ε in time 2O(k)|E| log |V |.

Theorem 7. For any 1
poly(k) < ε ≤ 1, the number of simple (directed or undi-

rected) cycles of size k in a (directed or undirected) graph G = (V, E) can be
approximated deterministically up to relative error ε in time 2O(k)|E||V | log |V |.

7 Concluding Remarks

– The notion of balanced families of hash functions seems natural and useful,
and it will be interesting to find additional applications of it.

– An easy combination of Proposition 2 and Theorem 5 supplies, for any
ε ≥ 1

k� , explicit ε-balanced (n, k, �)-splitters of size at most eO(� log2 k) log n.
In particular, for � = 2 the size is eO(log2 k) log n. A simple probabilistic
argument shows, however, that for any fixed ε > 0 there are ε-balanced
(n, k, 2)-splitters of size O(k

√
k log n), and although this is not crucial for

our application here, it will be interesting to find an explicit construction of
such splitters of size polynomial in k and log n.

– Our results settle the problem of approximately counting the number of
paths and cycles of length k = Θ(log n) in an n-vertex graph in deterministic
polynomial time. As mentioned in the introduction, it is probably impossible
to extend the result for larger values of k, since even a polynomial time
algorithm for deciding whether there exists one simple path of length k
where log n = o(k) would imply a sub-exponential time algorithm for the
Hamiltonian cycle problem. This follows easily by padding a graph on k
vertices by n − k = 2o(k) isolated ones, thus converting the above decision
algorithm to one that decides in time 2o(k) whether a graph on k vertices is
Hamiltonian, contradicting the Exponential Time Hypothesis (ETH) [18,19].

– Our method here, combined with the Color Coding technique, easily yields
results for additional approximate counting problems for graphs. In partic-
ular, given a weighted graph G on n vertices, we can approximate deter-
ministically, in polynomial time, the number of minimum (or maximum)

Balanced Hashing, Color Coding and Approximate Counting 15

weight paths or cycles (or copies of any prescribed subgraph of bounded tree
width) on k vertices in G up to any fixed desired relative accuracy, for all
k ≤ O(log n).

References

1. Alon, N., Babai, L., Itai, A.: A fast and simple randomized parallel algorithm for
the maximal independent set problem. Journal of Algorithms 7(4), 567–583 (1986)

2. Alon, N., et al.: Biomolecular network motif counting and discovery by color coding.
In: ISMB (Supplement of Bioinformatics), pp. 241–249 (2008)

3. Alon, N., Goldreich, O., H̊astad, J., Peralta, R.: Simple construction of almost
k-wise independent random variables. Random Struct. Algorithms 3(3), 289–304
(1992)

4. Alon, N., Gutner, S.: Balanced families of perfect hash functions and their appli-
cations. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007.
LNCS, vol. 4596, pp. 435–446. Springer, Heidelberg (2007)

5. Alon, N., Roichman, Y.: Random Cayley graphs and expanders. Random Struct.
Algorithms 5(2), 271–285 (1994)

6. Alon, N., Schwartz, O., Shapira, A.: An elementary construction of constant-degree
expanders. Combin. Probab. Comput. 17(3), 319–327 (2008)

7. Alon, N., Spencer, J.H.: The probabilistic method. Wiley-Interscience Series in
Discrete Mathematics and Optimization. John Wiley & Sons Inc., Hoboken (2008)

8. Alon, N., Yuster, R., Zwick, U.: Color-coding. Journal of the ACM 42(4), 844–856
(1995)

9. Alon, N., Yuster, R., Zwick, U.: Finding and counting given length cycles. Algo-
rithmica 17(3), 209–223 (1997)

10. Arvind, V., Raman, V.: Approximation algorithms for some parameterized count-
ing problems. In: Bose, P., Morin, P. (eds.) ISAAC 2002. LNCS, vol. 2518, pp.
453–464. Springer, Heidelberg (2002)

11. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Counting paths and packings
in halves. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 578–586.
Springer, Heidelberg (2009)

12. Feller, W.: An introduction to probability theory and its applications, 3rd edn.,
vol. I. Wiley, New York (1968)

13. Flum, J., Grohe, M.: The parameterized complexity of counting problems. SIAM
Journal on Computing 33(4), 892–922 (2004)

14. Fredman, M.L., Komlós, J., Szemerédi, E.: Storing a sparse table with O(1) worst
case access time. Journal of the ACM 31(3), 538–544 (1984)

15. Hall Jr., M.: Combinatorial theory, 2nd edn. Wiley-Interscience Series in Discrete
Mathematics. John Wiley & Sons Inc., A Wiley-Interscience Publication, New York
(1986)

16. Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applications. Bull.
Amer. Math. Soc (N.S.) 43(4), 439–561 (2006) (electronic)

17. Hüffner, F., Wernicke, S., Zichner, T.: Algorithm engineering for color-coding to
facilitate signaling pathway detection. In: Sankoff, D., Wang, L., Chin, F. (eds.)
APBC. Advances in Bioinformatics and Computational Biology, vol. 5, pp. 277–
286. Imperial College Press (2007)

18. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst.
Sci 62(2), 367–375 (2001)

16 N. Alon and S. Gutner

19. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)

20. Jukna, S.: Extremal combinatorics. Texts in Theoretical Computer Science. An
EATCS Series. Springer, Berlin (2001); With applications in computer science

21. Naor, M., Schulman, L.J., Srinivasan, A.: Splitters and near-optimal derandom-
ization. In: 36th Annual Symposium on Foundations of Computer Science, pp.
182–191 (1995)

22. Schmidt, J.P., Siegel, A.: The spatial complexity of oblivious k-probe hash func-
tions. SIAM Journal on Computing 19(5), 775–786 (1990)

23. Scott, J., Ideker, T., Karp, R.M., Sharan, R.: Efficient algorithms for detecting
signaling pathways in protein interaction networks. Journal of Computational Bi-
ology 13(2), 133–144 (2006)

24. Sharan, R., Ideker, T.: Modeling cellular machinery through biological network
comparison. Nature Biotechnology 24(4), 427–433 (2006)

25. Shlomi, T., Segal, D., Ruppin, E., Sharan, R.: QPath: a method for querying
pathways in a protein-protein interaction network. BMC Bioinformatics 7, 199
(2006)

26. Vassilevska, V., Williams, R.: Finding, minimizing, and counting weighted sub-
graphs. In: Mitzenmacher, M. (ed.) Proceedings of the 41st Annual ACM Sympo-
sium on Theory of Computing, pp. 455–464. ACM, New York (2009)

Kernelization: New Upper and Lower Bound
Techniques

Hans L. Bodlaender

Department of Information and Computing Sciences, Utrecht University, P.O. Box
80.089, 3508 TB Utrecht, the Netherlands

hansb@cs.uu.nl

Abstract. In this survey, we look at kernelization: algorithms that
transform in polynomial time an input to a problem to an equivalent
input, whose size is bounded by a function of a parameter. Several re-
sults of recent research on kernelization are mentioned. This survey looks
at some recent results where a general technique shows the existence of
kernelization algorithms for large classes of problems, in particular for
planar graphs and generalizations of planar graphs, and recent lower
bound techniques that give evidence that certain types of kernelization
algorithms do not exist.

Keywords: fixed parameter tractability, kernel, kernelization, prepro-
cessing, data reduction, combinatorial problems, algorithms.

1 Introduction

In many cases, combinatorial problems that arise in practical situations are
NP-hard. As we teach our students in algorithms class, there are a number of
approaches: we can give up optimality and design approximation algorithms
or heuristics; we can look at special cases or make assumptions about the input
that one or more variables are small; or we can design algorithms that sometimes
take exponential time, but are as fast as possible. In the latter case, a common
approach is to start the algorithm with preprocessing.

So, consider some hard (say, NP-hard) combinatorial problem. We start our
algorithm with a preprocessing or data reduction phase, in which we transform
the input I to an equivalent input I ′ that is (hopefully) smaller (but never
larger). Then, we solve the smaller input I ′ optimally, with some (exponential
time) algorithm. E.g., in practical settings, we can use an ILP-solver, branch
and bound or branch and reduce algorithm, or a satisfiability-solver. After
we obtained an optimal solution S′ for S, we transform this solution back to an
optimal solution for I.

In this overviewpaper, we want to focus on the following question for given com-
binatorial problems: suppose the preprocessing phase takes polynomial time; what
can we say about the size of the reduced instance, as a function of some parameter
of the input? This question is nowadays phrased as: does the problem we consider
have a kernel, and if so, how large is the kernel? So, kernelization gives us quanti-
tative insights in what can be achieved by polynomial time preprocessing. In this

J. Chen and F.V. Fomin (Eds.): IWPEC 2009, LNCS 5917, pp. 17–37, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

18 H.L. Bodlaender

paper, we aim to first give a general introduction to the field of kernelization, and
then survey a number of very recent general techniques from the field.

As a simple example, let us look at the Vertex Cover problem. Here, we
are given a graph G = (V, E) and some integer k, and ask if there is a set W ⊆ V
of at most k vertices, such that for each edge {v, w} ∈ E at least one endpoint
belongs to W (v ∈ W or w ∈ W). We can use the following ’kernelization’
algorithm, due to Buss, see [26]: while there is at least one vertex v ∈ V with
degree at least k + 1, remove v and its incident edges, and set k to k − 1. This
gives equivalent instances: v must belong to an optimal solution, because if we
do not take v, we must take all neighbors of v, which are more than k vertices.
Also, remove all vertices of degree 0, without changing k. If at some point, k < 0,
we can decide no: there clearly is no solution. Now, if we have more than k2

edges, we decide no. Each remaining vertex has degree at most k, so with k
vertices, we cannot cover more than k2 edges. If we did not return no, we end
with an equivalent instance with at most k2 edges (and less than k2 vertices).

The simple algorithm given above is not the best (in terms of ’kernel sizes’)
kernelization algorithm for Vertex Cover: a clever algorithm by Nemhauser
and Trotter [72] gives reduced instances with 2k vertices. The algorithm above,
however, does give a nice example of a methodology that is used in many ker-
nelization algorithms: we have a set of ’safe reduction rules’, i.e., rules that give
a smaller, equivalent instance, and we have a mathematical analysis on the size
of yes-instances when no rule applies. When our input is larger than this size,
we return no; otherwise, we have a small reduced instance.

For the analysis of kernels, we can fortunately make use of a large toolbox
from the field of fixed parameter algorithms, which was pioneered by Downey
and Fellows. For background in this field, we refer to [44,52,73]. We use a number
of definitions from this field in a form that is useful for this exposition.

A parameterized problem is a subset of Σ∗ × N for some fixed alphabet Σ.
I.e., we look at decision problems where some specific part of the input, called
the parameter, is an integer.

The theory of fixed parameter complexity is used to distinguish between the
running time for parameterized problem, where we pay attention how this time
depends on the parameter and on the input size. Three important types of
behavior can be seen:

– NP-complete: the problem is NP-complete for some fixed values of k. E.g.,
Graph Coloring is NP-complete, even when the number of colors is 3.

– XP: for every fixed k, there is a polynomial time algorithm, but the exponent
of the running time grows with k, i.e., the running time is Θ(nf(k)) for some
function f with limk→∞ f(k) = ∞.

– FPT: there is an algorithm, that solves the problem in time O(f(k)nc) for
some function f on inputs of size n with parameter k, with c a constant.
FPT is defined as the class of all parameterized problems that have such a
kernel. FPT is short for fixed parameter tractable.

A kernelization algorithm for a parameterized problem P is an algorithm A, that
transforms inputs (I, k) of P to inputs (I ′, k′) of P , such that

Kernelization: New Upper and Lower Bound Techniques 19

1. the algorithm uses time polynomial in |I| + k;
2. the algorithm transforms inputs to equivalent inputs: (I, k) ∈ P ⇔ A(I, k) ∈

P ;
3. k′ ≤ k;
4. |I ′| ≤ f(k) for some function f : the value of the new parameter and the size

of the new input are bounded by a function of the value of the old parameter.

We say that P has a kernel of size f . Throughout this paper, we focus on the
question for given problems P : does it have a kernel, and if so, of what size. Of
course, we prefer kernels of small size, and asks ourselves for problems: do they
have polynomial kernels. A variant of the definition, giving a slightly different
notion of kernelization, has the condition k′ ≤ f(k) instead of k′ ≤ k.

The topic of kernelization has become a very active of research. An excellent
survey on the field was made by Guo and Niedermeier in 2007 [59]. In the past
two years, more work has been done, and this paper aims at focussing at some
recent developments, where general methods were obtained.

A little technical remark. In several cases, we can decide the problem directly.
Applying the notion of kernelization would require that we instead transform
the problem to an equivalent instance. This can be easily resolved as follows: we
take a yes-instance and a no-instance, both of small (constant bounded) size,
and instead of deciding, we transform the input to the yes- or no-instance of
constant bounded size. This little trick also shows that when a problem (seen as
decision problem, we take the parameter in unary) belongs to P , then it has a
kernel of O(1) size. Also, when a problem has an O(1) kernel, say of size at most
c, it belongs to P : we first make a kernel, and then check if this belongs to the
set Pc of yes-instances with size at most c. This latter set does not depend on
the input, and thus can be hardwired in our algorithm. Thus, when the problem
is NP-hard, then it does not have an O(1) kernel, unless P = NP .

The theory of fixed parameter complexity gives us an excellent tool to see
if a problem has a kernel (i.e., without considering its size.) First, consider the
following result, which is nowadays folklore. The main idea of the result is due to
Cai et al. [28], while its first statement is due to Neal Koblitz [47] and appeared
in [45] in 1997. In a few cases in the literature, the result or its proof are slightly
incorrectly stated, see the discussion below. The following proof is given by Flum
and Grohe [52] (for the variant of strongly uniformly FPT), see also [73].

Theorem 1. Let P be a parameterized problem. Then P belongs to the class
FPT, if and only if P is decidable and P has a kernel.

Proof. If P is decidable and has a kernel, then we can use the following algorithm
for P . If we have an input (I, k) of size n, then we can build in p(n+ k) time for
some polynomial p an equivalent instance (I ′, k′), with max(|I ′|, k′) ≤ f(k) for
some function f , by using the kernelization algorithm. Then, decide on (I ′, k′)
by any algorithm for P ; thus, for some function g, this costs in total O(p(n +
k) + g(f(k))) time.

Suppose P belongs to FPT. For some function f and constant c, we have an
algorithm A that solves instances of P in f(k)(n+k)c time. Now, run algorithm

20 H.L. Bodlaender

A for (n + k)c+1 steps. If the algorithm decides the problem in this time, we are
done: report an O(1) yes- or no-instance accordingly. Otherwise, we know that
n + k ≤ f(k): we return the original input, which is of the desired size. ��

The result and its proof are interesting for two reasons. First, we see how ker-
nels can be applied to obtain FPT-algorithms. Secondly, while the algorithm in
the other direction does not give an interesting kernelization algorithm, it does
give us a method to obtain negative evidence: if we have evidence that a problem
does not belong to the class FPT, then we also have evidence that there does not
exist a kernel. Such evidence is available. Downey and Fellows defined a number
of complexity classes of parameterized problems (see [42,43]), for which for our
exposition, W [1] is the most relevant. For the precise definition of W [1], see for
example [42,43,44]. It is widely believed that FPT �= W [1], while FPT ⊆ W [1].
So, decidable problems that are hard for W [1] are believed to not belong to
FPT, and thus are believed not to have a kernel. Moreover, if FPT = W [1],
i.e., if a W [1]-hard decidable problem has a kernel, then the Exponential Time
Hypothesis does not hold, see [1,29]. There are many problems that are known
to be W [1]-hard. For example, Independent Set is W [1]-complete [42,43] and
Dominating Set is W [2]-complete and hence W [1]-hard [42]. (When not spec-
ified otherwise, the parameter of a problem is assumed to be the upper or lower
bound of the size of the set to be found.) Hence, these problems have no kernel,
unless the Exponential Time Hypothesis does not hold.

In the literature, the condition that the problem is decidable is sometimes
forgotten; however, the condition is necessary. Consider the following parame-
terized problem. Let X be some undecidable set of integers. Now, consider the
language {(I, k) | k ∈ X}, i.e., the first part of the input is ignored, and we just
ask if the parameter belongs to X . It has a trivial linear kernel: map each (I, k)
to (ε, k), ε the empty string. But, {(I, k) | k ∈ X} is also undecidable and hence
cannot belong to FPT.

FPT, as defined here, is also known as uniformly FPT. Different versions exist:
strongly uniformly FPT requires in addition that f is computable. A parameter-
ized problem L is nonuniformly FPT, if there is a constant c, such that for each
fixed k, there is an O(nc) algorithm that solves all instances of L with parame-
ter k. A typical example of proofs of membership in nonuniformly FPT comes
from the graph minor theorem of Robertson and Seymour [12,76,77]: for a graph
parameter f that does not increase when taking minors, this theory tells us that
the problem: ‘given a graph G and integer k, is f(G) ≤ k?’ is non-uniformly
FPT. The three classes are different, see the discussion in [44] Theorem 1 holds
for uniformly FPT. A variant of the proof of Theorem 1 shows that a problem
with a kernel belongs to nonuniformly FPT (build the kernel, and then we have
to check, for fixed k, a constant number of possibilities), and that a problem
belongs to strongly uniformly FPT, if and only if it is decidable and has a kernel
of size f for some recursive function f [52]. There are computable problems that
are nonuniformly FPT but not uniformly FPT [44]; by Theorem 1, these are
nonuniformly FPT problems that do not have a kernel.

Kernelization: New Upper and Lower Bound Techniques 21

Besides an argument for the non-existence of kernels, W [1]-hardness proofs
give evidence for the non-existence of FPT-algorithms for the parameterized
problem at hand, i.e., assuming FPT �= W [1], a W [1]-hard problem does not
have an algorithm with running time O(f(k)nc) for some function f and con-
stant c. Recently, stronger results have been obtained for several parameterized
problems. For a number of problems, it is shown that — under certain com-
plexity theoretic assumptions — the problems do not have algorithms that solve
them in O(no(k)) time, see [30,32,33,53].

It is desirable to have kernels of small size. Fortunately, many problems have
small kernels, and we tabulate a number of examples below in Tables 1 and 2. In
Table 2, sizes of kernels for several problems on planar graphs are given, but also
some negative results are mentioned. W means: No kernel unless the Exponential
Time Hypothesis fails. These problems are W [1]-hard. For problems, marked
X, there is evidence that these problems do not have a kernel of polynomial
size. Each of these belongs to FPT, so a kernel (usually of exponential size)
exists. More precisely, for each of the problems marked X in Table 2, we have
that they do not have a polynomial sized kernel, unless NP ⊆ coNP/poly,
which in its turn implies that the polynomial time hierarchy collapses to the
third level. For more details, see Section 3. The entry marked ? is open to my
knowledge. It is also open if Edge Clique Cover has a kernel of polynomial
size. The tables are incomplete, and often only list the smallest kernel known
to me.

In case of the positive results for planar graphs, there is a common underlying
methodology that allows to obtain kernels for many problems on planar graphs.

In the remainder of the paper, we will give an introduction to two develop-
ments in the theory of kernelization as discussed above: meta theorems that
allow us to obtain kernels for collections of problems, and techniques to show
that certain problems do not have a polynomial kernel. Several other impor-
tant topics on kernelization will not be covered here; more information can for
example be obtained from [59].

Table 1. Kernel sizes for various problems. For graph problems, the bounds express
the number of vertices.

Problem Kernel Reference
Cluster Editing 4k [58]

Convex Recoloring of Trees O(k2) [16]
Feedback Arc Set in Tournaments O(k) [10]

Edge Clique Cover 2k [57]
Kemeny Score 2k [11]

MaxExact-q-SAT O(k) [66]
Max Non-Leaf Out-Branching O(k2) [63]

Multicut in Trees O(k6) [25]
Nonblocker 5/3k + 3 [38]

Rooted k-Leaf-Out-Branching O(k2) [36]

22 H.L. Bodlaender

Table 2. Kernels for problems on general graphs and on planar graphs. Sizes are ex-
pressed in number of vertices. X = kernel, but unless NP ⊆ coNP/poly no polynomial
kernel; W = W [1]-hard: ‘no’ kernel (see text); ? = open.

Problem Kernel (all graphs) Kernel (planar) References
Connected Vertex Cover W O(k) [41,60]
Capacitated Vertex Cover X ? [41,62]
Capacitated Dominating Set W W [42,18]
Connected Dominating Set W O(k) [42,69]

Disjoint Cycles X O(k) [21,20]
Dominating Set W O(k) [42,6,31]

Edge Dominating Set 8k2 O(k) [49,60]
Feedback Vertex Set 4k2 O(k) [78,19]

Independent Set W 4k [43,7]
Long Cycle X X [15]
Long Path X X [15]

Max Leaf Spanning Tree 3.75k 3.75k [46]
Weighted Max Leaf Spanning Tree W 78k [65]

Triangle Packing O(k2) O(k) [70,60]

2 Upper Bounds: Meta Theorems

For many concrete problems, polynomial kernels have been found. Very recently,
results have been obtained that ‘go one step further’: they show that for certain
classes of problems, each problem in such a class has a polynomial kernel.

2.1 Meta Theorems for Approximation Classes

The first such result was obtained by Kratsch [67]. The classes MIN F+Π1 and
MAX NP are known from the field of approximation: each problem in these
classes contains a constant factor polynomial time approximation algorithm.
The subclass MAX SNP is well known. The result by Cai and Chen [27] that all
problems in these classes are in FPT is strengthened by Kratsch [67] as follows.

Theorem 2 (Kratsch [67]). For each problem in MIN F+Π1 and MAX NP,
its version where the parameter is the value to optimize has a polynomial kernel.

2.2 Meta Theorems for Graphs on Surfaces

Bodlaender et al. [17] consider problems on fixed surfaces with certain properties.
There is a large number of parameterized problems on planar graphs that have a
polynomial kernel. The first of these was the seminal result by Alber, Fellows, and
Niedermeier [6], who gave a linear kernel for Dominating Set on planar graphs.
More linear size kernels were obtained for a large number of other problems,
including Connected Vertex Cover, Cycle Packing, Efficient Edge

Dominating Set, Feedback Vertex Set, Full-Degree Spanning Tree,
Induced Matching, Maximum Triangle Packing, and Minimum Edge

Kernelization: New Upper and Lower Bound Techniques 23

Dominating Set [19,20,31,60,61,69,71]. See also for example [55]. Guo and Nie-
dermeier [60] gave a general method to obtain such algorithms, based on decom-
positions of the planar input graph in ‘regions’ and rules that decrease the size
of such regions. Then, in [17] it is shown that general conditions on the problem
statement yield rules that always reduce regions to bounded size, and thus result
in kernels of either linear, quadratic, or cubic size on planar graphs for a large class
of problems. Also, these results are generalized to problems on other surfaces.

Here, we will give an example of a very simplified version of the proof method
for a concrete problem, namely the Red-Blue Dominating Set problem on
planar graphs, and state the general theorems shown in [17].

In the Red-Blue Dominating Set problem, we are given a bipartite graph
G = (R ∪ B, E) and an integer k, and ask for a subset S ⊆ R of at most k ’red’
vertices from R, such that each ’blue’ vertex from B is adjacent to a vertex in
S. We consider this problem, restricted to planar graphs. See for example [51]
for an FPT algorithm.

A set of vertices S in a graph G is d-dominating, if each vertex in G is at
distance at most d from a vertex in S. We may assume there are no isolated
vertices. Now, each solution S is 2-dominating, as each red vertex is adjacent to
a blue vertex and each blue vertex is adjacent to a red vertex.

A t-boundaried graph is a graph G = (V, E) with t distinguished vertices
(called terminals, uniquely labeled from 1 to t, together called the boundary of
G) and a boundaried graph is a t-boundaried graph for some t. The following
result is a variant of a result, shown by Guo and Niedermeier [60].

Lemma 1. Let d be a positive integer. For all planar graphs G, given with a d-
dominating set S, there is a collection of O(|S|) boundaried graphs G1, . . . , Gr,
such that

– Each vertex belongs to at least one graph Gi, 1 ≤ i ≤ r.
– If a vertex belongs to more than one graph Gi, it belongs to the boundary of

all Gi’s it belongs to.
– Each Gi has diameter at most 2d and a boundary of size at most 4d.

Given S, this collection can be found in polynomial time.

This decomposition is called a region decomposition [60]; each region has a small
boundary and diameter.

Suppose we are given a planar graph G = (V, E). First, with a Baker-style
polynomial time approximation scheme for Red-Blue Dominating Set [9],
we either find a solution S of size at most 2k, or determine that G has no red-
blue dominating set of size at most k. (For other problems, we can approximate
the Minimum d-Dominating Set problem with a Baker-style PTAS.) In the
latter case, we are done. In the former case, we then find the collection of O(k)
boundaried graphs with diameter and boundary O(d).

What remains to be done to get a kernel of linear size is to have rules, that re-
place each boundaried graph by a new boundaried graph, with the same boundary,
such that the answer does not change. Doing so, we possibly update k. To describe
safety of such rules, we use the following definitions.

24 H.L. Bodlaender

If we have two t-boundaried graphs G and H , G⊕H is the t-boundaried graph,
obtained by taking the disjoint union of G and H while identifying, for i = 1 · · · t,
the ith terminal of G with the ith terminal of H , and then dropping parallel
edges. For a graph property P and integer t, we can define the equivalence re-
lation ∼t

P on t-boundaried graphs as follows: for t-boundaried graphs G and H ,
G ∼t

P H , if and only if for each t-boundaried graph K, P (G⊕K) ⇔ P (H ⊕K).
G ∼t

P H gives a ‘reduction rule’ for algorithms that want to test if P holds for
a given input graph. Suppose H is smaller than G. If we have a graph of the
form G ⊕ K for some K, we can replace the input by H ⊕ K. It was shown
by Arnborg et al. [8], that for each integer k and each graph property P that
is formulated in Monadic Second Order Logic, there is a finite set of such ‘safe’
reduction rules, such that each graph with treewidth at most k and with prop-
erty P can be reduced to a graph of size O(1). Moreover, the total time of the
reduction algorithm is linear (for fixed k). This gives a linear time algorithm for
testing P on graphs of bounded treewidth, based solely on reduction rules, i.e.,
no tree decomposition of the graph is needed. See also [2,24,35,48]. In particu-
lar, for each MSOL-expressible property P and t, the relation ∼t

P has a finite
number of equivalence classes [8]. We use this here for P the property of being
planar.

This idea was generalized to some optimization problems by Bodlaender and
van Antwerpen-de Fluiter [22,37]. Let f be a function, mapping graphs to inte-
gers. For t-boundaried graphs G and H , and integer i ∈ Z, we write G →f,i H ,
if for all t-boundaried graphs K, f(G ⊕ H) = f(G ⊕ K) + i.

Generalizing this in the natural way to colored graphs (for example, blue ter-
minals remain blue) and letting f be the minimum size of a red-blue dominating
set, we see two examples of →f,i in Figure 1. Terminal vertices are drawn with
a square. E.g., if we have a path of length 5 with only its two red endpoints
adjacent to other vertices, then, if we replace this by a path of length 2, the size
of a minimum red-blue dominating set in the graph drops by exactly one.

Let ∼t
f be the equivalence relation on t-boundaried graphs, defined by G ∼t

f H
iff there is an i with G →f,i H . We say that f is finite integer index, if for each
fixed t, ∼t

f has a finite number of equivalence classes. Similar to [22], one can show
that Red-Blue Dominating Set is finite integer index. Let for t-boundaried
graphs G and H hold G ∼t

planar,rbds H , if there exists an integer i, such that
for all t-boundaried graphs K: the size of the minimum red-blue dominating set
in G ⊕ K is exactly the size of the minimum red-blue dominating set in H ⊕ K
plus i, and G ⊕ K is planar, if and only if H ⊕ K is planar.

f, 0

f, 1

Fig. 1. Example reductions for Red-Blue Dominating Set

Kernelization: New Upper and Lower Bound Techniques 25

The discussion above shows that for each i, the relation ∼t
planar,rbds has a

finite number of equivalence classes. For each t ≤ 4d and each equivalence class,
we select a representative. We can do this such that, whenever G →planar,rbds,i H
for a representative H , i ≥ 0. This ensures that the parameter does not increase
when we carry out a reduction. As these representatives and d are only problem
dependent, we can assume that the largest representative has size O(1).

The main step of the kernelization algorithm is the following: we replace each
of the O(k) boundaried graphs Gi in the decomposition, implied by Lemma 1
by its representative for the relation ∼t

planar,rbds, and update the parameter
k accordingly. That is, if we replace t-boundaried subgraph H by K, and
H →rbds,i K, then we subtract i from k. Now, each of these reductions keep
the graph planar. They are also ‘safe’ with respect to the answer to the Red-

Blue Dominating Set problem.
As each of the graphs Gi has bounded diameter, it also has bounded treewidth

(see for example [14, Theorem 83] or [75]), and thus, we can compute its equiv-
alence class for ∼t

planar,rbds. After transforming each Gi in the decomposition to
the representative of its equivalence class, we have a partition of the input graph in
O(k) parts, each of size O(1), and thus obtained an equivalent input of size O(k).

The sketch above does neither give the most efficient, nor the simplest ker-
nelization algorithm for Red-Blue Dominating Set on planar graphs, but
it illustrates an approach that works for a large collection of problems, as was
shown in [17]. Several other techniques and generalizations are used to obtain
the following results.

For a fixed g, we consider parameterized problems on graphs that can be
embedded into a surface of Euler-genus at most g. For a graph G = (V, E) given
with an embedding, the radial distance for two vertices v, w ∈ V is the minimum
length of a sequence of vertices, starting with v and ending with w, where each
two successive vertices share a face. A parameterized problem is compact, if for
each yes-instance (G, k), we can embed G on a surface of Euler-genus g and
select a set S of O(k) vertices, such that each vertex in G is at radial distance
at most r, for some fixed r that only depends on the problem. An additional
technical (and in all relevant cases trivially fulfilled) condition is that k ≤ |V |r.
For example, the Feedback Vertex Set problem is compact: if S is a set of
vertices such that each cycle contains a vertex in S, then each vertex in G shares
a face with a vertex in S so is at radial distance at most 1.

A generalization of compactness is quasi-compactness: now, we are allowed to
split the vertices in two sets, one inducing a subgraph of bounded treewidth,
and one that are at bounded radial distance to a set of size O(k); and again,
k ≤ |V |r.

Theorem 3 (Bodlaender et al. [17]). Let g be a fixed integer. Every param-
eterized problem on graphs of Euler-genus g that is finite integer index and that
is quasi-compact or whose complement is quasi-compact has a linear kernel.

So, e.g., Feedback Vertex Set restricted to graphs of Euler-genus g has a
linear kernel for all g. (This generalizes the result of [19].)

26 H.L. Bodlaender

A weaker result was obtained in [17] for compact optimization problems that
can be formulated with Counting Monadic Second Order Logic (CMSO). Con-
sider a predicate expressed in CMSO that formulates a property of graphs and
vertex sets P (G, S). E.g., S is a dominating set in G can be expressed as:

∀v ∈ V : ∃w ∈ V : w ∈ S ∧ ({v, w} ∈ E ∨ v = w)

We formulate Theorem 1 from [17] in a slightly weaker but easier to understand
form.

Theorem 4 (Bodlaender et al. [17]). Let g be a fixed integer. Let P be a
CMSO-expressible property of graphs and vertex sets. Consider a problem Q,
whose input consists of a graph G = (V, E) of Euler-genus at most g, a set of
vertices Y ⊆ V , and an integer k. Suppose Q is compact or the complement of
G is compact.

1. If Q is of the form: ∃S ⊆ Y : |S| ≤ k ∧ P (G, S), then Q has a kernel of size
O(k2).

2. If Q is of the form: ∃S ⊆ Y : |S| = k ∧ P (G, S), then Q has a kernel of size
O(k3).

3. If Q is of the form: ∃S ⊆ V : |S ∩ Y | ≥ k ∧ P (G, S), then Q has a kernel of
size O(k2).

The set Y plays the role of annotations, e.g., in parts 1 and 2 of Theorem 4, ver-
tices in V −Y are ‘annotated’ in the sense that they cannot belong to the solution.
The theorem leaves room for improvement: can we get rid of these annotations,
and can we obtain linear kernels for these problems? These are important, but
probably not easy, open problems. Several applications of Theorems 3 and 4 can
be found in [17].

2.3 Meta Theorems for Graphs Avoiding a Minor

Fomin et al. [54] obtained a characterization of a large collection of problems that
have a small kernel on graphs that avoid a minor. A central tool in their results
is the notion of bidimensionality: a notion that has played an important role in
several important meta-results for problems on graphs avoiding a minor, both
with respect to parameterized algorithms and with respect to approximation
algorithms. See the overview paper by Demaine and Hajiaghayi [40].

We sketch a few notions used for stating the meta-theorem from [54]. A graph
H is a minor of a graph G = (V, E) if H can be obtained from G by a series
of zero or more vertex deletions, edge deletions and edge contractions. Consider
graph parameter f that maps each graph to an integer, and the corresponding
parameterized problem Pf to determine for a given graph G and parameter value
k, if f(G) ≤ k. We say that Pf is minor-bidimensional, if for any minor H of G,
f(H) ≤ f(G) (i.e., f cannot increase when taking minors), and there is some δ >
0, such that for the r by r grid GRr, f(GRr) ≥ δr2. The notion of contraction-
bidimensional is defined similarly. Now f does not increase when contracting

Kernelization: New Upper and Lower Bound Techniques 27

edges, and instead of a grid, a grid with additional triangulation edges is used.
For precise definitions, see for example [53]. The separation property is a technical
condition, that holds for several problems, and is often easy to verify; for the
precise definition, we refer again to [53]. A graph G = (V, E) is an apex graph,
if there is a vertex v ∈ V , such that the graph, obtained by removing v from G
and its incident edges is planar. Theorem 5 also uses the notion of finite integer
index, which was explained above.

Theorem 5 (Fomin et al [54]). (i) Let H be a graph, and P be a parame-
terized problem, that is minor-bidimensional, has the separation property, and is
finite integer index. Then P , restricted to graphs that do not have H as minor,
has a quadratic kernel.
(ii) Let H be an apex graph, and P be a parameterized problem, that is
contraction-bidimensional, has the separation property, and is finite integer in-
dex. Then P , restricted to graphs that do not have H as minor, has a quadratic
kernel.

Theorem 5 proves the existence of quadratic kernels for several problems, e.g.,
a quadratic kernel for Disjoint Cycles on H-minor free graphs for any fixed
graph H , and a quadratic kernel for Dominating Set on H-minor free graphs
for any fixed apex graph H . See also [74,64] for related results.

It would be very interesting to try to obtain more general meta-kernelization
results, with simpler or less conditions on the problem, and with linear kernels.

3 Lower Bounds: No Polynomial Kernels

In this section, we discuss lower bounds techniques for kernels. A number of
linear lower bounds for kernel sizes were found by Chen et al. [31]; recent tech-
niques allow to show larger lower bounds, building upon complexity theoretic
assumptions.

In this section, we will sometimes view a problem as a parameterized prob-
lem, and sometimes as a ‘classic’ decision problem. To a parameterized problem
P , we can associate the decision problem P c, where we assume the parameter
to be given in unary, and which has the same set of yes-instances. So, to the
parameterized Vertex Cover problem, we can associate the ‘classic’ Vertex

Cover problem with the output size k given in unary.
Showing for parameterized problems whose classic variant is NP-complete that

they do not have a kernel of polynomial size is very hard, as such a proof would
imply that P �= NP . However, we have proofs for several concrete problems that
they do not have a kernel of polynomial size, unless NP ⊆ coNP/poly, or, in
a few cases, a weaker condition. As a first example, consider the Long Path

problem:

Long Path

Instance: undirected graph G = (V, E), integer k
Parameter: k
Question: Does G have a simple path with at least k edges?

28 H.L. Bodlaender

The classic variant of this problem is NP-complete (containing Hamiltonian

Path as a special case), and the parameterized variant belongs to FPT. Much
study has been done on parameterized algorithms for this problem; recently, an
algorithm with O(4k+o(k)m) time algorithm for the problem was found by Chen
et al. [34]. While using Theorem 1 gives us a kernel whose size is exponential in
k, it is unlikely that there exists a kernel whose size is polynomial in k.

One can have the following intuition. Suppose there would be a kernelization
algorithm, giving kernels to Long Path with at most kc vertices and edges,
for some constant c. Now, take a graph G with, say, k2c connected components.
There is a long path with k edges in G if and only if at least one of the connected
components of G has a path with k edges. A solution in one connected compo-
nent in G does not seem to have impact on a solution for another connected
component. Thus, as we have much more connected components than the kernel
size, it seems that we must solve some connected components to get this small
kernel. But solving the Long Path problem for a connected component cannot
be done in polynomial time, unless P = NP .

With the present state of theory, we need an assumption, different from P �=
NP , namely NP �⊆ coNP/poly. Still, for many problems we can show, under
this assumption, that they do not have a kernel of polynomial size. Central in
the theory is the notion of compositionality, which states thet, given several
instances with the same parameter, we can build one instance of polynomial size
with bounded parameter. More formally, we have the following definition.

Definition 1. An or-composition algorithm for a parameterized problem Q ⊆
Σ∗ ×N is an algorithm, that gets as input a sequence ((x1, k), . . . , (xr, k)), with
each (xi, ki) ∈ Σ∗ × N, and outputs a pair (x′, k′), such that

– the algorithm uses time polynomial in
∑

1≤i≤r |xi| + k;
– k′ is bounded by a polynomial in k
– (x′, k′) ∈ Q, if and only if there exists an i, 1 ≤ i ≤ r, with (xi, k) ∈ Q.

We have a similar definition for and-compositionality; the last condition is
replaced by

– (x′, k′) ∈ Q, if and only if (xi, k) ∈ Q for all i, 1 ≤ i ≤ r.

Long Path is or-compositional: a series of inputs to Long Path with the same
parameter (G1, k), . . . , (Gr, k) can be mapped to (G1 ∪ · · ·Gr, k), i.e., we just
take the disjoint union of the graphs. It is easy to see that the conditions of
or-compositionality are fulfilled. Actually, the same proof can be used for all
problems where we want to maximize a graph parameter for which the value
of a graph is the maximum value of its connected components. If we want to
minimize a variable where the value of a graph is the maximum value of its
connected components, like for Treewidth, then we have and-compositionality.
One further ingredient are two conjectures, by Bodlaender et al. [15].

Conjecture 1 (Or-distillation conjecture [15]). Let R be an NP-complete prob-
lem. There is no algorithm D, that gets as input a series of m instances of R,
and outputs one instance of R, such that

Kernelization: New Upper and Lower Bound Techniques 29

– If D has as input m instances, each of size at most n, then D uses time
polynomial in m and n, and its output size is bounded by a function that is
polynomial in n.

– If D has as input instances x1, . . . , xm, then D(x1, . . . , xm) ∈ R, if and only
if ∃1≤i≤mxi ∈ R.

Conjecture 2 (And-distillation conjecture [15]). Let R be an NP-complete prob-
lem. There is no algorithm D, that gets as input a series of m instances of R,
and outputs one instance of R, such that

– If D has as input m instances, each of size at most n, then D uses time
polynomial in m and n, and its output size is bounded by a function that is
polynomial in n.

– If D has as input instances x1, . . . , xm, then D(x1, . . . , xm) ∈ R, if and only
if ∀1≤i≤mxi ∈ R.

The relation between the existence of polynomial kernels, compositionality, and
these conjectures is given by the following theorem.

Theorem 6 (Bodlaender et al. [15]). Let P be a parameterized problem with
P c its corresponding classic decision variant.

1. If P is or-compositional and P c is NP-complete, then P has no kernel of
polynomial size, unless the or-distillation conjecture does not hold.

2. If P is and-compositional and P c is NP-complete, then P has no kernel of
polynomial size, unless the and-distillation conjecture does not hold.

We can sharpen Theorem 6(i), by using a result by Fortnow and Santhaman [56].

Theorem 7 (Fortnow and Santhaman [56]). If the or-distillation conjecture
does not hold, then NP ⊆ coNP/poly.

Corollary 1 (Bodlaender et al. [15], Fortnow and Santhaman [56]).
Let P be a parameterized problem with P c its corresponding classic decision
variant. If P is or-compositional and P c is NP-complete, then P has no kernel
of polynomial size, unless NP ⊆ coNP/poly.

Corollary 1 can frequently be used to obtain evidence that problems have no
polynomial kernel: we need a proof that the problem is or-compositional (which,
in several cases, is not hard to establish), and a proof of NP-completeness. Note
that we do not have a variant of the Theorem 7 for and-compositionality; this is
an important open problem. Thus, for and-compositional problems, the evidence
of non-existence of polynomial kernels is weaker.

There also exist several problems that cannot be easily seen to be composi-
tional, but for which we can still derive evidence for non-existence of polynomial
kernels, using transformations. The arguments are a variant of the theory of
NP-completeness.

30 H.L. Bodlaender

Definition 2. Let P and Q be parameterized problems. We say that P is poly-
nomial time and parameter reducible to Q, written P ≤Ptp Q, if there exists
a polynomial time computable function f : {0, 1}∗ × N → {0, 1}∗ × N, and a
polynomial p : N → N, and for all x ∈ {0, 1}∗ and k ∈ N, if f((x, k)) = (x′, k′),
then the following hold:

– (x, k) ∈ P , if and only if (x′, k′) ∈ Q, and
– k′ ≤ p(k).

We call f a polynomial time and parameter transformation from P to Q.

The main difference between the ‘usual’ polynomial time transformations from
the theory of NP-completeness is that now, in addition, we demand that the
parameter is mapped to a parameter whose value is bounded by a polynomial
of the old parameter. Also, note that the fixed parameter transformations as
introduced by Downey and Fellows (see [42,43,44]) are similar, except that these
allow non-polynomial growth of the parameter. Also, fixed parameter transfor-
mations are used in general to show hardness for W [1] or a related class, and
thus are used for problems of which we expect that there exist no kernel at all;
while polynomial time and parameter transformations are used to for problems
to show that we do not expect the existence of a polynomial kernel. The following
result is a ‘folklore’ theorem.

Theorem 8. Let P and Q be parameterized problems, and suppose that P c and
Qc are the derived classical problems. Suppose that P c is NP-complete, and Qc ∈
NP . Suppose P is polynomial time and parameter reducible to Q. If Q has a
polynomial kernel, then P has a polynomial kernel.

Proof. We sketch the proof. Suppose Q has a polynomial kernel. We build a
polynomial kernel for P as follows. Take an input (I, k) to P . Apply the polyno-
mial time and parameter reduction to this input, and obtain (I ′, k′) as equivalent
input to Q. Apply the kernelization algorithm for Q to this input, and we ob-
tain an input (I ′′, k′′) to Q. |I ′′| and k′′ are polynomially bounded in k′, and k′

is polynomially bounded in k. Now, NP-completeness of P c shows that we can
transform (I ′′, k′′) to an equivalent input (I ′′′, k′′′) to P , whose size is polynomi-
ally bounded in |I ′′|+k′′, and hence polynomially bounded in k. One easily sees
that this input is also equivalent. Here we use that the parameter is encoded in
unary in the derived classical problems. ��

The technique is used in several recent papers to obtain non-trivial proofs of
the non-existence of polynomial kernels, under the usual assumption NP �⊆
coNP/poly. Fernau et al. [50] apply this technique to the k-Leaf-Out-

Branching problem: given a digraph, give a rooted oriented spanning tree
with at least k leaves. Curiously, the variant Rooted k-Leaf-Out-Branching

does have a kernel of size O(k2), as was shown very recently by Daligault and
Thomassé [36] improving upon an O(k3) kernel by Fernau et al. [50]. Thus, k-

Leaf-Out-Branching has something what is called a “cheat kernelization” in

Kernelization: New Upper and Lower Bound Techniques 31

[50]: we can transform the input to O(n) inputs, each of size at most O(k2), by
building a kernel for each of the n choices of a root.

An interesting open problem is to find techniques to give evidence of the
non-existence of such “cheat kernels”, i.e., transformations to a polynomial (in
the input size n) number of inputs of size polynomial in the parameter k, for
problems in FPT.

Dom, Lokshtanov and Saurahb [41] obtain results for the non-existence of
polynomial kernels (unless NP ⊆ coNP/poly) for a large number of problems,
where involved reduction techniques, based on colored versions of problems and
identifications of vertices are used. These include natural parameterized versions
of Connected Vertex Cover, Capacitated Vertex Cover, Steiner

Tree, Red-Blue Dominating Set, Dominating Set, Unique Coverage,
and Small Subset Sum. Bodlaender, Thomassé and Yeo [21] apply the tech-
niques to get non-polynomial kernel-results for Disjoint Cycles and Disjoint

Paths. Kratsch and Wahlstrom [68], answering an open problem by Cai at IW-
PEC 2006, show that there exists a graph H on seven vertices such that the
H-Free Edge Deletion and H-Free Edge Editing problems do not have
polynomial kernels, unless NP ⊆ coNP/poly.

A very interesting and very recent development is work by Dell and van Melke-
beek [39], who obtained lower bounds for compressibility of instances for vertex
cover problems, satisfiability problems, and subgraph-deletion type problems.

Theorem 9 (Dell and van Melkebeek [39]). Let d ≥ 2 be an integer and
ε > 0 a real number. If NP �⊆ coNP/poly, then there is no polynomial-time
mapping reduction from Vertex Cover for d-uniform hypergraphs to any lan-
guage such that instances with n vertices are mapped to instances of bitlength at
most O(nd−ε).

Note that the result is more general than kernel lower bounds in two ways: lower
bounds are given also for reductions to other problems and not only reductions
to the problem itself, and the bound is expressed as function of the input size
n. The bound is essentially tight, as an input for Vertex Cover for d-uniform
hypergraphs has size at most O(nd).

For appreciation of the result, let us briefly look at what it implies for ker-
nelization for Vertex Cover on undirected graphs. The Nemhauser-Trotter
kernel [72] gives a kernel with at most 2k vertices, but it can have Θ(n2) edges.
Theorem 9 with d = 2 shows that we should also expect this many edges for
such a kernel: we cannot expect a kernel with O(n2−ε) edges for any ε > 0.

Dell and van Melkebeek use Theorem 9 to obtain lower bounds for compress-
ibility of several other problems, including Satisfiability for d-CNF formulas
and a large class of subgraph deletion problems. For example, they show:

Theorem 10 (Dell and van Melkebeek [39]). If NP �⊆ coNP/poly, then
there is no polynomial-time mapping reduction from Feedback Vertex Set

to any language instances with parameter k are mapped to instances of bitlength
at most O(k2−ε).

32 H.L. Bodlaender

The kernelization algorithm for Feedback Vertex Set given by Thomassé
[78] gives reduced instances with O(k2) vertices and O(k2) edges. Thus, by The-
orem 10, Thomassé’s algorithm is asymptotically optimal with respect to the
number of edges.

4 Conclusions

Kernelization is a very interesting modern topic of algorithm design and analysis,
giving new insights to the ancient techniques of preprocessing, simplification and
data reduction. In this overview paper, a few of the new theoretical methods were
discussed; in particular, we looked at meta-theorems that imply the existence
of small kernels for various problems on planar graphs and generalizations of
planar graphs, and at lower bound techniques, i.e., methods that give evidence
for various problems that they do not have kernels of polynomial size.

Besides a theoretical analysis of kernelization algorithms, it is also very in-
teresting to experimentally evaluate kernelization algorithms. Experiments on
kernelization have been carried out for several important problems, e.g., for
Clique Cover [57], Cluster Editing [13], Dominating Set [5], Feedback

Vertex Set [23], and Vertex Cover [3,4].
The topic of kernelization is a relatively new area, with a lot of new develop-

ments and techniques. Fellows calls the area in his invited talk the lost continent
of polynomial time. Indeed, there remains a lot to explore. Let me end with an-
other metaphor. In the family of algorithmics, kernelization is a new member.
As a child of fixed parameter tractability theory, she is getting a life of her own.
While still dependent on her parent, she also often is of help to her parent. At
what life stage would she be? Rapid growth and still sometimes with problems
to understand herself, the life stage would be infancy or adolescence. However,
the prospects for her future are great, and I hope that the reader will contribute
to this future with new results, insights, techniques, and applications.

Acknowledgments

This paper would not have been possible for me to write without the help of
several colleagues, in the form of comments, answers to questions, discussions,
and cooperation. In particular, I thank Holger Dell, Thomas van Dijk, Rod
Downey, Mike Fellows, Danny Hermelin, Bart Jansen, Eelko Penninkx, Johan
van Rooij, Stephan Thomassé, and Anders Yeo. I apologize to authors whose
work should have been mentioned here, but was missed.

References

1. Abrahamson, K.A., Downey, R.G., Fellows, M.R.: Fixed-parameter tractability
and completeness IV: On completeness for W[P] and PSPACE analogues. Annals
of Pure and Applied Logic 73, 235–276 (1995)

Kernelization: New Upper and Lower Bound Techniques 33

2. Abrahamson, K.R., Fellows, M.R.: Finite automata, bounded treewidth and
well-quasiordering. In: Robertson, N., Seymour, P. (eds.) Proceedings of the AMS
Summer Workshop on Graph Minors, Graph Structure Theory. Contemporary
Mathematics, vol. 147, pp. 539–564. American Mathematical Society (1993)

3. Abu-Khzam, F.N., Collins, R.L., Fellows, M.R., Langston, M.A., Suters, W.H.,
Symons, C.T.: Kernelization algorithms for the vertex cover problem: Theory and
experiments. In: Proceedings of the 6th Workshop on Algorithm Engineering and
Experimentation and the 1st Workshop on Analytic Algorithmics and Combina-
torics, ALENEX/ANALCO 2004, pp. 62–69. ACM-SIAM (2004)

4. Abu-Khzam, F.N., Fellows, M.R., Langston, M.A., Suters, W.H.: Crown structures
for vertex cover kernelization. Theory of Computing Systems 41, 411–430 (2007)

5. Alber, J., Betzler, N., Niedermeier, R.: Experiments in data reduction for optimal
domination in networks. Annals of Operations Research 146, 105–117 (2006)

6. Alber, J., Fellows, M.R., Niedermeier, R.: Polynomial-time data reduction for dom-
inating sets. J. ACM 51, 363–384 (2004)

7. Appel, K., Haken, W.: Every planar map is 4-colorable. Illinois J. Math. 21, 429–
567 (1977)

8. Arnborg, S., Courcelle, B., Proskurowski, A., Seese, D.: An algebraic theory of
graph reduction. J. ACM 40, 1134–1164 (1993)

9. Baker, B.S.: Approximation algorithms for NP-complete problems on planar
graphs. J. ACM 41, 153–180 (1994)

10. Bessy, S., Fomin, F.V., Gaspers, S., Paul, C., Perez, A., Saurabh, S., Thomassé, S.:
Kernels for feedback arc set in tournaments. The Computing Research Repository,
abs/0907.2165. To appear in proceedings FSTTCS 2009 (2009)

11. Betzler, N., Fellows, M.R., Guo, J., Niedermeier, R., Rosamond, F.A.: Fixed-
parameter algorithms for Kemeny rankings. Theor. Comp. Sc. 410, 4554–4570
(2009)

12. Bienstock, D., Langston, M.A.: Algorithmic implications of the graph minor theo-
rem. In: Ball, M.O., Magnanti, T.L., Monma, C.L., Nemhauser, G.L. (eds.) Hand-
book of Operations Research and Management Science: Network Models, pp. 481–
502. North-Holland, Amsterdam (1995)

13. Böcker, S., Briesemeister, S., Klau, G.W.: Exact algorithms for cluster editing:
Evaluation and experiments. To appear in Algorithmica (2009) doi 10.1007/s00453-
009-9339-7

14. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theor.
Comp. Sc. 209, 1–45 (1998)

15. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems with-
out polynomial kernels (Extended abstract). In: Aceto, L., Damg̊ard, I., Goldberg,
L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part
I. LNCS, vol. 5125, pp. 563–574. Springer, Heidelberg (2008)

16. Bodlaender, H.L., Fellows, M.R., Langston, M., Ragan, M., Rosamond, F., Weyer,
M.: Quadratic kernelization for convex recoloring of trees. In: Lin, G. (ed.) CO-
COON 2007. LNCS, vol. 4598, pp. 86–96. Springer, Heidelberg (2007)

17. Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S., Thi-
likos, D.M. (Meta) kernelization. To appear in Proceedings FOCS 2009 (2009)

18. Bodlaender, H.L., Lokshtanov, D., Penninkx, E.: Planar capacitated dominating
set is W[1]-hard. In: Proceedings IWPEC 2009 (2009)

19. Bodlaender, H.L., Penninkx, E.: A linear kernel for planar feedback vertex set. In:
Grohe, M., Niedermeier, R. (eds.) IWPEC 2008. LNCS, vol. 5018, pp. 160–171.
Springer, Heidelberg (2008)

34 H.L. Bodlaender

20. Bodlaender, H.L., Penninkx, E., Tan, R.B.: A linear kernel for the k-disjoint cycle
problem on planar graphs. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.)
ISAAC 2008. LNCS, vol. 5369, pp. 294–305. Springer, Heidelberg (2008)

21. Bodlaender, H.L., Thomassé, S., Yeo, A.: Kernel bounds for disjoint cycles and
disjoint paths. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp.
635–646. Springer, Heidelberg (2009)

22. Bodlaender, H.L., van Antwerpen-de Fluiter, B.: Reduction algorithms for graphs
of small treewidth. Information and Computation 167, 86–119 (2001)

23. Bodlaender, H.L., van Dijk, T.C.: A cubic kernel for feedback vertex set and loop
cutset. To appear in Theory of Computing Systems (2009) doi: 10.1007/s00224-
009-9234-2

24. Borie, R.B., Parker, R.G., Tovey, C.A.: Automatic generation of linear-time algo-
rithms from predicate calculus descriptions of problems on recursively constructed
graph families. Algorithmica 7, 555–581 (1992)

25. Bousquet, N., Daligault, J., Thomassé, S., Yeo, A.: A polynomial kernel for multicut
in trees. In: Albers, S., Marion, J.-Y. (eds.) Proceedings 26th International Sympo-
sium on Theoretical Aspects of Computer Science, STACS 2009, Schloss Dagstuhl,
Germany. Dagstuhl Seminar Proceedings, vol. 09001, pp. 183–194. Leibniz-Zentrum
für Informatik (2009)

26. Buss, J.F., Goldsmith, J.: Nondeterminism within P. SIAM J. Comput. 22, 560–572
(1993)

27. Cai, L., Chen, J.: On fixed-parameter tractability and approximability of NP opti-
mization problems. Journal of Computer and System Sciences 54, 465–474 (1997)

28. Cai, L., Chen, J., Downey, R.G., Fellows, M.R.: Advice classes of parameterized
tractability. Annals of Pure and Applied Logic 84, 119–138 (1997)

29. Cai, L., Juedes, D.: On the existence of subexponential parameterized algorithms.
Journal of Computer and System Sciences 67, 789–807 (2003)

30. Chen, J., Chor, B., Fellows, M., Huang, X., Juedes, D.W., Kanj, I.A., Xia, G.:
Tight lower bounds for certain parameterized NP-hard problems. Information and
Computation 201, 216–231 (2005)

31. Chen, J., Fernau, H., Kanj, I.A., Xia, G.: Parametric duality and kernelization:
Lower bounds and upper bounds on kernel size. SIAM J. Comput. 37, 1077–1106
(2007)

32. Chen, J., Huang, X., Kanj, I.A., Xia, G.: On the computational hardness based on
linear FPT-reductions. Journal of Combinatorial Optimization 11, 231–247 (2006)

33. Chen, J., Huang, X., Kanj, I.A., Xia, G.: Strong computational lower bounds via
parameterized complexity. Journal of Computer and System Sciences 72, 1346–1367
(2006)

34. Chen, J., Lu, S., Sze, S.-H., Zhang, F.: Improved algorithms for path, matching,
and packing problems. In: Bansal, N., Pruhs, K., Stein, C. (eds.) Proceedings of
the 17th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007, pp.
298–307 (2007)

35. Courcelle, B.: The monadic second-order logic of graphs I: Recognizable sets of
finite graphs. Information and Computation 85, 12–75 (1990)

36. Daligault, J., Thomassé, S.: On finding directed trees with many leaves. In: Pro-
ceedings IWPEC 2009 (2009)

37. de Fluiter, B.: Algorithms for Graphs of Small Treewidth. PhD thesis, Utrecht
University (1997)

Kernelization: New Upper and Lower Bound Techniques 35

38. Dehne, F., Fellows, M., Fernau, H., Prieto, E., Rosamond, F.: Nonblocker: Pa-
rameterized algorithms for minimum dominating set. In: Wiedermann, J., Tel, G.,
Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2006. LNCS, vol. 3831, pp.
237–245. Springer, Heidelberg (2006)

39. Dell, H., van Melkebeek, D.: Satisfiability allows no nontrivial sparsification unless
the polynomial-time hierarchy collapses. In: To appear in: Electronic Colloquium
on Computational Complexity (ECCC), vol. 16 (2009)

40. Demaine, E.D., Hajiaghayi, M.: The bidimensionality theory and its algorithmic
applications. The Computer Journal 51, 292–302 (2008)

41. Dom, M., Lokshtanov, D., Saurabh, S.: Incompressibility through colors and IDs.
In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S.E., Thomas,
W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 378–389. Springer, Heidelberg
(2009)

42. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness I:
Basic results. SIAM J. Comput. 24, 873–921 (1995)

43. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness II:
On completeness for W[1]. Theor. Comp. Sc. 141, 109–131 (1995)

44. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999)

45. Downey, R.G., Fellows, M.R., Stege, U.: Parameterized complexity: A framework
for systematically confronting computational intractability. In: DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, pp. 49–99. American
Mathematical Society (1997)

46. Estivill-Castro, V., Fellows, M.R., Langston, M.A., Rosamond, F.A.: Fpt is P-time
extremal structure I. In: Broersma, H., Johnson, M., Szeider, S. (eds.) Proceedings
of the 1st Workshop on Algorithms and Complexity in Durham, ACiD 2005. Text
in Algorithms, vol. 4, pp. 1–41. King’s College, London (2005)

47. Fellows, M.R.: Personal communication
48. Fellows, M.R., Langston, M.A.: An analogue of the Myhill-Nerode theorem and its

use in computing finite-basis characterizations. In: Proceedings of the 30th Annual
Symposium on Foundations of Computer Science, FOCS 1989, pp. 520–525 (1989)

49. Fernau, H.: Edge dominating set: Efficient enumeration-based exact algorithms.
In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp.
140–151. Springer, Heidelberg (2006)

50. Fernau, H., Fomin, F.V., Lokshtanov, D., Raible, D., Saurabh, S., Villanger, Y.:
Kernel(s) for problems with no kernel: On out-trees with many leaves (extended ab-
stract). In: Albers, S., Marion, J.-Y. (eds.) Proceedings 26th International Sympo-
sium on Theoretical Aspects of Computer Science, STACS 2009, Schloss Dagstuhl,
Germany. Dagstuhl Seminar Proceedings, vol. 09001, pp. 421–432. Leibniz-Zentrum
für Informatik (2009)

51. Fernau, H., Juedes, D.W.: A geometric approach to parameterized algorithms for
domination problems on planar graphs. In: Fiala, J., Koubek, V., Kratochv́ıl, J.
(eds.) MFCS 2004. LNCS, vol. 3153, pp. 488–499. Springer, Heidelberg (2004)

52. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg
(2006)

53. Fomin, F.V., Golovach, P.A., Lokshtanov, D., Saurabh, S.: Algorithmic lower
bounds for problems parameterized by clique-width. To appear in Proceedings
SODA 2010 (2009)

54. Fomin, F.V., Lokshtanov, D., Saurabh, S., Thilikos, D.M.: Bidimensionality and
kernels. To appear in Proceedings SODA 2010 (2009)

36 H.L. Bodlaender

55. Fomin, F.V., Thilikos, D.M.: Fast parameterized algorithms for graphs on surfaces:
Linear kernel and exponential speedup. In: Dı́az, J., Karhumäki, J., Lepistö, A.,
Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 581–592. Springer, Heidel-
berg (2004)

56. Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct
PCPs for NP. In: Proceedings of the 40th Annual Symposium on Theory of Com-
puting, STOC 2008, pp. 133–142. ACM Press, New York (2008)

57. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Data reduction and exact algo-
rithms for clique cover. ACM Journal of Experimental Algorithms13(2.2) (2008)

58. Guo, J.: A more effective linear kernelization for cluster editing. Theor. Comp.
Sc. 410, 718–726 (2009)

59. Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization.
ACM SIGACT News 38, 31–45 (2007)

60. Guo, J., Niedermeier, R.: Linear problem kernels for NP-hard problems on planar
graphs. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007.
LNCS, vol. 4596, pp. 375–386. Springer, Heidelberg (2007)

61. Guo, J., Niedermeier, R., Wernicke, S.: Fixed-parameter tractability results for
full-degree spanning tree and its dual. In: Bodlaender, H.L., Langston, M.A. (eds.)
IWPEC 2006. LNCS, vol. 4169, pp. 203–214. Springer, Heidelberg (2006)

62. Guo, J., Niedermeier, R., Wernicke, S.: Parameterized complexity of vertex cover
variants. Theory of Computing Systems 41, 501–520 (2007)

63. Gutin, G., Razgon, I., Kim, E.J.: Minimum leaf out-branching and related prob-
lems. Theor. Comp. Sc. 410, 4571–4579 (2009)

64. Gutner, S.: Polynomial kernels and faster algorithms for the dominating set prob-
lem on graphs with an excluded minor. In: Chen, J., Fomin, F.V. (eds.) IWPEC
2009. LNCS, vol. 5917, pp. 246–257. Springer, Heidelberg (2009)

65. Jansen, B.: Fixed parameter complexity of the weighted max leaf problem. Master’s
thesis, Department of Computer Science, Utrecht University (2009)

66. Kneis, J., Mölle, D., Richter, S., Rossmanith, P.: On the parameterized complexity
of exact satisfiability problems. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS
2005. LNCS, vol. 3618, pp. 568–579. Springer, Heidelberg (2005)

67. Kratsch, S.: Polynomial kernelizations for MIN F+Π1 and MAX NP. In: Albers,
S., Marion, J.-Y. (eds.) Proceedings 26th International Symposium on Theoretical
Aspects of Computer Science, STACS 2009, Schloss Dagstuhl, Germany. Dagstuhl
Seminar Proceedings, vol. 09001, pp. 601–612. Leibniz-Zentrum für Informatik
(2009)

68. Kratsch, S., Wahlström, M.: Two edge modification problems without polynomial
kernels. In: Proceedings IWPEC 2009 (2009)

69. Lokshtanov, D., Mnich, M., Saurabh, S.: Linear kernel for planar connected dom-
inating set. In: Chen, J., Cooper, S.B. (eds.) TAMC 2009. LNCS, vol. 5532, pp.
281–290. Springer, Heidelberg (2009)

70. Moser, H.: A problem kernelization for graph packing. In: Nielsen, M., Kucera, A.,
Miltersen, P.B., Palamidessi, C., Tuma, P., Valencia, F.D. (eds.) SOFSEM 2009.
LNCS, vol. 5404, pp. 401–412. Springer, Heidelberg (2009)

71. Moser, H., Sikdar, S.: The parameterized complexity of the induced matching prob-
lem. Disc. Appl. Math. 157, 715–727 (2009)

72. Nemhauser, G.L., Trotter, L.E.: Vertex packing: Structural properties and algo-
rithms. Mathematical Programming 8, 232–248 (1975)

Kernelization: New Upper and Lower Bound Techniques 37

73. Niedermeier, R.: Invitation to fixed-parameter algorithms. Oxford Lecture Series
in Mathematics and Its Applications. Oxford University Press, Oxford (2006)

74. Philip, G., Raman, V., Sikdar, S.: Solving dominating set in larger classes of graphs:
FPT algorithms and polynomial kernels. In: Fiat, A., Sanders, P. (eds.) ESA 2009.
LNCS, vol. 5757, pp. 694–705. Springer, Heidelberg (2009)

75. Robertson, N., Seymour, P.D.: Graph minors. III. Planar tree-width. J. Comb.
Theory Series B 36, 49–64 (1984)

76. Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths problem. J.
Comb. Theory Series B 63, 65–110 (1995)

77. Robertson, N., Seymour, P.D.: Graph minors. XX. Wagner’s conjecture. J. Comb.
Theory Series B 92, 325–357 (2004)

78. Thomassé, S.: A quadratic kernel for feedback vertex set. In: Proceedings of the
19th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2009, pp.
115–119 (2009)

A Faster Fixed-Parameter Approach to Drawing
Binary Tanglegrams

Sebastian Böcker1, Falk Hüffner2, Anke Truss1, and Magnus Wahlström3

1 Lehrstuhl für Bioinformatik, Friedrich-Schiller-Universität Jena,
Ernst-Abbe-Platz 2, 07743 Jena, Germany

{sebastian.boecker,anke.truss}@uni-jena.de
2 Algorithms in Computational Genomics group, School of Computer Science,

Tel Aviv University, Tel Aviv 69978, Israel
hueffner@tau.ac.il

3 Max-Planck-Institut für Informatik, Department 1: Algorithms and Complexity,
Building 46.1, Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany

wahl@mpi-inf.mpg.de

Abstract. Given two binary phylogenetic trees covering the same n
species, it is useful to compare them by drawing them with leaves ar-
ranged side-by-side. To facilitate comparison, we would like to arrange
the trees to minimize the number of crossings k induced by connecting
pairs of identical species. This is the NP-hard Tanglegram Layout

problem. By providing a fast transformation to the Balanced Sub-

graph problem, we show that the problem admits an O(2kn4) algorithm,
improving upon a previous fixed-parameter approach with running time
O(cknO(1)) where c ≈ 1000. We enhance a Balanced Subgraph imple-
mentation based on data reduction and iterative compression with im-
provements tailored towards these instances, and run experiments with
real-world data to show the practical applicability of this approach. All
practically relevant (k ≤ 1000) Tanglegram Layout instances can
be solved exactly within seconds. Additionally, we provide a kernel-like
bound by showing how to reduce the Balanced Subgraph instances for
Tanglegram Layout on complete binary trees to a size of O(k log k).

1 Introduction

In phylogenetics, researchers often wish to compare different phylogenetic trees
with the same set of leaves: This can be two trees that resulted from applying
different tree-building methods to the same dataset, a gene tree vs. species tree
comparison, or a host-parasite comparison. The Tanglegram Layout problem
(TL) deals with visually comparing a pair of binary rooted trees with identical
leaf sets [4, 9]: The trees are drawn such that the leaves of both trees face each
other, and each leaf is connected to the corresponding leaf in the opposing tree
by an edge, see Fig. 1. A layout with many crossings of connecting edges can be
hard or even impossible to analyze. Hence, our goal is to find a layout of the two
trees such that we can draw connecting edges with as few crossings as possible.

J. Chen and F.V. Fomin (Eds.): IWPEC 2009, LNCS 5917, pp. 38–49, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Faster Fixed-Parameter Approach to Drawing Binary Tanglegrams 39

Fig. 1. A tanglegram

The Tanglegram Layout problem is NP-hard, even if both trees are com-
plete [3]. In the same publication, Buchin et al. provide a O(n3) 2-approximation
and a O(4kn3) fixed-parameter algorithm for this special case, where k is the
number of crossings in an optimal tanglegram. They also show that under
the Unique Games Conjecture, there is no constant-factor approximation for
the problem on general binary trees, that is, trees that are not necessarily com-
plete. For general binary trees, the fastest fixed-parameter algorithm is due to
Fernau et al. [4] and has running time O(cknO(1)), where c was estimated by the
authors to be about 1024.

On the application side, Nöllenburg et al. [8] compare different heuristics and
exact algorithms for Tanglegram Layout. Baumann et al. [2] and Bansal
et al. [1] study the generalization where the perfect matching between leaves
is replaced by an arbitrary bipartite graph, and present heuristics and Integer
Linear Programs for its solution.

In this paper, we transform Tanglegram Layout instances to the Bal-

anced Subgraph problem. The fastest fixed-parameter algorithm for the latter
problem is due to Hüffner et al. [7] and has running time O(2k m2) time, where
k is the number of edges violated in an optimal solution and m is the number of
graph edges. As an algorithm engineering technique, the authors also provide a
set of efficient data reduction rules for Balanced Subgraph.

Our contributions. We show in Sec. 3 that we can transform a Tanglegram

Layout instance into a Balanced Subgraph instance in polynomial time, so
that Tanglegram Layout is solvable in O(2kn4) time, where k is the min-
imum number of crossings in a tanglegram of the two input trees and n the
number of leaves in each input tree. In Sec. 4, we present a O(k log k) kernel-like
bound on the size of Balanced Subgraph instances derived from tanglegrams
with complete binary trees. In experiments described in Sec. 5, we give some
improvements to the Balanced Subgraph solver tailored towards our appli-
cation. We then apply the algorithm to synthetic and real-world tanglegram

40 S. Böcker et al.

datasets and thus show that we can compute exact solutions for all practically
relevant tanglegram instances within seconds.

2 Preliminaries

For an inner node v of a binary tree, let T (v) be the subtree rooted at v, and
l(v) and r(v) the left and right child of v, respectively. Then L(v) := T (l(v))
and R(v) := T (r(v)) are the subtrees rooted at l(v) and r(v), respectively. Let
L(v) denote the set of leaf labels in T (v). We identify leaves with their labels
for the sake of readability.

The last common ancestor lcaT (l1, l2) of two leaves l1, l2 is the inner node v of
T where {l1, l2}⊆L(v) but {l1, l2} �⊆L(l(v)) and {l1, l2} �⊆L(r(v)). The last com-
mon ancestor of two nodes is defined accordingly. To switch v means that we inter-
change the order of the children l(v) and r(v) such that the former L(v) becomes
R(v), and vice versa, without changing node and leaf orders in L(v) or R(v).

Given two not necessarily complete binary trees S, T with identical leaf sets, a
tanglegram is a planar embedding of S and T , where the two trees are contrasted
in such a way that the leaves of each tree are arranged on one of two parallel
straight lines, and identical leaves are connected by additional edges, see Fig-
ure 1. The task of the Tanglegram Layout problem is to find a tanglegram
which minimizes the number of crossings between leaf label edges.

The Balanced Subgraph problem is defined as follows: Given an undirected
multigraph with m edges, each of which is either labeled with = or with �=, the
task is to find a two-coloring of the vertices that violates as few edges as possible.
We say that a two-coloring violates an =-edge (an �=-edge) if the incident vertices
have different colors (the same color).

For ease of presentation, in the following we will assume all graphs to be
multigraphs.

3 Transformation

In this section, we present the transformation from a Tanglegram Layout

instance to a Balanced Subgraph instance. This, in turn, can be solved in
time O(2kn4) for input trees with n leaves that admit a tanglegram with at most
k crossings [7]. A similar construction was used by Nöllenburg et al. [8] and by
Buchin et al. [3] in the context of approximation and integer linear programming
modelling, respectively.

Given two trees S, T , our starting point is an arbitrary tanglegram of the
trees. We now transform this tanglegram into an instance of the Balanced

Subgraph problem, that is, an undirected graph G where all edges are labeled
‘=’ or ‘�=’. This graph may contain multiple edges between two vertices.

Let G be a bipartite graph with vertex set VS ∪ VT , where the vertices in VS

(or VT) correspond to all inner vertices of S (or T , respectively). For each pair
of leaf labels l1, l2, we draw an edge between the vertices corresponding to the
last common ancestors lcaS(l1, l2) and lcaT (l1, l2) of the leaves labelled l1, l2 in

A Faster Fixed-Parameter Approach to Drawing Binary Tanglegrams 41

Fig. 2. An example of the transformation to Balanced Subgraph. An arbitrary tan-
glegram of the input trees (upper left) is transformed into a bipartite graph (lower left).
Continuous lines denote =-edges, dashed lines �=-edges. This instance can be solved by
violating one edge, e.g. {u2, v2}, which leads to a valid two-coloring of the vertices
(lower right). The vertices of one color, here u1 and u2, are switched to obtain an
optimal tanglegram (upper right).

S and T . For each such edge we test whether there is a crossing between edges
l1 − l1 and l2 − l2 in the current tanglegram. If so, we label the edge with ‘�=’,
else with ‘=’.

We use G as input for a Balanced Subgraph algorithm which returns an
optimal two-coloring of the vertices of G, such that the vertices incident to
=-edges have the same color, whereas those incident to �=-edges have different
colors, while at the same time, violating as few edge labels as possible. This cor-
responds to leaving as few crossings as possible in the tanglegram: The optimal
tanglegram is obtained by picking one of the colors, say white, and switching all
inner vertices in S and T which correspond to white vertices in G. See Fig. 2 for
an example.

Lemma 1. The balanced subgraph instance generated by the transformation above
is solvable with violating at most k edges if and only if the original trees admit a
tanglegram with at most k crossings. The transformation can be done in quadratic
time.

Proof. Let S, T be two trees of a tanglegram instance and G = (VS ∪ VT , E) be
the graph after the transformation.

It is easy to see that a crossing between two labels l1, l2 in the initial tanglegram
is resolved if and only if exactly one of the last common ancestors u = lcaS(l1, l2)
and v = lcaT (l1, l2) is switched. Analogously, if the edges between these labels are
not crossed initially, they stay uncrossed if and only if both or none of the inner

42 S. Böcker et al.

nodes u and v are switched. In the first case the transformation introduces an �=-
edge {u, v} to G, in the latter case an =-edge {u, v}.

If an optimal solution for G violates an edge {u, v} that is an �=-edge, u and v
are colored equally, so either both u and v or none of them will be switched in the
tanglegram. If the broken edge {u, v} is an =-edge, u and v are colored differently,
and thus exactly one of these nodes will be switched. In both cases there is
a crossing between the two labels that caused {u, v} in the new tanglegram.
Similarly, an edge {u, v} that is not broken corresponds to a leaf pair that will
not have a crossing in the new tanglegram. This shows that there is an exact
one-to-one correspondence between leaf pairs in S, T and edges in G: An edge is
broken if and only if there is a crossing between the respective leaf labels.

The running time of our transformation for trees S, T with n leaves is O(n2):
Given an arbitrary tanglegram of S, T , we compute the last common ancestors of
all leaf pairs in linear time [5]. The sequence of labels in each tree can be obtained
in linear time with a standard search algorithm. With this information, we can
easily compute in O(n2) time whether there are crossings between each pair of
labels and add the respective edges to the bipartite graph. ��

The Balanced Subgraph instance we generate has 2n − 2 vertices and
(
n
2

)
edges, as a binary tree has n−1 inner nodes. The running time of the Balanced

Subgraph algorithm from [7] is O(2km2) for a graph with m edges, so the total
running time of our algorithm is O(2kn4). Note, however, that the n4 factor can
be reduced in practice; see Section 5.

Baumann et al. [2] present an ILP for the generalized problem where leaves
of the two trees are not necessarily connected by a perfect matching but instead
by an arbitrary bipartite graph. We note that the above transformation can be
applied to instances of this more general problem, too. This possibility has been
also noted in [1].

Our transformation allows us to prove that Balanced Subgraph is NP-
complete on bipartite graphs, but this can also be seen directly: For an arbitrary
instance of Balanced Subgraph, insert dummy vertices into every edge, and
replace an =-edge by two =-edges, and an �=-edge by an =-edge and an �=-edge.
The resulting instance is bipartite, and has a solution if and only if the original
instance has a solution.

Grötschel and Pulleyblank [6] showed that Edge Bipartization can be
solved in polynomial time for weakly bipartite graphs, a class of graphs that
includes both bipartite and planar graphs. Hüffner et al. [7] wrongly claimed
that using this result, Balanced Subgraph can be solved in polynomial time
for (weakly) bipartite input graphs. The reason is that starting from a weakly bi-
partite instance of Balanced Subgraph, the resulting Edge Bipartization

instance is no longer weakly bipartite.

4 A Kernel-Like Result for Complete Binary Trees

In parameterized complexity, a kernel is a polynomial-time self-reduction of
a parameterized problem after which the problem size can be bounded by a

A Faster Fixed-Parameter Approach to Drawing Binary Tanglegrams 43

function only depending on the parameter. Here, we give a bound of O(k log k)
on the size of the Balanced Subgraph instance which is the result of the
transformation from Sect. 3, for the case that the input binary trees are complete.
To show this, we begin with some definitions.

For a pair of leaves a, b with u = lcaS(a, b) and v = lcaT (a, b), there is a
corresponding edge {u, v} in G; call this the edge associated with a, b. Likewise,
a, b is a leaf pair associated with the edge {u, v}. Obviously, there can be many
leaf pairs associated with a single edge.

A pair of contradictory edges are two edges between the same pair of nodes
in G, with different edge labels. A node u is involved in contradictory edges if
there is a pair of contradictory edges with one end in u.

Let a mirror node of a node u be a node with identical leaf set. If u has a
mirror node v, then the nodes of T (u) and T (v) generate a subgraph of G which
is separate from the rest of the graph (the subgraph is not necessarily connected,
but every edge of G that is incident to a node of T (u) is incident to a node of
T (v) and vice versa). If furthermore l(u) and r(u) have mirror nodes (necessarily
among l(v) and r(v)), then v is an identical mirror of u, and u and v will end up
in a two-vertex component in G. Such a component is a trivial component and
can be solved immediately. Note that one of l(u) and r(u) has a mirror node if
and only if both have mirror nodes.

We need the following reduction rules. The first three are generic, i.e. appli-
cable not only in the case of complete trees; their correctness is immediate.

Rule 1 (Remove contradictory edges). If there are multiple edges {u, v},
of which n1 > 0 are =-edges and n2 > 0 are �=-edges, let t = min{n1, n2}. Lower
k by t, and delete t edges of each kind; reject if t > k.

Assume from now on that Rule 1 has been applied exhaustively.

Rule 2 (High-multiplicity edges). If there is any edge {u, v} of multiplicity
more than k, then set it to permanent.

The following rule describes how edges set to “permanent” can be contracted.

Rule 3 (Vertex merging). If an =-edge between two vertices u, v is set to
permanent, then replace each edge {v, w}, w �= u with an equally labeled edge
{u, w} and delete v.

If an �=-edge between two vertices u, v is set to permanent, then replace each
edge {v, w}, w �= u with a contrarily labeled edge {u, w} (= becomes �= and vice
versa) and delete v.

Finally, we have two rules which are specific for the complete binary case. The
essence is that given the restriction on the tree shapes, a node which does not
have a mirror node will have leaves involved in edge crossings in any drawing.

Rule 4. Let S, T be complete binary trees defining a TL instance. Let two nodes
be incomparable if they are not in an ancestor-offspring relationship. If there are
more than 2k pairwise incomparable nodes in S without mirror nodes, then reject
the instance.

44 S. Böcker et al.

Rule 5. Let S, T be complete binary trees defining a TL instance. If there is any
node u in S such that for every node v in T of the same depth as u, more than
k leaves of T (u) are missing from T (v), then reject the instance.

Lemma 2. Rules 4 and 5 are correct.

Proof. Since the trees S and T are both complete, the grouping of leaves to
nodes with respect to any ordering of the trees follows the same structure: every
node u in S will be placed directly opposite a node v in T (on the same level as
u) sharing the same section of the leaf ordering (e.g. if the leftmost eight leaves
of S meet in u, then the leftmost eight leaves of T meet in v). Now, consider an
imaginary line drawn on the left side of T (u) and T (v). The number of edges
that cross this line coming from the left side of it in S is the same as the number
of crossing edges from the right side in S, and every edge from the left side
crosses every edge from the right side; likewise for a line drawn to the right of
T (u) and T (v). For every leaf in T (u) not present in T (v), the corresponding
matching edge must cross one of these lines, and thus must be involved in a
crossing.

Rule 5 follows immediately. Rule 4 follows since incomparable nodes have
disjoint leaf sets; if the rule applies, then there are more than 2k separate edges
involved in crossings. ��

Let U be the set of lowest nodes without mirror nodes, i.e. all nodes u without
mirror nodes such that any other node in T (u) does have a mirror node. These
nodes are pairwise incomparable, so |U | ≤ k. Furthermore, any internal node
of S which is beneath a node in U , or incomparable to all nodes in U , belongs
to a trivial component in the Balanced Subgraph instance. Repeating the
argument from the root of S (which does have a mirror), we find that what
remains of S after Rules 4 and 5 have been checked and trivial components
removed is a set of binary trees whose leaves are the nodes of U . In principle,
this already gives us a kernel of size O(k2): at most O(k log n) nodes remain,
and if log n > k, then solving the problem exactly in time O(2knO(1)) counts
as polynomial processing in n. We next show that our reduction rules take care
of this in a different way, leaving at most O(k log k) nodes in the Balanced

Subgraph instance.

Theorem 1. Let S, T be complete binary trees. Applying rules 4 and 5, pro-
cessing trivial components, and repeatedly merging heavy edges and removing
contradictory edges either leads to a rejection of the instance or leaves a Bal-

anced Subgraph instance with at most O(k log k) remaining nodes.

Proof. Call a node fat if both children have at least 4k leaves. We will essentially
show that fat nodes contribute nothing to the size of the final graph (because
all but a bounded number of them will be merged into other nodes). We make
three claims to show the result.

1. Every fat node has an identifiable partner on the same level in the opposite
tree, which shares the same leaf set with at most k exceptions. If not, then

A Faster Fixed-Parameter Approach to Drawing Binary Tanglegrams 45

Rule 5 would apply. The same rule holds for the children of a fat node; by
a counting argument, the partner matching must map the children of a fat
node u to different children of its partner v. In particular, for any fat partner
nodes u, v, there is an edge {u, v} with multiplicity more than k.

2. Let u be a fat node, with partner v. Let v′ be an ancestor of v. We claim that
if there is an edge {u, v′}, then there is such an edge with multiplicity more
than k. Let a, b be a leaf pair associated with an edge {u, v′}, and assume
w.l.o.g. that a ∈ L(v′), b ∈ R(v′), and v ∈ R(v′).
Let L̂ be the set of leaves that l(u) shares with its partner, andR̂ the same
for r(u). By the above, |L̂|, |R̂| ≥ 3k, and L̂ ∪ R̂ ⊆ L(v). If a ∈ L(u), then
every pair of leaves a, c for c ∈ R̂ has an associated edge {u, v′}; if a ∈ R(u),
then the same holds for a, c for c ∈ L̂. Thus the claim is shown.

3. Let u be a fat node with partner v. If u and v are not mirror nodes, then we
claim that there is an edge {u, v′} where v′ is an ancestor of v. Note that by
the previous claim, there must then exist such an edge that is heavy. Also
recall that if u and v are mirror nodes, then for any node u′ ∈ T (u) and any
edge {u′, v′}, v′ ∈ T (v).
Assume a ∈ L(u), a /∈ L(v). Then for any pair of leaves a, b with lcaS(a, b) =
u there is an associated edge {u, v′} where v′ /∈ T (v). If v′ is not itself an
ancestor of v, then there is another edge {u, lcaT (v, v′)}, which can be found
by combining leaves associated with edges {u, v} and {u, v′}.

The last claim has strong implications about the structure of the Balanced

Subgraph instance. In particular, for fat partner nodes u and v, if there is an
edge from u to an ancestor v′ of v, then for any node v′′ between v and v′,
there is in turn an edge from v′′ to an ancestor of its partner (perhaps to the
partner of v′). Thus the fat nodes of each connected component in the Balanced

Subgraph instance are merged into one. To finalize the proof, we need to bound
the number of connected non-trivial components.

Consider a node u with fat children l(u), r(u). If both children have mirror
nodes (which are then their partners) then u has an identical mirror node and
ends up in a trivial component. Otherwise, u shares a component with at least
one child. In either case, we see that no connected non-trivial component contains
u but no child of u. Thus the number of nodes that remain after the merging
process is bounded by the number of non-fat ancestor nodes of the nodes U
previously defined, which is in turn bounded by O(k log k). ��

5 Implementation and Experiments

For our experiments, we used Falk Hüffner’s implementation of the Balanced

Subgraph algorithm [7]. It is based on a combination of data reduction and
iterative compression for solving the unreducible parts. The program consists
of about 1900 lines of Objective Caml code and about 300 lines of C code
that implements the time-critical compression routine of the iterative compres-
sion method. All experiments were run on a dual AMD Opteron 275 machine

46 S. Böcker et al.

with 2.2GHz, 1024KB cache, and 6GB main memory running under the So-
laris 10 8/07 operating system (only one core was used). The program was com-
piled with Objective Caml 3.11.1 and the GNU gcc 3.4.3 compiler using the
options “-O3 -march=athlon”.

Two properties of the instances obtained by the reduction from Tanglegram

Layout are notable here. First, they have a particular degree distribution (at
least for well-balanced trees): there are vertices with both very low and very high
degrees, and the distribution follows a power law, thus the networks are scale-
free. Second, there are edges with very high multiplicity (up to several hundred).
This works to our advantage. The data reduction rules of the algorithm depend
on the existence of small separators, that is, vertex sets whose deletion discon-
nects the graph. The existence of many small-degree vertices in our instances
makes finding such sets likely. Moreover, the exponential part of the running time
of the iterative compression algorithm (O(2k)) can be more precisely bounded
by O(2c), where c is the maximum size of a vertex cover needed to cover an
(intermediary) balancing set of edges (see [7] for details). Because of the high
multiplicity and the existence of “hubs” (vertices with high degree), these vertex
covers are much smaller than k.

Another notable property is that Balanced Subgraph instances result-
ing from our transformation are bipartite. However, since we noted above that
arbitrary instances can be made bipartite, it seems unlikely that this can be
exploited.

The special structure also motivated us to add two modifications to the solver,
both of which are correct for general Balanced Subgraph instances but tai-
lored towards such instances.

First, we added a data reduction rule that can get rid of edges with high
multiplicity, without needing to know the value of k. The correctness is easy to
see.

Rule 6 (Cut with heavy edge). Let G be a Balanced Subgraph instance,
where all pairs of contradictory edges have been removed. If there is an edge cut
of G separating two vertices u and v in which at least half the edges of the cut
are edges {u, v}, then the edges {u, v} can be made permanent. In particular,
this rule applies if there are vertices u and v such that at least half the edges of u
are edges {u, v}.

After we have decided that an edge is permanent, we can simplify the instance
using Rule 3. This rule applies in particular when two nodes in the two trees are
similar (that is, they have similar leaf sets, split roughly the same way).

In fact, we implemented only the special case of Rule 6, since our experi-
ments showed that almost always a cut between u and v when an edge {u, v} is
present either isolates u or isolates v by deleting all adjacent edges. We also did
not implement rules that depend on knowing k in advance, such as Rules 2, 4,
and 5. The reason is that we either would have to try increasing values of k, which

A Faster Fixed-Parameter Approach to Drawing Binary Tanglegrams 47

Table 1. Running times with 60 s time limit

k time [s]

Set solved [%] median maximum median maximum

A 69.0 630 58697 0.04 49.30
B 100 83 4639 0.04 2.41
C 39.9 844 8815 1.00 59.79
D 100 172 975 0.06 0.20
E 100 0 10085 < 0.01 2.56
F 99.7 28 34811 < 0.01 31.45
G 100 0 555 < 0.01 2.49

would add a large polynomial factor, or use a heuristic upper bound on k, which
is less likely to yield effective reduction.

The second modification concerns the iterative compression process (we as-
sume familiarity with the approach). When building up the instance, we need to
add edges one-by-one. Since some instances have extremely many edges (up to
148 240 before data reduction), it is desirable to avoid this factor of n2. For this,
we start with a heuristic solution and compress it repeatedly until no more com-
pression is possible. This typically requires only up to 20 rounds of compression.
The initial solution is found using a simple Kernighan–Lin style algorithm: Start-
ing from a random coloring, repeatedly change the color of a vertex as long as
this decreases the number of nonsatisfied edges. The disadvantage is that we for-
feit the worst-case bound on the running time, and instances can be constructed
for which this would give a slowdown. However, for the dense instances we en-
countered, this is not a problem. To make for a more robust implementation, we
could try both methods in parallel.

Data. The seven datasets we used stem from Nöllenburg et al. [8]: Sets A–D are
artificial datasets. Set A contains 600 pairs of random complete binary trees of
sizes 16–512, set B consists of pairs of mutated complete binary trees, and sets
C and D contain 2900 more naturally generated general binary trees with 20–
300 leaves and additional mutations in set D. Sets E–F comprise 1303 tree pairs
generated with real-world data of animal families. Set E compares Maximum
Likelihood and Neighbor joining trees, set F and G Neighbor Joining trees that
used different distances. See [8] for details.

The results of the computations are listed in Table 1. We observe that as
expected, the algorithm struggles most with sets A and C, which are synthetic
random instances that are not expected to have a low number of crossings. From
the real-world instances, only 4 instances from set F remain unsolved within a
minute. These have k ≥ 10000.

Instances with k > 1000 are unlikely to be of practical interest, since with
more than 1000 crossings, the visualization will not be helpful. If we restrict
ourselves to the real-world instances with k ≤ 1000, we can solve all instances

48 S. Böcker et al.

with a median of < 0.01 s and a maximum of 2.55 s. This means we can get
optimal solutions for all practically relevant instances within seconds.

In general, performance is similar to the ILP approach of Nöllenburg et al. [8],
which also can solve most of the instance with k not too high. The advantage of
our approach is that it has useful worst-case running time bounds and does not
require the proprietary CPLEX software.

6 Conclusion

With improving the previously best-known fixed-parameter running time for the
Tanglegram Layout problem from O(cknO(1)) with c ≈ 1024 [4] to O(2kn4),
where k is the minimum number of crossings in a drawing, we managed to
make fixed-parameter algorithms applicable for sizes that are interesting for
visualization of phylogenetic trees. Experiments showed that we can usually
solve instances with k ≤ 1000 in well below one second.

Consequential challenges are working towards a problem kernel for general
binary trees and extending the algorithm to nonbinary phylogenetic trees. We
plan to do further algorithm engineering and to integrate the algorithm into the
EPoS1 framework, a modular framework for phylogenetic analysis and visual-
ization, to make it easily available to biologists.

Acknowledgments. We thank Martin Nöllenburg for providing us with the tan-
glegram datasets from [8].

References

1. Bansal, M.S., Chang, W.-C., Eulenstein, O., Fernández-Baca, D.: Generalized binary
tanglegrams: Algorithms and applications. In: Rajasekaran, S. (ed.) BICoB 2009.
LNCS (LNBI), vol. 5462, pp. 114–125. Springer, Heidelberg (2009)

2. Baumann, F., Buchheim, C., Liers, F.: Exact crossing minimization in general tan-
glegrams. Technical Report zaik2009-581, Zentrum für Angewandte Informatik Köln
(Mar 2009)

3. Buchin, K., Buchin, M., Byrka, J., Nöllenburg, M., Okamoto, Y., Silveira, R.I.,
Wolff, A.: Drawing (complete) binary tanglegrams. In: Tollis, I.G., Patrignani, M.
(eds.) GD 2008. LNCS, vol. 5417, pp. 324–335. Springer, Heidelberg (2009)

4. Fernau, H., Kaufmann, M., Poths, M.: Comparing trees via crossing minimiza-
tion. In: Sarukkai, S., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 457–469.
Springer, Heidelberg (2005)

5. Gabow, H.N., Tarjan, R.E.: A linear-time algorithm for a special case of disjoint set
union. In: Proc. of ACM Symposium on Theory of Computing (STOC 1983), pp.
246–251. ACM Press, New York (1983)

6. Grötschel, M., Pulleyblank, W.R.: Weakly bipartite graphs and the max-cut prob-
lem. Oper. Res. Lett. 1(1), 23–27 (1981)

1 http://bio.informatik.uni-jena.de/epos/

http://bio.informatik.uni-jena.de/epos/

A Faster Fixed-Parameter Approach to Drawing Binary Tanglegrams 49

7. Hüffner, F., Betzler, N., Niedermeier, R.: Optimal edge deletions for signed graph
balancing. In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 297–310.
Springer, Heidelberg (2007)

8. Nöllenburg, M., Holten, D., Völker, M., Wolff, A.: Drawing binary tanglegrams:
An experimental evaluation. In: Proc. of Workshop on Algorithm Engineering and
Experiments (ALENEX 2009), pp. 106–119. SIAM, Philadelphia (2009)

9. Page, R.D.M. (ed.): Tangled Trees: Phylogeny, Cospeciation, and Coevolution. Uni-
versity of Chicago Press, Chicago (2002)

Planar Capacitated Dominating Set Is
W [1]-Hard

Hans L. Bodlaender1, Daniel Lokshtanov2, and Eelko Penninkx1

1 Department of Information and Computing Sciences, Universiteit Utrecht, PO Box
80.089, 3508TB Utrecht, The Netherlands

{hansb,penninkx}@cs.uu.nl
2 Department of Informatics, University of Bergen, N-5020 Bergen, Norway

daniello@ii.uib.no

Abstract. Given a graph G together with a capacity function c :V (G)→
N, we call S ⊆ V (G) a capacitated dominating set if there exists a
mapping f : (V (G) \ S) → S which maps every vertex in (V (G) \ S) to
one of its neighbors such that the total number of vertices mapped by f
to any vertex v ∈ S does not exceed c(v). In the Planar Capacitated

Dominating Set problem we are given a planar graph G, a capacity
function c and a positive integer k and asked whether G has a capacitated
dominating set of size at most k. In this paper we show that Planar

Capacitated Dominating Set is W [1]-hard, resolving an open problem
of Dom et al. [IWPEC, 2008]. This is the first bidimensional problem
to be shown W [1]-hard. Thus Planar Capacitated Dominating Set

can become a useful starting point for reductions showing parameterized
intractablility of planar graph problems.

1 Introduction

In the Dominating Set problem we are given a graph G and asked for the
smallest set of vertices such that every vertex in the graph either belongs to this
set or has a neighbor which does. This basic problem in algorithms and com-
plexity has been studied extensively, and finds applications in various domains.
Dominating Set has a special place in parameterized complexity [5,8,13]. It is
the most well-known W [2]-complete problem and is a standard starting point for
reductions that show intractability of parameterized problems [5]. Even though
the Dominating Set problem is a fundamentally hard problem in the param-
eterized W -hierarchy, it has been used as a benchmark problem for developing
sub-exponential time FPT algorithms [1,3,11], and also for obtaining linear ker-
nels on planar graphs [2,8,12,13], and more generally, graphs that exclude a fixed
graph H as a minor.

Different applications of Dominating Set have initiated studies of different
generalizations and variations of the problem. These include Connected Domi-

nating Set, Partial Dominating Set, and Capacitated Dominating Set

to name a few. In this paper we focus on one such generalization, namely Capac-

itated Dominating Set. Given a graph G together with a capacity function

J. Chen and F.V. Fomin (Eds.): IWPEC 2009, LNCS 5917, pp. 50–60, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Planar Capacitated Dominating Set Is W [1]-Hard 51

c : V (G) → N, we call S ⊆ V (G) a capacitated dominating set if there exists a
mapping f : (V (G) \ S) → S which maps every vertex in (V (G) \ S) to one of
its neighbors such that the total number of vertices mapped by f to any vertex
v ∈ S does not exceed c(v). The Capacitated Dominating Set problem is
defined as follows.

Capacitated Dominating Set (CDS): Given a graph G, a capacity
function c and a positive integer k, determine whether there exists a
capacitated dominating set S of G containing at most k vertices.

Dom et al. initiated the study of CDS from the perspective of Parameterized
Complexity, and showed that CDS is W [1]-hard parameterized by solution size
and the treewidth of the input graph [4]. Like Dominating Set, CDS has
become a useful source for showing W -hardness, especially when the parameter
is the structure of the input graph [7,10]. It has been recently used to show the
first W -hardness results for problems parameterized by the cliquewidth of the
input graph [10].

Many graph problems that are W -hard in general turn out to be FPT when
restricted to planar graphs. This is true for Dominating Set and many of its
variants, and hence it is very natural to consider the parameterized complexity
of Planar Capacitated Dominating Set, the restriction of CDS to planar
graphs. For most planar graph problems, an FPT algorithm can be obtained
by combining a combinatorial bound on the treewidth of non-trivial instances
with a dynamic programming algorithm for graphs of bounded treewidth. In
fact for most problems restricted to planar graphs we have subexponential time
parameterized algorithms using bidimensionality theory [3]. PCDS, however, is
an exception to this rule. In particular, it can easily be shown by using bidimen-
sionality that any planar graph that has a capacitated dominating set of size at
most k has treewidth O(

√
k). On the other hand, Dom et al. showed that CDS

is W [1]-hard when parameterized by solution size and the treewidth of the input
graph [4]. Thus, bidimensionality alone was not enough to tackle this problem
and it was an intriguing question whether PCDS could still turn out to be FPT
by a non-trivial use of planarity. We show that these hopes were futile by giv-
ing a W [1]-hardness reduction for PCDS. Planar Capacitated Dominating

Set is the first bidimensional problem to be shown W [1]-hard. We believe that
Planar Capacitated Dominating Set can become a useful starting point
for reductions showing parameterized intractablility of planar graph problems.

2 Preliminaries

We will work with both undirected and directed graphs. Given a graph G, the
vertex set of G is V (G) and the edge set of G is E(G). . For a graph G, n = |V (G)|
and m = |E(G)|. With NG(u) we denote all vertices that are adjacent to u and
the degree of u is dG(u) = |NG(u)|. Let f be the function associated with a
capacitated dominating set S. Given u ∈ S and v ∈ V \ S, we say that u
dominates v if f(v) = u; moreover, every vertex u ∈ S dominates itself. Note

52 H.L. Bodlaender, D. Lokshtanov, and E. Penninkx

that the capacity of a vertex v only limits the number of neighbors that v can
dominate, that is, a vertex v ∈ S can dominate c(v) of its neighbors plus v itself.

For a directed graph D the node set of D is N(D) and the arc set of D is A(D).
For a node u, N+

D (u) = {v : uv ∈ A} is the set of outneighbours of u, N−
D (u) =

{v : vu ∈ A} is the set of inneighbours of u and ND(u) = N+
D (u) ∪ N−

D (u) is
the set of neighbours of u. We define d+

D(u) = |N+
D (u)|, d−D(u) = |N−

D (u)| and
dD(u) = |ND(u)| to be the outdegree, indegree and degree of u respectively.

We use the notions of a parameterized problem, Fixed Parameter Tractability,
hardness for the complexity class W [1] and our hardness proofs involve FPT -
reductions. For an introduction to these notions, the reader is referred to the text-
books [5,8,13]. For ease of reference we provide the definition of FPT -reductions
here.

Definition 1. [5,8,13] Let A, B be parameterized problems. We say that A
is FPT-reducible to B if there is an algorithm Φ which transforms (x, k) into
(x′, g(k)) in time f(k) · |x|α, where f, g : N → N are arbitrary functions and
α is a constant independent of |x| and k, so that (x, k) ∈ A if and only if
(x′, g(k)) ∈ B.

It is well known that if A is hard for W [1] and A is FPT-reducible to B, then
B is also W [1]-hard [5,8,13].

3 PCDS Is W[1]-Hard Parameterized by Solution Size

In this section we show that PCDS is W [1]-hard when parameterized by solution
size. We reduce from Multi-Color Clique, a restriction of the k-Clique

problem.

Multi-Color Clique (MCC) Given an integer k and a connected
undirected graph G = (V [1]∪V [2] · · ·∪V [k], E) such that for every i the
vertices of V [i] induce an independent set, is there a k-clique C in G?

For i ≤ k the sets V [i] are called color classes of G. Since each color class forms
an independent set, a k-clique in G must contain exactly one vertex from each
color class. For two distinct integers i, j between 1 and k the set E[i, j] is the set
of edges of G with one endpoint in V [i] and the other in V [j]. The Multi-Color

Clique problem is known to be W[1]-hard [6,9] and is used as a starting point
for many hardness reductions.

We will reduce to a slightly modified version of Planar Capacitated Dom-

inating Set, Planar Marked Capacitated Dominating Set (PMCDS)
where we mark some vertices and demand that all marked vertices must be in
the dominating set. We can then reduce from PMCDS to Planar Capaci-

tated Dominating Set by attaching k + 1 leaves to each marked vertex and
increasing the capacity of each marked vertex by k + 1. It is easy to see that
the new instance has a k-capacitated dominating set if and only if the origi-
nal one had a k-capacitated dominating set that contained all marked vertices,
and that this operation preserves planarity of the graph. Thus, to prove that

Planar Capacitated Dominating Set Is W [1]-Hard 53

Planar Capacitated Dominating Set is W [1]-hard when parameterized by
solution size, it is sufficient to prove that PMCDS is. We will show how given
an instance (G, k) of Multicolor Clique, we can build an instance (H, c, k∗)
of PMCDS such that k∗ = O(k3) and G has a clique of size k if and only if H
has a capacitated dominating set of size k∗.

The reduction to PMCDS goes via an intermediate problem as well. We name
this problem the Planar Arc Supply problem, (PAS). In PAS we are given
a planar digraph D = (N, A) with |N(D)|+ |A(D)| = k, no loops and no double
arcs. Every node u ∈ N has a demand ζ(u), which is a natural number, and every
arc uv ∈ A has a list L(uv) of ordered integer pairs, called the supply pairs of
uv. The task is to decide whether there is a function fa : A → N and a function
fb : A → N such that for every arc uv ∈ A we have (fa(uv), fb(uv)) ∈ L(uv) and
for every node u ∈ N we have that ζ(u) ≤

∑
v∈N+(u) fa(uv)+

∑
v∈N−(u) fb(vu).

In essense we are asked to pick a supply pair from the list of every arc such
that for every vertex the arcs incident to it are able to cover the demand of the
vertex. Therefore the pair of fuctions fa and fb are called a supply selection and
a supply selection is called satisfying if the demand of all vertices is met.

3.1 Identification Numbers

Given an instance (G = (V [1]∪ . . .∪V [k], E), k) to MCC every vertex and every
edge of G gets two pairs of identification numbers. Every vertex gets one pair
of small and one pair of medium identification numbers and every edge gets one
pair of small and one pair of large identification numbers. For the vertices these
identification numbers are defined as follows.

– Every vertex v gets assigned a unique number IDU
S (v) between 1 and n as

its small up-ID.
– The small down-ID of v is IDD

S (v) = n2 − IDU
S (v).

– The medium up-ID of v is IDU
M (v) = n3 · IDU

S (v).
– The medium down-ID of v is IDD

M (v) = n3 · IDD
S (v).

For edges the identification numbers are defined similarly. In particular:

– Every edge uv of G gets assigned a unique number IDU
S (uv) between 1 and

m as its small up-ID.
– The small down-ID of uv is IDD

S (uv) = n2 − IDU
S (uv).

– The large up-ID of uv is IDU
L (uv) = n6 · IDU

S (uv).
– The large down-ID of uv is IDD

L (uv) = n6 · IDD
S (uv).

Observe that 2m < n2 and that therefore all small down-ID’s are larger than all
small up-ID’s. We also define the huge numbers U = n20 − n19, D = n20 + n19

and M = n20.

3.2 Reduction to Planar Arc Supply

Given an instance (G = (V [1] ∪ . . . ∪ V [k], E), k) to MCC we now construct an
instance of PlanarArc Supply. For every color class i between 1 and k we make

54 H.L. Bodlaender, D. Lokshtanov, and E. Penninkx

C1
H

C2
H

C3
H

C
1,2
V

C
1,3
V

C
2,3
V

x
1,2
1

y
1,2
1

x
1,3
3

y
1,3
3

Fig. 1. The construction of D for k = 3. Horizontal cycles are shown in full lines,
vertical in dotted lines. The left-matching vertices are surrounded by a square, the
right-matching vertices are surrounded by a diamond.

a horizontal cycle Ci
H . This is a directed cycle of length 12

(
k
2

)
, oriented clockwise.

For everypair of color classes i, j between 1 and k such that i < j we make a vertical
cycle Ci,j

V . This is a directed cycle of length 12k, oriented clockwise. We arrange
the cycles in a grid, with the vertical cycles corresponding to vertical lines on the
grid and the horizontal cycles corresponding to the horizontal lines on the grid.
Every horizontal cycle intersects with every vertical cycle in exactly four points.
Following a cycle, there are exactly three edges from one intersection point to the
next. This concludes the construction of the directed graph D. Observe that the
graph D itself depends only on k. For a construction of D for k = 3 see Figure 1.

The number of arcs in D is k · 12
(
k
2

)
+
(
k
2

)
· 12k. The number of nodes in D is

k · 12
(
k
2

)
+
(
k
2

)
· 12k − 4k ·

(
k
2

)
. Hence k′ = |N(D)| + |A(D)| = 44k

(
k
2

)
= O(k3).

The horizontal cycle Ct
H and the vertical cycle Ci,j

V intersect in exactly four
nodes. The top-left intersection node is called xi,j

t and the bottom left intersection

Planar Capacitated Dominating Set Is W [1]-Hard 55

node is called yi,j
t . The nodes xi,j

t and yi,j
t such that i = t are called left-matching

nodes and the nodes xi,j
t and yi,j

t such that j = t are called right-matching nodes.
An arc in a horizontal cycle is called a horizontal arc and an arc in a vertical cy-
cle is called a vertical arc. An arc whose endpoint is a left-matching node is also
called left-matching and similarly an arc whose endpoint is a right-matching node
is called left-matching. If an arc or node is left-matching or right-matching then it
is also a matching arc (node).

We now describe the demands of all the nodes and the supply lists of all the
arcs of D. Observe that every node v of G has degree either 2 or 4. The demand
of every vertex of degree 2 in a horizontal cycle is 2M + n5. The demand of
every vertex of degree 2 in a vertical cycle is 2M+ n8 and the demand of every
degree 4 vertex is 4M + n8 + n5. The description of the supply-lists conclude
the description of the PAS instance. Every pair in a supply list of a horizontal
arc will correspond to a vertex of G while every pair in a supply list of a vertical
arc will correspond to an edge of G.

The intuition is that each horizontal cycle Ci
H encodes the choice which vertex

in V [i] will be in the clique. Each vertical cycle Ci,j
V encodes the choice of which

edge of E[i, j] will be in the clique. The large identification numbers are used in
all arcs of the vertical cycles to encode this choice of edges. The medium identifi-
cation numbers are used in all arcs of the horizontal cycles to encode the choice of
vertices. In the intersection of the horizontal cycle Ci

H and the vertical cycle Ci,j
V

we use the left-matching vertices xi,j
i and yi,j

i to make sure that the vertex selected
in the horizontal cycle Ci

H and the edge selected in the vertical cycle Ci,j
V are inci-

dent. Similarly, in the intersection of the horizontal cycle Cj
H and the vertical cycle

Ci,j
V we use the right-matching vertices xi,j

j and yi,j
j to make sure that the vertex

selected in the horizontal cycle Cj
H and the edge selected in the vertical cycle Ci,j

V

are incident. The incidence check is performed using small identification numbers.
The huge numbers U and D are always present in all supply pairs. These numbers
are used in second stage of the reduction (from PAS to PMCDS) and do not play
a role in the first part. We now formally describe the supply-lists.

– For every non-matching horizontal arc uv of the cycle Ci
H , for every a ∈ V [i]

there is a pair (U + IDU
M (a),D + IDD

M (a)) in L(uv)
– For every matching horizontal arc uv pointing at a node xi,j

i , for every a ∈
V [i] there is a pair (U + IDU

M (a),D + IDD
M (a) + IDD

S (a)) in L(uv).
– For every matching horizontal arc uv pointing at a node yi,j

i , for every a ∈
V [i] there is a pair (U + IDU

M (a),D + IDD
M (a) − IDD

S (a)) in L(uv)
– For every non-matching vertical arc uv of the cycle Ci,j

V , for every ab ∈ E[i, j]
there is a pair (U + IDU

L (ab),D + IDD
L (ab)) in L(uv).

– For every left-matching vertical arc uv pointing at a node xi,j
i , for every

a ∈ V [i] and b ∈ V [j] such that ab ∈ E there is a pair (U + IDU
L (ab),D +

IDD
L (ab) − IDD

S (a)) in L(uv).
– For every left-matching vertical arc uv pointing at a node yi,j

i , for every
a ∈ V [i] and b ∈ V [j] such that ab ∈ E there is a pair (U + IDU

L (ab),D +
IDD

L (ab) + IDD
S (a)) in L(uv).

56 H.L. Bodlaender, D. Lokshtanov, and E. Penninkx

– For every right-matching vertical arc uv pointing at a node xi,j
j , for every

a ∈ V [i] and b ∈ V [j] such that ab ∈ E there is a pair (U + IDU
L (ab),D +

IDD
L (ab) − IDD

S (b)) in L(uv).
– For every right-matching vertical arc uv pointing at a node yi,j

j , for every
a ∈ V [i] and b ∈ V [j] such that ab ∈ E there is a pair (U + IDU

L (ab),D +
IDD

L (ab) + IDD
S (b)) in L(uv).

Lemma 1. If G contains a clique C of size k then D has a satisfying supply
selection.

Proof. Any k-clique in G must contain exactly one vertex from each set V [i]
and exactly one edge from each set E[i, j]. Let ci be the vertex in C ∩ Ci. For
every i between 1 and k and every horizontal arc in Ci

H select the supply pair
corresponding to ci. For every pair i, j such that i < j and every vertical arc
in Ci,j

V select the supply pair corresponding to the edge cicj . The case analysis
below shows that the demand of all vertices is met.

– For every vertex with degree 2 on the horizontal cycle Ci
H , demand is 2M +

n5, and total supply is D + IDD
M (ci) + U + IDU

M (ci) = 2M + n5.
– For every vertex with degree 2 on the vertical cycle Ci,j

H , demand is 2M +n8,
and total supply is D + IDD

L (cicj) + U + IDU
L (cicj) = 2M + n8.

– For every non-matching vertex with degree 4 lying on the horizontal cycle
Ct

H and vertical cycle Ci,j
V , demand is 4M + n8 + n5, and total supply is

D+IDD
M (ct)+U+IDU

M(ct)+D+IDD
L (cicj)+U+IDU

L (cicj) = 4M+n8+n5.
– For every left-matching vertex xi,j

i , demand is 4M +n8+n5, and total supply
is D+ IDD

M (ci)+ IDD
S (ci)+U + IDU

M (ci)+D+ IDD
L (cicj)− IDD

S (ci)+U +
IDU

L (cicj) = 4M + n8 + n5.
– For every left-matching vertex yi,j

i , demand is 4M +n8+n5, and total supply
is D+ IDD

M (ci)− IDD
S (ci)+U + IDU

M (ci)+D+ IDD
L (cicj)+ IDD

S (ci)+U +
IDU

L (cicj) = 4M + n8 + n5.
– For every right-matching vertex xi,j

j , demand is 4M + n8 + n5, and total
supply is D+IDD

M (cj)+IDD
S (cj)+U+IDU

M (cj)+D+IDD
L (cicj)−IDD

S (cj)+
U + IDU

L (cicj) = 4M + n8 + n5.
– For every right-matching vertex yi,j

j , demand is 4M + n8 + n5, and total
supply is D+IDD

M (cj)−IDD
S (cj)+U+IDU

M (cj)+D+IDD
L (cicj)+IDD

S (cj)+
U + IDU

L (cicj) = 4M + n8 + n5.
��

Lemma 2. If D has a satisfying supply selection then G contains a clique C of
size k.

Proof. Every pair in a supply list of a horizontal arc corresponds to a vertex of
G while every pair in a supply list of a vertical arc corresponds to an edge of
G. Hence the satisfying supply selection of D represents a choice of an edge of
G for every arc in a vertical cycle, and a choice of a vertex for every arc in a
horizontal cycle. Consider two consecutive arcs uv and vw on a vertical cycle Ci,j

V

Planar Capacitated Dominating Set Is W [1]-Hard 57

and let a be the edge of G selected at uv and b be the edge selected at vw. We
prove that IDU

L (b) ≥ IDU
L (a). Suppose for contradiction that IDU

L (b) < IDU
L (a).

If v has degree 2 then demand is 2M + n8 and supply is D + IDD
L (a) + U +

IDU
L (b) < 2M + n8. Observe that since IDU

L (a) = n6 · IDU
S (a) we have that if

IDU
L (b) < IDU

L (a) then IDU
L (b)+n6 ≤ IDU

L (a). Thus, if v has degree 4 then v’s
demand is 2M +n8 +n5 and the total supply at v is at most D+ IDD

L (a)+n2 +
U + IDU

L (b) + U + n5 + D + n5 ≤ 4M + n8 + 2n5 + n2 − n6 < 4M + n8 + n5.
Hence IDU

L (b) ≥ IDU
L (a). Since this holds for every pair of consecutive arcs on

the vertical cycle Ci,j
V , all arcs on the cycle Ci,j

V select the same edge of G.
We now prove that a similar observation holds for the horizontal cycles, that

is, that all arcs on the horizontal cycle Ci
H select the same vertex of G. Consider

two consecutive arcs uv and vw on a horizontal cycle Ci
H and let a be the

vertex of G selected at uv and b be the vertex selected at vw. We prove that
IDU

M (b) ≥ IDU
M (a). Suppose for contradiction that IDU

M (b) < IDU
M (a). If v has

degree 2 then v’s demand is 2M + n5 and the supply at v is U + IDD
M (a) +

D + IDU
M (b) < 2M+ n5. Now, suppose v has degree 4, then the demand of v is

4M +n8 +n5. Observe that if IDU
M (b) < IDU

M (a) then IDU
M (b)+n3 ≤ IDU

M (a).
Also, since all arcs on the vertical cycle containing v select the same edge of G,
the vertical arcs incident to v supply v with at most 2M + n8 + n2. Hence the
total supply at v is at most 2M + n8 + n2 +D + IDD

M (a) + n2 +U + IDU
M (b) ≤

4M+ n8 + n5 + 2n2 − n3 < 4M+ n8 + n5. Hence IDU
L (b) ≥ IDU

L (a). Since this
holds for every pair of consecutive arcs on the horizontal cycle Ci

H , all arcs on
the cycle Ci

H select the same vertex of G.
Thus every horizontal cycle Ci

H selects a vertex ci ∈ V [i] and every vertical
cycle Ci,j

V selects an edge ei,j ∈ E[i, j]. It remains to prove that for every i, j,
ei,j is incident to both ci and to cj . We prove that ei,j is incident to ci. In
particular, let c′i be the vertex in V [i] incident to ei,j in V [i]. We prove that
IDD

S (ci) = IDD
S (c′i). Suppose that IDD

S (ci) < IDD
S (c′i). Then the supply at xi,j

i

is at most D + IDD
M (ci)+ IDD

S (ci)+U + IDU
M (ci)+D+ IDD

L (ei,j)− IDD
S (c′i)+

U + IDU
L (ei,j) < 4M+n8 +n5, a contradiction. Similarly if IDD

S (ci) > IDD
S (c′i)

then the supply at yi,j
i is at most D + IDD

M (ci)− IDD
S (ci)+U + IDU

M(ci)+D+
IDD

L (ei,j)+IDD
S (c′i)+U+IDU

L (ei,j) < 4M+n8+n5. Hence IDD
S (ci) = IDD

S (c′i)
and ei,j is incident to ci. The proof that ei,j is incident to cj is similar. This
proves that {c1, . . . , ck} is a clique in G. ��

3.3 Reduction to Planar Marked Capacitated Dominating Set

We now show how to transform an instance D, k′ of Planar Arc Supply

constructed from a Multi-Color Clique instance G, k as in Section 3.2 to an
instance H, k∗ of Planar Marked Capacitated Dominating Set. To build
H we start with the node set N(D) and make every vertex of N(D) marked. For
every arc uv of D we make a gadget between u and v in H . In particular, for an
arc uv ∈ A(D), for every pair of integers (p, q) ∈ L(u, v) we add a vertex w to H ,
make w adjacent to u, add p vertices of degree 2 adjacent to u and w and add q
vertices of degree 2 adjacent to w and v. We call the vertex w is a list vertex. This

58 H.L. Bodlaender, D. Lokshtanov, and E. Penninkx

concludes the construction of the graph H . Since D is planar and the gadget we
add to H for every arc of D is planar, H is planar as well. Every marked vertex v
of H is also a vertex in D. The capacity of v in H is set to dH(v)− ζ(v)−d+

D(v),
that is, the degree of v in H , minus v’s demand in D and minus v’s outdegree in
D. For all unmarked vertices, their capacity in H is equal to their degree in H .
Finally, k∗ = |N(D)| + |A(D)|. This concludes the construction of the Planar

Marked Capacitated Dominating Set instance (H, k∗).

Lemma 3. If D has a satisfying supply selection then H has a capacitated dom-
inating set of size k∗

Proof. We build a capacitated dominating set S of H . First we insert all the
marked vertices of H in S. For every arc uv of D we add a list vertex w to
S, namely the list vertex that corresponds to the supply pair in L(uv) that was
selected by the satisfying supply selection of D. The size of S is |N(D)|+|A(D)| =
k∗. We now prove that S is a capacitated dominating set of H .

First, observe that the marked vertices of H form a dominating set of H ,
so S is a dominating set of H . Now, every unmarked vertex in S has capacity
equal to its degree, so all unmarked vertices in S dominate all their neighbours.
We now prove that for every marked vertex u, the number of yet undominated
neighbours of u is at most the capacity of u. The number of neighbours of u that
already have been dominated is at least ζ(u). The number of neighbours of u
that are in S is d+

D(u). Hence, the total number of yet undominated neighbours
of u is at most dH(u) − ζ(u) − d+

D(u) which is the capacity of u. Hence S is a
capacitated dominating set of H . ��

Lemma 4. If H has a capacitated dominating set S of size k∗ then D has a
satisfying supply selection.

Proof. There are two kinds of unmarked vertices in H , list vertices and vertices
of degree 2. Every degree 2 vertex u has exactly one neighbour that is marked,
and one neighbour v that is a list vertex. Since the capacity of v is equal to
its degree and all marked vertices must be in S, if u ∈ S then S ∪ {v} \ {u}
is a capacitated dominating set of H of size at most k∗. Thus, without loss of
generality, all unmarked vertices in S are list vertices.

For an arc uv of D, let s(uv) be the number of vertices in S in the gadget
corresponding to the arc uv. For a vertex u of D let s+(u) =

∑
uv∈A(D) s(uv),

s−(u) =
∑

vu∈A(D) s(uv) and s(u) = s+(u) + s−(u). Since S contains at most
|A(D)| unmarked vertices we have that

∑
u∈V (D) s(u) ≤ 2|A(D)|. If s(u) <

dD(u) for a vertex u then the number of vertices in NH(u) dominated by ver-
tices other than u is at most s(u) · (D + n10) < dD(u)M . However the capacity
of u is at most dH(u) − dD(u)M , contradicting that S is a capacitated domi-
nating set. Hence, for every node u ∈ N(D), s(u) ≥ dD(u). If for some node
s(u) > dD(u) then

∑
u∈N(D) s(u) >

∑
u∈N(D) dD(u) = 2|A(D)|, contradicting

that
∑

u∈N(D) s(u) ≤ 2|A(D)|. Thus, for every node u ∈ N(D), s(u) = dD(u).
Consider now three consecutive arcs pq, qr and rs in A(D) such that both q

and r have degree 2 in D. There are three cases, either s(pq) = s(qr) = s(rs) = 1

Planar Capacitated Dominating Set Is W [1]-Hard 59

or s(pq) = s(rs) = 2 and s(qr) = 0 or finally s(pq) = s(rs) = 0 and s(qr) = 2.
We show that the last two cases lead to a contradiction. If s(pq) = s(rs) = 2
and s(qr) = 0 then the number of neighbours of r dominated by vertices other
than r is at most 2(U + n10) < 2M . However the capacity of r is at most
dH(r) − 2M , contradicting that S is a capacitated dominating set. Similarly, if
s(pq) = s(rs) = 0 and s(qr) = 2 then the number of neighbours of q dominated
by vertices other than q is at most 2(U + n10) < 2M . However the capacity of q
is at most dH(q)− 2M , contradicting that S is a capacitated dominating set. It
follows that s(pq) = s(qr) = s(rs) = 1. Because the distance in H between any
pair of vertices with degree 4 is at least 3 it follows that s(pq) = 1 for every arc
pq ∈ A(D).

We now make a supply selection (fa, fb) for D as follows. For every arc uv
there is exactly one unmarked vertex x in S in the gadget in H corresponding to
the arc uv. This vertex x corresponds to a pair (p, q) ∈ L(uv) and we make uv
select the pair (p, q). Every arc selects a pair from its list in this manner. We now
show that this supply selection is satisfying. Suppose for contradiction that this
is not the case, then there is some vertex u ∈ N(D) whose demand is not met.
Then u is a marked vertex in H , and the demand of u is dH(u)− ζ(u)− d+

D(u).
The number of neighbours of u that are dominated by vertices other than u is at
most

∑
v∈N+(u) fa(uv) +

∑
v∈N−(u) fb(vu) < ζ(u). Since s(pq) = 1 for every arc

pq ∈ A(D), u is adjacent to exactly d+(u) vertices in S. Thus u must dominate
more than dH(u) − ζ(u) − d+

D(u) vertices, a contradiction. This concludes the
proof. ��

The constructions together with Lemmata 1, 2, 3 and 4 yield the main result of
this paper.

Theorem 1. Planar Capacitated Dominating Set is W [1]-hard.

References

1. Alber, J., Bodlaender, H.L., Fernau, H., Kloks, T., Niedermeier, R.: Fixed Param-
eter Algorithms for DOMINATING SET and Related Problems on Planar Graphs.
Algorithmica 33(4), 46–493 (2002)

2. Alber, J., Fellows, M.R., Niedermeier, R.: Polynomial-time data reduction for dom-
inating set. J. ACM 51(3), 363–384 (2004)

3. Demaine, E.D., Fomin, F.V., Hajiaghayi, M.T., Thilikos, D.M.: Subexponential
parameterized algorithms on bounded-genus graphs and H-minor-free graphs. J.
ACM 52(6), 866–893 (2005)

4. Dom, M., Lokshtanov, D., Saurabh, S., Villanger, Y.: Capacitated Domination
and Covering: A Parameterized Perspective. In: Grohe, M., Niedermeier, R. (eds.)
IWPEC 2008. LNCS, vol. 5018, pp. 78–90. Springer, Heidelberg (2008)

5. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999)

6. Fellows, M.R., Hermelin, D., Rosamond, F.A., Vialette, S.: On the parameter-
ized complexity of multiple-interval graph problems. Theoretical Computer Sci-
ence 410(1), 53–61 (2009)

60 H.L. Bodlaender, D. Lokshtanov, and E. Penninkx

7. Fiala, J., Golovach, P.A., Kratochv́ıl, J.: Parameterized Complexity of Coloring
Problems: Treewidth versus Vertex Cover. In: TAMC 2009. LNCS, vol. 5532, pp.
221–230. Springer, Heidelberg (2009)

8. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg
(2006)

9. Flum, J., Grohe, M., Weyer, M.: Bounded fixed-parameter tractability and log2 n
nondeterministic bits. J. Comput. Syst. Sci. 72(1), 34–71 (2006)

10. Fomin, F.V., Golovach, P.A., Lokshtanov, D., Saurabh, S.: Clique-width: on the
price of generality. In: The Proceedings of SODA, pp. 825–834 (2009)

11. Fomin, F.V., Thilikos, D.M.: Dominating Sets in Planar Graphs: Branch-Width
and Exponential Speed-Up. SIAM Journal on Computing 36(2), 281–309 (2006)

12. Guo, J., Niedermeier, R.: Linear Problem Kernels for NP-Hard Problems on Planar
Graphs. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007.
LNCS, vol. 4596, pp. 375–386. Springer, Heidelberg (2007)

13. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press, Oxford (2006)

Boolean-Width of Graphs�

B.-M. Bui-Xuan, J.A. Telle, and M. Vatshelle

Department of Informatics, University of Bergen, Norway
{buixuan,telle,vatshelle}@ii.uib.no

Abstract. We introduce the graph parameter boolean-width, related to
the number of different unions of neighborhoods across a cut of a graph.
For many graph problems this number is the runtime bottleneck when
using a divide-and-conquer approach. Boolean-width is similar to rank-
width, which is related to the number of GF (2)-sums (1+1=0) of neigh-
borhoods instead of the Boolean-sums (1+1=1) used for boolean-width.
For an n-vertex graph G given with a decomposition tree of boolean-
width k we show how to solve Minimum Dominating Set, Maximum
Independent Set and Minimum or Maximum Independent Dominating
Set in time O(n(n+23kk)). We show for any graph that its boolean-width
is never more than the square of its rank-width. We also exhibit a class of
graphs, the Hsu-grids, having the property that a Hsu-grid on Θ(n2) ver-
tices has boolean-width Θ(log n) and tree-width, branch-width, clique-
width and rank-width Θ(n). Moreover, any optimal rank-decomposition
of such a graph will have boolean-width Θ(n), i.e. exponential in the
optimal boolean-width.

1 Introduction

Width parameters of graphs, like tree-width, branch-width, clique-width and
rank-width, are important in the theory of graph algorithms.Many NP-hard graph
optimization problems have fixed-parameter tractable (FPT) algorithmswhen pa-
rameterized by these graphwidth parameters, see e.g. [12] for an overview.Such al-
gorithms usually have two stages, a first stage computing the right decomposition
of the input graph and a second stage solving the problem by a divide-and-conquer
approach, or dynamic programming, along the decomposition. For practical ap-
plications we must look carefully at the runtimes as a function of the parameter.
We may then have to concentrate on heuristic algorithms for the first stage, for
example in the way done for tree-width as part of the TreewidthLIB project at
University of Utrecht, see e.g. [2]. For the second stage we should carefully design
algorithms for each separate problem. When comparing the usefulness of these
width parameters, we first need to compare the values of the parameters on vari-
ous graph classes, we secondly need good algorithms or fast heuristics for the first
stage, and we thirdly need to compare the best runtimes for the second stage. In
this paper we introduce a graph width parameter called boolean-width, and com-
pare it to other parameters.
� Supported by the Norwegian Research Council, project PARALGO.

J. Chen and F.V. Fomin (Eds.): IWPEC 2009, LNCS 5917, pp. 61–74, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

62 B.-M. Bui-Xuan, J.A. Telle, and M. Vatshelle

2k
tw

bw

cw

rw

boolw

oo

k 2
k

2
k2

2k

k0.25

k

1.5k

k

k+1

k+1

Fig. 1. Upper bounds tying parameters tw=tree-width, bw=branch-width, cw=clique-
width, rw=rank-width and boolw=boolean-width. An arrow from P to Q labelled f(k)
means that any class of graphs having parameter P bounded by k will have parameter
Q bounded by O(f(k)), and ∞ means that no such upper bound can be shown. Except
for the labels in a box the bounds are known to be tight, meaning that there is a class
of graphs for which the bound is Ω(f(k)). For the box containing label 2k a Ω(2k/2)
bound is known [6].

Firstly, we show that the boolean-width of a graph is never more than quadratic
in its rank-width, which also constitutes a comparison with other parameters since
the rank-width of a graph is known to never be larger than its clique-width, nor
its branch-width (resp. tree-width) plus one [19,20,22]. We also know that the
boolean-width of a graph is never larger than its tree-width plus one [1]. On the
other hand we show a class of graphs, the Hsu-grids, that have boolean-width
bounded by k while they have rank-width (and thus also clique-width, branch-
width and tree-width) exponential in k. See Figure 1 for a sketch of how the various
parameters compare. Note that for any class of graphs we have only three possi-
bilities: either all five parameters are bounded (e.g. for trees) or none of them are
bounded (e.g. for grids) or only clique-width, rank-width and boolean-width are
bounded (e.g. for cliques).

Secondly, regarding first stage algorithms, since boolean-width is tied to rank-
width, when parameterizingby the boolean-width of an input graphwe get an FPT
algorithm that computes an approximation of an optimal boolean-width decom-
position, by applying either the algorithm of Hliněný and Oum [11] computing an
optimal rank-decomposition or the approximation algorithm of Oum and Seymour
[20]. We have also initiated research into heuristic algorithms for the first stage.

Thirdly, for the second stage, we concentrate in this paper on the Minimum
Dominating Set (MDS) problem and show that given a decomposition of boolean-
width k of an n-vertex graph we can solve MDS in time O(n(n + 23kk)). See
Figure 2 for a comparison of the best runtimes for MDS when parameterized by
other width parameters. Combining the information in Figures 1 and 2 we see
that the runtime for MDS compares well to the other parameters. For example,
clique-width is bounded for a class of graphs exactly when boolean-width is, but
as we show in Section 3 boolean-width is never larger than clique-width, and
therefore O∗(23boolw) is always better than O∗(24cw). We also show there exists
graphs where cliquewidth is exponential in boolean-width and for these graphs
O∗(23boolw) is exponentially better than O∗(24cw). In [4] we similarly show that

Boolean-Width of Graphs 63

tree-width branch-width clique-width rank-width boolean-width
MDS O∗(21.58tw)[23] O∗(22bw) [8] O∗(24cw) [16] O∗(20.75rw2+O(rw)) [5,9] O∗(23boolw) [here]

Fig. 2. Runtimes achievable for Minimum Dominating Set using various parameters

in time O∗(2d×q×boolw2
), for problem-specific constants d and q, we can solve a

large class of vertex subset and vertex partitioning problems.
A main open problem is to approximate the boolean-width of a graph better

than what we get by using the algorithm for rank-width [11]. Nevertheless, for
many problems it could be advantageous to use boolean-width for the second
stage regardless of which decomposition is given. In Figure 3 we illustrate the
runtimes achievable by the best second-stage algorithm for the MDS problem
using either the algorithm given in Section 4 of this paper or the best runtime
when parameterized by rankwidth, which are O∗(20.75rw2+O(rw)) algorithms in
both [5] and [9]. The values in Figure 3 assume we are given a decomposition
tree (T, δ) of rank-width rw and is based on the result from Section 3 that the
boolean-width of (T, δ) lies between log rw and 1

4rw2 + 5
4rw + log rw.

boolean-width of (T, δ)= using rank-width using boolean-width

0.25rw2 + O(rw) O∗(20.75rw2+O(rw)) O∗(20.75rw2+O(rw))
rw O∗(20.75rw2+O(rw)) O∗(23rw)

log rw O∗(20.75rw2+O(rw)) O∗(1)

Fig. 3. Runtimes achievable for Minimum Dominating Set. Given a decomposition tree
(T, δ) of rank-width rw, we know that the boolean-width of (T, δ) lies between log rw
and 0.25rw2 + O(rw).

For an appropriate class of Hsu-grids we are able to show that any optimal rank-
decomposition will have boolean-width exponential in the optimal boolean-width.
This suggests that although we can solve NP-hard problems in polynomial time
on Hsu-grids if we use boolean-width as the parameter (as we see in Figure 3) we
would get exponential time if we used any of the other graph width parameters.

Finally, we remark that the use of Boolean-sums in the definition of boolean-
width (see Section 2) means a new application for the theory of Boolean ma-
trices, i.e. matrices with Boolean entries, to the field of algorithms. Boolean
matrices already have applications, e.g. in switching circuits, voting methods,
applied logic, communication complexity, network measurements and social net-
works [7,15,17,21].

2 Boolean-Width

When applying divide-and-conquer to a graph we first need to divide the graph.
A common way to store this information is to use a decomposition tree and to
evaluate decomposition trees using a cut function. The following formalism is
standard in graph and matroid decompositions (see, e.g., [10,20,22]).

64 B.-M. Bui-Xuan, J.A. Telle, and M. Vatshelle

Definition 1. A decomposition tree of a graph G is a pair (T, δ) where T is
a tree having internal nodes of degree three and n = |V (G)| leaves, and δ is a
bijection between the vertices of G and the leaves of T . For A ⊆ V (G) let A
denote the set V (G) \ A. Every edge of T defines a cut {A, A} of the graph,
i.e. a partition of V (G) in two parts, namely the two parts given, via δ, by the
leaves of the two subtrees of T we get by removing the edge. Let f : 2V → R
be a symmetric function, i.e. f(A) = f(A) for all A ⊆ V (G), also called a cut
function. The f -width of (T, δ) is the maximum value of f(A), taken over all
cuts {A, A} of G given by an edge uv of T . The f -width of G is the minimum
f -width over all decomposition trees of G.

The cuts {A, A} given by edges of the decomposition tree are used in the divide
step of a divide-and-conquer approach. For the conquer step we solve the problem
recursively, following the edges of the tree T (after choosing a root) in a bottom-
up fashion, on the graphs induced by vertices of one side and of the other side
of the cuts. In the combine step we must join solutions from the two sides,
and this is usually the most costly and complicated operation. The question of
what ’solutions’ we should store to get an efficient combine step is related to
what type of problem we are solving. Let us consider vertex subset or vertex
partitioning problems on graphs, and in particular Maximum Independent Set
for simplicity1. For a cut {A, A} we note that if two independent sets X ⊆ A
and X ′ ⊆ A have the same set of neighbors in A then for any Y ⊆ A we have
X∪Y an independent set if and only if X ′∪Y an independent set. This suggests
that the following equivalence relation on subsets of A will be useful.

Definition 2. Let G be a graph and A ⊆ V (G). Two vertex subsets X ⊆ A
and X ′ ⊆ A are neighbourhood equivalent w.r.t. A, denoted by X ≡A X ′, if
A ∩ N(X) = A ∩ N(X ′).

If for each class [X]≡A we store the maximum independent set in [X]≡A , and
similarly for each class [Y]≡A

we store the maximum independent set in [Y]≡A
,

then we can perform the combine step in time depending only on the number
of such equivalence classes. The same argument can be made for a large class of
vertex subset and partitioning problems. Thus, to solve these problems as fast
as possible on general graphs by divide-and-conquer we need a decomposition
tree minimizing the number of equivalence classes over each cut defined by the
tree. This minimum value is given by the boolean-width of the graph.

Definition 3 (Boolean-width). The cut-bool : 2V (G) → R function of a graph
G is

cut-bool(A) = log2 |{S ⊆ A : ∃X ⊆ A ∧ S = A ∩
⋃

x∈X

N(x)}|

1 Minimum Dominating Set is the main example of this paper and solving it by divide-
and-conquer is indeed more complicated than solving Maximum Independent Set.
Nevertheless, the runtime of our algorithm for Minimum Dominating Set, after em-
ploying several tricks, will in fact have a runtime matching what we could get for
Maximum Independent Set.

Boolean-Width of Graphs 65

It is known from Boolean matrix theory that cut-bool is symmetric [15, Theorem
1.2.3]. Using Definition 1 with f = cut-bool we define the boolean-width of
a decomposition tree, denoted boolw(T, δ), and the boolean-width of a graph,
denoted boolw(G).

Note that we take the logarithm base 2 of the number of equivalence classes
simply to ensure that 0 ≤ boolw(G) ≤ |V (G)|, which will ease the compari-
son of boolean-width to other parameters. For a vertex subset A, the value of
cut-bool(A) can also be seen as the logarithm in base 2 of the number of pairwise
different vectors that are spanned, via Boolean sum, by the rows of the A × A
sub-matrix of the adjacency matrix of G.

3 Values of Boolean-Width Compared to Other Graph
Width Parameters

Missing proofs can be found in the appendix. In this section we compare boolean-
width to tree-width tw, branch-width bw, clique-width cw and rank-width rw.
For any graph, it holds that the rankwidth of the graph is essentially the smallest
parameter among the four [19,20,22]: rw ≤ cw and rw ≤ bw ≤ tw + 1 (unless
bw = 0 and rw = 1). Accordingly, we focus on comparing boolean-width to
rankwidth, and prove that log rw ≤ boolw ≤ 1

4rw2 + 5
4rw + log rw with the

lower bound being tight to a constant multiplicative factor. We also know that
the boolean-width of a graph is never larger than its tree-width plus one [1].
Furthermore, we also prove that log cw − 1 ≤ boolw ≤ cw with both bounds
being tight to a constant multiplicative factor.

Rank-width was introduced in [18,20] based on the cut-rank : 2V (G) → N
function of a graph G, which is the rank over GF (2) of the submatrix of the
adjacency matrix of G having rows A and columns A. To see the connection
with boolean-width note that

cut-rank(A) = log2 |{Y ⊆ A : ∃X ⊆ A ∧ Y = A ∩�x∈XN(x)}|

Here � is the symmetric difference operator. Note that cut-rank is a symmetric
function having integer values. Using Definition 1 with f = cut-rank will define
the rankwidth of a decomposition tree, denoted rw(T, δ), and the rankwidth of a
graph, denoted rw(G). We first investigate the relationship between the cut-bool
and the cut-rank functions.

Lemma 1. [5] Let G be a graph and A ⊆ V (G). Let nss(A) be the num-
ber of spaces that are GF (2)-spanned by the rows (resp. columns) of the A ×
V (G) \ A submatrix of the adjacency matrix of G. Then, log cut-rank(A) ≤
cut-bool(A) ≤ log nss(A). Moreover, it is well-known from linear algebra that
nss(A) ≤ 2

1
4 cut-rank(A)2+ 5

4 cut-rank(A)cut-rank(A).

This lemma can be derived from a reformulation of [5, Proposition 3.6]. We
now prove that both bounds given in this lemma are tight. For the lower bound
we recall the graphs used in the definition of Hsu’s generalized join [13]. For

66 B.-M. Bui-Xuan, J.A. Telle, and M. Vatshelle

all k ≥ 1, the graph Hk is defined as the bipartite graph having color classes
A(Hk) = {a1, a2, . . . , ak+1} and B(Hk) = {b1, b2, . . . , bk+1} such that N(a1) = ∅
and N(ai) = {b1, b2, . . . , bi−1} for all i ≥ 2. Here, a union of neighborhoods of
vertices of A(Hk) is always of the form {b1, b2, . . . , bl}, hence,

Lemma 2. For the above defined graph Hk, it holds that cut-bool(A(Hk)) =
log k and cut-rank(A(Hk)) = k.

For the tightness of the upper bound of Lemma 1 we now recall the graphs
used in the characterization of rank-width given in [5]. The graph Rk is defined
as a bipartite graph having color classes A(Rk) = {aS, S ⊆ {1, 2, . . . , k}} and
B(Rk) = {bS, S ⊆ {1, 2, . . . , k}} such that aS and bT are adjacent if and only if
|S ∩ T | is odd.

Lemma 3. For the above defined graph Rk, it holds that cut-bool(A(Rk)) =
log nss(A(Rk)) and cut-rank(A(Rk)) = k.

Since Lemma 1 holds for all edges of all decomposition trees, it is clear for
every graph G that log rw(G) ≤ boolw(G) ≤ 1

4rw(G)2 + 5
4rw(G) + log rw(G).

We now address the tightness of this lower bound. A cut {A, A} is balanced if
1
3 |V (G)| ≤ |A| ≤ 2

3 |V (G)|. In any decomposition tree of G, there always exists an
edge of the tree which induces a balanced cut in the graph. We lift the tightness
result on graph cuts given by Lemma 2 to the level of graph parameters in
a standard way, by using the structure of a grid. The main idea is that any
balanced cut of a grid will contain either a large part of some column of the
grid, or it contains a large enough matching. We then add edges to the columns
of the grid and fill each of them into a Hsu graph (see below). Note that graphs
with a similar definition have also been studied in relation with clique-width in
a different context [3].

Definition 4 (Hsu-grid HGp,q). Let p ≥ 2 and q ≥ 2. The Hsu-grid HGp,q is
defined by V (HGp,q) = {vi,j | 1 ≤ i ≤ p ∧ 1 ≤ j ≤ q} with E(HGp,q) being
exactly the union of the edges {(vi,j , vi+1,j) | 1 ≤ i < p ∧ 1 ≤ j ≤ q} and of the
edges {(vi,j , vi′,j+1) | 1 ≤ i ≤ i′ ≤ p ∧ 1 ≤ j < q}. We say that vertex vi,j is at
the ith row and the jth column.

Lemma 4. For large enough integers p and q, we have that boolw(HGp,q) ≤
min(2 log p, q) and rw(HGp,q) ≥ min(�p

4�, �
q
6�). Moreover, if q < �p

8� then any
optimal rank decomposition of HGp,q has boolean-width at least � q

6�.

Notice that not only the lemma addresses the tightness of the lower bound
on boolean-width as a function of rank-width, but also the additional stronger
property that for a special class of Hsu-grids any optimal rank decomposition
has boolean-width exponential in the optimal boolean-width.

Theorem 1. For any decomposition tree (T, δ) of any graph G it holds that
log rw(T, δ) ≤ boolw(T, δ) ≤ 1

4rw(T, δ)2+ 5
4rw(T, δ)+log rw(T, δ) and log rw(G)

≤ boolw(G) ≤ 1
4rw(G)2 + 5

4rw(G) + log rw(G). For large enough integer k,
there are graphs Lk and Uk of rank-width at least k such that boolw(Lk) ≤
2 log rw(Lk) + 4 and boolw(Uk) ≥ � 1

6rw(Uk)� − 1.

Boolean-Width of Graphs 67

Remark 1. The inequalities about Lk is a direct application of Lemma 4 for
well-chosen values of p and q. The graph Uk are standard k × k grids.

Remark 2. Let (T, δ) and (T ′, δ′) be such that rw(G) = rw(T, δ) and OPT =
boolw(G) = boolw(T ′, δ′). We then have from Theorem 1 that boolw(T, δ) ≤
rw(T, δ)2 ≤ rw(T ′, δ′)2 ≤ (2OPT)2. Hence, any optimal rank-width decomposi-
tion of G is also a 22·OPT -approximation of an optimal boolean-width decom-
position of G. There is an FPT algorithm to compute an optimal rank-width
decomposition of G in O(f(rw(G)) × |V (G)|3) time [11].

One of the most important applications of rank-width is to approximate the
clique-width cw(G) of a graph by log(cw(G) + 1) − 1 ≤ rw(G) ≤ cw(G) [20].
Although we have seen that the difference between rank-width and boolean-
width can be quite large, we remark that, w.r.t. clique-width, boolean-width
behaves similarly as rank-width, namely

Theorem 2. For any graph G it holds that log cw(G)−1 ≤ boolw(G) ≤ cw(G).
For large enough integer k, there are graphs Lk and Uk of clique-width at least
k such that boolw(Lk) ≤ 2 log cw(Lk) + 4 and boolw(Uk) ≥ � 1

6cw(Uk)� − 1.

4 Algorithms

Given a decomposition tree (T, δ) of a graph G we will in this section show how
to solve a problem on G by a divide-and-conquer (or dynamic programming)
approach. We subdivide an arbitrary edge of T to get a new root node r, denoting
by Tr the resulting rooted tree, and let the algorithm follow a bottom-up traversal
of Tr. With each node w of Tr we associate a table data structure Tabw, that will
store optimal solutions to subproblems related to the cut {A, A} given by the
edge between w and its parent. In Subsection 4.2 we will define the tables used
and in particular give the details of the combine step. For the moment it suffices
to say that the table indices will be related to the classes of the equivalence
relation ≡A of Definition 2. Firstly, in Subsection 4.1 we show how to enhance
the decomposition tree with information needed to handle these equivalence
classes.

4.1 Computing Representatives

We assume a total ordering on the vertex set of G which stays the same through-
out the whole paper. If vertex u comes before vertex v in the ordering then we
say u is smaller than v. Using this ordering we also denote that a vertex set X
is lexicographically smaller than vertex set Y by X ≤lex Y . Let {A, A} be a cut
given by an edge of the decomposition tree. For each equivalence class of ≡A we
want to choose one vertex subset as a representative for that class. The repre-
sentative set for a class will be the lexicographically smallest among the sets in
the class with minimum cardinality. More formally we define for A ⊆ V (G) the
list LRA of all representatives of ≡A.

68 B.-M. Bui-Xuan, J.A. Telle, and M. Vatshelle

Definition 5 (List of Representatives). Given a graph G and A ⊆ V (G) we
define the list LRA of representatives of ≡A as the unique set of subsets of A
satisfying:

1) ∀X ⊆ A, ∃R ∈ LRA : R ≡A X
2) ∀R ∈ LRA : if R ≡A X then |R| ≤ |X |
3) ∀R ∈ LRA : if R ≡A X and |R| = |X | then R ≤lex X .

Note that such a list will contain exactly one element for each equivalence class
of ≡A.

Lemma 5. Let G be a graph and A ⊆ V (G). Let R be an element of the list
LRA of representatives of ≡A, then for any X, Y ⊆ R s.t. X �= Y , we have
X �≡A Y .

Corollary 1. Given a graph G and A ⊆ V (G), every element R of the list LRA

of representatives of ≡A satisfies |R| ≤ cut-bool(A).

We now describe an algorithm to compute LRA. It will at the same time compute
a list LNRA containing N(R)∩A, for every element R of LRA. These two lists
will be linked together, in such a way that given an element N of LNRA we can
access in constant time the element R of LRA such that N = N(R) ∩ A, and
vice versa. To do this in time depending only on cut-bool(A) we will need the
notion of twin classes.

Definition 6. Let G be a graph and let A ⊆ V (G) be a vertex subset. A subset
X ⊆ A is a twin set of A if, for every z ∈ A and pair of vertices x, y ∈ X , we have
x adjacent to z if and only if y adjacent to z. A twin set X is a twin class of A if
X is a maximal twin set. The set of all twin classes of A forms a partition of A,
that we call the twin class partition of A. We denote by TCA the set containing
for each twin class of A the smallest vertex of the class.

Note that u and v belong to the same twin class of A if and only if {u} ≡A {v}.
One consequence is that |TCA| ≤ 2cut-bool(A). Our algorithm will handle the
edges crossing a cut {A, A} by using the two vertex sets TCA and TCA. As a pre-
processing step, we will compute TCA and TCA associated to every A ⊆ V (G)
that will be needed in our principal dynamic programming algorithm as specified
in the lemma below.

Lemma 6. Let G be a graph and (T, δ) a decomposition tree of G. Then, in
O(n(n+22boolw(T,δ))) global runtime we can compute, for every edge uv of T the
two vertex sets TCA and TCA for {A, A} being the 2-partition of V (G) induced
by the leaves of the trees we get by removing uv from T . In the same runtime,
for every v ∈ A, resp. A, we compute a pointer to the vertex u in TCA, resp.
TCA, such that u and v are in the same twin class of A, resp. A.

We now focus on a particular cut {A, A}, induced by some edge of the decompo-
sition tree of G. Our algorithms will use the bipartite graph HA with color-classes
TCA and TCA and containing all edges of G crossing the cut {A, A}. The graph
HA can be built in O(|TCA| × |TCA|) = O(22cut-bool(A)) time.

Boolean-Width of Graphs 69

Lemma 7. Given HA as defined above for any A ⊆ V (G), we can in time
O(23cut-bool(A)cut-bool(A)) compute the list of representatives LRA and the
sorted list LNRA of neighborhoods of elements of LRA.

Proof. We describe the algorithm. The lists LRA and LNRA are initially
empty. We will use auxiliary lists NextLevel, initially empty, and LastLevel
which initially will contain the empty set as its single element. We then run the
following nested loops.

while LastLevel != ∅ do
for R in LastLevel do

for every vertex v of TCA do
R′ = R ∪ {v}
compute N ′ = NHA(R′)
if R′ �≡A R and N ′ is not contained in LNRA then

add R′ to LRA and NextLevel, and add N ′ to LNRA at proper
position

end if
end for

end for
set LastLevel = NextLevel, and NextLevel = ∅

end while
Let us first argue for correctness. The first iteration of the while-loop will set {v}
as representative, for every v ∈ TCA, and there exist no other representatives
of size 1 in LRA. The algorithm computes all representatives of size i before it
moves on to those of size i+1. LastLevel will contain all representatives of size i
while NextLevel will contain all representatives of size i + 1 found so far. Every
representative will be expanded by every possible node and checked against
all previously found representatives. The only thing left to prove is that any
representative R can be written as R′ ∪ {v} for some representative R′. Assume
for contradiction that no R′ exists such that R = R′ ∪ {v}. Then let v be the
lexicographically largest element of R, then R \ {v} can not be a representative
so let R′ be the representative of [R \ {v}]≡A . We know that R′ ∪ {v} ≡A R, we
know that |R′∪{v}| ≤ |R| and that R′∪{v} comes before R in a lexicographical
ordering contradicting that R is a representative.

We now argue for the runtime. Let k = cut-bool(A). The three loops loop once
for each pair of element R (of TCA) and vertex v (of TCA). The number of rep-
resentatives are exactly 2k, while |TCA| ≤ 2k, hence at most O(22k) iterations in
total. Inside the innermost for-loop we need to calculate the neighbourhood of R′,
from Corollary 1 we get |R′| ≤ k + 1. Since no node in HA have degree more than
2k we can find NHA(R′) in O(k2k) time. Then to see if R′ ≡A R we compare the
two neighbourhoods in O(2k) time. Then we want to check if the neighbourhood is
contained in the list LNRA, hence we want LNRA to be a sorted list, then search-
ing only takes O(k) steps, however for each step comparing two neighbourhoods
can take O(2k) time. Inserting into the sorted list LNRA takes O(2k), and in the
other lists O(1) time. This means all operations in the inner for-loop can be done
in O(k2k) time, giving a total running-time of O(k23k). �

70 B.-M. Bui-Xuan, J.A. Telle, and M. Vatshelle

Algorithm 1. Initialize datastructure used for finding representative R of [X]≡A

INPUT: Lists LRA and LNRA and bipartite graph HA

Initialize M to a two dimensional table with |LRA| × |TCA| elements.
for every vertex v of TCA do

for R in LRA do
R′ = R ∪ {v}
find RU in LRA that is linked to the neighbourhood NHA(R′) in LNRA

add a pointer from M [R][v] to RU

end for
end for
OUTPUT: M

Given X ⊆ A we will now address the question of computing the representative
R of [X]≡A , in other words accessing the entry R of LRA such that X ≡A R. The
naive way to do this is to binary-search in the list LNRA for the set N(X) ∩ A
in time O(2cut-bool(A)cut-bool(A)), but we want to do this in O(|X |) time. To
accomplish this we construct an auxiliary data-structure that maps a pair (R, v),
consisting of one representative R from LRA and one vertex from TCA, to the
representative R′ of the class [R∪{v}]≡A . It will be stored as a two dimensional
table, leading to a constant time lookup.

Lemma 8. Given HA as defined above for any A ⊆ V (G), we can in time
O(23cut-bool(A)cut-bool(A)) compute a datastructure allowing, for any X ⊆ A, to
access in O(|X |) time the entry R of LRA such that X ≡A R.

Proof. Let k = cut-bool(A). First we need to initialize the datastructure used
for finding representatives using Algorithm 1. It goes through 2 for-loops, in total
iterating O(22k) times. To find the neighbourhood of R′ takes O(2kk) time. To
search LNRA for the neighbourhood takes O(2kk) time. All other operations
are done in constant time, thus the runtime is O(23kk).

Given X ⊆ A we find the representative R of [X]≡A as follows. Initially R will
be empty. Then we iterate over all elements u ∈ X , first looking up v ∈ TCA

such that u and v belong to the same twin class of A, and then replacing R
by the representative of the class [R ∪ {v}]≡A (as given by the auxiliary data
structure). �

4.2 Dynamic Programming for Dominating Set

This section is based on the dynamic programming scheme used in [5] to give
an algorithm for Minimum Dominating Set parameterized by rankwidth. For
example, Lemma 11 is an adaptation from that paper to the current formal-
ism parameterizing by boolean-width. Recall that our algorithm will follow a
bottom-up traversal of the tree Tr, computing at each node w of the tree a table
Tabw, that will store optimal solutions to subproblems related to the cut {A, A}
given by the edge between w and its parent. If we were solving Maximum In-
dependent Set then Tabw would simply be indexed by the equivalence classes

Boolean-Width of Graphs 71

of ≡A. However, unlike the case of independent sets we note that a set of vertices
D dominating A will include also vertices of A that dominate vertices of A ’from
the outside’. This motivates the following definition.

Definition 7. Let G be a graph and A ⊆ V (G). For X ⊆ A, Y ⊆ A, if A \X ⊆
N(X ∪ Y) we say that the pair (X, Y) dominates A.

The main idea for dealing with this complication is to index the table at w by two
sets, one that represents the equivalence class of D∩A under ≡A that dominates
’from the inside’, and one that represents the equivalence class of D ∩ A under
≡A that helps dominate the rest of A ’from the outside’. The subsequent lemma
should indicate why this will work.

Lemma 9. Let G be a graph and A ⊆ V (G). For X ⊆ A, Y, Y ′ ⊆ A, If (X, Y)
dominates A and Y ≡A Y ′ then (X, Y ′) dominates A.

Proof. Since (X, Y) dominates A we have A \ X ⊆ N(X ∪ Y). Since Y ≡A Y ′

we have N(Y) ∩ A = N(Y ′) ∩ A. Then it follows that A \ X ⊆ N(X ∪ Y ′),
meaning (X, Y ′) dominates A. �

For a node w of Tr we denote by {Aw, Aw} , the cut given by the edge between w
and its parent. In the previous subsection we saw how to compute for every node
w of Tr the lists LRAw of representatives of ≡Aw and LRAw

of representatives
of ≡Aw

.

Definition 8. The two-dimensional table Tabw will have index set LRAw ×
LRAw

. For Rw ∈ LRAw and Rw ∈ LRAw
the contents of Tabw[Rw][Rw] after

updating should be:

Tabw[Rw][Rw] def= minS⊆Aw{|S| : S ≡Aw Rw and (S, Rw) dominates Aw}

Note that the table Tabw will have 22cut-bool(Aw) entries. For every node w we
assume that initially every entry Tabw is set to ∞. For a leaf l of Tr, since
Al = {δ(l)}, note that ≡Al

has only two equivalence classes: one containing ∅
and the other containing Al. For Al, we have the same situation with only two
equivalence classes: one containing ∅ and the other containing Al. Therefore,
we set Tabl[∅][∅] := ∞, and Tabl[{δ(l)}][∅] := 1 and Tabl[{δ(l)}][R] := 1 and
Tabl[∅][R] := 0 (where R is the representative of [Al]≡Al

) since the only of the
four combinations that does not dominate Al as in Definition 7 is (∅, ∅). Note
that there would be a special case if δ(l) was an isolated vertex, but isolated
vertices can easily be removed.

For the updating of internal nodes we have a node w with two children a and b
and can assume that the tables Taba and Tabb have been correctly computed. We
need to correctly compute the value of Tabw[Rw][Rw] for each Rw ∈ LRAw and
Rw ∈ LRAw

. Each table can have 22boolw(T,δ) entries. Therefore, the number of
pairs of entries, one from each of Taba and Tabb, could be as much as 24boolw(T,δ).
Looping over all such pairs of entries we would in fact spend time 25boolw(T,δ)

since we would have to compute the right entry in Tabw. Instead we achieve

72 B.-M. Bui-Xuan, J.A. Telle, and M. Vatshelle

23boolw(T,δ) time by looping only over one half of the entries in each of the three
tables, as follows:

for all Ra ∈ LRAa , Rb ∈ LRAb
, Rw ∈ LRAw

do
find the representative Ra of the class [Rb ∪ Rw]≡Aa

find the representative Rb of the class [Ra ∪ Rw]≡Ab

find the representative Rw of the class [Ra ∪ Rb]≡Aw

Tabw[Rw][Rw] = min(Tabw[Rw][Rw],Taba[Ra][Ra] + Tabb[Rb][Rb])
end for

Lemma 10. For a graph G, let A, B, W be a 3-partitioning of V (G), and let
Sa ⊆ A, Sb ⊆ B and Sw ⊆ W . (Sa, Sb ∪ Sw) dominates A and (Sb, Sa ∪ Sw)
dominates B iff (Sa ∪ Sb, Sw) dominates A ∪ B.

Proof. Let S =Sa∪Sb∪Sw. Clearly, (Sa, Sb∪Sw) dominates A iff A\Sa⊆N(S).
Likewise, (Sb, Sa ∪ Sw) dominates B iff B \ Sb ⊆N(S). Therefore, A \ Sa⊆N(S)
and B \Sb⊆N(S) iff A∪B \Sa ∪Sb⊆N(S) iff (Sa ∪SB , Sw) dominates A∪B. �

Lemma 11. The table at node w is updated correctly, namely for any represen-
tative Rw ∈ LRAw and Rw ∈ LRAw

, if Tabw[Rw][Rw] is not ∞ then

Tabw[Rw][Rw] = minS⊆Aw{|S| : S ≡Aw Rw ∧ (S, Rw) dominates Aw}.

Theorem 3. Given an n-vertex graph G and a decomposition tree (T, δ) of G,
the Minimum Dominating Set problem on G can be solved in time O(n(n +
23boolw(T,δ)boolw(T, δ))).

Proof. As a preprocessing step we compute the twin classes for all cuts induced
by the edges of (T, δ) as described in Lemma 6. We then loop over all edges uv of
T . Let {A, A} be the cut of G induced by the leaves of T after removing uv from
T . We compute the graph HA, as well as the lists LRA, LRA, LNRA, and LNRA

as described in Lemma 7, and also the datastructure for finding a representative
of [X]≡A and [Y]≡A

as described in Lemma 8. After this loop we subdivide an
arbitrary edge of T by a new root node r to get Tr. We then initialize the table
Tabl for every leaf l of Tr as described after Definition 8. Finally, we scan Tr in
a bottom-up traversal and update the table Tabw for every internal node w as
described right before Lemma 10. After this, the optimum solution can be read
at the (unique) entry Tabr[V (G)][∅] of the table at the root of Tr.

The correctness follows from Lemma 11, when applied to w = r. The complexity
analysis of the computation before setting the root r is a straightforward combina-
tion of those given in Lemmas 6, 7 and 8. After this, the initialization at every leaf
of Tr takes O(1) time. The update at every internal node w of Tr loops through
23boolw(T,δ) triplets, and for each of them spend O(boolw(T, δ)) time finding the
three representatives and O(1) time updating the value of Tabw[Rw][Rw]. �

Solving Maximum Independent Set (MIS) is simpler than solving Minimum Dom-
inating Set. The table Tabw at a node w will then be one-dimensional, indexed by
the equivalence classes of≡Aw , and will store the size of the maximum independent

Boolean-Width of Graphs 73

set in that class. In the combine step we loop over all pairs of representatives Ra

from Taba and Rb from Tabb and check if there are any edges between Ra and Rb. If
not, then we look up the representative Rw of [Ra∪Rb]≡Aw

and update Tabw[Rw]
by the maximum of its old value and Taba[Ra]+Tabb[Rb]. Combining these ideas
we can solve both the Minimum and Maximum Independent Dominating Set prob-
lems. The runtimes will be dominated by the computation of representatives.

Corollary 2. Given an n-vertex graph G and a decomposition tree (T, δ) of G,
we can solve the Maximum Independent Set, Minimum Independent Dominating
Set and Maximum Independent Dominating Set problems on G in time O(n(n+
23boolw(T,δ)boolw(T, δ))).

5 Conclusion and Perspectives

There are many questions about boolean-width left unanswered. The foremost
concerns possibly its practical applicability. The divide-and-conquer algorithms
given here are practical and easy to implement, but we need fast and good
heuristics computing decomposition trees of low boolean-width. Research in this
direction is underway.

On the theoretical side itwould be nice to improve on the 22·OPT -approximation
algorithm to an optimal boolean-width decomposition (c.f. Remark 2) we get by
applying the algorithmcomputing anoptimal rank-widthdecomposition [11].Note
that the runtime of that approximation algorithm is FPT when parameterized by
boolean-width. The best we can hope for is an FPT algorithm computing a de-
composition of optimal boolean-width, but any polynomial approximation would
be nice.

The graphs of boolean-width at most one are exactly the graphs of rank-width
one, i.e. the distance-hereditary graphs. What about the graphs of boolean-width
at most two, do they also have a nice characterization? Is there a polynomial-time
algorithm to decide if a graph has boolean-width at most two? More generally, is
there an alternative characterization of the graphs of boolean-width at most k?

We do not know if the bound boolw(G) ≤ 1
4rw(G)2 + 5

4rw(G) + log rw(G)
is tight to a multiplicative factor. For most well-known classes we should have
boolw = O(rw), but this needs to be investigated. Are there well-known graph
classes where boolw = O(log rw)? It has been shown that a k × k grid has rank-
width k [14], and we have seen that its boolean-width lies between 1

6k (proof
Theorem 1) and k + 1 (derived from its clique-width). What is the right value?
All these questions should benefit from the connections between boolean-width
and the field of Boolean matrix theory.

References

1. Adler, I., Vatshelle, M.: Personal communication
2. Bodlaender, H., Koster, A.: Treewidth Computations I Upper Bounds. Techni-

cal Report UU-CS-2008-032, Department of Information and Computing Sciences,
Utrecht University (2008)

74 B.-M. Bui-Xuan, J.A. Telle, and M. Vatshelle

3. Brandstaedt, A., Lozin, V.V.: On the linear structure and clique-width of bipartite
permutation graphs. Ars Combinatoria 67, 719–734 (2003)

4. Bui-Xuan, B.-M., Telle, J.A., Vatshelle, M.: Fast FPT algorithms for vertex subset
and vertex partitioning problems using neighborhood unions,
http://arxiv.org/abs/0903.4796+

5. Bui-Xuan, B.-M., Telle, J.A., Vatshelle, M.: H-join decomposable graphs and algo-
rithms with runtime single exponential in rankwidth. To appear in DAM: special
issue of GROW, http://www.ii.uib.no/~telle/bib/BTV.pdf

6. Corneil, D., Rotics, U.: On the relationship between clique-width and treewidth.
SIAM Journal on Computing 34(4), 825–847 (2005)

7. Damm, C., Kim, K.H., Roush, F.W.: On covering and rank problems for boolean
matrices and their applications. In: Asano, T., Imai, H., Lee, D.T., Nakano, S.-
i., Tokuyama, T. (eds.) COCOON 1999. LNCS, vol. 1627, pp. 123–133. Springer,
Heidelberg (1999)

8. Dorn, F.: Dynamic programming and fast matrix multiplication. In: Azar, Y.,
Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 280–291. Springer, Heidelberg
(2006)

9. Ganian, R., Hliněný, P.: On Parse Trees and Myhill-Nerode-type Tools for handling
Graphs of Bounded Rank-width (submitted manuscript),
http://www.fi.muni.cz/~hlineny/Research/papers/MNtools+dam3.pdf

10. Geelen, J., Gerards, A., Whittle, G.: Branch-width and well-quasi-ordering in ma-
troids and graphs. Journal of Combinatorial Theory, Series B 84(2), 270–290 (2002)

11. Hliněný, P., Oum, S.: Finding branch-decompositions and rank-decompositions.
SIAM Journal on Computing 38(3), 1012–1032 (2008); Abstract at ESA 2007.

12. Hliněný, P., Oum, S., Seese, D., Gottlob, G.: Width parameters beyond tree-width
and their applications. The Computer Journal 51(3), 326–362 (2008)

13. Hsu, W.-L.: Decomposition of perfect graphs. Journal of Combinatorial Theory,
Series B 43(1), 70–94 (1987)

14. Jeĺınek, V.: The rank-width of the square grid. In: Broersma, H., Erlebach, T.,
Friedetzky, T., Paulusma, D. (eds.) WG 2008. LNCS, vol. 5344, pp. 230–239.
Springer, Heidelberg (2008)

15. Kim, K.H.: Boolean matrix theory and its applications. Marcel Dekker, New York
(1982)

16. Kobler, D., Rotics, U.: Edge dominating set and colorings on graphs with fixed
clique-width. Discrete Applied Mathematics 126(2-3), 197–221 (2003); Abstract at
SODA 2001

17. Nguyen, H.X., Thiran, P.: Active measurement for multiple link failures diagnosis
in IP networks. In: Barakat, C., Pratt, I. (eds.) PAM 2004. LNCS, vol. 3015, pp.
185–194. Springer, Heidelberg (2004)

18. Oum, S.: Graphs of Bounded Rank-width. PhD thesis, Princeton University (2005)
19. Oum, S.: Rank-width is less than or equal to branch-width. Journal of Graph

Theory 57(3), 239–244 (2008)
20. Oum, S., Seymour, P.: Approximating clique-width and branch-width. Journal of

Combinatorial Theory, Series B 96(4), 514–528 (2006)
21. Pattison, P., Breiger, R.: Lattices and dimensional representations: matrix decom-

positions and ordering structures. Social Networks 24(4), 423–444 (2002)
22. Robertson, N., Seymour, P.: Graph minors. X. Obstructions to tree-decomposition.

Journal of Combinatorial Theory, Series B 52(2), 153–190 (1991)
23. Rooij, J., Bodlaender, H., Rossmanith, P.: Dynamic programming on tree decom-

positions using generalised fast subset convolution. In: Fiat, A., Sanders, P. (eds.)
ESA 2009. LNCS, vol. 5757, pp. 566–577. Springer, Heidelberg (2009)

http://arxiv.org/abs/0903.4796+
http://www.ii.uib.no/~telle/bib/BTV.pdf
http://www.fi.muni.cz/~hlineny/Research/papers/MNtools+dam3.pdf

The Complexity of Satisfiability of Small Depth
Circuits

Chris Calabro, Russell Impagliazzo�, and Ramamohan Paturi��

Department of Computer Science and Engineering
University of California, San Diego

La Jolla, CA 92093-0404, USA

Abstract. Say that an algorithm solving a Boolean satisfiability prob-
lem x on n variables is improved if it takes time poly(|x|)2cn for some
constant c < 1, i.e., if it is exponentially better than a brute force search.
We show an improved randomized algorithm for the satisfiability prob-
lem for circuits of constant depth d and a linear number of gates cn:
for each d and c, the running time is 2(1−δ)n where the improvement
δ ≥ 1/O(c2d−2−1 lg3·2d−2−2 c), and the constant in the big-Oh depends
only on d. The algorithm can be adjusted for use with Grover’s algorithm
to achieve a run time of 2

1−δ
2 n on a quantum computer.

1 Introduction

All NP-complete problems are equivalent as far as the existence of polynomial
time algorithms is concerned. However, the exact complexities of these problems
vary widely. There are frequently algorithms for NP-complete problems that
achieve substantial improvement over exhaustive search. This raises the questions:
Which problems have such improved algorithms? How much can we improve? Can
we provide evidence that no improvement over some known algorithm is possible?
Work addressing such questions, both from the algorithmic and complexity theo-
retic sides, has become known as exact complexity, and it is related to the field of
parameterized complexity. While significant work has been done, both areas are
still fairly new and leave open many problems. In particular, the answers and tech-
niques seem to rely on the exact NP-complete problem in question, and there are
few unifying techniques. (This is in some ways similar to the situation for the exact
approximation ratios achievable for different NP-complete problems, which also
is problem dependent. However, the use of probabilistically checkable proofs, and
the unique games conjecture and related conjectures, provide very general tools for
� This research is supported by supported by the Simonyi Fund, the Bell Company

Fellowship and the Fund for Math, and NSF grants DMS-083573, CNS-0716790 and
CCF-0832797.

�� This research is supported by NSF grant CCF-0947262 from the Division of Com-
puting and Communication Foundations. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.

J. Chen and F.V. Fomin (Eds.): IWPEC 2009, LNCS 5917, pp. 75–85, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

76 C. Calabro, R. Impagliazzo, and R. Paturi

understanding approximability for a wide variety of problems. We are still looking
for similar tools for exact complexity.)

From the viewpoint of exact complexity, the most studied and best understood
problems are probably the restricted versions of the satisfiability problem (SAT),
in particular, k-SAT, a restriction of SAT to k-CNFs, and CNF-SAT, a restriction
to general CNFs. There has been a sequence of highly nontrivial and interesting
algorithmic approaches [Sch99, PPZ99, PPSZ05, Sch05, DW05, CIP06] to these
problems, where the best known constant factor improvements in the exponent
are of the form 1−1/O(k) for k-SAT and 1−1/O(lg c) for CNF-SAT with at most
cn clauses. Also, a sequence of papers ([IPZ01, IP01, CIKP08, CIP06]) has shown
many nontrivial relationships between the exact complexities of these problems,
and helped characterize their hardest instances (under the assumption that they
are indeed exponentially hard.) For what other circuit/formula models can we ex-
pect to show improved exponential-time (i.e., O(2cn)-time for c < 1) algorithms
for the satisfiability problem?

1.1 Linear-Size Bounded Depth Circuits

In this paper, we give what we believe is the first improved algorithm for the
satisfiability problem for circuits of constant depth and linear size (AC0 type),
which seems significantly harder than k-SAT. (Note that it is trivially possible
to give an improved algorithm in terms of the circuit size parameter m if the
circuit has fan-in 2, e.g. by the standard reduction to 3-SAT and then applying
a 3-SAT solver, but this is no better than exhaustive search once m gets larger
than around 4n or so. Sergey Nurik [Nur09] has recently communicated a some-
what improved bound along these lines.) For each c, d > 0, we give a constant
δ > 0 and a randomized algorithm that works in 2(1−δ)n time and solves the
satisfiability problem for depth d, size at most cn circuits. (Here, it is significant
that circuit size is measured by gates rather than wires.)

For d = 2, our algorithm becomes deterministic and matches the current
best bound [CIP06], since our algorithm and analysis are generalizations of the
ones there. However, randomizing the algorithm also yields the best quantum
algorithm for this case, with running time 2

1−1/O(lg c)
2 n. For d = 3, this gives

δ ≥ 1/O(c lg4 c), which, as far as the authors know, is the first improvement
achieved for this problem.

There are a few motivations to consider linear-size circuits. One is the question
of ideal block cipher design. Block ciphers are carefully constructed to maximize ef-
ficiency for a given level of security. Particularly, since we want ciphers to be usable
by low-power devices, and to be implemented at the network level, it is often very
important to have efficient hardware implementations that make maximum use
of parallelism. A typical cipher computes for a small number of “rounds”, where
in each round, very simple operations are performed (e.g., substitutions from a
look-up table called an S box, permutations of the bit positions, or bit-wise ⊕
operations). These operations are almost always AC0 type or even simpler. It is
also considered vital to have key sizes that are as small as possible, and an al-
gorithm that breaks the cryptosystem in significantly less time than exhaustive

The Complexity of Satisfiability of Small Depth Circuits 77

search over keys is considered worrisome. So this raises the question: Can we have
an ideal block cipher family (one per key size), i.e., so that the number of rounds
remains constant, each round being implementable in constant depth with a lin-
ear number of gates, and security is almost that of exhaustive search over keys?
Our results rule out such ideal block ciphers, and so give a partial explanation for
why the number of rounds needs to increase in new generations of block ciphers.
(Block ciphers require average-case security, not worst-case, but worst-case algo-
rithms obviously also rule out average-case security. Our values of δ arevanishingly
small for the sizes and depths of real cryptosystems, so our results cannot be used
for cryptanalysis of existing block ciphers.)

Another motivation is that linear-size circuits are perhaps the most general class
of circuits for which we can expect to show improved upper bounds on their exact
complexity. To explain this statement, we need the following notation. Let sk =
inf{c|∃ a randomized algorithm for k-SAT with time complexity poly(m)2cn for k-
CNF formulas of size m over n variables}. Let ETH denote the Exponential-Time
Hypothesis: s3 > 0. We know that the sequence {sk} has a limit and let s∞ denote
this limit. [IP01] proposed the open question whether s∞ = 1, which we will call
the Strong Exponential-Time Hypothesis (SETH). The best known upper bounds
for sk are all of the form 1−1/O(k), which makes the conjecture SETH plausible.

Here is the connection between SETH and the complexity of satisfiability of
linear-size circuits: Since one can embed k-CNFs for any k into any non-linear
size circuit model (in particular, nonconstant density CNF) [CIP06], improved
upper bounds for the satisfiability problem for nonlinear-size circuits would im-
ply s∞ < 1. Thus, we are primarily left with the question of the complexity
of the satisfiability problem for linear-size circuits if SETH holds. The follow-
ing partial converse shows a further connection between SETH and improved
bounds for the satisfiability of linear-size circuits. If s∞ < 1, one can easily show
using the depth-reduction technique of Valiant [Val77] (see also [Cal08]) that the
satisfiability problem for cn-size series-parallel circuits has an improved upper
bound of 2δ(c)n where δ(c) < 1.

Yet another motivation is that improved algorithms for SAT for a circuit
model C may reveal structural properties of the solution space of circuits in C.
These structural properties may in turn be helpful in proving stronger lower
bounds on the size of circuits which are disjunctions of circuits in C. In fact,
[PSZ00, PPZ99, PPSZ05, IPZ01] exploit this connection to provide the best
known lower bounds of the form 2Δ(k)n/k where Δ(k) > 1 for depth-3 un-
bounded fan-in circuits with bounded bottom fan-in k. This connection between
the hardness of the satisfiability problem for a circuit model and lower bounds
of a related circuit model is not surprising since, as a more general circuit can
compute more complicated functions, it may be more difficult to invert, i.e.,
check the satisfiability of these functions.

1.2 Extension to Quantum Computing Model

Since Grover’s quantum search algorithm [Gro96] provides a quadratic speed-
up, the baseline in the quantum model for improved algorithms is 2n/2. In other

78 C. Calabro, R. Impagliazzo, and R. Paturi

words, a quantum algorithm is an improvement for the satisfiability problem if
the constant factor in the exponent in the running time is strictly less than 1/2.
However, it is not clear that every improved algorithm in the classical model can
benefit from a quadratic speed-up in the quantum model. It is known that the
class of algorithms that are exponential iterations of probabilistic polynomial
time algorithms can obtain quadratic speed-up using Grover’s technique.

More precisely, [Gro96, BBHT96] show that a probabilistic algorithm running
in time t and with success probability p can be transformed into a quantum al-
gorithm with running time O(t/

√
p) and with constant success probability. The

quadratic speed-up provided by quantum algorithms prompts the following ques-
tion: Given an algorithm A with exponential running time t, can we transform
it into an exponential iteration of a polynomial time algorithm B with success
probability approximately 1/t? Such a transformation would prime A for use in
Grover’s algorithm and we could reap the full benefit of its quadratic speedup
in the quantum model. We will show that our algorithm for the satisfiability of
bounded-depth linear-size circuits can be sped up quadratically in the quantum
model, i.e., that our algorithm, which runs in time 2(1−δ)n with constant success
probability, can be sped up by transforming it into a probabilistic polynomial
time algorithm that succeeds with probability at least 2−(1−δ)n.

For simplicity, we will only describe this probabilistic version of the algorithm.
To convert this back into a backtracking algorithm, simply try both branches
deterministically. Note that either way, the subroutine find restriction would still
use randomness, though the authors strongly suspect that it can be derandom-
ized. For completeness, we include the backtracking version (without analysis,
which would be essentially the same, just more verbose) at the end in figure 2.

2 The Algorithm

2.1 Definitions

The inputs (outputs) of a dag are those nodes with indegree 0 (outdegree 0).
A circuit F is a dag where each input is labeled with a literal, each non-input
(called a gate) is labeled AND or OR, and there is exactly 1 output. A subgate
of size k of a gate g is a gate h (not necessarily in F) with the same label as g
and with k of g’s inputs. The depth d of F is the number of edges in a longest
path in F . The ith level of F is the set of gates a distance of i from the output,
e.g. the output is at level 0 and the bottom gates are at level d − 1.

2.2 High Level Description

The overall algorithm consists of four subroutines, Ad,c, Ad,c,k, find restriction
and PPZ main. We first provide a high level description of the key routines Ad,c

and Ad,c,k which mutually call each other. We then provide an intuitive expla-
nation as to how the algorithm reduces the average number of variables whose

The Complexity of Satisfiability of Small Depth Circuits 79

values need to be guessed. In the next subsection, we provide a detailed descrip-
tion of the subroutines accounting for all the parameters. Figure 1 provides a
complete description of the routines except for PPZ main.

The argument F of Ad,c and Ad,c,k denotes the current circuit after it is
simplified as a result of variable assignments. We use the argument V of Ad,c

and Ad,c,k to keep track of the unassigned variables, which is a superset of the
remaining variables var(F). In particular, each time we simplify the circuit by
assigning to a group of variables, we will remove them from V . Subsequently
simplifying the circuit may result in the removal of other variables from F so
that var(F) ⊆ V may become a proper containment. Because of these simplifying
steps, |V | is a measure of the algorithm’s progress that will be easier to keep
track of than | var(F)|. In order to describe the progress made at various points in
Ad,c and Ad,c,k, we use the identifier V to denote the set of unassigned variables
at that point whereas we use n to denote the number of unassigned variables at
the beginning of an invocation of the routines.

Ad,c starts with a circuit F of depth d and a set of unassigned variables V
satisfying the condition, var(F) ⊆ V and |F | ≤ cn where n = |V |. It reduces the
the fan-in of each bottom gate to k by repeatedly selecting a subgate h of size k
of any bottom gate g with fan-in greater than k and setting h to either true or
false. One of these settings will eliminate k variables from V and the other will
eliminate a gate. The one that eliminates k variables we choose with probability q
and the other with probability 1−q. We continue setting the subgates of bottom
gates until we reach one of two cases. In the first case, we’ve at least halved the
number of unassigned variables compared to the number n at the invocation of
Ad,c. In this case, we simply guess an assignment to the unassigned variables.

In the second case we have that each bottom gate has fan-in less than or
equal to k and that the number of gates is at most 2c times the number |V | of
unassigned variables. In this case the control passes to the routine Ad,2c,k.

Ad,c,k takes as input a set V of unassigned variables and a circuit F of depth
d, bottom fan-in restricted to k satisfying the condition var(F) ⊆ V and |F | ≤
cn where n = |V |. It chooses a random restriction (by invoking the routine
find restriction) to all but a p fraction of the variables of V for some p. This may
leave some bottom level gates with more than one unassigned variable. We clean
up these gates by randomly setting all the variables in them. By choosing k, p
appropriately, with probability at least 1

2 there will still be ≥ 1
2pn unassigned

variables but the bottom level gates will each have at most one unassigned
variable. So we can collapse the circuit to depth d− 1 and recurse. If the circuit
is already at depth 2, Ad,c,k applies PPZ main, which applies one iteration of
the PPZ solver [PPZ99], which takes polynomial time and finds a satisfying
assignment with probability at least 2−(1− 1

k)n if one exists.
To see why the algorithm succeeds better than random guessing, observe that

the algorithm either preserves a constant fraction of the unassigned variables
by the time the circuit reaches depth 2 or sets a large number of variables
correctly according to a satisfying assignment without having to guess each one
of them independently. If the algorithm produces a circuit of depth 2 with a

80 C. Calabro, R. Impagliazzo, and R. Paturi

constant fraction of unassigned variables, PPZ main guarantees that at most
(1 − 1

k) fraction of the unassigned variables need to be looked at on average to
find a satisfying assignment. If the algorithm terminates earlier in Ad,c when the
number of unassigned variables gets halved, it must be the case that at least half
of the variables are assigned in Ad,c by setting subgates of size k. The variables
of the subgates are set with probability q and each such setting results in an
assignment to k variables where k is sufficiently large compared to lg 1

q thus
saving a number of bits.

The overall algorithm takes polynomial time and has exponentially small prob-
ability s of finding a satisfying assignment given that there is one. By iterating
s−1 times, we increase the probability of success to a constant.

2.3 Detailed Description

We describe our algorithm in several subroutines:

– Ad,c(F, V) seeks a solution of F when F has depth d with V as the set of
unassigned variables such that var(F) ⊆ V , |V | = n, and |F | ≤ cn. Although
initially |F |

|V | ≤ c, the algorithm may set variables, increasing the ratio. If
it ever exceeds 2c, Ad,c will simply guess an assignment to the remaining
variables.

– Ad,c,k(F, V) seeks a solution of F when F has depth d, var(F) ⊆ V , |V | = n,
|F | ≤ cn, and F has bottom fan-in at most k.

– find restriction(F, V, p) finds, with probability at least 1
2 , a set of variables

W ⊆ V whose complement has size in the interval [12pn, pn] and such that
if the variables of W are assigned, then each bottom level gate has at most
one unassigned variable.

– PPZ main is 1 iteration of the k-SAT solver (which is the same as a depth
2 circuit solver) from [PPZ99] which takes polynomial time and has success
probability ≥ 2−(1− 1

k)n. More specifically, PPZ main assigns the variables,
one at a time, in a random order. If a variable about to be assigned appears
in a unit clause C (a clause of size 1), then it is assigned so as to satisfy C,
otherwise it is assigned uniformly randomly. Note that this algorithm solves
depth 1 circuits in polynomial time and with success probability 1.

Our algorithm description is not the most succinct. For example, one could
construct an equivalent algorithm containing only one subroutine by eliminating
tail recursion, but this would make the analysis obtuse. Below, the choices of
k, p, q, c′ are unspecified, and are left for the analysis section.

If h is an AND of literals, then F |(h = 1) sets those literals to true and simplifies
the circuit by removing true children of AND gates, false children of OR gates,
replacing empty AND gates by true, replacing empty OR gates by false; unless h
contains contradictory literals, in which case F |(h = 1) is simply false. Ifh is an OR
of literals, F |(h = 1) removes any gate of which h is a subgate and then performs a
similar simplification. Also if h is an AND (OR) of literals, then F |(h = 0) can be
treated as F |(h′ = 1) where h′ is the OR (AND) of the negations of those literals.

The Complexity of Satisfiability of Small Depth Circuits 81

Ad,c(F, V) // F has depth d, var(F) ⊆ V, |V | = n, |F | ≤ cn
choose k, q // as some function of d, c
while ∃ bottom gate g in F of fan-in > k

let h be a subgate of g of size k

b ←
{

1 with probability 1 − q

0 with probability q

b′ ←
{

1 if h is an AND gate
0 if h is an OR gate

F ← F |(h = b XOR b′)
if b = 0, V ← V − var(h)
if |F | > 2c|V | // guess assignment

choose a ∈u 2var(F)

if F (a) = 1, return a
return “probably not satisfiable”

return Ad,2c,k(F, V)

Ad,c,k(F, V) // F has depth d, F also has bottom fan-in ≤ k,
var(F) ⊆ V, |V | = n

if d ≤ 2, return PPZ main(F)
choose p, c′ // as functions of d, c, k
W ← find restriction(F, V, p)
choose a ∈u 2W

// the bottom level gates of F |a are trivial
F ′ ← F |a but collapsing the bottom level
return Ad−1,c′(F ′, V − W)

find restriction(F, V, p) // |V | = n
B ← {bottom gates of F}
U ← random subset of V of size (1 − p)n
G ← {g ∈ B | |var(g) − U | > 1}
U ′ ← var(G)
if |U ′| ≤ 1

2
pn, return U ∪ U ′

else die // algorithm fails

Fig. 1. Linear size, constant depth circuit solver

The purpose of all these definitions is so that below, in Ad,c, the line F ← F |(h =
b XOR b′) sets h in the way that eliminates k variables with probability q and the
other way with probability 1 − q. See figure 1.

3 Run Time Analysis

Suppose Ad,c, Ad,c,k succeed with probability ≥ 2−(1−ad,c)n, 2−(1−ad,c,k)n, respec-
tively, given that find restriction succeeds on each call to it – we will eliminate
this assumption later. Here n is the number of variables in V at the time Ad,c

or Ad,c,k are invoked. We assume c ≥ 2 and ∀d ≥ 2, k ≥ 4 ad,c, ad,c,k ≤ 1
4 .

82 C. Calabro, R. Impagliazzo, and R. Paturi

Lemma 1. ∀d, c ≥ 2 if k ≥ 4 lg 4c
ad,2c,k

, then ad,c ≥ 1
2ad,2c,k.

Proof. Each iteration of the while loop of Ad,c(F, V) eliminates (1) a gate or
(2) k variables. (1) occurs ≤ cn times and (2) occurs r ≤ n

k times. Let a be a
solution to F . Exactly one sequence of random choices, say with r choices of
type (2), can lead Ad,c(F, V) to find a. So the probability that Ad,c(F, V) finds
a solution given that each call to find restriction succeeds, is

≥ qr(1 − q)cn min{2−(1−ad,2c,k)(n−kr), 2−
n
2 }.

(Note carefully that we are not asserting that with at least this probability a is
found. This is because PPZ main may return another solution.)

To lower bound qr(1 − q)cn2−(1−ad,2c,k)(n−kr), take the logarithm, divide by
n, and set r′ = r

n ∈ [0, 1
k] to get

r′ lg q + c lg(1 − q) − (1 − ad,2c,k) + (1 − ad,2c,k)kr′

= − (1 − ad,2c,k) + c lg(1 − q) + r′(lg q + (1 − ad,2c,k)k)
≥− (1 − ad,2c,k) − 2cq + r′(lg q + (1 − ad,2c,k)k)

(taking n = 4, x = nq in the fact ∀n ≥ 1, x ∈ [0, 1]
(
1 − x

n

)n−1
≥ e−x)

≥− (1 − ad,2c,k) − 2cq + r′
(

lg q +
1
2
k
)

since ad,2c,k ≤ 1
2
,

which is ≥ −(1 − 1
2ad,2c,k) if we set q = ad,2c,k

4c , k ≥ −2 lg q.
To lower bound qr(1 − q)cn2−

n
2 , note that if we choose k ≥ −4 lg q, then

r′ lg q + c lg(1 − q) − 1
2

≥1
k

lg q − 2cq − 1
2

≥− 1
4
− 1

2
ad,2c,k − 1

2

≥−
(
1 − 1

2
ad,2c,k

)
since ad,2c,k ≤ 1

4
.

Lemma 2. If |V | = n, |F | ≤ cn, F has bottom fan-in ≤ k, and we choose
p = 1

2ck3 , then the probability that find restriction(F, V, p) dies is ≤ 1
2 .

Proof. Let g ∈ B and X = |var(g) − U |. g has a fan-in k′ ≤ k and so X is
hypergeometric with parameters n, k′, pn. We claim that Pr(g ∈ G) = Pr(X ≥
2) ≤

(
k′

2

)
p2. To see this, note that the sample points where X ≥ 2 can be

partitioned according to the positions among the k′ variables of g of the first 2
free variables (i.e., not in U), and the probability of any of these

(
k′

2

)
events is

≤ p2. So

E(|U ′|) ≤ E(|G|)k ≤
(

k

2

)
p2|B|k ≤ 1

2
k3p2cn ≤ 1

4
pn.

The Complexity of Satisfiability of Small Depth Circuits 83

By Markov’s inequality,

Pr
(
|U ′| >

1
2
pn
)
≤ E(|U ′|)

1
2pn

≤ 1
2
.

So the probability that find restriction(F, V, p) dies is ≤ 1
2 .

Lemma 3. If we set p = 1
2ck3 , c′ = 4c2k3, then ad,c,k ≥ 1

4ck3 ad−1,4c2k3 .

Proof. Ad,c,k(F, V) leaves f ∈ [12pn, pn] variables of V free and sets the rest.
So |F ′|

|V −W | ≤
cn
1
2 pn

= 4c2k3 = c′. (The proof of this lemma would have been con-
founded if we had used var(F) to keep track of variables instead of V .) The prob-
ability that Ad,c,k(F, V) finds a solution, assuming each call to find restriction
succeeds, is then

2−(n−f+(1−ad−1,c′)f) = 2−(n−ad−1,c′f) ≥ 2−(1− 1
2 pad−1,c′)n,

and the lemma follows.

Lemma 4. ∀d, c ≥ 2,

ad,c ≥ 1/O(c2d−2−1 lg3·2d−2−2 c),

where the constant in the big-Oh depends only on d.

Proof. We use induction to show that for each d, k can be chosen to be O(lg c)
so as to satisfy the hypothesis of lemma 1 and ad,c ≥ 1/O(cf(d) lgg(d) c) for some
functions f, g where the constants in the big-Ohs depend only on d.

a2,c,k = 1
k . From lemma 1, we need to choose k such that k ≥ O(lg c

a2,2c,k
) =

O(lg c + lg k). So k = O(lg c) suffices, and we conclude that a2,c ≥ 1/O(lg c). So
f(2) = 0, g(2) = 1. This completes the base case.

From the inductive hypothesis and lemma 3,

ad,c,k ≥ 1/O(ck3(c2k3)f(d−1) lgg(d−1)(c2k3))

= 1/O(c2f(d−1)+1k3f(d−1)+3 lgg(d−1)(ck)).

To use lemma 1, we need to choose k such that

k ≥ O(lg(c2f(d−1)+2k3f(d−1)+3 lgg(d−1)(ck)))
= O(lg c + lg k).

So k = O(lg c) suffices, and we conclude that

ad,c ≥ 1/O(c2f(d−1)+1 lg3f(d−1)+3+g(d−1) c).

So we have the recurrence

f(d) = 2f(d − 1) + 1 f(2) = 0
g(d) = g(d − 1) + 3f(d − 1) + 3 g(2) = 1

which has solution f(d) = 2d−2 − 1, g(d) = 3 · 2d−2 − 2.

84 C. Calabro, R. Impagliazzo, and R. Paturi

Ad,c(F, V)
if |F | ≥ 2c|V | // solve by brute force

for each a ∈ 2var(F)

if F (a), return 1
return 0

choose k // as some function of d, c
if ∃ bottom gate g in F of fan-in > k // branch

let h be a subgate of g of size k

(V0, V1) ←
{

(V, V − var(h)) if h is an AND gate
(V − var(h), V) if h is an OR gate

if Ad,c(F |(h = 1), V1), return 1
if Ad,c(F |(h = 0), V0), return 1
return 0

return Ad,2c,k(F, V)
Ad,c,k(F, V)

if d ≤ 2, return PPZ(F)
// PPZ solves k-SAT in time poly(|F |)2(1− 1

k
)n

// with exponentially small error probability
choose p, c′ // as functions of d, c, k
W ← find restriction(F, V, p) // same subroutine as in figure 1
for each a ∈ 2W

// the bottom level gates of F |a are trivial
F ′ ← F |a but collapsing the bottom level
if Ad−1,c′(F ′, V − W), return 1

return 0

Fig. 2. Linear size, constant depth circuit solver, backtracking version

Theorem 1. ∀d, c ≥ 2, the probability that Ad,c(F, V) finds some solution is
≥ 2−(1−α)n where

α ≥ 1/O(c2d−2−1 lg3·2d−2−2 c),

where the constant in the big-Oh depends only on d.

Proof. This is a corollary from the previous lemma together with the following:
find restriction is called ≤ d times, each with success probability ≥ 1

2 , so the
probability that in every call it succeeds is ≥ 2−d, a penalty that can be absorbed
into the big-Oh in the theorem statement.

Again, we are not asserting that every solution is found with this probability, just
that some is, and this asymmetric property is inherited from the PPZ algorithm.

4 Open Problems

Can find restriction be derandomized without too much performance penalty?
Can we find a nontrivial algorithm for the case where d grows very slowly
with n?

The Complexity of Satisfiability of Small Depth Circuits 85

Acknowledgments. We would like to thank Mike Saks for useful discussions.

References

[BBHT96] Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum
searching (May 1996)

[Cal08] Calabro, C.: A lower bound on the size of series-parallel graphs dense
in long paths. In: Electronic Colloquium on Computational Complexity
(ECCC), vol. 15(110) (2008)

[CIKP08] Calabro, C., Impagliazzo, R., Kabanets, V., Paturi, R.: The complexity of
unique k-sat: An isolation lemma for k-cnfs. J. Comput. Syst. Sci. 74(3),
386–393 (2008)

[CIP06] Calabro, C., Impagliazzo, R., Paturi, R.: A duality between clause width
and clause density for sat. In: CCC 2006: Proceedings of the 21st Annual
IEEE Conference on Computational Complexity, Washington, DC, USA,
2006, pp. 252–260. IEEE Computer Society Press, Los Alamitos (2006)

[DW05] Dantsin, E., Wolpert, A.: An improved upper bound for sat. In: Bacchus,
F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 400–407. Springer,
Heidelberg (2005)

[Gro96] Grover, L.K.: A fast quantum mechanical algorithm for database search.
In: STOC, pp. 212–219 (1996)

[IP01] Impagliazzo, R., Paturi, R.: On the complexity of k-sat. J. Comput. Syst.
Sci. 62(2), 367–375 (2001)

[IPZ01] Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly ex-
ponential complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)

[Nur09] Nurik, S.: Personal communication. To appear in ECCC (2009)
[PPSZ05] Paturi, R., Pudlák, P., Saks, M.E., Zane, F.: An improved exponential-

time algorithm for k-sat. J. ACM 52(3), 337–364 (2005)
[PPZ99] Paturi, R., Pudlák, P., Zane, F.: Satisfiability coding lemma. Chicago Jour-

nal of Theoretical Computer Science 115 (December 1999)
[PSZ00] Paturi, R., Saks, M.E., Zane, F.: Exponential lower bounds for depth 3

boolean circuits. Computational Complexity 9(1), 1–15 (2000); Prelimi-
nary version in 29th annual ACM Symposium on Theory of Computing,
pp. 96–91 (1997)

[Sch99] Schöning, U.: A probabilistic algorithm for k-sat and constraint satisfac-
tion problems. In: FOCS, pp. 410–414 (1999)

[Sch05] Schuler, R.: An algorithm for the satisfiability problem of formulas in
conjunctive normal form. J. Algorithms 54(1), 40–44 (2005)

[Val77] Valiant, L.: Graph-theoretic arguments in low level complexity. In: Gruska,
J. (ed.) MFCS 1977. LNCS, vol. 53, Springer, Heidelberg (1977)

On Finding Directed Trees with Many Leaves

Jean Daligault and Stéphan Thomassé

Abstract. The ROOTED MAXIMUM LEAF OUTBRANCHING prob-
lem consists in finding a spanning directed tree rooted at some prescribed
vertex of a digraph with the maximum number of leaves. Its parameterized
version asks if there exists such a tree with at least k leaves. We use the
notion of s − t numbering studied in [19, 6, 20] to exhibit combinatorial
bounds on the existence of spanning directed trees with many leaves. These
combinatorial bounds allow us to produce a constant factor approximation
algorithm for finding directed trees with many leaves, whereas the best
known approximation algorithm has a

√
OPT -factor [11]. We also show

that ROOTED MAXIMUM LEAF OUTBRANCHING admits an edge-
quadratic kernel, improving over the vertex-cubic kernel given by Fernau
et al [13].

1 Introduction

An outbranching of a digraph D is a spanning directed tree in D. We consider
the following problem:

ROOTED MAXIMUM LEAF OUTBRANCHING:

Input: A digraph D, an integer k, a vertex r of D.
Output: TRUE if there is an outbranching of D rooted at r with at least k

leaves, otherwise FALSE.

This problem is equivalent to finding a Connected Dominating Set of size at most
|V (D)| − k, connected meaning in this setting that every vertex is reachable by
a directed path from r. Indeed, the set of internal nodes in an outbranching
correspond to a connected dominating set.

Finding undirected trees with many leaves has many applications in the area
of communication networks, see [8] or [24] for instance. An extensive literature is
devoted to the paradigm of using a small connected dominating set as a backbone
for a communication network.

ROOTED MAXIMUMLEAF OUTBRANCHING is NP-complete, even restricted
to acyclic digraphs [2], and MaxSNP-hard, even on undirected graphs [16].

Two natural ways to tackle such a problem are, on the one hand, polynomial-
time approximation algorithms, and on the other hand, parameterized complex-
ity. Let us give a brief introduction on the parameterized approach.

An efficient way of dealing with NP-hard problems is to identify a parameter
which contains its computational hardness. For instance, instead of asking for a
minimum vertex cover in a graph - a classical NP-hard optimization question -
one can ask for an algorithm which would decide, in O(f(k).nd) time for some

J. Chen and F.V. Fomin (Eds.): IWPEC 2009, LNCS 5917, pp. 86–97, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

On Finding Directed Trees with Many Leaves 87

fixed d, if a graph of size n has a vertex cover of size at most k. If such an
algorithm exists, the problem is called fixed-parameter tractable, or FPT for
short. An extensive literature is devoted to FPT, the reader is invited to read
[10], [14] and [21].

Kernelization is a natural way of proving that a problem is FPT. Formally, a
kernelization algorithm receives as input an instance (I, k) of the parameterized
problem, and outputs, in polynomial time in the size of the instance, another
instance (I ′, k′) such that: k′ ≤ g(k) for some function g, the size of I ′ only
depends of k, and the instances (I, k) and (I ′, k′) are both true or both false.

The reduced instance (I ′, k′) is called a kernel. The existence of a kerneliza-
tion algorithm clearly implies the FPT character of the problem since one can
kernelize the instance, and then solve the reduced instance (G′, k′) using brute
force, hence giving an O(f(k) + nd) algorithm. A classical result asserts that
being FPT is indeed equivalent to having kernelization. The drawback of this
result is that the size of the reduced instance G′ is not necessarily small with
respect to k. A much more constrained condition is to be able to reduce to an
instance of polynomial size in terms of k. Consequently, in the zoology of param-
eterized problems, the first distinction is done between three classes: W[1]-hard,
FPT, polykernel.

A kernelization algorithm can be used as a preprocessing step to reduce the
size of the instance before applying some other parameterized algorithm. Being
able to ensure that this kernel has actually polynomial size in k enhances the
overall speed of the process. See [17] for a recent review on kernelization.

An extensive litterature is devoted to finding trees with many leaves in undi-
rected and directed graphs. The undirected version of this problem, MAXIMUM
LEAF SPANNING TREE, has been extensively studied. There is a factor 2 ap-
proximation algorithm for the MAXIMUM LEAF SPANNING TREE problem
[22], and a 3.75k kernel [12]. An O∗(1, 94n) exact algorithm was designed in [15].
Other graph theoretical results on the existence of trees with many leaves can
be found in [9] and [23].

The best approximation algorithm known for MAXIMUM LEAF OUTBRANC-
HING is a factor

√
OPT algorithm [11]. From the Parameterized Complexity view-

point, Alon et al showed that MAXIMUM LEAF OUTBRANCHING restricted to a
wide class of digraphs containing all strongly connected digraphs is FPT [1], and
Bonsma and Dorn extended this result to all digraphs and gave a faster parame-
terized algorithm [4]. Very recently, Kneis, Langer and Rossmanith [18] obtained
an O∗(4k) algorithm for MAXIMUM LEAF OUTBRANCHING, which is also an im-
provement for the undirected case over the numerous FPT algorithms designed for
MAXIMUM LEAF SPANNING TREE (Chen and Liu have a similar algorithm in
[5]). Fernau et al [13] proved that ROOTED MAXIMUM LEAF OUTBRANCHING
has a polynomial kernel, exhibiting a cubic kernel. They also showed that the
unrooted version of this problem admits no polynomial kernel, unless polynomial
hierarchy collapses to third level, using a breakthrough lower bound result by Bod-
laender et al [3]. A linear kernel for the acyclic subcase of ROOTED MAXIMUM

88 J. Daligault and S. Thomassé

LEAF OUTBRANCHING and an O∗(3, 72k) algorithm for ROOTED MAXIMUM
LEAF OUTBRANCHING were exhibited in [7].

This paper is organized as follows. In Section 2 we exhibit combinatorial
bounds on the problem of finding an outbranching with many leaves. We use
the notion of s− t numbering introduced in [19]. We next present our reduction
rules, which are independent of the parameter, and in the following section we
prove that these rules give an edge-quadratic kernel. We finally present a constant
factor approximation algorithm in Section 5 for finding directed trees with many
leaves.

2 Combinatorial Bounds

Let D be a directed graph. For an arc (u, v) in D, we say that u is an in-neighbour
of v, that v is an outneighbour of u, that (u, v) is an in-arc of v and an out-arc of
u. The outdegree of a vertex is the number of its outneighbours, and its indegree
is the number of its in-neighbours. An outbranching with a maximum number of
leaves is said to be optimal. Let us denote by maxleaf(D) the number of leaves
in an optimal outbranching of D.

Without loss of generality, we restrict ourselves to the following. We exclu-
sively consider loopless digraphs with a distinguished vertex of indegree 0, de-
noted by r. We assume that there is no arc (u, r) in D with u ∈ V (D), and no
arc (x, y) with x �= r and y an outneighbour of r, and that r has outdegree at least
2. Throughout this paper, we call such a digraph a rooted digraph. Definitions
will be made exclusively with respect to rooted digraphs, hence the notions we
present, like connectivity and resulting concepts, do slightly differ from standard
ones. Let D be a rooted digraph with a specified vertex r.

The rooted digraph D is connected if every vertex of D is reachable by a
directed path starting at r in D. A cut of D is a set S ⊆ V (D) − r such that
there exists a vertex z /∈ S endpoint of no directed path from r in D − S.
We say that D is 2-connected if D has no cut of size at most 1. A cut of size
1 is called a cutvertex. Equivalently, a rooted digraph is 2-connected if there
are two internally vertex-disjoint paths from r to any vertex besides r and its
outneighbours.

We will show that the notion of s− t numbering behaves well with respect to
outbranchings with many leaves. It has been introduced in [19] for 2-connected
undirected graphs, and generalized in [6] by Cheriyan and Reif for digraphs
which are 2-connected in the usual sense. We adapt it in the context of rooted
digraphs.

Let D be a 2-connected rooted digraph. An r−r numbering of D is a linear or-
dering σ of V (D)−r such that, for every vertex x �= r, either x is an outneighbour
of r or there exist two in-neighbours u and v of x such that σ(u) < σ(x) < σ(v).
An equivalent presentation of an r−r numbering of D is an injective embedding
f of the graph D where r has been duplicated into two vertices r1 and r2, into
the [0, 1]-segment of the real line, such that f(r1) = 0, f(r2) = 1, and such
that the image by f of every vertex besides r1 and r2 lies inside the convex hull

On Finding Directed Trees with Many Leaves 89

of the images of its in-neighbours. Such convex embeddings have been defined
and studied in general dimension by Lovász, Linial and Wigderson in [20] for
undirected graphs, and in [6] for directed graphs.

Given a linear order σ on a finite set V , we denote by σ̄ the linear order on
V which is the reverse of σ. An arc (u, v) of D is a forward arc if u = r or if u
appears before v in σ; (u, v) is a backward arc if u = r or if u appears after v in
σ. A spanning out-tree T is forward if all its arcs are forward. Similar definition
for backward out-tree.

The following result and proof is just an adapted version of [6], given here for
the sake of completeness.

Lemma 1. Let D be a 2-connected rooted digraph. There exists an r − r num-
bering of D.

Proof : By induction over D. We first reduce to the case where the indegree of
every vertex besides r is exactly 2. Let x be a vertex of indegree at least 3 in
D. Let us show that there exists an in-neighbour y of x such that the rooted di-
graph D− (y, x) is 2-connected. Indeed, there exist two internally vertex disjoint
paths from r to x. Consider such two paths intersecting the in-neighbourhood
N−(x) of x only once each, and denote by D′ the rooted digraph obtained from
D by removing one arc (y, x) not involved in these two paths. There are two
internally disjoint paths from r to x in D′. Consider z ∈ V (D) − r − x. Assume
by contradiction that there exists a vertex t which cuts z from r in D′. As t does
not cut z from r in D and the arc (y, x) alone is missing in D′, t must cut x and
not y from r in D′. Which is a contradiction, as there are two internally disjoint
paths from r to x in D′. By induction, D′ has an r− r numbering, which is also
an r − r numbering for D.

Hence, let D be a rooted digraph, where every vertex besides r has indegree
2. As r has indegree 0, there exists a vertex v with outdegree at most 1 in D
by a counting argument. If v has outdegree 0, then let σ be an r − r numbering
of D − v, let u1 and u2 be the two in-neighbours of v. Insert v between u1 and
u2 in σ to obtain an r − r numbering of D. Assume now that v has a single
outneighbour u. Let w be the second in-neighbour of u. Let D′ be the graph
obtained from D by contracting the arc (v, u) into a single vertex uv. As D′ is
2-connected, consider by induction an r − r numbering σ of D′. Replace uv by
u. It is now possible to insert v between its two in-neighbours in order to make
it so that u lies between v and w. Indeed, assume without loss of generality that
w is after uv in σ. Consider the in-neighbour t of v smallest in σ. As σ is an
r − r numbering of D′, t lies before uv in σ. We insert v just after t to obtain
an r − r numbering of D. �

Note that an r − r numbering σ of D naturally gives two acyclic covering sub-
digraphs of D, the rooted digraph D|σ consisting of the forward arcs of D, and
the rooted digraph D|σ̄ consisting of the backward arcs of D. The intersection
of these two acyclic digraphs is the set of out-arcs of r.

90 J. Daligault and S. Thomassé

Corollary 1. Let D be a 2-connected rooted digraph. There exists an acyclic
connected spanning subdigraph A of D which contains at least half of the arcs of
D − r.

Let G be an undirected graph. A vertex cover of G is a set of vertices covering
all edges of G. A dominating set of G is a set S ⊆ V such that for every vertex
x /∈ S, x has a neighbour in S. A strongly dominating set of G is a set S ⊆ V
such that every vertex has a neighbour in S.

Let D be a rooted digraph. A strongly dominating set of D is a set S ⊆ V
such that every vertex besides r has an in-neighbour in S. We need the following
folklore result:

Lemma 2. Any undirected graph G on n vertices and m arcs has a vertex cover
of size n+m

3 .

Proof : By induction on n + m. If there exists a vertex of degree at least 2 in G,
choose it in the vertex cover, otherwise choose any non-isolated vertex. �

Lemma 3. Let G be a bipartite graph over A∪B, with d(a) = 2 for every a ∈ A.
There exists a subset of B dominating A with size at most |A|+|B|

3 .

Proof : Let G′ be the graph which vertex set is B, and where (b, b′) is an arc if b
and b′ share a common neighbour in A. The result follows from Lemma 2 since
G′ has |A| arcs and |B| vertices. �

Corollary 2. Let D be an acyclic rooted digraph with l vertices of indegree at
least 2 and with a root of outdegree d(r) ≥ 2. Then D has an outbranching with
at least l+d(r)−1

3 + 1 leaves.

Proof : Denote by n the number of vertices of D. For every vertex v of indegree
at least 3, delete incoming arcs until v has indegree exactly 2. Since D is acyclic,
it has a vertex s with outdegree 0.

Let Z be the set of vertices of indegree 1 in D, of size n − 1 − l. Let Y
be the set of in-neighbours of vertices of Z, of size at most n − 1 − l. Let A′

be the set of vertices of indegree 2 dominated by Y . Let B = V (D) − Y − s.
Let A be the set of vertices of indegree 2 not dominated by Y . Note that Y
cannot have the same size as Z ∪ A′. Indeed, Z contains the outneighbours
of r, and hence Y contains r, which has outdegree at least 2. More precisely,
|Y | + d(r) − 1 ≤ |Z ∪ A′|. As B = V (D) − Y − s and A = V (D) − A′ − Z − r,
we have that |B| ≥ |A|+ d(r)− 1. Moreover, as Y has size at most n− 1− l, we
have that |B| ≥ l. Consider a copy A1 of A and a copy B1 of B. Let G be the
bipartite graph with vertex bipartition (A1, B1), and where (b, a), with a ∈ A1
and b ∈ B1, is an edge if (b, a) is an arc in D. By Lemma 3 applied to G, there
exists a set X ⊆ B of size at most |A|+|B|

3 ≤ 2|B|−(d(r)−1)
3 which dominates A in

D. The set C = X ∪ Y strongly dominates V (D)− r in D, and has size at most
|X | + |Y | ≤ 2|B|−(d(r)−1)

3 + |Y | = |B| + |Y | − |B|+d(r)−1
3 . As |Y | + |B| = n − 1

and |B| ≥ l, this yields |X ∪ Y | ≤ n − 1 − l+d(r)−1
3 . As D is acyclic, any set

On Finding Directed Trees with Many Leaves 91

Fig. 1. The "boloney" graph D6

strongly dominating V − r contains r and is a connected dominating set. Hence
there exists an outbranching T of D having a subset of C as internal vertices. T

has at least l+d(r)−1
3 + 1 leaves. �

This bound is tight up to one leaf. The rooted digraph Dk depicted in Fig-
ure 1 is 2-connected, has 3k − 2 vertices of indegree at least 2, d(r) = 3 and
maxleaf(Dk) = k + 2.

Finally, the following combinatorial bound is obtained:

Theorem 1. Let D be a 2-connected rooted digraph with l vertices of indegree
at least 3. Then maxleaf(D) ≥ l

6 .

Proof : Apply Corollary 2 to the rooted digraph with the larger number of ver-
tices of indegree 2 among Dσ and Dσ̄. �

An arc (u, v) of D is said to be a 2-circuit if (v, u) is also an arc in D. An arc is
simple if does not belong to a 2-circuit. A vertex v is nice if it is incident to a
simple in-arc.

The second combinatorial bound is the following:

Theorem 2. Let D be 2-connected rooted digraph. Assume that D has l nice
vertices. Then D has an outbranching with at least l

24 leaves.

Proof : By Lemma 1, we consider an r − r numbering σ of D. For every nice
vertex v (incident to some in-arc a) with indegree at least three, delete incoming
arcs of v different from a until v has only one incoming forward arc and one
incoming backward arc. For every other vertex of indegree at least 3 in D, delete
incoming arcs of v until v has only one incoming forward arc and one incoming
backward arc. At the end of this process, σ is still an r − r numbering of the
digraph D, and the number of nice vertices has not decreased.

Denote by Tf the set of forward arcs of D, and by Tb the set of backward arcs
of D. As σ is an r− r numbering of D, Tf and Tb are spanning trees of D which
partition the arcs of D − r.

The crucial definition is the following: say that an arc uv of Tf (resp. of Tb),
with u �= r, is transverse if u and v are incomparable in Tb (resp. in Tf), that
is if v is not an ancestor of u in Tb (resp. in Tf). Observe that u cannot be an
ancestor of v in Tb (resp. in Tf) since Tb is backward (resp. Tf is forward) while
uv is forward (resp. backward) and u �= r.

92 J. Daligault and S. Thomassé

Assume without loss of generality that Tf contains more transverse arcs than
Tb. Consider now any planar drawing of the rooted tree Tb. We will make use
of this drawing to define the following: if two vertices u and v are incomparable
in Tb, then one of these vertices is to the left of the other, with respect to our
drawing. Hence, we can partition the transverse arcs of Tf into two subsets:
the set Sl of transverse arcs uv for which v is to the left of u, and the set Sr

of transverse arcs uv for which v is to the right of u. Assume without loss of
generality that |Sl| ≥ |Sr|.

The digraph Tb ∪Sl is an acyclic digraph by definition of Sl. Moreover, it has
|Sl| vertices of indegree two since the heads of the arcs of |Sl| are pairwise distinct.
Hence, by Corollary 2, Tb ∪ Sl has an outbranching with at least |Sl|+d(r)−1

3 + 1
leaves, hence so does D.

We now give a lower bound on the number of transverse arcs in D to bound
|Sl|. Consider a nice vertex v in D, which is not an outneighbour of r, and with
a simple in-arc uv belonging to, say, Tf . If uv is not a transverse arc, then v is
an ancestor of u in Tb. Let w be the outneighbor of v on the path from v to u in
Tb. Since uv is simple, the vertex w is distinct from u. No path in Tf goes from
w to v, hence vw is a transverse arc. Therefore, we proved that v (and hence
every nice vertex) is incident to a transverse arc (either an in-arc, or an out-arc).
Thus there are at least l−d(r)

2 transverse arcs in D.
Finally, there are at least l−d(r)

4 transverse arcs in Tf , and thus |Sl| ≥ l−d(r)
8 .

In all, D has an outbranching with at least l
24 leaves. �

As a corollary, the following result holds for oriented graphs (digraphs with no
2-circuit):

Corollary 3. Every 2-connected rooted oriented graph on n vertices has an out-
branching with at least n−1

24 leaves.

3 Reduction Rules

We say that P = {x1, . . . , xl}, with l ≥ 3, is a bipath of length l−1 if the set of arcs
adjacent to {x2, . . . , xl−1} in D is exactly {(xi, xi+1), (xi+1, xi)|i ∈ {1, . . . , l−1}}.

To exhibit a quadratic kernel for ROOTED MAXIMUM LEAF OUTBRANCH-
ING, we use the following four reduction rules:

(0) If there exists a vertex not reachable from r in D, then reduce to a trivially
FALSE instance.

(1) Let x be a cutvertex of D. Delete vertex x and add an arc (v, z) for every
v ∈ N−(x) and z ∈ N+(x) − v.

(2) Let P be a bipath of length 4. Contract two consecutive internal vertices of
P .

(3) Let x be a vertex of D. If there exists y ∈ N−(x) such that N−(x) − y cuts
y from r, then delete the arc (y, x).

Note that these reduction rules are not parameter dependent. Rule (0) only
needs to be applied once.

On Finding Directed Trees with Many Leaves 93

Observation 1. Let S be a cutset of a rooted digraph D. Let T be an outbranch-
ing of D. There exists a vertex in S which is not a leaf in T .

Lemma 4. The above reduction rules are safe and can be checked and applied
in polynomial time.

Proof :

(0) Reachability can be tested in linear time.
(1) Let x be a cutvertex of D. Let D′ be the graph obtained from D by deleting

vertex x and adding an arc (v, z) for every v ∈ N−(x) and z ∈ N+(x) − v.
Let us show that maxleaf(D) = maxleaf(D′). Assume T is an outbranching
of D rooted at r with k leaves. By Observation 1, x is not a leaf of T . Let f(x)
be the father of x in T . Let T ′ be the tree obtained from T by contracting
x and f(x). T ′ is an outbranching of D′ rooted at r with k leaves.
Let T ′ be an outbranching of D′ rooted at r with k leaves. N−(x) is a cut
in D′, hence by Observation 1 there is a non-empty collection of vertices
y1, . . . , yl ∈ N−(x) which are not leaves in T ′. Choose yi such that yj is not
an ancestor of yi for every j ∈ {1, . . . , l}− {i}. Let T be the graph obtained
from T ′ by adding x as an isolated vertex, adding the arc (yi, x), and for
every j ∈ {1, . . . , l}, for every arc (yj , z) ∈ T with z ∈ N+(x), delete the arc
(yj , z) and add the arc (x, z). As yi is not reachable in T ′ from any vertex
y ∈ N−(x) − yi, there is no cycle in T . Hence T is an outbranching of D
rooted at r with at least k leaves. Moreover, deciding the existence of a cut
vertex and finding one if such exists can be done in polynomial time.

(2) Let P be a bipath of length 4. Let u, v, w, x and z be the vertices of
P in this consecutive order. Let T be an outbranching of D. Let D′ be the
rooted digraph obtained from D by contracting v and w. The rooted digraph
obtained from T by contracting w with its father in T is an outbranching of
D′ with as many leaves as T .
Let T ′ be an outbranching of D′. If the father of vw in T ′ is x, then T ′ −
(x, vw)∪ (x, w)∪ (w, v) is an outbranching of D with at least as many leaves
as T ′. If the father of vw in T ′ is u, then T ′ − (u, vw) ∪ (u, v) ∪ (v, w) is an
outbranching of D with at least as many leaves as T ′.

(3) Let x be a vertex of D. Let y ∈ N−(x) be a vertex such that N−(x) − y
cuts y from r. Let D′ be the rooted digraph obtained from T by deleting the
arc (y, x). Every outbranching of D′ is an outbranching of D. Let T be an
outbranching of D containing (y, x). There exists a vertex z ∈ N−(x) − y
which is an ancestor of x. Thus T − (y, x) ∪ (z, x) is an outbranching of D′

with at least as many leaves as T . �

We apply these rules iteratively until reaching a reduced instance, on which none
can be applied.

Lemma 5. Let D be a reduced rooted digraph with a vertex of indegree at least
k. Then D is a TRUE instance.

Proof : Assume x is a vertex of D with in-neighbourhood N−(x) = {u1, . . . , ul},
with l ≥ k. For every i ∈ {1, . . . , l}, N−(x) − ui does not cut ui from r. Thus

94 J. Daligault and S. Thomassé

there exists a path Pi from r to ui outside N−(x) − ui. The rooted digraph
D′ = ∪i∈{1,...,l}Pi is connected, and for every i ∈ {1, . . . , l}, ui has outdegree 0 in
D′. Thus D′ has an outbranching with at least k leaves, and such an outbranching
can be extended into an outbranching of D with at least as many leaves. �

4 Quadratic Kernel

In this section and the following, a vertex of a 2-connected rooted digraph D is
said to be special if it has indegree at least 3 or if one of its incoming arcs is
simple. A non special vertex is a vertex u which has exactly two in-neighbours,
which are also outneighbours of u. A weak bipath is a maximal connected set of
non special vertices. If P = {x1, . . . , xl} is a weak bipath, then the in-neighbours
of xi, for i = 2, . . . , l − 1 in D are exactly xi−1 and xi+1. Moreover, x1 and xl

are each outneighbour of a special vertex. Denote by s(P) the in-neighbour of
x1 which is a special vertex.

This section is dedicated to the proof of the following statement:

Theorem 3. A digraph D of size at least (3k − 2)(30k − 2) reduced under the
reduction rules of previous section has an outbranching with at least k leaves.

Proof : By Theorem 1 and Theorem 2, if there are at least 6k + 24k − 1 special
vertices, then D has an outbranching with at least k leaves. Assume that there
are at most 30k − 2 special vertices in D.

As D is reduced under Rule (2), there is no bipath of length 4. We can associate
to every weak bipath B of D of length t a set AB of 	t/3
 out-arcs toward special
vertices. Indeed, let P = (x1, . . . , xl) be a weak bipath of D. For every three
consecutive vertices xi, xi+1, xi+2 of P , 2 ≤ i ≤ l − 3, (xi−1, xi, xi+1, xi+2, xi+3)
is not a bipath by Rule (2), hence there exists an arc (xj , z) with j = i, i + 1 or
i+2 and z /∈ P . Moreover z must be a special vertex as arcs between non-special
vertices lie within their own weak bipath. The set of these arcs (xj , z) has the
prescribed size.

By Lemma 5, any vertex in D has indegree at most k − 1 as D is reduced
under Rule (3), hence there are at most 3(k − 1)(30k − 2) non special vertices
in D. �

To sum up, the kernelization algorithm is as follows: starting from a rooted
digraph D, apply the reduction rules. Let D′ be the obtained reduced rooted
digraph. If D has size more than (3k − 2)(30k − 2), then reduce to a trivially
TRUE instance. Otherwise, D′ is an instance equivalent to D with O(k2) vertices
and O(k2) edges.

This quadratic bound is tight up to a constant factor with respect to our
reduction rules.

5 Approximation

Let us describe our constant factor approximation algorithm for ROOTED
MAXIMUM LEAF OUTBRANCHING, being understood that this also gives an

On Finding Directed Trees with Many Leaves 95

approximation algorithm of the same factor for MAXIMUM LEAF OUTBRANC-
HING as well as for finding an out-tree (not necessarily spanning) with many
leaves in a digraph.

Our reduction rules directly give an approximation algorithm asymptotically
as good as the best known approximation algorithm [11] (see Annex). Let us now
describe our constant factor approximation algorithm. Given a rooted digraph
D′′, apply exhaustively Rule (1) of Section 3. The resulting rooted digraph D is
2-connected. By Lemma 4, maxleaf(D′′) = maxleaf(D).

Let us denote by Dns the digraph D restricted to non special vertices. Recall
that Dns is a disjoint union of bipaths, which we call non special components. A
vertex of outdegree 1 in Dns is called an end. Each end has exactly one special
vertex as an in-neighbour in D.

Theorem 4. Let D be a 2-connected rooted digraph with l special vertices and
h non special components. Then max(l

30 , h − l) ≤ maxleaf(D) ≤ l + 2h.

Proof : The upper bound is clear, as at most two vertices in a given non special
component can be leaves of a given outbranching. The first term of the lower
bound comes from Theorem 1 and Theorem 2. To establish the second term,
consider the digraph D′ whose vertices are the special vertices of D and r. For
every non special component of D, add an edge in D′ between the special in-
neighbours of its two ends. Consider an outbranching of D′ rooted at r. This
outbranching uses l − 1 edges in D′, and directly corresponds to an out-tree
T in D. Extend T into an outbranching T̃ of D. Every non special component
which is not used in T contributes to at least a leaf in T̃ , which concludes the
proof. �

Consider the best of the three outbranchings of D obtained in polynomial time
by Theorem 1, Theorem 2 and Theorem 4. This outbranching has at least
max(l

30 , h − l) leaves. The worst case is when l
30 = h − l. In this case, the

upper bound becomes: 92l
30 , hence we have a factor 92 approximation algorithm

for ROOTED MAXIMUM LEAF OUTBRANCHING.

6 Conclusion

We have given an edge-quadratic kernel and a constant factor approximation
algorithm for ROOTED MAXIMUM LEAF OUTBRANCHING: reducing the gap
between the problem of finding trees with many leaves in undirected and di-
rected graphs. The gap now essentially lies in the fact that MAXIMUM LEAF
SPANNING TREE has a linear kernel while ROOTED MAXIMUM LEAF
OUTBRANCHING has a quadratic kernel. Deciding whether ROOTED MAXI-
MUM LEAF OUTBRANCHING has a vertex-linear kernel is a challenging ques-
tion. Whether long paths made of 2-circuits can be dealt with or not might be
key to this respect.

96 J. Daligault and S. Thomassé

References

[1] Alon, N., Fomin, F., Gutin, G., Krivelevich, M., Saurabh, S.: Parameterized algo-
rithms for directed maximum leaf problems. In: Arge, L., Cachin, C., Jurdziński,
T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 352–362. Springer, Hei-
delberg (2007)

[2] Alon, N., Fomin, F., Gutin, G., Krivelevich, M., Saurabh, S.: Spanning directed
trees with many leaves. SIAM J. Discrete Maths. 23(1), 466–476 (2009)

[3] Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems with-
out polynomial kernels (Extended abstract). In: Aceto, L., Damgård, I., Goldberg,
L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008,
Part I. LNCS, vol. 5125, pp. 563–574. Springer, Heidelberg (2008)

[4] Paul, S.: Bonsma and Frederic Dorn. An fpt algorithm for directed spanning k-leaf.
abs/0711.4052 (2007)

[5] Chen, J., Liu, Y.: On the parameterized max-leaf problems: digraphs and undi-
rected graphs. Technical report, Department of Computer Science, Texas A& M
University (2008)

[6] Cheriyan, J., Reif, J.: Directed s-t numberings, rubber bands, and testing digraph
k-vertex connectivity. Combinatorica 14(4), 435–451 (1994)

[7] Daligault, J., Gutin, G., Kim, E.J., Yeo, A.: FPT algorithms and kernels for the
Directed k-Leaf problem. To appear in Journal of Computer and System Sciences

[8] Dijkstra, E.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974)

[9] Ding, G., Johnson, T., Seymour, P.: Spanning trees with many leaves. J. Graph
Theory 37(4), 189–197 (2001)

[10] Downey, R.G., Fellows, M.R.: Parameterized complexity. Springer, Heidelberg
(1999)

[11] Drescher, M., Vetta, A.: An approximation algorithm for the maximum leaf span-
ning arborescence problem. To appear in ACM Transactions on Algorithms

[12] Estivill-Castro, V., Fellows, M., Langston, M., Rosamond, F.: Fixed-parameter
tractability is polynomial-time extremal structure theory i: The case of max leaf.
In: Proc. of ACiD 2005 (2005)

[13] Fernau, H., Fomin, F.V., Lokshtanov, D., Raible, D., Saurabh, S., Villanger, Y.:
Kernel(s) for problems with no kernel: On out-trees with many leaves. In: Albers,
S., Marion, J.-Y. (eds.) 26th International Symposium on Theoretical Aspects of
Computer Science (STACS 2009), Dagstuhl, Germany. Leibniz International Pro-
ceedings in Informatics, vol. 3, pp. 421–432. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, Germany (2009),
http://drops.dagstuhl.de/opus/volltexte/2009/1843

[14] Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg
(2006)

[15] Fomin, F., Grandoni, F., Kratsch, D.: Solving connected dominating set faster
than 2n. Algorithmica 52(2), 153–166 (2008)

[16] Galbiati, G., Maffioli, F., Morzenti, A.: A short note on the approximability of the
maximum leaves spanning tree problem. Inf. Process. Lett. 52(1), 45–49 (1994)

[17] Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization.
SIGACT News 38(1), 31–45 (2007)

[18] Kneis, J., Langer, A., Rossmanith, P.: A new algorithm for finding trees with
many leaves. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008.
LNCS, vol. 5369, pp. 270–281. Springer, Heidelberg (2008)

http://drops.dagstuhl.de/opus/volltexte/2009/1843

On Finding Directed Trees with Many Leaves 97

[19] Lempel, A., Even, S., Cederbaum, I.: An algorithm for planarity testing of graphs.
In: Rosenstiehl, P. (ed.) Theory of Graphs: Internat. Sympos.: Rome, pp. 215–232
(1966)

[20] Linial, N., Lovasz, L., Wigderson, A.: Rubber bands, convex embeddings and graph
connectivity. Combinatorica 8, 91–102 (1988)

[21] Niedermeier, R.: Invitation to fixed parameter algorithms. Oxford Lectures Series
in Mathematics and its Applications, vol. 31. Oxford University Press, Oxford
(2006)

[22] Solis-Oba, R.: 2-approximation algorithm for finding a spanning tree with max-
imum number of leaves. In: Bilardi, G., Pietracaprina, A., Italiano, G.F., Pucci,
G. (eds.) ESA 1998. LNCS, vol. 1461, pp. 441–452. Springer, Heidelberg (1998)

[23] Storer, J.A.: Constructing full spanning trees for cubic graphs. Inform Process
Lett. 13, 8–11 (1981)

[24] Wu, J., Li, H.: On calculating connected dominating set for efficient routing in
ad hoc wireless networks. In: DIALM 1999: Proceedings of the 3rd international
workshop on Discrete algorithms and methods for mobile computing and commu-
nications, pp. 7–14. ACM Press, New York (1999)

Bounded-Degree Techniques Accelerate Some
Parameterized Graph Algorithms

Peter Damaschke

Department of Computer Science and Engineering
Chalmers University, 41296 Göteborg, Sweden

ptr@chalmers.se

Abstract. Many algorithms for FPT graph problems are search tree
algorithms with sophisticated local branching rules. But it has also been
noticed that using the global structure of input graphs complements the
the search tree paradigm. Here we prove some new results based on
the global structure of bounded-degree graphs after branching away the
high-degree vertices. Some techniques and structural results are generic
and should find more applications. First, we decompose a graph by
“separating” branchings into cheaper or smaller components wich are
then processed separately. Using this idea we accelerate the O∗(1.3803k)
time algorithm for counting the vertex covers of size k (Mölle, Richter,
and Rossmanith, 2006) to O∗(1.3740k). Next we characterize the graphs
where no edge is in three conflict triples, i.e., triples of vertices with
exactly two edges. This theorem may find interest in graph theory, and
it yields an O∗(1.47k) time algorithm for Cluster Deletion, improv-
ing upon the previous O∗(1.53k) (Gramm, Guo, Hüffner, Niedermeier,
2004). Cluster Deletion is the problem of deleting k edges to destroy
all conflict triples and get a disjoint union of cliques. For graphs where
every edge is in O(1) conflict triples we show a nice dichotomy: The
graph or its complement has degree O(1). This opens the possibility for
future improvements via the above decomposition technique.

1 The Problems and Contributions

A problem is fixed-parameter tractable (FPT) if it can be solved in O(p(n)f(k))
time where p is a polynomial and f any function. We assume familiarity with
the basic notions of FPT algorithms and their analysis [5,13]. Since we focus
on the f(k) factor, we sometimes adopt the O∗(f(k)) notation that suppresses
polynomial factors. In graphs we usually denote by n the number of vertices.
For brevity we say “component” instead of “connected component” of a graph.

Counting Vertex Covers: A vertex cover is a set of vertices with at least one
vertex from every edge. The problem of counting all vertex covers of size k in
graphs (or more generally, hitting sets of size k in hypergraphs of fixed rank) is
very natural as such, but has also interesting applications in combinatorial infer-
ence, e.g., in computational biology as proposed in [3]. Briefly, the real problem
is to infer a set of substances that produced a given set of indicators, where

J. Chen and F.V. Fomin (Eds.): IWPEC 2009, LNCS 5917, pp. 98–109, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Bounded-Degree Techniques 99

an indicator may come from several candidate substances. Substances and indi-
cators are modeled as vertices and edges of a hypergraph. Since many different
solutions of a certain expected size exist, we count the solutions containing every
fixed vertex, in order to evaluate how likely the presence of every substance is.
Many vertex cover variants have been studied as well, see, e.g., [11] for pointers.

The Vertex Cover Counting algorithm in [12] first branches on vertices
of degree 4 or larger. The branching vector (1, 4) has branching number 1.3803,
and vertex covers in the residual graphs of degree 3 can be counted in O∗(1.26k)
time by a nontrivial technique. This gives an overall time bound of O∗(1.3803k),
where the (1, 4)-branching is the bottleneck. In order to take this hurdle we must
avoid the situation that only (1, 4)-branching takes place and cheaper rules are
never invoked. Our idea is to reuse the above algorithm but choose the initial
(1, 4)-branchings in a special way that guarantees a “large and easy” residual
graph. We either retain one large degree-3 component that can be solved in
O∗(1.26k) time (with the residual k), or we can split the residual graph into
several components, process them independently, and finally combine the partial
results in polynomial time. Loosely speaking, due to this quasi-parallelization
of the remaining branchings, only one component with the largest residual k
counts for the exponential term in the complexity. In all cases this drives the
overall branching number below 1.3803. The fact that components of a graph
can be treated independently is usually not even worth mentioning as it cannot
be exploited in a worst-case analysis, but in our approach it becomes essential.
The time analysis is not straightworward either. Upon the (1, 4)-branchings we
deduct not only 1 and 4 from parameter k, but also the number of vertices that
will be added later to the vertex covers in a cheaper way. On the other hand, we
must “charge” the (1, 4)-branchings for these deferred decisions and increase the
size bounds of the search trees after the branching accordingly, as every leaf in
the search tree now represents the deferred decisions. But since they are cheaper,
this pays off in the end.

This global technique of branching away the hardest parts and splitting the
rest into independent pieces seems to be new in this form. The idea is not deep,
but this may be a strength. The conceptual simplicity should make it versatile
and also applicable to other FPT problems that decompose neatly.

The bound for Vertex Cover Counting we can prove so far is O∗(1.3740k).
Seemingly this is marginal progress, however, the weakness is apparently in the
current analysis rather than in the algorithm itself. Our analysis gives something
away, hence the true worst-case bound is likely to be way better. But it is hard
to take advantage of those observations, since different bad cases can appear
mixed throughout the search tree. (Cf. also [6,7].)

Cluster Modification Problems: A cluster graph is a disjoint union of cliques,
also called clusters. A P3, or conflict triple, is a path of three vertices (and two
edges). Cluster graphs are exactly the graphs without induced P3. In Cluster

Deletion we want to delete at most k edges in a graph G so as to obtain a
cluster graph. That is, deletions must destroy all induced P3. Cluster Editing

is similarly defined with edge deletions and insertions. Both problems are special

100 P. Damaschke

cases of Weighted Cluster Editing where pairs of vertices have individual
edits costs. These NP-hard problems [14] have also applications foremost in
computational biology [4,9,14]. Cluster Deletion becomes important if only
adjacent vertices (representing similar objects) are tolerated in any cluster.

The parameterized complexity of these problems is well studied. In [2] we give
problem kernels and algorithms for enumerating all solutions to several clustering
problems. In [1], Weighted Cluster Editing has been solved in O(1.82k+n3)
time. This is also the best known time bound for Cluster Editing. The other
special case is still somewhat “easier”: an O(1.53k + n3) time algorithm for
Cluster Deletion is known from [8]. It was an example of an automatically
generated search tree algorithm and improved a “handmade” O(1.77k + n3)
algorithm [9]. It works with branching rules on subgraphs with at most six
vertices. No further progress on Cluster Deletion has been made since then.

Here we come back to handicraft and give an O(1.47k + n3) time algorithm
for Cluster Deletion. It starts from the most obvious rule with branching
number 1.47: If some edge is in three or more P3, then branch on the edge, i.e.,
delete the edge, or delete all edges building a P3 with it. Key to our improvement
is a new theorem showing that graphs where this rule is not applicable have
simple structures, and no other local branching rules are needed. (Only special
cases were already treated in [1, Lemma 4] and in a conference version of [2].)

The result give new indications that local branching rules should be comple-
mented by global structure analysis and techniques. Other global methods like
dynamic programming on subsets, bounded treewidth and pathwidth [6,7], and
iterative compression [10], have recently shown their great potential. In fact,
the O(1.3803k) algorithm for Weighted Vertex Cover in [6] is close to the
Vertex Cover Counting results, but here we add our separation idea.

Organization of the paper: In Section 2 we state our algorithm for Vertex

Cover Counting. It builds upon [12] and is only slightly more complicated.
The only new features are that we branch on vertices of degree 4 in some breadth-
first order and combine partial results from different components in moderate
polynomial time. (The polynomial factor has not been explicitly specified in [12],
but we can obviously state that it does not blow up by the routines we add.) In
Section 3 we prove a time bound that beats O∗(1.3803k), and we discuss why the
true bound should be even better. Then we turn to some graph theory useful for
clustering. In Section 4 we completely characterize the graphs where no edge is
in three P3. In the proof we tried to avoid too many tiresome case distinctions.
More generally, for graphs where every edge is in an O(1) number of P3 we prove
a dichotomy: the graph or its complement graph has degree O(1). Section 5 deals
with the algorithmic consequences of P3 structure. We solve Cluster Deletion

in O∗(1.47k) time. Improving some details in the polynomial-time parts seems
quite possible, however, the more intriguing question is about improved bases
of the exponential term. We have to leave this for further research, but, using
the above dichotomy we can at least show that the bottleneck case is graphs
with bounded degree, and therefore it may be possible to apply the separation
technique again. We discuss these possibilities also for Cluster Editing. Due

Bounded-Degree Techniques 101

to the page limit, some simpler proofs are omitted, graph-theoretic notions are
only briefly reviewed, and there is no space for figures.

2 Vertex Cover Counting Algorithm

Let c(G, k) be the number of vertex covers with exactly k vertices in graph G.
The degree of a vertex v is the number of vertices adjacent to v. A degree-d ver-
tex has degree exactly d. The degree of a graph is the maximum vertex degree.
A subcubic graph has degree 3. We skip the definition of tree decomposition,
because we use the following result only as a “black box”: Any subcubic graph
has a tree decomposition of width at most (1/6 + ε)n, and such a tree decom-
position is computable in polynomial time for any fixed ε > 0 [7]. By dynamic
programming on this tree decomposition one can count the vertex covers of size
k in O∗(2(1/3+ε)k) = O∗(1.26k) time [12], thus we have:

Lemma 1. In subcubic graphs G one can compute c(G, k) in O∗(1.26k) time.

If G is the disjoint union of graphs G1 and G2 then, obviously, c(G, k) =∑k
j=0 c(G1, j) · c(G2, k − j). From this one easily concludes:

Lemma 2. Once the c(G′, j) are known for all components G′ of G, and for all
j ≤ k, we can compute c(G, k) in polynomial time.

Branching on a vertex v means: Either put v or all neighbors of v in the vertex
cover, remove the chosen vertices, all incident edges, and isolated vertices.

We refer to a series of such branching decisions on different vertices as a
branch. Thus, a branch corresponds to a node of the resulting search tree. The
residual graph in a branch is the graph that remains after the branchings. Note
that branching on a vertex divides the family of vertex covers of the current
residual graph exactly in two subfamilies of the vertex covers of residual graphs
in the two new branches. Hence, when the search tree is completed, we can sum
up the numbers of vertex covers (of the proper size) found in the residual graphs
at the leaves. Now we describe our algorithm.

Phase 1: preparation. First branch, as long as possible, on degree-d vertices
with d ≥ 5. In every branch consider the residual graph of degree 4 and continue
as described below. We will declare certain vertices roots.

Phase 2: separation. If a component without a root exists, then fix any vertex
in this component as the active root and proceed as follows. Layer j contains
the vertices at distance j from the active root. As long as degree-4 vertices exist
in some layer j > 2 of this component, choose one such degree-4 vertex closest
to the active root and branch on it. (Note that these branchings may change
the layers, and even disconnect some vertices from the active root.) This process
stops as soon as no degree-4 vertices remain in the layers j > 2. At this moment,
set the active root passive. – Iterate.

Phase 3: completion. Branch on the remaining degree-4 vertices near the
roots. This results in a subcubic graph. Let m ≤ k be the number of vertices

102 P. Damaschke

that remain to be added to the vertex cover. (Note that m depends on the branch
but is exactly known in every branch.) Compute the c(G′, i) in all components
G′ of the residual graph, and for all i ≤ m, using the algorithm in Lemma 1.
Finally combine these results in every residual graph, to compute the number
of vertex covers of size k, using the algorithm in Lemma 2. In the last step, the
counts from all leaves of the search tree are added.

Some refinement: For phase 2 we refine the rule for selecting the next degree-4
vertex to branch on. This is only a technicality that we insert just because we
can prove a better worst-case bound when using it.

Whenever a new layer j for branching is entered (that is, j > 2 is the smallest
index of a layer where still degree-4 vertices exist), pair up some degree-4 vertices
in layer j to siblings: Every degree-4 vertex in layer j is assigned an adjacent
parent vertex in layer j − 1. (If several possible parent vertices exist, then select
any one.) Siblings are degree-4 vertices with the same parent. It is not hard to
see that, for j > 3, every degree-4 vertex gets at most one sibling. Now, whenever
we have branched on a degree-4 vertex v and added v to the vertex cover (this
happens in one branch), and v has a sibling which is still a degree-4 vertex, then
branch on this sibling immediately.

3 Analysis

A simple analysis would show that the residual graph after phase 2 (separation)
always needs a vertex cover of at least yk vertices for some fraction y, giving
a time bound O∗(1.38028k−y1.26y). However y is very small in branches where
often 4 vertices are taken. We got a better result by relating these “cheap”
vertices in phase 3 directly to the number of branchings in phase 2.

Theorem 1. The vertex covers of size k can be counted in O∗(1.3740k) time.

Proof. The branching number for branching on degree-d vertices with d ≥ 5 in
phase 1 is the positive root of x5 = x4 + 1, that is, x < 1.3248.

For phase 2 the following observation is crucial: Since we always pick a degree-
4 vertex in a layer j > 2 closest to the root, and removals can make the distances
in the remaining graph only larger, the current distance j from root, of the
degree-4 vertices we branch on, can only increase during the process. Hence, if
j is the index of the current layer, any vertex being in a layer i ≤ j − 2 at this
moment is never removed later, and it also stays in layer i forever. Accordingly
we call these vertices persistent. Also note that any vertex being in layer j−1 at
this moment can either disappear due to branchings in layer j, or stay in layer
j − 1 forever, but it cannot slide into a layer with higher index later.

Let j be the current layer where we branch on degree-4 vertices. As already
stated in the algorithm, to every degree-4 vertex v in layer j we assign a parent
p(v) which is a neighbor of v in layer j − 1, and a grandparent g(v) which is a
neighbor of p(v) in layer j − 2. Note that g(v) is persistent. Since every vertex
in a layer i > 0 has at least one edge to a neighbor in layer i − 1, and vertex
degrees are at most 3 in the layers i, 2 < i < j, every persistent vertex in a layer

Bounded-Degree Techniques 103

i > 2 can have at most 2 children and at most 4 grandchildren. Recall that any
two degree-4 vertices v, v′ with the same parent are siblings. If v is a degree-4
vertex without a sibling v′ (a degree-4 vertex with the same parent), we still use
the notation v′ and simply say that “v′ does not exist”.

We assign to certain vertices certificates: Consider any vertex v and its sibling
v′ in layer j. Case (1): Either v′ does not exist, or v, v′ are adjacent. Then, when
we branch on v we send a certificate to g(v). The branching vector is (1, 4), and
after the branching no child of p(v) is a degree-4 vertex anymore, since either v′

did not exist, or v′ has been removed now, or v has been removed which reduces
the degree of v′. Case (2): v′ exists and v, v′ are not adjacent. Then, when we
branch on the first sibling v, we send a certificate to g(v). In one branch we have
put the 4 neighbors of v in the vertex cover. Otherwise we have put only v in
the vertex cover, and then, by the refined rule, we branch on v′ which is still a
degree-4 vertex. In total we achieve the branching vector (2, 4, 5). After that, no
child of p(v) is a degree-4 vertex anymore, since p(v) has been removed which
reduces the degree of its children, or v and v′ have been removed.

This way, every persistent vertex in layers i > 2 receives at most 2 certificates
through its (at most 2) children. For each residual graph let r denote the total
number of certificates issued in all components. Hence at least r/2 persistent
vertices exist in layers i > 2. Since every such vertex is incident to an edge to
layer i − 1, at least r/2 edges remain after phase 2.

Let us count the branchings on the remaining degree-4 vertices near the roots
already in phase 2. Since in each residual graph only one search tree for the
components is decisive for the complexity (only the largest one, due to the
polynomial-time combination procedure from Lemma 2) and every component
has only O(1) degree-4 vertices at that moment, this adds only a constant factor
to the complexity. On the other hand, the graphs in phase 3 are now subcubic.

We call the vertices inserted in the vertex cover in phase 2 and 3 expensive
and cheap vertices, respectively. Let T (k, l) be the number of leaves of a search
tree, when it remains to add k + l vertices at most k of which are expensive
and at least l are cheap. Initially, k is the given k, and l = 0. In the following,
fractional numbers of objects make sense because their sum is finally rounded
to the next integer. (They could be avoided by doing an equivalent analysis for
blocks of 6 consecutive branchings.) As seen above, for every branching in phase
2, either on a single vertex or on siblings v, v′ of degree 4, at least 1/2 edges
need to be covered later in phase 3. Since the maximum degree is 3, at least
1/6 cheap vertices will be added later. Thus it is safe to transmit 1/6 from k
to l. This yields T (k, l) ≤ T (k − 1 − 1/6, l + 1/6) + T (k − 4 − 1/6, l + 1/6) and
T (k, l) ≤ T (k−2−1/6, l+1/6)+T (k−4−1/6, l+1/6)+T (k−5−1/6, l+1/6) in
the two cases. Together with T (0, l) ≤ 1.26l from Lemma 1 we obtain recurrences
for T (k) := T (k, 0), the number of leaves in the overall search tree: Since every
branching in phase 2 finally incurs another 1.261/6 factor in all summands, we
have T (k) ≤ (T (k − 1 − 1/6) + T (k − 4 − 1/6))1.261/6 and similarly T (k) ≤
(T (k − 2 − 1/6) + T (k − 4 − 1/6) + T (k − 5 − 1/6))1.261/6, with numerical
solutions 1.3699k and 1.3740k, respectively. ��

104 P. Damaschke

Our analysis guarantees the existence of at least one persistent vertex, with
an edge attached, for any two (1, 4)-branchings made. We “certify” only grand-
parents and ignore further persistent edges, especially in the large component
relevant for the complexity. If the analysis could use all persistent vertices, this
would almost double the deduction from the parameter. Refinements of the al-
gorithm itself may give further improvements: The worst case in our analysis
appears if every vertex in the largest component has two children. But then the
component is merely a binary tree, and vertex covers could be counted trivially
there. Finally, some clever measure-and-conquer might yield a simpler analysis.

4 Conflict Triple Structure in Graphs

Pn, Cn, Kn denote a chordless path, cycle, and a clique, respectively, of n vertices,
and Km,n a complete bipartite graph with m and n vertices in the partite sets.
The disjoint union G+H of graphs G and H consists of vertex-disjoint copies of
G and H , and pG is the disjoint union of p copies of G. The join G∗H is obtained
from G+H by inserting all possible edges between the vertices of G and H . The
complement Gc of G is obtained by switching all edges into non-edges and vice
versa. In an obvious sense, a P4 has two inner vertices forming the central edge,
and two outer vertices, and a P5 has a central vertex.

Let the score of an edge be the number of different P3 the edge belongs to.
A graph is score-s if every edge has score at most s. Note that a score-s graph
is also score-(s + 1), and an induced subgraph of a score-s graph is score-s. A
main goal of this section is to characterize the connected score-2 graphs G. We
say that G is spanning score-2 if G has a spanning tree of score-2 edges. To add
a vertex to a connected graph G means to introduce a new vertex adjacent to
at least one vertex of G. A graph is maximal score-2 if we cannot add another
vertex while keeping the graph score-2 and connected.

Lemma 3. Suppose that we add a vertex x to a connected score-2 graph G.
(i) If the extended graph remains score-2, and x is adjacent to vertex u of G,
then x is also adjacent to all vertices reachable from u via score-2 edges in G.
(ii) If G is spanning score-2 and the extended graph remains score-2, then x is
adjacent to all vertices of G.
(iii) If G is spanning score-2 and has a vertex non-adjacent to at least three
other vertices of G, then G is maximal score-2.

Doubling a vertex x of a graph means to insert a new vertex adjacent exactly to
x and its neighbors. The result of doubling several vertices does not depend on
the order. Now we define several special 6-vertex graphs, with the understanding
that only the explicitly mentioned edges exist.

– 3-asterisk: a K3 where each vertex is adjacent to one further vertex.
– 3-sun: a K3 where each two vertices are adjacent to one further vertex.
– fat P4: obtained from a P4 by doubling both inner vertices.
– fat P5: obtained from a P5 by doubling its central vertex.

Bounded-Degree Techniques 105

Theorem 2. The following graphs (with arbitrarily large positive n, q, p) and
their connected induced subgraphs comprise the complete list of connected score-
2 graphs: 3-asterisk, 3-sun, fat P4, fat P5; Cn (n ≥ 4); Kq ∗ C5, Kq ∗ Kc

3,
Kq ∗ (K2 + K2); (qK1 + pK2)c (p ≥ 2).

Proof. It is easy to check that all listed graphs are score-2. All of them except
(qK1+pK2)c are also spanning score-2. The 3-asterisk, 3-sun, fat P4, fat P5, and
Cn (n ≥ 6) also fulfill the conditions of Lemma 3 (iii), hence they are maximal
score-2. Adding a vertex to any of Kq ∗C5, Kq ∗Kc

3 , Kq ∗(K2+K2) while keeping
score 2 yields a graph of the same type, with q increased by 1.

The reasoning for (qK1 + pK2)c is slightly more complicated. Graph (pK2)c

(p ≥ 2) is spanning score-2, hence, by Lemma 3 (ii), every added vertex is
adjacent to all its 2p vertices. Moreover, each of the added vertices must be
adjacent to all other added vertices except at most one. Thus we obtain only
graphs (qK1 + pK2)c. It is also impossible to add further vertices adjacent only
to vertices in the qK1 part, as this would create new edges of score above 2.

Thus we have shown that our list contains only score-2 graphs and is closed
under vertex addition. Next we prove that no further cases exist, that is, any
connected score-2 graph G is mentioned in the Theorem.

Let N(u) denote the set of neighbors of a vertex u in G. In Gc this means,
N(u) is the set of all non-neighbors of u. Let H(u) be the subgraph of Gc (!)
induced by N(u). If some vertex v has degree larger than 2 in H(u), then the
non-edge uv is in three P c

3 in Gc, a contradiction. If H(u) has an induced 2K2
then G has an induced (K1+2K2)c. The other cases are that H(u) has no edges,
or the edges in H(u) form one of the induced subgraphs K2, P3, C3, P4, C4, C5.
We examine these cases one-by-one.

– If H(u) has an induced C5 then G has an induced K1 ∗ C5.
– If H(u) has an induced C4 then G has an induced K1 ∗ (K2 + K2).
– If H(u) has an induced P4 then G has an induced K1 ∗ P4. Since the two

edges from u to the outer vertices of the P4 and the central edge of the
P4 have score 2, Lemma 3 (i) gives that any added vertex is adjacent to
both inner vertices, or to u and both outer vertices, or to all five vertices.
These cases yield an induced 3-sun, K1 ∗C5, and K2 ∗P4 (induced subgraph
of K2 ∗ C5), respectively. By essentially the same argument, adding further
vertices to Kq ∗ P4 can only lead to Kq+1 ∗ P4 or Kq ∗ C5.

– If H(u) has an induced C3 then G has an induced K1,3 = K1 ∗ Kc
3.

The P3 case requires some more work. If H(u) has an induced P3 (but none of
P4, C4, C5) then G has an induced subgraph with vertices x, y, u, z and edges
xy, xu, yu, uz. Since uz has score 2, any new vertices adjacent to u or z are
adjacent to both u and z (Lemma 3 (i)), hence also to x and y and to each
other (as no further edges in H(u)c = N(u) exist by assumption). This yields
only graphs of the form Kq ∗ (K2 +K1). Now let q be maximum, that is, further
vertices that we add are adjacent to x or y only. If some added vertex v is
adjacent to x only, then q = 1. Since vx, xu, uz have score 2, by Lemma 3 (i)
and the assumptions of our case, we can add at most one further vertex, and

106 P. Damaschke

this one is adjacent to y only, which yields a 3-asterisk. It remains the case that
v is adjacent to x and y. First observe q ≤ 2. If q = 2, we have a fat P4. For
q = 1, edges xu, yu, uz have score 2, hence any further vertex added is adjacent
to v only, and we get a fat P5.

Now we have settled all cases where H(u) contains more than one edge, for
some u. It remains to study connected score-2 graphs G where, for every u,
the neighborhood N(u) has at most one non-edge. Clearly, such G cannot have
induced K1,3. If G also lacks K3 then the maximum degree in G is 2, hence G
is Pn or Cn. Otherwise consider some maximal clique Kq, q ≥ 3. Any vertex x
added to this Kq has some neighbor u in the Kq, hence x ∈ H(u). In Gc, vertex x
is therefore adjacent to exactly one vertex in the Kc

q . It also follows that we can
add at most one vertex to the considered Kq. This yields an induced Kq−1∗(2K1).
Since the same reasoning applies to the other Kq (where x replaces u), u is the
only vertex that could be added. Hence Kq−1 ∗ (2K1) is already the entire G in
this case. ��

Theorem 2 is best possible in the sense that already score-3 graphs are not
limited to special structures but can be arbitrarily complicated: Subdividing the
edges of any graph of degree 3 by further vertices generates a score-3 graph.
However, we can still prove an interesting dichotomy for graphs of any fixed
score s. Let N i(u) denote the set of vertices at distance exactly i from u.

Theorem 3. Let G be any connected graph of score s graph that has more than
(s + 1)2(2s + 1)2 + 1 ∼ 4s4 vertices. Then G or Gc has degree at most 3s + 1.

Proof. Let u be a vertex of maximum degree d in G, hence N(u) has d vertices.
Since every edge uv, v ∈ N(u) has score at most s, every vertex v ∈ N(u) must
be adjacent to at least d − s − 1 other vertices in N(u). Let x ∈ N2(u), and
let v ∈ N(u) be some neighbor of x. Since vx forms a P3 with uv, it is in at
most s − 1 other P3. It follows that x is adjacent to at least d − 2s − 2 of v’s
d− s− 1 neighbors in N(u), provided that d > 2s− 2. Next, let y ∈ N3(u), and
let x ∈ N2(u) be some neighbor of y. As shown above, x has at least d− 2s− 1
neighbors in N(u), each of which is involved in a P3 with xy, and xy has score
at most s, we get d − 2s − 1 ≤ s. This shows d ≤ 3s + 1 or N3(u) = ∅.

In case d ≤ 3s + 1 we are done, so let N3(u) = ∅. If d ≤ (s + 1)(2s + 1)
then, since d is the maximum degree, we have |N0(u)| + |N1(u)| + |N2(u)| ≤
(s + 1)2(2s + 1)2 + 1. Hence assume d > (s + 1)(2s + 1) in the following. Recall
again that every vertex in N2(u) has at least d− 2s− 1 neighbors in N(u), that
is, at most 2s + 1 non-neighbors in N(u). Thus, if |N2(u)| ≥ s + 1 then some
v ∈ N(u) is still adjacent to s + 1 vertices of N2(u). But uv has score at most
s. This contradiction shows |N2(u)| ≤ s. Now we see that the vertices in N0(u),
N1(u), and N2(u) have, in Gc, degree at most s, 2s + 1, and 3s + 1. ��

5 FPT Algorithms Using the Conflict Triple Structure

As usual, O(1) means “bounded by a certain constant”.

Bounded-Degree Techniques 107

Theorem 4. Cluster Deletion is solvable in O(1.47k + n3) time.

Proof. As long as possible, take an edge e of score larger than 2, and delete e or
all edges forming a P3 with e. The branching number is 1.47. Once the graph is
score-2, every component is one of the graphs from Theorem 2. We show how to
solve Cluster Deletion in polynomial time in these cases. For graphs of size
O(1) and for Cn (and Pn) this is evident.

In (qK1 + pK2)c we take one vertex from each Kc
2 to form a clique of size

p, and the rest is a clique of size p + q. This solution needs p(p + q − 1) edge
deletions, which is optimal: Any two of the p pairs Kc

2 build an induced C4, hence
two edges must be deleted. Since all these C4 are edge-disjoint, no deletion is
counted twice. Thus we must delete at least p(p− 1) edges between these pairs.
Moreover, each combination of the p pairs and the q vertices in the (qK1)c builds
a P3, and all these P3 are edge-disjoint. Thus we must delete pq of these edges.
The sum is p(p + q − 1).

The other graphs in Theorem 2 consist of one clique K of size q, joined with
at most five other vertices. If we first disconnect these extra vertices from K,
we always get a solution with at most 5q + 3 deletions. (Summand 3 is easy to
verify.) Assume that some solution disconnects some r ≤ q/2 vertices from the
other q − r vertices of K. This costs already r(q − r) deletions which cannot be
optimal unless r(q − r) ≤ 5q + 3. Since q − r ≥ q/2, this yields rq/2 ≤ 5q + 3,
hence r ≤ 10 + 6/q and finally r ≤ 10 regardless of q. Since the vertices of K
are undistinguishable, we may select any 10 of them as candidate vertices for
split-off. Thus there exists an optimal solution that deletes edges only between
at most 15 predefined vertices, and we are back to the O(1) size case.

In all cases, the polynomial term in the time bound is dominated by the time
needed to enumerate the P3. Note that, during the process of edge deletions,
every triple of vertices becomes a new P3 at most once. ��
With minor modifications, the algorithm can output a concise enumeration of all
solutions (cf. [2]) within the same time bound. Theorem 3 has some interesting
algorithmic consequences, too:

Corollary 1. Let b > 1.3803 be any fixed base. If we can solve Cluster Dele-

tion in O∗(bk) time for graphs of degree O(1), we can do so for general graphs.

Proof. As long as possible, branch on edges of score 4 or larger. The branching
number is 1.3803. It remains a score-3 graph G. Assume G is connected, otherwise
we consider the components separately. Theorem 3 gives that G or Gc has degree
at most 10 (or G has O(1) size).

In Gc we also observe that the sum of degrees of any two vertices u, v with
distance larger than 2 (in Gc) is at most 3, since non-edge uv belongs to at
most three P c

3 . Consequently, Gc has at most one non-trivial component H with
more than one edge. If the second case of Theorem 3 applies, the degree of Gc

is O(1), thus H has size O(1) (or we get again a forbidden pair u, v as above).
That means, G has the form (qK1 + pK2 + H)c with a graph H of size O(1),
and we can solve this case in polynomial time, similarly as in Theorem 4. If the
first case of Theorem 3 holds, the degree of G is O(1).

108 P. Damaschke

Hence, either a rule with branching number at most 1.3803 is available, or the
instance is solvable in polynomial time, or G has degree O(1). ��

Remarkably, Corollary 1 implies that efforts to improve the base 1.47 only need
to consider score-3 graphs of O(1) degree. This also suggests that the separation
technique from Section 2-3 may be applicable. We have to leave the question
how much we can gain in this way for further research. For Cluster Editing

we get a similar “reduction to fixed degree” below.

Lemma 4. For any b > 1.62 there exists s such that, if a graph has an edge of
score larger than s then a branching rule for Cluster Editing with branching
number at most b is available.

Proof. Consider an edge uv with score s + 1, and let S be the set of those s + 1
vertices that form P3 with uv. We branch as follows: Either delete uv or keep it.
If we keep uv, then for each w ∈ S we must edit (insert or delete) one of the edges
uw, vw. Accordingly, we refer to w as an insertion or deletion vertex. Now decide
to make all w ∈ S deletion vertices, or decide on some insertion vertex w ∈ S.
In each of the last s + 1 branches continue as follows. Make every y ∈ S \ {w}
independently an insertion or deletion vertex. In both branches we must edit
one of the edges uy, vy, and in one branch we must also edit wy, because any
insertion (deletion) vertex must be adjacent (non-adjacent) to w. It is easy to
verify that the branching number of this whole branching rule on S, u, v satisfies
x2s+1 ≤ x2s+xs+(s+1)(x+1)s, equivalently x ≤ 1+1/xs+(s+1)((x+1)/x2)s.
For any x > 1.62 we have (x + 1)/x2 < 1, hence the branching number tends to
1.62 as s grows. ��

If the score of G is at most our fixed s, then Theorem 3 applies. The case that
Gc has degree O(1) is easily settled, similarly as in Theorem 4:

Lemma 5. In any class of graphs G where Gc has degree d, Cluster Editing

is solvable in polynomial time.

Corollary 2. Let b > 1.62 be any fixed base. If we can solve Cluster Editing

in O∗(bk) time for graphs of degree O(1) (depending on b), we can also do so for
general graphs.

Proof. Combine Theorem 3 with Lemma 4 and 5. ��

We conclude with another observation supporting the conjecture that the sepa-
ration technique is applicable to Cluster Editing:

Proposition 1. In graphs of degree d, all clusters in an optimal solution to
Cluster Editing have at most 2d + 1 vertices.

It is also interesting to notice that an optimal solution to Cluster Editing in
connected graphs of degree O(1) needs k = Θ(n) edits, since the cluster size is
limited (Proposition 1) and links between the clusters must be removed.

Bounded-Degree Techniques 109

Acknowledgment

Thiswork has been supportedby theSwedishResearchCouncil (Vetenskapsr̊adet),
grant 2007-6437, “Combinatorial inference algorithms – parameterization and
clustering”.

References

1. Böcker, S., Briesemeister, S., Bui, Q.B.A., Truß, A.: Going Weighted: Parameter-
ized Algorithms for Cluster Editing. In: Yang, B., Du, D.-Z., Wang, C.A. (eds.)
COCOA 2008. LNCS, vol. 5165, pp. 1–12. Springer, Heidelberg (2008)

2. Damaschke, P.: Fixed-Parameter Enumerability of Cluster Editing and Related
Problems. Theory Comp. Systems (to appear)

3. Damaschke, P., Mololov, L.: The Union of Minimal Hitting Sets: Parameterized
Combinatorial Bounds and Counting. J. Discr. Alg. (to appear)

4. Dehne, F., Langston, M.A., Luo, X., Pitre, S., Shaw, P., Zhang, Y.: The Clus-
ter Editing Problem: Implementations and Experiments. In: Bodlaender, H.L.,
Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 13–24. Springer, Hei-
delberg (2006)

5. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999)

6. Fomin, F.V., Gaspers, S., Saurabh, S., Stepanov, A.A.: On Two Techniques of
Combining Branching and Treewidth. Algorithmica (to appear)

7. Fomin, F.V., Hoie, K.: Pathwidth of Cubic Graphs and Exact Algorithms. Info.
Proc. Letters 97, 191–196 (2006)

8. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Automated Generation of Search
Tree Algorithms for Hard Graph Modification Problems. Algorithmica 39, 321–347
(2004)

9. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Graph-Modeled Data Clustering:
Fixed-Parameter Algorithms for Clique Generation. Theory Comp. Systems 38,
373–392 (2005)

10. Hüffner, F., Komusiewicz, C., Moser, H., Niedermeier, R.: Fixed-Parameter Algo-
rithms for Cluster Vertex Deletion. In: Laber, E.S., Bornstein, C., Nogueira, L.T.,
Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 711–722. Springer, Heidelberg
(2008)

11. Kneis, J., Langer, A., Rossmanith, P.: Improved Upper Bounds for Partial Vertex
Cover. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG
2008. LNCS, vol. 5344, pp. 240–251. Springer, Heidelberg (2008)

12. Mölle, D., Richter, S., Rossmanith, P.: Enumerate and Expand: New Runtime
Bounds for Vertex Cover Variants. In: Chen, D.Z., Lee, D.T. (eds.) COCOON
2006. LNCS, vol. 4112, pp. 265–273. Springer, Heidelberg (2006)

13. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series
in Math. and its Appl. Oxford Univ. Press, Oxford (2006)

14. Shamir, R., Sharan, R., Tsur, D.: Cluster Graph Modification Problems. Discr.
Appl. Math. 144, 173–182 (2004)

Pareto Complexity of Two-Parameter FPT
Problems: A Case Study for Partial Vertex

Cover

Peter Damaschke

Department of Computer Science and Engineering
Chalmers University, 41296 Göteborg, Sweden

ptr@chalmers.se

Abstract. We propose a framework for the complexity of algorithms for
FPT problems with two separate parameters k, m and with exponential
time bounds O∗(xkym) where x, y > 1 are constant bases. An optimal
combination of bases x, y can be chosen depending on the ratio m/k. As
a first illustration we apply the framework to the problem of finding, in
a graph, a vertex cover of size k that leaves at most m edges uncovered.
We report the best branching rules we could find so far, for all ranges of
ratio m/k.

1 Introduction

Parameterized computational problems may have multiple parameters of differ-
ent nature. To be concrete, this paper will focus on an examplary problem that
we call Vertex Cover with Missed Edges (VCME): Given a graph G and
integers k, m, find a set S of at most k vertices and at most m edges such that
every edge either belongs to S or has a vertex in S.

We use it only as a first illustration for the framework, however, VCME (and
more generally, partial hitting sets in hypergraphs) is interesting in itself as
a formulation of certain error-resilient inference problems: Every vertex is a
positive boolean variable, and every edge is a clause, here with two variables.
(In the hitting set problem with missed hyperedges, clauses can be larger.) We
want to satisfy all clauses by a small number k of true variables. Clauses represent
observations and variables are possible alternative “explanations” of them. Due
to noise in the data, at most m clauses may be erroneously in the formula and
need not be satisfied, but it is unknown which clauses are spurious. Thus we
first ask whether there exists a solution with k true variables violating at most
m clauses. In the enumeration problem we would like to get all solutions with
parameter values at most k and m.

VCME differs from weighted covering problems with one parameter: We may
assign weights to vertices and edges and seek a minimum-weight covering. (The
problem introduced in [2] is a special case.) Once we have an algorithm for the
weighted version, we can get solutions with several ratios m/k by adjusting the
weights. However, since the two parameters can have a very different meaning

J. Chen and F.V. Fomin (Eds.): IWPEC 2009, LNCS 5917, pp. 110–121, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Pareto Complexity of Two-Parameter FPT Problems 111

(see above), we want to have them under control separately and explicitly. The
“weighting approach” can easily miss solutions with the prescribed parameter
values. By treating the parameters separately we can also develop efficient al-
gorithms tuned to specific ranges of k, m. VCME also differs from the Partial

Vertex Cover problem with parameters k, t and the goal to cover at least t
edges by k vertices [7,9]. While VCME and Partial Vertex Cover are equiv-
alent as optimization problems (since m + t is the edge number of the input
graph), we are interested in cases where few edges are uncovered. Note that in
[9] the time bounds are exponential in t, hence are not directly comparable to
ours. In general, complexity results for one parameterization do not say much
about others.

By now there is apparently no formal theory of problems that are NP-hard
but fixed-parameter tractable (FPT) and have two or more parameters. Usually
they are handled in an ad hoc way. Some framework is helpful, e.g., when it
comes to comparison of two-parameter algorithms.

Algorithms for one-parameter FPT problems often have time bounds O∗(xk)
where x > 1 is a constant base. (To keep the discussion simple we leave out
polynomial factors and use the O∗-notation which suppresses them. In our con-
crete examples they are always moderate.) Any two O∗(xk) algorithms can be
directly compared, and the one with smaller base x is superior, at least from
sufficiently large k on. In the case of two (or more) parameters k, m, etc. the
situation becomes more complicated, even if polynomial factors are neglected.

In this paper we restrict attention to time bounds of the form O∗(xkym) with
constants x, y > 1. Clearly, time bounds are not necessarily of this form, and
we do not insist on it, but for many problems like VCME it naturally comes up
and appears as a reasonable and not too narrow generalization of O∗(xk) (see
details later on).

While the complexity of an O∗(xk) algorithm is mainly characterized by one
number x, in the two-parameter case we may combine several available algo-
rithms with different pairs of constant bases (x, y), and either one can be the
best for different ranges of parameters k, m. The O∗ complexity of such a com-
pound algorithm is then appropriately described by a set of optimal points (x, y)
in the quadrant x, y > 1 of the (x, y)-plane. (Here, optimal is always meant with
respect to the given algorithm; there might exist faster but yet unknown algo-
rithms for the problem in question.)

In Section 2 we develop our framework for the complexity of two-parameter
problems with time bounds O∗(xkym). In Section 3 we apply this concept and
provide some basic two-parameter algorithms for VCME, focussing on the stan-
dard technique of bounded search trees. The results cover the whole range of
ratios m/k. This is only a starting point. The aim of this paper is to bring for-
ward the approach, whereas the specific results for VCME deserve refinement
and improvement. Section 4 points out some questions for further research. The
main suggestion is to study other natural two-parameter problems in this frame-
work.

112 P. Damaschke

2 Pareto Complexity of Two-Parameter Problems

For a general introduction to FPT algorithms and parameterized complexity we
refer to [6,10]. Now we list a number of definitions and facts for two-parameter
problems.

Geometric definitions
A point (x0, y0) in the (x, y)-plane is said to be dominated by point (x1, y1)
if x0 ≤ x1 and y0 ≤ y1. Consider any algorithm for a problem with input
parameters k, m, and let B be the set of points (x, y) such that O∗(xkym) is an
upper bound for its time complexity. Trivially, if (x, y) ∈ B then every point
that dominates (x, y) is also in B.

For any specific problem instance with parameters k and m we want to mini-
mize the algorithm’s time bound, that is, choose some (x, y) ∈ B that minimizes
xkym. (As said earlier, we can disregard polynomial factors, at least for large
enough instances.) Since xkym = (xym/k)k, all parameter pairs (k, m) with the
same ratio m/k have the same optimal points (x, y) ∈ B. (We say “points” be-
cause the optimal one is not necessarily unique; see the remark below.) We can
characterize the optimal points geometrically. Define X = log x and Y = log y,
with any fixed logarithm base. Points in the x, y > 1 quadrant of the (x, y)-plane
and in the X, Y > 0 quadrant of the (X, Y)-plane correspond to each other in
the obvious sense. For convenience we do not distinguish them notationally if
the reference is clear from context. In particular, B is also considered a set of
points in the positive quadrant of the (X, Y)-plane. Let the X- and Y -axis be
directed to the right and upwards, respectively. Since log(xkym) = kX +mY , an
optimal point for parameter ratio m/k is any point in the (X, Y)-plane where a
sweep line with slope −k/m moving upwards meets B first. This gives rise to the
following notions in the (X, Y)-plane which we also call the logarithmic plane.

Any non-vertical line splits the (X, Y)-plane obviously in a lower and an upper
halfplane. A lower tangent to B is a line T with negative slope such that T goes
through some point of B, and no point of B is in the lower halfplane of T .
The lower convex hull of B is the intersection of all upper halfplanes of lower
tangents to B. The Pareto curve of B is the boundary of the lower convex hull of
B. It is easy to see that Pareto curves are graphs of monotone decreasing convex
functions (with X and Y as the independent and dependent variable, or vice
versa). The maximum of two or more Pareto curves is defined as the boundary
of the intersection of the corresponding lower convex hulls. Equivalently, if we
interpret Pareto curves as functions, we take their argument-wise maximum.
The minimum of two or more Pareto curves is defined similarly, by first taking
the union of the lower convex hulls, but after that we build the lower convex
hull again, as the union of convex regions is in general not convex. Finally, if B
describes a set of upper bounds of a two-parameter FPT algorithm, we simply
speak of the Pareto curve of the algorithm, with respect to these known time
bounds. Any collection of algorithms for the same two-parameter problem, tuned
to several ranges of the ratio m/k, can be merged into a new algorithm whose
Pareto curve is the minimum of Pareto curves of the single algorithms. Thus we

Pareto Complexity of Two-Parameter FPT Problems 113

can formulate our goal as follows: Given a problem, devise an algorithm whose
Pareto curve is minimal.
Remark: In can be proved that, in the logarithmic plane, points on the straight
line segment between two valid bounds are valid bounds, too. However we do
not even need this fact. Points in the interior of a straight line segment L on
the Pareto curve are futile in the sense that they are optimal only for the same
spefific ratio m/k, but then any of the two endpoints of L can be used instead
to express the same time bound, as kX + mY is constant on L.

Recurrences
For a problem with parameters k and m, we call the subproblems with k = 0 and
m = 0, respectively, the marginal problems. For example, VCME with m = 0
is the Vertex Cover problem, and k = 0 is the trivial problem of checking
whether at most m edges are left over. The two-parameter problem cannot be
easier than its marginal problems, that is, bases x, y in a bound O∗(xkym) are not
smaller than the corresponding bases from the algorithms used for the marginal
problems.

We can analyze search tree algorithms for two-parameter problems in a similar
way as in the one-parameter case, though with some extra twist. The branching
vector of a branching rule is now a vector of ordered pairs of numbers indicating
the reduction of parameters k, m in the different branches. Let T (k, m) be the
maximum size, i.e., number of leaves, of a search tree for a problem instance with
parameter values k, m. A branching vector with entries (k1, m1), . . . , (ks, ms)
yields the recurrence T (k, m) ≤

∑s
i=1 T (k−ki, m−mi), where we set T (0, 0) :=

1. If k or m is already smaller than some ki or mi, respectively, the branching rule
is no longer applicable. But then we can, in the remaining instance, immediately
reduce this parameter to 0 in all possible ways: Even naive exhaustive search
costs only polynomial time, since the ki and mi are constant. (For example, in
VCME this simply means to search for a vertex cover of some constant size.)
Afterwards we are left with the marginal problem for k = 0 or m = 0.

We get solutions of the form T (k, m) ≤ xkym with constant bases x, y > 1 from
the characteristic equation x0y0 =

∑s
i=1 x−kiy−mi , which may be multiplied by

xkiymj with the largest ki and mj , so that we get rid of negative exponents. Any
pair of real numbers x, y > 1 satisfying the equation yields an upper bound xkym

on T (k, m). Formally this is proved by bottom-up induction in the search tree,
however the argument is fairly simple: xkym satisfies the recurrence as long as the
branching rule applies, and when k or m is already down to a constant then the
search tree for the marginal problem is no larger than our ym or xk, respectively,
where m or k denotes the residual value at this stage. In conclusion, these solution
pairs determine the Pareto curve of the branching rule. Accordingly, the Pareto
curve of a search tree algorithm working with several branching rules is the max-
imum of the Pareto curves of the branching rules involved.

An interesting side question is whether the solutions of recurrences of branching
rules always form a convex curve in the logarithmic plane. However, if not, then the
Pareto curve is just the lower convex hull of the solution curve, that is, nonconvex
parts are replaced with lower tangents.

114 P. Damaschke

Subgraphs and branching rules
Given any graph G = (V, E), by a subgraph we mean a graph formed by a subset
of V and E, not necessarily an induced subgraph. The subgraph spanned by a
set F ⊆ E of edges is the graph consisting of F and the set V (F) of all vertices
incident with F , but without the additional edges that might exist inside V (F).
For X ⊆ V we denote by E(X) the set of edges inside X .

An FPT algorithm for VCME (or a similar problem) in the bounded search
tree paradigm consists of branching rules, each working on a set F of edges. A
branching rules decides in every branch which vertices and edges of the subgraph
spanned by F shall be added to the solution. We also say that these vertices and
edges are selected. One has to prove that every graph contains some of the
specified subgraphs, i.e., some of the branching rules is applicable, or that the
graph is simple in the sense that the problem can be solved in polynomial time.

We call a branching rule on F exhaustive if, for every valid solution S to VCME
restricted to the subgraph spanned by F , the rule has a branch that selects only
vertices and edges from S. Search tree algorithms with exhaustive branching
rules is somehow the simplest type of FPT algorithms. Clearly, exhaustiveness
guarantees that a rule cannot miss possibles solutions to VCME on the entire
graph G. On the other hand, exhaustiveness is not necessary for correctness. The
simplest example is the following degree-1 rule on F = {uv}: If u is a degree-1
vertex and v its only neighbor, either select vertex u or select edge uv. This
rule misses solutions containing only u, but u can always be replaced with v
without increasing k or m. The additional information that u has no further
neighbors outside V (F) implies that u is never needed in an optimal solution.
However, exhaustive rules are essential for enumeration problems where we want
all solutions rather than some arbitrary one.

3 Vertex Cover with Missed Edges

In this section we give a first Pareto curve for VCME. First of all, we cannot
expect bounds where y = 1, that is, FPT algorithms with parameter k only. This
is because VCME and Partial Vertex Cover are equivalent as optimization
problems, and Partial Vertex Cover with parameter k is W [1]-complete [7].
In view of this fact it is pleasing that we can achieve O∗(xkym) time, with some
constant x, for any y > 1. In fact, a trivial such algorithm is to branch on single
edges: Either select the edge or one of its vertices. The characteristic equation
xy = x + 2y yields x = 2y/(y − 1) ≈ 2/δ for y = 1 + δ with an arbitrarily small
δ > 0. The more interesting question is: What is the best x for any given (small)
δ? The considered case corresponds to large ratios m/k.

First we study what can be done with exhaustive branching rules if m/k
is large. We can avoid searching for “exotic” branching rules, as the following
observation restricts the possibilities:

Proposition 1. Consider any search tree algorithm with exhaustive branching
rules for VCME, such that for every fixed y = 1 + δ (δ > 0) the algorithm runs
in O∗(xkym) time, with some constant x. Then every rule is, without loss of

Pareto Complexity of Two-Parameter FPT Problems 115

generality, of the following form: For a set F of f edges, either select all edges
of F , or select any one of the g vertices in V (F). (Any other rules make x
worse.) Moreover, for y = 1 + δ, δ → 0, base x behaves as x ≈ g/fδ. Clearly, if
several, but finitely many branching rules are involved, then we have x ≈ g/fδ
for the largest g/f .

Proof. Consider any branching rule working on a set F of edges. Its characteristic
equation can be written as xgyf = xgp(y) + q(x, y), where f, g are defined as
above, p is a polynomial of degree strictly smaller than f , and q is a polynomial
where x appears only with exponents strictly smaller than g. Since the rule must
not enforce that some of the vertices in V (F) be selected, it must possess at least
one branch where only edges are selected. On the other hand, the rule must not
enforce that only edges be selected, hence it must have at least one branch where
also vertices are selected. It follows that neither p nor q is identical to zero.

Due to the assumptions, the characteristic equation has solutions with y =
1 + δ for all (arbitrarily small) δ > 0. For ease of presentation we use in the
following some asymptotic arguments and neglect lower-order terms: For small
δ > 0 we may replace terms ya with 1 + aδ, neglecting higher-order powers of δ.
Then our characteristic equation becomes xg(1 + fδ) ≈ xgp(1 + δ) + q(x, 1 + δ).
Note that p(1) is the sum of coefficients of p. If p(1) > 1 then obviously the right-
hand side is too large, and no solution (x, y) can exist for small δ > 0. Since the
coefficients of p are positive integers, the only remaining possibility is p(1) = 1.
Hence p(y) = yf−h = (1 + δ)f−h for some integer h > 0, corresponding to the
unique branch where a set H ⊆ F of h edges is selected. (All other branches
have to select also vertices.) Thus, our characteristic equation asymptotically
simplifies to xghδ ≈ q(x, 1 + δ). Since q(x, 1) > 0 for any x > 0, and polynomial
q is a continuous function, we can even write xghδ ≈ q(x, 1). Since limδ→0 x = ∞,
only the term with highest degree in q(x, 1) determines the asymptotic behaviour
of x as a function of δ. Denote this dominating term by axg−c, with some integers
a > 0 and c > 0. Hence xghδ ≈ axg−c. This finally allows us to express x
explicitly as x ≈ c

√
a/hδ.

For exhaustive rules we claim that necessarily c = 1. To see this, recall that
some branch selects H , and all other branches have to select also vertices. Con-
sider any v ∈ V (H). Since some solution exists that includes v as the only vertex
from V (F), some branch must select v and no other vertices (but perhaps some
edges along with v), showing that c = 1. In particular we get x ≈ a/hδ.

On the other hand, the branching rule where one branch selects H and, for
every v ∈ V (H), some branch selects only v, is already an exhaustive branching
rule on H . Further branches would only increase a and thus x, and selecting edges
along with a vertex would also increase the right-hand side of the characteristic
equation and thus x. Hence we can restrict the possible branching rules to this
form, and redefine F := H , f := h, g := a. Finally note that x ≈ g/fδ. ��

For an algorithm of the form as in Proposition 1 we would like to utilize edge sets F
with g/f as small as possible. One obvious idea is to choose a set F of three edges
incident to one vertex. Since VCME is straightforwardly solvable in polynomial

116 P. Damaschke

time if all vertices have degree at most 2, this yields an O∗((4/3δ)k(1 + δ)m) time
algorithm. However, we can get considerably better x:

Theorem 1. For every fixed positive integer c, VCME is solvable in time
O∗(((1 + 1/c)/δ)k(1 + δ)m), for all sufficiently small δ > 0.

Proof. Fix any positive integer c. Find a cycle C in the input graph, which is
possible in polynomial time. If C has at most c+1 vertices, let F denote its edge
set, and apply the branching rule on F as specified in Proposition 1. Using the
earlier denotations we have g/f = 1 in this case. If C has at least c+2 vertices, let
F be the edge set of a subpath of C with c+1 vertices and c edges. Again, apply
the branching rule on F as specified in Proposition 1, now with g/f = 1 + 1/c.
As soon as all cycles are destroyed, the remaining graph is a forest, and VCME
can be solved straightforwardly in polynomial time, by dynamic programming
bottom-up in the trees. (We omit the tedious details.) ��

We remark that search tree algorithms based on exhaustive branching rules and
with x ≤ 1/δ are unlikely to exist: Since the largest g/f determines the constant
factor in x = Θ(1/δ), they would need a collection of “dense” subgraphs with
g/f < 1 such that VCME is polynomial-time solvable on graphs that are free
of such subgraphs. However, since g > f if F forms a forest, every subgraph F
with g/f ≤ 1 must include a cycle. On the other hand, by subviding the edges
of arbitrary graphs we can avoid any fixed-length cycles, but still the graphs
remain arbitrarily complicated, so that VCME probably remains NP-complete
there.

We needed to fix c in Theorem 1, as we can take the maximal x ≈ g/fδ
only from a finite collection of branching rules. However, we may choose the
optimal c depending on δ as follows. Inspecting the algorithm from Theorem
1, observe that we used branching rules with x = byb/(yb − 1), b ≤ c, and
x = (c + 1)yc/(yc − 1). We can approximate x by (1 + bδ)/δ ≤ (1 + cδ)/δ and
(1 + 1/c)(1 + cδ)/δ, respectively. The bound on x is minimized if 1/c + cδ is
minimized, that is, c ≈ 1/

√
δ, rounded to an integer.

Corollary 1. VCME is solvable in O∗(((1+2
√

δ + δ)/δ)k(1+ δ)m) time, for all
sufficiently small δ > 0. ��

Finally we can choose the optimal δ for the given ratio m/k. Straightforward
calculation gives δ ∼ k/m and:

Corollary 2. VCME is solvable in O∗((em/k)k) time, where e denotes Euler’s
number. ��

Recall that this might be already the best possible bound achievable with ex-
haustive branching rules of fixed size. Due to Stirling’s formula,

(
m
k

)
for large

m/k behaves roughly as (em/k)k, hence exhaustive search for the vertices in S
on a kernel with fewer than m vertices would yield a faster algorithm in the case
of large m/k.

Pareto Complexity of Two-Parameter FPT Problems 117

Here we finish our discussion of the case when y is close to 1. For increasing
y and decreasing x we can afford some branching on the choice of edges while
we must make the choice of vertices more efficient. The best algorithm that we
found until now for the range y ≤ 1.6 is stated in:

Theorem 2. VCME is solvable in O∗(xkym) time, for all (x, y) that fulfill the
equation x3y4 = 2x2y4 + (x + y)3.

Proof. Let F be a subgraph with vertices r, s, t, u, v and edges rs, st, tu, tv. First
we show that every graph contains such a subgraph, or VCME is solvable in
polynomial time. In all connected components that are not just paths or cycles,
there exists a vertex t with at least three neighbors s, u, v. Assume that, for
every such t, none of s, u, v has further neighbors outside {t, s, u, v}. If t has
degree exactly 3, then {t, s, u, v} forms already a connected component. Thus
consider t with degree 4 or larger. If some edge connects two of t’s neighbors,
then obviously a (non-induced) subgraph isomorphic to F exists. Otherwise, the
connected component of t is merely a star, that is, all edges therein are incident
with t. Thus we have shown that “F -free” graphs have only trivial connected
components where VCME is easy to solve.

On F we branch as follows. Select s or t or st, and in the last case select, for
each of the other three edges independently, either the edge or the other vertex
distinct from s, t. The characteristic equation is easy to establish. ��

The table shows some points on the Pareto curve:

y 1.02 1.05 1.10 1.15 1.20 1.30 1.40 1.50 1.60
x 63.98 26.49 14.00 9.84 7.77 5.70 4.67 4.06 3.66

For medium y and x we then detected a better algorithm which does not
follow the search tree paradigm:

Theorem 3. VCME is solvable in O∗(2k2m) time.

Proof. If a graph G = (V, E) has a solution S, then G also has a vertex cover
of size at most k + m (take the k vertices of S and any vertex from each of the
m edges in S). We cannot recover a VCME solution S directly from any vertex
cover, however we can use it in the following way. Compute once some vertex
cover C of size k+m, here we may even apply a naive O∗(2k+m) time algorithm.
Then decide on the set C ∩ S, which can be done in 2k+m ways. (Actually we
need to consider only the subsets of C of size at most k, but this would not
improve the bases in the final bound.) For any C ∩ S, the residual problem is
solvable in polynomial time: An edge e ∈ E(C) must be added to S if and only
if e is not indident to C ∩ S. Let k′ and m′ be the number of vertices of C and
edges of E(C), respectively, selected for S. Observe that, since C is a vertex
cover, V \ C is an independent set. Hence it remains to select k − k′ vertices
from V \ C that leave at most m − m′ edges between C and V \ C uncovered.
Clearly, it is optimal to choose those k − k′ vertices from V \ C that have the
largest numbers of neighbors in C \ S, ties are broken arbitrarily. ��

118 P. Damaschke

For larger y it becomes advantageous to use fixed-size branching rules again but
slide to “more vertex-efficient” branching, compared to Theorem 2. We found
that the following rule is superior to Theorem 3 from ca. y = 5.0 on.

Theorem 4. VCME is solvable in O∗(xkym) time, for all (x, y) that fulfill the
equation x3y3 = x2y3 + (x + y)3.

Proof. Let F be a set of three edges incident to some vertex t. Graphs without
such subgraphs are trivial. If F exists, then either we select t, or we select, for
each of the other three edges independently, either the edge or the other vertex
distinct from t. ��

For example, we obain (x, y) pairs (5.00, 1.79) and (6.00, 1.73). Note that the rule
in Theorem 4 converges for growing y to the simple x ≈ 1.47 rule for Vertex

Cover with characteristic equation x3 = x2 +1: take a vertex of degree at least
3 or all its neighbors. In particular, x is limited from below by 1.47, for any y.

It arises the question how small we can make x for instances with small m/k.
Since VCME is a proper generalization of Vertex Cover, a smooth transition
would be desirable: Given a known O∗(bk) time algorithm for Vertex Cover,
we would like to have an O∗(xkym) algorithm for VCME where x tends to b if
m/k goes to 0. We do not have a method that takes an arbitrary Vertex Cover

algorithm as a black box and generates such an algorithm for VCME. We state
the existence of such a method as an open problem. However, for search tree
algorithms that use only exhaustive (and also certain non-exhaustive) branching
rules we can achieve the desired behaviour in a generic way, as we outline below.

First, we can transform every exhaustive branching rule for Vertex Cover

working on an edge set F into a branching rule for VCME: Every branch of
the original rule is preserved, i.e., the specified vertices are selected, and for
every edge in F we add a branch where only this edge is selected. Correctness
is evident. For some non-exhaustive rules we can proceed in the same way, but
correctness must be proved separately. For example, consider again the degree-1
rule: If u is a degree-1 vertex and v its only neighbor, we can erase u and put
v in the vertex cover. The only role of u in a vertex cover would be to cover
the edge uv, hence u can always be replaced with v. The corresponding rule for
VCME selects either v or uv. This is still correct, as we discussed earlier.

For the analysis, consider any branching rule in the given Vertex Cover

algorithm, working on a set F of f edges. Let xd = p(x) be its characteristic
equation, where p is a polynomial of degree smaller than d, with nonnegative
coefficients and, in particular, with a positive coefficient of x0. Let b be the
branching number of the rule, that is, bd = p(b). In the following we use some
known basic properties of such equations (we refer to, e.g., [4]): xd = p(x) has a
unique positive root b, and it holds xd < p(x) for x < b, and xd > p(x) for x > b.
It also follows that dbd−1−p′(b) > 0, since if xd−p(x) had derivative zero at x = b
then b would be a root with multiplicity 2 or higher, and a slight perturbation
of the coefficients would yield another polynomial of the considered type with
more than one positive root, which contradicts the mentioned properties. The
branching rule for VCME obtained by the scheme above has the characteristic

Pareto Complexity of Two-Parameter FPT Problems 119

equation xdy = p(x)y + fxd. Since fxd > 0, any solution (x, y) must satisfy
x > b, thus xd > p(x). It follows y = fxd/(xd − p(x)). For x = b + δ with small
δ we obviously get y ≈ fbd/(dbd−1 − p′(b))δ. That is, we can bring x as close to
b as desired, still keeping a finite base y for each δ, although with y → ∞ for
x → b. This reasoning holds in particular for the branching rule with the largest
b that determined the O∗(bk) complexity of the Vertex Cover algorithm we
started from. Since y goes to infinity, for all x sufficiently close to b the Pareto
curves of all other rules are below the Pareto curve of this rule with maximum
b. Hence this rule also dominates the complexity of the VCME algorithm, for δ
sufficiently small.

Now we apply this machinery to the Vertex Cover algorithm of [1]. It has
been subsequently improved several times, but its base 1.325 is already fairly
close to the currently best branching number 1.2738 for Vertex Cover [5].
Moreover, we can easily apply our transformation and analysis.

Theorem 5. VCME is solvable in O∗((1.325 + δ)k(3.54/δ)m) time, for all suf-
ficiently small δ > 0.

Proof. We only sketch the proof and refer to [1] for details of the rules. The
Vertex Cover algorithm consists of twelve branching rules. One can easily
check them one by one and verify that they are of the form described above and
thus extendible to branching rules for VCME. As stated in [1], Rule 3 and 7 have
the maximum branching number b < 1.325 in this algorithm. Rule 3 works on a
subgraph with f ≤ 6 edges (while rule 7 involves only 5 edges), which yields the
characteristic equation x3y = xy + y + 6x3 with the claimed solution. ��

For more sophisticated algorithms using other techniques one has to check
whether our assumptions on branching rules are still valid, or weaken the as-
sumptions and enrich the rule transformation method. However, we doubt that
the use of more complicated Vertex Cover algorithms with slighlty improved
b is of much practical value also for VCME: If x approaches b, then y goes up
quickly, so that we need to relax the base x anyway. That is, the smallest possible
b and x does not seem to be the main concern in the VCME context. For very
small ratios m/k we would in practice rather select m edges exhaustively on a
kernel, and then simply apply any Vertex Cover algorithm to the remaining
instances. This type of algorithm does not enjoy constant bases y but is expected
to be simpler and faster for very small m/k.

Related to this discussion, we finally give a simple quadratic kernel for VCME
by straightforward generalization of the O(k2) kernelization for Vertex Cover.
Due to kernel results for Vertex Cover we conjecture that VCME has actually
an O(k + m) size kernel.

Theorem 6. A kernel for VCME with k2 + km + m edges can be computed in
polynomial time.

Proof. Any vertex of degree larger than k +m must be selected, since otherwise
we have to select more than k other vertices or more than m edges. After removal

120 P. Damaschke

of the enforced vertices and all incident edges, there remains a graph of maximum
degree k + m. Now k vertices can cover at most k(k + m) edges, hence at most
k(k + m) + m edges remained, or there is no solution. ��

4 Conclusions

We proposed the framework of Pareto complexity for FPT problems with two
parameters k, m, where we want time complexities O∗(xkym) with constant bases
x, y. As an illustration and starting point we gave some basic algorithms for
VCME, the problem of finding vertex covers with k vertices and m missed edges.
The algorithms are tailored to several ranges of m/k. We have not studied minor
technical issues like convexity of their Pareto curves in the logarithmic plane (see
Section 2). There are some natural questions for further research, besides the
ones already brought up in the technical sections:

– Get improvements: Find VCME algorithms with lower Pareto curves. Better
branching rules for some ranges of m/k are likely to exist.

– Despite our discussion of small m/k: Give algorithms for VCME with x <
1.325, possibly with x matching the best known base for Vertex Cover

algorithms.
– Study the Pareto complexity of the corresponding enumeration and counting

problems: How many solutions with k vertices and m edges exist, etc.?
– Extend the approach to hitting sets in hypergraphs of fixed rank 3, 4, 5 . . .
– Study other problems. For instance, some variants of the Cluster Editing and

Cluster Vertex Deletion problem naturally have two parameters: (a) number
of edge deletions and edge insertions, (b) number of vertex deletions and
edge edits, (c) number of vertex deletions and resulting cliques. (The latter
problem was studied in [8], however not in the “Pareto framework”.)

Finally, the principal discussion whether O∗(xkym) is the “right” type of time
bound may be continued.

Acknowledgments

The work is supported by the Swedish Research Council (Vetenskapsr̊adet), grant
2007-6437, “Combinatorial inference algorithms – parameterization and cluster-
ing”. The author thanks the anonymous referees for the points raised in their
reports on the first version, which also inspired some substantial improvements.

References

1. Balasubramanian, R., Fellows, M.R., Raman, V.: An Improved Fixed-Parameter
Algorithm for Vertex Cover. Info. Proc. Letters 65, 163–168 (1998)

2. Bar-Yehuda, R., Hermelin, D., Rawitz, D.: An Extension of the Nemhauser-Trotter
Theorem to Generalized Vertex Cover with Applications. In: WAOA 2009. LNCS,
vol. 5893. Springer, Heidelberg (to appear, 2010)

Pareto Complexity of Two-Parameter FPT Problems 121

3. Böcker, S., Briesemeister, S., Bui, Q.B.A., Truß, A.: Going Weighted: Parameter-
ized Algorithms for Cluster Editing. In: Yang, B., Du, D.-Z., Wang, C.A. (eds.)
COCOA 2008. LNCS, vol. 5165, pp. 1–12. Springer, Heidelberg (2008)

4. Chen, J., Kanj, I.A., Xia, G.: A Note on Search Trees. Tecnical Report TR05-
006.pdf (2005), facweb.cs.depaul.edu/research/TechReports/

5. Chen, J., Kanj, I.A., Xia, G.: Simplicity is Beauty: Improved Upper Bounds for
Vertex Cover. Technical Report TR05-008.pdf (2005),
cdm.depaul.edu/research/Documents/TechnicalReports/2005/

6. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999)

7. Guo, J., Niedermeier, R., Wernicke, S.: Parameterized Complexity of Generalized
Vertex Cover Problems. In: Dehne, F., López-Ortiz, A., Sack, J.-R. (eds.) WADS
2005. LNCS, vol. 3608, pp. 36–48. Springer, Heidelberg (2005)

8. Hüffner, F., Komusiewicz, C., Moser, H., Niedermeier, R.: Fixed-Parameter Algo-
rithms for Cluster Vertex Deletion. In: Laber, E.S., Bornstein, C., Nogueira, L.T.,
Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 711–722. Springer, Heidelberg
(2008)

9. Kneis, J., Langer, A., Rossmanith, P.: Improved Upper Bounds for Partial Vertex
Cover. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG
2008. LNCS, vol. 5344, pp. 240–251. Springer, Heidelberg (2008)

10. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series
in Math. and its Appl. Oxford Univ. Press, Oxford (2006)

facweb.cs.depaul.edu/research/TechReports/
cdm.depaul.edu/research/Documents/TechnicalReports/2005/

What Makes Equitable Connected Partition
Easy

Rosa Enciso1, Michael R. Fellows2, Jiong Guo3, Iyad Kanj4,
Frances Rosamond2, and Ondřej Suchý5,�

1 School of Electrical Engineering and Computer Science
University of Central Florida, Orlando, FL

renciso@cs.ucf.edu
2 University of Newcastle, Newcastle, Australia

{michael.fellows,frances.rosamond}newcastle.edu.au
3 Institut für Informatik, Friedrich-Schiller-Universität Jena,

Ernst-Abbe-Platz 2, D-07743 Jena, Germany
jiong.guo@uni-jena.de

4 School of Computing, DePaul University
243 S. Wabash Ave, Chicago, IL 60604

ikanj@cs.depaul.edu
5 Department of Applied Mathematics and Institute for Theoretical Computer

Science, Charles University,
Malostranské nám. 25, 118 00 Praha, Czech Republic

suchy@kam.mff.cuni.cz

Abstract. We study the Equitable Connected Partition problem:
partitioning the vertices of a graph into a specified number of classes,
such that each class of the partition induces a connected subgraph, so
that the classes have cardinalities that differ by at most one. We exam-
ine the problem from the parameterized complexity perspective with re-
spect to various (aggregate) parameterizations involving such secondary
measurements as: (1) the number of partition classes, (2) the treewidth,
(3) the pathwidth, (4) the minimum size of a feedback vertex set, (5)
the minimum size of a vertex cover, (6) and the maximum number of
leaves in a spanning tree of the graph. In particular, we show that the
problem is W[1]-hard with respect to the first four combined, while it
is fixed-parameter tractable with respect to each of the last two alone.
The hardness result holds even for planar graphs. The problem is in XP
when parameterized by treewidth, by standard dynamic programming
techniques. Furthermore, we show that the closely related problem of
Equitable Coloring (equitably partitioning the vertices into a speci-
fied number of independent sets) is FPT parameterized by the maximum
number of leaves in a spanning tree of the graph.

� Work partially supported by the ERASMUS program and by the DFG, project
NI 369/4 (PIAF) while visiting Friedrich-Schiller-Universität Jena (October 2008–
March 2009), by grant 201/05/H014 of the Czech Science Foundation and by grant
1M0021620808 of the Czech Ministry of Education.

J. Chen and F.V. Fomin (Eds.): IWPEC 2009, LNCS 5917, pp. 122–133, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

What Makes Equitable Connected Partition Easy 123

1 Introduction and Preliminaries

Let G = (V, E) be an undirected graph. We say that V1, V2, . . . , Vr is a partition
of V if and only if

⋃r
i=1 Vi = V , and ∀i, j, 1 ≤ i < j ≤ r : Vi∩Vj = ∅. A partition

is equitable if ∀i, j, 1 ≤ i < j ≤ r : ||Vi| − |Vj || ≤ 1. In this paper we consider the
following two NP-hard problems:

Equitable Connected Partition (ECP)

Instance: A simple graph G = (V, E), and a positive integer r ∈ N.
Question: Is there an equitable partition of V into r classes V1, V2, . . . , Vr, such
that each class of the partition induces a connected subgraph?

We consider parameterizations based on various combinations of:

– the treewidth of the input graph tw(G),
– the pathwidth of the input graph pw(G),
– the minimum size of a feedback vertex set in the input graph fvs(G),
– the minimum size of a vertex cover in the input graph vc(G),
– the maximum number of leaves in a spanning tree of the input graph ml(G),

and
– the number of partitions r

We show that ECP is W[1]-hard when parameterized by pw(G), fvs(G), and
the number of partition classes r combined. We show that this result holds true
even for planar graphs. On the positive side, we show that ECP becomes fixed-
parameter tractable (FPT) when parameterized by vc(G), or by ml(G). We also
show that ECP, parameterized by treewidth, is in XP.

Equitable Coloring

Instance: A simple graph G = (V, E), the number of partitions r ∈ N.
Question: Is there an equitable partition V1, V2, . . . , Vr of the vertex set V such
that each partition induces an independent set?

For the Equitable Coloring problem, we show that the problem is FPT
when parameterized by ml(G).

The first problem we study (ECP) arises in computational social choice in
the subject of redistricting [1]. It is known to be NP-complete, even for planar
graphs or for fixed r ≥ 2 [4,10]. Similar problems were studied for example by
Ito et al. in [11,12].

It was shown in [6] that EC is W[1]-hard when parameterized by tw(G) and r
combined. More recently, it was shown in [8] that EC is FPT when parameterized
by vc(G).

For the background and terminologies on graphs, we refer the reader to
West [13], and for that on parameterized complexity, we refer the reader to
Downey and Fellows’ book [3].

In the rest of the paper, we will denote by l := (n mod r) the number of
partition classes whose size is larger by one than the size of the other classes,
i.e., we have r − l classes of size s := �n/r� and l classes of size s + 1.

124 R. Enciso et al.

2 Hardness Results

This section is mainly devoted to proving the following theorem:

Theorem 1. Equitable Connected Partition is W[1]-hard with respect to
the pathwidth pw(G), the minimum size of a feedback vertex set fvs(G) and the
number of partition classes r combined.

Proof. We will providea parameterized reduction from the W [1]-completeMulti-

ColoredClique (MCC) problem [7]. In MCC we are given an undirected graph
that is properly colored by k colors and the question is whether there is a size-
k clique in this graph consisting of exactly one vertex from each color class. The
parameter is k.

A basic building block of our construction is an anchor. It is a vertex (the root
of the anchor) with many neighbors of degree one (see Fig. 1). As the prescribed
class size will be much greater than one, the pendant degree one vertices must
belong to the same partition class as the root of the anchor. The number of
degree one vertices of an anchor will be chosen so that two anchors cannot
belong to the same class. We create exactly as many anchors as the specified
number of classes r of the equitable partition; thus there must be exactly one
anchor in each class. The situation can be viewed intuitively as if each class is
“started” with one single anchor and then some more vertices are later to be
added. The number of vertices that need to be added to the class started by a
particular anchor will differ for different anchors and is forced by the number
of pendant vertices that the anchor is “missing” relative to the prescribed class
size. Anchors will be denoted by uppercase letters and by connecting something
to an anchor we mean connecting it to the root of the anchor.

We interconnect the anchors using a building block gadget called a choice. If
A = {a1, . . . , at}, 0 ≤ a1 < a2 < a3 < . . . < at is a set of integers and b ≥ at,
then an (A, b)-choice is a path with t+1 vertices v1, . . . , vt+1, where each vertex
of the path can have some degree-one vertices pendant on it (see Fig. 1). In
particular, vertex v1 has a1 degree one vertices pendant on it, vertex vt+1 has
b−at pendant vertices, and for all i, 2 ≤ i ≤ t, vertex vi has ai−ai−1−1 pendant

· · ·

a4 − a3 − 1︷︸︸︷a3 − a2 − 1︷︸︸︷a2 − a1 − 1︷︸︸︷ b − at︷︸︸︷a1︷︸︸︷

v4 vtv3v2v1
vt+1

(A, b)

at − at−1 − 1︷︸︸︷

Fig. 1. Basic building blocks of our construction: Anchor (left), (A, b)-choice (right)
and the way they are depicted in further figures (bellow)

What Makes Equitable Connected Partition Easy 125

vertices. Observe again that the pendant vertices must always fall into the same
class as their unique neighbor.

Now if an anchor X is connected to an anchor Y by an (A, b)-choice (which
is done by simply identifying vertex v1 and vt+1 with the root of anchor X
and Y , respectively), then there is an i, with 1 ≤ i ≤ t, such that the vertices
v1, . . . , vi (and their pendant vertices) fall into the partition class of X , while
the vertices vi+1, . . . , vt+1 fall into the class of Y . The vertices v1 and vt+1
are identified with the respective anchors, and hence we do not count them.
Thus the number of vertices from this choice that fall into the class of X is
a1 +

∑i
j=2((aj − aj−1 − 1) + 1) = ai ∈ A, while the number of vertices falling

into the class of Y is b − at +
∑t

j=i+1((aj − aj−1 − 1) + 1) = b − ai. Note that
the vertices pendant on v1 and vt+1 are in fact pendant on the roots of the
appropriate anchors, but we still consider them as a part of this choice.

The construction is based on sending “signals” between anchors. Let A and B
be two anchors connected by a choice. The vertices of the choice have to fall into
the two partition classes corresponding to A and B. The more vertices that fall
into the class of A the less vertices that will fall into the one of B. However, since
the sizes of the two classes differ by at most one, the class of B must include
vertices from somewhere else in the construction. This generates the signal. The
choices allow us to control the signal sent.

Now suppose that G = (V, E), k, c : V → {1, . . . , k} is an instance of MCC.
Also suppose that, for each i, there are ni vertices of color i denoted by vi

p, 1 ≤
p ≤ ni. Furthermore, we give each edge an integer ID, i.e., there is a bijective
labeling l : E → {1, . . . , |E|}. Our construction has a selection gadget for each
vertex color, which ensures both the selection of the vertex of this color and the
selection of edges from the selected vertex to the vertices of the other colors.
This is sometimes called an edge representation strategy for the reduction gad-
geteering. The selection gadgets are interconnected in a way that an equitable
partition is only possible if the IDs of the “selected” edges match.

The selection gadget for color i is formed by 2(k − 1) anchors N i
j , P

i
j , 1 ≤

j ≤ k, j �= i, connected into a cycle, each having a connection outside the
gadget. The vertex selection is represented by a “big” signal that the outgoing
connections are unable to handle, and hence is forced to run along the cycle
without a change. The selection of an edge going from the selected vertex to
the vertices of color j is then done between N i

j and P i
j via a “small” signal that

equals the label of the selected edge. This signal is then sent to the anchors
N j

i , P j
i of the selection gadget for color j, from anchor P i

j to N j
i and from N i

j

to P j
i (in opposite directions).

Now we present the selection gadget more formally. First let Z0 := 2|E|+ 10.
The “big” signal is formed by the order of the vertex selected times the number
Z0, i.e., the possible signal states are Ai

0 := {p · Z0 | 1 ≤ p ≤ ni}. As we
mentioned, the small signal is formed by the edge IDs. Between the anchors N i

j

and P i
j both the big and the small signal is sent, and a particular small signal

can only be used with an appropriate big signal. Thus, between N i
j and P i

j , the
possible signal states are Ai

j := {p · Z0 + l(uvi
p) | c(u) = j and uvi

p ∈ E}. To

126 R. Enciso et al.

N i
j

P i
j

N i
j+1

P i
j+1

N i
j−1

P i
j−1

P j
i

N j
i

(Ai
0, ni · Z0)

(Ai
0, ni · Z0)

(Ai
j , ni · Z0 + |E|)

(Ai
j−1, ni · Z0 + |E|)

(Ai
j+1, ni · Z0 + |E|)

(Aj
i , nj · Z0 + |E|)

({1, . . . , |E|}, |E|)

({1, . . . , |E|}, |E|)

Selection
gadget for
color i

Selection
gadget for
color j

(ni − p) · Z0

p · Z0 + l(uvi
p)

(ni − p) · Z0 + |E| − l(uvp)

p · Z0

|E| − l(uvi
p)

l(uvi
p)

Fig. 2. A part of the selection gadget with possible partition shown by dashed line

catch the order of the anchors along the cycle, we introduce the notion of a
successor. For each j, 1 ≤ j ≤ k set succ(j) := j + 1 for j �= k and j �= (i − 1),
set succ(k) := 1 and succ(i − 1) := succ(i). Now for each j, 1 ≤ j ≤ k, j �= i,
the anchor P i

j is connected to the anchor N i
succ(j) by an (Ai

0, ni · Z0)-choice,
the anchor N i

j is connected to the anchor P i
j by an (Ai

j , ni · Z0 + |E|)-choice,
the anchor P i

j to the anchor N j
i , and the anchor P j

i to the anchor N i
j by two

({1, . . . , |E|}, |E|)-choices (see Fig. 2).
Now the class sizes are set such that each of the anchors in this selection

gadget needs to get ni ·Z0 + |E| vertices from the choices that it is incident with.
Hence, if the anchor P i

j takes p ·Z0 vertices from the choice connecting it to the
anchor N i

succ(j), then the anchor N i
succ(j) gets (ni − p) · Z0 vertices from this

choice, and it must get p ·Z0 + |E| vertices from the two remaining choices that
it is incident with. Since it can take at most |E| vertices from the connection to
the selection gadget for color succ(j), it must take at least p · Z0 (but at most
p ·Z0 + |E| < (p + 1) ·Z0) vertices from the connection to P i

succ(j). Hence, it has
to take p · Z0 + l(uvi

p) vertices for some c(u) = succ(j) and uvi
p ∈ E from this

connection and |E| − l(uvi
p) vertices from the connection to the other selection

gadget. Hence P i
succ(j) gets (ni−p)·Z0+|E|−l(uvp) vertices from the connection

from N i
succ(j), and by a similar reasoning it is forced to take p ·Z0 vertices from

the connection to N i
succ(succ(j)) and l(uvp) vertices from the connection to the

What Makes Equitable Connected Partition Easy 127

other selection gadget. Thus the anchor N i
succ(succ(j)) is again forced to select

some edge incident with vertex vi
p, etc.

The anchor N i
j is connected to anchor P j

i by a ({1, . . . , |E|}, |E|)-choice, and
the number of vertices it takes into its class out of this choice is |E| − l(uvi

p),
where vi

p is the vertex selected in the selection gadget for color i, c(u) = j and
uvi

p ∈ E. The number of vertices that the anchor P j
i takes out of this choice is

l(wvj
q) where vj

q is the vertex selected in the selection gadget for color j, c(w) = i

and wvj
q ∈ E. Since the |E| vertices of the choice must be partitioned into the

classes of its endpoints, it follows that l(wvj
q) = l(uvi

p) and wvj
q = uvi

p = vj
qv

i
p is

an edge of G. Hence a solution for the constructed graph is possible if and only
if the selected vertices form a multi-colored clique in the graph G.

Now to determine the right size of the anchors, it is enough to ensure that each
class is more than half full, once the starting anchor is added. The maximum
demand (the number of vertices that should be added to its class except for itself
and vertices pendant on it) of any anchor is less than n · Z0 + |E|, hence it is
enough to set the desired class size to s := (2n + 1) ·Z0 = (2n + 1) · (2|E|+ 10).

The number of partition classes r is equal to the number of anchors. Since
there are k selection gadgets, each containing 2(k−1) anchors, we have 2k(k−1)
anchors in total. Now observe that if we delete all roots of the anchors, the
resulting graph consists of paths with pendant vertices. Hence, the roots form a
feedback vertex set in the graph, and the pathwidth of the graph is also bounded
by the number of roots plus one. The construction can be clearly carried out in
polynomial time; in particular, the graph has r · s = O(k2 · n3) vertices. ��
Corollary 1. Equitable Connected Partition is W[1]-hard for planar
graphs with respect to the pathwidth pw(G), the minimum size of a feedback
vertex set fvs(G) and the number of partition classes r combined.

Proof. The graph H ′ constructed in Theorem 1 is in general not planar. But
there is a drawing of this graph such that only the edges of the choices connecting
two different selection gadgets cross. Moreover, we can assume that each pair of
them crosses at most once, and only in the edges of their paths, not in the edges
connecting the pendant vertices. We replace each such crossing one by one by a
planar crossing gadget, such that the resulting planar graph H has a solution if
and only if the graph H ′ does.

Suppose that in our drawing of H ′ the ({1, . . . , |E|}, |E|)-choices between
anchors A and B and between C and D cross. The crossing gadget is formed
by four anchors R, S, X , Y such that the anchor R is connected to A, X to C,
S to B, Y to D and X to Y by a ({1, . . . , |E|}, |E|)-choice, respectively. X is
connected to both R and S by ({z · (Z0 +1) | 1 ≤ z ≤ |E|}, |E| · (Z0 +1))-choices
and Y is connected to both R and S by ({z ·Z0 | 1 ≤ z ≤ |E|}, |E| · Z0)-choices
(see Fig. 3). The anchors R, S and Y need |E| · (Z0 + 1) vertices to be added to
their respective classes, while X needs |E| · (Z0 + 2) vertices.

If X gets p · (Z0 + 1) vertices from the choice connecting it to R, then it can
get between 2 and 2 · |E| vertices from the connections to Y and C, and hence
it must take between |E| · (Z0 + 2) − p · (Z0 + 1) − 2 < (|E| − p + 1) · (Z0 + 1)

128 R. Enciso et al.

A

R
X

C

Y

D

S

B

({1, . . . , |E|}, |E|)

({1, . . . , |E|}, |E|)

({1, . . . , |E|}, |E|)

({1, . . . , |E|}, |E|)

({1, . . . , |E|}, |E|)

({z · (Z0 + 1) | 1 ≤ z ≤ |E|}, |E| · (Z0 + 1))

({z · (Z0 + 1) | 1 ≤ z ≤ |E|}, |E| · (Z0 + 1))

({z · Z0 | 1 ≤ z ≤ |E|}, |E| · Z0)

({z · Z0 | 1 ≤ z ≤ |E|}, |E| · Z0)

Fig. 3. The crossing gadget

and |E| · (Z0 + 2) − p · (Z0 + 1) − 2 · |E| > (|E| − p − 1) · (Z0 + 1) and thus
(|E| − p) · (Z0 + 1) vertices out of the choice connecting it to S. The anchor Y
works in a similar way. Thus, if C takes q vertices from the connection to X ,
then X gets |E| − q vertices, and takes q vertices from the connection to Y ; Y
does similarly, and thus D gets |E| − q vertices, as if it were connected to C
directly.

Counting the number of vertices inside the crossing gadget and the demands
of the anchors, it follows that the number of vertices A get and the number of
vertices B get must also sum up to |E| as if they were connected directly.

It is easy to check, that the resulting graph H is planar, with pw(G) a fvs(H)
bounded in terms of k. Moreover it can be constructed in polynomial time and
has a solution if and only if the graph H ′ constructed in Theorem 1 has. We
defer further details to the full version of the paper. ��

Since the treewidth of a graph is never greater than its pathwidth, we immedi-
ately get also the following corollary:

Corollary 2. Equitable Connected Partition is W[1]-hard for planar
graphs with respect to the treewidth tw(G).

3 Algorithmic Results

Before we give the FPT results, we note that the Equitable Connected Par-

tition problem is in XP, parameterized by the treewidth. This can be proved
using standard techniques for problems on graphs of bounded treewidth. We
defer the proof to the full version of the paper.

What Makes Equitable Connected Partition Easy 129

Theorem 2. Equitable Connected Partition is in XP with respect to the
treewidth tw(G).

Now we present two FPT results for ECP:

Theorem 3. Equitable Connected Partition is in FPT with respect to
the minimum size of a vertex cover vc(G).

Proof. Assume that we are given a vertex cover C ⊆ V of size c := vc(G). If
not, we can compute it in time O(1.2738c + cn) by [2]. Each class that contains
at least 2 vertices must contain some vertex of C; otherwise, it would not be
connected. Hence, if the minimum size of each class s is at least 2, then either
r ≤ c or (G, r) is a no-instance. If s = 1, then we have l classes of size 2 and r− l
of size 1. Since a size-2 class contains two vertices connected by an edge, such a
partition is in fact a matching of size l in G. The existence of such a matching
can be decided in polynomial time. The case of s = 0 is trivial and yields a
yes-instance. Hence, in what follows we can assume that s ≥ 2 and r ≤ c.

We search for an equitable partition such that the first l classes are the larger
ones and the last r−l are the smaller ones. We start by trying all the possibilities
of partitioning the vertices of C into r (not necessarily connected) non-empty
classes V C

1 , . . . , V C
r . For each such partition, and each disconnected class V C

i , we
try the possibilities of adding at most |V C

i |−1 vertices of V \
⋃r

i=1 V C
i into V C

i to
make it connected. But we do not try all the vertices. Instead, each vertex tried
must have a different neighborhood. We try all such possibilities with different
neighborhoods. It remains to distribute the remaining vertices among the classes
so that the partition becomes equitable. We construct a network such that there
is a flow of certain size in it if and only if the vertices can be distributed among
the classes.

Let us denote by D := V \
⋃r

i=1 V C
i the set of vertices that are not used yet.

The network consists of three intermediate layers, in addition to the source z and
the target t. There are r vertices in the first layer, denoted a1, . . . , ar. Vertex ai

is connected to the source z by an arc of capacity equal to the number of vertices
that should still be added to class i, i.e., s − |V C

i | if i > l and s + 1 − |V C
i | if

i ≤ l. The second layer is formed by the vertices of C, and for each i, there are
arcs of capacity ∞ from ai to each vertex in V C

i ∩ C. The third layer is formed
by vertices bJ , J ⊆ C, and there is an arc between v ∈ C and bJ if and only if
v ∈ J . Such arcs have also infinite capacity. Finally each bJ is connected to t by
an arc with capacity equal to the number of vertices in D with neighborhood J .

The flow on arcs between the vertices of C and the vertices of type bJ directly
shows how many vertices of the particular type should be put into the same
class as a vertex of C. Hence it is easy to see that there is a flow of size |D|
in the constructed network if and only if the vertices can be distributed among
the classes. Concerning the running time of the algorithm, there are at most rc

different colorings of C; for each of them we try adding at most c− 1 vertices to
the classes, each of at most 2c types. Hence there are at most O(2c2

) possibilities
to do so. The network can be constructed in time linear in the number of edges of
the original graph and the number of vertex types. The flow can be found in the

130 R. Enciso et al.

time cubic in the number of vertices of the network, i.e., O((2c +2c+2)3). Hence
the overal running time of the algorithm is bounded by O(2c2+c·log c+4c ·n2). ��

Theorem 4. Equitable Connected Partition(ECP) is in FPT with re-
spect to the maximum number of leaves in a spanning tree ml(G).

Proof. We construct an instance of Integer Linear Programing (ILP) whose num-
ber of variables is a function of ml(g) for ECP. It is known that G is a subdivision
of some graph H on (at most) 4k vertices, for ml(G) = k [5]. Such a graph H
can be easily found in linear time. We say that a class is simple if it contains no
vertex of H . For an edge uv of H we use Puv to denote the unique path in G
having as endpoints u and v, and whose internal vertices are in G \ H ; let |Puv|
denote the number of its internal vertices.

We first branch on all possibilities of partitioning the vertices of H into at
most 4k classes. Note that quite possibly 4k < r. We construct an ILP instance
as follows. On a given branch, assume that the classes that are assigned vertices
of H , according the the partition of the branch, are V1, . . . , Vp. Recall that s :=
�n/r�. If a path Puv has at least s internal vertices, then it cannot be fully
contained in one class. Hence, it must be split into several parts. The first part
is put into the same class as the vertex u, the last part into the same class
as v and the rest is divided into several simple classes. Since the order of the
simple classes on the path does not matter, we only have to know the number
of classes having size s, and the number of classes having size s + 1. Hence, for
such an edge uv of H , we introduce four variables: tu,uv and tv,uv representing
the number of internal vertices of the path to be placed in the same class as u
and v, respectively, and auv and buv representing the number of simple classes
of size s and s + 1 on Puv, respectively.

If a path Puv contains less than s internal vertices, then there is no simple
class on this path, and each vertex of the path is in the same class as one of the
endpoints. In particular, if u and v are in the same class, then the whole path
Puv is in that class. If u and v are in different classes, then we introduce two
variables tu,uv and tv,uv for that path, with the same meaning as in the previous
case. To simplify the equations, we denote by E1 the set {uv ∈ E(H) | |Puv| <
s and u and v lie in different classes}, E2 the set {uv ∈ E(H) | |Puv| ≥ s} ,
Ei

3 := {uv ∈ E(H) | |Puv | < s and u, v ∈ Vi} and E3 :=
⋃p

i=1 Ei
3. The class Vi

is connected if and only if the graph (Vi, E
i
3) is connected. We check this before

we call the procedure to solve the ILP. Finally, we introduce a {0, 1}-variable ci,
for each 1 ≤ i ≤ p, so that the size of Vi in the final partition will be s + ci. The
variables introduced are subject to following constraints:

∀uv ∈ E1 ∪ E2 : 0 ≤ tu,uv, tv,uv,

∀uv ∈ E2 : 0 ≤ auv, buv,

∀i, 1 ≤ i ≤ p : 0 ≤ ci ≤ 1,

The above formalize obvious matters pertaining to our approach. The following
constraints do the main work:

What Makes Equitable Connected Partition Easy 131

∀uv ∈ E1 : tu,uv + tv,uv = |Puv|, (1)
∀uv ∈ E2 : tu,uv + tv,uv + s · auv + (s + 1) · buv = |Puv|, (2)

∀i, 1 ≤ i ≤ p :
∑

v∈V (H)∩Vi

(1 +
∑

uv∈E1∪E2

tv,uv) +
∑

uv∈Ei
3

|Puv| = s + ci, (3)

∑
uv∈E2

auv +
p∑

i=1

(1 − ci) = r − l, (4)

∑
uv∈E2

buv +
p∑

i=1

ci = l. (5)

Equation 1 ensures that the paths corresponding to the edges in E1 are correctly
divided. Equation 2 ensures the same for the edges in E2. Equation 3 ensures
that the classes containing some vertices of H have the right size, and the last
two equations (4 and 5) ensure that there are the right numbers of large and
small classes. It is easy to see that there is a solution to this ILP instance if and
only if there is an equitable connected partition of the vertices of G with r classes,
that extends the initial assignments made according to the branch (partition of
V (H)) being explored. Since there are at most 4 ·

(4k
2

)
+4k ≤ 32k2 variables, each

of them used at most three times, the overall size of the instance is bounded by
O(k2) and it can be solved in O((32k2)2.5·32k2+o(k2) · k2) time [9], which yields a
running time of O(m · 2160k2 log k+o(k2 log k)) for the whole algorithm. ��

4 Equitable Coloring

In this section we show that Equitable Coloring is in FPT with respect to
the maximum number ml(G) of leaves in a spanning tree of G. Since a graph with
bounded ml(G) contains a lot of induced paths, we first examine the situation
on the paths. There is a nice characterisation lemma for that case (the inductive
proof of this Lemma is deferred to the full version of the paper):

Lemma 1. Let k ≥ 2 be an integer. Let P be a path with endpoints possibly
colored by one of the colors 1, . . . , k. Let n be the number of uncolored vertices
on the path, and ∀i let t(i) ∈ {0, 1, 2} be the number of endpoints colored by
color i. Then P can be properly colored by the colors 1, . . . , k such that there
are ni + t(i) vertices of color i if and only if ∀i : 0 ≤ ni ≤ 	 1

2 (n − t(i))
 and∑
i ni = n.

Theorem 5. Equitable Coloring is in FPT with respect to the maximum
number of leaves in a spanning tree ml(G).

Proof. First we show that if there are many classes and the graph is big, then
we have a yes-instance; otherwise, we construct an instance of Integer Linear
Programing (ILP) for Equitable Coloring. It is known that G is a subdivision
of some graph H on (at most) 4k vertices, for ml(G) = k [5]. Such a graph H
can be easily found in linear time. For an edge uv of H we use Puv to denote

132 R. Enciso et al.

the unique path in G having as endpoints u and v, and whose internal vertices
are in G \ H . Let |Puv| denote the number of its internal vertices.

Claim. If r ≥ 16k and n := |V (G)| ≥ 32k2 then (G, r) is a yes-instance.

Proof (of Claim). We color the vertices of H arbitrarily by at most 4k colors.
Then we fill these color classes with some (at most 4k(n/r
−1) ≤ 4kn/r ≤ n/4)
vertices. To avoid conflicts, we do not use the (at most 4k(4k− 1)) vertices that
are neighbors in G of the H-vertices to fill the at most 4k classes. Since the rest
of the graph is just a collection of paths, we can color at least each second vertex
by one of the at most 4k colors used for the H-vertices. Hence there are at least
(n − 16k2)/2 ≥ n/4 available vertices which are at least as many as we need.
Now we are left with the task of equitably coloring the collection of paths with
at least 12k colors, which is possible due to Lemma 1.

If the graph has at most 32k2 vertices, then we can solve the instance by brute
force. If this is not the case, we can assume, due to the claim, that the number
of colors r is less than 16k. Now we try all the possibilities c : V (H) → {1, . . . r}
to color the vertices of H . For each such possibility, we construct an instance of
ILP, which will have a variable qi

uv for each combination of color i and an edge
uv of H . This variable expresses the number of the vertices of color i on the path
Puv. They are subject to the constraints given by Lemma 1 and the constraints
that enforce the classes to have the right number of vertices. In the following
formal description of the constaints, for a logical formulae φ the expression [φ] is
1 if φ is true and 0 otherwise. Note that these expressions as well as the ceilings
only appear on the constant sides of the equations.

∀uv ∈ E(H), 1 ≤ i ≤ r : 0 ≤ qi
uv ≤

⌈
1
2
(|Puv| − [c(u) = i] − [c(v) = i])

⌉
,

∀uv ∈ E(H) :
r∑

i=1

qi
uv = |Puv|,

∀i, 1 ≤ i ≤ l :
∑

uv∈E(H)

qi
uv = s + 1 −

∑
v∈V (H)

[c(v) = i],

∀i, l + 1 ≤ i ≤ r :
∑

uv∈E(H)

qi
uv = s −

∑
v∈V (H)

[c(v) = i].

Clearly, there is a solution for Equitable Coloring if there is a solution to
the ILP for one of the colorings c. Since an instance X of ILP with t variables
can be solved in time O(t2.5t+o(t) · |X |) [9], the overall running time is at most
O((32k2)32k2

+ (256k3)2.5·256k3+o(k3)poly(n)), where the polynomial is indepen-
dent of k. ��

Some Open Questions. We wonder whether ECP might be in FPT for 3-
connected planar graphs, and for 3-connected graphs of bounded treewidth.

What Makes Equitable Connected Partition Easy 133

References

1. Altman, M.: Is automation the answer? the computational complexity of auto-
mated redistricting. Rutgers Computer and Technology Law Journal 23, 81–142
(2007)

2. Chen, J., Kanj, I.A., Xia, G.: Improved parameterized upper bounds for vertex
cover. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 238–
249. Springer, Heidelberg (2006)

3. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999)

4. Dyer, M.E., Frieze, A.M.: A partitioning algorithm for minimum weighted euclidean
matching. Inf. Process. Lett. 18(2), 59–62 (1984)

5. Estivill-Castro, V., Fellows, M.R., Langston, M.A., Rosamond, F.A.: FPT is P-
Time Extremal Structure I. In: Hajo Broersma, M.J., Szeider, S. (eds.) ACiD.
Texts in Algorithmics, vol. 4, pp. 1–41. King’s College, London (2005)

6. Fellows, M.R., Fomin, F.V., Lokshtanov, D., Rosamond, F.A., Saurabh, S., Szeider,
S., Thomassen, C.: On the complexity of some colorful problems parameterized by
treewidth. In: Dress, A.W.M., Xu, Y., Zhu, B. (eds.) COCOA. LNCS, vol. 4616,
pp. 366–377. Springer, Heidelberg (2007)

7. Fellows, M.R., Hermelin, D., Rosamond, F.A., Vialette, S.: On the parameterized
complexity of multiple-interval graph problems. Theor. Comput. Sci. 410(1), 53–61
(2009)

8. Fiala, J., Golovach, P.A., Kratochv́ıl, J.: Parameterized complexity of coloring
problems: Treewidth versus vertex cover. In: Chen, J., Cooper, S.B. (eds.) TAMC
2009. LNCS, vol. 5532, pp. 221–230. Springer, Heidelberg (2009)

9. Frank, A., Tardos, É.: An application of simultaneous diophantine approximation
in combinatorial optimization. Combinatorica 7(1), 49–65 (1987)

10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman, New York (1979)

11. Ito, T., Goto, K., Zhou, X., Nishizeki, T.: Partitioning a multi-weighted graph to
connected subgraphs of almost uniform size. IEICE Transactions 90-D(2), 449–456
(2007)

12. Ito, T., Zhou, X., Nishizeki, T.: Partitioning a weighted graph to connected sub-
graphs of almost uniform size. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.)
WG 2004. LNCS, vol. 3353, pp. 365–376. Springer, Heidelberg (2004)

13. West, D.: Introduction to graph theory. Prentice Hall Inc., Upper Saddle River,
NJ (1996)

Improved Induced Matchings in Sparse Graphs

Rok Erman1, �Lukasz Kowalik2, Matjaž Krnc1, and Tomasz Waleń2

1 Department of Mathematics, University of Ljubljana, Slovenia
2 Institute of Informatics, University of Warsaw, Poland

Abstract. An induced matching in graph G is a matching which is an
induced subgraph of G. Clearly, among two vertices with the same neigh-
borhood (called twins) at most one is matched in any induced matching,
and if one of them is matched then there is another matching of the same
size that matches the other vertex. Motivated by this, Kanj, Pelsmajer,
Schaefer and Xia [10] studied induced matchings in twinless graphs. They
showed that any twinless planar graph contains an induced matching of
size at least n

40
and that there are twinless planar graphs that do not

contain an induced matching of size greater than n
27

+O(1). We improve
both these bounds to n

28
+O(1), which is tight up to an additive constant.

This implies that the problem of deciding an whether a planar graph has
an induced matching of size k has a kernel of size at most 28k. We also
show for the first time that this problem is FPT for graphs of bounded
arboricity.

Kanj et al. presented also an algorithm which decides in O(2159
√

k+n)-
time whether an n-vertex planar graph contains an induced matching of
size k. Our results improve the time complexity analysis of their algo-
rithm. However, we show also a more efficient, O(225.5

√
k +n)-time algo-

rithm. Its main ingredient is a new, O∗(4l)-time algorithm for finding a
maximum induced matching in a graph of branch-width at most l.

1 Introduction

An induced matching in graph G is a matching which is an induced subgraph
of G. It was introduced by Stockmeyer and Vazirani [17] and motivated as the
“risk-free” marriage problem (decide whether there exist at least k pairs such
that each married person is compatible with no married person except the one
he or she is married to). In this paper we study induced matchings in planar, or
more generally bounded arboricity graphs, both from combinatorial and compu-
tational perspective.

1.1 Combinatorial Perspective

It is a natural and heavily researched area in extremal graph theory to establish
lower bounds on the size of various structures in selected graph classes. For
example, Nishizeki and Baybars [15] and later Biedl et al. [3] showed tight lower
bounds on the size of matching in subclasses of planar graphs, Alon, Mubayi and
Thomas [1] show a lower bound on the size of induced forest in sparse graphs.

J. Chen and F.V. Fomin (Eds.): IWPEC 2009, LNCS 5917, pp. 134–148, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Improved Induced Matchings in Sparse Graphs 135

Kanj, Pelsmajer, Schaefer and Xia [10] were first to consider the size of in-
duced matchings in planar graphs. Graphs like K1,n, K2,n show that general
planar graphs have no nontrivial lower bound on the induced matching size.
Kanj et al. observed that among two vertices with the same neighborhood (called
twins) at most one is matched in any induced matching, and if one of them is
matched then there is another matching of the same size that matches the other
vertex. In particular, after removing one of two twins from a graph, the size
of maximum induced matching does not change. Motivated by this, Kanj et al.
studied induced matchings in twinless graphs. They showed that any twinless
planar graph contains an induced matching of size at least n

40 and that there are
twinless planar graphs that do not contain an induced matching of size greater
than n

27 + O(1).
In this paper we improve both these bounds to n

28 + O(1), which is tight
up to an additive constant. The lower bound is also generalized to bounded
genus graphs, i.e. we show that any twinless graph of genus g contains an in-
duced matching of size at least 2(n−10g+9)

7(7+
√

1+48g) . This improves an earlier bound
2(n−10g+10)

13(7+
√

1+48g) of Kanj et al. [10].
Kanj et al. showed also that any planar graph of minimum degree 3 contains

an induced matching of size (n + 8)/20. We note that results of Nishizeki and
Baybars [15] imply a better bound of (n+2)/12 for these graphs, as well as some
better bounds for planar graphs of minimum degree 4 and 5.

Finally, we consider graphs of bounded arboricity, i.e. graphs whose edges set
can be partitioned into O(1) forests. For example, planar graphs have arboricity
3. Intuitively, graphs of bounded arboricity are uniformly sparse, since this class
is equal to the class of graphs of bounded maximum density, where maximum
density of a graph G is defined as d∗ = maxJ⊆V,J �=∅

|E(G[J])|
|J| (see e.g. [11] for

some relations between classes of sparse graphs). We show that any n-vertex
twinless graph of arboricity c contains an induced matching of size Ω(1

cn1/c).

1.2 Computational Perspective

It was shown by Yannakakis [18] that deciding whether a planar graph contains
an induced matching is NP-complete. Although the optimization problem is
APX-complete in general [8], for planar graphs, and more generally for graphs
that do not contain K5 or K3,3 as a minor, there is a PTAS working in 2O(1/ε)n
time due to Baker [2] and Chen [4]. The PTAS (though with a worse running-time
bound) can be generalized to H-minor-free graphs due to Demaine et al. [7].

In the area of parameterized complexity, one asks whether there is an al-
gorithm for the induced matching problem which verifies whether an n-vertex
graph contains an induced matching of size k in time nO(1)f(k). If so, then the
problem is fixed parameter tractable (FPT in short). It is known that the problem
is W [1]-hard in general [13], which means that most likely the induced match-
ing problem is not FPT. However, there is a 2O(

√
k)nO(1)-time parameterized

algorithm for H-minor-free graphs [6] due to Demaine, Fomin, Hajiaghayi and
Thilikos. For the (smaller) class of planar graphs, Moser and Sikdar [12] showed

136 R. Erman et al.

that the problem has a linear kernel, which means that one can reduce the prob-
lem in polynomial time to the same problem but on instance of size O(k). The
result of Kanj et al. mentioned in Section 1.1 implies that the size of the kernel
is bounded by 40k. Our results improve the bound further to 28k.

We show, using the concept of eliminating twins, that the induced matching
problem has a polynomial kernel for graphs of bounded arboricity. This implies
that for such graphs there is an FPT algorithm with time complexity of the form
O(n+f(k)). Since H-minor-free graphs have bounded arboricity, this generalizes
the result of Demaine et al. [6] for the special case of the induced matching prob-
lem (the results in [6] are stated for all so-called bidimensional problems). This
is also particularly interesting because there are classes of bounded arboricity
graphs (like 4-regular graphs) for which the problem is APX-hard.

By using the linear kernel and planar separator technique, Kanj et al. showed
an O(2159

√
k + n)-time parameterized algorithm. Our lower bound of the size of

induced matching in twinless planar graphs improves the time complexity anal-
ysis of their algorithm to O(2133

√
k +n). However, we show also a more efficient,

O(225.5
√

k + n)-time algorithm based on the branch-width decomposition.
We also note that the proof of the lower bound gives a very practical and

easy-to-implement algorithm for finding large induced forests in planar graphs
(see Section 2.4).

2 Lower Bounds

In this section we present some lower bounds on the size of induced matching
in subclasses of planar graphs and some classes of twinless sparse graphs. Our
general approach is the same as that of Kanj et al., who used the following
lemma. (We give a simple proof for completeness).

Lemma 1 (Kanj et al. [10]). Let G be a minor-closed family of graphs and
let c be a constant such that any graph in G is c-colorable. Moreover, let G be
a graph from G and let M be a matching in G. Then G contains an induced
matching of size at least |M |/c.

Proof. Let M be a matching in G. We obtain graph G′ by removing all un-
matched vertices and contracting all edges of matching M . Then G′ ∈ G. Color
the vertices of G′ in c colors. The largest color class in V (G′) is an independent
set of size at least |M |/c. It corresponds to an induced matching in G of size at
least |M |/c.

It follows that a lower bound on the size of a matching in a subclass H of a
minor-closed graph family implies a bound on the size of an induced matching
in H.

2.1 Planar Graphs of Large Minimum Degree

Kanj et al. showed that a planar graph of minimum degree 3 contains a matching
of size at least (n+8)/5. Using this with Lemma 1 and the Four Color Theorem

Improved Induced Matchings in Sparse Graphs 137

they obtained that any planar graph of minimum degree 3 contains an induced
matching of size at least (n+8)/20. However, this bound can be easily improved
by using the following tight bounds for the size of matchings due to Nishizeki
and Baybars.

Theorem 1 (Nishizeki and Baybars [15]). Let G be an n-vertex planar
graph of minimum degree δ and let M be a maximum cardinality matching in G.
Then,

(i) if δ = 3 and n ≥ 10, then |M | ≥ n+2
3 ,

(ii) if δ = 4 and n ≥ 16, then |M | ≥ 2n+3
5 ,

(iii) if δ = 5 and n ≥ 34, then |M | ≥ 5n+6
11 .

Corollary 1. Let G be an n-vertex planar graph of minimum degree δ and let
M be a maximum cardinality induced matching in G. Then,

(i) if δ = 3 and n ≥ 10, then |M | ≥ n+2
12 ,

(ii) if δ = 4 and n ≥ 16, then |M | ≥ 2n+3
20 ,

(iii) if δ = 5 and n ≥ 34, then |M | ≥ 5n+6
44 . ��

Let us note that the above bound |M | ≥ n+2
12 is tight (up to an additive constant),

as we show in Section 3. Let us also note that the paper of Nishizeki and Baybars
contains also tight lower bounds on the matching size in graphs of minimum
degree 3, 4 and 5 and vertex connectivity 1, 2, 3 and 4 and the corresponding
bounds for induced matchings can be obtained.

2.2 Twinless Graphs of Bounded Genus

In this section we present an improved lower bound for the size of induced
matchings in twinless graph of bounded genus. To this end, we are going to
establish a lower bound on the size of a maximum cardinality matching in such
graphs, and apply Lemma 1.

We begin with two simple observations.

Lemma 2. Let uv be an edge in a maximum cardinality matching M in graph
G and let I the set of unmatched vertices. If N(u) ∩ I �= ∅ and N(v) ∩ I �= ∅,
then there is a vertex x ∈ I such that N(u) ∩ I = N(v) ∩ I = {x}. In particular
u, v and x form a triangle.

Proof. Follows from the maximality of M .

Lemma 3. For any twinless graph G there exists a maximum cardinality match-
ing such that all 1-vertices of G are matched.

Proof. Let M be a maximum cardinality matching in G and let I be the set of
unmatched vertices. Suppose I contains a 1-vertex v. Let y be the sole neighbor
of v. Then y is matched for otherwise M is not maximal. Let x be the vertex
matched with y by M . Since G is twinless, x has degree at least two. We can
now replace the edge xy with the edge vy in matching M and hereby decrease
the number of vertices of degree 1 in I, without changing the size of M . After
applying the above procedure to all 1-vertices we get the desired matching.

138 R. Erman et al.

Now we are ready to show a lower bound on the size of a matching in twinless
graphs of bounded genus.

Theorem 2. Every n-vertex twinless graph G of genus g contains a matching
of size n+10(1−g)−1

7 .

Proof. We will show that if G has no isolated vertices then G contains a matching
of size n+10(1−g)

7 . Since a twinless graph contains at most one isolated vertex
then the claimed bound will follow. In what follows, M denotes the matching
described in Lemma 3 and I = V \V (M). Note that I is an independent set, by
the maximality of M . In what follows, we show a lower bound on |M |.

Let M� ⊂ M be the set of edges in matching M that form triangles with
vertices in I. Similarly, let I� ⊂ I be the set of vertices in I that form triangles
with edges of M . Let I2 ⊂ I denote the vertices of degree two in I and I3+ the
vertices with degree three or more.

First note that Lemma 2 implies that

|M�| ≥ |I�|. (1)

Hence it suffices to bound |M \M�| from below. Let R be the set of vertices in
M \M� that are adjacent to I. Note that by Lemma 2 each edge of M \M�

has at most one endpoint in R, so

|M \M�| ≥ |R|. (2)

Now we bound R from below in terms of |I2 \ I�|. Let G2 be a graph on the
vertices R such that G2 contains an edge uv when there is a vertex x ∈ I2 \
I� adjacent to both u and v. Observe that G2 has genus at most g, because
after subdividing its edges we get a subgraph of G. Hence, by Euler’s Formula,
|E(G2)| ≤ 3|V (G2)| − 6 + 6g. Since |E(G2)| = |I2 \ I�| and V (G2) = R, we get
|R| ≥ |I2\I�|+6−6g

3 . By (2),

|M \M�| ≥ |I2 \ I�|+ 6− 6g

3
. (3)

Now we bound |R| from below in terms of |I3+ \ I�|.
Let G3 be the bipartite subgraph of G, on the vertices R ∪ (I3+ \ I�) and

with edges incident with I3+ \ I�. Since G3 is bipartite its embedding on an
orientable surface of genus g has no triangles and we get the following bound on
the number of its edges by Euler’s Formula :

|E(G3)| ≤ 2|V (G3)| − 4 + 4g.

By combining it with the fact that vertices in I3+ have degree at least 3, we can
bound |E(G3)| as follows.

3 · |I3+ \ I�| ≤ |E(G3)| ≤ 2 · (|R|+ |I3+ \ I�|)− 4 + 4g.

Improved Induced Matchings in Sparse Graphs 139

It gives us |R| ≥ |I3+\I�|+4−4g
2 so with (2) we get

|M \M�| ≥ |I3+ \ I�|+ 4− 4g

2
. (4)

Now we are going to merge the bounds (3) and (4) into the following bound:

|M \M�| ≥ |I \ I�|
5

+ 2(1− g). (5)

When |I2\I�| ≥ 3
5 |I\I�|, we get (5) from (3). Similarly, when |I2\I�| ≤ 3

5 |I\I�|
we get (5) from (4) by replacing |I3+ \ I�| by |I \ I�| − |I2 \ I�|.

By combining (1) and (5) we get

|M | = |M \M�|+ |M�| ≥ |I \ I�|
5

+ 2(1− g) + |I�| =

=
|I|
5

+ 2(1− g) +
4
5
|I�| ≥ |I|

5
+ 2(1− g).

Since I = n− 2|M |, we get |M | ≥ n+10(1−g)
7 , as desired.

By using Lemma 1, Four Color Theorem, and Heawood’s Theorem (which states
that any graph of genus g > 0 is �(7 +

√
1 + 48g)/2�-colorable), we get the

following corollaries.

Corollary 2. Every n-vertex twinless graph of genus g contains an induced
matching of size (2n + 20(1− g)− 2)/(49 + 7

√
1 + 48g).

Corollary 3. Every n-vertex twinless planar graph contains an induced match-
ing of size n+9

28 .

2.3 Twinless Sparse Graphs

In this section we focus on graphs of bounded arboricity. Let arb(G) and d∗(G)
denote arboricity and the maximum density of graph G, respectively.

Theorem 3. Any n-vertex twinless graph of maximum density d∗ contains a
matching of size Ω(n1/�d∗�).

Proof. Let G be an n-vertex twinless graph of maximum density d∗ and let M
be a maximum cardinality matching in G. Denote d = �d∗�. Let I denote the
independent set V (G) \ V (M). Let us partition I into vertices of degree at least
d + 1 and vertices of degree at most d, denoted by Id+1↑ and Id↓ respectively.

Let E(V (M), Id+1↑) denote set the edges between V (M) and Id+1↑. Then

(d + 1)|Id+1↑| ≤ |E(V (M), Id+1↑)| ≤ d(2|M |+ |Id+1↑|),

where the second inequality follows from the fact that E(V (M), Id+1↑) induces
a graph of maximum density at most d∗. By rearranging we get

|M | = Ω(|Id+1↑|/d). (6)

140 R. Erman et al.

On the other hand, since G is twinless,

|Id↓| ≤
d∑

i=0

(
2|M |

i

)
= O((2|M |)d).

Hence, |M | = Ω(|Id↓|1/d). Together with (6) we get the claimed bound.

Theorem 4. Any n-vertex twinless graph G of maximum density d∗ contains
an induced matching of size Ω(1

d∗ · n1/�d∗�).

Proof. Let M be a maximum cardinality matching in G. Similarly as in Lemma 1
we consider graph G′ which is obtained from G by removing all unmatched
vertices and contracting all edges of matching M . Consider any set of vertices
S′ ⊆ V (G′). Then S′ corresponds to a set S ⊆ V (G), i.e. S′ is obtained from
S by identifying endpoints of edges of M . Then |E(G′[S′])| ≤ |E(G[S])| and
|S′| = |S|/2, hence |E(G′[S′])|

|S′| ≤ 2 |E(G[S])|
|S| ≤ 2d∗(G). It follows that G′[S′]

contains a vertex of degree at most 4d∗. Since S′ was chosen arbitrarily we
infer that G′ is �4d∗�-degenerate and hence (�4d∗� + 1)-vertex-colorable (by a
simple algorithm which chooses a vertex v with the smallest degree, removes
it from the graph, colors the resulting graph recursively and assigns to v the
smallest color which is unused by v’s neighbors). By choosing the subset of M
corresponding to the biggest color class in G′ we obtain an induced matching of
size |M |/(�4d∗� + 1) = Ω(|M |/d∗). Since |M | = Ω(n1/�d∗�) by Theorem 3, the
claim follows1.

Although it is more convenient to prove the above result refering to maximum
density, we feel that arboricity is more often used as a measure of graph sparsity.
However, we can easily reformulate Theorem 4 using the following lemma, which
follows from the Nash-Williams Theorem [14].

Lemma 4. For any graph G with at least one edge, �d∗(G)� < arb(G). ��

Corollary 4. Any n-vertex twinless graph G of arboricity c contains an induced
matching of size Ω(1

cn1/c).

Now, if we want to decide whether an n-vertex graph of arboricity bounded by
a constant c contains an induced matching of size k, we begin by eliminating
twins in linear time (see [10]). Let H be the resulting graph. From Theorem 4
we know that H contains an induced matching of size α · |V (H)|1/c, for some
constant α. Hence if k ≤ α · |V (H)|1/c we answer “yes”, and otherwise we know
that |V (H)| = O(kc) and hence |E(H)| = O(ckc) = O(kc). Since we can find a
maximum induced matching in H by the exhaustive search, the overall algorithm
runs in time O(n+exp(kc)). We note that one can also find induced matchings of
size k within this time bound (see Section 4). We summarize it with the following
corollary.
1 Independently, Kanj et al. [10] in the journal version observed that any matching

M in a graph of maximum density d∗ contains an induced matching of size at least
|M |/(4d∗ − 1).

Improved Induced Matchings in Sparse Graphs 141

Corollary 5. The induced matching problem for graphs of arboricity bounded by
c = O(1) has kernel of size O(kc). In particular, this problem is fixed parameter
tractable for these graphs. ��

2.4 A Practical Algorithm for Planar Graphs

The discussion in Section 1.2 shows that if we want to find large induced match-
ing in a planar graph in practice, then most likely we should use PTAS of Baker
or Chen, since they are linear-time (for any fixed approximation ratio) and their
time complexities do not hide large constants. However, these algorithms are
still very complicated and hard to implement.

Here we want to note that the proof technique of Corollary 3 (introduced
by Kanj et al. [10]) can be turned into the following algorithm. Given an input
graph G, remove twins, find a maximum matching M , remove the unmatched
vertices, contract the edges from M , color the resulting graph and choose the
subset of M which corresponds to the biggest color class.

Eliminating twins can be easily done in linear time (see [10]). Finding a maxi-
mum matching using Hopcroft-Karp algorithm works in O(n3/2)-time for planar
graphs and is implemented in many libraries. Since so far there is no fast and
simple algorithm for 4-coloring planar graphs, we use 5 colors instead and then
the coloring can be found by a simple linear-time algorithm (see e.g. [5]). Be-
cause of using 5 colors instead of 4 the constant 28 increases to 35. Then we
get a O(n3/2)-time algorithm which always finds an induced matching of size at
least n′/35, where n′ is the number of pairwise different vertex neighborhoods
in G. If one insists on linear-time, a maximal matching can be used instead of
maximum matching M . (Then the constant 35 doubles because any maximal
matching has size at least |M |/2.)

3 An Upper Bound

In this section we show that the bound in Corollary 3 is tight, up to an additive
constant. Namely, we show the following.

Theorem 5. For any n0 ∈ N there is an n-vertex twinless planar graph G such
that n > n0 and any induced matching in G is of size at most n

28 + O(1).

Proof. In what follows we describe an n-vertex planar graph with maximum
induced matching of size at most n

28 +O(1). It will be clear from our construction
that the number of vertices can be made arbitrarily large.

We begin with a graph Tk, which consists of k copies of K4 and some additional
edges. We obtain Tk from the graph drawn in Fig 1 by identifying vertex v1 with
w1, v2 with w2 and so on. It is easy to see that the resulting graph is still planar,
since the cylinder is homeomorphic to a subset of the plane. Also, Tk is twinless.

Note that Tk has 4k vertices, 8k+O(1) triangular faces and 12k+O(1) edges.
Now, we build a new graph Gk by extending Tk, as follows:

142 R. Erman et al.

v1 v2 v3 v4 v5 v6 v7 v8 v9
. . .

w1 w2 w3 w4 w5 w6 w7 w8 w9 . . .

Fig. 1. Building Tk: arranging k copies of K4 in 4 layers of triangles

(i) For each 3-face xyz of Tk add a 3-vertex v adjacent to x, y and z,
(ii) For each edge xy of Tk add a 2-vertex v adjacent to x and y.

(iii) For each vertex x of Tk add a 1-vertex v adjacent to x.

Note that by adding vertices like this we do not introduce twins and the graph
stays planar. It is clear that Gk has 4k + 8k + 12k + 4k + O(1) = 28k + O(1)
vertices. Moreover, every edge of Gk is incident with a vertex of one of the k
copies of K4. On the other hand, if M is an induced matching in Gk, vertices
of each copy of K4 are incident with at most one edge of M . It follows that
|M | ≤ k, so |M | ≤ |V (Gk)|/28 + O(1).

In a very similar way, we get that Corollary 1 (i) is also tight.

Corollary 6. For any n0 ∈ N there is an n-vertex planar graph G of minimum
degree 3 such that n > n0 and any induced matching in G is of size at most
n
12 + O(1).

Proof. Just remove the 1- and 2-vertices from the graphs constructed in the
proof of Theorem 5.

4 An Algorithm Based on Branch-Width

In this section we discuss an algorithm that, given a planar graph G on n vertices
and an integer k, either computes a induced matching of size ≥ k, or concludes
that there is no such induced matching. The algorithm requires O(n + 225.5

√
k)

time.

4.1 Preliminaries

A branch decomposition of a graph G is a pair (T, r), where T is a tree with
vertices of degree 1 or 3 and τ is a bijection from E(G) to the set of leaves of

Improved Induced Matchings in Sparse Graphs 143

T . The order function ω : E(T)→ 2V (G) of a branch decomposition maps every
edge e of T to a subset of vertices ω(e) ⊆ V (G) as follows. The set ω(e) consists
of all vertices of V (G) such that for every vertex v ∈ ω(e) there exist two edges
f1, f2 ∈ E(G) that are incident with v and the leaves τ(f1), τ(f2) are in different
components of T −{e}. The width of (T, τ) is equal to maxe∈E(T) |ω(e)| and the
branch-width of G, bw(G), is the minimum width over all branch decomposition
of G. A set D ⊆ V (G) is a dominating set in a graph G if every vertex in
V (G)−D is adjacent to a vertex in D.

Now we will introduce a few lemmas, that will connect induced matching
problem with branch-width decomposition.

Lemma 5. In any graph without isolated vertices if D is a minimum dominating
set and M is a maximum cardinality matching, then |D| ≤ |M |.

Proof. Let V (M) be the set of the vertices of edges from M . We will describe a
dominating set of size |M |. Let us observe that every vertex is adjacent to some
vertex from the matching M , for otherwise the matching M is not maximal.
Hence V (M) is dominating. However, it is sufficient to choose just one endpoint
for each edge of M . Then clearly all vertices of V (M) are dominated, but we
need to be careful about which endpoint we choose to dominate the unmatched
vertices. Namely, for each edge of uv ∈ M we choose its endpoint which has
unmatched neighbors (or any endpoint if both have only matched neighbors).
It may happen that both endpoints have unmatched neighbors but then by
Lemma 2, N(u) − V (M) = N(v) − V (M) = {x} for some x, so it does not
matter whether we choose u or v.

Lemma 6 ([9]). For any planar graph G with dominating set D,

bw(G) ≤ 3
√

4.5 · |D|.

Lemma 7. For any planar graph G with maximum induced matching I,

bw(G) ≤ 3
√

18 · |I| ∼= 12.7 ·
√
|I|.

Proof. From Lemma 1 we know that the maximum cardinality matching M of
G has size |M | ≤ 4|I|. Combining lemmas 5 and 6 we get

bw(G) ≤ 3
√

18 · |I| ∼= 12.7 ·
√
|I|.

4.2 Algorithm Outline

Let G be the input planar graph on n vertices and let k be the size of induced
matching we look for. As long as there is a pair of twins in G we remove one of
them. This can be implemented in O(n) time (see [10]). Let n′ be the number of
vertices of the resulting graph H . Now we describe an algorithm which decides
whether H has an induced matching of size k.

144 R. Erman et al.

Step 1. If n′ > 28k we can answer True, since the induced matching of size at
least k exists as a consequence of Corollary 3. Otherwise we proceed
with the next step and we can assume our graph has O(k) vertices.

Step 2. Compute the optimal branch-decomposition of graph H . Using algo-
rithm of Seymour and Thomas [16] this step requires O(k4) time. If
bw(G) ≥ 12.7

√
k then as a consequence of Lemma 7 we can return

answer True. Otherwise we proceed with the next step.
Step 3. Use the dynamic programming approach for finding a maximum cardi-

nality induced matching in graph G. In Section 4.3 we present an algo-
rithm that solves this problem on graphs with branch-decomposition of
width ≤ l in O(m · 4l) time where m is the number of edges in a graph.
This step requires O(k · 412.7

√
k) = O(225.5

√
k) time, since l ≤ 12.7

√
k.

If we want to find the matching, in Step 1, we check whether n′ > 70k and
if so we find an induced matching of size k by the linear-time algorithm from
Section 2.4. Otherwise, we know that our graph has O(k) vertices. Then we find
the matching using the self-reducibility approach. Let T (n′) denote the time
complexity of the decision algorithm described above. First, using the decision
problem we determine the size s of the maximum induced matching in H . Then
we can test in time O(k+T (n′)) whether a chosen edge e belongs to some induced
matching of size s: just remove e and the adjacent vertices and test whether there
is an induced matching of size s−1. If that is the case, find the induced matching
of size s − 1 recursively, and otherwise we put back the removed vertices (and
their incident edges) and we test another edge, which has not been excluded
so far. Clearly this procedure takes overall O(|E(H)|(k + T (n′))) time, which is
O(k2 · 412.7

√
k) = O(225.5

√
k).

Theorem 6. For any planar graph G on n vertices and an integer k, there is
an O(n + 225.5

√
k)-time algorithm which finds in G an induced matching of size

k if and only if such a matching exists.

4.3 Dynamic Programming on Graphs of Bounded Branch-Width

Our approach here is based on the algorithm for dominating set proposed by
Fomin and Thilikos in [9]. We closely follow the notation and presentation from
their paper.

Let (T ′, τ) be a branch decomposition of a graph G with m edges, let ω′ :
E(T ′) → 2V (G) be the order function of (T ′, τ). The tree T ′ is unrooted, so we
build its rooted version T , by choosing an edge xy in T ′, putting new vertex v
of degree 2 on this edge and making v adjacent to new vertex r, which is the
new root of tree T . For every edge f ∈ E(T) ∩ E(T ′) we define ω(f) = ω′(f),
and for edges ω(xv) = ω(vy) = ω′(xy) and ω(rv) = ∅.

For an edge f of T we define Ef (Vf) as the set of edges (vertices) of tree
T that are “below” f , i.e. the set of all edges (vertices) g such that every path
containing g and vr in T contains f . Every edge f of T that is not incident to
a leaf has two children that are edges of Ef incident to f .

Improved Induced Matchings in Sparse Graphs 145

For every edge f of T we color the vertices of ω(f) in three colors {0, 1, 2}. We
say that an induced matching M is valid for a coloring c : ω(f)→ {0, 1, 2} when
for every x ∈ ω(f):

– if c(x) = 2, then x ∈ V (M),
– if c(x) = 1, then x �∈ V (M), but it can be adjacent to some vertex of the

matching,
– if c(x) = 0, then x �∈ V (M), and x is not adjacent to a vertex of the matching

(for all y ∈ N(x), y �∈ V (M)).

For every edge f of T we use a mapping:

Af : {0, 1, 2}ω(f) → N ∪ {−∞}

For a coloring c ∈ {0, 1, 2}ω(f), the value Af (c) denotes the largest cardinality
of an induced matching in the subgraph Gf of G that is defined by inducing the
edge set:

{τ−1(x) : x ∈ Vf and x is a leaf of T ′}
subject to the condition that the matching is valid with coloring c.

We define Af (c) = −∞ if there is no valid induced matching in Gf with
coloring c.

Let f be a non-leaf edge of T and let f1, f2 be the children of f . Define
X1 = ω(f) − ω(f2), X2 = ω(f) − ω(f1), X3 = ω(f) ∩ (ω(f1) ∩ ω(f2)), X4 =
(ω(f1) ∩ ω(f2))− ω(f).

Let us note that for 1 ≤ i �= j ≤ 4 we have Xi ∩Xj = ∅. Moreover, ω(f) =
X1 ∪X2 ∪X3, ω(f1) = X1 ∪X3 ∪X4, and ω(f2) = X2 ∪X3 ∪X4.

We say that a coloring c of ω(f) is formed from coloring c1 of ω(f1) and
coloring c2 of ω(f2) if

(F1) For every x ∈ X1, c(x) = max({c1(x)} ∪ {c2(y)− 1 : y ∈ ω(f2) ∩N(x)}),
(F2) For every x ∈ X2, c(x) = max({c2(x)} ∪ {c1(y)− 1 : y ∈ ω(f1) ∩N(x)}),
(F3) For every x ∈ X3, c(x) = max{c1(x), c2(x)},
(F4) For every x ∈ X3 ∪X4, c1(x) + c2(x) ≤ 2.

If coloring c of ω(f) is formed from colorings c1 of ω(f1) and coloring c2 of ω(f2),
then Af (c) ≥ Af1 (c1) + Af2(c2).
We compute functions Af from leaves of T by bottom-up fashion.

For a leaf edge f ∈ E(T), and its leaf node v ∈ V (T) corresponding to an
edge xy ∈ E(G) we define function Af as follows:

– if c(x) ≤ 1 and c(y) ≤ 1, then Af (c) = 0,
– if c(x) = c(y) = 2 then Af (c) = 1,
– otherwise Af (c) = −∞.

For non-leaf edges f of T we can compute function Af as follows (f1, f2 denote
the children of f):

Af (c) = max{Af1(c1) + Af2(c2) | c1, c2 forms c}

146 R. Erman et al.

If coloring c can not be formed from colorings c1, c2 of f1, f2, then we define
Af (c) = −∞.

Let xi denote |Xi|. The number of pairs (c1, c2) of colorings that can form a
coloring c, can be bounded by

3x1+x2 · 6x3+x4

since there are three possible colorings of vertices u ∈ X1 ∪X2, and six pairs of
colorings of vertices u ∈ X3 ∪X4, that is:

(c1(u), c2(u)) ∈ {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (0, 2)}.

We can observe that if for some coloring c, Af (c) �= −∞, we change coloring c
into c′ by replacing the color of a vertex x with c(x) = 0, to a new color c′(x) = 1,
then Af (c′) �= −∞, and Af (c′) ≥ Af (c). This leads us to an observation, that
during computation of function Af , instead of investigating pairs of colorings
(from sets X3, X4) {(0, 1), (1, 0), (1, 1)}, it is sufficient to check only one pair,
namely (1, 1).
We can compute function Af using a slightly modified formula:

Af (c) = max{Af1(c1) + Af2(c2) | c1, c2 satisfies (F1), (F2), (F3) and (F4’)}

where condition (F4’) is defined as follows:

(F4’) For every x ∈ X3 ∪X4, (c1(x), c2(x)) ∈ {(0, 0), (1, 1), (2, 0), (0, 2)}.

The complexity of computing Af , with this optimization, can be bounded by:

3x1+x2 · 4x3+x4

Let l = bw(G), and xi = |Xi|, the values xi are bounded by following inequalities:

x1 + x2 + x3 = |ω(f)| ≤ l
x1 + x3 + x4 = |ω(f1)| ≤ l
x2 + x3 + x4 = |ω(f2)| ≤ l

The maximum value of linear functions log4 3(x1 + x2) + x3 + x4 subject to
constraints on xi is l (which is achieved for x1 = x2 = 0, x3 = x4 = 0.5l). Hence
the cost of computing function Af for a single edge f can be bounded by O(4l).
Since we have to compute function Af for each edge of tree T , the total time
complexity is O(m · 4l). The size of the maximum induced matching is stored
in Avr(ε), (where ε is the coloring of the empty set). The matching itself can be
easily retrieved using standard methods. This gives us the following theorem.

Theorem 7. For a graph G on m edges and with given a branch-decomposition
of width l, the maximum induced matching of G can be computed in O(m · 4l)
time.

Improved Induced Matchings in Sparse Graphs 147

We finish this section by noting that there is also an O∗(4t)-time algorithm by
Moser and Sikdar [12], where t denotes the tree-width of the input graph. It
follows that our algorithm improves on this result, since for any graph G of at
least 3 edges, bw(G) ≤ tw(G) + 1 ≤ 3

2bw(G) and the existing algorithms for
finding optimal branch-decomposition are regarded as more practical than those
for finding optimal tree-decomposition.

Acknowledgments

We are grateful to Fedor Fomin for helfpul hints. We are indebted to anonymous
IWPEC referees for careful reading and numerous helpful comments.

The work was partially supported by Polish-Slovenian project “Graph color-
ings and their applications”. �L. Kowalik and T. Waleń were also supported by
a grant from the Polish Ministry of Science and Higher Education, projects N
N206 355636 and N206 004 32/0806.

References

1. Alon, N., Mubayi, D., Thomas, R.: Large induced forests in sparse graphs. J. Graph
Theory 38(3), 113–123 (2001)

2. Baker, B.S.: Approximation algorithms for NP-complete problems on planar
graphs. J. ACM 41(1), 153–180 (1994)

3. Biedl, T.C., Demaine, E.D., Duncan, C.A., Fleischer, R., Kobourov, S.G.: Tight
bounds on maximal and maximum matchings. Discrete Mathematics 285(1-3), 7–
15 (2004)

4. Chen, Z.-Z.: Efficient approximation schemes for maximization problems on K3,3-
free graphs. J. Algorithms 26(1), 166–187 (1998)

5. Chiba, N., Nishizeki, T., Saito, N.: A linear algorithm for five-coloring a planar
graph. J. Algorithms 2, 317–327 (1981)

6. Demaine, E.D., Fomin, F.V., Hajiaghayi, M.T., Thilikos, D.M.: Subexponential
parameterized algorithms on bounded-genus graphs and H-minor-free graphs. J.
ACM 52(6), 866–893 (2005)

7. Demaine, E.D., Hajiaghayi, M.T., Kawarabayashi, K.: Algorithmic graph minor
theory: Decomposition, approximation, and coloring. In: Proc. FOCS 2005, pp.
637–646. IEEE Computer Society Press, Los Alamitos (2005)

8. Duckworth, W., Manlove, D., Zito, M.: On the approximability of the maximum
induced matching problem. J. Discrete Algorithms 3(1), 79–91 (2005)

9. Fomin, F.V., Thilikos, D.M.: Dominating sets in planar graphs: Branch-width and
exponential speed-up. SIAM J. Comput. 36(2), 281–309 (2006)

10. Kanj, I.A., Pelsmajer, M.J., Xia, G., Schaefer, M.: On the induced matching prob-
lem. In: Proc. STACS 2008, pp. 397–408 (2008); Journal version to appear in J.
Comput. Sys. Sci.

11. Kowalik, �L.: Approximation scheme for lowest outdegree orientation and graph
density measures. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 557–566.
Springer, Heidelberg (2006)

12. Moser, H., Sikdar, S.: The parameterized complexity of the induced matching prob-
lem in planar graphs. Discrete Applied Mathematics 157, 715–727 (2009)

148 R. Erman et al.

13. Moser, H., Thilikos, D.M.: Parameterized complexity of finding regular induced
subgraphs. In: Broersma, H., Dantchev, S.S., Johnson, M., Szeider, S. (eds.) Proc.
ACiD 2006. Texts in Algorithmics, vol. 7, pp. 107–118. King’s College, London
(2006)

14. Nash-Williams, C.S.J.A.: Decomposition of finite graphs into forests. Journal of
the London Mathematical Society 39, 12 (1964)

15. Nishizeki, T., Baybars, I.: Lower bounds on the cardinality of the maximum match-
ings of planar graphs. Discrete Mathematics 28(3), 255–267 (1979)

16. Seymour, P.D., Thomas, R.: Call routing and the ratcatcher. Combinatorica 14(2),
217–241 (1994)

17. Stockmeyer, L.J., Vazirani, V.V.: NP-completeness of some generalizations of the
maximum matching problem. Inf. Process. Lett. 15(1), 14–19 (1982)

18. Yannakakis, M.: Node- and edge-deletion NP-complete problems. In: Proc. STOC
1978, pp. 253–264. ACM Press, New York (1978)

Well-Quasi-Orders in Subclasses of
Bounded Treewidth Graphs

Michael R. Fellows1, Danny Hermelin2,�, and Frances A. Rosamond1

1 School of Electrical Engineering and Computer Science,
The University of Newcastle, Calaghan NSW 2308 - Australia
{mike.fellows,frances.rosamond}@cs.newcastle.edu.au

2 Department of Computer Science, University of Haifa,
Mount Carmel, Haifa 31905 - Israel

danny@cri.haifa.ac.il

Abstract. We show that three subclasses of bounded treewidth graphs
are well-quasi-ordered by refinements of the minor order. Specifically,
we prove that graphs with bounded feedback-vertex-set are well-quasi-
ordered by the topological-minor order, graphs with bounded vertex-
covers are well-quasi-ordered by the subgraph order, and graphs with
bounded circumference are well-quasi-ordered by the induced-minor or-
der. Our results give an algorithm for recognizing any graph family in these
classes which is closed under the corresponding minor order refinement.

1 Introduction

The treewidth parameter is one of the most commonly used structural param-
eterizations in parameterized complexity [7,10,14]. The reason for this being
that many natural graph problems turn out to be fixed-parameter tractable
when parameterized by the treewidth of the input graph. Indeed, various algo-
rithmic methodologies such as tree-decomposition dynamic programming [1,2,4]
and Courcelle’s Theorem [5] provide a single framework to a vast multitude of
different combinatorial problems in bounded treewidth graphs.

With that being said, there are still quite a few problems which are impreg-
nable by any of the algorithmic methodologies for bounded treewidth graphs. For
instance, vertex ordering problems such as Bandwidth or Coalition Width

have no known fixed-parameter algorithm when the treewidth is taken as a pa-
rameter. There is thus room for more algorithmic methodologies, perhaps by
imposing more structure on the input than bounded treewidth. In this paper we
suggest the method of well-quasi-ordering as a means towards this aim. Using
this method, we are able to prove the following algorithmic result concerning
subclasses of bounded treewidth graphs:

Theorem 1. Let k be some fixed positive integer. There is a linear-time algo-
rithm for recognizing:
� Supported by the Adams Fellowship of the Israel Academy of Sciences and Human-

ities.

J. Chen and F.V. Fomin (Eds.): IWPEC 2009, LNCS 5917, pp. 149–160, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

150 M.R. Fellows, D. Hermelin, and F.A. Rosamond

– Any family of graphs with vertex-cover at most k that is closed under sub-
graphs.

– Any family of graphs with feedback-vertex-set at most k that is closed under
topological minors.

– Any family of graphs with circumference at most k that is closed under
induced-minors.

We recall that a vertex cover in a graph is a set of vertices which covers all edges
in the graph, a feedback-vertex-set is a set of vertices which covers all cycles
in the graph, and the circumference of a graph is the length of its maximum
cycle. Bounding each of these parameters results in a bound in the treewidth
as well. By closed under subgraphs (resp. topological minors, induced minors),
we mean that whenever a graph belongs to the family, then all of its subgraphs
(resp. topological minors, induced-minors) also belong to the family. We mention
that the first item of Theorem 1 was already shown indirectly by Ding [6] (see
Section 3).

To see how our theorem applies to fixed-parameter algorithms, lets us consider
some examples. Given a graph G, the bandwidth of G is the minimum bandwidth
of all vertex-orderings π : V (G) → {1, . . . , |V (G)|}, where the bandwidth of a
given vertex-ordering π is defined as max{u,v}∈E(G) |π(v) − π(u)|. The Band-

width problem is the problem of computing the bandwidth of a given graph.
It is known to be W[t]-hard for all t > 1 when parameterized by the bandwidth
of the input graph [3], and not known to be in FPT when parameterized by
the treewidth of the graph. However, observe that for each 	 ∈ N, the family of
graphs with bandwidth at most 	 is closed under subgraphs. Thus, by the first
item of Theorem 1, we get:

Corollary 1. For any k, 	 ∈ N, there is an f(k +) · n time algorithm which
determines whether a given graph G with n vertices and vertex-cover at most k,
has bandwidth at most 	.

A coalition in a graph is a subset of vertices pairwise connected by vertex-disjoint
paths, or in other words, a topological clique minor. Given a vertex-ordering π
of G, let us denote by G+

π (v) the graph induced by {v, π−1(π(v)+1), π−1(π(v)+
2), . . . , π−1(|V (G)|)}, and by N+

π (v) the set of neighbors v has in G+
π (v). The

coalition-width of a given graph G is defined as the minimum coalition-width over
all vertex-orderings of G, where the coalition-width of a given vertex-ordering π
is defined as maxv∈V (G) |{|K| : K ⊆ N+

π (v), K forms a coalition in G+
π (v)}. We

do not know whether the corresponding Coalition Width problem is in FPT
when parameterized by the treewidth of the input graph. However, observe that
for each 	 ∈ N, the family of all graphs with coalition-width at most 	 is closed
under topological minors, and so according to second item of Theorem 1 we get:

Corollary 2. For any k, 	 ∈ N, there is an f(k +) · n time algorithm which
determines whether a given graph G with n vertices and feedback-vertex-set at
most k, has coalition-width at most 	.

Well-Quasi-Orders in Subclasses of Bounded Treewidth Graphs 151

The reader should observe that all algorithms implied by the corollaries above are
non-uniform by nature: For each k and 	 we get a different algorithm. However,
using the techniques by Fellows and Langston [8,9], the above results along with
many other natural examples can be transformed into uniform algorithms. We
refer the reader for more details also to [7].

The remainder of this paper is devoted to proving Theorem 1. We begin by
briefly reviewing the fundamentals behind the method of well-quasi-ordering,
and how it applies to bounded treewidth graphs. In Section 3, we provide the
general framework for proving Theorem 1 by devising what we call well-quasi-
order identification tools. The correctness of these tools is proved in Sections 4
and 5.

2 The WQO Method in Bounded Treewidth Graphs

Let us begin with some fundamental terminology from well-quasi-order theory.
A quasi-order on a set X is a reflexive transitive subset of X ×X . That is, if �
is a quasi-order on X , then x � y and y � z implies x � z for all x, y, z ∈ X , and
x � x for all x ∈ X . We write x � y if x � y and y � x. An infinite sequence
x1, x2, x3 · · · is called strictly descending if x1 � x2 � x3 · · · , and good if it is a
good pair – a pair (xi, xj) with xi � xj and i < j. A bad sequence is an infinite
sequence which is not good. A well-founded quasi-order is a quasi order with no
infinite strictly descending sequences. A well-quasi-order (wqo) is a well-founded
quasi-order with no infinite bad sequences. Equivalently, a well-quasi-order is a
well-founded quasi-order with no infinite antichain.

Given a quasi-ordered set 〈X,�〉, a subset X ′ ⊆ X is said to be closed under
�, if for all x, y ∈ X we have x ∈ X ′ whenever x � y and y ∈ X ′. Closed subsets
of wqo sets have a property which is very interesting in our context: Consider
the set

Forb(X ′) := {y ∈ X \X ′ : z ⊀ y for all z ∈ X \X ′}.

This set has the property that x ∈ X ′ iff y � x for all y ∈ Forb(X ′), and thus it is
called a forbidden characterization of X ′. Furthermore, since � is wqo, Forb(X ′)
is necessarily finite as it constitutes an anti-chain w.r.t �. Thus, every closed
subset of a wqo set has a finite forbidden characterization.

Theorem 2 (WQO Recognition Theorem). Let 〈X,�〉 be a quasi-ordered
set. If:

(i) � is a wqo on X, and
(ii) for any x, y ∈ X, one can determine whether y � x in f(|y|) · |x|c time, for

some c ∈ N.

Then one can recognize in O(nc) time any subset X ′ ⊆ X that is closed under �.

Proof. We describe an algorithm for recognizing an arbitrary subset X ′ ⊆ X
that is closed under �. Since X ′ is closed under �, the set Forb(X ′) defined
above is a forbidden characterization of X ′. According to the first condition in

152 M.R. Fellows, D. Hermelin, and F.A. Rosamond

the theorem, this set is finite, and so our algorithm can have all elements of
Forb(X ′) “hardwired” into it. On input x ∈ X , our algorithm checks whether
y � x for each y ∈ Forb(X ′), using the order testing procedure promised by
the second condition in the theorem. It determines that x ∈ X ′ iff y � x for all
y ∈ Forb(X ′). Correctness of this algorithm follows from the fact Forb(X ′) is a
forbidden characterization of X ′. Furthermore, its running-time can be bounded
by O(nc), n := |x|, since the number and sizes of the elements in Forb(X ′)
depends only on X ′, and is constant with respect to |x|. ��
The WQO Recognition Theorem encapsulates the two main ingredients behind
the method of well-quasi-ordering. Probably the best known application of this
method is the astonishing result implied by Robertson and Seymour’s graph
minor project: For any graph family G closed under minors, there is an O(n3)
time algorithm for recognizing G. This result is proved in an ongoing series of
over twenty papers, where the two items of the theorem above are shown to
apply to graph minors: The set of all graphs is wqo by the minor order, and one
can test whether a k-vertex graph is a minor of an n-vertex graph in f(k) · n3

time. Combining these two extremely complex results together gives one of the
deepest result in graph theory yielding polynomial-time algorithms for many
problems previously not known to be even decidable.

The minor order on graphs is typically defined via graph operations: A graph
H is minor of a graph G if H can be obtained in G (via isomorphism) by vertex
and edge deletions, and by edge contractions. A contraction of an edge {u, v}
in a graph G is the operation that replaces u and v by a new vertex which is
adjacent to all neighbors of u and v (and removing all resulting multiple edges
and self loops). We can therefore consider orders that are defined by a subset of
these operations, or by applying restrictions on them. For example, a graph H
is topological-minor of a graph G if H can be obtained in G by vertex and edge
deletions, and by topological contractions, where a topological contraction (or
subdivision removal) is a contraction of an edge incident to at least one vertex
of degree 2. The induced minor order is similar to the minor order but without
edge-deletions, and the subgraph order is the well-known order defined by vertex
and edge deletions alone.

In contrast to the graph minor order, none of the above orders is a wqo, not
even in the very restrictive universe of bounded treewidth graphs [15]. However,
in bounded treewidth graphs we have Courcelle’s Theorem [5] which states that
for any monadic-second-order formula φ there is an f(|φ|+ k) ·n time algorithm
for determining whether a given graph on n vertices and treewidth at most k
satisfies φ. Since order testing for any of the above refinements of the graph
minor order can be expressed in monadic-second-order logic, we get the second
ingredient in the WQO method for free in bounded treewidth graphs, due to
Courcelle’s Theorem.

Lemma 1 (Bounded Treewidth Order-Testing Lemma). For any graph
H on 	 vertices, there is an f(+ k) · n time algorithm for determining whether
H is a subgraph (resp. topological-minor, induced-minor) of a given graph G on
n vertices and treewidth at most k.

Well-Quasi-Orders in Subclasses of Bounded Treewidth Graphs 153

The setting should be clear by now. In order to obtain the recognition algorithm
promised in Theorem 1, we need to show that each subclass of bounded treewidth
graphs in the theorem is wqo by its corresponding order. This along with the
Bounded Treewidth Order-Testing Lemma will give us both conditions in the
WQO Recognition Theorem, which in turn will give us Theorem 1 as a direct
corollary. In the following sections of this chapter we will prove that:

Lemma 2. Let k be any fixed positive integer. Then:

– The set of all graphs with vertex-cover at most k is wqo by subgraphs.
– The set of all graphs with feedback-vertex-set at most k is wqo by topological-

minors.
– The set of all graphs with circumference at most k is wqo by induced-minors.

Proof (of Theorem 1 assuming Lemma 2). Consider a family of graphs G with
vertex-cover at most k. Then according to Lemma 2, G satisfies the first re-
quirement of the WQO Recognition Theorem, and since each graph in G has
treewidth at most f(k) for some function f(), the second condition is satisfied
according to the Bounded Treewidth Order Testing Lemma. Thus, any subset
of G that is closed under subgraphs can be recognized in O(n) time. The second
and third items of the theorem can be proven similarly. ��

Thus, what remains to prove is Lemma 2. For this we develop in the next section
two tools for determining when a given graph order is a wqo on a specific graph
class.

3 Two Tools for Identifying WQOs

In this section we develop two tools that will help us in proving Lemma 2. These
tools allow us to reduce the question of whether a given graph family is wqo by
a particular order, to the question of whether a simpler family is wqo by some
“colored variant” on that order. To specify these colored variants precisely, it
will be convenient to speak of the graph orders we study in terms of embeddings.
Let H and G be two given graphs:

– A subgraph embedding of H in G is an injection f : V (H) → V (G) with
{u, v} ∈ E(H) ⇒ {f(u), f(v)} ∈ E(G).

– A topological-minor embedding of H in G is an injection f : V (H) → V (G)
where there exist vertex disjoint paths in G between f(u) and f(v) for every
{u, v} ∈ E(H).

– An induced-minor embedding of H in G is a injective mapping f : V (H) →
2V (G) with f(v) connected in G for all v ∈ V (H), f(u)∩f(v) = ∅ for all u �=
v ∈ V (H), and {u, v} ∈ E(H) ⇐⇒ ∃x ∈ f(u) and ∃y ∈ f(v) with {x, y} ∈
E(G).

We write H ⊆ G (resp. H � G, H � G) if there exists a subgraph (resp.
topological-minor, induced-minor) embedding of H in G. It is easy to see that

154 M.R. Fellows, D. Hermelin, and F.A. Rosamond

H ⊆ G (resp. H � G, H � G) iff H is a subgraph (resp. topological-minor,
induced-minor) of G as defined in the previous section. We will also use H ⊆∗ G
to denote that there is an induced-subgraph embedding of H in G, where an
induced subgraph embedding is an injection f : V (H)→ V (G) with the condition
that {u, v} ∈ E(H) ⇔ {f(u), f(v)} ∈ E(G). Finally, we write H ∼= G to denote
that H and G are isomorphic, i.e. that H ⊆ G and G ⊆ H .

We will speak of graph universes, where by a universe U we mean an infinite
set of graphs which is closed under vertex deletions, i.e. G ∈ U =⇒ G − V ∈ U
for all V ⊆ V (G). Let U be some graph universe. A labeling of U is a set
{σG : G ∈ U}, where each σG is a labeling of the vertices of G by a set of labels
ΣG, i.e. σG : V (G)→ ΣG. The set Σ =

⋃
G∈U ΣG is the set of labels assigned by

σ to U . If Σ is wqo by some quasi order �, we say that σ is a wqo labeling w.r.t
�. Well-quasi-ordered labelings of U allow us to refine the subgraph, topological
minor, and induced minor orders on U in a natural manner. Given a wqo labeling
σ = {σG : G ∈ U} w.r.t �, and a pair of graphs H, G ∈ U , we will write H ⊆σ G
(resp. H ⊆∗

σ G, H �σ G) if there is a subgraph (induced subgraph, topological-
minor) embedding of H in G with σH(v) � σG(f(v)) for all v ∈ V (H). We write
H ∼=σ G whenever H ⊆σ G and G ⊆σ H . Also, we extend this definition to
the induced-minor order, and write H �σ G whenever there exists an induced-
minor embedding of H in G where for each v ∈ V (H) there is some x ∈ f(v)
with σ(v) � σ(x).

Let us next give two important examples of well-quasi-ordered graph families,
that we will use later on. The first is due to Kruskal, and is known as the famous
Labeled Forests Theorem, and the second is due to Ding:

Theorem 3 (Kruskal’s Labeled Forests Theorem [11]). The universe of
all forests is wqo by �σ for any wqo labeling σ.

Theorem 4 (Ding’s Bounded Paths Theorem [6]). For any k ∈ N, the
universe of all graphs with no paths of length greater than k is wqo by ⊆∗

σ, for
any wqo labeling σ.

We are now in position to describe our first wqo identification tool. This tool is
especially suited for universes consisting of graphs which have a small subset of
vertices whose removal leaves a very simple structured graph, e.g. graphs with
bounded vertex-cover or bounded feedback-vertex-set. Given a graph universe
U , and a natural k, let us denote by Uk is the universe of all graphs G which
have a subset of k vertices V with G− V ∈ U .

Theorem 5 (WQO Identification Tool 1). If a universe U is wqo by ⊆σ

(resp. �σ) for any finite wqo labeling σ, then Uk is wqo under ⊆ (resp. �).

Our second identification tool is concerned with the induced-minor order and
2-connected graphs. In general, a connected graph G is called 2-connected if
it has at least two vertices, and no removal of less than two vertices leaves
G disconnected (the empty graph is assumed to be disconnected). The second
identification tool is especially suited for graph universes which have 2-connected
graphs with very simple structure:

Well-Quasi-Orders in Subclasses of Bounded Treewidth Graphs 155

Theorem 6 (WQO Identification Tool 2). If the subset of all 2-connected
graphs in some universe U is wqo by �σ for any wqo labeling σ, then U itself is
wqo by �.

The next two sections are devoted each to proving Theorem 5 and Theorem 6.
But for now, let us next see how these two identification tools easily imply
Lemma 2 of the previous section:

Proof (of Lemma 2 assuming Theorem 5 and Theorem 6). We prove the first
two items of the lemma using Theorem 5, and the last item using Theorem 6:

– Let U denote the set of all graphs with no edges. Then for any k ∈ N,
Uk is the universe of all graphs with vertex-cover at most k by definition.
According to Kruskal’s Labeled Forests Theorem, we know that U is wqo
by �σ for any wqo labeling σ, since U includes only forests. Moreover, if H
is a topological-minor of G for H, G ∈ U , then H is also a subgraph of G,
since graphs in U have no edges. This implies that U is also wqo by ⊆σ for
any wqo labeling σ. Plugging this into Theorem 5 gives us that graphs with
vertex-cover at most k are wqo by subgraphs.

– For graphs with bounded feedback-vertex-set the argument is similar to the
above. Note that if U is the set of all forests, then for any k ∈ N, Uk is the
universe of all graphs with feedback-vertex-set at most k by definition. Due
to Kruskal’s Labeled Forests Theorem we get by Theorem 5 that graphs with
feedback-vertex-set at most k are wqo by topological-minors.

– Let U denote the set of all graphs with circumference at most k, and let
U ′ denote the subset of 2-connected graphs in U . Since any two vertices
in a 2-connected graph are connected by at least two paths (according to
Menger’s Theorem [12]), and thus belong together to some cycle, we get that
2-connected graphs in U ′ have no paths of length greater than k, due to the
bound on the circumference of graphs in U . Therefore, according to Ding’s
Theorem, we get that U ′ is wqo by ⊆∗

σ for any wqo labeling σ, and so it is
also wqo by �∗

σ for any wqo labeling σ. Plugging this into Theorem 6 gives
us that graphs with circumference at most k are wqo by induced-minors. ��

4 Correctness of the First Tool

In this section we prove the correctness of Theorem 5. We will specify only the
proof for the ⊆ order, as the proof for the � order follows the same lines. To
start with, we will assume we have a positive integer k, and a graph universe
U which is wqo by ⊆σ for any wqo labeling σ. We will show that any infinite
sequence of graphs in Uk is good, i.e. it has graph which is a subgraph of another
graph succeeding it in the sequence.

Let {Gi}∞i=1 be any infinite sequence in Uk. By definition, each graph Gi in
this sequence has a subset of k vertices Ui with Gi − Ui ∈ U . Let Vi denote
the subset of vertices V (Gi) \ Ui. We construct a labeling σ = {σi : i ∈ N} on
{Gi : i ∈ N} in a way that codifies the adjacency of vertices in Ui with vertices

156 M.R. Fellows, D. Hermelin, and F.A. Rosamond

Gi
1 3

2

Ai

Bi

φ φ

φφ

φ

φ

φ

{1,2} {2}

{1,2,3} {1,2,3}

{3}

Fig. 1. The labeling used in proving the first identification tool

of Vi, for each i ∈ N. For this, σi first assigns each vertex u ∈ Ui an arbitrary
distinct label σi(u) ∈ {1, . . . , k}, and then it assigns a label in 2{1,...,k} to each
v ∈ Vi by

σi(v) :=
{

x : ∃u ∈ Ui with {u, v} ∈ E(Gi) and σi(u) = x
}

(see Fig. 1 for an example). Observe that since the set of labels Σ assigned by σ
is finite, it is wqo by equality, and σ is a wqo labeling on U with respect to =.

Now, for each i ∈ N, let Ai denote the graph Gi − Vi, and let Bi denote
Gi−Ui. Then Bi ∈ U for all i ∈ N. Since there are only finitely many graphs Ai

under isomorphism, and only finitely many ways to label the vertices of these
graphs with distinct labels in {1, . . . , k}, there must be an infinite subsequence
Gi1 , Gi2 , . . . in {Gi}∞i=1 with Ai1

∼=σ Ai2
∼=σ · · · . By our assumption, the family

of graphs {Bij : j ∈ N} is wqo by ⊆σ, and as this set is infinite, there must be
a pair Bix and Biy , x < y, with Bix ⊆σ Biy . Write i = ix and j = iy. We argue
that:

Ai
∼=σ Aj and Bi ⊆σ Bj implies Gi ⊆ Gj

Let fA denote the isomorphic embedding showing that Ai
∼=σ Aj , and let fB

denote the isomorphic embedding of Bi in Bj . We argue that the mapping g =
fA ∪ fB is an isomorphic embedding of Gi in Gj . Clearly, for all edges {u, v} ∈
E(Gi) with either u, v ∈ Ai or u, v ∈ Bi, we have {g(u), g(v)} ∈ E(Gi) by
our assumptions on fA and fB. For {u, v} ∈ E(Gi) with u ∈ Ui and v ∈ Vi,
we have σi(u) = σj(g(u)) and σi(v) = σj(g(v)). Thus, by construction of σ,
we get {u, v} ∈ E(Gi) =⇒ σi(u) ∈ σi(v) =⇒ σj(g(u)) ∈ σj(g(v)) =⇒
{g(u), g(v)} ∈ E(Gj).

It follows that {Gi}∞i=1 is a good sequence, and as this sequence was cho-
sen arbitrarily, this implies that Uk does not contain any bad sequences. This
completes the proof of Theorem 5.

Well-Quasi-Orders in Subclasses of Bounded Treewidth Graphs 157

5 Correctness of the Second Tool

In this section we prove the correctness of Theorem 6. We start with the following
lemma which allows us to restrict our attention w.l.o.g. to universes containing
only connected graphs.

Lemma 3. If the subset U ′ ⊆ U of all connected graphs in some graph universe
U is wqo by �, then U is also wqo by �.

Proof. Since U is closed under vertex deletions, any component of a graph in
U is a graph in U ′. Define the family of edge-less graphs U∗ := {G∗ : G ∈ U},
where G∗ is the graph obtained by contracting each connected component of G
into a single vertex. Next define a labeling σ for U that assigns each vertex of a
graph G∗ ∈ U , the graph of U ′ which was contracted into this vertex. Applying
Kruskal’s Labeled Forests Theorem on U∗, we get that U∗ is wqo by �σ, and in
fact also by ⊆∗

σ since graphs in U∗ have no edges. Since by our construction, U
is wqo by � iff U∗ is wqo by ⊆∗

σ, the lemma is proven. ��

We next introduce some additional terminology: A rooted graph is a pair (G, v)
where G is a graph and v is a single distinguished vertex v of G referred to as
its root. Thus two rooted graphs with the same vertex and edge set, but with
different roots, are considered different. Apart from the following definition, we
will omit the parentheses notation and simply state that G is a rooted graph
with root(G) = v.

Definition 1 (Rooted Closure). The rooted closure of a universe U , denoted
Ur, is defined as the universe of rooted graphs Ur = {(G, v) : G ∈ U , v ∈ V (G)}.

We say that an induced-minor embedding f of a rooted graph H in a rooted
graph G preserves roots if root(G) ∈ f(root(H)), and we will write H � G (and
say that H is an induced minor of G) only when there exists a root-preserving
minor-embedding of H in G. Our main interest in rooted graphs lies in the above
refinement of minor embeddings, and in the obvious fact that U is wqo under �
whenever Ur is wqo under �.

Another important notion we need to introduce before beginning the proof of
Theorem 6 is the notion of minimal bad sequences, a concept first introduced
by Nash-Williams [13], and later also used by Kruskal in proving his Labeled
Forests Theorem:

Definition 2 (Minimal Bad Sequence). A bad sequence G1, G2, . . . is mini-
mal if for every bad sequence H1, H2, . . ., whenever |V (Hj)| < |V (Gj)| for some
j, there is always some i < j such that |V (Gi)| < |V (Hi)|.

Let U be a universe of connected graphs whose subset of 2-connected graphs are
wqo by �σ, for any wqo labeling σ (recall that we can assume that all graphs in
U are connected due to Lemma 3). We can also assume w.l.o.g. that U contains
no forests, by observing that Kruskal’s Labeled Forests Theorem actually applies
also for the induced-topological-minor order. To prove the theorem, we assume

158 M.R. Fellows, D. Hermelin, and F.A. Rosamond

Ai

Bc1

i

CiGic1 c3
c2

Bc2

i
Bc3

i

root(Gi)

Fig. 2. The notation used in proving the second identification tool

that U is not wqo by �, which implies that Ur is also not wqo by �, and arrive
at a contradiction by showing that in Ur contains no bad sequences.

For this, let G1, G2, . . . be a minimal bad sequence in Ur. A block in a graph
Gi, i ∈ N, is a maximal 2-connected induced subgraph of G. For each i ∈ N,
select a block Ai in Gi which contains root(Gi), and let Ci denote the set of
cutvertices of Gi that are included in Ai. For each cutvertex c ∈ Ci, let Bi

c

denote the connected component in Gi − (V (Ai) \ Ci) including the vertex c
and made into a rooted graph by setting root(Bi

c) = c (see Fig. 2). Observe
that for any c ∈ Ci, we have Bi

c � Gi by the induced-minor root-preserving
embedding f that maps every non-root vertex v �= c of Bi

c to itself, and has
f(c) = Ai � root(Gi). We argue that:

The family of rooted graphs B = {Bi
c : c ∈ Ci, i ∈ N} is wqo by � .

To see this, let {Hj}∞j=1 be any sequence in B, and for every j ∈ N, choose an
i(j) for which Hj = Bi

c for some c ∈ Ci. Pick a j with smallest i(j), and consider
the sequence

G1, . . . , Gi(j)−1, Hj , Hj+1, . . .

Then this sequence is good by the minimality of {Gi}∞i=1, and by our selection
of j, and so it contains a good pair (G, G′). Now, G cannot be among the first
i(j)− 1 elements of this sequence, since otherwise G′ = Hj′ for some j′ ≥ j, and
we will have

G � G′ = Hj′ = Bi(j′)
c � Gi(j′),

implying that (G, Gi(j′)) is a good pair in the bad sequence {Gi}∞i=1. Thus,
(G, G′) must be a good pair in {Hj}∞j=1, and so {Hj}∞j=1 is good.

We next use the above to show that {Gi}∞i=1 has a good pair, bringing us to
our desired contradiction. For this, we will label the graph family A = {Ai : i ∈
N} so that each cutvertex c of a graph Ai gets labeled by their corresponding
connected component Bi

c of Gi, and the roots are preserved under this labeling.
More precisely, for each Ai we define a labeling σi that assigns a pair of labels
(σ(1)

i (v), σ(2)
i (v)) to every vertex v ∈ V (Gi), where the labelings σ

(1)
i and σ

(2)
i

are defined by:

Well-Quasi-Orders in Subclasses of Bounded Treewidth Graphs 159

– σ
(1)
i (v) = 1 if v = root(Gi), and otherwise σ(1)(v) = 0.

– σ
(2)
i (v) = Bi

v if v ∈ Ci, and otherwise σ
(2)
i (v) = 0.

The labeling σ of A is then {σi : i ∈ N}. We define a quasi-ordering � on the set
of labels Σ assigned by σ. For two labels (ς(1)

a , ς
(2)
a), (ς(1)

b , ς
(2)
b) ∈ Σ, we define

(ς(1)
a , ς(2)

a) � (ς(1)
b , ς

(2)
b) ⇐⇒ ς(1)

a = ς
(1)
b and ς(2)

a � ς
(2)
b .

Observe that the � order above is between rooted graphs. Also, we allow 0 to
be �-comparable only to itself. It is not difficult to see that since � is a wqo
on B, the � order is wqo on Σ. Thus, σ is wqo labeling on A w.r.t. σ. By the
assumptions in the theorem, we know that A is wqo by �σ. It follows that there
is a pair of graphs Ai, Aj ∈ A with Ai �σ Aj . To complete the proof we will
show that:

Ai �σ Aj ⇒ Gi � Gj .

To see this, let f be the induced-minor embedding of Ai in Aj . Then for each
cutvertex c ∈ Ci, f(c) contains a vertex d ∈ Cj with Bi

c � Bj
d. Let fc denote

the induced-minor root-preserving embedding of Bi
c in Bj

d. We construct an
embedding g : V (Gi) → 2V (Gj) defined by

g(v) =

⎧⎪⎨⎪⎩
f(v) : v is a vertex of Ai and v /∈ Ci,

fc(v) : v is a vertex of Bi
c and v �= c,

f(v) ∪ fv(v) : v ∈ Ci.

We argue that g is an induced minor embedding of Gi in Gj .
To see this, first note that by definitions of f and each fc, we have g(u)∩g(v) =

∅ for any pair of distinct vertices u and v in Gi. Moreover, for any edge {u, v} of
Gi there is a vertex x ∈ g(u) and a vertex y ∈ g(v) with {x, y} and edge in Gj .
Thus what remains to be shown is that g(u) is connected in Gj for every vertex u
of Gi. This is obviously true when u /∈ Ci, again by the definitions of f and each
fc. If u ∈ Ci, then f(u) contains a vertex v ∈ Cj for which Bi

u � Bj
v, and v is also

contained in fv(v) since fv preserves roots. Thus, g(u) is connected also when
u ∈ Ci. Noting also that the labeling σ ensures that root(Gj) ∈ g(root(Gi)), we
establish that Gi � Gj . This completes the proof of Theorem 6.

References

1. Arnborg, S.: Efficient algorithms for combinatorial problems on graphs with
bounded decomposability. A survey. BIT Numerical Mathematics 25(1), 2–23
(1985)

2. Arnborg, S., Proskurowski, A.: Linear time algorithms for NP-hard problems re-
stricted to partial k-trees. Discrete Applied Mathematics 23, 11–24 (1989)

3. Bodlaender, H.L., Fellows, M.R., Hallett, M.T.: Beyond NP-completeness for prob-
lems of bounded width: Hardness for the W-hierarchy. In: Proceedings of the 26th
annual ACM Symposium on Theory of Computing (STOC), pp. 449–458 (1994)

160 M.R. Fellows, D. Hermelin, and F.A. Rosamond

4. Corneil, D.G., Keil, J.M.: A dynamic programming approach to the dominating
set problem on k-trees. SIAM Journal on Algebraic and Discrete Methods 8(4),
535–543 (1987)

5. Courcelle, B.: The monadic second-order logic of graphs I. Recognizable sets of
finite graphs. Information and Computation 85(1), 12–75 (1990)

6. Ding, G.: Subgraphs and well-quasi-ordering. Journal of Graph Theory 16(5), 489–
502 (1992)

7. Downey, R., Fellows, M.: Parameterized Complexity. Springer, Heidelberg (1999)
8. Fellows, M.R., Langston, M.A.: Fast self-reduction algorithms for combinatorial

problems of VLSI design. In: Proc. of the 3rd Aegean Workshop On Computing
(AWOC), pp. 278–287 (1988)

9. Fellows, M.R., Langston, M.A.: On well-paritial-order theory and its application to
combinatorial problems of VLSI design. SIAM Journal on Discrete Mathematics 5
(1992)

10. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg
(2006)

11. Kruskal, J.B.: Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjecture.
Transactions of the American Mathematical Society 95, 210–225 (1960)

12. Menger, K.: Zur allgemeinen kurventheorie. Fundamenta Mathematicae 10, 96–115
(1927)

13. Nash-Williams, C.S.J.A.: On well-quasi-ordering finite trees. Mathematical Pro-
ceedings of the Cambridge Philosophical Society 59(4), 833–835 (1963)

14. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press, Oxford (2006)

15. Thomas, R.: Well-quasi-ordering infinite graphs with forbidden finite planar minor.
Transactions of the American Mathematical Society 312(1), 67–76 (1990)

An Exact Algorithm for the
Maximum Leaf Spanning Tree Problem

Henning Fernau1, Joachim Kneis2, Dieter Kratsch3, Alexander Langer2,
Mathieu Liedloff4, Daniel Raible1, and Peter Rossmanith2

1 Universität Trier, FB 4—Abteilung Informatik, D-54286 Trier, Germany
{fernau,raible}@uni-trier.de

2 Department of Computer Science, RWTH Aachen University, Germany�

{kneis,langer,rossmani}@cs.rwth-aachen.de
3 Laboratoire d’Informatique Théorique et Appliquée,

Université Paul Verlaine - Metz, 57045 Metz Cedex 01, France
kratsch@univ-metz.fr

4 Laboratoire d’Informatique Fondamentale d’Orléans, Université d’Orléans,
45067 Orléans Cedex 2, France
liedloff@univ-orleans.fr

Abstract. Given an undirected graph G with n nodes, the Maximum

Leaf Spanning Tree problem asks to find a spanning tree of G with as
many leaves as possible. When parameterized in the number of leaves k,
this problem can be solved in time O(4kpoly(n)) using a simple branching
algorithm introduced by a subset of the authors [13]. Daligault, Gutin,
Kim, and Yeo [6] improved this branching algorithm and obtained a
running time of O(3.72kpoly(n)). In this paper, we study the problem
from an exact exponential time point of view, where it is equivalent to
the Connected Dominating Set problem. For this problem Fomin,
Grandoni, and Kratsch showed how to break the Ω(2n) barrier and
proposed an O(1.9407n) time algorithm [10]. Based on some properties
of [6] and [13], we establish a branching algorithm whose running time
of O(1.8966n) has been analyzed using the Measure-and-Conquer tech-
nique. Finally we provide a lower bound of Ω(1.4422n) for the worst case
running time of our algorithm.

1 Introduction

The Maximum Leaf Spanning Tree (MLST) problem, which asks to find a
spanning tree of the input graph with as many leaves as possible, is one of the
classical NP-hard problems [12]. Ongoing research on this topic is motivated by
the fact that variants of this problem occur frequently in real life applications.
For example, some broadcasting problems in network design ask to minimize the
number of broadcasting nodes, which must be connected to a single root. This
translates nicely to finding a spanning tree with many leaves and few internal
nodes. There are many other results dealing with this topics, e.g., [5,14,16,18].

� Partially supported by the DFG under grant RO 927/7.

J. Chen and F.V. Fomin (Eds.): IWPEC 2009, LNCS 5917, pp. 161–172, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

162 H. Fernau et al.

The Maximum Leaf Spanning Tree problem is equivalent to the Con-

nected Dominating Set problem, which asks to find a connected set of nodes
which dominates the whole graph: it is easy to see that the internal nodes of a
spanning tree with k leaves form a connected dominating set of size |V | − k and
vice versa.

Known results. In the field of exact exponential time algorithms, there is only
the paper by Fomin, Grandoni, and Kratsch [10]. They present an exact algo-
rithm of running time of O(1.9407n). This result was the first that improved
over the trivial enumeration algorithm of running time Θ∗(2n). However there is
a long research history for this problem in the field of parameterized complexity,
see [1,7,9,3,8,2,4]. The currently fastest published algorithm has running time
O∗(4k) and is due to Kneis, Langer, and Rossmanith [13]. This has been further
improved to O∗(3.72k) by Daligault, Gutin, Kim, and Yeo in a recent techni-
cal report [6]. The ideas behind these improvements are also used in our exact
algorithm. Moreover, their algorithm directly leads to an O∗(1.9973n) exact al-
gorithm, based on observations due to Raman, Saurabh and Sikdar [17].

Our results. In the next sections we present an exact algorithm solving the MLST
problem in time O(1.8966n); improving upon the result of [10]. The algorithm
is based on a parameterized one [13], which basically repeatedly branches on
leaves of the current subtree of the graph into two subproblems: either this node
remains a leaf or it becomes an internal node. When analyzing the running time
as a function of n, the number of nodes of the input graph, one observes that
branching on nodes of small degree (with two possible successors) is the worst
case; forcing a too large running time. This resembles the worst case of the
parameterized algorithm, and the changes in [6] aim at improving exactly this
case. We use a similar approach in our exact algorithm. We mark nodes as leaves
as early as possible even when they are not yet attached to an internal node of
the current subtree. In the Measure-and-Conquer analysis, this balances the bad
cases against the better cases, i.e., “the better cases lend some running time
to the bad cases” for an overall improvement. This approach requires a rather
complicated measure and a sophisticated analysis.

2 Preliminaries

Let G = (V, E) be a simple and undirected graph. We denote by n the number
of its nodes and by m the number of its edges. Given a node v ∈ V , the set of its
neighbors is defined by N(v) = { u ∈ V | {u, v} ∈ E }. The closed neighborhood
of v is N [v] = {v} ∪ N(v). Given a subset S ⊂ V , we define N(S) as the set⋃

v∈S N(v) \ S and for a X ⊂ V , we define NX(S) = N(S) ∩ X . We write
H ⊆ G if H is a subgraph of G. A node whose removal increases the number of
connected components is called a cut vertex.

A tree T = (VT , ET) is a subtree of G or a tree in G if T is a subgraph of G.
A tree T in G is a spanning tree of G if VT = V . As usual, a node of degree 1 in
a tree T is called a leaf and all other nodes are called internal nodes. Wlog, we

An Exact Algorithm for the Maximum Leaf Spanning Tree Problem 163

assume that each spanning tree contains at least one internal node. Once we fix
some arbitrary node, wlog an internal node, as the root of the tree, we can also
speak of parents of nodes within this tree. A spanning tree of G is a maximum
leaf spanning tree (MLST), also called optimal spanning tree in this paper, if
there is no spanning tree of G with a larger number of leaves.

In the following, we identify trees T = (VT , ET) with the bipartition of VT

into the sets of internal nodes and leaves, denoted as internal(T) and leaves(T),
respectively. Although there might be multiple subtrees of G sharing the same
set of internal nodes and leaves, either both are subtrees of some optimal solution
of MLST or none of them is (recall that G is undirected).

For more information on branching algorithms, branching vectors, and the
Measure-and-Conquer approach we refer to [11,15].

3 A New Exact Algorithm

Our algorithm partitions the set of nodes of the input graph G into the sets of
free nodes (Free), floating leaves (FL), branching nodes (BN), leaf nodes (LN),
and internal nodes (IN), where the latter three form the nodes of some subtree
T of G. Initially, all nodes are in the set Free, i.e., the tree is empty.

The key idea of the branching algorithm is to recursively build a subtree T of
G such that VT = IN ∪ BN ∪ LN, internal(T) = IN and leaves(T) = BN ∪ LN,
which might in some branch of the algorithm turn into a spanning tree T ′ of G.

Definition 1. Let G = (V, E) be a graph, let IN, BN, LN, FL ⊆ V be disjoint
sets of nodes, and let x1, . . . , xl ∈ V . By x1 → X1, . . . , xl → Xl, where each Xi

is one of IN, BN, LN or FL, we denote the branch that corresponds to moving
each xi to the respective set Xi, and additionally, if Xi = IN, all y ∈ NFree(xi)
to BN and all y ∈ NFL(xi) to LN. The notation is extended to sets Y → X
in a straightforward manner. The recursive branching over multiple branches is
denoted by

〈x1 → X1, . . . , xl → Xl || . . . || x′
1 → X ′

1, . . . , x
′
l′ → X ′

l′〉.

In particular, whenever Algorithm M decides that some node x ∈ V becomes
an internal node, all of its neighbors are directly attached to the tree, which
is never worse than connecting these neighbors through some other nodes [13].
However, nodes of T belonging to LN will always remain leaves in subsequent
calls, whereas the status of a node in BN is still subject to change. Similarly,
nodes in FL ⊆ V \ VT will be leaves in the spanning tree T ′, but their parents
in T ′ have not yet been determined. This is formally defined as follows.

Definition 2. Let G = (V, E) be a graph, and let IN, BN, LN, FL ⊆ V be disjoint
sets of nodes and T ⊆ G be a tree. We say T extends (IN, BN, LN, FL) iff
IN ⊆ internal(T), LN ⊆ leaves(T), BN ⊆ internal(T) ∪ leaves(T), and FL ∩
internal(T) = ∅.

If N(internal(T)) ⊆ internal(T)∪ leaves(T), we call T an inner-maximal tree.
A node v ∈ Free∪FL is unreachable, if there is no path uv1 . . . vtv, where t ≥ 0,
u ∈ BN and vi ∈ Free for all 1 ≤ i ≤ t.

164 H. Fernau et al.

For any v ∈ V \(IN∪LN), we define its degree d(v) as d(v) = |N(v)∩(Free∪FL)|
if v ∈ BN, as d(v) = |N(v) ∩ (Free ∪ FL ∪ BN)| if v ∈ Free, and as d(v) =
|N(v) ∩ (Free ∪ BN)| if v ∈ FL.

Our algorithm uses the following reduction rules.

Definition 3. Let G = (V, E) be a graph and let IN ∪ BN ∪ LN ∪ FL ∪ Free be
a partition of V .

(R1) If there exist two adjacent nodes u, v ∈ V such that u, v ∈ FL or u, v ∈ BN,
then remove the edge {u, v}.

(R2) If there exists a node v ∈ BN with d(v) = 0, then move v into LN.
(R3) If there exists a node v ∈ Free with d(v) = 1, then move v into FL.
(R4) If there exists a node v ∈ Free with no neighbors in Free∪ FL, then move

v into FL.
(R5) If there exists a triangle {x, y, z} with d(x) = 2 and x ∈ Free, then move

x into FL.
(R6) If there exists a node u ∈ BN which is a cut vertex, then apply u→ IN.
(R7) If there exists adjacent nodes u, v ∈ V such that u ∈ LN and v ∈ V \ IN,

then remove the edge {u, v}.

The correctness of the reduction rules is easy to prove and details are not given
in this extended abstract due to space limitations.

The halting and branching rules are described in AlgorithmM (see Figure 1).
Their correctness is shown in the following Section. The running time analysis
is provided in Section 5.

4 Correctness of the Algorithm

The following lemma will ease the forthcoming correctness proof. It enables us to
turn some nodes into additional floating leaves (in some special cases). A similar
technique has already been used in [6].

Lemma 1. Let G = (V, E) be a graph, T a tree in G and v ∈ leaves(T) such
that N(v) \ V (T) = {x1, x2}. If every optimal spanning tree T ′ ⊇ T is such that
v is an internal node and each xi is a leaf in T ′, then there is also some optimal
spanning tree where additionally each w ∈ N({x1, x2}) \ (internal(T)∪ {v}) is a
leaf.

Lemma 2. Algorithm M solves the Maximum Leaf Spanning Tree problem
if called with BN = {r} and IN = LN = FL = ∅, where r is the root of some
optimal spanning tree.

Proof. The reduction rules update a partition P = (Free, IN, BN, LN, FL) to a
partition P ′ = (Free′, IN′, BN′, LN′, FL′) so that any maximum leaf spanning
tree T ′ that extends P ′ has at least as many leaves as any spanning tree T
extending P . Note that given some disjoint subsets IN, BN, LN, FL, the subset
Free is uniquely determined by V \ (IN ∪ BN ∪ LN ∪ FL). Thus, we omit the
explicit notion of the set Free.

An Exact Algorithm for the Maximum Leaf Spanning Tree Problem 165

Algorithm M
Input: A graph G = (V, E), IN, BN, LN, FL ⊆ V

Reduce G according to the reduction rules
if there is some unreachable v ∈ Free ∪ FL then return 0
if V = IN ∪ LN then return |LN|
Choose a node v ∈ BN of maximum degree
if d(v) ≥ 3 or (d(v) = 2 and NFL(v) �= ∅) then

〈v → LN || v → IN〉 (B1)
else if d(v) = 2 then

Let {x1, x2} = NFree(v) such that d(x1) ≤ d(x2)
if d(x1) = 2 then

Let {z} = N(x1) \ {v}
if z ∈ Free then

〈v → LN || v → IN, x1 → IN || v → IN, x1 → LN〉 (B2)
else if z ∈ FL then 〈v → IN〉

else if (N(x1) ∩ N(x2)) \ FL = {v} and ∀z ∈ (NFL(x1) ∩ NFL(x2)),
d(z) ≥ 3 then
〈v → LN || v → IN, x1 → IN || v → IN, x1 → LN, x2 → IN || (B3)
v → IN, x1 → LN, x2 → LN, NFree(x1, x2) → FL, NBN(x1, x2) → LN〉

else 〈v → LN || v → IN, x1 → IN || v → IN, x1 → LN, x2 → IN〉 (B4)
else if d(v) = 1 then

Let P = (v = v0, v1, . . . , vk) be a maximum path such that
d(vi) = 2, 1 ≤ i ≤ k, v1, . . . , vk ∈ Free

Let z ∈ N(vk) \ V (P)
if z ∈ FL and d(z) = 1 then 〈v0, . . . , vk → IN, z → LN〉
else if z ∈ FL and d(z) > 1 then 〈v0, . . . , vk−1 → IN, vk → LN〉
else if z ∈ BN then 〈v → LN〉
else if z ∈ Free then 〈v0, . . . , vk → IN, z → IN || v → LN〉 (B5)

Fig. 1. An algorithm for Maximum Leaf Spanning Tree. The notation 〈v →
IN || v → LN〉 denotes the corresponding recursive branches, e.g., in this case v
either becomes an internal node or a leaf (see Definition 1).

In the following, (IN ∪ BN ∪ LN ∪ FL)x1→X1,...,xl→Xl
denotes the partition

(Free′, IN′, BN′, LN′, FL′) obtained from (Free, IN, BN, LN, FL) by the algorithm
in the x1 → X1, . . . , xl → Xl branch. In particular, whenever Algorithm M
decides that some nodes X ⊆ BN ∪ Free become internal nodes, all nodes in
N(X) ∩ Free become new branching nodes (BN) and all nodes in N(X) ∩ FL
become leaves (LN). Hence, Algorithm M always computes an inner-maximal
tree. It thus remains to show that if there is some spanning tree T with k leaves
that extends the current (IN, BN, LN, FL), then AlgorithmM calls itself with an
new (IN′, BN′, LN′, FL′) such that there is some spanning tree T ′ with k leaves
that extends (IN′, BN′, LN′, FL′) as well.

We prove this by induction. For the base step, any spanning tree extends
(IN, BN, LN, FL) with BN = {r} and IN = LN = FL = ∅, where the root r
is the only branching node. Now let T be a spanning tree with k leaves that
extends (IN, BN, LN, FL), and let v ∈ BN be of maximum degree.

166 H. Fernau et al.

– If d(v) ≥ 3 or d(v) = 2 and NFL(v) �= ∅, then Algorithm M calls itself
recursively in (B1). Since v is either an internal node or a leaf in any spanning
tree, T extends either (IN, BN, LN, FL)v→IN or (IN, BN, LN, FL)v→LN.

– If d(v) = 2, NFree(v) = {x1, x2} and N(x1) \ {v} = {z}, such that z ∈ FL,
we do not need to branch, since x1 must somehow be connected to the
tree in any solution extending (IN, BN, LN, FL), and v is the only choice.
If otherwise z ∈ Free, then T either extends (IN, BN, LN, FL)v→LN, or
(IN, BN, LN, FL)v→IN,x1→LN, or (IN, BN, LN, FL)v→IN,x1→IN, because if v
is not a leaf in T , then it is an internal node and x1 is either leaf or internal
node.

– In the case where d(v) = 2, 3 ≤ d(x1) ≤ d(x2) and N(x1) ∩N(x2) ∩ (Free ∪
BN) = {v}, the algorithm branches on all possibilities whether v, x1 and x2
are internal nodes or leaves. If there is some z ∈ (NFL(x1) ∩NFL(x2)) with
d(z) ≤ 2, not both x1 and x2 can be leaves and we skip the last branch (which
yields (B4)). Otherwise, Lemma 1 guarantees that in the last branch where v
must be an internal node and x1 and x2 are leaves, we can assume that all
other nodes neighbors of x1 and x2 are leaves in some optimal solution
as well. Hence there is a tree that extends either (IN, BN, LN, FL)v→LN,
or (IN, BN, LN, FL)v→IN,x1→IN, or (IN, BN, LN, FL)v→IN,x1→LN,x2→IN, or
(IN, BN, LN, FL)v→IN,x1→LN,x2→LN,NFree(x1,x2)→FL,NBN(x1,x2)→LN.

– In the case where d(v) = 2, 3 ≤ d(x1) ≤ d(x2) and N(x1) ∩N(x2) ∩ (Free ∪
BN) �= {v} we can assume that if v is an internal node in every optimal
solution, either x1 or x2 is an internal node as well. Otherwise we could
connect x1 and x2 to z ∈ (N(x1) ∩ N(x2)) \ FL instead of v, which might
destroy the leaf z, that is connected somehow else, but yields the new leaf v.
Since z is either a branching node or a free node, this is still allowed. Hence,
there is also some optimal solution that extends (IN, BN, LN, FL)v→LN, or
(IN, BN, LN, FL)v→IN,x1→IN, or (IN, BN, LN, FL)v→IN,x1→LN,x2→IN.

– Finally, if d(v) = 1, let P = (v = v0, v1, . . . , vk) be a maximum path such
that d(vi) = 2, 1 ≤ i ≤ k, v1, . . . , vk ∈ Free and let z ∈ (N(vk) \ V (P)), as
described in Algorithm M. If z ∈ FL and d(z) = 1, all nodes in P must be
internal nodes in any spanning tree that extends (IN, BN, LN, FL), because
there is no other way to connect z. If otherwise d(z) > 1, there is always an
inner-maximal solution where vk is a leaf by a simple exchange argument.
If on the other hand z ∈ BN, then the nodes in P must either be connected
through v or through z, and hence we can just decide to make v a leaf, again
by a simple exchange argument.
Now assume z ∈ Free. Since T is inner-maximal we know by [13], that
there is some inner-maximal T ′ that extends either (IN, BN, LN, FL)v→LN,
or (IN, BN, LN, FL)v,v1,...,vk,z→IN in this case.

Since this concludes a complete distinction of all possible values of d(v), the
claim follows by induction. ��

An Exact Algorithm for the Maximum Leaf Spanning Tree Problem 167

5 Analysis of the Running Time

To analyze the time via Measure-and-Conquer, we use the following measure:

μ(G) =
n∑

i=1

εBN
i |BNi|+

n∑
i=2

εFree
i |Freei|+

n∑
i=2

εFL
i |FLi|,

where BNi (resp. Freei and FLi) denotes the set of node in BN (resp. Free and
FL) with degree i, and the values of the ε’s are chosen in [0, 1] so that μ(G) ≤ n,
more precisely:

– εFree
0 = εFree

1 = 0, εFree
2 = 0.731975, εFree

3 = 0.946609, and εFree
i = 1 for all

i ≥ 4;
– εBN

0 = 0, εBN
1 = 0.661662, εBN

i = 0.730838 for all i ≥ 2;
– εFL

0 = εFL
1 = 0, εFL

2 = 0.331595, εFL
3 = 0.494066, and εFL

i = 0.628886 for all
i ≥ 4.

Lemma 3. Let G = (V, E) be a graph and let Free ∪ BN ∪ LN ∪ FL ∪ IN be a
partition of V . Moreover let v ∈ BN such that d(v) ≥ 3 or d(v) = 2 and there is
some u ∈ NFL(v). Then branching according to (B1) yields a branching number
less than 1.8966.

Proof. By the reduction rules (R3) and (R6), we have d(u) ≥ 2 for all u ∈
Free ∪ FL.

1. In the first branch, v is added to the internal nodes. Thus, all nodes in
NFree(v) are added to the branching nodes. This reduces the degree of all
these nodes by at least one, since the edge to v is not counted anymore. More-
over, all nodes in NFL(v) are now leaf nodes. Thus, the measure decreases
by at least

Δ1 = εBN
d(v) +

∑
x∈NFree(v)

(εFree
d(x) − εBN

d(x)−1) +
∑

y∈NFL(v)

εFL
d(y).

2. In the second branch, v becomes a leaf. Therefore, the degree of all nodes
in NFree∪FL(v) decreases by one, as the edge to v is removed. This implies a
change in the measure of at least

Δ2 = εBN
d(v) +

∑
x∈NFree(v)

(εFree
d(x) − εFree

d(x)−1) +
∑

y∈NFL(v)

(εFL
d(y) − εFL

d(y)−1).

Since higher degrees only imply a higher change, it is now sufficient to test all
combinations where d(v) = 3 or d(v) = 2 and there is some u ∈ NFL(v). For all
other nodes u ∈ NFree∪FL(v), we can similarly assume 2 ≤ d(u) ≤ 5. The worst
case (branching vector (1.538324, 0.730838), branching number less than 1.8966)
occurs at d(v) = 3, where v has three free neighbors of degree at least five. ��

168 H. Fernau et al.

Lemma 4. Let G = (V, E) be a graph and let Free ∪ BN ∪ LN ∪ FL ∪ IN be
a partition of V . Moreover let v ∈ BN such that d(v) = 2 and there is some
x1 ∈ NFree(v) with d(x1) = 2 and the remaining z ∈ N(x1) \ {v} is contained
in Free. Then branching according to (B2) yields a branching number less than
1.8966.

Proof. By the reduction rule (R5), we know that z �= x2. Moreover, (R3) implies
d(z) ≥ 2.

1. Again, v becomes leaf in the first branch. Similar to Lemma 3, this implies
a change in the measure of at least

Δ1 = εBN
2 + (εFree

2 − εFL
1) + (εFree

d(x2) − εFree
d(x2)−1)

= εBN
2 + εFree

2 + (εFree
d(x2) − εFree

d(x2)−1),

because x1 becomes a floating leaf of degree one and the degree of x2 de-
creases by one.

2. In the second branch, both v and x1 become internal nodes, which implies
that z and x2 become branching nodes. Again, d(z) and d(x2) decrease by
one. The measure decreases by at least

Δ2 = εBN
2 + εFree

2 + (εFree
d(z) − εBN

d(z)−1) + (εFree
d(x2) − εBN

d(x2)−1).

3. In the third branch, v becomes an internal node and x1 becomes a leaf
connected to v. Thus, x2 is now a branching node and d(x2) decreases.
Moreover, d(z) decreases by one as well. This implies that the measure is
reduced by at least

Δ3 = εBN
2 + εFree

2 + (εFree
d(z) − εFree

d(z)−1) + (εFree
d(x2) − εBN

d(x2)−1).

Since d(v) = d(x1) = 2, we need to try all possible combinations of d(z) and
d(x2), both between 2 and 5. Here, the worst case is d(z) = d(x2) = 5 (1.8965
for branching vector (1.462813, 1.731975, 2.001137)). ��

Lemma 5. Let G = (V, E) be a graph and let Free ∪ BN ∪ LN ∪ FL ∪ IN be
a partition of V . Moreover let v ∈ BN such that NFree(v) = {x1, x2} with 3 ≤
d(x1) ≤ d(x2) and let (N(x1) ∩ N(x2)) \ FL = {v}. Finally, let x1 /∈ N(x2).
Then branching according to (B3) yields a branching number less than 1.8966.

Proof. 1. In the first branch, v becomes a leaf, which yields

Δ1 = εBN
2 + (εFree

d(x1) − εFree
d(x1)−1) + (εFree

d(x2) − εFree
d(x2)−1).

2. In the second branch, v and x1 become internal nodes. As a consequence, x2
becomes a branching leaf and its degree decreases by one. Furthermore, the
degree of all nodes in NFree∪FL(x1) decreases by one. We gain at least

An Exact Algorithm for the Maximum Leaf Spanning Tree Problem 169

Δ2 = εBN
2 + εFree

d(x1) + (εFree
d(x2) − εBN

d(x2)−1) +
∑

x∈NFree(x1)

(εFree
d(x) − εBN

d(x)−1)

+
∑

y∈NFL(x1)

εFL
d(y) +

∑
z∈NBN(x1)\{v}

(εBN
d(z) − εBN

d(z)−1).

3. In the third branch, v and x2 become internal nodes, while x1 becomes a leaf.
Thus, the degree decreases by one for all nodes in NFree∪FL(x1) as well as
for all nodes in NBN(x2). Moreover, all nodes in NFree(x2) become branching
nodes and all nodes in NFL(x2) become leaves. Since (N(x1)∩N(x2))\FL =
∅, the measure decreases by at least

Δ3 = εBN
2 + εFree

d(x1) + εFree
d(x2) +

∑
x∈NFree(x1)

(εFree
d(x) − εFree

d(x)−1)

+
∑

y∈NFL(x1)\N(x2)

(εFL
d(y) − εFL

d(y)−1) +
∑

z∈NBN({x1,x2})\{v}
(εBN

d(z) − εBN
d(z)−1)

+
∑

x′∈NFree(x2)

(εFree
d(x′) − εBN

d(x′)−1) +
∑

y′∈NFL(x2)

εFL
d(y′).

4. In the last branch, v becomes an internal node, x1 and x2 become leaves, and
all nodes in NFree({x1, x2}) become floating leaves. Moreover, all nodes in
NBN({x1, x2}) become leaves as well and finally, the degree decreases by at
least one for all u ∈ NFL({x1, x2}). This implies that the measure decreases
by at least

Δ4 = εBN
2 + εFree

d(x1) + εFree
d(x2) +

∑
x∈NFree({x1,x2})

(εFree
d(x) − εFL

d(x)−1)

+
∑

y∈NFL({x1,x2})\(N(x1)∩N(x2))

(εFL
d(y) − εFL

d(y)−1)

+
∑

y∈FL∩N(x1)∩N(x2)

(εFL
d(y) − εFL

d(y)−2)

+
∑

z∈NBN({x1,x2})\{v}
εBN
d(z).

Again, we have to compute all possible neighborhoods. This requires us to test
all 3 ≤ d(x1) ≤ d(x2) ≤ 5, all 1 ≤ d(u) ≤ 2 for all u ∈ NBN({x1, x2}), all
2 ≤ d(u) ≤ 5 for each u ∈ NFL({x1, x2}) and finally all 2 ≤ d(u) ≤ 5 for all
u ∈ NFree({x1, x2}). Note that it is sufficient to assume that all floating leaves
are of degree at least two. Otherwise, some of the branches yield new instances
that will be solved in polynomial time, because they are obvious “No” instances.
Thus, the exponential parts of the runtime only depend on the other branches,
which yields a much better runtime bound, even if some floating leaves are of
degree one. Similarly, we can assume that floating leaves of degree two are not

170 H. Fernau et al.

contained in N(x1)∩N(x2), because otherwise the last branch (both, x1 and x2
are in LN) is found to be a “No” instance in polynomial time.

It turns out that the largest branching number in this case is smaller than
1.8506 with a branching vector (0.730838, 2.476690, 3.216207, 8.218955) for the
case d(x1) = d(x2) = 5, NFree(x1) = {u} with d(u) = 5, NFL(x1) = ∅,
NBN(x1) = {u1, u2, u3} with d(u1) = d(u2) = d(u3) = 2, NFree(x2) = {w} with
d(w) = 2, NFL(x2) = ∅, and NBN(x2) = {w1, w2, w3} with d(w1) = d(w2) =
d(w3) = 2. ��

Lemma 6. Let G = (V, E) be a graph and let Free ∪ BN ∪ LN ∪ FL ∪ IN be
a partition of V . Moreover let v ∈ BN such that NFree(v) = {x1, x2} with 3 ≤
d(x1) ≤ d(x2) and let (N(x1) ∩ N(x2)) \ FL = {v}. Finally, let x1 ∈ N(x2).
Then branching according to (B3) yields a branching number less than 1.8966.

The proof is very similar to the previous lemma, we only need to make sure that
the edge between x1 and x2 is not counted twice.

Lemma 7. Let G = (V, E) be a graph and let Free ∪ BN ∪ LN ∪ FL ∪ IN be
a partition of V . Moreover let v ∈ BN such that NFree(v) = {x1, x2} with 3 ≤
d(x1) ≤ d(x2). Then branching according to (B4) yields a branching number less
than 1.8966.

Proof. Similar to Lemma 5 and Lemma 6, x1 and x2 can possibly be neighbors.

1. In the first branch, v becomes a leaf. Similar to above, we obtain at least

Δ1 = εBN
2 + (εFree

d(x1) − εFree
d(x1)−1) + (εFree

d(x2) − εFree
d(x2)−1).

2. In the second branch, v and x1 become internal nodes. As a consequence,
the degree decreases for all nodes in NFree∪FL({v, x1}) and these nodes turn
into branching nodes or leaves, respectively. The measure decreases by at
least

Δ2 = εBN
2 + εFree

d(x1) + (εFree
d(x2) − εBN

d(x2)−1) +
∑

x∈NFree(x1)\{x2}
(εFree

d(x) − εBN
d(x)−1)

+
∑

y∈NFL(x1)

εFL
d(y) +

∑
z∈NBN(x1)\{v}

(εBN
d(z) − εBN

d(z)−1).

Note that when x2 ∈ N(x1), d(x2) decreases even more. However, this esti-
mation is good enough to obtain the claimed bounds.

3. In the last branch, v and x2 become internal nodes and x1 becomes a leaf.
As usual, the measure decreases by at least

Δ3 = εBN
2 + εFree

d(x1) + εFree
d(x2) +

∑
x∈NFree(x1)\{x2}

(εFree
d(x) − εFree

d(x)−1)

+
∑

y∈NFL(x1)

(εFL
d(y) − εFL

d(y)−1) +
∑

z∈NBN(x1)\{v}
(εBN

d(z) − εBN
d(z)−1).

An Exact Algorithm for the Maximum Leaf Spanning Tree Problem 171

Similar to previous lemmas, we can safely assume that d(u) ≥ 2 for all floating
leaves u ∈ N(x1).

In order to compute all possible branching vectors, we need to test all 3 ≤
d(x1) ≤ d(x2) ≤ 5. Furthermore, we need to try all 1 ≤ d(u) ≤ 2 for all
u ∈ NBN(x1), all 2 ≤ d(u) ≤ 5 for each u ∈ NFL(x1) and finally all 2 ≤ d(u) ≤ 5
for all u ∈ NFree(x1).

The worst case of 1.8966 (branching vector (0.730838, 2.407514, 2.869190))
occurs when d(x1) = d(x2) = 5, NFree(x1) = {u1, u2} with d(u1) = d(u2) = 5,
NFL(x1) = ∅, and NBN(x1) = {u′

1u
′
2} with d(u′

1) = d(u′
2) = 2. ��

Lemma 8. Let G = (V, E) be a graph and let Free ∪ BN ∪ LN ∪ FL ∪ IN be
a partition of V . Moreover let v ∈ BN such that d(v) = 1. Then branching
according to (B5) yields a branching number less than 1.8966.

Proof. Let v1, . . . , vk and z ∈ V as described in Algorithm M and recall that
d(z) ≥ 3 and z ∈ Free.

1. In the first branch, v becomes an internal node as well as all v1, . . . , vk and
z. This implies that the measure decreases by at least

Δ1 = εBN
1 + kεFree

2 + εFree
d(z).

2. In the other branch, v becomes a leaf. If k = 0, then the degree of z will
decrease and otherwise the node v1 becomes a floating leaf of degree one.
Therefore, we gain at least

Δ2 = εBN
1 + min(εFree

d(z) − εFree
d(z)−1, ε

Free
2).

The worst case occurs when d(z) = 5 and k = 0 with a branching vector of
(1.661662, 0.661662) and a branching number less than 1.8966. ��

From the above lemmas as well as from Lemma 2, which guarantees the correct-
ness of our algorithm, we can conclude our main result.

Theorem 1. The given algorithm solves the Maximum Leaf Spanning Tree

problem in time O(1.8966n).

It is known that the current time analysis, even when based on Measure-and-
Conquer, seems to produce upper bounds overestimating the worst case running
time of the algorithm. The following Theorem provides a lower bound on the
worst case running time of our algorithm. We recall that Fomin et al. [10] present
an algorithm solving the problem in worst case running time (upper bounded
by) O(1.9407n) and they also provide a lower bound of Ω(1.3195n).

Theorem 2. We can give a lower bound of Ω(3n/3) = Ω(1.4422n) for the worst
case running time of our algorithm.

To conclude let us mention that our algorithm is based on ideas of a parameter-
ized algorithm that also work for directed graphs. Thus it would be interesting
to know whether one may obtain an exact exponential-time algorithm of com-
petitive running time for directed graphs.

172 H. Fernau et al.

References

1. Bodlaender, H.L.: On linear time minor tests with depth-first search. J. Algo-
rithms 14(1), 1–23 (1993)

2. Bonsma, P.: Sparse cuts, matching-cuts and leafy trees in graphs. PhD thesis,
University of Twente, the Netherlands (2006)

3. Bonsma, P.S., Brueggemann, T., Woeginger, G.J.: A faster FPT algorithm for
finding spanning trees with many leaves. In: Rovan, B., Vojtáš, P. (eds.) MFCS
2003. LNCS, vol. 2747, pp. 259–268. Springer, Heidelberg (2003)

4. Bonsma, P.S., Zickfeld, F.: Spanning trees with many leaves in graphs without
diamonds and blossoms. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L.
(eds.) LATIN 2008. LNCS, vol. 4957, pp. 531–543. Springer, Heidelberg (2008)

5. Dai, F., Wu, J.: An extended localized algorithm for connected dominating set for-
mation in ad hoc wireless networks. IEEE Transactions on Parallel and Distributed
Systems 15(10), 908–920 (2004)

6. Daligault, J., Gutin, G., Kim, E.J., Yeo, A.: FPT Algorithms and Kernels for the
Directed k-Leaf Problem. CoRR abs/0810.4946 (2008); also: J. Comput. System
Sci. (2009), doi:10.1016/j.jcss.2009.06.005

7. Downey, R.G., Fellows, M.R.: Parameterized computational feasibility. In: Feasible
Mathematics II, pp. 219–244. Birkhäuser, Boston (1995)

8. Estivill-Castro, V., Fellows, M.R., Langston, M.A., Rosamond, F.A.: FPT is P-
time extremal structure I. In: Proc. of 1st ACiD, pp. 1–41. College Publications
(2005)

9. Fellows, M.R., McCartin, C., Rosamond, F.A., Stege, U.: Coordinatized kernels and
catalytic reductions: An improved FPT algorithm for max leaf spanning tree and
other problems. In: Kapoor, S., Prasad, S. (eds.) FST TCS 2000. LNCS, vol. 1974,
pp. 240–251. Springer, Heidelberg (2000)

10. Fomin, F.V., Grandoni, F., Kratsch, D.: Solving connected dominating set faster
than 2n. Algorithmica 52(2), 153–166 (2008)

11. Fomin, F.V., Grandoni, F., Kratsch, D.: A measure & conquer approach for the
analysis of exact algorithms. J. ACM 56(5) (2009)

12. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of
NP-completeness. Freeman, San Francisco (1979)

13. Kneis, J., Langer, A., Rossmanith, P.: A new algorithm for finding trees with many
leaves. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS,
vol. 5369, pp. 270–281. Springer, Heidelberg (2008)

14. Liang, W.: Constructing minimum-energy broadcast trees in wireless ad hoc net-
works. In: Proc. of 3rd MOBIHOC, pp. 112–122 (2002)

15. Niedermeier, R.: Invitation to Fixed Parameter Algorithms. Oxford University
Press, Oxford (2006)

16. Park, M.A., Willson, J., Wang, C., Thai, M., Wu, W., Farago, A.: A dominating
and absorbent set in a wireless ad-hoc network with different transmission ranges.
In: Proc. of 8th MOBIHOC, pp. 22–31. ACM, New York (2007)

17. Raman, V., Saurabh, S., Sikdar, S.: Improved exact exponential algorithms for
vertex bipartization and other problems. In: Coppo, M., Lodi, E., Pinna, G.M.
(eds.) ICTCS 2005. LNCS, vol. 3701, pp. 375–389. Springer, Heidelberg (2005)

18. Thai, M., Wang, F., Liu, D., Zhu, S., Du. Connected, D.Z.: dominating sets in wire-
less networks with different transmission ranges. IEEE Trans. Mobil. Comp. 6(7),
721–730 (2007)

An Exponential Time 2-Approximation Algorithm for
Bandwidth

Martin Fürer1,�, Serge Gaspers2,��, and Shiva Prasad Kasiviswanathan3

1 Computer Science and Engineering, Pennsylvania State University
furer@cse.psu.edu

2 CMM, Universidad de Chile
sgaspers@dim.uchile.cl

3 Los Alamos National Laboratory
kasivisw@gmail.com

Abstract. The bandwidth of a graph G on n vertices is the minimum b such that
the vertices of G can be labeled from 1 to n such that the labels of every pair of
adjacent vertices differ by at most b.

In this paper, we present a 2-approximation algorithm for the Bandwidth prob-
lem that takes worst-case O(1.9797n) = O(30.6217n) time and uses polynomial
space. This improves both the previous best 2- and 3-approximation algorithms
of Cygan et al. which have an O∗(3n) and O∗(2n) worst-case time bounds, re-
spectively. Our algorithm is based on constructing bucket decompositions of the
input graph. A bucket decomposition partitions the vertex set of a graph into or-
dered sets (called buckets) of (almost) equal sizes such that all edges are either
incident on vertices in the same bucket or on vertices in two consecutive buck-
ets. The idea is to find the smallest bucket size for which there exists a bucket
decomposition. The algorithm uses a simple divide-and-conquer strategy along
with dynamic programming to achieve this improved time bound.

1 Introduction

Let G = (V, E) be a graph on n vertices and b be an integer. The Bandwidth problem
asks whether the vertices of G can be labeled from 1 to n such that the labels of every
pair of adjacent vertices differ by at most b. The Bandwidth problem is a special case of
the Subgraph Isomorphism problem, as it can be formulated as follows: Is G isomorphic
to a subgraph of P b

n? Here, P b
n denotes the graph obtained from Pn (the path on n

vertices) by adding an edge between every pair of vertices at distance at most b in Pn.
A typical scenario in which the Bandwidth problem arises is that of minimizing the

bandwidth of a symmetric matrix M to allow for more efficient storing and manipulat-
ing procedures [11]. The bandwidth of M is b if all its non-zero entries are at a distance
of at most b from the diagonal. Applying permutations on the rows and columns to re-
duce the bandwidth of M corresponds then to reordering the vertices of a graph whose
adjacency matrix corresponds to M by replacing all non-zero entries by 1.
� Visiting EPFL Lausanne and Universität Zürich. Research supported in part by NSF Grant

CCF-0728921.
�� Partially supported by the Research Council of Norway (NFR) and by the GRAAL project

ANR-06-BLAN-0148 of the French National Research Agency (ANR).

J. Chen and F.V. Fomin (Eds.): IWPEC 2009, LNCS 5917, pp. 173–184, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

174 M. Fürer, S. Gaspers, and S.P. Kasiviswanathan

The Bandwidth problem is NP-hard [19], even for trees of maximum degree at most
three [14] and caterpillars with hair length at most three [17]. Even worse, approximat-
ing the bandwidth within a constant factor is NP-hard, even for caterpillars of degree
three [21]. Further, it is known that the problem is hard for every fixed level of the
W-hierarchy [3] and unlikely to be solvable in f(b)no(b) time [4].

Faced with this immense intractability, several approaches have been proposed in the
literature for the Bandwidth problem. The first (polynomial time) approximation algo-
rithm with a polylogarithmic approximation factor was provided by Feige [10]. Later,
Dunagan and Vempala gave an O(log3 n

√
log log n)-approximation algorithm. The

current best approximation algorithm achieves an O(log3 n(log log n)1/4)-approxima-
tion factor [16]. For large b, the best approximation algorithm is the probabilistic algo-
rithm of Blum et al. [2] which has an O(

√
n/b log n)-approximation factor.

Super-polynomial time approximation algorithms for the Bandwidth problem have
also been widely investigated [5,8,9,12]. Feige and Talwar [12], and Cygan and
Pilipczuk [8] provided subexponential time approximation schemes for approximating
the bandwidth of graphs with small treewidth. For general graphs, a 2-approximation
algorithm with a running time of O∗(3n)1 is easily obtained by combining ideas from
[11] and [12] (as noted in [5]). Further, Cygan et al. [5] provide a 3-approximation algo-
rithm with a running time ofO∗(2n), which they generalize to a (4r−1)-approximation
algorithm (for any positive integer r) with a running time of O∗(2n/r).

Concerning exact exponential time algorithms, the fastest polynomial space algo-
rithm is still the elegant O∗(10n) time algorithm of Feige [11]. When allowing ex-
ponential space, this bound is improved in a sequence of algorithms by Cygan and
Pilipczuk; their O∗(5n) time algorithm usesO∗(2n) space [6], their O(4.83n) time al-
gorithm uses O∗(4n) space [7], and their O(4.473n) time algorithm uses O(4.473n)
space [8]. The most practical of these algorithms is probably the O∗(5n) time algo-
rithm as the space requirements of the other ones seems forbiddingly large for practical
applications. The Bandwidth problem can also be solved exactly in O(nb) time using
dynamic programming [18,20].

Another recent approach to cope with the intractability of Bandwidth is through the
concept of hybrid algorithms, introduced by Vassilevska et al. [22]. They gave an al-
gorithm that after a polynomial time test, either computes the minimum bandwidth
of a graph in O∗(4n+o(n)) time, or provides a polylogarithmic approximation ratio in
polynomial time. This result was recently improved by Amini et al. [1] who give an
algorithm which, after a polynomial time test, either computes the minimum bandwidth
of a graph in O∗(4n) time, or provides an O(log3/2 n)-approximation in polynomial
time.

Our Results. Our main result is a 2-approximation algorithm for the Bandwidth prob-
lem that takes worst-case O(1.9797n) time (Theorem 1). This improves the O∗(3n)
time bound achieved by Cygan et al. [5] for the same approximation ratio. Also, the
previous best 3-approximation algorithm of Cygan and Pilipczuk [8] has an O∗(2n)
time bound. Therefore, our 2-approximation algorithm is also faster than the previous
best 3-approximation algorithm.

1 O∗(f(n)) denotes nO(1)O(f(n)).

An Exponential Time 2-Approximation Algorithm for Bandwidth 175

Our algorithm is based on constructing bucket decompositions of the input graph.
A bucket decomposition partitions the vertex set of a graph into ordered sets (called
buckets) of (almost) equal sizes such that all edges are either incident on vertices in the
same bucket or on vertices in two consecutive buckets. The idea is to find the smallest
bucket size for which there exists a bucket decomposition. This gives a 2-approximation
for the Bandwidth problem (Lemmas 2 and 1). The algorithm uses a simple divide-
and-conquer strategy along with dynamic programming to achieve this improved time
bound.

2 Preliminaries

Let G = (V, E) be a graph on n vertices. A linear arrangement of G is a bijective
function L : V → [n] = {1, . . . , n}, that is a numbering of its vertices from 1 to n.
The stretch of an edge (u, v) is the absolute difference between the numbers assigned
to its endpoints |L(u)−L(v)|. The bandwidth of a linear arrangement is the maximum
stretch over all the edges of G and the bandwidth of a graph is the minimum bandwidth
over all linear arrangements of G.

A bucket arrangement of G is a placement of its vertices into buckets such that for
each edge, its endpoints are either in the same bucket or in two consecutive buckets [12].
The buckets are linearly ordered and numbered from left to right. A capacity vector C
is a vector of positive integers. The length of a capacity vector C = (C[1], . . . , C[k]) is
k and its size is

∑k
i=1 C[i]. Given a capacity vector C of size n, a C-bucket arrangement

of G is a bucket arrangement in which exactly C[i] vertices are placed in bucket i, for
each i. For integers n and 	 with 	 < n/2, an (n,)-capacity vector is a capacity vector

(a, 	, 	, . . . , 	,︸ ︷︷ ︸
�n

� �−2 times

b)

of size n such that a, b ≤ 	. We say that an (n,)-capacity vector is left-packed if a = 	
and balanced if |a− b| = 1.

Let X ⊆ V be a subset of the vertices of G. We denote by G[X] the subgraph
of G induced on X , and by G \ X the subgraph of G induced on V \ X . The open
neighborhood of a vertex v is denoted by NG(v) and the open neighborhood of X is
NG(X) := (

⋃
v∈X NG(v)) \X .

3 Exponential Time Algorithms for Approximating Bandwidth

We first establish two simple lemmas that show that constructing a bucket arrangement
can approximate the bandwidth of a graph.

Lemma 1. Let G be a graph on n vertices, and let C be an (n,)-capacity vector. If
there exists a C-bucket arrangement for G then the bandwidth of G is at most 2	− 1.

Proof. Given a C-bucket arrangement for G, create a linear arrangement respecting the
bucket arrangement (if u appears in a smaller numbered bucket thanv, thenL(u)<L(v)),

176 M. Fürer, S. Gaspers, and S.P. Kasiviswanathan

where vertices in the same bucket are numbered in an arbitrary order. As the capacity
of each bucket is at most 	 and each edge spans at most two consecutive buckets, the
maximum edge stretch in the constructed linear arrangement is at most 2	− 1. ��

Lemma 2. Let G be a graph on n vertices, and let C be an (n,)-capacity vector. If
there exists no C-bucket arrangement for G then the bandwidth of G is at least 	 + 1.

Proof. Suppose there exists a linear arrangement L of G of bandwidth at most 	. Con-
struct a bucket arrangement placing the first C[1] vertices of L into the first bucket, the
next C[2] vertices of L into the second bucket, and so on. In the resulting bucket ar-
rangement, no edge spans more than two consecutive buckets. Therefore, a C-bucket
arrangement exists for G, a contradiction. ��

We will use the previous fastest 2-approximation algorithm of Cygan et al. [5] as a
subroutine. For completeness, we describe this simple algorithm here.

Proposition 1 ([5]). There is a polynomial space 2-approximation algorithm for the
Bandwidth problem that takes O∗(3n) time on connected graphs with n vertices.

Proof. Let G be a connected graph on n vertices. For 	 increasing from 1 to �n/2�,
the algorithm does the following. Let C be an (n,)-capacity vector. The algorithm
goes over all the k =

⌈
n
�

⌉
choices for assigning the first vertex to some bucket. The

algorithm then chooses an unassigned vertex u which has at least one neighbor that
has already been assigned to some bucket. Assume that a neighbor of u is assigned to
the bucket i. Now there are at most three choices of buckets (i − 1, i, and i + 1) for
assigning vertex u. Some of these choices may be invalid either because of the capacity
constraints of the bucket or because of the previous assignments of (other) neighbors
of u. If the choice is valid, the algorithm recurses by assigning u to that bucket. Let
	′ be the smallest integer for which the algorithm succeeds, in some branch, to place
all vertices of G into buckets in this way. Then, by Lemma 1, G has bandwidth at most
2	′−1 and by Lemma 2, G has bandwidth at least 	′. Thus, the algorithm outputs 2	′−1,
which is a 2-approximation for the bandwidth of G. As the algorithm branches into at
most 3 cases for each of the n vertices (except the first one), and all other computations
only contribute polynomially to the running time of the algorithm, this algorithm runs
in worst-case O∗(3n) time using only polynomial space. ��

We now show another simple algorithm based on a divide-and-conquer strategy that
given an (n,)-capacity vector C, decides whether a C-bucket arrangement exists for a
connected graph G.

Proposition 2. Let G be a connected graph on n vertices and C be an (n,)-capacity
vector with 	 < n/2. There exists an algorithm that can decide if G has a C-bucket

arrangement in O∗
((

n
�

)
·
(
n/2

�

)
· 24� · 3n/4

)
time.

Proof. Let k =
⌈

n
�

⌉
be the number of buckets in the C-bucket arrangement. Number

the buckets from 1 to k from left to right according to the bucket arrangement. Select
a bucket index i such that the sum of the capacities of the buckets numbered strictly

An Exponential Time 2-Approximation Algorithm for Bandwidth 177

smaller than i and the one for the buckets numbered strictly larger than i are both at
most n/2.

The algorithm goes over all possible
(
n
�

)
choices of filling bucket i with 	 vertices.

Let X be a set of 	 vertices assigned to the bucket i. Given a connected component of
G\X , note that all the vertices of this connected component must be placed either only
in buckets 1 to i − 1 or buckets i + 1 to k. Note that each connected component of
G \X contains at least one vertex that is adjacent to a vertex in X (as G is connected).
Therefore, for each connected component of G \ X , at least one vertex is placed into
the bucket i − 1 or i + 1. As the capacity of each bucket is at most 	, G \ X has at
most 2	 connected components, otherwise there is no C-bucket arrangement where X
is assigned to the bucket i. Thus, there are at most 22� choices for assigning connected
components of G\X to the buckets 1 to i−1 and i+1 to k. Some of these assignments
might be invalid as they might violate the capacity constraints of the buckets. We discard
these invalid assignments.

For each choice of X and each valid assignment of the connected components of G\
X to the left or right of bucket i, we have now obtained two independent subproblems:
one subproblem for the buckets {1, . . . , i − 1} and one subproblem for the buckets
{i + 1, . . . , k}. These subproblems have sizes at most n/2. Consider the subproblem
for the buckets {1, . . . , i − 1} (the other one is symmetric) and let Y be the set of
vertices associated to these buckets. Let Z ⊆ Y be the set of vertices in Y that have at
least one neighbor in X . Now, add edges to the subgraph G[Y] such that Z becomes a
clique. This does not change the problem, as all the vertices in Z must be assigned to the
bucket i−1, and G[Y] becomes connected. This subproblem can be solved recursively,
ignoring those solutions where vertices in Z are not all assigned to the bucket i− 1.

The algorithm performs the above recursion until it reaches subproblems of size
at most n/4, which corresponds to two levels in the corresponding search tree. On
instances of size at most n/4, the algorithm invokes the algorithm of Proposition 1,
which takes worst-case O∗(3n/4) time.

Let T (n) be the running time needed for the above procedure to check whether a
graph with n vertices has a bucket arrangement for an (n,)-capacity vector. Then,

T (n) ≤
(

n

	

)
· 22� ·

(
n/2
	

)
· 22� · 3n/4 · nO(1) = O∗

((
n

	

)
·
(

n/2
	

)
· 24� · 3n/4

)
.

This completes the proof of the proposition. ��

Combining Proposition 2 with Lemmas 1 and 2, we have the following corollary for
2-approximating the bandwidth of a graph.

Corollary 1. There is an algorithm that, for a connected graph G on n vertices and an
integer 	 ≤ n can decide whether the bandwidth of G is at least 	 + 1 or at most 2	− 1
in O∗

((
n
�

)
·
(
n/2

�

)
· 24� · 3n/4

)
time.

Proof. If 	 ≥ n/2, the bandwidth of G is at most 2	− 1. Otherwise, use Proposition 2
with G and some (n,)-capacity vector C to decide if there exists a C-bucket arrange-
ment for G. If so, then the bandwidth of G is at most 2	− 1 by Lemma 1. If not, then
the bandwidth of G is at least 	 + 1 by Lemma 2. ��

178 M. Fürer, S. Gaspers, and S.P. Kasiviswanathan

The running time of the algorithm of Corollary 1 is interesting for small values of 	.
Namely, if 	 ≤ n/26, the running time is O(1.9737n). In the remainder of this section,
we improve Proposition 2. We now concentrate on the cases where k = �n/	� ≤ 26.

Let C be an (n,)-capacity vector. A partial C-bucket arrangement of an induced
subgraph G′ of G is a placement of vertices of G′ into buckets such that: (a) each vertex
in G′ is assigned to a bucket or to a union of two consecutive buckets, (b) the endpoints
of each edge in G′ are either in the same bucket or in two consecutive buckets, and (c) at
most C[i] vertices are placed in each bucket i. Let B be a partial C-bucket arrangement
of an induced subgraph G′. We say that a bucket i is full in B if the number of vertices
that have been assigned to it equals its capacity (= C[i]). We say that two consecutive
buckets i and i + 1 are jointly full in B if a vertex subset Y of cardinality equal to the
sum of the capacities of i and i+1 have been assigned to these buckets (i.e., each vertex
v ∈ Y is restricted to belong to the union of buckets i or i + 1, but which among these
two buckets v belongs is not fixed). We say that a bucket is empty in B if no vertices
have been assigned to it.

Proposition 3. Let G be a graph on n vertices and C be a capacity vector of size n
and length k, where k is an integer constant. Let B = B(G′) be a partial C-bucket
arrangement of some induced subgraph G′ of G such that in B some buckets are full,
some pairs of consecutive buckets are jointly full, and all other buckets are empty. If in
B no 3 consecutive buckets are empty, then it can be decided if B can be extended to a
C-bucket arrangement in polynomial time.

Proof Outline. Let G = (V, E) and G′ = (V ′, E′). Let r be the number of connected
components of G \ V ′ (the graph induced on V \ V ′), and let Vl represent the set of
vertices in the lth connected component of G \ V ′.

If the bucket i is full in B, let Xi denote the set of vertices assigned to it. If the buck-
ets i and i + 1 are jointly full in B, let Xi,i+1 denote the set of vertices assigned to the
union of buckets i and i+1. We use dynamic programming to start from a partial bucket
arrangement satisfying the above conditions to construct a C-bucket arrangement. Dur-
ing its execution, the algorithm assigns vertices to the buckets which are empty in B.
We only present an outline of the dynamic programming algorithm here. The dynamic
programming algorithm constructs a table T [. . .], which has the following indices.

– An index p, representing the subproblem on the first p connected components of
G \ V ′.

– For every empty bucket i in B such that both the buckets i− 1 and i + 1 are full, it
has an index si, representing the number of vertices assigned to the bucket i.

– For every two consecutive empty buckets i and i + 1 in B, it has indices ti,i+1, xi,
and xi+1. The index ti,i+1 represents the total number of vertices assigned to the
buckets i and i + 1. The index xi represents the number of vertices assigned to the
buckets i and i + 1 that have at least one neighbor in the bucket i − 1. The index
xi+1 represents the number of vertices assigned to the buckets i and i + 1 that have
at least one neighbor in the bucket i + 2.

– For every two consecutive buckets i, i + 1 which are jointly full in B, it has indices
fi and fi+1 representing the number of vertices assigned to these buckets that have
at least one neighbor in the bucket i− 1 (fi) or in the bucket i + 2 (fi+1).

An Exponential Time 2-Approximation Algorithm for Bandwidth 179

Table T [. . .] is initialized to false everywhere, except for the entry corresponding to
all-zero indices, which is initialized to true. The rest of the table is built by increasing
values of p as described below. Here, we only write those indices that differ in the
looked-up table entries and the computed table entry (i.e., indices in the table that play
no role in a given recursion are omitted). We also ignore the explicit checking of the
invalid indices in the following description. The algorithm looks at the vertices which
are neighbors (in G) of the vertices in Vp and have already been assigned.

If the vertices in Vp have at least one neighbor in each of the full buckets i − 1 and
i + 1, have no neighbors in any other buckets, and bucket i is empty in B, then

T [p, si, . . .] = T [p− 1, si − |Vp|, . . .].

If the vertices in Vp have at least one neighbor in the full buckets i− 1 and i + 2, have
no neighbors in any other buckets, and the buckets i and i+1 are both empty in B, then

T [p, ti,i+1, xi, xi+1, . . .] =⎧⎪⎨⎪⎩
false if NG(Xi−1) ∩NG(Xi+2) �= ∅,
T [p− 1, ti,i+1 − |Vp|, xi − |Vp ∩NG(Xi−1)|,

xi+1 − |Vp ∩NG(Xi+2)|, . . .] otherwise.

If the vertices in Vp have at least one neighbor in the jointly full buckets i− 2 and i− 1,
and at least one neighbor in the jointly full buckets i+1 and i+2, but have no neighbors
in any other buckets, and bucket i is empty in B, then

T [p, si, fi−1, fi+1, . . .] = T [p− 1, si − |Vp|, fi−1 − |NG(Vp) ∩Xi−2,i−1|,
fi+1 − |NG(Vp) ∩Xi+1,i+2|, . . .].

The recursion for the other possibilities where Vp has neighbors in two distinct buckets
can now easily be deduced. We now consider the cases where Vp has only neighbors
in one bucket. Again, we only describe some key-cases, from which all other cases can
easily be deduced.

If the vertices in Vp have only neighbors in the full bucket i−1, and the buckets i−2
and i are both empty in B, but the buckets i− 3 and i+1 are either full or non-existing,
then

T [p, si−2, si, . . .] = T [p− 1, si−2 − |Vp|, si, . . .] ∨ T [p− 1, si−2, si − |Vp|, . . .].

If the vertices in Vp have only neighbors in the full bucket i− 1, and the buckets i− 3,
i− 2, i, and i + 1 are all empty in B, then

T [p, ti−3,i−2, xi−2, ti,i+1, xi, . . .] =
T [p− 1, ti−3,i−2 − |Vp|, xi−2 − |Vp ∩NG(Xi−1)|, ti,i+1, xi, . . .]
∨ T [p− 1, ti−3,i−2, xi−2, ti,i+1 − |Vp|, xi − |Vp ∩NG(Xi−1)|, . . .].

If the vertices in Vp have only neighbors in the jointly full buckets i and i + 1, and the
buckets i− 1 and i + 2 are both empty in B, but the buckets i− 2 and i + 3 are either
full in B or non-existing, then

180 M. Fürer, S. Gaspers, and S.P. Kasiviswanathan

T [p, si−1, si+2, fi, fi+1, . . .] =
T [p− 1, si−1 − |Vp|, si+2, fi − |NG(Vp) ∩Xi,i+1|, fi+1, . . .]
∨ T [p− 1, si−1, si+2 − |Vp|, fi, fi+1 − |NG(Vp) ∩Xi,i+1|, . . .].

The final answer (true or false) produced by the algorithm is a disjunction over all table
entries whose indices are as follows: p = r, si = C[i] for every index si, ti,i+1 =
C[i] + C[i + 1] for every index ti,i+1, xi ≤ C[i] for every index xi, and fi ≤ C[i] for
every index fi. ��

Remark 1. The dynamic programming algorithm in Proposition 3 can easily be modi-
fied to construct a C-bucket arrangement (from any partial bucket arrangement B satis-
fying the stated conditions), if one exists.

If the number of buckets is a constant, the following proposition will be crucial in
speeding up the procedure for assigning connected components to the right or the left of
a bucket filled with a vertex set X . Denote by sc(G) the set of all connected components
of G with at most

√
n vertices and by lc(G) the set of all connected components of G

with more than
√

n vertices. Let V (sc(G)) and V (lc(G)) denote the set of all vertices
which are in the connected components belonging to sc(G) and lc(G), respectively. We
now make use of the fact that if there are many small components in G \X , several of
the assignments of the vertices in V (sc(G \X)) to the buckets are equivalent.

Let C be a capacity vector of size n (i.e.,
∑

i C[i] = n) and let B be a partial C-
bucket arrangement of an induced subgraph G′ of G. Let C′ be the capacity vector
obtained from C by decreasing the capacity C[i] of each bucket i by the number of
vertices assigned to the bucket i in B. We say that B produces the capacity vector C′.
Proposition 4. Let G = (V, E) be a graph on n vertices. Let C be a capacity vector of
size n and length k, where k is an integer constant. Let j be a bucket and X ⊆ V be a
subset of C[j] vertices. Consider all capacity vectors which are produced by the partial
C-bucket arrangements of G[V (sc(G \ X)) ∪ X] where the vertices in X are always
assigned to the bucket j. Then, there exists an algorithm which runs in O∗(3

√
n) time

and takes polynomial space, and enumerates all (distinct) capacity vectors produced
by these partial C-bucket arrangements.

Proof. Let Vl be the vertex set of the lth connected component in sc(G \ X). Let Lp

denote the list of all capacity vectors produced by the partial C-bucket arrangements of
G[
⋃

1≤l≤p Vl ∪ X] where the vertices in X are always assigned to the bucket j. Note
that since k is a constant, the number of distinct vectors in Lp is polynomial (at most
nk). Then, L1 can be obtained by executing the algorithm of Proposition 1 on the graph
G[V1] with a capacity vector C′ which is the same as C except that C′[i] = 0. In general,
Lp can be obtained fromLp−1 by executing the algorithm of Proposition 1 on the graph
G[Vp] for every capacity vector in Lp−1. As the size of each connected component in
sc(G \X) is at most

√
n, the resulting running time is O∗(3

√
n). ��

3.1 Exponential Time 2-Approximation Algorithm for Bandwidth

Let G = (V, E) be the input graph. Our algorithm tests all bucket sizes 	 from 1 to
�n/2� until it finds an (n,)-capacity vector C such that G has a C-bucket arrangement.

An Exponential Time 2-Approximation Algorithm for Bandwidth 181

For a given 	, let k =
⌈

n
�

⌉
denote the number of buckets. Our algorithm uses various

strategies depending on the value of k. The case of k = 1 is trivial. If 	 = �n/2�, we
have at most two buckets and any partition of the vertex set of G into sets of sizes 	 and
n − 	 is a valid C-bucket arrangement. If k ≥ 27, Corollary 1 gives a running time of
O(1.9737n). For all other values of k, we will obtain running times in O(1.9797n).

Let Ik be the set of all integers lying between n/(k − 1) and n/k. The basic idea
(as illustrated in Proposition 2) is quite simple. The algorithm tries all possible ways of
assigning vertices to the middle bucket. Once the vertex set X assigned to the middle
bucket is fixed and the algorithm has decided for each connected component of G \X
if the connected component is to be assigned to the buckets to the left or to the right of
the middle bucket, the problem breaks into two independent subproblems on buckets
which are to the left and to right of the middle bucket. To get the claimed running time,
we build upon this idea to design individualized techniques for different ks (between 3
and 26). For each case, if G has at least one C-bucket arrangement for an (n,)-capacity
vector C, then one such arrangement is constructed. We know that if G has no C-bucket
arrangement for an (n,)-capacity vector C then the bandwidth of G is at least 	 + 1
(Lemma 2), and if it has one then its bandwidth is at most 2	 − 1 (Lemma 1). If k =
8, 10, or 12, the algorithm uses a left-packed (n,)-capacity vector C, and otherwise,
the algorithm uses a balanced (n,)-capacity vector C.

k = 3. The algorithm goes over all subsets X ⊆ V of cardinality |X | = C[3] ≤
�(n−)/2� with 	 ∈ I3. X is assigned to the bucket 3. If the remaining vertices can be
assigned to the buckets 1 and 2 in a way such that all vertices which are neighbors of the
vertices in X (in G) are assigned to the bucket 2, then G has a C-bucket arrangement
where C has length 3. The worst-case running time for this case is max �∈I3 O∗(

(
n
|X|
)
).

k = 4 or k = 5. The algorithm goes over all subsets X ⊆ V with |X | = 	 and 	 ∈ Ik.
X is assigned to the bucket 3. Then, we can conclude using the dynamic programming
algorithm outlined in Proposition 3 (see also the remark following it). The worst-case
running time for these cases are max �∈Ik

O∗(
(
n
�

)
).

k = 6. If k = 6, the algorithm goes through all subsets X ⊆ V with |X | = 2	 and
	 ∈ I6. X is assigned to the union of buckets 3 and 4 (i.e., some non-specified 	 vertices
from X are assigned to the bucket 3, and the remaining vertices of X are assigned to
the bucket 4). Then, we can again conclude by the algorithm outlined in Proposition 3.
The worst-case running time for this case is max �∈I6 O∗ ((n

2�

))
.

k = 7. The algorithm goes through all subsets X ⊆ V with |X | = 	 and 	 ∈ I7.
X is assigned to the bucket 4. For each such X , the algorithm uses Proposition 4 to
enumerate all possible capacity vectors produced by the partial C-bucket arrangements
of G[V (sc(G \X)) ∪X] (with X assigned to the bucket 4). This step can be done in
O∗(3

√
n) time. There are only polynomially many such (distinct) capacity vectors. For

each of these capacity vector C′, the algorithm goes through all choices of assigning
each connected component in lc(G \ X) to the buckets 1 to 3 or to the buckets 5 to
7. Thus, we obtain two independent subproblems on the buckets 1 to 3 and on the
buckets 5 to 7. As the number of number of components in lc(G \X) is at most

√
n (as

182 M. Fürer, S. Gaspers, and S.P. Kasiviswanathan

each connected component has at least
√

n vertices), going through all possible ways
of assigning each connected component in lc(G \X) to the buckets numbered smaller
or larger than 4 takes O∗(2

√
n) time. Some of these assignments may turn out to be

invalid. For each valid assignment, let V1 denote the vertex set assigned to the buckets
1 to 3. Then, the vertices of V1 are assigned to the buckets 1 to 3 as described in the
case with 3 buckets with the capacity vector (C′[1], C′[2], C′[3]) and with the additional
restriction that all vertices in V1 which are neighbors of the vertices in X need to be
assigned to the bucket 3. The number of vertices in V1 is at most �(n −)/2� (as C is
balanced). Now the size of bucket 1 is C′[1] ≤ �(n − 5)/2�. Let n1 = �(n −)/2�
and 	1 = �(n − 5)/2�. If V1 has at least one valid bucket arrangement into 3 buckets
(with vertices in V1 neighboring the vertices in X assigned to the bucket 3), then the
above step will construct one in worst-caseO∗(

(
n1
�1

)
) time. The algorithm uses a similar

approach for V2 = V \ (V1 ∪X) with the buckets 5 to 7. Since, the algorithm tries out
every subset X for bucket 4, the worst-case running time for this case is

max
�∈I7

O∗
((

n

	

)
·
(

3
√

n + 2
√

n ·
(

n1

	1

)))
= max

�∈I7
O∗
((

n

	

)
· 2O(

√
n) ·

(
n1

	1

))
.

k = 8. The algorithm uses a left-packed (n,)-capacity vector C for this case. The
algorithm goes through all subsets X ⊆ V with |X | = 	 and 	 ∈ I8. X is assigned to
the bucket 4. The remaining analysis is similar to the case with 7 buckets. Buckets 1
to 3 have a joint capacity of 3	 (as C is left-packed) and the buckets 5 to 8 have a joint
capacity of n− 4	. The worst-case running time for this case is

max
�∈I8

O∗
((

n

	

)
· 2O(

√
n) ·max

{(
3	

	

)
,

(
n− 4	

	

)})
.

The terms in the max expression come from the cases with 3 and 4 buckets.

k = 9 or k = 11. The algorithm goes through all subsets X ⊆ V with |X | = 	 and
	 ∈ Ik. X is assigned to the bucket �k/2�. As in the previous two cases, Proposition 4
is invoked for G[V (sc(G \X)) ∪X] (with X assigned to the bucket �k/2�). For each
capacity vector generated by Proposition 4, the algorithm looks at every possible way of
assigning each connected component in lc(G\X) to the buckets 1 to �k/2�−1 or to the
buckets �k/2�+1 to k. Each assignment gives rise to two independent subproblems —
one on vertices V1 assigned to the buckets 1 to (k−1)/2, and one on vertices V2 assigned
to the buckets (k + 3)/2 to k (with vertices in V1 and V2 neighboring the vertices in X
assigned to the buckets (k − 1)/2 and (k + 3)/2, respectively). The algorithm solves
these subproblems recursively as in the cases with 4 or 5 buckets. Let n1 = �(n−)/2�.
Then, the worst-case running times are max �∈Ik

O∗(
(
n
�

)
· 2O(

√
n) ·

(
n1
�

)
).

k = 10 or k = 12. The algorithm uses a left-packed (n,)-capacity vector C for these
cases. The algorithm goes through all subsets X ⊆ V with |X | = 	 and 	 ∈ Ik. X is
assigned to the bucket k/2. The remaining analysis is similar to the previous cases. For
k = 10, the worst-case running time is max �∈I10 O∗(

(
n
�

)
·2O(

√
n) ·
(
n/2

�

)
). For k = 12,

the worst-case running time is max �∈I12 O∗(
(
n
�

)
· 2O(

√
n) ·max{

(5�
�

)
,
(
n−6�

2�

)
}).

An Exponential Time 2-Approximation Algorithm for Bandwidth 183

13 ≤ k ≤ 26. The algorithm enumerates all subsets X ⊆ V with |X | = 	 and 	 ∈ Ik.
X is assigned to the bucket �k/2�. As in the previous cases, Proposition 4 is invoked
for G[V (sc(G \ X)) ∪ X]. For each capacity vector generated by Proposition 4, the
algorithm looks at every possible way of assigning each connected component in lc(G\
X) to the buckets 1 to �k/2� − 1 or to the buckets �k/2� + 1 to k. Each assignment
gives rise to two independent subproblems. For each of these two subproblems, the
algorithm proceeds recursively until reaching subproblems with at most 2 consecutive
empty buckets, which can be solved by Proposition 3 in polynomial time. If k ≤ 23,
this recursion has depth 3, giving a running time of

max
�∈Ik

O∗
((

n

	

)
· 2O(

√
n) ·

(
n/2
	

)
· 2O(

√
n) ·

(
n/4
	

)
· 2O(

√
n)
)

.

If 24 ≤ k ≤ 26, the recursion has depth 4, giving a running time of

max
�∈Ik

O∗
((

n

	

)
· 2O(

√
n) ·

(
n/2
	

)
· 2O(

√
n) ·

(
n/4
	

)
· 2O(

√
n) ·

(
n/8
	

)
· 2O(

√
n)
)

.

k ≥ 27. By Proposition 2 the running time of the algorithm is bounded in this case by

max
�∈Ik

O∗
((

n

	

)
·
(

n/2
	

)
· 24� · 3n/4

)
.

Main Result. Putting together all the above arguments and using numerical values
(see [13] for the complete details) we get our main result (Theorem 1). The running
time is dominated by the cases where k = 7 and k = 8. The algorithm outputs 2	− 1,
where 	 is the smallest integer such that G has a bucket arrangement with an (n,)-
capacity vector. The algorithm requires only polynomial space.

If G is disconnected, the algorithm finds for each connected componentGi =(Vi, Ei)
the smallest 	i such that Gi has a bucket arrangement corresponding to a (|Vi|, 	i)-
capacity vector and outputs 2	m − 1, where 	m = maxi{	i}.

Theorem 1 (Main Theorem). There is a polynomial space 2-approximation algorithm
for the Bandwidth problem that takesO(1.9797n) time on graphs with n vertices.

4 Conclusion

For finding exact solutions, it is known that many problems (by subexponential time
preserving reductions) do not admit subexponential time algorithms under the Expo-
nential Time Hypothesis [15] (a stronger hypothesis than P �= NP). The Exponential
Time Hypothesis supposes that there is a constant c such that 3-SAT cannot be solved
in timeO(2cn), where n is the number of variables of the input formula. We conjecture
that the Bandwidth problem has no subexponential time 2-approximation algorithm,
unless the Exponential Time Hypothesis fails.

184 M. Fürer, S. Gaspers, and S.P. Kasiviswanathan

References

1. Amini, O., Fomin, F.V., Saurabh, S.: Counting Subgraphs via Homomorphisms. In: Proceed-
ings of ICALP 2009, pp. 71–82 (2009)

2. Blum, A., Konjevod, G., Ravi, R., Vempala, S.: Semi-Definite Relaxations for Minimum
Bandwidth and other Vertex-Ordering problems. Theor. Comput. Sci. 235(1), 25–42 (2000)

3. Bodlaender, H.L., Fellows, M.R., Hallett, M.T.: Beyond NP-completeness for Problems of
Bounded Width: Hardness for the W-hierarchy. In: Proceedings of STOC 1994, pp. 449–458
(1994)

4. Chen, J., Huang, X., Kanj, I.A., Xia, G.: Linear FPT Reductions and Computational Lower
Bounds. In: Proceedings of STOC 2004, pp. 212–221 (2004)

5. Cygan, M., Kowalik, L., Pilipczuk, M., Wykurz, M.: Exponential-time Approximation of
Hard Problems, Technical Report abs/0810.4934, arXiv, CoRR (2008)

6. Cygan, M., Pilipczuk, M.: Faster exact bandwidth. In: Broersma, H., Erlebach, T., Friedet-
zky, T., Paulusma, D. (eds.) WG 2008. LNCS, vol. 5344, pp. 101–109. Springer, Heidelberg
(2008)

7. Cygan, M., Pilipczuk, M.: Even Faster Exact Bandwidth, Technical Report abs/0902.1661,
arXiv, CoRR (2009)

8. Cygan, M., Pilipczuk, M.: Exact and approximate Bandwidth. In: Proceedings of ICALP
2009, pp. 304–315 (2009)

9. Dunagan, J., Vempala, S.S.: On euclidean embeddings and bandwidth minimization. In: Goe-
mans, M.X., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds.) RANDOM 2001 and APPROX
2001. LNCS, vol. 2129, pp. 229–240. Springer, Heidelberg (2001)

10. Feige, U.: Approximating the Bandwidth via Volume Respecting Embeddings. J. Comput.
Syst. Sci. 60(3), 510–539 (2000)

11. Feige, U.: Coping with the NP-Hardness of the Graph Bandwidth Problem. In: Halldórsson,
M.M. (ed.) SWAT 2000. LNCS, vol. 1851, pp. 10–19. Springer, Heidelberg (2000)

12. Feige, U., Talwar, K.: Approximating the bandwidth of caterpillars. In: Chekuri, C., Jansen,
K., Rolim, J.D.P., Trevisan, L. (eds.) APPROX 2005 and RANDOM 2005. LNCS, vol. 3624,
pp. 62–73. Springer, Heidelberg (2005)

13. Fürer, M., Gaspers, S., Kasiviswanathan, S.P.: An Exponential Time 2-Approximation Algo-
rithm for Bandwidth, Technical Report abs/0906.1953, arXiv, CoRR (2009)

14. Garey, M.R., Graham, R.L., Johnson, D.S., Knuth, D.E.: Complexity Results for Bandwidth
Minimization. SIAM J. Appl. Math. 34(3), 477–495 (1978)

15. Impagliazzo, R., Paturi, R.: On the Complexity of k-SAT. J. Comput. Syst. Sci. 62(2), 367–
375 (2001)

16. Lee, J.R.: Volume Distortion for subsets of Euclidean Spaces. Discrete Comput.
Geom. 41(4), 590–615 (2009)

17. Monien, B.: The Bandwidth Minimization Problem for Caterpillars with Hair Length 3 is
NP-complete. SIAM J. Alg. Disc. Meth. 7(4), 505–512 (1986)

18. Monien, B., Sudborough, I.H.: Bandwidth Problems in Graphs. In: Proceedings of Allerton
Conference on Communication, Control, and Computing 1980, pp. 650–659 (1980)

19. Papadimitriou, C.: The NP-completeness of the Bandwidth Minimization Problem. Comput-
ing 16, 263–270 (1976)

20. Saxe, J.: Dynamic Programming Algorithms for Recognizing Small-bandwidth Graphs in
Polynomial Time. SIAM J. Alg. Disc. Meth. 1, 363–369 (1980)

21. Unger, W.: The Complexity of the Approximation of the Bandwidth Problem. In: Proceed-
ings of FOCS 1998, pp. 82–91 (1998)

22. Vassilevska, V., Williams, R., Woo, S.L.M.: Confronting Hardness using a Hybrid Approach.
In: Proceedings of SODA 2006, pp. 1–10 (2006)

On Digraph Width Measures
in Parameterized Algorithmics

Robert Ganian1, Petr Hliněný1, Joachim Kneis2, Alexander Langer2,
Jan Obdržálek1, and Peter Rossmanith2

1 Faculty of Informatics, Masaryk University, Brno, Czech Republic
{xganian1,hlineny,obdrzalek}@fi.muni.cz

2 Theoretical Computer Science, RWTH Aachen University, Germany
{kneis,langer,rossmani}@cs.rwth-aachen.de

Abstract. In contrast to undirected width measures (such as tree-
width or clique-width), which have provided many important al-
gorithmic applications, analogous measures for digraphs such as
DAG-width or Kelly-width do not seem so successful. Several recent
papers, e.g. those of Kreutzer–Ordyniak, Dankelmann–Gutin–Kim, or
Lampis–Kaouri–Mitsou, have given some evidence for this. We support
this direction by showing that many quite different problems remain hard
even on graph classes that are restricted very beyond simply having small
DAG-width. To this end, we introduce new measures K-width and DAG-
depth. On the positive side, we also note that taking Kanté’s directed
generalization of rank-width as a parameter makes many problems fixed
parameter tractable.

1 Introduction

The very successful concept of graph tree-width was introduced in the context
of the Graph Minors project by Robertson and Seymour [RS86, RS91], and it
turned out to be very useful for efficiently solving graph problems. Tree-width
is a property of undirected graphs. In this paper we will be interested in directed
graphs or digraphs.

Naturally, a width measure specifically tailored to digraphs with all the nice
properties of tree-width would be tremendously useful. The properties of such a
measure should include at least the following:

i) The width measure is small on many interesting instances.
ii) Many hard problems become easy if the width measure is bounded.

Obviously, there is a conflict between these goals, and consequently we can expect
some trade-off. On the search for such a digraph measure, several suggestions
were made, starting with directed tree-width [JRST01], and being complemented
recently with several new approaches including DAG-width [Obd06, BDHK06],
Kelly-width [HK08], entanglement [BG04], D-width [Saf05], directed path-
width [Bar06] (defined by Reed, Seymour, and Thomas), and — although quite
different— bi-rank-width [Kan08] (see Section 2).

J. Chen and F.V. Fomin (Eds.): IWPEC 2009, LNCS 5917, pp. 185–197, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

186 R. Ganian et al.

Some positive results were encouraging: The Hamiltonian path problem can
be solved in polynomial time (XP) if the directed tree width, the DAG-width,
or the Kelly-width are bounded by a constant [JRST01]. More recently, it has
been shown that parity games can be solved in polynomial time on digraphs of
bounded DAG-width [BDHK06] and Kelly-width [HK08].

Are more results just waiting around the corner and do we just have to wait
until we get more familiar with these digraph measures? It is the aim of this
paper to answer this question, at least partially.

Unfortunately, as encouraging as the first positive results are, there is also
the negative side. Hamiltonian path is W[2]-hard on digraphs of bounded DAG-
width [LKM08], and some other natural problems even remain NP-hard on di-
graphs of low widths [KO08, DGK08, LKM08]. One of the main goals of this
paper is to show that not only many problems are hard on DAGs, but rather that
they remain hard even if we very severely further restrict the graphs structure.

We introduce two digraph measures for this purpose: K-width and DAG-
depth. While K-width (Section 2.3) restricts the number of different simple paths
between pairs of vertices, DAG-depth (Definition 2.6) is the directed analog
of tree-depth [NdM06]. K-width and DAG-depth are very restrictive digraph
measures; at least as high as DAG-width, and often much higher.

The problems we consider in this paper (and formally define in Section 3) are
Hamiltonian path (HAM), Disjoint paths (k-Path), Directed Dominating Set
(DiDS), unit cost Directed Steiner Tree (DiSTP), Directed Feedback Vertex Set
(DFVS), Kernel (Kernel), Maximum Directed Cut (MaxDiCut), Oriented
Colouring (OCN), MSO1 model checking (φ-MSO1mc), solving Parity Games
(Parity) and LTL-model checking (φ-LTLmc). See Table 1 in Section 3.

It turns out that most of the aforementioned problems are not only hard for
DAG-width, but even for constant K-width and DAG-depth, or on DAGs. This
can be seen as a strong indication that DAG-width or related measures are not
yet the right parameters for dealing with standard digraph problems.

On the other hand, one width measure that fares much better in Table 1
is bi-rank-width (Definition 2.4), a width measure generalizing the rank-width
of undirected graphs [Kan08]. Nearly all of our problems are fixed parameter
tractable or at least in XP with respect to this parameter. Even better, unlike
as for DAG-width or Kelly-width, finding an optimal bi-rank-decomposition is
known to be in FPT [HO08, Kan08].

2 Digraph Width Measures

The first wave of directed measures to appear shared the following features:

i) On bidirected orientations of graphs they coincided with the tree-width.
ii) These measures were strongly based on some variant of the directed cops-

and-robber game on a digraph: There are k cops and a robber. Each cop
can either occupy a vertex, or move around in a helicopter, and the robber
occupies a vertex. The robber can, however, see the helicopter landing, and
can move at a great speed along a cop-free directed path to another vertex.

On Digraph Width Measures in Parameterized Algorithmics 187

The objective of the cops is to capture the robber by landing on the vertex
currently occupied by him, the objective of the robber is to avoid capture.

iii) Point (ii) implied that DAGs and other graphs where vertices could be or-
dered in such a way that edges between them point mainly in one direction,
and only a few point backwards, have a very low width.

iv) The last feature (iii) also made the algorithms to be XP, instead of FPT,
because of the need to remember the partial results for all vertices with
incoming edges from the outside, of which there could be |V |.

Directed tree-width. The first explicit directed measure was that of directed tree-
width (dtw) [JRST01]. In the related cops-and-robber game the robber has to
stay in the same cop-free strongly connected component, however the relation-
ship between the number of cops needed and the directed tree-width is not strict.
[JRST01] also contains XP algorithms for solving the Hamiltonian cycle, k-path,
and related problems on graphs of bounded directed tree-width.

DAG-width. First defined in [Obd06] and, independently, in [BDHK06], DAG-
width (dagw) was the next attempt to come up with a directed tree-width coun-
terpart. This time the robber does not have to stay in the SCC, but the cop
strategy has to be monotone, i.e., a cop cannot be placed on a previously va-
cated vertex. This game fully characterizes DAG-width. Note that monotone
and non-monotone strategies are not equivalent [KO08].

Theorem 2.1 ([Obd06, BDHK06]). For any graph G, there is a DAG-
decomposition of G of width k if, and only if, the cop player has a monotone
winning strategy in the k-cops-and-robber game on G.

Kelly-width. Defined a year later, Kelly-width (kellyw) [HK08] aimed to solve an
existing problem with DAG-decompositions: the number of nodes can be polyno-
mially larger then the number of vertices in the original graph (the size depends
on the width). The idea of Kelly-decompositions is based on the elimination or-
dering for tree-width, and therefore the size of the decomposition is linear in the
size of the graph. The game characterizing Kelly-width is as for DAG-width, but
with two important differences: 1) the cops cannot see the robber, and 2) the
robber can move only when a cop is about to land on his vertex.

Cycle rank. This is perhaps the oldest definition of a digraph connectivity mea-
sure, given in 60’s by Eggan and Büchi [Egg63].

Definition 2.2 (Cycle rank). The cycle rank cr(G) of a digraph G is defined
inductively as follows: For DAGs, cr(G) = 1. If G is strongly connected and
E(G) �= ∅, then cr(G) = 1 + min{ cr(G − v) : v ∈ V (G) }. Otherwise, cr(G) is
the maximum over the cycle rank of the strongly connected components of G.

Measure comparison. All the measures presented above are closely related to
each other. The following theorem in a summary shows that if a problem is hard
for graphs of bounded cycle rank, then it is hard for all the other measures.

188 R. Ganian et al.

Theorem 2.3. Let G be a digraph. Then (dpw [Bar06] is the directed path-
width):

1/3(dtw(G)− 1) ≤[BDHK06] dagw(G) ≤ dpw(G) ≤[Gru08] cr(G)
1/6(dtw(G) + 2) ≤[HK08] kellyw(G) ≤ dpw(G) ≤[Gru08] cr(G)

Moreover, when DAG-width is bounded, so is Kelly-width [HO06].

2.1 Directed Rank-Width

The rank-width of undirected graphs was introduced by Oum and Seymour in
relation to graph clique-width. While the definition of clique-width works “as is”
also on digraphs, the following straightforward generalization of rank-width to
digraphs (related to clique-width again) has been proposed by Kanté [Kan08].

Definition 2.4 (Bi-rank-width). Consider a digraph G, and vertex subsets
X ⊆ V (G) and Y = V (G) \X . Let A+

X denote the X × Y 0, 1-matrix with the
entries ai,j = 1 (i ∈ X , j ∈ Y) iff (i, j) ∈ E(G), and let A−

X = (A+
Y)T . The

bi-cutrank function of G is defined as the sum of the ranks of these two matrices
brkG(X) = rk(A+

X) + rk(A−
X) over the binary field GF (2). The bi-rank-width

brwd(G) of G then equals the branch-width of this bi-cutrank function brkG.

We remind the readers that the branch-width [RS91] of an arbitrary symmetric
submodular function λ : 2E → � is defined as the minimum width over all
branch-decompositions of λ over E, where a branch-decomposition is a pair T, τ
satisfying the following: T is a tree of degree at most three, and τ is a bijection
from E to the leaves of T . If f is an edge of T , then let Xf ⊆ V (T) be the vertex
set of one of the two connected components of T − f , and let the width of f be
λ(τ−1(Xf)). The width of T, τ is the largest width over all edges of T .

Importantly, as proved by Kanté [Kan08], the rank-decomposition algorithm
of [HO08] can also be used to find an optimal bi-rank-decomposition of a digraph.

Theorem 2.5 ([HO08] and [Kan08]). Let t ∈ � be constant. There exists
an algorithm that in time O(n3), for a given n-vertex graph (digraph) G, either
outputs a rank-decomposition (bi-rank-decomposition, respectively) of G of width
at most t, or certifies that the rank-width (bi-rank-width) is more than t.

A rank-decomposition is, actually, not so suitable for designing dynamic pro-
gramming algorithms. Yet, there is an efficient alternative characterization of a
rank-decomposition via algebraic terms (or parse trees) over the bilinear graph
product, which has been proposed by Courcelle and Kanté [CK07] and further
extended towards algorithmic applications by [GH08] (see also an independent
similar approach of [BXTV08]). As shown in [Kan08], an analogous “dynamic
programming friendly” parse-tree view (of bi-rank-width) exists for digraphs,
and we will apply this later, e.g. in Theorems 3.7 and 3.12.

2.2 DAG-Depth

This part is inspired by the tree-depth notion of Nešetřil and Ossona de Mendez.
[NdM06, Lemma 2.2] gives an inductive definition of the tree-depth td(G) of

On Digraph Width Measures in Parameterized Algorithmics 189

undirected G as follows (compare to Def. 2.2). If G has one vertex, then td(G) =
1. If G is connected, then td(G) = 1 + min{ td(G− v) : v ∈ V (G) }. Otherwise,
td(G) equals the maximum over the tree-depth of the components of G.

We propose a new “directed” generalization of this definition. For a digraph
G and any v ∈ V (G), let Gv denote the subdigraph of G induced by the vertices
reachable from v. The maximal elements of the poset {Gv : v ∈ V (G) } in the
graph-inclusion order are called reachable fragments of G. Notice that reachable
fragments in the undirected case coincide with connected components.

Definition 2.6 (DAG-depth). The DAG-depth ddp(G) of a digraph G is in-
ductively defined: If |V (G)| = 1, then ddp(G) = 1. If G has a single reachable
fragment, then ddp(G) = 1 + min{ ddp(G− v) : v ∈ V (G) }. Otherwise, ddp(G)
equals the maximum over the DAG-depth of the reachable fragments of G.

Comparing Definitions 2.2 and 2.6, one can see that DAG-depth equals cycle
rank on bidirected orientations of graphs. Furthermore, the following useful game
characterization of this new measure can be proved along Definition 2.6.

Theorem 2.7. The DAG-depth of a digraph G is at most k if, and only if, the
cop player has a “lift-free” winning strategy in the k-cops and robber game on G,
i.e., a strategy that never moves a cop from a vertex once he has landed.

Corollary 2.8 (cf. Theorem 2.1, Def. 2.2). For any digraph G, the DAG-
depth of G is greater than or equal to the DAG-width and the cycle rank of G. ��

Another claim tightly relates our new measure to directed paths in a digraph.

Proposition 2.9. Consider a digraph G of DAG-depth t, and denote by 	 the
number of vertices of a longest directed path in G. Then �log2 	�+ 1 ≤ t ≤ 	.

2.3 K-width

Moreover, applications in various “directed path” problems, see e.g. Section 3.1,
inspired the following width measure: The K-width (a shortcut of “Kenny
width”) of a digraph G is the maximum number of distinct (not necessarily
disjoint) simple s–t paths in G over all pairs of distinct vertices s, t ∈ V (G).

Similarly to DAG-depth in Proposition 2.9, K-width can be arbitrarily large
on DAGs. By giving a suitable search strategy for the cop player in a di-
graph G based on a DFS tree of G, we show that K-width is lower-bounded
by DAG-width, but K-width is generally incomparable with cycle-rank which is
unbounded on bidirected paths.

Theorem 2.10 (cf. Theorem 2.1). For any digraph G, the K-width of G is
greater or equal to the DAG-width of G minus one.

Furthermore, an easy algorithm enumerating all paths leads to:

Proposition 2.11. The K-width k of a given digraph G can be computed in
time k · poly(|V (G)|).

190 R. Ganian et al.

Table 1. Old and new (in boldface) complexity results on digraph measures (∗-marked
results assume a decomposition is given in advance; p-NPC is a shortcut for the com-
plexity class para-NPC; and c and φ are fixed parameters of the respective problems)

Problem K-width DAG-depth DAG-width Cycle-rank DAG Bi-rank-width

HAM FPT FPT XPa ∗ XPa ∗ P XPb

W[2]-hardc W[2]-hardd

c-Path FPT FPT XPa ∗ XPa ∗ Pa FPT
k-Path p-NPC p-NPC NPC NPC NPC p-NPCe

DiDS p-NPC p-NPC NPC NPC NPC FPT
DiSTP p-NPC p-NPC NPC NPC NPC FPT
MaxDiCut p-NPCc p-NPCc NPCc NPCc NPCc XP
c-OCN p-NPC p-NPC NPCf NPCf NPCf FPT
DFVS open open p-NPCg p-NPCg P FPT
Kernel p-NPCh p-NPCh p-NPCg,h p-NPCg,h P FPT
φ-MSO1mc p-NPH p-NPH NPH NPH NPH FPTi

φ-LTLmc p-coNPH p-coNPH coNPH coNPH coNPC p-coNPH
Parity XPj XPj XPj ∗ XPj ∗ P XPk

References a[JRST01] b[GH09] c[LKM08] d[FGLS09] e[GW06] f [CD06] g[KO08] h[vL76]
i[CMR00] j[BDHK06] k[Obd07] . Refer to the respective following sections for details
and the new results.

3 Summary of Complexity Results

3.1 Hamiltonian Path (HAM) and Disjoint Paths (k-Path)

The classical NP-hard Hamiltonian Path (HAM) problem [GJ79] is to find a
directed path that visits each vertex of a digraph exactly once. A natural gen-
eralization of HAM is the Longest Path problem (Longest Path), where one
is asked to find the longest simple path in a given digraph.

It is easy to see that HAM can be solved on DAGs in polynomial time.
When using the parameter DAG-width, HAM belongs to XP [JRST01], but
was also proven to be W[2]-hard [LKM08]. We prove our new FPT results for
the parameters K-width and DAG-depth on more general Longest Path. Using
a simple enumeration of all distinct paths in the case of bounded K-width, or
applying Proposition 2.9 and any FPT-algorithm for Longest Path in the
standard parameterization (e.g. [CKL+09]) when DAG-depth is bounded, we get:

Theorem 3.1. There is a fixed parameter tractable algorithm solving the
Longest Path problem on a digraph G

a) in time O
(
t · |V (G)| · |E(G)|

)
if G is of K-width at most t;

b) in time O
(
42t+O(t3) · |V (G)| · |E(G)|

)
if G is of DAG-depth at most t.

Another well-known problem is Disjoint Paths (k-Path); given a digraph and k
pairs of nodes (si, ti), 1 ≤ i ≤ k, the task is to find pairwise disjoint directed
paths from each si to the respective ti. This problem is NP-complete [FHW80]
even when k is bounded by any constant c ≥ 2 (c-Path). Moreover, a “mixed”

On Digraph Width Measures in Parameterized Algorithmics 191

generalization of c-Path remains NP-complete [BJK09] even on DAGs, and
k-Path is NP-complete [GW06] even on digraphs of bounded bi-rank-width.

If the digraph of an instance of k-Path has K-width ≤ 2, then it can be
expressed as a 2-SAT formula, and if DAG-depth is ≤ 2, then it is equivalent
to an SDR instance (system of distinct representatives). If, however, we slightly
relax the restrictions as follows, the problem becomes NP-complete again.

Theorem 3.2. The k-Path problem (with k as part of input)
a) can be solved in polynomial time on graphs of K-width or DAG-depth 2;
b) is NP-complete on DAGs of K-width 3 and DAG-depth 4.

Finally, since one can express an instance of c-Path for any fixed c in MSO1 logic
(Section 3.6), it follows from Theorem 3.12 that this problem is fixed parameter
tractable on digraphs of bi-rank-width t with parameters c and t. The c-Path

problem however also becomes easier for the other new measures:

Theorem 3.3. There is a fixed parameter tractable algorithm (for constant c)
solving the c-Path problem on a digraph G

a) in time O(tc · |E(G)|) if G is of K-width at most t;
b) in time O

(
(2c)ct4t · |E(G)|2) if G is of DAG-depth at most t.

3.2 Directed Dominating Set (DiDS) and Steiner Tree (DiSTP)

The well-known NP-hard Dominating Set (DS) and Steiner Tree (STP) prob-
lems both allow for natural directed counterparts. We consider them in their un-
weighted variants for simplicity. The Directed Dominating Set problem (DiDS)
asks for a minimum cardinality vertex set X in a digraph G such that every
vertex of G not in X is an outneighbour of X . The Directed Steiner Tree prob-
lem (DiSTP) [HRW92], given a digraph G and T ⊆ V (G), r ∈ V (G), asks for a
minimum size tree in G spanning {r} ∪ T with all arcs oriented away from r.

While it is folklore that both of these problems are NP-hard in general, we
show (with a simple reduction from Vertex Cover) that the same holds even
on very restricted graph classes.

Theorem 3.4. DiDS and DiSTP problems are NP-complete on a digraph G
even if G is restricted to be a DAG of K-width 2 and DAG-depth 3.

Applying the MSO1 optimization framework described in Section 3.6 we get:

Proposition 3.5 (Theorem 3.12). The (unit cost) DiDS and DiSTP prob-
lems are fixed parameter tractable when parameterized by bi-rank-width.

3.3 Maximum Directed Cut (MaxDiCut)

Maximum directed cut (MaxDiCut) is an extensively studied problem on di-
graphs. Given a digraph G, the goal is to partition the vertex set V (G) into
V0 and V1 such that the cardinality of { (u, v) ∈ E(G) : u ∈ V0, v ∈ V1 } is

192 R. Ganian et al.

maximized. This problem is often stated with edge weights, but we consider
only the unweighted (cardinality MaxDiCut) variant in our paper.

It is well known that the MaxDiCut optimization problem is NP-hard, and
it has been shown that MaxDiCut stays NP-hard even on DAGs [LKM08].
A closer, yet quite nontrivial look, at the reduction reveals the resulting graph
to have also bounded DAG-depth and K-width.

Theorem 3.6 ([LKM08]). The MaxDiCut problem is NP-hard on a digraph
G even if G is restricted to be a DAG of K-width 4608 and DAG-depth 11.

The only new efficiently solvable case among our measures is the following:

Theorem 3.7. The unweighted MaxDiCut problem on a digraph G of bi-rank-
width t is polynomially solvable for every fixed t (i.e. it belongs to the class XP).

3.4 Oriented Colouring (OCN)

A natural directed generalization of the ordinary graph colouring problem can
be obtained as follows: The chromatic number χ(G) of a graph G equals the
minimum c such that G has a homomorphism into the complete graph Kc. The
Oriented Chromatic Number (OCN) χo(G) of a digraph G is defined as the
minimum c such that G has a homomorphism into some(!) orientation of Kc.

In other words, χo(G) equals minimum c such that the vertex set of G can be
partitioned into c independent sets such that, between each pair of the sets, all
arcs have the same direction. For instance, χo = 5 for the directed 5-cycle.

It has been shown [KM04] that checking χo(G) ≤ 3 is easy, but determining
whether χo(G) ≤ 4 is already NP-complete. Subsequently, [CD06] have shown
that the problem χo(G) ≤ 4 remains NP-complete even on acyclic digraphs.
Using a simpler and more powerful reduction than [CD06], we prove:

Theorem 3.8. The problem (4-OCN) to decide whether a digraph G satisfies
χo(G) ≤ 4 is NP-complete even if G is a DAG of K-width 3 and DAG-depth 5.

On the other hand, it follows from the general framework of Theorem 3.12:

Proposition 3.9. The problem (c-OCN) to decide χo(G) ≤ c on an input di-
graph G of bi-rank-width t is fixed parameter tractable with parameters c and t.

3.5 Directed Feedback Vertex Set (DFVS) and Kernel (Kernel)

The directed feedback vertex set (DFVS) problem is to find a minimum cardina-
lity set S of vertices of a digraph G whose removal leaves G \ S acyclic. This
problem is trivial for acyclic digraphs, and it is FPT with the parameter k = |S|.
We hence consider only the optimization variant of DFVS with unbounded k.

Kreutzer and Ordyniak [KO08] gave a reduction showing NP-hardness of the
DFVS optimization problem on digraphs of DAG-width 4. A closer look at this
reduction reveals that all the produced graphs are moreover of cycle rank 4, but
they have unbounded K-width and DAG-depth.

On Digraph Width Measures in Parameterized Algorithmics 193

The kernel of a digraph G is defined as an independent set S ⊆ V (G) such
that for every x ∈ V (G) \ S there is an arc from x into S. Notice that a kernel
may not always exist. However, on acyclic digraphs, a kernel can be easily found.
Having a closer look at the NP-completeness reduction of van Leeuwen [vL76],
one discovers the following claim (cf. also [KO08]).

Theorem 3.10 (van Leeuwen [vL76]). It is NP-complete to decide whether
a digraph G has a kernel, even if G is restricted to have (all at once) DAG-width
and K-width 2, cycle rank also 2, and DAG-depth 4.

Finally, by Example 3.11 and Theorem 3.12, both the Kernel and DFVS prob-
lems are fixed parameter tractable on digraphs of bounded bi-rank-width.

3.6 MSO1 Model Checking (φ-MSO1mc)

Monadic second order (MSO) logic is a language often used for description of
combinatorial algorithmic problems. When applied to a one-sorted relational
graph structure (i.e. to a set V with a symmetric relation edge(u, v)), this lan-
guage is abbreviated as MSO1. We use the same abbreviation MSO1 also for
digraphs with a relation arc(u, v).

Example 3.11. The following properties are expressible in MSO1 on digraphs
– a directed dominating set X as ∀z

(
z ∈ X ∨ ∃x ∈ X arc(x, z)

)
,

– the existence of a kernel S as ∃S ∀x
[
x �∈ S ↔

(
∃y ∈ S arc(x, y)

)]
, or

– a feedback vertex set Z as ∀X
[
X ∩ Z = ∅ →

(
∃x ∈ X ∀y ∈ X ¬arc(x, y)

)]
.

On the other hand, MSO1 cannot express Hamiltonian cycle, for instance.

The MSO1 model checking problem (φ-MSO1mc), where φ is a fixed for-
mula, is FPT on (undirected) graphs of bounded clique-width or rank-width
[CMR00, CK07]. Not surprisingly, this extends to digraphs parameterized by
bi-rank-width. More generally, the LinEMSO1 optimization framework includes
all problems which can be expressed as maximization of a linear evaluational
term over all tuples of sets X1, . . . , Xj satisfying ψ(X1, . . . , Xj) where ψ is an
MSO1 formula— see [CMR00] for details. Analogously to [CMR00] (or [GH08])
we get:

Theorem 3.12 (cf. [CMR00], and [Kan08, GH08])
Every ψ-LinEMSO1 optimization problem is fixed parameter tractable when re-
stricted to digraphs of bi-rank-width t, with parameters t and ψ.

Theorem 3.12 particularly implies that the problems listed in Example 3.11 (and
many others) are FPT on digraphs of bi-rank-width t. No analogous results,
however, seem possible for our other directed width measures since one can
interpret φ-MSO1mc of arbitrary undirected graphs via subdividing each edge
and giving the two new edges opposite orientations, leading to:

Proposition 3.13. The φ-MSO1mc problem is NP-hard even when restricted
to DAGs that are of K-width 1 and DAG-depth 2.

194 R. Ganian et al.

3.7 LTL Model Checking (φ-LTLmc) and Parity Games (Parity)

Another useful language that allows to express properties of digraphs is Linear
Temporal Logic (LTL) — see, e.g., [BK08]. LTL model checking remains hard for
a fixed formula φ and all of the directed width measures we considered here,
including bi-rank-width (as opposed to MSO1 model checking).

Theorem 3.14. The φ-LTLmc problem is coNP-hard even when the input di-
graph is restricted to have K-width 1, DAG-depth 4, and bi-rank-width 2.

Theorem 3.15. The φ-LTLmc problem is coNP-complete on DAGs.

Parity games— see e.g. [GTW02] for a reference, play an important role in the
field of model-checking and formal verification. There are many reasons for this.
First, solving parity games is equivalent to model-checking the modal μ-calculus,
an important modal logic subsuming many other logics (e.g. CTL). Moreover,
the modal μ-calculus is a bisimulation invariant fragment of MSO1.

Second, the exact complexity of solving a parity game is a long-standing open
problem. It is known to be in NP∩ co-NP, and widely believed to be in P . It is
trivially in P for acyclic digraphs. Moreover, it was shown that solving a parity
game is in XP for digraphs of bounded tree-width [Obd03], bounded DAG-width
[BDHK06] (hence also on bounded K-width, DAG-depth, and cycle rank) and
bounded Kelly-width [HK08], and of bounded clique-width [Obd07] (implying
the same for bi-rank-width).

4 Conclusion

Table 1, and the related results in this paper, have left several interesting open
problems and questions. Just to specifically mention a few:

1) We suggest there exist FPT algorithms solving the DFVS problem for
bounded K-width or DAG-depth (two of the open table entries).

2) For some entries in the table, we neither expect an FPT algorithm, nor have
an NP-hardness estimate. E.g., MaxDiCut or k-Path for bi-rank-width, or
c-Path for cycle rank. Can we then, at least, show a W-hardness result?

3) While we have given FPT and XP, respectively, algoritms solving the unit-
cost variants of DiSTP and MaxDiCut, these problems are usually consid-
ered in their weighted variants and then we expect their complexity to be
higher. We, however, have no further results in this direction.

4) Some suggest that the DFVS number (see in Section 3.5) perhaps can be a
good directed width measure. However, since majority of our sample prob-
lems in Table 1 remain hard even on DAGs, there is not much room left for
applications of the DFVS parameter. Interestingly though, Kernel becomes
FPT when parametrized by DFVS.

Theorem 4.1. If a digraph G is given with a directed feedback vertex set of
size k, then the Kernel problem can be solved in time O(2k · |V (G)|2).

On Digraph Width Measures in Parameterized Algorithmics 195

Finally, we try to formulate the overall impression coming from Table 1: Robber-
and-cops based width measures do not seem to be very useful for parameterized
algorithms on digraphs. One reason might be that cops “give” good graph sep-
arators in the undirected case, but that does not work any more for digraphs.
Considering the DFVS number as a width parameter does not seem to help
either. We perhaps need something new to move on. At this moment, bi-rank-
width seems like a good alternative.

Acknowledgments. This work has been supported by a Czech–German bi-
lateral grant of GAČR and DFG (201/09/J021 and RO 927/9). Moreover,
P. Hliněný has been supported by the Czech research grant GAČR 201/08/0308.

References

[Bar06] Barát, J.: Directed path-width and monotonicity in digraph searching.
Graphs and Combinatorics 22(2), 161–172 (2006)

[BDHK06] Berwanger, D., Dawar, A., Hunter, P., Kreutzer, S.: DAG-width and
parity games. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS,
vol. 3884, pp. 524–536. Springer, Heidelberg (2006)

[BG04] Berwanger, D., Grädel, E.: Entanglement – a measure for the complexity
of directed graphs with applications to logic and games. In: Baader, F.,
Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 209–223.
Springer, Heidelberg (2005)

[BJK09] Bang-Jensen, J., Kriesell, M.: Disjoint directed and undirected paths and
cycles in digraphs. Technical Report PP-2009-03, University of South
Denmark (2009)

[BK08] Baier, C., Katoen, J.-P.: Principles of Model Checking. The MIT Press,
Cambridge (2008)

[BXTV08] Bui-Xuan, B.-M., Telle, J., Vatshelle, M.: H-join and algorithms on graphs
of bounded rank-width (submitted) (November 2008)

[CD06] Culus, J.-F., Demange, M.: Oriented coloring: Complexity and approxi-
mation. In: Wiedermann, J., Tel, G., Pokorný, J., Bieliková, M., Štuller,
J. (eds.) SOFSEM 2006. LNCS, vol. 3831, pp. 226–236. Springer, Heidel-
berg (2006)

[CK07] Courcelle, B., Kanté, M.: Graph operations characterizing rank-width and
balanced graph expressions. In: Brandstädt, A., Kratsch, D., Müller, H.
(eds.) WG 2007. LNCS, vol. 4769, pp. 66–75. Springer, Heidelberg (2007)

[CKL+09] Chen, J., Kneis, J., Lu, S., Mölle, D., Richter, S., Rossmanith, P., Sze, S.,
Zhang, F.: Randomized divide-and-conquer: Improved path, matching,
and packing algorithms. SIAM Journal on Computing 38(6), 2526–2547
(2009)

[CMR00] Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable opti-
mization problems on graphs of bounded clique-width. Theory Comput.
Syst. 33(2), 125–150 (2000)

[DGK08] Dankelmann, P., Gutin, G., Kim, E.: On complexity of minimun leaf out-
branching. arXiv:0808.0980v1 (August 2008)

[Egg63] Eggan, L.: Transition graphs and the star-height of regular events. Michi-
gan Mathematical Journal 10(4), 385–397 (1963)

196 R. Ganian et al.

[FGLS09] Fomin, F., Golovach, P., Lokshtanov, D., Saurab, S.: Clique-width: On
the price of generality. In: SODA 2009, pp. 825–834. SIAM, Philadelphia
(2009)

[FHW80] Fortune, S., Hopcroft, J.E., Wyllie, J.: The directed subgraph homeomor-
phism problem. Theor. Comput. Sci. 10, 111–121 (1980)

[GH08] Ganian, R., Hliněný, P.: Automata approach to graphs of bounded rank-
width. In: IWOCA 2008, pp. 4–15 (2008)

[GH09] Ganian, R., Hliněný, P.: Better polynomial algorithms on graphs of
bounded rank-width. In: Fiala, J., Kratochv́ıl, J., Miller, M. (eds.)
IWOCA 2009. LNCS, vol. 5874, pp. 266–277. Springer, Heidelberg (2009)

[GJ79] Garey, M., Johnson, D.: Computers and Intractability: A Guide to the
Theory of NP-completeness. W.H. Freeman, New York (1979)

[Gru08] Gruber, H.: Digraph complexity measures and applications in formal lan-
guage theory. In: MEMICS 2008, pp. 60–67 (2008)

[GTW02] Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite
Games. LNCS, vol. 2500. Springer, Heidelberg (2002)

[GW06] Gurski, F., Wanke, E.: Vertex disjoint paths on clique-width bounded
graphs. Theor. Comput. Sci. 359(1-3), 188–199 (2006)

[HK08] Hunter, P., Kreutzer, S.: Digraph measures: Kelly decompositions, games,
and orderings. Theor. Comput. Sci. 399(3), 206–219 (2008)

[HO06] Hliněný, P., Obdržálek, J.: Escape-width: Measuring ”width” of digraphs.
Presented at Sixth Czech-Slovak International Symposium on Combina-
torics, Graph Theory, Algorithms and Applications (2006)

[HO08] Hliněný, P., Oum, S.: Finding branch-decomposition and rank-
decomposition. SIAM J. Comput. 38, 1012–1032 (2008)

[HRW92] Hwang, F., Richards, D., Winter, P.: The Steiner Tree Problem. Annals
of Discrete Mathematics. North-Holland, Amsterdam (1992)

[JRST01] Johnson, T., Robertson, N., Seymour, P.D., Thomas, R.: Directed tree-
width. Journal of Combinatorial Theory, Series B 82(1), 138–154 (2001)

[Kan08] Kanté, M.: The rank-width of directed graphs. arXiv:0709.1433v3 (March
2008)

[KM04] Klostermeyer, W., MacGillivray, G.: Homomorphisms and oriented color-
ings of equivalence classes of oriented graphs. Discrete Mathematics 274,
161–172 (2004)

[KO08] Kreutzer, S., Ordyniak, S.: Digraph decompositions and monotonicity
in digraph searching. In: Broersma, H., Erlebach, T., Friedetzky, T.,
Paulusma, D. (eds.) WG 2008. LNCS, vol. 5344, pp. 336–347. Springer,
Heidelberg (2008)

[LKM08] Lampis, M., Kaouri, G., Mitsou, V.: On the algorithmic effectiveness of
digraph decompositions and complexity measures. In: Hong, S.-H., Nag-
amochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 220–
231. Springer, Heidelberg (2008)

[NdM06] Nešetřil, J., Ossona de Mendez, P.: Tree-depth, subgraph coloring and
homomorphism bounds. European J. Combin. 27(6), 1024–1041 (2006)

[Obd03] Obdržálek, J.: Fast mu-calculus model checking when tree-width is
bounded. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS,
vol. 2725, pp. 80–92. Springer, Heidelberg (2003)

[Obd06] Obdržálek, J.: DAG-width – connectivity measure for directed graphs.
In: SODA 2006, pp. 814–821. ACM-SIAM, New York (2006)

On Digraph Width Measures in Parameterized Algorithmics 197

[Obd07] Obdržálek, J.: Clique-width and parity games. In: Duparc, J., Henzinger,
T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 54–68. Springer, Heidelberg
(2007)

[RS86] Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of
tree-width. Journal of Algorithms 7(3), 309–322 (1986)

[RS91] Robertson, N., Seymour, P.D.: Graph minors. X. Obstructions to tree-
decomposition. J. Comb. Theory B 52(2), 153–190 (1991)

[Saf05] Safari, M.: D-width: A more natural measure for directed tree-width. In:
Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618,
pp. 745–756. Springer, Heidelberg (2005)

[vL76] van Leeuwen, J.: Having a Grundy-numbering is NP-complete. Technical
Report 207, The Pennsylvania State University (September 1976)

The Parameterized Complexity of Some
Geometric Problems in Unbounded Dimension

Panos Giannopoulos�, Christian Knauer, and Günter Rote

Institut für Informatik, Freie Universität Berlin, Takustraße 9, D-14195 Berlin,
Germany

{panos,knauer,rote}@inf.fu-berlin.de

Abstract. We study the parameterized complexity of the following fun-
damental geometric problems with respect to the dimension d:
i) Given n points in Rd, compute their minimum enclosing cylinder.
ii) Given two n-point sets in Rd, decide whether they can be separated

by two hyperplanes.
iii) Given a system of n linear inequalities with d variables, find a max-

imum size feasible subsystem.
We show that (the decision versions of) all these problems are W[1]-
hard when parameterized by the dimension d. Our reductions also give
a nΩ(d)-time lower bound (under the Exponential Time Hypothesis).

Keywords: parameterized complexity, geometric dimension, lower
bounds, minimum enclosing cylinder, maximum feasible subsystem, 2-
linear separability.

1 Introduction

We study the parameterized complexity of the following three fundamental geo-
metric problems with respect to the dimension of the underlying space: minimum
enclosing cylinder of a set of points in Rd, 2-linear separation of two point sets in
Rd, and maximum-size feasible subsystem of a system of linear inequalities with
d variables. All these problems are NP-hard when the dimension d is unbounded
and all known exact algorithms run in nO(d) time (basically, using brute force),
where n is the total number of objects in the input sets. As with many other ge-
ometric problems in d dimensions, it is widely conjectured that the dependence
on d cannot be removed from the exponent of n. However, no evidence of this
has been given so far.

In terms of parameterized complexity theory the question is whether any of
these problems is fixed-parameter tractable with respect to d, i. e., whether there
exists an algorithm that runs in O(f(d)nc) time, for some computable function f
and some constant c independent of d. Proving a problem to be W[1]-hard with
respect to d, gives a strong evidence that such an algorithm is not possible, under
standard complexity theoretic assumptions. We summarize our results bellow.
� This research was supported by the German Science Foundation (DFG) under grant

Kn 591/3-1.

J. Chen and F.V. Fomin (Eds.): IWPEC 2009, LNCS 5917, pp. 198–209, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

The Parameterized Complexity of Some Geometric Problems 199

Results. We study the following decision problems:

i) Given n unit balls Rd, decide whether there is a line that stabs all the balls.
(Note that since the balls are unit, this is the decision version of the problem
of computing the minimum enclosing cylinder of a set of n points.)

ii) Given two n-point sets in Rd, decide whether they can be separated by two
hyperplanes.

iii) Given a system of n linear inequalities with d variables and an integer l,
decide whether there is a solution satisfying l of the inequalities.

We prove that all three problems are W[1]-hard with respect to d. This is done by
fpt-reductions from the k-independent set (or clique) problem in general graphs,
which is W[1]-complete [9]. As a side-result, we also show that, when restricted to
equalities, problem (iii) is W[1]-hard with respect to both l and d. The reductions
for problems (i) and (ii) are based on a technique pioneered in Cabello et al. [7],
see next section. With the addition of these two problems this technique shows a
generic trait and its potential as a useful tool for proving hardness of geometric
problems with respect to the dimension.

In all three reductions the dimension is linear in the size k of the independent
set (or clique), hence an no(d)-time algorithm for any of the problems implies
an no(d)-time algorithm for the parameterized k-clique problem, which in turn
implies that n-variable 3SAT can be solved in 2o(n)-time. The Exponential Time
Hypothesis (ETH) [11] conjectures that no such algorithm exists.

Related work. The dimension of geometric problems is a natural parameter for
studying their parameterized complexity. However, there are only few results of
this type: Langerman and Morin [12] gave fixed-parameter tractability results for
the problem of covering points with hyperplanes, while the ‘dual’ parameteriza-
tion of the maximum-size feasible subsystem problem, where parameter l is now
the smallest number of inequalities one has to remove to make the system feasi-
ble is fixed-parameter tractable with respect to both l and d [4]. As for hardness
results, the problems of covering points with balls and computing the volume of
the union of axis parallel boxes have been shown to be W[1]-hard by Cabello et
al. [7] and Chan [8] respectively. We refer the reader to Giannopoulos et al. [10]
for a survey on parameterized complexity results for geometric problems.

The problem of stabbing balls in Rd with one line was shown to be NP-hard
when d is part of the input by Megiddo [14]. This problem is equivalent to
the minimum enclosing cylinder problem for points, see Varadarajan et al. [15].
Exact and approximation algorithms for the latter problem can be found, for
example, in Bădoiu et al. [5].

Megiddo [13] showed that the problem of separating two point sets in Rd

by two hyperplanes is NP-hard. He also showed that the general problem of
separating two point sets by l hyperplanes can be solved in polynomial time
when both d and l are fixed.

The complexity of the maximum-size feasible subsystem problem was studied
in Amaldi and Kann [1]. Several results on the hardness of approximability
can also be found in this paper, as well as in Arora et al. [3]. For exact and

200 P. Giannopoulos, C. Knauer, and G. Rote

approximation algorithms for this and several related problems see Aronov and
Har-Peled [2].

2 Preliminaries

2.1 Methodology

As mentioned above, all three hardness results use a reduction from the k-
independent set (or clique) problem. Using the technique in [7], we construct
of a scaffolding structure that restricts the solutions to nk combinatorially dif-
ferent solutions, which can be interpreted as potential k-cliques in a graph with
n vertices. Additional constraint objects will then encode the edges of the input
graph.

The main ideas are the following. We construct geometric instances which
lie in Euclidean space whose dimension depends only on k. Note that the lower
the dependence on k, the better the lower bound we get from the hardness
result. In our case the dependence is linear. The scaffolding structure is highly
symmetric. It is composed of k symmetric subsets of a linear (in n) number of
objects that lie in orthogonal subspaces. Orthogonality together with the specific
geometric properties of each problem allows us to restrict the solutions to nk

combinatorially different solutions. The way of placing the constraint objects is
crucial: each object lies in a 4-dimensional subspace and cancels an exponential
number of solutions.

Model of computation. The geometry of the constructions in Sections 3, 4 will be
described as if exact square roots and expressions of the form sin π

n were available.
To make the reduction suitable for the Turing machine model, the data must be
perturbed using fixed-precision roundings. This can be done with polynomially
many bits in a way similar to the rounding procedure followed in [7,6]. We omit
the details here. The construction in Section 5 uses small integral data.

2.2 Notation

Let [n] = {1, . . . , n} and G([n]), E) be an undirected graph.
In sections 3, 4, it will be convenient to view R2k as the product of k or-

thogonal planes E1, . . . , Ek, where each Ei has coordinate axes Xi, Yi. The
origin is denoted by o. The coordinates of a point p ∈ R2k are denoted by
(x1(p), y1(p), . . . , xk(p), yk(p)). The notions of a point and vector will be used
interchangeably. We denote by Ci the unit circle on Ei centered at o.

3 Minimum Enclosing Cylinder (or Stabbing Balls with
One Line)

Given an undirected graph G([n], E) we construct a set B of balls of equal radius
r in R2k such that B can be stabbed by a line if and only if G has an independent
set of size k.

The Parameterized Complexity of Some Geometric Problems 201

For every ball B ∈ B we will also have −B ∈ B. This allows us to restrict
our attention to lines through the origin: a line that stabs B can be translated
so that it goes through the origin and still stabs B. In this section, by a line we
always mean a line through the origin. For a line l, let l be its unit direction
vector.

For each plane Ei, we define 2n 2k-dimensional balls, whose centers ci1, . . . ,
ci2n are regularly spaced on the unit circle Ci. Let ciu ∈ Ei be the center of the
ball Biu, u ∈ [2n], with

xi(ciu) = cos(u− 1)π
n , yi(ciu) = sin(u− 1)π

n .

We define the scaffolding ball set B0 = {Biu, i = 1, . . . , k and u = 1, . . . , 2n}.
We have |B0| = 2nk. All balls in B0 will have the same radius r < 1, to be
defined later.

Two antipodal balls B, −B are stabbed by the same set of lines. A line l stabs
a ball B of radius r and center c if and only if (c · l)2 ≥ ‖c‖2 − r2. Thus, l stabs
B0 if and only if it satisfies the following system of nk inequalities:

(ciu · l)2 ≥ ‖ciu‖2 − r2 = 1− r2, for i = 1, . . . , k and u = 1, . . . , n.

Consider the inequality asserting that l stabs Biu. Geometrically, it amounts to
saying that the projection li of l on the plane Ei lies in one of the half-planes

H+
iu = {p ∈ Ei|ciu ·p ≥

√
‖ciu‖2 − r2} , H−

iu = {p ∈ Ei|ciu ·p ≤ −
√
‖ciu‖2 − r2}.

Consider the situation on a plane Ei. Looking at all half-planes H+
i1, H

−
i1 , . . . , H

+
in,

H−
in, we see that l stabs all balls Biu (centered on Ei) if and and only if li lies

in one of the 2n wedges ±(H−
i1 ∩ H+

i2), . . . ,±(H−
i(n−1) ∩ H+

in),±(H−
i1 ∩ H−

in); see
Fig. 1. The apices of the wedges are regularly spaced on a circle of radius λ =√

2(1− r2)/(1− cos π
n), and define the set

Ai = {±
(
λ cos(2u− 1) π

2n , λ sin(2u− 1) π
2n

)
∈ Ei, u = 1, . . . , n}.

For l to stab all balls Biu, we must have that ‖li‖ ≥ λ. We choose r =√
1− (1− cos π

n)/(2k) in order to obtain λ = 1/
√

k.
Since the above hold for every plane Ei, and since l ∈ R2k is a unit vector,

we have
1 = ‖l‖2 = ‖l1‖2 + · · ·+ ‖lk‖2 ≥ kλ2 = 1.

Hence, equality holds throughout, which implies that ‖li‖ = 1/
√

k, for every
i ∈ {1, . . . , k}. Hence, for line l to stab all balls in B0, every projection li must
be one of the 2n apices in Ai. Each projection li can be chosen independently.
There are 2n choices, but since l and −l correspond to the same line, the total
number of lines that stab B0 is nk2k−1.

For a tuple (u1, . . . , uk) ∈ [2n]k, we will denote by l(u1, . . . , uk) the stabbing
line with direction vector

1√
k

(
cos(2u1 − 1) π

2n , sin(2u1 − 1) π
2n , . . . , cos(2uk − 1) π

2n , sin(2uk − 1) π
2n

)
.

202 P. Giannopoulos, C. Knauer, and G. Rote

ci1

ci2

wedge
H+

i1H−
i1

H+
i2

H−
i2

o

�li

λ

apex

π
n

Fig. 1. Centers of the balls and their respective half-planes and wedges on a plane Ei,
for n = 4

Two lines l(u1, u2, ..., uk) and l(v1, v2, ..., vk) are said to be equivalent if ui ≡ vi

(mod n), for all i. This relation defines nk equivalence classes L(u1, . . . , uk), with
(u1, . . . , uk) ∈ [n]k, where each class consists of 2k−1 lines.

From the discussion above, it is clear that there is a bijection between the
possible equivalence classes of lines that stab B0 and [n]k.

3.1 Constraint Balls

We continue the construction of the ball set B by showing how to encode the
structure of G. For each pair of distinct indices i �= j (1 ≤ i, j ≤ k) and for each
pair of (possibly equal) vertices u, v ∈ [n], we define a constraint set Buv

ij of balls
with the property that (all lines in) all classes L(u1, . . . , uk) stab Buv

ij except
those with ui = u and uj = v. The centers of the balls in Buv

ij lie in the 4-space
Ei × Ej . Observe that all lines in a particular class L(u1, . . . , uk) project onto
only two lines on Ei ×Ej . We use a ball Buv

ij (to be defined shortly) of radius r
that is stabbed by all lines l(u1, . . . , uk) except those with ui = u and uj = v.
Similarly, we use a ball Buv̄

ij that is stabbed by all lines l(u1, . . . , uk) except those
with ui = u and uj = v̄, where v̄ = v + n. Our constraint set consists then of
the four balls

Buv
ij = {±Buv

ij ,±Buv̄
ij }.

We describe now the placement of a ball Buv
ij . Consider a line l = l(u1, . . . , uk)

with ui = u and uj = v. The center cuv
ij of Buv

ij will lie on a line z ∈ Ei × Ej

that is orthogonal to l, but not orthogonal to any line l(u1, . . . , uk) with ui �= u
or uj �= v. We choose the direction z of z as follows:

The Parameterized Complexity of Some Geometric Problems 203

xi(z) = μ(cos θi − 3n sin θi), yi(z) = μ(sin θi + 3n cos θi),

xj(z) = μ(− cos θj − 6n2 sin θj), yj(z) = μ(− sin θj + 6n2 cos θj),

where θi = (2u − 1) π
2n , θj = (2u − 1) π

2n , and μ = 1/(9n2 + 36n4 + 2). It is
straightforward to check that l · z = 0.

Let ω be the angle between l′ and z. We have the following lemma, whose
proof can be found in the appendix:

Lemma 1. For any line l′ = l(u1, . . . , uk), with ui �= u or uj �= v the angle ω
between l′ and z satisfies | cosω| > μ√

k
.

This lower bound on | cosω| helps us place Buv
ij sufficiently close to the origin

so that it is still intersected by l′, i. e., l′ lies in one of the half-spaces cuv
ij · p ≥√

‖cuv
ij ‖2 − r2 or cuv

ij · p ≤ −
√
‖cuv

ij ‖2 − r2, p ∈ R2k.

We claim that any point cuv
ij on z with r < ‖cuv

ij ‖ <
√

k
k−μ2 r will do. For

any position of cuv
ij on z with ‖cuv

ij ‖ > r, we have (cuv
ij · l)2 = 0 < ‖cuv

ij ‖2 − r2,
i. e., l does not stab Buv

ij . On the other hand, as argued above we need that

|cuv
ij · l′| ≥

√
‖cuv

ij ‖2 − r2. Since cuv
ij · l′ = cosω · ‖cuv

ij ‖, we have the condition

| cosω| ≥
√

1− r2

‖cuv
ij ‖2 . By Lemma 1 we know that | cosω| > μ√

k
, hence by

choosing ‖cuv
ij ‖ so that μ√

k
>
√

1− r2

‖cuv
ij ‖2 we are done.

Reduction. Similarly to [7], the structure of the input graph G([n], E) can now
be represented as follows. We add to B0 the 4n

(
k
2

)
balls in BV =

⋃
Buu

ij , 1 ≤
u ≤ n, 1 ≤ i < j ≤ k, to ensure that all components ui in a solution (class of
lines L(u1, . . . , uk)) are distinct. For each edge uv ∈ E we also add the balls
in k(k − 1) sets Buv

ij , with i �= j. This ensures that the remaining classes of
lines L(u1, . . . , uk) represent independent sets of size k. In total, the edges are
represented by the 4k(k−1)|E| balls in BE =

⋃
Buv

ij , uv ∈ E, 1 ≤ i, j ≤ k, i �= j.
The final set B = B0 ∪ BV ∪ BE has 2nk + 4

(
k
2

)
(n + 2|E|) balls.

As noted in above, there is a bijection between the possible equivalence classes
of lines L(u1, . . . , uk) that stab B and the tuples (u1, . . . , uk) ∈ [n]k. The con-
straint sets of balls exclude tuples with two equal indices ui = uj or with indices
ui, uj when uiuj ∈ E, thus, the classes of lines that stab B represent exactly
the independent sets of G. Thus, we have the following:

Lemma 2. Set B can be stabbed by a line if an only if G has an independent
set of size k.

From this lemma and since this is an fpt-reduction, we conclude:

Theorem 1. Deciding whether n unit balls in Rd can be stabbed with one line
is W[1]-hard with respect to d.

204 P. Giannopoulos, C. Knauer, and G. Rote

4 Separating Two Point Sets by Two Hyperplanes

Let P and Q be two point sets in Rd. Two hyperplanes split space generically into
four “quarters”. There are three different versions of what it means to separate
P and Q by two hyperplanes:

(a) Each quarter contains only points of one set.
(b) The set Q is contained in one quarter only, and set P can populate the

remaining three quarters.
(c) Same as (b), but the roles of P and Q are not fixed in advance.

In the following we work only with version (a), which is the most general. For
the point sets that we construct, it will turn out that if a separation according
to (a) exists, it will also be valid by (b) and (c). Thus, our reduction works for
all three versions of the problem.

Separation according to (a) is equivalent to requiring that every segment pq
between a point p ∈ P and a point q ∈ Q is intersected by one of the two
hyperplanes. Note that we restrict our attention to strict separation, i. e., no
hyperplane can go through a point of P or Q. (The result extends to weak
separation; see the end of this section.)

Given an undirected graph G0([n0], E0) with n0 ≥ 2 and an integer k, we
construct two point sets P and Q in R2k with the property that they can be
separated by two hyperplanes if and only if G0 has an independent set of size
k. For technical reasons, we duplicate the vertices of the graph: we build a new
graph with n = 2n0 vertices. Every vertex u ∈ [n0] of the original graph gets
a second copy u′ := u + n0, and for every original edge uv, there are now four
edges uv, uv′, u′v, u′v′. The new graph G([n], E) has an independent set of size
k if and only if the original graph has such a set.

On each plane Ei, i = 1, . . . , k, we define a set Pi of n points regularly spaced
on the circle Ci:

Pi = { piu ∈ Ei | xi(piu) = cos(u− 1)2π
n , yi(piu) = sin(u − 1)2π

n , u = 1, . . . , n }.

For an index u ∈ [n], it will be convenient to define its antipodal and almost
antipodal partner u′ = u + n

2 and ū = u + n
2 + 1 respectively. (All indices are

modulo n). Thus we are extending the notation u′ to all (original and new)
vertices u, with (u′)′ = u.

The scaffolding is defined by two sets P =
⋃

Pi and Q0 = {o}. We have
|P | = nk.

Since the points in each Pi are regularly spaced on Ci, a hyperplane that
does not contain the origin can intersect at most n/2 segments opiu on each
plane Ei. Hence, at least two hyperplanes are needed to separate P and Q0.
Actually, two suffice. One hyperplane can intersect the n/2 consecutive (in a
counter-clockwise order) segments opiūi , . . . , opiui on each Ei, for a choice of
ui ∈ [n] (see Fig. 2). There is an infinite number of such hyperplanes, forming
an equivalence class H(u1, . . . , uk). Since the planes E1, . . . , Ek are orthogo-
nal, each ui independently defines which of the n/2 consecutive segments on

The Parameterized Complexity of Some Geometric Problems 205

cuv
ij

a

pi1

pi2

pi8
pi9

pi10

H(u1, . . . , uk)

H(u′1, . . . , u
′
k)

H

o

Fig. 2. Point set Pi, for n = 10, a hyperplane H in the class H(u1, . . . , uk) and the
corresponding boundary hyperplane H(u1, . . . , uk) for ui = 2. The placement of quv

ij is
shown in a two-dimensional analog.

Ei are intersected by a hyperplane in H(u1, . . . , uk). The remaining n/2 seg-
ments −opiūi , . . . ,−opiui on each Ei can then be intersected by any hyperplane
in the ‘complementary’ class H(u′

1, . . . , u
′
k) = {−H | H ∈ H(u1, . . . , uk)}. Ef-

fectively, every hyperplane in H(u1, . . . , uk) separates Q0 from the kn
2 -point set

P (u1, . . . , uk) = {p1ū1 , . . . , p1u1} ∪ · · · ∪ {pkūk
, . . . , pkuk

}. Concluding, there are
nk possible partitions of P into two groups, each separated from Q0 by one
hyperplane, in correspondence to the nk possible tuples (u1, . . . , uk) ∈ [n]k:

Lemma 3. The possible pairs of hyperplanes that separate P from Q0 are of the
form h, h′ with h ∈ H(u1, . . . , uk) and h′ ∈ H(u′

1, . . . , u
′
k), for some (u1, . . . , uk)

∈ [n]k.

Since by construction, the graph G has the property that uv ∈ E iff u′v′ ∈ E,
the separating pairs of hyperplanes h, h′ can be used to encode the potential
independent sets {u1, . . . , uk}: it does not matter which of h and h′ we choose,
the corresponding vertex set will be an independent set in both cases, or a
dependent set in both cases.

4.1 Constraint Points

For each pair of indices i �= j (1 ≤ i, j ≤ k) and for each pair of (possibly
equal) vertices u, v ∈ [n], we will define a constraint point quv

ij ∈ Ei × Ej with

206 P. Giannopoulos, C. Knauer, and G. Rote

the following property: in every class H(u1, . . . , uk), there is a hyperplane that
separates {quv

ij } from P (u1, . . . , uk) except those classes with ui = u and uj = v
(in which case no such hyperplane exists). In this way, no partition of P into
sets P (u1, . . . , uk) and P (u′

1, . . . , u
′
k) with ui = u and uj = v will be possible

such that each set is separated from Q0 ∪ {quv
ij } by a hyperplane.

Let H(u1, . . . , uk) be the unique hyperplane through the 2k affinely indepen-
dent points p1u1 , p1ū1 , . . . , pkuk

, pkūk
. Note that H(u1, . . . , uk) is not in the class

H(u1, . . . , uk), since we want strict separation; informally, H(u1, . . . , uk) lies at
the boundary of H(u1, . . . , uk), with an appropriate parameterization of hyper-
planes: moving H(u1, . . . , uk) towards the origin by a sufficiently small amount
leads to a hyperplane in H(u1, . . . , uk).

We define the constraint point quv
ij as the centroid of piu, piū, pjv, pjv̄. Its

nonzero coordinates are

xi =
cos θi + cos θ̄i

4
, yi =

sin θi + sin θ̄i

4
, xj =

cos θj + cos θ̄j

4
, yj =

sin θj + sin θ̄j

4
,

for θi = (u − 1)2π
n , θ̄i = (ū − 1)2π

n , θj = (v − 1)2π
n , and θ̄j = (v̄ − 1)2π

n .

Lemma 4. If ui = u and uj = v, no hyperplane in H(u1, . . . , uk) separates quv
ij

from P (u1, . . . , uk).

Proof. Such a hyperplane would in particular have to separate point quv
ij from

piu, piū, pjv, pjv̄, which is impossible.

To see that quv
ij does not “destroy” the classes H(u1, . . . , uk) with ui �= u or

uj �= v, let us consider a fixed pair of indices i �= j. All points quv
ij , (u, v ∈ [n]) lie

on a sphere Sij around the origin in Ei×Ej (of radius
√

1/2 · sin π
n). The inter-

section H(u1, . . . , uk) ∩ (Ei ×Ej) is a 3-dimensional hyperplane F
uiuj

ij uniquely
defined by ui and uj : F

uiuj

ij goes through the four points piui , piūi , pjuj , pjūj .
Moreover, q

uiuj

ij is the point where F
uiuj

ij touches the sphere Sij . (This follows
from symmetry considerations, and it can also be checked by a straightforward
calculation that the vector q

uiuj

ij is perpendicular to the hyperplane F
uiuj

ij .) This
allows us to conclude:

Lemma 5. If ui �= u or uj �= v, then quv
ij lies on the same side of the hyperplane

H(u1, . . . , uk) as the origin o.

Proof. The point quv
ij lies on the sphere Sij ∈ Ei × Ej centered at the origin.

This sphere lies on the same side of H(u1, . . . , uk) as the origin, except for the
point where it touches H(u1, . . . , uk). But this touching point q

uiuj

ij is different
from quv

ij .

This means that quv
ij and the points in P (u1, . . . , uk) are on different sides of

the hyperplane H(u1, . . . , uk) (except for the points p1u1 , p1ū1 , . . . , pkuk
, pkūk

,
which lie on it). Since quv

ij /∈ H(u1, . . . , uk), every sufficiently close translate of
H(u1, . . . , uk) in H(u1, . . . , uk) with ui �= u or uj �= v separates P (u1, . . . , uk)
and {quv

ij }.

The Parameterized Complexity of Some Geometric Problems 207

Reduction. Similarly to the reduction in Section 3, we encode the structure of G
by adding to Q0 the n

(
k
2

)
constraint points quu

ij (1 ≤ u ≤ n, 1 ≤ i < j ≤ k) and
2|E|

(
k
2

)
constraint points quv

ij (uv ∈ E and i �= j). Let Q be the resulting point
set. Then the possible partitions of P into two sets, each separated from Q by
one hyperplane, represent the independent sets of G.

Lemma 6. Sets P and Q can be separated by two hyperplanes if and only if G
has an independent set of size k.

From this lemma, and since this is an fpt-reduction, we conclude with the fol-
lowing:

Theorem 2. Deciding whether two point sets P, Q in Rd can be separated by
two hyperplanes is W[1]-hard with respect to d.

Remark. The construction above depends on requiring strict separation, i. e.,
the separating hyperplanes are not allowed to go through the given points. For
the fixed-precision approximation that is necessary to make the reduction suit-
able for a Turing machine, we have to move the constraint points quv

ij a little
bit further away from the center before rounding them to rational coordinates.
The statement of Lemma 4 is refined and excludes the possibility of separating
P (u1, . . . , uk) from the set {o, quv

ij } rather than from the point quv
ij alone.

These modifications are also suitable for the version of the problem where
weak separation is allowed, i. e., points on the separation boundary can be from
P or Q arbitrarily. In this case

(2k
2

)
additional points on the coordinate planes

close to the origin must be added to Q0, in order to eliminate the coordinate
hyperplanes as potential separating hyperplanes.

5 Maximum-Size Feasible Subsystem

We first consider the special problem: Given a system of linear equations find
a solution that satisfies as many equations as possible. (Note that this problem
is dual to the problem of covering as many points as possible by a hyperplane
through the origin.) The decision version of this problem is as follows: Given a
set of n hyperplanes in Rd and an integer l, decide whether there exists a point
in Rd that is covered by at least l of the hyperplanes.

In the following, x = (x1, . . . , xk) ∈ Rk denotes a k-dimensional vector (a
notation that is slightly different from the one used in the previous sections).
We identify the grid [n]k with the set of vectors in Rk with integer coordinates
in [n].

For a set H of hyperplanes in Rk and a point x ∈ Rk we define

depth(x,H) = |{h ∈ H | x ∈ h}|.

Given an undirected graph G([n], E) and k ∈ N, we will now construct a set
HG,k of nk + 2|E|

(
k
2

)
hyperplanes in Rk such that G has a clique of size k if and

only if there is a point x ∈ Rk with depth(x,HG,k) = k +
(
k
2

)
.

208 P. Giannopoulos, C. Knauer, and G. Rote

For 1 ≤ i ≤ k and 1 ≤ v ≤ n we define the hyperplane hv
i = {x | xi = v}.

The scaffolding hyperplane set H0 = { hv
i | 1 ≤ i ≤ k, 1 ≤ v ≤ n } consists of nk

hyperplanes. Any point x is contained in at most k hyperplanes in H0; equality
is realized for the points in [n]k:

Lemma 7. depth(x,H0) ≤ k for any x ∈ Rk, and depth(x,H0) = k if and
only if x ∈ [n]k.

For 1 ≤ i < j ≤ k and 1 ≤ u, v ≤ n we define the hyperplane huv
ij = {x |

(xi − u) + n(xj − v) = 0 }. This hyperplane contains only those points x of the
grid for which xi = u and xj = v:

Lemma 8. x ∈ huv
ij ∩ [n]k if and only if xi = u and xj = v.

Proof. Assume x ∈ huv
ij ∩ [n]k, i. e. (xi − u) + n(xj − v) = 0 and xi, xj ∈ [n]. If

xi �= u, the left-hand side of the equation is not divisible by n and thus cannot
be 0. Therefore, xi = u and thus, xj = v. The other direction is obvious.

For 1 ≤ i < j ≤ k we define the set HE
ij = { huv

ij | uv ∈ E or vu ∈ E } of 2|E|
hyperplanes. All these hyperplanes are parallel; thus a point is contained in at
most one hyperplane of HE

ij . By Lemma 8, a point x ∈ [n]k is contained in a
hyperplane of HE

ij if and only if xixj is an edge of E.
We define the setHE =

⋃
1≤i<j≤kHE

ij consisting of 2|E|
(
k
2

)
hyperplanes. From

the above, we have the following facts:

Lemma 9. (a) depth(x,HE) ≤
(
k
2

)
for any x ∈ Rk.

(b) Let x ∈ [n]k. Then depth(x,HE) = |{ (i, j) | 1 ≤ i < j ≤ k, xixj ∈ E }|
(c) Let x ∈ [n]k. Then depth(x,HE) =

(
k
2

)
iff {x1, . . . , xk} is a k-clique in G.

For the set HG,k = H0 ∪HE , Lemmas 7 and 9 immediately imply:

Lemma 10. depth(x,HG,k) = k +
(
k
2

)
if and only if x ∈ [n]k and {x1, . . . , xk}

is a k-clique in G.

Note that the above construction of the set HG,k is an fpt-reduction with respect
to both the depth of the set of hyperplanes, i. e., the maximum number of hy-
perplanes covering any point, and the dimension. Hence, we have the following:

Theorem 3. Given a set of n of linear equations on d variables and an integer
l, deciding whether there exists a solution that satisfies l of the equations is
W[1]-hard with respect to both l and d.

Replacing each equation by 2 inequalities, an instance of the above problem is
transformed into an instance with linear inequalities such that there exists a
solution satisfying l out of the n equations of the original instance if and only
if there exists a solution satisfying n + l out of the 2n inequalities of the final
instance; the number of variables stays the same. Hence, we have the following:

Theorem 4. Given a set of n linear inequalities on d variables and an integer
l, deciding whether there exists a solution that satisfies l of the inequalities is
W[1]-hard with respect to d.

The Parameterized Complexity of Some Geometric Problems 209

References

1. Armaldi, E., Kann, V.: The complexity and approximability of finding maximum
feasible subsystems of linear relations. Theoretical Computer Science 147, 181–210
(1995)

2. Aronov, B., Har-Peled, S.: On approximating the depth and related problems.
SIAM J. Comput. 38(3), 899–921 (2008)

3. Arora, S., Babai, L., Stern, J., Sweedyk, Z.: The hardness of approximate optima
in lattices, codes, and systems of linear equations. J. Comput. Syst. Sci. 54(2),
317–331 (1997)

4. Bremner, D., Chen, D., Iacono, J., Langerman, S., Morin, P.: Output-sensitive
algorithms for tukey depth and related problems. Statistics and Computing 18(3),
259–266 (2008)

5. Bădoiu, M., Har-Peled, S., Indyk, P.: Approximate clustering via core-sets. In:
Proc. 34th Annual ACM Symposium on Theory of Computing, pp. 250–257 (2002)

6. Cabello, S., Giannopoulos, P., Knauer, C., Marx, D., Rote, G.: Geometric cluster-
ing: fixed-parameter tractability and lower bounds with respect to the dimension.
ACM Transactions on Algorithms (to appear, 2009)

7. Cabello, S., Giannopoulos, P., Knauer, C., Rote, G.: Geometric clustering: fixed-
parameter tractability and lower bounds with respect to the dimension. In: Proc.
19th Ann. ACM-SIAM Sympos. Discrete Algorithms, pp. 836–843 (2008)

8. Chan, T.M.: A (slightly) faster algorithm for Klee’s measure problem. In: Proc.
24th Annual Symposium on Computational Geometry, pp. 94–100 (2008)

9. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Com-
puter Science. Springer, Heidelberg (1999)

10. Giannopoulos, P., Knauer, C., Whitesides, S.: Parameterized complexity of geo-
metric problems. Computer Journal 51(3), 372–384 (2008)

11. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst.
Sci. 62(2), 367–375 (2001)

12. Langerman, S., Morin, P.: Covering things with things. Discrete & Computational
Geometry 33(4), 717–729 (2005)

13. Megiddo, N.: On the complexity of polyhedral separability. Discrete & Computa-
tional Geometry 3, 325–337 (1988)

14. Megiddo, N.: On the complexity of some geometric problems in unbounded dimen-
sion. J. Symb. Comput. 10, 327–334 (1990)

15. Varadarajan, K., Venkatesh, S., Ye, Y., Zhang, J.: Approximating the radii of point
sets. SIAM J. Comput. 36(6), 1764–1776 (2007)

Paths of Bounded Length and Their Cuts:
Parameterized Complexity and Algorithms

Petr A. Golovach1 and Dimitrios M. Thilikos2,�

1 Department of Informatics, University of Bergen, PB 7803, 5020 Bergen, Norway
2 Department of Mathematics, National and Kapodistrian University of Athens,

Panepistimioupolis, GR15784 Athens, Greece

Abstract. We study the parameterized complexity of two families of
problems: the bounded length disjoint paths problem and the bounded
length cut problem. From Menger’s theorem both problems are equiva-
lent (and computationally easy) in the unbounded case for single source,
single target paths. However, in the bounded case, they are combinato-
rially distinct and are both NP-hard, even to approximate. Our results
indicate that a more refined landscape appears when we study these
problems with respect to their parameterized complexity. For this, we
consider several parameterizations (with respect to the maximum length
l of paths, the number k of paths or the size of a cut, and the treewidth
of the input graph) of all variants of both problems (edge/vertex-disjoint
paths or cuts, directed/undirected). We provide FPT-algorithms (for all
variants) when parameterized by both k and l and hardness results when
the parameter is only one of k and l. Our results indicate that the
bounded length disjoint-path variants are structurally harder than their
bounded length cut counterparts. Also, it appears that the edge variants
are harder than their vertex-disjoint counterparts when parameterized
by the treewidth of the input graph.

Keywords: Bounded length disjoint paths, Bounded length cuts, Pa-
rameterized Complexity, Parameterized Algorithms.

1 Introduction

We consider finite (directed and undirected) graphs without loops or multiple
edges. The vertex set of a graph G is denoted by V (G) and its edge set by E(G).
We denote undirected edges by {u, v}, and directed edges by (u, v). Given a
graph G and a set F ⊆ E(G) (resp. X ⊆ V (G)), we denote by G \ F (resp.
G \ X) the graph obtained by G if we remove from it all edges in F (resp.
vertices in X).

One of the most celebrated problems in discrete algorithms and combinatorial
optimization is the disjoint paths problem. Its algorithmic study dates back to
Menger’s Theorem [25] (see also [9]), was extended by the work of Ford and
� Supported by the project “Kapodistrias” (AΠ 02839/28.07.2008) of the National

and Kapodistrian University of Athens (project code: 70/4/8757).

J. Chen and F.V. Fomin (Eds.): IWPEC 2009, LNCS 5917, pp. 210–221, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Paths of Bounded Length and Their Cuts 211

Fulkerson [15] on network flows, and now constitutes (along with its variants) a
central algorithmic problem in algorithm design.

According to Menger’s theorem, given a graph G and two terminals s, t ∈
V (G), the maximum number of vertex-disjoint (s, t)-paths in G is equal to the
minimum cardinality of a set of vertices in V (G) \ {s, t} meeting all (s, t)-paths
of G. Interestingly, it appears that such a min-max equality does not hold if we
restrict paths to be of bounded length. This was observed for the first time by
Adámek and Koubek in [1]. Lovász, Neumann Lara, and Plummer proved in [24]
that a similar min-max relation holds only for path lengths equal to 2,3, or 4.
Analogous results were provided for the case where the paths are edge-disjoint
in [11] and [27]. We present below the main decision versions of the problems
generated by the bounded length restriction.

We need some definitions. Let G be a graph, s, t ∈ V (G), and let l be a positive
integer. We call set F ⊆ E(G) (resp. X ⊆ V (G)\{s, t}) (s, t)-edge (resp. vertex)
l-bounded cut if G \ F (resp. G \X) contains no (s, t)-path of length at most l.

Bounded Edge Directed (s, t)-disjoint Paths (BEDP)

Input: A directed graph G, two positive integers k, l and two distinct vertices
s, t of G.

Question: Are there k edge-disjoint (s, t)-paths each of length at most l in G?

Bounded Edge Directed (s, t)-Cut (BEDC)

Input: A directed graph G, two positive integers k, l and two distinct vertices
s, t of G.

Question: Is there a (s, t)-edge l-bounded cut F ⊆ E(G) of size at most k?

Also, the first of the above problems has been extended to its multi-terminal
version as follows.

Bounded Edge Directed Multi-terminal disjoint Paths (BEDMP)

Input: A directed graph G = (V, E), two positive integers k, l, and two sequences
S = (s1, . . . , sk) (sources), T = (t1, . . . , tk) (targets) of vertices in G.

Question: Are there k edge-disjoint (si, ti)-paths of length at most l in G for
i = 1, . . . , k?

Similarly to the above, we can define numerous variants depending whether
the graph is directed or undirected, and whether the paths are edge-disjoint
or internally vertex-disjoint. All variants and the corresponding notation are
depicted in Table 1.

For all multi-terminal disjoint paths problems we can assume that all terminals
are pair-wise distinct, since otherwise we can apply the following rule:

Rule (1): for every vertex v that corresponds to r terminals we first subdivide
all its incident edges and then replace v by r vertices (each with one of the
terminals corresponding to v) that have the same neighborhood as v (in the
directed case, replacement edges maintain their original directions). The new

212 P.A. Golovach and D.M. Thilikos

Table 1. Bounded length variants of the edge-disjoint paths problem and the edge cut
problem

Multi-terminal (s, t)-disjoint Paths (s, t)-Cut

Disjoint Paths

Edge

Vertex

Directed Undirected

BEDMP BEUMP
BVDMP BVUMP

Directed Undirected

BEDP BEUP
BVDP BVUP

Directed Undirected

BEDC BEUC
BVDC BVUC

graph contains k edge-disjoint paths of length at most l + 2 iff the original one
contains k vertex-disjoint paths of length at most l.

The first algorithmic results for the above problems appeared by Itai, Perl and
Shiloach in [19] where they proved that BVUP and BEUP are polynomially solv-
able for path lengths 2, 3 or 4, while they become NP-complete for length values
bigger than 4. In the same paper they proved that if, instead of fixing the length l,
we fix the number k of paths, the problem is still NP-complete even for 2 paths.
Results on the fractional versions of these problems were given in [13,21,22].
The approximability of these problems was studied in [6,17] and [4,5]. Finally,
for some applications of the above problems, see [29,31] and [18].

Some results for the multi-terminal variants of the bounded-length disjoint
paths problem were given in [17]. We just stress that, when there is no restric-
tion to the length of the paths, BVUMP is NP-complete in general [20] and
polynomially solvable for fixed k [28], while BVDMP is NP-complete even when
k = 2 [16].

In this paper, we provide a detailed study of the parameterized complexity
of all the bounded length variants of the problems in Table 1. In a param-
eterized problem we distinguish some part of the input to be its parameter.
Typically, a parameter is an integer, k, related to the problem input and the
question is whether the problem can be solved by an algorithm (called FPT-
algorithm) of time complexity f(k) · nO(1) where n is the size of the input and
f is a (super-polynomial) function depending only on the parameter (instead of
worst time complexities such as O(nf(k)) or O(kf(n))). When a parameterized
problem admits an FPT-algorithm, then it belongs in the parameterized com-
plexity class FPT. Not all parameterized problems belong in FPT. There are
several parameterized complexity classes, such as W[1], W[2], para-NP and anal-
ogous notions of hardness with respect to parameter-preserving reductions, able
to prove that membership in FPT is rather non-possible (for more details, see
the monographs [10,14,26]). Briefly, if a parameterized problem is W[1]-hard,
this means that a complexity of type O(nf(k)) is the best we may expected,
while if a parameterized problem is para-NP-hard, then we cannot even hope for
something better than a kf(n)-algorithm.

Table 2 indicates the existence of reductions between all considered problems.
Here Π1 ≤(i) Π2 means that the problem Π1 can be reduced to the problem Π2
by the reduction rule i. The edge undirected versions are reduced to the vertex
undirected ones by the following rule:

Paths of Bounded Length and Their Cuts 213

Rule (2): Take the line graph LG of G and for every clique K of LG, corresponding
to the edges incident to a terminal v of G, add a new terminal vertex v′ and
connect it with all the vertices of the clique. Vertex-disjoint paths of length l+1
in the new graph correspond to edge-disjoint paths of length l in the original
graph, while it trivially follows that edge cuts become vertex cuts.

Certainly, vertex undirected versions are reduced to vertex directed ones by the
following obvious rule:

Rule (3): Replace every edge by two opposite direction edges.

The following rule reduces all vertex directed versions to their edge directed
counterparts:

Rule (4): Replace every non-terminal vertex v by a directed edge (vt, vh) (we
call such edges new edges) and make vt the head of all previous edges whose
head was v and vh the tail of all previous edges whose tail was v. Notice that
every path of length at most 2l − 1 in the new graph corresponds to a path of
length at most l in the original graph and edge-disjoint paths in the new graph
correspond to vertex-disjoint paths in the original graph and vice versa. This
proves the correctness of Rule (4) for disjoint path problems. For cut problems
we additionally observe that every vertex cut of the original graph correspond
to an edge cut in the new graph. For the inverse direction, take an edge cut of
the new graph and replace each non-new edges e in it with some new edge that
has a common endpoint with e. This makes every edge cut in the new graph to
correspond to a vertex cut in the original graph.

Notice that all rules are parameter-preserving when the parameter is k, l, or
both.

Table 2. Reductions between problems

BEUMP ≤(2) BVUMP ≤(3) BVDMP ≤(4) BEDMP

≤ (1) ≤ (1) ≤ (1) ≤ (1)
BEUP ≤(2) BVUP ≤(3) BVDP ≤(4) BEDP

BEUC ≤(2) BVUC ≤(3) BVDC ≤(4) BEDC

All problems in Table 1 have two possible parameters k and l in their inputs.
Therefore, we consider parameterizations of them with respect to l, k, or both,
indicating which parameterization we pick in each problem. For example, the
BEUP problem is denote as BEUP(k) when parameterized by the number of
paths k, BEUP(l) when parameterized by the maximum length l of a path and
BEUP(k, l) when parameterized by both these quantities. We follow the same
notation for all problems in Table 1.

We prove that all variants of our problems are in FPT when parameterizing
on both k and l.

214 P.A. Golovach and D.M. Thilikos

All problems we consider are NP-hard for fixed values of l, bigger than some
constant [4,19]. Using standard terminology from [14], this means that all of
them, parameterized by l are para-NP-complete (i.e. they are NP-hard even for
fixed values of the parameter). Moreover, the problem asking for the existence
of two edge-disjoint paths between two terminals of an undirected graph is also
NP-complete even for two paths, because of the results [30,23]. This implies the
para-NP-completeness of all the disjoint paths variants when parameterized by
k. However, no similar result can be expected (unless P=NP) for bounded cut
problems, as they trivially admit an nO(k)-step algorithm (just check all possible
cuts of size at most k). It appears that this running time substantially cannot
become better: we prove that these four variants are W[1]-hard (Theorem 4)
and that for the directed graph variants, this holds even for DAGs (Theorem 3).
This indicates that, apart from the combinatorial discrepancy between problems
on paths and problems on cuts, there is also a discrepancy on the parameter-
ized complexities of the corresponding problems. We stress that this distinction
cannot be made clear by studying the classic complexity of the two families
of problems (they are all NP-complete in general). Our results are depicted in
Table 3.

Table 3. Summary of our results when parameterizing by l, k, l and k

l k, l k

BEDMP
BVDMP
BVUMP
BEUMP

para-NP-c [19] FPT O(2O(kl) · m · log n) (Th. 1) para-NP-c [30,23]

BEDP
BVDP
BVUP
BEUP

para-NP-c [19] FPT O(2O(kl) · m · log n) (Th. 1) para-NP-c [30,23]

BEDC
BVDC
BVUC
BEUC

para-NP-c [4] FPT O(lk · m) (Th. 2)

W[1]-h for DAGs (Th. 3)
W[1]-h for DAGs (Th. 3)

W[1]-h (Th. 4)
W[1]-h (Th. 4)

Our next step is to study the (in general para-NP-complete) parameterized
problems BVDP(l) and BVUP(l) for the special case where their input graphs
are sparse. We prove (Theorem 5) that both problems admit FPT-algorithms
for classes of graphs that have bounded local treewidth (typical graph class
with bounded local treewidth are planar graphs or bounded-degree graphs).
Moreover, this result can be extended for classes of graphs where the removal
of at most one vertex includes them in some bounded local treewidth class. On
the other side, we prove that this sparsity criterion cannot be relaxed: BVDP(l)
(BVUP(l)) remains para-NP-complete (Theorem 6) for l ≥ 6, on undirected
(directed acyclic) graphs that can be made planar after removing 2 vertices (we

Paths of Bounded Length and Their Cuts 215

Table 4. Summary of our results for sparse graph families

l, [bounded ltw] l, [two-apex] tw, l

BVUP FPT (Th. 5) para-NP-c (Th. 6), l ≥ 6 FPT (Th. 5)
BVDP FPT (Th. 5) para-NP-c for DAGs (Th. 6), l ≥ 6 FPT (Th. 5)
BEUP open para-NP-c (Th. 7), l ≥ 7 W[1]-h for fixed l ≥ 10 (Th. 8)
BEDP open para-NP-c for DAGs (Th. 7), l ≥ 7 W[1]-h for DAGs

for fixed l ≥ 10 (Th. 8)

call these graphs 2-apex-graphs). We also prove that the same holds for the edge
variants of the same problems (Theorem 7) for l ≥ 7. Our results suggest a rapid
change on the problem complexity with respect to the minor-exclusion sparsity
criterion.

Our last result concerns the case where BEUP and BEDP are parameterized
by the treewidth of their input graphs. We prove that BEUP is W[1]-hard when
parameterized by the treewidth of the input graph and that BEDP is W[1]-hard
when parameterized by the treewidth of the underlying graph of its input graph
even when the input graph is acyclic (Theorem 8). This last result indicates
that the edge-disjoint variants are harder than the vertex-disjoint ones (the same
parameterization leads to an FPT-algorithm for BVUP and BVDP – Theorem
5). Our results on sparse graph classes are summarized in Table 4.

2 Parameterized Algorithms

2.1 An FPT-Algorithm for BEDMP(k, l)

Our algorithm for the BEDMP(k, l) is based on the color-coding technique in-
troduced by Alon, Yuster and Swick in [2]. In particular, we consider a family
F of hash functions, each mapping {1, . . . , m} to a set of colors {1, . . . , k · l},
such that for every S ⊆ {1, . . . , m}, where |S| ≤ k · l, there is a f ∈ F such
that its restriction to S is a bijection. As mentioned in [2], such a family where
|F| = 2O(k·l) · log m can be constructed in 2O(k·l) ·m · log m steps.

Let F be a family of hash functions as above where {1, . . . , m} represent the
edges of G. Let also χ ∈ F . Given an integer i ∈ {1, . . . , k}, we define a Boolean
function Bχ

i such that, for every set of colors X ⊆ {1, . . . , k · l}, Bχ
i (X) is true

if and only if there exists a collection of i paths P1, . . . , Pi of length at most
l where, for j ∈ {1, . . . , i}, the endpoints of Pj are sj and tj and such that
the set of the colors assigned to the edges of these paths is a subset of X (i.e.
χ−1(∪j∈{1,...,i}E(Pj)) ⊆ X). Notice that an instance of BEDMP(k, l) is a YES-
instance if and only if there is a χ ∈ F such that Bχ

k ({1, . . . , k · l}) = true. In
general, to compute Bχ

i (X) for some X ⊆ {1, . . . , k · l}, we observe that

Bχ
i (X) =

∨
Y ⊆X

(Bχ
i−1(Y) ∧ Cχ

i (X \ Y))

216 P.A. Golovach and D.M. Thilikos

where Cχ
i is a Boolean function such that if S ⊆ {1, . . . , k · l} the value of Cχ

i (S)
is true if and only if the subgraph of G induced by the edges colored by colors in
S contains a path between si and ti of length at most l. Notice that Cχ

i can be
computed in O(m) steps. Moreover, computing Bχ

i (X) for all X ⊆ {1, . . . , l · k}
requires O(3k·l ·m) steps. Therefore, the above dynamic programming requires in
total O(3k·l ·m ·k) steps to compute Bχ

k ({1, . . . , k · l}). Concluding BEDMP(k, l)
can be solved in O(2O(k·l) log m ·m · k) steps.

It is easy to observe that the above algorithm can be modified so that it also
would return the requested paths when exist. We conclude to the following.

Theorem 1. The BEDMP(k, l) problem (as well as BVDMP(k, l), BVUMP
(k, l), and BEUMP(k, l)) can be solved by an FPT-algorithm that runs in
O(2O(k·l) log n ·m · k) steps where n = |V (G)| and m = |E(G)|.

2.2 An FPT-Algorithm for BEDC(k, l)

The proof of the following theorem is based on the simple observation that for
any (s, t)-path of length at most l, at least one edge of it has to be included to
any (s, t)-edge l-bounded cut.

Theorem 2. The BEDC(k, l) problem can be solved by an FPT-algorithm that
runs in O(lk ·m) time where n = |V (G)| and m = |E(G)|.

3 Hardness Results for (s, t)-Cuts

In this section we prove W[1]-hardness of BVDC(k) and BEUC(k). It can be
noted that by the reduction rules (see Table 2) W[1]-hardness of BVDC(k) fol-
lows from a similar result for BEUC(k), but we prove here a stronger result.

Theorem 3. BVDC(k) problem is W[1]-hard even for acyclic digraphs.

Proof. We present a reduction from the Multicolored Clique problem:
Multicolored Clique

Input: A graph G with a proper k-coloring of G.
Question: Is there a clique of size k in G containing exactly one vertex from

each color class?

The Multicolored Clique problem, parameterized by k, was proved to be
W[1]-hard by Fellows et al. [12].

Let G be an n-vertex undirected graph. Denote by Xi the i-th color class in the
given k-coloring of G. Assume without loss of a generality that k ≥ 4. We assume
also that for any pair of sets Xi, Xj , i �= j, vertices of these sets are connected
by the same number of edges denoted by m, and m > 0 (otherwise it is possible
to add pairs of adjacent vertices to the graph to ensure this condition). Denote
by e

(i,j)
1 , e

(i,j)
2 , . . . , e

(i,j)
m the edges which join sets Xi and Xj . Let l = 5m + 4.

Now we consider auxiliary constructions. For every i, j ∈ {1, 2, . . . , k}, i �= j,
a directed graph Fi,j is constructed as follows.

Paths of Bounded Length and Their Cuts 217

1. Two vertices s and t are created.
2. For every r ∈ {1, 2, . . . , m}, vertices ur, a

(1)
r , a

(2)
r , a

(3)
r and b

(1)
r , b

(2)
r , b

(3)
r are

constructed, and for every r ∈ {0, 1, . . . , m}, vertices vr are introduced. It is
assumed, for convenience, that s = a

(1)
0 = a

(2)
0 = a

(3)
0 , b

(1)
0 = a

(1)
m , b

(2)
0 = a

(2)
m ,

b
(3)
0 = a

(3)
m and t = b

(3)
m+1 = b

(3)
m+1 = b

(3)
m+1.

3. For each vertex ur, edges (a(1)
r−1, ur), (a(2)

r−1, ur), (a(3)
r−1, ur) and (ur, a

(1)
r),

(ur, a
(2)
r), (ur, a

(3)
r) are added.

4. For each vertex vr, edges (b(1)
r , vr), (b

(2)
r , vr), (b

(3)
r , vr) and (vr, b

(1)
r+1), (vr, b

(2)
r+1),

(vr, b
(3)
r+1) are added.

5. Pairs of vertices a
(f)
r−1, a

(f)
r are joined by paths of length r + 2 for f = 1, 2, 3

and r ∈ {1, 2, . . . , m}.
6. Pairs of vertices a

(f)
r−1, b

(f)
r , f = 1, 2, 3, are joined by paths of length 3m + 4

for r ∈ {1, 2, . . . , m + 1}.
7. Add vertices w

(i,j)
1 , w

(i,j)
2 , . . . , w

(i,j)
m , and join every vertex vr−1 with w

(i,j)
r

by a path of length 3(m + 1− r).

12

s t

Fi,j
3m + 4 = 16

w
(i,j)
1 wi,j

2 w
(i,j)
3 w

(i,j)
4

3 4 5 6

369

Fig. 1. Construction of Fi,j for m = 4. Paths are shown by dash lines.

The graph Fi,j is shown in Figure 1 for m = 4. Using these gadgets Fi,j we
construct a directed graph H from G as follows.

8. For all pairs {i, j}, i, j ∈ {1, . . . , k}, i �= j, graphs Fi,j with common vertices
s and t are constructed.

9. Every edge e
(i,j)
f = {x, y} of G is replaced by two directed edges (w(i,j)

f , x)

and (w(i,j)
f , y).

10. For each vertex x ∈ V (G), an edge (x, t) is added.

218 P.A. Golovach and D.M. Thilikos

It is easy to see that H is a directed acyclic graph. The next claim concludes
the proof of the theorem.

Claim. Graph G has a clique of size k which contains exactly one vertex from
any color class if and only if there is (s, t)-vertex l-bounded cut in H with at
most k′ = k2 vertices.

Notice that the reduction 4 from BVDC(k) to BEDC(k) transforms a directed
acyclic graph into another directed acyclic graph. So, W[1]-hardness of BEDC(k)
for DAGs follows immediately. What remains to prove is the W[1]-hardness for
the undirected case. The proof of the following theorem is a similar reduction
from the Multicolored Clique problem and is omitted here.

Theorem 4. BEUC(k) is W[1]-hard.

4 (s, t)-Paths of Bounded Length for Sparse Graphs

4.1 FPT-Algorithms for Sparse Graph Classes

A tree decomposition of a graph G is a pair (X, T) where T is a tree and X =
{Xi | i ∈ V (T)} is a collection of subsets (called bags) of V (G) such that: 1.⋃

i∈V (T) Xi = V (G), 2. for each edge {x, y} ∈ E(G), x, y ∈ Xi for some i ∈ V (T),
and 3. for each x ∈ V (G) the set {i | x ∈ Xi} induces a connected subtree of T .
The width of a tree decomposition ({Xi | i ∈ V (T)}, T) is maxi∈V (T) {|Xi| − 1}.
The treewidth of a graph G (denoted as tw(G)) is the minimum width over all
tree decompositions of G. For a directed graph G, tw(G) is the treewidth of the
underlying graph.

We say that a graph class G has bounded local treewidth with bounding function
f if there is a function f : N → N such that for every graph G ∈ G, every
v ∈ V (G), and every positive integer i it holds that tw(G[N i

G[v]]) ≤ f(i) where
N i

G[v] = {u ∈ V (G) : distG(u, v) ≤ i}.
It appears that many sparse classes have bounded local treewidth. Examples

are planar graphs and graphs of bounded genus, bounded max-degree graphs,
and graphs excluding an apex graph as a minor (an apex graph is a graph
that can become planar after the removal of one vertex). The purpose of this
subsection is to construct an FPT algorithm for the BVDP(l) and the BVUP(l)
problems when their inputs are restricted to directed graphs whose underlying
graphs belong to some (almost) bounded local treewidth graph class.

Theorem 5. The BVDP(l) problems (and therefore, also BVUP(l)) can be solved
by an FPT-algorithm for graph classes that have bounded local treewidth. Moreover,
let G be a bounded local treewidth graph class, and let G′ be a set of all graphs G such
that there is a set X ⊆ V (G), |X | ≤ 1, for which G \X ∈ G. Then the BVDP(l)
can be solved by an FPT-algorithm in G′.

Paths of Bounded Length and Their Cuts 219

4.2 Vertex-Disjoint (s, t)-Paths of Bounded Length for
H-Minor-Free Graphs

In this section we show that the restrictions of Theorem 5 are somehow tight.
We call a graph G a two-apex graph if there is a set X of at most two vertices
such that G \ X is a planar graph. Due the space restrictions the proof of the
following theorem is omitted here.

Theorem 6. BVUP(l) is NP-complete and BVDP(l) is NP-complete for di-
rected acyclic graphs for any fixed l ≥ 6 for two-apex graphs.

Consider the class of Kk-minor free graphs (i.e. none of the graphs in this class
contains a subgraph that can be contracted to Kk). Notice that K5-free graphs
have bounded local treewidth. However this is not correct for Kr-minor-free
graphs for r ≥ 6. Since two-apex graphs are K7-minor-free, Theorem 5 provides
a nearly optimal estimation on the tractability of BVUP(l) and BVDP(l) on
Kr-minor-free graphs. Actually, the same Theorem argues that not even a nf(k)

step algorithm can be found for r ≥ 7.
We can also prove the following (the proof is similar to the one of Theorem 6

and is omitted here). We consider these theorem separately instead applying
reduction rules since these rules do not preserve exact value of the parameter l.

Theorem 7. The BEUP(l) is NP-complete and BEDP(l) is NP-complete for
directed acyclic graphs for any fixed l ≥ 7 for two-apex graphs.

It is interesting to note that BEUP(l) and BEDP(l) are more difficult than their
vertex disjoint counterparts for graphs of bounded treewidth (see Theorem 5).
The fact the edge-disjoint variants are harder is also indicated by the results of
the following section.

4.3 Edge-Disjoint (s, t)-Paths of Bounded Length for Graphs of
Bounded Treewidth

By reduction rules (see Table 2) BEUP can be reduced to BVUP, but the re-
duction 2 does not preserve the treewidth of the graph. The following theorem
(the proof of which is omitted here due the space restrictions) shows that vertex-
disjoint and edge-disjoint path problems behave very differently when parame-
terized by the treewidth.

Theorem 8. For every fixed l ≥ 10, BEUP is W[1]-hard, when parameterized by
treewidth and BEDP is W[1]-hard for directed acyclic graphs when parameterized
by treewidth of the underlying graph.

5 Conclusions

A natural question about the parameterized complexity of the variants of the
bounded length disjoint path and the bounded length cut problems parame-
terized by k and l is whether they admit polynomial kernels. In fact, using

220 P.A. Golovach and D.M. Thilikos

techniques from [7], we can prove that this is not the case for all the disjoint
path variants. We believe that the existence of polynomial kernels for the edge
cut variants as well as the planar restrictions of the disjoint path variants is an
interesting open problem.

References

1. Adámek, J., Koubek, V.: Remarks on flows in network with short paths. Commen-
tationes Mathematicae Universitatis Carolinae 12(4), 661–667 (1971)

2. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. Assoc. Comput. Mach. 42, 844–856
(1995)

3. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs.
Journal of Algorithms 12, 308–340 (1991)

4. Baier, G., Erlebach, T., Hall, A., Köhler, E., Schilling, H., Skutella, M.: Length-
bounded cuts and flows. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I.
(eds.) ICALP 2006. LNCS, vol. 4051, pp. 679–690. Springer, Heidelberg (2006)

5. Baier, G., Erlebach, T., Hall, A., Köhler, E., Kolman, P., Pangrác, O., Schilling,
H., Skutella, M.: Length-bounded cuts and flows. ACM Transactions in Algorithms
(to appear)

6. Bley, A.: On the complexity of vertex-disjoint length-restricted path problems.
Comput. Complexity 12, 131–149 (2003)

7. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems with-
out polynomial kernels (extended abstract). In: Aceto, L., Damg̊ard, I., Goldberg,
L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part
I. LNCS, vol. 5125, pp. 563–574. Springer, Heidelberg (2008)

8. Borie, R.B.: Generation of polynomial-time algorithms for some optimization prob-
lems on tree-decomposable graphs. Algorithmica 14, 123–137 (1995)

9. Dantzig, G.B., Fulkerson, D.R.: On the max-flow min-cut theorem of networks, in
Linear inequalities and related systems. Annals of Mathematics Studies, vol. 38,
pp. 215–221. Princeton University Press, Princeton (1956)

10. Downey, R.G., Fellows, M.R.: Parameterized complexity. Monographs in Computer
Science. Springer, New York (1999)

11. Exoo, G.: On line disjoint paths of bounded length. Discrete Math. 44, 317–318
(1983)

12. Fellows, M., Hermelin, D., Rosamond, F., Vialette, S.: On the parameterized com-
plexity of multiple-interval graph problems. Theor. Comput. Sci. 410, 53–61 (2009)

13. Fleischer, L.K., Skutella, M.: The quickest multicommodity flow problem. In: Cook,
W.J., Schulz, A.S. (eds.) IPCO 2002. LNCS, vol. 2337, pp. 36–53. Springer, Hei-
delberg (2002)

14. Flum, J., Grohe, M.: Parameterized complexity theory, Texts in Theoretical Com-
puter Science. An EATCS Series. Springer, Berlin (2006)

15. Ford Jr., L.R., Fulkerson, D.R.: Maximal flow through a network. Canad. J.
Math. 8, 399–404 (1956)

16. Fortune, S., Hopcroft, J., Wyllie, J.: The directed subgraph homeomorphism prob-
lem. Theoret. Comput. Sci. 10, 111–121 (1980)

17. Guruswami, V., Khanna, S., Rajaraman, R., Shepherd, B., Yannakakis, M.: Near-
optimal hardness results and approximation algorithms for edge-disjoint paths and
related problems. J. Comput. System Sci. 67, 473–496 (2003)

Paths of Bounded Length and Their Cuts 221

18. Hsu, D.: On container width and length in graphs, groups, and networks. IEICE
transactions on fundamentals of electronics, communications and computer sci-
ences 77, 668–680 (1994); Dedicated to Professor Paul Erdős on the occasion of his
80th birthday (Special Section on Discrete Mathematics and Its Applications)

19. Itai, A., Perl, Y., Shiloach, Y.: The complexity of finding maximum disjoint paths
with length constraints. Networks 12, 277–286 (1982)

20. Karp, R.M.: On the computational complexity of combinatorial problems. Net-
works 5(1), 45–68 (1975)

21. Kolman, P., Scheideler, C.: Improved bounds for the unsplittable flow problem. In:
Proceedings of the Symposium on Discrete Algorithms, pp. 184–193. ACM, New
York (2002)

22. Kolman, P., Scheideler, C.: Improved bounds for the unsplittable flow problem.
Journal of Algorithms 61(1), 20–44 (2006)

23. Li, C.-L., McCormick, T., Simchi-Levi, D.: The complexity of finding two disjoint
paths with min-max objective function. Discrete Appl. Math. 26, 105–115 (1990)

24. Lovász, L., Neumann Lara, V., Plummer, M.: Mengerian theorems for paths of
bounded length. Period. Math. Hungar. 9, 269–276 (1978)

25. Menger, K.: Über reguläre Baumkurven. Math. Ann. 96, 572–582 (1927)
26. Niedermeier, R.: Invitation to fixed-parameter algorithms. Oxford Lecture Series in

Mathematics and its Applications, vol. 31. Oxford University Press, Oxford (2006)
27. Niepel, L., Šafař́ıková, D.: On a generalization of Menger’s theorem. Acta Math.

Univ. Comenian. 42, 43, 275–284 (1983)
28. Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths problem.

Journal of Combinatorial Theory. Series B 63, 65–110 (1995)
29. Ronen, D., Perl, Y.: Heuristics for finding a maximum number of disjoint bounded

paths. Networks 14, 531–544 (1984)
30. Tragoudas, S., Varol, Y.L.: Computing disjoint paths with length constraints. In:

D’Amore, F., Marchetti-Spaccamela, A., Franciosa, P.G. (eds.) WG 1996. LNCS,
vol. 1197, pp. 375–389. Springer, Heidelberg (1997)

31. Wagner, D., Weihe, K.: A linear-time algorithm for edge-disjoint paths in planar
graphs. Combinatorica 15, 135–150 (1995)

Fixed-Parameter Algorithms in Analysis of Heuristics
for Extracting Networks in Linear Programs

Gregory Gutin1, Daniel Karapetyan1, and Igor Razgon2

1 Department of Computer Science
Royal Holloway, University of London, UK

gutin@cs.rhul.ac.uk, daniel.karapetyan@gmail.com
2 Department of Computer Science

University College Cork, Ireland
i.razgon@cs.ucc.ie

Abstract. A parameterized problem Π can be considered as a set of pairs (I, k)
where I is the main part and k (usually an integer) is the parameter. Π is called
fixed-parameter tractable (FPT) if membership of (I, k) in Π can be decided in
time O(f(k)|I |c), where |I | denotes the size of I , f(k) is a computable func-
tion, and c is a constant independent of k and I . An algorithm of complexity
O(f(k)|I |c) is called a fixed-parameter algorithm.

It often happens that although a problem is FPT, the practitioners prefer to
use imprecise heuristic methods to solve the problem in the real-world situation
simply because of the fact that the heuristic methods are faster. In this paper we
argue that in this situation a fixed-parameter algorithm for the given problem may
be still of a considerable practical use. In particular, the fixed-parameter algorithm
can be used to evaluate the approximation quality of heuristic approaches.

To demonstrate this way of application of fixed-parameter algorithms, we con-
sider the problem of extracting a maximum-size reflected network in a linear pro-
gram. We evaluate a state-of-the-art heuristic SGA and two variations of it with a
new heuristic and with an exact algorithm. The new heuristic and algorithm use
fixed-parameter tractable procedures. The new heuristic turned out to be of little
practical interest, but the exact algorithm is of interest when the network size is
close to that of the linear program especially if the exact algorithm is used in
conjunction with SGA. Another conclusion which has a large practical interest
is that some variant of SGA can be the best choice because in most cases it re-
turns optimal solutions; previously it was disregarded because comparing to the
other heuristics it improved the solution insignificantly at the cost of much larger
running times.

1 Introduction, Terminology and Notation

When a hard optimization problem is to be solved heuristically, it is often difficult to
choose which heuristic to use as it rarely happens that one heuristic is both faster and
more precise than another one. Often there is a tradeoff: a heuristic providing a more
precise solution takes more time than a heuristic of lesser quality. In this case, the slower
heuristic may be preferred if it turns out that the solution it returns is usually much closer
to the optimal solution. However, to evaluate the quality of the given solution we need

J. Chen and F.V. Fomin (Eds.): IWPEC 2009, LNCS 5917, pp. 222–233, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Fixed-Parameter Algorithms in Analysis of Heuristics for Extracting Networks 223

a method that can find an optimal solution (even if finding a provably optimal solution
takes much more time than the heuristic being analyzed). If the considered problem
involves a small parameter, solving the problem to optimality can be done by a fixed-
parameter algorithm. (We give a short introduction into fixed-parameter algorithmics
in Section 4.) Thus, even if a fixed-parameter algorithm is not directly used within a
problem solving software, it can still be very useful for testing different versions of this
software. In this paper we consider a problem occurring in large-scale linear program-
ming (LP) to demonstrate the use of fixed-parameter algorithms in this novel way.

Large-scale LP models which arise in applications usually have sparse coefficient
matrices with special structure. If a special structure can be recognized, it can often be
used to considerably speed up the process of solving the LP problem and/or to help in
understanding the nature of the LP model. A well-known family of such special struc-
tures is networks; a number of heuristics to extract (reflected) networks in LP problems
have been developed and analyzed, see, e.g., [3,6,7,8,13,14,19] (a formal definition of
a reflected network is given below). From the computational point of view, it is worth-
while extracting a reflected network only if the LP problem under consideration con-
tains a relatively large reflected network.

We consider an LP problem in the standard form stated as

Minimize {pT x; subject to Ax = b, x ≥ 0}.
LP problems have a number of equivalent, in a sense, forms that can be obtained from
each other by various operations. Often scaling operations, that is multiplications of
rows and columns of the matrix A of constraints by non-zero constants, are applied, see,
e.g., [3,6,8,13]. In the sequel unless stated otherwise, we assume that certain scaling
operations on A have been carried out and will not be applied again apart from row
reflections defined below. A matrix B is a network (matrix) if B is a (0,±1)-matrix
(that is, entries of B belong to the set {1, 0,−1}) and every column of B has at most
one entry equal to 1 and at most one entry equal to −1. The operation of reflection of
a row of a matrix B changes the signs of all non-zero entries of this row. A matrix B
is a reflected network (matrix) if there is a sequence of row reflections that transforms
B into a network matrix. The problem of detecting a maximum embedded reflected
network (DMERN) is to find the maximum number of rows that form a submatrix B of
A such that B is a reflected network. This number is denoted by ν(A). The DMERN
problem is known to be NP-hard [4].

Gülpınar et al. [14] showed that the maximum size of an embedded reflected net-
work equals the maximum order of a balanced induced subgraph of a special signed
graph associated with matrix A (for details, see Section 2). This result led Gülpınar et
al. [14] to a heuristic named SGA for detection of reflected networks. Computational
experiments in [14] with SGA and three other heuristics demonstrated that SGA and
another heuristic, RSD, were of very similar quality and clearly outperformed the two
other heuristics in this respect. However, SGA was about 20 times faster, on average,
than RSD. Moreover, SGA has an important theoretical property that RSD does not
have: SGA always solves the DMERN problem to optimality when the whole matrix A
is a reflected network [14]. Since SGA appeared to be the best choice for a heuristic for
detection of reflected networks, Gutin and Zverovitch [15] investigated ‘repetition’ ver-
sions of SGA and found out that three times repetition of SGA (SGA3) gives about 1%

224 G. Gutin, D. Karapetyan, and I. Razgon

improvement, while 80 times repetition of SGA (SGA80) leads to 2% improvement.
Thus, at the first glance it might seem that SGA3 and, of course, SGA80 heuristics
are not of any practical interest because, taking more time, they produce a very little
improvement of the solution quality.

In this paper we argue that in fact SGA80 can be viewed as the best choice because,
being reasonably fast, in most cases it produces an optimal solution to the problem
under consideration. To solve the DMERN problem to optimality we design a fixed-
parameter algorithm for the maximum balanced subgraph problem and we compare the
output of the heuristics being analyzed against the output of the algorithm. To design the
FPT algorithm we reduce the maximum balanced subgraph problem to the bipartization
problem and then use a fixed-parameter algorithm for the latter problem [20,25]. Thus
it turns out that although the fixed-parameter algorithm we use is usually much slower
than the heuristic methods, it helps to select the best heuristic for the DMERN problem.

As an additional contribution, we investigated another modification of SGA where
the use of a greedy-type independent set extracting heuristic (which is part of SGA)
is replaced by a fixed-parameter algorithm for finding a minimum vertex cover. Here
we used the well-known fact that the complement of an independent set in a graph is
a vertex cover. Our experiments with this modification of SGA showed very little im-
provement and, thus, this modification of SGA appears to be of little practical interest.
However, this demonstrated that the independent set extracting heuristic need not be
replaced by a more powerful heuristic or exact algorithm.

The rest of the paper is organized as follows. In Section 2 we introduce necessary
notation, Section 3 presents the SGA heuristic and its variants, and Section 4 introduces
the fixed-parameter algorithms. Section 5 describes a fixed-parameter algorithm for the
maximum balanced subgraph problem. In Section 6 we report empirical results and
analyze them. Concluding remarks are made in Section 7.

2 Embedded Networks and Signed Graphs

In this section, we assume, for simplicity, that A is a (0,±1)-matrix itself (since all rows
containing entries not from the set {−1, 0, +1} cannot be part of a reflected network).
Here we allow graphs to have parallel edges, but no loops. A graph G = (V, E) along
with a function s : E→{−, +} is called a signed graph. Signed graphs have been
studied by many researchers, see, e.g., [16,17,18,26].

We assume that signed graphs have no parallel edges of the same sign, but may have
parallel edges of opposite signs. An edge is positive (negative) if it is assigned plus
(minus). For a (0,±1)-matrix A = [aik] with n rows, we construct a signed graph G(A)
as follows: the vertex set of G(A) is {1, 2, . . . , n}; G(A) has a positive (negative) edge
ij if and only if aik = −ajk �= 0 (aik = ajk �= 0) for some k. Let G = (V, E, s) be a
signed graph. For a non-empty subset W of V , the W -switch of G is the signed graph
GW obtained from G by changing the signs of the edges between W and V (G) \W .
A signed graph G = (V, E, s) is balanced if there exists a subset W of V (W may
coincide with V) such that GW has no negative edges. Let η(G) be the largest order of
a balanced induced subgraph of G.

Fixed-Parameter Algorithms in Analysis of Heuristics for Extracting Networks 225

The following important result was proved in [14]. This result allows us to search
for a largest balanced induced subgraph of G(A) instead of a largest reflected network
in A.

Theorem 1. [14] Let A be a (0,±1)-matrix. A set R of rows in A forms a reflected
network if and only if the vertices of G(A) corresponding to R induce a balanced
subgraph of G(A). In particular, ν(A) = η(G(A)).

3 SGA and Its Variations

The heuristic SGA introduced in [14] is based on the following:

Lemma 1. [14] Every signed tree T is a balanced graph.

Proof. We prove the lemma by induction on the number of edges in T . The lemma
is true when the number of edges is one. Let x be a vertex of T of degree one. By
the induction hypothesis, there is a set W ⊆ V (T) − x such that (T − x)W has no
negative edges. In T W the edge e incident to x is positive or negative. In the first case,
let W ′ = W and the second case, let W ′ = W ∪ {x}. Then, T W ′

has no negative
edges.

Heuristic SGA:
Step 1: Construct signed graph G = G(A) = (V, E, s).
Step 2: Find a spanning forest T in G.
Step 3: Using a recursive algorithm based on the proof of Lemma 1, compute
W ⊆ V such that T W has no negative edges.
Step 4: Let N be the subgraph of GW induced by the negative edges. Apply
the following greedy-degree algorithm [23] to find a maximal independent set
I in N : starting from empty I , append to I a vertex of N of minimum degree,
delete this vertex together with its neighbors from N , and repeat the above
procedure till N has no vertex.
Step 5: Output I.

Proposition 1. [14] If G is balanced, then I = V.

Proof. It is well-known (see, e.g., Theorem 2.8 in [14]) that a signed graph is balanced
if and only if it does not contain cycles with odd number of negative edges. Let T be

−
+

M

+

−

−− +

−

− +

+

+

+

+ − +

−
+

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4
G T T {2} G{2}

Fig. 1. Illustration for SGA; M is the subgraph G{2} induced by the negative edges of G{2}

226 G. Gutin, D. Karapetyan, and I. Razgon

a a spanning forest in G. Since T W has no negative edges, GW cannot have negative
edges. Indeed, if xy was a negative edge in GW , it would be the unique negative edge
in a cycle formed by xy and the (x, y)-path of T W , a contradiction.

Gutin and Zverovitch [15] investigated a repetition version of SGA where Steps 2-4
were repeated several time (each time the vertices of G were pseudo-randomly per-
muted and a new spanning forest of G was built). They found out that three times repe-
tition of SGA gives about 1% improvement, while 80 times repetition of SGA leads to
2% improvement, on average. In our experiments we used a larger text bed and better
scaling procedure than in [15] and, thus, we run SGA and its 3 and 80 times repetitions
on the new set of instances of the DMERN problem (see Section 6). We will denote
these repetition versions of SGA by SGA3 and SGA80, respectively.

In Section 6 we also report results on another modification of SGA, SGA+VC, where
we replace Step 4 with finding a vertex cover C of GW and setting I = V (GW) \ C.
Since the vertex cover problem is well studied in the area of parameterized complexity
[1,9,22], to find C we can use a fixed-parameter algorithm for the problem.

4 Fixed-Parameter Algorithmics

We recall some most basic notions of fixed-parameter algorithmics (FPA) here, for a
more in-depth treatment of the topic we refer the reader to the monographs [11,12,22].

FPA is a relatively new approach for dealing with intractable computational prob-
lems. In the framework of FPA we introduce a parameter k, which is often a positive
integer (but may be a vector, graph, or any other object for some problems) such that the
problem at hand can be solved in time O(f(k)nc), where n is the size of the problem
instance, c is a constant not dependent on n or k, and f(k) is an arbitrary computable
function not dependent on n. The ultimate goal is to obtain f(k) and c such that for
small or even moderate values of k the problem under consideration can be completely
solved in a reasonable amount of time.

As an example, consider the Vertex Cover problem (VC): given an undirected graph
G (with n vertices and m edges), find a minimum number of vertices such that every
edge is incident to at least one of these vertices. In the (naturally) parameterized version
of VC, k-VC, given a graph G, we are to check whether G has a vertex cover with at
most k vertices. k-VC admits an algorithm of running time O(1.2738k + kn) obtained
in [9] that allows us to solve VC with k up to several hundreds. Without using FPA, we
would be likely to end up with the obvious algorithm of complexity O(mnk). The last
algorithm is far too slow even for small values of k such as k = 10.

Parameterized problems that admit algorithms of complexity O(f(k)nc) (we refer to
such algorithms as fixed-parameter) are called fixed-parameter tractable (FPT). Notice
that not every parameterized problem is FPT, but there are many problems that are FPT.
A parameterized problem is FPT if and only if it admits kernelization [11,12,22], which
is defined as follows. For a parameterized decision problem Π given by pairs (I, k),
where I is an instance of Π and k is the parameter, a kernelization is a polynomial
time (in the size of I and k) reduction (I, k) (→ (I ′, k′) such that I is a Yes-instance
if and only if I ′ is a Yes-instance, the size of I ′ is bounded (from above) by a function

Fixed-Parameter Algorithms in Analysis of Heuristics for Extracting Networks 227

g(k) depending on k only and k′ ≤ k. The instances (I ′, k′) comprise a kernel of Π of
size g(k).

5 Minimum Balanced Deletion Problem

By our discussions above, we are interested in the following parameterized problem.

The minimum balanced deletion problem (MBD)
Input: A signed graph G = (V, E, s), an integer k.
Parameter: k.
Output: A set of at most k vertices whose removal makes G balanced or ’NO’
if no such set exists.

We show that the MBD problem is FPT by transforming it into the Bipartization prob-
lem defined as follows.

The Bipartization problem
Input: A graph G, an integer k
Parameter: k
Output: A set of at most k vertices whose removal makes G bipartite or ’NO’
if no such set exists.

The transformation is described in the following theorem.

Theorem 2. The MBD problem is FPT and can be solved in time O∗(3k).

Proof. It is well-known (see, e.g., Theorem 2.8 in [14]) that a signed graph is balanced
if and only if it does not contain cycles involving odd number of negative edges. Hence,
the MBD problem in fact asks for at most k vertices whose removal breaks all cycles
containing an odd number of negative edges.

Let G′ be the (unsigned) graph obtained from G by subdividing each positive edge.
In other words, for each positive edge {u, v}, we introduce a new vertex w and replace
{u, v} by {u, w} and {w, v}. We claim that G has a set of at most k vertices breaking
all cycles with an odd number of negative edges if and only if G′ can be made bipartite
by removal of at most k vertices.

Assume the former and let K be a set of at most k vertices whose removal breaks all
cycles with an odd number of negative edges. It follows that G′−K is bipartite. Indeed,
each cycle C′ of G′ −K can be obtained from a cycle C of G −K by subdivision of
its positive edges. Hence, C′ can be of an odd length only if C has an odd number of
negative edges which is impossible according to our assumption about K .

Conversely, let K be a set of at most k vertices such that G′ − K is bipartite. We
may safely assume that K does not contain the new vertices subdividing positive edges:
otherwise each such vertex can be replaced by one of its neighbors. Thus, K ⊆ V (G).
Observe that G −K does not have cycles with odd number of negative edges. Indeed,
by subdividing positive edges, any such cycle translates into an odd cycle of G′ −K in
contradiction to our assumption about K .

228 G. Gutin, D. Karapetyan, and I. Razgon

It follows from the above argumentation that the MBD problem can be solved as
follows. Transform G into G′ and run on G′ the O∗(3k) algorithm solving the biparti-
zation problem [20]. If the algorithm returns ’NO’ then return ’NO’. Otherwise, replace
each subdividing vertex by one of its neighbors and return the resulting set of vertices.
Clearly, the complexity of the resulting algorithm is O∗(3k).

Remarks. Unfortunately, it is not known yet whether the Bipartization problem has
a polynomial-size problem kernel [20]. Thus, it is not known yet whether the MBD
problem has a polynomial-size problem kernel. (If one was known, we could try to use
it to speed up our fixed-parameter algorithm.)

Note that a version of the MBD problem, where edge-deletions rather than vertex-
deletions are used was considered in [5,10].

6 Experimental Evaluation

In this section we provide and discuss our experiment results for the heuristics SGA,
SGA3, SGA80, SGA+VC descried in Section 3 and the exact algorithm given in Section
5. Note that in our experiments we use a larger test bed and better scaling procedure than
in [15].

Recall that we consider an LP problem in the standard form stated as

Minimize {pT x; subject to Ax = b, x ≥ 0}.

In Section 2, to simplify our notation we assumed that A is a (0,±1)-matrix. However,
in general, in real LP problems A is not a (0,±1)-matrix. Therefore, in reality, the first
phase in solving the DMERN problem is applying a scaling procedure whose aim is to
increase the number of (0,±1)-rows by scaling rows and columns. Here we describe a
scaling procedure that we have used. Our computational experiments indicate that this
scaling is often better than the scaling procedures we found in the literature. Let us
describe our scaling procedure. Let A = [aij]n×m.

First we apply simple row scaling, i.e., scale all the rows which contain only zeros
and ±x, where x > 0 is some constant: for every i ∈ {1, 2, . . . , n} set aij = aij/x for
j = 1, 2, . . . , m if aij ∈ {0,−x, +x} for every j ∈ {1, 2, . . . , m}.

Then we apply a more sophisticated procedure. Let [ri]n be an array of boolean
values, where ri indicates whether the ith row is a (0,±1)-row. Let [bj]m be an array
of boolean values, where bj indicates whether the jth column is bounded, i.e., whether
it has at least one nonzero value in a (0,±1)-row: for some j ∈ {1, 2, . . . , m} the value
bj = true if and only if there exists some i such that ri = true and aij �= 0.

Next we do the following for every non (0,±1)-row (note that at this stage any non
(0,±1)-row contains at least two nonzero elements). Let J be the set of indices of
bounded columns with nonzero elements in the current row c: J = {j : acj �=0 and bj =
true}. If J = ∅, i.e., all the columns corresponding to nonzero elements in the current
row are unbounded, then we simply scale every of these columns: aij = aij/acj for
every i=1, 2, . . . , n and for every j such that acj �=0. If J �=∅ and acj∈{+x,−x} for
every j∈J , where x is some constant, then we scale accordingly the current row (acj =
acj/x for every j∈{1, 2, . . . , m}) and scale the unbounded columns: aij =aij/acj for
every j /∈J if acj �=0. Otherwise we do nothing for the current row.

Fixed-Parameter Algorithms in Analysis of Heuristics for Extracting Networks 229

Every time when we scale rows or columns we update the arrays r and b.
Since the matrices processed by this heuristic are usually sparse, we use a special

data structure to store them. In particular, we store only nonzero elements providing
the row and column indices for each of them. We also store a list of references to the
corresponding nonzero elements for every row and for every column of the matrix.

The computational results for all heuristics apart from SGA+VC as well as for the
exact algorithm are provided in Table 1. As a test bed we use all the instances provided
in Netlib (http://netlib.org/lp/data/). In the table, n denotes the number
of (0,±1)-rows in the instance, i.e., the number of vertices in the corresponding signed
graph G. Also kmin, k1, k3, k80 denote the values of the difference between n and the
number of vertices in a maximum induced balanced subgraph of G found by the exact
algorithm and SGA, SGA3 and SGA80, respectively, and t, t1, t3, t80 stand for the run-
ning time (in seconds) of the exact algorithm and SGA, SGA3 and SGA80, respectively.
When the exact algorithm could not produce a solution after 1 hour, it was terminated.
The average values of k are given over all the instances for SGA, SGA3 and SGA80.
We also provide the averages for the instances solved by the exact algorithm (see the
optimal set average row).

All algorithms were implemented in C++ and the evaluation platform is based on
an AMD Athlon 64 X2 3.0 GHz processor. For the exact algorithm we used a code
of Hüffner http://theinf1.informatik.uni-jena.de/˜hueffner/. In
SGA+VC we used a vertex cover code based on [2].

The results with SGA+VC are not provided since SGA+VC managed to improve
SGA only for four instances: D6CUBE (kSGA+V C =59), DEGEN2 (kSGA+V C =230),

Table 1. Experiment results for the SGA, SGA3 and SGA80 heuristics and for the exact algorithm

Instance n kmin k1 k3 k80 t t1 t3 t80

25FV47 283 15 25 25 22 4.40 0.02 0.03 0.39
80BAU3B 1629 — 42 40 40 > 1h 0.08 0.25 9.75
ADLITTLE 31 1 1 1 1 0.02 0.00 0.00 0.00
AFIRO 16 0 0 0 0 0.00 0.00 0.00 0.00
AGG 159 — 107 104 104 > 1h 0.02 0.00 0.09
AGG2 153 — 85 85 83 > 1h 0.00 0.00 0.03
AGG3 153 — 85 85 83 > 1h 0.02 0.00 0.08
BANDM 143 23 24 24 23 1493.12 0.00 0.00 0.08
BEACONFD 118 3 3 3 3 0.00 0.00 0.00 0.02
BLEND 24 1 1 1 1 0.00 0.00 0.00 0.00
BNL1 315 14 17 17 14 1.83 0.00 0.02 0.19
BNL2 1549 — 127 110 99 > 1h 0.05 0.17 4.96
BOEING1 145 — 49 49 48 > 1h 0.00 0.00 0.03
BOEING2 79 15 17 17 15 0.05 0.00 0.02 0.02
BORE3D 131 12 14 13 12 0.14 0.00 0.00 0.03
BRANDY 122 6 7 6 6 0.00 0.00 0.00 0.05
CAPRI 126 — 40 37 34 > 1h 0.00 0.00 0.05

http://netlib.org/lp/data/
http://theinf1.informatik.uni-jena.de/~hueffner/

230 G. Gutin, D. Karapetyan, and I. Razgon

Table 1. (continued)

Instance n kmin k1 k3 k80 t t1 t3 t80

CYCLE 700 — 34 34 34 > 1h 0.02 0.06 1.64
CZPROB 912 1 1 1 1 0.27 0.02 0.03 1.73
D2Q06C 980 — 67 67 67 > 1h 0.02 0.11 3.56
D6CUBE 122 — 61 52 46 > 1h 0.02 0.00 0.16
DEGEN2 444 — 234 233 226 > 1h 0.02 0.03 0.83
DEGEN3 1503 — 822 819 813 > 1h 0.17 0.53 16.91
DFL001 6022 — 2818 2818 2802 > 1h 1.53 5.87 166.05
E226 100 15 18 17 16 1.09 0.00 0.00 0.03
ETAMACRO 145 12 20 20 20 0.47 0.00 0.00 0.09
FFFFF800 178 — 50 41 41 > 1h 0.00 0.02 0.14
FINNIS 325 — 121 120 119 > 1h 0.00 0.02 0.31
FIT1D 10 6 6 6 6 0.00 0.00 0.00 0.00
FIT1P 1 0 0 0 0 0.00 0.00 0.00 0.03
FIT2D 10 6 7 6 6 0.00 0.00 0.02 0.33
FIT2P 4 2 2 2 2 0.00 0.03 0.02 0.76
FORPLAN 61 1 1 1 1 0.00 0.00 0.00 0.05
GANGES 822 — 83 83 77 > 1h 0.03 0.05 1.89
GFRD-PNC 616 — 68 68 68 > 1h 0.03 0.05 0.78
GREENBEA 970 — 48 48 45 > 1h 0.06 0.12 3.46
GREENBEB 970 — 48 48 45 > 1h 0.03 0.17 3.42
GROW15 15 0 0 0 0 0.00 0.00 0.00 0.02
GROW22 22 0 0 0 0 0.00 0.00 0.00 0.02
GROW7 7 0 0 0 0 0.00 0.00 0.02 0.02
ISRAEL 30 8 9 9 8 0.02 0.00 0.00 0.00
KB2 15 1 1 1 1 0.00 0.00 0.00 0.00
LOTFI 105 18 24 22 19 11.23 0.00 0.00 0.02
MAROS-R7 50 0 0 0 0 0.00 0.05 0.05 0.83
MAROS 340 11 17 15 11 0.23 0.00 0.03 0.33
MODSZK1 374 — 237 237 237 > 1h 0.02 0.02 0.30
NESM 232 10 13 11 10 0.03 0.02 0.03 0.19
PEROLD 235 — 28 25 24 > 1h 0.00 0.00 0.12
PILOT.JA 318 16 18 16 16 11.72 0.00 0.02 0.31
PILOT 337 — 45 42 41 > 1h 0.00 0.03 0.70
PILOT.WE 295 — 34 29 28 > 1h 0.00 0.02 0.34
PILOT4 151 3 3 3 3 0.00 0.02 0.02 0.08
PILOT87 479 — 77 76 70 > 1h 0.03 0.02 1.25
PILOTNOV 329 19 21 21 19 201.29 0.03 0.00 0.59
RECIPE 61 0 0 0 0 0.00 0.00 0.00 0.02
SC105 75 16 17 17 17 12.56 0.00 0.00 0.02
SC205 148 — 36 36 36 > 1h 0.00 0.02 0.03
SC50A 35 8 8 8 8 0.02 0.00 0.02 0.00
SC50B 33 6 6 6 6 0.02 0.00 0.00 0.00

Fixed-Parameter Algorithms in Analysis of Heuristics for Extracting Networks 231

Table 1. (continued)

Instance n kmin k1 k3 k80 t t1 t3 t80

SCFXM1 154 12 13 12 12 0.30 0.00 0.00 0.08
SCFXM2 308 — 26 26 24 > 1h 0.00 0.00 0.22
SCFXM3 462 — 39 38 36 > 1h 0.02 0.02 0.56
SCORPION 214 1 1 1 1 0.02 0.00 0.00 0.14
SCRS8 281 9 9 9 9 0.06 0.00 0.02 0.19
SCSD1 39 0 0 0 0 0.03 0.00 0.02 0.02
SCSD6 74 0 0 0 0 0.14 0.00 0.02 0.02
SCSD8 199 0 0 0 0 0.59 0.00 0.00 0.09
SCTAP1 120 0 0 0 0 0.00 0.00 0.00 0.03
SCTAP2 470 0 0 0 0 0.00 0.00 0.03 0.53
SCTAP3 620 0 0 0 0 0.00 0.00 0.06 0.92
SEBA 408 — 274 271 269 > 1h 0.00 0.05 1.95
SHARE1B 49 4 5 4 4 0.00 0.00 0.00 0.02
SHARE2B 36 6 6 6 6 0.00 0.02 0.00 0.00
SHELL 536 2 2 2 2 1.51 0.00 0.02 0.51
SHIP04L 394 — 36 36 36 > 1h 0.02 0.05 0.53
SHIP04S 394 — 36 36 36 > 1h 0.00 0.02 0.41
SHIP08L 762 — 64 64 64 > 1h 0.05 0.08 1.87
SHIP08S 762 — 64 64 64 > 1h 0.02 0.03 1.31
SHIP12L 1141 — 96 96 96 > 1h 0.03 0.14 3.71
SHIP12S 1141 — 96 96 96 > 1h 0.03 0.12 2.76
SIERRA 1161 — 400 399 387 > 1h 0.02 0.05 2.71
STAIR 82 8 11 10 8 0.02 0.00 0.02 0.03
STANDATA 245 — 53 53 53 > 1h 0.00 0.00 0.17
STANDGUB 247 — 53 53 53 > 1h 0.02 0.02 0.19
STANDMPS 353 — 54 54 54 > 1h 0.00 0.02 0.31
STOCFOR1 56 0 0 0 0 0.00 0.00 0.00 0.00
STOCFOR2 1306 — 258 258 243 > 1h 0.05 0.12 3.88
TUFF 175 16 26 17 16 0.58 0.02 0.00 0.11
VTP.BASE 30 4 6 4 4 0.00 0.00 0.00 0.00
WOOD1P 74 0 0 0 0 0.02 0.00 0.00 0.11
WOODW 329 0 0 0 0 0.00 0.00 0.05 0.78

Total average — 79.3 78.3 76.9 — 0.03 0.10 2.66
Optimal set average 5.8 7.0 6.6 6.1 32.26 0.00 0.01 0.19

SCAGR25 299 0 0 0 0 0.03 0.00 0.02 0.19
SCAGR7 83 0 0 0 0 0.02 0.00 0.00 0.02

DEGEN3 (kSGA+V C = 806), and DFL001 (kSGA+V C = 2809). Note that in three of
these instances k80 < kSGA+V C . Since the running time of SGA+VC usually exceeds
that of SGA80 and the quality of SGA+VC is not much different even from that of SGA,
SGA+VC appears to be of little practical interest. However, SGA+VC demonstrates that
there is no need to replace Step 4 of SGA by a more powerful heuristic or exact algorithm.

232 G. Gutin, D. Karapetyan, and I. Razgon

Observe that the exact algorithm completed its computations for 54 instances out
of the total of 93, and for 52 instances the running time was at most 1 minute. Note
that SGA achieved the optimal solution in 33 out of 54 cases, SGA3 in 39 cases and
SGA80 in 49 cases. Observe that in almost all the cases feasible for the exact algorithm,
SGA80, being much faster than the exact algorithm, managed to compute an optimal
solution! Although SGA80 is slower than SGA and SGA3, it is much more precise and
its running time is still reasonable. It follows that SGA80 is the best choice with respect
to the tradeoff between running time and precision. Note that this conclusion can be
made only given the knowledge about the optimal solution and without the considered
fixed-parameter algorithm such knowledge would be very hard to obtain (for example,
the instance PILOTNOV with n = 329 and kmin = 19 would hardly be feasible to a
brute-force exploration of all

(329
19

)
possibilities).

7 Conclusions

In this paper we have demonstrated a novel way of use of fixed-parameter algorithms
where they do not substitute heuristic methods but are used to evaluate them. As a
case study, we considered heuristics for the problem of extracting a maximum-size
reflected network in an LP problem. The main conclusion of our empirical study is that
the slowest heuristic, which provided only a minor improvement over the other ones
and was basically disregarded due to this fact, has turned out to be the best among
the heuristics under consideration because, being reasonably fast, it often produces an
optimal solution. The fixed-parameter algorithm in this case has helped us to check
whether a solution returned by the heuristic being analyzed is indeed optimal.

We believe that this way of applying fixed-parameter algorithms can be useful for
other problems as well. One candidate might be the problem of finding whether the given
CNF formula has at most k variables so that their removal makes the resulting formula
Renameable Horn. This is called the Renameable Horn deletion backdoor problem and
was recently shown FPT [24]. Heuristics for this problem are widely used in modern
SAT solvers for identifying a small subset of variables on which an exponential-time
branching is to be performed [21]. Currently it is unclear whether substituting a heuristic
approach by the exact fixed-parameter algorithm would result in a better SAT solver. But
even if it is not the case, the exact algorithm can be still of a considerable use for ranking
the heuristic techniques, especially as producing small Renameable Horn backdoors is
vitally important for reducing the exponential-time impact on the runtime of SAT solvers.

Acknowledgements We are grateful to Michael Langston and his group for providing
us with a vertex cover code. The work of G. Gutin was supported in part by a grant
from EPSRC. The work of I. Razgon was supported by Science Foundation Ireland
grant 05/IN/I886.

References

1. Abu-Khzam, F.N., Fellows, M.R., Langston, M., Suters, W.H.: Crown Structures for Vertex
Cover Kernelization. Theory of Computing Systems 41, 411–430 (2007)

Fixed-Parameter Algorithms in Analysis of Heuristics for Extracting Networks 233

2. Abu-Khzam, F.N., Langston, M., Shanbhag, P., Symons, C.T.: Scalable Parallel Algorithms
for FPT Problems. Algorithmica 45, 269–284 (2006)

3. Baker, B.M., Maye, P.J.: A Heuristic for Finding Embedded Network Structure in Mathe-
matical Programmes. Europ. Jour. Oper. Res. 67, 52–63 (1993)

4. Bartholdi, J.J.: A Good Submatrix is Hard to Find. Oper. Res. Letters 1, 190–193 (1982)
5. Betzler, N., Hüffner, F., Niedermeier, R.: Optimal edge deletions for signed graph balancing.

In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 297–310. Springer, Heidelberg
(2007)

6. Bixby, R.E., Fourer, R.: Finding Embedded Network Rows in Linear Programs I. Extraction
Heuristics. Manag. Science 34, 342–376 (1988)

7. Bixby, R.E., Cunningham, W.H.: Converting Linear Programs to Network Problems. Math.
Oper. Res. 5, 321–356 (1980)

8. Brown, G.G., Wright, W.G.: Automatic Identification of Embedded Network Rows in Large-
Scale Optimization Models. Math. Prog. 29, 41–56 (1984)

9. Chen, J., Kanj, I.A., Xia, G.: Simplicity is beauty: Improved upper bounds for vertex cover.
Tech. Report TR05-008, DePaul University, Chicago IL (2005)

10. DasGupta, B., Enciso, G.A., Sontag, E.D., Zhang, Y.: Algorithmic and complexity results for
decompositions of biological networks into monotone subsystems. In: Àlvarez, C., Serna, M.
(eds.) WEA 2006. LNCS, vol. 4007, pp. 253–264. Springer, Heidelberg (2006)

11. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)
12. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)
13. Gülpınar, N., Gutin, G., Mitra, G., Maros, I.: Detecting Embedded Pure Network Struc-

tures by Using GUB and Independent Set Algorithms. Comput. Optim. Applic. 15, 235–247
(2000)

14. Gülpınar, N., Gutin, G., Mitra, G., Zverovitch, A.: Extracting Pure Network Submatrices in
Linear Programs Using Signed Graphs. Discrete Applied Mathematics 137, 359–372 (2004)

15. Gutin, G., Zverovitch, A.: Extracting pure network submatrices in linear programs using
signed graphs, Part 2. Communications of DQM 6, 58–65 (2003)

16. Hansen, P.: Labelling Algorithms for Balance in Signed Graphs. In: Problémes Combina-
toires et Theorie des Graphes, Colloq. Internat., Orsay, pp. 215–217 (1976); Colloques Inter-
nat. du CNRS 260 Paris (1978)

17. Harary, F., Kabell, J.A.: A Simple Algorithm to Detect Balance in Signed Graphs. Math.
Social Science 1, 131–136 (1980-1981)

18. Heller, I., Tompkins, C.B.: An Extension of a Theorem of Dantzig’s. In: Kuhn, H.W., Tucker,
A.W. (eds.) Linear Inequalities and Related Systems. Annals Math. Studies, vol. 38, pp. 247–
252. Princeton Univ. Press, Princeton (1956)

19. Hsu, A.C., Fourer, R.: Identification of Embedded Network Structure in Linear Programming
Models. GSIA Working Paper, 1997-58

20. Hüffner, F.: Algorithm Engineering for Optimal Graph Bipartization. Journal of Graph Al-
gorithms and Applications 13, 77–98 (2009)

21. Kottler, S., Kaufmann, M., Sinz, C.: Computation of Renameable Horn Backdoors. In: Kleine
Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 154–160. Springer, Heidelberg
(2008)

22. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford
(2006)

23. Paschos, V.T.: A Δ/2-Approximation for the Maximum Independent Set Problem. Inform.
Proc. Let. 44, 11–13 (1992)

24. Razgon, I., O’Sullivan, B.: Almost 2-SAT is fixed-parameter tractable. Journal of Computer
and System Sciences (in press)

25. Reed, B., Smith, K., Vetta, A.: Finding odd cycle transversals. Operations Research Let-
ters 32, 299–301 (2004)

26. Zaslavsky, T.: Signed Graphs. Discete Applied Math. 4, 47–74 (1982)

A Probabilistic Approach to Problems
Parameterized above or below Tight Bounds

Gregory Gutin1, Eun Jung Kim1, Stefan Szeider2, and Anders Yeo1

1 Department of Computer Science
Royal Holloway, University of London

Egham, Surrey TW20 0EX, UK
{gutin,eunjung,anders}@cs.rhul.ac.uk

2 Department of Computer Science, Durham University,
Durham DH1 3LE, England, UK

stefan@szeider.net

Abstract. We introduce a newapproach for establishing fixed-parameter
tractability of problems parameterized above tight lower bounds or below
tight upper bounds. To illustrate the approach we consider two problems
of this type of unknown complexity that were introduced by Mahajan, Ra-
man and Sikdar (J. Comput. Syst. Sci. 75, 2009). We show that a gen-
eralization of one of the problems and three nontrivial special cases of the
other problem admit kernels of quadratic size.

1 Introduction

A parameterized problem Π can be considered as a set of pairs (I, k) where I
is the main part and k (usually an integer) is the parameter. Π is called fixed-
parameter tractable (FPT) if membership of (I, k) in Π can be decided in time
O(f(k)|I|c), where |I| denotes the size of I, f(k) is a computable function, and
c is a constant independent of k and I (for further background and terminology
on parameterized complexity we refer the reader to the monographs [7,8,16]).
If the nonparameterized version of Π (where k is just a part of the input) is
NP-hard, then the function f(k) must be superpolynomial provided P �= NP.
Often f(k) is “moderately exponential,” which makes the problem practically
feasible for small values of k. Thus, it is important to parameterize a problem
in such a way that the instances with small values of k are of real interest.

Consider the following well-known problem: given a digraph D = (V, A),
find an acyclic subdigraph of D with the maximum number of arcs. We can
parameterize this problem “naturally” by asking whether D contains an acyclic
subdigraph with at least k arcs. It is easy to prove that this parameterized
problem is fixed-parameter tractable by observing that D always has an acyclic
subdigraph with at least |A|/2 arcs. (Indeed, consider a bijection α : V →
{1, . . . , |V |} and the following subdigraphs of D: (V, { xy ∈ A : α(x) < α(y) })
and (V, { xy ∈ A : α(x) > α(y) }). Both subdigraphs are acyclic and at least one
of them has at least |A|/2 arcs.) However, k ≤ |A|/2 for every small value of k

J. Chen and F.V. Fomin (Eds.): IWPEC 2009, LNCS 5917, pp. 234–245, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Probabilistic Approach to Problems 235

and almost every practical value of |A| and, thus, our “natural” parameterization
is of almost no practical or theoretical interest.

Instead, one should consider the following parameterized problem: decide
whether D = (V, A) contains an acyclic subdigraph with at least |A|/2 + k
arcs. We choose |A|/2 + k because |A|/2 is a tight lower bound on the size of
a largest acyclic subdigraph. Indeed, the size of a largest acyclic subdigraph of
a symmetric digraph D = (V, A) is precisely |A|/2. (A digraph D = (V, A) is
symmetric if xy ∈ A implies yx ∈ A.)

In a recent paper [15] Mahajan, Raman and Sikdar provided several examples
of problems of this type and argued that a natural parameterization is one
above a tight lower bound for maximization problems, and below a tight upper
bound for minimization problems. Furthermore, they observed that only a few
non-trivial results are known for problems parameterized above a tight lower
bound [10,11,13,14], and they listed several problems parameterized above a tight
lower bound whose complexity is unknown. The difficulty in showing whether
such a problem is fixed-parameter tractable can be illustrated by the fact that
often we even do not know whether the problem is in XP, i.e., can be solved
in time O(|I|g(k)) for a computable function g(k). For example, it is non-trivial
to see that the above-mentioned digraph problem is in XP when parameterized
above the |A|/2 bound.

In this paper we introduce the Strictly Above/Below Expectation Method
(SABEM), a novel approach for establishing the fixed-parameter tractability
of maximization problems parameterized above tight lower bounds and mini-
mization problems parameterized below tight upper bounds. The new method
is based on probabilistic arguments and utilizes certain probabilistic inequalities.
We will state the equalities in the next section, and in the subsequent sections
we will apply SABEM to two open problems posed in [15].

Now we give a very brief description of the new method with respect to a
given problem Π parameterized above a tight lower bound or below a tight
upper bound. We first apply some reductions rules to reduce Π to its special
case Π′. Then we introduce a random variable X such that the answer to Π is
yes if and only if X takes, with positive probability, a value greater or equal
to the parameter k. Now using some probabilistic inequalities on X , we derive
upper bounds on the size of no-instances of Π′ in terms of a function of the
parameter k. If the size of a given instance exceeds this bound, then we know
the answer is yes; otherwise, we produce a problem kernel [7]. In many cases,
we obtain problem kernels of polynomial size.

In Section 3, we consider the Linear Ordering problem, a generalization
of the problem discussed above: Given a digraph D = (V, A) in which each
arc ij has a positive integral weight wij , find an acyclic subdigraph of D of
maximum weight. Observe that W/2, where W is the sum of all arc weights,
is a tight lower bound for Linear Ordering. We prove that the problem
parameterized above W/2 is fixed-parameter tractable and admits a quadratic
kernel. Note that this parameterized problem generalizes the parameterized

236 G. Gutin et al.

maximum acyclic subdigraph problem considered in [15]; thus, our result answers
the corresponding open question of [15].

In Section 4, we consider the problem Max Lin-2: Given a system of m
linear equations e1, . . . , em in n variables over GF(2), and for each equation ej

a positive integral weight wj ; find an assignment of values to the n variables
that maximizes the total weight of the satisfied equations. We will see that
W/2, where W = w1 + · · · + wm, is a tight lower bound for Max Lin-2. The
complexity of the problem parameterized above W/2 is open [15]. We prove
that the following three special cases of the parameterized problem are fixed-
parameter tractable: (1) there is a set U of variables such that each equation
has an odd number of variables from U , (2) there is a constant r such that each
equation involves at most r variables, (3) there is a constant ρ such that any
variable appears in at most ρ equations. For all three cases we obtain kernels
with O(k2) variables and equations. We also show that if we allow the weights wj

to be positive reals, the problem is NP-hard already if k = 1 and each equation
involves two variables.

In Section 5, we briefly mention minimization problems parameterized below
tight upper bounds, provide further discussions of problems considered in this
paper and point out to a very recent result obtained using our new method.

2 Probabilistic Inequalities

In our approach we introduce a random variable X such that the answer to the
problem parameterized above a tight lower bound or below a tight upper bound
is yes if and only if X takes with positive probability a value greater or equal
to the parameter k.

In this paper all random variables are real. A random variable is discrete if
its distribution function has a finite or countable number of positive increases.
A random variable X is a symmetric if −X has the same distribution function
as X . If X is discrete, then X is symmetric if and only if Prob(X = a) =
Prob(X = −a) for each real a. Let X be a symmetric variable for which the first
moment E(X) exists. Then E(X) = E(−X) = −E(X) and, thus, E(X) = 0.
The following is easy to prove [17].

Lemma 1. If X is a symmetric random variable and E(X2) <∞, then

Prob(X ≥
√

E(X2)) > 0.

See Sections 3 and 4 for applications of Lemma 1. Unfortunately, often X is not
symmetric, but Lemma 2 provides an inequality that can be used in many such
cases. This lemma was proved by Alon et al. [2]; a weaker version was obtained
by H̊astad and Venkatesh [12].

Lemma 2. Let X be a random variable and suppose that its first, second and
forth moments satisfy E(X) = 0, E(X2) = σ2 > 0 and E(X4) ≤ bσ4, respec-
tively. Then Prob(X > σ

4
√

b
) ≥ 1

44/3b
.

A Probabilistic Approach to Problems 237

Since it is often rather nontrivial to evaluate E(X4) in order to check whether
E(X4) ≤ bσ4 holds, one can sometimes use the following result by Bourgain [5].

Lemma 3. Let f = f(x1, . . . , xn) be a polynomial of degree r in n variables
x1, . . . , xn with domain {−1, 1}. Define a random variable X by choosing a vec-
tor (ε1, . . . , εn) ∈ {−1, 1}n uniformly at random and setting X = f(ε1, . . . , εn).
Then E(X4) ≤ 26r(E(X2))2.

3 Linear Ordering

Let D = (V, A) be a digraph with no loops or parallel arcs in which every arc
ij has a positive weight wij . The problem of finding an acyclic subdigraph
of D of maximum weight, known as Linear Ordering, has applications in
economics [3]. Let n = |V | and consider a bijection α : V → {1, . . . , n}. Observe
that the subdigraphs (V, { ij ∈ A : α(i) < α(j) }) and (V, { ij ∈ A : α(i) >
α(j) }) are acyclic. Since the two subdigraphs contain all arcs of D, at least one
of them has weight at least W/2, where W =

∑
ij∈A wij , the weight of D. Thus,

W/2 is a lower bound on the maximum weight of an acyclic subdigraph of D.
Consider a digraph D where for every arc ij of D there is also an arc ji of the
same weight. Each maximum weight subdigraph of D has weight exactly W/2.
Hence the lower bound W/2 is tight.

Linear Ordering Above Tight Lower Bound (LOALB)
Instance: A digraph D = (V, A), each arc ij has an integral positive
weight wij , and a positive integer k.
Parameter: The integer k.
Question: Is there an acyclic subdigraph of D of weight at least W/2+k,
where W =

∑
ij∈A wij ?

Mahajan, Raman, and Sikdar [15] asked whether LOALB is fixed-parameter
tractable for the special case when all arcs are of weight 1 (i.e., D is unweighted).
In this section we will prove that LOALB admits a kernel with O(k2) arcs;
consequently the problem is fixed-parameter tractable. Note that if we allow
weights to be positive reals, then we can show, similarly to the NP-completeness
proof given in the next section, that LOALB is NP-complete already for k = 1.

Consider the following reduction rule:

Reduction Rule 1. Assume D has a directed 2-cycle iji; if wij = wji delete
the cycle, if wij > wji delete the arc ji and replace wij by wij − wji, and if
wji > wij delete the arc ij and replace wji by wji − wij .

It is easy to check that the answer to LOALB for a digraph D is yes if and
only if the answer to LOALB is yes for a digraph obtained from D using the
reduction rule as long as possible.

Let D = (V, A) be an oriented graph, let n = |V | and W =
∑

ij∈A wij .
Consider a random bijection: α : V → {1, . . . , n} and a random variable

238 G. Gutin et al.

X(α) = 1
2

∑
ij∈A εij(α), where εij(α) = wij if α(i) < α(j) and εij(α) = −wij ,

otherwise. It is easy to see that X(α) =
∑
{wij : ij ∈ A, α(i) < α(j) } −W/2.

Thus, the answer to LOALB is yes if and only if there is a bijection α : V →
{1, . . . , n} such that X(α) ≥ k. Since E(εij) = 0, we have E(X) = 0.

Let W (2) =
∑

ij∈A w2
ij . We will prove the following:

Lemma 4. E(X2) ≥W (2)/12.

Proof. Let N+(i) and N−(i) denote the sets of out-neighbors and in-neighbors
of a vertex i in D. By the definition of X ,

4 · E(X2) =
∑
ij∈A

E(ε2ij) +
∑

ij,pq∈A

E(εijεpq), (1)

where the second sum is taken over ordered pairs of distinct arcs. Clearly,∑
ij∈A E(ε2ij) = W (2). To compute

∑
ij,pq∈A E(εijεpq) we consider the following

cases:

Case 1: {i, j} ∩ {p, q} = ∅. Then εij and εpq are independent and E(εijεpq) =
E(εij)E(εpq) = 0.

Case 2a: |{i, j} ∩ {p, q}| = 1 and i = p. Since the probability that i <
min{j, q} or i > max{j, q} is 2/3, εijεiq = wijwiq with probability 2

3 and εijεiq =
−wijwiq with probability 1

3 . Thus, for every i ∈ V we have
∑

ij,iq∈A E(εijεiq) =
1
3

∑
{wijwiq : j �= q ∈ N+(i) } = 1

3 (
∑

j∈N+(i) wij)2 − 1
3

∑
j∈N+(i) w2

ij .

Case 2b: |{i, j} ∩ {p, q}| = 1 and j = q. Similarly to Case 2a, we obtain∑
ij,pj∈A E(εijεpj) = 1

3 (
∑

i∈N−(j) wij)2 − 1
3

∑
i∈N−(j) w2

ij .

Case 3a: |{i, j} ∩ {p, q}| = 1 and i = q. Since εijεpi = wijwpi with probabil-
ity 1

3 and εijεpi = −wijwpi with probability 2
3 , we obtain

∑
ij,pi∈A E(εijεpi) =

− 1
3

∑
{wijwpi : j ∈ N+(i), p ∈ N−(i) } = − 1

3

∑
j∈N+(i) wij

∑
p∈N−(i) wpi.

Case 3b: |{i, j} ∩ {p, q}| = 1 and j = p. Similarly to Case 3a, we obtain∑
ij,jq∈A E(εijεjq) = − 1

3

∑
i∈N−(j) wij

∑
q∈N+(j) wjq .

Equation (1) and the subsequent computations imply
that 4 · E(X2) = W (2) + 1

3 (Q − R), where Q =∑
i∈V

((∑
j∈N+(i) wij

)2 −∑j∈N+(i) w2
ij +

(∑
j∈N−(i) wji

)2 −∑j∈N−(i) w2
ji

)
,

and R = 2 ·
∑

i∈V

(∑
j∈N+(i) wij

)(∑
j∈N−(i) wji

)
. By the inequality of

arithmetic and geometric means, for each i ∈ V , we have(∑
j∈N+(i)

wij

)2 +
(∑

j∈N−(i)

wji

)2 − 2
(∑

j∈N+(i)

wij

)(∑
j∈N−(i)

wji

)
≥ 0.

Therefore,

Q−R ≥ −
∑
i∈V

∑
j∈N+(i)

w2
ij −

∑
i∈V

∑
j∈N−(i)

w2
ji = −2W (2),

and 4 · E(X2) ≥ W (2) − 2W (2)/3 = W (2)/3, implying E(X2) ≥W (2)/12. ��

A Probabilistic Approach to Problems 239

Now we can prove the main result of this section.

Theorem 1. The problem LOALB admits a kernel with O(k2) arcs.

Proof. Let H be a digraph. We know that the answer to LOALB for H is yes

if and only if the answer to LOALB is yes for a digraph D obtained from H
using Reduction Rule 1 as long as possible. Observe that D is an oriented graph.
Let B be the set of bijections from V to {1, . . . , n}. Observe that f : B → B
such that f(α(v)) = |V | + 1 − α(v) for each α ∈ B is a bijection. Note that
X(f(α)) = −X(α) for each α ∈ B. Therefore, Prob(X = a) = Prob(X = −a)
for each real a and, thus, X is symmetric. Thus, by Lemmas 1 and 4, we have
Prob(X ≥

√
W (2)/12) > 0. Hence, if

√
W (2)/12 ≥ k, there is a bijection

α : V → {1, . . . , n} such that X(α) ≥ k and, thus, the answer to LOALB (for
both D and H) is yes. Otherwise, |A| ≤W (2) < 12 · k2. ��
We close this section by outlining how Theorem 1 can be used to actually find
a solution to LOALB if one exists. Let (D, k) be an instance of LOALB where
D = (V, A) is a directed graph with integral positive arc-weights and k ≥ 1 is an
integer. Let W be the total weight of D. As discussed above, we may assume
that D is an oriented graph. If |A| < 12k2 then we can find a solution, if one
exists, by trying all subsets A′ ⊆ A, and testing whether (V, A′) is acyclic and
has weight at least W/2 + k; this search can be carried out in time 2O(k2). Next
we assume |A| ≥ 12k2. We know by Theorem 1 that (D, k) is a yes-instance; it
remains to find a solution.

For a vertex i ∈ V let dD(i) denote its unweighted degree in D, i.e., the
number of arcs (incoming or outgoing) that are incident with i. Consider the
following reduction rule:

Reduction Rule 2. If there is a vertex i ∈ V with |A| − 12k2 ≥ dD(i), then
delete i from D.

Observe that by applying the rule we obtain again a yes-instance (D − i, k)
of LOALB since D − i has still at least 12k2 arcs. Moreover, if we know a
solution D′

i of (D − i, k), then we can efficiently obtain a solution D′ of (D, k):
if
∑

j∈N+(i) wij ≥
∑

j∈N−(i) wij then we add i and all outgoing arcs ij ∈ A

to D′
i; otherwise, we add i and all incoming arcs ji ∈ A to D′

i. After multiple
applications of Rule 2 we are left with an instance (D0, k) to which Rule 2 cannot
be applied. Let D0 = (V0, A0). We pick a vertex i ∈ V0. If i has a neighbor j
with dD0(j) = 1, then |A0| ≤ 12k2, since |A0| − dD0(j) < 12k2. On the other
hand, if dD0 (j) ≥ 2 for all neighbors j of i, then i has less than 2 ·12k2 neighbors,
since D0 − i has less than 12k2 arcs; thus |A0| < 3 · 12k2. Therefore, as above,
time 2O(k2) is sufficient to try all subsets A′

0 ⊆ A0 to find a solution to the
instance (D0, k). Let n denote the input size of instance (D, k). Rule 2 can
certainly be applied in polynomial time nO(1), and we apply it less than n times.
Hence, we can find a solution to (D, k), if one exists, in time nO(1) + 2O(k2).

Recall that a kernelization reduces in polynomial time an instance (I, k) of
a parameterized problem to a decision-equivalent instance (I ′, k′), its problem
kernel, where k′ ≤ k and the size of I ′ is bounded by a function of k. Solutions

240 G. Gutin et al.

for (I, k) and solutions for (I ′, k′) are possibly unrelated to each other. We call
(I ′, k′) a faithful problem kernel if from a solution for (I ′, k′) we can construct a
solution for (I, k) in time polynomial in |I| and k. Clearly the above (D0, k) is
a faithful kernel.

4 Max Lin-2

Consider a system of m linear equations e1, . . . , em in n variables z1, . . . , zn over
GF(2), and suppose that each equation ej has a positive integral weight wj ,
j = 1, . . . , m. The problem Max Lin-2 asks for an assignment of values to
the variables that maximizes the total weight of the satisfied equations. Let
W = w1 + · · ·+ wm.

To see that the total weight of the equations that can be satisfied is at least
W/2, we describe a simple procedure suggested in [12]. We assign values to the
variables z1, . . . , zn one by one and simplify the system after each assignment.
When we wish to assign 0 or 1 to zi, we consider all equations reduced to the
form zi = b, for a constant b. Let W ′ be the total weight of all such equations.
We set zi := 0, if the total weight of such equations is at least W ′/2, and set
zi := 1, otherwise. If there are no equations of the form zi = b, we set zi := 0.
To see that the lower bound W/2 is tight, consider a system consisting of pairs
of equations of the form

∑
i∈I zi = 1 and

∑
i∈I zi = 0 where both equations have

the same weight.
The parameterized complexity of Max Lin-2 parameterized above the tight

lower bound W/2 was stated by Mahajan, Raman and Sikdar [15] as an open
question:

Max Lin-2 Parameterized Above Tight Lower Bound (LinALB)
Instance: A system S of m linear equations e1, . . . , em in n variables
z1, . . . , zn over GF(2), each equation ei with a positive integral weight
wi, i = 1, 2, . . . , m, and a positive integer k. Each equation ej can be
written as

∑
i∈Ij

zi = bj , where ∅ �= Ij ⊆ {1, . . . , n}.
Parameter: The integer k.
Question: Is there an assignment of values to the variables z1, . . . , zn

such that the total weight of the satisfied equations is at least W/2 + k,
where W =

∑m
i=1 wi?

Let rj be the number of variables in equation ej , and let r(S) = maxm
i=1 rj .

We are not able to determine whether LinALB is fixed-parameter tractable or
not, but we can prove that the following three special cases are fixed-parameter
tractable: (1) there is a set U of variables such that each equation contains an
odd number of variables from U , (2) there is a constant r such that r(S) ≤ r,
(3) there is a constant ρ such that any variable appears in at most ρ equations.

Notice that in our formulation of LinALB it is required that each equation
has a positive integral weight. In a relaxed setting in which an equation may
have any positive real number as its weight, the problem is NP-complete even
for k = 1 and each rj = 2. Indeed, let each linear equation be of the form

A Probabilistic Approach to Problems 241

zu + zv = 1. Then the problem is equivalent to MaxCut, the problem of
finding a cut of total weight at least L in an undirected graph G, where V (G)
is the set of variables, E(G) contains (zu, zv) if and only if there is a linear
equation zu + zv = 1, and the weight of an edge (zu, zv) equals the weight of
the corresponding linear equation. The problem MaxCut is a well-known NP-
complete problem. Let us transform an instance I of MaxCut into an instance
I ′ of the “relaxed” LinALB by replacing the weight wi by w′

i := wi/(L−W/2).
We may assume that L −W/2 > 0 since otherwise the instance is immediately
seen as a yes-instance. Observe that the new instance I ′ has an assignment of
values with total weight at least W ′/2 + 1 if and only if I has a cut with total
weight at least L. We are done.

Let A be the matrix of the coefficients of the variables in S. It is well-known
that the maximum number of linearly independent columns of A equals rankA,
and such a collection of columns can be found in time polynomial in n and m,
using, e.g., the Gaussian elimination on columns [4]. We have the following
reduction rule and supporting lemma.

Reduction Rule 3. Let A be the matrix of the coefficients of the variables in
S, let t = rankA and let columns ai1 , . . . , ait of A be linearly independent. Then
delete all variables not in {zi1 , . . . , zit} from the equations of S.

Lemma 5. Let T be obtained from S by Rule 3. Then T is a yes-instance if
and only if S is a yes-instance. Moreover, T can be obtained from S in time
polynomial in n and m.

Proof. If t = n, set T := S, so assume that t < n. The remark before the lemma
immediately implies that T can be obtained from S in time polynomial in n and
m. Let S′ be a system of equations from S and let T ′ be the corresponding
system of equations from T . It is sufficient to prove the following claim:

There is an assignment of values to z1, . . . , zn satisfying all equations in S′

and falsifying the rest of equations in S if and only if there is an assignment
of values to zi1 , . . . , zit satisfying all equations in T ′ and falsifying the rest of
equations in T .

Let an assignment z0 of values to z = (z1, . . . , zn) satisfy all equations of S′

and falsify the equations of S′′, where S′′ = S \ S′. This assignment satisfies
all equations of R, the system obtained from S by replacing the right hand side
bj of each equation in S′′ by 1 − bj . Note that R has the same matrix A of
coefficients with columns a1, . . . , an. Let a column ai �∈ {ai1 , . . . , ait}. Then, by
definition of ai1 , . . . , ait , ai = λ1a

i1 + · · ·+ λta
it for some numbers λj ∈ {0, 1}.

Knowing the numbers λj , we may eliminate a variable zi from R by replacing ai

with the sum of all columns from {ai1 , . . . , ait} for which λj = 1 and carrying
out the obvious simplification of the system. Thus, we may eliminate from R
all variables zi �∈ {zi1 , . . . , zit} and get yi1a

i1 + · · ·+ yita
it = b′, where b′ is the

right hand side of R and each yj ∈ {0, 1}. Now replace, in the modified R, the
right hand side b′j of each equation corresponding to an equation in S′′ by 1− b′j
obtaining T . Clearly, (yi1 , . . . , yit) satisfies all equations of T ′ and falsifies all
equations in T ′′ = T \ T ′.

242 G. Gutin et al.

Suppose now that (yi1 , . . . , yit) satisfies all equations of T ′ and falsifies all
equations in T ′′. Then (y1, . . . , yn), where yj = 0 if j �∈ {i1, . . . , it}, satisfies
all equations of S′ and falsifies all equations in S′′. Thus, the claim has been
proved. ��
Consider the following reduction rule for LinALB used in [12].

Reduction Rule 4. If we have, for a subset I of {1, 2, . . . , n}, the equation∑
i∈I zi = b′ with weight w′, and the equation

∑
i∈I zi = b′′ with weight w′′, then

we replace this pair by one of these equations with weight w′ +w′′ if b′ = b′′ and,
otherwise, by the equation whose weight is bigger, modifying its new weight to
be the difference of the two old ones. If the resulting weight is 0, we omit the
equation from the system.

If Rule 4 is not applicable to a system we call the system reduced under Rule
4. Note that the problem LinALB for S and the system obtained from S by
applying Rule 4 as long as possible have the same answer.

Let Ij ⊆ {1, . . . , n} be the set of indices of the variables participating in equa-
tion ej , and let bj ∈ {0, 1} be the right hand side of ej . Define a random variable
X =

∑m
j=1 Xj , where Xj = (−1)bj wj

∏
i∈Ij

εi and all the εi are independent uni-
form random variables on {−1, 1} (X was first introduced in [12]). We set zi = 0
if εi = 1 and zi = 1, otherwise, for each i. Observe that Xj = wj if ej is satisfied
and Xj = −wj , otherwise.

Lemma 6. Let S be reduced under Rule 4. The weight of the satisfied equations
is at least W/2 + k if and only if X ≥ 2k. We have E(X) = 0 and E(X2) =∑m

j=1 w2
j .

Proof. Observe that X is the difference between the weights of satisfied and
falsified equations. Therefore, the weight of the satisfied equations equals (X +
W)/2, and it is at least W/2+k if and only if X ≥ 2k. Since εi are independent,
E(
∏

i∈Ij
εi) =

∏
i∈Ij

E(εi) = 0. Thus, E(Xj) = 0 and E(X) = 0 by linearity of
expectation. Moreover,

E(X2) =
m∑

j=1

E(X2
j) +

∑
1≤j �=q≤m

E(XjXq) =
m∑

j=1

w2
j > 0

as E(
∏

i∈Ij
εi ·
∏

i∈Iq
εi) = E(

∏
i∈IjΔIq

εi) = 0 implies E(XjXq) = 0, where IjΔIq

is the symmetric difference between Ij and Iq (IjΔIq �= ∅ due to Rule 4). ��

Lemma 7. Let S be reduced under Rule 4 and suppose that no variable appears
in more than ρ ≥ 2 equations of S. Then E(X4) ≤ 2ρ2(E(X2))2.

Proof. Observe that

E(X4) =
∑

(p,q,s,t)∈[m]4
E(XpXqXsXt), (2)

where [m] = {1, . . . , m}. Note that if the product XpXqXsXt contains a variable
εi in only one or three of the factors, then E(XpXqXsXt) = A ·E(εi) = 0, where

A Probabilistic Approach to Problems 243

A is a polynomial in random variables εl, l ∈ {1, . . . , n} \ {i}. Thus, the only
nonzero terms in (2) are those for which either (1) p = q = s = t, or (2) there
are two distinct integers j, l such that each of them coincides with two elements
in the sequence p, q, s, t, or (3) |{p, q, s, t}| = 4, but each variable εi appears
in an even number of the factors in XpXqXsXt. In Cases 1 and 2, we have
E(XpXqXsXt) = w4

p and E(XpXqXsXt) = w2
j w2

l , respectively. In Case 3,

E(XpXqXsXt) ≤ wpwqwswt ≤ (w2
pw2

q + w2
sw2

t)/2.

Let 1 ≤ j < l ≤ m. Observe that E(XpXqXsXt) = w2
j w2

l in Case 2 for
(4
2

)
= 6

4-tuples (p, q, s, t) ∈ [m]4. In Case 3, we claim that j, l ∈ {p, q, s, t} for at most
4 · (ρ−1)2 4-tuples (p, q, s, t) ∈ [m]4. To see this, first note that w2

pw2
q and w2

sw2
t

appear in our upper bound on E(XpXqXsXt) (with coefficient 1/2). Therefore,
there are only four possible ways for w2

j w2
l to appear in our upper bound, namely

the following: (i) j = p, l = q, (ii) l = p, j = q, (iii) j = s, l = t, and (iv)
l = s, j = t. Now assume, without loss of generality, that j = p and l = q. Since
S is reduced under Rule 4, the product XjXl must have a variable εi of degree
one. Thus, εi must be in Xs or Xt, but not in both (two choices). Assume that
εi is in Xs. Observe that there are at most ρ−1 choices for s. Note that XjXlXs

must contain contain a variable εi′ of odd degree. Thus, εi′ must be in Xt and,
hence, there are at most ρ− 1 choices for t.

Therefore, we have

E(X4) ≤
m∑

j=1

w4
j + (6 + 4(ρ− 1)2)

∑
1≤j<l≤m

w2
jw

2
l < 2ρ2

⎛⎝ m∑
j=1

w2
j

⎞⎠2

.

Thus, by Lemma 6, E(X4) ≤ 2ρ2(E(X2))2. ��
Case 1 of Theorem 2 is of interest since its condition can be checked in polynomial
time due to the following:

Proposition 1. We can check, in polynomial time, whether there exists a set
U of variables such that each equation of S contains an odd number of variables
from U .

Proof. Observe that such a set U exists if and only if the unweighted system S′

of linear equations over GF(2) obtained from S by replacing each bj with 1 has
a solution. Indeed, if U exists, set zj = 1 for each zj ∈ U and zj = 0 for each
zj �∈ U . This assignment is a solution to S′. If a solution to S′ exists, form U
by including in it all variables zj which equal 1 in the solution. We can check
whether S′ has a solution using the Gaussian elimination or other polynomial-
time algorithms, see, e.g., [6]. ��
Now we can prove the following:

Theorem 2. Let S be reduced under Rule 4. The following three special cases
of LinALB are fixed-parameter tractable: (1) there is a set U of variables such

244 G. Gutin et al.

that each equation contains an odd number of variables from U , (2) there is a
constant r such that r(S) ≤ r, (3) there is a constant ρ, such that any variable
appears in at most ρ equations. In each case, there exists a kernel with O(k2)
equations and variables.

Proof. Case 1. Let z0 = (z0
1 , . . . , z0

n) ∈ {0, 1}n be an assignment of values
to the variables z1, . . . , zn, and let −z0 = (z′1, . . . , z

′
n), where z′i = 1 − z0

i if
zi ∈ U and z′i = z0

i , otherwise, i = 1, . . . , n. Observe that f : z0 (→ −z0

is a bijection on the set of assignments and X(−z0) = −X(z0). Thus, X is a
symmetric random variable. Therefore, by Lemmas 1 and 6, Prob(X ≥ √m) ≥
Prob(X ≥

√∑m
j=1 w2

j) > 0. Hence, if
√

m ≥ 2k, the answer to LinALB is

yes. Otherwise, m < 4k2 and after applying Rule 3, we obtain a kernel with
O(k2) equations and variables.

Case 2. Since X is a polynomial of degree at most r, it follows by Lemma
3 that E(X4) ≤ 26rE(X2)2. This inequality and the results in the previ-
ous paragraph show that the conditions of Lemma 2 are satisfied and, thus,

Prob
(

X >

√∑
m
j=1 w2

j

4·8r

)
> 0, implying Prob

(
X >

√
m

4·8r

)
> 0. Consequently,

if 2k − 1 ≤
√

m/(4 · 8r), then there is an assignment of values to the variables
z1, . . . , zn which satisfies equations of total weight at least W/2 + k. Otherwise,
2k− 1 >

√
m/(4 · 8r) and m < 16(2k− 1)264r. After applying Rule 3, we obtain

the required kernel.

Case 3. If ρ = 1, it is easy to find an assignment to the variables that satisfies
all equations of S. Thus, we may assume that ρ ≥ 2. To prove that there exists
a kernel with O(k2) equations, we can proceed as in Case 2, but use Lemma 7
rather than Lemma 3. ��
Remark 1. Note that even if S does not satisfy Case 2 of the theorem, T , the
system obtained from S using Rule 3, may still satisfy Case 2. However, we have
not formulated the theorem for S reduced under Rule 3 as the reduced system
depends on the choice of a maximum linear independent collection of columns
of A.

5 Discussions

We have showed that the new method allows us to prove that some maximization
problems parameterized above tight lower bounds are fixed-parameter tractable.
Our method can also be used for minimization problems parameterized below
tight upper bounds. As a simple example, consider the feedback arc problem:
given a digraph D = (V, A) find a minimum set F of arcs such that D − F
is acyclic. Certainly, |A|/2 is a tight upper bound on a minimum feedback
set and we can consider the parameterized problem which asks whether D has a
feedback arc set with at most |A|/2−k arcs. Fixed-parameter tractability of this
parameterized problem follows immediately from fixed-parameter tractability

A Probabilistic Approach to Problems 245

of LOALB, but we could prove this result directly using essentially the same
approach as for LOALB.

Theorem 2.1 in [1] allows one to obtain a smaller kernel for LOALB on dense
digraphs than given in our paper. The proof of Theorem 2.1 in [1] also uses a
probabilistic approach, but it is more specialized than SABEM.

It would be interesting to obtain applications of our method to other problems
parameterized above tight lower bounds or below tight upper bounds. One such
very recent application is given in [9], where an open problem due to Benny
Chor and described in [16] was solved.

Acknowledgments. Research of Gutin, Kim and Yeo was supported in part
by an EPSRC grant.

References

1. Alon, N.: Voting paradoxes and digraphs realizations. Advances in Applied
Math. 29, 126–135 (2002)

2. Alon, N., Gutin, G., Krivelevich, M.: Algorithms with large domination ratio. J.
Algorithms 50(1), 118–131 (2004)

3. Bang-Jensen, J., Gutin, G.: Digraphs: Theory, Algorithms and Applications, 2nd
edn. Springer, London (2009)

4. Blyth, T.S., Robertson, E.F.: Basic Linear Algebra. Springer, Heidelberg (2000)
5. Bourgain, J.: Walsh subspaces of Lp-product spaces. In: Seminar on Functional

Analysis (1979–1980) (French)
6. Coppersmith, D.: Solving linear systems over GF(2): block Lanczos algorithm.

Lin. Algebra Applic. 192, 33–60 (1993)
7. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg

(1999)
8. Flum, J., Grohe, M.: arameterized Complexity Theory. Texts in Theoretical Com-

puter Science. An EATCS Series, vol. XIV. Springer, Heidelberg (2006)
9. Gutin, G., Kim, E.J., Mnich, M., Yeo, A.: Ordinal Embedding Relaxations Pa-

rameterized Above Tight Lower Bound. Tech. Report arXiv:0907.5427
10. Gutin, G., Rafiey, A., Szeider, S., Yeo, A.: The linear arrangement problem pa-

rameterized above guaranteed value. Theory Comput. Syst. 41, 521–538 (2007)
11. Gutin, G., Szeider, S., Yeo, A.: Fixed-parameter complexity of minimum profile

problems. Algorithmica 52(2), 133–152 (2008)
12. H̊astad, J., Venkatesh, S.: On the advantage over a random assignment. In: Pro-

ceedings of the Thirty-Fourth Annual ACM Symposium on Theory of Computing,
vol. 25(2), pp. 117–149 (2002)

13. Heggernes, P., Paul, C., Telle, J.A., Villanger, Y.: Interval completion with few
edges. In: STOC 2007—Proceedings of the 39th Annual ACM Symposium on
Theory of Computing, pp. 374–381. ACM, New York (2007); Full version appeared
in SIAM J. Comput. 38(5) (2008-2009)

14. Mahajan, M., Raman, V.: Parameterizing above guaranteed values: MaxSat and
MaxCut. J. Algorithms 31(2), 335–354 (1999)

15. Mahajan, M., Raman, V., Sikdar, S.: Parameterizing above or below guaranteed
values. J. of Computer and System Sciences 75(2), 137–153 (2009)

16. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series
in Mathematics and its Applications. Oxford University Press, Oxford (2006)

17. Vovk, V.: Private communication (August 2009)

Polynomial Kernels and Faster Algorithms
for the Dominating Set Problem

on Graphs with an Excluded Minor

Shai Gutner�

School of Computer Science, Tel-Aviv University, Tel-Aviv, 69978, Israel
gutner@tau.ac.il

Abstract. The domination number of a graph G = (V, E) is the mini-
mum size of a dominating set U ⊆ V , which satisfies that every vertex
in V \U is adjacent to at least one vertex in U . The notion of a problem
kernel refers to a polynomial time algorithm that achieves some provable
reduction of the input size. Given a graph G whose domination number is
k, the objective is to design a polynomial time algorithm that produces a
graph G′ whose size depends only on k, and also has domination number
equal to k. Note that the graph G′ is constructed without knowing the
value of k. All the constructions in this paper are of monotone kernels,
that is, the kernel G′ is a subgraph of the input graph G. Problem kernels
can be used to obtain efficient approximation and exact algorithms for
the domination number, and are also useful in practical settings.

In this paper, we present the first nontrivial result for the general case
of graphs with an excluded minor, as follows. For every fixed h, given a
graph G with n vertices that does not contain Kh as a topological minor,
our O(n3.5 + kO(1)) time algorithm constructs a subgraph G′ of G, such
that if the domination number of G is k, then the domination number
of G′ is also k and G′ has at most kc vertices, where c is a constant that
depends only on h. This result is improved for graphs that do not contain
K3,h as a topological minor, using a simpler algorithm that constructs a
subgraph with at most ck vertices, where c is a constant that depends
only on h.

Our results imply that there is a problem kernel of polynomial size for
graphs with an excluded minor and a linear kernel for graphs that are
K3,h-minor-free. The only previous kernel results known for the dom-
inating set problem are the existence of a linear kernel for the planar
case as well as for graphs of bounded genus. Using the polynomial kernel
construction, we give an O(n3.5 + 2O(

√
k)) time algorithm for finding a

dominating set of size at most k in an H-minor-free graph with n vertices.
This improves the running time of the previously best known algorithm.

Keywords: H-minor-free graphs, degenerated graphs, dominating set
problem, fixed-parameter tractable algorithms, problem kernel.

� Research supported in part by an ERC Advanced grant. This paper forms part of a
Ph.D. thesis written by the author under the supervision of Prof. N. Alon and Prof.
Y. Azar in Tel Aviv University.

J. Chen and F.V. Fomin (Eds.): IWPEC 2009, LNCS 5917, pp. 246–257, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Kernels for the Dominating Set Problem on Graphs with an Excluded Minor 247

1 Introduction

The input to a parameterized problem is a pair (x, k), where x is the problem in-
stance, k is the parameter, and n := |(x, k)| denotes the input size. A parameter-
ized problem is fixed-parameter tractable if it can be solved in time f(k) ·nc, for a
computable function f : IN→ IN and a constant c. A kernelization is a polynomial
time computable function that given input (x, k) constructs an equivalent input
(x′, k′), such that k′ ≤ k and |x′| ≤ g(k) for a computable function g : IN → IN.
The image x′ is called the problem kernel of x. In this paper, the notion of a kernel
for the dominating set problem refers to a polynomial time algorithm that given a
graph G whose domination number is k, constructs a graph G′ whose size depends
only on k, and also has domination number equal to k.

It is easy and known that a parameterized problem is kernelizable if and
only if it is fixed-parameter tractable. Thus, a fixed-parameter algorithm for the
dominating set problem gives a trivial kernel whose size is some function of k,
not necessarily a polynomial. Problem kernels can be used to obtain efficient
approximation and exact algorithms for the domination number, and are also
useful in practical settings.

Our main result is a polynomial problem kernel for the case of graphs with an
excluded minor. This is the most general class of graphs for which a polynomial
problem kernel has been established. To the best of our knowledge, the only
previous results are a linear kernel for the planar case as well as for graphs of
bounded genus. For a general introduction to the field of parameterized com-
plexity, the reader is referred to [13],[15], and [23].

Fixed-Parameter Algorithms for the Dominating Set Problem. The
dominating set problem on general graphs is known to be W [2]-complete [13].
This means that most likely there is no f(k) · nc-algorithm for finding a dom-
inating set of size at most k in a graph of size n for any computable function
f : IN → IN and constant c. This suggests the exploration of specific families of
graphs for which this problem is fixed-parameter tractable.

The method of bounded search trees has been used to give an O(8kn) time
algorithm for the dominating set problem in planar graphs [3] and an O((4g +
40)kn2) time algorithm for the problem in graphs of bounded genus g ≥ 1
[14]. The algorithms for planar graphs were improved to O(46

√
34kn) [1], then

to O(227
√

kn) [20], and finally to O(215.13
√

kk + n3 + k4) [17]. Fixed-parameter
algorithms are now known also for map graphs [10] and for constant powers of
H-minor-free graphs [11]. The running time given in [11] for finding a dominating
set of size k in an H-minor-free graph G with n vertices is 2O(

√
k)nc, where c is

a constant depending only on H . In a previous paper with Alon, we proved that
the dominating set problem is fixed-parameter tractable for degenerated graphs,
by establishing an algorithm with running time kO(dk)n for finding a dominating
set of size k in a d-degenerated graph with n vertices [6].

Kernels for the Dominating Set Problem. The reduction rules introduced
by Alber, Fellows, and Niedermeier were the first to establish a linear problem
kernel for planar graphs [4]. The kernel obtained was of size 335k, where k is the

248 S. Gutner

domination number of the graph. Fomin and Thilikos proved that the same rules
of Alber et al. provide a linear kernel of size O(k + g) for graphs of genus g [16].
Chen et al. improved the upper bound for the planar case to 67k [9]. They also
gave the first lower bound, by proving that for any ε > 0, there is no (2 − ε)k
kernel for the planar dominating set problem, unless P = NP . It is interesting
to note that Alber, Dorn, and Niedermeier introduced a reduction rule that
explores the joint neighborhood of l distinct vertices [2], but this general rule
has been applied only for l = 1 and l = 2, in order to prove that the directed
dominating set problem on planar graphs has a linear size kernel. Their reduction
rule generates a constraint, which is encoded by a corresponding gadget in the
graph. Thus, the kernel constructed is not necessarily a subgraph of the input
graph.

Our Results. We present the first nontrivial result that provides a kernel for the
dominating set problem on the general class of H-minor-free graphs. The proofs
that our new reduction rules bring us to a polynomial kernel are based on deep
and new combinatorial results on the structure of dominating sets in graphs.
This gives an O(n3.5 + 2O(

√
k)) time algorithm for finding a dominating set of

size at most k in an H-minor-free graph with n vertices. For graphs that are
K3,h-minor-free, the reduction rules of Alber, Fellows, and Niedermeier [4] are
shown to give a linear problem kernel (the proof is postponed to the full version
of the paper). All the reduction rules described in this paper have the property
that the only modifications made to an input graph are the removal of vertices
and edges. This implies that the graph obtained, as a result of applying the rules,
is a subgraph of the input graph, and this is why we call it a monotone kernel.
The advantages of this approach are its simplicity and the fact that it preserves
monotone properties, like planarity, being H-minor-free, and degeneracy. We
show that the rules of Alber et al. can also be described in such a way.

2 Preliminaries

The paper deals with undirected and simple graphs. Generally speaking, we will
follow the notation used in [8] and [12]. For a graph G = (V, E) and a vertex
v ∈ V , N(v) denotes the set of all vertices adjacent to v (not including v itself),
whereas N [v] denotes N(v) ∪ {v}. This is generalized to the neighborhood of
arbitrary sets by defining N(A) :=

(⋃
v∈A N(v)

)
\ A and N [A] :=

⋃
v∈A N [v].

The graph obtained from G by deleting a vertex v is denoted G−v. The subgraph
of G induced by some set V ′ ⊆ V is denoted by G[V ′].

A dominating set of a graph G = (V, E) is a subset of vertices U ⊆ V , such
that every vertex in V \U is adjacent to at least one vertex in U . The domination
number of a graph G, denoted by γ(G), is the minimum size of a dominating
set. For a set of vertices A, if U ⊆ N [A], then we say that A dominates U .

A graph G is d-degenerated if every induced subgraph of G has a vertex of
degree at most d. A d-degenerated graph with n vertices has less than dn edges.
An edge is said to be subdivided when it is deleted and replaced by a path of
length two connecting its ends, the internal vertex of this path being a new

Kernels for the Dominating Set Problem on Graphs with an Excluded Minor 249

vertex. A subdivision of a graph G is a graph that can be obtained from G by
a sequence of edge subdivisions. If a subdivision of a graph H is the subgraph
of another graph G, then H is a topological minor of G. A graph H is called a
minor of a graph G if it can be obtained from a subgraph of G by a series of
edge contractions.

In this paper, we consider only simple paths, that is, paths of the form x0 −
x1 − · · · − xk, where the xi are all distinct. The vertices x1, . . . , xk−1 are the
inner vertices of the path. The number of edges of a path is its length. Suppose
that G = (V, E) is a graph, U ⊆ V , and r and l are two integers. We denote
by Ûr,l the set of all vertices v ∈ V \ U for which there are r vertex disjoint
paths of length at most l from v to r different vertices of U . To avoid confusion,
we stress the fact that v is the starting vertex of all the paths, but any other
vertex belongs to at most one of the paths. The vertices of Ûr,l are called central
vertices, and when the values of r and l are clear from the context, the simpler
notation Û will be used.

3 Dominating Sets in Degenerated Graphs

Graphs with either an excluded minor or with no topological minor are known
to be degenerated. We will apply the following useful propositions.

Proposition 1. [7,21] There exists a constant c such that, for every h, every
graph that does not contain Kh as a topological minor is ch2-degenerated.

Proposition 2. [22,25,26] There exists a constant c such that, for every h,
every graph with no Kh minor is ch

√
log h-degenerated.

Some of our results for graphs with no topological Kh use the constant from
Proposition 1. The results can be improved for graphs that are Kh-minor-free
using Proposition 2.

A major part of Rule 2, described in Section 5, involves getting a succinct
representation of all sets of some bounded size that dominate a specific set
of vertices in a degenerated graph. This useful representation is achieved by
applying a kO(dk)n time algorithm from [6] for finding a dominating set of size
at most k in a d-degenerated graph with n vertices. We need the following
combinatorial lemma proved in that paper.

Lemma 1. Let G = (V, E) be a d-degenerated graph, and assume that B ⊆ V .
If |B| > (4d + 2)k, then there are at most (4d + 2)k vertices in G that dominate
at least |B|/k vertices of B.

This gives the following useful characterization of dominating sets in degenerated
graphs.

Theorem 1. Suppose that G = (V, E) is a d-degenerated graph with n vertices,
B ⊆ V , and k ≥ 1. There is a kO(dk)n time algorithm for finding a family
F of t ≤ (4d + 2)kk! pairs (Di, Bi) of subsets of V , such that |Di| ≤ k and

250 S. Gutner

|Bi| ≤ (4d + 2)k for every 1 ≤ i ≤ t, for which the following holds. If D ⊆ V
is a subset of size at most k that dominates B, then some i, 1 ≤ i ≤ t, satisfies
that Di ⊆ D and Bi = B \N [Di].

Proof. The algorithm uses the method of bounded search trees. In each step
of the algorithm, B denotes the vertices that still need to be dominated. If
|B| > (4d + 2)k, then denote by R the set of all vertices that dominate at least
|B|/k vertices of B. Every set of size at most k that dominates B must contain a
vertex from R. It follows from Lemma 1 that |R| ≤ (4d+2)k, so we can build our
search tree, by creating |R| branches and checking all possible options of adding
one of the vertices of R to the dominating set. For each such vertex v ∈ R, we
add v to the dominating set, assign B := B\N(v), and remove v from the graph.
We continue until |B| ≤ (4d+ 2)k in all the leaves of the search tree. The search
tree can grow to be of size at most (4d + 2)kk!, and each subset D ⊆ V of size
at most k that dominates the original input set B will correspond to one of the
leaves of this search tree, as needed. ��

Though the dominating set problem has a polynomial time approximation scheme
when restricted to a class of graphs with an excluded minor [18], for our pur-
poses, a fast algorithm that achieves a constant approximation is required. The
following combinatorial Theorem is proved in [6] (note that) denotes disjoint
set union).

Theorem 2. Let s be the constant from Proposition 1. Suppose that the graph
G = (B)W, E) satisfies that W is an independent set, all vertices of W have
degree at least 2, and N(w1) �= N(w2) for every two distinct vertices w1, w2 ∈ W
for which |N(w1)| < h − 1. If G does not contain Kh as a topological minor,
then there exists a vertex b ∈ B of degree at most (3sh)h.

This gives the following constant factor approximation algorithm.

Theorem 3. Let s be the constant from Proposition 1. Suppose that the graph
G = (B)W, E) does not contain Kh as a topological minor, and there is a set
of size k that dominates B. There is an O(nk) time algorithm that finds a set
of size at most (3sh)hk that dominates B.

Proof. Start with a solution D := ∅. Given a graph G = (B)W, E), remove
all edges whose two endpoints are in W and all vertices of W of degree 0 or 1.
As long as there are two different vertices w1, w2 ∈ W with N(w1) = N(w2),
|N(w1)| < h − 1, remove one of them from the graph. As proved in [6], these
modifications can be performed in time O(|E|) and they obviously do not affect
the minimum size of a set that dominates B. It follows from Theorem 2 that
there is a vertex b ∈ B of degree at most (3sh)h. We assign D := D∪N [b], move
the vertices of N(N [b]) ∩B from B to W , and remove the vertices of N [b] from
the graph. The size of the optimal solution decreased by at least one, since every
set that dominates b must contain at least one vertex from N [b]. We continue
as before in the resulting graph, and after at most k steps, the algorithm will
compute a dominating set as needed. ��

Kernels for the Dominating Set Problem on Graphs with an Excluded Minor 251

4 Bounds on the Number of Central Vertices

For graphs with no topological Kh, the following bound applies.

Lemma 2. Let s be the constant from Proposition 1. If the graph G = (V, E)
does not contain Kh as a topological minor, and U ⊆ V is of size k, then for
every l, |Ûh−1,l| ≤ (2sh2l)hlk.

Proof. Denote d = sh2. To bound the size of Û , we initially define the set B
to be equal U , and then in a series of 1 + (h − 1)(l − 1) phases, vertices will
be added to B, until eventually Û ⊆ B. As proved later, after every phase i,
1 ≤ i ≤ 1 + (h− 1)(l − 1), the set B will be of size at most (1 + sh2(2l − 1))ik.
This gives the needed bound for Û , by setting i = 1 + (h− 1)(l − 1).

The following is the description of a phase. At the beginning of phase i, the
set B is of size at most (1 + sh2(2l − 1))i−1k. Consider the vertices of V \B in
some arbitrary order. For each vertex w /∈ B, if there exist two vertex disjoint
paths of length at most l from w to two vertices b1, b2 ∈ B, such that b1 and b2
are not connected, and all the inner vertices of the two paths are not in B, then
add the edge {b1, b2} to G and remove the vertex w from the graph together
with the two paths (the vertices b1 and b2 remain in the graph). Denote the
resulting graph by G′. Obviously, G′[B] does not contain Kh as a topological
minor and therefore has at most d|B| = sh2|B| edges. The number of edges in
the induced subgraph G′[B] is at least the number of deleted vertices divided by
(2l − 1), which means that at most sh2(2l − 1)|B| vertices were deleted so far.
All the vertices that were removed from the graph during this phase are added
to the set B, and now we start the next phase with the original graph G and a
new set B of size at most (1 + sh2(2l − 1))ik.

Consider a vertex v ∈ Û at the beginning of a phase. There are h− 1 vertex
disjoint paths of length at most l from v to a set H of h− 1 different vertices of
U . Assume that when v is considered in the arbitrary order, all the vertices of
these h − 1 paths are still in the graph. We claim that the h − 1 vertices of H
cannot all be adjacent to each other, since otherwise they form a topological Kh

together with v. Thus, if v was not removed from the graph during the phase,
then this can only happen in case there exists a vertex u /∈ B on one of the
h − 1 vertex disjoint paths, which was removed from the graph before v was
considered. This vertex u was later added to B at the end of the phase. There
are h− 1 vertex disjoint paths of length at most l from v to H , and these paths
contain at most (h−1)(l−1) inner vertices. Thus, after at most 1+(h−1)(l−1)
phases, the vertex v will be added to B. ��

Itai, Perl, and Shiloach [19] proved that given a graph G with two distinct vertices
s and t, the problem of deciding whether there exist m vertex disjoint paths of
length at most K from s to t is NP -complete for K ≥ 5 and polynomially
solvable for K ≤ 4. Thus, Ûr,3 can be efficiently computed as follows.

Lemma 3. There is an O(|V |1.5|E|) time algorithm for computing Ûr,3 for a
graph G = (V, E), a subset U ⊆ V , and an integer r.

252 S. Gutner

Proof. Suppose that v ∈ V \ U , and let w be a new vertex that is connected
to all the vertices of U . By definition, v ∈ Ûr,3 if and only if there are r vertex
disjoint paths of length at most 4 from v to w. To determine this, apply the
O(|V |0.5|E|) time algorithm of Itai et al. [19] for finding the maximum number
of vertex disjoint paths of length at most 4 from v to w. ��

5 Problem Kernel for Graphs with an Excluded Minor

The reduction rules described in [4] examine the neighborhood of either a single
vertex or a pair of vertices. In this section we generalize these definitions to a
neighborhood of a set of arbitrary size.

Definition 1. Consider a subset of vertices A ⊆ V of a given graph G = (V, E).
The neighborhood of A is partitioned into four disjoint sets N1(A), N2(A),
N3(A), and N4(A).

– N1(A) := {u ∈ N(A) : N(u) \N [A] �= ∅}
– N2(A) := {u ∈ N(A) \N1(A) : N(u) ∩N1(A) �= ∅}
– N3(A) := {u ∈ N(A) \ (N1(A) ∪N2(A)) : N(u) ∩N2(A) �= ∅}
– N4(A) := N(A) \ (N1(A) ∪N2(A) ∪N3(A))

In the original definitions from [4] the neighborhood is partitioned into only
three parts. Here, the definition of N3(A) is modified and N4(A) takes the role
of the ”inner neighborhood” of A.

Proposition 3. Let D be a dominating set of a graph G. If v /∈ N4(A) ∪ A,
then there is a path of length at most 4 from v to a vertex of D, and the path
does not contain any vertices of A.

Proof. Since v /∈ N4(A) ∪ A, there is a path of length at most 3 from v to a
vertex w /∈ N [A], and the path does not contain any vertices of A. Since D is a
dominating set, this vertex w is adjacent to some vertex d ∈ D. Since w /∈ N [A],
then obviously d /∈ A (it could be that d ∈ N(A)). This gives a path of length
at most 4 from v to d, as needed. ��

We now define our two reduction rules. Rule 2 applies Rule 1 as a subroutine.
Rule 1 removes a vertex u from the graph in case there are two other vertices v
and w such that {u, v, w} is an independent set and N(u) = N(v) = N(w) �= ∅.
Rule 2 examines the ”inner neighborhood” N4(A) of a subset A of size k. By
applying a fixed-parameter algorithm for finding dominating sets in degenerated
graphs, it calculates a small set W that contains all the vertices that dominate
many vertices of N3(A)∪N4(A). More formally, for every set D of size of at most
k that dominates N3(A) ∪N4(A), there is a subset D′ ⊆ D, such that D′ ⊆ W
and (N3(A)∪N4(A)) \N [D′] ⊆ W . In case N4(A) is large, many of the vertices
of N4(A) \W can be removed from the graph. The main goal of this section will
be to analyze graphs for which Rule 2 cannot be applied anymore.

Rule 1: Let A ⊆ V be an independent set of the graph G = (V, E) and assume
that N(v) �= ∅ for every v ∈ A.

Kernels for the Dominating Set Problem on Graphs with an Excluded Minor 253

– Partition the set A into disjoint subsets A1, A2, . . . , At according to the
neighborhoods of vertices of A. That is, every two vertices v, w ∈ Ai satisfy
N(v) = N(w), whereas every two vertices v ∈ Ai and w ∈ Aj for i �= j
satisfy N(v) �= N(w).

– For every 1 ≤ i ≤ t for which |Ai| > 2, let v, w ∈ Ai be two arbitrary distinct
vertices. Remove all the vertices of Ai \ {v, w} from the graph.

Rule 2: Suppose that G = (V, E) is d-degenerated and A ⊆ V is a subset of k

vertices. If |N4(A)| > 2(4dk+3k)k+1
, do the following.

– Let F be a family of t ≤ (4d+2)kk! pairs (Di, Bi) of subsets of V , such that
|Di| ≤ k and |Bi| ≤ (4d+2)k for every 1 ≤ i ≤ t for which the following holds.
If D ⊆ V is a subset of size at most k that dominates N3(A) ∪N4(A), then
some i, 1 ≤ i ≤ t, satisfies that Di ⊆ D and Bi = (N3(A) ∪N4(A)) \N [Di].

– Denote W := A ∪
⋃t

i=1(Di ∪ Bi). Remove all edges between vertices of
(N3(A) ∪N4(A)) \W .

– Apply Rule 1 to the resulting graph and the independent set N4(A) \W .

The next two Lemmas prove the correctness of these rules.

Lemma 4. Let A ⊆ V be an independent set of the graph G = (V, E). Applying
Rule 1 to G and A does not change the domination number.

Proof. It is enough to prove that if {x, y, z} is an independent set, such that
N(x) = N(y) = N(z) �= ∅, then γ(G−z) = γ(G). To prove that γ(G) ≤ γ(G−z),
let D be a dominating set of G − z. If D ∩ N(x) = ∅, then {x, y} ⊆ D, and
therefore (D \ {y}) ∪ {u} is a dominating set of G, for any u ∈ N(x).

To prove that γ(G− z) ≤ γ(G), let D be a minimum dominating set of G. It
cannot be the case that {x, y, z} ⊆ D, since adding one of the vertices of N(x)
to D \ {y, z} results in a smaller dominating set. We can assume, without loss
of generality, that z /∈ D, and therefore D is a dominating set of G− z. ��

Lemma 5. Suppose that G = (V, E) is d-degenerated and A ⊆ V is a subset
of k vertices. In case Rule 2 is applied to G and A, then at least one vertex is
removed from the graph, whereas the domination number does not change.

Proof. Using the notations of Rule 2, denote by G′ the graph obtained from G
by removing all edges between vertices of (N3(A)∪N4(A))\W , just before Rule
1 is applied. It follows from Lemma 4 that in order to verify that Rule 2 does not
change the domination number, it is enough to prove that γ(G′) = γ(G). It is
obvious that γ(G′) ≥ γ(G), since removing edges cannot decrease the domination
number. We now prove that γ(G′) ≤ γ(G). Let D be a minimum dominating set
of G, and let D′ ⊆ D be a subset of minimum size that dominates N3(A)∪N4(A).
This implies that D′ ⊆ A∪N2(A)∪N3(A)∪N4(A) and N [D′] ⊆ N [A]. Obviously
|D′| ≤ k, since otherwise (D \ D′) ∪ A would be a smaller dominating set of
G. Thus, from Theorem 1, some i, 1 ≤ i ≤ t, satisfies that Di ⊆ D′ and
Bi = (N3(A) ∪N4(A)) \N [Di]. To prove that D is also a dominating set of G′,
we need to show that the vertices of (N3(A)∪N4(A))\W are dominated by D in
G′, since the neighborhood of all other vertices remained the same. Assume that

254 S. Gutner

v ∈ (N3(A)∪N4(A)) \W . Since Bi ⊆W , it follows that v /∈ Bi, and therefore v
is dominated in G by some vertex d′ ∈ Di. This means that v is still dominated
by d′ in G′, since Di ⊆ W . This completes the proof that Rule 2 does not change
the domination number.

We now prove that when Rule 2 is applied, at least one vertex of N4(A) \W
is removed from the graph G′. First, note that (N3(A) ∪ N4(A)) \ W is an
independent set, and therefore N4(A) \W is also independent. Given a vertex
v ∈ N4(A) \W , obviously N(v) ⊆ A ∪ N3(A) ∪ N4(A) and N(v) �= ∅, since it
is adjacent to at least one vertex of A. The important property of v is that it
is adjacent in G′ only to vertices of W , since all other edges incident at v were
removed. Since W = A∪

⋃t
i=1(Di∪Bi), it follows that |W | ≤ k+(4d+2)kk!(k+

(4d + 2)k)) = (4d + 3)k(4d + 2)kk! + k. It is easy to verify that 2 · 2|W | + |W | ≤
2|W |+2 ≤ 2(4dk+3k)k+1

< N4(A). Thus, |N4(A) \W | ≥ |N4(A)| − |W | > 2 · 2|W |.
By the pigeonhole principle, we conclude that there are three distinct vertices
x, y, z ∈ N4(A) \W , such that N(x) = N(y) = N(z) �= ∅. One of these three
vertices will be removed by Rule 1. ��

The following Lemma is useful for showing that given a graph with an excluded
minor and a dominating set D of size k, there exists a subset of vertices U
whose size is linear in k, such that all vertices not in D∪U belong to the ”inner
neighborhood” N4(A) of a subset A ⊆ D ∪ U of constant size.

Lemma 6. Let D be a dominating set of the graph G = (V, E). If r ≥ 1 and
v /∈ D ∪ D̂r+1,4, then there exists a subset A ⊆ D ∪ D̂r+1,3 of size at most 40r5,
such that v ∈ N4(A).

Proof. To simplify the notation, the symbol D̂ will refer to D̂r+1,3. Let q be the
maximum number of disjoint paths of length at most 4 from v to q different
vertices of D. Since v /∈ D ∪ D̂r+1,4, it follows from the definition of D̂r+1,4
that q ≤ r. Construct q such paths of length at most 4, whose total length is
the minimum possible. Denote by B the set of all vertices that appear in these
q paths and call the inner vertices of these paths B′ := B \ (D ∪ {v}). Assign
t := 3r(r + r2 + r4) + 1, and assume, by contradiction, that v /∈ N4(A) for all
subsets A ⊆ D ∪ D̂ of size at most 4(r + t− 1). Note that 4(r + t− 1) ≤ 40r5.

We will now construct t paths of length at most 4 and a series of t subsets
A1 ⊆ A2 ⊆ · · · ⊆ At of size at most 4(r+ t−1). Let A1 := B∩ (D∪ D̂). For each
i from 1 to t, do the following. According to our assumption v /∈ N4(Ai) ∪ Ai,
which means by Proposition 3 that there is a path of length at most 4 from v to
a vertex of D, and this path does not contain any vertices from Ai. Denote by Pi

the vertices of a minimum length path, which satisfies these properties. Define
Ai+1 := Ai∪ (Pi ∩ (D∪ D̂)) and proceed to the next iteration to construct Pi+1.

Note that |A1| ≤ 4r and |Ai+1| ≤ |Ai|+ 4. Thus, all the sets Ai are of size at
most 4r+4(t−1) = 4(r+ t−1). After completing this process, we get t paths of
length at most 4 that start at v. Note that a vertex u ∈ D∪ D̂ can participate in
at most one of these paths, since once it appears in a path Pi, it is immediately
added to Ai+1. Because of the maximality of q, each path Pi must contain a

Kernels for the Dominating Set Problem on Graphs with an Excluded Minor 255

vertex of B′. From now on, we will consider the last appearance of a vertex from
B′ in a path Pi as the starting point of the path. This means that all the paths
Pi start at a vertex of B′ and are of length at most 3. Since |B′| ≤ 3q ≤ 3r and
the number of paths is t = 3r(r + r2 + r4) + 1, by the pigeonhole principle there
must be a vertex b ∈ B′ that is a starting point of r + r2 + r4 +1 paths of length
at most 3. We now prove that b ∈ D̂. There are three possible cases.

Case 1: The vertex b starts at least r + 1 paths of length 1. This means that b
is adjacent to r + 1 vertices of D and therefore b ∈ D̂.

Case 2: The vertex b starts at least r2 +1 paths of length 2. It follows from the
construction that all these paths are from b to a different vertex of D. A vertex
u cannot be the middle vertex of more than r of these paths, since this would
imply that u ∈ D̂, but as mentioned before, vertices of D̂ can appear in at most
one path. Thus, there are at least r + 1 middle vertices that are part of r + 1
vertex disjoint paths of length 2 from b to D, which implies that b ∈ D̂.

Case 3: The vertex b starts at least r4 + 1 paths of length 3. The vertex b is
the first vertex of these paths, whereas the fourth vertex is always a different
vertex from D. Denote by U2 and U3 the vertices that appear as a second and
third vertex on one of these paths, respectively. Recall that when creating the
paths Pi, we always chose a path of minimum length that leads to a vertex of
D. This implies that U2 ∩ U3 = ∅. As before, vertices of U2 and U3 can belong
to at most r2 and r paths, respectively. The total number of paths is r4 +1, and
therefore |U2| ≥ r2 + 1. Since a vertex of U3 belongs to at most r paths, we can
find r + 1 vertices of U2 that can be matched to r + 1 different vertices of U3 in
a way which would give r + 1 vertex disjoint paths of length 3 from b to r + 1
different vertices of D. This implies that b ∈ D̂.

In all three cases b ∈ D̂, which means that b ∈ A1. Thus, b cannot belong to
any path Pi, and we get a contradiction. ��

Theorem 4. For every fixed h, given a graph G with n vertices that does not
contain Kh as a topological minor, there is an O(n3.5 + kO(1)) time algorithm
that constructs a subgraph G′ of G, such that if γ(G) = k, then γ(G′) = k and
G′ has at most kc vertices, where c is a constant that depends only on h.

Proof. Let s be the constant from Proposition 1. Suppose that the graph G
contains no Kh as a topological minor and γ(G) = k > 1. To construct the kernel,
we perform at most n iterations, as follows. The iteration starts by applying
the O(nk) time approximation algorithm described in Theorem 3 in order to
compute a dominating set D of size at most (3sh)hk. It followed from Lemmas 2
and 3 that the set D̂h−1,3 is of size at most (6sh2)3h|D|, and can be computed in
time O(n2.5). In case there is a subset A ⊆ D∪D̂h−1,3 of size 40(h−2)5, for which
the conditions of Rule 2 are satisfied, then the rule is applied. It follows from
Lemma 5 that at least one vertex is removed from the graph and the domination
number does not change. We continue to the next iteration with the resulting
graph. Upon termination, this process computes a kernel G′ with γ(G′) = k,
and a dominating set D of size at most (3sh)hk.

256 S. Gutner

As for the kernel size, Lemma 2 implies that |D̂h−1,4| = O(k), whereas from
Lemma 6 we know that if v /∈ D ∪ D̂h−1,4, then there exists a subset A ⊆
D∪ D̂h−1,3 of size at most 40(h−2)5, such that v ∈ N4(A). The number of such
subsets A is kO(1) and it follows from Lemma 5 that each subset A satisfied that
N4(A) = O(1), since Rule 2 cannot be applied anymore. We conclude that the
number of vertices not in D ∪ D̂h−1,4 is kO(1), and the theorem is proved. ��

Theorem 5. There is an O(n3.5+2O(
√

k)) time algorithm for finding a dominat-
ing set of size at most k in an H-minor-free graph with n vertices that contains
such a set.

Proof. Construct a problem kernel G′ using Theorem 4 and apply the 2O(
√

k)nc

time algorithm of Demaine et al. [11] on the graph G′. ��

6 Concluding Remarks and Open Problems

– An interesting open problem, stated in a preliminary version of this paper
is to decide whether there is a polynomial size kernel for the dominating
set problem on degenerated graphs [5]. This problem has been very recently
resolved by Philip et al. [24], who exhibited a polynomial kernel in Ki,j-free
and degenerated graphs. In their reduction, the kernel constructed is not a
monotone kernel, and therefore cannot be used for obtaining Theorem 5.

– Another challenging question is to characterize the families of graphs for
which the dominating set problem admits a linear kernel. We cannot rule
out the possibility that a linear kernel can be obtained for graphs with any
fixed excluded minor.

– A kernel is called an induced kernel in case the only modifications made to
an input graph are the removal of vertices. The following variant of Rule 2
gives a polynomial induced kernel. When Rule 2 is applied to an input graph
G = (V, E), a set of edges E′ and later a set of vertices V ′ are removed from
the graph. In the modified rule, the resulting graph is replaced by the induced
subgraph G[V \ V ′]. The details are deferred to the full version.

References

1. Alber, J., Bodlaender, H.L., Fernau, H., Kloks, T., Niedermeier, R.: Fixed param-
eter algorithms for DOMINATING SET and related problems on planar graphs.
Algorithmica 33(4), 461–493 (2002)

2. Alber, J., Dorn, B., Niedermeier, R.: A general data reduction scheme for domina-
tion in graphs. In: Wiedermann, J., Tel, G., Pokorný, J., Bieliková, M., Štuller, J.
(eds.) SOFSEM 2006. LNCS, vol. 3831, pp. 137–147. Springer, Heidelberg (2006)

3. Alber, J., Fan, H., Fellows, M.R., Fernau, H., Niedermeier, R., Rosamond, F.A.,
Stege, U.: A refined search tree technique for dominating set on planar graphs. J.
Comput. Syst. Sci. 71(4), 385–405 (2005)

4. Alber, J., Fellows, M.R., Niedermeier, R.: Polynomial-time data reduction for dom-
inating set. Journal of the ACM 51(3), 363–384 (2004)

Kernels for the Dominating Set Problem on Graphs with an Excluded Minor 257

5. Alon, N., Gutner, S.: Kernels for the dominating set problem on graphs with an
excluded minor. Electronic Colloquium on Computational Complexity (ECCC)
15(066) (2008)

6. Alon, N., Gutner, S.: Linear time algorithms for finding a dominating set of fixed
size in degenerated graphs. Algorithmica 54(4), 544–556 (2009)

7. Bollobás, B., Thomason, A.: Proof of a conjecture of Mader, Erdös and Hajnal on
topological complete subgraphs. Eur. J. Comb. 19(8), 883–887 (1998)

8. Bondy, J.A., Murty, U.S.R.: Graph theory with applications. American Elsevier
Publishing Co., Inc., New York (1976)

9. Chen, J., Fernau, H., Kanj, I.A., Xia, G.: Parametric duality and kernelization:
lower bounds and upper bounds on kernel size. SIAM J. Comput. 37(4), 1077–
1106 (2007)

10. Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Fixed-parameter al-
gorithms for (k, r)-center in planar graphs and map graphs. ACM Transactions on
Algorithms 1(1), 33–47 (2005)

11. Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Subexponential pa-
rameterized algorithms on bounded-genus graphs and H-minor-free graphs. Journal
of the ACM 52(6), 866–893 (2005)

12. Diestel, R.: Graph theory, 3rd edn. Graduate Texts in Mathematics, vol. 173.
Springer, Berlin (2005)

13. Downey, R.G., Fellows, M.R.: Parameterized complexity. Monographs in Computer
Science. Springer, New York (1999)

14. Ellis, J.A., Fan, H., Fellows, M.R.: The dominating set problem is fixed parameter
tractable for graphs of bounded genus. J. Algorithms 52(2), 152–168 (2004)

15. Flum, J., Grohe, M.: Parameterized complexity theory. Texts in Theoretical Com-
puter Science. An EATCS Series. Springer, Berlin (2006)

16. Fomin, F.V., Thilikos, D.M.: Fast parameterized algorithms for graphs on surfaces:
Linear kernel and exponential speed-up. In: Dı́az, J., Karhumäki, J., Lepistö, A.,
Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 581–592. Springer, Heidel-
berg (2004)

17. Fomin, F.V., Thilikos, D.M.: Dominating sets in planar graphs: Branch-width and
exponential speed-up. SIAM J. Comput. 36(2), 281–309 (2006)

18. Grohe, M.: Local tree-width, excluded minors, and approximation algorithms.
Combinatorica 23(4), 613–632 (2003)

19. Itai, A., Perl, Y., Shiloach, Y.: The complexity of finding maximum disjoint paths
with length constraints. Networks 12(3), 277–286 (1982)

20. Kanj, I.A., Perkovic, L.: Improved parameterized algorithms for planar dominating
set. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 399–410.
Springer, Heidelberg (2002)

21. Komlós, J., Szemerédi, E.: Topological cliques in graphs II. Combinatorics. Prob-
ability & Computing 5, 79–90 (1996)

22. Kostochka, A.V.: Lower bound of the Hadwiger number of graphs by their average
degree. Combinatorica 4(4), 307–316 (1984)

23. Niedermeier, R.: Invitation to fixed-parameter algorithms. Oxford University Press,
Oxford (2006)

24. Philip, G., Raman, V., Sikdar, S.: Solving dominating set in larger classes of graphs:
FPT algorithms and polynomial kernels. In: Fiat, A., Sanders, P. (eds.) ESA 2009.
LNCS, vol. 5757, pp. 694–705. Springer, Heidelberg (2009)

25. Thomason, A.: An extremal function for contractions of graphs. Math. Proc. Cam-
bridge Philos. Soc. 95(2), 261–265 (1984)

26. Thomason, A.: The extremal function for complete minors. J. Comb. Theory, Ser.
B 81(2), 318–338 (2001)

Partitioning into Sets of Bounded Cardinality

Mikko Koivisto�

Helsinki Institute for Information Technology HIIT,
Department of Computer Science, University of Helsinki,

P.O.Box 68, FI-00014 University of Helsinki, Finland
mikko.koivisto@cs.helsinki.fi

Abstract. We show that the partitions of an n-element set into k mem-
bers of a given set family can be counted in time O((2−ε)n), where ε > 0
depends only on the maximum size among the members of the family.
Specifically, we give a simple combinatorial algorithm that counts the
perfect matchings in a given graph on n vertices in time O(poly(n)ϕn),
where ϕ = 1.618 . . . is the golden ratio; this improves a previous bound
based on fast matrix multiplication.

1 Introduction

The generic set partitioning problem is as follows. Given an n-element universe
N , a family F of subsets of N , and an integer k, decide whether there exists a
partition of N into k members of F, that is, pairwise disjoint sets S1, S2, . . . , Sk

such that the union S1 ∪ S2 ∪ · · · ∪ Sk equals N ; we call the set {S1, S2, . . . , Sk}
a k-partition, or simply a partition, and the tuple (S1, S2, . . . , Sk) an ordered
k-partition or just an ordered partition.

Oftentimes, the family F is given implicitly by a description of size only poly-
nomial in n. For example, in the graph coloring problem, F consists of the in-
dependent sets of a graph with vertex set N , while in the domatic partitioning
problem, F consists of the dominating sets; these problems are NP-hard. In gen-
eral, however, the size of the input may already be of order 2n, and the best one
can hope for is an algorithm with complexity within a polynomial factor of 2n.
Fairly recently [2], such a bound was indeed achieved via solving a somewhat
harder-looking problem, namely that of counting all valid partitions. An intrigu-
ing question is, whether the base of the exponent can be lowered to 2 − ε for
some ε > 0, given that the size of the set family F is within a polynomial factor
of cn for some c < 2.

In this paper, we answer the question affirmatively in the special case where
the given set family consists of sets whose cardinality is bounded by a constant.
Throughout the paper the O∗ notation suppresses a factor polynomial in n.

Theorem 1. Given an n-element universe N , a number k, and a family F of
subsets of N , each of cardinality at most r, the partitions of N into k members of
F can be counted in time O∗(|F| 2nλr

)
, where λr = (2r−2)

/√
(2r − 1)2 − 2 ln 2.

� This research was supported in part by the Academy of Finland, Grant 125637.

J. Chen and F.V. Fomin (Eds.): IWPEC 2009, LNCS 5917, pp. 258–263, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Partitioning into Sets of Bounded Cardinality 259

Previously, such an improved bound has been found in the special case where
F contains only 2-sets, that is, pairs {u, v} ⊆ N . Then a valid partitioning
corresponds to a perfect matching in a graph with vertex set N and edge set
F. While the existence of a perfect matching can be decided in polynomial
time, the counting version is #P-complete [6]. The fastest known exact algo-
rithm is by Björklund and Husfeldt [1], inspired by Williams’s construction [7]
and running in time O∗(2nω/3

)
where ω is the exponent of matrix multiplica-

tion. The Coppersmith–Winograd algorithm [4] shows ω < 2.38 and, hence, the
bound O(1.732n) [1]. The bound in Theorem 1 turns out to be slightly better,
O(1.653n). In fact, the bound in Theorem 1 is somewhat crude for small r, and
a specialized analysis yields yet a better bound.

Theorem 2. The perfect matchings in a given graph on n vertices can be counted
in time O∗(ϕn

)
, where ϕ = (1 +

√
5)/2 = 1.618 . . . is the golden ratio.

Note, however, that if ω = 2, as conjectured by many, then the matrix multipli-
cation algorithm remains faster, running in time O(1.588n).

We remark that the coefficient λr in Theorem 1 is only slightly larger than
(2r − 2)/(2r − 1) = 1 − 1/(2r − 1) and amounts to a rather moderate growth
of the bound with r. For example, for r = 3, 4, 5, and 6, Theorem 1 gives the
bounds O∗(|F| cn) with c = 1.769, 1.827, 1.862, and 1.885, respectively.

We will prove Theorems 1 and 2 (in Section 2) by giving a simple variant
of the following folklore dynamic programming algorithm. For any S ⊆ N and
j = 1, 2, . . . , k, let fj(S) be the number of ordered partitions of S into j members
of F. Then we have the recurrence

f1(S) = [S ∈ F] , fj(S) =
∑
X⊆S

fj−1(S \X) [X ∈ F] for j > 1 , (1)

where [P] is 1 if P is true and 0 otherwise. We note that by dynamic program-
ming, the number of k-partitions of N , given as fk(N)/k!, can be computed in
time O∗(|F| 2n), or for large |F| better in time O∗(3n). The bound can be re-
duced to O∗(2n) by implementing the dynamic programming step (1) using fast
subset convolution [3].1

To lower the base of the exponent below 2, we will apply an innocent-
looking modification, stemming from the idea of counting an ordered partition
(S1, S2, . . . , Sk) only if its members are lexicographically ordered. It turns out
that this simple constraint yields a substantial exponential speedup when the
family F contains only sets whose cardinality is at most some constant r.

Finally, we note that our dynamic programming algorithm and the runtime
analysis readily generalize to arbitrary commutative semirings. Thus, the bounds
in Theorems 1 and 2 extend, for example, to the following variant in the min–
sum semiring. Given a family of subsets of N , each member S associated with a
real-valued cost f(S), find the minimum total cost f(S1) + f(S2) + · · ·+ f(Sk)
over the k-partitions (S1, S2, . . . , Sk), each Si from the given family.
1 If dynamic programming is replaced altogether by an inclusion–exclusion algorithm,

the running times O∗(|F| 2n) and O∗(3n) are achieved in polynomial space [2,3].

260 M. Koivisto

2 Proof of Theorems 1 and 2

We modify the dynamic programming algorithm (1) to consider the members
of a partition in a specific order. To this end, let N be an n-element set and
F a family of subsets of N , each of size at most r. Fix a linear order < on N
and label the elements of N by a1 < a2 < · · · < an. For any nonempty subset
S ⊂ N the minimum in S, min S, is defined with respect to < in the obvious
way. Furthermore, define a lexicographic order, ≺, among the subsets of N , and
hence in F, with respect to the order < on N in the usual manner; for instance,
{a1, a2, a5} ≺ {a1, a3, a4} ≺ {a2, a4}.

While we are interested in counting the partitions of N into k members of F, it
turns out to be useful to consider ordered k-partitions (S1, S2, . . . , Sk) of N with
the members from F and listed in the lexicographic order, that is, Si ≺ Sj when
i < j. We denote by Lk the set of such lexicographically ordered k-partitions,
treating N and F as fixed. Since for any k-partition of N , the ordering of its
members into the lexicographic order is unique, we have the following.

Lemma 1. The number of partitions of N into k members of F equals the car-
dinality of Lk.

The lexicographic order implies certain constraints on the tuples
(S1, S2, . . . , Sk) ∈ Lk, which amount to a reduction in the number of
subsets of N that need be considered by a dynamic programming algorithm
similar to (1). For example, the first set S1 obviously must contain the smallest
element of N . In general, the ith set Si must contain the smallest element of N
not contained by the preceding sets S1, S2, . . . , Si−1. Let Rj denote the family of
sets S that can be expressed as the union of j such sets S1, S2, . . . , Sj . Formally,
we define the family of relevant sets Rj , for j = 1, 2, . . . , n, by the recurrence

R1 = {X : X ∈ F, min N ∈ X} ;
Rj = {Y ∪X : Y ∈ Rj−1, X ∈ F, Y ∩X = ∅, min N \ Y ∈ X} .

We proceed by defining, for each j = 1, 2, . . . , n, a set function gj that associates
any set S ⊆ N with the number of ordered partitions (S1, S2, . . . , Sj) of S into
j members of F such that the following condition holds:

min N \ (S1 ∪ S2 ∪ · · · ∪ Si−1) ∈ Si for all i = 1, 2, . . . , j . (2)

We note that for S = N , this condition is satisfied if and only if (S1, S2, . . . , Sj)
is a lexicographically ordered partition of N . Thus, gk(N) equals the cardinality
of Lk. Our modified dynamic programming algorithm evaluates gk(N) using the
following recurrence.

Lemma 2. Let S ⊆ N . Then

g1(S) = [S ∈ R1] = [a1 ∈ S] (3)

and

gj(S) =
∑
Y ⊆S

gj−1(Y) [S \ Y ∈ F] [min N \ Y ∈ S \ Y] . (4)

Partitioning into Sets of Bounded Cardinality 261

Proof. The first equality (3) holds by the definition of R1.
We then prove the recurrence (4). For any Y ⊆ S, define gj(S; Y) as the

number of ordered partitions (S1, S2, . . . , Sj) of S into j members of F satisfying
(2) and S1 ∪ S2 ∪ · · · ∪ Sj−1 = Y . We note that

gj(S; Y) = gj−1(Y) [S \ Y ∈ F] [min N \ Y ∈ S \ Y] .

Because every (S1, S2, . . . , Sj) determines a unique Y , we have gj(S) =∑
Y ⊆S gj(S; Y). ��

It remains to analyze the time complexity of computing the values gj(S) for all
relevant sets S via the recurrence (3–4). Straightforward induction shows that
each gj vanishes outside Rj . Thus, the number of additions, multiplications and
basic set operations of a straightforward implementation that first computes
g1(S) for all S ∈ R1, then g2(S) for all S ∈ R2, and so on, is proportional to(

|R1|+ |R2|+ · · ·+ |Rk|
)
|F| . (5)

In the remainder of this section we derive upper bounds for this expression.
We begin with the special case where every member of the set family contains

exactly 2 elements. In this case we have |Rj | ≤
(
n−j

j

)
, because each set in Rj is

of size 2j and must contain the first j elements a1, a2, . . . , aj and exactly j other
elements from {aj+1, aj+2, . . . , an}. Now, we make use of the following well-
known relations2 of the diagonal sums of the binomial coefficients, the Fibonacci
sequence (Fn), and the golden ratio ϕ = (1 +

√
5)/2:

n∑
j=0

(
n− j

j

)
= Fn+1 =

(
ϕn+1 − (1 − ϕ)n+1

)/√
5 < ϕn , (6)

This suffices for proving the bound O∗(ϕn) for (5), and hence Theorem 2.
It is easy to generalize the bound O∗(ϕn) to the case where every mem-

ber of the set family contains at most 2 elements. In this case we have |Rj | ≤∑2j
s=j

(
n−j
s−j

)
≤
∑j

t=0

(
n−t

t

)
, because each set in Rj is of size at most 2j and must

contain the first j elements a1, a2, . . . , aj and at most j other elements from
{aj+1, aj+2, . . . , an}. Thus, by (6), the sum |R1| + |R2| + · · · + |Rk| is at most
kϕn.

We finally turn to the case of an arbitary size bound r. In this case we have
|Rj | ≤

∑rj
s=j

(
n−j
s−j

)
, because each set in Rj is of size at most rj and must con-

tain the first j elements a1, a2, . . . , aj and 0 to rj − j other elements from
{aj+1, aj+2, . . . , an}. Now, the above analysis for r = 2 seems not to extend
to r > 2, as it relies heavily on the special property of the diagonal sums of
binomial coefficients. We therefore resort to a somewhat less accurate analysis,
making use of the following specialization of the Hoeffding bounds:

2 The author was pointed to these relations by two anonymous reviewers.

262 M. Koivisto

Theorem 3 (Hoeffding [5]). Let X1, X2, . . . , Xn be independent Bernoulli tri-
als with Pr{Xi = 1} = μi for i = 1, 2, . . . , n. Let X =

∑n
i=1 Xi, μ =

∑n
i=1 μi,

and 0 < t < 1− μ/n. Then

Pr{X ≤ μ− tn} ≤ exp[−2nt2] .

Substituting μi ≡ 1/2 and t = 1/2− k/n gives us a useful bound:

Corollary 1. If n > 2k, then

k∑
j=0

(
n

j

)
≤ 2n exp

[
− 2n

(1
2
− k

n

)2]
.

We are now ready to prove the following lemma, which completes the proof of
Theorem 1.

Lemma 3. Let n and r be natural numbers. Then
jr∑

s=j

(
n− j

s− j

)
< 2nλr , with λr =

r − 1√
(r − 1/2)2 − ln

√
2

.

Proof. We consider two cases. First, suppose jr − j ≥ (n − j)/2. Then j ≥
n/(2r − 1), and we can bound the sum of the binomial coefficients above by
2n−j ≤ 2n(2r−2)/(2r−1); the claim follows.

In the remaining case, suppose jr − j < (n − j)/2. Now it is handy to use
	 = r − 1. By Corollary 1,

j�∑
i=0

(
n− j

i

)
≤ 2n−j exp

[
− 2(n− j)

(
1
2
− j	

n− j

)2]
.

Letting n− j = xn, with 2	/(2	 + 1) ≤ x ≤ 1, and

ψ(x) = x

[
ln 2− 2

(
1
2

+ 	− 	

x

)2]

the bound becomes simply exp
[
nψ(x)

]
.

We next bound ψ(x) in the relevant range. The derivative of ψ(x) is

ψ′(x) = ln 2− 2

(
1
2

+ 	− 	

x

)2

− x4

(
1
2

+ 	− 	

x

)
	

x2 .

In terms of a new variable y = 	/x, write

ψ′(/y) = ln 2− 2

(
1
2

+ 	− y

)2

− 4

(
1
2

+ 	− y

)
y

= ln 2− 2

(
1
2

+ 	− y

)(
1
2

+ 	 + y

)
.

Partitioning into Sets of Bounded Cardinality 263

Solving for ψ′(/y) = 0 yields

(ln 2)/2−
(

1
2

+ 	

)2

+ y2 = 0

y2 =

(
1
2

+ 	

)2

− ln
√

2 .

Thus, ψ(x) is maximized at

x̃ =
	√

(1/2 +)2 − ln
√

2
>

	

1/2 + 	
=

2	

2	 + 1
.

Now we may bound ψ(x̃) as

ψ(x̃) < x̃ ln 2 =
	 ln 2√

(1/2 +)2 − ln
√

2
.

Recalling 	 = r − 1 we arrive at the claimed bound. ��

Acknowledgements

The author is grateful to Andreas Björklund, Thore Husfeldt, and Petteri Kaski
for valuable discussions, and to four anonymous reviewers for suggestions that
helped to improve the presentation.

References

1. Björklund, A., Husfeldt, T.: Exact algorithms for Exact Satisfiability and Number
of Perfect Matchings. Algorithmica 52, 226–249 (2008)

2. Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion–exclusion.
SIAM J. Comput., Special Issue for FOCS 2006 (to appear)

3. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets Möbius: fast
subset convolution. In: 39th ACM Symposium on Theory of Computing (STOC
2007), pp. 67–74. ACM Press, New York (2007)

4. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions.
J. Symb. Comput. 9, 251–280 (1990)

5. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J.
American Stat. Assoc. 58, 13–30 (1963)

6. Valiant, L.G.: The complexity of computing the permanent. Theor. Comput. Sci. 8,
189–201 (1979)

7. Williams, R.: A new algorithm for optimal 2-constraint satisfaction and its implica-
tions. Theor. Comput. Sci. 348, 357–365 (2005)

Two Edge Modification Problems without
Polynomial Kernels

Stefan Kratsch and Magnus Wahlström

Max-Planck-Institut für Informatik, 66123 Saarbrücken, Germany

Abstract. Given a graph G and an integer k, the Π Edge Comple-
tion/Editing/Deletion problem asks whether it is possible to add, edit,
or delete at most k edges in G such that one obtains a graph that fulfills
the property Π . Edge modification problems have received considerable
interest from a parameterized point of view. When parameterized by k,
many of these problems turned out to be fixed-parameter tractable and
some are known to admit polynomial kernelizations, i.e., efficient pre-
processing with a size guarantee that is polynomial in k. This paper
answers an open problem posed by Cai (IWPEC 2006), namely, whether
the Π Edge Deletion problem, parameterized by the number of dele-
tions, admits a polynomial kernelization when Π can be characterized
by a finite set of forbidden induced subgraphs. We answer this ques-
tion negatively based on recent work by Bodlaender et al. (ICALP 2008)
which provided a framework for proving polynomial lower bounds for
kernelizability. We present a graph H on seven vertices such that H-free
Edge Deletion and H-free Edge Editing do not admit polynomial kernel-
izations, unless NP ⊆ coNP/poly. The application of the framework is
not immediate and requires a lower bound for a Not-1-in-3 SAT problem
that may be of independent interest.

1 Introduction

In recent years the kernelizability of edge modification problems has received
considerable attention [5,9,13,14,15]. For a graph property Π the Π Edge Com-
pletion/Editing/Deletion problem is defined as

Input: A graph G = (V, E) and an integer k.
Parameter: k.
Task: Decide whether adding, editing, or deleting at most k edges in G
yields a graph with property Π .

Edge modification problems have a number of applications, including machine
learning, numerical algebra, and molecular biology [6,17,18,19]. In typical appli-
cations the input graphs arise from experiments and edge modification serves
to correct the (hopefully) few errors. For Similarity Clustering, for example, the
vertices represent entities that are linked by an edge if their similarity exceeds a
certain threshold. Given a perfect similarity measure one would obtain a cluster
graph, i.e., a disjoint union of cliques. In practice though, the obtained graph will

J. Chen and F.V. Fomin (Eds.): IWPEC 2009, LNCS 5917, pp. 264–275, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Two Edge Modification Problems without Polynomial Kernels 265

Table 1. Kernelization bounds for some edge modification problems

Property/Class Modification Kernel size Characterization
Chain Deletion O(k2) [13] (2K2, K3, C5)-free
Split Deletion O(k4) [13] (2K2, C4, C5)-free
Threshold Deletion O(k3) [13] (2K2, C4, P4)-free
Co-Trivially Perfect Deletion O(k3) [13] (2K2, P4)-free
Triangle-Free Deletion 6k [5] K3-free
Cluster Editing 4k [14] P3-free
Grid Editing O(k4) [9] None finite
Bi-connectivity Completion O(k2) [15] None finite
Bridge-connectivity Completion O(k2) [15] None finite

at best be close to a cluster graph, i.e., within few edge modifications. Clearly
a large number of modifications would yield a clustering of the entities that
deviates strongly from the similarity measure, allowing the conclusion that the
measure is probably faulty. Thus fpt-algorithms that solve the problem efficiently
when the number of modifications is not too large are a good way of solving this
and similar problems (see Section 2 for formal definitions).

Another parameterized way of dealing with edge modification problems lies in
kernelization. The notion of kernelization or reduction to a problem kernel is an
important contribution of parameterized complexity, in formalizing preprocess-
ing to allow a rigorous study. A kernelization is a polynomial-time computable
mapping that transforms a given instance, say (x, k), of a parameterized prob-
lem into an equivalent instance (x′, k′) with size of x′ and value of k′ bounded
by a computable function in k. It is known that a parameterized problem is
fixed-parameter tractable if and only if it is decidable and kernelizable (cf. [11]).
However this fact does not imply the existence of a polynomial kernelization.

Related Work: There exists rich literature on the complexity of edge modifica-
tion problems; recent surveys were given by Natanzon et al. [17] and Burzyn et
al. [6]. Cai [7] showed that a very general version of this problem, also allowing
vertex deletions, is FPT when Π can be characterized by a finite set of forbid-
den induced subgraphs. A finite set of graphs H is a finite forbidden subgraph
characterization of a property Π if for any graph G, G has property Π if and
only if G is H-free, i.e., if it has no graph from H as an induced subgraph.

In Table 1 we give an overview of kernelization results for a number of edge
modification problems, along with their H-free characterizations, where appli-
cable. Six of the properties listed in the table can be characterized by such a
finite set of forbidden induced subgraphs, leading to the question whether a fi-
nite characterization implies the existence of a polynomial kernelization. It is
easy to see that the answer is yes if only vertex deletions are allowed since this
translates directly to an instance of d-Hitting Set, where the constant d is
the largest number of vertices among forbidden induced subgraphs (see [1] for
a d-Hitting Set kernelization). Cai posed the question whether the same is
true for the Π Edge Deletion problem, i.e., achieving property Π by at most k

266 S. Kratsch and M. Wahlström

edge deletions when Π = H-free for some finite set H of graphs (see [2]). To our
best knowledge the kernelizability of the H-free Edge Editing problem is also
open. We point out that H-free Edge Completion is equivalent to H̄-free Edge
Deletion, where H̄ contains the complements of the graphs in H.

Our Work: The contribution of this paper is to present a small graph H of
seven vertices such that H-free Edge Deletion and H-free Edge Editing do not
admit polynomial kernelizations unless the polynomial hierarchy collapses (more
specifically, unless NP ⊆ coNP/poly, which is known to imply PH= ΣP

3 [20]).
This result builds upon recent seminal work by Bodlaender et al. [3] showing
that a polynomial kernelization for any so-called compositional problem whose
unparameterized version is NP-complete would imply such a collapse.

The application of [3] on the H-free modification problems is not immedi-
ate. We first define a problem Not-1-in-3 SAT and prove that it does not admit
a polynomial kernelization, then reduce this problem to H-free Edge Deletion
and H-free Edge Editing, respectively, by polynomial-time reductions with poly-
nomial bounds on the new parameter values. Such reductions were proposed by
Bodlaender et al. [4] as a way to extend kernelization results to further problems.

Structure of the paper: In Section 2 we introduce some notation as well as
giving the necessary definitions from parameterized complexity and reviewing
briefly the framework for lower bounds for kernelization. In Section 3 we prove
that Not-1-in-3 SAT does not admit a polynomial kernelization, unless NP ⊆
coNP/poly, and extend this result to the version without repeated variables. The
latter problem is then reduced to H-free Edge Deletion and H-free Edge Editing,
proving the claimed lower bounds, in Section 4. We conclude in Section 5.

2 Preliminaries

2.1 Notation

Graphs: We consider undirected, simple graphs G = (V, E). An induced sub-
graph of G is a graph G′ = (V ′, E′) with V ′ ⊆ V and with E′ = {{u, v} ∈ E |
u, v ∈ V ′}. We denote this subgraph by G[V ′]. A graph G is H-free if it does
not contain H as an induced subgraph (i.e., a subgraph G′ which is isomorphic
to H). For a set H of graphs, G is H-free if it is H-free for every graph H ∈ H.
We denote by Ki, Ci, and Pi the clique, cycle, and path of i vertices respectively.
The graph 2K2 is the disjoint union of two K2.

Not-1-in-3 SAT: We define Not-1-in-3 SAT as a satisfiability problem asking
for a feasible assignment with at most k ones to a conjunction of not-1-in-3-
constraints R(x, y, z), and constraints (x �= 0). Inputs to the problem consist of
such a conjunction F and an integer k. An assignment φ to the variables of F
is feasible if φ(x) = 1 for every variable x with a constraint (x �= 0) and

(φ(x), φ(y), φ(z)) ∈ {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1)}

for every not-1-in-3-constraint R(x, y, z). The weight of an assignment is the
number of ones it assigns.

Two Edge Modification Problems without Polynomial Kernels 267

Parameterized Complexity: A parameterized problem Q over a finite alpha-
bet Σ is a subset of Σ∗ × N. The second component is called the parameter.
The problem Q is fixed-parameter tractable if there is an algorithm that decides
whether (x, k) ∈ Q in time f(k) · |x|c, where f is a computable function and c is
a constant independent of k. Such an algorithm is called an fpt-algorithm for Q.

A kernelization of Q is a polynomial-time computable mapping K : Σ∗×N →
Σ∗ × N : (x, k) (→ (x′, k′) such that

∀(x, k) ∈ Σ∗ × N : ((x, k) ∈ Q ⇔ (x′, k′) ∈ Q) and |x′|, k′ ≤ h(k),

for some computable function h : N → N. The kernelization K is polynomial if h
is a polynomial. We say thatQ admits a (polynomial) kernelization if there exists
a (polynomial) kernelization of Q. We refer the reader to [10] for an introduction
to parameterized complexity.

2.2 Polynomial Lower Bounds for Kernelization

Bodlaender et al. [3] provided the first polynomial lower bounds for the kernel-
izability of some parameterized problems. They introduced the notions of or-
respectively and-compositionality for parameterized problems and showed that
such an algorithm together with a polynomial kernelization yields an or- respec-
tively and-distillation algorithm for the unparameterized version of the prob-
lem. Based on the hypothesis that NP-complete problems do not admit either
variant of distillation algorithm, this proves non-existence of polynomial kernel-
izations for some problems. A related article by Fortnow and Santhanam [12]
showed that an or-distillation algorithm for any NP-complete problem would
imply NP ⊆ coNP/poly, causing a collapse of the polynomial hierarchy [20]. In
this paper we refer only to the results for or-compositional problems and hence
omit the prefix for readability.

Let Q be a parameterized problem. A composition algorithm for Q is an
algorithm that on input (x1, k), . . . , (xt, k) ⊆ Σ∗ × N uses time polynomial
in
∑t

i=1 |xi|+ k and outputs (y, k′) such that

1. k′ is bounded by a polynomial in k and
2. (y, k′) ∈ Q if and only if (xi, k) ∈ Q for at least one i ∈ {1, . . . , t}.

The unparameterized version or derived classical problem Q̃ of Q is defined
by Q̃ = {x#1k | (x, k) ∈ Q}, where # /∈ Σ is the blank letter and 1 is any letter
from Σ.

Theorem 1 ([3,12]). Let L be a compositional parameterized problem whose
unparameterized version L̃ is NP-complete. The problem L does not admit a
polynomial kernelization unless NP ⊆ coNP/poly.

In [4] Bodlaender et al. proposed the use of polynomial-time reductions, where
the new parameter value is polynomially bounded in the old one, as a tool to
extend the lower bounds to further problems.

268 S. Kratsch and M. Wahlström

A polynomial time and parameter transformation from Q to Q′ is a polyno-
mial-time mapping H : Σ∗ × N → Σ∗ × N : (x, k) (→ (x′, k′) such that

∀(x, k) ∈ Σ∗ × N : ((x, k) ∈ Q ⇔ (x′, k′) ∈ Q′) and k′ ≤ p(k),

for some polynomial p. We use the name polynomial parameter transformation.

Theorem 2 ([4]). Let P and Q be parameterized problems, and let P̃ and Q̃
be their derived classical problems. Suppose that P̃ is NP-complete and Q̃ ∈NP.
If there is a polynomial parameter transformation from P to Q and Q admits a
polynomial kernelization, then P also admits a polynomial kernelization.

3 Hardness of Not-One-In-Three SAT

In this section, we show that the Not-1-in-3 SAT problem does not admit a poly-
nomial kernelization, unless NP ⊆ coNP/poly. A polynomial parameter transfor-
mation to an H-free Edge Deletion problem and an H-free Edge Editing problem
in Section 4 will then yield the desired lower bounds.

To apply Theorem 1 we need to show that Not-1-in-3 SAT is compositional
and that the unparameterized version is NP-hard. For showing this, two basic
observations are useful. Firstly, we have the ability to force x = 0 for a variable x
of any instance of Not-1-in-3 SAT, by the next lemma. Secondly, using such a
variable, we are able to force x = y by a not-1-in-3-constraint R(x, y, 0) where 0
is a variable that has been forced to be false.

Lemma 1. Let (F, k) be an instance of Not-1-in-3 SAT containing a variable x.
Adding only not-1-in-3-constraints, we can create an instance (F ′, k) such that
there is a feasible assignment for F ′ with at most k ones if and only if there is
a feasible assignment φ for F with at most k ones such that φ(x) = 0.

Proof. For each 1 ≤ i ≤ k, add a not-1-in-3-constraint R(x, y2i−1, y2i), where yi

are new variables. Now for any feasible assignment φ for F ′, if φ(x) = 1, then k
further variables must be assigned 1, implying that φ assigns more than k ones.
Thus feasible assignments φ for F ′ of weight at most k have φ(x) = 0, and can
be restriced to feasible assignments for F .

Feasible assignments φ for F with φ(x) = 0 can be extended to feasible as-
signments for F ′, setting yi = 0 for all added variables, at no extra cost. ��

Lemma 2. Not-1-in-3 SAT is NP-complete and compositional.

Proof. The NP-completeness follows from Khanna et al. [16]. This extends also
to the variant where k is encoded in unary since values of k greater than the
number of variables are meaningless (i.e., can be replaced by the number of
variables). We will now show that Not-1-in-3 SAT is compositional.

Let (F1, k), . . . , (Ft, k) be instances of Not-1-in-3 SAT; we will create a new
instance (F ′, k′) with k′ = O(k) that is a yes-instance if and only if (Fi, k) is
a yes-instance for some 1 ≤ i ≤ t. If t ≥ 3k, then we have time to solve every

Two Edge Modification Problems without Polynomial Kernels 269

x1,1

x2,1

x2,2

x3,1

x3,2

x3,3

x3,4

Fig. 1. First three levels of a composition tree. Every parent-node is in a not-1-in-3-
constraint with its two sons, e.g. R(x1,1, x2,1, x2,2). If x1,1 is true, then on every level i
some variable xi,j must be true.

instance exactly by branching, and output some dummy yes- or no-instance. We
assume for the rest of the proof that t < 3k. We also assume that t is a power
of two (or else duplicate some instance (Fi, k)): say t = 2l.

Start building F ′ by creating variable-disjoint copies of all formulas Fi. For
every formula Fi, additionally create an activity variable si, and for every vari-
able x in Fi such that Fi contains a constraint x �= 0, replace this constraint
by x = si (i.e., a not-1-in-3-constraint R(x, si, 0) where 0 is a variable forced
to be false as in Lemma 1). The variable si now decides whether Fi is active:
if si = 0 then every variable of Fi can be set to zero, and if si = 1, then all
constraints of the formula Fi are active. We will complete the construction by
creating a formula that forces some si to be true, in a form of composition tree.

Figure 1 illustrates the construction used for this part. We use variables xi,j

where i is the level of the variable, and 1 ≤ j ≤ 2i−1. The first-level variable x1,1
is forced to be true by a constraint (x1,1 �= 0), and for every internal variable in
the composition tree, we use a not-1-in-3-constraint R(xi,j , xi+1,2j−1, xi+1,2j).
Finally, for every variable xl+1,j on the last level, we add a constraint such
that sj = xl+1,j . Since a not-1-in-3-constraint R(x, y, z) implies x → (y ∨ z),
we see inductively that at least one variable per level must be true, and fur-
thermore for every variable xl+1,j on the last level, there exists an assignment
where xl+1,j = 1 and exactly one variable per level is true. Thus, assuming a
minimal assignment to the composed instance F ′, we can treat the composition
tree as adding weight exactly l + 1 and encoding a disjunction over the activity
variables sj . We obtain the composed instance (F ′, k + l + 2).

Now if F ′ has an assignment φ′ of weight at most k + l + 2 then φ′(sj) = 1
for some j ∈ {1, . . . , t}. Thus the constraints of Fj are active and φ′ can be
restricted to a feasible assignment for Fj (excluding sj) of weight at most k. If
some input formula Fj has an assignment of weight at most k then this can be
extended to an assignment for F ′ of weight at most k + l + 2 by assigning 1 to

270 S. Kratsch and M. Wahlström

each xi,l on the path from sj to x1,1 in the composition tree and 0 to all other
variables of F ′. Finally, the parameter k′ = k + l + 2 is O(k) since t < 3k, and
the work performed is polynomial in the length of all input instances. ��

Now by Theorem 1 we obtain the following result.

Theorem 3. Not-1-in-3 SAT does not admit a polynomial kernelization un-
less NP ⊆ coNP/poly.

To simplify the reduction to H-free Edge Deletion in the following section, we
consider a variant of Not-1-in-3 SAT that does not allow repeated variables in the
not-1-in-3-constraints, e.g., R(x, x, y). The following lemma implicitly extends
our lower bound to that variant.

Lemma 3. Not-1-in-3 SAT reduces to Not-1-in-3 SAT without repeated vari-
ables by a polynomial parameter transformation.

Proof. Observe that both the construction of Lemma 1 to force a variable to
take value 0, and the usage of a not-1-in-3-constraint R(x, y, 0) to force x = y
work without repeating variables. Therefore, from an instance (F, k) of Not-1-
in-3 SAT, we can create an instance (F ′, k′) of Not-1-in-3 SAT without repeated
variables where k′ = 2k in the following manner:

1. Place constraints in F ′ forcing z = 0 for some unique variable z according
to Lemma 1.

2. For every variable x in F , create two variables x, x′ in F ′. Force x = x′ using
a not-1-in-3-constraint R(x, x′, z).

3. For every not-1-in-3-constraint R(x, x, y) in F , with x �= y, place R(x, x′, y)
in F ′. Copy not-1-in-3-constraints R(x, y, z) for distinct variables x, y, z and
constraints x �= 0 into F ′, and ignore any not-1-in-3-constraints R(x, x, x).

The formula F ′ has a solution with at most 2k true variables iff F has a solution
with at most k true variables. ��

4 Lower Bounds for Two H-Free Modification Problems

Throughout this section let H = (VH , EH) with vertex set VH = {a, b, c, d, e, f, g}
and edge set EH = {{a, b}, {a, c}, {a, d}, {a, e}, {a, f}, {a, g}, {b, c}, {d, e}}, as
depicted in Figure 2. We will show that Not-1-in-3 SAT without repeated vari-
ables reduces to H-free Edge Deletion by a polynomial parameter transforma-
tion, thereby proving that the latter problem does not admit a polynomial ker-
nelization unless NP ⊆ coNP/poly, according to Theorem 2. Consecutively we
use a slightly more involved reduction from Not-1-in-3 SAT without repeated
variables to H-free Edge Editing.

Lemma 4. Not-1-in-3 SAT without repeated variables reduces to H-free Edge
Deletion by a polynomial parameter transformation.

Two Edge Modification Problems without Polynomial Kernels 271

a

b

c

d
e

f

g

Fig. 2. The graph H

Proof. Let (F, k) be an instance of Not-1-in-3 SAT without repeated variables.
We will construct an equivalent instance (G, k′) of H-free Edge Deletion.

Let α be the number of variables x of F that have a constraint (x �= 0).
Clearly, if k < α then (F, k) is a no-instance and we map it to a dummy no-
instance of H-free Edge Deletion, e.g. (H, 0). Henceforth we assume that k ≥ α
and we let k′ = k − α. Starting from the empty graph we use the following two
steps to construct G:

1. For each variable x of F we add two vertices px and qx to G. We add the
edge {px, qx} to G if there is no constraint (x �= 0) in the formula F .

2. For each not-1-in-3-constraint R(x, y, z) add k′+1 new vertices r1, . . . , rk′+1
to G. Connect each ri to px, qx, py, qy, pz, and qz. Recall that x, y, and z
are different by our restriction on the source problem.

See Figure 3 for an example of a formula F and the resulting graph. It is easy to
see that this construction can be accomplished in polynomial time and that k′ =
k − α ∈ O(k).

We denote by X the set of vertices created in Step 1 and by C the set of vertices
created in Step 2. Thus G = (X ∪ C, E). We make two simple observations:

(1) Each vertex of X has at most one neighbor in X .
(2) C is an independent set in G.

We will now show that (F, k) is a yes-instance of Not-1-in-3 SAT without re-
peated variables if and only if (G, k′) is a yes-instance of H-free Edge Deletion.

Suppose that (F, k) is a yes-instance of Not-1-in-3 SAT without repeated
variables and let φ be a feasible assignment for F with at most k ones. We
define a subset D ⊆ E as those edges {px, qx} of G with φ(x) = 1. Observe
that {px, qx} ∈ E if and only if F contains no constraint (x �= 0). Therefore |D| ≤
k − α = k′ since at most k variables x have φ(x) = 1 but α of those variables
have a constraint (x �= 0).

We assume for contradiction that G−D is not H-free. Let a, . . . , g be vertices
of G that induce a subgraph H . For simplicity let the adjacencies be the same
as in Figure 2.

It is easy to see that a ∈ C: Otherwise, if a ∈ X , then by Observation (1) at
most one of its neighbors can be in X . This would imply that b, c ∈ C or d, e ∈ C
contradicting Observation (2), namely, that C is an independent set.

272 S. Kratsch and M. Wahlström

r1 rk′+1 r′1 r′k′+1.

pv qv pw qw px qx py qy pz qz

Fig. 3. The resulting graph for F = R(v,w, x) ∧ R(x, y, z) ∧ (w �= 0) ∧ (z �= 0)

Since a ∈ C the other vertices b, . . . , g must be in X by Observation (2). Recall
that in G[X], i.e., among vertices of X , there are only edges of the form {px, qx}
where x is a variable of F . Since {b, c} and {d, e} are edges of G[X] there must
be variables x and y of F such that w.l.o.g. b = px, c = qx, d = py, and e = qy.
By Step 2 of the construction there must be a third variable z of F such that
w.l.o.g. f = pz and g = qz.

From {px, qx}, {py, qy} ∈ E \ D (i.e., the edge set of G − D) it follows
that φ(x) = φ(y) = 0. Since {pz, qz} /∈ E \ D it follows that {pz, qz} ∈ D
or {pz, qz} /∈ E. In the first case we have that φ(z) = 1. In the latter case there
must be a constraint (z �= 0) in F , which also implies that φ(z) = 1 since φ is fea-
sible for F . However, φ(x) = φ(y) = 0 and φ(z) = 1 contradict the feasibility of φ
since R(x, y, z) is a not-1-in-3-constraint of F . Hence G−D is an H-free graph,
implying that (G, k′) is a yes-instance of H-free Edge Deletion, since |D| ≤ k′.

Now, suppose that (G, k′) is a yes-instance of H-free Edge Deletion. We
will construct a feasible assignment φ with at most k ones for F . Let D ⊆ E
with |D| ≤ k′ such that G−D is H-free. We define φ by

φ(x) =

⎧⎪⎨⎪⎩
1 if {px, qx} ∈ D,
1 if (x �= 0) is a constraint of F ,
0 otherwise.

Thus the number of ones of φ is at most the cardinality of D plus the number
of variables x of F with an (x �= 0)-constraint, i.e., |D|+ α ≤ k.

We assume for contradiction that φ is not feasible for F . This implies that
there is a not-1-in-3-constraint, say R(x, y, z), in F that is not satisfied by φ.
The reason is that, by definition, φ satisfies all (x �= 0)-constraints. Not satisfy-
ing R(x, y, z) implies that φ sets exactly one of the three variables to 1. Recall
that x, y, and z must be pairwise different by problem definition. W.l.o.g. we
assume that φ(x) = 1 and φ(y) = φ(z) = 0. This immediately implies that there
are no constraints (y �= 0) or (z �= 0) in F and that {py, qy} and {pz, qz} are not
contained in D, by definition of φ. Hence {py, qy} and {pz, qz} are contained in
the edge set E \D of G−D.

Since φ(x) = 1 we conclude that {px, qx} ∈ D or that (x �= 0) is a constraint
of F . In the latter case, by Step 1 in the construction of G, the edge {px, qx}
does not occur in G. Thus, in both cases, {px, qx} is not an edge of G − D,
i.e., {px, qx} /∈ E \D.

Two Edge Modification Problems without Polynomial Kernels 273

We will now consider the vertices that were added for R(x, y, z) in Step 2 of
the construction, say r1, . . . , rk′+1. Since |D| ≤ k′ at least one ri is adjacent to
all six vertices px, qx, py, qy, pz, and qz. Together with ri those vertices induce a
subgraph H . This contradicts the choice of D, implying that φ is feasible for F .

Thus (F, k) is a yes-instance of Not-1-in-3 SAT without repeated variables if
and only if (G, k′) is a yes-instance of H-free Edge Deletion. ��

By Theorem 2 we obtain the desired result.

Theorem 4. For the graph H = (VH , EH) with VH = {a, b, c, d, e, f, g} and
with EH = {{a, b}, {a, c}, {a, d}, {a, e}, {a, f}, {a, g}, {b, c}, {d, e}}) the H-free
Edge Deletion problem does not admit a polynomial kernelization unless NP ⊆
coNP/poly.

The following corollary proves that the H-free Edge Editing problem does not
admit a polynomial kernelization either.

Corollary 1. For the same graph H as in Theorem 4, the H-free Edge Editing
problem does not admit a polynomial kernelization unless NP ⊆ coNP/poly.

Proof. We extend the construction used in Lemma 4 to obtain a polynomial
parameter transformation from Not-1-in-3 SAT without repeated variables to
H-free Edge Editing. Let (F, k) be an instance of Not-1-in-3 SAT without re-
peated variables. We create an instance (G, k′) according to the construction in
Lemma 4, except for using 3k′ +1 vertices ri per not-1-in-3-constraint in Step 2.

Essentially we only need one additional gadget to ensure that no edges are
added between vertices of X in G (recall that X contains vertices px and qx for
every variable of F). Adding this gadget for every non-edge of G[X] will yield a
graph G′ and we will show that (G′, k′) and (F, k) are equivalent.

Firstly, let us recall that the only edges in G[X] are of the form {px, qx} for
some variable x of F that has no constraint (x �= 0). For every other pair of
vertices, say (px, py) with x �= y, we add k′ +1 vertices si, ti, ui, vi, and wi, and
for each i connect si to px, py, ti, ui, vi, and wi, and connect ti to ui. That is,
create constructions which will induce k′ + 1 subgraphs H if the edge {px, py}
is added. Note that these subgraphs have only one pair of vertices in common.
The same construction applies also for pairs (px, qy) and (qx, qy) as well as for
pairs (px, qx) where x has a constraint (x �= 0) in F . Let G′ denote the graph
that is obtained by adding these vertices and edges to G.

Now, for proving equivalence of (G′, k′) and (F, k), let us assume that (G′, k′)
is a yes-instance of H-free Edge Editing and let D be a set of edges, with |D| ≤ k′

such that G′ +D := (V (G′), E(G′)+D) is H-free.
Firstly, we claim that D adds no edge between vertices of X . Otherwise,

if for example {px, py} ∈ D then, referring to the new gadget, there would
be k′ + 1 induced subgraphs H that share only px and py. Since removal of
these k′ + 1 subgraphs would demand at least k′ + 1 modifications, this would
imply that G′ + D is not H-free. Thus D restricted to G′[X] contains only
deletions; let D′ be these deletions. Clearly |D′| ≤ k′.

274 S. Kratsch and M. Wahlström

Let us consider the r-vertices that are added in Step 2. Clearly, since |D| ≤ k′,
for every not-1-in-3-constraint of F at least k′+1 of its corresponding vertices ri

are not incident with edges of D (recall that we started with 3k′+1 vertices ri per
constraint). We select a set R of vertices, picking, for every not-1-in-3-constraint
of F , k′ + 1 of its corresponding r-vertices which are not incident with edges
of D. Let G′′ be the graph induced by R ∪X .

Now let (G0, k
′) be the H-free Edge Deletion-instance created from (F, k) in

Lemma 4. It is easy to see that G0 and G′′ are isomorphic, and that the only
modifications made to G′′ by D are the deletions D′. Since G′ + D is H-free,
so is G′′+D′ = (G′ +D)[R ∪X]. Thus D′ constitutes a solution to the H-free
Edge Deletion instance (G′′, k), which by Lemma 4 maps to a solution to (F, k).

Let us now assume that (F, k) is a yes-instance and let φ be a feasible assign-
ment of weight at most k. Let D be obtained as in Lemma 4, i.e., D will only
delete some {px, qx}-edges from G′. We show that G′ +D is H-free.

Consider the vertex which would form the vertex a of H , i.e., the vertex of
degree six in H . It cannot be a p-vertex, since the neighborhood of a p-vertex con-
tains only edges incident to the corresponding q-vertex (all r- and s-vertices are
independent of one another, and a p-vertex has only such neighbors, in addition
to its q-vertex). By symmetry, this excludes q-vertices as well. The r-vertices have
only six neighbors, so any induced H would correspond to a contradicted con-
straint R which by assumption does not exist (same argument as in Lemma 4).
Furthermore, in the solution constructed, the neighborhood of any s-vertex con-
tains only one edge, as D only deletes edges. The remaining types of vertices,
i.e., the t, u, v, and w vertices of the gadget, have degree less than six. ��

5 Conclusion

We have presented a small graph H such that the H-free Edge Deletion problem
and the H-free Edge Editing problem do not admit polynomial kernelizations
under a reasonable complexity hypothesis. This answers an open question by
Cai, namely, whether the H-free Edge Deletion problem admits a polynomial
kernelization for every finite set H of graphs.

It is an interesting open problem to further characterize kernelizability of H-
free edge modification problems. Considering the structure of the known positive
examples (see introduction), one might first ask whether the H-free Edge Dele-
tion problem always admits a polynomial kernelization when H consists only
of paths, cycles, and cliques (or sums thereof, such as 2K2). One particular
interesting open case here is Cograph Deletion, i.e., P4-free Edge Deletion.

References

1. Abu-Khzam, F.N.: Kernelization algorithms for d-hitting set problems. In: Dehne,
et al. (eds.) [8], pp. 434–445

2. Bodlaender, H.L., Cai, L., Chen, J., Fellows, M.R., Telle, J.A., Marx, D.: IWPEC
2006. LNCS, vol. 4169. Springer, Heidelberg (2006)

Two Edge Modification Problems without Polynomial Kernels 275

3. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems with-
out polynomial kernels (extended abstract). In: Aceto, L., Damg̊ard, I., Goldberg,
L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part
I. LNCS, vol. 5125, pp. 563–574. Springer, Heidelberg (2008)

4. Bodlaender, H.L., Thomassé, S., Yeo, A.: Kernel bounds for disjoint cycles and
disjoint paths. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp.
635–646. Springer, Heidelberg (2009)

5. Brügmann, D., Komusiewicz, C., Moser, H.: On generating triangle-free graphs.
Electronic Notes in Discrete Mathematics 32, 51–58 (2009)

6. Burzyn, P., Bonomo, F., Durán, G.: NP-completeness results for edge modification
problems. Discrete Applied Mathematics 154(13), 1824–1844 (2006)

7. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary
properties. Information Processing Letters 58(4), 171–176 (1996)

8. Dehne, F., Sack, J.-R., Zeh, N. (eds.): WADS 2007. LNCS, vol. 4619. Springer,
Heidelberg (2007)

9. Dı́az, J., Thilikos, D.M.: Fast fpt-algorithms for cleaning grids. In: Durand, B.,
Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 361–371. Springer, Heidel-
berg (2006)

10. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Com-
puter Science. Springer, Heidelberg (1998)

11. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Com-
puter Science. An EATCS Series. Springer, Heidelberg (2006)

12. Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct
PCPs for NP. In: STOC, pp. 133–142. ACM, New York (2008)

13. Guo, J.: Problem kernels for NP-complete edge deletion problems: Split and re-
lated graphs. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 915–926.
Springer, Heidelberg (2007)

14. Guo, J.: A more effective linear kernelization for cluster editing. Theoretical Com-
puter Science 410(8-10), 718–726 (2009)

15. Guo, J., Uhlmann, J.: Kernelization and complexity results for connectivity aug-
mentation problems. In: Dehne, et al [8], pp. 483–494

16. Khanna, S., Sudan, M., Trevisan, L., Williamson, D.P.: The approximability of
constraint satisfaction problems. SIAM Journal on Computing. 30(6), 1863–1920
(2000)

17. Natanzon, A., Shamir, R., Sharan, R.: Complexity classification of some edge mod-
ification problems. Discrete Applied Mathematics 113(1), 109–128 (2001)

18. Rose, D.J.: A graph-theoretic study of the numerical solution of sparse positive
definite systems of linear equations. Graph Theory and Computing, pp. 183–217
(1972)

19. Sharan, R., Maron-Katz, A., Shamir, R.: CLICK and EXPANDER: a system for
clustering and visualizing gene expression data. Bioinformatics 19(14), 1787–1799
(2003)

20. Yap, C.-K.: Some consequences of non-uniform conditions on uniform classes. The-
oretical Computer Science 26, 287–300 (1983)

On the Directed Degree-Preserving Spanning
Tree Problem

Daniel Lokshtanov1, Venkatesh Raman2, Saket Saurabh1, and Somnath Sikdar2

1 The University of Bergen, Norway
{daniello,saket.saurabh}@ii.uib.no

2 The Institute of Mathematical Sciences, India
{vraman,somnath}@imsc.res.in

Abstract. In this paper we initiate a systematic study of the Reduced

Degree Spanning Tree (d-RDST) problem, where given a digraph D
and a nonnegative integer k, the goal is to construct a spanning out-tree
with at most k vertices of reduced out-degree. We show that this problem
is fixed-parameter tractable and admits a problem kernel with at most 8k
vertices on strongly connected digraphs and O(k2) vertices on general
digraphs. We also give an algorithm for this problem on general digraphs
with run-time O∗(5.942k). We also consider the dual of d-RDST: given
a digraph D and a nonnegative integer k, construct a spanning out-tree
of D with at least k vertices of full out-degree. We show that this problem
is W[1]-hard on two important digraph classes: directed acyclic graphs
and strongly connected digraphs.

1 Introduction

Given a directed graph D = (V, A), we say that a subdigraph T of D is an out-
tree if it is an oriented tree with exactly one vertex s of in-degree zero (called
the root). An out-tree that contains all vertices of D is an out-branching of D.
Given a digraph D = (V, A) and an out-tree T of D, we say that a vertex v ∈ V
is of full-degree if its out-degree in T is the same as that in D; otherwise, v is said
to be of reduced-degree. We define the Directed Reduced Degree Spanning

Tree (d-RDST) problem as follows.

Input: Given a directed graph D = (V, A) and a positive integer k.
Parameter: The integer k.
Question: Does there exist an out-branching of D in which at most k vertices

are of reduced degree?

We call the dual of this problem the Directed Full-Degree Spanning Tree

(d-FDST) problem and it is defined as follows.

Input: Given a directed graph D = (V, A) and a positive integer k.
Parameter: The integer k.
Question: Does there exist an out-branching of D in which at least k vertices

are of full degree?

J. Chen and F.V. Fomin (Eds.): IWPEC 2009, LNCS 5917, pp. 276–287, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

On the Directed Degree-Preserving Spanning Tree Problem 277

d-RDST and d-FDST are natural generalizations of their undirected counter-
parts, namely, Vertex Feedback Edge Set and Full-Degree Spanning

Tree, respectively. In the Vertex Feedback Edge Set problem, given a con-
nected undirected graph G = (V, E) and a non-negative integer k, the goal is
to find an edge subset E′ incident on at most k vertices such that the deletion
of the edges in E′ leaves a tree. Note that the resulting graph will span the
entire vertex set. Bhatia et al. [3] show that this problem is MAX SNP-hard and
describe a (2 + ε)-approximation algorithm for it for any fixed ε > 0. Guo et
al. [9] show that this problem is fixed-parameter tractable by demonstrating a
problem kernel with at most 4k vertices.

The Full-Degree Spanning Tree problem asks, given a connected undi-
rected graph G = (V, E) and a non-negative integer k as inputs, whether G has
a spanning tree T in which at least k vertices have the same degree in T as in G.
This was first studied by Pothof and Schut [12] in the context of water distribu-
tion networks and has attracted a lot of attention of late [4,5,3,9,8]. Bhatia et
al. [4] studied this problem from the point-of-view of approximation algorithms
and gave a factor-Θ(

√
|V |) algorithm for it. They also showed that this problem

admits no factor O(|V |1/2−ε) approximation algorithm unless NP = co-R. For
planar graphs, a polynomial-time approximation scheme (PTAS) was presented.
Independently, Broersma et al. [5] developed a PTAS for planar graphs and
showed that this problem can be solved in polynomial time in special classes of
graphs such as bounded treewidth graphs and co-comparability graphs. Guo et
al. [9] studied the parameterized complexity of this problem and showed it to be
W[1]-hard. Gaspers et al. [8] give an O∗(1.9465|V |) algorithm for this problem.

Organization of the Paper and Our Contribution. We start in Section 2 by
defining relevant notions related to digraphs. In Section 3, we show that d-
RDST is fixed-parameter tractable (FPT) by exhibiting a problem kernel with
at most O(k2) vertices We first demonstrate that for strongly connected di-
graphs, d-RDST admits a kernel with at most 8k vertices and use the ideas
therein to develop the O(k2) kernel for general digraphs. In Section 4, we de-
scribe a branching algorithm for the d-RDST problem with run-time O∗(5.942k).
Our fixed parameter tractable and kernelization algorithms are sufficiently non-
trivial and exploit structures provided by the problem in an elegant way. Finally
in Section 5, we show that d-FDST is W[1]-hard on two classes of digraphs: di-
rected acyclic graphs (DAGs) and strongly connected digraphs. This also proves
that both d-RDST and d-FDST are NP-complete on these graph classes.

2 Preliminaries

The notation and terminology for digraphs that we follow are from [2]. Given a
digraph D we let V (D) and A(D) denote the vertex set and arc set, respectively,
of D. If u, v ∈ V (D), we say that u is an in-neighbour (out-neighbour) of v
if (u, v) ∈ A(D) ((v, u) ∈ A(D)). The in-degree d−(u) (out-degree d+(u)) of u is
the number of in-neighbours (out-neighbours) of u. Given a subset V ′ ⊆ V (D),
we let D[V ′] denote the digraph induced on V ′.

278 D. Lokshtanov et al.

A digraph with no dicycles is called a directed acyclic graph (DAG). A di-
graph D is strongly connected if for every pair of distinct vertices u, v ∈ V (D),
there exists a (u, v)-walk and a (v, u)-walk. A strong component of a digraph is a
maximal induced subdigraph that is strongly connected. A strong component S
of a digraph D is a source strong component if no vertex in S has an in-neighbour
in V (D)\V (S). The following is a necessary and sufficient condition for a digraph
to have an out-branching.

Proposition 1. [2] A digraph D has an out-branching if and only if D has a
unique source strong component.

Therefore one can in time O(|V (D)| + |A(D)|) check whether a digraph admits
an out-branching or not. We assume that our graphs have no self-loops.

3 The d-RDST Problem: An O(k2)-Vertex Kernel

In this section we show that d-RDST admits a problem-kernel with O(k2) ver-
tices. We first consider the special case when the input digraph is strongly con-
nected and establish a kernel with 8k vertices for this case. This will give some
insight as to how to tackle the general case. The fact that d-RDST is NP-hard
on the class of strongly connected digraphs follows from the fact that d-FDST
is NP-hard on this class of graph (see Theorem 4).

3.1 A Linear Kernel for Strongly Connected Digraphs

We actually establish the 8k-vertex kernel for a more general class of digraphs,
those in which every vertex has out-degree at least one. It is easy to see that
this class includes strongly connected digraphs (SCDs) as a proper subclass. Call
this class of digraphs out-degree at least one digraphs.

A common technique to establish a problem-kernel is to devise a set of reduc-
tion rules which when applied to the input instance (in some specified sequence)
produces the kernel. Recall that a reduction rule for a parameterized problem Q
is a polynomial-time algorithm that takes an input (I, k) of Q and outputs either

1. yes or no, in which case the input instance is a yes- or no-instance, respec-
tively, or

2. an “equivalent” instance (I ′, k′) of Q such that k′ ≤ k.

Two instances are equivalent if they are both yes-instances or both no-instances.
An instance (I, k) of a parameterized problem Q is reduced with respect to (wrt)
a set R of reduction rules if the instance (D′, k′) output by any reduction rule
in R is the original instance (D, k) itself.

There are three simple reduction rules for the case where the input is an
out-degree at least one digraph. We assume that the input is (D, k).

Rule 1. If there exists u ∈ V (D) such that d−(u) ≥ k + 2 then return no; else
return (D, k).

On the Directed Degree-Preserving Spanning Tree Problem 279

Rule 2. If there are k + 1 vertices of out-degree at least k + 1 then return no;
else return (D, k).

Rule 3. (The Path Rule.) Let x0, x1 . . . , xp−1, xp be a sequence of vertices in D
such that for 0 ≤ i ≤ p− 1 we have d+(xi) = 1 and (xi, xi+1) ∈ A(D). Let Y0
be the set of in-neighbours of x1, . . . , xp−1 and let Y := Y0\{x0, x1, . . . , xp−2}.
Delete the vertices x1, . . . , xp−1 and add two new vertices z1, z2 and the arcs
(x0, z1), (z1, z2), (z2, xp). If y ∈ Y has at least two out-neighbors in
{x1, . . . , xp−1} then add arcs (y, z1), (y, z2). If y ∈ Y has exactly one out-
neighbor in {x1, . . . , xp−1} then add the arc (y, z1). Return (D, k).

If a vertex v has in-degree at least k + 2 then at least k + 1 in-neighbors of u
must be of reduced degree in any out-branching. This shows that Rule 1 is a
reduction rule. If a vertex u has out-degree k + 1 and is of full degree in some
out-branching T then T has at least k + 1 leaves. Since the input digraph is
such that every vertex has out-degree at least one, this means that in T there
are at least k + 1 vertices of reduced degree. This shows that any vertex of out-
degree k+1 must necessarily be of reduced degree in any solution out-branching.
Therefore if there are k + 1 such vertices the given instance is a no-instance.
This proves that Rule 2 is a reduction rule.

Lemma 1. [�]1 Rules 3 is a reduction rule for the d-RDST problem.

It is easy to see that Rules 1 and 2 can be applied in O(n) time and that Rule 3
can be applied in O(n + m) time. Note that Rule 3 is parameter independent,
that is, an application of the rule does not affect the parameter. Consequently,
it also makes sense to talk about a digraph being reduced wrt Rule 3 as distinct
from an instance (D, k) of d-RDST being reduced wrt Rule 3. Our kernelization
algorithm consists in applying Rules 1 to 3 repeatedly, in that order, until the
given instance is reduced.

We next describe a lemma that we repeatedy make use of in the sequel. Given
a directed graph D, we let Vi(D) ⊆ V (D) denote the set of vertices of out-
degree i; V≥i(D) ⊆ V (D) denotes the set of vertices of out-degree at least i.

Lemma 2. Let D be a directed graph reduced wrt the Path Rule (Rule 3) and
let T be an out-branching of D with root r such that X is the set of vertices of
reduced out-degree. Then

|V (T)| ≤ 4|V0(T) ∪ V≥2(T) ∪X | ≤ 4(|V0(T)|+ |X ∪ V0(T)|).

Proof. If we view the out-branching T as an undirected graph, V0(T) is the set of
leaves and V≥2(T) is the set of vertices of degree at least three along the root r,
if d+

T (r) ≥ 2. Thus V≥2(T) has at most one vertex of total degree two and all
other vertices are of total degree three. It is a well-known fact that a tree with l
leaves has at most l − 1 internal vertices of degree at least three. Since V≥2(T)
has at most one vertex of total degree two, we have |V≥2(T)| ≤ |V0(T)|.
1 Proofs labeled with a
 have been omitted due to space constraints. For full proofs

see [10].

280 D. Lokshtanov et al.

Now consider the vertices of the out-branching T which have out-degree exactly
one. Define W := X ∪ V0(T) ∪ V≥2(T) and let P be the set of maximal dipaths
in T such that for any dipath P = x0 → x1 → · · · → xp in P we have that
(1) d+

D(xi) = 1 for 0 ≤ i ≤ p− 1, and (2) xp ∈W . Observe that every vertex with
out-degree exactly one in T is contained in exactly one path inP . Also observe that
the set of vertices of out-degree exactly one in T not contained in W is precisely
the set V1(T)\X . Therefore |V1(T)\X | ≤

∑
P∈P(|P |−1), where |P | denotes the

number of vertices in the path P . By Rule 3, any dipath P ∈ P has at most four
vertices and since the number of dipaths inP is at most |W |, we have |V1(T)\X | ≤
3·|P| ≤ 3·|W | ≤ 3|X∪V0(T)∪V≥2(T)|. Since |V (T)| ≤ |V1(T)\X |+|X∪V0(T)∪
V≥2(T)|, we have |V (T)| ≤ 4|V0(T) ∪ V≥2(T) ∪ X | ≤ 4(|V0(T)| + |V0(T) ∪ X |).
This completes the proof of the lemma. ��

We can now bound the size of a yes-instance of the d-RDST problem on out-
degree at least one digraphs that have been reduced wrt Rules 1 to 3.

Theorem 1. Let (D, k) be a yes-instance of the d-RDST problem on out-degree
at least one digraphs reduced wrt Rules 1 to 3. Then |V (D)| ≤ 8k.

Proof. Since (D, k) is a yes-instance of the problem, let T be an out-branching
of D and let X be the set of vertices of reduced degree in T , where |X | ≤ k.
Every vertex of D is of out-degree at least one and hence V0 ⊆ X , where V0 is
the set of leaves in T . Consequently |X ∪V0| ≤ k and |V0| ≤ k and by Lemma 2,
we have |V (T)| ≤ 8k, as claimed. ��

Observe that the crucial step in the proof above was to bound the number of
leaves in the solution out-branching. For out-degree at least one digraphs this
is easy since every leaf is a vertex of reduced degree. This is not the case with
general digraphs which may have an arbitrary number of vertices of out-degree
zero, all of which are of full degree in any out-branching. In the next subsection
we present a set of reduction rules for the d-RDST problem in general digraphs
which help us bound the number of vertices of out-degree zero in terms of the
parameter k.

3.2 An O(k2)-Vertex Kernel in General Digraphs

For general digraphs, the reduction rules that we will describe work with an
annotated instance of the problem. We assume that we are given (D, k) and a
set X ⊆ V (D) of vertices which will be of reduced degree in any out-branching
with at most k vertices of reduced degree. The question in this case is to decide
whether D admits an out-branching where the set of vertices of reduced degree
is X ∪S, where S ⊆ V (D)\X and |S| ≤ k. The parameter in this case is k. Call
such an out-branching a solution out-branching. To obtain a kernel for d-RDST,
we apply the reduction rules to an instance (D, k) after setting X = ∅.

Given an instance (D, X, k), we define the conflict set of a vertex u ∈ V (D)\X
as C(u) := {v ∈ V (D) \X : N+(u)∩N+(v) �= ∅}. Clearly vertices of out-degree
zero have an empty conflict set. If a vertex v has a non-empty conflict set then

On the Directed Degree-Preserving Spanning Tree Problem 281

in any out-branching either v loses its degree or every vertex in C(v) loses its
degree. Moreover if u ∈ C(v) then v ∈ C(u) and in this case we say that u and v
are in conflict. The conflict number of D is defined as c(D) :=

∑
v∈V (D)\X |C(v)|.

We assume that the input instance is (D, X, k) and the kernelization algorithm
consists in applying each reduction rule repeatedly, in the order given below, until
no longer possible. Therefore when we say that Rule i is indeed a reduction rule
we assume that the input instance is reduced wrt the rules preceding it.

Rule 1. If there exists u ∈ V (D) such that the number of in-neighbors of u in
V (D) \X is at least k + 2 then return no; else return (D, X, k).

In the last subsection, we already showed that this rule is indeed a reduction
rule.

Rule 2. If u ∈ V (D)\X such that |C(u)| > k, set X ← X∪{u} and k ← k−1.
Furthermore if d+(u) = 1 then delete the out-arc from u and return (D, X, k).

If the conflict set C(u) of u ∈ V (D) \X is of size at least k + 1 and if u is of full
degree in some out-branching T , then every vertex in C(u) must be of reduced
degree in T . Therefore if (D, X, k) is a yes-instance then u must lose its degree
in any solution out-branching. Moreover if u has out-degree exactly one, then
the out-arc from u must be deleted. This shows that Rule 2 is a reduction rule.

Rule 3. If c(D) > 2k2 then return no, else return (D, X, k).

Lemma 3. Rule 3 is a reduction rule for the d-RDST problem.

Proof. To see why Rule 3 qualifies to be a reduction rule, construct the conflict
graph CD,X of the instance (D, X, k) which is defined as follows. The vertex
set V (CD,X) := V (D) \ X and two vertices in V (CD,X) have an edge between
them if and only if they are in conflict. Since the size of the conflict set of any
vertex is at most k, the degree of any vertex in CD,X is at most k. The key
observation is that if T is any solution out-branching of (D, X, k) in which the
set of vertices of reduced degree is X ∪ S with S ⊆ V (D) \X , then S forms a
vertex cover of CD,X . Since we require that |S| ≤ k, the number of edges in CD,X

is at most k2. For a vertex v ∈ V (D)\X , let d′(v) be the number of neighbors of
vertex v in the conflict graph CD,X . Observe that c(D) :=

∑
v∈V (D)\X |C(v)| =∑

v∈V (D)\X d′(v) ≤ 2k2. The last inequality follows from the fact that sum of
degrees of vertices in a graph is equal to twice the number of edges. ��

Rule 4. If u ∈ V (D) such that d+(u) = 0 and d−(u) = 1 then delete u from D
and return (D, X, k).

It is easy to see that Rule 4 is a reduction rule: vertex u does not determine
whether its parent is of full or reduced degree in a solution out-branching and
therefore can be safely deleted.

282 D. Lokshtanov et al.

Rule 5. Let u ∈ V (D) be of out-degree zero and let v1, . . . , vr be its in-
neighbors, where r > 2. Delete u and add

(
r
2

)
new vertices u12, u13, . . . ,

ur−1,r; for a newly added vertex uij add the arcs (vi, uij) and (vj , uij). Re-
turn (D, X, k).

Note that vertex u forces at least r − 1 vertices from {v1, . . . , vr} to be of re-
duced degree in any out-branching. This situation is captured by deleting u and
introducing

(
r
2

)
vertices as described in the rule. The upshot is that each vertex

of out-degree zero has in-degree exactly two.

Rule 6. If u, v ∈ V (D) \ X have p > 1 common out-neighbors of out-degree
zero, delete all but one of them. Return (D, X, k).

Rule 7. If u ∈ V (D) is of out-degree zero such that at least one in-neighbor
of u is in X , delete u. Return (D, X, k).

By Rule 5, it is clear that if u, v ∈ V (D) \ X have at least two common out-
neighbors of out-degree zero then these out-neighbors have in-degree exactly
two. It is intuitively clear that these out-neighbors are equivalent in some sense
and it suffices to preserve just one of them. It is easy to show that the original
instance has a solution out-branching if and only if the instance obtained by
one application of Rule 6 has a solution out-branching. As for Rule 7, if u has
in-neighbors v and w and if v ∈ X , we can delete the arc (v, u) without altering
the solution structure. But then v is a private neighbor of w of out-degree zero
and hence can be deleted by Rule 4.

Rule 8. This is the Path Rule (Rule 3) from Section 3.1.

In the previous subsection, this was shown to be a reduction rule for the d-
RDST problem (note that the proof of Lemma 1 did not use the fact that the
input was an out-degree at least one digraph). By Rule 2, no vertex on the
path x0, x1, . . . , xp−1 is in X and therefore the proof of Lemma 1 continues to
hold for the annotated case as well.

Note that a single application of Rule 5 or 6 takes time O(n2); all other rules
take time O(n + m). We are now ready to bound the number of vertices of
out-degree zero in a reduced instance of the annotated problem.

Lemma 4. Let (D, X, k) be a yes-instance of the annotated d-RDST problem
that is reduced wrt Rules 1 through 8 mentioned above. Then the number of
vertices of out-degree zero in D is at most k2.

Proof. Let u be a vertex of out-degree zero. By Rules 4 and 5, it must have
exactly two in-neighbors, say, x and y. By Rule 7, neither x nor y is in X and
are therefore still in conflict in the reduced graph. Hence, either x or y must be of
reduced degree in any solution out-branching. Furthermore any vertex not in X
can have at most k out-neighbors of out-degree zero since, by Rule 2, any vertex
not in X is in conflict with at most k other vertices and, by Rule 6, two vertices
in conflict have at most one out-neighbor of out-degree zero. Since (D, X, k) is
assumed to be a yes-instance, at most k vertices can lose their out-degree in

On the Directed Degree-Preserving Spanning Tree Problem 283

any solution out-branching. Moreover any vertex of out-degree zero is an out-
neighbor of at least one vertex of reduced degree. Therefore the total number of
vertices of out-degree zero is at most k2. ��

Lemma 5. Let (D, k) be a yes-instance of the d-RDST problem and suppose
that (D1, X, k1) is an instance of the annotated d-RDST problem reduced wrt
Rules 1 through 8 by repeatedly applying them on (D, k), by initially setting X =
∅. Then |V (D1)| ≤ 8(k2 + k).

Proof. If T1 is a solution out-branching of (D1, X, k1), then a leaf of T1 is either
a vertex of out-degree zero in D1 or a vertex of reduced degree. By Lemma 4,
the total number of vertices of out-degree zero in D1 is at most k2

1 ≤ k2 and the
total number of vertices of reduced degree in T1 is at most k1 + |X | ≤ k. Thus
the number of leaves of T1 is at most k2 + k and by Lemma 2 we have |V (T1)| ≤
4(k2 + k + k2 + k) = 8(k2 + k). ��

We now show how to obtain a kernel for the original (unannotated) version of the
problem. Let (D, k) be an instance of the d-RDST problem and let (D′, X, k′) be
the instance obtained by applying reduction rules 1 through 8 on (D, k) until no
longer possible, by initially setting X = ∅. By Lemma 5, we know that |V (D′)| ≤
5k2+9k if (D, k) is a yes-instance, and that k′+|X | = k. To get back an instance
of the unannotated version, apply the following transformation on (D′, X, k′).
Let X = {x1, . . . , xr}. For each xi ∈ X add k+1 new vertices zi1, . . . , zi,k+1 and
out-arcs (xi, zij) for all 1 ≤ j ≤ k + 1. Then add k + 1 new vertices u1, . . . , uk+1
and out-arcs (uj , zij) for all 1 ≤ i ≤ r and 1 ≤ j ≤ k + 1. Finally add a vertex u
and out-arcs (u, uj) for 1 ≤ j ≤ k+1 and (xi, u) for 1 ≤ i ≤ r. Call the resulting
digraph D′′ and set k′′ = k′ + |X |. We show that (D′, X, k′) is a yes-instance
of the annotated version of d-RDST if and only if (D′′, k′′) is a yes-instance of
the (unannotated) d-RDST problem.

If D′ has an out-branching T ′ with at most k′+ |X | vertices of reduced degree
with all vertices in X of reduced degree, then modify T ′ into an out-branching T ′′

for D′′ as follows. Add arcs (x1, u), (u, uj) for all 1 ≤ j ≤ k + 1 and (uj, zij)
for all i, j. Clearly T ′′ is an out-branching of D′′ and has the same number of
vertices of reduced degree as T ′. Conversely if D′′ admits an out-branching T ′′

with k′+ |X | vertices of reduced degree, then it must be the case that all vertices
in X are of reduced degree in T ′′. For if xi ∈ X is of full-degree then the
vertices u1, . . . , uk+1 are of reduced degree, contradicting the fact that T ′′ has
at most k′+ |X | = k vertices of reduced degree. Therefore in T ′′, we may assume
that the vertices u, u1, . . . , uk+1 and the zij ’s are of full-degree. This implies
that in T ′′ there are at most k′ vertices from V (D′) \ X of reduced degree.
Furthermore in T ′′, the vertex u has as in-neighbor a vertex xi ∈ X . Therefore
by deleting u, u1, . . . , uk+1 and the zij ’s, we obtain an out-branching T ′ with
at most k′ + |X | vertices of reduced degree with all vertices of X of reduced
degree. This completes the proof of the reduction from the annotated to the
unannotated case.

Since we add at most k(k + 1) + k + 2 vertices in the process, we have

284 D. Lokshtanov et al.

Theorem 2. The d-RDST problem admits a problem kernel with at most 6k2 +
11k + 2 vertices, where the parameter k is the number of vertices of reduced
degree.

4 An Algorithm for the d-RDST Problem

In this section we describe a branching algorithm for the d-RDST problem with
run-time O∗(5.942k). We first observe that in order to construct a solution out-
branching of a given digraph, it is sufficient to know which vertices will be of
reduced degree.

Lemma 6. [�] Let D = (V, A) be a digraph and let X be the set of vertices
of reduced degree in some out-branching of D. Given D and X, one can in
polynomial time construct an out-branching of D in which the set of vertices of
reduced degree is a subset of X.

Proof. (Sketch) One can construct the desired out-branching as follows: Run
through all possible choices of the root. For each choice of root, perform a
breadth-first search starting at the root and greedily add out-arcs from the ver-
tices of X to the out-branching. ��

By Lemma 6 and Theorem 2, there exists an O∗(kO(k)) algorithm for the d-RDST
problem. In the rest of this section, we give an improved algorithm with run-
time O∗(ck), for a constant c. Our algorithm (see Figure 1) is based on the simple
observation that if two vertices u and v of the input digraph D have a common
out-neighbor then one of them must be of reduced degree in any out-branching

RDST (D, X, k)
Input: A digraph D = (V, A); X ⊆ V , such that the vertices in X will be
of reduced degree in the out-branching that is being constructed; an integer
parameter k. The algorithm is initially called after setting X = ∅.
Output: An out-branching of D in which every vertex of X is of reduced degree
and with at most k vertices of reduced degree in total, if one exists, or no,
signifying that no such out-branching exists.

1. If k < 0 or |X| > k return no.
2. If no two vertices in V (D) \ X have a common out-neighbor then

(a) Reduce (D, X, k) wrt Rules 1′ through 5′.
(b) For each (k−|X|)-sized subset Y of V (D)\X, check if there exists an

out-branching of D in which the vertex set of reduced degree is X∪Y .
If yes, then “expand” this out-branching to an out-branching for the
original instance and return the solution; else return no.

3. Let u, v ∈ V (D) \ X be two vertices with a common out-neighbor then
(a) X ← X ∪ {u}; Z = Call RDST(D, X, k − 1).
(b) If Z �= no then return Z.
(c) X ← X ∪ {v}; Return RDST(D, X, k − 1).

Fig. 1. Algorithm RDST

On the Directed Degree-Preserving Spanning Tree Problem 285

of D. The algorithm recurses on vertex-pairs that have a common out-neighbor
and, along each branch of the recursion tree, builds a set X of vertices which
would be the candidate vertices of reduced degree in the out-branching that it
attempts to construct. When there are no vertices to branch on, it reduces the
instance (D, X, k) wrt the following rules.

Rule 1′. If u ∈ X and d+(u) = 1, delete the out-arc from u and return (D, X, k).
Rule 2′. Let u ∈ V (D) be of out-degree zero and let v1, . . . , vr be its in-

neighbors. If vi ∈ X for all 1 ≤ i ≤ r, assign v1 as the parent of u and
delete u. If there exists 1 ≤ i ≤ r such that vi /∈ X then assign vi as the
parent of u and delete u. Return (D, X, k).

Rule 3′. This is Rule 8 from Section 3.2.

Rule 1′ is a reduction rule because a vertex of out-degree exactly one that is of
reduced degree must necessarily lose its only out-arc. As for Rule 2′, we know
that in the instance (D, X, k) obtained after the algorithm finishes branching,
no two vertices of V (D) \ X have a common out-neighbor and therefore at
least r − 1 in-neighbors of u must be of reduced degree. If all in-neighbors of u
are of reduced degree, we arbitrarily fix one of them as parent of u (so that we
can construct an out-branching of the original instance later on) and delete u.
If exactly r − 1 in-neighbors of u are already of reduced degree, we choose that
in-neighbor not in X as the parent of u and delete u. Also note that when
applying Rule 3′ to a path x0, x1, . . . , xp−1, xp, the vertices x0, x1, . . . , xp−1 are
not in X , by Rule 1′. Therefore if Y is the set of in-neighbors of x1, . . . , xp−1,
excluding {x0, x1, . . . , xp−2}, then Y ⊆ X .

Observe the following:

1. By Rule 2′, no vertex in the reduced instance (D, X, k) has out-degree zero.
2. Every vertex in the subdigraph induced by V (D) \X has in-degree at most

one and hence each connectivity component (a connected component in the
undirected sense) is either a dicycle, or an out-tree or a dicycle which has
out-trees rooted at its vertices. Thus each connectivity component has at
most one dicycle and if a component does have a dicycle then it can be
transformed into an out-branching by deleting an arc from the cycle.

We now reduce the instance (D, X, k) wrt the following two rules:

Rule 4′. If at least k + 1 − |X | connectivity components of D[V \ X] contain
dicycles, then return no; else return (D, X, k).

Rule 5′. If a connectivity component of D[V \X] is a dicycle C such that no
vertex in V (C) has an out-neighbor in X , pick a vertex u ∈ X with an arc
to C and fix it as the “entry point” to C; delete C and set k ← k − 1;
return (D, X, k).

Rule 4′ is a reduction rule as every connectivity component that has a dicycle
contains at least one vertex that will be of reduced degree. If the number of such
components if at least k + 1− |X |, one cannot construct an out-branching with
at most k vertices of reduced degree. To see that Rule 5′ is a reduction rule, first

286 D. Lokshtanov et al.

note that since C has no out-arcs, it cannot contain the root of the proposed
out-branching. Any path from the root to C must necessarily include a vertex
from X and it does not matter which arc out of X we use to get to C, since
every vertex in X is of reduced degree anyway. Moreover in any out-branching,
exactly one vertex of C must be of reduced degree. Therefore if (D′, X ′, k′) is
the instance obtained by one application of Rule 5′ to the instance (D, X, k),
then it is easy to see that these instances must be equivalent. Also note that
each application of Rule 1′ through 5′ takes time O(n + m).

Lemma 7. Let (D, X, k) be an instance of the d-RDST problem in which no
two vertices of V (D)\X have a common out-neighbor, and reduced wrt Rules 1′

through 5′. Then |V (D) \X | ≤ 7|X |.

Proof. Let D′ be a digraph obtained from D by deleting all out-arcs from the
vertices in X . Therefore in D′, every vertex of X has out-degree zero and in-
degree at most one. We show that a connectivity component of D′ that has p
vertices of X has at most 7p vertices of V (D′) \X . This will prove the lemma.

If a connectivity component of D′ is an out-tree T ′, then every leaf of this
out-tree is a vertex of X . If T ′ has p leaves, then applying Lemma 2 to T ′, we
have that |V (T ′)| ≤ 8p. Since exactly p of these vertices are from X , the number
of vertices of V (D′) \ X in the out-tree is at most 7p. Therefore let R be a
connectivity component of D′ containing a dicycle such that |V (R) ∩ X | = p.
Then R has exactly one dicycle, say C. By Rule 5′, C has a vertex x with an out-
neighbor in V (R)\V (C), and therefore d+

R(x) ≥ 2. Let y be the out-neighbor of x
in C. Delete the arc (x, y) to obtain an out-branching T with root x. Note that
the number of leaves in T is the same as that in R. Moreover in transforming R
to T , only one vertex loses its out-degree. By Lemma 2,

|V (T)| ≤ 4|x ∪ V0(T) ∪ V≥2(T)| ≤ 4|V0(T)|+ 4|x ∪ V≥2(T)|,

and since |x ∪ V≥2(T)| ≤ 1 + (|V0(T)| − 1) = p, we have |V (T)| ≤ 8p. Conse-
quently |V (R) \X | ≤ 7p. ��

To construct an out-branching, it is sufficient to choose the remaining k − |X |
vertices of reduced degree from the vertices in V (D) \X . Setting |X | = c, the
exponential term in the run-time of the algorithm is bounded above by the
function

k∑
c=0

2c ·
(

7c

k − c

)
≤ k · max

0≤c≤k
2c ·

(
7c

k − c

)
.

In the latter function, we must have k− c ≤ 7c which implies that k/8 ≤ c, and
one can show that this function attains a maximum at c = k/2 where its value
is k · 2k/2 ·

(7k/2
k/2

)
. Using the inequality

(
n
r

)
≤ nn/(rr · (n− r)n−r), we can bound

this by k · 5.942k.

Theorem 3. Given a digraph D and a nonnegative integer k, one can decide
whether D has an out-branching with at most k vertices of reduced degree, and
if so, construct such an out-branching in time O∗(5.942k).

On the Directed Degree-Preserving Spanning Tree Problem 287

5 The d-FDST Problem

We now show that d-FDST is W[1]-hard even on DAGs. This is a modification
of the reduction presented in [3] (Lemma 3.2).

Theorem 4. [�] The d-FDST problem parameterized by the solution size is
W[1]-hard on directed acyclic graphs and strongly connected digraphs. Also the
d-RDST problem is NP-hard on the class of strongly connected digraphs.

References

1. Arnborg, S., Lagergren, J., Seese, D.: Easy Problems for Tree-Decomposable
Graphs. Journal of Algorithms 12, 308–340 (1991)

2. Bang-Jensen, J., Gutin, G.: Digraphs: Theory, Algorithms and Applications.
Springer, Heidelberg (2000)

3. Bhatia, R., Khuller, S., Pless, R.: On Local Search and Placement of Meters in
Networks. SIAM Journal on Computing 32(2), 470–487 (2003)

4. Bhatia, R., Khuller, S., Pless, R., Sussmann, Y.: The Full-Degree Spanning Tree
Problem. Networks 36, 203–209 (2000)

5. Broersma, H.J., Huck, A., Kloks, T., Koppios, O., Kratsch, D., Müller, H., Tuinstra,
H.: Degree-Preserving Forests. Networks 35, 26–39 (2000)

6. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999)

7. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg
(2006)

8. Gaspers, S., Saurabh, S., Stepanov, A.A.: Moderately Exponential-Time Algorithm
for Full-Degree Spanning Tree. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.)
TAMC 2008. LNCS, vol. 4978, pp. 478–489. Springer, Heidelberg (2008)

9. Kára, J., Kratochv́ıl, J.: Fixed Parameter Tractability of Independent Set in Seg-
ment Intersection Graphs. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC
2006. LNCS, vol. 4169, pp. 166–174. Springer, Heidelberg (2006)

10. Lokshtanov, D., Raman, V., Saurabh, S., Sikdar, S.: On the Directed Degree-
Preserving Spanning Tree Problem. Tech. Report

11. Niedermeier, R.: An Invitation to Fixed-Parameter Algorithms. Oxford University
Press, Oxford (2006)

12. Pothof, I.W.M., Schut, J.: Graph-Theoretic Approach to Identifiability in a Wa-
ter Distribution Network. Memorandum 1283, Universiteit Twente, Twente, The
Netherlands (1995)

Even Faster Algorithm for Set Splitting!

Daniel Lokshtanov1 and Saket Saurabh2

1 Department of Informatics, University of Bergen, N-5020 Bergen, Norway
daniello@ii.uib.no

2 The Institute of Mathematical Sciences, C.I.T. Campus, Chennai 600 113
saket@imsc.res.in

Abstract. In p-Set Splitting we are given a universe U , a family F
of subsets of U and a positive integer k and the objective is to find a
partition of U into W and B such that there are at least k sets in F that
have non-empty intersection with both B and W . In this paper we study
p-Set Splitting from kernelization and algorithmic view points. Given
an instance (U,F , k) of p-Set Splitting, our kernelization algorithm
obtains an equivalent instance with at most 2k sets and k elements in
polynomial time. Finally, we give a fixed parameter tractable algorithm
for p-Set Splitting running in time O(1.9630k +N), where N is the size
of the instance. Both our kernel and our algorithm improve over the best
previously known results. Our kernelization algorithm utilizes a classical
duality theorem for a connectivity notion in hypergraphs. We believe that
the duality theorem we make use of, will turn out to be an important tool
from combinatorial optimization in obtaining kernelization algorithms.

1 Introduction

In the Max Cut problem we are given a graph G with vertex set V (G) and
edge set E(G) and asked to find a partitioning of V (G) into W (white) and B
(black) such that the number of edges with one endpoint in W and one in B is
maximized. The Max Cut problem is one of Karp’s 21 NP-hard problems [13]
and also the first problem for which an approximation algorithm using semi-
definite programming was obtained [12]. The problem has also been studied
from the viewpoint of parameterized algorithms [16,18].

A natural generalization of Max Cut to hypergraphs is the Set Splitting

problem, also known as Max Hypergraph 2-Coloring. A hypergraph H =
(V , E) consists of a vertex set V and a set E of hyperedges. A hyperedge e ∈
E is a subset of the vertex set V . By V (e) we denote the subset of vertices
corresponding to the edge e. In the Set Splitting problem we are given a
family F of sets over a universe U . We say that a partitioning (W, B) of U splits
a set S ∈ F if S ∩ W �= ∅ and S ∩ B �= ∅. The objective is to partition U
into W and B such that the number of sets in F that are split is maximized. If
the Set Splitting instance (U,F) is viewed as a hypergraph H = (U,F) the
objective is to color the vertices of H black or white, maximizing the number
of hyperedges containing at least one white and at least one black vertex. It

J. Chen and F.V. Fomin (Eds.): IWPEC 2009, LNCS 5917, pp. 288–299, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Even Faster Algorithm for Set Splitting! 289

Table 1. List of known results about p-Set Splitting in chronological order. The
row marked with
 represents result in the current article.

History of p-Set Splitting

Dehne, Fellows and Rosamond WG 2003 O(72kNO(1)) Deterministic
Dehne, Fellows, Rosamond and Shaw IWPEC 2004 O(8kNO(1)) Deterministic
Lokshtanov and Sloper ACiD 2005 O(2.6499kNO(1)) Deterministic
Chen and Lu COCOON 2007 O(2k + N) Randomized
Lokshtanov and Saurabh� 2009 O(1.96k + N) Deterministic

should be noted that Max Cut is the special case of Set Splitting when all
sets in F have cardinality 2. The Set Splitting and (Max) Hypergraph 2-
Coloring problems have been studied intensively from a combinatorial as well
as an algorithmic viewpoint [1,2,5,6,7,15,17,21,22].

We study Set Splitting from the parameterized algorithms perspective.
In parameterized algorithms every instance x comes with a parameter k and
an algorithm for the problem with running time f(k)nO(1) is said to be fixed
parameter tractable. Formally a parameterized problem Π is a subset of Γ ∗ ×N
for some finite alphabet Γ and an instance of the problem consists of (x, k), where
k is the parameter. The problem Π is said to admit a g(k) kernel if there is a
polynomial time algorithm that transforms any instance (x, k) to an equivalent
instance (x′, k′) such that |x′| ≤ g(k) and k′ ≤ g(k). If g(k) = kO(1) or g(k) =
O(k) we say that Π admits a polynomial kernel and linear kernel respectively.
We remark that for most kernels, and in particular all kernels mentioned in this
article k′ is in fact bounded by k. In the parameterized version of Max Cut,
called p-Max Cut the input is a graph G and an integer k and the objective
is to partition V (G) into W and B such that at least k edges have one white
and one black endpoint. Similarly, in p-Set Splitting an input instance is a
family F of sets over a universe U and an integer k. The objective is to find a
partitioning (W, B) of U that splits at least k sets. Throughout this paper we
denote the size of an instance (U,F , k) of p-Set Splitting by N .

Related Work. The fastest known parameterized algorithm for the p-Max Cut

problem has running time O(1.2418k + |V (G)| + |E(G)|) [18] and the smallest
kernel has 2k vertices and k edges [16,18]. In fact, bounding the number of
vertices by k is easy - any connected graph G has a spanning tree with |V (G)|−1
edges. Since trees are bipartite we can partition V (G) into (W, B) such that
all edges in the spanning tree have one endpoint in W and one in B. Hence,
if |V (G)| − 1 ≥ k we can immediately answer yes. This immediately yields a
O(2k + |V (G)|+ |E(G)|) time algorithm for the problem.

On the other hand, until this work, no deterministic algorithm with running
time O(2k + N) was known for p-Set Splitting, even though the problem
is quite well-studied in parameterized algorithms. Dehne, Fellows and Rosa-
mond [4] initiated the study of p-Set Splitting and gave an algorithm running
in time O(72kNO(1)). They also provided kernel for the problem with at most

290 D. Lokshtanov and S. Saurabh

2k sets in the family. Later Dehne, Fellows, Rossmand and Shaw [5] obtained an
algorithm with running time O(8kNO(1)). Continuing this chain of improvement
Lokshtanov and Sloper [14] gave an algorithm with running time O(2.65kNO(1))
and obtained a kernel with both universe size and family size at most 2k. Finally,
Chen and Lu [2] provided a randomized algorithm with running time O(2k +N)
for a weighted version of problem. We refer to Table 1 for a quick reference on
the history of the p-Set Splitting problem.

Our Results. The first part of this article is devoted to generalizing the simple
kernelization algorithm for p-Max Cut to hypergraphs and giving a kernel with
at most 2k sets and k elements for the p-Set Splitting problem. To this end,
we make a detour and introduce notions of spanning trees and strong cut-sets
in a hypergraph. The purpose of these notions is to be able to generalize the
statement “every connected graph has a spanning tree” to “every hypergraph
without a strong cut-set has a spanning tree”. Making this generalization turned
out to be non-trivial and required using an interesting duality theorem for a
connectivity notion in hypergraphs.

Theorem 1. p-Set Splitting admits a kernel with 2k sets and k elements.

On the face of it Theorem 1 could look like a simple improvement over the
previous known kernel with 2k sets and 2k elements but it is not. Observe that
Theorem 1 yields as a corollary the fastest known deterministic algorithm for
p-Set Splitting running in time O(2k + N). In the last section of this article
we break the “2k barrier” and give a O(1.9630k +N) time algorithm for problem
using memoization and the Measure & Conquer paradigm.

Theorem 2. There is an O(1.9630k +N) time algorithm for the p-Set Split-

ting problem

The Measure & Conquer paradigm has been extensively applied to obtain faster
exact exponential time algorithms. We refer to [9,10] for a reference on Measure
& Conquer. Even though Measure & Conquer has been applied to several prob-
lems to obtain exact exponential time algorithms, its applicability in obtaining
parameterized algorithm has been limited to an algorithm for 3-Hitting Set

by Wahlström [20]. Our fixed parameter algorithm for p-Set Splitting pro-
vides another example of application of Measure & Conquer in parameterized
algorithms.

Throughout this paper for an undirected graph G by V (G) we denote its
vertex set and by E(G) we denote its edge set. For a subset V ′ ⊆ V (G), by
G[V ′] we mean the subgraph of G induced on V ′.

2 Kernelization Algorithm

In this section we first give an algorithmic version of a classical duality theorem
for a connectivity notion in hypergraphs. Next, we use this duality result to get
a kernel for p-Set Splitting with at most 2k sets and k elements.

Even Faster Algorithm for Set Splitting! 291

2.1 A Duality Theorem for Hypergraph Connectivity

We begin with a few definitions related to hypergraphs. With every hypergraph
H = (V , E) we can associate the following graph: The primal graph, also called
the Gaifmann graph, P (H) has the same vertices V as H and, two vertices
u, v ∈ V are connected by an edge in P (H) if there is a hyperedge e ∈ E , such
that {u, v} ⊆ V (e). We say that H is connected or has r components if the
corresponding primal graph P (H) is connected or has r components. Now we
define the notions of strong cut-sets and forests in hypergraphs.

Definition 1 (Strong Cut-Set). A subset X ⊆ E is called a strong cut-set if
the hypergraph H ′ = (V , E \X) has at least |X |+ 2 connected components.

Definition 2 (Hypergraph Forest). A forest F of a hypergraph H is a pair
(F, g) where F is a forest on the vertex set V with edge set E(F) where F is a
forest in normal graph sense and g : E(F) → E is an injective map such that
for every uv ∈ E(F) we have {u, v} ⊆ V (g(uv)). The number of edges in F is
|E(F)|.

Observe that if a forest F has |V| − 1 edges then F is a spanning tree on V .
In this case we say that F is a spanning tree of H . Frank, Király, and Kriesell
proved the following duality result relating spanning trees and strong cut-sets in
hypergraphs [11, Corollary 2.6].

Proposition 1 ([11]). A hypergraph H contains a hypertree if and only if H
does not have a strong cut-set.

We give an algorithmic version of Proposition 1 in Theorem 3 which is central
to our kernelization algorithm. We start with a few observations about forest in
hypergraphs and a definition useful for the proof of Theorem 3. Given a forest
F = (F, g) we classify the edges of E as follows. An edge e ∈ E is

– a forest edge if there exists an edge f in E(F) such that g(f) = e;
– a cut edge if there exist two connected components C1 and C2 of F such that

V (e) ∩ V (C1) �= ∅ and V (e) ∩ V (C2) �= ∅.
– an unused edge if there does not exist an edge f in E(F) such that g(f) = e;

that is e is not in the image of the map g.

We remark that an edge e can be a forest edge as well as a cut edge at the same
time. Similarly an edge can be a cut edge as well as an unused edge at the same
time.

Definition 3. For a hypergraph H = (V , E), a forest F = (F, g) and e1, e2 ∈ E,
we say that an edge e2 follows e1 if e1 is a forest edge of F and e2 is a cut edge
with respect to F ′ = (F ′, g′) where F ′ = (V , E(F) \ {g−1(e1)}) and g′(f) = g(f)
for f ∈ E(F ′).

We are now in position to state an algorithmic version of Proposition 1 which
will be used in our kernelization algorithm.

292 D. Lokshtanov and S. Saurabh

Theorem 3. 1There is a polynomial time algorithm that given a connected hy-
pergraph H = (V , E) and a forest F = (F, g) of H such that |E(F)| < |V| − 1
finds either a forest F ′ = (F ′, g′) of H with |E(F ′)| ≥ |E(F)| + 1 or a strong
cut-set X of H.

2.2 Kernel for Set Splitting

In this section we show how to utilize Theorem 3 to give a kernel with 2k sets
and k elements for the p-Set Splitting problem. Since Theorem 3 is phrased
in terms of hypergraphs, it is useful to view the p-Set Splitting instance
(U,F , k) as a hypergraph H = (U,F) and integer k. We start by showing that
if H contains a strong cut-set, then the instance (U,F , k) can be reduced.

Definition 4. Let f : V → {0, 1} be a function from set of vertices of the
hypergraph H to the set {0, 1}. Then Split(f) is the set of hyperedges such that
for every hyperedge e ∈ Split(f) there exist vertices u, v ∈ V (e) such that f(u) =
0 and f(v) = 1.

Lemma 1. There is a polynomial time algorithm that given a strong cut-set
X of a connected hypergraph H = (V , E) finds a cut-set X ′ ⊆ X such that
X ′ �= ∅ and (H = (V , E), k) is a yes instance of p-Set Splitting if and only if
(H ′ = (V , E \X ′), k − |X ′|) is a yes instance of p-Set Splitting.

Proof. Let H∗ = (V , E \X) and let |X | = t. By assumption, X is a strong cut-set
and hence the primal graph P (H∗) has at least t+2 connected components. Let
the connected components of P (H∗) be C = {C1, . . . , Cq} where q ≥ t + 2 and
X = {e1, . . . , et}. We construct an auxiliary bipartite graph B with vertex set
A ∪B with a vertex ai ∈ A for every edge ei ∈ X and a vertex bi ∈ B for every
connected component Ci ∈ C. There is an edge aibj if V (ei) ∩ V (Cj) �= ∅.

We prove the statement of the lemma by induction on |X |. For the base
case we assume that |X | = 1 and X = {e1}. In particular, we show that
given any f : V → {0, 1} there exists a function g : V → {0, 1} such that
Split(g) = Split(f)∪{e1} which will prove the desired assertion. If e1 ∈ Split(f)
the statement follows, so assume that e1 /∈ Split(f). Since P (H) is connected
we have that a1bj, j ∈ {1, . . . , q} are edges in B. Let g : V → {0, 1} be such
that g(v) = f(v) if and only if v /∈ C1. That is, for all vertices in C1, g flips
the assignment given by f . Observe that e1 ∈ Split(g) since V (e1) contains a
vertex u ∈ C1 and a vertex v ∈ C2. Since f(u) = f(v), g(u) �= g(v) and hence
e1 ∈ Split(g). For every edge in Split(f) we have that V (e) is completely con-
tained in one of the components and hence, e ∈ Split(f) implies e ∈ Split(g).
This completes the proof for the base case. So we assume that |X | ≥ 2 and
that the statement of the lemma holds for all X ′ satisfying the conditions of the
lemma and |X ′| < |X |. In inductive step we consider two cases:

(a) there does not exist a matching in B which saturates A; or
(b) there is a matching saturating A in B.

1 Due to space restrictions, the proof of this theorem has been omitted.

Even Faster Algorithm for Set Splitting! 293

In Case (a) by Hall’s theorem we know that there exists a subset A′ ⊆ A , A′ �= ∅
such that |A′| > |N(A′)| and such a set can be found in polynomial time. We
claim that X ′ = X \ {ej | aj ∈ A′} is a strong cut-set and is of smaller size than
X . It is clear that |X ′| < |X | as A′ �= ∅. We now show that X ′ is indeed a strong
cut-set. Let C′ = C \ {Cj | bj ∈ N(A′)}. Observe that in H ′ = (V , E \X ′), every
Ci ∈ C′ is a connected component. The size of C′ is bounded as follows

|C′| = |C| − |N(A′)| ≥ (t + 2)− |N(A′)| > (t + 2)− |A′| = t− |A′|+ 2 = |X ′|+ 2,

and hence X ′ is indeed a strong cut-set. In this case the statement of the lemma
follows from the induction hypothesis as |X ′| < |X |.

For Case (b) we assume that we have a matching M saturating A. Without
loss of generality let M be a1b1, . . . , atbt. Let U = {bt+1, . . . , bq} be the set
of vertices in B that are unsaturated by M . Iteratively we construct a set U ′

containing U as follows. Initially we set U ′ := U and Ã = A.

– Check whether there exists a neighbor of a vertex in U ′ in Ã; if yes go to
the next step. Otherwise, output U ′.

– Let aj be a vertex in Ã having a neighbor in U ′. Set U ′ := U ′ ∪ {bj} (bj is
the matching end point of aj in B), Ã := Ã \ {aj} and go to the first step.

Let U ′ be the set returned by the iterative process above. Observe that U � U ′

and Ã � A as P (H) is connected and hence there exists at least one vertex aj

having a neighbor in U and hence the above iteration does not stop in the first
round. Let A′ = A \ Ã and let X ′ = {ej | aj ∈ A′}. In what follows we prove
that X ′ is the desired subset of X mentioned in the statement of the lemma.

We first show that X ′ is a strong cut-set. Let C′ = {Cj | bj ∈ U ′}. From
the construction it follows that every Ci ∈ C′ is a connected component of
H ′ = (V , E \X ′). The size of C′ is bounded as follows

|C′| = |U ′| = |U |+ |A′| ≥ |A′|+ 2 = |X ′|+ 2,

and hence X ′ is a strong cut set.
We show that given any f : V → {0, 1} there exists a function g : V → {0, 1}

such that Split(g) = Split(f) ∪X ′. This will complete the proof of the lemma.
Let U ′ \ U = {b1′ , b2′ , . . . , br′} and without loss of generality assume that b1′ ,
b2′ , . . ., br′ is the order in which these elements are included in the set U ′. Let
Bi = B[U ∪ {b1′, . . . , bi′} ∪ {a1′ , . . . , ai′}]. Iteratively we construct the function
g : V → {0, 1} as follows. Initially we set g := f and i := 1 and repeat the
following until i = r:

Check whether the restriction of g to {C1, . . . , Ci′} splits ei′ . If yes then
set i := i + 1 and repeat. Otherwise let Ci′ be the connected component
corresponding to bi′ having vertex set V (Ci′). Now for every vertex u ∈
V (Ci′) change g(u) to 1 − f(u). Basically, we flip the assignment of 0
and 1 in the vertex set V (Ci′). Set i := i + 1 and repeat the procedure.

Now we show that Split(g) = Split(f) ∪ X ′. Observe that when we flip the
assignment of the vertex set V (Ci′) the only hyperedges which could go out of

294 D. Lokshtanov and S. Saurabh

the set Split(g) are {ei′ , e(i+1)′ , . . . , er′}. The reason we flip the assignment is
because ei′ /∈ Split(g) at that point. Also notice that by construction there exists
a bj′ ∈ {b1′ , b2′ . . . , b(i−1)′} such that V (e) ∩ V (Cj′) �= ∅. Hence after we flip the
assignment of the vertex set V (Ci′) we have that ei′ ∈ Split(g). Hence after the
rth step of the procedure we have that Split(g) = Split(f)∪X ′. This concludes
the proof. ��

Lemma 1 naturally gives rise to a reduction rule for the p-Set Splitting prob-
lem. Given a strong cut set X , a strong cut set X ′ obtained by the Lemma 1 is
called reducible strong cut-set. This brings us to the following reduction rule.

Reduction Rule 1 : Let (H = (V , E), k) be an instance of p-Set Splitting

and X ′ be a reducible strong cut-set of H. Remove X ′ from the set of hyperedges
and reduce k to k − |X ′|, that is, obtain an instance (H ′ = (V , E \X), k − |X |).

When the hypergraph H is disconnected we can give a simple reduction rule.

Reduction Rule 2 : Let (H = (V , E), k) be an instance of p-Set Splitting

such that P (H) has connected components P (H)[C1], . . . , P (H)[Ct]. Let v1, . . . , vt

be vertices such that vi ∈ Ci. Construct a hypergraph H ′ = (V ′, E ′) from H by
unifying the vertices v1, . . . , vt. In particular V ′ = V \ {v2, . . . , vt} and for every
hyperedge e ∈ E make the edge e′ ∈ E ′ where e′ = e if vi /∈ e for every i and
e′ = (V (e) \ {v2, . . . , vt}) ∪ {v1} otherwise. We obtain the instance (H ′, k).

The correctness proof for this reduction rule is simple, and given for example
in [19] for the case of p-Max Cut.

Proof (Proof of Theorem 1). Given an instance (H, k) of p-Set Splitting

we first obtain an equivalent instance with at most 2k sets and at most 2k2

elements by applying the kernelization algorithm of Chen and Lu [2], given in
Theorem 1 of their paper. We then apply Reduction Rules 1 and 2 exhaustively.
Let (H ′ = (V ′, E ′), k′) be the reduced instance. Since both our rules and the rules
of Chen and Lu [2] only reduce k we have that k′ ≤ k. Let H ′ have n elements and
m ≤ 2k sets. We show that if n > k′ then (H ′, k′) is a yes-instance. In particular,
since Reduction Rule 2 does not apply, H ′ is connected. Since Reduction Rule 1
does not apply, H ′ does not have a strong cut-set. By Theorem 3 we can find in
polynomial time a forest F = (F, g) of H ′ with n− 1 edges. Since F is a forest,
F is bipartite. Let W)B be bipartitions of V ′. By the definition of a forest in a
hypergraph, the bipartitions (W, B) splits all sets corresponding to hyperedges
in F . Since F has n− 1 edges, at least n− 1 ≥ k hyperedges are split and hence
(H ′, k′) is a yes-instance. Thus if n > k for a reduced instance, the kernelization
algorithm outputs that (H ′, k′) is a yes-instance. Hence any unresolved reduced
instance has at most k′ ≤ k elements. This concludes the proof. ��

3 Faster Parameterized Algorithm for p-Set Splitting

Theorem 1 yields a simple O(2kk2+N) time algorithm for the p-Set Splitting

problem by looping over all possible bipartitions of set of elements into (W, B)

Even Faster Algorithm for Set Splitting! 295

and for each checking whether they split at least k edges. Previously, only a
randomized O(2kk2 + N) time algorithm [2] and a deterministic O(2.65k + N)
time algorithm [14] was known. In this section we give an algorithm for for the
p-Set Splitting problem running in O(1.9630k + N) time. Our algorithm first
obtains a kernel with 2k sets and at most k elements using Theorem 1. Then
the algorithm proceeds to solve the small instance recursively.

The subcases generated by the algorithm are naturally phrased as a colored
version of the p-Set Splitting. In this version of the problem the sets in F are
either uncolored or colored white or black. A black set S is split by a partitioning
of U into W and B if S ∩W �= ∅. Similarly a white set S is split if S ∩ B �= ∅.
Hence, an instance to the Colored p-Set Splitting (p-CSS) problem is a
universe U , a family F = Fu)Fw)Fb over U and an integer k. The families Fu,
Fw, and Fb denote the families of uncolored, white and black sets respectively.

Our algorithm is based on a single branching step. For a particular element v of
U we try putting v in W or in B. If v is inserted into W , all sets in Fb containing
v are split and all sets in Fu containing v are put into Fw instead. The sets that
are split are removed from Fb and k is decreased by the number of newly split
sets. Finally v is removed from the universe U and from all sets containing v.
Similarly, if v is inserted into B then all sets in Fw containing v are split and all
sets in Fu containing v are put into Fb instead. For a vertex v let Nu(v), Nb(v)
andNw(v) be the set of uncolored, black and white sets containing v respectively.
We call du(v) = |Nu(v)|, db(v) = |Nb(v)| and dw(v) = |Nw(v)| the uncolored,
black and white degree of v. The degree of v is d(v) = du(v) + dw(v) + db(v).
Formalizing the discussion above we obtain the following recurrence.

(U,Fu,Fw,Fb, k) ∈ p-CSS
⇐⇒

(U \ {v},Fu \ Nu(v),Fw ∪ Nu(v),Fb \ Nb(v), k − db(v)) ∈ p-CSS (1)∨
(U \ {v},Fu \ Nu(v),Fw \ Nw(v),Fb ∪Nu(v), k − dw(v)) ∈ p-CSS

We now describe the algorithm for p-Set Splitting using Recurrence 1. We first
formulate the p-Set Splitting instance (UF , k) as a p-CSS instance (U,Fu, ∅,
∅, k) where Fu = F . We fix K = k, and fix α = 0.027, β = 0.31, and γ = 0.13.

Preprocessing. The algorithm computes a table for all subproblems (U ′,F ′
u,F ′

w,
F ′

b, k
′) where

– U ′ ⊆ U and |U ′| ≤ αk;
– F ′

u) F ′
w) F ′

b ⊆ Fu and |F ′
u) F ′

w) F ′
b| ≤ 4αk;

– k′ ≤ k.

An entry of the table contains true if the corresponding instance (U ′,F ′
u,F ′

w,
F ′

b, k
′) is in p-CSS. The table can be filled using Recurrence 1 and bottom up

296 D. Lokshtanov and S. Saurabh

dynamic programming in time linear in the number of table entries. Thus the
total time required to perform the preprocessing step is

O

((
k

αk

)
·
(

2k

4αk

)
· 34αk · k

)
.

Rewriting
(
a
b

)
as a!

b!(a−b)! , using Stirling’s approximation for n! and plugging in
the value of α = 0.027 yields that the preprocessing step is done in O(1.9630k)
time.

Branching. The algorithm selects an element v ∈ U of highest degree and
branches on this vertex using Recurrence 1. If the algorithm generates a subcase
for which the answer is already stored in the preprocessing table, the algorithm
returns this answer. If k reaches 0 or a negative number the algorithm returns
“yes” and if k is positive and U = ∅ the algorithm returns “no”. While k might
not be the same in different recursive calls, the value of K fixed initially re-
mains the same throughout the algorithm. Correctness of the algorithm follows
directly from Recurrence 1. We now proceed to analyze the running time of the
algorithm.

Running Time Analysis. We use the Measure & Conquer paradigm to analyze
the running time of the algorithm. For two constants β and γ we define

μ = μ(U,Fu,Fw,Fb, k) = |U |+ βk + γ|Fu|.

The running time of the algorithm is bounded from above by the number of
leaves in the search tree, modulo a polynomial in k. Let T (μ, |U |) be an upper
bound on the number of leaves in the search tree of the algorithm on an instance
with measure μ and universe size |U |. We first need an auxiliary claim about the
size of the search tree when the degree of any element is at most 4.

Claim. Let K and α be fixed as in the discussion above and (U,Fu,Fw,Fb, k)
be an instance of p-CSS such that |U | ≥ αK generated during a recursive call
such that the degree of any element is at most 4. Then T (μ, |U |) ≤ 2|U|−αK .

Proof. We prove the claim by induction on |U |. If |U | = αK then the algorithm
solves the instance by looking up in the preprocessing table as |F| ≤ 4αK and
hence T (μ, |U |) = 1. Assume now that the statement holds whenever |U | = t for
some fixed t ≥ αK and consider an instance with |U | = t + 1. The algorithm
makes two recursive calls applying Recurrence 1. In each recursive call all ele-
ments have degree at most 4 and the size of |U | is exactly t. By the induction
hypothesis the number of leaves in the search tree of the two subinstances is at
most 2t−αK . Hence the total number of leaves in the search tree is bounded from
above by 2 · 2t−αK = 2|U|−αK . ��

We now extend the analysis in Claim 3 to instances with no constraints on
element degree.

Even Faster Algorithm for Set Splitting! 297

Claim. Let K and α be fixed as in the discussion above and (U,Fu,Fw,Fb, k)
be an instance of p-CSS generated during a recursive call. Then T (μ, |U |) ≤
2|U|−αK + 1.5222μ.

Proof. We prove the claim by induction on |U |. If there are no elements of degree
at least 5 and |U | ≥ αK then the statement of the claim holds by Claim 3. If there
are no elements of degree at least 5 and |U | < αK then T (μ, |U |) = 1 ≤ 1.5222μ.
Assume now that there are elements of degree at least 5 and let v be the element
on which the algorithm branches. Since the algorithm picks an element of largest
degree, v has degree at least 5. If the uncolored, white and black degrees of v
are du(v), dw(v), db(v) we let d′u, d′w and d′b be non-negative integers such that
d′u + d′w + d′b = 5 and d′u ≤ du(v), d′w ≤ dw(v) and d′b ≤ db(v). When we apply
Recurrence 1 to branch on an element v we get the following recurrence for T

T (μ, |U |) ≤ T (μ− 1− βd′b − γd′u, |U | − 1) + T (μ− 1− βd′w − γd′u, |U | − 1).

One can verify that if we pick c = 1.5222 then for any choice of (d′u, d′w, d′b) such
that d′u + d′w + d′b = 5 we have

T (μ, |U |) ≤ T (μ− 1− βd′b − γd′u, |U | − 1) + T (μ− 1− βd′w − γd′u, |U | − 1)

≤ cμ−1−βd′
b−γd′

u + 2|U|−1−αK + cμ−1−βd′
w−γd′

u + 2|U|−1−αK

= cμ · (c−1−βd′
b−γd′

u + c−1−βd′
w−γd′

u) + 2 · 2|U|−1−αK

≤ cμ + 2|U|−αK .

Hence T (μ, |U |) ≤ 2|U|−αK + 1.5222μ, concluding the proof. ��

Summing up the above analysis, noticing that μ ≤ K + βK + γ2K in a reduced
instance, and inserting this into the bound for T (μ, |U |) from Claim 3 yields
an upper bound of O(1.9630k) for the running time of the branching part of
the algorithm. Since both parts of the algorithm take O(1.9630k) time, this
completes the proof of Theorem 2.

4 Conclusion and Discussions

In this paper we gave a smaller kernel and a faster algorithm for the p-Set

Splitting problem improving over the previosuly known results. The number
of elements and sets in our kernel matches the number of vertices and edges in
the best known kernel for p-Max Cut. It should be noted that both the kernel
and the algorithm for p-Set Splitting presented here also work for the p-Not

All Equal SAT problem. The reduction rule we use to handle instances with
strong cut-sets has similarities with reduction rules based on crown decomposi-
tions [3,8,19], and it seems that crown decompositions and strong cut-sets are
closely related. This similarity also makes us believe that the duality theorem
we made us of in our kenrelization algorithm will be a useful tool in the field of
kernelization.

298 D. Lokshtanov and S. Saurabh

Acknowledgments

We would like to thank Stéphan Thomassé, Fedor V. Fomin, Magnus Wahlström
and Gregory B. Sorkin for valuable suggestions and insightful discussions. We
especially thank Stéphan Thomassé for pointing us to the Proposition 1 and the
reference [11].

References

1. Andersson, G., Engebretsen, L.: Better approximation algorithms for SET SPLIT-
TING and NOT-ALL-EQUAL SAT. Inf. Process. Lett. 65(6), 305–311 (1998)

2. Chen, J., Lu, S.: Improved algorithms for weighted and unweighted set splitting
problems. In: Lin, G. (ed.) COCOON 2007. LNCS, vol. 4598, pp. 537–547. Springer,
Heidelberg (2007)

3. Chleb́ık, M., Chleb́ıková, J.: Crown reductions for the minimum weighted vertex
cover problem. Discrete Applied Mathematics 156(3), 292–312 (2008)

4. Dehne, F.K.H.A., Fellows, M.R., Rosamond, F.A.: An FPT algorithm for set split-
ting. In: Bodlaender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 180–191. Springer,
Heidelberg (2003)

5. Dehne, F.K.H.A., Fellows, M.R., Rosamond, F.A., Shaw, P.: Greedy localization,
iterative compression, modeled crown reductions: New fpt techniques, an improved
algorithm for set splitting, and a novel 2k kernelization for vertex cover. In: Downey,
R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp. 271–280.
Springer, Heidelberg (2004)

6. Erdős, P.: On a combinatorial problem, I. Nordisk Mat. Tidskrift 11, 5–10 (1963)
7. Erdős, P.: On a combinatorial problem, II. Acta Math, Hungary 15, 445–447 (1964)
8. Fellows, M.R.: Blow-ups, win/win’s, and crown rules: Some new directions in FPT.

In: Bodlaender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 1–12. Springer, Heidel-
berg (2003)

9. Fomin, F.V., Grandoni, F., Kratsch, D.: Measure and conquer: Domination - a case
study. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.)
ICALP 2005. LNCS, vol. 3580, pp. 191–203. Springer, Heidelberg (2005)

10. Fomin, F.V., Grandoni, F., Kratsch, D.: Measure and conquer: a simple o(20.288)
independent set algorithm. In: SODA, pp. 18–25 (2006)

11. Frank, A., Király, T., Kriesell, M.: On decomposing a hypergraph into k connected
sub-hypergraphs. Discrete Applied Mathematics 131(2), 373–383 (2003)

12. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. J.
ACM 42(6), 1115–1145 (1995)

13. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Com-
puter Computations, pp. 85–103 (1972)

14. Lokshtanov, D., Sloper, C.: Fixed parameter set splitting, linear kernel and im-
proved running time. In: ACiD. Texts in Algorithmics, vol. 4, pp. 105–113 (2005)

15. Lovász, L.: Covering and coloring of hypergraphs. In: Proceedings of the 4th South-
eastern Conference on Combinatorics, Graph Theory and Computing. Utilitas
Mathematica Publishing, pp. 3–12 (1973)

16. Prieto, E.: The method of extremal structure on the k-maximum cut problem. In:
CATS, pp. 119–126 (2005)

Even Faster Algorithm for Set Splitting! 299

17. Radhakrishnan, J., Srinivasan, A.: Improved bounds and algorithms for hypergraph
2-coloring. Random Struct. Algorithms 16(1), 4–32 (2000)

18. Raman, V., Saurabh, S.: Improved fixed parameter tractable algorithms for two
“edge” problems: MAXCUT and MAXDAG. Inf. Process. Lett. 104(2), 65–72
(2007)

19. Sloper, C.: Techniques in parameterized algorithm design. PhD thesis, University
of Bergen (2005)

20. Wahlström, M.: Algorithms, measures, and upper bounds for satisfiability and
related problems. PhD thesis, Linkp̈ing University (2007)

21. Zhang, J., Ye, Y., Han, Q.: Improved approximations for max set splitting and
max NAE SAT. Discrete Applied Mathematics 142(1-3), 133–149 (2004)

22. Zwick, U.: Outward rotations: A tool for rounding solutions of semidefinite pro-
gramming relaxations, with applications to max cut and other problems. In: STOC,
pp. 679–687 (1999)

Stable Assignment with Couples: Parameterized
Complexity and Local Search

Dániel Marx and Ildikó Schlotter

Department of Computer Science and Information Theory,
Budapest University of Technology and Economics,

H-1521 Budapest, Hungary
{dmarx,ildi}@cs.bme.hu

Abstract. We study the Hospitals/Residents with Couples problem, a
variant of the classical Stable Marriage problem. This is the extension
of the Hospitals/Residents problem where residents are allowed to form
pairs and submit joint rankings over hospitals. We use the framework of
parameterized complexity, considering the number of couples as a param-
eter. We also apply a local search approach, and examine the possibili-
ties for giving FPT algorithms applicable in this context. Furthermore,
we also investigate the matching problem containing couples that is the
simplified version of the Hospitals/Residents problem modeling the case
when no preferences are given.

1 Introduction

The classical Hospitals/Residents problem (which is a generalization of the well-
known Stable Marriage problem) was introduced by Gale and Shapley [6] to
model the following situation. We are given a set of hospitals, each having a
number of open positions, and a set of residents applying for jobs in the hospitals.
Each resident has a ranking over the hospitals, and conversely, each hospital
has a ranking over the residents. Our aim is to assign as many residents to a
hospital as possible, with the restrictions that the capacities of the hospitals are
not exceeded and the resulting assignment is stable (no hospital-resident pair
would benefit from rejecting the assignment and contracting each other).

The original version of the Hospitals/Residents problem is well understood: a
stable assignment always exists, and every stable assignment has the same size.
(The size of an assignment is the number of residents that have a job.) Moreover,
the classical Gale-Shapley algorithm [6] can find a stable assignment in linear
time. However, several practical applications motivate some kind of extension or
modification of the problem (see e.g. the NRMP program for assigning medical
residents in the USA [17,18]), and in the recent decade various versions have been
investigated. We study an extension of this problem, called Hospitals/Residents
with Couples (or HRC), where residents may form couples, and thus have joint
rankings over the hospitals. This extension models a situation that arises in
many real world applications [18], and was introduced by Roth [17] who also
discovered that a stable assignment need not exist when couples are involved.

J. Chen and F.V. Fomin (Eds.): IWPEC 2009, LNCS 5917, pp. 300–311, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Stable Assignment with Couples 301

Later, Ronn [16] proved that it is NP-hard to decide whether a stable assignment
exists in such a setting. There have been investigations of different assumptions
on the preferences of couples that guarantee some kind of tractability [10,14].

Algorithmic approaches. In the Hospitals/Residents problem, practical sce-
narios usually involve much fewer couples than singles, e.g. the ratio of couples
to singles participating in the NRMP program is around 2.5 percent1. Thus, the
number of couples in the HRC problem is a natural parameter. Investigating the
parameterized complexity of HRC with this parameter is our first goal.

Local search is a basic technique that has been widely applied in heuristics for
practical optimization problems for several decades [1]. However, investigations
considering the connection of local search and parameterized algorithms have
only been started a few years ago, and research in this area has been gaining
increasing attention lately [12]. The basic idea of local search is to find an op-
timal solution by an iteration in which we improve the current solution step by
step through local modifications. Local search can become more efficient if we
can decide whether there exists a better solution S′ that is 	 modification steps
away from a given solution S. Typically, the 	-neighborhood of a solution S can
be explored in nO(�) time by examining all possibilities to find those parts of S
that should be modified. (Here n is the input size.) The question whether an
FPT algorithm with parameter 	 can be found for the neighborhood exploration
problem has already been studied in connection with different optimization prob-
lems ([9,13,4]). Our second goal is to investigate this approach for assignment
problems.

We also contribute to the framework of parameterized local search algorithms
by distinguishing between “strict” algorithms that perform the local search step
in some neighborhood of a solution as described above, and “permissive” algo-
rithms whose task is the following: given some problem with an initial solution
S, find any better solution, provided that a better solution exists in the local
neighborhood of S. Our motivation for this distinction is that finding an im-
proved solution in the neighborhood of a given solution may be hard, even for
problems where an optimal solution is easily found.

Most of the questions examined here are also worth studying in a simplified
model that does not involve preferences. In the Maximum Matching with Couples
problem, or shortly MMC, no stability requirement is given, and we aim for an
assignment of maximum size.

Results. For lack of space, we stated some of our results without proof, see the
full version of the paper for these proofs. Our main results are outlined below
(see Table 1). We denote by C the set of couples in a problem instance, and we
denote by 	 the neighborhood size in a given local search problem.

– Theorem 1 gives a randomized FPT algorithm with parameter |C| for Max-
imum Matchig with Couples. The presented algorithm uses an FPT result
from matroid theory.

1 http://www.nrmp.org/data/resultsanddata2008.pdf

302 D. Marx and I. Schlotter

Table 1. Summary of our results (assuming W[1] �= FPT)

Task: Existence Maximum Local search algorithm
problem problem with FPT running time

Parameter: |C| � (|C|, �)
MMC P randomized FPT No permissive alg. Permissive alg.
(no pref’s) (trivial) (Theorem 1) (Theorem 3) (Theorem 1)

HRC W[1]-hard W[1]-hard No permissive alg. Strict alg.
(with pref’s) (Theorem 4) (Theorem 4) (Theorem 5) (Theorem 7)

– Theorem 3 shows that no permissive local search FPT algorithm exists for
MMC, where the parameter is 	, unless W[1] = FPT.

– Theorem 4 proves that the existence version of the HRC problem is W[1]-
hard with parameter |C|.

– Theorem 5 shows that no permissive local search FPT algorithm exists for
the maximization version of HRC with parameter 	, unless W[1] = FPT.

– Theorem 7 presents a strict local search FPT algorithm for the maximization
version of HRC, with combined parameters |C| and 	. The algorithm uses
color coding and a set of non-trivial reduction rules.

2 Preliminaries

For some integer k, we use [k] = {1, 2, . . . , k}, and
([k]

2

)
= {(i, j)|1 ≤ i < j ≤ k}.

If a matching M in a graph contains an edge xy, then we write M(x) = y
and M(y) = x. For other graph theoretic concepts, we use standard notation.
We assume basic knowledge of matroid theory in Sect. 4. We also assume that
the reader is familiar with the framework of parameterized complexity. For an
introduction, see [15] or [5].

To formalize the task of a local search algorithm, let Q be an optimization
problem with an objective function T which we want to maximize. To define
the concept of neighborhoods, we suppose there is some distance d(x, y) defined
for each pair (x, y) of solutions for some instance I of Q. A strict local search
algorithm for Q has the following task:

Strict local search for Q

Input: (I, S0,) where I is an instance of Q, S0 is a solution for I, and 	 ∈ N.
Task: If there exists a solution S for I such that d(S, S0) ≤ 	 and T (S) >

T (S0), then output such an S.

In contrast, a permissive local search algorithm for Q is allowed to output a
solution that is not close to S0, provided that it is better than S0. In local search
methods, such an algorithm is as useful as its strict version.

Stable Assignment with Couples 303

Permissive local search for Q

Input: (I, S0,) where I is an instance of Q, S0 is a solution for I, and 	 ∈ N.
Task: If there exists a solution S for I such that d(S, S0) ≤ 	 and T (S) >

T (S0), then output any solution S′ for I with T (S′) > T (S).

Note that if an optimal solution can be found by some algorithm, then this
yields a permissive local search algorithm for the given problem. On the other
hand, finding a strict local search algorithm might be hard even if an optimal
solution is easily found. An example for such a case is the Minimum Vertex

Cover problem for bipartite graphs [9]. Besides, proving that no permissive
local search algorithm exists for some problem is clearly harder than it is for
strict local search algorithms. We also present results of this kind.

3 Hospitals/Resident with Couples

A couples’ market with preference, or shortly cmp, consists of the sets S, C and H
representing singles, couples and hospitals, respectively, a capacity f(h) for each
h ∈ H , and a preference list L(a) for each a ∈ S∪C ∪H . The set A = S∪C ∪H
is called the set of agents. Each couple c is a pair (c(1), c(2)), and we call the
elements of the set R =

⋃
c∈C{c(1), c(2)}∪S residents. For a hospital h, L(h) is

a list of residents, for a single s, L(s) is a list of hospitals, and for a couple c, L(c)
is a list containing pairs of hospitals, or more precisely, a list containing elements
from (H ∪ {u}) × (H ∪ {u}) \ {(u, u)} where u is a special symbol indicating
that someone is unemployed. The preference lists can be incomplete, but cannot
involve ties, so these lists are strictly ordered.

The set of elements appearing in the list L(a) is AL(a), and some x is consid-
ered acceptable for a if x ∈ AL(a). Clearly, we may assume that acceptance is
mutual, so h ∈ AL(s) holds if and only if s ∈ AL(h) for each s ∈ S and h ∈ H ,
and (h1, h2) ∈ AL(c) implies c(i) ∈ AL(hi) or hi = u for both i ∈ {1, 2}, for
each c ∈ C. For some x ∈ AL(a), the rank of x w.r.t. a, denoted by ρ(a, x), is
r ∈ N if x is the r-th element in L(a). If x /∈ AL(a), then we let ρ(a, x) =∞ for
all meaningful x. We say that the cmp is f0-uniform if f ≡ f0 for some f0 ∈ N.

An assignment is a function M : R → H ∪{u} such that M(s) ∈ AL(s)∪{u}
for each s ∈ S, M(c) ∈ AL(c) ∪ {(u, u)} for each c ∈ C, and |M(h)| ≤ f(h)
holds for each hospital h. Here, M(c) denotes the pair (M(c(1)), M(c(2))), and
M(h) = {r|r ∈ R, M(r) = h} is the set of residents assigned to h in M . We say
that an assignment M covers a resident r if M(r) �= u, and M covers a couple
c, if it covers c(1) or c(2). We define the size of M , denoted by |M |, to be the
number of residents covered by M . The distance d(M, M ′) of two assignments
M and M ′ is the number of residents r for which M(r) �= M ′(r).

We say that x is beneficial for the agent a with respect to an assignment M
if x ∈ AL(a) and one of the following cases holds: (1) a ∈ S ∪ C and either a is
not covered by M or ρ(a, x) < ρ(a, M(a)), (2) a ∈ H and either |M(a)| < f(a)
or there exists a resident r′ ∈ M(a) such that ρ(a, x) < ρ(a, r′). A blocking pair
for M can be of three types:

304 D. Marx and I. Schlotter

– it is either a pair formed by a single s and a hospital h such that both s and
h are beneficial for each other w.r.t. M ,

– or a pair formed by a couple c and a pair (h1, h2) with h1 �= h2 such that
(h1, h2) is beneficial for c w.r.t. M , and for both i ∈ {1, 2} it holds that if
hi �= u then either c(i) is beneficial for hi w.r.t. M or c(i) ∈M(hi),

– or a pair formed by a couple c and a hospital h such that (h, h) is beneficial
for c w.r.t. M , and the couple c is beneficial for h. If h prefers c(1) to c(2),
this latter means that either |M(h)| ≤ f(h) − 2, or |M(h)| ≤ f(h) − 1
and ρ(h, c(1)) < ρ(h, r) for some r ∈ M(h), or ρ(h, c(1)) < ρ(h, r1) and
ρ(h, c(2)) < ρ(h, r2) for some r1 �= r2 in M(h). 2

An assignment M for I is stable if there is no blocking pair for M .
The input of the Hospitals/Residents with Couples problem is a cmp

I, and the task is to determine a stable assignment for I, if such an assignment
exists. If no couples are involved, then a stable assignment can always be found
in linear time with the Gale-Shapley algorithm [6]. In the case when couples
are present, a stable assignment may not exist, as first proved by Roth [17].
Ronn proved that deciding whether a stable assignment exists for a cmp is NP-
complete [16]. Moreover, an instance of the Hospitals/Residents with Cou-

ples problem may admit stable assignments of different sizes, see the full paper
for an example. In the optimization problem Maximum Hospitals/Residents

with Couples, the task is to determine a stable assignment of maximum size
for a given cmp. This problem is trivially NP-hard, as it contains the Hospi-

tals/Residents with Couples problem. We study these problems in Sect. 5.
We also study a version of the Hospitals/Residents with Couples prob-

lem that does not contain preferences and only deals with the notion of accept-
ability. To describe the input of this problem, we define a couples’ market with
acceptance, or shortly cma, as a quintuple (S, C, H, f, A) where S, C, H and f
are defined analogously as in a cmp, but A(a) defines only the set of acceptable
elements for an agent a, without any ordering. Each concept described above
that does not rely on the preference lists (and thus on stability) is inherited also
for cmas in the straightforward way. In Sect. 4, we investigate the optimization
problem Maximum Matching with Couples, where given a cma I, the task
is to find an assignment for I of maximum size.

4 Matching without Preferences

First, we investigate a slightly modified version of Maximum Matching with

Couples, denoted as (k, n)-Matching with Couples: given a cma I and two
integers k and n, find an assignment for I that covers at least k couples and
n singles, if possible. Such an assignment is called a (k, n)-assignment. Clearly,
if there are no couples in a given instance, then the problem is equivalent to
finding a maximum matching in a bipartite graph, and can be solved by standard
techniques. If couples are involved, the problem becomes hard. More precisely,
2 We thank David Manlove for pointing out this case.

Stable Assignment with Couples 305

the decision version of this problem is NP-complete [8,3], even in the following
special case: each hospital has capacity 2, and the acceptable hospital pairs for a
couple are always of the form (h, h) for some h ∈ H . However, if the number of
couples is small, which is a reasonable assumption in many practical applications,
(k, n)-Matching with Couples becomes tractable, as shown by Theorem 1.

Theorem 1. (k, n)-Matching with Couples can be solved in randomized
FPT time with parameter |C|.

To prove Theorem 1, we need a variant of a result from [11] concerning matroids.

Theorem 2. Let M(U, I) be a linear matroid and let X = {X1, X2, . . . Xn} be
a collection of subsets of U , each of size b. Given a linear representation A of
M, it can be determined in f(k, b) · ||A||O(1) randomized time whether there is
an independent set that is the union of k disjoint sets in X .

Proof (of Theorem 1). Let (S, C, H, f, A) be the cma for which we have to find
a (k, n)-assignment. W.l.o.g. we can assume that each hospital has capacity 1 as
otherwise we can “clone” the hospitals, i.e. for each h ∈ H we can substitute h
with the newly introduced hospitals h1, . . . , hf(h), also modifying A(p) for each
p ∈ S ∪ C appropriately. (As f(h) ≤ |S| + 2|C| can be assumed, this increases
the input size only polynomially.) Note that the case k < |C| can be solved by
finding a (k, n)-assignment for (S, C′, H, f, A′) for every C′ ⊆ C where |C′| = k
and A′ is the restriction of A on S ∪C′. As this increases the running time only
with a factor of at most 2|C|, it is sufficient to give an FPT algorithm for the
case |C| = k. Moreover, we can assume A(c) ⊆ H ×H , since for each c ∈ C we
can eliminate each pair of the form (h, u) or (u, h) (h ∈ H) in A(c) by adding a
new hospital uc to H with capacity 1 and substituting u with uc.

Now, let G(H, S; E) be the bipartite graph where a single s ∈ S is connected
with a hospital h ∈ H if and only if h ∈ A(s). We can assume w.l.o.g. that G
has a matching of size at least n as otherwise no solution may exist, and this
case can be detected easily in polynomial time. We define M(H, I) to be the
matroid where a set X ⊆ H is independent if and only if there is a matching in
G that covers at least n singles but covers no hospitals from X . Observe that M
is exactly the dual of the n-truncation of the transversal matroid of G, and thus
it is indeed a matroid. By a lemma in [11], we can find a linear representation
A of M in randomized polynomial time.

We define the matroidM′(U, I ′) with ground set U = H∪C such that X ⊆ U
is independent in M′ if X ∩ H is independent in M. A representation of M′

can be obtained by taking the direct sum of the matrices A and Ek where Ek is
the unit matrix of size k × k. Let X be the collection of the sets that are of the
form {c, h1, h2} where c ∈ C and (h1, h2) ∈ A(c).

Observe that if X1, X2, . . . , Xk are k disjoint sets in X whose union is inde-
pendent in M′, then we can construct a (k, n)-assignment as follows. For each
{c, h1, h2} ∈ {X1, . . . , Xk} we choose M(c) from {(h1, h2), (h2, h1)} ∩ A(c) ar-
bitrarily. The disjointness of the sets X1, . . . , Xk guarantees that this way we
assign exactly one resident to each hospital in X =

⋃
i∈[k] Xi ∩H . Now, let N

306 D. Marx and I. Schlotter

be a matching in G that covers at least n singles, but no hospitals from X . Such
a matching exists, as X is independent in M. Thus letting M(s) to be N(s)
if s is covered by N and u otherwise for each s ∈ S yields that M is a (k, n)-
assignment. Conversely, if M is a (k, n)-assignment then the sets {c, h1, h2} for
each c ∈ C and M(c) = (h1, h2) form a collection of k disjoint sets in X whose
union is independent in M′. By Theorem 2, such a collection can be found in
randomized FPT time when k is the parameter, yielding a solution if exists. ��

We remark that Theorem 1 also applies to the following cases.

– Markets containing groups of fixed size instead of couples.
– Maximization (or minimization) of an arbitrary function f(k, n), where k

and n are the number of covered couples and singles, respectively.
– Minimizing the makespan in the scheduling problem containing parallel ma-

chines and independent jobs with job assignment restrictions, if the process-
ing time is p ∈ N for k jobs, and 1 for the others, and k is the parameter.

Considering the parameterized complexity of the local search approach for the
MMC problem with parameter 	 denoting the neighborhood size, Theorem 3
shows that no FPT local search algorithm is likely to exists. We omit the proof.

Theorem 3. No permissive local search algorithm for 2-uniform Maximum

Matching with Couples runs in FPT time with parameter 	, if W[1] �= FPT.

5 Matching with Preferences

In this section, we investigate several versions of the Hospitals/Residents prob-
lem, where couples are involved and preferences play an important role.

After presenting some hardness results, Theorem 7 gives an FPT time strict
local search algorithm for the Maximum Hospitals/Residents with Cou-

ples problem, where |C| and 	 are parameters. In contrast, Theorem 4 shows
the W[1]-hardness of the Hospitals/Residents with Couples problem with
parameter |C|, which clearly implies that Maximum Hospitals/Residents

with Couples is also W[1]-hard with parameter |C|.
However, supposing that a stable assignment has already been determined by

some method, it is a valid question whether we can increase its size. We will
denote this problem Increase Hospitals/Residents with Couples. For-
mally, its input is a cmp I and a stable assignment M0 for I, and the task
is to find a stable assignment with size at least |M0|+1. If no couples are in-
volved, then all stable assignments for the instance have the same size, so this
problem is trivially polynomial-time solvable. Theorem 4 shows that Increase

Hospitals/Residents with Couples is also W[1]-hard with parameter |C|.

Theorem 4. (1) The decision version of Hospitals/Residents with Cou-

ples is W[1]-hard with parameter |C|, even in the 1-uniform case.
(2) The decision version of Increase Hospitals/Residents with Couples

is W[1]-hard with parameter |C|, even in the 1-uniform case.

Stable Assignment with Couples 307

Considering the applicability of the local search approach for the Maximum

Hospitals/Residents with Couples problem, Theorem 5 shows that no per-
missive local search algorithm is likely to run in FPT time with parameter 	.
However, if we regard |C| as a parameter as well, then even a strict local search
algorithm with FPT running time can be given, as presented in Theorem 7.

Theorem 5. No permissive local search algorithm for the 1-uniform Maximum

Hospitals/Residents with Couples runs in FPT time with parameter 	, if
W[1] �= FPT.

To prove Theorems 4 and 5, we give FPT-reductions from the parameterized
Clique problem, both reductions relying on the same idea. Although we omit
the proofs, we describe the key structure used, whose main properties are stated
in Lemma 6. For a graph G and some k ∈ N, we introduce a cmp IG,k =
(S, C, H, f, L) as follows (see Fig. 1).

Let V (G) = {vi|i ∈ [n]}, |E(G)| = m and let ν be a bijection from [m] into the
set {(x, y)|vxvy ∈ E(G), x < y}. First, we construct a node-gadget Gi for each
i ∈ [k] and an edge-gadget Gi,j for each pair (i, j) ∈

([k]
2

)
. The node-gadget Gi

contains hospitals Hi ∪Gi ∪ {f i}, singles Si ∪ T i and a couple ai. Analogously,
the edge-gadget Gi,j contains hospitals Hi,j ∪ Gi,j ∪ {f i,j}, singles Si,j ∪ T i,j

and a couple ai,j . Here T i = {tij|j ∈ [n − 1]} and T i,j = {ti,je |e ∈ [m − 1]},
Hi = {hi

j|j ∈ [n]} and Hi,j = {hi,j
e |e ∈ [m]}, and we define Gi, Si and Gi,j , Si,j

similarly to Hi and Hi,j. Observe that |C| = k +
(
k
2

)
.

We let f ≡ 1, so IG,k is 1-uniform. The precedence lists for each agent in
IG,k are defined below. The notation [X] for some set X in a preference list
denotes an arbitrary ordering of the elements of X . We write Qi

x for the set
{si,j

e |i < j ≤ k, ∃y :ν(e) = (x, y)}∪{sj,i
e |1 ≤ j < i,∃y :ν(e) = (y, x)} and Qi,j

e for
{hi

x, hj
y} where ν(e) = (x, y). The indices in the precedence lists take all possible

values if not stated otherwise, and the symbol α can be any index in [k] or a pair
of indices in

([k]
2

)
. If α takes a value in [k] then N(α) = n, otherwise N(α) = m.

L(gα
x) : tαx−1, a

α(2), tαx if 1 < x < N(α) L(hi
x) : ai(1), [Qi

x], si
x

L(gα
1) : aα(2), tα1 L(hi,j

e) : ai,j(1), si,j
e

L(gα
N(α)) : tαN(α)−1, a

α(2), aα(1) L(si
x) : hi

x, f i

L(tαx) : gα
x , gα

x+1 L(si,j
e) : hi,j

e , [Qi,j
e], f i,j

L(fα) : sα
1 , sα

2 , . . . , sα
N(α), a

α(2)
L(aα) : (gα

N(α), f
α), (hα

1 , gα
N(α)), (h

α
2 , gα

N(α)−1), . . . , (h
α
N(α), g

α
1)

Lemma 6. For a graph G and k ∈ N, IG,k has a stable assignment MG,k
0 that

covers each resident. Moreover, statements (1), (2), and (3) are equivalent:

(1) There is a clique in G of size k.
(2) There is a stable assignment M for IG,k with the following property, which

we will call property π: M(f i,j) ⊆ Si,j for each (i, j) ∈
([k]

2

)
.

(3) There is a stable assignment for IG,k with property π covering each resident.

308 D. Marx and I. Schlotter

Gi,jGi
GiHi T iSi

ai

f i

Gi,jHi,j T i,jSi,j

ai,j

f i,j
1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1 1

1

1

2

2

2

2

2

2

2

2

2

2

2

2

2

2

22

2

2

3

3

3

3

4

4

4

n m

n+1 m+1

di
1

di
2

di
n

Fig. 1. A node- and an edge-gadget of IG,k. Hospitals, singles, and couples are repre-
sented by rectangles, black, and double circles, resp. We connect h ∈ H and r ∈ R if
r ∈ AL(h). Numbers show ranks, bold edges represent MG,k

0 , and di
x = |Qi

x| + 2.

Proof. To see the first claim, we define an assignment M0 by letting M0(aα) =
(gα

N(α), f
α), M0(tαx) = gα

x , and M0(sα
x) = hα

x for all possible α and x. As each
resident is assigned to his best choice, M0 is stable and covers each resident.

To prove (2) ⇒ (1), suppose that IG,k has a stable assignment M with prop-
erty π. Let us define σ(i, j) for each (i, j) ∈

([k]
2

)
such that M(f i,j) = {si,j

σ(i,j)}.
Since si,j

σ(i,j) prefers hi,j
σ(i,j) to f i,j , the stability of M implies M(hi,j

σ(i,j)) =
{ai,j(1)}. From this, we get that M(si,j

e) = hi,j
e must hold for each e ∈ [m] \

{σ(i, j)} as otherwise (si,j
e , hi,j

e) would be a blocking pair. Note that each single
in Si,j is assigned to a hospital in Hi,j∪{f i,j}. As this holds for each (i, j) ∈

([k]
2

)
,

we get that M(hi
x) ⊆ Si ∪ {ai(1)} holds for each i ∈ [k], x ∈ [n].

Let ν(σ(i, j)) = (x, y) for some (i, j) ∈
([k]

2

)
. Since si,j

σ(i,j) prefers the hospitals

in Qi,j
σ(i,j) = {hi

x, hj
y} to f i,j, M can only be stable if both hi

x and hj
y prefer their

partner in M to si,j
σ(i,j). This implies M(hi

x) = {ai(1)} and M(hj
y) = {aj(1)}.

Thus, by defining σ(i) to be x if M(ai) = (hi
x, gi

n+1−x) for each i ∈ [k], we
obtain ν(σ(i, j)) = (σ(i), σ(j)). From the definition of ν, this implies that vσ(i)

and vσ(j) are adjacent in G. As this holds for every (i, j) ∈
([k]

2

)
, we get that

{vσ(i)|i ∈ [k]} is a clique in G.
Now we prove (1) ⇒ (3). If vσ(1), vσ(2), . . . , vσ(k) form a clique in G, then

define σ(i, j) such that σ(i, j) = ν−1(σ(i), σ(j)). We define a stable assignment
M fulfilling property π and covering every resident as follows.

M(aα) = (hα
σ(α), g

i
N(α)+1−σ(α)) M(tαx) = gα

x if x ∈ [N(α) − σ(α)]
M(sα

σ(α)) = fα M(tαx) = gα
x+1 otherwise

M(sα
x) = hα

x if x ∈ [N(α)] \ {σ(α)}

The stability of M can be verified by simply checking all possibilities to find a
blocking pair. (We note that many agents are only contained in IG,k to assure
that M is indeed stable.) As (3) ⇒ (2) is trivial, this finishes the proof. ��

Theorem 7. There is an FPT time strict local search algorithm for Maximum

Hospitals/Residents with Couples with combined parameter (, |C|).

Stable Assignment with Couples 309

1111111111 222222222
−−−−− +++++

Fig. 2. A possible component of Gδ. Winners and losers are marked by ’+’ and ’−’
signs, respectively. Bold edges represent M0, normal edges represent M .

Proof. Let I = (S, C, H, f, L) be given with the stable assignment M0 and the
integer 	. Although the case f ≡ 1 is different from the general case in many
aspects, the trick of cloning the hospitals is applicable in our case (see the full
version). Therefore, w.l.o.g. we may assume f ≡ 1. Thus, if M(r) = h for some
r ∈ R, then we will write M(h) = r instead of M(h) = {r}.

Before describing the strict local search algorithm for Maximum Hospitals/

Residents with Couples, we introduce some notation to capture the structure
of the solution. The bipartite graph G underlying I has vertex set H ∪R and edge
set E = {hr|h ∈ H, r ∈ AL(h)}. Clearly, an assignment M for I determines a
matching E(M) in G in the natural way: hr ∈ E(M) if and only if M(r) = h for
some resident r and hospital h. Suppose that M is a closest solution, i.e. a stable
assignment for I with |M | > |M0| and d(M, M0) ≤ 	 that is the closest to M0
among all such assignments. Let Aδ = {a ∈ R ∪ H |M(a) �= M0(a)}, and Eδ be
the symmetric difference of E(M0) and E(M). Note that Eδ covers exactly the
vertices of Aδ, and Gδ = (Aδ, Eδ) is the union of paths and cycles which contain
edges from M0 and M in an alternating manner. It is well-known that for a cmp
not containing couples every stable assignment covers exactly the same agents [7].
Thus, it is easy to see that the stability of M and M0 imply that if a component
of Gδ contains only single residents, then it must be a cycle. Let K0 denote the set
of such cycles, andK1 the set of the remaining components of Gδ. We write Cδ for
(R \ S) ∩ Aδ, and we define B(a) = {b|a is beneficial for b w.r.t. M0} for every
a ∈ S ∪ H . We also let S+ = {s ∈ S|M(s) is beneficial for s w.r.t. M0}, and
S− = {s ∈ S|M0(s) is beneficial for s w.r.t. M}. Note that S+ ∪ S− = S ∩ Aδ.
We define H+ and H− analogously. We call agents in A+ = S+∪H+ winners and
agents in A− = S− ∪H− losers. For a simple illustration see Fig. 2.

Now, we describe an algorithm that finds vertices of Aδ. The algorithm first
branches on guessing |Aδ| and a copy Ḡ of the graph Gδ. Let ϕ denote an
isomorphism from Ḡ to Gδ. The algorithm also guesses the vertex sets ϕ−1(Cδ),
ϕ−1(H+), ϕ−1(H−), ϕ−1(S+), ϕ−1(S−), and edge sets ĒM0 and ĒM denoting
ϕ−1(E(M0) ∩ Eδ) and ϕ−1(E(M) ∩ Eδ), respectively. Since |Aδ| ≤ 2	, it can
be achieved by careful implementation that the algorithm branches into at most
(2) · 62� directions in this phase. Now, let Γ be an ordering of V (Ḡ), i.e. a
bijection from V (Ḡ) to [|Aδ|]. The algorithm colors the vertices of G with |Aδ| ≤
2	 colors randomly with uniform and independent distribution, γ(a) denotes the
color of a. The coloring γ is nice, if γ(ϕ(a)) = Γ (a) for each a ∈ V (Ḡ). We
suppose that γ is nice, which clearly holds with probability |Aδ|−|Aδ| ≥ (2)−2�.

Given a coloring, the algorithm grows a subset X ⊆ V (Ḡ) on which ϕ is
already known. It applies the following extension rules repeatedly (see Fig. 3),
until none of them applies. When Rule 1 is applied, the algorithm branches into
at most 2|C| branches, but no other branchings happen. We write X̄ = V (Ḡ)\X .

310 D. Marx and I. Schlotter

1

1

2

2

3

3

− −

−

−

+
+

+

++

+
++ x

y

ϕ(x)ϕ(x) ϕ(y) ϕ(y)

h

ϕ(rc)

h1

h2
c(1)c(1)

c(2)
c(2)

(R1) (R2) (R3)

(R4) (R5)

(R6)

Fig. 3. Subgraphs of Gδ illustrating the rules of Theorem 7. Agents of ϕ(X) are shown
in a rectangular box. Bold edges represent ĒM0 , normal edges represent ĒM .

Rule 1 [guessing a member of a couple]: applicable if rc ∈ X̄ ∩ ϕ−1(Cδ).
In this case we simply branch on the vertices of (R \ S) ∩ {a|γ(a) = Γ (c)} to
choose ϕ(rc). Note that this means at most 2|C| branches.

Rule 2 [finding pairs by M0]: applicable if x ∈ X, y ∈ X̄ and xy ∈ ĒM0 for
some x and y. By ϕ(y) = M0(ϕ(x)), we can extend ϕ by adding y to X .

Rule 3 [finding pairs by M for losers]: applicable if x ∈ X ∩ ϕ−1(A−),
y ∈ X̄ ∩ϕ−1(A+) and xy ∈ ĒM for some x and y. Let y∗ be the first element in
the list L(ϕ(x)) contained in B(ϕ(x)) having color Γ (y). We claim y∗ = ϕ(y).
Clearly, ϕ(y) ∈ B(ϕ(x)) holds because ϕ(y) is a winner, and its color must
be Γ (y) as γ is nice. Now, suppose for contradiction that y∗ precedes ϕ(y) in
L(ϕ(x)). Since the only vertex in Aδ having color Γ (y) is ϕ(y), we get M(y∗) =
M0(y∗) implying that y∗ and ϕ(x) form a blocking pair for M . Thus, ϕ(y) = y∗

can be found in linear time, so we can extend ϕ by adding y to X .

Rule 4 [finding pairs by M for couples with one winner hospital]:
applicable if c(i) ∈ Cδ∩ϕ(X), y ∈ ϕ−1(H+)∩X̄ , ϕ−1(c(i))y ∈ ĒM , and M(c(i′))
is already known for some c ∈ C, i �= i′ and y. W.l.o.g. we assume i = 1. Let h be
defined such that (h, M(c(2))) is the first element in L(c) for which h ∈ B(c(1))
and h has color Γ (y). We claim ϕ(y) = h. Observe that ϕ(y) ∈ B(c(1)) must
hold because ϕ(y) is a winner. As γ is nice, ϕ(y) indeed has color Γ (y). Thus,
if h �= ϕ(y) then (h, M(c(2))) precedes (ϕ(y), M(c(2))) in L(c), but this implies
that the couple c and (h, M(c(2))) form a blocking pair for M . Therefore, we
get ϕ(y) = h, and we can extend ϕ in linear time by adding y to X .

Rule 5 [finding pairs by M for couples with two winner hospitals]:
applicable if c(i) ∈ Cδ ∩ ϕ(X), yi ∈ ϕ−1(H+) ∩ X̄, and ϕ−1(c(i))yi ∈ ĒM holds
for both i ∈ {1, 2}, for some c ∈ C, y1 and y2. We let (h1, h2) be the first element
in L(c) such that hi ∈ B(c(i)) and γ(hi) = Γ (yi) for both i ∈ {1, 2}. Using the
same arguments as in the previous case, we can show ϕ(y1) = h1 and ϕ(y2) = h2.
Thus, we can extend ϕ in linear time by adding both y1 and y2 to X .

Rule 6 [dissolving a blocking pair]: applicable if M(a) ∈ ϕ(X) if and only
if a ∈ ϕ(X) for all a ∈ Aδ, and xy is a blocking pair for the actual assignment
MX . We define MX by setting MX(a) = M0(a) if a /∈ ϕ(X) and MX(a) = M(a)
if a ∈ ϕ(X), for each agent a. Note that by our first condition, MX is indeed an
assignment. Now, as xy cannot be a blocking pair for M or M0, either x ∈ ϕ(X)

Stable Assignment with Couples 311

and y ∈ Aδ \ ϕ(X), or vice versa. W.l.o.g. we suppose the former. By defining
ȳ ∈ V (Ḡ) such that Γ (ȳ) = γ(y), it can be seen that ϕ(ȳ) = y must hold because
γ is nice. Thus, ϕ can be extended by adding ȳ to X .

Lemma 8. If none of the rules is applicable, then ϕ(X) = Aδ.

If no extension rule is applicable, then we can obtain the solution M by Lemma 8.
Each step takes linear time, the number of steps is at most 2	, and the algorithm
branches into at most (2)62�(2|C|)� branches in total, thus the overall running
time is O((72|C|)�|I|). The output is correct if the coloring γ is nice, which
holds with probability at least (2)−2�. 3 ��

References

1. Aarts, E.H.L., Lenstra, J.K. (eds.): Local Search in Combinatorial Optimization.
Wiley, New York (1997)

2. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42, 844–856 (1995)
3. Biró, P., McDermid, E.J.: Matching with couples is hard, but extra beds help

(manuscript) (2009)
4. Fellows, M.R., Fomin, F.V., Lokshtanov, D., Rosamond, F.A., Saurabh, S., Vil-

langer, Y.: Local search: Is brute-force avoidable? In: IJCAI 2009 (2009)
5. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)
6. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. American

Mathematical Monthly 69, 9–15 (1962)
7. Gale, D., Sotomayor, M.: Some remarks on the stable matching problem. Discrete

Appl. Math. 11, 223–232 (1985)
8. Glass, C.A., Kellerer, H.: Parallel machine scheduling with job assignment restric-

tions. Naval Research Logistics 54(3), 250–257 (2007)
9. Krokhin, A., Marx, D.: On the hardness of losing weight. In: Aceto, L., Damg̊ard, I.,

Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP
2008, Part I. LNCS, vol. 5125, pp. 662–673. Springer, Heidelberg (2008)

10. Klaus, B., Klijn, F.: Stable matchings and preferences of couples. J. Econ. The-
ory 121, 75–106 (2005)

11. Marx, D.: A parameterized view on matroid optimization problems. In: Bugliesi,
M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp.
656–667. Springer, Heidelberg (2006)

12. Marx, D.: Local Search. Parameterized Complexity News 3, 7–8 (2008)
13. Marx, D.: Searching the k-change neighborhood for TSP is W[1]-hard. Oper. Res.

Lett. 36(1), 31–36 (2008)
14. McDermid, E.J., Manlove, D.F.: Keeping partners together: Algorithmic results

for the Hospitals/Residents problem with couples. To appear in J. of Comb. Opt.
15. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University

Press, Oxford (2006)
16. Ronn, E.: NP-Complete stable matching problems. J. Algorithms 11, 285–304 (1990)
17. Roth, A.E.: The evolution of the labor market for medical interns and residents: a

case study in game theory. J. Polit. Econ. 92, 991–1016 (1984)
18. Roth, A.E., Sotomayor, M.: Two Sided Matching: A Study in Game-Theoretic

Modelling and Analysis. Cambridge University Press, Cambridge (1990)

3 To derandomize the algorithm, we can use the standard method of k-perfect hash
functions [2], yielding a running time of O(�O(�)|C|�|I | log |I |).

Improved Parameterized Algorithms for the
Kemeny Aggregation Problem

Narges Simjour

David Cheriton School of Computer Science
University of Waterloo

Waterloo, Ontario, Canada N2L 3G1
nsimjour@cs.uwaterloo.ca

Abstract. We give improvements over fixed parameter tractable (FPT)
algorithms to solve the Kemeny aggregation problem, where the task is
to summarize a multi-set of preference lists, called votes, over a set of
alternatives, called candidates, into a single preference list that has the
minimum total τ -distance from the votes. The τ -distance between two
preference lists is the number of pairs of candidates that are ordered dif-
ferently in the two lists. We study the problem for preference lists that
are total orders. We develop algorithms of running times O∗(1.403kt),
O∗(5.823kt/m) ≤ O∗(5.823kavg) and O∗(4.829kmax) for the problem, ig-
noring the polynomial factors in the O∗ notation, where kt is the opti-
mum total τ -distance, m is the number of votes, and kavg (resp. kmax) is
the average (resp. maximum) over pairwise τ -distances of votes. Our al-
gorithms improve the best previously known running times of O∗(1.53kt)
and O∗(16kavg) ≤ O∗(16kmax) [3,4], which also implies an O∗(162kt/m)
running time. We also show how to enumerate all optimal solutions in
O∗(36kt/m) ≤ O∗(36kavg) time.

Keywords: Kemeny score, parameterized, exact algorithms, enumer-
ation.

1 Introduction

Preference lists are typical elements of psychology questionnaires and social sci-
ence surveys. In many cases, we wish to combine the gathered preference lists into
a single list that reflects the opinion of the surveyed group as much as possible.
The Kemeny aggregation problem, introduced by Kemeny in 1959, is a famous
abstract form of this problem [9]. Given a set of m total orders, called votes,
over a set of n alternatives, called candidates, the Kemeny-optimal aggregation
problem asks for a total order over candidates, called an optimal aggregation,
that minimizes the sum of τ -distances from the votes, where the τ -distance be-
tween total orders π1, π2 is the number of pairs of candidates that are ordered
differently in the two total orders.

Bartholdi et al. [2] showed that the problem is NP-hard. Later, Dwork et
al. [8] proved that the problem remains NP-hard for constant even m’s as small

J. Chen and F.V. Fomin (Eds.): IWPEC 2009, LNCS 5917, pp. 312–323, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Improved Parameterized Algorithms for the Kemeny Aggregation Problem 313

as m = 4. Their proof had a small error, which was fixed by Biedl et al. [5].
Dwork et al. used Kemeny’s formalization [9] in their search for an effective spam
filtering method that combined the results of multiple search engines. Their ar-
ticle [8] initiated a series of papers studying algorithmic aspects of the Kemeny
aggregation problem. The problem was shown to have an O(n2.5 + mn2) 2-
approximation [8]. Ailon et al. developed randomized approximation algorithms
of ratios 11/7 and 4/3 [1]. Later, Kenyon-Mathieu and Schudy developed a PTAS
for the feedback arc set problem for special weighted tournaments, which solves
the Kemeny aggregation problem as a special case [10]. Despite being a theo-
retical breakthrough, this algorithm could not be used in practice. Recently, in
an attempt to develop practical approximation algorithms, Williamson and van
Zuylen derived a deterministic 8/5-approximation algorithm for the problem [13].
The reader is referred to a survey by Charon and Hudry [6] for a detailed list of
results.

Computational experiments of Davenport and Kalagnanam [7] suggest that
the Kemeny aggregation problem might be easier to solve when an optimal aggre-
gation is close to the input votes. In this direction, Betzler et al. [3] parameterized
the problem with the sum of the τ -distances of the optimal aggregation from
the input votes, denoted by kt, and the maximum pairwise τ -distances of the
input votes, denoted by kmax. They developed O∗(1.53kt) and O∗((3kmax + 1)!)
time algorithms, giving the first FPT algorithms for the Kemeny aggregation
problem [3]. Later, they parameterized the problem by the average pairwise τ -
distances of the input votes, denoted by kavg, and developed an algorithm that
ran in time O∗(16kavg) ≤ O∗(16kmax) [4].

Our results. We develop parameterized algorithms of running times O∗(1.403kt),
O∗(5.823kt/m) ≤ O∗(5.823kavg), and O∗(4.829kmax) for the problem, improving
the previous best running times ofO∗(1.53kt) [3] and O∗(16kavg) ≤ O∗(16kmax) [4].
We also give an algorithm to enumerate all optimal solutions in O∗(36kt/m) time.
We are the first to parameterize the problem in terms of kt/m, although, as kavg ≤
2kt/m, any FPT algorithm in terms of kavg implies an FPT algorithm in terms
of kt/m. It is worth mentioning that kt/m is smaller than kavg and kmax, and
therefore, parameterizing the problem with kt/m, instead of kavg or kmax, leads
to a potentially tighter analysis of FPT algorithms.

Our Results Previous Running Times
m kt kavg kmax kt kavg kmax

3 1.403kt 1.968kavg 1.968kmax

4 1.403kt 2.760kavg 2.760kmax

5 1.342kt 3.241kavg 3.241kmax

6 1.342kt 4.348kavg 4.348kmax

...
m (2.4151/�m/2�)kt 5.833kavg 4.829kmax 1.53kt [3] 16kavg [4] 16kmax [4]

Fig. 1. A summary of the running times proved in this paper and the best previous
running times. Only the exponential terms are listed.

314 N. Simjour

Figure 1 summarizes the running times proved in this paper and the best
previous running times, in terms of the three parameters kt, kavg and kmax.

We fix pertinent notation in Section 2 and explain the parameterized algo-
rithms in Section 3.

2 Preliminaries

We use U to denote the set of candidates. A binary relation on U is a subset
of U × U . A binary relation R is irreflexive if no (x, x), x ∈ U , is in R, and is
asymmetric if (x, y) ∈ R, x, y ∈ U , and x �= y implies (y, x) /∈ R. In this article,
we only work with irreflexive asymmetric binary relations. We may use x <R y
to denote (x, y) ∈ R, and describe it as “R orders x before y”.

A binary relation R is called complete if for any x, y ∈ U , x �= y, either
(x, y) ∈ R or (y, x) ∈ R. A binary relation R is transitive if (w, x) ∈ R and
(x, y) ∈ R imply (w, y) ∈ R. A total order is an irreflexive asymmetric binary
relation that is complete and transitive. We use TU to denote the set of total
orders on U . We use R+ for a transitive binary relation R to denote the transitive
closure of R.

For any set R ⊆ U ×U , we use rev(R) to denote {(b, a) : (a, b) ∈ R}; we may
abuse the notation a little bit and use rev((a, b)) instead of rev({(a, b)}). We
say that R1 ⊆ U × U is consistent with R2 ⊆ U × U if R1 ∩ rev(R2) = ∅.

Definition 1. The τ -distance between π1, π2 ∈ TU , denoted by τ(π1, π2), is the
cardinality of π1 − π2. For a multi-set I over TU , τ(π1, I) is defined as the sum
of τ(π1, π2) over all total orders π2 in I.

An optimal aggregation of a multi-set I on TU is a total order σ ∈ TU that
minimizes τ(σ, I). We use OPT (I) to denote the set of all optimal aggregations.
The Kemeny aggregation problem is the problem of finding an optimal aggrega-
tion for any given multi-set I on TU . For the case |I| = 1 or 2, any σ ∈ I is
an optimal aggregation [8]. Therefore, we are only interested in input instances
that include more than two total orders.

We let unanimity(I) denote the binary relation
⋂

π∈I π.

Observation 1. [11] For any σ ∈ OPT (I), unanimity(I) ⊆ σ.

Therefore, the Kemeny aggregation problem reduces to determining the order of
dirty pairs, defined below:

Definition 2. The set of dirty pairs of I, denoted by dirty(I), is {{a, b} :
(a, b) ∈

⋃
π∈I(π − unanimity(I))}.

We use num(a,b)(I) to denote the cardinality of {π ∈ I : a <π b}.

Definition 3. The majority graph of I, denoted by M(I), is a weighted directed
graph constructed as follows: for each a ∈ U , we put a vertex in M(I) labeled as
a. For each pair of vertices a and b, we put an edge from a to b if num(a,b)(I) >
num(b,a)(I), and set its weight to num(a,b)(I)− num(b,a)(I).

Improved Parameterized Algorithms for the Kemeny Aggregation Problem 315

We refer to the edge set of a graph G as E(G). We use weight(e) to refer to the
weight of an edge e ∈ E(G), and use weight(S) to refer to

∑
e∈S weight(e) for

any subset S of edges.

Definition 4. A tournament majority graph of I is a supergraph TM of M(I)
whose set of vertices is U , which is a tournament, and in which the weight of
any edge in E(TM)− E(M(I)) is zero.

Dwork et al. observed that σ is in OPT (I) if and only if E(M(I)) − σ is a
minimum-weight feedback arc set for M(I) [8]; a subset F of edges of a graph G
is called a feedback arc set for G if (E(G)− F) ∪ rev(F) is transitive. The same
observation is true for any tournament majority graph of I:

Observation 2. A total order σ is in OPT (I) if and only if E(TM)− σ is a
minimum-weight feedback arc set for a tournament majority graph of I.

For weighted tournament graphs, the search tree algorithm of Raman and
Saurabh [12] can be used to find a minimum-weight feedback arc set of size
at most k edges in O∗(2.415k) time. We should mention that the original algo-
rithm is designed for weighted tournaments with edge weights greater than or
equal to one; however, the algorithm can be used for general weights if the search
is confined to feedback arc sets that have no more than k edges. This variant is
especially useful for finding a minimum-weight feedback arc set in tournament
majority graphs, since although these graphs can have zero-weight edges, we will
show that they have a minimum-weight feedback arc set with small number of
edges.

We useMinFAS(G, k) to refer to this version of the algorithm, which is shown in
Algorithm 1 for the sake of completeness. We use Ct to denote a cycle of
length t.

Algorithm 1. MinFas

Require : G, k
O ← BoundedSearchTree1(G, ∅, k);1

return F ∈ {E(G) − σ : σ ∈ O} that has the minimum weight(F);2

Lemma 1. [12] Suppose that G is a weighted tournament graph and k is a
positive integer. Then, MinFAS(G, k) returns a minimum-weight feedback arc
set of G with at most k edges, if one exists, in time O∗((1+

√
2)k) ≈ O∗(2.415k).

Definition 5. For any multi-set I with an optimal aggregation σ, kt = τ(σ, I),
kavg = avg{τ(π1, π2) : π1, π2 ∈ I}, and kmax = max{τ(π1, π2) : π1, π2 ∈ I}.

Observation 3. kt/(m− 1) ≤ kavg ≤ 2kt/m.

Proof. Since τ(σ, I) ≤ τ(πi, I), for any πi ∈ I, the inequality
∑

1≤i≤m τ(πi, σ) ≤∑
1≤i≤m τ(πi, πj) holds for any πj ∈ I. Summing over all j’s proves the first

part of the observation. The second part follows from applying the triangular
inequality τ(πi, πj) ≤ τ(πi, σ) + τ(σ, πj) for every i and j. ��

316 N. Simjour

Algorithm 2. BoundedSearchTree1

Require : G, L, k
if G does not have a C3 then /* no cycles remain */1

return {E(G)};2

else if |L| = k then /* cannot afford more edges */3

return ∅;4

else if G has a C3, C = (Vc, Ec), with Ec ∩ L �= ∅ then5

if Ec ⊆ L then return ∅; /* L has a cycle */6

else7

P ← {π ∈ TVc : (Ec − π) is a minimal FAS for C, π is consistent with L};
else if G has a C4, C = (Vc, Ec), then8

P ← {π ∈ TVc : (Ec − π) is a minimal FAS for C, π is consistent with L};9

else /* C3’s in G do not have common edges */10

let (Vc, Ec) be a C3 in G;11

let e be a minimum-weight edge in Ec;12

P ← {Ec − {e} ∪ rev({e})};13

return
⋃

π∈P BoundedSearchTree1((G − rev(π)) + π, L ∪ rev(E(G) − π));14

We use O∗(f(k, |I|)) to denote O(f(k, |I|) · |I|c) for some constant c. In the rest
of the paper, we assume that I is a multi-set on TU , |I| = m ≥ 3, |U | = n, and
TM is an arbitrary tournament majority graph of I.

3 Parameterized Algorithms

3.1 The Parameter kt

In this section, we show how to improve the O∗(1.53kt) running time by Betzler et
al. [3] to O∗(1.403kt). We base our analysis on the following lemma; for simplicity,
we use d to denote |E(TM)− unanimity(I)| and use k to denote |E(TM)− σ|
for an arbitrary σ ∈ OPT (I).

Lemma 2. For any π ∈ TU ,

(d− |E(TM)− π|) + |E(TM)− π| · �m/2� ≤ τ(π, I).

Proof. Each of the pairs (a, b) ∈ E(TM)−π indicates that π opposes the ordering
of {a, b} suggested by the majority. Also, by the definition of dirty pairs, for each
of the dirty pairs not in E(TM)−π, there exists a total order in I that disagrees
with the pair’s ordering in π. The number of such pairs is at least d−|E(TM)−π|.
Therefore, the number of disagreements of π with total orders in I is at least
(d− |E(TM)− π|) + |E(TM)− π| · �m/2�. ��

Since m ≥ 3, Lemma 2 proves the following relationship between d and k:

Corollary 1. d + k ≤ kt.

Improved Parameterized Algorithms for the Kemeny Aggregation Problem 317

Algorithm 3. OptAggregation1

Require : I
TM ← a tournament majority graph of I;1

O ← BoundedSearchTree2(TM, unanimity(I)});2

return σ ∈ O that minimizes τ (σ, I);3

The idea is to use MinFas(TM, kt − d) for large values of d, and develop an
algorithm that runs fast for small values of d. In the following, we give a search
tree algorithm, shown in Algorithm 3, that finds an optimal aggregation in time
O∗(3(d/2)).

The algorithm gradually decides on the orderings of dirty pairs and uses a set L
to keep track of the pairs of vertices ordered so far. Each branch is stopped when
either all dirty pairs are ordered in L or the computed L does not correspond to
any total order.

Compared to Betzler et al.’s algorithm [3], Algorithm 3 incorporates a tourna-
ment majority graph into the search tree, and branches on triples of dirty pairs
that form a C3 in TM , instead of all triples of dirty pairs. Using the ideas in
MinFas [12], we go one step further, and consider C4’s whenever possible. Since
we will use this search tree algorithm for small values of d, we modify Bound-

edSearchTree1 to optimize the running time for small d’s. More precisely, in
places that BoundedSearchTree1 branches on minimal feedback arc sets of a
cycle, BoundedSearchTree2, shown in Algorithm 4, branches on all feedback
arc sets of the cycle (lines 4 and 4 of BoundedSearchTree2).

Algorithm 4. BoundedSearchTree2

Require : G, L
if G does not have a C3 then /* no cycles remain */1

return {E(G)};2

else if G has a C3 = (Vc, Ec) with Ec ∩ L �= ∅ then3

if Ec ⊆ L then return ∅; /* L has a cycle */4

else P ← {π ∈ TVc : π is consistent with L};5

else if G has a C4 = (Vc, Ec) then6

P ← {π ∈ TVc : π is consistent with L};7

else /* C3’s in G do not have common edges */8

let (Vc, Ec) be a C3 in G;9

let e be a minimum-weight edge in Ec;10

P ← {Ec − {e} ∪ rev({e})};11

return
⋃

π∈P BoundedSearchTree2((G − rev(π)) + π, L ∪ π);12

Theorem 1. OptAggregation1(I) returns an optimal aggregation of I in
time O∗((

√
3)d).

Due to space limitations, we do not give a proof for Theorem 1.

318 N. Simjour

Theorem 2. An optimal aggregation can be found in O∗(1.403kt) time.

Proof. If d ≥ 2 log2(1+
√

2)kt

log2(3)+2 log2(1+
√

2)
, then by Lemma 1 we can run MinFAS(TM,

kt − d) to obtain an optimal aggregation in time

O∗((1 +
√

2)kt−d) ≤ O∗((1 +
√

2)(1−
2 log2(1+

√
2)

log2(3)+2 log2(1+
√

2)
)kt) < O∗(1.403kt).

Otherwise, if d < 2 log2(1+
√

2)kt

log2(3)+2 log2(1+
√

2)
, then by Theorem 1 we can run OptAg-

gregation1(I) to find the optimal aggregation in time

O∗((
√

3)d) ≤ O∗((
√

3)
2 log2(1+

√
2)kt

log2(3)+2 log2(1+
√

2)) < O∗(1.403kt). ��

In the next section, we study parameters other than kt.

3.2 The Parameters kt/m, kavg, and kmax

Since the value of kt generally increases when m is increased, it is more reasonable
to study the problem with respect to kt/m or other parameters that do not
depend on m. In this section, we consider the parameters kt/m, kavg, and kmax.

Again, Lemma 2 plays an essential role:

Corollary 2. For any π ∈ TU , |E(TM)− π| ≤ τ(π, I)/�m/2�.

Corollary 3. k ≤ kt/�m/2�.

Corollary 3 and Lemma 1 prove that we can use MinFas(TM, kt/�m/2�) to
compute an optimal aggregation in O∗(2.415kt/�m/2�) time.

Theorem 3. An optimal aggregation can be found in time O∗(2.415kt/�m/2�) ≤
O∗(2.415((m−1)/�m/2�)kavg) ≤ O∗(2.415((m−1)/�m/2�)kmax).

Note that for m ≥ 5 the bound O∗(2.415kt/�m/2�) of Theorem 3 is better than
the bound O∗(1.403kt) in Theorem 2, with respect to kt.

In the remainder of this section, we focus on the parameter kmax and show
how to improve the running time O∗(2.415((m−1)/�m/2�)kmax) ≈ O∗(5.833kmax)
to O∗((4.829)kmax). The idea is to work with a total order in I that is close to
some σ ∈ OPT (I), and agrees with the majority of I in most pair orderings.
The precise algorithm, called OptAggregation2, is shown in Algorithm 5.

The algorithm goes through every π ∈ I. For every π, the algorithm assumes
that π is close to some optimal aggregation, and starts the search by deciding
on the ordering of the pairs in E(TM)− π, using the assumption to confine the
search space.

Theorem 4. OptAggregation2(I) returns an optimal aggregation in time
O∗(4.829kmax).

Improved Parameterized Algorithms for the Kemeny Aggregation Problem 319

Algorithm 5. OptAggregation2

Require : I
TM ← a tournament majority graph of I;1

kmax ← max{τ (π1, π2) : π1, π2 ∈ I};2

Initialize Q to E(TM); /* max-weight subset of edges */3

foreach π ∈ I do4

foreach S ⊆ (E(TM) − π) with |S| ≤ kmax do5

P1 ← (E(TM) − π) − S ;6

P2 ← MinFAS(TM − P1 + rev(P1), kmax − |S|);7

if weight(P1 ∪ P2) < weight(Q) then Q ← P1 ∪ P2;8

end9

end10

return (E(TM) − Q) ∪ rev(Q);11

Proof. Since any computed P2 in line 5 is a feedback arc set for TM − P1 +
rev(P1), P1 ∪ P2 is always a feedback arc set for TM . By Observation 2, the
algorithm is proved to be sound once we show that P1 ∪P2 is set to a minimum-
weight feedback arc set for TM at some point. We suppose that σ is an optimal
aggregation. There exists some π in line 5 such that τ(σ, π) ≤ kmax; since oth-
erwise, mkmax < τ(σ, I), proving that mkmax < τ(ω, I) for every ω ∈ I, which
violates the definition of kmax.

The set (E(TM)− π)− (E(TM)− σ) is among the enumerated S’s in line 5,
since it is a subset of σ − π and therefore its size is at most kmax. The P1
corresponding to this S will be (E(TM)− π) ∩ (E(TM)− σ).

We claim that weight(P2) = weight((E(TM) − σ) − P1). The weight of P2
is not larger than weight((E(TM) − σ) − P1), since (E(TM) − σ) − P1 is a
feedback arc set for TM −P1 + rev(P1) that has no more than kmax−|S| edges:
the two sets S = (E(TM) − π) − (E(TM) − σ) and ((E(TM) − σ) − P1) =
((E(TM)−σ)− (E(TM)−π)) are disjoint subsets of E(TM), and in both sets,
each edge connects a pair of vertices that are ordered differently by σ and π.
Therefore, |(E(TM)− σ) − P1| + |S| is at most τ(σ, π), which is no more than
kmax, due to the choice of π.

Consequently, the weight of P1∪P2 is at most weight(P1)+weight((E(TM)−
σ)−P1). Since P1 ⊆ (E(TM)−σ), this weight is weight(E(TM)−σ). Therefore,
P1∪P2 is a minimum-weight feedback arc set in some iteration. This proves that
the algorithm is sound.

The OptAggregation2 algorithm can construct the majority graph in O(mn2)
time. Also, computing the value of kmax takes at most O(m2n2) time. The cost
of the loop is dominated by the cost of lines 5 and 5. The first branching step,
line 5, takes O(

(|E(TM)−π|
i

)
) time, for any 1 ≤ i ≤ kmax. By Lemma 1, the second

branching step, line 5, takes O∗((2.415)kmax−i) time. Overall, the algorithm runs
in time

O∗(m2n2 + m ·
∑

1≤i≤kmax

(|E(TM)−π|
i

)
· 2.415(kmax−i)) =

O∗(
∑

1≤i≤kmax

(|E(TM)−π|
i

)
· 2.415(kmax−i))

320 N. Simjour

By the definition of kmax, τ(π, I) ≤ (m−1)kmax. Hence, Corollary 2 proves that
|E(TM)− π| < 2kmax, and the running time is bounded by

O∗(
∑

1≤i≤kmax

(2kmax

i

)
· 2.415(kmax−i)) =

O∗(2.415(−kmax)∑
1≤i≤kmax

(2kmax

i

)
· 2.415(2kmax−i)) =

O∗(2.415(−kmax)∑
1≤i≤2kmax

(2kmax

i

)
· 2.415(2kmax−i)) =

O∗(2.415(−kmax)(1 + 2.415)2kmax) < O∗(4.829kmax) . ��

Theorem 4 improves the best previous running time of O∗(16kmax) by Betzler et
al. [4].

3.3 Enumerating Optimal Aggregations

In this section, we give an algorithm, shown in Algorithm 6, to enumerate
OPT (I). The key point is to focus on candidates that are ordered consecu-
tively in an optimal aggregation. To this end, we define seq(π) for a total order
π ∈ TU as {(a, b) : for no c ∈ U, a <π c <π b}. Our algorithm uses the fact
that elements of seq(π) are edges of M(I), for any optimal aggregation π. We
also define intervalπ((u, v)) for any (v, u) ∈ π as {x : x ∈ U, v <π x <π u}.
The order of u and v may appear strange in this definition; however, the current
order makes more sense since we want to use the interval notation for edges
whose reversals are in π. For a set S = {(u1, v1), (u2, v2), . . . , (u|S|, v|S|)}, we use
head(S) and tail(S) to denote the sets {v1, v2, . . . , v|S|} and {u1, u2, . . . , u|S|}.

The algorithm uses a total order σ to enumerate the optimal aggregations.
Although any arbitrary σ is good for the enumeration, σ is chosen to be an
optimal aggregation in order to have the desired running time.

For any total order π, seq(π) has a set S of edges in common with E(TM)−σ,
and for every edge (u, v) ∈ S, π orders zero or more candidates in U before u
and v, and orders the others after u and v. As a result, any total order is mapped
to a partition representation, which consists of a partitioning of E(TM)−σ into
S = {(u1, v1), (u2, v2), . . . , (u|S|, v|S|)} and E(TM) − σ − S, and a sequence of
partitions of the candidates in intervalσ((ui, vi)) − head(S) into the candidates
ordered before ui, vi and the candidates ordered after ui, vi, in π, for every
1 ≤ i ≤ |S|. For example, assuming that 1 <σ 2 <σ 3 <σ 4 <σ 5 <σ 6 <σ 7
and E(TM) − σ = {(3, 1), (5, 2), (7, 3)}, the total order 1 <π 6 <π 7 <π 3 <π

4 <π 5 <π 2 is mapped to S = {(5, 2), (7, 3)}, and the presence of (4, 5) in
π indicates that intervalσ((5, 2)) − head(S) is partitioned into {4} and ∅, the
presence of (6, 7), (7, 4), and (7, 5) in π indicates that intervalσ((7, 3))−head(S)
is partitioned into {6} and {4, 5}.

We will prove that π can be reconstructed from its partition representation
if seq(π) ⊆ E(TM). Consequently, the set of all optimal aggregations can be
computed by going through all possible partition representations.

In Algorithm 6, the sets S and R specify a partition representation, and P
holds potential orderings of the candidates in intervalσ((u, v))− head(S) before
u, for any (u, v) ∈ S. The set Q is the total order reconstructed from the partition
representation.

Improved Parameterized Algorithms for the Kemeny Aggregation Problem 321

Algorithm 6. EnumAggregations

Require : I
OPT ← ∅;1

σ ← OptAggregation1(I);2

foreach tournament majority graph TM of I do3

foreach S ⊆ (E(TM) − σ) do4

if |head(S)| = |tail(S)| = |S| then5

P ← {(x, u) : (u, v) ∈ S, x ∈ (intervalσ((u, v)) − head(S))};6

foreach R ⊆ P do7

R ← R ∪ rev(P − R) ∪ S;8

R ← R ∪ {(x, u) : (u, v) ∈ S, (x, v) ∈ R+};9

R ← R ∪ {(v, y) : (u, v) ∈ S, (u, y) ∈ R+};10

Q ← (σ − rev(R+)) ∪ R+;11

if Q is transitive and τ (Q,I) = τ (σ,I) then12

OPT ← OPT ∪ {Q};
end13

end14

end15

end16

return OPT ;17

Due to space limitations, the proofs of the following two lemmas are elimi-
nated.

Lemma 3. In Algorithm 6, if there exists π ∈ TU that is consistent with R,
seq(π) ⊆ E(TM) and seq(π) ∩ (E(TM)− σ) = S, then Q = π.

Lemma 4. In Algorithm 6, for any fixed TM , |P | ≤ 2kt/m− |S|.

Theorem 5. EnumAggregations(I) returns OPT (I) in time O∗(36kt/m).

Proof. EnumAggregations(I) iterates through all possible orderings of pairs
{{a, b} : num(a,b)(I)=num(b,a)(I)}. For anyfixed orderingL of these pairs, the al-
gorithm searches for the subsetOPTL(I)={π∈OPT (I) : π is consistent with L}.
ItdividesOPT (I) further in line6,and looks for the subsetOPTL,S(I) ofOPTL(I)
defined as {π ∈ OPTL(I) : seq(σ)∩ (E(TM)−σ) = S}. All potential S’s are pro-
duced in line 6. Line 6 removes those S’s that contain two edges with the same head
or the same tail, since the seq of a total order cannot contain such edges. Finally,
a set P of pairs is computed such that any decision on the orderings of the pairs
in P narrows OPTL,S(I) down dramatically. Indeed, Lemma 3 proves that for any
chosen R there is either one or zero π ∈ OPTL,S(I) that is consistent with R+.
Furthermore, in case there exists one such π, it is consistent with the transitive re-
lation Q (in line 6). Consequently, we can produce all total orders in OPT (I) by
going through all possible R’s and see if Q becomes transitive and it is indeed an
optimal aggregation.

For any chosen TM , the number of iterations with |S| = i, 0 ≤ i ≤ |E(TM)−
σ|, will be

(|E(TM)−σ|
i

)
× 2|P |. Due to Lemma 4, |P | ≤ 2kt/m− |S|. Therefore,

322 N. Simjour

the number of iterations for each TM is at most
∑

0≤i≤|E(TM)−σ|
(|E(TM)−σ|

i

)
×

22kt/m−i. By Corollary 2, |E(TM)−σ| ≤ 2kt/m. Therefore, this value is bounded
by ∑

0≤i≤2kt/m

(2kt/m
i

)
× 22kt/m−i = 22kt/m × (1 + 1/2)2kt/m = 9kt/m

Any edge (a, b) ∈ L indicates that σ opposes the preference of exactly m/2 total
orders in I. Therefore, |L| ≤ 2kt/m. Since there are 2|L| possible TM ’s, the total
number of iterations is bounded by 36kt/m. ��

4 Concluding Remarks

In Sections 3.1 and 3.2, a parameterized algorithm for the feedback arc set
problem for tournaments [12] is used as a core algorithm. Any improvement in
the running time of this algorithm will improve our bounds.

In Section 3.3, the current bounds for odd and even m’s have a large gap.
The question is whether we can make the O∗(36kt/m) upper bound for even m’s
closer to the O∗(9kt/m) bound for odd m’s. Furthermore, there are at most 4kt/m

Hamiltonian paths in the majority graph if |head(E(TM)−σ)| = |tail(E(TM)−
σ)| = |E(TM)− σ|, for some σ ∈ OPT (I). It seems to us that the same bound,
instead of the current 9kt/m bound, should hold for the case this restriction is
released.

Acknowledgements. The author is grateful to Naomi Nishimura, Jonathan
Buss, and anonymous reviewers for helpful comments, and to Timothy Chan for
his suggestion to consider the parameter kt/m.

References

1. Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: Rank-
ing and clustering. Journal of the ACM 55(5), 1–27 (2008)

2. Bartholdi, J.J., Tovey, C.A., Trick, M.A.: Voting schemes for which it can be diffi-
cult to tell who won the election. Social Choice and Welfare 6(2), 157–165 (1989)

3. Betzler, N., Fellows, M.R., Guo, J., Niedermeier, R., Rosamond, F.A.: Fixed-
parameter algorithms for Kemeny scores. In: Fleischer, R., Xu, J. (eds.) AAIM
2008. LNCS, vol. 5034, pp. 60–71. Springer, Heidelberg (2008)

4. Betzler, N., Fellows, M.R., Guo, J., Niedermeier, R., Rosamond, F.A.: How sim-
ilarity helps to efficiently compute Kemeny rankings. In: AAMAS 2009: Proc. of
the 8th Int. Conf. on Autonomous Agents and Multiagent Systems, pp. 657–664
(2009)

5. Biedl, T., Brandenburg, F.J., Deng, X.: Crossings and permutations. In: Healy,
P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 1–12. Springer, Heidelberg
(2006)

6. Charon, I., Hudry, O.: A survey on the linear ordering problem for weighted or
unweighted tournaments. 4OR 5(1), 5–60 (2007)

Improved Parameterized Algorithms for the Kemeny Aggregation Problem 323

7. Davenport, A., Kalagnanam, J.: A computational study of the Kemeny rule for
preference aggregation. In: AAAI 2004: Proc. of the 19th National Conf. on Arti-
ficial Intelligence, pp. 697–702 (2004)

8. Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank aggregation methods for
the web. In: WWW 2001: Proc. of the 10th Int. Conf. on World Wide Web, pp.
613–622 (2001)

9. Kemeny, J.G.: Mathematics without numbers. Daedalus 88, 575–591 (1959)
10. Kenyon-Mathieu, C., Schudy, W.: How to rank with few errors. In: STOC 2007:

Proc. of the 39th Annual ACM Symp. on Theory of Computing, pp. 95–103 (2007)
11. Monjardet, B.: Tournois et ordres médians pour une opinion. Mathématiques et

Sciences humaines, 55–73 (1973)
12. Raman, V., Saurabh, S.: Parameterized algorithms for feedback set problems and

their duals in tournaments. Theoretical Computer Science 351(3), 446–458 (2006)
13. Williamson, D.P., van Zuylen, A.: Deterministic algorithms for rank aggregation

and other ranking and clustering problems. In: Kaklamanis, C., Skutella, M. (eds.)
WAOA 2007. LNCS, vol. 4927, pp. 260–273. Springer, Heidelberg (2008)

Computing Pathwidth Faster Than 2n�

Karol Suchan1,2 and Yngve Villanger3

1 Facultad de Ingenieŕıa y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
2 WMS, AGH University of Science and Technology, Cracow, Poland

karol@suchan.info
3 University of Bergen, N-5020 Bergen, Norway

yngve.villanger@uib.no

Abstract. Computing the Pathwidth of a graph is the problem of
finding a tree decomposition of minimum width, where the decomposi-
tion tree is a path. It can be easily computed in O∗(2n) time by using
dynamic programming over all vertex subsets. For some time now there
has been an open problem if there exists an algorithm computing Path-

width with running time O∗(cn) for c < 21. In this paper we show
that such an algorithm with c = 1.9657 exists, and that there also ex-
ists an approximation algorithm and a constant τ such that an opt + τ
approximation can be obtained in O∗(1.89n) time.

1 Introduction

Pathwidth is a graph parameter defined in the same way as Treewidth with
the exception that the decomposition tree is requested to be a path. Both these
parameters where introduced by Robertson and Seymour [17] in their graph
minor project, and both parameters have algorithmic applications. Examples
of these are algorithms that use dynamic programming over a decomposition.
Such algorithms will have running times consisting of a polynomial part, and an
exponential part that only depends on the width of the decomposition.

The Treewidth and Pathwidth problems have been substantially studied
for two decades, and this has resulted in massive literature. For an introduction
see [2]. Both problems are NP-hard already in cocomparability graphs [11], and
Pathwidth is NP-hard even in some restricted subclasses of chordal graphs and
in weighted trees [16]. Some examples of efficient algorithms include polynomial
time algorithms for Circle and Circular-arc graphs [15,18], and Permuta-

tion graphs [6], and fixed parameter tractable algorithms for both problems [3].
There also exist approximation algorithms for both problems, where Feige et al.
[8] give the most recent algorithm for treewidth.

When it comes to exponential time algorithms the picture changes. For
Treewidth there are several results: Arnborg et al. give an O(ntw+2) time al-
gorithm for treewidth, where tw is the treewidth of the graph[1]; Fomin et al.
� This work is supported by the Research Council of Norway and by the Basal-CMM

program of CONICYT, Chile.
1 f(n) = O∗(g(n)) if there is a polynomial function p(n) s.t. f(n) ≤ p(n)g(n).

J. Chen and F.V. Fomin (Eds.): IWPEC 2009, LNCS 5917, pp. 324–335, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Computing Pathwidth Faster Than 2n 325

give O(cn) time algorithms with c < 2[9,10]. These results are based on the prop-
erty that the treewidth problem decomposes into independent subproblems if one
bag or separator of the tree decomposition under construction is known. To be
more precise, each of the connected components of the graph remaining when the
vertices of the bag are removeddefines one independent subproblem. Adapting this
approach to the pathwidth problem faces a major difficulty, as the remaining con-
nected components cannot be treated independently, but have to be divided into a
left and right set, with the components in a same set being merged together. This
reflects the fact that in a tree decomposition there can be an arbitrary number of
independent branches whereas in a path decomposition there may be only two of
them. Thus, for a star on n + 1 vertices there will be 2n possible partitions.

As a result, Pathwidth is often mentioned in the same breath as Cutwidth,
Directed Optimal Linear Arrangement, Directed Feedback Arc Set

(for a longer list see [4]), since all three can be expressed as vertex ordering prob-
lems, and for each of them the best known exact algorithm solves the problem
in O∗(2n) time. Furthermore, the bound can be reached for all three problems
by dynamic programming over the 2n different vertex subsets. This technique
is often refereed to as the Held and Karp algorithm [13]. In the end of [4] the
following citation can be found “On the more theoretical side, it is interesting
to try to improve the time bounds. Some problems appear to be hard, e.g., to
improve upon the O∗(2n) time for Pathwidth.”

In this paper we show that the Pathwidth problem can be solved in (asymp-
totic) time less than 2n by giving an algorithm that runs over O∗(cn) vertex par-
titions, with c = 1.9657. In addition to this, we show that there exits a constant
τ such that an opt + τ approximation can be obtained in O∗(1.89n) time.

2 Preliminaries

All considered graphs are simple and undirected. For a graph G = (V, E) we
denote by n = |V | the number of vertices and by m = |E| the number of edges.
The neighborhood of a vertex v is defined as N(v) = {u ∈ V : {u, v} ∈ E},
and the closed neighborhood is defined as N [v] = N(v) ∪ {v}. The cardinality
|N(v)| is called the degree of v. For a vertex set W , we define its neighborhood as
N(W) =

⋃
v∈W N(v) \W , and its closed neighborhood as N [W] = N(W) ∪W .

A graph G′ = (V ′, E′) with V ′ ⊆ V and E′ ⊆ E is called a subgraph of G. For a
vertex set W ⊆ V , the subgraph of G induced by W is denoted G[W] = (W, EW),
where EW is the restriction of E to edges having both incident vertices in W .
A graph G is not connected if it is possible to partition its vertex set into two
non-empty subsets, such that no edge of G is incident to vertices in both parts;
otherwise, G is connected. A clique is a graph containing an edge for each pair
of distinct vertices. A cycle is a connected graph in which all vertices are of
degree 2. A path is a connected graph in which all vertices are of degree at most
2 and that contains no cycle as a subgraph. In an intuitive way, we sometimes
consider a path to be a permutation of its vertex set. A connected component
is an inclusion maximal subset of vertices that induces a connected subgraph.

326 K. Suchan and Y. Villanger

For two vertices a, b ∈ V , a set S ⊆ V is an a, b-separator if a and b belong to
different connected components of G[V \ S]. S is a minimal a, b-separator if no
proper subset of S is an a, b-separator. In general, S is a minimal separator in
G if there exist a, b ∈ V , such that S is a minimal a, b-separator.

The pathwidth of a graph G is defined through path decompositions. A path
decomposition of a graph G = (V, E) is a pair (χ, P) in which P = (VP , EP) is
a path and χ = {χi | i ∈ VP } is a family of subsets of V , called bags, such that

(i)
⋃

i∈VP
χi = V ;

(ii) for each edge {u, v} ∈ E there exists an i ∈ VP such that both u and v
belong to χi; and

(iii) for all v ∈ V , the set of nodes {i ∈ VP | v ∈ χi} induces a connected
subgraph of P .

The maximum of |χi| − 1, i ∈ VP , is called the width of the path decomposition.
The pathwidth of a graph G, denoted by pw(G), is the minimum width taken
over all path decompositions of G. To help distinguish between the vertices of a
graph G and the vertices of its decomposition path P we use the term node for
the latter.

Treewidth is defined analogously to pathwidth, but is based on tree decomposi-
tions in place of path decompositions. A tree decomposition of a graph G = (V, E),
is a pair (χ, T) in which T = (VT , ET) is a tree and χ = {χi | i ∈ VT } is a fam-
ily of subsets of V , called bags, such that conditions (i), (ii), (iii) of the path
decomposition, with T put in place of P , hold. The treewidth is the minimum
width over all possible tree decompositions.

3 Computation of Pathwidth

A naive and well known way to compute the pathwidth of a graph, is to enu-
merate all n! vertex orderings. Fix a permutation α, called a vertex ordering, of
the vertex set V ; α(i) gives the ith vertex in α and α−1(v) gives the position of
v in α. Given a graph G = (V, E) and a vertex ordering α, let Vj =

⋃j
i=1 α(i).

A path decomposition (χ, P)α of G can now be obtained from α as follows. For
i ∈ {1, . . . , n} let χi be a bag containing N [Vi] \ Vi−1. In the opposite direction,
we can consider a provided path decomposition (χ, P), where χ1, χ2, . . . , χr are
the bags in the order defined by P ; then pick a vertex ordering αP , such that for
all pairs u, v ∈ V for which all bags containing u have smaller index than those
containing v (u ∈ χi and v ∈ χj implies that i < j) there is α−1

P (u) < α−1
P (v).

One simple way to obtain such an ordering is to number vertices in the order
they disappear in

⋃r
j=i χj for increasing values of i. Notice that αP defines a

path decomposition of the same width as (χ, P), since by properties of a path
decomposition χj contains N(W) where W =

⋃j
i=1 χi \χj. Thus, pathwidth can

be computed by enumerating all vertex orderings and returning the minimum
obtained width.

Computing Pathwidth Faster Than 2n 327

This is not an efficient way to compute the pathwidth since n! orderings
have to be checked, but it provides the basic idea we will use to compute the
pathwidth in O∗(cn) time, for c < 2. With some simple arguments this approach
can be adapted, so that only 2n different vertex sets need to be considered.
Let us introduce a scheme of dynamic programming of vertex sets of increasing
cardinality that achieves this goal.

Let pw(U, S) be defined as the minimum pathwidth of G[U ∪ S] where S
is contained in the last bag. Recall that we consider a path as a permutation
of nodes, hence the ordering. Let Ũ = V \ N [U] for a vertex set U . Consider
now a vertex ordering α providing a path decomposition of minimum width,
and let Vj =

⋃j
i=1 α(i). Then pw(V1, N(V1)) = |N [V1]| − 1 and pw(Vi, N(Vi)) ≤

max(pw(Vi−1, N(Vi−1)), |(N(Ṽi−1) ∪N [vi]) \ Vi−1| − 1). Finally, the pathwidth
of G is pw(Vn, ∅) - which gives us the minimum pathwidth where there are no
restrictions on the last bag.

In the general case we do not know the optimal ordering, so for a vertex set U
we simply set pw(U, N(U)) to be the minimum value obtained by testing every
vertex of U as the last vertex added to the set. This is computable since the
values for all smaller vertex sets are computed beforehand. One consequence of
this is that the value for each of the 2n vertex sets has to be computed. More
formally, for every vertex set U ⊆ V of increasing size we get that

pw(U, N(U)) = min
u∈U

(max(pw(U \ {u}, N(U \ {u})), |N [U] \ (U \ {u})|− 1)). (1)

To break the 2n barrier we need some more insight into the structure of path
decompositions. This comes from the study of minimal interval completions - let
us briefly introduce these.

A graph H = (V, F) is an interval graph if each vertex of H can be assigned
an interval on the real line, such that {u, v} ∈ F if and only if the intervals of
u and v intersect. An interval graph H is said to be an interval completion of
G = (V, E) if H is an interval graph and E ⊆ F . In the case where H ′ = (V, F ′)
is not an interval graph for any edge set F ′, E ⊆ F ′ ⊂ F , we say that H is
a minimal interval completion of G. Any interval graph H can be represented
by a structure called a clique path (χ, P), where χ is the set of maximal cliques
of H , each of which is associated to a node of the path P and, for each vertex
u ∈ V , the set of nodes associated to maximal cliques of H containing u induces
a subpath of P . Notice that this is also a path decomposition of G. If H is a
minimal interval completion of G, we call the path decomposition (χ, P) of G
defined by the clique path of H a minimal path decomposition of G. Notice that
each bag of a minimal path decomposition of G is a maximal clique of H .

As it is enough to consider the set of its minimal triangulations in order to
compute the treewidth of a graph, it is also enough to consider the minimal
interval completions if we want to compute the pathwidth of a graph. Let (χ, P)
be a path decomposition of minimum width. By adding edges necessary to make
each bag χi induce a clique, for each χi ∈ χ, we obtain an interval completion
H of G. Now remove edges from H until a minimal interval completion H ′ is
obtained. Clearly, the minimal path decomposition defined by a clique path of

328 K. Suchan and Y. Villanger

H ′ will have the same width as (χ, P). Thus, it is enough to consider minimal
path decompositions, and not all possible path decompositions.

4 Faster Computation of Pathwidth

Minimal path decompositions, as path cliques of minimal interval completions,
have some useful properties that we state in the following proposition.

Proposition 1. Let (χ, P) be a minimal path decomposition of G. Take the
bags χ1, χ2, . . . , χr in the order defined by P , and let H be the minimal interval
completion defined by (χ, P). Then each minimal separator S of H is given
by χj ∩ χj+1, for some j (cf. [7,14]). Moreover, if S = χj ∩ χj+1, then S =
N(
⋃j

i=1 χi \ S) and S = N(
⋃r

i=j+1 χi \ S) (cf. [12]).

For a vertex set U ⊂ V , we define U∗ = N [U]\N(Ũ) as the full set of U , that is
the set of vertices in N [U] that do not have a neighbor in V \N [U]. If U = U∗

we will refer to the set U as a full set.
Since it is sufficient to consider minimal path decompositions to compute

pathwidth, and each prefix of a minimal path decomposition minus the adjacent
separator corresponds to a full set

⋃j
i=1 χi \ S, it is sufficient to consider only

vertex sets U , where U = U∗. But we need to be able to compute each full
set, by means of polynomial time computation, directly from full sets of smaller
cardinality - to avoid the bottleneck of checking Ω(2n) subsets of V . One may
notice the resemblance of this approach to the use of certain structures related
to minimal triangulations to compute treewidth (cf. [9]).

Consider again the optimal vertex ordering α, and like before let Vj =
⋃j

i=1 α(i),
and in difference to before, let Uj = V ∗

j . We now want to show that Ui can be
obtained from Ui−1 and vi = α(i). Observe first by definition that Vi ⊆ Ui and
that Ṽi = Ũi. If vi �∈ N [Ũi−1], then vi ∈ Ui−1 and as a consequence Ui−1 = Ui.
Consider now the remaining case when vi �∈ Ui−1. Let U = Ui−1 ∪ {vi} and out
goal is to show that U∗ = Ui. First of all, we have that Vi ⊆ U , which means that
N [Vi] ⊆ N [U], and since every vertex in Ui−1 \ Vi−1 only has neighbors in N [Vi],
then we get that N [Vi] = N [U]. Thus V ∗

i = U∗. This means that the algorithm is
exactly as before, but only runs over full sets and not over all 2n vertex subsets.

For a full set U we say that a minimal interval completion H is an extension
of U if N(U) is a minimal separator, separating U from Ũ in H . In an analogous
way, a minimal path decomposition (χ, P) of G is an extension of the full set U

if there an integer j such that N(U) = χj ∩ χj+1 and U =
⋃j

i=1 χi \N(U).

Observation 1. For a full set U we have that pw(U, N(U)) ≥ |N(U)|.
Proof. Let (χ, P) be a minimal path decomposition of minimum width which
is also an extension of the full set U . Let j be the integer such that N(U) =
χj∩χj+1 and U =

⋃j
i=1 χi\N(U). Since (χ, P) is a minimal path decomposition,

it follows that χj �⊆ χj+1. Therefore, |χj | > |χj ∩χj+1| = |N(U)|, and the claim
statement follows. ��
Observation 2. For a full set U , Ũ is also a full set.

Computing Pathwidth Faster Than 2n 329

4.1 Bounding the Number of Base Sets

We will now give an algorithm that verifies if the pathwidth of a given graph
G is at most k in O∗(cn) time for c < 2. Part one of this algorithm consist of
generating a set of vertex partitions that the algorithm can use as intermediate
steps to verify the existence of a path decomposition of width k. We will now
define a base B containing 2 types of pairs of vertex sets:

1. (U, S) where |U | ≤ 0.404n, and S = N(U),
2. (U, S) where |S| ≤ 0.192n, U ⊂ V \ S, N(U) ⊆ S, and each connected

component of G[Ũ] contains at least three vertices.

It is important to notice that we only want to take advantage of a pair (U, S)
if S turns out to be a minimal separator in a minimal interval completion of
minimum width. This makes it safe to contain S in one bag, and by Observation
1 it follows that the pathwidth is at least |S|, that is the largest bag contains at
least |S|+ 1 vertices.

Lemma 1. The number of pairs of vertex sets in B is O(n · 1.9657n).

Proof. The number of pairs of vertex sets of type 1 is at most the number of
vertex sets of size 0.404n, thus

0.404n∑
i=1

(
n

i

)
≤ n ·

(
n

0.404n

)
= O(n · 1.9633n).

For type 2, the number is at most

0.192n∑
i=1

(
n

i

)
· 2(n−i)/3 ≤ n ·

(
n

0.192n

)
· 2(n−0.192n)/3 = O(n · 1.9657n). ��

Our goal now will be to compute the pathwidth of G in O∗(|B|) time.

4.2 Extending from the Base Sets

The set of pairs contained in B at this point will be referred to as base pairs, and
these will be used to generate at most n2|B| new pairs that will be added to the
set F . For each pair (U, S) ∈ B of type 1, we can compute pw(U, S) by dynamic
programming on increasing size over the set of pairs of type 1. The procedure
for this is given in Equation 1. Put these pairs as the initial content of the set
F . For all of these pairs, U is a full set. Notice that initially we cannot compute
the pathwidth of a type 2 pair (U, S). The function pw(U, S) will be computed
if pair (U, S) is used as a base for a pair added to the set F .

All remaining pairs added to F will be created from a pair already in F , by
one of three rules. Before describing these rules, the vertices are numbered in
any order from 1 to n, where 	(v) refers to the number assigned to vertex v. The
purpose of the numbering is to ensure that a rule creates a unique output from
a given pair. Some of the pairs in F will also be assigned a mark.

330 K. Suchan and Y. Villanger

Rule 1. (Monotone Push Rule) Given a pair (U, S) ∈ F , and a vertex u ∈ S
such that |N(u) ∩ Ũ | = 1 and |N(v) ∩ Ũ | > 1 for any vertex v ∈ S where
	(v) < 	(u). Let W = (U ∪ {u})∗ and add the pair (W, N(W)) to the set F , and
set pw(W, N(W)) = pw(U, S). Mark (W, N(W)) if pair (U, S) is marked, and
(W, N(W)) is not a pair in B.

Lemma 2. The Monotone Push Rule is safe for pathwidth.

Proof. Let us assume that there exists an interval completion H and a mini-
mal path decomposition χ1, χ2, . . . , χr of width k, where

⋃j
i=1 χi \ S = U and⋃j

i=1 χi \U = S. Since S is a minimal separator in H , then |S| ≤ k. Let w be the
unique neighbor of u in Ũ , and let p be the smallest number such that w ∈ χp.
Vertex u is contained in S and thus also in χj , and in χt for j ≤ t ≤ q where q
is the highest number such that u ∈ χq. Because of the edge uw we have that
p ≤ q. Construct a new path decomposition as follows: Remove u from any bag
χt where j < t, and add w to any χt where j < t < p, and insert a bag between
χj and χj+1 containing S ∪ {w}. Clearly this is a legal path decomposition of
the same width. ��

Rule 2. (Component Push Rule) Given a pair (U, S) ∈ F where Rule 1 can
not be applied, and a vertex u ∈ Ũ such that |S| + |C| ≤ k + 1 where C is the
connected component of G[V \ (U ∪ S)] containing u, and for any vertex v ∈ Ũ
where 	(v) < 	(u) the connected component Cv of G[V \ (U ∪ S)] containing v
we have that |S|+ |Cv| ≥ k +1. Let W = (U ∪C)∗, and add the pair (W, N(W))
to F and set pw(W, N(W)) = max(pw(U, S), |S|+ |C| − 1). Mark (W, N(W)) if
pair (U, S) is marked, and (W, N(W)) is not a pair in B.

Lemma 3. The Component Push Rule is safe for pathwidth.

Proof. The proof is similar as the one for Rule 1. Let us assume that there exists
an interval completion H and a minimal path decomposition χ1, χ2, . . . , χr of
width k, where

⋃j
i=1 χi \ S = U and

⋃j
i=1 χi \ U = S. Insert a bag between χj

and χj+1 containing S ∪ C, and remove vertices of C from χt for each t > j.
Clearly this is a legal path decomposition of width at most k. ��

For each pair in F , at each step of its construction, at most one of Rules 1, 2 can
be applied in only one possible way. Therefore these two rules can be applied
recursively without producing more than O(n) new pairs. The final rule is a
brute force search rule and applying it recursively would yield an exponential
growth in the number of new pairs. Thus, we use the marks to apply it at most
once in any sequence of rule applications starting from a base pair.

Rule 3. (Push Rule) Given an unmarked pair (U, S) ∈ F , where neither of
Rules 1,2 applies, and a vertex u ∈ S such that max(pw(U, S), |N [U ∪ {u}] \
U |− 1) ≤ k. Let W = (U ∪{u})∗ and add the marked pair (W, N(W)) to the set
F , and set pw(W, N(W)) = max(pw(U, S), |N [U ∪ {u}] \ U | − 1).

Rule 3 is safe by Equation 1.

Computing Pathwidth Faster Than 2n 331

4.3 The Algorithm

It is now time to populate the set F , and verify if the pathwidth is at most k. First
step is to add the seeds, that is type 1 pairs from B. Notice that pw(U, S) =
pw(U∗, N(U∗)), so for every type 1 pair in B, where pw(U, S) ≤ k, add an
unmarked full set (U∗, N(U∗)) to F and set pw(U∗, N(U∗)) = pw(U, S). From
this set of seeds, rules 1,2,3 are applied if possible. Eventually, when no rule can
be further applied, the set F satisfies:

Lemma 4. |F| ≤ n2|B|.

Proof. Let us assume that B ⊆ F . All elements of F \B are obtained by applying
Rule 1, Rule 2, or Rule 3. Thus we can say that a pair (U, S) ∈ F \B is obtained
from a base case (W, R) contained in B. Let F(W, R) be the set of elements in
F \B originating from the base case (W, R), and where none of the intermediate
pairs is a base pair. This gives a partitioning of F \B into |B| sets. Let F(W, R)
be a set of maximum cardinality, and notice that |F| ≤ |F(W, R)| · |B|. We want
to prove that |F(W, R)| ≤ n2. First observation is that Rule 1 and Rule 2 are
applied recursively from (W, R) until a pair (W ′, R′) is obtained, where neither
of the two rules applies. Since Rule 2 is only applied if Rule 1 does not apply,
and the output for both rules is unique due to the labeling, there is a directed
path from (W, R) to (W ′, R′), with no extra leaves. Since the size of the full set
increases by at least one at each time a rule is applied, the length of the path
is bounded by n. Next, by Rule 3, there might be one marked pair created for
each vertex x ∈ V \W ′. Thus we obtain at most n marked pairs, each of which
might be further developed by Rule 1 and Rule 2 into a path of at most n pairs.
But notice that all these pairs are marked, so when Rules 1, 2 cannot be further
applied, the development stops. By this construction we obtain a tree, where
(W, R) is the root, and with at most |V \W ′| leaves and where the distance from
the leaves to the root is at most n. Thus, the number of vertices, and thus also
pairs in F(W, R) is at most n2. ��

Lemma 5. Consider the set F computed for a value k, where none of the rules
can be applied. Then the pathwidth is at most k if and only if there exists a full
set U such that

– (U, N(U)) ∈ F ,
– (Ũ , N(U)) ∈ F ,
– pw(U, N(U)) ≤ k, and
– pw(Ũ , N(U)) ≤ k.

Proof. Notice that pw(U, N(U)) ≤ k implies that there exists a path decompo-
sition of G[N [U]] of width at most k, where N(U) is contained in the last bag.
In the case where pw(U, N(U)) ≤ k and pw(Ũ , N(U)) ≤ k, it is possible to put
the two path decompositions of respectively G[N [U]] and G[V \U] next to each
other and obtain a path decomposition for G of width k. We can see it as the
one extends the other.

332 K. Suchan and Y. Villanger

For the opposite direction, assume on the contrary that the pathwidth of G is
k. Let α be a vertex ordering providing a path decomposition of width at most
k. Let Vj =

⋃j
i=1 α(i), and let Uj = V ∗

j . Define b(α) to be the largest integer j
such that (Ui, N(Ui)) ∈ F and pw(Ui, N(Ui)) ≤ k for every i ∈ {1, . . . , j}. Let
now α be the vertex ordering with largest b(α) among all orderings providing a
path decomposition of width at most k.

Let j = b(α), and consider the pair (Uj , Sj). If |Sj | < k, then G[Ũj] contains no
connected component C where |C| ≤ 2, since Rule 2 can be applied to these. By
the safeness of Rule 2 it follows that there exists an ordering α′ which provides
a path decomposition of width at most k, where b(α) < b(α′). Notice that Rule
2 is applied if possible.

Since Rule 2 cannot be applied, then every connected component of G[Ũj]
contains at least three vertices. Furthermore, (Uj , Sj) is not of type 1 in B since
this would imply that (Uj , Sj) is unmarked and (Ui+1, Si+1) would have been
obtained by Rule 3.

As a result 0.404n ≤ |Ui|. By the conditions of the lemma (Ũj , Sj) �∈ F , and
since all pairs in B of type 1 are added to F we get that 0.404n ≤ |Ũj | and
thus |Sj | < 0.192n. Now (Uj , Sj) is of type 2 in B, since |Sj| < 0.192n and
G[Ũj] only contains connected components of size at least three, which is also
a contradiction since (Uj , Sj) would be unmarked and (Uj+1, Sj+1) would be
obtained by Rule 3.

So we know that |Sj | = k. Let x be the vertex such that Uj+1 = (Uj ∪ {x})∗.
Observe that there are no connected components in G(Ũj) of size 1, since |Sj | = k
and Rule 2 can then be applied to these. This implies that x has at least one
neighbor in Ũj . By fixing the next vertex to be x we have also fixed the next bag
to be Sj ∪ (N [x] \ Uj). This implies that |N(x) ∩ Ũj| = 1 and that x ∈ Sj , since
otherwise k + 1 < |Sj ∪ (N [x] \Uj)|. Thus, this is a monotone push, and Rule 1
can be applied, something which is a contradiction to the assumption that α is
the vertex ordering with the maximum value of b(α). ��
Theorem 3. There exists an algorithm that verifies if the pathwidth of a graph
G on n vertices is at most k in O∗(1.9657n) time.

Proof. By Lemma 1 the set B contains at mostO∗(1.9657n) pairs, and by Lemma
4, the same bound holds for F . Finally by Lemma 5, F contains a pair (U, S)
such that

– (U, N(U)) ∈ F ,
– (Ũ , N(U)) ∈ F ,
– pw(U, N(U)) ≤ k, and
– pw(Ũ , N(U)) ≤ k

if and only if the pathwidth of G is at most k. ��

5 Approximation of the Pathwidth

This section gives an algorithm that approximates the pathwidth up to opt + τ
for some constant τ , in O∗(

(
n
tn

)
) time, where 0 < t < 1 is a constant such that

Computing Pathwidth Faster Than 2n 333(
n

(1−2t)n

)
· 22tn/τ ≤

(
n
tn

)
. For instance, setting τ to 2, 20, 200, and 10.000 gives algo-

rithms with running timesO∗(1.9427n),O∗(1.9047n),O∗(1.8921n),O∗(1.88997n),
respectively. The approximation algorithm can be obtained by a slight adaptation
of the exact algorithm for pathwidth. The base set B is obtained with two types of
pairs as before.

1. (U, S) where |U | ≤ tn, and S = N(U),
2. (U, S) where |S| ≤ (1 − 2t)n, U ⊂ V \ S, N(U) ⊆ S, and each connected

component of G[Ũ] contains at least τ vertices.

The second modification is to replace Rule 2 by the rule given below.

Rule 4. (Component push Rule) Given a pair (U, S) ∈ F where Rule 1 cannot
be applied, and a vertex u ∈ Ũ such that |S| + |C| ≤ k + 1 + τ , where C is the
connected component of G[V \ (U ∪ S)] containing u, and for any vertex v ∈ Ũ ,
where 	(v) < 	(u), the connected component Cv of G[V \ (U ∪ S)] containing v
we have that |S| + |Cv| ≥ k + 1 + τ . Then let W = U ∪ C, and add the pair
(W, S) to F and set pw(W, S) = max(pw(U, S), |S|+ |C| − 1− τ). Mark (W, S)
if pair (U, S) is marked, and (W, N(W)) is not a pair in B.

In an analogous way as before, we create a set F using type 1 in B as the
seeds, and then apply Rules 1,4, and 3 if possible. Rule 4 behaves exactly as
Rule 2 when it comes to generating new pairs for the set F , thus by Lemma 4
|F| ≤ n2|B|.

Corollary 1. Consider the set F computed for a value k, where no new infor-
mation can be obtained by applying a rule. Then the pathwidth is at most k + τ
if and only if there exists a full set U such that

– (U, N(U)) ∈ F ,
– (Ũ , N(U)) ∈ F ,
– pw(U, N(U)) ≤ k, and
– pw(Ũ , N(U)) ≤ k.

Theorem 4. There exists an approximation algorithm that verifies if the path-
width of a graph G on n vertices is at most k + τ in O∗(

(
n

(1−2t)n

)
· 22tn/τ +

(
n
tn

)
)

time for some constant 0 ≤ t ≤ 1.

Proof. By Lemma 1 the set B contains at most O∗(
(

n
(1−2t)n

)
·22tn/τ +

(
n
tn

)
) pairs,

and by Lemma 4 the same bound holds for F . Finally by Corollary 1 F contains
a pair (U, S) such that

– (U, N(U)) ∈ F ,
– (Ũ , N(U)) ∈ F ,
– pw(U, N(U)) ≤ k, and
– pw(Ũ , N(U)) ≤ k

if and only if the pathwidth of G is at most k + τ . ��

334 K. Suchan and Y. Villanger

6 Conclusion and Open Questions

It is well known that Held and Karp’s dynamic programming algorithm [13]
can be adapted to solve a long sequence of problems which are definable as
a vertex ordering problem. Their approach gives running time O∗(2n), and is
based on doing dynamic programming over all the 2n vertex subsets of the graph.
Some examples of such problems are Treewidth, Pathwidth, Cutwidth,
Directed Optimal Linear Arrangement, and Directed Feedback Arc

Set. Among these problems, treewidth is the only problem prior to this work
where an O∗(cn) algorithm for c < 2 was known. It is an open question if other
problems that are expressible as a vertex ordering problems and can be solved
by Held and Karp’s approach, have an algorithm of running time O∗(cn) for
c < 2.

One of the techniques used to compute the pathwidth is to guess a balanced
separator in the cases where the rules do not apply. In [5] the approach of guess-
ing the middle cut or bag was used to give an O∗(2.9512n) polynomial space
algorithm for computing the treewidth of a graph. It is not clear how or if it
is possible to extend this approach to other problems in the list above. Guess-
ing a balanced separator has a natural limitation in

(
n

n/3

)
, which is the lower

bound obtained for the additive approximation algorithm. Finally the possible
improvement of the running time for computing pathwidth exact is left as an
open question, and especially if the bound

(
n

n/3

)
can be obtained. Improvement

on the running time would probably require some new ideas, since both the
Rule’s 1 and 2 rely on arriving at a very similar situation. For instance if Rule
1 was extended to have two neighbors instead of one, then the order of applying
the rule would make a difference.

References

1. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings
in a k-tree. SIAM J. Algebraic Discrete Methods 8, 277–284 (1987)

2. Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybern. 11, 1–22 (1993)
3. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small

treewidth. SIAM J. Comput. 25, 1305–1317 (1996)
4. Bodlaender, H.L., Fomin, F.V., Koster, A.M.C.A., Kratsch, D., Thilikos, D.M.:

On exact algorithms for treewidth, Tech. Rep. UU-CS-2006-032, Department of
Information and Computing Sciences, Utrecht University (2006)

5. Bodlaender, H.L., Fomin, F.V., Koster, A.M.C.A., Kratsch, D., Thilikos, D.M.: On
exact algorithms for treewidth. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS,
vol. 4168, pp. 672–683. Springer, Heidelberg (2006)

6. Bodlaender, H.L., Kloks, T., Kratsch, D.: Treewidth and pathwidth of permutation
graphs. SIAM J. Discrete Math. 8, 606–616 (1995)

7. Buneman, P.: A characterization of rigid circuit graphs. Discrete Math. 9, 205–212
(1974)

8. Feige, U., Hajiaghayi, M., Lee, J.R.: Improved approximation algorithms for min-
imum weight vertex separators. SIAM J. Comput. 38, 629–657 (2008)

Computing Pathwidth Faster Than 2n 335

9. Fomin, F.V., Kratsch, D., Todinca, I., Villanger, Y.: Exact algorithms for treewidth
and minimum fill-in. SIAM J. Comput. 38, 1058–1079 (2008)

10. Fomin, F.V., Villanger, Y.: Treewidth computation and extremal combinatorics.
In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 210–221. Springer,
Heidelberg (2008)

11. Habib, M., Mhring, R.H.: Treewidth of cocomparability graphs and a new order-
theoretic parameter. Order 11, 47–60 (1994)

12. Heggernes, P., Suchan, K., Todinca, I., Villanger, Y.: Characterizing minimal in-
terval completions. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393,
pp. 236–247. Springer, Heidelberg (2007)

13. Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems.
In: Proceedings of the 1961, 16th ACM national meeting, pp. 71.201–71.204. ACM,
New York (1961)

14. Ho, C.W., Lee, R.C.T.: Counting clique trees and computing perfect elimination
schemes in parallel. Information Processing Letters 31, 61–68 (1989)

15. Kloks, T.: Treewidth of circle graphs. Int. J. Found. Comput. Sci. 7, 111–120 (1996)
16. Mihai, R., Todinca, I.: Pathwidth is np-hard for weighted trees. In: Faw, X., Deng,

J.E. (eds.). LNCS, vol. 5598, pp. 181–195. Springer, Heidelberg (2009)
17. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width.

Journal of Algorithms 7, 309–322 (1986)
18. Suchan, K., Todinca, I.: Pathwidth of circular-arc graphs. In: Brandstädt, A.,

Kratsch, D., Müller, H. (eds.) WG 2007. LNCS, vol. 4769, pp. 258–269. Springer,
Heidelberg (2007)

Author Index

Alon, Noga 1

Böcker, Sebastian 38
Bodlaender, Hans L. 17, 50
Bui-Xuan, Binh-Minh 61

Calabro, Chris 75

Daligault, Jean 86
Damaschke, Peter 98, 110

Enciso, Rosa 122
Erman, Rok 134

Fellows, Michael R. 122, 149
Fernau, Henning 161
Fürer, Martin 173

Ganian, Robert 185
Gaspers, Serge 173
Giannopoulos, Panos 198
Golovach, Petr A. 210
Guo, Jiong 122
Gutin, Gregory 222, 234
Gutner, Shai 1, 246

Hermelin, Danny 149
Hliněný, Petr 185
Hüffner, Falk 38

Impagliazzo, Russell 75

Kanj, Iyad 122
Karapetyan, Daniel 222
Kasiviswanathan, Shiva Prasad 173
Kim, Eun Jung 234
Knauer, Christian 198
Kneis, Joachim 161, 185
Koivisto, Mikko 258
Kowalik, �Lukasz 134
Kratsch, Dieter 161

Kratsch, Stefan 264
Krnc, Matjaž 134

Langer, Alexander 161, 185
Liedloff, Mathieu 161
Lokshtanov, Daniel 50, 276, 288

Marx, Dániel 300

Obdržálek, Jan 185

Paturi, Ramamohan 75
Penninkx, Eelko 50

Raible, Daniel 161
Raman, Venkatesh 276
Razgon, Igor 222
Rosamond, Frances A. 122, 149
Rossmanith, Peter 161, 185
Rote, Günter 198

Saurabh, Saket 276, 288
Schlotter, Ildikó 300
Sikdar, Somnath 276
Simjour, Narges 312
Suchan, Karol 324
Suchý, Ondřej 122
Szeider, Stefan 234

Telle, Jan Arne 61
Thilikos, Dimitrios M. 210
Thomassé, Stéphan 86
Truss, Anke 38

Vatshelle, Martin 61
Villanger, Yngve 324

Wahlström, Magnus 38, 264
Waleń, Tomasz 134

Yeo, Anders 234

	Title Page
	Preface
	Organization
	Table of Contents
	Balanced Hashing, Color Coding and Approximate Counting
	Introduction
	Motivation and Background
	Related Work
	The New Results
	Methods and Organization

	The Ingredients of the Construction
	Perfectly Balanced Families
	Expanders
	Partially Independent Variables
	Balanced Families and Approximate Counting
	Concluding Remarks

	Kernelization: New Upper and Lower Bound Techniques
	Introduction
	Upper Bounds: Meta Theorems
	Meta Theorems for Approximation Classes
	Meta Theorems for Graphs on Surfaces
	Meta Theorems for Graphs Avoiding a Minor

	Lower Bounds: No Polynomial Kernels
	Conclusions

	A Faster Fixed-Parameter Approach to Drawing Binary Tanglegrams
	Introduction
	Preliminaries
	Transformation
	A Kernel-Like Result for Complete Binary Trees
	Implementation and Experiments
	Conclusion

	Planar Capacitated Dominating Set Is W[1]-Hard
	Introduction
	Preliminaries
	PCDS Is W[1]-Hard Parameterized by Solution Size
	Identification Numbers
	Reduction to Planar Arc Supply
	Reduction to Planar Marked Capacitated Dominating Set

	Boolean-Width of Graphs
	Introduction
	Boolean-Width
	Values of Boolean-Width Compared to Other Graph Width Parameters
	Algorithms
	Computing Representatives
	Dynamic Programming for Dominating Set

	Conclusion and Perspectives

	The Complexity of Satisfiability of Small Depth Circuits
	Introduction
	Linear-Size Bounded Depth Circuits
	Extension to Quantum Computing Model

	The Algorithm
	Definitions
	High Level Description
	Detailed Description

	Run Time Analysis
	Open Problems

	On Finding Directed Trees with Many Leaves
	Introduction
	Combinatorial Bounds
	Reduction Rules
	Quadratic Kernel
	Approximation
	Conclusion

	Bounded-Degree Techniques Accelerate Some Parameterized Graph Algorithms
	The Problems and Contributions
	Vertex Cover Counting Algorithm
	Analysis
	Conflict Triple Structure in Graphs
	FPT Algorithms Using the Conflict Triple Structure

	Pareto Complexity of Two-Parameter FPT Problems: A Case Study for Partial Vertex Cover
	Introduction
	Pareto Complexity of Two-Parameter Problems
	Vertex Cover with Missed Edges
	Conclusions

	What Makes Equitable Connected Partition Easy
	Introduction and Preliminaries
	Hardness Results
	Algorithmic Results
	Equitable Coloring

	Improved Induced Matchings in Sparse Graphs
	Introduction
	Combinatorial Perspective
	Computational Perspective

	Lower Bounds
	Planar Graphs of Large Minimum Degree
	Twinless Graphs of Bounded Genus
	Twinless Sparse Graphs
	A Practical Algorithm for Planar Graphs

	An Upper Bound
	An Algorithm Based on Branch-Width
	Preliminaries
	Algorithm Outline
	Dynamic Programming on Graphs of Bounded Branch-Width

	Well-Quasi-Orders in Subclasses of Bounded Treewidth Graphs
	Introduction
	The WQO Method in Bounded Treewidth Graphs
	Two Tools for Identifying WQOs
	Correctness of the First Tool
	Correctness of the Second Tool

	An Exact Algorithm for the Maximum Leaf Spanning Tree Problem
	Introduction
	Preliminaries
	A New Exact Algorithm
	Correctness of the Algorithm
	Analysis of the Running Time

	An Exponential Time 2-Approximation Algorithm for Bandwidth
	Introduction
	Preliminaries
	Exponential Time Algorithms for Approximating Bandwidth
	Exponential Time 2-Approximation Algorithm for Bandwidth

	Conclusion

	On Digraph Width Measures in Parameterized Algorithmics
	Introduction
	Digraph Width Measures
	Directed Rank-Width
	DAG-Depth
	K-width

	Summary of Complexity Results
	Hamiltonian Path (HAM) and Disjoint Paths (k-Path)
	Directed Dominating Set (DiDS) and Steiner Tree (DiSTP)
	Maximum Directed Cut (MaxDiCut)
	Oriented Colouring (OCN)
	Directed Feedback Vertex Set (DFVS) and Kernel (Kernel)
	MSO1 Model Checking (-MSO1mc)
	LTL Model Checking (-LTLmc) and Parity Games (Parity)

	Conclusion

	The Parameterized Complexity of Some Geometric Problems in Unbounded Dimension
	Introduction
	Preliminaries
	Methodology
	Notation

	Minimum Enclosing Cylinder (or Stabbing Balls with One Line)
	Constraint Balls

	Separating Two Point Sets by Two Hyperplanes
	Constraint Points

	Maximum-Size Feasible Subsystem

	Paths of Bounded Length and Their Cuts: Parameterized Complexity and Algorithms
	Introduction
	Parameterized Algorithms
	An FPT-Algorithm for BEDMP(k,l)
	An FPT-Algorithm for BEDC(k,l)

	Hardness Results for (s,t)-Cuts
	(s,t)-Paths of Bounded Length for Sparse Graphs
	FPT-Algorithms for Sparse Graph Classes
	Vertex-Disjoint (s,t)-Paths of Bounded Length for H-Minor-Free Graphs
	Edge-Disjoint (s,t)-Paths of Bounded Length for Graphs of Bounded Treewidth

	Conclusions

	Fixed-Parameter Algorithms in Analysis of Heuristics for Extracting Networks in Linear Programs
	Introduction, Terminology and Notation
	Embedded Networks and Signed Graphs
	SGA and Its Variations
	Fixed-Parameter Algorithmics
	Minimum Balanced Deletion Problem
	Experimental Evaluation
	Conclusions

	A Probabilistic Approach to Problems Parameterized above or below Tight Bounds
	Introduction
	Probabilistic Inequalities
	Linear Ordering
	Max Lin-2
	Discussions

	Polynomial Kernels and Faster Algorithms for the Dominating Set Problem on Graphs with an Excluded Minor
	Introduction
	Preliminaries
	Dominating Sets in Degenerated Graphs
	Bounds on the Number of Central Vertices
	Problem Kernel for Graphs with an Excluded Minor
	Concluding Remarks and Open Problems

	Partitioning into Sets of Bounded Cardinality
	Introduction
	Proof of Theorems 1 and 2

	Two Edge Modification Problems without Polynomial Kernels
	Introduction
	Preliminaries
	Notation
	Polynomial Lower Bounds for Kernelization

	Hardness of Not-One-In-Three SAT
	Lower Bounds for Two H-Free Modification Problems
	Conclusion

	On the Directed Degree-Preserving Spanning Tree Problem
	Introduction
	Preliminaries
	The d-RDST Problem: An O(k2)-Vertex Kernel
	A Linear Kernel for Strongly Connected Digraphs
	An O(k2)-Vertex Kernel in General Digraphs

	An Algorithm for the d-RDST Problem
	The d-FDST Problem

	Even Faster Algorithm for Set Splitting!
	Introduction
	Kernelization Algorithm
	A Duality Theorem for Hypergraph Connectivity
	Kernel for Set Splitting

	Faster Parameterized Algorithm for p-Set Splitting
	Conclusion and Discussions

	Stable Assignment with Couples: Parameterized Complexity and Local Search
	Introduction
	Preliminaries
	Hospitals/Resident with Couples
	Matching without Preferences
	Matching with Preferences

	Improved Parameterized Algorithms for the Kemeny Aggregation Problem
	Introduction
	Preliminaries
	Parameterized Algorithms
	The Parameter kt
	The Parameters kt/m, kavg, and kmax
	Enumerating Optimal Aggregations

	Concluding Remarks

	Computing Pathwidth Faster Than 2n
	Introduction
	Preliminaries
	Computation of Pathwidth
	Faster Computation of Pathwidth
	Bounding the Number of Base Sets
	Extending from the Base Sets
	The Algorithm

	Approximation of the Pathwidth
	Conclusion and Open Questions

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

