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Abstract. This paper deals with the (in)approximability of Edge
Matching Puzzles. The interest in EdgeMatching Puzzles has been raised
in the last few years with the release of the Eternity IITM puzzle, with
a $2 million prize for the first submitted correct solution. It is known [1]
that it is NP-hard to obtain an exact solution to Edge Matching Puz-
zles. We extend on that result by showing an approximation-preserving
reduction from Max-3DM-B and thus proving that Edge Matching Puz-
zles do not admit polynomial-time approximation schemes unless P=NP.
We then show that the problem is APX-complete, and study the diffi-
culty of finding an approximate solution for several other optimisation
variants of the problem.

1 Introduction

Informally, an Edge Matching Puzzle is a puzzle where the goal is to arrange
a given set of square tiles with coloured edges into a given rectangle so that
colours match along the edges of adjacent tiles. Edge Matching Puzzles first ap-
peared in the 1890s. They are more challenging than the classical jigsaw puzzles
we are all familiar with; mainly because there is no global image that can provide
guidance. Additionally, there are usually more pieces that match together, but
one cannot be sure they should be placed next to each other before attaining

Fig. 1. A solved Edge Matching Puzzle instance with no edges broken
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the complete solution. In other words, a local solution does not generally lead
to a global solution.

The computational problem of filling plane areas with rectangular tiles has
been extensively studied. Berger [2] has shown that a generalisation of our prob-
lem where an infinite number of copies for each tile is given and the goal is to
fill the entire plane, is undecidable. The problem of wether a bounded area can
be filled by a subset of the given tiles is NP-complete [3]. Additionally, it has
been shown that bounded-tiling (having infinite copies of each tile and filling
a bounded area) is a viable alternative to the satisfiability problem as a founda-
tion of NP-completeness [4]. The complexity of the game variant of the problem
has also been studied: It is PSPACE-complete and EXPTIME-complete when
the tiles are to be placed into a square and a rectangle respectively [5]. Unlike
the variant we study, all the above do not allow rotations of the tiles given.

Demaine and Demaine [1] established the NP-completeness of edge matching
puzzles and some of its variants (a species of jigsaw puzzles, signed edge matching
puzzles, and polyonimo packing puzzles) by a reduction from 3-partition. Their
result confirmed the difficulties that people have had in trying to solve this
puzzle, and justified the exhaustive search that seemed necessary for the puzzle
to be solved by a computer. Benoist and Bourreau [6] studied Edge Matching
Puzzles using constraint programming, and Ansótegui et al. [7] worked on the
generation of EMP instances of varied hardness, and the application of SAT/CSP
solving techniques to the problem.

We show that the maximisation version of a variant of the problem is APX-
complete by presenting an approximation-preserving reduction from a problem
that is known to be APX-complete (namely Max-3DM-B, defined later) to our
problem, and providing a constant-factor approximation algorithm for the prob-
lem. The APX-hardness result is then used to show some equivalent results for
some other optimisation variants of Edge Matching Puzzles.

1.1 Outline

In the next section some definitions that will be used later on are presented. In
Sect. 3, we present and analyse the actual reduction. Finally, Sect. 4 adds some
results regarding the minimisation version.

2 Preliminaries

We adhere to the definitions of approximation ratio, relative error and absolute
error from [8].

Definition 1. APX is the complexity class of all optimisation problems Q such
that the decission version of Q is in NP, and for some r ≥ 1 there exists
a polynomial-time r-approximation algorithm for Q.

Definition 2. A Polynomial-Time Approximation Scheme (PTAS) [8] for
a problem is a set of algorithms A such that for each ε > 0, there is an approx-
imation algorithm in A with ratio 1 + ε for the problem, running in polynomial
time (under the assumption that ε is fixed).
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Note 1. Since under the P �= NP conjecture, there exist problems in APX that
do not admit a PTAS, if P �=NP then no APX-hard problem can admit a PTAS.

Definition 3. An L-reduction [9] with constant parameters α, β > 0, from
a problem A to a problem B, with cost functions cA and cB respectively (where
cX(v, w) denotes the cost of solution w to a problem X on instance v), is a pair
of polynomial time computable functions f and g such that the following hold.

– f transforms instances of A to instances of B.
– If y is a solution to f(x), then g(y) is a solution to x.
– For every instance x of A: OPTB(f(x)) ≤ αOPTA(x).
– For every solution y to f(x): |OPTA(x) − cA(x, g(y))| ≤ β|OPTB(f(x)) −

cB(f(x), y)|.
Theorem 1. ([9]) If there is an L-reduction with parameters α and β, from
a problem A to a problem B, and there exists a polynomial-time approximation
algorithm for B with relative error c, then there also exists a polynomial-time
approximation algorithm for A with relative error δ = αβc.

Definition 4. Formally, an Edge Matching Puzzle (EMP) is a puzzle where the
goal is to arrange a given collection of n square-shaped and edge-coloured tiles
(of area a each), into a given rectangle of area n · a such that adjacent tiles are
coloured identically along their common edge.

We say that an edge e in a solution of an EMP is broken if the two adjacent
tiles in that solution sharing e have different colours along it. In the maximisation
version of EMP, which we consider in the following section, we are looking for
a solution maximizing the number of edges that match (are not broken).

Definition 5. In Maximum Three-Dimensional Matching (Max-3DM) we are
given a set of triples T ⊆ X × Y × Z from pairwise disjoint sets X, Y and Z,
and we are looking for a subset M of the triples T of maximum size, such that
no two triples of M agree on any coordinate.

In the bounded version of Max-3DM, Maximum Bounded 3-Dimensional Match-
ing (Max-3DM-B) the number of occurrences of every element in X, Y or Z is
bounded by the constant B. Kann showed in 1991 [10] that Max-3DM-B is APX-
complete for B ≥ 3. More recently, Chleb̀ık and Chleb̀ıkovà [11] improved that
result by showing that Max-3DM-B is APX-complete for B ≥ 2. Specifically, it is
NP-hard to approximate the solution within 141

140 even on instances with exactly
two occurrences of each element. They later improved that bound to 95

94 [12].

3 The Reduction and Its Analysis

Here we present an L-reduction of Max-3DM-B (with every element appearing
exactly twice) to EMP. Whenever an edge of a tile has colour u it should be
interpreted as a unique colour, thus it does not match to any other edge, includ-
ing other u’s. All other symbols that appear on edges of tiles represent a specific
colour, and can be matched with edges of other tiles where the same symbol
occurs.
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3.1 Constructing the EMP Instance

This subsection describes how given a Max-3DM-B instance, a corresponding
EMP instance is produced. An informal description on why the EMP instance
is produced this way and what the purpose of every tile is, is provided in
Subsect. 3.2; followed by a formal proof in Subsect. 3.3 and 3.4.

We define f as the function that given any instance of the Max-3DM-B prob-
lem with every element occuring exactly two times, will produce an instance of
EMP as follows:

1. For each triple (x, y, z) with x ∈ X , y ∈ Y and z ∈ Z, f produces the
tiles seen in Fig. 2(a). We can call these tiles of Type 1, Type 2 and Type 3
respectively (from the lowest to the highest).

2. For each element x ∈ X , f produces the tiles seen in Fig. 2(b).
3. For each element z ∈ Z, f produces the tiles seen in Fig. 2(c).
4. For each element y ∈ Y , f produces the tiles seen in Fig. 2(d).
5. We are given a rectangle in which we want to arrange the tiles with the

fewest possible edges being broken. The rectangle has height 2 and length
half the number of tiles produced.

3.2 Informal Description

The purpose of this subsection is to provide an insight on the reduction and this
way make the material and the proofs in the rest of this section easier to follow.
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Fig. 2. The tiles constructed in Subsect. 3.1
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Fig. 3. A “good” and a non “good” set

Suppose that we have the two triples (a, b, c) and (a, d, c) among others in
our given Max-3DM-B instance. Clearly in an optimal solution to that in-
stance at most one of these triples can be picked, assume that it is (a, b, c).
The main idea is that after the construction of the EMP instance in the way de-
scribed in Subsect. 3.1, its optimal solution will contain the two sets of tiles seen
in Fig. 3.

This way whenever a triple is picked we have no broken edge in the corre-
sponding set, and whenever one is not picked we have exactly one edge that is
broken in the corresponding set. Also note that no two triples that have a com-
mon element can be picked. To make the two sets of Fig. 3 always possible we
have additionally produced some excess tiles. These, are not being discarded
(the EMP definition does not allow this) but will be placed somewhere else in
the rectangle. We are aware that from the first three tiles made for each element
exactly one tile will be excess. Taking as an example a tile corresponding to an
element x ∈ X , out of the tiles
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two will be used, and one will be excess. By the pigeonhole principle either the
second or the third tile has to be used, and when used these tiles are equivalent
because of differing only in the colour placed on the border. Thus we may assume
that always the third tile is used and either the first or the second tile are
unused. Less formally, an element can either appear in two not picked triples
(the second and the third tile are used), or in one picked and one not picked
triple (the first and third tile are used). Note here that no matter which of the
first two tiles is the excess one it can be matched with the other tiles constructed
for that element, producing a set (call it “dumping set”), with cost 0. For a
detailed example of an arrangement, including the placement of excess tiles,
see Fig. 4.
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Fig. 4. A solution of the EMP instance, split into three pieces, corresponding to the
Max-3DM-B instance consisting of choosing triple (a,b,c) but not (a,d,c)

3.3 Some Useful Lemmas

We say that a good set is a formation of six tiles arranged as seen in Fig. 3(a).
Such a set in a solution of our instance of EMP always corresponds to a triple
(a, b, c) that we want to pick in the Max-3DM-B instance.

A transformation of a solution to the EMP instance to a solution to the Max-
3DM-B instance can easily be done in polynomial time by selecting the good
sets, and picking the corresponding triples. By the construction of the instance
of EMP there is a solution to it of the form seen in Fig. 4, which corresponds to
the optimal solution of the initial Max 3-DM-B instance.

Lemma 1. Given an instance C of Max-3DM-B containing n triples, an in-
stance D of EMP can be constructed as described above. Any solution to D that
breaks k edges yields a solution to C consisting of at least n − k triples.

Proof. The core idea of this proof is to show that if k edges are broken in the
solution to D, then this solution must contain at least n − k good sets.
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Assume that our instance D has at least k1 tiles of Type 2 that are adjacent
to a broken edge in the solution (note that k1 ≤ k). This means that the form of
set seen in Fig. 5(a) will appear n − k1 times.

The symbol ‘?’ in Fig. 5 is a placeholder indicating that the colour of that edge
is still unknown. Assume now that out of these n − k1 sets, k2 have the upper
edge of the bottom right tile broken, or the right edge of the top tile broken. This
means that there are at least n − k1 − k2 sets where these edges are not broken.
The only way for this to be the case, is when the sets look like in Fig. 5(b).
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Finally, out of these n−k1−k2 sets, let k3 have the top edge of the bottom left
tile broken, or the leftmost edge of the top row broken. It follows that we have at
least n− k1 − k2 − k3 good sets. As k1 + k2 + k3 ≤ k (the total number of broken
edges is at most k), we conclude that we have at least n− k good sets, and thus
select n − k triples in our solution of the Max 3DM-B instance. ��
As a natural consequence of the way the EMP instance is constructed and
Lemma 1, we get the following Lemma.

Lemma 2. Given an instance x of Max-3DM-B, let f(x) denote the correspond-
ing instance produced as described in Sect. 3.1. Given an optimal solution to
f(x), by picking the triples that correspond to good sets in the optimal solution
of f(x), an optimal solution to x is produced.

3.4 The Reduction Preserves Approximability

Lemma 3. The function f defined in Sect. 3.1 transforms instances of Max-
3DM-B to instances of EMP, and can be computed in polynomial time.

Lemma 4. There is a polynomial-time computable function g, such that if y is
a solution to f(x), g(y) is a solution to x.

Proof. The function g takes as input a solution to an instance f(x) of EMP,
and produces a solution to instance x of Max-3DM-B. This is done by selecting
the triples corresponding to the good sets. Clearly also g can be computed in
polynomial time. ��



160 A. Antoniadis and A. Lingas

Lemma 5. Let x be a given instance to problem Max-3DM-B, with B = 2, |E|
representing the number of elements in instance x (that is |E| = |X |+ |Y |+ |Z|)
and the number of triples in that instance being n. Then the following hold:

– OPTMax−3DM−B(x) ≥ 1
4n

– OPTMax−3DM−B(x) ≥ 1
9 |E|

Proof. Every element can appear at most 2 times, and in at most 2 triples. Thus,
for every selected triple there can be at most 6 elements that never get used in
another selected triple (2 for every variable that is used in the selected one).

To make this more clear, if triple (a, b, c) is selected then a can appear in
one more triple (two occurrences in total), with two new, unique elements. For
example (a, 1, 2). The same is the case for elements b and c. We also notice that
for a we can have up to one more triple that is unselected, the same for b and c.
Thus, if we select (a, b, c) in the worst case we may not select 3 more triples
which in the worst case again, would contain 6 more unique elements.

As an example, consider having the following 4 triples that use 9 elements
and only 1 triple can get selected: {(a, b, c), (a, 1, 2), (3, b, 4), (5, 6, c)}. ��
Lemma 6. Let α = 150. For every instance x of Max-3DM-B with B = 2 of
size n ≥ n0 for some constant n0 > 0:

OPTEMP(f(x)) ≤ αOPTMax−3DM−B(x) .

Proof. Assume that the optimum of the Max-3DM-B (with B = 2) instance has
k non-selected triples. Then OPTMax−3DM−B(x) ≥ n−k. Now, f(x) will consist
of 3 tiles for every triple, and less than or equal to 10 tiles for every element. The
most tiles will be produced if the element is in set Y , when we produce 7+(λ+1)
tiles given that it appears λ times in total (here, λ = 2). Thus, the number
of tiles is |T | ≤ 3n + 10|E|. If we consider the optimum of the corresponding
EMP instance to be the number of edges in a solution that are not adjacent to
the border, and assume that the optimal solution has again k broken edges (we
can always achieve this by placing the tiles as seen in Fig. 4), then the optimal
solution is at most the number of edges that are not adjacent to the border:

OPTEMP(f(x)) ≤ |T |/2 + |T | − 2 − k = 1.5|T | − 2 − k ≤
1.5 · (3n + 10|E|) − 2 − k = 4.5n + 15|E| − 2 − k = 4.5n − k + 15|E| − 2 ≤

3.5n + OPTMax−3DM−B(x) + 15 · 9 · OPTMax−3DM−B(x) − 2 ≤
3.5 · 4OPTMax−3DM−B(x) + 136 · OPTMax−3DM−B(x) − 2 =

150OPTMax−3DM−B(x) − 2 . ��
Lemma 7. For β = 1, and for every solution y to f(x) the following inequality
holds:

|OPTMax−3DM−B(x) − cMax−3DM−B(x, g(y))| ≤
β|OPTEMP(f(x)) − cEMP(f(x), y)| .
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Proof. OPTEMP(f(x)) =
(

3
2 |T | − 2

) − k that is, the optimal solution to prob-
lem EMP on instance f(x) breaks k edges, and a solution y to f(x) breaks k′

edges (thus cEMP(f(x), y) =
(

3
2 |T | − 2

) − k′ (Note that our instance has di-
mensions 2 × |T |

2 ). Because of Lemma 2, OPTMax−3DM−B(x) = n − k. Also,
obviously cMax−3DM−B(x, g(y)) = n − k′. The above means that there is a posi-
tive constant β = 1, such that for every solution y to f(x), n − k − (n − k′) ≤
β

(
3
2 |T | − k − 2 − (

3
2 |T | − k′ − 2

)) ⇒ k′ − k ≤ β(k′ − k), ��
As a natural consequence of the definition of the L-reduction, and Lemmas 2, 3, 4,
6 and 7,

Lemma 8. The reduction described above, is an L-reduction from Max-3DM-B
to EMP with α = 150 and β = 1.

The following theorem follows naturally,

Theorem 2. Edge Matching Puzzle is APX-hard, and thus under the P�=NP
assumption it does not admit a PTAS.

3.5 APX-Completeness

Theorem 3. Edge Matching Puzzle is in APX.

Proof. Suppose that the optimal solution to a given EMP instance is known and
has cost OPT . We then can construct a graph G by representing each tile as
a node, and for every matched edge in the optimal solution draw an edge between
the corresponding tiles/nodes. Then one can proceed from this graph:

Initialise an empty list M . While there are edges left in G pick one of them,
push it into M , and remove both its endpoints and their adjacent edges from G.

As every tile has 4 edges, the degree of every node in G has to be at most 4, so
there are at most 8 edges removed in every step of the algorithm, and M has size
at least OPT/8. Now, the following is a constant factor approximation algorithm
for EMP:

Construct a graph G′ by creating a node for every tile, and connecting with
edges all the pairs of nodes corresponding to two tiles with at least one edge
with the same colour. Find a maximum matching M ′ of G′ using a polynomial
time algorithm [13]. Now, for every edge uv in M ′ match the tiles corresponding
to vertices u and v into a pair of tiles. Place the pairs of tiles into the given
rectange in a snake fashion: fill in row by row, and if the rows have odd size
place the last tile so that it takes one place in the current row and one in the
next one. If there are single tiles left over place them arbitrarily in the free space
of the rectangle.

The algorithm described above is running in polynomial time. As the match-
ing M ′ is maximum, |M ′| ≥ |M |, the solution returned by the algorithm has cost
at least 1/8 times OPT , and it is an Θ(1)-approximation algorithm for EMP. ��
As a natural consequence of Theorems 2 and 3,

Theorem 4. Edge Matching Puzzle is APX-complete.
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3.6 Approximation Lower Bound

This subsection, copes with finding an approximation lower bound for the EMP
problem using the following approximation lower bound for Max-3DM-B:

Theorem 5 ([12]). It is NP-hard to approximate the solution of Max-3DM-B,
with exactly two occurrences of every element, to within any constant smaller
than δ′ = 95

94 .

An approximation lower bound for EMP can now be easily derived:

Theorem 6. It is NP-hard to approximate the solution of EMP to within any
constant smaller than c′ = 14250

14249 .

Proof. It easily follows from Theorems 1 and 5 by using α = 150 and β = 1:

c′ =
1

1 − 1−(1/δ′)
αβ

=
14250
14249

��

4 The Corresponding Minimisation Problem

In this section we study two other optimisation variants of the problem: the
absolute error for both the minimisation and the maximisation version, and the
approximation ratio of the minimisation version. For the latter, as the optimum
solution could have cost 0, to make the problem interesting we introduce an
assumption that changes the problem a bit; namely that the optimum solution
has exactly k edges broken.

We define a minimisation and a maximisation problem to be corresponding
when the following holds: For every instance with a fixed rectangle, the sum of
the costs of the maximisation and the minimisation version is constant. Formally,
there exists some M(x) such that cmax(x, y) = M(x)−cmin(x, y), and OPTPmin =
M(x)−OPTPmax . In the EMP case, M(x) is the number of edges that instance
x has in total (either broken or non-broken).

4.1 Absolute Error

It has been shown that EMP does not admit a PTAS. Here it will also be shown
that it cannot be approximated within an absolute error of size o(n) if P �=NP.

Theorem 7. Any maximisation problem Pmax with an optimal solution
OPTPmax = Ω(n), which can be approximated within an absolute error of o(n),
admits a PTAS for large enough instances.

Proof. Let OPTPmax = Ω(n), and f(n) = o(n) be an absolute error within which
we can approximate the problem and ε = f(n)

OPTPmax
. Then, by definition, for
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the feasible solution y returned by the approximation algorithm when run on
instance x,

c(x, y) ≥ OPTPmax − f(n) = OPTPmax

(
1 − f(n)

OPTPmax

)

⇒ c(x, y) ≥ OPTPmax(1 − ε)
∀ε≤ 1

2≥ OPTPmax

1 + 2ε
⇒ 1 + 2ε ≥ OPTPmax

c(x, y)

which – as ε can be made arbitrarily small for large enough instances – implies
a PTAS for Pmax. ��
Note 2. For Pmax to have a PTAS, f ∈ o(g) would be enough.

Theorem 8. If a minimisation problem Pmin can be approximated within an
absolute error of o(n) and it has a corresponding maximisation problem with
OPTPmax = Ω(n) then Pmax admits a PTAS for large enough instances.

Proof. Let again OPTPmax = Ω(n), and f(n) = o(n) be an absolute error within
which we can approximate the problem. By definition, we have that

cmin(x, y) ≤ (M(x) − OPTPmax) + f(n) ⇒ M(x) − cmin(x, y) ≥ OPTPmax − f(n)
⇒ cmax(x, y)≥OPTPmax − f(n)

and the rest of the proof is identical with the proof of Theorem 7. ��
Theorem 9. EMP cannot be approximated within an absolute error of size o(n),
neither in the minimisation, nor in the maximisation version.

Proof. That the maximisation version cannot be approximated within an absolute
error of size o(n) directly follows from Theorem 7, as it admits no PTAS and has
an optimum of size Ω(n). Now clearly, because of Theorem 8 the corresponding
minimimisation version of EMP also cannot be approximated within an absolute
error of o(n). ��

4.2 Approximation Ratio

In this subsection a result on the approximation ratio of the minimisation version
is presented, namely, the minimisation version cannot be approximated within
an approximation ratio of o(n).

Theorem 10. If a minimisation problem Pmin with OPTPmin = Ω(1), can be
approximated within an approximation ratio of o(n), then it also can be approx-
imated within an absolute error of o(n).

Proof. Assume that Pmin is a minimisation problem with OPTPmin = Ω(1) and
that A is an approximation algorithm that can approximate it within an approx-
imation ratio of o(n). Then for some h(n) = o(n) being the approximation ratio,

∀x, cmin(x, A(x)) ≤ OPTPminh(n) ⇒ cmin(x, A(x)) ≤ o(n)
⇒ cmin(x, A(x)) ≤ OPTPmin + f(n)

for some function f = o(n). Naturally that Pmin can be approximated within an
absolute error of o(n). ��
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Theorem 11. The minimisation version of EMP cannot be approximated within
an approximation ratio of o(n), assuming that OPTEMPmin �= 0.

Proof. For EMP when OPTEMPmin �= 0 it holds that OPTEMPmin = Ω(1). Thus
applying Theorems 9 and 10 we get that the minimisation version of EMP cannot
be approximated within an approximation ratio of o(n). ��
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