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Abstract. In this paper, we show that the following problem has a ker-
nel of quadratic size: given is a tree T whose vertices have been assigned
colors and a non-negative integer weight, and given is an integer k. In
a recoloring, the color of some vertices is changed. We are looking for
a recoloring such that each color class induces a subtree of T and such
that the total weight of all recolored vertices is at most k. Our result gen-
eralizes a result by Bodlaender et al. [3] who give quadratic size kernel
for the case that all vertices have unit weight.

1 Introduction

In this paper, we consider the following problem. Given is a tree T with for
each vertex a color from some given set of colors, and a non-negative integer
weight. In a recoloring of T , the color of some vertices is changed. The cost of
a recoloring is the total weight of all vertices with a changed color. A coloring is
convex, if for each color, the set of vertices with that color forms a (connected)
subtree of T . We consider the decision version of the problem: given an integer k,
we ask if there is a convex recoloring with cost at most k.

In this paper, w1e look at the parameterized variant of the problem, and
show that the problem has a quadratic kernel, i.e., we give a polynomial time
algorithm, that given an instance of the problem, transforms it to an equivalent
instance with O(k2) vertices and edges. Our result generalizes an earlier result
by Bodlaender et al. [3] who give a quadratic kernel for the unweighted version
of the problem, i.e., for the case that all vertices have unit weight. We call the
problem Weighted Convex Tree Recoloring. A generalization with only
positive weights appears to be relatively simple, by reducing it to the unweighted
case; allowing zero weight vertices asks for a different set of rules and analysis.
These zero weight vertices are interesting, also from application point of view,
as they also model vertices that initially do not have a color assigned to them.

The convex recoloring problem for trees is motivated from applications in
phylogenetic and other areas from bio-informatics and linguistics. We refer the
reader to [6,8,9] for more background and motivation of the problem.

Finding kernels of small size for combinatorial problems is a topic of much cur-
rent research, and an important topic in the area of parameterized complexity and
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algorithms. We assume the reader to be familiar with standard notions from pa-
rameterized complexity and kernelization; for an introduction, see e.g., [7], [5], [4]
or [10].

In [8], Moran and Snir showed that the Convex Tree Recoloring problem
is NP-complete. Also, several special cases remain NP-complete, even when
the tree is restricted to be a path. Improving some of the previous results
in [8,9,12], Bar-Yehuda et al. [2] gave a polynomial (2 + ε)-approximation algo-
rithm and an exact algorithm whose parameterized complexity, parameterized
by the number of recolorings k, is O(n2 + nk2k). Further improvements on the
running time for an exact algorithm can be found in [11].

In [8,9], different variants of the problem are presented. In [1], an algorithm
with a running time of O(4kn) is given for the case that only the leafs are colored,
and the problem asks if it is possible to recolor the leafs in such a way that the
resulting coloring can be extended to a convex one. In [3], a quadratic kernel
is given for the unweighted version of the problem. One step of the algorithm
in [3] is to generalize the problem to the case where some vertices can have
a fixed color, and to forests instead of trees. Two final steps can transform the
problem back to an instance without fixed color vertices and with a tree instead
of a forest. In [3], it is asked as an open problem if it is possible to find small
kernels for other convex recoloring variants. In this paper, we extend the result
of [3] by allowing zero weights (thus allowing leaf and other partial colorings)
and positive weights to the vertices (which generalizes the case when we allow
vertices with a fixed color), and we show that indeed, in this situation we are
also able to obtain a quadratic kernel.

2 Convex Recoloring Problem

We denote the set of non-negative integers by IN0. Let F =(V, E, μ) be a weighted
forest, with μ : V → IN0 and let C be a set of colors. A coloring of F is a function
defined from the set of vertices V to the set of colors C. Given a coloring Γ ,
any different coloring will be called a recoloring of Γ . We define the cost of
a recoloring Γ ′ of Γ , denoted costΓ (Γ ′), to be the sum of the weights of recolored
vertices:

costΓ (Γ ′) =
∑

v∈V,Γ (v) �=Γ ′(v)

μ(v)

For any forest F ′ contained in F , we denote by μΓ,c(F ′), the sum of μ(v) over
all vertices v in F ′ colored c by Γ . We also use the previous notation for any
subset of vertices of V , i.e., for W ⊆ V , μΓ,c(W ) =

∑
v∈Γ−1(c)∩W μ(v), where

Γ−1(c) = {v | Γ (v) = c}.
We say that a coloringΓ is convex if for every color c,Γ−1(c) induces a connected

component. In this paper, we deal with the following parameterized problem.

Convex recoloring of a Weighted Colored Forest (crp)
Instance: A weighted forest F = (V, E, μ), a set of colors C, a coloring
Γ of F and a positive integer k.
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Fig. 1. Γ ′ is the only recoloring of Γ with cost at most 3 and convex. In every node
we represent the pair weight-color.

Parameter: k
Question: Is there a convex recoloring Γ ′ of Γ with costΓ (Γ ′) ≤ k?

While the case that F is a tree is most interesting from an application point
of view, the version with forests helps to design our algorithms. As in [3], an
instance with a forest can be transformed to an instance with a tree by adding
one new vertex with cost k + 1 and making it incident to a vertex in each tree
in the forest.

In Figure 1, we can see a coloring Γ in a tree T and a convex recoloring with
cost at most 3. In fact, it is not difficult to check that Γ ′ is the only convex
recoloring with cost at most three, all other convex recolorings have larger cost.

We use the consideration introduced in [9], of adding a set of new special
colors. Formally, for each vertex v, we add a new color cv, and we allow that
a vertex v can be recolored to this color cv. Using the previous consideration, we
are going to assume that any instance with a vertex v such that μ(v) = 0, has
v colored with Γ (v) = cv. The motivation of such assumption, comes from the
fact that any convex recoloring Γ ′ of Γ will have costΓ (Γ ′) = costΓv=cv

(Γ ′) for
the coloring Γv=cv obtained from Γ by changing the color of v to cv. We make
this assumption for each vertex v with μ(v) = 0.

3 Definitions

Given a forest F = (VF , EF ) and a coloring Γ , we denote by subΓ (F, c) the set
of vertices in VF colored c by Γ , i.e., subΓ (F, c) = VF ∩ Γ−1(c). For a forest F
and a color c, Bagc(F ) is defined as the subset subΓ (T ∗, c) for a component T ∗

of F with maximum μΓ,c(T ∗). In other words, Bagc(F ) is the set of vertices
of color c in the connected component of F in which the total weight of such
vertices is maximum.

Consider a path s between two vertices with color c, and consider the forest
F − s obtained after removing s from F . Let Tag(s) be the set consisting of all
vertices with color c′ different from c not belonging to a Bagc′(F − s), i.e.,

Tag(s) =
⋃

c′∈C\{c}
subΓ (F − Bagc′(F − s), c′). (1)
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Let
tag(s) =

∑

v∈Tag(s)

μ(v). (2)

From (1), it is not difficult to see that (2) can also be written as

tag(s) =
∑

c′∈C\{c}
μΓ,c′(F ) − μΓ,c′(Bagc′(F − s)).

Proposition 1. Let s be a path between two vertices with color c. For any convex
recoloring Γ ′ such that for all vertices v in s, Γ ′(v) = c,

tag(s) ≤ costΓ (Γ ′).

Proof. If all vertices in s receive color c, then for any color c′ �= c, at most one
component of F − s can have vertices of color c′. So, we need to recolor all
vertices with color c′ in all except maybe one component of F − s. Because for
any component T in F − s we have μΓ,c′(T ) ≤ μΓ,c′(Bagc′(F − s)), the cost
for recoloring vertices with color c′ is at least μΓ,c′(F ) − μΓ,c(Bagc′(F − s)).
Summation over all c′ �= c gives:

∑

c′∈C\{c}
μΓ,c′(F )−μΓ,c′(Bagc′(F −s)). ��

The previous proposition is the motivation for the following definitions.
A k-string of color c is a path s consisting of two vertices u and v with color c
and positive weight, called endpoints, and interior vertices (vertices different
of u and v in s) with color different of c, in such a way that tag(s) ≤ k. Note
that we allow u = v. In this case, we denote the path with only the vertex v
indistinctly by sv or {v}. Let Strk be the set of all k-strings of any color and let
Strc

k be the set with all k-strings of color c. If S is a subset of Strk, we denote
by FS the forest obtained by the union of all k-strings contained in S.

Note that from Proposition 1, if two vertices with the same color are not
forming a k-string, one of them have to be recolored. Concretely, if for a vertex v
{v} is not a k-string, in a convex recoloring v is recolored.

Similar to [2,3], for every vertex v, we define a subset of C, defined by

Sk(v) = {c ∈ C | v ∈ s for some s ∈ Strc
k }.

Let S∗
k(v) = Sk(v)∪{cv}. A recoloring Γ ′ of Γ is k-normalized if for every vertex

v, Γ ′(v) ∈ S∗
k(v). This means, that in a k-normalized recoloring, any vertex v

receives a color of some k-strings containing it or a color cv.

Lemma 1. If there is a convex recoloring Γ ′ of Γ with costΓ (Γ ′) ≤ k, there is
a convex recoloring Γ ′′ of Γ with costΓ (Γ ′′) ≤ k which is k-normalized.
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Proof. Consider a convex recoloring Γ ′ of Γ with costΓ (Γ ′) ≤ k. Moreover,
assume Γ ′ has the maximum number of vertices colored cv. Under the last as-
sumption (being maximum in the number of vertices colored cv), we claim that
the recoloring Γ ′ is exactly the recoloring Γ ′′ of Γ defined by

Γ ′′(v) =
{

Γ ′(v) if Γ ′(v) ∈ Sk(v)
cv if Γ ′(v) /∈ Sk(v),

which is clearly k-normalized. Suppose not, this is Γ ′′ �= Γ ′. Then, there is
a vertex v with Γ ′(v) /∈ Sk(v) such that Γ ′(v) �= cv. By definition, in this
situation, Γ ′′(v) = cv. Also note that Γ (v) �= Γ ′(v), this is because if v maintain
the color, then v is forming a k-string of color Γ (v) and therefore Γ (v) ∈ Sk(v).
So, let Γ ′(v) = c (�= Γ (v)) and let Tc be the tree induced by all the vertices
colored c by Γ ′. Let x and y be two leaves in Tc having v in the path joining
them. If such a vertices don’t exists, it means that v is a leaf in Tc and therefore
can be recolored to cv maintaining the convexity and contradicting the optimality
of Γ ′ on the number of vertices colored cv. At last, note that Γ (x) = Γ (y) = c,
otherwise, if one of them (for example x) has Γ (x) �= c, then we can recolor x
to cv maintaining again the convexity and contradicting the optimality. Finally,
rest to point out that if x and y have Γ (x) = Γ (y) = Γ ′(x) = Γ ′(y) = c, the path
between x and y is forming a k-string and therefore, c ∈ Sk(v) which contradicts
the first assumption. ��

4 Kernelization Rules and Analysis

The next two rules allow us to have an instance holding some desirable properties,
by recoloring some vertices or eliminating some edges in the instance.

Rule 1. Consider a vertex v such that {s} is not a k-string, i.e., tag({v}) > k.
Suppose |Sk(v)| ≤ 1. Then,

– if Sk(v) = ∅, return NO,
– if Sk(v) = {c}, recolor vertex v to c and reduce k by μ(v).

Rule 2. If Rule 1 cannot be applied, set F = FStrk
.

Lemma 2. In any instance reduced with respect to Rule 1 and Rule 2, the forest

F −
⋃

c′∈C\c

FStrc′
k

contains only vertices v with color c and cv.

Proof. By Rule 2, we have that F = FStrk
and then,

Fc = F −
⋃

c′∈C\c

FStrc′
k

only contains vertices belonging to k-strings of color c. If there exists a vertex v
in Fc with color c′ different from c and cv, then sv is not a k-string
and Sk(v) = {c}. So, vertex v is recolored to c by Rule 1. ��
From now on, we assume that Rule 1 and Rule 2 cannot be applied.
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4.1 Pieces of a Color

Consider the forest Fc = F − ⋃
c′∈C\{c} FStrc′

k
. Every component of Fc is called

a piece of color c. By Lemma 2, Fc contains only vertices v with color c or cv,
and moreover, by Lemma 1, we can assume that the vertices in Fc can only
receive color c or cv. We have the following lemma,

Lemma 3. There is always an optimum recoloring such that for each piece of
color c, every vertex v in the piece is colored c or cv.

Proof. Clearly, if a piece of color c has some vertex v recolored to cv (cv or c
are the only colors in Sk(v)) by a recoloring Γ ′, then the recoloring Γ ′′ with all
vertices in the pieces colored c has at most the same cost as Γ ′, and it is not
difficult to see that this recoloring is still convex. ��

Suppose that a piece W of color c has at least half of the total weight of the sum
of vertices of color c. Then, by Lemma 3, if a recoloring Γ ′ recolors some vertex
in W from c to cv, the recoloring Γ ′′ not recoloring any vertex in W from c to cv

has at most the same cost as Γ ′. So we can assume that the piece of color is not
recolored in an optimum recoloring. This argument and Lemma 3 are captured
by the following rule.

Rule 3. For every piece W of color c, contract W to a single vertex w with
color c and μ(w) defined as follows,

– if μΓ,c(W ) > μΓ,c(F − W ), set μ(w) = k + 1,
– otherwise set μ(w) = μΓ,c(W ).

4.2 Irrelevant Colors

We say that a color c is irrelevant, if all the vertices of color c are contained
in some piece of color c, and for any vertex v with color different of c and cv,
c /∈ Sk(v). The cost of removing an irrelevant color c is defined by

Δc = μΓ,c(FStrc
k
) − μΓ,c(Bagc(FStrc

k
)).

Intuitively, when a color c is irrelevant, forests FStrc
k

and
⋃

c′∈C\{c} FStrc′
k

are
disjoint. Moreover, by Lemma 2, all the colors in one forest do not appear in
the other one. So, we can solve both forests separately. Because FStrc

k
is easy

to solve (it only contains color c and cv), we can solve FStrc
k

and reduce F to⋃
c′∈C\{c} FStrc′

k
and decrease k by Δc which is the cost of making FStrc

k
convex.

We have the following rule,

Rule 4. Suppose c is an irrelevant color in F . Then, set F =
⋃

c′∈C\{c} FStrc′
k

and decrease k by Δc.
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Suppose a vertex v with color c has weight greater than k, then in any recoloring
with cost at most k, v cannot be recolored. In this situation, the vertices recol-
ored in one component of F − v do not affect the vertices recolored in another
component of F − v. In other words, there are no k-strings, containing v, with
color different from v’s color. So, we can study the problem with respect to v and
each component in F − v independently. These independencies can be carried
out by splitting v into a number of copies: as many as there are components in
F − v and recolor all vertices with color c in each of these components by a new
color, unique for the component.

Rule 5. Suppose there is a vertex v with color c and μ(v) > k. Let Tv be the
component containing v in F , let F0 = F−Tv and let T1, ..., T� be the components
in Tv − v with w1, ..., w� the neighbors of v in T1, ..., T� respectively. Then,
remove the vertex v from F , connect every wi to a new vertex vi with a new
color ci and weight μΓ,c(Ti), and recolor all vertices in Ti with color c to ci (for
each i, 1 ≤ i ≤ �), add an isolated vertex v0 with a new color c0 and weight
μΓ,c(F0), and recolor all vertices in F0 with color c to c0.

Lemma 4. When Rules 1-5 cannot be applied, the total weight of vertices with
a color c is at least two times the total weight of vertices in any piece of color c.
I.e., for any piece W of color c,

2μΓ,c(W ) ≤ μΓ,c(F ).

Proof. When Rule 3 cannot be applied, for any piece W of color c, either
μΓ,c(W ) ≤ μΓ,c(F −W ) or W consists of a single vertex w with μΓ,c(w) = k+1.
In the first case, we get directly that 2μΓ,c(W ) ≤ μΓ,c(F ). In the second case,
Rule 5 applies, which gives again that μΓ,c(w) ≤ μΓ,c(F − w) ��
At this point, the kernelization is almost completed. In the rest of this section,
we assume that the next rule (Rule 6) is safe. Its safeness will be proved in the
next section.

Rule 6. If Rules 1-5 cannot be applied and
∑

c∈C μΓ,c(F ) > 6k2, return NO.

From Rule 6, we know that there are at most 6k2 vertices with positive weight. It
remains to show that the number of vertices with zero weight are also bounded.
The following rules are clearly safe.

Rule 7. If a vertex v has μ(v) = 0 and deg(v) ≤ 1, remove v.

Rule 8. If a vertex v has μ(v) = 0 and deg(v) = 2, add an edge between its
neighbors and remove v.

It is well known that the number of vertices of degree greater than two in a tree
is bounded by the number of leaves. So, because every vertex with zero weight
has degree greater than 2 and every leaf has positive weight, the next result
follows.

Theorem 1. In a reduced instance, there are at most 12k2 vertices and the sum
of its weights is at most 6k2.
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4.3 Removing k-Strings and Counting Them

A skeleton of Strk is a subset R of Strk containing a minimal number of k-strings
of Strk in such a way that, if we denote the k-strings in R of color c by Rc,
for every c ∈ C, FRc = FStrc

k
. A possible procedure for generating a skeleton of

Strk can be the following: Initially, let R = Strk and then, apply the following
operation while possible, remove from R a k-string s of color c if it is contained
in the rest of k-strings of color c in R. Clearly, when the procedure ends, we have
FRc = FStrc

k
for every c ∈ C. Let TagR =

⋃
s∈R Tag(s). We say that a vertex v

is tagged by R if it is contained in TagR.

Lemma 5. In an instance reduced by Rule 1-5, for any color c in C and a skele-
ton R of Strk,

μΓ,c(F − TagR) ≤ μΓ,c(TagR).

Proof. First, we prove that all the vertices of color c not belonging to TagR are
contained in one piece of color c.

Note that a vertex of color c not belonging to TagR has to be in some piece
of color c. Suppose two vertices x and y of color c are in different components of

Fc = FStrc
k
−

⋃

c′∈C\{c}
FStrc′

k
= FRc −

⋃

c′∈C\{c}
FRc′ .

To be in different components of Fc, either there is a k-string s′ in Rc′ between
them or x and y are in different components of FStrc

k
= FRc . In the first case,

Tag(s′) contains x or y. In the second case, because by Rule 2, F = FStrk
= FR,

and therefore, either x and y have a k-string in Rc′ for some c′ different of c
between them like in the first case or they are in different component of F . In
such a case, any k-string with color different from c tags x or y. In any case,
there is always a k-string in R tagging x or y and then, x and y must be in the
same piece of color c.

Because all vertices with color c in F − Tag(R) are contained in a piece of
color c, by Lemma 4,

2μΓ,c(F − TagR) ≤ μΓ,c(F ).

Using that
μΓ,c(F ) = μΓ,c(F − TagR) + μΓ,c(TagR),

we get

μΓ,c(F − TagR) ≤ μΓ,c(TagR). ��

Lemma 6. Rule 6 is safe.

Proof. Suppose Γ ′ is a convex recoloring with costΓ (Γ ′) ≤ k, we want to show
that in this situation

∑
c∈C μΓ,c(F ) ≤ 6k2. For this, we construct a skeleton RΓ ′

of Strk in the following way, let Wc = {v | Γ (v) = Γ ′(v) = c}:
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– For every color c, add to RΓ ′ a minimal number of k-strings of color c in
such a way that the vertices in Wc are connected in FRΓ ′ .

– For every color c, add to RΓ ′ a minimal number of k-strings of color c in
such a way that FRc

Γ ′ = FStrc
k
.

We separate the set RΓ ′ into two parts: a subset RN
Γ ′ containing all the k-strings

added in the first step and a subset RY
Γ ′ containing the vertices added in the

second step. In other words, RN
Γ ′ contains k-strings whose endpoints are not

recolored, and RY
Γ ′ contains k-strings with some endpoint recolored.

Claim. For every convex recoloring Γ ′ with costΓ (Γ ′) ≤ k,
∑

c∈C
μΓ,c(TagRY

Γ′
) ≤ k2

Proof of claim. In the way TagRY
Γ′

is constructed, for every recolored vertex at
most one k-string is added to TagRY

Γ′
. Because, costΓ (Γ ′) ≤ k, in the second

step we add at most k k-strings to RY
Γ ′ , i.e., |RY

Γ ′ | ≤ k. From k-string definition
we have

∑
c∈C μΓ,c(Tag(s)) ≤ k. Putting all together,

∑

c∈C
μΓ,c(TagRY

Γ′
) =

∑

c∈C
μΓ,c(

⋃

s∈RY
Γ ′

Tag(s))

≤
∑

c∈C

∑

s∈RY
Γ ′

μΓ,c(Tag(s))

=
∑

s∈RY
Γ ′

∑

c∈C
μΓ,c(Tag(s))

≤ |RY
Γ ′ |k ≤ k2. ��

Claim. For every convex recoloring Γ ′ with costΓ (Γ ′) ≤ k,
∑

c∈C
μΓ,c(TagRN

Γ ′ ) ≤ 2k2

Proof of claim. To prove the claim, we first reduce the set RN to a subset R∗

of RN in the following way: Initially, let R∗ = RN and while possible, remove
from R∗ any k-string s such that Tag(s) ⊆ ⋃

s′∈R∗\{s} Tag(s′). After the pro-
cedure is applied, the following two properties are held by R∗, (1) TagRN

Γ′ =
TagR∗, and (2) for every k-string s in R∗ there is a vertex νs such that νs ∈
Tag(s) and for any s′ ∈ R∗ different of s, νs /∈ Tag(s′). From the last property,
we can associate to every string s of R∗ a vertex νs not tagged by any other
k-string in R∗.

Let C+ = {c ∈ C | ∃s ∈ R∗, Γ (νs) = c }. Note if c is the color of a vertex νs

associated to a k-string s, at least one vertex of color c should be recolored,
otherwise s (that is a k-string not recolored) is separating νs from Bagc(F − s)



A Kernel for Convex Recoloring of Weighted Forests 221

and then, Γ ′ cannot be convex. From previous argument, C+ has at most k colors,
i.e., |C+| ≤ k.

Let nc be the number of k-strings in R∗ with an associated vertex of color c.
We show that at least nc−1 vertices of color c are recolored by Γ ′. Suppose not.
Then, there are two vertices νs1 and νs2 with color c for two k-strings s1 and s2

in R∗. Because Γ ′ maintains νs1 and νs2 with color c, νs1 and νs2 are in the same
component of FStrc

k
. An then, the only way s1 tags νs1 but not tag νs2 is because

νs2 is in Bagc(F − s1). Implying that s1 and p(νs1 , νs2), the path going from νs1

to νs2 , intersect in some vertex, contradicting the convexity of Γ ′. Consequently,
at least nc − 1 vertices of color c are recolored by Γ ′. So,

∑
c∈C+ nc − 1 ≤ k.

Because |C+| ≤ k, we get |R∗| =
∑

c∈C+ nc ≤ 2k. Finally, putting all together,
∑

c∈C
μΓ,c(TagRN

Γ′ ) =
∑

c∈C
μΓ,c(TagR∗)

=
∑

c∈C
μΓ,c(

⋃

s∈R∗
Tag(s))

≤
∑

c∈C

∑

s∈R∗
μΓ,c(Tag(s))

≤
∑

s∈R∗

∑

c∈C
μΓ,c(Tag(s))

≤ |R∗|k ≤ 2k2. ��
Using Lemma 5 with the skeleton RΓ ′ , we have that

μΓ,c(F ) = μΓ,c(TagRΓ′ ) + μΓ,c(F − TagRΓ ′ ) ≤ 2μΓ,c(TagRΓ′ ).

Finally, by the previous claims,

μΓ,c(F ) ≤ 2(
∑

c∈C
μΓ,c(TagRY

Γ ′
) +

∑

c∈C
μΓ,c(TagRN

Γ ′ )) ≤ 6k2. ��

We have shown that all rules are safe, and thus, by Theorem 1 and the fact that
we can test in polynomial time if a rule can be carried out, and if so, apply it,
we obtain:

Theorem 2. There is a polynomial time kernelization algorithm for Weighted

Convex Tree Recoloring that yields a kernel with at most 12k2 vertices
whose total weight is at most 6k2.

5 Conclusions

In this paper, we gave a kernel of quadratic size for the Weighted Convex

Tree Recoloring problem. As we also allow weights that are zero, our result
also implies a kernel for the case where we have initially some uncolored vertices.
We have fewer rules than the result that we generalize from [3]. In particular,
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Fig. 2. On the left, we represent the maximum over 100 simulations, taking k un-
til 100 and n = 10k2. On the right, fixed k = 5 and n = 500, the maximum after
1000 simulations modifying c between 2 and 100.

we did not need most of the rules that we used in [3] to ensure that each color
is given to a linear number of vertices. In a practical setting, it is not hard to
generalize these rules from [3] to the weighted case, and add these as additional
preprocessing heuristics to our rules. An intriguing open problem is whether
a linear kernel exists for our problem, or, at least, for the unweighted case.

We implemented Rules 1-4 and applied these to randomly generated instances;
in each case, we took a randomly generated tree and then recolored k randomly
chosen vertices. The results of this experiment are shown in Figure 2. In these
random instances, it seems that in a practically point of view, the size of the
kernel is linear. Although, it is not difficult to construct instances such that
its reduced instance grows quadratically on k. We leave such an analysis (or a
different set of rules with a linear kernel) as open problem for further research.
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