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Abstract. Ordered binary decision diagrams (OBDDs) are one of the
most common dynamic data structures for Boolean functions. Neverthe-
less, many basic graph problems are known to be PSPACE-hard if their
input graphs are represented by OBDDs. Despite the hardness results
there are not many concrete nontrivial lower bounds known for the com-
plexity of problems on OBDD-represented graph instances. Computing
the set of vertices that are reachable from some predefined vertex s ∈ V
in a directed graph G = (V, E) is an important problem in computer-
aided design, hardware verification, and model checking. Until now only
exponential lower bounds on the space complexity of a restricted class of
OBDD-based algorithms for the reachability problem have been known.
Here, the result is extended by presenting an exponential lower bound
on the space complexity of an arbitrary OBDD-based algorithm for the
reachability problem. As a by-product a general exponential lower bound
is obtained for the computation of OBDDs representing all connected
node pairs in a graph, the transitive closure.

Keywords: Computational complexity, lower bounds, ordered binary
decision diagrams, reachability analysis, transitive closure.

1 Introduction

1.1 Motivation

When working with Boolean functions as in circuit verification, synthesis, and
model checking, ordered binary decision diagrams, denoted OBDDs, introduced
by Bryant [5], are one of the most often used data structures supporting all
fundamental operations on Boolean functions.

Some modern applications require huge graphs so that explicit representa-
tions by adjacency matrices or adjacency lists are not any longer possible, e.g.,
in hardware verification and in the process of synthesis of sequential circuits
state transition graphs that consist of 1027 vertices and 1036 edges are not un-
common. Since time and space do not suffice to consider individual vertices,
one way out seems to be to deal with sets of vertices and edges represented by
their characteristic functions. Since OBDDs are well suited for the representation
and manipulation of Boolean functions, in the last years a research branch has
emerged which is concerned with the theoretical design and analysis of so-called
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symbolic algorithms for classical graph problems on OBDD-represented graph
instances (see, e.g., [11,12], [17,18], and [23]). Symbolic algorithms have to solve
problems on a given graph instance by efficient functional operations offered
by the OBDD data structure. At the beginning the OBDD-based algorithms
have been justified by analyzing the number of executed OBDD operations (see,
e.g., [11,12]). Since the number of OBDD operations is not directly proportional
to the running time of an algorithm, as the running time for one OBDD opera-
tion depends on the sizes of the OBDDs on which the operations are performed,
newer research tries to analyze the overall running time of symbolic methods
including the analysis of all OBDD sizes occurring during such an algorithm
(see, e.g., [23]).

In reachability analysis the task is to compute the set of states of a state-
transition system that are reachable from a set of initial states. Besides explicit
methods for traversing states one by one and SAT-based techniques for deciding
distance-bounded reachability between pairs of state sets, symbolic methods
are one of the most commonly used approaches to this problem (see,
e.g., [7,8]). In the OBDD-based setting our aim is to compute a representation for
the characteristic function XR of the solution set R ⊆ V . I.e., the input consists
of an OBDD representing the characteristic function of the edge set of a graph
G = (V, E) and a predefined vertex s ∈ V and the output is an OBDD repre-
senting the characteristic function of the vertex set R which contains all vertices
reachable from the vertex s via a directed path in G. BFS-like approaches using
O(|V |) OBDD operations [13] and iterative squaring methods using O(log2 |V |)
operations [17] are known. In [20] Sawitzki has proved that algorithms that solve
the reachability problem by computing intermediate sets of vertices reachable
from the vertex s via directed paths of length at most 2p, p ∈ {1, . . . , �log |V |�},
need exponential space if the variable ordering is not changed during the algo-
rithms. For this result he has proved the first exponential lower bound on the
size of OBDDs representing the most significant bit of integer multiplication for
a predefined variable ordering. Afterwards, he has defined inputs for the reach-
ability problem such that during the computation of the investigated restricted
class of algorithms representations for the most significant bit of integer mul-
tiplication are necessary. In [4] his result has been improved by presenting a
larger lower bound on the OBDD size of the most significant bit for the variable
ordering considered in [20]. Lower bounds on the size of OBDDs for a predefined
variable ordering do not rule out the possibility that there are other variable
orderings leading to OBDDs of small size. Since Sawitzki’s assumption that the
variable ordering is not changed during the computation is not realistic because
in application reordering heuristics are used in order to minimize the OBDD size
for intermediate OBDD results, in [2,3] the result has been improved by present-
ing general exponential lower bounds on the OBDD size of the most significant
bit of integer multiplication. Here, we generalize Sawitzki’s result and show that
the reachability problem for graphs represented by OBDDs needs exponential
space for all possible OBDD-based algorithms.
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1.2 Results and Organization of the Paper

Our main result can be summarized as follows.

Theorem 1. The reachability problem on OBDD-represented graphs needs ex-
ponential space.

In Section 2 we define some notation and present some basics concerning OBDDs.
Section 3 contains the results of the paper. We prove that OBDD-based reach-
ability analysis needs exponential space. As a by-product a general exponential
lower bound is obtained for the computation of OBDDs representing all con-
nected node pairs in a graph, the transitive closure.

2 Preliminaries

2.1 Ordered Binary Decision Diagrams

Boolean circuits, formulae, and binary decision diagrams (BDDs), sometimes
called branching programs, are standard representations for Boolean functions.
(For a history of results on binary decision diagrams see, e.g., the monograph
of Wegener [22]). Besides the complexity theoretical viewpoint people have used
restricted binary decision diagrams in applications. Bryant [5] has introduced
ordered binary decision diagrams (OBDDs) which have become one of the most
popular data structures for Boolean functions. Among the many areas of applica-
tion are verification, model checking, computer-aided design, relational algebra,
and symbolic graph algorithms.

Definition 1. Let Xn = {x1, . . . , xn} be a set of Boolean variables. A variable
ordering π on Xn is a permutation on {1, . . . , n} leading to the ordered list
xπ(1), . . . , xπ(n) of the variables.

In the following a variable ordering π is sometimes identified with the corre-
sponding ordering xπ(1), . . . , xπ(n) of the variables if the meaning is clear from
the context.

Definition 2. A π-OBDD on Xn is a directed acyclic graph G = (V, E) whose
sinks are labeled by Boolean constants and whose non-sink (or inner) nodes are
labeled by Boolean variables from Xn. Each inner node has two outgoing edges
one labeled by 0 and the other by 1. The edges between inner nodes have to respect
the variable ordering π, i.e., if an edge leads from an xi-node to an xj-node, then
π−1(i) ≤ π−1(j) (xi precedes xj in xπ(1), . . . , xπ(n)). Each node v represents
a Boolean function fv ∈ Bn, i.e., fv : {0, 1}n → {0, 1}, defined in the following
way. In order to evaluate fv(b), b ∈ {0, 1}n, start at v. After reaching an xi-node
choose the outgoing edge with label bi until a sink is reached. The label of this
sink defines fv(b). The width of an OBDD is the maximum number of nodes
labeled by the same variable. The size of a π-OBDD G is equal to the number of
its nodes and the π-OBDD size of a function f , denoted by π-OBDD(f), is the
size of the minimal π-OBDD representing f .
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The size of the reduced π-OBDD representing f is described by the following
structure theorem [21].

Theorem 2. The number of xπ(i)-nodes of the π-OBDD for f is the number si

of different subfunctions f|xπ(1)=a1,...,xπ(i−1)=ai−1 , a1, . . . , ai−1 ∈ {0, 1}, that es-
sentially depend on xπ(i) (a function g depends essentially on a Boolean vari-
able z if g|z=0 �= g|z=1).

Theorem 2 implies the following simple observation which is helpful in order to
prove lower bounds. Given an arbitrary variable ordering π the number of nodes
labeled by a variable x in the reduced π-OBDD representing a given function f
is not smaller than the number of x-nodes in a reduced π-OBDD representing
any subfunction of f .

It is well known that the size of an OBDD representing a function f , that is
defined on n Boolean variables and depends essentially on all of them, depends
on the chosen variable ordering and may vary between linear and exponential
size. Since in applications the variable ordering π is not given in advance we have
the freedom (and the problem) to choose a good ordering for the representation
of f .

Definition 3. The OBDD size or OBDD complexity of f is the minimum of
all π-OBDD(f).

2.2 Graph Representations by OBDDs

In the following for z = (zn−1, . . . , z0) ∈ {0, 1}n let |z| :=
∑n−1

i=0 zi2i. Let
G = (V, E) be a graph with N vertices v0, . . . vN−1. The edge set E can be
represented by an OBDD for its characteristic function, where XE(x, y) = 1 ⇔
(|x|, |y| < N)∧ (v|x|, v|y|) ∈ E, x, y ∈ {0, 1}n and n = �log N�. Undirected edges
are represented by symmetric directed ones. In the rest of the paper we assume
that N is a power of 2 since it has no bearing on the essence of our results.

Figure 1 shows an example of a directed graph G = (V, E), where |V | =
N = 23, and the OBDD representation for the characteristic function of its
edge set E (with respect to the variable ordering x0, y0, x1, y1, x2, y2). (Note,
that the represented graph G is only a toy example so that the difference in the
representation size is only small.)

3 OBDD-Based Reachability Analysis Needs Exponential
Space

In this section we prove Theorem 1 and show that OBDD-based reachability
analysis needs exponential space. The proof structure is the following one. First,
we define a sequence Gn of pathological graph instances. Gn is an input for the
reachability problem. We show that the size of the corresponding OBDD repre-
sentation for the characteristic function of its edge set is polynomial with respect
to the number of Boolean variables. Furthermore, we choose the vertex s which
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Fig. 1. A directed graph G = (V, E) together with an encoding of its vertices and the
corresponding OBDD representation of its edge set E

is also a part of the input in a clever way so that the characteristic function
of the vertex set R, that consists of all vertices reachable from the vertex s via
directed paths in Gn, is equal to a Boolean function called permutation test
function PERMn. The OBDD complexity of PERMn is known to be exponen-
tial [14,15]. Therefore, every OBDD-based algorithm that solves the reachability
problem needs exponential space with respect to its input size. Note, that this
result is independent of the chosen variable ordering for the output OBDD. Now,
we make our ideas more precise.

1. The definition of the input graph Gn:
The graph Gn consists of 2n2

vertices vi1,...,in , ij ∈ {0, . . . , 2n − 1} and
j ∈ {1, . . . , n}. All vertices vi1,...,in for which there exists an index ij where
ij is not a power of 2, j ∈ {1, . . . , n}, are isolated vertices with no incom-
ing or outgoing edges. A vertex vi1,...,in , where ij is a power of 2 for all
j ∈ {1, . . . , n}, has n − 1 directed outgoing edges. There exists an edge
(vi1,...,in , vl1,...,ln) in E iff there exists k ∈ {1, . . . n − 1} such that
i1 = l1, . . . , ik−1 = lk−1, ik = lk+1, ik+1 = lk, ik+2 = lk+2, . . . , in = ln. The
vertex s is equal to vi1,...,in , where i1, . . . , in are different powers of 2, i.e.,
ij := 2n−j .

The graph Gn can be described in the following way. If we write the bi-
nary representation of the indices ij , 1 ≤ j ≤ n, in a rowwise manner one
below the other such that the indices are represented by a Boolean matrix
of dimension n × n, the vertices that correspond to matrices where there
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is not exactly one 1-entry in each row are isolated vertices. For the other
vertices there exists a directed edge from one vertex to another iff the binary
matrix representing the indices of one vertex can be obtained by exchanging
two neighbored rows in the matrix corresponding to the other vertex. The
vertex s corresponds to a matrix where there exists exactly one 1-entry in
each row and in each column. Such a matrix can be seen as an encoding
of a permutation π in Sn. For our construction this property is sufficient
for the definition of the distinguished vertex s. For a unique definition we
define s is such a way that the binary representation of s corresponds to the
permutation 1 2 . . . n.

2. The polynomial upper bound on the size of the OBDD representation for
the characteristic function of the edge set of Gn:

The characteristic function XE of the edge set depends on 2n2 Boolean
variables. Our aim is to prove that XE can be represented by OBDDs of
size O(n4) according to the variable ordering

x11, y11, x12, y12, . . . , xnn, ynn,

where xj1, . . . , xjn is the Boolean representation of the index ij and xjn the
least significant bit.

Theorem 2 tells us that it is sufficient to prove that there are only O(n2)
different subfunctions obtained by replacements of the first i variables with
respect to the considered variable ordering, i ∈ {0, . . . , 2n2 − 1}. Then we
can conclude that the OBDD size is at most O(n4) since there are only
2n2 variables altogether. Different subfunctions represent in a certian sence
different information about partial assignments to some of the variables. Let
x� = (x�1, . . . , x�n), � ∈ {1, . . . , n}, and y� analogously defined. The OBDD
for XE checks whether x� = y� and x�1 + · · · + x�n = 1. This can be done
by a part of the OBDD of width 3. (Figure 2 shows an OBDD with respect
to the variable ordering x�1, y�1, . . . , x�n, y�n which represents the function
x� = y�.)

If xj = yj and xj1 + · · ·+xjn = 1 for j < �, x� �= y� but x�1 + · · ·+x�n = 1
and y�1 + · · · + y�n = 1, the values for x� and y� are stored, afterwards it
is checked whether x�+1 = y�, x� = y�+1, xi = yi, and xi1 + · · · + xin = 1
for i > � + 1. The values are stored in the sense that partial assignments
corresponding to different values for x� and y� lead to different nodes in
the OBDD for XE . (The reason is that in this case different values for x�

and y� correspond to different subfunctions.) If all requirements are fulfilled,
the function value of XE is 1, otherwise it is 0. Since x� and y� are binary
representations of powers of 2, there are only

(
n
2

)
possibilities for different

values for x� and y�. (If one of them is not a power of 2 the function value
is 0 and we do not have to store anything.) Therefore, the different values for
x� and y� can be stored by a part of the OBDD with width

(
n
2

)
. Altogether

the width of the OBDD for XE is bounded above by O(n2). (Figure 3 shows
the first part of an OBDD for XE with respect to the considered variable
ordering and n = 3.)
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Fig. 2. An OBDD that checks whether x� = y� and x�1 + · · · + x�n = 1. Missing edges
are leading to the 0-sink.

Since there are altogether 2n2 Boolean variables, the OBDD for the func-
tion XE has size at most O(n4).

3. The exponential lower bound on the size of the OBDD representation for
the characteristic function of the vertex set R:

It remains to show that the output XR has exponential OBDD complexity.
In [14,15] exponential lower bounds of Ω(n−1/22n) on the size of so-called
nondeterministic read-once branching programs representing the function
PERMn, the test whether a Boolean matrix contains exactly one 1-entry in
each row and in each column, have been presented. It is not difficult to see
that the characteristic function of the set R of reachable vertices from s in Gn

is equal to the function PERMn. The reasoning is the following. Since the
number of 1-entries in a column of a Boolean matrix does not change if rows
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Fig. 3. The first part of an OBDD for the characteristic function of the edge set XE,
where n = 3 and the variable ordering x11, y11, x12, y12, x13, y13 . . .. Missing edges are
leading to the 0-sink. [. . .] contains the necessary and sufficient information about the
partial assignments to the variables x11, . . . , y13. Different information lead to different
subfunctions.

are exchanged, in Gn there are only directed paths from s to vertices whose
binary representations correspond to Boolean matrices with exactly one
1-entry in each row and in each column, i.e., the binary encodings correspond
to permutations in Sn. Moreover, each permutation π in Sn can be obtained
from 1 2 . . . n by using only swaps between two neighbored integers. As
a result we can conclude that there exists a directed path from s to a vertex
vi1,...,in iff the binary representation of i1, . . . , in corresponds to a Boolean
matrix with exactly one 1-entry in each row and in each column. Summa-
rizing XR is equal to PERMn. Since read-once branching programs are even
a more general model than OBDDs, we obtain the desired exponential lower
bound on the size of our output OBDD.

By simple variable replacements the reachability problem can be reduced to the
computation of an OBDD for all connected node pairs, the so-called transitive
closure. The problem is an important submodule in many OBDD-based
graph algorithms (see, e.g., [13,17,23]).
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Corollary 1. Let transitive closure be the problem to compute an OBDD rep-
resenting all connected node pairs for a graph symbolically represented by an
OBDD. The problem transitive closure is not computable in polynomial space.

If we replace the x-variables by the binary representation of the vertex s in an
OBDD for the characteristic function of the transitive closure of Gn, we obtain
an OBDD for PERMn. As we have mentioned before, Theorem 2 implies that
the OBDD size for a subfunction of a Boolean function f cannot be larger than
the OBDD size of f . Therefore, we are done.

Sawitzki [19] has commented that it is easy to show that the computation
of (strong) connected components in a (directed) graph is a problem which is
not computable in polynomial space for OBDD-based algorithms by looking at
graphs without any edges since then the number of (strong) connected compo-
nents is exponential with respect to the number of Boolean variables. Never-
theless, it would be nice to have an example for a graph where the
OBDD-representation is small but for which at least one connected component
has exponential OBDD-size. Obviously, our graphs fulfills the required proper-
ties. Let a connected component be non-trivial if it contains more than a single
vertex. Our graph Gn has 2n−1 non-trivial connected components.

4 Concluding Remarks

Representing graphs with regularities by means of data structures smaller than
adjacency matrices or adjacency lists seems to be a natural idea. But problems
typically get harder when their input is represented implicitly. For circuit repre-
sentations this has been shown in [1,10,16]. These results do not directly carry
over to problems on OBDD-represented inputs since there are Boolean func-
tions like some output bits of integer multiplication whose OBDD complexity
is exponentially larger than its circuit size [6]. In [9] it has been shown that
even the very basic problem of deciding whether two vertices s and t are con-
nected in a directed graph G, the so-called graph accessibility problem GAP,
is PSPACE-complete on OBDD-represented graphs. Despite the hardness re-
sults there are not many nontrivial lower bounds known for the complexity of
problems on OBDD-represented graph instances. The challenge is to prove small
upper bounds on the OBDD size of input graphs and simultaneously large lower
bounds on the size of OBDDs occuring during the computation. In [20] expo-
nential lower bounds on OBDD-based algorithms for the single-source shortest
paths problem, the maximum flow problem, and a restricted class of algorithms
for the reachability problem have been presented. We have extended these re-
sults by presenting a concrete exponential lower bound on the space complexity
of general OBDD-based algorithms for the reachability problem and the transi-
tive closure, where the input and the output OBDD can be ordered according
to different variable orderings.

Moreover, since the exponential lower bound on the representation size for the
permutation test function PERMn has been shown for so-called nondeterministic
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read-once branching programs [14,15], our results do also carry over to a more
general model than OBDDs.
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