
Comparison of Scoring and Order Approach

in Description Logic EL(D)

Veronika Vaneková1 and Peter Vojtáš2

1 Institute of Computer Science, Pavol Jozef Šafárik University
Košice, Slovakia

veronika.vanekova@upjs.sk
2 Faculty of Mathematics and Physics, Charles University

Prague, Czech Republic
peter.vojtas@mff.cuni.cz

Abstract. In this paper we study scoring and order approach to concept
interpretation in description logics. Only concepts are scored/ordered,
roles remain crisp. The concepts in scoring description logic are fuzzi-
fied, while the concepts in order description logic are interpreted as pre-
orders on the domain. These description logics are used for preferential
user-dependent search of the best instances. In addition to the standard
constructors we add top-k retrieval and aggregation of user preferences.
We analyze the relationship between scoring and order concepts and we
introduce a notion of order-preserving concept constructors.

1 Introduction

The main motivation of our research is a large amount of data available on the
web. It is the effort of Semantic Web community to use ontologies and description
logics (DLs) for expressing knowledge about this data. One of the approaches
to tackle with this problem are fuzzy description logics (fuzzy ontologies). The
connection of description logic and fuzzy set theory appears to be suitable for
many areas of Soft Computing and Semantic Web.

One interesting application of fuzzy DLs is representation of user preferences.
Users naturally express their preferences in a vague, imprecise way (e.g. “I want
to buy a cheap and fast car”). It is possible to handle such vague requirements
with fuzzy sets. Moreover, users often need only top-k best answers, ordered
by their specific preferences. Therefore we use modified top-k algorithm [6] for
user-dependent search of k best objects.

We explore a specific problem when the knowledge base has a simple struc-
ture but contains a large number of individuals. We choose the description logic
traditionally called EL ([1,2]), which allows only concept conjunction and exis-
tential restrictions to define complex concepts. Then we add fuzzy concepts to be
able to represent user preference. Thus an individual which belongs to a prefer-
ential concept good car to degree 0.9 is preferred more than an individual with
a membership degree 0.5. Fuzzy membership values are handled by a concrete
domain D (inspired by [11], see also [8] chapter 6 for an introduction to concrete

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 709–720, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

710 V. Vaneková and P. Vojtáš

domains). This kind of fuzziness does not affect roles, so they remain crisp. We
call the resulting DL a scoring description logic, s-EL(D).

The specific fuzzy membership value or score does not play any role in many
applications - only the order implied by the fuzzy value matters. The actual
score is hidden to user in some applications, e.g. Google search. Therefore we
present another DL called order DL o-EL(D), where concepts are interpreted as
preorders of instances, and roles remain crisp. Having such a DL enables us to
combine a part of a knowledge base describing user preferences as a module with
the rest of the knowledge base (i.e. using an ontology).

The two description logics defined in this paper have many similarities. We
can define a corresponding order concept for every scoring concept. An impor-
tant question is whether complex concepts also have this feature. The main
contributions of this paper are results on connections of o-EL(D) to s-EL(D).

2 Description Logic s-EL(D) with Scoring Concepts and
Aggregation

This section briefly recalls s-EL(D), first published in [4]. As any other DL,
s-EL(D) describes its universe of discourse (domain) using concepts and roles.
Concepts can be viewed as classes of individuals (objects), while roles can be
viewed as binary predicates describing various relationships among individuals.
See [8] for basic DL theory.

The description logic s-EL(D) is fuzzified, however, it differs from other fuzzy
DLs. It is designed especially to represent user preferences and allow preferen-
tial top-k queries. The main difference is that we use crisp roles to describe
relationships of objects from the domain and fuzzy (scoring) concepts to repre-
sent vague user preferences. Allowed constructors are top concept �, conjunc-
tion C � D and existential restriction ∃R.C. A DL knowledge base consists of
a TBox with complex concept definitions C � D and C ≡ D and an ABox
with assertions about individuals (role assertions (a, c) : R and concept asser-
tions 〈a : C, t〉, where t is a truth value). We use a finite set of truth values
TVn = { i

n : i ∈ {0, . . . , n}} ⊂ [0, 1].
Every interpretation I consist of a non-empty domain ΔI and an interpreta-

tion function •I . Concepts are interpreted as fuzzy sets of elements from the do-
main (see Table 1, row 1), roles are interpreted as crisp relations RI ⊆ ΔI ×ΔI .
Interpretations of complex concepts can be seen on Table 1, where A, C, D are
concept names, R is a role, u is a concrete role and a, b are individuals.

An interpretation I is a model of TBox definition C � D iff ∀x ∈ ΔI :
CI(x) ≤ DI(x), definition C ≡ D, iff ∀x ∈ ΔI : CI(x) = DI(x), ABox concept
assertion 〈a : C, t〉 iff CI(a) ≥ t and role assertions (a, c) : R iff (a, c) ∈ RI .

The interpretation of existential quantifier ∃R.C is similar to other fuzzy DLs
(like sup

b∈ΔI
min{RI(a, b), CI(b)} in [11]), except that we use crisp roles, so the

value of RI(a, b) is always 0 or 1. Apart from standard EL constructors allowed
in the TBox, we add concrete domain predicates P , aggregation @U and top-k
constructor. They are described more closely throughout the rest of this section.

Comparison of Scoring and Order Approach 711

Table 1. Syntax and Semantics of s-EL(D)

Syntax Semantics

A AI : ΔI −→ TVn

� �I : ΔI −→ {1}
C � D (C � D)I(a) = min{CI(a),DI(a)}
∃R.C (∃R.C)I(a) = sup

b∈ΔI
{CI(b) : (a, b) ∈ RI}

∃u.P (∃u.P)I(a) = sup
b∈ΔD

{P (b) : (a, b) ∈ uI}

top-k(C) top-k(C)I(a) =

{
CI(a), if

∣∣b ∈ ΔI : CI(a) < CI(b)
∣∣ < k

0, otherwise

@U (C1, . . . , Cm) @U (C1, . . . , Cm)I(a) =

m∑
i=1

wiCI(a)

m∑
i=1

wi

Example 1. Let the knowledge base contain data from the used car sales. We
have a concept car and roles has horsepower, has price, has mileage. Facts
in the ABox are transfered from a (crisp) relational database, so the membership
values of both individuals Audi A3 and Mercedes Benz 280 in the fuzzy concept
car is equal to 1.

〈Audi A3 : car, 1〉
(Audi A3, 7900) : has price
(Audi A3, 73572) : has mileage
(Audi A3, 110) : has horsepower
〈Mercedes Benz 280 : car, 1〉
(Mercedes Benz 280, 9100) : has price
(Mercedes Benz 280, 127576) : has mileage
(Mercedes Benz 280, 147) : has horsepower

Different users may have different preferences to price, mileage and horsepower.
Instead of exact preferences, we support vague concepts like good price,
good mileage, good horsepower. Interpretations of these concepts vary from
user to user – for example, 20000 EUR is a good price for one user and un-
acceptable for another. Therefore all preference concepts will be user-specific
(e.g. good priceU1 for user U1) and we represent them with concrete domain
predicates [8].

We chose the concrete domain D originally defined in [11], because it con-
tains basic trapezoidal predicates, sufficient to represent user preferences. It is
defined as D = (ΔD , P red(D)), where the domain ΔD = R and the set of predi-
cates Pred(D) = {lta,b(x), rta,b(x), trza,b,c,d(x), inva,b,c,d(x)} contains monotone
and trapezoidal fuzzy sets (unary fuzzy predicates). The interpretation of fuzzy
predicates is fixed, handled by the concrete domain. Figure 1 shows lta,b(x)
(left trapezoidal membership function), rta,b(x) (right trapezoidal), trza,b,c,d(x)
(trapezoidal) and inva,b,c,d(x) (inverse trapezoidal) with one variable x and pa-
rameters a, b, c, d.

712 V. Vaneková and P. Vojtáš

xa b

1

0

rt
a,b

(x)

xa b

1

0

lt
a,b

(x)

xa c

1

0

inv
a,b,c,d

(x)

b d xa c

1

0

trz
a,b,c,d

(x)

b d

Fig. 1. Fuzzy membership functions of basic trapezoidal types

Fuzzy concrete domain D adds a concept constructor ∃u.P , where P ∈ PredD

and u is a concrete role. This constructor generates a total preorder, because P
has a fixed interpretation.

Example 2. We further extend the knowledge base stated above with preference
concepts of user U1.

good priceU1
≡ ∃(has price).lt7000,9000

good horsepowerU1
≡ ∃(has horsepower).rt100,150

good carU1
≡ car � good price� good horsepower

Then every model I of the knowledge base will satisfy the following:

〈Audi A3 : good priceU1
, 0.55〉

〈Audi A3 : good horsepowerU1
, 0.2〉

〈Audi A3 : good carU1
, 0.2〉

〈Mercedes Benz 280 : good priceU1
, 0〉

〈Mercedes Benz 280 : good horsepowerU1
, 0.94〉

〈Mercedes Benz 280 : good carU1
, 0〉

Fuzzy conjunction is not always suitable to represent user preferences because it
penalizes some objects that may be still interesting for the user. This is the case
of the individual Mercedes Benz 280, which has very good value of horsepower
for user U1, but the price is beyond preferred range. Instead of the conjunction,
we can use aggregation to obtain overall preference value. Aggregation functions
are m-ary fuzzy functions @U : TV m

n −→ TVn, monotone in all arguments and
such that @U (1, . . . , 1) = 1 and @U (0, . . . , 0) = 0. We do not require other prop-
erties such as being homogeneous, additive or Lipschitz continuous, though such
functions can be more useful for the computation. Note that aggregations are
a generalization of both fuzzy conjuctions and disjunctions. As such, unrestricted
aggregations add too much expressive power to the language [10]. According to
the paper [5], the instance problem for DLs with aggregation is polynomially
decidable, provided that the subsumption of two aggregations can be decided in
polynomial time.

If we use aggregation, the concept good carU1
from our example will be

@U1(good priceU1
, good horsepowerU1

), where the aggregation is a weighted
average @U1(x, y) = x+2y

3 . Then the minimal model will be different:

〈Audi A3 : good car, 0.32〉
〈Mercedes Benz 280 : good car, 0.63〉

Comparison of Scoring and Order Approach 713

Instead of standard reasoning tasks, we add a new task, top-k retrieval, to
our description logic: for a given concept C, find k individuals with the greatest
membership degrees. The value of top-k(C)I(a) is equal to CI(a) if a belongs
to k best individuals from preference concept C (or it is preferred equally as
kth individual). Otherwise the value is set to 0. Note that according to the defi-
nition of top-k(C)I(a) in Table 1, we return those elements for which the number
of strictly greater elements is less than k, which includes the ties on the kth po-
sition. Thus the result can possibly include more than k individuals. The
original top-k algorithm [7] is non-deterministic – instead of returning all ties
on the kth position, it chooses some of them randomly and returns exactly k ob-
jects. We use this non-standard definition in order to make the top-k constructor
deterministic.

Top-k algorithm [6] uses a preprocessing stage to generate lists of individuals
ordered by role values. In the example above it would generate three ordered lists
of individuals (for has price, has mileage and has horsepower). The lists are
traversed in specific order dependent on the particular fuzzy sets. The algorithm
evaluates aggregation function on the fly and determines threshold value to find
out if some other objects can have greater overall value than objects already
processed. This algorithm has proved to be very efficient (see [6]).

3 Description Logic o-EL(D) with Concept Instance
Ordering

Every preference concept defined in the previous section generates ordering of
individuals according to the preference value. Conjunctions or aggregations are
necessary to obtain overall order. This principle is similar to the decathlon rules:
athletes compete in ten disciplines, each discipline is awarded with points ac-
cording to scoring tables. All points are summed up to determine the final order.
This is the case when all precise scores are important to determine the final score.

There are other cases when the score itself is not important. Recall another
example from sport: in Formula 1, the first eight drivers gain points according
to the point table (10, 8, 6, 5, 4, 3, 2, 1) regardless of their exact time, speed or
headstart. The final order is also determined by summing up all points. A similar
system is used in Tour de France, where riders can earn points at the end of each
stage. The stages are divided into several types and each type has its own point
table.

To return back to computer science, user preference is often represented as
an order, partial or total. The partial order can be induced from user inputs like
“object a is better than object b” or from sample set of objects rated by the
user. Inductive learning of user preference from such rated set of objects means
finding a linear extension of the partial order and thus be able to compare any
pair of objects.

In this section we propose description logic o-EL(D) with concepts C≤ in-
terpreted as non-strict preorders on the domain, CJ

≤ . From a logical point of
view, we interpret both concepts and roles as binary predicates. If (a, b) ∈ CJ

≤ ,

714 V. Vaneková and P. Vojtáš

Table 2. Syntax and Semantics of o-EL(D)

Syntax Semantics

A≤ AJ
≤ ⊆ ΔJ × ΔJ

�≤ ΔJ × ΔJ

C≤ � D≤ {(a1, a2) : (a1, a2) ∈ CJ
≤ ∧ (a1, a2) ∈ DJ

≤}
∃R.C≤ {(a1, a2) : ∀c1 (a1, c1) ∈ RJ ∃c2 (a2, c2) ∈ RJ : (c1, c2) ∈ CJ

≤ }
∃u.P {(a1, a2) : ∀c1 (a1, c1) ∈ uJ ∃c2 (a2, c2) ∈ uJ : P (c1) ≤ P (c2)}

@U (C≤1 , . . . , C≤m) defined below

top-k(C) defined below

then a belongs to the concept C≤ less than b (or equally). If C≤ is a concept
representing user preference, we say that b is preferred to a. Complex concepts
in o-EL(D) are constructed according to Table 2 (compare with Table 1). Lower-
case letters denote individuals, except for u which denotes a concrete role. Two
additional non-standard constructors (aggregation and top-k constructor) are
defined in the subsequent text.

A preorder is a reflexive and transitive relation. We do not need the anti-
symmetry condition (as is required for partial orders) because there can be two
individuals that are not identical despite being equally preferred. We call such
individuals indiscernible according to preference concept C. A preorder is total,
if ∀a, b ∈ ΔJ : (a, b) ∈ CJ

≤ ∨ (b, a) ∈ CJ
≤ (one or both inequalities can hold).

We use the same concrete domain as in case of s-EL(D). Typical TBox def-
initions are C≤ � D≤ and C≤ ≡ D≤. The ABox contains concept assertions
(a1, a2) : C≤ and role assertions (a, c) : R. To distinguish the interpretations in
o-EL(D) from s-EL(D), we denote the order-oriented interpretations as J .

An interpretation J is a model of C � D iff (a, b) ∈ CJ
≤ implies (a, b) ∈ DJ

≤ ,
and C ≡ D, iff CJ = DJ . J is a model of an ABox assertion (a1, a2) : C≤ iff
(a1, a2) : CJ

≤ . Role assertions are handled in the same way as in s-EL(D).
Top concept �≤ is interpreted as a complete relation ΔJ × ΔJ , where all

individuals are equally preferred. Concept conjunction C≤ �D≤ often produces
partial preorder, even if C≤ and D≤ are total preorders. According to the order-
extension principle, it is possible to extend (C≤ � D≤)J to a total preorder.
However, this extension does not have to be unique. Sometimes it is more con-
venient to use aggregation @U instead of concept conjunction, especially when
we consider a conjunction of more than two concepts.

The semantics of ∃R.C≤ is chosen to be analogous with s-EL(D). Imagine
that the individual a1 is connected with c1, c2, c3 (values of role R), while a2 is
connected with c4, c5, c6. In the scoring case, we would simply take the supremum
of CI(c1), CI(c2), CI(c3) as the fuzzy value of ∃R.CI(a1) and analoguously for
∃R.CI(a2). Then we just compare the suprema. To simulate the “supremum”
in the ordering case, we must define that for every ci connected with a1 there
exists a better cj (with respect to the preference concept C≤) connected with a2

via role R.

Comparison of Scoring and Order Approach 715

For every @U with arity m and for every m-tuple of order concepts C≤j ⊆
ΔJ × ΔJ aggregation @J

U (C≤1 , . . . , C≤m) ⊆ ΔJ × ΔJ is a partial preorder. If
(a, b) ∈ CJ

≤j
for every j = 1, . . . , m, then (a, b) ∈ @J

U (C≤1 , . . . , C≤m). We define
aggregation similar to Formula 1 rules. First of all, it is necessary to define the
level of instance a in the interpretation of concept C. It is the biggest possible
length of a sequence such that the first element is a and every following element
is strictly greater than its predecessor.

level(C, a,J) = max
l∈N

{l : ∃b1, . . . , bl ∈ ΔJ ∀i ∈ {1, . . . , l − 1}(bi, bi+1) ∈
CJ ∧ (bi+1, bi) /∈ CJ ∧ b1 = a}
Next we define a scoring table for the aggregation, which is a finite strictly de-
creasing sequence score@U (score1, . . . , scorem) like (10, 8, 6, 5, 4, 3, 2, 1). The
differences bet ween adjacent elements are also decreasing, but not strictly. The
pair (a, b) belongs to aggregation @J

U (C≤1 , . . . , C≤m) if

m∑
j=1

scorelevel(C≤j
,a,J) ≤

m∑
j=1

scorelevel(C≤j
,b,J).

This means that we find the level of individual a in every preference concept CJ
≤j

,
then we determine the corresponding scores for these levels and sum up all the
scores. If the individual b has better levels in the preference concepts CJ

≤j
than

individual a, it will also have a higher sum of all scores.
It is also straightforward to define top-k queries. Let Ca = {c ∈ ΔJ : (a, c) ∈

CJ
≤ ∧ (c, a) /∈ CJ

≤ } be a set of individuals strictly greater than a in ordering
concept C≤. Then (a, b) ∈ top-k(C≤)J , iff:

1. (a, b) ∈ CJ
≤ or

2. |Ca| ≥ k

If C≤ was a total preorder, then top-k(C≤) will be also total. Top-k constructor
preserves the original order of the first k individuals, including the ties. Note
that the first k individuals often occupy less than k levels because some of them
are ties. Concerning the ties on the last included level (not necessarilly the k-th
level), we can either choose only some of them to fill up the needed amount of
elements, or we can return them all. We choose the latter possibility, even if we
end up with more than k elements in the result, because it makes our definition
deterministic. If some element a has more than k strictly greater elements in CJ

≤ ,
so that it is beyond the last included level (see condition 2), it is made lower or
equal to all other elements, which moves it to the last level in top-k(C≤)J .

Example 3. We transform the knowledge base from the previous section:

(Audi A3, Mercedes Benz 280) : car
(Mercedes Benz 280, Audi A3) : car
(Audi A3, 7900) : has price
(Audi A3, 110) : has horsepower
(Mercedes Benz 280, 9100) : has price

716 V. Vaneková and P. Vojtáš

(Mercedes Benz 280, 147) : has horsepower
good priceU1

≡ ∃(has price).lt7000,9000

good horsepowerU1
≡ ∃(has horsepower).rt100,150

good carU1
≡ car � good priceU1

� good horsepowerU1

Every model J of the knowledge base will satisfy the following:

(Mercedes Benz 280, Audi A3) : good priceU1

(Audi A3, Mercedes Benz 280) : good horsepowerU1

The latter assertion is satisfied because ∀c1 (Audi A3, c1) ∈ has horsepowerJ

∃c2 ∈ ΔJ (Mercedes Benz 280, c2) ∈ has horsepowerJ : (c1, c2) ∈ rtJ100,150.
We have only one possibility c1 = 110 and c2 = 147 and moreover (110, 147) ∈
rtJ100,150.

Note that neither the tuple (Audi A3, Mercedes Benz 280), nor the tuple
(Mercedes Benz 280, Audi A3) belongs to good carJU1

in every model J . This
is caused by the ambiguity in concept conjunctions (because the interpreta-
tion of the concept good carU1

is a partial preorder). This shows a necessity
to use aggregations instead of concept conjunctions. Let us define the scoring
table for aggregation @U1 as (3, 2, 1) and the preferential concept good carU1

as
@U1(good priceU1

, good horsepowerU1
). Individual Audi A3 has the first place

in concept good horsepowerU1
, while Mercedes Benz 280 is first in the concept

good priceU1
. The result is that both individuals gain five points in total (three

for the first place and two for the second place) and every interpretation must
satisfy both:

(Mercedes Benz 280, Audi A3) : good carU1

(Audi A3, Mercedes Benz 280) : good carU1

4 Relationship between Scoring and Order Approach

Definitions for s-EL(D) and o-EL(D) are much similar, but the two logics are not
equivalent. At the first sight, it is obvious that o-EL(D) drops exact membership
degrees, thus it loses the ability to express some features of s-EL(D). If we
have a “constant” fuzzy concept CI(a) = w ∈ TVn for every a ∈ ΔI , the
corresponding order concept in o-EL(D) will be CJ

≤ = ΔJ × ΔJ , regardless
of the value w. Similarly, if DI(a) ≤ DI(b), the corresponding order concept
contains the pair (a, b) ∈ DJ

≤ , but we lose information about the difference
DI(b) − DI(a).

If we compare a scoring concept C with ordering concept C≤, we are
concerned about the order of individuals. It is straightforward to define corre-
sponding order-preserving concept A≤ for every primitive concept A and for any
interpretation AI . We define (a, b) ∈ AJ

≤ iff AI(a) ≤ AI(b). Concept construc-
tors should also preserve order of individuals. We start from a scoring concept
A, transform it to a corresponding ordering concept A≤, use constructors (let
us denote a generic constructor as m(A), m(A≤)) on both concepts and finally

Comparison of Scoring and Order Approach 717

compare order of individuals in the results. If m(A≤) is a partial preorder, there
are many possible total extensions.

Let (a, b) ∈ AJ
≤ iff AI(a) ≤ AI(b). Constructor m(A) is order-preserving if

there exists a linear extension m(A≤)′ of m(A≤) such that ((a, b) ∈ m(A≤)′J iff
m(A)I(a) ≤ m(A)I(b)). Note that the concrete domain D is already defined in
such a way that ∃u.P is order-preserving.

Lemma 1. Existential quantification is order-preserving.

Proof. Let C≤ be order-preserving concept for C. Let (a1, a2) ∈ ∃R.CJ
≤ . Ac-

cording to the definition, ∀c1 (a1, c1) ∈ RJ ∃c2 (a2, c2) ∈ RJ : (c1, c2) ∈ CJ
≤ .

We know that the interpretation of roles is the same and C is order-preserving,
thus ∀c1 (a1, c1) ∈ RI ∃c2 (a2, c2) ∈ RI : CI(c1) ≤ CI(c2). The same inequality
holds for suprema: sup

b∈ΔI
{CI(c1) : (a1, c1) ∈ RI} ≤ sup

b∈ΔI
{CI(c2)| (a2, c2) ∈ RI}

Therefore (∃R.C)I(a1) ≤ (∃R.C)I(a2).
For the reversed implication, suppose that (∃R.C)I(a1) ≤ (∃R.C)I(a2), and

from the definition also sup
b∈ΔI

{CI(c1) : (a1, c1) ∈ RI} ≤ sup
b∈ΔI

{CI(c2) : (a2, c2) ∈
RI}. Since the set of truth values is finite, the supremum must belong to the set.
Towards the contradiction, suppose that ∃c1 (a1, c1) ∈ RI ∀c2 (a2, c2) ∈ RI :
CI(c1) > CI(c2). Then CI(c1) is upper bound of the set and it is greater than
the maximum CI(c1) > max

b∈ΔI
{CI(c2) : (a2, c2) ∈ RI} ≥ max

b∈ΔI
{CI(c1) : (a1, c1) ∈

RI} ≥ CI(c1), which is a contradiction. Thus ∀c1 (a1, c1) ∈ RI ∃c2 (a2, c2) ∈
RI : CI(c1) ≤ CI(c2). As C is order-preserving concept, we gain (a1, a2) ∈
∃R.CJ

≤ . �

Note that in case of fuzzy s-EL(D), we define sup ∅ = 0. In case of o-EL(D), if
no individual is connected to a1 with role R, then (a1, a2) ∈ ∃R.CJ

≤ , so it yields
correct inequalities for 0 ≤ x and 0 ≤ 0.

Lemma 2. Constructor top-k is order-preserving.

Proof. Let us suppose that top-k(C)I(a1) ≤ top-k(C)I(a2). Note that the con-
dition

∣∣c ∈ ΔI : CI(a) < CI(c)
∣∣ < k is equivalent to |Ca| < k because C is

order-preserving. Since top-k(C)I(x) can be either 0 or CI(x), we have three
possibilities:

– case 1) top-k(C)I(a1) = top-k(C)I(a2) = 0
– case 2) 0 = top-k(C)I(a1) ≤ top-k(C)I(a2) = CI(a2)
– case 3) CI(a1) = top-k(C)I(a1) ≤ top-k(C)I(a2) = CI(a2)

Case 1 and 2: From the definition and the equivalence of conditions above we
have |Ca1 | ≥ k. This is the condition 2 from the definition of top-k(C≤), and
thus (a1, a2) ∈ top-k(C≤)J .

Case 3: CI(a1) ≤ CI(a2) means that (a1, a2) ∈ CJ , which is the condition 1
from the definition of top-k(C≤), and thus also (a1, a2) ∈ top-k(C≤)J .

718 V. Vaneková and P. Vojtáš

Now let (a1, a2) ∈ top-k(C≤)J . This can be a consequence of the condition 1
or 2.

Let condition 2 hold – we know that |Ca1 | ≥ k and from the equivalence
of conditions

∣∣c ∈ ΔI : CI(a1) < CI(c)
∣∣ ≥ k. From the definition of top-k(C)

follows that top-k (C)I(a1) = 0, so it will always be less or equal than
top-k (C)I(a2).

Let condition 1 hold and let |Ca1 | < k (otherwise we could apply the proof
above). Because a2 is greater than a1 in preorder CJ

≤ , the set of greater el-
ements will also have cardinality less than k. Thus top-k(C)I(a1) = CI(a1)
and top-k(C)I(a2) = CI(a2) and moreover CI(a1) ≤ CI(a2), which yields top-
k(C)I(a1) ≤ top-k(C)I(a2). �

Constructor C≤�D≤ produces partial preorders. Because of the minimum func-
tion in (C �D)I , we cannot model this constructor exactly in o-EL(D). There is
no way of comparing elements without fuzzy degrees in two different preorders.

Lemma 3. Concept conjunction is order-preserving.

Proof. Let (C � D)I(a1) ≤ (C �D)I(a2). According to the definition of C � D,
min{CI(a1), DI(a1)} ≤ min{CI(a2), DI(a2)}. Let us suppose that CI(a1) =
min{CI(a1), DI(a1)} (the other case is analoguous). Then CI(a1) must be on
the first place and we have six possibilities how to order all the values:

1. CI(a1) ≤ DI(a1) ≤ CI(a2) ≤ DI(a2)
2. CI(a1) ≤ CI(a2) ≤ DI(a1) ≤ DI(a2)
3. CI(a1) ≤ CI(a2) ≤ DI(a2) ≤ DI(a1)
4. CI(a1) ≤ DI(a1) ≤ DI(a2) ≤ CI(a2)
5. CI(a1) ≤ DI(a2) ≤ DI(a1) ≤ CI(a2)
6. CI(a1) ≤ DI(a2) ≤ CI(a2) ≤ DI(a1)

In cases 1, 2 or 4 we are done, because both CI(a1) ≤ CI(a2) and ≤ DI(a1) ≤
DI(a2) hold and we have also (a1, a2) ∈ (C≤ � D≤)J . In cases 3, 5, 6 neither
(a1, a2) nor (a2, a1) belong to (C≤�D≤)J . We define the extension X to contain
the tuple (a1, a2). All tuples added this way agree with order induced by (C�D)I .
The extension X is a total preorder, so it must be reflexive, transitive and
∀a, b ∈ ΔJ : ((a, b) ∈ X ∨ (b, a) ∈ X). Because (C �D)I is also a total preorder
and all inequalities from (C�D)I hold also in X , we only have to check whether
X contains any extra tuples from (C≤ � D≤)J that could be in conflict with
(C � D)I .

Let (a1, a2) ∈ (C≤ � D≤)J . From the definition of concept conjunction,
(a1, a2) ∈ CJ

≤ ∧ (a1, a2) ∈ DJ
≤ . Concepts C, D are order-preserving, hence

CI(a1) ≤ CI(a2) ∧ DI(a1) ≤ DI(a2). The same inequality holds for minimum,
min{CI(a1), DI(a1)} ≤ min{CI(a2), DI(a2)}, which means (C � D)I(a1) ≤
(C �D)I(a2). Thus X is a linear extension of (C≤ �D≤)J and preserves order-
ing of (C � D)I . �

Note that aggregations are defined differently for o-EL(D) and s-EL(D), so we
do not address their relationship here.

Comparison of Scoring and Order Approach 719

5 Related Work

There is a considerable effort concerning the connection of tractable description
logics with top-k algorithm. Papers [9,16,17] use DL-Lite, a tractable DL with
constructors ∃R, ∃R−, C1 � C2, ¬B and functional property axioms, together
with top-k retrieval. Also DL EL is a subject of intensive research, in order to
enhance the language without losing the tractability (see [3,14,15]).

The notion of instance ordering within description logics appeared in [12].
This paper defines crisp DL ALCQ(D) with special ordering descriptions that
can be used to index and search a knowledge base. The paper [13] presents
ALCfc, a fuzzy DL with comparison concept constructors, where it is possible
to define e.g. a concept of very cheap cars (with fuzzy degree of “cheap” over
some specified value), or cars that are more economy than strong. However, all
of the mentioned papers use the classical (crisp or fuzzy) concept interpretation.
To the best of our knowledge, there is no other work concerning interpreting
concepts as preorders.

We already studied EL(D) with fuzzified concepts in [4]. We suggested the
shift towards ordering approach, but the paper did not specify details of
o-EL(D), nor the relationship between scoring and ordering description logic. In
the paper [18], we proposed a basic reasoning algorithm for o-EL(D).

6 Conclusion

User preference is often represented as an order of objects. We show that it is
possible to omit fuzzy scores (membership degrees) in description logics and to
interpret concepts as preorders of the domain. We adopt the order-oriented ap-
proach for the standard concept constructors like existential restriction, concept
conjunction and concrete domain predicates. We add extra constructors @U for
aggregation and top-k for the retrieval of k best individuals from the concept.
The resulting description logic is called o-EL(D). We show that the constructors
in o-EL(D) preserve the order of individuals induced by fuzzy scores in s-EL(D).
DL o-EL(D) is especially suited for user preference modelling, but it has also
some limitations, e.g. it is difficult to adapt some classical reasoning problems
to ordering case. As a part of our future research, we want to improve the rea-
soning algorithm for instance problem in o-EL(D) [18] and to devise a reasoning
algorithm for subsumption of two order concepts.

References

1. Brandt, S.: Polynomial Time Reasoning in a Description Logic with Existential
Restrictions, GCI Axioms, and - What else? In: Proceedings of the 16th Eureo-
pean Conference on Artificial Intelligence, ECAI 2004, pp. 298–302. IOS Press,
Amsterdam (2004)

2. Baader, F., Lutz, C., Suntisrivaraporn, B.: Is Tractable Reasoning in Extensions
of the Description Logic EL Useful in Practice? In: Proceedings of the Methods for
Modalities Workshop, M4M 2005 (2005)

720 V. Vaneková and P. Vojtáš

3. Baader, F., Brandt, S., Lutz, C.: Pushing the EL Envelope Further. In: Proceedings
of the Workshop on OWL: Experiences and Directions, OWLED 2008 (2008)

4. Vaneková, V., Vojtáš, P.: A Description Logic with Concept Instance Ordering
and Top-k Restriction. In: Information Modelling and Knowledge Bases XX. Fron-
tiers in Artificial Intelligence and Applications, vol. 190, pp. 139–153. IOS Press,
Amsterdam (2009)

5. Vojtáš, P.: A Fuzzy EL Description Logic with Crisp Roles and Fuzzy Aggregation
for Web Consulting. In: Information Processing and Management under Uncer-
tainty (IPMU), pp. 1834–1841. Éditions EDK, Paris (2006)

6. Gurský, P., Vojtáš, P.: On Top-k Search with No Random Access Using Small
Memory. In: Atzeni, P., Caplinskas, A., Jaakkola, H. (eds.) ADBIS 2008. LNCS,
vol. 5207, pp. 97–111. Springer, Heidelberg (2008)

7. Fagin, R., Lotem, A., Naor, M.: Optimal Aggregation Algorithms for Middleware.
In: PODS 2001: Proceedings of the Twentieth ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems (2001); Journal of Computer and
System Sciences 66(4), 614–656 (2001)

8. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, D.F.
(eds.): Description Logic Handbook. Cambridge University Press, Cambridge
(2002)

9. Straccia, U.: Towards Top-k Query Answering in Description Logics: the Case of
DL-Lite. In: Fisher, M., van der Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA
2006. LNCS (LNAI), vol. 4160, pp. 439–451. Springer, Heidelberg (2006)

10. Baader, F., Sattler, U.: Description Logics with Aggregates and Concrete Domains.
Information Systems 28(8), 979–1004 (2003)

11. Straccia, U.: Fuzzy ALC with Fuzzy Concrete Domains. In: Proceedings of the
2005 International Workshop on Description Logics (DL 2005), vol. 147, pp. 96–
103. CEUR Workshop Proceedings (2005)

12. Pound, J., Stanchev, L., Toman, D., Weddell, G.E.: On Ordering and Indexing
Metadata for the Semantic Web. In: Proceedings of the 21st International Work-
shop on Description Logics (DL-2008). CEUR Workshop Proceedings, vol. 353
(2008)

13. Kang, D., Xu, B., Lu, J., Li, Y.: Reasoning for Fuzzy Description Logic with
Comparison Expressions. In: Proceedings of the 2006 International Workshop on
Description Logics (DL 2006). CEUR Workshop Proceedings, vol. 189 (2006)

14. Stoilos, G., Stamou, G., Pan, J.Z.: Classifying Fuzzy Subsumption in Fuzzy-EL+.
In: Proceedings of the 21st International Workshop on Description Logics (DL
2008). CEUR Workshop Proceedings, vol. 353 (2008)

15. Mailis, T., Stoilos, G., Simou, N., Stamou, G.: Tractable Reasoning Based on the
Fuzzy EL++ Algorithm. In: Proceedings of the Fourth International Workshop
on Uncertainty Reasoning for the Semantic Web (URSW 2008). CEUR Workshop
Proceedings, vol. 423 (2008)

16. Straccia, U.: Answering Vague Queries in Fuzzy DL-Lite. In: Proceedings of the
11th International Conference on Information Processing and Management of Un-
certainty in Knowledge-Based Systems (IPMU 2006), pp. 2238–2245 (2006)

17. Pan, J.Z., Stamou, G., Stoilos, G., Thomas, E., Taylor, S.: Scalable Querying Ser-
vice over Fuzzy Ontologies. In: Proceedings of the 17th International World Wide
Web Conference (WWW 2008), pp. 575–584. ACM, New York (2008)

18. Vaneková, V., Vojtáš, P.: Order-Oriented Reasoning in Description Logics. In: Pro-
ceedings of 6th Atlantic Web Intelligence Conference (AWIC 2009). Advances in
Intelligent and Soft Computing, vol. 67. Springer, Heidelberg (to appear, 2010)

	Comparison of Scoring and Order Approach in Description Logic $\mathcal {EL(D)}$
	Introduction
	Description Logic s-$\mathcal {EL(D)}$ with Scoring Concepts and Aggregation
	Description Logic o-$\mathcal {EL(D)}$ with Concept Instance Ordering
	Relationship between Scoring and Order Approach
	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

