
Essential Performance Drivers

in Native XML DBMSs

Theo Härder, Christian Mathis, Sebastian Bächle,
Karsten Schmidt, and Andreas M. Weiner

University of Kaiserslautern, Germany
{haerder,mathis,baechle,kschmidt,weiner}@cs.uni-kl.de

Abstract. As a multi-layered XML database management system, we
have designed, implemented, and optimized over the recent five years our
prototype system XTC, a native XDBMS providing multi-lingual query
interfaces (XQuery, XPath, DOM). In particular in higher system layers,
we have compared competing concepts and iteratively found salient solu-
tions which drastically improved the overall XDBMS performance. XML
query processing is critically affected by the smooth interplay of concepts
and methods on all architectural layers: node labeling and mapping op-
tions for storage structures; availability of suitable index mechanisms;
provision of a spectrum of path processing operators; query language
compilation and optimization. Furthermore, effective and efficient lock-
ing protocols must be present to guarantee the ACID properties for XML
processing and to achieve high transaction throughput.

In this survey, we outline our experiences gained during the imple-
mentation and optimization of XTC. We figure out the “key drivers”
to maximize throughput while keeping the response times at an accept-
able level. Because we have implemented all options and alternatives
in XTC, dedicated benchmark runs allow for comparisons in identical
environments and illustrate the benefit of all implementation decisions1.

1 Motivation

In recent years, XML’s standardization and, in particular, its flexibility (e. g.,
data mapping, cardinality variations, optional or non-existing structures, etc.)
evolved as driving factors to attract demanding write/read applications, to en-
able heterogeneous data stores, and to facilitate data integration. Because busi-
ness models in practically every industry use large and evolving sets of sparsely
populated attributes, XML is more and more adopted by those companies which
have even now launched consortia to develop XML schemas adjusted to their par-
ticular data modeling needs. As an example, world-leading financial companies
defined more than a dozen XML schemata and vocabularies to standardize data
1 This work has been partially supported by the German Research Foundation (DFG)

and the Rheinland-Pfalz cluster of excellence “Center of Mathematical and Compu-
tational Modelling”, Germany (see www.cmcm.de).

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 29–46, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

30 T. Härder et al.

processing and to leverage cooperation and data exchange [43]. For these rea-
sons, XML databases currently get more and more momentum if data flexibility
in various forms is a key requirement of the application and they are, therefore,
frequently used in collaborative or even competitive environments [26].

Native XML database systems (XDBMSs) promise tailored XML processing,
but most of the systems published in the DB literature are primarily designed for
efficient document storage and retrieval [22,39]. Furthermore, they are optimized
to evaluate complex XQuery statements on large XML documents in single-
user mode. Hence, many aspects of proven DBMS functionality and technology
are often neglected in these systems, in the first place read/write transaction
processing in multi-user mode, but also storage and indexing of dynamic XML
documents in flexible formats to best satisfy the needs of specific applications.

As a consequence of the growing demand and the increasing adoption of
XDBMSs, enhanced functionality and flexibility is needed in all system layers.
At the bottom-most layer of the XDBMS architecture, a spectrum of storage
devices, e. g., flash disks and magnetic disks, should be supported to provide for
high-performance requirements. In upper layers, tailor-made and automatically
chosen storage and index structures should help to approach application-specific
needs [38]. These structures should enable complex path processing operations
which, in turn, have to be integrated into cost-optimized query plans.

Of course, the original “retrieval-only” focus of XDBMSs – probably caused
by the first proposals of XQuery respectively XPath where the update part was
left out – is not enough anymore. Due to the growing need of update facilities,
XDBMSs should efficiently support fine-grained, concurrent, and transaction-
safe document modifications. For example, workloads for financial application
logging2 include 10M to 20M inserts in a 24-hour day, with about 500 peak in-
serts/sec. Because at least a hundred users need to concurrently read the data
for troubleshooting and auditing tasks, concurrency control is challenged to pro-
vide short-enough response times for interactive operations [26]. Currently, all
vendors of XML(-enabled) DBMSs support updates only at document granular-
ity and, thus, cannot manage highly dynamic XML documents, let alone achieve
such performance goals. Hence, new concurrency control protocols together with
efficient implementations are needed to meet these emerging challenges.

During the last five years, we have addressed – by designing, implementing,
analyzing, optimizing, and adjusting an XDBMS prototype system called XTC
(XML Transactional Coordinator) – all these issues indispensable for a full-
fledged DBMS. To guarantee broad acceptance for our research, we strive for
a general solution that is even applicable for a spectrum of XML language mod-
els (e. g., XPath, XQuery, SAX, or DOM) in a multi-lingual XDBMS environ-
ment. In this survey paper, we want to report on our experiences gained and, in
particular, focus on the concepts, functionalities, and mechanisms which turned
out to be essential performance drivers of XDBMSs.

2 Another example is monitoring the airline traffic control where legal demands call for
collecting and saving huge and rapidly growing volumes of heterogeneous information
(formatted data, mail, voice, signal, etc.) for 5 years.

Essential Performance Drivers in Native XML DBMSs 31

2 Hierarchical DBMS Architecture

As mapping model or reference architecture for relational DBMSs, Andreas
Reuter and the first author proposed a hierarchical multi-layer model about
25 years ago [17]. The five layers describe the major steps of dynamic abstraction
from the physical storage up to the user interface. At the bottom, the database
consists of huge volumes of persistently stored bits interpreted by the DBMS
into meaningful information on which the user can operate. With each abstrac-
tion level, the objects become more complex, allowing more powerful operations
and being constrained by a growing number of integrity rules. The uppermost
interface supports a data model using set-oriented and declarative operations.

A key observation made while implementing this model in various projects was
that the invariants in database management determine the mapping steps of the
supporting architecture[13]. Hence, for XML database management, these basic
invariants should still hold true: page-oriented mapping to external storage, man-
agement of record-oriented data, set-oriented database processing. Therefore, we
used the five-layer model shown in Fig. 1 as our reference architecture for XTC.
Obviously, both lower layers L1 and L2 keep their essential characteristics and
functionality as in the relational world, because neither objects (pages or blocks)
nor operations (fix, unfix or read/write) change very much. However, much more
adaptations are necessary from L3 upwards3. In contrast to handling row sets
often based on simple TID access or reference, the performance of handling and
manipulating sequences of XML subtrees critically depends on a suitable node
labeling scheme. In [19], we have already argued that it is the key to efficient
and fine-grained XML processing.

Transaction Services

File Services
I/O Manager Temp. File Manager

Propagation Control
Buffer Manager

Access Services

Index Manager Catalog Manager

Record Manager

Node Processing

Node Manager

Transaction Manager

Lock Manager

XML Processing Services
XML ManagerXQuery Processor XSLT Processor

Interface Services
Http Agent Ftp Agent DOM RMI SAX RMI API RMI

OS File SystemTransaction Log File Container Files Temp. Files

Services
Path Processing

L1

L2

L3

L4

L5

X
T

C
se

rv
er

Deadlock Detection

Fig. 1. The five-layer architecture of XTC

3 For DBMSs, it is especially true: “Performance is not everything, but without per-
formance everything is worth nothing.”

32 T. Härder et al.

3 Node Labeling

In our first XTC version, we started with a simple, but very inefficient solution by
choosing a sequential numbering scheme (SEQIDs) which could only guarantee
uniqueness and order preservation of node labels. Exploring fine-grained XML
locking as the initial focus of our research, the protocols frequently had to acquire
intention locks on all ancestors of the context node cn. To find their node labels,
overly expensive look-ups in the disk-based document were unavoidable.

Various range-based and prefix-based node labeling schemes [7] were consid-
ered the prime candidates for XDBMSs, because their labels directly enable
testing of all XPath axes. A close comparison and evaluation of those schemes
included other XDBMS-specific criteria [14]. While range-based schemes failed
to guarantee immutable labels in dynamic XML documents (under heavy up-
dates/insertions) and could not directly compute, i. e., without further index
access or similar deviation, all ancestor labels of cn, prefix-based node labeling
turned out to be the winner, because they support all desired labeling properties
without the need of document access. Each label based on the Dewey Decimal
Classification, e. g., d1 = 1.7.9.5.17, directly represents the path from the doc-
ument’s root to the related node and the local order w. r. t. the parent node.
Some schemes such as OrdPaths [34], DeweyIDs, or DLNs [14] provide immutable
labels by supporting an overflow technique for dynamically inserted nodes. Be-
cause they are equivalent for all XDBMS tasks, we use the generic name stable
path labeling identifiers (SPLIDs) for them.

Because SPLIDs tend to be space-consuming, suitable encoding and compres-
sion of them in DB pages is a must. Effective encoding of SPLID divisions at
the bit level may be accomplished using Huffman codes [14]. It is important
that the resulting codes preserve their order when compared at the byte level.
Otherwise, each comparison, e. g., as keys in B*-trees or entries in reference
lists, requires cumbersome and inefficient decoding and inspection of the bit se-
quences. Because such comparisons occur extremely frequent, schemes violating
this principle may encounter severe performance problems [25].

When SPLIDs are stored in document sequence, they lend themselves to
prefix-compression and achieve impressive compression ratios. Our experiments
using a widely known XML document collection [32] confirmed that prefix-com-
pression reduced the space consumed for dense and non-dense SPLID orders
down to ∼15 – ∼35% and ∼25 – ∼40%, respectively [15].

To see the hidden gain of SPLIDs for lock-related costs, we generated a variety
of XML documents consisting of 5,000 up to 40,000 individual XML nodes and
traversed the documents under various isolation levels [11]. Although we opti-
mized SEQID-based access to node relatives by so-called on-demand indexing,
the required lock requests were directly translated into pure lock management
overhead as plotted in Fig. 2(a). We have repeated document traversal using
SPLID-based lock management (see Fig. 2(b)). Because the difference between
none and committed/repeatable is caused by locking overhead, we see drastic
performance gains compared to SEQIDs. While those are responsible for an up
to ∼600% increase of the reconstruction times in our experiment, SPLIDs keep

Essential Performance Drivers in Native XML DBMSs 33

10

20

30

40

50

60

70

5K 10K 15K 20K 25K 30K 35K 40K

[# nodes]

None
Committed

Repeatable

(a) SEQID node labeling

10

20

30

40

50

60

70

5K 10K 15K 20K 25K 30K 35K 40K

(b) SPLID node labeling

Fig. 2. Documents traversal times (sec.)

worst-case locking costs in the range of ∼10 – ∼20% [3]. SEQIDs have fixed
length, whereas SPLIDs require handling of variable-length entries. Coping with
variable-length fields adds some complexity to SPLID and B*-tree management.
Nevertheless, reconstruction time remained stable when SPLIDs were used –
even when locking was turned off (case none).

Comparison of document reconstruction in Fig. 2(a) and (b) reveals for iden-
tical XML operations that the mere use of SPLIDs improved the response times
by a factor of up to 5 and more. This observation confirms that prefix-based
node labeling is indispensable for internal XML navigation and set-based query
processing, but also for the lock manager’s flexibility and performance.

4 Storing and Indexing Documents

Based on specific document characteristics, storage management should provide
for automatic selection of appropriate mapping formats and adjusted param-
eters [38]. Typical methods replace the element/attribute names of the plain
(external) format by VocIDs to save space and need some Admin metadata to
enable variable-length entries. Inner tree nodes, i. e., the “structure”, are stored
as records containing < SPLID ,VocID ,Admin >, whereas leaf nodes carry the
“content” in < SPLID ,Value,Admin > records.

4.1 Storage Formats

Three kinds of mappings are provided in XTC. The document-oriented storage
formats keep both content and structure: Using the naive format, the VocIDs of
all element/attribute and content nodes are directly mapped together with their
uncompressed SPLIDs to the underlying storage structure (see Fig. 3), whereas
the pc format deviates from the naive mapping by applying prefix-compression
to all SPLIDs. As a novel mapping approach, the path-oriented storage format
called po virtualizes the entire structure part of the document.

For this reason, an auxiliary, document-related structure called path synopsis
is needed. It represents for each document path its path class and is enhanced by
path class references (PCRs) for them (see Fig. 4(a)). Because providing substan-
tial mapping flexibility, effective lock management support, and also considerable

34 T. Härder et al.

Depts

. . .

4711 Coy 835

33 10815 May XML

. . .

1

1.1.1.7.11.1.1.1.1 1.1.1.3.1 1.1.1.5.1

1.1.3.1.1.1 1.1.3.1.3.1 1.1.3.1.5.1 1.1.3.5.1.1 1.1.3.5.3.1

Dept
1.1

Mgr
1.1.1

Team
1.1.3

Team
1.1.5

Age
1.1.1.5

Name
1.1.1.3

ID
1.1.1.1

Level
1.1.1.7

Emp
1.1.3.1

Proj
1.1.3.5

Name
1.1.3.1.3

ID
1.1.3.1.1

Age
1.1.3.1.5

352509 Jones
1.1.3.3.1.1 1.1.3.3.3.1 1.1.3.3.5.1

Emp
1.1.3.3

Name
1.1.3.3.3

ID
1.1.3.3.1

Age
1.1.3.3.5

PName
1.1.3.5.1

Rating
1.1.3.5.3

Fig. 3. Document fragment (in the path-oriented storage format, only nodes below the
dashed line are physically stored)

speed-up of query evaluation [15], the use of path synopses turned out to be a key
concept for XTC’s processing efficiency.

Only the “content part” is physically stored when the po format is used (see
Fig. 3). Reference [31] explains the concept of structure virtualization, i. e., the po
mapping, in detail and shows that path reconstruction can be achieved on de-
mand when the SPLID of a node together with its PCR is present. For this
reason, leaf records are composed of < SPLID ,Value,PCR,Admin > where
the SPLIDs are prefix-compressed. All navigational and set-oriented operations
can be executed guaranteeing the same semantics as on naive or pc formats.
Fig. 4(b) shows that only the content nodes are stored; using the path synop-
sis, entry < 1.1.1.5.1, 6, 35 > tells us that the related path to the value 35 is
/Depts/Dept/Mgr/Age with the ancestor SPLIDs 1, 1.1, 1.1.1, 1.1.1.5.

All documents are physically represented using a B*-tree as base structure,
where the records (tree nodes) are consecutively stored in the document container
thereby preserving the document order. The document index is used to provide
direct access via SPLIDs. As an example, Fig. 4(b) illustrates the po format for
the document fragment of Fig. 3.

As compared to the plain format, naive as the straightforward internal format
typically achieves a storage gain of ∼10% to ∼30%, although the saving from
VocID usage is partially compensated by the need for node labels. Extensive
empirical (structure-only) tests using our reference document collection [32] have
identified a further gain of ∼27% to ∼43% when using pc format and, in turn,
a naive-to-po gain of ∼71% to ∼83% [15]. Because also exhibiting better mapping
and reconstruction times, the po format is a substantial performance driver.

Content compression is orthogonal to the storage formats discussed. We have
observed [15] that, using simple character-based compression schemes, the con-
tent size could be considerably reduced in our rather data-centric reference doc-
ument collection such that a storage gain of ∼22% to ∼42% is possible. Even
more compression gain could be expected for document-centric XML content.

Essential Performance Drivers in Native XML DBMSs 35

Depts

Dept

Mgr Team

ID Name Age Level Emp Proj

ID Name Age PName Rating

4 5 6 7

10 11 12 14 15

PCRs: 1

2

3 8

9 13

(a) Path synopsis

1.1.1.1.1
5

4711
Coy

1.1.1.3.14
1.1.1.5.1 6 35

1.1.1.7.1 7 8 1.1.3.1.1.1

0815 1.1.3.1.5.1. . .
33

250910
35

1.1.3.5.3.1 15 1
...

. . .

. . .

. . .

.

1.1.3.3 1.7

1.1.1.1.1 1.1.3.3.1.1 1.7. . .

contentPCRs + admin(compression not shown) SPLIDs

document
index

document
container

1.1.5.1.1.1 ...

10

12

1.1.3.3.1.1
121.1.3.3.5.1

10

(b) Stored document in po format

Fig. 4. Physical storage structures

4.2 Indexing Options

Set-oriented access to the nodes of an XML document is supported by a variety
of index types. Similar to the document store including the document index (see
Fig. 4(b)), all secondary index types in XTC are implemented using
B-tree/B*-tree structures:

– Element index : It offers two basic access primitives: Scan and Axis Evalua-
tion. For this reason, it maintains for each element name a reference list of
all its nodes. All element names are organized in a name directory where the
reference lists are themselves indexed (node-reference indexes).

– Path index : This structure can index paths qualified by a simple path pred-
icate p, e. g., //Mgr/Age or //Dept//Emp. Because SPLIDs carry essential
path information, they are utilized together with the path synopsis to di-
rectly support path queries.

– Content index : It maps each content value to the text nodes which stores it.
– Content-and-Structure (CAS) index : As a hybrid index combining content

and structure information, it supports the evaluation of CAS queries. Each
content value is associated with a list of references (SPLID + PCR) to the
related document nodes. Such a combined reference enables together with
the path synopsis the reconstruction of the entire path without accessing the
document.

CAS indexes are particularly powerful, because a large share of matching queries
can be evaluated solely on the index structure. Only when additional
attributes/elements are requested for output, access to the disk-based docu-
ment is needed. In a unique CAS index, all entries have the same PCR, while in
a homogeneous collective index, the entries may have varying PCRs, i. e., they
may refer to different path classes. For the heterogeneous collective CAS index,
the index predicate p may be generalized to p = p1∨ ...∨pi∨ ...∨pn where the pi

are simple path predicates. A generic CAS index contains all values of a certain
type, e. g., p = //* [29].

Refined evaluations of XTC’s indexing performance can be found in [31].
Furthermore, it is reflected by the query evaluation results reported in Sect. 7.

36 T. Härder et al.

5 Path Processing Operators

So far, layer L4 of XTC provides about 50 path processing operators (PPOs) –
exhibiting locking-aware behavior where appropriate [30] – which are tailored
to the underlying storage and index structures (L3). They can be considered as
part of the physical algebra operations. Here, we can only focus on a prominent
PPO generally called holistic twig join. A twig query (also called tree-pattern
query) contains multiple path branches (twigs) and potentially path and content
predicates, e. g. doc(’dept.xml’)//Mgr[./Age>=‘‘50’’]/Name) as XPath ex-
pression. It can be either decomposed into single paths or processed as a whole.
Single paths could be evaluated by structural joins or matched by means of in-
dexes and then joined (or intersected). To avoid joins, special (twig) indexes can
answer path pattern queries directly. In contrast to a structural join, a holis-
tic twig join can consume more than two input streams which are combined to
match the complex branching path patterns.

As identified in Fig. 5, numerous algorithms were proposed for twig processing,
but no algorithm obtains the expressiveness of our (logical) twig operator called

1. Skipping in TwigStack only supported by XB-Tree.
2. TJFast requires special embedding of path information into SPLIDs.
3. iTwigJoin supports streams generated by path indexes, but no internal element reconstruction.
4. TSGeneric + relies on the special XR-tree.
5. Matching child / not / filter integrated in output generation (and not in matching phase).
6. Index embedding with ancestor tuple builder algorithm only possible, when SPLIDs are indexed.

Algorithms for Holistic
Twig Joins

de
sc

en
da

nt

ch
ild

an
d

or no
t

op
tio

na
l e

dg
es

pr
oj

ec
tio

n

gr
ou

pi
ng

ex
pr

es
si

on
s

fil
te

rs

po
s.

pr
ed

ic
at

es

no
. o

f
ph

as
es

el
em

en
t i

nd
ex

es

pa
th

 in
de

xe
s

PathStack [2] + -

PathStack [19] + + -

TwigStack [2] + + 2 +1

TwigStackList [22] + + + 2

TwigStackList [38] + + + + 2

TJFast [23] + + + 2 +2

iTwigJoin [3] + + + 2 +3

TSGeneric + [18] + + 2 +4

Twig2Stack [4] + + + + + 1

TwigList [29] + + + 1

TwigOpt. [7] + + + + 1 +

Ext. TwigOpt [25] + +5 + + +5 + + + + +5 + 1 + +6

Fig. 5. Survey of twig algorithms

Essential Performance Drivers in Native XML DBMSs 37

Extended TwigOpt. We consider this operator richness as desirable, because the
higher the expressiveness, the more operations can be embedded into the twig
algorithm. Hence, the number of operators can be minimized in the final query
execution plan (QEP) (see Sect. 6). Therefore, our twig operator includes so
many concepts: path pattern supporting axes child, descendant and attribute;
logical and and or conjunctions; optional subtree patterns (i. e., optional edges);
projection; positional predicates; output filters; embedded output expressions;
grouping.

Depending on the indexes present, it is physically mapped to suitable stor-
age structures during QEP optimization (see Sect. 6). Again, its potential as
a performance driver is revealed in Sect. 7.

6 Query Planning and Optimization

For XQuery translation and optimization, we referred to a QGM-based (query
graph model [12]) internal structure guiding the entire process of query planning

Fig. 6. XQGM instance of the query

38 T. Härder et al.

and optimization. We substantially extended this model to XQGM [29] to pri-
marily enable query decorrelation rewrites [35], i. e., replacing nesting by joins,
and to integrate index support, i. e., the mapping of XPath/XQuery expressions
to our rich collection of index types. With cardinality estimations derived from
the related XML documents [1], our cost model can be tailored to the specific
XQuery evaluation [42]. In particular, the optimizer tries to apply the more-than-
usual expressiveness and functionality of Extended TwigOpt combined with CAS
index support to minimize operator use and to unlatch XTC’s evaluation power.

To only sketch the idea and to limit the explanation needs, the following
simple XQuery statement serves as a query planning and optimization example:

for $Dept in doc(’dept.xml’)//Mgr[./Age>=‘‘50’’] return $Dept/Name

This query returns the department names of managers that are at least
50 years old. As indicated before, the XQGM suits as our logical XML algebra.
Fig. 6 shows the XQGM instance that corresponds to the query. Here, the struc-
tural predicates (child and descendant axes) are evaluated using structural joins
(SJs). The SJs receive their inputs from access operators that work on nested
tuple sequences. SJ inputs are connected to so-called tuple variables (F:x) having
a for-loop semantics, i. e., an SJ is similar to a relational sort-merge join [29].

For the execution of this query, numerous QEPs can be derived. Due to struc-
tural join reordering and various indexing methods that can be considered as

(a) A QEP with PPOs (b) A QEP using CAS and path
indexes

Fig. 7. Optimization alternatives

Essential Performance Drivers in Native XML DBMSs 39

alternatives by our query optimizer [42], the search space quickly becomes very
large. Therefore, cost-based query optimization is necessary to wipe out ex-
pensive QEPs. Amongst others, Fig. 7(a) and (b) show two possible QEPs. In
Fig. 7(a), the structural predicates are evaluated using the PPOs StackTree
(Structural Join) and Extended TwigOpt (Holistic Twig Join). This QEP is
gained by performing query rewrite using join fusion [41]. Both operators receive
their inputs by accesses to the element index. Even though, a joint application
of StackTree and Extended TwigOpt can outdistance QEPs that only consist of
StackTree operators [41], Fig. 7(b) shows a more efficient variant. In this case,
we assume a CAS index (//Mgr/Age [Integer]) and a path index (//Name).
Instead of filtering all Age nodes and costly evaluating the structural predicates
for //Mgr/Age, the optimizer exploits both types of indexes and connects their
results by a StackTree operator. On large documents, this alternative is expected
to outperform the former one by several orders of magnitude, because CAS in-
dexes and path indexes are similar to materialized views.

7 Query Evaluation Performance

To sketch the interplay and efficiency of PPOs and query optimization, we want
to repeat some results of an empircal study [31] and give some speed-up figures
illustrating performance gains of index-supported range queries. We used the
XMark framework [37] to evaluate in five different cases (C1 – C5) range query
//Asia/Item/[‘‘C’’ ≤ Location ≤ ‘‘G’’], where all tests were carried out
on 4 XMark documents of size 10 MB, 50 MB, 100 MB, and 500 MB:

C1: No CAS/content index is available; hence, a holistic twig join operator had
to be used.

C2: A content index for all content nodes is present, allowing structure predi-
cate evaluation by the twig join operator. The delivered SPLIDs are not in
document order and have to be sorted to serve as input for the twig join.

C3: A generic CAS index (//*[String]) enables PCR matching to remove false
positives.

C4: A collective CAS index (//Item/Location [String]) is more focused than
the generic index.

C5: A unique CAS index (//Asia/Item/Location [String]) takes care that
no false positives can occur.

We refer to case C1 as baseline – no index was present and verification of the
content predicate required navigational steps (thus implying expensive random
IO) – and illustrate in Fig. 8 that three orders of magnitude can be gained by
adjusted indexes. While content access support in case C2 achieved some notice-
able improvements for the twig join, the real performance boost was observed for
cases C3, C4, and C5 exploiting CAS indexes and PCR structure matching such
that joins were not needed anymore. Thus, speed-ups in these cases increase with
the document sizes by up to two orders of magnitude. Note, in cases C1 and C2,
missing or insufficient index support caused linear response time growth w.r.t.

40 T. Härder et al.

 0.1

 1

 10

 100

 1000

sp
ee

d
-u

p

10 MB 50 MB 100 MB 500 MB

document size [MB]

C1

C2

C3

C4
C5

Fig. 8. Index-supported range queries

document sizes, whereas the response times in the remaining cases increased
only marginally due to CAS support. This effect enhanced the speed-up factors
observed for large document sizes.

Further performance gains and, at the same time, energy savings are possible
when flash disks are used. Compared to magnetic disks, these storage devices
provide a factor of 100 and more IOPS for random reads (and much lower, but
steadily improved random-write performance). Hence, IO-intensive DB appli-
cations greatly take advantage of these properties. Initial experiments revealed
that XTC in its current version improved its transaction throughput by a factor
of ∼3 thereby using less energy [16].

8 XML Locking

Multi-granularity lock (MGL) protocols [10,11] have introduced IR, IX, R, U,
and X locks to achieve fine-granularity locking on hierarchies. Always locking
entire subtrees, they are too strict for XML transactions because writers can
sometimes be tolerated in the subtree of a context node cn [21].

8.1 Locking Concepts of taDOM

In the context of XTC, we developed a novel approach to XML concurrency
control called taDOM providing tailor-made modes for fine-grained XML lock-
ing [18]. taDOM renames the conventional MGL locks and introduces new lock
modes for single nodes called NR (node read) and NX (node exclusive), and for
all siblings under a parent called LR (level read). The novelty of the NR and LR
modes is that they allow, in contrast to MGL, to read-lock only a node or all
nodes at a level (under the same parent), but not the corresponding subtrees.

To enable transactions to traverse paths in a tree having (levels of) nodes
already read-locked by other transactions and to modify subtrees of such nodes,

Essential Performance Drivers in Native XML DBMSs 41

SX3

a)

CX3

LRQ:

IR1 IX2

level

...

i-1

i

i+1

i+2 . . .

. . .

... ...

...

...
. . .

. . .

......

SR1

cn

b)

IX2

IX1 IX2

. . .

. . .

... ...

...

. . .

. . .

......

NR1
cn

c)

IX2

IR1 IX2

. . .

. . .

... ...

...

. . .

. . .

......

LR1

cn

NR1

SX3

CX3

IX3

CX2

NX2

CX2

NX2

IX3

IX3

NR1

IX3

IX2 CX3

Fig. 9. Examples of locking flexibility and effectivity using taDOM’s concepts

a new intention mode CX (child exclusive) had to be defined for a context (par-
ent) node. It indicates the existence of an SX or NX lock on some direct child
nodes and prohibits inconsistent locking states by preventing LR and SR locks.
It does not prohibit other CX locks on a context node c, because separate child
nodes of c may be exclusively locked by other transactions (compatibility is then
decided on the child nodes themselves). Altogether these new lock modes enable
serializable transaction schedules with read operations on inner tree nodes, while
concurrent updates may occur in their subtrees. An important and unique fea-
ture (not applicable in MGL or other protocols) is the optional variation of the
lock depth which can be dynamically controlled by a parameter. Lock depth n
determines that, while navigating through the document, individual locks are
acquired for existing nodes up to level n. If necessary, all nodes below level n
are locked by a subtree lock (SR, SX) at level n.

Let us highlight by three scenarios taDOM’s flexibility and tailor-made adap-
tations to XML documents as compared to competitor approaches. Assume
transaction T1 – after having set appropriate intention locks on the path from
the root – wants to read-lock context node cn. Independently of whether or not
T1 needs subtree access, MGL only offers a subtree lock on cn, which forces
concurrent writers (T2 and T3 in Fig. 9(a)) to wait for lock release in a lock re-
quest queue (LRQ). In the same situation, node locks (NR and NX) would allow
greatly enhance permeability in cn’s subtree (Fig. 9(b)). As the only lock gran-
ule, however, node locks would result in excessive lock management cost and
catastrophic performance behavior, especially for subtree deletion [20]. A fre-
quent XML read scenario is scanning of cn and all its children, which taDOM
enables by a single lock with special mode (LR). As sketched in Fig. 9(c), LR
supports write access to deeper levels in the tree. The combined use of node,
level, and subtree locks gives taDOM its unique capability to tailor and mini-
mize lock granules. Above these granule choices, additional flexibility comes from
lock-depth variations on demand – a powerful option only provided by taDOM.

8.2 The taDOM Protocol Family

Continuous improvement of these basic concepts led to a whole family of lock
protocols, the taDOM family, and finally resulted in a highly optimized protocol
called taDOM3+ (tailor-made for the operations of the DOM3 standard [8]),

42 T. Härder et al.

which consists of 20 different lock modes and “squeezes transaction parallelism”
on XML document trees to the extent possible. Correctness and, especially,
serializability of the taDOM protocol family was shown in [21,40].

The concept of meta-locking implemented in XTC provides the flexibility to
exchange lock protocols at runtime. Hence, such dynamic adaptations of lock
management are a prerequisite to achieve workload-dependent optimization of
concurrency control and to eventually reach autonomic tuning of multi-user
transaction processing [2].

8.3 Enhancing Multi-user Performance

We cross-compared 12 protocols under identical workloads and in the same sys-
tem environment [20] using meta-locking, i. e., without hardwiring all the differ-
ent lock protocols in the XTC code. In this lock contest, the taDOM protocols
have clearly proven their superiority over all competitors. Protocols only offer-
ing node locks were beaten roughly by a factor of 2 by MGL protocols which,
in addition, provided subtree locks. Supplementary to MGL equipped with level
locks, the taDOM protocol family, in turn, achieved once again a doubling of the
transaction throughput [20].

Every improvement of the lock protocol, however, shifts the locking perfor-
mance a bit more from the level of logical XML trees down to the underlying
storage structures. Hence, an efficient and scalable B*-tree implementation in
an adjusted infrastructure is mandatory. Together with fine-tuning measures to
workload characteristics, we added the following drivers for locking performance
to our initial XTC version:

– B*-tree Locking (D1): Initial tree traversal locked all visited index pages to
rely on stable ancestor paths in case of leaf page split or merges. Provoking
high update contentions, we re-implemented our B*-tree to follow the ARIES
protocol [33] for index structures, which is completely deadlock-free and can
therefore use cheap latches (semaphores) instead of more expensive locks.
Contention during tree traversals is reduced by latch coupling, where at most
a parent page and one of its child pages are latched at the same time.

– Storage Manager (D2): Needing full root-to-leaf traversal, navigation em-
bodies a crucial performance aspect of a B*-tree-based storage manager. We
observed high locality in the leaf pages and remembered those pages and
their version numbers as a hint for future operations. Each time when re-
accessing the B*-tree for navigation, we use this information to first locate
the leaf page of the context node. Only if this hint fails, we have to perform
a full root-to-leaf traversal of the index to find the correct leaf.

– Buffer Manager (D3): Prefix-compression of SPLIDs is very effective to save
storage space and disk IO, but must be paid with higher costs for encoding
and decoding of compressed records. To avoid this unnecessary decoding
overhead and to speed up record search in a page, we enabled buffer pages
to carry a cache for already decoded entries.

– Dynamic Lock Depth Adjustment(D4): Growing lock depth refines lock gran-
ules to minimal sizes that do not always pay off, because conflicting oper-

Essential Performance Drivers in Native XML DBMSs 43

 200

 400

 600

 800

 1000

 1200

 1400

 1600

SU 0 1 2 3 4 5 6 7 8

(a) Committed (old)

 100

 200

 300

 400

 500

SU 0 1 2 3 4 5 6 7 8

[Lock Depth]

no escalation
moderate

eager
aggressive

(b) Aborted (old)

 1000

 2000

 3000

 4000

 5000

 6000

 7000

SU 0 1 2 3 4 5 6 7 8

(c) Committed (new)

 200

 400

 600

 800

 1000

 1200

 1400

 1600

SU 0 1 2 3 4 5 6 7 8

(d) Aborted (new)

Fig. 10. Effects of lock depth and lock escalation on transaction throughput (tpm)

ations often occur at levels closer to the document root. In turn, it en-
larges administration overhead, because the number of locks to be managed
increases. Therefore, optimal lock depth depends on document properties,
workloads, and other runtime parameters like multiprogramming level, etc.,
and has to be steadily controlled and adjusted at runtime. For this reason,
we leveraged dynamic lock escalation/deescalation as the most effective so-
lution. Using empirically proven heuristics for conflict potential in subtrees,
the simple formula threshold = k ∗ 2−level delivered escalation thresholds
taking into account that typically fanout and conflicts decrease with deeper
levels. Parameter k is adjusted to current workload needs.

– Avoidance of Conversion Deadlocks (D5): Typically, deadlocks occurred
when two transactions tried to concurrently append new fragments under
a node already read-locked by both of them. Conversion to an exclusive lock
involved both transactions in a deadlock. Update locks are designed for re-
lational systems to avoid such conversion deadlocks [11], because they allow
for a direct upgrade to an exclusive lock, when the transaction decides to
modify the current record, or for a downgrade to a shared lock, when the
cursor is moved to the next record without any changes. Transactions in
XDBMSs do not follow such easy access patterns. Instead, they often per-
form arbitrary navigation steps, e. g., to check the content of child elements,
before modifying a previously visited node. Hence, we carefully enriched
our access plans with hints when to use update locks for node or subtree
access.

Here, we can only sketch the results of these “performance drivers” which are de-
scribed in [3]. We created read/write transaction benchmarks with high blocking
potential, which access and modify a generated XMark document [37] at varying

44 T. Härder et al.

levels and in different granules. To get insight in the behavior of the lock-depth
optimization D4, we measured the throughput of transactions per minute (tpm)
and ran the experiments for three escalation thresholds (moderate, eager, aggres-
sive) in single user mode (SU) and in multi-user mode with various initial lock
depths (0–8). To draw the complete picture and to reveal the dependencies to our
other optimizations, we repeated the tests with two XTC versions: XTC based
on the old B*-tree implementation and XTC using the new B*-tree implemen-
tation together with the optimizations D2 and D3. To identify the performance
gain caused by D1–D3, we focused on transaction throughput, i. e., commit and
abort rates, and kept all other system parameters unchanged. Fig. 10 compares
the experiment results. In single-user mode, the new version improves through-
put by a factor of 3.5, which again highlights the effects of D2 and D3. The
absence of deadlocks and the improved concurrency of the latch-coupling proto-
col in the B*-tree (D1) becomes visible in the multi-user measurements, where
throughput speed-up even reaches a factor of 4 (see Fig. 10(a) and (c)) and the
abort rates almost disappear for lock depths > 2 (see Fig. 10(b) and (d)).

Deadlocks induced by the old B*-tree protocol were also responsible for the
fuzzy results of the dynamic lock depth adjustment (D4). With a deadlock-free
B*-tree, throughput directly correlates with lock overhead saved and proves the
benefit of escalation heuristics (see Fig. 10(c) and (d)).

9 Conclusions

In this survey, we outlined performance-critical concepts and their implemen-
tation in XTC. By observing performance bottlenecks or inappropriate system
behavior in early experiments, we could adjust numerous algorithms in XTC.
But removing a bottleneck often revealed another one at a higher performance
level. Hence, we had to iteratively and repeatedly improve XTC to reach the
current system version mature in many aspects. As outlined, we have identified
and are still identifying during this maturing process many performance drivers
in various architectural layers. So far, we have often gained orders of magnitude
in component speed-ups and, as a consequence, dramatic overall performance
improvements. Future research will address further enhancements in autonomic
system behavior [38] and energy efficiency by using flash disks and implementing
energy-aware algorithms in specific XDBMS components.

References

1. Aguiar Moraes Filho, J., Härder, T.: EXsum – An XML Summarization Frame-
work. In: Proc. IDEAS, pp. 139–148 (2008)

2. Bächle, S., Härder, T.: Tailor-Made Lock Protocols and Their DBMS Integration.
In: Proc. EDBT 2008 Workshop on Software Engineering for Tailor-made Data
Management, pp. 18–23 (2008)

3. Bächle, S., Härder, T.: The Real Performance Drivers Behind XML Lock Protocols.
In: Bhowmick, S.S., Küng, J., Wagner, R. (eds.) DEXA 2009. LNCS, vol. 5690, pp.
38–52. Springer, Heidelberg (2009)

Essential Performance Drivers in Native XML DBMSs 45

4. Bruno, N., Koudas, N., Srivastava, D.: Holistic Twig Joins: Optimal XML Pattern
Matching. In: Proc. SIGMOD, pp. 310–321 (2002)

5. Chen, T., Lu, J., Ling, T.W.: On Boosting Holism in XML Twig Pattern Matching
Using Structural Indexing Techniques. In: Proc. SIGMOD, pp. 455–466 (2005)

6. Chen, S., Li, H.-G., Tatemura, J., Hsiung, W.-P., Agrawal, D., Candan, K.S.:
Twig2Stack: Bottom-Up Processing of Generalized-Tree-Pattern Queries over XML
Documents. In: Proc. VLDB, pp. 283–294 (2006)

7. Christophides, W., Plexousakis, D., Scholl, M., Tourtounis, S.: On Labeling
Schemes for the Semantic Web. In: Proc.12th Int. WWW Conf., pp. 544–555 (2003)

8. Document Object Model (DOM) Level 2 / Level 3 Core Specification. W3C Rec-
ommendation (2004), http://www.w3.org/TR/DOM-Level-3-Core

9. Fontoura, M., Josifovski, V., Shekita, E.J., Yang, B.: Optimizing Cursor Movement
in Holistic Twig Joins. In: Proc. CIKM, pp. 784–791 (2005)

10. Graefe, G.: Hierarchical Locking in B-Tree Indexes. In: Proc. German National
Database Conf. (BTW). LNI, vol. 65, pp. 18–42. Springer, Heidelberg (2007)

11. Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan
Kaufmann, San Francisco (1993)

12. Haas, L., Freytag, J.-C., Lohman, G.M., Pirahesh, H.: Extensible Query Processing
in Starburst. In: Proc. SIGMOD, pp. 377–388 (1989)

13. Härder, T.: XML Databases and Beyond – Plenty of Architectural Challenges
Ahead. In: Eder, J., Haav, H.-M., Kalja, A., Penjam, J. (eds.) ADBIS 2005. LNCS,
vol. 3631, pp. 1–16. Springer, Heidelberg (2005)

14. Härder, T., Haustein, M.P., Mathis, C., Wagner, M.: Node Labeling Schemes for
Dynamic XML Documents Reconsidered. Data & Knowl. Eng. 60(1), 126–149
(2007)

15. Härder, T., Mathis, C., Schmidt, K.: Comparison of Complete and Elementless
Native Storage of XML Documents. In: Proc. IDEAS, pp. 102–113 (2007)

16. Härder, T., Schmidt, K., Ou, Y., Bächle, S.: Towards Flash Disk Use in Databases –
Keeping Performance While Saving Energy? In: Proc. German National Database
Conf. (BTW). LNI, vol. 144, pp. 167–186. Springer, Heidelberg (2009)

17. Härder, T., Reuter, A.: Concepts for Implementing a Centralized Database Man-
agement System. In: Proc. Int. Computing Symposium on Application Systems
Development, pp. 28–60. B.G. Teubner-Verlag (1983)

18. Haustein, M.P.: Fine-Granular Transaction Isolation in Native XML Database
Management Systems (in German), Ph.D. Thesis, Univ. of Kaiserslautern, Ver-
lag Dr. Hut, München (2006)

19. Haustein, M.P., Härder, T., Mathis, C., Wagner, M.: DeweyIDs – The Key to
Fine-Grained Management of XML Documents. In: Proc. SBBD, pp. 85–99 (2005)

20. Haustein, M.P., Härder, T., Luttenberger, K.: Contest of XML Lock Protocols. In:
Proc. VLDB, pp. 1069–1080 (2006)

21. Haustein, M.P., Härder, T.: Optimizing Lock Protocols for Native XML Processing.
Data & Knowl. Eng. 65(1), 147–173 (2008)

22. Jagadish, H.V., Al-Khalifa, S., Chapman, A.: TIMBER: A Native XML Database.
The VLDB Journal 11(4), 274–291 (2002)

23. Jiang, H., Wang, W., Lu, H., Yu, J.X.: Holistic Twig Joins on Indexed XML Doc-
uments. In: Proc. VLDB, pp. 273–284 (2003)

24. Jiao, E., Ling, T.W., Chan, C.Y.: PathStack¬: A Holistic Path Join Algorithm for
Path Query with Not-Predicates on XML Data. In: Zhou, L.-z., Ooi, B.-C., Meng,
X. (eds.) DASFAA 2005. LNCS, vol. 3453, pp. 113–124. Springer, Heidelberg (2005)

25. Li, C., Ling, T.W., Hu, M.: Efficient Updates in Dynamic XML Data: from Binary
String to Quaternary String. VLDB J. 17(3), 573–601 (2008)

http://www.w3.org/TR/DOM-Level-3-Core

46 T. Härder et al.

26. Loeser, H., Nicola, M., Fitzgerald, J.: Index Challenges in Native XML Database
Systems. In: Proc. German National Database Conf. (BTW). LNI, vol. 144, pp.
508–523. Gesellschaft für Informatik (2009)

27. Lu, J., Chen, T., Ling, T.W.: Efficient Processing of XML Twig Patterns with
Parent-Child Edges: a Look-Ahead Approach. In: Proc. CIKM, pp. 533–542 (2004)

28. Lu, J., Chen, T., Ling, T.W.: TJFast : Effective Processing of XML Twig Pattern
Matching. In: Proc. WWW, pp. 1118–1119 (2005)

29. Mathis, C.: Storing, Indexing, and Querying XML Documents in Native XML
Database Management Systems, Ph.D. Thesis, Univ. of Kaiserslautern, Verlag
Dr. Hut, München (2009)

30. Mathis, C., Härder, T., Haustein, M.P.: Locking-Aware Structural Join Operators
for XML Query Processing. In: Proc. SIGMOD, pp. 467–478 (2006)

31. Mathis, C., Härder, T., Schmidt, K., Bächle, S.: XML Indexing and Storage: Ful-
filling the Wish List (submitted, 2009)

32. Miklau, G.: XML Data Repository,
http://www.cs.washington.edu/research/xmldatasets

33. Mohan, C.: ARIES/KVL: A Key-Value Locking Method for Concurrency Control
of Multiaction Transactions Operating on B-Tree Indexes. In: Proc. VLDB, pp.
392–405 (1990)

34. O’Neil, P., O’Neil, E., Pal, S., Cseri, I., Schaller, G., Westbury, N.: OrdPaths:
Insert-Friendly XML Node Labels. In: Proc. SIGMOD, pp. 903–908 (2004)

35. Özcan, F., Seemann, N., Wang, L.: XQuery Rewrite Optimization in IBM DB2
pureXML. Data Engineering Bulletin 31(4), 25–32 (2008)

36. Qin, L., Yu, J.X., Ding, B.: TwigList: Make Twig Pattern Matching Fast. In: Ko-
tagiri, R., Radha Krishna, P., Mohania, M., Nantajeewarawat, E. (eds.) DASFAA
2007. LNCS, vol. 4443, pp. 850–862. Springer, Heidelberg (2007)

37. Schmidt, A., Waas, F., Kersten, M.L., Carey, M.J., Manolescu, I., Busse, R.:
XMark: A Benchmark for XML Data Management. In: Proc. VLDB, pp. 974–985
(2002)

38. Schmidt, K., Härder, T.: Usage-Driven Storage Structures for Native XML
Databases. In: Proc. IDEAS, pp. 169–178 (2008)

39. Schöning, H.: Tamino–A DBMS Designed for XML. In: Proc. ICDE, pp. 149–154
(2001)

40. Siirtola, A., Valenta, M.: Verifying Parameterized taDOM+ Lock Managers. In:
Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., Bieliková, M.
(eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 460–472. Springer, Heidelberg (2008)

41. Weiner, A.M., Härder, T.: Using Structural Joins and Holistic Twig Joins for Na-
tive XML Query Optimization. In: Grundspenkis, J., Morzy, T., Vossen, G. (eds.)
ADBIS 2009. LNCS, vol. 5739, pp. 149–163. Springer, Heidelberg (2009)

42. Weiner, A.M., Härder, T.: A Framework for Cost-Based Query Optimization in
Native XML Database Management Systems. In: Li, C., Ling, T.W. (eds.) Ad-
vanced Applications and Structures in XML Processing: Label Streams, Semantics
Utilization, and Data Query Technologies. IGI Global (2010)

43. XML on Wall Street, Financial XML Projects,
http://lighthouse-partners.com/xml

44. Yu, J.X., Luo, D., Meng, X., Lu, H.: Dynamically Updating XML Data: Numbering
Scheme Revisited. World Wide Web 8(1), 5–26 (2005)

45. Yu, T., Ling, T.W., Lu, J.: TwigStackList¬: A Holistic Twig Join Algorithm for
Twig Query with Not-Predicates on XML Data. In: Li Lee, M., Tan, K.-L., Wu-
wongse, V. (eds.) DASFAA 2006. LNCS, vol. 3882, pp. 249–263. Springer, Heidel-
berg (2006)

http://www.cs.washington.edu/research/xmldatasets
http://lighthouse-partners.com/xml

	Essential Performance Drivers in Native XML DBMSs
	Motivation
	Hierarchical DBMS Architecture
	Node Labeling
	Storing and Indexing Documents
	Storage Formats
	Indexing Options

	Path Processing Operators
	Query Planning and Optimization
	Query Evaluation Performance
	XML Locking
	Locking Concepts of taDOM
	The taDOM Protocol Family
	Enhancing Multi-user Performance

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

