

Lecture Notes in Computer Science 5901
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Jan van Leeuwen Anca Muscholl
David Peleg Jaroslav Pokorný
Bernhard Rumpe (Eds.)

SOFSEM 2010:
Theory and Practice
of Computer Science

36th Conference on Current Trends
in Theory and Practice of Computer Science
Špindlerův Mlýn, Czech Republic, January 23-29, 2010
Proceedings

13

Volume Editors

Jan van Leeuwen
Utrecht University
Department of Information and Computing Sciences
Padualaan 14, 3584 CH Utrecht, The Netherlands
E-mail: j.vanleeuwen@cs.uu.nl

Anca Muscholl
LaBRI, Université Bordeaux 1
351 cours de la Libréation, F-33405 Talence Cedex, France
E-mail: anca@labri.fr

David Peleg
Weizmann Institute
Faculty of Mathematics and Computer Science
Department of Computer Science & Applied Mathematics
Rehovot 76100, Israel
E-mail: david.peleg@weizmann.ac.il

Jaroslav Pokorný
Charles University
Department of Software Engineering
Faculty of Mathematics and Physics
Malostranské nám. 25, 11800 Prague 1, Czech Republic
E-mail: pokorny@ksi.mff.cuni.cz

Bernhard Rumpe
RWTH Aachen University
Software Engineering
Department of Computer Science 3
Ahornstraße 55, D-52074 Aachen, Germany
E-mail: rumpe@se-rwth.de

Library of Congress Control Number: 2009941301

CR Subject Classification (1998): D.2, D.3, H.2, H.2.5, H.2.7, H.2.8, K.8.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-11265-X Springer Berlin Heidelberg New York
ISBN-13 978-3-642-11265-2 Springer Berlin Heidelberg New York
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12827305 06/3180 5 4 3 2 1 0

Preface

This volume contains the invited and contributed papers selected for presenta-
tion at SOFSEM 2010, the 36th Conference on Current Trends in Theory and
Practice of Computer Science, held January 23–29, 2010 in the Hotel Bedřichov,
Špindler̊uv Mlýn, of the Krkonoše Mountains of the Czech Republic.

SOFSEM (originally: SOFtware SEMinar) is devoted to leading research, and
fosters the cooperation among researchers and professionals from academia and
industry in all areas of computer science. As a well-established and fully inter-
national conference, SOFSEM maintains the best of its original Winter School
aspects, such as a high number of invited talks and an in-depth coverage of novel
research results in selected areas within computer science. SOFSEM 2010 was
organized around the following four tracks:

– Foundations of Computer Science (Chairs: David Peleg, Anca Muscholl)
– Principles of Software Construction (Chair: Bernhard Rumpe)
– Data, Knowledge, and Intelligent Systems (Chair: Jaroslav Pokorný)
– Web Science (Chair: Jan van Leeuwen)

With these tracks, SOFSEM 2010 covered the latest advances in research, both
theoretical and applied, in leading areas of computer science. The
SOFSEM 2010 Program Committee consisted of 78 international experts from
20 different countries, representing the track areas with outstanding expertise.

An integral part of SOFSEM 2010 was the traditional Student Research Fo-
rum (SRF, Chair: Mária Bieliková), organized with the aim to present student
projects in the theory and practice of computer science and to give students
feedback on both the originality of their scientific results and on their work in
progress. The papers presented at the Student Research Forum were published
in the local proceedings.

In response to the call for papers, SOFSEM 2010 received 134 submissions:
76 submissions in Foundations, and 58 in the applied computing tracks. After
a detailed reviewing process with four reviewers per paper, a careful electronic
selection procedure (using EasyChair) was carried out within each track between
September 3 and September 14, 2009. A total of 53 papers were selected for
presentation at SOFSEM 2010, following strict criteria of quality and originality:
32 papers in Foundations, 21 in the other tracks.

Of the 53 accepted papers, 15 papers were submitted as student papers. In
fact, two student papers, namely, the paper by David Duris and the one by Elisa
Pappalardo and Simone Faro, received the highest evaluations of all submissions
in their respective tracks.

Furthermore, 12 student papers were selected for the SOFSEM 2010 Student
Research Forum, based on the recommendations of the Chair of the SRF, and
with the approval of the Track Chairs.

VI Preface

As editors of these proceedings, we are grateful to everyone who contributed
to the scientific program of the conference, especially the invited speakers and all
authors of contributed papers. We thank all authors for their prompt responses
to our editorial requests.

SOFSEM 2010 was the result of a considerable effort by many people. We
would like to express our special thanks to:

– The SOFSEM 2010 Program Committees of the four tracks and all additional
referees for their precise and detailed reviewing of the submissions

– Jan Oliver Ringert, of the Software Engineering group in the Department of
Computer Science at RWTH Aachen University, for his outstanding assis-
tance of the PC for Software Construction

– Mária Bieliková, of the Slovak University of Technology in Bratislava, for
her expert preparation and handling of the Student Research Forum

– The SOFSEM Steering Committee headed by Július Štuller, of the Institute
of Computer Science (ICS) in Prague, for its excellent guidance and support
throughout the preparation of the conference

– Springer-Verlag’s LNCS series, for its great support of the SOFSEM confer-
ences.

We are also greatly indebted to:

– The SOFSEM 2010 Organizing Committee consisting of: Roman Špánek
(chair), Filip Zavoral, Pavel Tyl, Martin Řimnáč, and Hanka Bı́lková, for the
outstanding support and excellent preparation of all aspects of the conference

– The Action M Agency, in particular Milena Zeithamlová and Pavla Kozáková,
for the excellent local arrangements of SOFSEM 2010.

We especially thank Roman Špánek, of the Institute of Computer Science (ICS)
in Prague, for his excellent assistance in all duties and responsibilities of the
Track Chairs and the General Chair.

Finally, we are very grateful for the financial support of our sponsors, which
enabled us to compose a high-quality program of invited speakers and helped us
to keep the student fees low. We thank the Institute of Computer Science (ICS)
of the Academy of Sciences of the Czech Republic in Prague for its invaluable
support of all aspects of SOFSEM 2010.

October 2009 Jan van Leeuwen
Anca Muscholl

David Peleg
Jaroslav Pokorný
Bernhard Rumpe

Organization

SOFSEM 2010 was organized by:

Institute of Computer Science, Academy of Sciences of the Czech Republic,
Prague, Czech Republic

Charles University, Faculty of Mathematics and Physics, Prague,
Czech Republic

Action M Agency, Prague, Czech Republic

Steering Committee

Július Štuller (Chair) Institute of Computer Science, Prague,
Czech Republic

Mária Bieliková Slovak University of Technology in Bratislava,
Slovak Republic

Bernadette Charron-Bost Ecole Polytechnique, France
Keith G. Jeffery CLRC RAL, Chilton, Didcot, Oxon, UK
Antońın Kučera Masaryk University, Brno, Czech Republic
Jan van Leeuwen Utrecht University, The Netherlands
Branislav Rovan Comenius University, Bratislava,

Slovak Republic
Petr Tůma Charles University in Prague, Czech Republic

Program Chairs

Jan van Leeuwen
(General Chair) Utrecht University, The Netherlands

Anca Muscholl University of Bordeaux, France
David Peleg Weizmann Institute of Science, Israel
Jaroslav Pokorný Charles University, Prague, Czech Republic
Bernhard Rumpe RWTH Aachen University, Germany

Program Committee

Judit Bar-Ilan Ramat Gan, Israel
Petr Berka Prague, Czech Republic
Jean Bezivin Nantes, France
Gregor von Bochmann Ottawa, Canada
Susanne Boll Oldenburg, Germany
Manfred Broy München, Germany
Liliane S. Cabral Milton Keynes, UK

VIII Organization

Barbara Catania Genova, Italy
Richard Chbeir Dijon, France
Vassilis Christophides Heraklion, Greece
Marek Chrobak Riverside, USA
Philippe Darondeau Rennes, France
Josep Diaz Barcelona, Spain
Peter Dolog Aalborg, Denmark
Guozhu Dong Dayton, USA
Gregor Engels Paderborn, Germany
Michal Feldman Jerusalem, Israel
Piero Fraternali Milan, Italy
Tim Furche Munich, Germany
Johann Gamper Bolzano, Italy
Leszek Gasieniec Liverpool, UK
Lluis Godo Bellaterra, Spain
Massimiliano Goldwurm Milan, Italy
Hele-Mai Haav Tallinn, Estonia
Lynda Hardman Amsterdam, The Netherlands
Martin Hepp Munich, Germany
Holger Hermanns Aachen, Germany
Geert-Jan Houben Delft, The Netherlands
Michaela Huhn Braunschweig, Germany
Hannu Jaakkola Pori, Finland
Gerti Kappel Vienna, Austria
Lefteris Kirousis Patras, Greece
Marc van Kreveld Utrecht, The Netherlands
Ingolf Krüger San Diego, USA
Fabian Kuhn MIT Cambridge, USA
Dietrich Kuske Leipzig, Germany
Sergei Kuznetcov Moscow, Russia
Horst Lichter Aachen, Germany
Karl J. Lieberherr Zurich, Switzerland
Johan Lilius Turku, Finland
Rainer Manthey Bonn, Germany
Alberto Marchetti-Spaccamela Rome, Italy
Bertrand Meyer Zurich, Switzerland
Tadeusz Morzy Poznan, Poland
Madhavan Mukund Chennai, India
Andrzej Murawski Oxford, UK
Pavol Navrat Bratislava, Slovakia
Richard Paige Heslington, UK
Michal Pěchouček Prague, Czech Republic

Organization IX

Alberto Pettorossi Rome, Italy
Klaus Pohl Duisburg-Essen, Germany
Ivan Porres Turku, Finland
Christian Prehofer Helsinki, Finland
Andreas Rausch Clausthal, Germany
Ralf Reussner Karlsruhe, Germany
Peter Revesz Lincoln, USA
Harald Sack Potsdam, Germany
Philippe Schnoebelen Paris, France
Helmut Seidl Munich, Germany
Olivier Serre Paris, France
Hadas Shachnai Haifa, Israel
Pawel Sobocinski Southampton, UK
Friedrich Steimann Hagen, Germany
Umberto Straccia Pisa, Italy
Howard Straubing Boston, USA
Vojtěch Svátek Prague, Czech Republic
Bernhard Thalheim Kiel, Germany
Athena Vakali Thessaloniki, Greece
Laurent Viennot Inria Paris, France
Tomáš Vojnar Brno, Czech Republic
Peter Vojtáš Prague, Czech Republic
Erik Wilde Berkeley, USA
Ronald de Wolf Amsterdam, The Netherlands

Organizing Committee

Roman Špánek, Chair Institute of Computer Science, Prague,
Czech Republic

Hana Bı́lková Institute of Computer Science, Prague,
Czech Republic

Pavla Kozáková Action M Agency, Prague,
Czech Republic

Martin Řimnáč Institute of Computer Science, Prague,
Czech Republic

Július Štuller Institute of Computer Science, Prague,
Czech Republic

Pavel Tyl Institute of Computer Science, Prague,
Czech Republic

Filip Zavoral Charles University in Prague,
Czech Republic

Milena Zeithamlová Action M Agency, Prague,
Czech Republic

X Organization

Sponsors

Supported by

ČSKI – Czech Society for Cybernetics and Informatics

SSCS – Slovak Society for Computer Science

ERCIM – The European Research Consortium for Informatics and Mathematics

Table of Contents

Invited Talks

Forcing Monotonicity in Parameterized Verification: From Multisets to
Words . 1

Parosh Aziz Abdulla

Research Issues in the Automated Testing of Ajax Applications 16
Arie van Deursen and Ali Mesbah

Essential Performance Drivers in Native XML DBMSs 29
Theo Härder, Christian Mathis, Sebastian Bächle,
Karsten Schmidt, and Andreas M. Weiner

Continuous Processing of Preference Queries in Data Streams 47
Maria Kontaki, Apostolos N. Papadopoulos, and
Yannis Manolopoulos

Clock Synchronization: Open Problems in Theory and Practice 61
Christoph Lenzen, Thomas Locher, Philipp Sommer, and
Roger Wattenhofer

Regret Minimization and Job Scheduling . 71
Yishay Mansour

Lessons in Software Evolution Learned by Listening to Smalltalk 77
Oscar Nierstrasz and Tudor Gı̂rba

The Web of Things: Extending the Web into the Real World 96
Dave Raggett

Web Science: The Digital-Heritage Case . 108
Guus Schreiber

Model-Driven Software Product Line Testing: An Integrated
Approach . 112

Andy Schürr, Sebastian Oster, and Florian Markert

Taming the Complexity of Inductive Logic Programming 132
Filip Železný and Ondřej Kuželka

Regular Papers

A Rule Format for Unit Elements . 141
Luca Aceto, Anna Ingolfsdottir, MohammadReza Mousavi, and
Michel A. Reniers

XII Table of Contents

Approximability of Edge Matching Puzzles . 153
Antonios Antoniadis and Andrzej Lingas

A Linear Time Algorithm for Finding Three Edge-Disjoint Paths in
Eulerian Networks . 165

Maxim A. Babenko, Ignat I. Kolesnichenko, and Ilya P. Razenshteyn

R-Programs: A Framework for Distributing XML Structural Joins
across Function Calls . 176

David Bednárek

Fast Arc-Annotated Subsequence Matching in Linear Space 188
Philip Bille and Inge Li Gørtz

Automated Deadlock Detection in Synchronized Reentrant
Multithreaded Call-Graphs . 200

Frank S. de Boer and Immo Grabe

A Kernel for Convex Recoloring of Weighted Forests 212
Hans L. Bodlaender and Marc Comas

Symbolic OBDD-Based Reachability Analysis Needs Exponential
Space . 224

Beate Bollig

A Social Vision of Knowledge Representation and Reasoning 235
François Bry and Jakub Kotowski

Flavors of KWQL, a Keyword Query Language for a Semantic Wiki 247
François Bry and Klara Weiand

On Pattern Density and Sliding Block Code Behavior for the
Besicovitch and Weyl Pseudo-distances . 259

Silvio Capobianco

On a Labeled Vehicle Routing Problem . 271
Hatem Chatti, Laurent Gourvès, and Jérôme Monnot

Improved Matrix Interpretation . 283
Pierre Courtieu, Gladys Gbedo, and Olivier Pons

Efficient Algorithms for Two Extensions of LPF Table: The Power of
Suffix Arrays . 296

Maxime Crochemore, Costas S. Iliopoulos, Marcin Kubica,
Wojciech Rytter, and Tomasz Waleń

Query Optimization through Cached Queries for Object-Oriented
Query Language SBQL . 308

Piotr Cybula and Kazimierz Subieta

Table of Contents XIII

Perfect Matching for Biconnected Cubic Graphs in O(n log2 n) Time . . . 321
Krzysztof Diks and Piotr Stanczyk

Destructive Rule-Based Properties and First-Order Logic 334
David Duris

Learning User Preferences for 2CP-Regression for a Recommender
System . 346

Alan Eckhardt and Peter Vojtáš

Parallel Randomized Load Balancing: A Lower Bound for a More
General Model . 358

Guy Even and Moti Medina

Ant-CSP: An Ant Colony Optimization Algorithm for the Closest
String Problem . 370

Simone Faro and Elisa Pappalardo

Linear Complementarity Algorithms for Infinite Games 382
John Fearnley, Marcin Jurdziński, and Rahul Savani

Mixing Coverability and Reachability to Analyze VASS with One
Zero-Test . 394

Alain Finkel and Arnaud Sangnier

Practically Applicable Formal Methods . 407
J ↪edrzej Fulara and Krzysztof Jakubczyk

Fast and Compact Prefix Codes . 419
Travis Gagie, Gonzalo Navarro, and Yakov Nekrich

New Results on the Complexity of Oriented Colouring on Restricted
Digraph Classes . 428

Robert Ganian and Petr Hliněný

Smooth Optimal Decision Strategies for Static Team Optimization
Problems and Their Approximations . 440

Giorgio Gnecco and Marcello Sanguineti

Algorithms for the Minimum Edge Cover of H-Subgraphs of a Graph . . . 452
Alexander Grigoriev, Bert Marchal, and Natalya Usotskaya

On the Complexity of the Highway Pricing Problem 465
Alexander Grigoriev, Joyce van Loon, and Marc Uetz

Accelerating Smart Play-Out . 477
David Harel, Hillel Kugler, Shahar Maoz, and Itai Segall

Optimum Broadcasting in Complete Weighted-Vertex Graphs 489
Hovhannes Harutyunyan and Shahin Kamali

XIV Table of Contents

On Contracting Graphs to Fixed Pattern Graphs . 503
Pim van ’t Hof, Marcin Kamiński, Daniël Paulusma,
Stefan Szeider, and Dimitrios M. Thilikos

Dynamic Edit Distance Table under a General Weighted Cost
Function . 515

Heikki Hyyrö, Kazuyuki Narisawa, and Shunsuke Inenaga

How to Complete an Interactive Configuration Process? Configuring as
Shopping . 528

Mikoláš Janota, Goetz Botterweck, Radu Grigore, and
Joao Marques-Silva

Design Patterns Instantiation Based on Semantics and Model
Transformations . 540

Peter Kajsa and L’ubomı́r Majtás

A Complete Symbolic Bisimulation for Full Applied Pi Calculus 552
Jia Liu and Huimin Lin

OTwig: An Optimised Twig Pattern Matching Approach for XML
Databases . 564

Jun Liu and Mark Roantree

Picture Recognizability with Automata Based on Wang Tiles 576
Violetta Lonati and Matteo Pradella

Unilateral Orientation of Mixed Graphs . 588
Tamara Mchedlidze and Antonios Symvonis

Maintaining XML Data Integrity in Programs: An Abstract Datatype
Approach . 600

Patrick Michel and Arnd Poetzsch-Heffter

Improving Classification Performance with Focus on the Complex
Areas . 612

Seyed Zeinolabedin Moussavi, Kambiz Zarei, and Reza Ebrahimpour

CD-Systems of Restarting Automata Governed by Explicit Enable and
Disable Conditions . 627

Friedrich Otto

Source Code Rejuvenation Is Not Refactoring . 639
Peter Pirkelbauer, Damian Dechev, and Bjarne Stroustrup

Empirical Evaluation of Strategies to Detect Logical Change
Dependencies . 651

Guenter Pirklbauer

Table of Contents XV

Efficient Testing of Equivalence of Words in a Free Idempotent
Semigroup . 663

Jakub Radoszewski and Wojciech Rytter

An Amortized Search Tree Analysis for k-Leaf Spanning Tree 672
Daniel Raible and Henning Fernau

Approximate Structural Consistency . 685
Michel de Rougemont and Adrien Vieilleribière

Comprehensive System for Systematic Case-Driven Software Reuse 697
Micha�l Śmia�lek, Audris Kalnins, Elina Kalnina,
Albert Ambroziewicz, Tomasz Straszak, and Katharina Wolter

Comparison of Scoring and Order Approach in Description
Logic EL(D) . 709

Veronika Vaneková and Peter Vojtáš

Homophily of Neighborhood in Graph Relational Classifier 721
Peter Vojtek and Mária Bieliková

Multilanguage Debugger Architecture . 731
Jan Vraný and Michal Pı́̌se

Student Groups Modeling by Integrating Cluster Representation and
Association Rules Mining . 743

Danuta Zakrzewska

Finding and Certifying Loops . 755
Harald Zankl, Christian Sternagel, Dieter Hofbauer, and
Aart Middeldorp

Vertex Ranking with Capacity . 767
Ruben van der Zwaan

Author Index . 779

Forcing Monotonicity in Parameterized
Verification: From Multisets to Words

Parosh Aziz Abdulla

Uppsala University
Department of Information Technology

P.O. Box 337
751 05 Uppsala, Sweden

http://user.it.uu.se/~parosh/

Abstract. We present a tutorial on verification of safety properties for
parameterized systems. Such a system consists of an arbitrary number of
processes; the aim is to prove correctness of the system regardless of the
number of processes inside the system. First, we consider a class of pa-
rameterized systems whose behaviours can be captured exactly as Petri
nets using counter abstraction. This allows analysis using the framework
of monotonic transition systems introduced in [1]. Then, we consider pa-
rameterized systems for which there is no natural ordering which allows
monotonicity. We describe the method of monotonic abstraction which
provides an over-approximation of the transition system. We consider
both systems where the over-approximation gives rise to reset Petri nets,
and systems where the abstract transition relation is a set of rewriting
rules on words over a finite alphabet.

1 Introduction

One of the widely adopted frameworks in the context of infinite-state verification
is based on the concept of monotonic systems wrt. a well-quasi ordering [1], which
provides a scheme for proving the termination of backward reachability analysis.
The method was first used for the verification of lossy channel systems [6] and
then extended to a general methodology in [1]. Since its introduction in [1], the
framework has been extended and used for the design of verification algorithms
for various models including Petri nets, cache protocols, timed Petri nets, broad-
cast protocols, etc. (see, e.g., [2,11,9,10,7]). The idea is to define, for a given class
of models, a preorder � on the configuration space such that (1) � is a simula-
tion relation on the considered models, and (2) � is a well-quasi ordering (wqo
for short). If such a preorder can be defined, then it can be proved that the
reachability problem of an upward-closed set of configurations (w.r.t. �) is de-
cidable. Indeed, (1) monotonicity implies that for any upward-closed set, the set
of its predecessors is an upward-closed set, and (2) the fact that � is a wqo im-
plies that every upward-closed set can be characterized by a finite set of minimal
elements. Therefore, starting from an upward-closed set of configurations U , the
iterative computation of the backward reachable configurations from U neces-
sarily terminates since only a finite number of steps are needed to capture all

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 1–15, 2010.
� Springer-Verlag Berlin Heidelberg 2010

2 P.A. Abdulla

minimal elements of the set of predecessors of U . Obviously, this requires that
upward-closed sets can be effectively represented and manipulated (i.e., there
are procedures for, e.g., computing immediate predecessors and unions, and for
checking entailment). This general scheme can be applied for the verification of
safety properties since this problem can be reduced to checking the reachability
of a set of bad configurations which is typically an upward-closed set w.r.t. the
considered preorder. (For instance, mutual exclusion is violated as soon as there
are (at least) two processes in the critical section.)

Unfortunately, many systems do not fit into this framework, in the sense
that there is no nontrivial (useful) wqo for which these systems are monotonic.
Nevertheless, a natural approach to overcome this problem is monotonic ab-
straction. Given a preorder �, we consider an abstract semantics which forces
monotonicity for the considered system. In this paper, we introduce the basic
ideas through a sequence of simple parameterized systems. A parameterized sys-
tem consists of an arbitrary number of processes. Consequently, it represents
an infinite family of systems, namely one for each size of the system. We are
interested in parameterized verification, i.e., verifying correctness regardless of
the number of processes inside the system. The term parameterized refers to
the fact that the size of the system is (implicitly) a parameter of the verifi-
cation problem. Examples of parameterized systems include mutual exclusion
algorithms, bus protocols, telecommunication protocols, and cache coherence
protocols. Parametrized systems do not quite fit into the wqo framework since
they induce transition relations which are not monotonic. The main obstacle is
that they usually use universal global conditions in which a process may need
to check the states of all the other processes inside the system. Universal con-
ditions are inherently non-monotonic, since having larger configurations may
lead to the violation of the universal condition. In the case of parametrized sys-
tems, monotonic abstraction amounts to killing (deleting) all the processes inside
the configuration which violate the universal condition. The abstract transition
relation is an over-approximation of the original one. Hence, proving a safety
property in the abstract system implies that the property also holds in the orig-
inal system. For a more technical description of the method and its application
to non-trivial examples see, e.g., [4,3,13,5].

2 Parameterized Systems

In this section, we introduce the concept of parameterized systems. For this pur-
pose, we use a simple example of a protocol which implements mutual exclusion
among an arbitrary number of processes. A parameterized system consists of an
arbitrary number of components each of which is a finite-state process. In our
example, access to the critical section is controlled by a global lock. The system
is supposed to satisfy mutual exclusion, i.e., at most one process may have access
to the global resource at any given time. In each step in the execution of a param-
eterized system, one process, called the active process performs a local transition
changing its state. The rest of the processes, called the passive processes, do not

Forcing Monotonicity in Parameterized Verification 3

I C

L := L − 1

L := L + 1

Fig. 1. One process in the simple protocol

P0 P1 Pn

Fig. 2. A parameterized system consist-
ing of an arbitrary number of processes

change states. A process (depicted in Figure 1) has two local states, namely I
where the process is idle and C where the process is in its critical section. The
resource is guarded by a lock L whose value is equal to 1 when the lock is free
and 0 otherwise. When a process wants to access the critical section, it must first
acquire the lock. This can be done only if no other process has already acquired
the lock. Concretely, when the process moves from I to C it checks whether the
lock is free, makes the move and at the same time acquires the lock (makes it
busy). Acquiring the lock is encoded by decrementing the value of the lock (the
value of the lock is not allowed to become negative, and hence the process is
blocked in case L = 0). From the critical section, the process eventually releases
the lock moving back to the idle state I. We require that the system should never
reach a configuration where two or more processes are in the state C. Recall that
we are interested in parameterized verification, i.e., verifying that this property
is satisfied regardless of the number of competing processes.

3 Counter Abstraction

In this section, we describe how to capture the behaviour of certain classes of
parameterized systems by Petri nets through the use of counter abstraction.

3.1 Petri Nets

A Petri net N is a tuple (P, T, F), where P is a finite set of places, T is a finite
set of transitions, and F ⊆ (P × T) ∪ (T × P) is the flow relation. If (p, t) ∈ F
then p is said to be an input place of t; and if (t, p) ∈ F then p is said to be an
output place of t. We use In (t) := {p| (p, t) ∈ F} and Out (t) := {p| (t, p) ∈ F}
to denote the sets of input places and output places of t respectively.

Figure 3 shows an example of a Petri net with three places (drawn as circles),
namely L, W, and C; and two transitions (drawn as rectangles), namely t1 and t2.
The flow relation is represented by edges from places to transitions, and from
transitions to places. For instance, the flow relation in the example includes the
pairs (L, t1) and (t2, W), i.e., L is an input place of t1, and W is an output place
of t2.

The transition system induced by a Petri net is defined by the set of configu-
rations together with the transition relation defined on them. A configuration c

4 P.A. Abdulla

L

W

C

t1 t2

(a)

L

W

C

t1 t2

(b)

Fig. 3. (a) A simple Petri net. (b) The result of firing t1.

of a Petri net1 is a multiset over P . The configuration c defines the number of
tokens in each place. Figure 3 (a) shows a configuration where there is one token
in place L, three tokens in place W, and no token in place C. The configuration
corresponds to the multiset

[
L, W3
]
.

The operational semantics of a Petri net is defined through the notion of firing
transitions. This gives a transition relation on the set of configurations. More
precisely, when a transition t is fired, then a token is removed from each input
place, and a token is added to each output place of t. The transition is fired only
if each input place has at least one token. Formally, we write c1 −→ c2 to denote
that there is a transition t ∈ T such that c1 ≥ In (t) and c2 = c1−In (t)+Out (t)
(where + and − are the usual operations defined on multisets). For sets C1, C2

of configurations, we write C1 −→ C2 to denote that c1 −→ c2 for some c1 ∈ C1

and c2 ∈ C2. We define ∗−→ to the reflexive transitive closure of −→.

3.2 Counter Abstraction

We can use counter abstraction to capture the behaviour of the parameterized
version of the simple mutual exclusion protocol described in Section 2 as a Petri
net (shown in Figure 3). The idea is to count the number of processes in each
given local state. More precisely, we devote a place in the Petri net for each
process state in the protocol. The numbers of tokens in places I and C represent
the number of processes in their idle states and critical sections respectively.
Absence of tokens in L means that the lock is currently taken by some process.
Each transition of the Petri net corresponds to one of the processes performing
1 A configuration in a Petri net is often called a marking in the literature.

Forcing Monotonicity in Parameterized Verification 5

a local transition: the transition t1 corresponds to a process moving from I to C
(thus decreasing the number of processes in the state I, increasing the number
of processes in C, and taking the lock); and the transition t2 corresponds to
a process moving from C to I (thus increasing the number of processes in the
state I, decreasing the number of processes in C, and releasing the lock).

3.3 Safety Properties

We are interested in checking a safety property for the Petri net in Figure 3.
In a safety property, we want to show that “nothing bad happens” during the
execution of the system. Typically, we define a set Bad of configurations, i.e.,
configurations which we do not want to occur during the execution of the system.
In this particular example, we are interested in proving mutual exclusion. The
set Bad contains those configurations that violate mutual exclusion, i.e., con-
figurations in which at least two processes are in their critical sections. These
configurations are of the form

[
Lk, Wm, Cn

]
where n ≥ 2. The set Cinit of initial

configurations are those where all processes are idle. Examples of initial configu-
rations are

[
I2
]

and
[
I5
]
, corresponding to instances of the system with two and

five processes respectively. Notice that there are infinitely many initial configura-
tions (one for each possible size of the system). Checking the safety property can
be carried out by checking whether we can fire a sequence of transitions taking
us from an initial configuration to a bad configuration, i.e., we check whether
the set Bad is reachable (i.e., whether Cinit

∗−→ Bad).

3.4 Ordering

We define the ordering ≤ on configurations to be the standard one on multisets,
i.e., c1 ≤ c2 if c1(p) ≤ c2(p) for each p ∈ P . According to Dickson’s lemma [8], the
relation ≤ is a well quasi-ordering (wqo for short), i.e., for each infinite sequence
c0, c1, c2, . . . of configurations there are i and j such that i < j and ci ≤ cj .

We will work with sets of configurations which are upward closed with respect
to ≤. For a configuration c, we define ĉ to be the set of configurations which are
larger than c wrt. ≤, i.e., ĉ = {c′| c ≤ c′}. For a set C, we define Ĉ := ∪c∈C ĉ. For
an upward closed set U , we define the generator of U to be the set of minimal
elements of U , i.e., the set G such that

– Ĝ = U , i.e., U can be generated from G by taking the upward closure of G
wrt. ≤.

– a ≤ b implies a = b for all a, b ∈ G. In other words, the set G is canonical in
the sense that all its elements are incomparable wrt. ≤.

We use gen (U) to denote the set G. Upward closed sets are interesting in our
setting for two reasons:

– The set gen (U) is finite; otherwise we would have an infinite set of incom-
parable elements which contradicts the wqo property. This means that each
upward closed set U can be characterized by a finite set of configurations,
namely its generator gen (U). The set gen (U) = {a1, . . . , an} is a finite
characterization of U in the sense that U = â1 ∪ · · · ∪ ân.

6 P.A. Abdulla

– Sets of bad configurations are almost always upward closed. For instance,
in our example, whenever a configuration contains two processes in their
critical sections then any larger configuration will also contain (at least) two
processes in their critical sections, so the set Bad is upward closed. In this
manner, checking the safety property amounts to deciding reachability of an
upward closed set.

3.5 Monotonicity

Consider the ordering ≤ on the configurations of the Petri net. It follows from
the definitions that the transition relation −→ is monotonic wrt. ≤. In other
words, given configurations c1, c2, and c3, if c1 −→ c2 and c1 ≤ c3, then there is
a configuration c4 such that c2 ≤ c4 and c3 −→ c4.

3.6 Computing Predecessors

Consider an upward closed set U of configurations. By monotonicity it follows
that the set {c| c −→ U} is upward closed. For a configuration c and a transi-
tion t, we define Pre(t)(c) to be the set {c1, . . . , cn} which is the generator of
the set of configurations from which we can reach ĉ through a single firing of t.

3.7 Backward Reachability Analysis

As mentioned above, we are interested in checking whether it is the case that
the set Bad of configurations is reachable. The safety property is violated iff
the question has a positive answer. The algorithm, illustrated in Figure 4, starts
from the set of bad configurations, and tries to find a path backwards through
the transition relation to the set of initial configurations. The algorithm operates
on upward closed sets of configurations. An upward closed set is symbolically
represented by a finite set of configurations, namely the members of its generator.
In the above example, the set gen (Bad) is the singleton

{[
C2
]}

. Therefore, the
algorithm starts from the configuration c0 =

[
C2
]
, and repeatedly computes

predecessors through applying the function Pre. From the configuration c0, we
go backwards and derive the generator of the set of configurations from which we
can fire a transition and reach a configuration in Bad = ĉ0. Transition t1 gives the
configuration c1 = [L, W, C], since ĉ1 contains exactly those configurations from
which we can fire t1 and reach a configuration in ĉ0. Analogously, transition t2
gives the configuration c2 =

[
C3
]
, since ĉ2 contains exactly those configurations

from which we can fire t2 and reach a configuration in ĉ0. Since c0 ≤ c2, it
follows that ĉ2 ⊆ ĉ0. In such a case, we say that c2 is subsumed by c0. Since
ĉ2 ⊆ ĉ0, we can discard c2 safely from the analysis without the loss of any
information. Now, we repeat the procedure on c1, and obtain the configurations
c3 =
[
L2, W2

]
(via t1), and c4 =

[
C2
]

(via t2), where c4 is subsumed by c0. Finally,
from c3 we obtain the configurations c5 =

[
L3, W3

]
(via t1), and c6 = [L, W, C] (via

t2). The configurations c5 and c6 are subsumed by c3 and c1 respectively. The
iteration terminates at this point since all the newly generated configurations

Forcing Monotonicity in Parameterized Verification 7

[
C2
][L, W, C]

[
C3
]

[
L2, W2

]
[
C2
]

[
L3, W3

]
[L, W, C]

Fig. 4. Running the backward reachability algorithm on the example Petri net. Each
ellipse contains the configurations generated during one iteration. The subsumed con-
figurations are crossed over.

were subsumed by existing ones, and hence there are no more new configurations
to consider. In fact, the set B =

{[
C2
]
, [L, W, C] ,

[
L2, W2

]}
is the generator of the

set of configurations from which we can reach a bad configuration. The three
members in B are those configurations which are not discarded in the analysis
(they were not subsumed by other configurations). To check whether Bad is
reachable, we check the intersection B̂ ∩ Cinit . Since the intersection is empty,
we conclude that Bad is not reachable, and hence the safety property is satisfied
by the system.

3.8 Sufficient Conditions

We summarize the properties needed in order to derive the above algorithm:

1. Monotonicity. This implies that the predecessor set of an upward closed set
of configurations is upward closed.

2. � is a wqo. We need this property for two reasons: to represent upward
closed sets by a finite set of configurations (a generator of the set); and to
guarantee termination of the algorithm.

3. For each c, we can compute the (finite) set gen ({c′| c′ −→ ĉ}). In fact,
Pre(t)(c) = (c
 Out (t)) + In (t), where
 rounds negative values up to 0
(i.e., y
 x = 0 if x > y and y
 x = y − x otherwise).

4. For each c, we can check whether there is a c′ ∈ Cinit such that c � c′. This
is needed to check the emptiness of the intersection B̂ ∩ Cinit .

4 Monotonic Abstraction

We consider parameterized systems, where the local transitions of a processes
may be constrained by global conditions, i.e., the process may have to check
the states of all the other processes before proceeding with the transition. To
capture such conditions we need a more powerful model than standard Petri nets,
namely Petri nets with inhibitor arcs. We introduce the concept of monotonic
abstraction and describe how it transforms inhibitor arcs into reset arcs.

8 P.A. Abdulla

We consider a parametrized version of a simple reader-writer protocol. The
system consists of an arbitrary number of processes which may read from or write
to a global variable, and are supposed to satisfy the reader-writer property, i.e.,
writing should be exclusive to one process (at any point of time, if a process is
writing, then no other process should be reading or writing). Notice that several
different processes may be reading at the same time.

A process (depicted in Figure 5) has three local states, namely I where the
process is idle, R where the process is reading, and W where the process is writing.
Writing to the global variable is controlled by a lock whose value is equal to 1
when the lock is free and 0 otherwise. When a process wants to start reading, it
checks whether the lock is free. If this is the case, the process moves from I to R
without changing the value of the lock. From R, the process eventually moves
back to I.

When a process wants to start writing, it checks whether there are other
processes reading the global variable (encoded by the condition #R = 0?). It
acquires the lock by decreasing the value of L by one. If the lock is not free, then
L = 0 and the transition is blocked. From W, the process eventually moves back
to I releasing the lock (by increasing the value of L by one).

IR W

#R = 0? L := L − 1

L := L + 1

L = 1?

Fig. 5. One process in the reader-writer protocol

4.1 Petri Nets with Inhibitor Arcs

A Petri net with inhibitor arcs is a generalization of Petri nets in the sense that
an arc form a place p to a transition t may be declared to be an inhibitor. In
such a case, the transition t may only be fired from configurations in which p is
empty (does not contain any tokens). For the arcs which are not inhibitors the
standard rules for firing transitions in Petri nets hold.

Figure 6 shows an example of a Petri net with one inhibitor arc (represented
by the arrow whose head is a filled circle) between R and t3.

4.2 Counter Abstraction

In a similar manner to Section 3, we can capture the behaviour of the parame-
terized reader-writer protocol as a Petri net with inhibitor arcs (Figure 6). The
numbers of tokens in places I, R, and W represent the number of processes in
their idle, read, and write states respectively. Absence of tokens in L means that
there is currently a process writing to the global variable. The transitions of

Forcing Monotonicity in Parameterized Verification 9

I

t4

W

t3

L

t1t2

R

Fig. 6. A Petri net with one inhibitor arc

I

t4

W

t3

L

t1t2

R

Fig. 7. A Petri net with one reset arc

the Petri net are interpreted as follows. The transition t1 represents a process
moving from I to R. The process checks the state of the lock but does not change
its value (this is represented by the two arcs between the place L and t1). The
transition t2 corresponds to a process moving back from R to I. The transition t3
means that an idle process becomes a writer. Here, we need an inhibitor arc to
encode the condition that there are no processes currently reading the variable.
This is done by checking that place R is empty. Finally, transition t4 represents
a process leaving the W state and becoming idle again.

4.3 Forcing Monotonicity

A Petri net with inhibitor arcs is not monotonic. For instance, consider the
configurations c1 = [L, I], c2 = [W], and c3 = [L, I, R]. Then, we have c1 ≤ c3 and
c1 −→ c2 (by firing the transition t3), but there is no c4 such that c3 −→ c4 and
c2 ≤ c4. The inhibitor arc does not allow taking t3 from c3 since the place R is
not empty. In fact, the only transitions enabled from c3 are t1 and t2 leading to
the configurations

[
L, R2
]

resp.
[
L, I2
]

(none of which is larger than [W]).
That Petri nets with inhibitor arcs are not monotonic is not surprising given

that they are Turing-powerful. We revert therefore to abstraction, where we
compute an over-approximation which is monotonic. The only transitions which
violate monotonicity are those with inhibitor arcs. In our abstraction, we change
the semantics of the Petri net, by replacing inhibitor arcs with reset arcs. A reset
arc does not disable the transition. Instead, the reset arc removes all the tokens
from the input place thus making it empty. One important property of reset nets
is that they are monotonic. Thus we generate an abstraction which is not exact
(as in Section 3) but which nevertheless is monotonic.

The existence of tokens in R means that there are processes in the configuration
which violate an enabling condition thus blocking the transition t3. In other

10 P.A. Abdulla

[W, R]

[L, I, W]

[
R2, W
]

[
R, W2
]

[
L, I2, W

]
[L, R, W]

[
L2, I2

]
[
W2
]

[
L2, I3

][
L2, I, R

][
L3, I3

]
[L, I, W][
L, I, W2

][
R, W3
] [

W3
]

[
L2, I2

]
[
L2, R2

]

[L, R, W]

[
L2, I, R

]
[
L2, R3

]
[
L, R2, W

]

Fig. 8. Running the backward reachability algorithm on the example Petri net with
reset arcs in Figure 7

words, the existence of readers prevents a process moving from its idle to its
writing state. Our abstraction means that we “kill” all the processes violating
the condition, thus enabling the transition again. Since the abstract transition
relation is an over-approximation of the original transition relation, it follows
that if a safety property holds in the abstract model, then it will also hold in
the concrete model.

Figure 7 show the Petri net with reset arcs we get as an abstraction of the
Petri net with inhibitor arcs in Figure 6. The inhibitor arc is replaced by a reset
arc (with a head which is an empty circle). Figure 8 shows the result of running
the backward reachability algorithm on the reset Petri net of Fig 7.

5 Linear Topologies

In many cases, the components of a parameterized systems are organized as a
linear array. Configurations of the system can then be represented by words over
a finite alphabet rather than multisets. Each alphabet symbol inside the word
represents the local state of one process. The ordering on the symbols reflects
the ordering on the processes. As mentioned earlier, one important (and diffi-
cult) feature in the behaviour of parameterized systems is the existence of global
condition in which a process may have to check the states of the other processes
inside the systems before performing a transition. A global transition is either
universally or existentially quantified. An example of a universal condition is
that all processes in the left context2 of the active process should be in certain
states. In an existential transition we require that some (rather than all) pro-
cesses should be in certain states. We have already seen an example of a global
condition in the reader-writer protocol of Section 4. A process in the protocol
2 The left context of the active process contains all the process which are to its left

inside the configuration.

Forcing Monotonicity in Parameterized Verification 11

changes states from I to W only if the number of reader processes is equal to
zero. This is equivalent to the universal condition that all the other processes
should be either idle or writing.

5.1 Simple Example

We introduce our method through a simple example of a protocol which imple-
ments mutual exclusion among an arbitrary number of processes. Each process
(depicted in Figure 9) has four local states, namely the idle (I), requesting (R),
waiting (W), and critical (C) states.

I

R

W C

∀LRI, R t1 t6

t2 t5

∃LR, W, C t3 ∀LI

t4

Fig. 9. One process in the mutual exclusion protocol with linear topology

Initially, all the processes are idle (in state I). When a process becomes in-
terested in accessing the critical section (which corresponds to the state C), it
declares its interest by moving to the requesting state R.

This is described by the global universal transition rule t1 in which the move
is allowed only if all other processes are in their idle or requesting states. The
universal quantifier labeling t1 encodes the condition that all other processes
(whether in the left or the right context – hence the index LR of the quantifier) of
the active process should be I or R. In the requesting state, the process may move
to the waiting state W through the local transition t2 (in which the process does
not need to check the states of the other processes). Notice that any number of
processes may cross from the initial (idle) state to the requesting state. However,
once the first process has crossed to the waiting state, it “closes the door” on the
processes which are still in their initial states. These processes will no longer be
able to leave their initial states until the door is opened again (when no process
is in W or C). From the set of processes which have declared interest in accessing
the critical section (those which have left their idle states and are now in the

12 P.A. Abdulla

requesting or waiting states) the leftmost process has the highest priority. This is
encoded by the global universal transition t4 where a process may move from its
waiting state to its critical section only subject to the universal condition that
all processes in its left context are idle (the index L of the quantifier stands for
“Left”). If the process finds out, through the existential global condition, that
there are other processes that are requesting, in their waiting states, or in their
critical sections, then it loops back to the waiting state through the existential
transition t3. Once the process leaves the critical section, it will return back to
the requesting state through the local transition t5. In the requesting state, the
process chooses either to try to reach the critical section again, or to become
idle (through the local transition t6).

5.2 Abstraction

Since the ordering among the processes in the system is relevant, we can no longer
use multisets to describe the configurations of the system. This means that we
have to go beyond Petri nets in order to produce an abstraction of the system.
As mentioned above, a configuration will now be represented as a word over a
finite alphabet representing the local states of the processes. In our example this
alphabet is given by the set {I, R, W, C}. For instance the configuration IWCWR
represents a configuration in an instance of the system with five processes that
are in their idle, waiting, critical, waiting, and requesting states in that order.
The definition of the transition relation −→ depends on the type of t (whether
it is local, existential, or universal). We will consider three transition rules from
Figure 9 to illustrate the idea. The local rule t2 induces transitions of the form
WIRCR −→ WIWCR. Here the active process changes its local state from requesting
to waiting. The existential rule t3 induces transitions of the form RIWCR −→
RIWCR. The waiting process can perform the transition since there is a requesting
process in its left context. However, the same transition is not enabled from the
configuration IIWCR, since there are no critical, waiting, or requesting processes
in the left context of the process trying to perform the transition. The universal
rule t4 induces transitions of the form IIWWR −→ IICWR. The active process (in
the waiting state) can perform the transition since all processes in its left context
are idle. On the other hand, neither of the waiting processes can perform the
transition form the configuration CIWWR since, for each one of them, there is at
least one process in its left context which is not idle.

An initial configuration is one in which all processes are in their initial states.
Examples of initial configurations are II and IIIII, corresponding to instances
of the system with two and five processes respectively. As mentioned above,
the protocol is intended to guarantee mutual exclusion. In other words, we are
interested in verifying a safety property. To do this we characterize the set of bad
configurations: all configurations which contain at least two processes in their
critical sections. Examples of bad configurations are CRC and ICRCWC. Showing
the safety property amounts to proving that the protocol, starting from an initial
configuration, will never reach a bad configuration.

Forcing Monotonicity in Parameterized Verification 13

5.3 Monotonic Abstraction

We define an ordering on configurations where c1 � c2 if c1 is a (not necessarily
contiguous) subword of c2. For instance, WC � RWICW. The relation � is a wqo
by Higman’s lemma [12]. In a similar manner to Section 3 and Section 4, we
define an abstraction that generates an over-approximation of the transition
system. The abstract transition system is monotonic, thus allowing to work with
upward closed sets. In fact, we first show that local and existential transitions
are monotonic, and hence need not be approximated. Therefore, we only provide
an over-approximation for universal transitions.

Consider the local rule t2 and the induced transition c1=IRC−→IWC=c2 in
which a process changes state from requesting to waiting. Consider the config-
uration c3 = IWIRCR that is larger than c1. Clearly, c3 can perform the local
transition c3 = IWIRCR

I−→ WIWCR = c4 leading to c4 � c2. Local transitions are
monotonic, since the active process in the small configuration (the requesting
process in c1) also exists in the larger configuration (i.e., c3). A local transi-
tion does not check or change the states of the passive processes; and hence the
larger configuration c3 is also able to perform the transition, while maintaining
the ordering c2 � c4.

Consider the local rule t3 and the induced transition c1=RIWCR−→RIWCR=c2.
Let us observe that the configuration c1 can be divided into three parts: the
active process in the waiting state, the left context RI, and the right context CR.
Furthermore, the left context contains a witness (the process in the requesting
state) which enables the transition. Consider the configuration c3 = IRIWCRC
that is larger than c1. Also, the configuration c3 can be divided into three parts:
the active process in the waiting state, the left context IRI, and the right context
CRC. Notice that the left context of c3 is larger than the left context of c1, and
hence the former will also contain the witness. This means that c3 can perform
the same transition c3 = IRIWCRC −→ IRIWCRC = c4 leading to c4 � c2.

Next, we motivate why universal transitions are not monotonic. Consider the
universal rule t4 and the induced transition c1 = IIWWR −→ IICWR = c2. The
transition is enabled since all processes in the left context of the active process
satisfy the condition of the transition (they are idle). Consider the configura-
tion c3 = IRICWWR. Although c1 � c3, the universal transition t4 is not enabled
from c3 since the left context of the active process contains processes that vio-
late the condition of the transition. This implies that universal transitions are
not monotonic. In order to deal with non-monotonicity of universal transitions,
we will change the semantics of the system using the same idea as the one in
Section 4. More precisely, we delete all the processes violating the condition of
the universal rule. This means for instance that we have a transition of the form
IRICWWR −→ IICWR since we can first delete the two processes in the requesting
and critical states and then perform the transition.

5.4 Computing Predecessors

For a configuration c and a transition rule t, we define Pre(t)(c) to be the set
{c1, . . . , cn} which is the generator of the set of configurations from which we can

14 P.A. Abdulla

reach ĉ through one application of t. We will consider different transition rules
in Figure 9 to illustrate how to compute Pre. For the local rule t5 in Figure 9,
we have Pre(t5)(IRW) = {ICW}. In other words, the predecessor set is character-
ized by one configuration, namely ICW. Strictly speaking, the set contains also a
number of other configurations such as IRCW. However such configurations are sub-
sumed by the original configuration IRW, and therefore we will for simplicity not
include them in the set. For existential transitions, there are two cases depending
on whether a witness exists or not in the configuration. Consider the existential
rule t3 in Figure 9. We have Pre(t3)(RWC) = {RWC}. In this case, there is a witness
(a requesting process) in the left context of the active process. On the other hand,
we have Pre(t3)(IWC) = {RIWC, IRWC, WIWC, IWWC, CIWC, ICWC}. In this case there
is no witness available in the left context of the active process. Therefore, we add
a witness explicitly in each possible state (requesting, waiting, or critical), at each
possible place in the left context of the active process.

Notice that the sizes of the new configurations (four processes) is larger than
the size of the original configuration (three processes). This means that the sizes
of the configurations generated by the backward algorithm may increase, and
hence there is no bound a priori on the sizes of the configurations. However,
termination is still guaranteed due to the well quasi-ordering of �.

For universal conditions, we check whether there are any processes in the
configuration violating the condition. Consider the universal rule t4 in Figure 9.
Then Pre(IRICW) = ∅ since there is a requesting process in the left context of
the potential active process (which is in the critical section). On the other hand,
Pre(IICW) = IIWW since all processes in the left context of the active process are
in their idle states.

5.5 Backward Reachability Algorithm
We show how the backward reachability algorithm runs on our example
(Figure 10). We start by the generator of the set of bad configurations, namely
{CC}. The only transition which is enabled backwards from a critical state, is
the one induced by the rule t4. From the two processes in CC only the left one
can perform t4 backwards (the right process cannot perform t4 backwards since
its left context contains a process not satisfying the condition of the quantifier):
Pre(t4)(CC) = {WC}. From WC, two rules are enabled backwards (both from the
waiting process): the local rule t2: Pre(t2)(WC) = {RC}; and the existential rule
t3: Pre(t3)(WC) = {RWC, WWC, CWC}. All the three configurations in Pre(t3) (WC)
are subsumed by WC. One rule is enabled backwards from RC, namely the local
rule t5 from the requesting process: Pret5 (RC) = {CC}. Notice that the universal
transition t1 is not enabled from the requesting process, since there is another
process (the critical process) in the configuration that violates the condition of
the quantifier. At this point, the algorithm terminates, since it is not possible to
provide any new configurations which are not subsumed by the existing ones.

Since there is no initial configuration (with only idle processes) in ĈC∪ ŴC∪ R̂C,
the set of bad configurations is not reachable from the set of initial configurations
in the abstract semantics. Therefore, the set of bad configurations is not reachable
from the set of initial configurations in the concrete semantics, either.

Forcing Monotonicity in Parameterized Verification 15

CCWC

RC

RWC

WWC

CWC

CC

Fig. 10. Running the backward reachability algorithm on the example Protocol

References

1. Abdulla, P.A., Čerāns, K., Jonsson, B., Tsay, Y.-K.: General Decidability Theorems
for Infinite-State Systems. In: Proc. LICS 1996, 11th IEEE Int. Symp. on Logic in
Computer Science, pp. 313–321 (1996)

2. Abdulla, P.A., Čerāns, K., Jonsson, B., Tsay, Y.-K.: Algorithmic Analysis of Pro-
grams with Well Quasi-Ordered Domains. Information and Computation 160, 109–
127 (2000)

3. Abdulla, P.A., Delzanno, G., Rezine, A.: Parameterized Verification of Infinite-
State Processes with Global Conditions. In: Damm, W., Hermanns, H. (eds.) CAV
2007. LNCS, vol. 4590, pp. 145–157. Springer, Heidelberg (2007)

4. Abdulla, P.A., Henda, N.B., Delzanno, G., Rezine, A.: Regular Model Check-
ing without Transducers (on Efficient Verification of Parameterized Systems). In:
Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 721–736.
Springer, Heidelberg (2007)

5. Abdulla, P.A., Henda, N.B., Delzanno, G., Rezine, A.: Handling Parameterized
Systems with Non-Atomic Global Conditions. In: Logozzo, F., Peled, D.A., Zuck,
L.D. (eds.) VMCAI 2008. LNCS, vol. 4905, pp. 22–36. Springer, Heidelberg (2008)

6. Abdulla, P.A., Jonsson, B.: Verifying Programs with Unreliable Channels. In: Proc.
LICS 1993, 8th IEEE Int. Symp. on Logic in Computer Science, pp. 160–170 (1993)

7. Abdulla, P.A., Jonsson, B.: Model Checking of Systems with Many Identical Timed
Processes. Theoretical Computer Science 290(1), 241–264 (2003)

8. Dickson, L.E.: Finiteness of the Odd Perfect and Primitive Abundant Numbers
with n Distinct Prime Factors. Amer. J. Math. 35, 413–422 (1913)

9. Emerson, E., Namjoshi, K.: On Model Checking for Non-Deterministic Infinite-
State Systems. In: Proc. LICS 1998, 13th IEEE Int. Symp. on Logic in Computer
Science, pp. 70–80 (1988)

10. Esparza, J., Finkel, A., Mayr, R.: On the Verification of Broadcast Protocols. In:
Proc. LICS 1999, 14th IEEE Int. Symp. on Logic in Computer Science (1999)

11. Finkel, A., Schnoebelen, P.: Well-Structured Transition Systems Everywhere! The-
oretical Computer Science 256(1-2), 63–92 (2001)

12. Higman, G.: Ordering by Divisibility in Abstract Algebras. Proc. London Math.
Soc. (3), 2(7), 326–336 (1952)

13. Yonesaki, N., Katayama, T.: Functional Specification of Synchronized Processes
Based on Modal Logic. In: IEEE 6th International Conference on Software Engi-
neering, pp. 208–217 (1982)

Research Issues in the Automated Testing
of Ajax Applications

Arie van Deursen and Ali Mesbah

Delft University of Technology
{arie.vandeursen,a.mesbah}@tudelft.nl

Abstract. There is a growing trend to move desktop applications to-
wards the web. This move is made possible through advances in web
technologies collectively known as Asynchronous JavaScript and XML
(Ajax). With Ajax, the classical model of browsing a series of pages
is replaced by a JavaScript engine (running in the browser) taking con-
trol of user interaction, exchanging information updates with the web
server instead of requesting the complete next page. The benefits of this
move include no installation costs, automated upgrading for all users,
increased interactivity, reduced user-perceived latency, and universal ac-
cess, to name a few. Ajax, however, comes at a price: the asynchronous,
stateful nature and the use of Javascript make Ajax applications partic-
ularly error-prone, causing serious dependability threats. In this paper,
we evaluate to what extent automated testing can be used to address
these Ajax dependability problems. Based on an analysis of the current
challenges in testing Ajax, we formulate directions for future research.

1 Introduction

There is a growing trend to move applications towards the Web. Well-known
examples include Google’s mail and office applications including spreadsheet,
word processing, and calendar applications. The reasons for this move to the
web are manifold and include:

– No installation effort for end-users.
– Automatic use of the most recent software version by all users, thus reducing

maintenance and support costs.
– Universal access from any browser on any machine with Internet access;
– Possibility to share data and enrich user interaction with information avail-

able at the server.
– In-depth insight for software developers in which features are actually used.
– Customization per user, based on, e.g., earlier experience with the

application
– Fast innovation cycles, since releasing and deploying a new version is

instantaneous.

In an interesting recent blog post [23], McKenzie also argues that the conversion
rate for web applications is better, i.e., the percentage of site visitors that ac-
tually purchase a software product is higher for license-based web applications

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 16–28, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Research Issues in the Automated Testing of Ajax Applications 17

than for applications they have to download and install. McKenzie furthermore
argues that web applications solve the problem of software piracy, simply by the
fact that there is no software anymore that is to be downloaded and (illegally)
distributed.

One of the implications of this move to the web, is that dependability [3]
of web applications is becoming increasingly important [11,29]. Dependability is
affected by many factors, including the level of testing, the skills of the developers
involved, and the actual software technology used.

For today’s web applications, one of the key technologies used is Ajax,
an acronym for “Asynchronous JavaScript and XML” [15]. With Ajax, web-
browsers not just offer the possibility to navigate through a sequence of HTML
pages, but enable rich user interaction via graphical user interface components.

While the use of Ajax technology positively affects user-friendliness and in-
teractiveness of web applications [26], it comes at a price: Ajax applications are
notoriously error-prone due to, e.g., the stateful and asynchronous nature as well
as the use of (untyped) JavaScript (see Section 3).

In this paper, we will explore how testing can be used to improve the depend-
ability of Ajax applications. In particular, we first provide an abstract view on
what exactly is comprised by Ajax. We do this in Section 2, by means of an
architectural style capturing the essential elements of Ajax applications. Next,
in Section 3, we offer a survey of our work on the automated testing of Ajax

applications. In particular, we discuss a plugin-based tool infrastructure called
Atusa, which can be used to detect a range of faults typically occurring in Ajax

applications. We conclude the paper with an analysis of open issues and research
problems in the area of automated testing of Ajax applications.

2 Defining Ajax

Ajax potentially brings an end to the classical click-and-wait style of web nav-
igation, providing the responsiveness and interactivity level end users usually
expect from desktop applications. In a classical web application, the user has to
wait for the entire page to reload to see the response of the server. With Ajax,
however, small delta messages are requested from the server, behind the scenes,
by the Ajax engine and updated on the current page through modifications to
the corresponding DOM-tree. This in sharp contrast to the classical multi-page
style, in which after each state change a completely new DOM-tree is created
from a full page reload.

Ajax gives us a vehicle to build web applications with a single-page web inter-
face, in which all interactions take place on one page. Single-page web interfaces
can improve complex, non-linear user work-flows [39] by decreasing the number
of click trails and the time needed [38] to perform a certain task, when compared
to classical multi-page variants.

Another important aspect of Ajax is that of enriching the web user interface
with interactive components and widgets. Examples of widgets, which can all co-
exist on the single-page web interface, include auto-completion for input fields,

18 A. van Deursen and A. Mesbah

in-line editing, slider-based filtering, drag and drop, rich tables with within-
page sorting, shiny photo albums and calendars, to name a few. These are all
web user interface components that are made possible through extensive DOM
programming by means of JavaScript and delta client/server communication.

In most classical web applications, a great deal of identical content is present
in page sequences. For each request, the response contains all the redundant
content and layout, even for very marginal updates. Using Ajax to update only
the relevant parts of the page results, as expected, in a decrease in the bandwidth
usage. Experimental results have shown a performance increase of 55 to 73%
[35,24,38] for data transferred over the network, when Ajax is used to conduct
partial updates.

In our earlier work we have proposed Spiar, an architectural style [14,31] for
Ajax [26]. Spiar results from a study of different major Ajax frameworks, in-
vestigating their salient architectural properties, key elements, and constraints
on those elements required to achieve the desired properties. Such a style cap-
tures the essence of Ajax frameworks and can be seen as an abstract model of
different architectural implementations.

In Spiar three types of architectural elements can be identified: processing
(e.g., browser, Ajax engine, server application, service provider, user interface
components) , connectors (e.g., events, delta update, push channels), and data
(e.g., representation, representational model, delta messages).

Given the processing, data, and connecting elements, we can use different
architectural views to describe how the elements work together to form an ar-
chitecture. Figure 1 depicts the processing view of an Spiar-based architecture
based on run-time components rendering as in, e.g., Echo21. The view shows the
interaction of the different components some time after the initial page request
(the engine is running on the client). User activity on the user interface fires off
an event to indicate some kind of component-defined action which is delegated
to the Ajax engine. If a listener on a server-side component has registered itself
with the event, the engine will make a delta-client message of the current state
changes with the corresponding events and send it to the server. On the server,
the decoder will convert the message, and identify and notify the relevant com-
ponents in the component tree. The changed components will ultimately invoke
the event listeners of the service provider. The service provider, after handling
the actions, will update the corresponding components with the new state which
will be rendered by the encoder. The rendered delta-server message is then sent
back to the engine which will be used to update the representational model and
eventually the interface. The engine has also the ability to update the represen-
tational model directly after an event, if no round-trip to the server is required.

Architectural constraints can be used as restrictions on the roles of the ar-
chitectural elements to induce the architectural properties desired of a system.
Table 1 presents an overview of the constraints and induced properties. A “+”
marks a direct positive effect, whereas a “–” indicates a direct negative effect.

1 http://echo.nextapp.com/site/echo2

http://echo.nextapp.com/site/echo2

Research Issues in the Automated Testing of Ajax Applications 19

Server App.Client Browser

update

HTTP

Encoder

Decoder

Service
Provider

updateC

S

update invokeupdate event

DOM
Ajax

Engine

UI

UI Comp.
event

update

Fig. 1. Processing View of a Spiar-based architecture

Table 1. Constraints and induced properties in Ajax applications
U

se
r

In
te

ra
c
ti

v
it
y

U
se

r-
p
e
rc

e
iv

e
d

L
a
te

n
c
y

N
e
tw

o
rk

P
e
rf

o
rm

a
n
c
e

S
im

p
li
c
it
y

S
c
a
la

b
il
it
y

P
o
rt

a
b
il
it
y

V
is

ib
il
it
y

D
a
ta

C
o
h
e
re

n
c
e

R
e
li
a
b
il
it
y

A
d
a
p
ta

b
il
it
y

Single-page Interface +
Asynchronous Interaction + +
Delta Communication + + + – – +
Client-side processing + + +
UI Component-based + + + +
Web standards-based + + +
Stateful + + + – –
Push-based Publish/Subscribe + + – – + +

Spiar rests upon these constraints, which are chosen to retain the properties
such as user interactivity, data coherence, and scalability.

3 State of the Art in Ajax Testing

For traditional software, analysis and testing is still largely ad hoc [5] and already
a notoriously time-consuming and expensive process [4]. Classical web applica-
tions present even more challenges [10,2] due to their distributed, heterogeneous
nature. In addition, web applications have the ability to generate different user
interfaces in response to user inputs and server state.

Ajax-based web applications are not only fundamentally different from clas-
sical web applications, but also more error-prone and harder to test. The reasons
for this include the stateful as well as asynchronous nature of Ajax program-
ming, the client-side manipulation of the Document Object Model, the use of
delta-communication, and the limited possibilities for static (type) checking of

20 A. van Deursen and A. Mesbah

Javascript. In spite of the great success of Ajax, building dependable Ajax

applications is a daunting task. Below we will discuss the current state of Ajax

testing approaches.

3.1 Current Testing Approaches

The server-side of Ajax applications can be tested with any conventional testing
technique. On the client, testing can be performed at different levels. Unit testing
tools such as JsUnit2 can be used to test JavaScript on a functional level.
The most popular Ajax testing tools are currently capture/replay tools such
as Selenium,3 which allow DOM-based testing by capturing events fired by user
(tester) interaction. Such tools have access to the DOM, and can assert expected
UI behavior defined by the tester and replay the events. Capture/replay tools
demand, however, a substantial amount of manual effort on the part of the tester.

Marchetto et al. [21] discuss a case study in which they demonstrate the
effectiveness of applying traditional web testing techniques (e.g., code coverage
testing [33], model-based testing [2], session based testing [12,36]) to Ajax. Their
analysis suggests that such traditional techniques have serious limitations in
testing modern Ajax-based web applications. They propose [22] an approach
for state-based testing of Ajax applications based on traces of the application
to construct a finite state machine. Sequences of semantically interacting events
in the model are used to generate test cases once the model is refined by the
tester. In our recent approach [27], the focus is on automating the testing process
by inferring an abstract model of the Ajax application and generating test cases
automatically.

3.2 Automatic Testing of Ajax

In order to detect a fault automatically, a testing method should meet the fol-
lowing conditions [28,34]: reach the fault-execution, which causes the fault to be
executed, trigger the error-creation, which causes the fault execution to gener-
ate an incorrect intermediate state, and propagate the error, which enables the
incorrect intermediate state to propagate to the output and cause a detectable
output error. In addition, automating the process of assessing the correctness of
test case output is a challenging task, known as the oracle problem.

Meeting these reach/trigger/propagate/oracle conditions is more challenging
for Ajax applications compared to the classical ones.

One way to reach the fault-execution automatically for web applications is by
adopting a web crawler to crawl through different UI states and infer a model
of the navigational paths and states.

3.3 Crawling Ajax

A general approach in testing the client-side of web applications has been to
request a response from the server and analyze the resulting HTML page. This
2 http://jsunit.net
3 http://selenium.openqa.org

http://jsunit.net
http://selenium.openqa.org

Research Issues in the Automated Testing of Ajax Applications 21

testing approach based on the page-sequence paradigm has serious limitations
when applied to Ajax-based applications. Ajax has a number of properties
making it difficult, for e.g., search engines, to crawl. We will briefly outline these
challenges below.

Client-side Execution. Any search engine willing to approach such an appli-
cation must have support for the execution of the scripting language. Equipping
a general search crawler with the necessary environment complicates its design
and implementation considerably.

Navigation. Ultimately, an Ajax application could consist of a single page
with a single URL. This characteristic makes it very difficult for a search engine
to index and point to a specific state on an Ajax application. For crawlers,
navigating through traditional multi-page web applications has been as easy as
extracting and following the hypertext links (or the src attribute) on each page.

Dynamic Document Object Model (DOM). The state changes in Ajax

applications are dynamically represented through the run-time changes on the
DOM. This means that the source code in HTML does not represent the state
anymore. Any search engine aimed at crawling and indexing such applications,
will need to have access to this run-time dynamic document object model of the
application.

Delta-communication. Retrieving and indexing the delta state changes from
the server, for instance through a proxy between the client and the server, could
have the side-effect of losing the context and actual meaning of the changes.
Most of such delta updates become meaningful after they have been processed
by the JavaScript engine on the client and injected into the DOM.

Events and Clickables. In Ajax, hypertext links can be replaced by elements
with event-listeners, which are handled by the client engine; it is not possible any
longer to navigate the application by simply extracting and retrieving the internal
hypertext links. DOM Events (e.g., onClick, onMouseOver) can be attached to
DOM elements at run-time, and as such, even a div element can have an onclick
event attached to it so that it becomes a clickable element capable of changing the
internal DOM state of the application when clicked. The necessary event handlers
can also be programmatically registered in Ajax. Finding these clickables at run-
time is another non-trivial task for a crawler.

Despite these challenges, we have proposed [25] a new type of web crawler,
called Crawljax, capable of exercising client-side code, detecting and execut-
ing doorways (clickables) to various dynamic states of Ajax-based applications
within browser’s dynamically built DOM. While crawling, Crawljax infers
a state-flow graph capturing the states of the user interface, and the possi-
ble event-based transitions between them, by analyzing the DOM before and
after firing an event. Crawljax is open source4 and based on an embedded
browser interface (with different implementations: IE, Firefox) capable of exe-
cuting JavaScript and the supporting technologies required by Ajax.
4 http://spci.st.ewi.tudelft.nl/crawljax/

http://spci.st.ewi.tudelft.nl/crawljax/

22 A. van Deursen and A. Mesbah

3.4 Invariant-Based Testing

Once we are able to derive different dynamic states of an Ajax application,
possible faults can be triggered by generating UI events and identifying entry
points.

In our recent work [27], we have presented an approach for automatic testing of
Ajax user interfaces, called Atusa. Atusa is based on the crawling capabilities
of Crawljax and provides data-entry point detection and (pre-, in-, and post-
crawling) plugin hooks for testing Ajax applications.

To tackle the oracle problem, we have proposed to use generic and application-
specific structural invariants that serve as oracle to detect faults in and between
different DOM states. Such oracles can be defined in various forms such as XPath
expressions, Regular expressions, or JavaScript conditions.

3.5 Test-Case Generation

While running Atusa to derive the state machine can be considered as a first full
test pass, the state machine itself can be further used for testing purposes. For
example, it can be used to execute different paths to cover the state machine
in different ways. To that end, we derive a test suite (implemented in JUnit)
automatically from the state machine, which can be used for regression testing
of Ajax applications. Figure 2 depicts the processing view of Atusa, show-
ing a pre-crawling DOM Validator and a post-crawling Test Case Generator as
examples of possible plugin implementations.

3.6 Security Testing

Ajax applications can be composed from independent user interface compo-
nents, often called web widgets. As any program code, widgets can be used for

Crawljax Controller Ajax
Engineupdate

 DOM

update

UI

event

Embedded
Browser

event

Analyze
Dom

State
Machine

Test-case
Generator

event

Legend

Control flow

Data component

Processing component

Access

Event invocation

Test
Cases

Static file

DOM
Analyzer

update

inCrawling
plugins

postCrawling
plugins

DB

Robot

Test
Executor

Test
Report

Coverage
Report

report

DOM
Validator

Implementation

Transform
DOM to HTML

Validate HTML Validation
Report

report

generate event

Fig. 2. Processing view of Atusa

Research Issues in the Automated Testing of Ajax Applications 23

malicious purposes. Example scenarios include when a malicious widget changes
the content of another widget to trick the user into releasing sensitive informa-
tion, or even worse, listens to the account details a user enters in another widget
(e.g., PayPal or Email widgets) and sends the data to a malicious site.

Testing modern web applications for security vulnerabilities is far from trivial.
Traditional detection-based approaches are generally static analysis-based, which
has limitations in revealing faults and violations in the dynamic distributed
runtime behavior of modern rich web applications.

In our latest work [6], we propose to extend and use Atusa for automatically
spotting two types of security problems in widget interactions, namely, namely
the case in which (1) a malicious widget changes the content (DOM) of another
widget, and (2) a widget steals data from another widget and sends it to the
server via an HTTP request.

In order to find DOM change violations (1), we first need to automatically
detect each widget’s boundary in the DOM tree. Once the boundaries are defined,
we can analyze the elements receiving events and the actual changes taking place
on the DOM tree to decide whether a state change is a violation.

For HTTP request violations (2), the main challenge is in coupling each out-
going request with the corresponding DOM element, from which it originated.
Once we know which element is causing the request, we can analyze the behavior
and decide whether a violation has occurred.

Our approach, implemented in a number of open source Atusa plugins, called
DIVA, requires no modification of application code, and has few false positives.

4 Open Research Questions

The potential of automatic testing of Ajax applications is high, but there are a
number of problems and challenges that need to be addressed, related to the scal-
ability and usability of the proposed approach. In this section, we sketch the main
areas of future research we anticipate.

4.1 Invariants in Practice

Testing in Atusa is based on the notion of invariants. This is a fairly weak form
of an oracle, which can be used to conduct basic sanity checks on the DOM-
tree or transitions in the derived GUI state machine. While initial experiments
using DOM-based invariants were successful [27] a number of research questions
remain.

1. While in academia the notion of design invariants is well-understood indus-
trial practice has been reluctant to pick up the idea [8]. The premise of
Atusa is that essential design decisions can be captured into invariants. To
what extent is this indeed the case? Are developers capable and willing to
document these decisions by means of invariants? What is the best nota-
tion to express invariants? Are invariants sufficiently stable across different
versions of an Ajax application?

24 A. van Deursen and A. Mesbah

2. Another premise in Atusa is that invariants are effective in finding faults.
We anticipate that the more application-specific an invariant is, the likelier
it will be that it can reveal a programming fault. Is this indeed the case?
How common are violations of generic invariants (concerning, e.g., HTML
validity)? What sort of application-specific invariants are likely to reveal
faults?

3. Ernst et al. have used dynamic analysis to infer “likely invariants” from
execution traces [13]. An interesting question is to what extent this would
be possible in our setting as well. Can we analyze the DOM in every state,
and discover properties on the DOM that must always hold? Can we use the
corresponding invariants for testing in subsequent versions of the Ajax appli-
cation? Can we infer client-side JavaScript invariants automatically through
dynamic analysis?

Note that many of these questions are empirical in nature. Therefore, in order
to answer them it is necessary to to have access to several Ajax development
projects, so that rigorous case studies [40] can be conducted.

4.2 Combinatorial Testing

The combinatorial explosion of the test space is one of the key problems in
software testing. A system with N features each having M possibilities, leads to
MN test cases, which rapidly becomes intractable.

To deal with this problem various approaches have been proposed. A well-
known method is Category-Partition, in which independently testable features
and parameter characteristics are identified [30]. In this approach, constraints
are used to limit the number of combinations that must be checked.

An alternative is pairwise combination testing. In this approach, not all pos-
sible combinations, but just all possible value pairs between two features are
tested (or, more generally, k-tuples for k < N) [9]. In this approach, the state
space grows logarithmically rather than exponentially. Furthermore, empirical
evidence suggests that, in practice, faults are mostly due to two or sometimes
three way interactions, making pairwise testing an effective approach [20].

The approach currently used in Atusa investigates all possibilities, and hence
suffers from the combinatorial explosion problem. In order to apply techniques
such as category-partition or pairwise combination testing, we need to identify
independent parts of the DOM-tree. Are annotations provided by developers an
effective means to identify such independent parts? To what extent can inde-
pendent DOM-fragments be found automatically? Are DOM-fragments a good
starting point for applying combinatorial testing? To what reductions does this
lead in practice?

4.3 State Space Reduction

Related to scalability is the state space explosion problem (see, e.g., [32]). In
particular, in the area of model checking, a significant body of research has been
devoted to reducing state spaces [18].

Research Issues in the Automated Testing of Ajax Applications 25

When deriving state machines from executions, which is what we do in
Crawljax, an abstraction function is used for mapping concrete program states
to abstract GUI states in our state-flow graph. Can we strengthen our abstrac-
tion function, and merge more states together? Can we reuse techniques from the
area of model checking to manage our state space? Can we involve the software
engineering in suggesting states to merge, for example through annotations?
Can we reduce the state machine memory footprint by adopting techniques such
as hashcode computation, state compression, recursive indexing [17], delta up-
date, or Sweep Line [7]? Is the total running time reducible by using concurrent
computation?

4.4 Regression Testing

Regression testing encompasses the selective re-testing of a system to verify
that modifications have not caused unintended effects and that the system still
complies with its specified requirements [19]. Regression testing of web applica-
tions [37] in general and Ajax-based applications in particular is far from trivial
due to the high degree of dynamism in such applications. This dynamism is usu-
ally caused by various factors such as input data from different users, server-side
state, order of event sequences, etc.

In Atusa for instance, when the generated test suite is run for regression
testing, states as seen in the browser are compared with the states in the oracle
(the baseline). Imagine a page that displays a date-time that changes after each
retrieval. A simple string comparison would result in many false test failures.
Even changing the order of followed events can result in a different state than
expected according to the baseline. How can we cope with this high level of
dynamism in Ajax applications when conducting regression testing? Can we
implement or better yet generate intelligent oracle comparators that ignore such
state differences so that we can only report real failures?

4.5 Path Seeding

Instead of starting from a single root to explore possible clicks in an Ajax

application, a given sequence of clicks can be used as a starting point. From
such a click trail, side paths can be explored automatically, for example within
a given distance of the original sequence.

This opens various opportunities to refine the way test cases are generated.
These initial sequences can be obtained from a first round of manual (accep-
tance) testing, for example through the use capture-and-playback tools (such
as the aforementioned Selenium) or defining pre-conditions on the (e.g., DOM
or JavaScript variables) states. Alternatively, the initial trails may be picked
to correspond to an operational profile, and thus reflect typical usage scenar-
ios. Subsequently, Atusa’s automated capabilities can be used to expand these
initial sequences to a series of closely related sequences.

A particularly intriguing route is to use failure-inducing paths as seeds, and
then attempt to do automated fault diagnosis [1,16]. Such failing runs can cor-
respond to click trails generated by Atusa that lead to an invariant violation.

26 A. van Deursen and A. Mesbah

To spot the cause of the failure, Atusa can then collect trails that are, in one
way or another, similar, which do not lead to an invariant violation. Traditional
spectrum-based analysis can then be used to identify the differences between
these trails in terms of the underlying functionality that gets executed (by in-
strumenting, e.g., the underlying JavaScript code), which then can be used to
localize the root cause of the fault. This amounts to combining click trail similar-
ity with fault diagnosis: a promising direction which, however, requires further
research to investigate the feasibility and benefits.

5 Concluding Remarks

As more and more applications are moved to the web, Ajax technology plays an
increasingly important role in our society. Unfortunately, the state-based, asyn-
chronous nature of Ajax in combination with the limited possibilities for static
analysis of rich Internet applications, pose an increasing threat to dependability.

One way to deal with this threat is the use of automated testing. This requires
the use of a crawler that can detect and follow clickable elements introduced by
client-side logic. Furthermore, it requires the capability of distinguishing correct
from incorrect executions, for which we propose to rely on invariants expressed
over the browser’s Document Object Model.

While this approach has proven successful in various case studies, a number
of questions remain, related in particular to the scaleability of the approach. In
order to address these concerns, in this paper we have surveyed a number of
research directions and areas of future research, in which techniques from tradi-
tional testing are made to work with the specific constraints and opportunities
imposed by Ajax applications.

References

1. Abreu, R., Zoeteweij, P., van Gemund, A.J.C.: On the Accuracy of Spectrum-
Based Fault Localization. In: TAICPART-MUTATION 2007: Proceedings of the
Testing: Academic and Industrial Conference Practice and Research Techniques
- MUTATION, Washington, DC, USA, pp. 89–98. IEEE Computer Society, Los
Alamitos (2007)

2. Andrews, A., Offutt, J., Alexander, R.: Testing Web Applications by Modeling
with FSMs. Software and Systems Modeling 4(3), 326–345 (2005)

3. Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C.: Basic Concepts and Tax-
onomy of Dependable and Secure Computing. IEEE Trans. on Dependable and
Secure Computing 1(1), 11–33 (2004)

4. Beizer, B.: Software Testing Techniques, 2nd edn. Van Nostrand Reinhold Co.
(1990)

5. Bertolino, A.: Software Testing Research: Achievements, Challenges, Dreams. In:
ICSE Future of Software Engineering (FOSE 2007), pp. 85–103. IEEE Computer
Society, Los Alamitos (2007)

Research Issues in the Automated Testing of Ajax Applications 27

6. Bezemer, C.-P., Mesbah, A., van Deursen, A.: Automated Security Testing of Web
Widget Interactions. In: Proceedings of the 7th Joint Meeting of the European Soft-
ware Engineering Conference and the ACM SIGSOFT Symposium on the Foun-
dations of Software Engineering (ESEC-FSE 2009), pp. 81–91. ACM, New York
(2009)

7. Christensen, S., Kristensen, L.M., Mailund, T.: A Sweep-Line Method for State
Space Exploration. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031,
pp. 450–464. Springer, Heidelberg (2001)

8. Clarke, L.A., Rosenblum, D.S.: A Historical Perspective on Runtime Asser-
tion Checking in Software Development. ACM SIGSOFT Software Engineering
Notes 31(3), 25–37 (2006)

9. Cohen, D.M., Dalal, S.R., Fredman, M.L., Patton, G.C.: The AETG System:
An Approach to Testing Based on Combinatiorial Design. IEEE Trans. Software
Eng. 23(7), 437–444 (1997)

10. Di Lucca, G.A., Fasolino, A.R.: Testing Web-Based Applications: The State of the
Art and Future Trends. Inf. Softw. Technol. 48(12), 1172–1186 (2006)

11. Elbaum, S., Chilakamarri, K.-R., Gopal, B., Rothermel, G.: Helping End-Users
‘Engineer’ Dependable Web Applications. In: Proceedings of the 16th IEEE Inter-
national Symposium on Software Reliability Engineering (ISSRE 2005), pp. 31–40.
IEEE Computer Society, Los Alamitos (2005)

12. Elbaum, S., Karre, S., Rothermel, G.: Improving Web Application Testing with
User Session Data. In: Proc. 25th Int. Conf. on Software Engineering (ICSE 2003),
pp. 49–59. IEEE Computer Society, Los Alamitos (2003)

13. Ernst, M.D., Cockrell, J., Griswold, W.G., Notkin, D.: Dynamically Discovering
Likely Program Invariants to Support Program Evolution. IEEE Trans. Softw.
Eng. 27(2), 99–123 (2001)

14. Fielding, R.: Architectural Styles and the Design of Network-Based Software Ar-
chitectures. PhD Thesis. UC, Irvine, Information and Computer Science (2000)

15. Garrett, J.: Ajax: A New Approach to Web Applications. Adaptive path (February
2005), http://www.adaptivepath.com/publications/essays/archives/000385.
php

16. Harrold, M.-J., Rothermel, G., Wu, R., Yi, L.: An Empirical Investigation of
Program Spectra. In: PASTE 1998: Proceedings of the 1998 ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools and Engineering,
pp. 83–90. ACM, New York (1998)

17. Holzmann, G.: State Compression in SPIN: Recursive Indexing and Compression
Training Runs. In: Proceedings of Third International SPIN Workshop (1997)

18. Holzmann, G.J.: The Model Checker SPIN. IEEE Transactions on Software Engi-
neering 23(5), 279–295 (1997)

19. IEEE. IEEE Std 610.12-1990: IEEE Standard Glossary of Software Engineering
Terminology. IEEE (1990)

20. Kuhn, D.R., Wallace, D.R., Gallo, A.M.: Software Fault Interactions and Implica-
tions for Software Testing. IEEE Trans. Software Eng. 30(6), 418–421 (2004)

21. Marchetto, A., Ricca, F., Tonella, P.: A Case Study-Based Comparison of Web
Testing Techniques Applied to Ajax Web Applications. Int. Journal on Software
Tools for Technology Transfer 10(6), 477–492 (2008)

22. Marchetto, A., Tonella, P., Ricca, F.: State-Based Testing of Ajax Web Applica-
tions. In: Proc. 1st IEEE Int. Conference on Sw. Testing Verification and Validation
(ICST 2008), pp. 121–130. IEEE Computer Society, Los Alamitos (2008)

http://www.adaptivepath.com/publications/essays/archives/000385.php
http://www.adaptivepath.com/publications/essays/archives/000385.php

28 A. van Deursen and A. Mesbah

23. McKenzie, P.: Why I’m Done Making Desktop Applications. Blog Post on,
http://www.kalzumeus.com/2009/09/05/desktop-aps-versus-web-apps/ (Date
consulted: 15 September 2009)

24. Merrill, C.L.: Using Ajax to Improve the Bandwidth Performance of Web
Applications (2006), http://www.webperformanceinc.com/library/reports/

AjaxBandwidth/

25. Mesbah, A., Bozdag, E., van Deursen, A.: Crawling Ajax by Inferring User Inter-
face State Changes. In: Proceedings of the 8th International Conference on Web
Engineering (ICWE 2008), pp. 122–134. IEEE Computer Society, Los Alamitos
(2008)

26. Mesbah, A., van Deursen, A.: A Component- and Push-Based Architectural Style
for Ajax Applications. Journal of Systems and Software 81(12), 2194–2209 (2008)

27. Mesbah, A., van Deursen, A.: Invariant-Based Automatic Testing of Ajax User
Interfaces. In: Proceedings of the 31st International Conference on Software Engi-
neering (ICSE 2009), Research Papers, pp. 210–220. IEEE Computer Society, Los
Alamitos (2009)

28. Morell, L.: Theoretical Insights into Fault-Based Testing. In: Proc. 2nd Workshop
on Software Testing, Verification, and Analysis, pp. 45–62 (1988)

29. Offutt, J.: Quality Attributes of Web Software Applications. IEEE Softw. 19(2),
25–32 (2002)

30. Ostrand, T.J., Balcer, M.J.: The Category-Partition Method for Specifying and
Generating Functional Tests. Commun. ACM 31(6), 676–686 (1988)

31. Perry, D.E., Wolf, A.L.: Foundations for the Study of Software Architecture. SIG-
SOFT Softw. Eng. Notes 17(4), 40–52 (1992)

32. Pezzè, M., Young, M.: Software Testing and Analysis. Wiley, Chichester (2008)
33. Ricca, F., Tonella, P.: Analysis and Testing of Web Applications. In: ICSE 2001:

23rd Int. Conf. on Sw. Eng., pp. 25–34. IEEE Computer Society, Los Alamitos
(2001)

34. Richardson, D., Thompson, M.: The RELAY Model of Error Detection and Its Ap-
plication. In: Proc. 2nd Workshop on Software Testing, Verification, and Analysis,
pp. 223–230 (1988)

35. Smullen III, C.V., Smullen, S.A.: An Experimental Study of Ajax Application
Performance. Journal of Software 3(3), 30–37 (2008)

36. Sprenkle, S., Gibson, E., Sampath, S., Pollock, L.: Automated Replay and Failure
Detection for Web Applications. In: ASE 2005: Proc. 20th IEEE/ACM Int. Conf.
on Automated Sw. Eng., pp. 253–262. ACM, New York (2005)

37. Tarhini, A., Ismail, Z., Mansour, N.: Regression Testing Web Applications. In:
International Conference on Advanced Computer Theory and Engineering, pp.
902–906. IEEE Computer Society, Los Alamitos (2008)

38. White, A.: Measuring the Benefits of Ajax (2006), http://www.developer.com/
java/other/article.php/3554271

39. Willemsen, J.: Improving User Workflows with Single-Page User Interfaces (Novem-
ber 2006), http://www.uxmatters.com/MT/archives/000149.php

40. Yin, R.K.: Case Study Research: Design and Methods, 3rd edn. SAGE Publications
Inc., Thousand Oaks (2003)

http://www.kalzumeus.com/2009/09/05/desktop-aps-versus-web-apps/
http://www.webperformanceinc.com/library/reports/AjaxBandwidth/
http://www.webperformanceinc.com/library/reports/AjaxBandwidth/
http://www.developer.com/java/other/article.php/3554271
http://www.developer.com/java/other/article.php/3554271
http://www.uxmatters.com/MT/archives/000149.php

Essential Performance Drivers
in Native XML DBMSs

Theo Härder, Christian Mathis, Sebastian Bächle,
Karsten Schmidt, and Andreas M. Weiner

University of Kaiserslautern, Germany
{haerder,mathis,baechle,kschmidt,weiner}@cs.uni-kl.de

Abstract. As a multi-layered XML database management system, we
have designed, implemented, and optimized over the recent five years our
prototype system XTC, a native XDBMS providing multi-lingual query
interfaces (XQuery, XPath, DOM). In particular in higher system layers,
we have compared competing concepts and iteratively found salient solu-
tions which drastically improved the overall XDBMS performance. XML
query processing is critically affected by the smooth interplay of concepts
and methods on all architectural layers: node labeling and mapping op-
tions for storage structures; availability of suitable index mechanisms;
provision of a spectrum of path processing operators; query language
compilation and optimization. Furthermore, effective and efficient lock-
ing protocols must be present to guarantee the ACID properties for XML
processing and to achieve high transaction throughput.

In this survey, we outline our experiences gained during the imple-
mentation and optimization of XTC. We figure out the “key drivers”
to maximize throughput while keeping the response times at an accept-
able level. Because we have implemented all options and alternatives
in XTC, dedicated benchmark runs allow for comparisons in identical
environments and illustrate the benefit of all implementation decisions1.

1 Motivation

In recent years, XML’s standardization and, in particular, its flexibility (e. g.,
data mapping, cardinality variations, optional or non-existing structures, etc.)
evolved as driving factors to attract demanding write/read applications, to en-
able heterogeneous data stores, and to facilitate data integration. Because busi-
ness models in practically every industry use large and evolving sets of sparsely
populated attributes, XML is more and more adopted by those companies which
have even now launched consortia to develop XML schemas adjusted to their par-
ticular data modeling needs. As an example, world-leading financial companies
defined more than a dozen XML schemata and vocabularies to standardize data
1 This work has been partially supported by the German Research Foundation (DFG)

and the Rheinland-Pfalz cluster of excellence “Center of Mathematical and Compu-
tational Modelling”, Germany (see www.cmcm.de).

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 29–46, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

30 T. Härder et al.

processing and to leverage cooperation and data exchange [43]. For these rea-
sons, XML databases currently get more and more momentum if data flexibility
in various forms is a key requirement of the application and they are, therefore,
frequently used in collaborative or even competitive environments [26].

Native XML database systems (XDBMSs) promise tailored XML processing,
but most of the systems published in the DB literature are primarily designed for
efficient document storage and retrieval [22,39]. Furthermore, they are optimized
to evaluate complex XQuery statements on large XML documents in single-
user mode. Hence, many aspects of proven DBMS functionality and technology
are often neglected in these systems, in the first place read/write transaction
processing in multi-user mode, but also storage and indexing of dynamic XML
documents in flexible formats to best satisfy the needs of specific applications.

As a consequence of the growing demand and the increasing adoption of
XDBMSs, enhanced functionality and flexibility is needed in all system layers.
At the bottom-most layer of the XDBMS architecture, a spectrum of storage
devices, e. g., flash disks and magnetic disks, should be supported to provide for
high-performance requirements. In upper layers, tailor-made and automatically
chosen storage and index structures should help to approach application-specific
needs [38]. These structures should enable complex path processing operations
which, in turn, have to be integrated into cost-optimized query plans.

Of course, the original “retrieval-only” focus of XDBMSs – probably caused
by the first proposals of XQuery respectively XPath where the update part was
left out – is not enough anymore. Due to the growing need of update facilities,
XDBMSs should efficiently support fine-grained, concurrent, and transaction-
safe document modifications. For example, workloads for financial application
logging2 include 10M to 20M inserts in a 24-hour day, with about 500 peak in-
serts/sec. Because at least a hundred users need to concurrently read the data
for troubleshooting and auditing tasks, concurrency control is challenged to pro-
vide short-enough response times for interactive operations [26]. Currently, all
vendors of XML(-enabled) DBMSs support updates only at document granular-
ity and, thus, cannot manage highly dynamic XML documents, let alone achieve
such performance goals. Hence, new concurrency control protocols together with
efficient implementations are needed to meet these emerging challenges.

During the last five years, we have addressed – by designing, implementing,
analyzing, optimizing, and adjusting an XDBMS prototype system called XTC
(XML Transactional Coordinator) – all these issues indispensable for a full-
fledged DBMS. To guarantee broad acceptance for our research, we strive for
a general solution that is even applicable for a spectrum of XML language mod-
els (e. g., XPath, XQuery, SAX, or DOM) in a multi-lingual XDBMS environ-
ment. In this survey paper, we want to report on our experiences gained and, in
particular, focus on the concepts, functionalities, and mechanisms which turned
out to be essential performance drivers of XDBMSs.

2 Another example is monitoring the airline traffic control where legal demands call for
collecting and saving huge and rapidly growing volumes of heterogeneous information
(formatted data, mail, voice, signal, etc.) for 5 years.

Essential Performance Drivers in Native XML DBMSs 31

2 Hierarchical DBMS Architecture

As mapping model or reference architecture for relational DBMSs, Andreas
Reuter and the first author proposed a hierarchical multi-layer model about
25 years ago [17]. The five layers describe the major steps of dynamic abstraction
from the physical storage up to the user interface. At the bottom, the database
consists of huge volumes of persistently stored bits interpreted by the DBMS
into meaningful information on which the user can operate. With each abstrac-
tion level, the objects become more complex, allowing more powerful operations
and being constrained by a growing number of integrity rules. The uppermost
interface supports a data model using set-oriented and declarative operations.

A key observation made while implementing this model in various projects was
that the invariants in database management determine the mapping steps of the
supporting architecture[13]. Hence, for XML database management, these basic
invariants should still hold true: page-oriented mapping to external storage, man-
agement of record-oriented data, set-oriented database processing. Therefore, we
used the five-layer model shown in Fig. 1 as our reference architecture for XTC.
Obviously, both lower layers L1 and L2 keep their essential characteristics and
functionality as in the relational world, because neither objects (pages or blocks)
nor operations (fix, unfix or read/write) change very much. However, much more
adaptations are necessary from L3 upwards3. In contrast to handling row sets
often based on simple TID access or reference, the performance of handling and
manipulating sequences of XML subtrees critically depends on a suitable node
labeling scheme. In [19], we have already argued that it is the key to efficient
and fine-grained XML processing.

Transaction Services

File Services
I/O Manager Temp. File Manager

Propagation Control
Buffer Manager

Access Services

Index Manager Catalog Manager

Record Manager

Node Processing

Node Manager

Transaction Manager

Lock Manager

XML Processing Services
XML ManagerXQuery Processor XSLT Processor

Interface Services
Http Agent Ftp Agent DOM RMI SAX RMI API RMI

OS File SystemTransaction Log File Container Files Temp. Files

Services
Path Processing

L1

L2

L3

L4

L5

X
T

C
se

rv
er

Deadlock Detection

Fig. 1. The five-layer architecture of XTC

3 For DBMSs, it is especially true: “Performance is not everything, but without per-
formance everything is worth nothing.”

32 T. Härder et al.

3 Node Labeling

In our first XTC version, we started with a simple, but very inefficient solution by
choosing a sequential numbering scheme (SEQIDs) which could only guarantee
uniqueness and order preservation of node labels. Exploring fine-grained XML
locking as the initial focus of our research, the protocols frequently had to acquire
intention locks on all ancestors of the context node cn. To find their node labels,
overly expensive look-ups in the disk-based document were unavoidable.

Various range-based and prefix-based node labeling schemes [7] were consid-
ered the prime candidates for XDBMSs, because their labels directly enable
testing of all XPath axes. A close comparison and evaluation of those schemes
included other XDBMS-specific criteria [14]. While range-based schemes failed
to guarantee immutable labels in dynamic XML documents (under heavy up-
dates/insertions) and could not directly compute, i. e., without further index
access or similar deviation, all ancestor labels of cn, prefix-based node labeling
turned out to be the winner, because they support all desired labeling properties
without the need of document access. Each label based on the Dewey Decimal
Classification, e. g., d1 = 1.7.9.5.17, directly represents the path from the doc-
ument’s root to the related node and the local order w. r. t. the parent node.
Some schemes such as OrdPaths [34], DeweyIDs, or DLNs [14] provide immutable
labels by supporting an overflow technique for dynamically inserted nodes. Be-
cause they are equivalent for all XDBMS tasks, we use the generic name stable
path labeling identifiers (SPLIDs) for them.

Because SPLIDs tend to be space-consuming, suitable encoding and compres-
sion of them in DB pages is a must. Effective encoding of SPLID divisions at
the bit level may be accomplished using Huffman codes [14]. It is important
that the resulting codes preserve their order when compared at the byte level.
Otherwise, each comparison, e. g., as keys in B*-trees or entries in reference
lists, requires cumbersome and inefficient decoding and inspection of the bit se-
quences. Because such comparisons occur extremely frequent, schemes violating
this principle may encounter severe performance problems [25].

When SPLIDs are stored in document sequence, they lend themselves to
prefix-compression and achieve impressive compression ratios. Our experiments
using a widely known XML document collection [32] confirmed that prefix-com-
pression reduced the space consumed for dense and non-dense SPLID orders
down to ∼15 – ∼35% and ∼25 – ∼40%, respectively [15].

To see the hidden gain of SPLIDs for lock-related costs, we generated a variety
of XML documents consisting of 5,000 up to 40,000 individual XML nodes and
traversed the documents under various isolation levels [11]. Although we opti-
mized SEQID-based access to node relatives by so-called on-demand indexing,
the required lock requests were directly translated into pure lock management
overhead as plotted in Fig. 2(a). We have repeated document traversal using
SPLID-based lock management (see Fig. 2(b)). Because the difference between
none and committed/repeatable is caused by locking overhead, we see drastic
performance gains compared to SEQIDs. While those are responsible for an up
to ∼600% increase of the reconstruction times in our experiment, SPLIDs keep

Essential Performance Drivers in Native XML DBMSs 33

10

20

30

40

50

60

70

5K 10K 15K 20K 25K 30K 35K 40K

[# nodes]

None
Committed

Repeatable

(a) SEQID node labeling

10

20

30

40

50

60

70

5K 10K 15K 20K 25K 30K 35K 40K

(b) SPLID node labeling

Fig. 2. Documents traversal times (sec.)

worst-case locking costs in the range of ∼10 – ∼20% [3]. SEQIDs have fixed
length, whereas SPLIDs require handling of variable-length entries. Coping with
variable-length fields adds some complexity to SPLID and B*-tree management.
Nevertheless, reconstruction time remained stable when SPLIDs were used –
even when locking was turned off (case none).

Comparison of document reconstruction in Fig. 2(a) and (b) reveals for iden-
tical XML operations that the mere use of SPLIDs improved the response times
by a factor of up to 5 and more. This observation confirms that prefix-based
node labeling is indispensable for internal XML navigation and set-based query
processing, but also for the lock manager’s flexibility and performance.

4 Storing and Indexing Documents

Based on specific document characteristics, storage management should provide
for automatic selection of appropriate mapping formats and adjusted param-
eters [38]. Typical methods replace the element/attribute names of the plain
(external) format by VocIDs to save space and need some Admin metadata to
enable variable-length entries. Inner tree nodes, i. e., the “structure”, are stored
as records containing < SPLID ,VocID ,Admin >, whereas leaf nodes carry the
“content” in < SPLID ,Value,Admin > records.

4.1 Storage Formats

Three kinds of mappings are provided in XTC. The document-oriented storage
formats keep both content and structure: Using the naive format, the VocIDs of
all element/attribute and content nodes are directly mapped together with their
uncompressed SPLIDs to the underlying storage structure (see Fig. 3), whereas
the pc format deviates from the naive mapping by applying prefix-compression
to all SPLIDs. As a novel mapping approach, the path-oriented storage format
called po virtualizes the entire structure part of the document.

For this reason, an auxiliary, document-related structure called path synopsis
is needed. It represents for each document path its path class and is enhanced by
path class references (PCRs) for them (see Fig. 4(a)). Because providing substan-
tial mapping flexibility, effective lock management support, and also considerable

34 T. Härder et al.

Depts

. . .

4711 Coy 835

33 10815 May XML

. . .

1

1.1.1.7.11.1.1.1.1 1.1.1.3.1 1.1.1.5.1

1.1.3.1.1.1 1.1.3.1.3.1 1.1.3.1.5.1 1.1.3.5.1.1 1.1.3.5.3.1

Dept
1.1

Mgr
1.1.1

Team
1.1.3

Team
1.1.5

Age
1.1.1.5

Name
1.1.1.3

ID
1.1.1.1

Level
1.1.1.7

Emp
1.1.3.1

Proj
1.1.3.5

Name
1.1.3.1.3

ID
1.1.3.1.1

Age
1.1.3.1.5

352509 Jones
1.1.3.3.1.1 1.1.3.3.3.1 1.1.3.3.5.1

Emp
1.1.3.3

Name
1.1.3.3.3

ID
1.1.3.3.1

Age
1.1.3.3.5

PName
1.1.3.5.1

Rating
1.1.3.5.3

Fig. 3. Document fragment (in the path-oriented storage format, only nodes below the
dashed line are physically stored)

speed-up of query evaluation [15], the use of path synopses turned out to be a key
concept for XTC’s processing efficiency.

Only the “content part” is physically stored when the po format is used (see
Fig. 3). Reference [31] explains the concept of structure virtualization, i. e., the po
mapping, in detail and shows that path reconstruction can be achieved on de-
mand when the SPLID of a node together with its PCR is present. For this
reason, leaf records are composed of < SPLID ,Value,PCR,Admin > where
the SPLIDs are prefix-compressed. All navigational and set-oriented operations
can be executed guaranteeing the same semantics as on naive or pc formats.
Fig. 4(b) shows that only the content nodes are stored; using the path synop-
sis, entry < 1.1.1.5.1, 6, 35 > tells us that the related path to the value 35 is
/Depts/Dept/Mgr/Age with the ancestor SPLIDs 1, 1.1, 1.1.1, 1.1.1.5.

All documents are physically represented using a B*-tree as base structure,
where the records (tree nodes) are consecutively stored in the document container
thereby preserving the document order. The document index is used to provide
direct access via SPLIDs. As an example, Fig. 4(b) illustrates the po format for
the document fragment of Fig. 3.

As compared to the plain format, naive as the straightforward internal format
typically achieves a storage gain of ∼10% to ∼30%, although the saving from
VocID usage is partially compensated by the need for node labels. Extensive
empirical (structure-only) tests using our reference document collection [32] have
identified a further gain of ∼27% to ∼43% when using pc format and, in turn,
a naive-to-po gain of∼71% to∼83% [15]. Because also exhibiting better mapping
and reconstruction times, the po format is a substantial performance driver.

Content compression is orthogonal to the storage formats discussed. We have
observed [15] that, using simple character-based compression schemes, the con-
tent size could be considerably reduced in our rather data-centric reference doc-
ument collection such that a storage gain of ∼22% to ∼42% is possible. Even
more compression gain could be expected for document-centric XML content.

Essential Performance Drivers in Native XML DBMSs 35

Depts

Dept

Mgr Team

ID Name Age Level Emp Proj

ID Name Age PName Rating

4 5 6 7

10 11 12 14 15

PCRs: 1

2

3 8

9 13

(a) Path synopsis

1.1.1.1.1
5

4711
Coy

1.1.1.3.14
1.1.1.5.1 6 35

1.1.1.7.1 7 8 1.1.3.1.1.1

0815 1.1.3.1.5.1. . .
33

250910
35

1.1.3.5.3.1 15 1
...

. . .

. . .

. . .

.

1.1.3.3 1.7

1.1.1.1.1 1.1.3.3.1.1 1.7. . .

contentPCRs + admin(compression not shown) SPLIDs

document
index

document
container

1.1.5.1.1.1 ...

10

12

1.1.3.3.1.1
121.1.3.3.5.1

10

(b) Stored document in po format

Fig. 4. Physical storage structures

4.2 Indexing Options

Set-oriented access to the nodes of an XML document is supported by a variety
of index types. Similar to the document store including the document index (see
Fig. 4(b)), all secondary index types in XTC are implemented using
B-tree/B*-tree structures:

– Element index : It offers two basic access primitives: Scan and Axis Evalua-
tion. For this reason, it maintains for each element name a reference list of
all its nodes. All element names are organized in a name directory where the
reference lists are themselves indexed (node-reference indexes).

– Path index : This structure can index paths qualified by a simple path pred-
icate p, e. g., //Mgr/Age or //Dept//Emp. Because SPLIDs carry essential
path information, they are utilized together with the path synopsis to di-
rectly support path queries.

– Content index : It maps each content value to the text nodes which stores it.
– Content-and-Structure (CAS) index : As a hybrid index combining content

and structure information, it supports the evaluation of CAS queries. Each
content value is associated with a list of references (SPLID + PCR) to the
related document nodes. Such a combined reference enables together with
the path synopsis the reconstruction of the entire path without accessing the
document.

CAS indexes are particularly powerful, because a large share of matching queries
can be evaluated solely on the index structure. Only when additional
attributes/elements are requested for output, access to the disk-based docu-
ment is needed. In a unique CAS index, all entries have the same PCR, while in
a homogeneous collective index, the entries may have varying PCRs, i. e., they
may refer to different path classes. For the heterogeneous collective CAS index,
the index predicate p may be generalized to p = p1∨ ...∨pi∨ ...∨pn where the pi

are simple path predicates. A generic CAS index contains all values of a certain
type, e. g., p = //* [29].

Refined evaluations of XTC’s indexing performance can be found in [31].
Furthermore, it is reflected by the query evaluation results reported in Sect. 7.

36 T. Härder et al.

5 Path Processing Operators

So far, layer L4 of XTC provides about 50 path processing operators (PPOs) –
exhibiting locking-aware behavior where appropriate [30] – which are tailored
to the underlying storage and index structures (L3). They can be considered as
part of the physical algebra operations. Here, we can only focus on a prominent
PPO generally called holistic twig join. A twig query (also called tree-pattern
query) contains multiple path branches (twigs) and potentially path and content
predicates, e. g. doc(’dept.xml’)//Mgr[./Age>=‘‘50’’]/Name) as XPath ex-
pression. It can be either decomposed into single paths or processed as a whole.
Single paths could be evaluated by structural joins or matched by means of in-
dexes and then joined (or intersected). To avoid joins, special (twig) indexes can
answer path pattern queries directly. In contrast to a structural join, a holis-
tic twig join can consume more than two input streams which are combined to
match the complex branching path patterns.

As identified in Fig. 5, numerous algorithms were proposed for twig processing,
but no algorithm obtains the expressiveness of our (logical) twig operator called

1. Skipping in TwigStack only supported by XB-Tree.
2. TJFast requires special embedding of path information into SPLIDs.
3. iTwigJoin supports streams generated by path indexes, but no internal element reconstruction.
4. TSGeneric + relies on the special XR-tree.
5. Matching child / not / filter integrated in output generation (and not in matching phase).
6. Index embedding with ancestor tuple builder algorithm only possible, when SPLIDs are indexed.

Algorithms for Holistic
Twig Joins

de
sc

en
da

nt

ch
ild

an
d

or no
t

op
tio

na
l e

dg
es

pr
oj

ec
tio

n

gr
ou

pi
ng

ex
pr

es
si

on
s

fil
te

rs

po
s.

pr
ed

ic
at

es

no
. o

f
ph

as
es

el
em

en
t i

nd
ex

es

pa
th

 in
de

xe
s

PathStack [2] + -

PathStack [19] + + -

TwigStack [2] + + 2 +1

TwigStackList [22] + + + 2

TwigStackList [38] + + + + 2

TJFast [23] + + + 2 +2

iTwigJoin [3] + + + 2 +3

TSGeneric + [18] + + 2 +4

Twig2Stack [4] + + + + + 1

TwigList [29] + + + 1

TwigOpt. [7] + + + + 1 +

Ext. TwigOpt [25] + +5 + + +5 + + + + +5 + 1 + +6

Fig. 5. Survey of twig algorithms

Essential Performance Drivers in Native XML DBMSs 37

Extended TwigOpt. We consider this operator richness as desirable, because the
higher the expressiveness, the more operations can be embedded into the twig
algorithm. Hence, the number of operators can be minimized in the final query
execution plan (QEP) (see Sect. 6). Therefore, our twig operator includes so
many concepts: path pattern supporting axes child, descendant and attribute;
logical and and or conjunctions; optional subtree patterns (i. e., optional edges);
projection; positional predicates; output filters; embedded output expressions;
grouping.

Depending on the indexes present, it is physically mapped to suitable stor-
age structures during QEP optimization (see Sect. 6). Again, its potential as
a performance driver is revealed in Sect. 7.

6 Query Planning and Optimization

For XQuery translation and optimization, we referred to a QGM-based (query
graph model [12]) internal structure guiding the entire process of query planning

Fig. 6. XQGM instance of the query

38 T. Härder et al.

and optimization. We substantially extended this model to XQGM [29] to pri-
marily enable query decorrelation rewrites [35], i. e., replacing nesting by joins,
and to integrate index support, i. e., the mapping of XPath/XQuery expressions
to our rich collection of index types. With cardinality estimations derived from
the related XML documents [1], our cost model can be tailored to the specific
XQuery evaluation [42]. In particular, the optimizer tries to apply the more-than-
usual expressiveness and functionality of Extended TwigOpt combined with CAS
index support to minimize operator use and to unlatch XTC’s evaluation power.

To only sketch the idea and to limit the explanation needs, the following
simple XQuery statement serves as a query planning and optimization example:

for $Dept in doc(’dept.xml’)//Mgr[./Age>=‘‘50’’] return $Dept/Name

This query returns the department names of managers that are at least
50 years old. As indicated before, the XQGM suits as our logical XML algebra.
Fig. 6 shows the XQGM instance that corresponds to the query. Here, the struc-
tural predicates (child and descendant axes) are evaluated using structural joins
(SJs). The SJs receive their inputs from access operators that work on nested
tuple sequences. SJ inputs are connected to so-called tuple variables (F:x) having
a for-loop semantics, i. e., an SJ is similar to a relational sort-merge join [29].

For the execution of this query, numerous QEPs can be derived. Due to struc-
tural join reordering and various indexing methods that can be considered as

(a) A QEP with PPOs (b) A QEP using CAS and path
indexes

Fig. 7. Optimization alternatives

Essential Performance Drivers in Native XML DBMSs 39

alternatives by our query optimizer [42], the search space quickly becomes very
large. Therefore, cost-based query optimization is necessary to wipe out ex-
pensive QEPs. Amongst others, Fig. 7(a) and (b) show two possible QEPs. In
Fig. 7(a), the structural predicates are evaluated using the PPOs StackTree
(Structural Join) and Extended TwigOpt (Holistic Twig Join). This QEP is
gained by performing query rewrite using join fusion [41]. Both operators receive
their inputs by accesses to the element index. Even though, a joint application
of StackTree and Extended TwigOpt can outdistance QEPs that only consist of
StackTree operators [41], Fig. 7(b) shows a more efficient variant. In this case,
we assume a CAS index (//Mgr/Age [Integer]) and a path index (//Name).
Instead of filtering all Age nodes and costly evaluating the structural predicates
for //Mgr/Age, the optimizer exploits both types of indexes and connects their
results by a StackTree operator. On large documents, this alternative is expected
to outperform the former one by several orders of magnitude, because CAS in-
dexes and path indexes are similar to materialized views.

7 Query Evaluation Performance

To sketch the interplay and efficiency of PPOs and query optimization, we want
to repeat some results of an empircal study [31] and give some speed-up figures
illustrating performance gains of index-supported range queries. We used the
XMark framework [37] to evaluate in five different cases (C1 – C5) range query
//Asia/Item/[‘‘C’’ ≤ Location ≤ ‘‘G’’], where all tests were carried out
on 4 XMark documents of size 10 MB, 50 MB, 100 MB, and 500 MB:

C1: No CAS/content index is available; hence, a holistic twig join operator had
to be used.

C2: A content index for all content nodes is present, allowing structure predi-
cate evaluation by the twig join operator. The delivered SPLIDs are not in
document order and have to be sorted to serve as input for the twig join.

C3: A generic CAS index (//*[String]) enables PCR matching to remove false
positives.

C4: A collective CAS index (//Item/Location [String]) is more focused than
the generic index.

C5: A unique CAS index (//Asia/Item/Location [String]) takes care that
no false positives can occur.

We refer to case C1 as baseline – no index was present and verification of the
content predicate required navigational steps (thus implying expensive random
IO) – and illustrate in Fig. 8 that three orders of magnitude can be gained by
adjusted indexes. While content access support in case C2 achieved some notice-
able improvements for the twig join, the real performance boost was observed for
cases C3, C4, and C5 exploiting CAS indexes and PCR structure matching such
that joins were not needed anymore. Thus, speed-ups in these cases increase with
the document sizes by up to two orders of magnitude. Note, in cases C1 and C2,
missing or insufficient index support caused linear response time growth w.r.t.

40 T. Härder et al.

 0.1

 1

 10

 100

 1000

sp
ee

d
-u

p

10 MB 50 MB 100 MB 500 MB

document size [MB]

C1

C2

C3

C4
C5

Fig. 8. Index-supported range queries

document sizes, whereas the response times in the remaining cases increased
only marginally due to CAS support. This effect enhanced the speed-up factors
observed for large document sizes.

Further performance gains and, at the same time, energy savings are possible
when flash disks are used. Compared to magnetic disks, these storage devices
provide a factor of 100 and more IOPS for random reads (and much lower, but
steadily improved random-write performance). Hence, IO-intensive DB appli-
cations greatly take advantage of these properties. Initial experiments revealed
that XTC in its current version improved its transaction throughput by a factor
of ∼3 thereby using less energy [16].

8 XML Locking

Multi-granularity lock (MGL) protocols [10,11] have introduced IR, IX, R, U,
and X locks to achieve fine-granularity locking on hierarchies. Always locking
entire subtrees, they are too strict for XML transactions because writers can
sometimes be tolerated in the subtree of a context node cn [21].

8.1 Locking Concepts of taDOM

In the context of XTC, we developed a novel approach to XML concurrency
control called taDOM providing tailor-made modes for fine-grained XML lock-
ing [18]. taDOM renames the conventional MGL locks and introduces new lock
modes for single nodes called NR (node read) and NX (node exclusive), and for
all siblings under a parent called LR (level read). The novelty of the NR and LR
modes is that they allow, in contrast to MGL, to read-lock only a node or all
nodes at a level (under the same parent), but not the corresponding subtrees.

To enable transactions to traverse paths in a tree having (levels of) nodes
already read-locked by other transactions and to modify subtrees of such nodes,

Essential Performance Drivers in Native XML DBMSs 41

SX3

a)

CX3

LRQ:

IR1 IX2

level

...

i-1

i

i+1

i+2 . . .

. . .

... ...

...

...
. . .

. . .

......

SR1

cn

b)

IX2

IX1 IX2

. . .

. . .

... ...

...

. . .

. . .

......

NR1
cn

c)

IX2

IR1 IX2

. . .

. . .

... ...

...

. . .

. . .

......

LR1

cn

NR1

SX3

CX3

IX3

CX2

NX2

CX2

NX2

IX3

IX3

NR1

IX3

IX2 CX3

Fig. 9. Examples of locking flexibility and effectivity using taDOM’s concepts

a new intention mode CX (child exclusive) had to be defined for a context (par-
ent) node. It indicates the existence of an SX or NX lock on some direct child
nodes and prohibits inconsistent locking states by preventing LR and SR locks.
It does not prohibit other CX locks on a context node c, because separate child
nodes of c may be exclusively locked by other transactions (compatibility is then
decided on the child nodes themselves). Altogether these new lock modes enable
serializable transaction schedules with read operations on inner tree nodes, while
concurrent updates may occur in their subtrees. An important and unique fea-
ture (not applicable in MGL or other protocols) is the optional variation of the
lock depth which can be dynamically controlled by a parameter. Lock depth n
determines that, while navigating through the document, individual locks are
acquired for existing nodes up to level n. If necessary, all nodes below level n
are locked by a subtree lock (SR, SX) at level n.

Let us highlight by three scenarios taDOM’s flexibility and tailor-made adap-
tations to XML documents as compared to competitor approaches. Assume
transaction T1 – after having set appropriate intention locks on the path from
the root – wants to read-lock context node cn. Independently of whether or not
T1 needs subtree access, MGL only offers a subtree lock on cn, which forces
concurrent writers (T2 and T3 in Fig. 9(a)) to wait for lock release in a lock re-
quest queue (LRQ). In the same situation, node locks (NR and NX) would allow
greatly enhance permeability in cn’s subtree (Fig. 9(b)). As the only lock gran-
ule, however, node locks would result in excessive lock management cost and
catastrophic performance behavior, especially for subtree deletion [20]. A fre-
quent XML read scenario is scanning of cn and all its children, which taDOM
enables by a single lock with special mode (LR). As sketched in Fig. 9(c), LR
supports write access to deeper levels in the tree. The combined use of node,
level, and subtree locks gives taDOM its unique capability to tailor and mini-
mize lock granules. Above these granule choices, additional flexibility comes from
lock-depth variations on demand – a powerful option only provided by taDOM.

8.2 The taDOM Protocol Family

Continuous improvement of these basic concepts led to a whole family of lock
protocols, the taDOM family, and finally resulted in a highly optimized protocol
called taDOM3+ (tailor-made for the operations of the DOM3 standard [8]),

42 T. Härder et al.

which consists of 20 different lock modes and “squeezes transaction parallelism”
on XML document trees to the extent possible. Correctness and, especially,
serializability of the taDOM protocol family was shown in [21,40].

The concept of meta-locking implemented in XTC provides the flexibility to
exchange lock protocols at runtime. Hence, such dynamic adaptations of lock
management are a prerequisite to achieve workload-dependent optimization of
concurrency control and to eventually reach autonomic tuning of multi-user
transaction processing [2].

8.3 Enhancing Multi-user Performance

We cross-compared 12 protocols under identical workloads and in the same sys-
tem environment [20] using meta-locking, i. e., without hardwiring all the differ-
ent lock protocols in the XTC code. In this lock contest, the taDOM protocols
have clearly proven their superiority over all competitors. Protocols only offer-
ing node locks were beaten roughly by a factor of 2 by MGL protocols which,
in addition, provided subtree locks. Supplementary to MGL equipped with level
locks, the taDOM protocol family, in turn, achieved once again a doubling of the
transaction throughput [20].

Every improvement of the lock protocol, however, shifts the locking perfor-
mance a bit more from the level of logical XML trees down to the underlying
storage structures. Hence, an efficient and scalable B*-tree implementation in
an adjusted infrastructure is mandatory. Together with fine-tuning measures to
workload characteristics, we added the following drivers for locking performance
to our initial XTC version:

– B*-tree Locking (D1): Initial tree traversal locked all visited index pages to
rely on stable ancestor paths in case of leaf page split or merges. Provoking
high update contentions, we re-implemented our B*-tree to follow the ARIES
protocol [33] for index structures, which is completely deadlock-free and can
therefore use cheap latches (semaphores) instead of more expensive locks.
Contention during tree traversals is reduced by latch coupling, where at most
a parent page and one of its child pages are latched at the same time.

– Storage Manager (D2): Needing full root-to-leaf traversal, navigation em-
bodies a crucial performance aspect of a B*-tree-based storage manager. We
observed high locality in the leaf pages and remembered those pages and
their version numbers as a hint for future operations. Each time when re-
accessing the B*-tree for navigation, we use this information to first locate
the leaf page of the context node. Only if this hint fails, we have to perform
a full root-to-leaf traversal of the index to find the correct leaf.

– Buffer Manager (D3): Prefix-compression of SPLIDs is very effective to save
storage space and disk IO, but must be paid with higher costs for encoding
and decoding of compressed records. To avoid this unnecessary decoding
overhead and to speed up record search in a page, we enabled buffer pages
to carry a cache for already decoded entries.

– Dynamic Lock Depth Adjustment(D4): Growing lock depth refines lock gran-
ules to minimal sizes that do not always pay off, because conflicting oper-

Essential Performance Drivers in Native XML DBMSs 43

 200

 400

 600

 800

 1000

 1200

 1400

 1600

SU 0 1 2 3 4 5 6 7 8

(a) Committed (old)

 100

 200

 300

 400

 500

SU 0 1 2 3 4 5 6 7 8

[Lock Depth]

no escalation
moderate

eager
aggressive

(b) Aborted (old)

 1000

 2000

 3000

 4000

 5000

 6000

 7000

SU 0 1 2 3 4 5 6 7 8

(c) Committed (new)

 200

 400

 600

 800

 1000

 1200

 1400

 1600

SU 0 1 2 3 4 5 6 7 8

(d) Aborted (new)

Fig. 10. Effects of lock depth and lock escalation on transaction throughput (tpm)

ations often occur at levels closer to the document root. In turn, it en-
larges administration overhead, because the number of locks to be managed
increases. Therefore, optimal lock depth depends on document properties,
workloads, and other runtime parameters like multiprogramming level, etc.,
and has to be steadily controlled and adjusted at runtime. For this reason,
we leveraged dynamic lock escalation/deescalation as the most effective so-
lution. Using empirically proven heuristics for conflict potential in subtrees,
the simple formula threshold = k ∗ 2−level delivered escalation thresholds
taking into account that typically fanout and conflicts decrease with deeper
levels. Parameter k is adjusted to current workload needs.

– Avoidance of Conversion Deadlocks (D5): Typically, deadlocks occurred
when two transactions tried to concurrently append new fragments under
a node already read-locked by both of them. Conversion to an exclusive lock
involved both transactions in a deadlock. Update locks are designed for re-
lational systems to avoid such conversion deadlocks [11], because they allow
for a direct upgrade to an exclusive lock, when the transaction decides to
modify the current record, or for a downgrade to a shared lock, when the
cursor is moved to the next record without any changes. Transactions in
XDBMSs do not follow such easy access patterns. Instead, they often per-
form arbitrary navigation steps, e. g., to check the content of child elements,
before modifying a previously visited node. Hence, we carefully enriched
our access plans with hints when to use update locks for node or subtree
access.

Here, we can only sketch the results of these “performance drivers” which are de-
scribed in [3]. We created read/write transaction benchmarks with high blocking
potential, which access and modify a generated XMark document [37] at varying

44 T. Härder et al.

levels and in different granules. To get insight in the behavior of the lock-depth
optimization D4, we measured the throughput of transactions per minute (tpm)
and ran the experiments for three escalation thresholds (moderate, eager, aggres-
sive) in single user mode (SU) and in multi-user mode with various initial lock
depths (0–8). To draw the complete picture and to reveal the dependencies to our
other optimizations, we repeated the tests with two XTC versions: XTC based
on the old B*-tree implementation and XTC using the new B*-tree implemen-
tation together with the optimizations D2 and D3. To identify the performance
gain caused by D1–D3, we focused on transaction throughput, i. e., commit and
abort rates, and kept all other system parameters unchanged. Fig. 10 compares
the experiment results. In single-user mode, the new version improves through-
put by a factor of 3.5, which again highlights the effects of D2 and D3. The
absence of deadlocks and the improved concurrency of the latch-coupling proto-
col in the B*-tree (D1) becomes visible in the multi-user measurements, where
throughput speed-up even reaches a factor of 4 (see Fig. 10(a) and (c)) and the
abort rates almost disappear for lock depths > 2 (see Fig. 10(b) and (d)).

Deadlocks induced by the old B*-tree protocol were also responsible for the
fuzzy results of the dynamic lock depth adjustment (D4). With a deadlock-free
B*-tree, throughput directly correlates with lock overhead saved and proves the
benefit of escalation heuristics (see Fig. 10(c) and (d)).

9 Conclusions

In this survey, we outlined performance-critical concepts and their implemen-
tation in XTC. By observing performance bottlenecks or inappropriate system
behavior in early experiments, we could adjust numerous algorithms in XTC.
But removing a bottleneck often revealed another one at a higher performance
level. Hence, we had to iteratively and repeatedly improve XTC to reach the
current system version mature in many aspects. As outlined, we have identified
and are still identifying during this maturing process many performance drivers
in various architectural layers. So far, we have often gained orders of magnitude
in component speed-ups and, as a consequence, dramatic overall performance
improvements. Future research will address further enhancements in autonomic
system behavior [38] and energy efficiency by using flash disks and implementing
energy-aware algorithms in specific XDBMS components.

References

1. Aguiar Moraes Filho, J., Härder, T.: EXsum – An XML Summarization Frame-
work. In: Proc. IDEAS, pp. 139–148 (2008)

2. Bächle, S., Härder, T.: Tailor-Made Lock Protocols and Their DBMS Integration.
In: Proc. EDBT 2008 Workshop on Software Engineering for Tailor-made Data
Management, pp. 18–23 (2008)

3. Bächle, S., Härder, T.: The Real Performance Drivers Behind XML Lock Protocols.
In: Bhowmick, S.S., Küng, J., Wagner, R. (eds.) DEXA 2009. LNCS, vol. 5690, pp.
38–52. Springer, Heidelberg (2009)

Essential Performance Drivers in Native XML DBMSs 45

4. Bruno, N., Koudas, N., Srivastava, D.: Holistic Twig Joins: Optimal XML Pattern
Matching. In: Proc. SIGMOD, pp. 310–321 (2002)

5. Chen, T., Lu, J., Ling, T.W.: On Boosting Holism in XML Twig Pattern Matching
Using Structural Indexing Techniques. In: Proc. SIGMOD, pp. 455–466 (2005)

6. Chen, S., Li, H.-G., Tatemura, J., Hsiung, W.-P., Agrawal, D., Candan, K.S.:
Twig2Stack: Bottom-Up Processing of Generalized-Tree-Pattern Queries over XML
Documents. In: Proc. VLDB, pp. 283–294 (2006)

7. Christophides, W., Plexousakis, D., Scholl, M., Tourtounis, S.: On Labeling
Schemes for the Semantic Web. In: Proc.12th Int. WWW Conf., pp. 544–555 (2003)

8. Document Object Model (DOM) Level 2 / Level 3 Core Specification. W3C Rec-
ommendation (2004), http://www.w3.org/TR/DOM-Level-3-Core

9. Fontoura, M., Josifovski, V., Shekita, E.J., Yang, B.: Optimizing Cursor Movement
in Holistic Twig Joins. In: Proc. CIKM, pp. 784–791 (2005)

10. Graefe, G.: Hierarchical Locking in B-Tree Indexes. In: Proc. German National
Database Conf. (BTW). LNI, vol. 65, pp. 18–42. Springer, Heidelberg (2007)

11. Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan
Kaufmann, San Francisco (1993)

12. Haas, L., Freytag, J.-C., Lohman, G.M., Pirahesh, H.: Extensible Query Processing
in Starburst. In: Proc. SIGMOD, pp. 377–388 (1989)

13. Härder, T.: XML Databases and Beyond – Plenty of Architectural Challenges
Ahead. In: Eder, J., Haav, H.-M., Kalja, A., Penjam, J. (eds.) ADBIS 2005. LNCS,
vol. 3631, pp. 1–16. Springer, Heidelberg (2005)

14. Härder, T., Haustein, M.P., Mathis, C., Wagner, M.: Node Labeling Schemes for
Dynamic XML Documents Reconsidered. Data & Knowl. Eng. 60(1), 126–149
(2007)

15. Härder, T., Mathis, C., Schmidt, K.: Comparison of Complete and Elementless
Native Storage of XML Documents. In: Proc. IDEAS, pp. 102–113 (2007)

16. Härder, T., Schmidt, K., Ou, Y., Bächle, S.: Towards Flash Disk Use in Databases –
Keeping Performance While Saving Energy? In: Proc. German National Database
Conf. (BTW). LNI, vol. 144, pp. 167–186. Springer, Heidelberg (2009)

17. Härder, T., Reuter, A.: Concepts for Implementing a Centralized Database Man-
agement System. In: Proc. Int. Computing Symposium on Application Systems
Development, pp. 28–60. B.G. Teubner-Verlag (1983)

18. Haustein, M.P.: Fine-Granular Transaction Isolation in Native XML Database
Management Systems (in German), Ph.D. Thesis, Univ. of Kaiserslautern, Ver-
lag Dr. Hut, München (2006)

19. Haustein, M.P., Härder, T., Mathis, C., Wagner, M.: DeweyIDs – The Key to
Fine-Grained Management of XML Documents. In: Proc. SBBD, pp. 85–99 (2005)

20. Haustein, M.P., Härder, T., Luttenberger, K.: Contest of XML Lock Protocols. In:
Proc. VLDB, pp. 1069–1080 (2006)

21. Haustein, M.P., Härder, T.: Optimizing Lock Protocols for Native XML Processing.
Data & Knowl. Eng. 65(1), 147–173 (2008)

22. Jagadish, H.V., Al-Khalifa, S., Chapman, A.: TIMBER: A Native XML Database.
The VLDB Journal 11(4), 274–291 (2002)

23. Jiang, H., Wang, W., Lu, H., Yu, J.X.: Holistic Twig Joins on Indexed XML Doc-
uments. In: Proc. VLDB, pp. 273–284 (2003)

24. Jiao, E., Ling, T.W., Chan, C.Y.: PathStack¬: A Holistic Path Join Algorithm for
Path Query with Not-Predicates on XML Data. In: Zhou, L.-z., Ooi, B.-C., Meng,
X. (eds.) DASFAA 2005. LNCS, vol. 3453, pp. 113–124. Springer, Heidelberg (2005)

25. Li, C., Ling, T.W., Hu, M.: Efficient Updates in Dynamic XML Data: from Binary
String to Quaternary String. VLDB J. 17(3), 573–601 (2008)

http://www.w3.org/TR/DOM-Level-3-Core

46 T. Härder et al.

26. Loeser, H., Nicola, M., Fitzgerald, J.: Index Challenges in Native XML Database
Systems. In: Proc. German National Database Conf. (BTW). LNI, vol. 144, pp.
508–523. Gesellschaft für Informatik (2009)

27. Lu, J., Chen, T., Ling, T.W.: Efficient Processing of XML Twig Patterns with
Parent-Child Edges: a Look-Ahead Approach. In: Proc. CIKM, pp. 533–542 (2004)

28. Lu, J., Chen, T., Ling, T.W.: TJFast : Effective Processing of XML Twig Pattern
Matching. In: Proc. WWW, pp. 1118–1119 (2005)

29. Mathis, C.: Storing, Indexing, and Querying XML Documents in Native XML
Database Management Systems, Ph.D. Thesis, Univ. of Kaiserslautern, Verlag
Dr. Hut, München (2009)

30. Mathis, C., Härder, T., Haustein, M.P.: Locking-Aware Structural Join Operators
for XML Query Processing. In: Proc. SIGMOD, pp. 467–478 (2006)

31. Mathis, C., Härder, T., Schmidt, K., Bächle, S.: XML Indexing and Storage: Ful-
filling the Wish List (submitted, 2009)

32. Miklau, G.: XML Data Repository,
http://www.cs.washington.edu/research/xmldatasets

33. Mohan, C.: ARIES/KVL: A Key-Value Locking Method for Concurrency Control
of Multiaction Transactions Operating on B-Tree Indexes. In: Proc. VLDB, pp.
392–405 (1990)

34. O’Neil, P., O’Neil, E., Pal, S., Cseri, I., Schaller, G., Westbury, N.: OrdPaths:
Insert-Friendly XML Node Labels. In: Proc. SIGMOD, pp. 903–908 (2004)

35. Özcan, F., Seemann, N., Wang, L.: XQuery Rewrite Optimization in IBM DB2
pureXML. Data Engineering Bulletin 31(4), 25–32 (2008)

36. Qin, L., Yu, J.X., Ding, B.: TwigList: Make Twig Pattern Matching Fast. In: Ko-
tagiri, R., Radha Krishna, P., Mohania, M., Nantajeewarawat, E. (eds.) DASFAA
2007. LNCS, vol. 4443, pp. 850–862. Springer, Heidelberg (2007)

37. Schmidt, A., Waas, F., Kersten, M.L., Carey, M.J., Manolescu, I., Busse, R.:
XMark: A Benchmark for XML Data Management. In: Proc. VLDB, pp. 974–985
(2002)

38. Schmidt, K., Härder, T.: Usage-Driven Storage Structures for Native XML
Databases. In: Proc. IDEAS, pp. 169–178 (2008)

39. Schöning, H.: Tamino–A DBMS Designed for XML. In: Proc. ICDE, pp. 149–154
(2001)

40. Siirtola, A., Valenta, M.: Verifying Parameterized taDOM+ Lock Managers. In:
Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., Bieliková, M.
(eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 460–472. Springer, Heidelberg (2008)

41. Weiner, A.M., Härder, T.: Using Structural Joins and Holistic Twig Joins for Na-
tive XML Query Optimization. In: Grundspenkis, J., Morzy, T., Vossen, G. (eds.)
ADBIS 2009. LNCS, vol. 5739, pp. 149–163. Springer, Heidelberg (2009)

42. Weiner, A.M., Härder, T.: A Framework for Cost-Based Query Optimization in
Native XML Database Management Systems. In: Li, C., Ling, T.W. (eds.) Ad-
vanced Applications and Structures in XML Processing: Label Streams, Semantics
Utilization, and Data Query Technologies. IGI Global (2010)

43. XML on Wall Street, Financial XML Projects,
http://lighthouse-partners.com/xml

44. Yu, J.X., Luo, D., Meng, X., Lu, H.: Dynamically Updating XML Data: Numbering
Scheme Revisited. World Wide Web 8(1), 5–26 (2005)

45. Yu, T., Ling, T.W., Lu, J.: TwigStackList¬: A Holistic Twig Join Algorithm for
Twig Query with Not-Predicates on XML Data. In: Li Lee, M., Tan, K.-L., Wu-
wongse, V. (eds.) DASFAA 2006. LNCS, vol. 3882, pp. 249–263. Springer, Heidel-
berg (2006)

http://www.cs.washington.edu/research/xmldatasets
http://lighthouse-partners.com/xml

Continuous Processing of Preference Queries
in Data Streams

Maria Kontaki, Apostolos N. Papadopoulos, and Yannis Manolopoulos

Department of Informatics, Aristotle University
54124 Thessaloniki, Greece

{kontaki,papadopo,manolopo}@csd.auth.gr

Abstract. Preference queries have received considerable attention in
the recent past, due to their use in selecting the most preferred ob-
jects, especially when the selection criteria are contradictory. Nowadays,
a significant number of applications require the manipulation of time
evolving data and therefore the study of continuous query processing
has recently attracted the interest of the data management community.
The goal of continuous query processing is to continuously evaluate long-
running queries by using incremental algorithms and thus to avoid query
evaluation from scratch, if possible. In this paper, we examine the charac-
teristics of important preference queries, such as skyline, top-k and top-k
dominating and we review algorithms proposed for the evaluation of con-
tinuous preference queries under the sliding window streaming model.

1 Introduction

Recently, preference queries have significantly attracted the research interest.
Preference queries are frequently used in multicriteria decision making applica-
tions, where a number of (usually) contradictory criteria are involved to select
the most convenient answers to the user.

Assume that a customer is interested in purchasing a PDA device. Assume
further, that the customer focuses on two important characteristics of PDAs,
namely, price and weight. Unfortunately, these two criteria are frequently con-
tradictory and therefore, the number of candidates should be carefully selected.
In this example, each PDA is represented as a tuple containing two attributes
(price and weight) and the customer is interested in items that minimize these
attributes. Depending on the semantics of each attribute, in other cases the cus-
tomer may desire the maximization of the attributes in question, or any other
combination. For the rest of the discussion, we consider that smaller values are
preferable. However, most of the techniques mentioned in this paper are directly
applicable to other cases as well.

Preference queries have received considerable attention in the past, due to
their use in selecting the most preferred items, especially when the selection cri-
teria are contradictory. Skyline [5,8,29,44] and top-k [3,7,10] queries have been
thoroughly studied by the database community. Preferences have been used pre-
viously in other disciplines such as Game Theory (e.g., Pareto optimality [34])
and Computational Geometry (e.g., maximal vectors [20]).

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 47–60, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

48 M. Kontaki, A.N. Papadopoulos, and Y. Manolopoulos

During the last years, we are witnessing a significant interest of the research
community towards continuous query processing, due to the fact that many
applications deal with data that change frequently with respect to time. In these
types of applications, the goal is to continuously evaluate the query and report
the result in real time contrary to ad-hoc query executions that are used in
traditional applications [1,12,25]. Examples of such emerging applications are
network monitoring, financial data analysis, sensor networks to name a few.

The most important property of data streams is that new tuples are contin-
uously appended and, therefore, efficient storage and processing techniques are
required to cope with high update rates. More specifically, a stream-oriented al-
gorithm should satisfy the following requirements: (a) fast response time, (b) in-
cremental evaluation, (c) limited number of data access, and (d) in memory
storage to avoid expensive disk accesses. Therefore, algorithms proposed for tra-
ditional databases are not appropriate and new methods and techniques should
be developed to fulfil the requirements posed by the data stream model.

Efficient stream processing algorithms are difficult to be designed, due to the
unbounded nature of data streams. Several models have been proposed to reduce
and bound the size of the streams. A class of algorithms focuses on the recent
past of data streams by applying the sliding window model [2,14]. This way,
only the most recent tuples (active tuples) of the data stream are considered for
query processing, whereas older tuples are not taken into account as they are
considered obsolete.

There exist two basic forms of sliding windows. In a count-based sliding win-
dow, the number of active tuples remains constant (i.e., the sliding window
contains the last W tuples) and therefore for each new tuple that arrives, the
oldest one expires. In a time-based sliding window, the number of active tuples
may vary. The expiration time of a tuple does not depend on the arrival or expi-
ration of other tuples. The set of active tuples is composed of all tuples arrived
the last T time instances. Figure 1 illustrates a count-based sliding window.

In this paper, we discuss the state-of-the-art processing techniques of the most
important preference queries in data streams under the sliding window model.

The last W values of the data stream
are considered for query processing

Fig. 1. Example of a count-based sliding window of length W=9

Continuous Processing of Preference Queries in Data Streams 49

More specifically, we study proposed methods for the continuous evaluation of
skyline and top-k queries. Moreover, we examine closely a new type of prefer-
ence query, the top-k dominating query, that recently has attracted significant
researcher interest.

The rest of the paper is organized as follows. Sections 2 and 3 study different
processing techniques of skyline and top-k queries respectively and give detailed
description for the most important ones. Section 4 presents the top-k dominating
query and discusses early related work on this topic. Finally, Section 5 concludes
the work and discusses future research directions.

2 Skyline Queries

The skyline query is one of the most widely used preference queries. It is based
on the dominance relationship between tuples. Assuming that smaller values
are preferable in all dimensions, the dominance relationship and the skyline are
defined as follows:

Definition 1 (dominant tuple).A tuple ti dominates another tuple tj (ti≺ tj),
if and only if ti is smaller than or equal to tj in all dimensions and it is strictly
smaller than tj in at least one of them.

Definition 2 (skyline). The skyline consists of the tuples not dominated by
any other tuple.

The key advantage of the skyline query is that it does not require any user-
defined information or parameter. Moreover, skyline queries are characterized
by the scaling invariance property, which means that if scaling is applied to
any dimension values, the result remains unchanged. On the other hand, as the
dimensionality increases, the probability for a tuple to dominate another tuple
is reduced significantly and, therefore, the number of skyline tuples increases
substantially. Overall, the skyline query does not bound the size of the output
and therefore in extreme cases it is possible that all the tuples be part of the
skyline result.

In the past decade, skyline queries are thoroughly studied for several types
of modern applications such as P2P networks [43], MANETs [15] and Web sys-
tems [4]. Moreover, methods for different types of data, such as spatial [39] and
uncertain data [35], are developed to increase efficiency of skyline query process-
ing. Additionally, several variations of the skyline have been proposed. In [44],
the authors study the skyline computation in subspaces. Another variation has
been proposed in [29] for selecting skyline tuples according to their domination
capabilities. Dominance relationships between different data sets (e.g., products
and customers) are examined in [27], where the authors proposed an organization
scheme called DADA cube, to support a number of significant query types.

The first attempt to develop an algorithm more suitable for dynamic data
was [41], where the authors presented a progressive algorithm for skyline compu-
tation. In the sequel, more sophisticated and efficient progressive methods have

50 M. Kontaki, A.N. Papadopoulos, and Y. Manolopoulos

Table 1. Continuous skyline algorithms

Method Query Type Window Type Multiple Queries

cnN skyline count-based yes
LookOut skyline time-based no

Lazy and Eager skyline both no
Filter and Sampling FSQW time-based no

CoSMuQ k-dominant skyline both yes

been developed [24,37,38]. These algorithms are not appropriate for continuous
evaluation but, instead, they were developed to support online user preferences
and data that are not updated frequently and only a small number of inser-
tions/deletions can be handled efficiently. Table 1 contains a brief description of
continuous skyline computation algorithms, which are studied in detail in the
next subsections.

2.1 cnN

In [28], the authors proposed a novel technique for continuous skyline query
processing. First, they provide a pruning technique to reduce the number of
elements to be stored for processing. If the data distribution is independent
and data values are always distinct, then the average number of elements that
are stored is O(logd N), where N is the maximum size of the sliding windows
and d is the number of dimensions. The survived elements RN are organized
in graphs based on the critical dominance relationship between them and these
graphs form a forest. Assume two active elements e1 and e2. Element e1 critical
dominates e2, if it is the youngest element that is older than e2 and dominates it.
Each critical dominance relationship is represented by an edge of the forest. The
forest is encoded by a set of intervals of 1-dimensional space and then skyline
query is evaluated by using stabbing queries.

In addition, a maintenance algorithm of RN and the encoded scheme of in-
tervals is provided. Then, a trigger-based incremental algorithm cnN has been
proposed to enable efficient continuous skyline processing. The proposed frame-
work supports multiple n-of-N skyline queries, i.e., skyline queries with different
sliding window size n (n ≤ N). The continuous algorithm updates the result in
O(δ) time per new data element and requires O(log s) time to update the trigger
list per result change, where δ is the number of elements changed in the current
result and s is the number of skylines elements. The main disadvantage of the
cnN algorithm is that it requires the maintenance of several structures, such as
graphs, interval tree and R∗-tree used for the survived tuples.

2.2 LookOut

Algorithm cnN handles count-based sliding windows, whereas algorithm
LookOut [33] has been proposed for time-based windows. LookOut uses a heap
to store the skyline tuples and a R∗-tree to store the active tuples of the window.

Continuous Processing of Preference Queries in Data Streams 51

The proposed method utilizes some attractive properties of skyline queries, such
as the transitive property. When a new tuple is inserted, we check if the new
tuple is a skyline tuple or not. The algorithm uses a best-first search on the
spatial index and discards nodes that their lower left corner does not dominate
the new tuple. When a skyline tuple expires, we check the spatial index to find
new skyline tuples. The key observation is that new skyline tuples should be
part of the skyline of the space dominated by the expired tuple. These tuples
are detected by a best-first search and then are checked further to discard tuples
that are dominated by other skyline tuples. Notice that the proposed algorithm
does not prune tuples (all the active tuples are stored in a R∗-tree), although
this is possible as we will see in the next subsection.

2.3 Lazy and Eager

In [42], two algorithms have been presented, called Lazy and Eager. We begin
our description with the first one. When a new tuple t arrives, Lazy searches
for tuples in the dominance region (DR) and the antidominance region of t to
update the skyline tuples. Region t.DR is the data space that is dominated by t,
whereas t.ADR is the area where a tuple dominating t could fall. When a skyline
tuple expires, the algorithm deletes all the expired tuples (notice that Lazy keep
stored tuples even after their expiration) and then tries to find possible skyline
tuples in the area dominated exclusively by the expired skyline tuple. Lazy and
LookOut methods are similar, since they have same operations.

To improve performance, two attractive properties of “stream skylines” have
been presented in [42]: (a) a tuple can be safely discarded if it is dominated by
an incoming tuple, and (b) a tuple can be part of skyline for at most a sin-
gle continuous time interval, which is called skyline influence time and denotes
the minimum possible time at which the tuple can be part of skyline. Algo-
rithm Eager utilizes these properties. Therefore, when a new tuple t is inserted,
Eager during the skyline update also discards the active tuples belonging to
t.DR. Then, it computes the skyline influence time of t and forms an event that
will be processed in this time. Eager compared to Lazy reduces the memory
consumption by keeping those tuples that may be inserted in the skyline, but
requires additional overhead to process the events.

2.4 Filter and Sampling

Continuous skyline queries report the skyline of the active tuples in each update.
These types of skylines are called snapshot skylines. In [47], the authors state
that snapshot skylines are not very meaningful, since in a streaming environment
the skyline tuples may change too fast, and thus, it will be more interesting to
identify tuples that are consistently part of skyline. Therefore, they introduce
a variation of snapshot skylines called frequent skyline query over a sliding win-
dow (FSQW), which returns the tuples appearing in the skylines of at least μ of
the n most recent timestamps. It is proved that an exact algorithm for FSQW
requires the exact snapshot skyline computation.

52 M. Kontaki, A.N. Papadopoulos, and Y. Manolopoulos

The server-client architecture is considered, where the server continuously
maintains the result. Moreover, changes to existing tuples are considered in-
stead of new tuples, i.e., each client transmit a specific tuple and changes of it.
Three algorithms have been proposed aiming at minimizing the communication
overhead instead of processing cost [47]. The first algorithm, called Filter, is an
exact algorithm and therefore can be also used for the evaluation of snapshot
skylines. Filter avoids the transmission of updates to the server if they cannot
influence the skyline. Specifically, the server computes a filter for each tuple
and an update is transmitted from the client to the server only if (a) the tuple
violates its filter, or (b) the server specifically asks the tuple. There are many
possible filters for each tuple. The authors propose a model that tries to balance
the transmissions due to filter violations and server requests.

Although Filter reduces significantly the number of updates transmitted to
the server, its performance may degrade for large and frequently updated data
sets. Algorithm Sampling has been proposed to reduce the communication over-
head by computing approximate FSQW outputs. According to Sampling, all
clients report their current status with some global probability R, which depends
on the trade-off between user-defined accuracy and overhead. Finally, an algo-
rithm, called Hybrid, has been presented that combines Filter and Sampling.
Hybrid exploits the advantages of the two algorithms and avoids their disadvan-
tages by allowing records to switch among different modes.

2.5 CoSMuQ

The number of skyline tuples depends heavily on the dimensionality of the data
set and the data distribution. The number of tuples in the skyline increases sub-
stantially with increasing dimensionality, leading to difficulties in selecting the
best object that satisfy user’s preferences. Towards eliminating the huge num-
ber of skyline tuples, a novel method has been proposed in [11], which relaxes
the dominance definition to increase the probability that a tuple will domi-
nate another. Evidently, by increasing this probability, the number of skyline
tuples is reduced. Instead of searching for ordinary skyline tuples in all dimen-
sions, k-dominant skylines are being used. Assuming that the smaller values are
preferable, the following definitions explain:

Definition 3 (k-dominant tuple). A tuple ti k-dominates another tuple tj,
if and only if ti is smaller than or equal to tj in at least k dimensions and it is
strictly smaller than tj in at least one of them.

Definition 4 (k-dominant skyline). The k-dominant skyline consists of the
tuples not k-dominated by any other tuple.

The processing techniques reported in [11] are executed in static data sets. In [21]
the continuous k-dominant skyline evaluation over sliding windows is studied.
The proposed algorithm CoSMuQ handles multiple continuous queries. Each
query may be defined in a subset of the available dimensions, since different
users are usually interested in different attributes. Moreover, the parameter k

Continuous Processing of Preference Queries in Data Streams 53

set by each query, may be different. The proposed method divides the space
in pairs of dimensions. For each pair, a grid is used to compute skyline tuples
for these dimensions. Then, the method exploits the discovered skyline tuples to
eliminate candidate k-dominant skyline tuples and it combines the partial results
to compute the final result. The proposed scheme uses only simple domination
checks, which are faster than k-dominant checks. However, in high dimensional
spaces, CoSMuQ considers a large number of grids.

3 Top-k Queries

A top-k query uses a user-defined preference function to assign scores to tuples
and rank them. Assuming that smaller values of the preference function are
preferable, the top-k query is defined as follows:

Definition 5 (top-k). Given a data set and a preference function F , a top-k
query returns the k tuples in the data set with the smallest scores according to F .

Figure 2 depicts a time instance of the sliding window (W=10) of two-dimensional
tuples. Assume that the preference function F is the sum of the values in two di-
mensions, whereas smaller values of F are preferable. A top-3 query (k=3) re-
trieves tuples t7, t8 and t3, since they have the three smallest score 5, 5 and 5.5
respectively. In this example, the skyline consists of tuples t3, t4, t5, t7 and t8,
since these tuples are not dominated by any other active tuple.

In contrast to skyline queries, top-k queries bound the output size. If two or
more tuples have the same score, then we can either: (a) report all these tuples
but we may expect more than k tuples in the result, or (b) use a tie-breaking
criterion, e.g., the value of a specific dimension. The major disadvantage of the
top-k query is that it requires a user-defined preference function. This means
that different preference functions can lead to different score assignments and

1 4

1

2

3

4

5

6
d2

d1

t9

t6
t8

t3

t5

t2
t1

t4

(a) 2-dimensional representation (b) tuples and scores

t7

t10

id d1 d2
t1 4 4.5
t2 6.5 5
t3 0.5 5
t4 5 1.5
t5 6 0.5
t6 3 4
t7 2.5 2.5
t8 1.5 3.5
t9 4.5 3
t10 5.5 5.5

F=d1+d2
8.5
7

5.5
6.5
6.5
7
5
5

7.5
11

2 3 5 6 7

Fig. 2. Example of preference queries

54 M. Kontaki, A.N. Papadopoulos, and Y. Manolopoulos

therefore in different results. Thus, the analysis of the results is not straight-
forward. Moreover, it is not always easy for a user to specify the appropriate
preference function, especially with growing number of dimensions.

The literature is rich in methods proposed for the efficient evaluation of top-
k queries [3,7,10,16]. Top-k queries have been studied in the context of several
database types, such as relational [3], multimedia [9] and web databases [31].
Algorithms Onion [7] and Prefer [16] have been proposed for top-k queries
in traditional databases. Onion uses the convex hulls of the database, whereas
Prefer uses sorted lists. In [10], the authors presented algorithm MPro for
the optimization of expensive predicates processing. Views are used in [13] to
answer top-k queries. All the aforementioned methods are appropriate for con-
ventional databases. There are many other methods in the bibliography but
their description is beyond the scope of this paper. An excellent survey on top-k
query processing in relational databases can be found in [18]. We continue with
the detailed description of methods proposed for continuous top-k evaluation.
A summary of the studied algorithms is given in Table 2.

Table 2. Continuous top-k methods algorithms

Method Query Type Window Type Multiple Queries

TMA and SMA top-k both yes
Distributed top-k distributed top-k time-based no

Compact Set based top-k on uncertain data time-based no
Det and Sam top-k on uncertain data time-based no

3.1 TMA and SMA

Mouratidis et al. [32] proposed two algorithms for continuous top-k query execu-
tion in sliding windows. The first one, called TMA, is based on simple observa-
tions regarding the continuous processing of top-k queries. Each top-k query has
an influence region. The influence region of a query determines the data space in
which a tuple should belong so that it may change the query result. When a new
tuple is inserted, TMA checks if the new tuple belongs to the influence region
of any query and updates its top-k respectively. When a top-k tuple expires,
a from scratch computation is performed if the new tuple does not have better
score than the expired tuple.

To overcome this disadvantage, the authors proposed the algorithm SMA,
which is based on the observation that the records appearing in some result of
top-k are the ones that belong to the k-skyband [38] in the score-time space.
Thus, the proposed algorithm transforms the problem of continuous top-k into
k-skyband maintenance. SMA restricts the skyband maintenance for a query
to tuples falling inside its influence region. It uses a balanced tree to store the
arrival time of the k-skyband tuples sorted in descending order. Moreover, it
keeps the dominance counter for each tuple t stored in balanced tree, which is
the number of tuples with better score that arrive after t. However, there may

Continuous Processing of Preference Queries in Data Streams 55

be a scenario where the skyband contains fewer than k tuples. In such a case,
the algorithm computes the skyband tuples from scratch.

3.2 Distributed Top-k

Babcock and Olston [6] proposed a distributed algorithm for top-k query pro-
cessing. The problem considered in [6], assumes a central node and a number of
monitor nodes, each one monitoring a data object. The changes of a data object
form a data stream and, therefore, multiple data streams should be processed
by the central node. The transmission of the entire data stream from a monitor
node to the central node is unnecessary. Thus, the authors proposed a scheme in
which arithmetic constraints are maintained at monitor nodes and distributed
communication happens when constraints are violated. Then, the central node
updates the top-k result and assigns new constraint to the monitor node.

The proposed algorithm is exact, i.e., the central node has the correct top-
k output in every time instance. Additionally, approximate answers have been
studied. Moreover, the algorithm aims at minimizing the network overhead. How-
ever, the proposed scheme is not fully distributed, since it uses some sort of “base
station” or “coordinator”.

3.3 Compact Set-Based Algorithms

In [19], the processing of continuous top-k queries in a sliding window over uncer-
tain data streams is examined. The challenge of processing queries on uncertain
data streams lies on high update rates and the exponential growth in the num-
ber of possible worlds induced by the uncertain data model. The paper adopts
a simple uncertain data model, where each tuple appears with a certain prob-
ability independent of other tuples. Also, it defines the Pk − topk query that
returns the k most probable tuples of being the top-k among all. Moreover, the
paper introduces the concept of compact set on which the proposed synopses are
based on.

The authors extend the problem of uncertain top-k queries on static data sets
to the case of data streams over sliding windows. First, a synopsis is presented
that can handle only insertions (i.e., landmark windows). However, handling
deletions is much more difficult and requires carefully designed synopses. The
paper proposed several space and time efficient synopses with provable bounds
to enable continuous top-k evaluation over sliding windows. Overall, the authors
proposed and evaluated five algorithms based on the compact set concept.

3.4 Det and Sam

Hua and Pay [17] also examined the continuous evaluation of top-k queries over
uncertain data streams. They proposed a novel uncertain data stream model and
introduced the continuous probabilistic threshold top-k queries. More specifi-
cally, given a probabilistic threshold top-k query, a set of uncertain data streams
and a sliding window length, the continuous probabilistic threshold top-k query

56 M. Kontaki, A.N. Papadopoulos, and Y. Manolopoulos

reports the set of uncertain data streams whose top-k probabilities in the sliding
window are at least p, for each time instant t.

The authors proposed four algorithms. The exact algorithm, called Det,
computes the exact answer of a continuous probabilistic threshold top-k query.
Moreover, they proposed a sampling algorithm, called Sam, which estimates the
probability that an uncertain object being ranked top-k via sampling. Proba-
bilistic guarantees are also provided. Then, Sam computes an approximation
answer based on the estimated probabilities. Additionally, quantile summary
techniques are applied to develop the space efficient versions of both algorithms.

4 Top-k Dominating Queries

Recently, an interesting alternative has been proposed [38], which combines the
dominance concept with the notion of scoring functions. This new query is called
top-k dominating query. The following definitions explain:

Definition 6 (domination power). The domination power of a tuple is the
number of tuples it dominates.

Definition 7 (top-k dominating query). A top-k dominating query retrieves
the k tuples in the data set with the highest domination power.

To clarify the definitions above, assume the example of Figure 2. A top-3 (k=3)
dominating query retrieves tuples t7, t8 and t6 with domination power 5, 4
and 3 respectively. All the other tuples have smaller domination power than 3.
Although preference queries as skyline and top-k, have been studied in a data
stream perspective, top-k dominating queries have not received adequate at-
tention for this scenario. However, the top-k dominating query is an important
decision support tool. In a sense, it combines skyline and top-k queries, resulting
in a more complex one. Practically, it preserves their advantages without shar-
ing their limitations. Top-k dominating queries use the dominant relationship
rather than a user defined score function. The determination of the appropriate
score function is not obvious, especially when the number of attributes increases.
On the other hand, top-k dominating queries use an intuitive score to rank the
tuples that can be interpreted easily by a non-expert. Moreover, top-k dominat-
ing queries bound the size of the resulting set of tuples, in contrast to skyline
queries, where the size of the result is unbounded and increases significantly as
the number of attributes grows. Additionally, they preserve the scaling invariance
property.

In skylines and top-k queries, we can use the expiration time to prune tuples
resulting in more efficient algorithms with respect to the memory requirements
and the response time. More specifically, in a skyline query, if a tuple ti is
dominated by another tuple tj and expires before tj , then it is safe to prune
tuple ti. Assume the example of Figure 2. Assume further that the pointer of
a tuple denotes its arrival time, i.e., t1.arr=1. Tuple t1 is dominated by t8 end
expires before t8, thus t1 can be safely discarded. In a top-k query, if k tuples

Continuous Processing of Preference Queries in Data Streams 57

exist with better scores than the score of a tuple ti and ti expires before them,
then it is safe to discard tuple ti. Returning to the example of Figure 2, the score
of t1 is 8.5 and there are more than 3 tuples with score better than 8.5 and expire
after t1 (e.g., t3, t4 and t5), therefore t1 can be pruned. On the other hand, top-k
dominating queries are more complicated. It is not possible to discard tuples,
even if we know that it is not possible to be in the result during their lifespan.
This is because the existence of a tuple affects the domination power of the other
tuples.

Top-k dominating queries have been addressed in [45,46,26]. In [45,46] the
authors proposed efficient algorithms to determine the top-k dominating tuples
by using an aggregate R-tree index. In [26], the authors studied efficient algo-
rithms for top-k dominating query processing in uncertain databases. A pruning
approach has been proposed to reduce the space of a probabilistic top-k dominat-
ing query and in addition, approximate queries are examined. The domination
power is also used in [36] to rank multidimensional tuples. The concept of dom-
inance score has been used by [40] towards ranking web services.

The literature is limited regarding continuous variants of top-k dominating
query processing techniques over data streams. In [23], the authors use a simple
grid-based indexing scheme to facilitate efficient search and update operations
avoiding expensive reorganization costs of dynamic hierarchical access methods.
Three algorithms are proposed. BFA is a naive approach computing all the
domination checks in each update and it is simply proposed for comparison
reasons. The algorithms EV A and ADA use an event-based approach to reduce
both the number of domination checks during an update and the number of
exact score computations as well. ADA use two optimizations regarding the
event computations achieving the decrease of the number of events processed
and, therefore, enhancing the efficiency of EV A. Subspace top-k dominating
queries are examined in [22]. A new grid-based indexing scheme is proposed,
called adaptive grid, to efficiently process subspace top-k dominating queries.
Moreover, several optimizations are proposed to enhance the query processing
mechanism. These methods are the first attempt for continuous top-k dominating
queries evaluation.

5 Conclusions and Future Work

In this paper, we review various preference queries and we discuss their differ-
ences. Moreover, we thoroughly examine the related work on continuous pro-
cessing of preference queries over sliding windows and we discuss the advantages
and the disadvantages of the proposed methods.

Skyline queries have been examined more than other preference queries in the
context of data streams. Various methods have been proposed to handle both
count-based and time-based sliding windows. However, there are many open is-
sues to be addressed. Subspace skyline queries have not been studied as well
as many widely used variations of skylines such as constrained skylines. Re-
cently, a theoretical study of skyline cardinality estimation over sliding windows

58 M. Kontaki, A.N. Papadopoulos, and Y. Manolopoulos

is presented in [30]. The authors estimate skyline cardinality over uniformly and
arbitrary distributed data. The results of this study can be used to optimize the
query methodology to improve memory consumption and processing cost or the
network overhead.

Although the study of continuous top-k queries has moved onto uncertain data
streams, there are many research directions that should be examined, to develop
more sophisticated and efficient methods for continuous top-k queries in certain
data. Methods, more efficient than the existing ones, are required to handle
the expiration of tuples. Distributed top-k evaluation can be enhanced further
by developing methods that have as uniformly as possible energy consumption.
Methods can exploit various characteristics of data types such as spatial data to
improve efficiency in specific modern applications.

Recently, a new alternative preference query, the top-k dominating query,
has attracted the research interest. This query is an important tool for decision
support since it provides data analysts an intuitive way for finding significant
objects. However, the related work is very limited and therefore there are many
issues on this topic to be addressed. For example, approximate evaluation is
a very promising research direction, since in many cases we are willing to trade
accuracy for speed of computation. More complicated scenarios can be also ex-
amined, such as distributed environments or multiple queries existence.

References

1. Aggarwal, C.C.: Data Streams: Models and Algorithms. Springer, Heidelberg
(2007)

2. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and Issues in
Data Stream Systems. In: Proc. of PODS, pp. 1–16 (2002)

3. Bruno, N., Chaudhuri, S., Gravano, L.: Top-k Selection Queries over Relational
Databases: Mapping Strategies and Performance Evaluation. ACM TODS 27(2),
153–187 (2002)

4. Balke, W.-T., Guntzer, U., Zheng, J.X.: Efficient Distributed Skylining for
Web Information Systems. In: Bertino, E., Christodoulakis, S., Plexousakis, D.,
Christophides, V., Koubarakis, M., Böhm, K., Ferrari, E. (eds.) EDBT 2004. LNCS,
vol. 2992, pp. 256–273. Springer, Heidelberg (2004)

5. Borzsonyi, S., Kossmann, D., Stocker, K.: The Skyline Operator. In: Proc. of ICDE,
pp. 421–430 (2001)

6. Babcock, B., Olston, C.: Distributed Top-k Monitoring. In: Proc. of SIGMOD, pp.
28–39 (2003)

7. Chang, Y.-C., Bergman, L.D., Castelli, V., Li, C.-S., Lo, M.-L., Smith, J.R.: The
Onion Technique: Indexing for Linear Optimization Queries. In: Proc. of SIGMOD,
pp. 391–402 (2000)

8. Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with Presorting. In: Proc.
of ICDE, pp. 717–719 (2003)

9. Chaudhuri, S., Gravano, L., Marian, A.: Optimizing Top-k Selection Queries over
Multimedia Repositories. IEEE TKDE 16(8), 992–1009 (2004)

10. Chang, K.C.-C., Won Hwang, S.: Minimal Probing: Supporting Expensive Predi-
cates for Top-k Queries. In: Proc. of SIGMOD, pp. 346–357 (2002)

Continuous Processing of Preference Queries in Data Streams 59

11. Chan, C.Y., Jagadish, H.V., Tan, K.-L., Tung, A.K.H., Zhang, Z.: Finding k-
Dominant Skylines in High Dimensional Space. In: Proc. of SIGMOD, pp. 503–514
(2006)

12. Chaudhry, N., Shaw, K., Abdelguerfi, M.: Stream Data Management. Springer,
Heidelberg (2006)

13. Das, G., Gunopulos, D., Koudas, N., Tsirogiannis, D.: Answering Top-k Queries
Using Views. In: Proc. of VLDB, pp. 451–462 (2006)

14. Gehrke, J., Korn, F., Srivastava, D.: On Computing Correlated Aggregates over
Continual Data Stream. ACM SIGMOD Record 30(2), 13–24 (2001)

15. Huang, Z., Jensen, C.S., Lu, H., Ooi, B.C.: Skyline Queries against Mobile
Lightweight Devices in MANETs. In: Proc. of ICDE, p. 66 (2006)

16. Hristidis, V., Papakonstantinou, Y.: Algorithms and Applications for Answering
Ranked Queries Using Ranked Views. VLDB Journal 13(1), 49–70 (2004)

17. Hua, M., Pei, J.: Continuously Monitoring Top-k Uncertain Data Streams: a Prob-
abilistic Threshold Method. Distrib. Parallel Databases 26, 29–65 (2009)

18. Ilyas, I.F., Beskales, G., Soliman, M.A.: A Survey of Top-k Query Processing Tech-
niques in Relational Database Systems. ACM Comput. Surv. 40(4) (2008)

19. Jin, C., Yi, K., Chen, L., Yu, J.X., Lin, X.: Sliding Window Top-k Queries on
Uncertain Streams. In: Proc. of PVLDB, pp. 301–312 (2008)

20. Kung, H.T.: On Finding the Maxima of a Set of Vectors. Journal of the ACM 22(4),
469–476 (1975)

21. Kontaki, M., Papadopoulos, A.N., Manolopoulos, Y.: Continuous k-Dominant Sky-
line Computation on Multidimensional Data Streams. In: Proc. of SAC, pp. 16–20
(2008)

22. Kontaki, M., Papadopoulos, A.N., Manolopoulos, Y.: Continuous Top-k Dominat-
ing Queries in Subspaces. In: Proc. of PCI (2008)

23. Kontaki, M., Papadopoulos, A.N., Manolopoulos, Y.: Continuous Top-k Dominat-
ing Queries. Technical Report, Aristotle University of Thessaloniki (2009)

24. Kossmann, D., Ramsak, F., Rost, S.: Shooting Stars in the Sky: an Online Algo-
rithm for Skyline Queries. In: Proc. of VLDB, pp. 275–286 (2002)

25. Koudas, N., Srivastava, D.: Data Stream Query Processing: a Tutorial. In: Proc.
of VLDB, p. 1149 (2003)

26. Lian, X., Chen, L.: Top-k Dominating Queries in Uncertain Databases. In: Proc.
of EDBT, pp. 660–671 (2009)

27. Li, C., Ooi, B.C., Tung, A.K.H., Wang, S.: DADA: a Data Cube for Dominant
Relationship Analysis. In: Proc. of SIGMOD, pp. 659–670 (2006)

28. Lin, X., Yuan, Y., Wang, W., Lu, H.: Stabbing the Sky: Efficient Skyline Compu-
tation over Sliding Windows. In: Proc. of ICDE, pp. 502–513 (2005)

29. Lin, X., Yuan, Y., Zhang, Q., Zhang, Y.: Selecting Stars: the k Most Representative
Skyline Operator. In: Proc. of ICDE, pp. 86–95 (2007)

30. Lu, Y., Zhao, J., Chen, L., Cui, B., Yang, D.: Effective Skyline Cardinality Esti-
mation on Data Streams. In: Bhowmick, S.S., Küng, J., Wagner, R. (eds.) DEXA
2008. LNCS, vol. 5181, pp. 241–254. Springer, Heidelberg (2008)

31. Marian, A., Bruno, N., Gravano, L.: Evaluating Top-k Queries over Web-Accessible
Databases. ACM TODS 29(2), 319–362 (2004)

32. Mouratidis, K., Bakiras, S., Papadias, D.: Continuous Monitoring of Top-k Queries
over Sliding Windows. In: Proc. of SIGMOD, pp. 635–646 (2006)

33. Morse, M.D., Patel, J.M., Grosky, W.I.: Efficient Continuous Skyline Computation.
In: Proc. of ICDE, p. 108 (2006)

34. Osborne, M.J., Rubenstein, A.: A Course in Game Theory. MIT Press, Cambridge
(1994)

60 M. Kontaki, A.N. Papadopoulos, and Y. Manolopoulos

35. Pei, J., Jiang, B., Lin, X., Yuan, Y.: Probabilistic Skylines on Uncertain Data. In:
Proc. of VLDB, pp. 15–26 (2007)

36. Papadopoulos, A.N., Lyritsis, A., Nanopoulos, A., Manolopoulos, Y.: Domination
mining and querying. In: Song, I.-Y., Eder, J., Nguyen, T.M. (eds.) DaWaK 2007.
LNCS, vol. 4654, pp. 145–156. Springer, Heidelberg (2007)

37. Papadias, D., Tao, Y., Fu, G., Seeger, B.: An Optimal and Progressive Algorithm
for Skyline Queries. In: Proc. of SIGMOD, pp. 467–478 (2003)

38. Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive Skyline Computation in
Database Systems. ACM TODS 30(1), 41–82 (2005)

39. Sharifzadeh, M., Shahabi, C.: The Spatial Skyline Queries. In: Proc. of VLDB, pp.
751–762 (2006)

40. Skoutas, D., Sacharidis, D., Simitsis, A., Kantere, V., Sellis, T.: Top-k Dominant
Web Services Under Multi-Criteria Matching. In: Proc. of EDBT, pp. 898–909
(2009)

41. Tan, K.L., Eng, P.K., Ooi, B.C.: Efficient Progressive Skyline Computation. In:
Proc. of VLDB, pp. 301–310 (2001)

42. Tao, Y., Papadias, D.: Maintaining Sliding Window Skylines on Data Streams.
IEEE TKDE 18(3), 377–391 (2006)

43. Wang, S., Ooi, B.C., Tung, A.K.H., Xu, L.: Efficient Skyline Query Processing on
Peer-to-Peer Networks. In: Proc. of ICDE, pp. 1126–1135 (2007)

44. Xia, T., Zhang, D.: Refreshing the Sky: The Compressed Skycube with Efficient
Support for Frequent Updates. In: Proc. of SIGMOD, pp. 491–502 (2006)

45. Yiu, M.L., Mamoulis, N.: Efficient Processing of Top-k Dominating Queries on
Multi-Dimensional Data. In: Proc. of VLDB, pp. 483–494 (2007)

46. Yiu, M.L., Mamoulis, N.: Multidimensional Top-k Dominating Queries. VLDB
Journal 18(3), 695–718 (2009)

47. Zhang, Z., Cheng, R., Papadias, D., Tung, A.K.H.: Minimizing the Communication
Cost for Continuous Skyline Maintenance. In: Proc. of SIGMOD, pp. 495–508
(2009)

Clock Synchronization: Open Problems in
Theory and Practice

Christoph Lenzen, Thomas Locher, Philipp Sommer, and Roger Wattenhofer

Computer Engineering and Networks Laboratory TIK
ETH Zurich, 8092 Zurich, Switzerland

{lenzen,lochert,sommer,wattenhofer}@tik.ee.ethz.ch

Abstract. Clock synchronization is one of the most basic building blocks
for many applications in computer science and engineering. The purpose
of clock synchronization is to provide the constituent parts of a distributed
system with a common notion of time. While the problem of synchronizing
clocks in distributed systems has already received considerable attention
from researchers and practitioners alike, we believe that there are many
fascinating problems that remain unsolved. In this paper, we give a brief
overview of previous work in this area, followed by a discussion of open
clock synchronization problems in theory and practice.

1 Introduction

Although computer science is still a young discipline, certain signs of age are
becoming apparent. As the discipline continues to prosper, computer scientists
must become experts in some subjects—the days of the universal computer sci-
entist seem to be coming to an end. One of the main dividing lines is between
theory and practice (a.k.a. systems). Unfortunately, the gap between theory and
practice even seems to be widening as both theory and practice are developing
and advancing. One may worry that soon there will be little communication be-
tween the two camps because one side often considers questions or answers from
the other as “not really relevant”. This is unfortunate, since at least new trends,
fundamental limits, or open problems should be of interest to the other camp.

In our research group, we try to find synergies between theory and prac-
tice, unfortunately with limited success. It is quite rare that the theorists in
our group develop algorithms that have enough real-world advantages to justify
an implementation. Likewise, building a system hardly ever reveals a beautiful
theoretical problem. There are noteworthy exceptions: In the remainder of this
invited paper we will discuss clock synchronization, a prototypical example that
is inspiring from a theoretical as well as a practical point of view.

In clock synchronization, we are given a network of nodes that want to main-
tain a common notion of time. Having such a notion of time is important for many
applications, in the Internet as well as, e.g., in wireless sensor networks. Each node
may have its own hardware clock, which is not totally accurate, i.e., it experiences
a certain variable clock drift. In order to ensure that the nodes agree more or less
on the current time, the nodes must synchronize their drifting hardware clocks

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 61–70, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

62 C. Lenzen et al.

by perpetually exchanging messages containing information about their current
state. It is easy to see that it is impossible to synchronize the clocks perfectly be-
cause the nodes never have current information about the other nodes’ clock values
due to fact that all messages arrive after an unknown and variable delay. Even if
the message delays were always the same and the nodes knew this value exactly,
they still could not synchronize the clocks perfectly because of the variable hard-
ware clock drifts, i.e., a node cannot determine exactly how much another clock
progressed since the last message arrived. This gives rise to a natural question,
which is fundamental for many application domains: How well can nodes synchro-
nize their clocks given that the clocks have variable but bounded drift, and given
that messages have variable but bounded delay?

Naturally, one objective is to minimize the clock skew between any two nodes
in the network, regardless of their relative distance in the network. Apart from
minimizing this global skew, it is essential for several distributed applications
that the clock skew between neighboring nodes is as small as possible. One could
even think of applications where the global skew is not of great concern, but any
node only needs to be well synchronized with its neighbors. Apparently this local
skew that some neighboring nodes may experience depends on the (maximum)
variance of the message delay and also on the (maximum) clock drift rate. Given
that locally connected nodes can communicate directly, one may expect that the
local skew depends only on these parameters. Surprisingly, this is not true! From
a worst-case perspective, no matter what clock synchronization protocol is used,
it is always possible that two neighboring nodes experience a clock skew that is
a function of the network diameter. On the other hand, assuming random delays,
there is a high chance that transmitting repeatedly yields better results. These
results have an impact on the degree of synchronization that can be achieved
in practical distributed systems. In the next section, we give a brief summary
of known results, followed by discussions of various open clock synchronization
problems in theory and practice.

2 Related Work

There is a large literature on clock synchronization in distributed systems, mostly
focusing on (upper and lower) bounding the clock skews that can occur between
any two nodes in the system (see, e.g., [19,22,25,27]). A simple technique called
shifting [19], where the local clock rates and the message delays are adjusted
in order to produce indistinguishable executions, is often used to prove lower
bounds. Using this technique it can be shown that a worst-case clock skew of
D/2 cannot be avoided on any graph G of diameter D [2]. A stronger lower
bound of (1 + ρ)D can be proved for all algorithms that must ensure that the
clock values do not drift away from real time faster than the underlying hardware
clocks, where ρ denotes the maximum clock drift rate [15].

Not surprisingly, large clock skews may occur between nodes that are far apart
in the communicaton network, which means that these nodes experience a signif-
icant delay in their communication. An important question is how well the clocks

Clock Synchronization: Open Problems in Theory and Practice 63

of nodes that are close-by can be synchronized. In their seminal work that intro-
duced the problem of synchronizing clocks of nodes that are close-by as accurately
as possible, Fan and Lynch [8] showed that no algorithm can prevent a clock skew
of Ω(logb D) between neighboring nodes, where b ∈ O((log D)/ρ). The only con-
straint is that nodes are required to increase their clock values at a given minimum
progress rate. Note that this constraint is quite natural because it ensures that all
clocks steadily make progress. Subsequently, the base of the logarithm has been
improved to b ∈ Θ(1/ρ), i.e., it has been shown that a clock skew of Ω(log1/ρ D)
between some neighboring nodes cannot be avoided [15]. Moreover, if the progress
rate of all clocks must always lie in an interval [1−O(ρ), 1 +O(ρ)], there are in-
distinguishable executions such that in one of these executions some neighboring
nodes experience a clock skew of Ω(log D) [15].

The clock synchronization algorithm by Srikanth and Toueg [27] guarantees
a bound ofO(D) on the clock skew between any two nodes at all times and is thus
asymptotically optimal. The algorithm is further fault-tolerant and achieves an
accuracy with respect to real time that is also optimal. However, their algorithm
incurs a skew of Θ(D) between neighboring nodes in the worst case. The first
algorithm, which is based on a technique called blocking, that guarantees a sub-
linear bound on the clock skew between neighboring nodes achieves a bound
of O(

√
ρD) [17,18]. The same technique can also be applied to dynamic set-

tings, where nodes and edges can appear and disappear continuously [13]. In the
static scenario, the upper bound has been improved to O(log D) [14] and sub-
sequently to O(log1/ρ D) [15], which matches the lower bound. The algorithm
that achieves this tight bound also guarantees an optimal bound on the clock
skew between any two nodes of (1 + ρ)D plus a small term that depends on the
frequency of communication. The additional term becomes zero as the frequency
of communication tends to infinity.

There has also been a lot of practical work on clock synchronization for spe-
cific computing environments. For example, techniques to synchronize the nodes
in wireless sensor networks have been studied extensively [7,10,20,23]. It can be
argued that in wireless sensor networks message delays are not only bounded, but
also distributed (independently) at random. This assumption has a considerable
impact on the achievable skew bounds: Under this assumption the skew between
any two clocks can be upper bounded by Õ(

√
D) w.h.p. [16]. The same work also

shows that on most graphs at any point in time there is a constant probability
that a clock skew of Ω(

√
D) can be observed between some nodes. Moreover,

some initial practical work on synchronizing nodes that are close-by particularly
well has been carried out in the context of wireless sensor networks [26]. Clock
synchronization has also been studied in other distributed systems such as the
Internet [21] or systems-on-a-chip [9]. In processor design, where one seeks to
control signal delays by means of placement and wiring (see, e.g., [12] and refer-
ences therein), synchronizing devices that are close-by is essential. Furthermore,
there has been a considerable amount of work on fault-tolerant clock synchro-
nization for multiprocessor systems where processors communicate among each
other via shared memory [5,6,11,24].

64 C. Lenzen et al.

3 Model: Worst Case vs. Reality

In theoretical work on clock synchronization, a distributed system is typically
modeled as a connected graph G = (V, E), where nodes represent computa-
tional devices and edges represent communication links. Communication is usu-
ally considered to be bidirectional (i.e., the edges are undirected), but it may
also be reasonable to assume unidirectional communication channels. The nodes
can communicate directly with their neighboring nodes by exchanging messages,
which arrive at their destination after a certain delay. In general, a message delay
consists of two parts: a constant, known delay and an additional variable delay
(“jitter”). A common simplification is to assume that the message delay can be
any value in the range [0, 1] and the nodes do not know the normalized upper
bound of 1. The second essential aspect of clock synchronization is how clock
drifts are modeled. Typically, it is assumed that each node has a hardware clock
with a bounded drift. A common way to model the clock drift is to define that
all hardware clock rates are always in the interval [1 − ρ, 1 + ρ] for a constant
ρ ∈ (0, 1).

Due to the assumption that any node can only read its hardware clock (and
not modify it), each node also has a logical clock whose value depends on its
hardware clock value and the information received from its neighboring nodes.
A clock synchronization algorithm specifies how the logical clock value is adapted
based on the hardware clock and the received information. The main objective of
the algorithm is to ensure that the clock skews, both between distant nodes and
neighboring nodes, are always as small as possible. Theoretical work typically
considers worst-case scenarios, where hardware clock rates and message delays
happen in a way that maximizes clock skews.

Ideally, an algorithm that guarantees strong worst-case bounds is also a suit-
able candidate to maintain tightly synchronized clocks in real-world systems.
However, the models employed in theoretical work are often too pessimistic
compared to the situations that occur in practice. Clock drift rates change only
gradually depending on factors such as the ambient temperature or the sup-
ply voltage. Even when operating a system in harsh environments, clock drifts
will not change arbitrarily during a single synchronization interval. Similarly,
assuming that an adversary takes control of variations in message delays does
not reflect reality well. Using sophisticated mechanisms, e.g., timestamping at
the MAC layer [20], the effect of variances in the delay can be mitigated up
to a few clock ticks. This remaining uncertainty seems to be better captured
by a probabilistic rather than a worst-case approach. A more practice-oriented
model must take such considerations into account.

4 Dynamic Networks

As briefly outlined in Section 2, it is well understood what the best possible
bounds on the worst-case clock skews are that any clock synchronization algo-
rithm can guarantee in static networks. However, in practice distributed systems

Clock Synchronization: Open Problems in Theory and Practice 65

are often dynamic in the sense that both devices and communication channels
can appear and disappear. Thus, the static theoretical model is too simplistic for
many practical applications. A more appropriate model must allow for on-going
changes to the network topology in order to bridge this chasm between theory
and practice.

The necessity of taking network dynamics into account has also been pointed
out in [13]. Of course, there are fundamental limits to the degree of synchro-
nization that can be achieved in a completely dynamic setting, where nodes and
edges can appear and disappear in an arbitrary manner: According to the lower
bound for static networks, a clock skew of roughly D can occur on any graph
between some nodes v and w. By adding the edge {v, w} between these two
nodes, the network suddenly experiences a worst-case clock skew of D between
neighboring nodes. Obviously, this situation cannot be avoided. The problem is
that a newly added edge may always cause a large clock skew between the two
nodes that it connects. However, once the nodes are aware of this situation, they
can react to it and reduce the clock skew on this particular edge over time. This
means that while we cannot get a sublinear bound on the clock skew between
nodes that are connected through a new edge, we can in fact guarantee a better
bound for edges that existed for a certain period of time.

It is not known whether the same asymptotic bounds as in the static case
can be achieved. The algorithm presented in [13] guarantees an upper bound
of O(

√
ρn) (where n := |V |) on the worst-case clock skew between any two

neighboring nodes v and w provided that the edge {v, w} has been part of
the network for Ω(

√
n/ρ) time. This bound is exponentially weaker than the

bound of O(log1/ρ n) in the static setting. It is an interesting open problem
whether the same asymptotic bound can be achieved in dynamic networks. Not
surprisingly, the proof techniques that are used to prove the bound ofO(log1/ρ n)
cannot be used directly for dynamic graphs. An intriguing aspect of this problem
is, however, that these proof techniques cannot even deal with the removal of
edges. This is quite counterintuitive as one might think that removing edges
cannot cause problems because the adjacent nodes are not neighbors anymore
and, given the increased distance between these nodes, their clock values are
allowed to deviate more. The problem is that the proof relies on the fact that
a node v always has a neighbor w that forces v to increase its clock value quickly
if v is on the verge of violating the skew bounds. In the dynamic setting, this
neighbor w may leave the system at a critical moment. The goal is to show that
this is indeed a real problem, by proving a new lower bound, or to prove that the
clock skews can nevertheless be kept (asymptotically) as small as in the static
case.

This is an open theoretical problem that again considers the skew bounds in
the worst case. The dynamics in real-world networks may be benign in compar-
ison and therefore different approaches may be employed. The right choice will
likely depend on the nature of the considered distributed system. Coping with
dynamics in various (practical) types of distributed systems is another potential
direction for future research.

66 C. Lenzen et al.

5 Fault-Tolerance

There has been substantial work on fault-tolerant clock synchronization in single-
hop networks (see, e.g., references in [28]). A lot of progress has been made over
the years on the digital clock synchronization problem in shared memory models
[1,4,5,6,24], where nodes try to maintain a synchronized counter (digital clock)
with certain progress guarantees in spite of crash, Byzantine, or transient fail-
ures. In the message passing world, such counters are known as (fault-tolerant)
synchronizers, which provide a weaker form of timing information than a “regu-
lar” clock, in particular if the diameter of the graph is not constant. Moreover,
quite frequently some kind of a priori synchronization of the system is assumed,
such as synchronous rounds, bounded message delays, or periodic “beats”. Ap-
plications for this kind of synchronization algorithms can be found e.g. in fault-
tolerant chip design [9] or multiprocessor systems.

To the best of our knowledge, little is known about fault-tolerant clock synchro-
nization in multi-hop environments. From the theory side, it is easy to observe
that many protocols assuming full connectivity can be generalized to multi-hop
scenarios if the network satisfies certain connectivity constraints in order to han-
dle, e.g., crash or Byzantine failures. This approach might however be unsatisfac-
tory if small local skews are desired, and it gives little information about transient
or probabilistic faults. In practice, the problem is mainly tackled in a pragmatic
manner. In wireless sensor networks, for example, people may rely on MAC-layer
protocols that handle message retransmissions, or they simply accept decreasing
synchronization quality in the presence of high message loss rates.

The challenging problem of finding fault-tolerant clock synchronization mech-
anisms for multi-hop networks merits further attention for various reasons. First,
studying fault-tolerant clock synchronization may lead to valuable (theoretical)
insights: The problem asks for error detection and error handling techniques
that do not interfere with the ability of algorithms to achieve a high precision of
clock values, while at the same time the synchronization offered might be helpful
in doing so. It is important to understand to what degree synchronization can
be maintained given specific failure models and connectivity constraints. There
are many interesting open problems that can be addressed: If nodes are faulty
with certain probabilities, how dense do carefully crafted graphs have to be to
permit reliable synchronization? What degree of resilience to Byzantine faults
can be guaranteed on a given graph? In general, which trade-offs exist between
achievable accuracy of timing information and resilience to faults? Moreover,
since access to a consistent, accurate time is a basic service and nodes in real-
world networks are often not fully connected, this topic has a significant practical
relevance.

6 Energy Efficiency vs. Accuracy

When developing applications for wireless sensor networks, energy efficiency is
an important issue. Sensor nodes should be able to operate unattended for many

Clock Synchronization: Open Problems in Theory and Practice 67

years, even when running on small batteries. In order to meet the requirements of
the application, as much energy as possible has to be conserved by operating the
microcontroller and the radio chip in the power-save mode whenever possible.
One approach to reduce the energy consumption of sensor nodes is to arrange
periodic rendezvous schemes: Neighboring nodes wake up for a short moment to
exchange messages and immediately return to sleep afterwards. The better the
clock synchronization is between neighboring nodes, the more energy is saved
by shortening the necessary guard intervals before and after the designated ren-
dezvous point. However, accurately synchronized clocks can only be achieved by
exchanging periodic synchronization messages, which also requires energy.

Furthermore, the synchronization error will grow at least with the square-root
of the distance to the reference node due to the jitter in the message delay [16].
To reduce this effect, one can try to reduce the jitter itself. By means of MAC
layer timestamping, it can be cut down at best to the hardware clock granularity
1/f , where f denotes the frequency at which the clock operates. Thus, reducing
the jitter means increasing the time resolution, which in turn requires that the
hardware clock operates at a higher frequency. The power consumption P of
the clock circuits is given by P ∼ CLV 2f , where CL is the load capacitance,
V is the supply voltage, and f is the clock frequency [3]. Therefore, the power
consumption will increase linearly with the clock frequency. Taking into account
that synchronization quality decreases (at least) linearly when reducing the fre-
quency of message exchange, it might be best to balance the guard time and the
time it takes to switch on the radio and send or receive a message, and maximize
the time between messages with these parameters fixed.

Another option to abate clock skews is to circumvent the problem that the
jitter and thus the inaccuracy of the clock values increases over (long) paths in
the network by utilizing the Global Positioning System (GPS). GPS satellites
orbiting the earth periodically send their position information together with
the current timestamp of their atomic clock down to earth. If a sensor node is
equipped with a GPS receiver, it can obtain the high precision timing information
included in the GPS messages. This way, the problem of network-wide multi-hop
clock synchronization reduces to the single-hop case. Furthermore, external time
synchronization using GPS eliminates the need for exchanging synchronization
messages over the sensor network. However, this is only a viable solution for
applications where a line of sight to the GPS satellites is available.

State-of-the-art GPS devices provide an accuracy within a few nanoseconds.
This is a significant improvement compared to the accuracy of common sen-
sor node platforms (e.g., the Mica2 motes), which is in the microsecond range.
However, the improved timing accuracy of GPS-based time synchronization so-
lutions comes at the cost of an increased hardware complexity and higher energy
consumption. In particular, in order to achieve maximal precision, a hardware
clock operating at a sufficiently high frequency to provide the necessary time
resolution is mandatory. Even though the size, cost, and energy consumption of
modern GPS receivers is continually decreasing, it is often not feasible to equip
every node in the network with a GPS receiver. Instead, only one or a few nodes,

68 C. Lenzen et al.

the so called reference nodes, are equipped with a GPS receiver and synchronized
to UTC. Traditional time synchronization protocols for wireless sensor networks
must then be used to synchronize the rest of the network to the reference nodes.

It remains an open problem to build a small, cheap, and low-power sensor
node that is able to synchronize its clock to the accurate time pulses provided
by the GPS satellites. Moreover, it is unknown if the effects considered above
determine the minimum energy consumption of sensor nodes. If this is indeed
the case, protocol implementations are required that provide an optimal trade-off
between energy efficiency and hardware costs.

7 New Applications

Another interesting direction for future future research is finding new applica-
tions that put the theoretical knowledge in this field into practice. In light of the
ongoing progress of recent years, two ideas for prospective applications came to
our mind, both of which particularly aim at exploiting the better understanding
of local skew that has been gained in the past few years.

Our first suggestion is to use clock synchronization principles to achieve other
forms of coordination, e.g., coordination of movement or formation. There are
various coordination tasks where clock synchronization mechanisms may be em-
ployed: Maybe some robots intend to move in a line, always maintaining identical
distances, or a traffic jam can be avoided if distances between cars are balanced.
Other goals might be the coordination of helicopters or, more generally, any kind
of swarm trying to maintain a certain formation based only on local distance
information. In all these cases the agents may experience drifts, because they are
not able or willing to control their speeds perfectly, or subject to disturbance by
other forces. Furthermore, their information on their neighbors’ positions could
be outdated and/or inaccurate, which is exactly the effect of message delays in
clock synchronization. In summary, the underlying model of a coordination prob-
lem might be quite similar to the model presented in Section 3, raising the hope
that results from clock synchronization could be applicable to such problems.

The second idea refers to chip design. Traditionally, synchronous circuits are
controlled by a clock signal dissipated from a single source to all logical gates by
means of a clock tree. This clock signal is used to determine when it is safe to
advance to the next computational step by guaranteeing sufficient time between
clock pulses for gates to switch states and signals to propagate. Therefore, a local
synchronization guarantee between directly connected gates is needed. Even if
the clock tree is well designed, we will observe a stretch in the distance compared
to the communication graph of the logical gates. In the worst case, this stretch
could be in the order of the diameter. Certainly, the stretch will grow with in-
creasing chip size also in practice because different paths of computations are
joined at some point in the chip logic. As a result, weak synchronization guar-
antees limit the frequency at which a chip can safely operate. We propose to
improve this situation by means of a distributed clock generation scheme. Hope-
fully, by equipping a chip with, e.g., a grid of time sources, running a clock

Clock Synchronization: Open Problems in Theory and Practice 69

synchronization algorithm with strong local skew bounds on this grid, and dis-
sipating the clock signal only locally by means of clock trees enables the con-
struction of large chips without incurring a decline in the operating frequency.
This scheme would come at the expense of additional clocks and chip logic for
the synchronization algorithm, which could be compensated for by increasing
the area of the chip.

We hope that the presented open problems have stimulated the reader’s in-
terest in distributed clock synchronization as a vivid and evolving research area.

References

1. Ben-Or, M., Dolev, D., Hoch, E.N.: Fast Self-Stabilizing Byzantine Tolerant Digital
Clock Synchronization. In: Proc. 27th Annual ACM Symposium on Principles of
Distributed Computing (PODC), pp. 385–394 (2008)

2. Biaz, S., Lundelius Welch, J.: Closed Form Bounds for Clock Synchronization Un-
der Simple Uncertainty Assumptions. Information Processing Letters 80(3), 151–
157 (2001)

3. Chandrakasan, A.P., Sheng, S., Brodersen, R.W.: Low-Power Digital CMOS De-
sign. IEEE Journal of Solid State Circuits 27(4), 473–484 (1992)

4. Dolev, D., Halpern, J.Y., Pinter, S.S., Stark, E.W., Weihl, W.E.: Reaching Approx-
imate Agreement in the Presence of Faults. Journal of the ACM 33(3), 499–516
(1986)

5. Dolev, S.: Possible and Impossible Self-Stabilizing Digital Clock Synchronization
in General Graphs. Journal of Real-Time Systems 12(1), 95–107 (1997)

6. Dolev, S., Lundelius Welch, J.: Wait-free Clock Synchronization. Algorith-
mica 18(4), 486–511 (1997)

7. Elson, J., Girod, L., Estrin, D.: Fine-Grained Network Time Synchronization Us-
ing Reference Broadcasts. ACM SIGOPS Operating Systems Review 36, 147–163
(2002)

8. Fan, R., Lynch, N.: Gradient Clock Synchronization. In: Proc. 23rd Annual ACM
Symposium on Principles of Distributed Computing (PODC), pp. 320–327 (2004)

9. Függer, M., Schmid, U., Fuchs, G., Kempf, G.: Fault-Tolerant Distributed Clock
Generation in VLSI Systems-on-Chip. In: Proc. 6th European Dependable Com-
puting Conference (EDCC-6), pp. 87–96 (2006)

10. Ganeriwal, S., Kumar, R., Srivastava, M.B.: Timing-Sync Protocol for Sensor Net-
works. In: Proc. 1st ACM Conference on Embedded Networked Sensor Systems
(SenSys), pp. 138–149 (2003)

11. Huang, S.T., Liu, T.J.: Four-State Stabilizing Phase Clock for Unidirectional Rings
of Odd Size. Information Processing Letters 65(6), 325–329 (1998)

12. Korte, B., Rautenbach, D., Vygen, J.: BonnTools: Mathematical Innovation for
Layout and Timing Closure of Systems on a Chip. Proceedings of the IEEE 95(3),
555–572 (2007)

13. Kuhn, F., Locher, T., Oshman, R.: Gradient Clock Synchronization in Dynamic
Networks. In: Proc. 21st ACM Symposium on Parallelism in Algorithms and Ar-
chitectures (SPAA), pp. 270–279 (2009)

14. Lenzen, C., Locher, T., Wattenhofer, R.: Clock Synchronization with Bounded
Global and Local Skew. In: Proc. 49th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pp. 500–510 (2008)

70 C. Lenzen et al.

15. Lenzen, C., Locher, T., Wattenhofer, R.: Tight Bounds for Clock Synchronization.
In: Proc. 28th Annual ACM Symposium on Principles of Distributed Computing
(PODC), pp. 46–55 (2009)

16. Lenzen, C., Sommer, P., Wattenhofer, R.: Optimal Clock Synchronization in Net-
works. In: Proc. 7th ACM Conference on Embedded Networked Sensor Systems,
SenSys. (2009)

17. Locher, T.: Foundations of Aggregation and Synchronization in Distributed Sys-
tems. PhD Thesis, ETH Zurich (2009)

18. Locher, T., Wattenhofer, R.: Oblivious gradient clock synchronization. In: Dolev,
S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 520–533. Springer, Heidelberg (2006)

19. Lundelius Welch, J., Lynch, N.: An Upper and Lower Bound for Clock Synchro-
nization. Information and Control 62(2/3), 190–204 (1984)

20. Maróti, M., Kusy, B., Simon, G., Lédeczi, Á.: The Flooding Time Synchronization
Protocol. In: Proc. 2nd ACM Conference on Embedded Networked Sensor Systems
(SenSys), pp. 39–49 (2004)

21. Mills, D.: Internet Time Synchronization: the Network Time Protocol. IEEE Trans-
actions on Communications 39, 1482–1493 (1991)

22. Ostrovsky, R., Patt-Shamir, B.: Optimal and Efficient Clock Synchronization un-
der Drifting Clocks. In: Proc. 18th Annual ACM Symposium on Principles of Dis-
tributed Computing (PODC), pp. 400–414 (1999)

23. PalChaudhuri, S., Saha, A.K., Johnson, D.B.: Adaptive Clock Synchronization in
Sensor Networks. In: Proc. 3rd ACM/IEEE International Symposium on Informa-
tion Processing in Sensor Networks (IPSN), pp. 340–348 (2004)

24. Papatriantafilou, M., Tsigas, P.: On Self-Stabilizing Wait-free Clock Synchroniza-
tion. Parallel Processing Letters 7(3), 321–328 (1997)

25. Patt-Shamir, B., Rajsbaum, S.: A Theory of Clock Synchronization. In: Proc.
26th Annual ACM Symposium on Theory of Computing (STOC), pp. 810–819
(1994)

26. Sommer, P., Wattenhofer, R.: Gradient Clock Synchronization in Wireless Sen-
sor Networks. In: Proc. 8th ACM/IEEE International Conference on Information
Processing in Sensor Networks (IPSN), pp. 37–48 (2009)

27. Srikanth, T.K., Toueg, S.: Optimal Clock Synchronization. Journal of the
ACM 34(3), 626–645 (1987)

28. Sun, K., Ning, P., Wang, C.: Secure and Resilient Time Synchronization in Wireless
Sensor Networks. In: Secure Localization and Time Synchronization for Wireless
Sensor and Ad Hoc Networks. Springer, US (2007)

Regret Minimization and Job Scheduling

Yishay Mansour�

Blavatnik School of Computer Science
Tel Aviv University, Tel Aviv, Israel

mansour@tau.ac.il

Abstract. Regret minimization has proven to be a very powerful tool in
both computational learning theory and online algorithms. Regret min-
imization algorithms can guarantee, for a single decision maker, a near
optimal behavior under fairly adversarial assumptions. I will discuss a re-
cent extensions of the classical regret minimization model, which enable
to handle many different settings related to job scheduling, and guarantee
the near optimal online behavior.

1 Regret Minimization

Consider a single decision maker attempting to optimize it performance in face
of an uncertain environment. This simple online setting has attracted attention
from multiple disciplines, including operations research, game theory, and com-
puter science. In computer science, computational learning theory and online
algorithms both focus on this task from different perspectives. I will concentrate
only on a certain facet of this general issue of decision making, and consider set-
tings related to regret minimization, where the performance of the online decision
maker is compared to a benchmark based on a class of comparison policies.

Regret minimization has its roots in computational learning theory and game
theory. While the motivation for the research in the two fields have been very dif-
ferent, the basic model that both fields has studied have been very similar. They
both consider an online setting, where an agent needs to select actions, while
having only information about the past performance and having no (or very lim-
ited) information regarding the future. Many natural computer science problems
give rise to such online settings; typical examples include scheduling problems,
paging, routing protocols, and many more. Online regret minimization learn-
ing algorithms have been introduced and studied in the computational learning
community [27,19,2,13,24] and also in the game theory community [20,17,16,21].
(See [11] for an excellent book on the topic.)

The online model studied has the following general structure. In each time
step, the online algorithm needs to select an action, and it can select a specific
� This work was supported in part by the IST Programme of the European Commu-

nity, under the PASCAL2 Network of Excellence, IST-2007-216886, by a grant from
the Israel Science Foundation (grant No. 709/09) and grant No. 2008-321 from the
United States-Israel Binational Science Foundation (BSF). This publication reflects
the authors’ views only.

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 71–76, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

72 Y. Mansour

action or a convex combination of some of the actions. After the online algorithm
performs its action, it observes the loss of all the actions and receives a loss for
the action it chose. The aim is to minimize the total cumulative loss. In general,
one would like to prove guarantees that hold for arbitrary loss sequences; that
is, one imagines there is a powerful adversary that might generates the worse
loss sequence for the online learning algorithm.

When evaluating the performance of online algorithms, it is important to
select the “right” benchmark. On the one hand we like it to be sufficiently chal-
lenging, so that it will encourage innovative algorithms. On the other hand we
need to keep the expectation realistic, which will allow to introduce algorithms
and not only impossibility results. One way to think about the benchmark is
a set of algorithms that we like to match the performance of the best of them.
In the above online setting it is clear that no online algorithm can hope to com-
pete well against any algorithm, simply consider the case of predicting a random
coin, any online algorithm will succeed in the prediction only half of the times
(in expectation) while someone who first views the coins outcome will be able
to predict perfectly. External regret bounds the difference between the online
algorithm loss and the best algorithm in a comparison class of algorithms, and
generally one can achieve a regret bound of the form O(

√
T log N), where T is

the number of time steps, N are the number of algorithms in the comparison
class and assuming that the losses are from [0, 1] (see [13,14]). This implies that
the per step regret is vanishing at the rate of O(

√
(log N)/T). From an online

algorithm perspective, the external regret can be viewed comparing the online
algorithm to the best static solution. In the multi-arm bandit setting [28,25] the
decision maker observes only the payoff of the action it selected (and does not
get any information regrading the other actions). In this setting the average re-
gret vanishes at the rate of O(

√
(N log N)/T) for the adversarial setting [2] and

O((log T)/T) for the stochastic setting [1].1

2 Regret Minimization and Job Scheduling

In an online job scheduling setting, at each time step a job arrives and the online
algorithm needs to schedule it on one of the machines. At the end of the run,
the online algorithm has a certain load on each machine (depending on the jobs
it scheduled on it) and the global loss function can be either makespan (the load
on the most loaded machine) or some norm of the loads (e.g., the sum of the
square of the loads). Such objective functions are very different from the additive
objective function usually used in regret minimization.

It is worth first discussing the differences between the regret minimization
model, suggested here, and the classical job scheduling model. We have a very
different information model, where the decision maker discovers the actions out-
come (e.g., in job scheduling this is the load of the job on each machine) only

1 The O-notation in the stochastic setting hides dependency on the stochastic param-
eters.

Regret Minimization and Job Scheduling 73

after it selects an action (e.g., a machine where to schedule the job) and not be-
fore (e.g., when the job arrives). In contrast, in the classical online job scheduling
model, when a job arrives, the decision maker, first observes the load of the job
on each machine (the outcome of the actions) and only then selects an action.

Our information model is the “right” abstraction in many applications. For
example, consider a network load balancer (an online algorithm) which has to
select an outgoing link for each session (the action). The load balancer goal is to
minimize the load on the most loaded link (known as makespan). When a session
arrives, the load balancer needs to be scheduled on an output link before we learn
the load of the session. After we scheduled the session we can observe its load,
but then we can not change the link on which it is already scheduled.

It is worthwhile to note the difference between our setting and that of online
job scheduling in the competitive analysis literature [10]. The main difference is
in the information that the decision maker observes about the online tasks that
arrive. In the online job scheduling setting the “standard” assumption is that the
decision maker first observes the “load” of the job on each machine, and only then
decides on which machine to schedule it. In our model, much like the regret min-
imization model, we have a different information model. First the decision maker
selects how to schedule the job on the machines, and only then he observes the
“load” of the job on each machine. This different information model is a very im-
portant distinction between the two models. The other important distinction is
regarding the “benchmark class”, which in the competitive analysis is the optimal
hindsight assignment of jobs to machines, and in our case it is a significantly more
limited class. Finally, there is a very significant difference in the results we would
like to derive. We are aiming at getting a bounded regret, which is the difference
between the online cost and the minimal cost policy in the benchmark class, while
the competitive analysis is satisfied with bounding the ratio.

3 Model and Results

In this section we sketch the model and the results of [15], which would be our
main source.

We are interested in studying the following extension of the regret minimiza-
tion model. For each action we will maintain the cumulative loss of the online
algorithm resulting from this action. The online algorithm global loss function
would be a given (convex) function of the cumulative loss of the actions. (The
makespan is a perfect example of such a global loss function.) The online algo-
rithm objective is to minimize the loss of the global loss function. For example,
assume that �t

i ∈ [0, 1] is the loss at time t from action i, and let LT
i =
∑T

t=1 �t
i

be the cumulative loss of action i. At time t, first, the online algorithm specifies
a distribution pt

i over the actions, and then it observes the losses of the differ-
ent actions. Its loss from action i at time t is pt

i�
t
i, and the cumulative loss of

action i is LON,T
i =

∑T
t=1 pt

i�
t
i. Unlike the usual regret minimization model, we

will not sum the losses of the online algorithm for different action, but consider
the global loss function over the LON,T

i . For example, the makespan cost of the
online algorithm is maxi{LON,T

i }.

74 Y. Mansour

We first need to select an appropriate benchmark, and a reasonable bench-
mark class is the class of policies that statically distributes the weight between
actions (and receives the proportional loss in each action). Specifically, given loads

L1, . . . , LN , for the makespan the best weights are p∗i = L−1
i∑

N
j=1 L−1

j

, and the

makespan is 1∑N
j=1 L−1

j

. As before, the regret is the difference between the global

loss function (e.g., makespan) of the online algorithm and that of the best set of
weights, and the average regret per step is the regret dividedby thenumber of steps.

In the talk we will discuss both an adversarial model (described above) and
a stochastic model of losses. For the adversarial mode, the main results appear
in [15] and include a general online algorithm whose average regret is vanishing
at the rate of O(

√
N/T).

4 Other Extensions of the Regret Minimization Model

Unfortunately, we can not give a comprehensive review of the large body of
research on regret minimization algorithm, and we refer the interested reader
to [12]. In the following we highlight a few more relevant research directions.

There has been an ongoing interest in extending the basic comparison class
for the regret minimization algorithm, for example by introducing shifting ex-
perts [18], time selection functions [5], and wide range regret [26]. Still, all those
works assume that the loss is additive between time steps.

A different research direction has been to improve the computational com-
plexity of the regret minimization algorithms, especially in the case that the
comparison class is exponential in size. General computationally efficient trans-
formation where given by [23], in the case that the cost function is linear and the
optimization oracle can be computed in polynomial time, and extended by [22],
to the case of an approximate-optimization oracle.

There has been a sequence of works establishing the connection between online
competitive algorithms [9] and online learning algorithm [12]. One issue is that
online learning algorithms are stateless, while many of the problems address in
the competitive analysis literature have a state (see, [6]). For many problems one
can use the online learning algorithms and guarantee a near-optimal static solu-
tion, however a straightforward application requires both exponential time and
space. Computationally efficient solutions have been given to specific problems
including, paging [7], data-structures [8], and routing [4,3].

We remark that all the above works concentrate on the case where the global
cost function is additive between time steps.

References

1. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-Time Analysis of the Multi-Armed
Bandit Problem. Machine Learning 47(2-3), 235–256 (2002)

2. Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.E.: The Nonstochastic Multi-
armed Bandit Problem. SIAM Journal on Computing 32(1), 48–77 (2002); (A pre-
liminary version appeared in FOCS 1995 as Gambling in a Rigged Casino: The
Adversarial Multi-Armed Bandit Problem)

Regret Minimization and Job Scheduling 75

3. Awerbuch, B., Kleinberg, R.: Online Linear Optimization and Adaptive Routing.
J. Comput. Syst. Sci. 74(1), 97–114 (2008)

4. Awerbuch, B., Mansour, Y.: Adapting to a Reliable Network Path. In: PODC, pp.
360–367 (2003)

5. Blum, A., Mansour, Y.: From External to Internal Regret. Journal of Machine
Learning Research 8, 1307–1324 (2007)

6. Blum, A., Burch, C.: On-Line Learning and the Metrical Task System Problem.
In: COLT, pp. 45–53 (1997)

7. Blum, A., Burch, C., Kalai, A.: Finely-Competitive Paging. In: FOCS, pp. 450–458
(1999)

8. Blum, A., Chawla, S., Kalai, A.: Static Optimality and Dynamic Search-Optimality
in Lists and Trees. Algorithmica 36(3), 249–260 (2003)

9. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press, Cambridge (1998)

10. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press, Cambridge (1998)

11. Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning and Games. Cambridge Univer-
sity Press, Cambridge (2006)

12. Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning, and Games. Cambridge Uni-
versity Press, New York (2006)

13. Cesa-Bianchi, N., Freund, Y., Helmbold, D.P., Haussler, D., Schapire, R.E., War-
muth, M.K.: How to Use Expert Advice. Journal of the ACM 44(3), 427–485 (1997);
(A preliminary version appeared in STOC 1993)

14. Cesa-Bianchi, N., Lugosi, G.: Potential-Based Algorithms in On-Line Prediction
and Game Theory. Machine Learning 51(3), 239–261 (2003)

15. Even-Dar, E., Kleinberg, R., Mannor, S., Mansour, Y.: Online Learning for Global
Cost Functions. In: COLT (2009)

16. Foster, D., Vohra, R.: Regret in the On-Line Decision Problem. Games and Eco-
nomic Behavior 21, 40–55 (1997)

17. Foster, D.P., Vohra, R.V.: A Randomization Rule for Selecting Forecasts. Opera-
tions Research 41(4), 704–709 (1993)

18. Freund, Y., Schapire, R.E., Singer, Y., Warmuth, M.K.: Using and Combining
Predictors that Specialize. In: STOC, pp. 334–343 (1997)

19. Freund, Y., Schapire, R.E.: A Decision-Theoretic Generalization of On-Line Learn-
ing and an Application to Boosting. In: Euro-COLT, pp. 23–37. Springer, Heidel-
berg (1995)

20. Hannan, J.: Approximation to Bayes Risk in Repeated Plays. In: Dresher, M.,
Tucker, A., Wolfe, P. (eds.) Contributions to the Theory of Games, vol. 3, pp.
97–139. Princeton University Press, Princeton (1957)

21. Hart, S., Mas-Colell, A.: A Simple Adaptive Procedure Leading to Correlated Equi-
librium. Econometrica 68, 1127–1150 (2000)

22. Kakade, S.M., Tauman-Kalai, A., Ligett, K.: Playing Games with Approximation
Algorithms. In: STOC, pp. 546–555 (2007)

23. Kalai, A., Vempala, S.: Efficient Algorithms for Online Decision Problems. Jour-
nal of Computer and System Sciences 71(3), 291–307 (2005); An earlier version
appeared in COLT (2003)

24. Kalai, A., Vempala, S.: Efficient Algorithms for On-Line Optimization. J. of Com-
puter Systems and Science (JCSS) 71(3), 291–307 (2005); (A preliminary version
appeared in COLT 2003)

76 Y. Mansour

25. Lai, T.L., Robbins, H.: Asymptotically Efficient Adaptive Allocations Rules. Ad-
vances in Applied Mathmatics 6, 4–22 (1985)

26. Lehrer, E.: A Wide Range No-Regret Theorem. Games and Economic Behavior 42,
101–115 (2003)

27. Littlestone, N., Warmuth, M.K.: The Weighted Majority Algorithm. Information
and Computation 108, 212–261 (1994)

28. Robbins, H.: Some Aspects of the Sequential Design of Experiments. Bulletin of
the American Mathematical Society 58, 527–535 (1952)

Lessons in Software Evolution
Learned by Listening to Smalltalk

Oscar Nierstrasz and Tudor Gı̂rba

Software Composition Group, University of Bern, Switzerland
http://scg.unibe.ch

Abstract. The biggest challenge facing software developers today is
how to gracefully evolve complex software systems in the face of chang-
ing requirements. We clearly need software systems to be more dynamic,
compositional and model-centric, but instead we continue to build sys-
tems that are static, baroque and inflexible. How can we better build
change-enabled systems in the future? To answer this question, we pro-
pose to look back to one of the most successful systems to support change,
namely Smalltalk. We briefly introduce Smalltalk with a few simple ex-
amples, and draw some lessons for software evolution. Smalltalk’s sim-
plicity, its reflective design, and its highly dynamic nature all go a long
way towards enabling change in Smalltalk applications. We then illus-
trate how these lessons work in practice by reviewing a number of re-
search projects that support software evolution by exploiting Smalltalk’s
design. We conclude by summarizing open issues and challenges for
change-enabled systems of the future.

1 Introduction

The conventional view of disciplined software construction is to reason that cor-
rectness of the final result is paramount, so we must invest carefully in rigorous
requirements collection, specification, verification and validation.

Of course these things are important, but the fallacy is to suppose that there
is a final result. This leads one to the flawed corollary that it is possible to
get the requirements right. The truth (as we know) is that in practice evolu-
tion is paramount [26,32], so the system is never finished, and neither are its
requirements [4].

What features are important in a software system to enable graceful software
evolution? In previous work we have argued that evolution is enabled by high-
level composition of components [2]. We have also argued that such systems
should also be dynamic, they should support reflection on-demand, and they
should provide mechanisms to manage the scope of change [33]. Change should
be represented as a first-class entity, and both static and dynamic models of the
running applications should be available at run-time to support continuous mon-
itoring and analysis of evolution [34]. Instead of being merely “model-driven”,
such systems should be model-centric, meaning that models are not only avail-
able for analysis, but also to enable and enact change. To control the scope of
change, systems need to be context-aware, thus allowing selected changes to be

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 77–95, 2010.
� Springer-Verlag Berlin Heidelberg 2010

78 O. Nierstrasz and T. Ĝırba

visible to different parts of the same running system [35]. In a nutshell, change-
enabled systems should be (i) compositional, (ii) dynamic, (iii) model-centric,
(iv) reflective, (v) self-monitoring, and (vi) context-aware.

But how should we build such change-enabled systems? What are good exam-
ples of systems that actively support and enable rather than limit and impede
software evolution?

In this paper we take the position that many of these questions can be partially
answered by taking a close look at the Smalltalk system. Smalltalk [19,23] was the
first programming language and development environment designed to be fully
object-oriented from the ground up1. Many technical and process innovations
arose from Smalltalk, including the first interactive development environments
with graphical user interfaces, many virtual machine advances, refactoring tools,
unit testing frameworks, and so on. Although it shows its age today, in many
ways Smalltalk (like ALGOL [21]) still improves on its successors.

Smalltalk is still interesting today because it offers many features that support
graceful software evolution. First of all, at the core it is very simple. Smalltalk is
built up from a small set of fully object-oriented principles, starting with the no-
tions that everything is an object and everything happens by sending messages.
The syntax is remarkably simple, and can be read aloud like pidgin English.
Second, it is fully reflective, so all features of the Smalltalk system are avail-
able at run-time as ... objects. Third, Smalltalk is highly dynamic. While most
programming languages are trapped in an edit/compile/run cycle, Smalltalk
supports incremental and interactive development of running applications by
erasing the artificial distinction between “compile-time” and “run-time”.

In Section 2 we introduce Smalltalk by means of series of simple examples, and
we draw three lessons that illustrate how Smalltalk support software evolution.
In Section 3, Section 4, and Section 5 we review a series of research projects that
demonstrate how Smalltalk’s simplicity, its reflective design, and its dynamic
nature enable change. In Section 6 we discuss several shortcomings of Smalltalk
and open challenges for change-enabled systems of the future. We conclude with
a few closing remarks in Section 7.

2 What Can We Learn from Smalltalk?

Smalltalk was designed to be the programming language and operating system
for implementing a new generation of lightweight, interactive computers known
as the Dynabook [22,23] (now recognizable as a precursor of today’s laptops; see
Figure 1). To build such a radically different kind of computer, Kay reasoned
that the underlying language and system should be object-oriented from the
ground up.

The principle “Everything is an object” pervades Smalltalk’s design [19]. As
we shall see, this simple starting point inevitably led to a design in which all
aspects of Smalltalk are reified and available at run-time.
1 Simula-67 [6] was earlier, but essentially extended ALGOL with object-oriented con-

structs, rather than being fully object-oriented.

Lessons in Software Evolution Learned by Listening to Smalltalk 79

Fig. 1. Dynabook sketch from Kay’s 1972 paper [22]

In this section we introduce Smalltalk through a series of simple examples
that illustrate surprising aspects of Smalltalk’s design principles. We conclude
by drawing three lessons for designing change-enabled software systems.

2.1 Simple, Read-Aloud Syntax

Smalltalk as a language is pretty much minimal. It is common to remark that
Smalltalk syntax can be learned in an afternoon, while the system itself can take
many months to master.

Smalltalk supports three kinds of message syntax, as seen in the following
example:

2 raisedTo: 1 + 3 factorial −→ 128

Unary messages, like factorial or new, consist of simple alphabetic identifiers, and
are evaluated first. Binary messages, like +, are built up of operator symbols
(much like in C++), always take a single argument, and are evaluated next.
Finally, keyword messages, like raisedTo: or ifTrue:ifFalse:, consist of any number
of keywords, each of which ends in a colon (:) and takes a single argument.

By exercising some common sense when naming classes, instance variables
and methods, this scheme leads to compact code which can be read aloud as
though it were a kind of pidgin English.

As a trivial example, try to read the following two roughly equivalent code
fragments out loud:

for(int n=1; n<=10; n++){
System.out.println(n);

}

1 to: 10 do: [:n | Transcript show: n; cr]

By avoiding the need for most declarations, and by adhering to a message syn-
tax that allows verbs and nouns to conveniently alternate, Smalltalk achieves

80 O. Nierstrasz and T. Ĝırba

a high level of readability. This is of course important if code is to be largely
self-documenting. A large part of continuing development of complex software
systems is reading of existing code, not just writing of new code.

2.2 Everything Happens by Sending Messages to Objects

Not only the syntax is simple, but also the design and implementation of
Smalltalk follow logically from a few basic principles[19]. The most fundamental
of these principles are:

1. Everything is an object.
2. Everything happens by sending messages.

Other important principles state, for instance, that:

3. Every object is an instance of a class.
4. Every class (except the root) has a superclass.
5. Method lookup follows the superclass hierarchy.

Everything is an object, including numbers, so when we compute 3 + 4, we send
the message + to the object 3 with argument 4:2

3 + 4 −→ 7

Both little numbers and very big numbers are objects:

42 factorial −→
1405006117752879898543142606244511569936384000000000

Since everything is an object, classes and methods are objects too. And since
everything happens by sending messages, instantiating objects, defining new
classes, and creating methods also happen by sending messages. For example, to
define a class, we send a message to its superclass:

Object subclass: #Life
instanceVariableNames: ��

classVariableNames: ��

poolDictionaries: ��

category: �MyUniverse�

We have just asked the root class Object to create a subclass of itself called Life
in the category (read “package”) called �MyUniverse�.

To create a new object, we send a message to a class:

myLife := Life new

2 To indicate the result of evaluating a Smalltalk expression we use the notation
expression −→ result.

Lessons in Software Evolution Learned by Listening to Smalltalk 81

To define a method, we can send a message to its class:

Life compile: �answer ↑ 42�

This method will be evaluated in response to the message answer, and returns3

the result 42. Normally, however, we would define methods using the develop-
ment environment, but it is important to remember that everything a tool does
actually happens by sending messages.

Of course we can send messages to plain objects too:

myLife answer −→ 42

(You might have noticed that we just extended the behaviour of a living object.)
What is now more interesting is that we can now easily navigate and query

the system as well simply by sending messages:

Life superclass −→ Object
Life methods size −→ 1
Life methods first selector −→ #answer
Life methods first class −→ CompiledMethod

In this way we can quickly reach the meta-objects that implement the system
(such as CompiledMethod). We can also easily explore the system’s meta-model:

Life class −→ Life class
Life class class −→ Metaclass
Life class class class −→ Metaclass class

This tells us that Life is an instance of Life class, that Life class is an instance of
Metaclass, and that Metaclass is an instance of Metaclass class.4

2.3 Everything Is There, All the Time

In Smalltalk, there is no distinction between the development environment and
the runtime environment. They are one and the same.

The fact that all objects of the run-time system are accessible from the running
image, and that all the source code is available all the time, leads to a very
different style of development from the traditional file-based edit/compile/run
life-cycle. Instead, Smalltalk encourages iterative and incremental development
in which a single class is created or a single method is compiled at a time. We can
change or extend the behaviour of already existing objects (e.g., myLife acquires
the answer method at run-time).

As a consequence, Test-Driven Development, in which failing tests are writ-
ten before the code that makes the test pass, is naturally supported [5]. The
surprising fact is that it is possible to add the missing code, using the Smalltalk
debugger, from the context of the failing test.

3 ↑ is Smalltalk for “return”.
4 The alert reader might be able to conclude how this tale continues.

82 O. Nierstrasz and T. Ĝırba

Perhaps even more surprising is the extent to which it is considered best
practice in Smalltalk to make heavy use of the debugger. By contrast, in most
programming languages, the debugger is often considered a tool of last resort.
In Smalltalk, since the entire system is live, the debugger provides a convenient
interface to link source code to live objects. In other words, the debugger is your
friend. Since code can be evaluated and even changed in the debugger, this leads
to an interactive and incremental style of development in which one can modify
and test a running application in very tight iterations.

Suppose, for instance, that we try to evaluate the following:

myLife meaning

Since our Smalltalk environment has never heard of the message “meaning”,
it asks us to confirm that this is what we intend. When we confirm, the object
myLife receives the message meaning, but does not know what to do with it. This
causes Smalltalk to send it the message doesNotUnderstand: with the symbol
#meaning as its argument. The default behaviour is to launch a pre-debugger
window which offers us the possibility of creating the missing method (Figure 2).

Fig. 2. Not understanding the meaning of life

Smalltalk kindly generates a default implementation within the debugger,
which does nothing but send the message shouldBeImplemented to self. From
within the debugger we can change this method to something more reasonable
(Figure 3).

Now if we ask Smalltalk to Proceed, we obtain the result we expect, without
ever having left the running system.

myLife meaning −→ �Try and be nice to people, avoid eating fat, read a good
book every now and then, get some walking in, and try and live together in

peace and harmony with people of all creeds and nations�

2.4 Lessons in Software Evolution

We have seen how Smalltalk distinguishes itself by its simplicity, its reflective
design, and its dynamic nature. These features support software evolution in
important ways:

Lessons in Software Evolution Learned by Listening to Smalltalk 83

Fig. 3. Redefining the meaning of life

– Less is more: Both the model and the syntax of Smalltalk are minimal.
The model is extended by introducing new objects, not by changing the
language. This minimal syntax allows for fluent interfaces to arise more nat-
urally in Smalltalk than many other languages, thus the code is largely self-
documenting — a critical feature for an evolving system.

– Reify everything: The design of Smalltalk follows logically from a small set
of principles. This makes the system easy to navigate, query and extend.

– You can change a running system: Contrary to most other software systems,
in Smalltalk you can only change a running system. There is no distinction
between edit-time, compile-time and run-time. The entire Smalltalk system
is described in itself. Essentially all the source code and the entire run-time
system is accessible all the time. This makes it a good basis for realizing
run-time, model-driven systems.

In the following sections, we will explore these points by reviewing several re-
search projects that exploit Smalltalk to enable change.

Smalltalk also has quite a few wrinkles, grey hairs and creaky joints. For
instance, Smalltalk’s traditional support for modularity based on “categories” of
related classes is primitive at best. We will conclude this paper with a discussion
of a number of areas where Smalltalk, and other programming systems, need to
better address the needs of software evolution.

3 Less Is More

The simplicity of Smalltalk’s syntax makes it easy to learn. But, there is another
important aspect that this simple syntax supports well, which is the design of
fluent interfaces for black-box, component frameworks. A fluent interface resem-
bles a domain specific language (DSL), except that it is entirely embedded in

84 O. Nierstrasz and T. Ĝırba

a host language, without requiring any syntactic extensions [18]. Fluent inter-
faces arise naturally with black-box frameworks, in which applications are built
by plugging together existing components, as opposed to white-box frameworks,
where applications are built by subclassing framework classes and implementing
hook methods [43].

By carefully designing the interface of a black-box framework, compositions of
components resemble readable (or “fluent”) high-level “scripts” in a DSL. DSLs
enable change by raising the level of abstraction, and by offering a more suitable
notation for domain experts to express requirements. Let us review a number of
examples.

Seaside. Consider the following example from an on-line store programmed using
Seaside [15], a web application development framework written in Smalltalk:

renderContentOn: html
html heading: item title.
html heading level3; with: item subtitle.
html paragraph: item description.
html emphasis: item price printStringAsCents.
html form: [

html submitButton callback: [self addToCart]; text: �Add To Cart�.
html space.
html submitButton callback: [self answer]; text: �Done�]

A reader who knows neither the specific application nor Smalltalk, but is familiar
with HTML, should be able to read this aloud and make sense of it. The code
reads like a script in a DSL, but is actually plain Smalltalk code using Seaside’s
fluent interface. The result can be seen in the California Roll item in Figure 4.

Mondrian. Mondrian [31] is a black-box framework for generating visualizations.
The following script generates a simple System Complexity View [25] of a class
hierarchy, mapping dimensions and shading of boxes to metrics (see Figure 5):

Fig. 4. Scripting a Seaside component

Lessons in Software Evolution Learned by Listening to Smalltalk 85

Fig. 5. A Mondrian-scripted System Complexity View

view := ViewRenderer new.
view nodeShape rectangle

width: #NOA; height: #NOM;
linearColor: #LOC within: model classes.

view nodes: model classes.
view edges: model inheritances from: #superclass to: #subclass.
view treeLayout.
view open.

Glamour. Glamour is yet another black-box framework used to develop interac-
tive browsers for diverse information models [8]. As with Seaside and Mondrian,
Glamour scripts are compact, readable, and resemble code written in a dedi-
cated DSL, though in fact they simply make use of a fluent interface written in
Smalltalk. For example, the following script produces a file browser similar to
Windows Explorer (see Figure 6).

browser := TableLayoutBrowser new.
browser

column: #folders;
column: [:col | col row: #files span: 2; row: #preview] span: 2.

browser showOn: #folders; using: [
browser tree children: [:folder | folder files select: #isDirectory]].

browser showOn: #files; from: #folders; using: [
browser list display: [:folder | folder files reject: #isDirectory]].

browser showOn: #preview; from: #files; using: [
browser text display: #contentsOfEntireFile]].

Black-box frameworks separate what is stable (i.e., the components) from
what needs to stay flexible (i.e., the scripts) [2]. High-level scripts facilitate
software evolution by concentrating the composition of the system in a readable
specification. A fluent interface makes scripts easy to read, and hence easy to
modify and test, in contrast to traditional white-box frameworks which can be
notoriously difficult to understand, specialize, and configure. Smalltalk’s simple
syntax and semantics supports both the development of pluggable black-box
components and fluent interfaces to compose them.

86 O. Nierstrasz and T. Ĝırba

Fig. 6. A Windows Explorer-like browser implemented in Glamour

4 Reify Everything

Smalltalk relies on a simple and explicit meta-model. With a simple meta-model,
not only can we easily query our software, we can also extend it. In this section
we will review a number of projects that have extended Smalltalk’s meta-model
to support software evolution.

Traits. Traits [16] extend Smalltalk’s meta-model with reusable groups of meth-
ods, thus overcoming the limitations of single inheritance, while avoiding fragility
problems known to occur with multiple inheritance and mixins. The introduction
of traits required changes to the meta-model, the compiler, and the run-time, but
no changes to the language or the syntax, since everything happens by sending
messages.

Let us define a new trait:

Trait named: #TUltimate uses: {} category: �MyUniverse�.
TUltimate compile: �question ↑ ��What do you get if you multiply six by nine?���

We change our class to use this trait:

Object subclass: #Life
uses: TUltimate
instanceVariableNames: ��

classVariableNames: ��

poolDictionaries: ��

category: �MyUniverse�

And now:

myLife question −→ �What do you get if you multiply six by nine?�

Traits support evolution by simplifying the refactoring of complex hierarchies
into finer grained, reusable components [10].

Magritte. Model-driven engineering (MDE) promotes software evolution by
raising the level of continuous development to levels that are closer to the prob-
lem domain. But conventional MDE makes use of transformations to generate

Lessons in Software Evolution Learned by Listening to Smalltalk 87

Domain Model

Metamodel

Meta-
Metamodel

Magritte
Developer

«described-by»

«described-by»

Developer

End User
Magritte
End User

Fig. 7. Magritte enables run-time customization of models and meta-models

platform-specific models (and code) from platform-independent models. The
models are not typically available to the run-time system, so further adaptation
and evolution are not possible at run-time.

A model-centric system [35] makes high-level, causally-connected models avail-
able to the run-time system for analysis and run-time adaptation. Smalltalk offers
a good foundation for model-centric systems due to its reflective architecture.

A good example of a model-centric system is Magritte [38] a meta-description
framework implemented in Smalltalk. Magritte has been used, for example, to
meta-describe components of the Pier content management system5, allowing it
to be customized at run-time. Not only users can customize the domain model at
run-time, but developers can directly customize many aspects of the meta-model
without writing a line of code, since the meta-model is also meta-described and
rendered by Pier as web components (Figure 7).

Moose. Moose6 provides another example of a model-centric system. It offers
a platform for capturing, querying, navigating, analyzing and visualizing models
of complex software systems [36]. Several analyses have been built on top of
it dealing with various aspects of software: static analysis, dynamic analysis,
evolution analysis, semantic analysis, code duplication, code ownership analysis
and so on.

These analyses require various meta-models. To accommodate them, at its
core, Moose has a meta-meta-model in terms of which the various meta-models

5 http://www.piercms.com
6 http://moose.unibe.ch

http://www.piercms.com
http://moose.unibe.ch

88 O. Nierstrasz and T. Ĝırba

are defined [14,24]. Based on these descriptions, Moose offers import-export ca-
pabilities, it generates user interfaces for navigation, and provides integration
mechanisms for extension services that encode specific analyses.

5 You Can Change a Running System

Since in Smalltalk, everything is an object, it follows that the Smalltalk system
itself consists of a collection of objects. Since everything happens by sending
messages, it follows that all changes to the system are simply consequences of
messages being sent. In other words changes to the system occur within the
system, and are no different than any other events.

The fact that everything is there all the time and can be changed dynamically
means that both past and future evolution are accessible to the running system.
We will briefly look at three ways this can be exploited.

Object-Flow Analysis. One of the well-known shortcomings of conventional stack-
oriented debuggers is that the offending context which may have led to a run-time
error may no longer be on the stack. If a method has left an object in an invalid
state, this might produce an undesirable side effect at a much later point in time.

A so-called back-in-time debugger [29] keeps track of historical execution con-
texts to allow the developer to debug further back in time. Although appealing,
tracking history may generate vast amounts of data, and still it may be difficult
to track the actual cause of a defect.

The object-flow VM [28] tracks history in a live Smalltalk system by tracking
the flow of objects with first-class aliases, each of which stores a past state and

Fig. 8. Tracing object flow with the Compass back-in-time debugger

Lessons in Software Evolution Learned by Listening to Smalltalk 89

records the previous alias which led to it. Since aliases are first-class, unreach-
able aliases are automatically garbage-collected, leading to a simple and elegant
saving of space. Since aliases are managed at the VM level, they are invisible
to running applications. Compass [27] is a back-in-time debugger implemented
using the object-flow VM, which exploits object flow to simplify navigation of
the tree of past contexts (see Figure 8).

Changeboxes. Change management is an essential task to support software evo-
lution. Smalltalk provides a simple form of change management already within
the environment, so it is always possible to roll back changes. All changes are
also logged, so it is impossible to lose code.

This form of change management, however, is strictly limited to source code.
In a complex and evolving software system, different parts may depend on differ-
ent versions of the same software base. For a system that cannot afford significant
down-time, it may be unrealistic to expect that the entire code base be globally
consistent at all times. Changeboxes [12] is a prototype of a system supporting
change management for running software — deployed and development branches
may co-exist in the same running image, and can run different versions of the same
software. Branches can be dynamically split and merged without disrupting run-
ning clients, since the scope of applicable changes (i.e., a “changebox”) is always
uniquely defined for any given context. A running web application, for example,

Deployed Branch:

Release Branch:

Development Branch:

1. deployed

2. defective

4. merged 7. merged

6. merged

3. bug fix

5. refactored

Fig. 9. Multiple versions of the same running system can be dynamically updated,
split, and merged

90 O. Nierstrasz and T. Ĝırba

metaobject

activation
condition

source code
(AST)

link

Fig. 10. Links annotate code reified as ASTs to trigger meta-object adaptations

can be modified without impacting clients, and incrementally deployed on the live
system by merging branches when they are ready (Figure 9).

The Changeboxes prototype adapted the Smalltalk meta-model by modifying
tools to be changebox-aware, and by modifying method lookup to select the right
version of a method for the currently active changebox.

Reflectivity. Reflectivity [11] goes a step further in providing a general infras-
tructure for adapting running code at a fine level of granularity. Code is reified
by its abstract syntax tree (AST), and links are installed on this representa-
tion as annotations (Figure 10). A compiler plug-in transforms the annotated
ASTs before execution to take the links into account. When the annotated code
is run, if any optional activation conditions are fulfilled, a message is sent to
a designated meta-object to take appropriate action.

A typical application is to dynamically add and remove instrumentation code
on a running system to gather statistics for program analysis [40]. Other applica-
tions, however, include aspect-oriented adaptation [42] and automatic adaptation
of methods to use software transactional memory [39].

6 The Future of Change

Successful software must change to maintain its value. Why is it that the lan-
guages and environments we use to develop software inherently inhibit change
rather than enable it?

We have seen how a simple object model which uniformly reifies all entities of
the run-time meta-model supports dynamic change in a system like Smalltalk.
Still, there are many aspects of software evolution that are no better handled
by Smalltalk than by many other systems, both mainstream and exotic. Let us
have a brief look at three of these issues.

Closing the gap between objects and models. Model-driven development (MDD)
enables change by generating code from high-level models. When the models
change, the corresponding code can be freshly generated. Models, however, are
normally absent as artifacts in the running system, so no further changes are pos-
sible in a deployed system. Traditionally models, meta-models and meta-meta-
models are distinct and their instances do not exist as entities at the same level.

Lessons in Software Evolution Learned by Listening to Smalltalk 91

In Smalltalk-like systems, however, everything is an object, so objects, classes
and metaclasses (for example) are all objects. They are all causally connected,
so a change to a class impacts its instances, just as a change to a metaclass will
impact the class.

Ultimately, programming is modeling, and a programming language or system
is essentially a modeling tool. Object-oriented languages are particularly well-
suited for allowing developers to design their own high-level models for a given
application domain. An explicit notion of a model, however, is conspicuously
missing from programming languages, Smalltalk included.

In the 1950s, FORTRAN was proposed as a high-level language from which
computer code would be automatically generated. Nowadays we are used to
thinking of programs written in high-level languages as being “the code”, and
we barely concern ourselves with the machine code that is “generated”. By
the same token, perhaps we should stop thinking about “generating code from
models” and instead target development platforms where models themselves are
executable. (Whether models are interpreted or code is generated on the fly
should be purely an implementation detail.)

We have argued that change-enabled systems should be model-centric, making
models available at run-time [35]. How to achieve this, however, is an open
question, though some trends are interesting to watch. Executable UML [30]
aims at making UML diagrams executable by means of dedicated compilers
(though such models won’t be available at run-time). Visual languages come and
go [9], but some recent developments, such as Subtext [17], approach the direct
manipulation of models. Naked Objects [37] pushes ideas implicit in the model-
view-controller paradigm to nearly eliminate the distinction between domain
objects, their implementation and their view.

Eliminating the barrier between the image and the VM. Smalltalk objects live
in the “image”, a persistent representation of object memory. Images are saved
as binary files, making it is easy to take multiple snapshots of the state of the
system, move images between machines, and share images with other users. The
virtual machine abstracts from the underlying hardware, so the same image can
run on any hardware or operating system platform.

On the other hand, images are essentially single-user (even if they host web
services), and communicating with the outside world (files, servers, other running
images) is clumsy at best. Although advanced collaborative tools exist [41,7],
objects by and large are “trapped in the image”. Little work has been done
recently to enable distributed, collaborative development.

Furthermore, although nearly everything is available to the run-time system,
objects of the VM are not. There exists a hard barrier between the image and
the VM which cannot be overcome. Certain kinds of changes are only possible
by implementing a new VM. As we have seen in Section 5, object-flow analy-
sis extended Smalltalks meta-model by introducing first-class aliases, but this
was only possible by modifying the Smalltalk VM. Making such functionality
available to other users is a non-trivial engineering task, since it is not simply
a matter of loading a new package into the image.

92 O. Nierstrasz and T. Ĝırba

To better support such deep changes in the run-time of change-enabled sys-
tems, we must either find ways to bridge the boundary between the image and
the VM, or we need to erase the boundary completely. Pinocchio7 [44] is an open
language and system whose semantics and implementation is fully bootstrapped,
allowing deep changes to be made at run-time. By eliminating the separation be-
tween the image and the VM, full control over the run-time semantics is possible.
Non-intrusive changes important for software evolution, such as tracking object-
flow or monitoring run-time performance can be dynamically enabled without
requiring the VM to be replaced.

Putting objects into context. Most languages and systems, including Smalltalk,
assume that the world is consistent. We are forced to assume that a name means
one thing, that a single version of any piece of software is deployed at a time,
that types and interfaces are consistent. The real world is rife with inconsistency,
yet we cope with it very well. Why can’t our software systems?

We cope with real world inconsistency because we easily keep track of different
contexts. How we behave, how we react to events, and how we present ourselves
depends on a constantly changing context. Furthermore we generally have little
difficulty in managing multiple contexts being active at the same time. (We can
deal with family, friends, co-workers and strangers present in the same room.)

The Changebox prototype described in Section 5 managed multiple deploy-
ment contexts for software by adapting Smalltalk’s method lookup to take a par-
ticular kind of context (a “changebox”) into account, but this only works for
changebox-aware tools. In practice, there are many different kinds of context
variables that context-aware applications need to take into account [1,3]. To
deal with context in a rigorous and fully general way, we argue that it is neces-
sary to accommodate context deeply in the semantics [13] and the design [20] of
programming languages and systems.

7 Conclusion

To sketch out what a change-enabled software system might look like, we have
taken a brief look at a classic, dynamic system, Smalltalk, and seen how it
supports software evolution in various ways. The single principle, everything is
an object, can be seen as the driving force behind its simplicity, and its support
for change. The key lessons for software evolution that we draw are: (i) Less
is more — simple syntax and semantics can lead to a system that is easy to
understand and change; (ii) Reify everything — by making all key entities first-
class, they become available for modification and extension; (iii) You can change
a running system — by causally connecting entities with their meta-descriptions,
graceful, incremental change is enabled.

Change is here with us to stay. Increasingly, software systems will need to
adapt to change dynamically, which means that software models must be acces-
sible at run-time. Ideally, models will be executable, and different versions of the
same models will need to be simultaneously active, and context-aware.
7 http://scg.unibe.ch/research/pinocchio

http://scg.unibe.ch/research/pinocchio

Lessons in Software Evolution Learned by Listening to Smalltalk 93

Acknowledgments. We gratefully acknowledge the financial support of the
Swiss National Science Foundation for the project “Bringing Models Closer to
Code” (SNF Project No. 200020-121594, Oct 1, 2008 - Sept. 30, 2010) and the
Hasler project “Enabling the evolution of J2EE applications through reverse
engineering and quality assurance” (project no. 2234). We also thank Lukas
Renggli, Erwann Wernli, Fabrizio Perin, Bernhard Rumpe and Jan Ringert for
their helpful comments and suggestions.

References

1. Abowd, G.D., Dey, A.K.: Towards a Better Understanding of Context and Context-
Awareness. In: Proceedings of the CHI 2000 Workshop on the What, Who, Where,
When and How of Context-Awareness. ACM Press, New York (2000)

2. Achermann, F., Lumpe, M., Schneider, J.-G., Nierstrasz, O.: Piccola — a Small
Composition Language. In: Bowman, H., Derrick, J. (eds.) Formal Methods for
Distributed Processing — A Survey of Object-Oriented Approaches, pp. 403–426.
Cambridge University Press, Cambridge (2001)

3. Baldauf, M., Dustdar, S., Rosenberg, F.: A Survey on Context-Aware Systems.
International Journal of Ad Hoc and Ubiquitous Computing 2(4), 263–277 (2007)

4. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley,
Reading (2000)

5. Beck, K.: Test Driven Development: By Example. Addison-Wesley Longman, Am-
sterdam (2002)

6. Birtwistle, G., Dahl, O.J., Myhrtag, B., Nygaard, K.: Simula Begin. Auerbach
Press, Philadelphia (1973)

7. Bryant, A.: Monticello, http://www.wiresong.ca/Monticello
8. Bunge, P.: Scripting Browsers with Glamour. Master’s Thesis, University of Bern

(April 2009)
9. Burnett, M.M., Goldberg, A.: Visual Object-Oriented Programming. Prentice-Hall,

Englewood Cliffs (1995)
10. Cassou, D., Ducasse, S., Wuyts, R.: Traits at Work: the Design of a New Trait-

Based Stream Library. Journal of Computer Languages, Systems and Struc-
tures 35(1), 2–20 (2009)

11. Denker, M.: Sub-method Structural and Behavioral Reflection. PhD Thesis, Uni-
versity of Bern (May 2008)

12. Denker, M., Ĝırba, T., Lienhard, A., Nierstrasz, O., Renggli, L., Zumkehr, P.:
Encapsulating and Exploiting Change with Changeboxes. In: Proceedings of the
2007 International Conference on Dynamic Languages (ICDL 2007), pp. 25–49.
ACM Digital Library, New York (2007)

13. Dezani-Ciancaglini, M., Giannini, P., Nierstrasz, O.: A Calculus of Evolving Ob-
jects. Scientific Annals of Computer Science XVIII, pp. 63–98 (2008)

14. Ducasse, S., Ĝırba, T., Kuhn, A., Renggli, L.: Meta-Environment and Executable
Meta-Language Using Smalltalk: an Experience Report. Journal of Software and
Systems Modeling (SOSYM) 8(1), 5–19 (2009)

15. Ducasse, S., Lienhard, A., Renggli, L.: Seaside: A Flexible Environment for Build-
ing Dynamic Web Applications. IEEE Software 24(5), 56–63 (2007)

16. Ducasse, S., Nierstrasz, O., Schärli, N., Wuyts, R., Black, A.: Traits: A Mecha-
nism for Fine-Grained Reuse. ACM Transactions on Programming Languages and
Systems (TOPLAS) 28(2), 331–388 (2006)

http://www.wiresong.ca/Monticello

94 O. Nierstrasz and T. Ĝırba

17. Edwards, J.: Subtext: Uncovering the Simplicity of Programming. In: Johnson, R.,
Gabriel, R.P. (eds.) Proceedings of the 20th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA
2005, San Diego, CA, USA, October 16-20, pp. 505–518. ACM, New York (2005)

18. Fowler, M.: FluentInterface, on Martin Fowler’s Blog (December 2005),
http://www.martinfowler.com/bliki/FluentInterface.html

19. Goldberg, A., Robson, D.: Smalltalk 80: the Language and Its Implementation.
Addison Wesley, Reading (1983)

20. Hirschfeld, R., Costanza, P., Nierstrasz, O.: Context-Oriented Programming. Jour-
nal of Object Technology 7(3) (2008)

21. Hoare, C.A.R.: Hints on Programming Language Design. Technical Report CS-
TR-73-403, Stanford University (1973)

22. Kay, A.C.: A Personal Computer for Children of All Ages. In: Proceedings of the
ACM National Conference. ACM Press, New York (1972)

23. Kay, A.C.: The Early History of Smalltalk. ACM SIGPLAN Notices 28, 69–95
(1993)

24. Kuhn, A., Verwaest, T.: FAME, a Polyglot Library for Metamodeling at Runtime.
In: Workshop on Models at Runtime, pp. 57–66 (2008)

25. Lanza, M., Marinescu, R.: Object-Oriented Metrics in Practice. Springer, Heidel-
berg (2006)

26. Lehman, M., Belady, L.: Program Evolution: Processes of Software Change. London
Academic Press, London (1985)

27. Lienhard, A., Fierz, J., Nierstrasz, O.: Flow-Centric, Back-in-Time Debugging. In:
Objects, Components, Models and Patterns, Proceedings of TOOLS Europe 2009.
LNBIP, vol. 33, pp. 272–288. Springer, Heidelberg (2009)

28. Lienhard, A., Ĝırba, T., Nierstrasz, O.: Practical Object-Oriented Back-in-Time
Debugging. In: Vitek, J. (ed.) ECOOP 2008. LNCS, vol. 5142, pp. 592–615.
Springer, Heidelberg (2008); ECOOP distinguished paper award

29. Maruyama, K., Terada, M.: Debugging with Reverse Watchpoint. In: Proceedings
of the Third International Conference on Quality Software (QSIC 2003), Washing-
ton, DC, USA, p. 116. IEEE Computer Society, Los Alamitos (2003)

30. Mellor, S.J., Balcer, M.J.: Executable UML: A Foundation for Model-Driven Ar-
chitecture. Addison-Wesley Professional (2002)

31. Meyer, M., Ĝırba, T., Lungu, M.: Mondrian: An Agile Visualization Framework.
In: ACM Symposium on Software Visualization (SoftVis 2006), pp. 135–144. ACM
Press, New York (2006)

32. Nierstrasz, O.: Software Evolution as the Key to Productivity. In: Wirsing, M.,
Knapp, A., Balsamo, S. (eds.) RISSEF 2002. LNCS, vol. 2941, pp. 274–282.
Springer, Heidelberg (2004)

33. Nierstrasz, O., Bergel, A., Denker, M., Ducasse, S., Gälli, M., Wuyts, R.: On the
Revival of Dynamic Languages. In: Gschwind, T., Aßmann, U., Nierstrasz, O. (eds.)
SC 2005. LNCS, vol. 3628, pp. 1–13. Springer, Heidelberg (2005)

34. Nierstrasz, O., Denker, M., Ĝırba, T., Lienhard, A., Röthlisberger, D.:
Change-Enabled Software Systems. In: Wirsing, M., Banâtre, J.-P., Hölzl, M.,
Rauschmayer, A. (eds.) Soft-Ware Intensive Systems. LNCS, vol. 5380, pp. 64–
79. Springer, Heidelberg (2008)

35. Nierstrasz, O., Denker, M., Renggli, L.: Model-Centric, Context-Aware Software
Adaptation. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee,
J. (eds.) Software Engineering for Self-Adaptive Systems. LNCS, vol. 5525, pp.
128–145. Springer, Heidelberg (2009)

http://www.martinfowler.com/bliki/FluentInterface.html

Lessons in Software Evolution Learned by Listening to Smalltalk 95

36. Nierstrasz, O., Ducasse, S., Ĝırba, T.: The Story of Moose: an Agile Reengineering
Environment. In: Proceedings of the European Software Engineering Conference
(ESEC/FSE 2005), pp. 1–10. ACM Press, New York (2005); (invited paper)

37. Pawson, R.: Naked Objects. Ph.D. Thesis, Trinity College, Dublin (2004)
38. Renggli, L., Ducasse, S., Kuhn, A.: Magritte – a Meta-Driven Approach to Em-

power Developers and End Users. In: Engels, G., Opdyke, B., Schmidt, D.C.,
Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735, pp. 106–120. Springer, Heidelberg
(2007)

39. Renggli, L., Nierstrasz, O.: Transactional Memory in a Dynamic Language. Journal
of Computer Languages, Systems and Structures 35(1), 21–30 (2009)

40. Röthlisberger, D., Greevy, O., Nierstrasz, O.: Exploiting Runtime Information in
the IDE. In: Proceedings of the 16th International Conference on Program Com-
prehension (ICPC 2008), Los Alamitos, CA, USA, pp. 63–72. IEEE Computer
Society (2008)

41. Smith, D.A., Kay, A., Raab, A., Reed, D.P.: Croquet, a Collaboration System
Architecture. In: Proceedings of the First Conference on Creating, Connecting and
Collaborating through Computing, pp. 2–9 (2003)

42. Strauss, A.: Dynamic Aspects — an AOP Implementation for Squeak. Master’s
Thesis, University of Bern (November 2008)

43. Szyperski, C.A.: Component Software. Addison-Wesley, Reading (1998)
44. Verwaest, T., Renggli, L.: Safe Reflection through Polymorphism. In: CASTA 2009:

Proceedings of the First International Workshop on Context-Aware Software Tech-
nology and Applications, pp. 21–24. ACM, New York (2009)

The Web of Things:
Extending the Web into the Real World

Dave Raggett

W3C/ERCIM,
2004, route des Lucioles, Sophia Antipolis, 06410 Biot, France

dsr@w3.org

http://www.w3.org/People/Raggett

Abstract. Thanks to Moore’s law the incremental cost of adding net-
working to devices is falling rapidly. This creates opportunities for many
new kinds of applications. This paper looks at the potential of Web tech-
nologies for reducing the complexity for developing such applications,
allowing millions of developers to extend the Web out of the browser
and into the real world. This is achieved through mechanisms to pro-
vide web run times with access to rich models of users, devices, services,
and the environment in which they reside. Privacy and trust are key
considerations.

1 Introduction

The World Wide Web is today an essential global infrastructure with a myriad
of roles, e.g. news, entertainment, commerce, and education, to name just a few.
The Web’s origin lay in hypertext, the means to link text-based documents. The
Internet has given us the means to follow such links across servers all over the
World, continent hopping at a single click. The Web rapidly evolved to include
images, forms, and scripting, and soon attracted a new generation of developers,
which now vastly outnumber the old school developers for traditional platforms
like Microsoft Windows.

Today, the Web is a global platform for information-based applications, but
that is about to change. What is driving this is the rapidly dwindling incre-
mental cost of networking for all kinds of devices. This is a happy side-effect of
Moore’s law which describes the ongoing exponential improvements in integrated
circuitry which by now has been happening for more than half a century. It is
now easy to integrate radio-frequency components alongside digital circuitry for
microcontrollers.

We are in the midst of a proliferation of devices that are largely invisible
as they are embedded within everyday objects from toasters to cameras and
cars. Microcontrollers are the fastest growing segment of the computer industry,
with hundreds in every home. These devices are programmed to serve a single
purpose, and today are mostly isolated. Networking them will allow many new
kinds of application that add value in ways that the original manufacturer may
not have envisaged.

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 96–107, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.w3.org/People/Raggett

The Web of Things: Extending the Web into the Real World 97

Barcodes have been part of the everyday environment for many years, and
used for tracking library books, identifying items at supermarket checkouts and
routing luggage at airports. Two dimensional barcodes contain a lot more in-
formation and can be used to link physical objects to their virtual equivalents
on the Web. Electronic versions of barcodes, RFID tags, are starting to take
over, and appearing in passports, clothing and warehouses. The ability to scan
multiple tags at one go, and to be able to write information back to the tag,
provide obvious benefits over old fashioned barcodes.

The ability to connect applications running in the Web to devices in the real
World has all kinds of benefits. Here are just a few:

– Reduced energy costs through management of home/office environments (sen-
sor nets, actuators, ease of configuration, short/long term adaptation to hu-
man behaviour patterns)

– Improved security through remote monitoring of sensors and actuators (mo-
tion, thermal, doors, windows, locks, videocams, energy usage, RFID)

– Reduced downtime of household devices through continuous monitoring for
signs of wear and proactive scheduling of repairs as part of maintenance
contracts (washing machines, air conditioning, plumbing, cars, etc.)

– Improved standard of care for the elderly through monitoring patterns of
activities as well as explicit health sensors, with the means to alert carers
and emergency services

The remainder of this paper will look at some of the challenges in the way of
realizing the Web of things, and proposals for how to address them.

2 Challenges

The biggest challenge is the difficulty in developing applications using traditional
programming languages such as Java and C++. These involve steep learning
curves for the language itself and especially for the complex application pro-
gramming interfaces needed. This restricts the number of people who can develop
applications as well as pushing up the costs.

Another challenge is the rapid pace of change for technologies used for net-
working devices. Some examples are Ethernet over twisted pair cable, DSL over
copper phone lines, Ethernet over building power lines, WiFi and WiMax, Blue-
Tooth, ZigBee, GSM and cellular packet radio, as well as interconnect solutions
such as USB and Firewire. This multiplicity of technologies imposes complexity
for developers, especially when different devices are using different solutions.

To add further difficulties, devices are likely to have a wide variety of ages,
depending on their expected life time and frequency of replacement. Cell phones
are replaced in a matter of months, whilst television sets and cars last for many
years. The infrastructure built into buildings lasts even longer. How is it pos-
sible to create applications that work with a mix of generations of devices and
technologies? How can we create applications today that will keep working when
next year’s devices come along?

98 D. Raggett

Security is clearly important when it comes to controlling real world objects.
Imagine a home security system: you wouldn’t want a hacker to be able to open
your front door and walk right in and take your prized possessions! Security
firewalls protect against unwanted access, but also make it hard to configure
applications. Few users are prepared to configure their browsers let alone open-
ing ports to allow applications to connect through their firewalls. Usability is
a critical factor in ensuring effective security.

If web applications are able to access sensors throughout the environment
in public and private spaces, this would enable companies to track your life
in immense detail. This calls for strong safeguards on privacy with negotiable
obligations on how long personal data is held for, and for what purposes it can
be used. You should be provided with a means to access any personal data held
on you, to update it and to request its deletion. This means that privacy is not
just a bolt on feature, and instead needs to treated as a core component with
strong requirements on server middleware.

A final challenge is enabling applications to dynamically adapt to the con-
text which includes user preferences, device capabilities, and the environment in
which the application runs. This is especially important for people with sensory
or cognitive impairments.

3 Web Run-Time

A Web run-time (WRT) is a component that provides an execution environment
for markup languages, style sheets, scripts and related resources. A browser
can be implemented as a container for a Web run-time that adds the browser
user interface (some times referred to as the browser chrome) and associated
components, such as the navigation toolbar, browser history and bookmarks.
Widgets are another class of containers for Web run-times, where a single web
application runs on its own as a locally installed application, where all of the
associated markup, scripts, style sheets and media resources are installed as
a package.

Web run-times are not restricted to HTML, and other kinds of markup lan-
guages may be appropriate. One example is SVG (Scalable Vector Graphics).
Another is VoiceXML, a markup language with similarities to HTML (having
forms and links) that is designed for use with telephones, together with speech
synthesis and recognition, and is gaining widespread adoption in call centres.
Yet another example is SCXML (State Chart XML) which is a markup lan-
guage for event driven state machines. Whilst most people still think of the Web
in terms of graphical user interfaces and HTML browsers, the Web is actually
much broader than that.

Web run-times don’t need to be associated with a local user interface, and
instead user interaction could be mediated through an exchange of events with
other devices that act as sensors or actuators. The user could therefore interact
with an application using multiple devices and multiple modes (aural, tactile,
visual). Users may even be able to control applications through gestures with

The Web of Things: Extending the Web into the Real World 99

their hands or by moving objects that lack electronics, and which are sensed by
cameras or other devices. The ability to project synthetic images into the user’s
visual field allows for applications that augment reality.

The means for Web run-times to run remotely allows them to function as
agents that act on behalf of their users. Such Web agents could run on com-
puting resources provisioned as part of the cloud. This allows users to run ap-
plications 24 by 7. Such applications are always available, something that isn’t
the case for applications running on devices that may be turned off. When it
comes to sharing private information between Web agents, there are challenges
for dealing effectively with privacy and trust.

4 Device Coordination

When new devices are added to the environment, they need to obtain an IP
address and to advertise their presence. There are a variety of mechanisms avail-
able for doing this without the need for manual intervention. These are loosely
referred to as “zero configuration networking” or zeroconf, which includes tech-
niques such as UPnP, Bonjour, Avahi, mDNS and SSDP. From the perspective
of the Web of Things, these are low level techniques, and local software agents
are needed to track devices and to expose the services they offer to Web applica-
tions. This involves maintaining live models of the context, something I expand
on in a later section. Devices may be shared across multiple applications and
users, or may be restricted.

4.1 Virtual Objects as Proxies for Things

Web developers shouldn’t be burdened with unnecessary details of lower level
transport mechanisms. A way to achieve this is for Web run-times to support
virtual objects as proxies for real world things. This allows the application re-
spond to input from a sensor via registering an event handler on the virtual
object, and to operate an actuator by targeting an event at the virtual object.
The details of how the virtual object communicates with the real world thing
are hidden from the developer.

In a markup language, the virtual object could be represented as a markup
element. This could name the real world thing with a URI in an attribute, or
it could describe the capabilities and the context with markup in the content of
the element. The Web run-time invokes a broker to bind the object to the thing.
The broker could be implicit in the run-time environment, or it could itself be
named with a URI. Successful binding would be signaled by an event (load) with
a corresponding event (unload) when the binding is broken, e.g. when the device
is removed. An error event would signal a failure in binding and supply some
details on why, e.g. unauthorized.

Such objects could also be created from Web page scripts, e.g. using JSON
(JavaScript Object Notation) to pass descriptions of the capabilities and the
context for the desired service. The virtual object can support properties that

100 D. Raggett

can be accessed synchronously by the Web run-time, where the implementation
of the object hides the messaging needed to synchronize the object with the
real world thing it represents. This allows Web developers to use properties and
events for a mix of synchronous and asynchronous control. The implementation
of the virtual objects could be provided as part of the run-time environment, or
it could be a dynamically loadable extension. This could involve trusted scripts
with access to lower level services.

4.2 Composition and Coordination

The virtual object as seen by a Web developer might be realized as a composition
of several devices or services, for example, a scanner could be connected to printer
to serve as a copier. The process of setting up the binding to the virtual object
involves sending commands to the devices/services involved to connect them
together, so that communications flow efficiently rather than via a remote server.
Coordination may be needed to ensure fair access to a service, or when things
have to happen in a particular order or where access control needs to be managed
centrally. Strong coordination involves routing all control messages through an
agent that controls and coordinates all of the devices/services it manages. Weak
coordination is where the controller arranges a contract between the managed
devices/services, but thereafter leaves them to communicate directly.

4.3 Distributed Processing

Sensors may perform generic functions, e.g. a microphone captures an audio
stream, whilst a camera captures a video stream. This data can be processed for
some purpose, e.g. speech recognition on an audio stream, and object and gesture
recognition on a video stream. This will often involve some kind of distributed
processing model that transforms data and adds metadata. It could also com-
bine data from multiple devices. This could be arranged on behalf of the Web
application by the broker as part of a composition of devices and services. This
suggests a market for such compositions as something you might pay for.

4.4 Cloud of Things

Web applications will be able to make use of devices you own and control, but
with the spreading ubiquity of networked devices, you may want turn to a sup-
plier that provisions sensors and actuators according to your dynamic needs, e.g.
electronic advertising hoardings on the side of buildings, and placed throughout
the city. The “cloud of things” seems like an appropriate term, drawing upon
cloud computing which deals with dynamic provisioning of computing resources.

5 Context Awareness

This involves maintaining a live model of users, things and the environment in
which they reside. For example, what devices are present in a given room, what

The Web of Things: Extending the Web into the Real World 101

rooms there are in a building, and the location of that building on a map of
the city. A device can be modelled in terms of the features it exposes to Web
applications, e.g. what properties it has, what events it raises and responds to.
The behaviour of some devices depends on the state they are in, and this can
be modelled as a declaration of a state machine.

In addition to up to date descriptions (metadata), the context may include
live objects as proxies for real world things. This allows applications to sense or
interact with the world through the models. The context models allow users to
browse through descriptions and to follow links, as well as to carry out searches.
Models can be represented in a variety of ways including OWL ontologies and
XML. A shared underlying ontology is needed to ensure that different represen-
tations share the same models.

Web developers shouldn’t normally need to deal with the details of how the
context models in the cloud are synchronized with the real world. A variety of
mechanisms can be utilized as appropriate.

These models can be used to adapt applications to suit the needs of the partic-
ular context in which a Web application is being used. User models can describe
general preferences as well as preferences for specific applications. General pref-
erences are especially useful for users with sensory or cognitive impairments, e.g.
a hearing impaired user may require captioning with video. User preferences also
extend to privacy and trust, see the later section in this paper.

Infrastructure providers will want to ensure that the systems they provide
are secure. This is likely to involve automatic means to configure safe commu-
nications through firewalls, based upon some form of cryptographic credentials.
This will often have to be done on behalf of users. The context models can be
likened to ice bergs where the visible part is accompanied by a much larger part
hidden below the surface of the sea. The hidden parts of the context models are
needed to figure out how to route communications to real world things, how to
configure intervening security barriers, and how to keep the models live as the
context changes.

6 Authoring Frameworks

In principle, there are many possibilities for authoring applications for the Web of
Things, including markup languages, scripts and mixes of the two. Current prac-
tices for Web applications emphasise scripting in the web page and in the web
server. Developers concentrate on the most popular browsers due to widespread
variations in the detailed behaviour of different of browsers from different ven-
dors, and also different versions from the same vendor. The advent of mobile
browsers is making this problem even worse with variations in display size and
device capabilities.

As a result, most sites pay only lip service to the needs of people with im-
pairments. Browsers offer external APIs for assistive technology, such as screen
readers, but there are significant challenges for providing a usable interface.
A web page designed for a high resolution display will have many parts, but the

102 D. Raggett

roles of these aren’t identified in a standard way that the assistive technology
can rely on. This is bad enough for static web pages, and becomes even worse
when the pages make heavy use of scripting. W3C’s work on ARIA seeks to
rectify this situation by defining ways for developers to annotate markup and
scripting objects with roles and states that the assistive technology can exploit.

Current web practices fail to separate application logic, data models and pre-
sentation. This contributes to the cost of maintaining websites. A small change
made for one web page could break many others. This is also bad news for pro-
viding a quality user experience on different devices, and made worse by the wide
variability of mobile devices. This motivates taking a step back and looking at
what alternatives there could be.

6.1 The Cameleon Reference Framework

Markup and scripting languages can be hand edited in text editors. Syntax
colouring helps a bit, but it is still error prone and hand editing involves a fairly
steep learning curve. It is still however much easier than languages like Java
and C++. This allows beginners to get a considerable way by copying and mod-
ifying other people’s examples and trying things out. Unfortunately, high level
web authoring tools have been slow to evolve, and there is a long way to go.

Rather than designing markup languages for the browser as now, we should
instead design them to suit the needs for effective high level authoring tools, and
not be concerned about direct human editing of the markup. This allows us to
focus on cleanly separating out different concerns without worrying about the
resulting complexity of the markup. Yes, it should be simple for computers to
deal with, but no, it isn’t important to address the concerns voiced by people
editing markup directly in text editors.

The Cameleon Reference Framework defines several levels of abstraction:

Application domain and task models: these define data models and task
models in a way that is independent of the user interface. Task models de-
scribe how tasks decompose into subtasks and partial ordering between them.
Richer task models add details on how events trigger actions according to
associated conditions, along with pre- and post-conditions.

Abstract User Interface: these describe the user interface, but at a level above
that of modalities, for example, a selection from a set of alternatives which
might be ordered. There could be integrity constraints across fields as well as
dependencies where further details are required depending on prior choices.

Concrete User Interface: this makes commitments to modes of interaction
and user interface controls such as radio buttons, and image controls for
making selections. There is limited control over layout, but the details are
left to the next level down.

Final User Interface: this is normally generated automatically from the con-
crete user interface guided by rules provided by the developer. You can think
of this as skinning the user interface. This approach makes it easy to gen-
erate the user interface for different platforms, e.g. HTML, SVG, Java, .Net
and Flash.

The Web of Things: Extending the Web into the Real World 103

Each level can be formally treated as graphs, and represented as markup1. The
relationship between adjacent levels can then be expressed in terms of graph
transformations. This applies to the representation of the user interface com-
ponents, and to the representation of events at each level. The transformations
are conditional on the context. This means that developers can control how the
application adapts to fulfil user preferences and variations in device capabilities
and environmental conditions.

6.2 Mashups and Pluggable Authoring Tools

The authoring tool needs to manage the models for each level as the developer
works on the application. Imagine selecting a library of UI controls and then
dragging them onto a canvas and performing further operations to link them up
and adjust their properties. The authoring tool provides an API for libraries to
plug into. Adding a group of radio buttons will also add a selection list at the
abstract UI level, and connect this up to the application data model, directly
the user makes the appropriate setting.

The authoring tool should allow developers to work top-down, bottom-up or
middle-out. This raises challenges for the user interface for developers to re-
late models at different levels. This can be addressed through a combination of
techniques including direct manipulation of graphs, property lists, and browsing
mechanisms. An agenda mechanism can be used to guide developers on out-
standing design tasks.

The Web of Things will involve an ecosystem with vendors of authoring tools,
vendors of extensions for authoring tools, traditional web developers, and end-
users. The aim will be to give end-users the means to easily create mashups of
different services. This includes the ability to personalize services based upon
tracking the user’s previous interactions, and also those of others who may be
considered to be like the user in some way. Some kinds of application lend them-
selves to social interaction with peers, for example, leaving virtual post-its on
real world objects for your friends to come across later.

7 Privacy and Trust

Modern technology makes it possible for companies and governments to track our
lives at a level of detail that would be unimaginable a generation ago. The Web
of Things threatens to take this to a whole new level. Imagine your refrigerator
tracking your usage of every item and forwarding this onto the supermarket.
They already know what you buy from the widespread use of payment cards.
The next step would be for them to sell this data onto your health insurance
company, and for you to see the effect on your premiums and level of cover.
Of course, that scenario is unlikely to be realized so long as there is sufficient
pressure from consumers.
1 The markup can be supplemented with event driven scripts where extra flexibility

is needed.

104 D. Raggett

In Europe, there are laws that are intended to safeguard user’s privacy by
giving them control over what companies can do with personal data. Essentially,
users (data subjects) should be able to negotiate their preferences for how long
a company (data controller) holds onto personal data, and for what purposes
it is put to. This further covers exploitation of personal data by third parties
(downstream data controllers). Users should be able to find out what personal
data of theirs is being held, to make corrections and to request its deletion.
Unfortunately, we are some way from realizing this in practice.

The Web of Things expands the range of personal data that applications have
access to. This makes it imperative to consider privacy from the very start when
designing the application infrastructure. Protocols are needed for negotiating
data handling obligations and for notifying users as part of those obligations.
Server-side middleware is needed to track the binding between personal data
and the data handling obligations agreed with the data subject.

Privacy goes hand in hand with identity management and access control. The
current trend is for websites to identify users via their email address or a web
page address (for OpenID). These are globally unique and make it easy to track
users across different websites. Privacy has taken a back seat, although most
websites do provide a human readable legal disclaimer for their privacy policies,
this may be hard to find. Practical deployment of a more flexible approach to
privacy will have to wait until better technical solutions are available, and there
is sufficient pressure on companies to adopt these.

Researchers are developing cryptographic techniques that minimize the
amount of personal data disclosed for a given access control decision. Instead of
having to disclose your date of birth, you would instead offer a credential from
a trusted third party that you are legally an adult. Another example is where
you are required to provide a credential as proof that you are a citizen of a given
country, rather than say disclosing your address. Websites will be able to use
policy engines to determine what credentials are needed for a given decision,
along what data handling policies the site is prepared to implement.

7.1 Call a Friend or Ask the Audience

Users will want to control who can have access to what things under their control.
In some cases this is relatively straightforward, for example, in terms of your
social network of family, friends and colleagues. In other cases, it is much less
clear. Which websites is it reasonable to grant access to your GPS location as
determined from your cell phone? Most users don’t really know enough to make
an informed decision. Public key certificates were proposed as a solution that
establishes a chain of trust from certification authorities. Unfortunately, this
failed in practice and has been found to be largely unusable.

A likely solution would be to allow users to base their decisions on the advice
of friends, trusted authorities, or even the wisdom of crowds (and perhaps based
upon a reputation system). This suggests the need for delegation mechanisms
where a user agent can consult a trust management service. In one approach,
a Web run-time is coupled with a local policy engine that is invoked when an

The Web of Things: Extending the Web into the Real World 105

application wants to access a restricted service. The local policies may result
in a decision, perhaps by asking the user, or they may invoke a remote trust
management service, passing it a description of the security context. The trust
management service evaluates the request and returns a policy back to the local
engine, which then evaluates it and returns the decision to the Web run-time.

A related problem is when a user needs to authenticate herself with a website,
but wishes to minimize any personal data disclosed to that site. Instead of logging
in directly with the website, the user signs in with her privacy provider, who in
turn passes the relevant credentials to the target website. This is made effortless
through HTTP redirection. Users only have to sign on once with their privacy
provider and not once per website. The user may further delegate negotiation of
privacy preferences to her privacy provider, which becomes a safe place for her
to keep her personal data. This raises challenges for how to switch providers, but
these should be manageable with the appropriate standards and legal framework.

8 Concluding Remarks

The Web of Things is about exploiting Moore’s law to extend the Web out of the
browser and into the real world. There are many challenges to overcome, includ-
ing how to maintain live models of the context, how to simplify authoring, and
how to ensure an effective treatment of privacy and trust. Many of the key tech-
nologies are becoming available and we can look forward to new opportunities
and new businesses.

9 Further Reading

This section provides some pointers to further reading, but is not intended to
be comprehensive. You are encouraged to explore further.

9.1 Moore’s Law

The doubling of the number of transistors on a chip every 2 years which essen-
tially reflects a steady learning curve and relentless competition:

– ftp://download.intel.com/research/silicon/moorespaper.pdf
– http://en.wikipedia.org/wiki/Moore%27s_law

9.2 The March of Microcontrollers

These inexpensive single chip computers are appearing everywhere in all kinds
of devices. The incremental cost of adding some form of networking is dwin-
dling. This is however a case of chicken and egg. Many of the devices that use
microcontrollers often have low profit margins. What’s in it for device vendors
for adding connectivity if the cost of developing applications is too high? The
Web of things alters the economics by reducing costs and providing a vast pool
of developers.

– http://en.wikipedia.org/wiki/Microcontroller

ftp://download.intel.com/research/silicon/moorespaper.pdf
http://en.wikipedia.org/wiki/Moore%27s_law
http://en.wikipedia.org/wiki/Microcontroller

106 D. Raggett

9.3 The Internet of Things

This is generally used for the widespread use of RFID tags as a way to identify
all kinds of everyday objects. It also includes self organizing low power networks
of sensors, and the spread of low cost microcontrollers connected via a rapidly
evolving pantheon of technologies.

– http://en.wikipedia.org/wiki/Internet_of_Things
– http://en.wikipedia.org/wiki/Wireless_personal_area_network
– http://en.wikipedia.org/wiki/Ambient_network
– http://en.wikipedia.org/wiki/Zero_configuration_networking
– http://en.wikipedia.org/wiki/IEEE_802.15.4

9.4 Semapedia – Hyperlink Your World!

This is one example of an easy way to form links from real world objects to web-
sites. In this case through printing 2D barcodes that link to Wikipedia entries.

– http://en.semapedia.org/

9.5 Privacy and Trust

Everyone should be concerned about privacy in the digital age. How can we
safeguard our privacy as our values continue to change? This is an area where
privacy enhancing technologies are still in their infancy. The legal principles have
been laid down, but we still have to evolve the technologies and practices to

– The Spy in the Coffee Machine - The End of Privacy as We Know It, by
Kieron O’Hara and Nigel Shadboult, Oneworld Publications, 2008.

– http://www.w3.org/P3P/
– http://ec.europa.eu/dataprotectionofficer/index.cfm?TargetURL=

D_INTRO%20EUROPA
– https://www.privacyos.eu/
– https://www.prime-project.eu/
– http://www.primelife.eu/

9.6 Web Widgets

These are web applications that can be installed and executed within HTML-
based web pages or as locally installed applications. W3C is developing a suite of
specifications for widgets, covering packaging, digital signatures, scripting APIs,
and access control.

– http://en.wikipedia.org/wiki/Web_widget
– http://www.w3.org/2008/webapps/wiki/PubStatus

viz. the Widgets Specifications on this website.

http://en.wikipedia.org/wiki/Internet_of_Things
http://en.wikipedia.org/wiki/Wireless_personal_area_network
http://en.wikipedia.org/wiki/Ambient_network
http://en.wikipedia.org/wiki/Zero_configuration_networking
http://en.wikipedia.org/wiki/IEEE_802.15.4
http://en.semapedia.org/
http://www.w3.org/P3P/
http://ec.europa.eu/dataprotectionofficer/index.cfm?TargetURL=
D_INTRO%20EUROPA
https://www.privacyos.eu/
https://www.prime-project.eu/
http://www.primelife.eu/
http://en.wikipedia.org/wiki/Web_widget
http://www.w3.org/2008/webapps/wiki/PubStatus

The Web of Things: Extending the Web into the Real World 107

9.7 Context Awareness

This seeks to make computer applications aware of the environment in which
they are operating, for instance user preferences, device capabilities, and the en-
vironment in which devices are situated, e.g. what devices are present in a par-
ticular room, and the location of that room in a building, and that building
in the city. The context can play an important role in interpreting input from
sensors, including recognizing users’ intentions from their actions.

– http://en.wikipedia.org/wiki/Context_awareness

9.8 Model-Based UI Design

This is a field of research on layered architectures for user interface design that
seek to separate different design concerns via models at different levels of abstrac-
tion. This makes it easier to maintain user interfaces and to adapt to changing
contexts.

– http://www.isys.ucl.ac.be/bchi/research/cameleon.htm
– http://www.w3.org/2005/Incubator/model-based-ui/wiki/Main_Page

9.9 Assistive Technology and Designing for Accessibility

– http://en.wikipedia.org/wiki/Assistive_technology
– http://www.w3.org/WAI/

http://en.wikipedia.org/wiki/Context_awareness
http://www.isys.ucl.ac.be/bchi/research/cameleon.htm
http://www.w3.org/2005/Incubator/model-based-ui/wiki/Main_Page
http://en.wikipedia.org/wiki/Assistive_technology
http://www.w3.org/WAI/

Web Science: The Digital-Heritage Case

Guus Schreiber

VU University Amsterdam, Computer Science
De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands

schreiber@cs.vu.nl

http://wiki.cs.vu.nl/web-media

Abstract. Web Science studies the interpay between web technology
and the human behaviour it induces at the micro, meso and macro level.
In this extended abstract we examine Web Science research issues by
taking a closer look at the area of digital heritage. We discuss engineering,
communication and socio-economic aspects.

1 What Is Web Science?

Over the past 15 years the Web has had an increasing impact on the life of people.
Web technology has changed the way people operate and communicate, both in
their personal and working lives. In many ways the Web is a new phenomenon,
for which the principles of the physical world do not always hold. Web science
is a new scientific discipline that studies this phenomenon, in particular the
interplay between Web technology and the effect it has on human behavior at
the personal organizational and societal level.

Good introductions into Web Science can be found in the articles of Berners-
Lee et al. [1] and Shneiderman [2]. The program and proceeddings of the 1st Web
Science Conference in Athens1 give a good impression of the field. In this ex-
tended abstract we illustrate research issues in Web Science by looking at one
particular area, namely the digital heritage domain. Digital heritage comprises
access to and interaction with large-scale virtual cultural heritage collections. We
look at this domain from the experiences gained in a series of digital heritage
projects, such as the ongoing work on the Europeana culture portal Europeana2.
We limit the discussion here to engineering, communication and socio-econmic
aspects of digital heritage.

2 Engineering of Digital-Heritage Collections

Cultural heritage is an extremely knowledge-rich domain. Institutions in this field
have been gathering knowledge for decades or even centuries. This knowledge
is gathered in the form of a multitude of vocabularies, thesauri, classification

1 http://www.websci09.org/
2 http://www.europeana.eu

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 108–111, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.websci09.org/
http://www.europeana.eu

Web Science: The Digital-Heritage Case 109

schemes and other knowledge organization systems, which are used to describe
heritage objects, such as paintings, books and archival documents. These knowl-
edge organization systems display a enormous richness, but are seldomly de-
scribed in the formal way favored by computer scientists. The biggest challenge
in digital-heritage ventures, such as Europeana, lies in interoperability. The de-
scription of heritage objects inherently shows a large variety of perspectives,
caused by differences in type of object, time, place, culture and language.

When constructing a web portal for cultural heritage, such as Europeana or
E-Culture [3], we are faced with a number of research questions. Firstly, we have
to provide mechanisms for explicating heritage knowledge in a machine-readable
web format. SKOS3 is a recently released web standard for achieving this. The
design of SKOS reflects some important principles, in particular the principle of
“minimal ontological commitment”: schema’s for publishing knowledge on the
Web need to be restricted to the minimum level of required constructs and se-
mantic constraints for these to be usable across the field. For computer scientists
with their formal background this is often counterintuitive. Secondly, to enable
collection interoperability we need to provide techniques for partial alignments
between knowledge organization systems. In other words: unification is infeasi-
ble in diverse domains such as cultural heritage; the best we can do is uncover
the agreement and overlap that does exist. For this reason vocabulary-alignment
techniques have become an active area in web research. Thirdly, due to the fact
that cultural-heritage descriptions often partially consist of textual descriptions
we also require a range of knowledge-extraction techniques, such as from natural-
language processing and machine learning. Finally, we have to deal with large
amounts of data, typically billions of statements (“the web of data”). This re-
quires scalable search techniques. Given such amounts of data, the traditional
notions of correctness and completeness make no sense. Therefore, alternative
approaches to reasoning in a web of data are an active area of research4.

Engineering web data in other domains, such as health care and biology leads
to similar research issues. A pervasive common issue is also the notion of web
identity. What should be the URI for Pablo Picasso or for the European union?
Despite the many research efforts in this area, this is still an open research
problem. It is likely that solutions will require some form of societal consensus.

3 Communication in Digital Heritage

An often-heard opinion in the cultural-heritage field is that the digital experience
can never replace the “real thing”. In this view digital access is is a surrogate and
should ideally be a teaser for the web visitor to come to the museum. This is a lop-
sided view: the virtual world provides us with alternative and complementary
forms of interaction with cultural heritage. An example is the generation of
personalized museum tours [4]. Such tours can be first generated for a digital
experience and then be downloaded on a mobile device for a physical tour in
3 http://www.w3.org/2004/02/skos/
4 http://www.larkc.eu

http://www.w3.org/2004/02/skos/
http://www.larkc.eu

110 G. Schreiber

a museum. The physical tour has limitation ins time and space; the virtual tour
has limitations in freedom of experience. It should also be noted that digital
techniques help in accessing objects that would otherwise be inaccessible for
conservation reasons (e.g. old manuscripts). Thus the virtual and physical visit
both have their own pros and cons.

Social tagging is receiving considerable attention in the museum world (see for
example the Steve Museum5). Tagging is a way to involve web visitors more ac-
tively in the collection. Also, given the large amounts of poorly-described objects
the heritage institutions are keen on using web visitors for creating object meta-
data. This raises two issues. Firstly, institutions have to come up with incentive
schemes for web visitors to help annotating the objects. Secondly, quality is seen
as a key characteristic of curated metdata and is not yet clear which strategies
should be followed in quality control of non-curated metadata. This is now an
active area of research.

Central in web communication is the issue of user identity and user profiling.
Current practice is that user identity is mostly handled at the level of individual
web sites or applications. For web visitors this means they have to recreate their
identity and their profile in many different places. The control of users over their
own profile is limited, as it is usually stored in application-specific cookies. There
are several proposals to “put the web visitor back in the driver seat”, such as
FOAF6, OpenID7 and OpenSocial8. We expect these mechanisms to change the
scenery significantly over the next few years.

4 Social and Economic Issues in Digital Heritage

Although heritage institutions, at least in Europe, are almost all public institu-
tions funded with public money, this does not mean that open access to cultural-
heritage data should be taken for granted. Projects like Europeana face social
barriers in it strive for open access. This is understandable: the heritage insti-
tutions have built up their knowledge and data over a long time with an eye on
quality control, and are anxious to make this available with the risk of it being
used or interpreted in the wrong way. For open access to be become the norm
instead of the exception leaders in the field have to set the example. In the li-
brary world Library of Congress has done this by making their Subject Headings
publicly available in a SKOS format9. Major European national libraries, musea
and archives are now doing the same within Europeana.

Access to object data, such as images of paintings, still gives rise to rights
and authority issues. New license schemes are required. Creative Commons10 is
frequently mentioned in this context, but is not really tailored to the type of
5 http://www.steve.museum/
6 http://www.foaf-project.org/
7 http://openid.net/
8 http://code.google.com/apis/opensocial/
9 http://id.loc.gov/authorities/

10 http://creativecommons.org/

http://www.steve.museum/
http://www.foaf-project.org/
http://openid.net/
http://code.google.com/apis/opensocial/
http://id.loc.gov/authorities/
http://creativecommons.org/

Web Science: The Digital-Heritage Case 111

heritage field. Similar schemes, but targeted specifically at data collections, have
been proposed. Open Data Commons11 appears to be a promising candidate for
deployment in the area.

The business models for digital heritage depend to some extent on the rights
issue. A typical web business model would assume that all primary access to
the collections is free, including low and medium-resolution images. Secondary
services can be profit-based, such as access to high-resolution images, use of
objects within a virtual museum shop (e.g., posters, clothing) and integration
with tourist services (e.g. combining heritage access with city walks).

5 Outlook

The web should be viewed as a new ecosystem with an ecology that is in various
ways different from the systems we know. It deserves scientific attention from
a multidisciplinary angle. Universities are already setting up their first Web
Science curricula. The researcher in Web Science works in a new playing field,
with new types of interplay between technology and society.

Acknowledgements. The ideas in this paper are based on joint work and
discussions with many people, in particular colleagues of the VU Semantic Web
group, collaborators in research projects, and co-members of the research council
of the Web Science Research Initiative12.

References

1. Berners-Lee, T., Hall, W., Hendler, J.A., O’Hara, K., Shadbolt, N., Weitzner, D.J.:
A Framework for Web Science. Foundations and Trends in Web Science 1(1), 1–130
(2006)

2. Shneiderman, B.: Web Science: a Provocative Invitation to Computer Science. Com-
mun. ACM 50(6), 25–27 (2007)

3. Schreiber, G., Amin, A., Aroyo, L., van Assem, M., de Boer, V., Hardman, L.,
Hildebrand, M., Omelayenko, B., van Ossenbruggen, J., Tordai, A., Wielemaker,
J., Wielinga, B.: Semantic Annotation and Search of Cultural-Heritage Collections:
The MultimediaN E-Culture Demonstrator. J. Web Semantics 6(4), 243–249 (2008)

4. Wang, Y., Stash, N., Aroyo, L., Gorgels, P., Rutledge, L., Schreiber, G.: Recom-
mendations Based on Semantically Enriched Museum Collections. J. Web Seman-
tics 6(4), 283–290 (2008)

11 http://www.opendatacommons.org/
12 http://webscience.org/

http://www.opendatacommons.org/
http://webscience.org/

Model-Driven Software Product Line Testing:
An Integrated Approach

Andy Schürr1, Sebastian Oster1, and Florian Markert2

1 Real-Time Systems Group
{oster,andy.schuerr}@es.tu-darmstadt.de

2 Computer Systems Group
markert@rs.tu-darmstadt.de

Technische Universität Darmstadt
Merckstr. 25, 64283 Darmstadt, Germany

Abstract. Software Product Line engineering is a popular approach
which improves reusability of software in a large number of products that
share a common set of features. Feature Models (FMs) are often used
to model commonalities and variabilities within a Software Product Line
(SPL). Due to their variability, testing SPLs is very challenging and many
different approaches exist. Classification Trees (CTs) are a well-known
and in practice popular black-box approach for the systematic derivation
of a set of test cases of a single software system instance. In this paper,
we explore the relations and similarities between FMs and CTs. Our
contribution is the introduction of an integrated approach Feature Model
for Testing (FMT) marrying properties and abilities of CTs and FMs.

1 Introduction

Software Product Line (SPL) engineering is one of the most promising and lat-
est approaches of the Software Engineering community to increase the quality
of similar software products, for as well as to reduce costs of development and
maintenance [1]. SPL engineering is successfully used in the automotive indus-
try and various other domains. In the automotive sector we are running into
a situation, where a single electronic control unit (ECU) may be instantiated in
at least 10.000 different ways and the software running on a network of more
than 50 ECUs in a single car may exist in millions of different configurations. As
a result, we are confronted with a world, where any instance of a certain brand
of car possesses a unique configuration of the embedded software of all its ECUs.

In the past each instance of an automotive SPL was tested individually devel-
oping a separate suite of integration test cases for each product. Since this is no
longer feasible, the automotive industry as well as engineers from other domains
are urgently looking for new methods of how to systematically generate sets of
software product instances that represent equivalence classes of instances with
sufficiently similar behavior from a system integration testing point of view. Fur-
thermore, model-driven as well as black- and white-box testing approaches are
adapted in such a way that appropriate test cases for each specific SPL instance
are either manually selected or semi-automatically generated.

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 112–131, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Model-Driven Software Product Line Testing: An Integrated Approach 113

1.1 Model-Driven Software Product Line Testing

Examining the state-of-the-art of SPL development and software testing ap-
proaches in the automotive industry we experience that on the one hand various
kinds of feature modeling concepts and tools are used for the design of SPLs
and the derivation of product instances [1,2]. On the other hand, Classification
Trees (CTs) and related tools such as CTE [3] are successfully used for black-box
testing of single product instances.

Fig. 1. SPL black-box testing process: state-of-the-art

Fig. 1 depicts a model-driven development and test procedure for SPLs as
used in the automotive industry: On the basis of the system requirements an
FM is developed that describes commonalities and variability of the SPL as well
as a compatible 150% software model containing the functionality of the whole
SPL. Often Matlab/Simulink is used to define the 150% model, but an increasing
number of projects also adopt the modeling language standards UML/SysML or
niche products as the heterogeneous modeling language Ptolemy II.

The selection of a representative set of product instances for testing purposes
is then a two step process as described in [4]. First of all a model transformation
converts the given FM into a normal form that can be processed more efficiently
afterwards. Then a number of heuristics determines the needed set of product
instances that are used as “systems under test” (SUT) for all further quality
assurance efforts. For each selected SUT a corresponding executable “model un-
der test” (MUT) is derived from the given 150% model. This model is then
processed as input for the semi-automatic derivation of a CT, which describes
the input parameter domain of the instance model. Afterwards, often a num-
ber of semi-automatic refinement steps are applied to the derived CT taking
domain-specific knowledge about input parameter values and interactions into
account [5]. The refined CT is then used to guide the test case definition process
for the regarded MUT. Usually, only CT-based heuristics control the generation
of these test cases. The combination of these heuristics with model-based test
case generation techniques is still ongoing work. Finally, test scripts are gener-
ated that either enact the MUT itself for simulation purposes or a generated code
for more realistic SIL/HIL (Software/Hardware-in-the-Loop) testing purposes.

The process as depicted above has one severe disadvantage: for each se-
lected product instance time-consuming manual efforts are needed to define an

114 A. Schürr, S. Oster, and F. Markert

appropriate set of test cases. Therefore, we are developing a new approach that
integrates the FM-based definition of an SPL with the construction of a 150% CT
model for the whole SPL. Refinement, normalization, SUT and test case selec-
tion process steps are reorganized such that repetitions of manual activities for
each selected product instance of an SPL are avoided. Furthermore, the new inte-
grated approach has the advantage of using one set of concepts for the definition
of SPL feature properties and test case parameter vectors. As a consequence, the
same mechanisms are e.g. used to unlock a specific function or to (de-)activate
a certain mode of operation of an SPL at compile-, flash- or runtime.

1.2 Related Work

Various approaches for SPL testing have been developed in the past and a sum-
mary of methods is e.g. given in [6]. Nevertheless, we are not aware of any
SPL testing approach that combines SPL product derivation with parameter
value selection strategies for black-box testing as supported by CT. Often FM-
modeling tools like pure::variants [7] support the definition of parameters that
can be stored as attributes of features. But unfortunately, equivalence classes
needed for parameter selection purposes are not introduced with two excep-
tions: in [8] the authors consider parametrization and use equivalence classes for
requirement-based SPL testing. Scenarios are represented as textual use cases
and variability is described by using special tags within those use cases. Then,
test cases are derived for each product of the SPL instead of intertwining SPL
and test case definition activities.

Geppert et al. present the most similar testing method to our approach in [9].
Their approach introduces a decision model to represent the variability of an
SPL. Furthermore, it documents the input parameters of the regarded system.
However, the decision model is considerably less expressive than the FMT ap-
proach presented here. Furthermore, the well-known heuristics for CT-based
black-box testing purposes that are adopted by our approach are considerably
more elaborate than the selection process introduced in [9].

1.3 Outline

The remainder of this paper is structured as follows: First, we explain the fun-
damentals relevant for our approach in Section 2. There we also describe the
paper’s running example, a subset of a car seat SPL. Afterwards, we introduce
the current state-of-affairs of our Feature Model for Testing approach (FMT) in
Section 3. This introduction relies on the presentation of first ideas how to merge
FMs and CTs in a workshop paper [10]. Then, in Section 4 we describe the appli-
cation of the FMT approach using our running example. Finally, we summarize
and conclude our paper and give an overview of future work in Section 5.

2 Fundamentals

In this section we explain the fundamentals relevant for our approach. First of
all, we introduce a running example. Afterwards, we explain how variability of

Model-Driven Software Product Line Testing: An Integrated Approach 115

SPLs is modeled by means of feature models and black-box testing of product
instances using the CT methodology.

2.1 Running Example

This paper uses a luxory car seat as a running example. Its functional behavior
will be specified later on using the heterogenous modeling language
Ptolemy II [11]. Our car seat can be moved vertically or horizontally and the
angle of its backrest can be changed either manually or electrically. The seat
may possess either an air conditioning or a heating system or none of both. The
car’s speed sensor, the seat belt sensor, and the door sensor have an impact on
the behavior of the seat. There is also an optional access support function that
moves the seat back, when the driver enters or exits the car, respectively. Table 1
summarizes the equipment and functionality requirements.

Table 1. Excerpts of luxory car seat requirements document

Functionality Precondition
Motor movement Only one motor can be active at a time.

The priority order is Horizontal-Vertical-Backrest.
A motor that moves will not be aborted by a higher priority.
Motors can only be active until the speed reaches 15 km/h.

Access Support Is only active when the car is not moving.
Moves the seat back when the door is opened.
Moves the seat to the initial position when the door is closed.
Is aborted when the user tries to move the seat horizontally.

Heating/Aircon Is only active when the seatbelt is attached.

2.2 Feature Models

Software Product Lines (SPLs) provide a high level reuse of software in a spe-
cific problem domain [1,2]. Feature models (FMs) are frequently used to describe
commonalities and variabilities within an SPL. An FM consists of features, each
representing a “logical group of requirements” [12] or as defined in [13]: “a sys-
tem property that is relevant to some stakeholder”. The purposes of FMs are
summarized in [14] as follows:

– describing feature commonalities and variabilities
– picturing dependencies and constraints between features
– specifying permitted and forbidden combinations of features

For this purpose notations have been defined such that even managers and clients
are usually able to read and interprete FMs easily. Of course, feature models are
not able to capture all kinds of important properties of an SPL; therefore, they
are complemented by other development artifacts such as natural languagement

116 A. Schürr, S. Oster, and F. Markert

descriptions, function network diagrams, executable models, or even code frag-
ments. These artifacts are then mapped to the corresponding features by means
of traceability relationships.

FMs were initially introduced by Kang et al. in [15] as part of FODA in 1990.
FODA already combines a hierarchical (tree-like) decomposition of features into
subfeatures with the definition of mandatory, optional, and alternative features.
Different sorts of decomposition relationships (node notations) are used for this
purpose. In addition, binary require and exclude constraints describe further
cross-tree dependencies between features. The hierarchical structure of FMs, the
different node notations, and the additional constraints determine which feature
combinations are allowed and which are not.

Since the introduction of FODA, further extensions of FMs were introduced
improving precision and expressiveness including amongst others cardinalities,
probabilities, and weighting of features. Cardinalities can be employed to formu-
late how many instances of a feature may be integrated within a product [16].
Probabilities state that a certain feature is more likely to be used than another
one [17]. Weights can be used to represent cost factors of features to help the
engineers to build products appropriate for a certain budget [18]. For a detailed
summary of extensions of FODA feature models the reader is referred to [13].

For the purpose of this paper a very simple FM notation is selected as a start-
ing point. But the proposed incorporation and integration of classification tree
elements into the selected FM notation can easily be adapted to other popu-
lar FM approaches like the Orthogonal Variability Model (OVM) invented by
Pohl et al. [2] or the approach supported by the FM tool pure::variants from
pure-systems.

Fig. 2. Used feature model notation

The FM notation used throughout this paper is depicted in Fig. 2. Rectangles
represent features and four different kinds of rhombes are used to specify com-
position relationships between a feature and its subfeatures. The top feature in
Fig. 2 has

– an optional subfeature, which may or may not be selected,
– a mandatory subfeature, which is always selected,

Model-Driven Software Product Line Testing: An Integrated Approach 117

– an “or” set of subfeatures, with at least one of them being selected,
– an alternative set of subfeatures, where exactly one of them is selected.

An editor that supports this notation has been implemented using our own
meta-modeling tool MOFLON [19] and the Eclipse Graphical Editing Framework
GEF. It is used as an experimental platform for rapid prototyping new variants
of SPL modeling and test generation approaches. First consolidated results of the
joint research project feasiPLe have already been reimplemented as extensions
of the above mentioned commercial tool pure::variants.

Fig. 3 shows a drastically simplified feature model of a car seat which serves
as our running example. This model has been derived from artefacts generated
by requirements elication activities like use case diagrams or function networks
that do already distinguish between hardware components (sensors and actua-
tors) on one hand and software control functions on the other hand. Therefore,
the root node of the car seat FM is decomposed into the mandatory feature
groups sensors, actuators, and functions. For each functionality of the seat—
each element beneath the feature group functions—corresponding sensors and
actuators do exist. First of all, we describe the different sensors and actuators;
afterwards, the functionalities are introduced which interact with these hardware
elements.

Fig. 3. Simplified feature model screendump of luxory car seat SPL

118 A. Schürr, S. Oster, and F. Markert

Each derived product contains the following external sensors: door and car
speed. The sensor door indicates whether the driver’s door is open or not and
car speed measures the speed of the car. The seat internal sensor seatbelt is
mandatory for every instance indicating whether the driver has fastened the seat
belt, whereas the sensor position is optional. The position sensors measure
the position of the seat horizontally and vertically as well as the inclination angle
of the backrest. Two different kinds of actuators may be chosen for a product
instance of the car seat SPL and are, therefore, optional: motors which are
responsible for the automatic movement of the seat and additional (internal)
comfort functions. If internal actuators is selected either a heater is included
to warm up the seat or an aircon may be placed within the seat to control its
temperature precisely. These two actuators exclude each other. Furthermore,
high-level functions are introduced that control the heating or air conditioning
system, the access control support, and the electrical motors of the seat. There
are three different variants of the mandatory seat movement feature. First of all
the engineers or the customer have to choose whether the seat should be moved
manually or electrically. If an electrical interaction is desired two different types
of feature packages may be chosen. Both packages exclude each other depicted
by the 1..n notation. Type 1 realizes horizontal and vertical movements only,
whereas Type 2 supports horizontal, vertical, and backrest movements.

Finally, cross-tree require constraints capture existential dependencies be-
tween the control functions themselves and their associated optional sensors and
actuators. To mention just one example, the optional access support func-
tion relies on the existance of the optional electrical motor control function.
Examples of the usage of exclude constraints have been omitted, but could be
added easily to prevent e.g. the selection of the optional motors actuators and
position sensors if the seat variant is selected that has to be moved manually.
All above listed dependencies and constraints within the FM have to be taken
into account when deriving a product.

2.3 Black-Box Testing / CTM

The Classification Tree Method (CTM) was introduced by Grochtmann and
Grimm [20] in 1993. The CTM implements a black-box testing technique that
uses valid input parameters or input parameter ranges, so-called equivalence
classes, to test a system component systematically. A structured approach is
vital to handle the complexity of the test case generation and to find a represen-
tative set of test cases from the nearly infinite number of possible combination
of test parameter values. The equivalence classes are manually selected by an
engineer or automatically extracted from a specification such that the regarded
System Under Test (SUT) hopefully behaves in a similar way (with respect to
an adequately chosen definition of similarity) if the input values of two test cases
belong to the same combination of equivalence classes.

A Classification Tree (CT) essentially is an acyclic graph that decomposes a sys-
tem component into subcomponents, input parameters of (sub-)components, and
equivalence classes of parameter values as leaf nodes. Beside equivalence classes a

Model-Driven Software Product Line Testing: An Integrated Approach 119

CT uses two further types of nodes for this purpose. Classifications group related
equivalence classes into disjoint subsets. Compositions usually offer a higher level
of abstraction by decomposing the regarded SUT and its input domains into a
number of subgroups. To extract test cases from a CT, a test case table is built
that defines which equivalence classes provide the input values for a specific test
case.

The construction of a CT and the generation of test cases is usually performed
in a predefined order. First of all the specification needs to be evaluated and the
corresponding equivalence classes are extracted. With this information as input
an initial version of the CT often can be built automatically and refined manually
afterwards [5]. The test case table is then filled either manually by the designer
or automatically on the basis of some heuristics and rules that were extracted
from the system’s specification. When filling the test case table automatically it
may happen that some input combinations are invalid or just cannot occur due
to the “physical” nature of the system.

Fig. 4. CT for black-box tests of one seat motor

Today these illegal input combinations are usually identified manually within
the test case table and deleted. The resulting table only consists of sequences
of valid and representative test cases that need to be performed. Model-based
testing approaches that rely e.g. on symbolic model execution or model-checking
techniques promise to increase the degree of automation of the test suite defini-
tion process.

Fig. 4 shows an example CT, drawn with the CTE tool [3], for the software
controller (SUT subcomponent) that moves the seat backward and forward. The
compositions are located under the root node and marked with bold lines. The
classifications are rectangles with thin lines. The leaf nodes represent the equiva-
lence classes of the CT. The speed node, for instance, divides the corresponding
sensor node output (seat control function input parameter) domain into three
equivalence classes: [0] for not driving (access support function is enabled),
[1..15] for slowly driving (manually controlled seat movements are enabled),
and [16..180] for driving faster (all kinds of seat movements are disallowed).

120 A. Schürr, S. Oster, and F. Markert

In the test case table (bottom part of Fig. 4) each horizontal line represents
a test case. The selected equivalence classes for the test parameter values of each
test case are marked with black dots on the corresponding line. The vertical or-
der of the lines defines the temporal order in which the test cases are executed,
i.e. the order in which the input parameter values are fed into the SUT. Often,
parameter value selection and interpolation functions are provided for actual test
script generation purposes that translate the discrete sequence of input parame-
ter equivalence class selections into a needed and physically possible continuously
changing graph of values.

The test cases shown in Fig. 4 are used to evaluate the correct behavior of
the access support. During the whole test case the car must not be moving and
no switch to move the seat is activated. The test case consists of five consecutive
steps:

1. The door is opened.
2. The seat moves back due to the automatic entry function.
3. The seat has moved back and the driver can enter the car.
4. The driver has entered the car and closes the door.
5. The seat moves back to its initial position and stops there.

The composition and classification nodes of a CT are often automatically derived
from the input interface description of the corresponding system function of a
specific SPL instance. The decomposition of classification nodes into equivalence
classes is then often a manual process that requires intimate domain knowledge.
In our case, the test engineer did not only properly divide the speed input pa-
rameter domain between 0 and 180 km/h into three equivalence classes, but also
made the decision that speed values below 0 and above 180 km/h will never
be considered for testing purposes. As a consequence, FMs and CTs with their
associated test cases are only indirectly related to each other via the following
sequence of engineering activities (cf. Fig. 1): (1) select a product instance as
SUT that fulfills all constraints of the regarded FM, (2) generate the correspond-
ing executable instance model (MUT) using a 150% model as input, (3) derive
the upper part of the CT from the generated MUT, (4) refine the generated
CT afterwards manually, and (5) finally define all needed test cases for the thus
developed CT.

In the following subsection the still missing 150% model for step (2) above
will be presented for reasons of completeness. Section 3 afterwards introduces
a new approach that integrates FMs and CTs such that steps (4) and (5) above
are executed once and for all right after step (1) for a whole SPL instead of
repeating these activities again and again for all regarded instances of an SPL.

2.4 Ptolemy II Implementation

Ptolemy II is a modeling and simulation tool developed by the University of
Berkeley [11]. It enables the designer to build models of systems that are based
on a large variety of different models of computation. This was the main reason
for us to select Ptolemy II instead of UML or Matlab/Simulink for modeling

Model-Driven Software Product Line Testing: An Integrated Approach 121

purposes. The model of computation defines the way that components called
actuators interact with each other. If an actuator fires it emits a token as its
output that can then be received by another actuator. The model of computation
describes the output and acceptance behavior of an actuator. The most common
models of computation are Discrete Events, Continuous Time, Synchronous Data
Flow, and Finite State Machine. Different time domains may interact with each
other in the same model. A continuous time signal can for instance be sampled
by an actuator and converted to the discrete events domain. For our purpose
we combined the synchronous data flow domain with the finite state machine
domain. To display the resulting system behavior, we use a specialized graphical
output domain that just interprets the resulting system behavior.

Ptolemy II, as virtually any other modeling language, can be used to construct
a 150% model of our running example. A 150% model incorporates all function-
ality that may be defined by any product instance derived from the product line.
Our model Fig. 5 is based on the three main components test vector input, SUT,
and output. Furthermore, we introduce a Boolean configuration parameter for
each optional (functional) feature of the regarded SPL. These parameters are
displayed in the upper part of Fig. 5 on the right-hand side above the list of
“real” runtime parameters.

The conversion of the 150% model into a specific instance Model Under Test
(MUT) simply requires the translation of the selection of a specific product
instance in the previously introduced FM into a corresponding parameter con-
figuration file. More sophisticated conversion processes can be realized, where
model transformation and optimization steps eliminate and simplify an instanti-
ated 150% model if the footprint or runtime of the model itself or its generated
code is an issue.

The MUT represents the actual system behavior on the basis of finite state ma-
chines. An input controller assures that only one motor can be moved at a time.
The FSMs controlling the motor behavior for the backrest and the vertical axis
just react on the input buttons, while the motor that moves the seat backward
and forward also takes the optional access support function into account. Incor-
porating optional functionality into the corresponding FSM is realized by using a
configuration parameter which enables or disables an FSM for the just regarded

Fig. 5. Ptolemy II model: top level diagram

122 A. Schürr, S. Oster, and F. Markert

optional functionality. The configuration parameter also controls a multiplexer
that forwards the output of the additional FSM or a constant 0 to the main FSM.
An additional FSM controls the optional airconditioning or heating functions.

In the following, the functionality of the FSM for the access support function is
described (cf. Fig. 6). It consists of the three states On (access support is active),
Off (access support is inactive) and Break (access support was interrupted by
the user). An internal signal Seat Pos Req stores the position of the seat when
the access support function is triggered. The stored position is needed later on
to move the seat back to its initial position when the driver has entered.

Fig. 6. Ptolemy II model: finite state machine of access support function

The guards of the FSM reference input signals of the actuator, while actions
define its outputs. The actuator is embedded into the synchronous data flow
model of computation. Therefore, it fires at each iteration of the simulation. The
FSM actuator is based on the Mealy FSM model and only fires if a transition
is taken. The outputs control whether the access support function is active and
which position needs to be reached, when the door is closed and the seat moves
forward again. The outputs are connected to the FSM that actually controls the
motor. The presented system model will be used in the sequel to enact the tests
developed using our new FMT method.

3 The Integrated FMT Approach

FMs and CTs have been used in the software engineering community for different
purposes until now, but will be used in the sequel for the integrated definition
of an SPL and its database of test cases. On a first glance, an appropriate

Model-Driven Software Product Line Testing: An Integrated Approach 123

integration of FM and CT should simply attribute leaves of an FM with CTs
for feature parameter description purposes. But when inspecting the modeling
constructs of FMs and CTs more closely, we realized that many of their concepts
are very similar and can be unified. Furthermore, we made the experience that
FM concepts not supported by CT are useful for black-box testing purposes (e.g.
introducing optional parameters) as well as that CT concepts not supported by
FM should be adopted for SPL development purposes (e.g. adding equivalence
classes to feature parameters for test preparation purposes).

3.1 Comparison and Synthesis of FM and CT Language Constructs

The development of the integrated FMT approach started with an in-depth
comparison of the FM and CT language constructs. The results of this work is
presented in Table 2 as well as a proposal how to merge FM and CT constructs.
The resulting FMT modeling language adopted whenever possible the terminol-
ogy of the feature modeling world due to the fact that its main application area
is the definition of SPLs.

The comparison of FM and CT modeling constructs is divided into four parts.
The first part of Table 2 deals with all kinds of tree nodes. CTs contain three
different sorts of nodes: composition, classification, and equivalence class. Equiv-
alence classes are leave nodes, whereas composition and classification are nodes
with child elements. FMs on the other hand do only distinguish two kinds of
nodes: compound features with child nodes and atomic features as leave nodes.
FMT in principle adopts the FM distinction between two kinds of nodes only,
but adds two subclasses of atomic features: literal and interval for partitioning
parameter value domains into equivalence classes.

The second group of rows of Table 2 deals with the previously explained four
sorts of composition relationships of features. As shown, CTs do not support
optional elements and the selection of subsets of a set—despite of the fact that
both modeling concepts would simplify the handling of optional or set-valued
parameters of SUTs.

The CT nodes composition and classification are always mandatory; equiva-
lence classes are always alternatives that exclude each other. FMT simply adopts
all FM composition constructs without any modifications (except of choosing
more appropriate names). Another difference between the language constructs
of FMs and CTs concerns the handling of cross-tree constraints. In CTs cross-
tree constraints can only be placed between equivalence classes (due to the fact
that all other kinds of nodes are mandatory anyway), whereas FMs permit con-
straints between any nodes. Again FMT adopts the more general approach of
FMs.

The third group of rows of Table 2 deals with FM attributes and types that are
used to associate any kind of additional information with features. FMT supports
attributes and types, too. Thus we are able to capture data about probabilities,
costs, etc. of features as well as to provide users with typing information that may
e.g. be used as a guideline for the manual definition of parameter equivalence
classes and test cases.

124 A. Schürr, S. Oster, and F. Markert

Table 2. Comparison of FM, CT, and FMT language constructs

FM CT FMT
1. compound composition, feature group

feature classification
2. (atomic) — atomic

feature feature
3. — equivalence literal, interval

class
4. mandatory composition, mandatory composition

features (n of n) classification (n of n)
5. optional features — optional composition

(0..1 of 1) (0..1 of 1)
6. alternative equivalence alternative composition

features(1 of n) class (1 of n)
7. or features — or composition

(1..n of n) (1..n of n)
8. cross-tree only between cross-tree

constraints equivalence classes constraints
9. feature — feature

attributes attributes
10. feature — feature

types types
11. — test case test case

and group and group

The last group of rows of Table 2 simply shows that FMT inherits the capa-
bility to define single test cases and groups of test cases from CT. As we will see
later on, FMT test cases and test groups do not only specify input parameter
values for a given SUT, but are also used for the selection of an SPL instance as
a SUT.

3.2 The FMT Modeling Language

Based on the informal description of the synthesis of the new FMT language
from FM and CT we are now ready to describe the abstract syntax of FMT
precisely. For this purpose a rather generic metamodel has been developed that
describes all FMT modeling concepts and their relationships. Please note that
the metamodel presented in Fig. 7 introduces just a small subset of the properties
of the displayed metamodeling elements.

Furthermore, all kinds of static semantics constraints (defined in OCL), which
control the proper usage of binding time constraints, associations of test cases
with to be tested features and so forth, have been omitted due to lack of space.

The abstract metaclass Feature introduces the most important modeling
concept of FMT with its properties like name and bindingTime. The optional
bindingTime property is a new FMT modeling element that is neither supported

Model-Driven Software Product Line Testing: An Integrated Approach 125

Fig. 7. The FMT language metamodel

by FM nor by CT. It specifies when the variability described by a specific fea-
ture is bound in the development process. Right now we distinguish the following
binding times: compileTime, flashTime, and runTime. The selection of a fea-
ture or parameter value at compile-time corresponds to the traditional selection
of a product instance at product design time, whereas the selection at runtime
corresponds to the definition of input parameter values within a test script.

For the definition of a hierarchy of features the well-known composite design
pattern is used in a slightly modified form: Feature Group and Atomic Feature,
which inherit all properties from the metaclass Feature, are not directly as-
sociated to each other via a single composition; instead of this an intermedi-
ate metaclass Composition is introduced that represents an n-ary association
with one source element, an arbitrary number of target elements, and lower/up-
per boundaries for multiplicity constraints. The metaattributes minCardinality
and maxCardinality thus support the definition of all sorts of composition rela-
tionships listed in Table 2: mandatory, optional, alternative, and or as well
as other combinations like choosing between 3 and 5 of n features.

The metaclass Atomic Feature has two subclasses Literal and Interval.
Thus, we are not only able to list a finite number of variants of a feature ex-
plicitely, but also to specify a range of alternatives in the case, where feature
variants are represented as a parameter with an ordered domain as type.

The specification of more complex (sub-)domains of values is supported by
combining type annotations with constraints. For this purpose, the abstract
metaclass Constraint with its two subclasses Exclude and Require is intro-
duced. Require defines a binary directed constraint between two features, which
enforces the inclusion of the target feature if the constraint’s source feature is
part of a product instance. The Exclude relationship on the other hand repre-
sents a binary undirected constraint. It rules out the existance of any product

126 A. Schürr, S. Oster, and F. Markert

instance which contains its two associated features simultaneously. The introduc-
tion of more general forms of constraints by means of predicate logic formulas is
planned for the future. FMT constraints may be used on any level of a feature
hierarchy to control the selection of feature combinations as needed.

A third group of metaclasses (Attribute and Type) of Fig. 7 introduces
feature attributes and types which can be used for rather different purposes.
Types of features and attributes are always optional; attributes are modeled—
as usual—as simple name/value pairs without any support for the definition of
complex structures.

Last but not least, a fourth group of metaclasses introduces means for the
definition of product instances and test cases. Again the composite design pattern
is used to define a hierarchy of test cases via the abstract metaclass Test and
its subclasses Test Group and Test Case. A Test Group is composed of an
ordered sequence of tests, whereas a single Test Case represents one test call in
a test script for the regarded SUT.

The association between Test and Feature is used for two different purposes.
First of all a test group associates itself with a set of required features and defines
thereby a subset of all product instances that can be evaluated using the just
regarded test group. Furthermore, atomic test cases use this assocation for the
definition of a specific product instance together with the needed vector of input
parameter values.

The binding time attributes of the selected features determine whether pa-
rameter instantiation takes place at compile-, flash-, or runtime. In practice,
design guidelines are needed that require, e.g., that high level test groups select
all compile-time features of an SPL, lower level test subgroups then add data
about the selection of flash-time features, whereas low level test groups and sin-
gle test cases within one group may only differ with respect to their runtime
parameter/feature selection values.

A more detailed description of how all the above introduced FMT modeling
concepts are applied in practice is presented in the following Section 4. This sec-
tion introduces a number of modeling guidelines (pragmatics) for the design of
FMT hierarchies for a specific application domain. We are planning to refine the
rather generic FMT abstract syntax description introduced here in various ways
thereby creating a family of domain-specific versions for automotive, automa-
tion, ... SPL development and testing purposes. These specific FMT variants
will introduce among other things subclasses like System, Sensor, Function,
Parameter, etc. of the metaclass Feature Group together with a number of
constraints for their places in an FMT hierarchy.

4 Application of the FMT Approach

In the following we describe the application of the FMT approach for Software
Product Line testing purposes in a step-by-step manner. We use our running
example to explain the procedure which is summarized in Fig. 8. The variability
of our SPL is defined as an FMT in a so-called preparation phase. Afterwards,

Model-Driven Software Product Line Testing: An Integrated Approach 127

Fig. 8. New FMT-based SPL testing approach

a database of test cases is added as an integral part of the constructed FMT.
The resulting FMT may be refined using similar heuristics as suggested in [5].
Afterwards, a representative set of product instances is selected as SUTs. Each
instance is associated with the subset of all previously defined test cases that
are compatible with the just regarded SUT. Then the description of a selected
SUT is used to instantiate an executable 150% model. Finally, this model or
generated code is executed using the just selected test cases as input.

4.1 FMT Preparation Phase

The first step towards using the FMT approach for testing SPLs is an exhaus-
tive analysis of its requirements specification. This specification may already
comprise a first version of an executable 150% model. An already existing “tra-
ditional” feature model as presented in Section 2 can be used as a starting point
to set up the FMT. Afterwards, missing data about input parameters of the
regarded system functions (derived from the accompanying 150% model) are
added together with a decomposition of their value domains into appropriate
equivalence classes. Furthermore, the binding time of each feature has to be
determined

A small excerpt of the FMT of the car seat is shown in the upper half of
Fig. 9. It has been developed as follows using the FM of Fig. 3 as a starting
point:

First of all missing features, components, and devices relevant for testing
purposes are added. In case of our running example this concerns the buttons
that control all functions of the seat. These missing UI elements are added as
subfeatures of a new feature group ui: the subfeature switch-up controls vertical
movements of the seat, switch-climate controls the airconditioning system,

Afterwards, a new layer of subfeatures is added to the FMT tree that ex-
actly corresponds to the input parameters of our 150% model introduced in
Subsection 2.4. Considering the Ptolemy II model of our running example, we
introduce parameters together with their trivial equivalence classes for the door,
seatbelt, the button and the lever controlling the seat aircon, and the ver-
tical seat movement. The features door and seatbelt have a single parameter

128 A. Schürr, S. Oster, and F. Markert

Fig. 9. Excerpt of the FMT with Test Cases

status describing its state. Both parameters possess two possible values which
are added as Literal. The state of the door can either be open or closed and
the seatbelt can either be buckled or unbuckled.

The lever for the seat position has a parameter switch-up with the values
-1, 0, 1 for “move down” (-1), “move up” (1) or “stop” (0). Analogously, the
button for the seat aircon possesses a single parameter switch-climate with
two values for increasing (+) or decreasing (-) its operating level. The optional
feature access support has a parameter access support state with the two
states active and inactive. These states control whether the optional feature
is part of a regarded product instance or not.

Finally, binding time information is added where appropriate. All features
labeled with a square are selected at compile-time (or beforehand), all features
labeled with a triangle are selected at flash-time, and features labeled with a cir-
cle are (de-)activated at runtime. Subfeatures inherit the binding property of its
parent, but may overwrite it if needed.

4.2 FMT Test Case Definition Phase

Having defined our SPL with all its features and input parameters as an FMT
model we are now prepared to select a representative set of product instances
as well as their corresponding test cases. Heuristics like pair-wise testing [4] pro-
vide us with guidelines for the selection process. Furthermore, the finite state
machines of the executable 150% model as well as additional requirements en-
gineering artefacts like UML Use Case diagrams may also be used to define
a representative set of product instances and test cases as explained in [21].
The bottom part of Fig. 9 shows some results of our test case definition ef-
forts. Bold lines separate groups of test cases (test sequences) from each other.

Model-Driven Software Product Line Testing: An Integrated Approach 129

Each group of test cases starts with the definition of a specific product instance
and the selection of the regarded subset of parameters. The first group of test
cases, called Access Support, requires that the selected SUT offers the access
support state feature. This is expressed by the fact that the parameter access
support state has the value active which is already determined at compile-
time (squares denote compile-time selections).

Furthermore, the test group selects values for the parameters door-state and
switch-up as input which are determined at runtime (circles denote runtime
selections): in the first test case the car’s door is open, in the second case it is
closed. The switch-up parameter has the value 0 in both cases.

The inputs of the other parameters seatbelt-state and switch-climate are
available, but irrelevant for the execution of the two test cases of the regarded
test group. Therefore, the bold line of the Access Support test group selects
these runtime parameters, but the following two thin lines do not pick a specific
value. The remaining two test groups displayed in Fig. 9 test the functionality
of aircondition and the vertical seat movements.

To summarize, the basic principles for the definition of test cases with FMT
have been adopted from CTM. Important extensions allow us to distinguish
between different parameter value binding times and to use the same mechanism
for the selection of product instances of an SPL as well as for the definition
of runtime parameter values. An FMT editor, which can be used in practice,
obviously has to support folding and unfolding of feature subtrees as well as of
test groups. Therefore, we are just experimenting with different user interface
designs including the reuse of the front-end of a matrix browser tool which
has originally been developed for the manipulation of traceability relationships
between two hierarchically structured software engineering artefacts.

4.3 Product Instance Selection and Test Execution Phase

Having defined and refined our FMT for the car seat SPL we can now generate
a suite of test scripts as follows: first of all the compile- and flash-time parameters
of each test group are evaluated and a corresponding parameter configuration
file is generated which transforms our 150% model into the specified concrete
MUT/SUT. Afterwards a test script is generated which provides the just selected
MUT with the needed sequence of input parameters. For this purpose parameter
value generators compute (sequences of) concrete parameter values which belong
to the previously determined equivalence classes. These test scripts may only be
used for regression testing purposes as long as FMT does not yet support the
definition of expected output parameter values.

5 Conclusion and Future Work

The development of effective and efficient new SPL testing approaches is of vital
importance in many engineering domains due to the rapidly increasing complex-
ity of embedded system SPLs. In this paper we have used the running example

130 A. Schürr, S. Oster, and F. Markert

of an automotive SPL to present the state-of-the-art of model-driven SPL de-
velopment and testing processes and discuss their deficiencies. Afterwards, we
have introduced a new methodology together with an integrated modeling lan-
guage called FMT that combines the capabilities of “classical” feature modeling
and classification-tree-based test case description languages. The resulting SPL
testing approach has the following advantages compared to the state-of-the-art,
where the selection of a set of product instances as SUTs and the selection of
test cases for each SUT are separate activities:

– test parameter value creating heuristics can easily be adapted to the new
task of computing a set of SPL instances as SUTs

– integrated algorithms can be developed for the computation and optimiza-
tion of cost-effective sets of SUTs and their associated sets of test cases

– manual activities can be reduced to a minimum that are nowadays performed
for each selected SUT in a product-by-product SPL testing approach

The presented FMT language is still under development as well as the accom-
panying new SPL modeling and testing process. A first version of an FMT tool
prototype has been implemented using the metamodeling tool MOFLON [19].
Right now we are busy to refine and automatize various steps of the development
process presented in the previous section. For this purpose, we

– use our tool integration framework TiE for the creation and maintenance of
traceability relationships between requirements documents and FMTs,

– redesign the product instance generating approach, which has been devel-
oped in the BMBF project feasiPLe [4], to FMT

– specify bidirectional transformations in MOFLON that keep a 150% model
and its related FMT in a consistent state,

– explore the usefulness of model-checking techniques for the derivation of test
case sequences from executable FSM models as suggested in [22].

References

1. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns.
Addison-Wesley Longman Publishing Co., Inc., Boston (2001)

2. Pohl, K., Böckle, G., Linden, F.J.v.d.: Software Product Line Engineering: Foun-
dations, Principles and Techniques. Springer, New York (2005)

3. Alekseev, S., Tiede, R., Tollkühn, P.: Systematic Approach for Using the Classifica-
tion Tree Method for Testing Complex Software-Systems. In: SE 2007: Proceedings
of the 25th Conference on IASTED, Anaheim, CA, USA, pp. 261–266. ACTA Press
(2007)

4. Oster, S., Schürr, A.: Architekturgetriebenes Pairwise-Testing für Software-
Produktlinien. In: Workshop Software Engineering 2009: PVLZ 2009 (2009)

5. Conrad, M., Dörr, H., Schürr, A.: Graph Transformations for Model-Based Testing.
In: Glinz, M., Müller-Luschnat, G. (eds.) Proc. Modellierung 2002. GI-Edition
Lecture Notes in Informatics, vol. P-12, Bonn, GI, pp. 39–50 (2002)

6. Tevanlinna, A., Taina, J., Kauppinen, R.: Product Family Testing: a Survey. ACM
SIGSOFT Software Engineering Notes 29, 12 (2004)

Model-Driven Software Product Line Testing: An Integrated Approach 131

7. Beuche, D.: Modeling and Building Software Product Lines with Pure: Variants.
In: Proceeding of the SPLC, p. 358 (2008)

8. Bertolino, A., Gnesi, S.: Use Case-Based Testing of Product Lines. SIGSOFT
Softw. Eng. Notes 28, 355–358 (2003)

9. Geppert, B., Li, J.J., Rößler, F., Weiss, D.M.: Towards Generating Acceptance
Tests for Product Lines. In: ICSR, pp. 35–48 (2004)

10. Oster, S., Markert, F., Schürr, A.: Integrated Modeling of Software Product Lines
with Feature Models and Classification Trees. In: Proceedings of the SPLC 2009 -
Workshop MAPLE, pp. 75–82 (2009)

11. Eker, J., Janneck, J.W., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S.,
Sachs, S., Xiong, Y.: Taming Heterogeneity - the Ptolemy Approach. Proceedings
of the IEEE, 127–144 (2003)

12. Bosch, J.: Design and Use of Software Architectures - Adopting and Evolving
a Product Line Approach. Addison-Wesley, Reading (2000)

13. Czarnecki, K., Helsen, S., Eisenecker, U.: Staged Configuration through Specializa-
tion and Multilevel Configuration of Feature Models. Software Process: Improve-
ment and Practice 10(2), 143–169 (2005)

14. Heymans, P., Schobbens, P.Y., Trigaux, J.C., Bontemps, Y., Matulevicius, R.,
Classen, A.: Evaluating Formal Properties of Feature Diagram Languages. Soft-
ware, IET 2(3), 281–302 (2008)

15. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-
Oriented Domain Analysis (FODA) Feasibility Study. Technical Report, Carnegie-
Mellon University Software Engineering Institute (November 1990)

16. Czarnecki, K., Helsen, S., Eisenecker, U.: Formalizing Cardinality-Based Feature
Models and Their Specialization. In: Soft. Process: Improv. and Pract., pp. 7–29
(2005)

17. Czarnecki, K., She, S., Wasowski, A.: Sample Spaces and Feature Models: There
and Back Again. In: SPLC 2008, Washington, DC, USA, pp. 22–31. IEEE CS, Los
Alamitos (2008)

18. Jules White, B.D., Schmidt, D.C.: Selecting Highly Optimal Architectural Feature
Sets with Filtered Cartesian Flattening. Journal of Systems and Software

19. Amelunxen, C., Königs, A., Rötschke, T., Schürr, A.: MOFLON: A Standard-
Compliant Metamodeling Framework with Graph Transformations. In: Rensink,
A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 361–375. Springer,
Heidelberg (2006)

20. Grochtmann, M., Grimm, K., Wegener, J., Daimler-Benz, A.G.: Tool-Supported
Test Case Design for Black-Box Testing by Means of the Classification-Tree Editor.
In: Proc. of EuroSTAR 1993, pp. 169–176 (1993)

21. Bertolino, A., Fantechi, A., Gnesi, S., Lami, G.: Product Line Use Cases: Scenario-
Based Specification and Ttesting of Requirements. In: Software Product Lines –
Research Issues in Engineering and Management, pp. 425–445. Springer, Heidelberg
(2006)

22. Weißleder, S., Sokenou, D., Schlinglo, B.H.: Reusing State Machines for Automatic
Test Generation in Product Lines. In: 1st Workshop on Model-based Testing in
Practice MoTiP 2008 (June 2008)

Taming the Complexity of Inductive Logic
Programming

Filip Železný and Ondřej Kuželka

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics

Technická 2, 16627 Prague 6, Czech Republic
{zelezny,kuzelon2}@fel.cvut.cz

1 Introduction

Inductive logic programming (ILP) [12] is concerned with the induction of the-
ories from specific examples and background knowledge, using first-order logic
representations for all the three ingredients. In its early days some twenty years
ago, ILP was perceived as a means for automatic synthesis of logic programs,
i.e. Horn clausal theories. Current research views ILP algorithms mainly in the
context of machine learning [14] and data mining [1]. ILP has enriched both of
the two fieds significantly by providing them with formalisms and algorithms for
learning (or ‘mining’) complex pieces of knowledge from non-trivially structured
data such as relational databases.

Two significant streams of fruitful research have shaped up in ILP in the
last few years. One of them, motivated by the data mining need to capture
uncertainty in real-world data, blends the crisp logic foundations of ILP with
instruments for representing probability [15]. The other one also responds to
a call from the application world, this time for algorithms that are scalable. This
is to say that their runtimes do not skyrocket as the size of the learning problems
approaches real-world standards. In this paper we review our contributions to
this latter research.

We consider our contributions significant to the general fields of relational
machine learning and relational data mining. This may appear overambitious to
state. Indeed, ILP is only one of the plethora of approaches investigated in the
two domains of which a significant portion is based on graphical, rather than
logical representations. However, these approaches typically use knowledge and
data representations strictly subsumed by the first-order logic formalism of ILP.
Thus, in principle, they inherit any finding relevant to ILP. And indeed, this
argument applies to our results reviewed below.

2 Two Battlefronts of ILP Complexity

In the most popular instantiation of the general ILP framework, one works with
a set of positive examples E+ and a set of negative examples E− such that the
two sets are disjoint. Examples are usually first-order clauses although other

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 132–140, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Taming the Complexity of Inductive Logic Programming 133

representations of examples have been considered, such as first-order theories or
Herbrand interpretations [13]. A first-order clausal theory B called background
knowledge is also supplied although it may be empty. In this setting, called
normal ILP, the goal is to construct a first-order clausal theory H called the
hypothesis that explains the examples in the presence of background knowledge.
That is, H ∪ B |= e must hold for all (or as many as possible) e ∈ E+ and
for no (or as few as possible) e ∈ E−, where |= denotes the relation of logical
entailment. Further assumptions are usually installed to prevent trivial solutions
such as H = E+.

Example. Given E+ = {man(sokrates) → mortal(sokrates), man(aristotle)
→ mortal(aristotle)}, E− = {mortal(zeus)}, and B = {}, we acomplish the
ILP task by finding (i.e. inducing, learning) the hypothesis H = {∀x man(x) →
mortal(x)}. H is also a solution to an alternate formulation of the exemplary
task that uses only ground facts and non-empty background knowledge; here
E′+ = {mortal(sokrates)}, E′− = {mortal(zeus)} and B′ = {man(sokrates),
man(aristotle)}.

In the general formulation above, the normal ILP problem is undecidable since
the very testing of H∪B |= e is undecidable [11] even in the simplistic case when
H and e are single Horn clauses and B is empty. Therefore the entailment relation
is usually approximated by the decidable θ-subsumption relation �θ; C �θ D for
two clauses C and D whenever there is a substitution θ such that Cθ contains all
literals of D. Thus e.g. ∀x mortal(x) �θ man(sokrates) → mortal(sokrates),
here in agreement with logical entailment.

Using subsumption in place of entailment, we trade off at least three assets.
First, we loose completeness in the sense that entailment does not imply sub-
sumption. The two relations can however be made equivalent if one avoids clauses
that are self-resolvable [3]. Second, since subsumption is only defined for clauses
(rather than entire clausal theories), we are instantly constrained to learning
single-clause theories. This is less of a problem than may seem, because clausal
theories can be ultimately induced clause by clause. This is done in a greedy
(i.e., suboptimal) manner well known as the covering strategy in machine learn-
ing [14]. Third, subsumption does not account for background knowlege B, that
is, there is ‘no place’ for B in checking H �θ e between two clauses H and e.
Although the concept of subsumption relative to B has been well defined [12],
algorithms for its calculation are known only for the very special case when B
consists of ground facts. In this situation, B can be in fact fully avoided by re-
formulating the ILP task. Roughly speaking, such a reformulation corresponds
to obtaining E+, E−, B = {} from E′+, E′−, B′ in the above Example.

In summary, adopting subsumption introduces syntactic constraints on the
representation of hypotheses and examples (non-self-resolving single clauses in
both cases) as well as background knowledge (ground facts). The question re-
mains, how difficult it is to solve the ILP problem under such bias. Gottlob
et al. [4] considered this question, assuming further that hypotheses H are
function-free and Horn (i.e., containing at most one positive literal), and

134 F. Železný and O. Kuželka

examples are ground and Horn. Morever, H may contain no more than k literals,
where k defines the size of the problem instance. It turned out that the problem
is not only NP-hard but resides in ΣP

2 , i.e. at the second level of the polynomial
hierarchy of problem complexity.

Less formally, Gottlob et al. showed that two sources of exponential complex-
ity are intrinsic to the ILP problem.

1. One rests in the size of the search space that must be explored to find a clause
the solves the ILP problem.

2. Another one is incurred by the subsumption test which is NP-complete and
which must be conducted for each clause explored.

Whereas Gottlob et al.’s results on the complexity of the ILP problem are pes-
simistic in terms of worst-case expectations, we wanted to model the average-case
performance of ILP algorithms. That is because we had assumed that reliable
performance models are a prerequsite if one wishes to systematically improve the
performance. We reasoned that the methods for modeling average case behavior
must rely on methods different from deductive analysis of algorithms in the clas-
sical complexity framework, and more aking to statistical analysis of empirical
runtime measurements.

3 Front One: Clause Search

We first embarked to attack the first complexity source, i.e. the problem of
searching in the space of first-order clauses. We sourced general inspiration from
the breakthrough work [6] on complexity modeling in the phase transition frame-
work, and – of even more relevance – from the vigorous line of research of Gomes
et al, represented e.g. by the paper [2]. These studies investigated properties
of large search spaces corresponding to difficult combinatorial problems under
controled randomized generation of problem instances. Some intriguing proper-
ties have been identified, such as the high irregularity of the search spaces and
“heavy-tailedness” of the cost distributions of search algorithms used. Such prop-
erties manifest themselves in a large collection of real-world problems and have
been the inspiration for the design of randomized restarted search procedures.
The basic idea of these procedures is simple: if each search trial has a small, but
fixed probability of finding a good clause, then the probability of finding a good
clause in a sequence of such trials can be made quite high very rapidly. Put
differently, the cost distribution from the sequence has an exponential decay.

In our preliminary study [17], we demonstrated on two experimental domains
that heavy-tailed phenomena can be observed also in ILP, namely in the search
for a clause in an organized search space known as the subsumption lattice [12].
We also reformulated the technique of randomized rapid restarts to make it
applicable in ILP and showed that it can reduce the average search-time. Cheered
by these findings, we commenced the study [18] in which a massive number
of ILP processes were conducted on a high-performance distributed computing
platform. They provided an extensive statistical performance sample of five kinds

Taming the Complexity of Inductive Logic Programming 135

of ILP search algorithms operating on two principally different classes of ILP
problems, one represented by an artificially generated graph problem and the
other by three traditional benchmarks. These concern the induction of theories
for predicting mutagenicity and carcinogenicity of chemical molecules, and lastly
for the prediction of optimal decomposition of shapes in the context of finite
element mesh design. The collected sample allowed us to

1. estimate the conditional expected value of the search cost (measured by the
total number of clauses explored in the search) given the minimum clause
score (difference between the number of positive and negative examples sub-
sumed by the clause) required and a cutoff value (the number of clauses
examined before the search is restarted),

2. estimate the conditional expected clause score given the cutoff value and the
invested search cost, and

3. compare the performance of randomized restarted search strategies to a de-
terministic non-restarted search.

Our findings indicated striking similarities across the five search algorithms and
the four domains, in terms of the basic trends of both the statistics (1) and (2).

Fig. 1. A statistical model of the performance of a randomized restarted ILP algorithm
resulting from a mass computation experiment (originally published in [18]). It shows
the mean cost (corresponding to runtime) of search conducted by the algorithm before
a clause with desired quality (score) is found. The cost also critically depends on the
cutoff value that is inversely proportional to the frequency with which the randomized
ILP algorithm is restarted. The flat area on top corresponds to cost values exceeding
a prescribed runtime threshold. Note that the cost is shown in logarithmic scale so
mild variations in the cutoff incur abrupt changes in search cost.

136 F. Železný and O. Kuželka

Also, we observed that the cutoff value is critical for the performance of the
search algorithm, and using its optimal value in a randomized restarted search
may decrease the mean search cost by several orders of magnitude or increase
the mean achieved score significantly with respect to that obtained magnitude)
or increase the mean achieved score significantly with respect to that obtained.
Figure 1 provides a graphical insight into our main statistical findings.

The general and most important lesson learned from the study [18] was that
a miniscule change in an auxiliary parameter of an ILP algorithm (namely the
restart cutoff value) incurs an abrupt change in its statistically expected runtime,
resembling phase transition effects described in [6]. This is all the more important
since the parameter indeed only tunes the working of the algorithm but it does
not reduce the size of the problem. Put informally, one can boost the performance
by orders of magnitude “free of charge” by randomizing and restarting the ILP
algoritm and carefuly choosing the restart cutoff value. While our work [18]
was not concerned with strategies for finding the optimal cutoff, these can be
translated from studies such as [5].

4 Front Two: Subsumption

In [18], the term runtime corresponded to the number of clauses explored in
the combinatorial search conducted by the ILP algorithm. While our findings
showed a way to drastically reduce the statistical mean of this quantity, runtime
profiles measured in seconds may still be unacceptable. This is because the ILP
algorithm may be overwhelmed by the second source of complexity, that is,
by computing the fitness of each explored clause with respect to the data by
checking, for each example, whether or not it is subsumed by the clause.

Triggered by the observed effects of randomized restarts on the average com-
plexity of clause search, we reasoned that a restart strategy could be a way
to achieve similar effects in the problem of subsumption checking. In [9] we
thus studied runtime distributions of the subsumption test. Subsumption is an
NP-complete problem that is readily analogical to the graph homomorphism
problem. The latter bears crucial importance in the field of graph mining. Our
intention was to produce results of immediate interest to the wide graph mining
community. Therefore we devised a generator of subsumption problem instances
that are directly interpretable in graph terminology. In particular, all generated
clauses represented graphs, that in turn were randomly sampled from two well-
known generative models known as Erdos-Renyi and scale-free (“small-world”
graphs). In both cases, we observed heavy-tailed distributions when checking
subsumption between pairs of clauses corresponding to such graphs. The heavy
tails were then straightforwardly avoided by designing a correct and complete
randomized restarted subsumption testing algorithm RESUMER. Figure 2 shows
the distribution both before and after our modification. We next subjected RE-
SUMER to comparative testing against the algorithm Django [10] which relies on
strong heuristics inspired from the constraint satisfaction domain and which had
then been known as the fastest state-of-the-art subsumption tester. RESUMER

Taming the Complexity of Inductive Logic Programming 137

Fig. 2. Runtime distributions of two subsumption checking algorithms (originally pub-
lished in [9]). The vertical axis shows the estimated probability that the algorithm will
not finish before exploring the number of search nodes shown on the horizontal axis. The
number of search nodes is directly proportional to runtime. The full line corresponds to
a deterministic heuristic algorithm and exhibits a heavy tail; i.e. a non-negligible prob-
ability of extremly high runtimes. The dotted line pertains to a randomized restarted
(though still complete and correct) version of the algorithm, effectively avoiding the
heavy tail.

performed comparably with Django for relatively small examples (tens to hun-
dreds of literals), while for further growing example sizes, RESUMER became
vastly superior.

We furthermore explored the idea of allowing certain communication of be-
tween individual restarts of RESUMER, propagating some hints that proved
useful. We namely considered guiding the heuristic selection of the variable to
be first instantiated by the substitution θ. In particular we decided to choose
the variable which caused the last backtrack in the previous restart, since this
variable is more likely to be highly constrained than a randomly chosen vari-
able. As such it is a good candidate to start the search with. The dotted line in
Fig. 3 shows that this modification is significantly beneficial in terms of the run-
time profile. The modification has the consequence that pairs of restarts are no
longer statistically independent trials. In general, this might represent a problem.
A restarted strategy exhibits the desirable property of an exponentially decaying
runtime only if individual restarts are independent. For this reason we also tried
to only allow the above described transfer of knowledge from odd restarts into
the subsequent even restarts, resulting in a series of restart pairs, which are mu-
tually independent. Thus we maintained the exponential decay guarantee while
not sacrificing much of the performance improvement as illustrated by the dash
line in Fig. 3.

138 F. Železný and O. Kuželka

Fig. 3. Runtime distributions of restarted subsumption testing (originally published
in [9]). The diagram displays distributions in the same setting as in Fig. 2. Here,
the restarted algorithm from Fig. 2 is compared to its two modifications that involve
a transfer of information among individual runs. See main text for details.

Up to this point, all runtime improvements, both in clause search and sub-
sumption, have been achieved through rather straightforward adoptions of exist-
ing restarting strategies known in the context of constraint satisfaction problems,
such as those investigated in [2]. At first sight, there is not much else to do, at
least in the case of subsumption. Indeed, subsumption and constraint satisfaction
are both NP-complete and thus mutually reducible. However, subsumption em-
ployed in the working of an ILP algorithm has a principal distinguishing point.
Each hypothesised clause is checked against a usually large number of examples,
which often have a very similar structure. This corresponds to solving a series of
subsumption instances, all sharing the same subsumer and only slightly differing
in the subsumee. Viewed dually, each example is tested against a large number
of hypothesized clauses, and a series of subsumption tests may thus as well be
considered that differs only on the subsumer part. In any case, the tantalizing
question was whether this mode of operation, special to the ILP setting, can be
exploited for further efficiency improvements.

In the work [8], we developed a strategy that exploits the scenario of numerous
repetitions of similar subsumption checks that is characteristic to ILP. A crucial
point that further motivates the strategy is as follows. The reason why one
conducts subsumption checking in ILP is ultimately to evaluate the quality of a
candidate clause. For this purpose, however, one does not neccessarily need to
find out which particular examples are subsumed. One in fact only cares about
the total number of subsumed examples. In [8], we developed a probabilistic
algorithm that estimates this quantity without having to decide subsumption
for all examples. The intuition behind its design can be explained as follows.

Taming the Complexity of Inductive Logic Programming 139

We are given a clause C, an example set E, and we would like to estimate
n = |{e ∈ E|C �θ e}|. Let us run the above described algorithm RESUMER on
C and e, successively for all e ∈ E. For each e, we however stop the algorithm
if no decision has been made in some prescribed number of steps. Let E ⊆ E
be the subset of examples proven to be subsumed by C in this experiment.
Denote s1 = |E|. We now remove all examples in E from E and repeat this
experiment, obtaining an analogical number s2. Further such iterations generate
numbers s3, s4, etc. Clearly, for the desired value n, we have that n = limj→∞ Sj

where Sj =
∑j

i=1 si. Under a certain assumption that is elaborated in [8], the
series Sj is geometrical rather than arbitrary. The main idea is that the limit of
Sj for j → ∞ can thus be estimated by extrapolating the series from its first
few elements S1, S2. On both generated graph data and real-world datasets,
we showed that this algorithm provides reasonably accurate estimates while
achieving dramatic runtime improvements.

5 Conclusions and Ongoing Work

Affording a bit of inflated language, we have presented our victories on the two
battlefields of ILP complexity, which are represented by the combinatorial search
for a good clause and the subsumption test needed to evaluate a clause. A lateral
goal of this review was to demonstrate that significant improvements can be
achieved by translating performance-boosting tricks from one domain to another.
In fact, many of the improvements we have achieved in the performance of ILP
algorithms were a result of a suitable translation of strategies designed in the
field of constraint satisfaction problems (CSP). We are currently continuing this
line of exploration, trying to merge the two problems (clause search and clause
evaluation) into a single problem reducible to a series of CSP instances. These
can in turn be tackled by advanced heuristic strategies that undergo perpetual
development in the CSP field. In our latest study [7], we have been able to
progress along this line under a strong syntactic bias in the ILP framework
known as propositionalization [16]. Using the approach of [7], we are now able
to effectively learn conjunctions of tens to hundreds of first-order literals, far
beyond the reach of traditional propositionalization or ILP systems.

Acknowledgements. FŽ acknowledges the support from the Czech Ministry of
Education through project MSM6840770038 and from the Czech Science Foun-
dation through project 201/09/1665. OK is supported by the Czech Academy of
Sciences through project 1ET101210513 and by the Czech Science Foundation
through project 201/08/0509.

References

1. Džeroski, S., Lavrač, N. (eds.): Relational Data Mining. Springer, Heidelberg (2001)
2. Gomes, C., Selman, B., Crato, N., Kautz, H.: Heavy-Tailed Phenomena in Satisfi-

ability and Constraint Satisfaction Problems. Journal of Automated Reasoning 24,
67–100 (2000)

140 F. Železný and O. Kuželka

3. Gottlob, G.: Subsumption and Implication. Information Processing Letters 24, 109–
111 (1987)

4. Gottlob, G., Leone, N., Scarcello, F.: On the Complexity of Some Inductive Logic
Programming Problems. New Generation Computing 17, 53–75 (1999)

5. Kautz, H., Horvitz, E., Ruan, Y., Gomes, C., Selman, B.: Dynamic Restart Poli-
cies. In: AAAI 2002, Association for the Advancement of Artificial Intelligence
Symposium (2002)

6. Kirkpatrick, S., Selman, B.: Critical Behavior in the Satisfiability of Random
Boolean Expressions. Science 264, 1297–1301 (1994)

7. Kuželka, O., Železný, F.: Block-Wise Construction of Acyclic Relational Fea-
tures with Monotone Irreducibility and Relevancy Properties. In: ICML 2009, the
26th Int. Conf. on Machine Learning (2009)

8. Kuželka, O., Železný, F.: Fast Estimation of First-Order Clause Coverage through
Randomization and Maximum Likelihood. In: ICML 2008, the 25th Int. Conf. on
Machine Learning (2008)

9. Kuželka, O., Železný, F.: A Restarted Strategy for Efficient Subsumption Testing.
Fundamenta Informaticae 89, 95–109 (2008)

10. Maloberti, J., Sebag, M.: Fast Theta-Subsumption with Constraint Satisfaction
Algorithms. Machine Learning 55(2), 137–174 (2004)

11. Marcinkowski, J., Pacholski, L.: Undecidability of the Horn-Clause Implication
Problem. In: FOCS 2002, the 33rd Ann. Sympos. on Foundations of Computer
Science (2002)

12. Nienhuys-Cheng, S.H., de Wolf, R.: Foundations of Inductive Logic Programming.
Springer, Heidelberg (1997)

13. Raedt, L.D.: Logical Settings for Concept Learning. Artificial Intelligence 95, 187–
201 (1997)

14. Raedt, L.D.: Logical and Relational Learning. Springer, Heidelberg (2008)
15. Raedt, L.D., Frasconi, P., Kersting, K., Muggleton, S. (eds.): Probabilistic Induc-

tive Logic Programming. Springer, Heidelberg (2008)
16. Železný, F., Lavrač, N.: Propositionalization-Based Relational Subgroup Discovery

with RSD. Machine Learning 62, 33–63 (2006)
17. Železný, F., Srinivasan, A., Page, D.: Lattice Search Runtime Distributions May

Be Heavy Tailed. In: Matwin, S., Sammut, C. (eds.) ILP 2002. LNCS (LNAI),
vol. 2583, pp. 333–345. Springer, Heidelberg (2003)

18. Železný, F., Srinivasan, A., Page, D.: Randomized Restarted Search in ILP. Ma-
chine Learning 64, 183–208 (2006)

A Rule Format for Unit Elements�

Luca Aceto1, Anna Ingolfsdottir1,
MohammadReza Mousavi2, and Michel A. Reniers2

1 ICE-TCS, School of Computer Science, Reykjavik University
Kringlan 1, IS-103 Reykjavik, Iceland

2 Department of Computer Science, Eindhoven University of Technology
P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands

Abstract. This paper offers a meta-theorem for languages with a Struc-
tural Operational Semantics (SOS) in the style of Plotkin. Namely, it
proposes a generic rule format for SOS guaranteeing that certain con-
stants act as left- or right-unit elements for a set of binary operators.
We show the generality of our format by applying it to a wide range of
operators from the literature on process calculi.

1 Introduction

In many process algebras and specification languages, one encounters constructs
that are unit elements for certain composition operators. The concept of (left)
unit element for a binary operator f can be concisely summarized in the following
algebraic equation, where 0 is the left-unit element for f : f(0, x) = x.

In this paper, we propose a generic rule format guaranteeing that certain
constants are left- or right-unit elements for a set of binary operators, whose
semantics is defined using Plotkin’s style of Structural Operational Semantics
(SOS) [2,12,13]. The notions of left and right unit are defined with respect to
a notion of behavioural equivalence. There are various notions of behavioural
equivalence presented in the literature (see, e.g., [7]), which are, by and large,
weaker than bisimilarity. Thus, to be as general as possible, we prove our main
result for all equivalences that contain, i.e., are weaker than, bisimilarity.

This paper is part of our ongoing line of research on capturing basic properties
of composition operators in terms of syntactic rule formats, exemplified by rule
formats for commutativity [11], associativity [6],determinismand idempotence [1].

This line of research serves multiple purposes. Firstly, it paves the way for
a tool-set that can mechanically prove such properties without involving user
interaction. Secondly, it provides us with an insight as to the semantic nature of
such properties and its link to the syntax of SOS deduction rules. In other words,
our rule formats may serve as a guideline for language designers who want to

� The work of Aceto and Ingolfsdottir has been partially supported by the projects
“The Equational Logic of Parallel Processes” (nr. 060013021), and “New Develop-
ments in Operational Semantics” (nr. 080039021) of the Icelandic Research Fund.
The first author dedicates the paper to the memory of his mother, Imelde Diomede
Aceto, who passed away a year ago.

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 141–152, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

142 L. Aceto et al.

ensure, a priori, that the constructs under design enjoy certain basic algebraic
properties. There is value in determining what conditions on the SOS description
of the semantics of operators guarantee that certain elements are left or right
units. The fact that the constraints imposed by our general format are non-trivial
indicates that the isolation of a widely applicable syntactic characterization of
the semantic properties that underlie the existence of unit elements is, perhaps
surprisingly, difficult.

The rest of this paper is organized as follows. In Section 2, we define some
basic notions that are required for the technical developments in the rest of the
paper. In Section 3, we present our rule format and prove that it guarantees
the unit element property. In Section 4, we apply the rule format to various
examples from the literature. In order to ease the application of our rule format
to operators whose operational semantics is specified using predicates, we extend
the format to that setting in Section 4.2. Section 5 concludes the paper and
discusses directions for future work. Proofs can be found in [3].

2 Preliminaries

We begin by recalling the basic notions from the theory of SOS that are needed
in the remainder of this study. We refer the interested readers to, e.g., [2,12] for
more information and background.

Definition 1 (Signatures, Terms and Substitutions). We let V represent
an infinite set of variables and use x, x′, xi, y, y′, yi, . . . to range over elements
of V . A signature Σ is a set of function symbols, each with a fixed arity. We
call these symbols operators and usually represent them by f, g, An operator
with arity zero is called a constant. We define the set T(Σ) of terms over Σ as
the smallest set satisfying the following conditions.

– A variable x ∈ V is a term.
– If f ∈ Σ has arity n and t1, . . . , tn are terms, then f(t1, . . . , tn) is a term.

We use s, t, possibly subscripted and/or superscripted, to range over terms. We
write t1 ≡ t2 if t1 and t2 are syntactically equal. The function vars : T(Σ) → 2V

gives the set of variables appearing in a term. The set C(Σ) ⊆ T(Σ) is the set of
closed terms, i.e., terms that contain no variables. We use p, q, p′, pi, . . . to range
over closed terms. A substitution σ is a function of type V → T(Σ). We extend
the domain of substitutions to terms homomorphically and write σ(t) for the
result of applying the substitution σ to the term t. If the range of a substitution
lies in C(Σ), we say that it is a closed substitution. An explicit substitution
[x �→ t] maps x to t and is the identity function on all variables but x.

Definition 2 (Transition System Specifications). A transition system
specification (TSS) is a triple (Σ,L, D) where:

– Σ is a signature.
– L is a set of labels (or actions) ranged over by a, b, l. If l ∈ L, and t, t′ ∈ T(Σ)

we say that t
l→ t′ is a positive transition formula and t

l
� is a negative

A Rule Format for Unit Elements 143

transition formula. A transition formula (or just formula), typically denoted
by φ or ψ, is either a negative transition formula or a positive one.

– D is a set of deduction rules, i.e., pairs of the form (Φ, φ) where Φ is a set
of formulae and φ is a positive formula. We call the formulae contained in
Φ the premises of the rule and φ the conclusion.

We write vars(r) to denote the set of variables appearing in a deduction rule r.
We say that a formula is closed if all of its terms are closed. Substitutions are
also extended to formulae and sets of formulae in the natural way. For a rule r
and a substitution σ, the rule σ(r) is called a substitution instance of r. A set of
positive closed formulae is called a transition relation.

We often refer to a positive transition formula t
l→ t′ as a transition with t being

its source, l its label, and t′ its target. A deduction rule (Φ, φ) is typically written
as Φ

φ . An axiom is a deduction rule with an empty set of premises. We call a
deduction rule f -defining when the outermost function symbol appearing in the
source of its conclusion is f .

In this paper, for each constant c, we assume that each c-defining deduction
rule is an axiom of the form c

l→ p for some label l and closed term p.
The meaning of a TSS is defined by the following notion of least three-valued

stable model. To define this notion, we need two auxiliary definitions, namely
provable transition rules and contradiction, which are given below.

Definition 3 (Provable Transition Rules). A deduction rule is called a tran-
sition rule when it is of the form N

φ with N a set of negative formulae. A TSS T
proves N

φ , denoted by T � N
φ , when there is a well-founded upwardly branching

tree with formulae as nodes and of which

– the root is labelled by φ;
– if a node is labelled by ψ and the labels of the nodes above it form the set K

then:
• ψ is a negative formula and ψ ∈ N , or
• ψ is a positive formula and K

ψ is a substitution instance of a deduction
rule in T .

Definition 4 (Contradiction and Entailment). The formula t
l→ t′ is said

to contradict t
l

� , and vice versa. For a set Φ of formulae and a formula ψ, Φ
contradicts ψ, denoted by Φ � ψ, when there is a φ ∈ Φ that contradicts ψ. We
write Φ � Ψ if Φ does not contradict any ψ ∈ Ψ . A formula φ entails ψ when
there is a substitution σ such that σ(φ) ≡ ψ. A set Φ entails a set Ψ of formulae,
when there exists a substitution σ such that, for each ψ ∈ Ψ , there exists a φ ∈ Φ
such that σ(φ) ≡ ψ.

It immediately follows from the above definition that contradiction is a symmet-
ric relation on (sets of) formulae. We now have all the necessary ingredients to
define the semantics of TSSs in terms of three-valued stable models.

Definition 5 (Least Three-Valued Stable Model). A pair (C, U) of dis-
joint sets of positive closed transition formulae is called a three-valued stable
model for a TSS T when the following conditions hold:

144 L. Aceto et al.

– for each φ ∈ C, T � N
φ for a set N of negative formulae such that C∪U � N ,

– for each φ ∈ U , T � N
φ for a set N of negative formulae such that C � N .

C stands for Certainly and U for Unknown; the third value is determined by
the formulae not in C ∪U . The least three-valued stable model is a three-valued
stable model that is the least one with respect to the ordering on pairs of sets
of formulae defined as (C, U) ≤ (C′, U ′) iff C ⊆ C′ and U ′ ⊆ U . We say that
T is complete when for its least three-valued stable model it holds that U = ∅. In
a complete TSS, we say that a closed substitution σ satisfies a set of formulae Φ
if σ(φ) ∈ C, for each positive formula φ ∈ Φ, and C � σ(φ), for each negative
formula φ ∈ Φ.

Definition 6 (Bisimulation and Bisimilarity). Let T be a TSS with signa-
ture Σ and label set L. A relation R ⊆ C(Σ)× C(Σ) is a bisimulation relation
if R is symmetric and, for all p0, p1, p

′
0 ∈ C(Σ) and l ∈ L,

(p0R p1 ∧ T � p0
l→ p′0) ⇒ ∃p′

1∈C(Σ)(T � p1
l→ p′1 ∧ p′0R p′1).

Two terms p0, p1 ∈ C(Σ) are called bisimilar, denoted by p0 ↔ p1, when there
exists a bisimulation relation R such that p0R p1.

Bisimilarity is extended to open terms by requiring that s, t ∈ T(Σ) are bisimilar
when σ(s) ↔ σ(t) for each closed substitution σ : V → C(Σ).

3 Rule Format

We now proceed to define our rule format guaranteeing that certain constants
in the language under consideration are left or right units for some binary oper-
ators. In the definition of the format proposed in the remainder of this section,
we make use of a syntactic characterization of equivalence of terms up to their
composition with unit elements; we call such terms unit-context equivalent. Intu-
itively, if s is unit-context equivalent to t, then s and t are bisimilar because one
can be obtained from the other by applying axioms stating that some constant
is a left or right unit for some binary operator. For instance, if c1 is a left unit
for a binary operator f and c2 is a right unit for a binary operator g, then the
terms f(c1, g(t, c2)) and g(f(c1, t), c2) are both unit-context equivalent to t and
also unit-context equivalent to each other.

The following definition formalizes this intuition. (While reading the technical
definition, our readers may find it useful to bear in mind that (f, c) ∈ L means
that c is a left unit for a binary operator f and (f, c) ∈ R means that c is a right
unit for f .)

Definition 7 (Unit-Context Equivalent Terms). Given sets L, R ⊆ Σ×Σ

of pairs of binary function symbols and constants,
L,R∼= is the smallest equivalence

relation satisfying the following conditions, for each s ∈ T(Σ):

A Rule Format for Unit Elements 145

1. ∀(f,c)∈L s
L,R∼= f(c, s), and

2. ∀(g,c)∈R s
L,R∼= g(s, c).

We say that two terms s, t ∈ T(Σ) are unit-context equivalent, if s
L,R∼= t.

In what follows, we abbreviate
L,R∼= to ∼= since the sets L and R are always clear

from the context.

Lemma 8. For all s, t ∈ T(Σ), if s ∼= t then vars(s) = vars(t) and σ(s) ∼= σ(t),
for each substitution σ.

We are now ready to define our promised rule format for unit elements.

Definition 9 (Left- and Right-Aligned Pairs). Given a TSS, the sets L
and R of pairs of binary function symbols and constants are the largest sets
satisfying the following conditions.

1. For each (f, c) ∈ L, the following conditions hold:

(a) For each action a ∈ L, there exists at least one deduction rule of the
following form:

{x0
ai→ yi | i ∈ I} ∪ {x0

aj
� | j ∈ J} ∪ {x1

a→ z1}

f(x0, x1)
a→ t′

,

where

i. the variables yi, z1, x0 and x1 are all pairwise distinct,
ii. for each j ∈ J , there is no c-defining axiom with aj as label, and
iii. there exists a collection {c ai→ qi | i ∈ I} of c-defining axioms such

that σ(t′) ∼= z1, where σ is the substitution mapping x0 to c, each yi

to qi, i ∈ I, and is the identity on all the other variables.

(b) Each f -defining deduction rule has the following form:

Φ

f(t0, t1)
a→ t′

where a ∈ L and, for each closed substitution σ such that σ(t0) ≡ c,

i. either there exists some t1
a→ t′′ ∈ Φ with σ(t′) ∼= σ(t′′), or

ii. there exists a premise φ ∈ Φ with t0 as its source such that

A. either φ is a positive formula and the collection of conclusions of
c-defining deduction rules does not entail σ(φ), or

B. φ is a negative formula and the collection of conclusions
of c-defining axioms contradicts σ(φ).

146 L. Aceto et al.

2. The definition of right-aligned pairs of operators and constant symbols – that
is, those such that (f, c) ∈ R – is symmetric and is not repeated here.

For a function symbol f and a constant c, we call (f, c) left aligned (respectively,
right aligned) if (f, c) ∈ L (respectively, (f, c) ∈ R).

Condition 1a in the above definition ensures that, whenever (f, c) is in L, each
transition of the form p

a→ p′, for some closed terms p and p′ and action a, can
be used to infer a transition f(c, p) a→ q′ for some q′ that is bisimilar to p′. This
means that if (f, c) is in L then, in the context of the constant c, f does not
“prune away” any of the behaviour of its second argument.

Condition 1(b)i, on the other hand, ensures that, whenever (f, c) is in L, each
transition f(c, p) a→ q′ is due to a transition p

a→ p′ for some p′ that is bisimilar
to q′. Thus, if (f, c) is in L then, in the context of the constant c, a term of
the form f(c, p) can only mimic the behaviour of p. As will become clear from
the examples to follow, condition 1(b)ii ensures that the f -defining rule cannot
be used to derive a transition for f(c, p) and hence it is exempted from further
conditions; the presence of this condition enhances the generality of our format
and allows us to handle common examples of unit constants from the literature
(see, e.g., Example 3). A slightly more technical discussion of the conditions is
given in [3].

Remark 1. Note that the requirement that σ(t′) ∼= z1 in condition 1a of the
above definition implies that vars(σ(t′)) = {z1}. Therefore x1, z1 and the yi,
i ∈ I, are the only variables that may possibly occur in t′.

Note that, since the sets L and R are defined as the largest sets of pairs satisfying
the conditions from Definition 9, in order to show that (f, c) is a left-aligned pair,
say, it suffices only to exhibit two sets L and R satisfying these conditions, such
that (f, c) is contained in L.

The following two examples illustrate that it is in general advantageous to
consider sets of left- and/or right-aligned operators instead of just a single one.

Example 1. Assume that a is the only action and consider the binary opera-
tors fi, i ≥ 0, with rules

x1
a→ y1

fi(x0, x1)
a→ fi+1(x0, y1)

.

Let 0 be a constant with no rules. Then each of the pairs (fi,0) is left aligned
because the sets L = {(fi,0) | i ≥ 0} and R = ∅ meet the conditions from
Definition 9. In particular, note that fi+1(x0, y1)[x0 �→ 0] ≡ fi+1(0, y1) ∼= y1, for
each i ≥ 0. Note that, for each i ≥ 0, the equations fi(0, x) = x hold modulo
bisimilarity. This fact can be checked directly by showing that the symmetric
closure of the relation R = {(fi(0, p), p) | p a closed term} is a bisimulation, and
is also a consequence of Theorem 10 to follow, which states the correctness of
the rule format we described in Definition 9.

A Rule Format for Unit Elements 147

Example 2. Consider the following TSS, which is defined for a signature with 0
and a as constants and f and g as binary function symbols.

a
a→0

y
a→ y′

f(x, y) a→ g(y′, x)

x
a→x′

g(x, y) a→ f(y, x′)

The TSS fits our rule format with L = {(f,0)} and R = {(g,0)}. Note that it
is essential for the above example to consider both L and R simultaneously.

Theorem 10. Let T be a complete TSS in which each rule is f -defining for
some function symbol f . Assume that L and R are the sets of left- and right-
aligned function symbols according to Definition 9. For each (f, c) ∈ L, it holds
that f(c, x) ↔ x. Symmetrically, for each (f, c) ∈ R, it holds that f(x, c) ↔ x.

Note that Theorem 10 trivially extends to any notion of behavioural equivalence
weaker than bisimilarity.

4 Applications and Extensions

Apart from its correctness, the acid test for the usefulness of a rule format is
that it be expressive enough to cover examples from the literature that afford
the property they were designed to ensure. Our order of business in this section
will be to offer examples of applications of the format for unit elements we
introduced in Definition 9 and to show how the format can be extended to deal
with operators whose semantic definition involves the use of predicates.

4.1 Applications of the Basic Rule Format

We start by presenting examples of applications of the format for unit elements
we introduced in Definition 9.

Example 3 (Nondeterministic Choice). Consider the nondeterministic choice op-
erator from Milner’s CCS [10] specified by the rules below, where a ∈ L.

x
a→x′

x + y
a→x′

y
a→ y′

x + y
a→ y′

The sets R = L = {(+,0)} meet the conditions in Definition 9. Indeed, condi-
tion 1a and its symmetric version are trivially satisfied by the right-hand and
the left-hand rule schemas, respectively. (Note that the substitution σ associated
with the empty collection of axioms in condition 1(a)iii is the identity function
over the set of variables.) To see that condition 1b is also met, let σ be a closed
substitution such that σ(x) = 0. Observe that

– each instance of the right-hand rule schema meets condition 1(b)i and
– each instance of the left-hand rule schema meets condition 1(b)iiA because

the set of rules for 0 is empty and therefore does not entail σ(x) = 0 a→σ(x′).

148 L. Aceto et al.

The reasoning for condition 2 is symmetric. Therefore, Theorem 10 yields the
soundness of the well known equations [8]: 0 + x = x = x + 0.

Example 4 (Synchronous Parallel Composition). Assume, for the sake of simplic-
ity, that a is the only action. Consider a constant RUNa and the synchronous
parallel composition from CSP [9]1 specified by the rules

RUNa
a→RUNa

x
a→x′ y

a→ y′

x ‖a y
a→x′ ‖a y′

.

Take L = R = {(‖a, RUNa)}. These sets L and R meet the conditions in Defi-
nition 9. To see that condition 1a and its symmetric version are satisfied by the
above rule for ‖a, observe that the substitution σ associated with the singleton
set containing the only axiom for RUNa in condition 1(a)iii maps both the vari-
ables x and x′ to RUNa and is the identity function over the other variables. For
such a σ, σ(x′ ‖a y′) = RUNa ‖a y′ ∼= y′.

To see that condition 1b is also met, let σ be a closed substitution mapping x
to RUNa, and assume that RUNa

a→RUNa entails RUNa
a→σ(x′). It follows that

σ(x′) = RUNa. Therefore,

σ(x′ ‖a y′) = RUNa ‖a σ(y′) ∼= σ(y′)

and condition 1(b)i is met. Theorem 10 thus yields the soundness of the well
known equations RUNa ‖a x = x = x ‖a RUNa. These are just equation L3B
from [9, page 69] and its symmetric counterpart.

Example 5 (Left Merge and Interleaving Parallel Composition). The following
rules describe the operational semantics of the classic left merge and interleaving
parallel composition operators [5,10].

x
a→x′

x‖ y
a→x′ ‖ y

x
a→x′

x ‖ y
a→x′ ‖ y

y
a→ y′

x ‖ y
a→x ‖ y′

Take L = {(‖,0)} and R = {(‖,0), (‖ ,0)}. It is easy to see that these sets L
and R meet the condition in Definition 9. Therefore, Theorem 10 yields the well
known equalities 0 ‖ x = x, x ‖ 0 = x, and x‖ 0 = x.

Note that the pair (‖ ,0) cannot be added to L while preserving condition 1a
in Definition 9. Indeed, 0 is not a left unit for the left merge operator ‖ .

Example 6 (Disrupt). Consider the following disrupt operator � [4] with rules

x
a→x′

x � y
a→x′ � y

y
a→ y′

x � y
a→ y′

.

1 In [9], Hoare uses the symbol ‖ to denote the synchronous parallel composition
operator. Here we will use that symbol for parallel composition.

A Rule Format for Unit Elements 149

Note that the equation 0 � x = x holds modulo bisimilarity. We now argue
that its soundness is a consequence of Theorem 10. Indeed, take L = {(�,0)}
and R = ∅. It is easy to see that these sets L and R meet the conditions in
Definition 9. In particular, to see that condition 1b is met by the first rule,
observe that the set of rules for 0 is empty and therefore does not entail 0 a→ p
for any closed term p. A symmetric reasoning shows that the valid equation
x � 0 = x is also a consequence of Theorem 10.

Example 7 (Timed Nondeterministic Choice). Consider nondeterministic choice
in a timed setting. It is defined by means of the deduction rules from Example 3
and additionally the deduction rules

x
1→x′ y

1→ y′

x + y
1→x′ + y′

x
1→x′ y

1
�

x + y
1→x′

x
1

� y
1→ y′

x + y
1→ y′

.

The equations 0 + x = x and x + 0 = x hold modulo bisimilarity. This is
a consequence of Theorem 10 by taking L = R = {(+,0)}. For label 1, con-
dition 1a is met by the third deduction rule. The first deduction rule satisfies
condition 1(b)iiA, the second deduction rule satisfies condition 1(b)iiB, and the
third deduction rule satisfies condition 1(b)i trivially.

4.2 Predicates

In the literature concerning the theory of rule formats for SOS (especially, the
work devoted to congruence formats for various notions of bisimilarity), most of
the time predicates are neglected at first and are only added to the considerations
at a later stage. The reason is that one can encode predicates quite easily by
means of transition relations. One can find a number of such encodings in the
literature – see, for instance, [6,15]. In each of these encodings, a predicate P is
represented as a transition relation P→ (assuming that P is a fresh label) with
some fixed target. However, choosing the “right” target term to cope with the
examples in the literature (and the new ones appearing in the future) within
our format is extremely intricate, if not impossible. That is why we introduce an
extension of our rule format that handles predicates as first-class objects, rather
than coding them as transitions with dummy targets. To this end, we extend
the basic notions presented in Section 2 to a setting with predicates.

Definition 11 (Predicates). Given a set P of predicate symbols, P t is a pos-
itive predicate formula and ¬P t is a negative predicate formula, for each P ∈ P
and t ∈ T(Σ). We call t the source of both predicate formulae. In the extended
setting, a (positive, negative) formula is either a (positive, negative) transition
formula or (positive, negative) predicate formula. The notions of deduction rule,
TSS, provable transition rules and three-valued stable models are then naturally
extended by adopting the more general notion of formulae. The label of a deduc-
tion rule is either the label of the transition formula or of the predicate formula
in its conclusion.

150 L. Aceto et al.

Next, we define the extension of our rule format to cater for predicates. As we did
in the earlier developments, in this section we assume that, for each constant c,
each c-defining deduction rule for predicates is an axiom of the form P c.

Definition 12 (Extended Left- and Right-Aligned Pairs). Given a TSS,
the sets L and R of pairs of binary function symbols and constants are the largest
sets satisfying the following conditions.

1. For each (f, c) ∈ L, the following conditions hold:

(a) For each action a ∈ L, there exists a deduction rule of the following
form:

{x0
ai→ yi | i ∈ I} ∪ {Pk x0 | k ∈ K} ∪ {x0

aj
� or ¬Pj x0 | j ∈ J} ∪ {x1

a→ z1}

f(x0, x1)
a→ t′

where

i. the variables yi, z1, x0 and x1 are all pairwise distinct,
ii. for each j ∈ J , there is no c-defining deduction rule with aj or Pj as

label (depending on whether the formula with index j is a transition
or a predicate formula),

iii. there exists a collection {Pk c | k ∈ K} of c-defining axioms, and
iv. there exists a collection {c ai→ qi | i ∈ I} of c-defining axioms such

that σ(t′) ∼= z1, where σ is the substitution mapping x0 to c, each yi

to qi, i ∈ I, and is the identity on all the other variables.

(b) For each predicate P ∈ P, there exists a deduction rule, of the following
form:

{Pi x0 | i ∈ I} ∪ {¬Pj x0 | j ∈ J} ∪ {P x1}

P f(x0, x1)

where

i. for each j ∈ J , there is no c-defining axiom with Pj as label, and
ii. there exists a collection {Pi c | i ∈ I} of c-defining axioms.

(c) Each f -defining deduction rule has one of the following forms:

Φ

f(t0, t1)
a→ t′

or
Φ

P f(t0, t1)

where a ∈ L, P ∈ P and for each closed substitution σ with σ(t0) ≡ c,

i. either there exists some t1
a→ t′′ ∈ Φ with σ(t′) ∼= σ(t′′) (if the con-

clusion is a transition formula), or P t1 ∈ Φ (if the conclusion is
a predicate formula), or

ii. there exists a premise φ ∈ Φ with t0 as its source such that

A Rule Format for Unit Elements 151

A. either φ is a positive formula and the collection of conclusions of
c-defining deduction rules does not entail σ(φ), or

B. φ is a negative formula and the collection of conclusions
of c-defining axioms contradicts σ(φ).

2. The definition of right-aligned pairs of operators and constant symbols – that
is, those such that (f, c) ∈ R – is symmetric and is not repeated here.

The definition of bisimulation is extended to a setting with predicates in the
standard fashion. In particular, bisimilar terms must satisfy the same predicates.

We are now ready to state the counterpart of Theorem 10 in a setting with
predicates.

Theorem 13. Let T be a complete TSS in which each rule is f -defining for
some function symbol f . Assume that L and R are the sets of extended left-
and right-aligned function symbols according to Definition 12. For each (f, c) ∈
L, it holds that f(c, x) ↔ x. Symmetrically, for each (f, c) ∈ R, it holds that
f(x, c) ↔ x.

We now provide an example of the application of the rule format. In [3], we give
two additional examples involving the use of predicates.

Example 8 (Sequential Composition). A standard operator whose operational
semantics can be given using predicates is that of sequential composition. Con-
sider the following deduction rules, where p ↓ means that “p can terminate
successfully”. (As usual in the literature, we write the termination predicate ↓
in postfix notation.)

1 ↓

x ↓ y ↓

x · y ↓

x
a→x′

x · y a→x′ · y

x ↓ y
a→ y′

x · y a→ y′

Take L = R = {(·, 1)}. The TSS conforms to our extended rule format. The
second deduction rule matches criteria 1b and 1c of Definition 12 (and the sym-
metric ones omitted for the right-aligned operators). The third deduction rule
satisfies criterion 1(c)iiA of Definition 12 (and the omitted 2(a) and 2(c) condi-
tions). The rightmost deduction rule satisfies conditions 1a and 1(c)i of Defini-
tion 12, as well as the omitted condition 2(c)iiA because 1 has no transitions.

5 Conclusions

In this paper, we proposed a rule format for Structural Operational Semantics,
guaranteeing constants to be left- or right-unit elements of certain operators.
The rule format encompasses advanced features such as negative premises and
complex terms appearing nearly anywhere in the deduction rules. We further
extended the proposed format to accommodate predicates, which are among the
common ingredients in the SOS of many contemporary process description lan-
guages. The rule format is applied to a number of examples from the literature,
motivating its applicability.

152 L. Aceto et al.

A straightforward extension of our rule format allows one to deal with unit el-
ements that are complex closed terms (instead of constants). We are not aware of
many practical examples in which such unit elements are present. Another alge-
braic property, which can be captured using the same technique, is the existence
of a (left or right) zero element, i.e., a constant 0 such that f(0, x) = f(x,0) = 0.
Mechanizing the existing rule formats for algebraic properties in a tool-set is an-
other direction for future work.

For many contemporary process algebras the SOS framework as used in this
paper is still too restricted. Indeed, the SOS semantics of those languages involves
more advanced features such as configurations that consist of more than only
a process term, i.e., SOS with data, or the presence of structural congruences
as an addendum to the SOS. Future work will show whether our format can be
generalized to deal with such additions.

References

1. Aceto, L., Birgisson, A., Ingolfsdottir, A., Mousavi, M.R., Reniers, M.A.: Rule For-
mats for Determinism and Idempotence. In: FSEN 2009. LNCS, vol. 5961. Springer,
Heidelberg (to appear, 2010)

2. Aceto, L., Fokkink, W.J., Verhoef, C.: Structural Operational Semantics. In: Hand-
book of Process Algebra, ch. 3, pp. 197–292. Elsevier, Amsterdam (2001)

3. Aceto, L., Ingolfsdottir, A., Mousavi, M.R., Reniers, M.A.: A Rule Format for Unit
Elements. Tech. Rep. CSR-0913, Eindhoven University of Technology (2009)

4. Baeten, J.C.M., Bergstra, J.: Mode Transfer in Process Algebra. Tech. Rep. CSR-
0001, Eindhoven University of Technology (2000)

5. Bergstra, J.A., Klop, J.W.: Fixedpoint Semantics in Process Algebra. Tech. Rep.
IW 206/82, Center for Mathematics, Amsterdam (1982)

6. Cranen, S., Mousavi, M.R., Reniers, M.A.: A Rule Format for Associativity. In:
van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 447–461.
Springer, Heidelberg (2008)

7. van Glabbeek, R.J.: The Linear Time - Branching Time Apectrum I. In: Handbook
of Process Algebra, ch. 1, pp. 3–100. Elsevier, Amsterdam (2001)

8. Hennessy, M., Milner, R.: Algebraic Laws for Non-Determinism and Concurrency.
J. ACM 32(1), 137–161 (1985)

9. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood
Cliffs (1985)

10. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs
(1989)

11. Mousavi, M.R., Reniers, M.A., Groote, J.F.: A Syntactic Commutativity Format
for SOS. IPL 93, 217–223 (2005)

12. Mousavi, M.R., Reniers, M.A., Groote, J.F.: SOS Formats and Meta-Theory:
20 Years after. TCS 373(3), 238–272 (2007)

13. Plotkin, G.D.: A Structural Approach to Operational Semantics. JLAP 60-61, 17–
140 (2004)

14. Plotkin, G.D.: A Powerdomain for Countable Non-Determinism (extended ab-
stract). In: Nielsen, M., Schmidt, E.M. (eds.) ICALP 1982. LNCS, vol. 140, pp.
418–428. Springer, Heidelberg (1982)

15. Verhoef,C.:ACongruenceTheoremforStructuredOperationalSemanticswithPred-
icates and Negative Premises. Nordic Journal of Computing 2(2), 274–302 (1995)

Approximability of Edge Matching Puzzles

Antonios Antoniadis1 and Andrzej Lingas2

1 Institut für Informatik, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
antoniad@informatik.hu-berlin.de

2 Department of Computer Science, Lund University, S-22100 Lund, Sweden
Andrzej.Lingas@cs.lth.se

Abstract. This paper deals with the (in)approximability of Edge
Matching Puzzles. The interest in EdgeMatching Puzzles has been raised
in the last few years with the release of the Eternity IITM puzzle, with
a $2 million prize for the first submitted correct solution. It is known [1]
that it is NP-hard to obtain an exact solution to Edge Matching Puz-
zles. We extend on that result by showing an approximation-preserving
reduction from Max-3DM-B and thus proving that Edge Matching Puz-
zles do not admit polynomial-time approximation schemes unless P=NP.
We then show that the problem is APX-complete, and study the diffi-
culty of finding an approximate solution for several other optimisation
variants of the problem.

1 Introduction

Informally, an Edge Matching Puzzle is a puzzle where the goal is to arrange
a given set of square tiles with coloured edges into a given rectangle so that
colours match along the edges of adjacent tiles. Edge Matching Puzzles first ap-
peared in the 1890s. They are more challenging than the classical jigsaw puzzles
we are all familiar with; mainly because there is no global image that can provide
guidance. Additionally, there are usually more pieces that match together, but
one cannot be sure they should be placed next to each other before attaining

Fig. 1. A solved Edge Matching Puzzle instance with no edges broken

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 153–164, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

154 A. Antoniadis and A. Lingas

the complete solution. In other words, a local solution does not generally lead
to a global solution.

The computational problem of filling plane areas with rectangular tiles has
been extensively studied. Berger [2] has shown that a generalisation of our prob-
lem where an infinite number of copies for each tile is given and the goal is to
fill the entire plane, is undecidable. The problem of wether a bounded area can
be filled by a subset of the given tiles is NP-complete [3]. Additionally, it has
been shown that bounded-tiling (having infinite copies of each tile and filling
a bounded area) is a viable alternative to the satisfiability problem as a founda-
tion of NP-completeness [4]. The complexity of the game variant of the problem
has also been studied: It is PSPACE-complete and EXPTIME-complete when
the tiles are to be placed into a square and a rectangle respectively [5]. Unlike
the variant we study, all the above do not allow rotations of the tiles given.

Demaine and Demaine [1] established the NP-completeness of edge matching
puzzles and some of its variants (a species of jigsaw puzzles, signed edge matching
puzzles, and polyonimo packing puzzles) by a reduction from 3-partition. Their
result confirmed the difficulties that people have had in trying to solve this
puzzle, and justified the exhaustive search that seemed necessary for the puzzle
to be solved by a computer. Benoist and Bourreau [6] studied Edge Matching
Puzzles using constraint programming, and Ansótegui et al. [7] worked on the
generation of EMP instances of varied hardness, and the application of SAT/CSP
solving techniques to the problem.

We show that the maximisation version of a variant of the problem is APX-
complete by presenting an approximation-preserving reduction from a problem
that is known to be APX-complete (namely Max-3DM-B, defined later) to our
problem, and providing a constant-factor approximation algorithm for the prob-
lem. The APX-hardness result is then used to show some equivalent results for
some other optimisation variants of Edge Matching Puzzles.

1.1 Outline

In the next section some definitions that will be used later on are presented. In
Sect. 3, we present and analyse the actual reduction. Finally, Sect. 4 adds some
results regarding the minimisation version.

2 Preliminaries

We adhere to the definitions of approximation ratio, relative error and absolute
error from [8].

Definition 1. APX is the complexity class of all optimisation problems Q such
that the decission version of Q is in NP, and for some r ≥ 1 there exists
a polynomial-time r-approximation algorithm for Q.

Definition 2. A Polynomial-Time Approximation Scheme (PTAS) [8] for
a problem is a set of algorithms A such that for each ε > 0, there is an approx-
imation algorithm in A with ratio 1 + ε for the problem, running in polynomial
time (under the assumption that ε is fixed).

Approximability of Edge Matching Puzzles 155

Note 1. Since under the P �= NP conjecture, there exist problems in APX that
do not admit a PTAS, if P �=NP then no APX-hard problem can admit a PTAS.

Definition 3. An L-reduction [9] with constant parameters α, β > 0, from
a problem A to a problem B, with cost functions cA and cB respectively (where
cX(v, w) denotes the cost of solution w to a problem X on instance v), is a pair
of polynomial time computable functions f and g such that the following hold.

– f transforms instances of A to instances of B.
– If y is a solution to f(x), then g(y) is a solution to x.
– For every instance x of A: OPTB(f(x)) ≤ αOPTA(x).
– For every solution y to f(x): |OPTA(x) − cA(x, g(y))| ≤ β|OPTB(f(x)) −

cB(f(x), y)|.

Theorem 1. ([9]) If there is an L-reduction with parameters α and β, from
a problem A to a problem B, and there exists a polynomial-time approximation
algorithm for B with relative error c, then there also exists a polynomial-time
approximation algorithm for A with relative error δ = αβc.

Definition 4. Formally, an Edge Matching Puzzle (EMP) is a puzzle where the
goal is to arrange a given collection of n square-shaped and edge-coloured tiles
(of area a each), into a given rectangle of area n · a such that adjacent tiles are
coloured identically along their common edge.

We say that an edge e in a solution of an EMP is broken if the two adjacent
tiles in that solution sharing e have different colours along it. In the maximisation
version of EMP, which we consider in the following section, we are looking for
a solution maximizing the number of edges that match (are not broken).

Definition 5. In Maximum Three-Dimensional Matching (Max-3DM) we are
given a set of triples T ⊆ X × Y × Z from pairwise disjoint sets X, Y and Z,
and we are looking for a subset M of the triples T of maximum size, such that
no two triples of M agree on any coordinate.

In the bounded version of Max-3DM, Maximum Bounded 3-Dimensional Match-
ing (Max-3DM-B) the number of occurrences of every element in X, Y or Z is
bounded by the constant B. Kann showed in 1991 [10] that Max-3DM-B is APX-
complete for B ≥ 3. More recently, Chleb̀ık and Chleb̀ıkovà [11] improved that
result by showing that Max-3DM-B is APX-complete for B ≥ 2. Specifically, it is
NP-hard to approximate the solution within 141

140 even on instances with exactly
two occurrences of each element. They later improved that bound to 95

94 [12].

3 The Reduction and Its Analysis

Here we present an L-reduction of Max-3DM-B (with every element appearing
exactly twice) to EMP. Whenever an edge of a tile has colour u it should be
interpreted as a unique colour, thus it does not match to any other edge, includ-
ing other u’s. All other symbols that appear on edges of tiles represent a specific
colour, and can be matched with edges of other tiles where the same symbol
occurs.

156 A. Antoniadis and A. Lingas

3.1 Constructing the EMP Instance

This subsection describes how given a Max-3DM-B instance, a corresponding
EMP instance is produced. An informal description on why the EMP instance
is produced this way and what the purpose of every tile is, is provided in
Subsect. 3.2; followed by a formal proof in Subsect. 3.3 and 3.4.

We define f as the function that given any instance of the Max-3DM-B prob-
lem with every element occuring exactly two times, will produce an instance of
EMP as follows:

1. For each triple (x, y, z) with x ∈ X , y ∈ Y and z ∈ Z, f produces the
tiles seen in Fig. 2(a). We can call these tiles of Type 1, Type 2 and Type 3
respectively (from the lowest to the highest).

2. For each element x ∈ X , f produces the tiles seen in Fig. 2(b).
3. For each element z ∈ Z, f produces the tiles seen in Fig. 2(c).
4. For each element y ∈ Y , f produces the tiles seen in Fig. 2(d).
5. We are given a rectangle in which we want to arrange the tiles with the

fewest possible edges being broken. The rectangle has height 2 and length
half the number of tiles produced.

3.2 Informal Description

The purpose of this subsection is to provide an insight on the reduction and this
way make the material and the proofs in the rest of this section easier to follow.

xy
u

%
x

yz
u

xy
y

%
u

yz
z

(a) ∀
triple

x’
$

x
$

x’
&

x
$

u
&

x
$

u
x’

x”
$

x”’
%

u
x4

u
$

x”’
x

x”
x5

u
%

$
x4

u
x5

(b) ∀x ∈ X

z’
$

z
$

z’
$

z
=

u
$

z
=

u
z

z”
$

z”’
%

u
z4

u
$

z”’
z’

z”
z5

u
%

$
z4

u
z5

(c) ∀z ∈ Z

y’
$

y
$

y’
-

y
&

u
-

y
&

u
y

y”
$

u
$

y”’
y’

y”
$

u
%

$
$

y4
$

y”’
%

u
$

-
$

y4
$

y4

%
u

%

(d) ∀y ∈ Y

Fig. 2. The tiles constructed in Subsect. 3.1

Approximability of Edge Matching Puzzles 157

a
ab

u
%

a’
$

a
$

b
bc

u
ab

b’
$

b
$

c
%

u
bc

c’
$

c
$

(a) a set corresponding to a
picked triple, with no edges
broken

a
ad

u
%

u
&

a
$

d
dc

u
ad

u
-

d
&

c
%

u
dc

u
$

c
=

(b) a set corresponding to an
not picked triple, with ex-
actly one edge broken

Fig. 3. A “good” and a non “good” set

Suppose that we have the two triples (a, b, c) and (a, d, c) among others in
our given Max-3DM-B instance. Clearly in an optimal solution to that in-
stance at most one of these triples can be picked, assume that it is (a, b, c).
The main idea is that after the construction of the EMP instance in the way de-
scribed in Subsect. 3.1, its optimal solution will contain the two sets of tiles seen
in Fig. 3.

This way whenever a triple is picked we have no broken edge in the corre-
sponding set, and whenever one is not picked we have exactly one edge that is
broken in the corresponding set. Also note that no two triples that have a com-
mon element can be picked. To make the two sets of Fig. 3 always possible we
have additionally produced some excess tiles. These, are not being discarded
(the EMP definition does not allow this) but will be placed somewhere else in
the rectangle. We are aware that from the first three tiles made for each element
exactly one tile will be excess. Taking as an example a tile corresponding to an
element x ∈ X , out of the tiles

x’
$

x
$

x’
&

x
$

u
&

x
$

two will be used, and one will be excess. By the pigeonhole principle either the
second or the third tile has to be used, and when used these tiles are equivalent
because of differing only in the colour placed on the border. Thus we may assume
that always the third tile is used and either the first or the second tile are
unused. Less formally, an element can either appear in two not picked triples
(the second and the third tile are used), or in one picked and one not picked
triple (the first and third tile are used). Note here that no matter which of the
first two tiles is the excess one it can be matched with the other tiles constructed
for that element, producing a set (call it “dumping set”), with cost 0. For a
detailed example of an arrangement, including the placement of excess tiles,
see Fig. 4.

158 A. Antoniadis and A. Lingas

a’
$

a
$

b’
$

b
$

c’
$

c
$

u
&

a
$

d’
-

d
&

u
$

c
=

u
a’

a”’
$

&
a

$
a’

u
$

a”
a

u
b

b”
$

&
b’

-
b

u
$

b”’
b’

u
c

c”
$

=
c’

$
c

u
$

c”’
c’

u
d’

d”’
$

$
d

$
d’

u
$

d”
d

u
$

@
$

$
$

b4
$

-
$

d4
$

a
ab

u
%

b
bc

u
ab

c
%

u
bc

a
ad

u
%

d
dc

u
ad

c
%

u
dc

a”’
a4

u
%

$
a5

u
a4

a”
%

u
a5

b”
b4

u
%

-
b5

u
b4

b”’
%

u
b5

c”
c4

u
%

$
c5

u
c4

c”’
%

u
c5

d”’
d4

u
%

$
d5

u
d4

d”
%

u
d5

@
$

u
%

b4

$
-

$
d4

$
-

$

picked triple unpicked triple
one broken edge

dump a

dump b dump c dump d

dump
rest
of b’s

dump
rest

of d’s

Fig. 4. A solution of the EMP instance, split into three pieces, corresponding to the
Max-3DM-B instance consisting of choosing triple (a,b,c) but not (a,d,c)

3.3 Some Useful Lemmas

We say that a good set is a formation of six tiles arranged as seen in Fig. 3(a).
Such a set in a solution of our instance of EMP always corresponds to a triple
(a, b, c) that we want to pick in the Max-3DM-B instance.

A transformation of a solution to the EMP instance to a solution to the Max-
3DM-B instance can easily be done in polynomial time by selecting the good
sets, and picking the corresponding triples. By the construction of the instance
of EMP there is a solution to it of the form seen in Fig. 4, which corresponds to
the optimal solution of the initial Max 3-DM-B instance.

Lemma 1. Given an instance C of Max-3DM-B containing n triples, an in-
stance D of EMP can be constructed as described above. Any solution to D that
breaks k edges yields a solution to C consisting of at least n− k triples.

Proof. The core idea of this proof is to show that if k edges are broken in the
solution to D, then this solution must contain at least n− k good sets.

Approximability of Edge Matching Puzzles 159

Assume that our instance D has at least k1 tiles of Type 2 that are adjacent
to a broken edge in the solution (note that k1 ≤ k). This means that the form of
set seen in Fig. 5(a) will appear n− k1 times.

The symbol ‘?’ in Fig. 5 is a placeholder indicating that the colour of that edge
is still unknown. Assume now that out of these n − k1 sets, k2 have the upper
edge of the bottom right tile broken, or the right edge of the top tile broken. This
means that there are at least n− k1 − k2 sets where these edges are not broken.
The only way for this to be the case, is when the sets look like in Fig. 5(b).

?
ab

?
?

b
bc

u
ab

?
?

?
bc

?
?

b
?

(a)

?
ab

?
?

b
bc

u
ab

c
%

u
bc

b’
$

b
$

c’
$

c
$

(b)

Fig. 5.

Finally, out of these n−k1−k2 sets, let k3 have the top edge of the bottom left
tile broken, or the leftmost edge of the top row broken. It follows that we have at
least n− k1− k2− k3 good sets. As k1 + k2 + k3 ≤ k (the total number of broken
edges is at most k), we conclude that we have at least n− k good sets, and thus
select n− k triples in our solution of the Max 3DM-B instance. �

As a natural consequence of the way the EMP instance is constructed and
Lemma 1, we get the following Lemma.

Lemma 2. Given an instance x of Max-3DM-B, let f(x) denote the correspond-
ing instance produced as described in Sect. 3.1. Given an optimal solution to
f(x), by picking the triples that correspond to good sets in the optimal solution
of f(x), an optimal solution to x is produced.

3.4 The Reduction Preserves Approximability

Lemma 3. The function f defined in Sect. 3.1 transforms instances of Max-
3DM-B to instances of EMP, and can be computed in polynomial time.

Lemma 4. There is a polynomial-time computable function g, such that if y is
a solution to f(x), g(y) is a solution to x.

Proof. The function g takes as input a solution to an instance f(x) of EMP,
and produces a solution to instance x of Max-3DM-B. This is done by selecting
the triples corresponding to the good sets. Clearly also g can be computed in
polynomial time. �

160 A. Antoniadis and A. Lingas

Lemma 5. Let x be a given instance to problem Max-3DM-B, with B = 2, |E|
representing the number of elements in instance x (that is |E| = |X |+ |Y |+ |Z|)
and the number of triples in that instance being n. Then the following hold:

– OPTMax−3DM−B(x) ≥ 1
4n

– OPTMax−3DM−B(x) ≥ 1
9 |E|

Proof. Every element can appear at most 2 times, and in at most 2 triples. Thus,
for every selected triple there can be at most 6 elements that never get used in
another selected triple (2 for every variable that is used in the selected one).

To make this more clear, if triple (a, b, c) is selected then a can appear in
one more triple (two occurrences in total), with two new, unique elements. For
example (a, 1, 2). The same is the case for elements b and c. We also notice that
for a we can have up to one more triple that is unselected, the same for b and c.
Thus, if we select (a, b, c) in the worst case we may not select 3 more triples
which in the worst case again, would contain 6 more unique elements.

As an example, consider having the following 4 triples that use 9 elements
and only 1 triple can get selected: {(a, b, c), (a, 1, 2), (3, b, 4), (5, 6, c)}. �

Lemma 6. Let α = 150. For every instance x of Max-3DM-B with B = 2 of
size n ≥ n0 for some constant n0 > 0:

OPTEMP(f(x)) ≤ αOPTMax−3DM−B(x) .

Proof. Assume that the optimum of the Max-3DM-B (with B = 2) instance has
k non-selected triples. Then OPTMax−3DM−B(x) ≥ n−k. Now, f(x) will consist
of 3 tiles for every triple, and less than or equal to 10 tiles for every element. The
most tiles will be produced if the element is in set Y , when we produce 7+(λ+1)
tiles given that it appears λ times in total (here, λ = 2). Thus, the number
of tiles is |T | ≤ 3n + 10|E|. If we consider the optimum of the corresponding
EMP instance to be the number of edges in a solution that are not adjacent to
the border, and assume that the optimal solution has again k broken edges (we
can always achieve this by placing the tiles as seen in Fig. 4), then the optimal
solution is at most the number of edges that are not adjacent to the border:

OPTEMP(f(x)) ≤ |T |/2 + |T | − 2− k = 1.5|T | − 2− k ≤
1.5 · (3n + 10|E|)− 2− k = 4.5n + 15|E| − 2− k = 4.5n− k + 15|E| − 2 ≤

3.5n + OPTMax−3DM−B(x) + 15 · 9 ·OPTMax−3DM−B(x) − 2 ≤
3.5 · 4OPTMax−3DM−B(x) + 136 ·OPTMax−3DM−B(x) − 2 =

150OPTMax−3DM−B(x) − 2 . �

Lemma 7. For β = 1, and for every solution y to f(x) the following inequality
holds:

|OPTMax−3DM−B(x) − cMax−3DM−B(x, g(y))| ≤
β|OPTEMP(f(x)) − cEMP(f(x), y)| .

Approximability of Edge Matching Puzzles 161

Proof. OPTEMP(f(x)) =
(

3
2 |T | − 2

)
− k that is, the optimal solution to prob-

lem EMP on instance f(x) breaks k edges, and a solution y to f(x) breaks k′

edges (thus cEMP(f(x), y) =
(

3
2 |T | − 2

)
− k′ (Note that our instance has di-

mensions 2 × |T |
2). Because of Lemma 2, OPTMax−3DM−B(x) = n − k. Also,

obviously cMax−3DM−B(x, g(y)) = n− k′. The above means that there is a posi-
tive constant β = 1, such that for every solution y to f(x), n− k − (n − k′) ≤
β
(

3
2 |T | − k − 2−

(
3
2 |T | − k′ − 2

))
⇒ k′ − k ≤ β(k′ − k), �

As a natural consequence of the definition of the L-reduction, and Lemmas 2, 3, 4,
6 and 7,

Lemma 8. The reduction described above, is an L-reduction from Max-3DM-B
to EMP with α = 150 and β = 1.

The following theorem follows naturally,

Theorem 2. Edge Matching Puzzle is APX-hard, and thus under the P�=NP
assumption it does not admit a PTAS.

3.5 APX-Completeness

Theorem 3. Edge Matching Puzzle is in APX.

Proof. Suppose that the optimal solution to a given EMP instance is known and
has cost OPT . We then can construct a graph G by representing each tile as
a node, and for every matched edge in the optimal solution draw an edge between
the corresponding tiles/nodes. Then one can proceed from this graph:

Initialise an empty list M . While there are edges left in G pick one of them,
push it into M , and remove both its endpoints and their adjacent edges from G.

As every tile has 4 edges, the degree of every node in G has to be at most 4, so
there are at most 8 edges removed in every step of the algorithm, and M has size
at least OPT/8. Now, the following is a constant factor approximation algorithm
for EMP:

Construct a graph G′ by creating a node for every tile, and connecting with
edges all the pairs of nodes corresponding to two tiles with at least one edge
with the same colour. Find a maximum matching M ′ of G′ using a polynomial
time algorithm [13]. Now, for every edge uv in M ′ match the tiles corresponding
to vertices u and v into a pair of tiles. Place the pairs of tiles into the given
rectange in a snake fashion: fill in row by row, and if the rows have odd size
place the last tile so that it takes one place in the current row and one in the
next one. If there are single tiles left over place them arbitrarily in the free space
of the rectangle.

The algorithm described above is running in polynomial time. As the match-
ing M ′ is maximum, |M ′| ≥ |M |, the solution returned by the algorithm has cost
at least 1/8 times OPT , and it is an Θ(1)-approximation algorithm for EMP. �

As a natural consequence of Theorems 2 and 3,

Theorem 4. Edge Matching Puzzle is APX-complete.

162 A. Antoniadis and A. Lingas

3.6 Approximation Lower Bound

This subsection, copes with finding an approximation lower bound for the EMP
problem using the following approximation lower bound for Max-3DM-B:

Theorem 5 ([12]). It is NP-hard to approximate the solution of Max-3DM-B,
with exactly two occurrences of every element, to within any constant smaller
than δ′ = 95

94 .

An approximation lower bound for EMP can now be easily derived:

Theorem 6. It is NP-hard to approximate the solution of EMP to within any
constant smaller than c′ = 14250

14249 .

Proof. It easily follows from Theorems 1 and 5 by using α = 150 and β = 1:

c′ =
1

1− 1−(1/δ′)
αβ

=
14250
14249

�

4 The Corresponding Minimisation Problem

In this section we study two other optimisation variants of the problem: the
absolute error for both the minimisation and the maximisation version, and the
approximation ratio of the minimisation version. For the latter, as the optimum
solution could have cost 0, to make the problem interesting we introduce an
assumption that changes the problem a bit; namely that the optimum solution
has exactly k edges broken.

We define a minimisation and a maximisation problem to be corresponding
when the following holds: For every instance with a fixed rectangle, the sum of
the costs of the maximisation and the minimisation version is constant. Formally,
there exists some M(x) such that cmax(x, y) = M(x)−cmin(x, y), and OPTPmin =
M(x)−OPTPmax . In the EMP case, M(x) is the number of edges that instance
x has in total (either broken or non-broken).

4.1 Absolute Error

It has been shown that EMP does not admit a PTAS. Here it will also be shown
that it cannot be approximated within an absolute error of size o(n) if P �=NP.

Theorem 7. Any maximisation problem Pmax with an optimal solution
OPTPmax = Ω(n), which can be approximated within an absolute error of o(n),
admits a PTAS for large enough instances.

Proof. Let OPTPmax = Ω(n), and f(n) = o(n) be an absolute error within which
we can approximate the problem and ε = f(n)

OPTPmax
. Then, by definition, for

Approximability of Edge Matching Puzzles 163

the feasible solution y returned by the approximation algorithm when run on
instance x,

c(x, y) ≥ OPTPmax − f(n) = OPTPmax

(
1− f(n)

OPTPmax

)

⇒ c(x, y) ≥ OPTPmax(1− ε)
∀ε≤ 1

2
≥ OPTPmax

1 + 2ε
⇒ 1 + 2ε ≥ OPTPmax

c(x, y)

which – as ε can be made arbitrarily small for large enough instances – implies
a PTAS for Pmax. �
Note 2. For Pmax to have a PTAS, f ∈ o(g) would be enough.

Theorem 8. If a minimisation problem Pmin can be approximated within an
absolute error of o(n) and it has a corresponding maximisation problem with
OPTPmax = Ω(n) then Pmax admits a PTAS for large enough instances.

Proof. Let again OPTPmax = Ω(n), and f(n) = o(n) be an absolute error within
which we can approximate the problem. By definition, we have that

cmin(x, y) ≤ (M(x) −OPTPmax) + f(n) ⇒ M(x)− cmin(x, y) ≥ OPTPmax − f(n)
⇒ cmax(x, y)≥OPTPmax − f(n)

and the rest of the proof is identical with the proof of Theorem 7. �
Theorem 9. EMP cannot be approximated within an absolute error of size o(n),
neither in the minimisation, nor in the maximisation version.

Proof. That the maximisation version cannot be approximated within an absolute
error of size o(n) directly follows from Theorem 7, as it admits no PTAS and has
an optimum of size Ω(n). Now clearly, because of Theorem 8 the corresponding
minimimisation version of EMP also cannot be approximated within an absolute
error of o(n). �

4.2 Approximation Ratio

In this subsection a result on the approximation ratio of the minimisation version
is presented, namely, the minimisation version cannot be approximated within
an approximation ratio of o(n).

Theorem 10. If a minimisation problem Pmin with OPTPmin = Ω(1), can be
approximated within an approximation ratio of o(n), then it also can be approx-
imated within an absolute error of o(n).

Proof. Assume that Pmin is a minimisation problem with OPTPmin = Ω(1) and
that A is an approximation algorithm that can approximate it within an approx-
imation ratio of o(n). Then for some h(n) = o(n) being the approximation ratio,

∀x, cmin(x, A(x)) ≤ OPTPminh(n) ⇒ cmin(x, A(x)) ≤ o(n)
⇒ cmin(x, A(x)) ≤ OPTPmin + f(n)

for some function f = o(n). Naturally that Pmin can be approximated within an
absolute error of o(n). �

164 A. Antoniadis and A. Lingas

Theorem 11. The minimisation version of EMP cannot be approximated within
an approximation ratio of o(n), assuming that OPTEMPmin �= 0.

Proof. For EMP when OPTEMPmin �= 0 it holds that OPTEMPmin = Ω(1). Thus
applying Theorems 9 and 10 we get that the minimisation version of EMP cannot
be approximated within an approximation ratio of o(n). �

References

1. Demaine, E.D., Demaine, M.L.: Jigsaw Puzzles, Edge Matching, and Polyonymo
Packing: Connections and Complexity. Graphs and Combinatorics 23, 195–208
(2007)

2. Berger, R.: The Undecidability of the Domino Problem. Memoirs of the American
Mathematical Society 66 (1966)

3. Garey, M.R., Johnson, D.S., Papadimitriou, C.H.: Computers and Intractability:
A Guide to the Theory of NP-completeness, p. 257. W.H. Freeman & Co., New
York (1979)

4. Savelsberg, M.P.W., van Emde Boas, P.: BOUNDED TILING, an Alternative to
SATISFIABILITY? In: Proceedings 2nd Frege Conference, vol. 20, pp. 354–363.
Akademie Verlag, Schwerin (1984)

5. Chlebus, B.S.: Domino-Tiling Games. Journal of Computer and System Sci-
ences 32, 374–392 (1986)

6. Benoist, T., Bourreau, E.: Fast Global Filtering for Eternity II. Constraint Pro-
gramming Letters 3, 36–49 (2008)

7. Ansótegui, C., Béjar, R., Fernández, C., Mateau, C.: Edge Matching Puzzles as
Hard SAT/CSP Benchmarks. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202,
pp. 560–565. Springer, Heidelberg (2008)

8. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Pro-
tasi, M.: Complexity and Approximation: Combinatorial Optimization Problems
and their Approximability Properties. Springer, Heidelberg (1999)

9. Papadimitriou, C.H., Yannakakis, M.: Optimization, Approximation, and Com-
plexity Classes. Journal of Computer and System Sciences 43, 425–440 (1991)

10. Kann, V.: Maximum Bounded 3-Dimensional Matching is MAX SNP-Complete.
Information Processing Letters 37, 27–35 (1991)

11. Chleb̀ık, M., Chleb̀ıkovà, J.: Approximation Hardness for Small Occurrence In-
stances of NP-hard Problems. In: Petreschi, R., Persiano, G., Silvestri, R. (eds.)
CIAC 2003. LNCS, vol. 2653. Springer, Heidelberg (2003); (also ECCC Report)
(2002)

12. Chleb̀ık, M., Chleb̀ıkovà, J.: Inapproximability Results for Bounded Variants of
Optimization Problems. In: Proocedings of FCT 2003: the 14th International Sym-
posium on Fundamentals of Computation Theory (2003)

13. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, 2nd
edn. MIT Press, Cambridge (2001)

A Linear Time Algorithm
for Finding Three Edge-Disjoint Paths

in Eulerian Networks

Maxim A. Babenko�, Ignat I. Kolesnichenko, and Ilya P. Razenshteyn

Moscow State University
max@adde.math.msu.su, {ignat1990,ilyaraz}@gmail.com

Abstract. Consider an undirected graph G = (V G, EG) and a set of
six terminals T = {s1, s2, s3, t1, t2, t3} ⊆ V G. The goal is to find a col-
lection P of three edge-disjoint paths P1, P2, and P3, where Pi connects
nodes si and ti (i = 1, 2, 3).

Results obtained by Robertson and Seymour by graph minor tech-
niques imply a polynomial time solvability of this problem. The time
bound of their algorithm is O(m3) (hereinafter we assume n := |V G|,
m := |EG|, n = O(m)).

In this paper we consider a special, Eulerian case of G and T . Namely,
construct the demand graph H = (V G, {s1t1, s2t2, s3t3}). The edges of H
correspond to the desired paths in P . In the Eulerian case the degrees
of all nodes in the (multi-) graph G + H (= (V G, EG ∪ EH)) are even.

Schrijver showed that, under the assumption of Eulerianess, cut con-
ditions provide a criterion for the existence of P . This, in particular,
implies that checking for existence of P can be done in O(m) time. Our
result is a combinatorial O(m)-time algorithm that constructs P (if the
latter exists).

1 Introduction

We shall use some standard graph-theoretic notation through the paper. For
an undirected graph G, we denote its sets of nodes and edges by V G and EG,
respectively. For a directed graph, we speak of arcs rather than edges and denote
the arc set of G by AG. A similar notation is used for paths, trees, and etc. We
allow parallel edges and arcs but not loops in graphs.

For an undirected graph G and U ⊆ V G, we write δG(U) to denote the set
of edges with exactly one endpoint in U . If G is a digraph then the set of arcs
entering (resp. leaving) U is denoted by δin

G (U) and δout
G (U). For a graph G and

a subset U ⊆ V G, we write G[U] to denote the subgraph of G induced by U .
Let G be an undirected graph. Consider six nodes s1, s2, s3, t1, t2, t3 in G.

These nodes need not be distinct and will be called terminals. Our main problem
is as follows:
� Supported by RFBR grant 09-01-00709-a.

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 165–175, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

166 M.A. Babenko, I.I. Kolesnichenko, and I.P. Razenshteyn

(1) Find a collection of three edge-disjoint paths P1, P2, P3, where Pi goes
from si to ti (for i = 1, 2, 3).

Robertson and Seymour [4] developed sophisticated graph minor techniques
that, in particular, imply a polynomial time solvability of the above problem.
More specifically, they deal with the general case where k pairs of terminals
{s1, t1} , . . . , {sk, tk} are given and are requested to be connected by paths. These
paths are required to be node-disjoint. The edge-disjoint case, however, can be
easily simulated by considering the line graph of G. For fixed k, the running time
of the algorithm of Robertson and Seymour is cubic in the number of nodes (with
a constant heavily depending on k). Since after reducing the edge-disjoint case to
the node-disjoint one the number of nodes becomes Θ(m), one gets an algorithm
of time complexity O(m3) (where, throughout the paper, n := |V G|, m := |EG|;
moreover, it is assumed that n = O(m)). If k is a part of input, then it was
shown by Marx [3] that finding k edge-disjoint paths is NP-complete even in the
Eulerian case.

We may also consider a general integer multiflow problem. To this aim, con-
sider an arbitrary (multi-)graph G and also an arbitrary (multi-)graph H obeying
V H = V G. The latter graph H is called the demand graph. The task is to find
a function f assigning each edge uv ∈ EH a u–v path f(uv) in G such that
the resulting paths {f(e) | e ∈ EH} are edge-disjoint. Hence, the edges of H
correspond to the paths in the desired solution. By a problem instance we mean
the pair (G, H). An instance is feasible if the desired collection of edge-disjoint
paths exists; infeasible otherwise.

In case of three terminal pairs one has H = (V G, {s1t1, s2t2, s3t3}). We can
simplify the problem and get better complexity results by introducing some
additional assumptions regarding the degrees of nodes in G. Put G + H :=
(V G, EG ∪ EH). Suppose the degrees of all nodes in G + H are even; the cor-
responding instances are called Eulerian.

As observed by Schrijver, for the Eulerian case there exists a simple feasibility
criterion. For a subset U ⊆ V G let dG(U) (resp. dH(U)) denote |δG(U)| (resp.
|δH(U)|).

Theorem 1 ([5], Theorem 72.3). An Eulerian instance (G, H) with three
pairs of terminals is feasible if and only if dG(U)≥dH(U) holds for each U⊆V G.

The inequalities figured in the above theorem are called cut conditions. In a gen-
eral problem (where demand graph H is arbitrary) these inequalities provide
necessary (but not always sufficient) feasibility requirements.

For the Eulerian case, the problem is essentially equivalent to constructing
two paths (out of three requested by the demand graph). Indeed, if edge-disjoint
paths P1 and P2 (where, as earlier, Pi connects si and ti, i = 1, 2) are found,
the remaining path P3 always exists. Indeed, remove the edges of P1 and P2

from G. Assuming s3 �= t3, the remaining graph has exactly two odd vertices,
namely s3 and t3. Hence, these vertices are in the same connected component.
However, once we no longer regard s3 and t3 as terminals and try to solve
the four terminal instance, we lose the Eulerianess property. There are some

A Linear Time Algorithm for Finding Three Edge-Disjoint Paths 167

efficient algorithms (e.g. [7,6,8,9]) for the case of two pairs of terminals (without
Eulerianess assumption) but no linear time bound seems to be known.

The proof of Theorem 1 presented in [5] is rather simple but non-constructive.
Our main result is as follows:

Theorem 2. An Eulerian instance of the problem (1) can be checked for fea-
sibility in O(m) time. If the check turns out positive, the desired path collection
can be constructed in O(m) time.

2 The Algorithm

2.1 Preliminaries

This subsection describes some basic techniques for working with edge-disjoint
paths. If the reader is familiar with network flow theory, this subsection may be
omitted.

Suppose we are given an undirected graph G and a pair of distinct nodes s
(source) and t (sink) from V G. An s–t cut is a subset U ⊆ V G such that s ∈ U ,
t /∈ U .

Edge-disjoint path collections can be described in flow-like terms as follows.
Let

−→
G denote the digraph obtained from G by replacing each edge with a pair of

oppositely directed arcs. A subset F ⊆ A
−→
G is called balanced if

∣∣F ∩ δin(v)
∣∣ =

|F ∩ δout(v)| holds for each v ∈ V G− {s, t}. Consider the value of F defined as
follows:

val(F) :=
∣∣F ∩ δout(s)

∣∣− ∣∣F ∩ δin(s)
∣∣ .

Proofs of upcoming Lemma 1, Lemma 2, and Lemma 3 are quite standard and
hence omitted (see, e.g. [2,1]).

Lemma 1. Each balanced arc set decomposes into a collection arc-disjoint s–t
paths Pst, a collection of t–s paths Pts, and a collection of cycles C. Each such
decomposition obeys |Pst| − |Pts| = val(F). Also, such a decomposition can be
carried out in O(m) time.

Obviously, for each collection P of edge-disjoint s–t paths in G there exists a
balanced arc set of value |P|. Vice versa, each balanced arc set F in

−→
G generates

at least val(F) edge-disjoint s–t paths in G. Hence, finding a maximum cardinal-
ity collection of edge-disjoint s–t paths in G amounts to maximizing the value
of a balanced arc set.

Given a balanced set F , consider the residual digraph
−→
GF := (V G, (A

−→
G −F)

∪ F−1), where F−1 :=
{
a−1 | a ∈ F

}
and a−1 denotes the arc reverse to a.

Lemma 2. Let P be an arc-simple s–t path in
−→
GF . Construct the arc set F ′ as

follows: (i) take set F ; (ii) add all arcs a ∈ AP such that a−1 /∈ F ; (iii) remove
all arcs a ∈ F such that a−1 ∈ AP . Then, F ′ is balanced and obeys val(F ′) =
val(F) + 1.

168 M.A. Babenko, I.I. Kolesnichenko, and I.P. Razenshteyn

Lemma 3. Suppose there is no s–t path in
−→
GF . Then F is of maximum value.

Moreover, the set U of nodes that are reachable from s in
−→
GF obeys dG(U) =

val(F). Additionally, U is an inclusion-wise minimum such set.

Hence, to find a collection of r edge-disjoint s–t paths one needs to run a reach-
ability algorithm in a digraph at most r times. Totally, this takes O(rm) time
and is known as the method of Ford and Fulkerson [2].

2.2 Checking for Feasibility

We start with a number of easy observations. Firstly, there are some simpler
versions of (1). Suppose only one pair of terminals is given, i.e. H = (V G, {s1t1}).
Then the problem consists in checking if s1 and t1 are in the same connected
component of G. Note that if the instance (G, H) is Eulerian then it is always
feasible since a connected component cannot contain a single odd vertex. An
s1–t1 path P1 can be found in O(m) time.

Next, consider the case of two pairs of terminals, i.e. H = (V G, {s1t1, s2t2}).
Connected components of G not containing any of the terminals may be ignored.
Hence, one may assume that G is connected since otherwise the problem reduces
to a pair of instances each having a single pair of terminals.

Lemma 4. Let (G, H) be an Eulerian instance with two pairs of terminals. If
G is connected then (G, H) is feasible. Also, the desired path collection {P1, P2}
can be found in O(m) time.

Proof
The argument is the same as in Section 1. Consider an arbitrary s1–t1 path P1

and remove it from G. The resulting graph G′ may lose connectivity, however,
s2 and t2 are the only odd vertices in it (assuming s2 �= t2). Hence, s2 and t2
are in the same connected component of G′, we can trace an s2–t2 path P2 and,
hence, solve the problem. The time complexity of this procedure is obviously
O(m). �

Now we explain how the feasibility of an Eulerian instance (G, H) having three
pairs of terminals can be checked in linear time. Put T := {s1, s2, s3, t1, t2, t3}.
There are exponentially many subsets U ⊆ V G. For each subset U consider its
signature U∗ := U ∩ T . Fix an arbitrary signature U∗ ⊆ T and assume w.l.o.g.
that δH(U∗) = {s1t1, . . . , sktk}. Construct a new undirected graph G(U∗) as
follows: add source s∗, sink t∗, and 2k auxiliary edges s∗s1, . . . , s

∗sk, t1t
∗, . . . , tkt∗

to G.
Let ν(U∗) be the maximum cardinality of a collection of edge-disjoint s∗–t∗

paths in G(U∗). We restate Theorem 1 as follows:

Lemma 5. An Eulerian instance (G, H) with three pairs of terminals is feasible
if and only if ν(U∗) ≥ dH(U∗) for each U∗ ⊆ T ,

A Linear Time Algorithm for Finding Three Edge-Disjoint Paths 169

Proof
Necessity being obvious, we show sufficiency. Let (G, H) be infeasible, then by
Theorem 1 dG(U) < dH(U) for some U ⊆ V G. Consider the corresponding
signature U∗ := U ∩ T . One has dH(U) = dH(U∗), hence there is a collection of
dH(U) edge-disjoint s∗–t∗ paths in G(U∗). Each of these paths crosses the cut
δG(U) by a unique edge, hence dG(U) ≥ dH(U) — a contradiction. �
By the above lemma, to check (G, H) for feasibility one has to validate the
inequalities ν(U∗) ≥ dH(U∗) for all U∗ ⊆ T . For each fixed signature U∗ we
consider graph G(U∗), start with an empty balanced arc set and perform up to
three augmentations, as explained in Subsection 2.1. Therefore, the correspond-
ing inequality is checked in O(m) time. The number of signatures is O(1), which
gives the linear time for the whole feasibility check.

We now present our first O(m2) time algorithm for finding the required path
collection. It will not be used in the sequel but gives some initial insight on the
problem. Consider an instance (G, H) and let s1, t1 ∈ T be a pair of terminals
(s1t1 ∈ EH). If s1 = t1 then the problem reduces to four terminals and is
solvable in linear time, as discussed earlier. Otherwise, let e be an edge incident
to s1, and put s′1 to be the other endpoint of e. We construct a new problem
instance (Ge, He), where Ge = G−e, He = H−s1t1+s′1t1 (i.e. we remove edge e
and choose s′1 instead of s1 as a terminal). Switching from (G, H) to (Ge, He) is
called a local move. Local moves preserve Eulerianess. If a local move generates
a feasible instance then it is called feasible, infeasible otherwise.

If (Ge, He) is feasible (say, Pe is a solution) then so is (G, H) as we can append
the edge e to the s′1–t1 path in Pe and obtain a solution P to (G, H).

Since (G, H) is feasible, there must be a feasible local move (e.g. along the
first edge of an s1–t1 path in a solution). We find this move by enumerating all
edges e incident to s1 and checking (Ge, He) for feasibility. Once e is found, we
recurse to the instance (Ge, He) having one less edge. This way, a solution to
the initial problem is constructed.

To estimate the time complexity, note that if a move along some edge e is
discovered to be infeasible at some stage then it remains infeasible for the rest
of the algorithm (since the edge set of G can only decrease). Hence, each edge
in G can be checked for feasibility at most once. Each such check costs O(m)
time, thus yielding the total bound of O(m2). This is already an improvement
over the algorithm of Robertson and Seymour. However, we can do much better.

2.3 Reduction to a Critical Instance

To solve an Eulerian instance of (1) in linear time we start by constructing an
arbitrary node-simple s1–t1 path P1. Let e1, . . . , ek be the sequence of edges
of P1. For each i = 0, . . . , k let (Gi, Hi) be the instance obtained from the initial
one (G, H) by a sequence of local moves along the edges e1, . . . , ei. In particular,
(G0, H0) = (G, H).

If (Gk, Hk) is feasible (which can be checked in O(m) time) then the problem
reduces to four terminals and can be solved in linear time by Lemma 4. Otherwise

170 M.A. Babenko, I.I. Kolesnichenko, and I.P. Razenshteyn

we find an index j such that (Gj , Hj) is a feasible instance whereas (Gj+1, Hj+1)
is not feasible.

This is done by walking in the reverse direction along P1 and considering the
sequence of instances (Gk, Hk), . . . , (G0, H0). Fix an arbitrary signature U∗ in
(Gk, Hk). As we go back along P1, terminal s1 is moving. We apply these moves
to U∗ and construct a sequence of signatures U∗

i in (Gi, Hi). (i = 1, . . . , k; in
particular, U∗

k = U∗). Let νi(U∗) be the maximum cardinality of an edge-disjoint
collection of s∗–t∗ paths in Gi(U∗

i).
Consider a consequent pair Gi+1(U∗

i+1) and Gi(U∗
i). When s1 is moved from

node v back to v′, edge s∗v is removed and edges s∗v′ and v′v are inserted.
Note, that this cannot decrease the maximum cardinality of an edge-
disjoint s∗–t∗ paths collection (if the dropped edge s∗v was used by some path
in a collection, then we may replace it by a sequence of edges s∗v′ and v′v).
Hence,

ν0(U∗
0) ≥ ν1(U∗

1) ≥ . . . ≥ νk(U∗
k).

Our goal is to find, for each choice of U∗, the largest index i (denote it by
j(U∗)) such that

νi(U∗
i) ≥ dH(U∗

i).

Then, taking
j := min

U∗⊆T
j(U∗)

we get the desired feasible instance (Gj , Hj) such that (Gj+1, Hj+1) is infeasible.
To compute the values νi(U∗

i) consider the following dynamic problem. Sup-
pose one is given an undirected graph Γ with distinguished source s and sink t,
and also an integer r ≥ 1. We need the following operations:

Query: Report min(r, c), where c is the maximum cardinality of a col-
lection of edge-disjoint s–t paths in Γ .

Move(v, v′): Let v, v′ be a pair nodes in V G, v �= s, v′ �= s, sv ∈ EΓ .
Remove the edge sv from Γ and add edges sv′ and v′v to Γ .

Lemma 6. There exists a data structure that can execute any sequence of
Query and Move requests in O(rm) time.

Proof
We use a version of a folklore incremental reachability data structure. When
graph Γ is given to us, we start computing a balanced arc set F in

−→
Γ of maximum

value val(F) but stop if val(F) becomes equal to r. This takes O(rm) time.
During the usage of the required data structure, the number of edge-disjoint s–t
paths (hence, val(F)) cannot decrease (it can be shown using arguments similar
to the described earlier). Therefore, if val(F) = r we may stop any maintenance
and report the value of r on each Query.

Otherwise, as val(F) is maximum, there is no s–t path in
−→
Γ F by Lemma 3.

As long as no r edge-disjoint s–t paths in Γ exist, the following objects are
maintained:

A Linear Time Algorithm for Finding Three Edge-Disjoint Paths 171

– a balanced subset F ⊆ AΓ of maximum value val(F) (which is less than r);
– an inclusionwise maximal directed tree T rooted at t and consisting of arcs

from
−→
Γ F (oriented towards to t).

In particular, T covers exactly the set of nodes that can reach t by a path in−→
Γ F . Hence, s is not covered by T (by Lemma 2).

Consider a Move(v, v′) request. We update F as follows. If sv /∈ F , then no
change is necessary. Otherwise, we remove sv from F and also add arcs sv′ and
v′v to F . This way, F remains balanced and val(F) is preserved.

Next, we describe the maintenance of T . Adding an arbitrary edge e to Γ is sim-
ple. Recall that each edge in Γ generates a pair of oppositely directed arcs in

−→
Γ .

Let a = pq be one of these two arcs generated by e. Suppose a is present in
−→
Γ F . If

a ∈ δin(V T) (i.e., p is not reachable and q is reachable) then add a to T . Next, con-
tinue growing T incrementally from p by executing a depth-first search and stop-
ping atnodes already coveredbyT . Thisway,T is extended to amaximumdirected
tree rooted at t. In other cases (a /∈ δin(V T)) arc a is ignored.

Next consider deleting edge sv from G. We argue that its removal cannot
invalidate T , that is, sv does not generate an arc from T . This is true since t is
not reachable from s and, hence, arcs incident to s may not appear in T .

Note that a breakthrough may occur during the above incremental procedure,
i.e. node t may become reachable from s at some point. When this happens,
we trace the corresponding s–t path in T , augment F according to Lemma 2,
and recompute T from scratch. Again, any further activity stops once val(F)
reaches r.

To estimate the complexity, note that between breakthroughs we are actually
dealing with a single suspendable depth-first traversal of

−→
Γ F . Each such traversal

costs O(m) time and there are at most r breakthroughs. Hence, the total bound
of O(rm) follows. �

We apply the above data structure to graph Gk(U∗
k) for r = dH(U∗) and make the

moves in the reverse order, as explained earlier. Once Query reports the existence
of r edge-disjoint s∗–t∗ paths in Gi(U∗

i), put j(U∗) := i and proceed to the next
signature. This way, each value j(U∗) can be computed in O(m) time. There are
O(1) signatures and r = O(1), hence computing j takes linear time as well.

2.4 Dealing with a Critical Instance

The final stage deals with problem instance (Gj , Hj). For brevity, we
reset G := Gj , H := Hj and also denote G′ := Gj+1, H ′ := Hj+1. Consider
the connected components of G. Components not containing any terminals may
be dropped. If G contains at least two components with terminals, the problem
reduces to simpler cases described in Subsection 2.2. Hence, one can assume that
G is connected. We prove that (G, H) is, in a sense, critical, that is, it admits
a cut of a very special structure.

Lemma 7. There exists a subset U ⊆ V G such that dG(U) = dH(U) = 2, G[U]
is connected and |U ∩ T | = 2 (see Fig. 1(b)).

172 M.A. Babenko, I.I. Kolesnichenko, and I.P. Razenshteyn

(a) Case 1: dG(U) = dH(U) = 1. (b) Case 2: dG(U) = dH(U) = 2.

Fig. 1. A critical instance (G, H). Terminals are marked with dots and renumbered.
Wavy lines indicate parts of paths in the desired collection P .

Proof
The following is true:

(2) For problem instances (G, H) and (G′, H ′)
(i) (G, H) is feasible,
(ii) (G′, H ′) is obtained from (G, H) by a single local move,
(iii) (G′, H ′) is infeasible,
(iv) let s ∈ V G′ be the new location of the moved terminal, st ∈ EH ′, then

s and t are in the same connected component of G′.

Properties (i)–(iii) are ensured by the choice of j. Property (iv) holds since there
exists a remaining (untraversed) part of the initial s1–t1 path in the original
graph G.

We apply a number of contractions to (G, H) and (G′, H ′) that preserve con-
dition (2). Suppose the following:

(3) there is a subset U ⊆ V G such that dG(U) = dH(U) = 1 and |U ∩ T | = 1.

In other words, there is a bridge e = uv ∈ EG, u ∈ U , v ∈ V G − U (an edge
whose removal increases the number of connected components) that separates G
into parts G[U] and G[V G− U] and the former part contains a single terminal,
say s.

We argue that the local move, which produced (G′, H ′), was carried out in
the subgraph G[V G− U] (but not in G[U] or along the edge e).

Firstly, the move could not have been applied to s. Suppose the contrary.
Terminal s is connected to node v by some path in G[U ∪{v}] and this property
remains true even if apply a local move to s. (Nodes v and s are the only odd
vertices in G[U ∪ {v}], hence, these nodes cannot fall into distinct connected
components after the move.) Therefore, (G, H) and (G′, H ′) are simultaneously
feasible or infeasible.

Next, suppose that v is a terminal and the move is carried out along the
bridge e. Then, vs /∈ EH ′ (otherwise, (G′, H ′) remains feasible). Therefore,

A Linear Time Algorithm for Finding Three Edge-Disjoint Paths 173

vw ∈ EH ′ for some w ∈ V G − U . Then v and w belong to different connected
components of G′ after the move, which is impossible by (2)(iv).

Contract the set U ∪ {v} in instances (G, H) and (G′, H ′) thus producing
instances (G, H) and (G

′
, H

′
), respectively. The above contraction preserves

feasibility, hence (G, H) is feasible and (G
′
, H

′
) is infeasible. Moreover, the lat-

ter instance is obtained from the former one by a local move. Property (2) is
preserved.

We proceed with these contractions until no subset U obeying (3) remains.
Next, since (G′, H ′) is infeasible by Theorem 1 there exists a subset U ⊆ V G such
that dG′(U) < dH′ (U). Eulerianess of G′ +H ′ implies that each cut in G′ +H ′ is
crossed by an even number of edges, hence dG′(U) ≡ dH′ (U) (mod 2). Therefore,

dG′(U) ≤ dH′(U)− 2. (4)

At the same time, (G, H) is feasible and hence

dG(U) ≥ dH(U). (5)

Graph G′ is obtained from G by removing a single edge. Similarly, H ′ is ob-
tained from H by one edge removal and one edge insertion. Hence, dG(U) and
dH(U) differ from dG′(U) and dH′ (U) (respectively) by at most 1. Combining
this with (4) and (5), one has

dG′(U) + 1 = dG(U) = dH(U) = dH′(U)− 1.

So dH(U) ∈ {1, 2}.
Suppose dH(U) = 1. Subgraphs G[U] and G[V G − U] are connected (since

otherwise G is not connected). Also, |U ∩ T | = 3 (otherwise, |U ∩ T | = 1 or
|(V G− U) ∩ T | = 1 and (3) still holds). Therefore, Case 1 from Fig. 1(a) applies
(note that terminals si and ti depicted there are appropriately renumbered). Let
us explain, why this case is impossible. Graph G′ is obtained from G by removing
edge uv. Let, as in (2)(iv), s denote the terminal in (G, H) that is being moved
and t denote its “mate” terminal (i.e. st ∈ EH). We can assume by symmetry
that u = s. Hence, v is the new location of s in (G′, H ′). By (2)(iv), v and t are
in the same connected component of G′. The latter is only possible if s = u = s1

and t = t1. But then feasibility of (G, H) implies that of (G′, H ′).
Finally, let dH(U) = 2. Replacing U by V G−U , if necessary, we may assume

that |U ∩ T | = 2, see Fig. 1(b). It remains to prove that G[U] is connected. Let
us assume the contrary. Then, U = U1 ∪U2, U1 ∩U2 = ∅, dG(U1) = dH(U1) = 1,
dG(U2) = dH(U2) = 1 (due to feasibility of (G, H) and connectivity of G).
Therefore, (3) still holds (both for U := U1 and U := U2) — a contradiction.

Once set U is found, we undo the contractions described in the beginning and
obtain a set U for the original instance (G, H). Clearly, these uncontractions
preserve the required properties of U . �

174 M.A. Babenko, I.I. Kolesnichenko, and I.P. Razenshteyn

Lemma 8. Set U figured in Lemma 7 can be constructed in O(m) time.

Proof
We enumerate pairs of terminals p, q ∈ T that might qualify for U∗ :=
U ∩ T = {p, q}. Take all such pairs U∗ = {p, q} except those forming an edge
in H (pq ∈ EH). Contract U∗ and T − U∗ into s∗ and t∗, respectively, in the
graphs G and H . The resulting graphs are denoted by G∗ and H∗. If a subset
obeying Lemma 7 and having the signature U∗ exists then there must be an
s∗–t∗ cut U in G∗ such that dG∗(U) = 2.

We try to construct U by applying three iterations of the max-flow algorithm
of Ford and Fulkerson, see Subsection 2.1. If the third iteration succeeds, i.e. three
edge-disjoint s∗–t∗ paths are found, then no desired cut U having signature U∗

exists; we continue with the next choice of U∗. Otherwise, a subset U ⊆ V G∗

obeying dG∗(U) ≤ 2 is constructed. Case dG∗(U) < 2 = dH∗(U) is not possible
due to feasibility of (G, H).

Set U is constructed for graph G∗ but may also be regarded as a subset of V G.
We keep notation U when referring to this subset.

Connectivity of G[U] is the only remaining property we need to ensure. This is
achieved by selecting an inclusion-wise maximal set U among minimum-capacity
cuts that separate {p, q} and T −{p, q}. Such maximality can achieved in a stan-
dard way, i.e. by traversing the residual network in backward direction from the
sink t∗, see Lemma 3.

To see that G[U] is connected suppose the contrary. Then, as in the proof
of Lemma 7, let U1 and U2 be the node sets of the connected components of
G[U]. Edges in δG(U) = {e1, e2} are bridges connecting G[Ui] to the remaining
part of graph G (for i = 1, 2). Also, |U1 ∩ T | = |U2 ∩ T | = 1 (recall that G is
connected). Denote U1 ∩ T = {q1} and U2 ∩ T = {q2}. Terminals q1 and q2 are
not connected in G[U]. Since set U is inclusion-wise maximal, any subset U ′

satisfying Lemma 7 also obeys U ′ ⊆ U . But then q1 and q2 are also disconnected
in G[U ′], which is a contradiction. Therefore, no valid subset U of signature U∗

obeying Lemma 7 exists.
In the algorithm, we check G[U] for connectivity in O(m) time. If the graph

is not connected, then we proceed with the next signature U∗. �

Now everything is in place to complete the proof of Theorem 2. By Lemma 8,
finding set U takes O(m) time. It remains to construct a solution to (G, H). Put
δG(U) = {e1, e2}, ei = uivi, ui ∈ U , vi ∈ V G−U , i = 1, 2. Again, after renaming
some terminals we may assume that s1, s2 ∈ U , t1, t2, s3, t3 ∈ V G−U . Augment
G by adding two new nodes s∗ and t∗ and auxiliary edges s∗u1, s∗u2, t1t

∗, and
t2t

∗. Due to feasibility of (G, H), there exists (and can be constructed in O(m)
time) a collection of two edge-disjoint s∗–t∗ paths. After removing auxiliary
edges we either obtain a u1–t1 path and a u2–t2 path (Case A) or a u1–t2 path
and a u2–t1 path (Case B). To extend these paths to an s1–t1 path and an s2–t2
path we consider a four terminal instance in the subgraph G[U]. The demand
graph is (U, {s1u1, s2u2}) in Case A and (U, {s1u2, s2u1}) in Case B. As G[U]
is connected, the latter instance is feasible by Lemma 4. Therefore, we obtain

A Linear Time Algorithm for Finding Three Edge-Disjoint Paths 175

edge-disjoint s1–t1 and s2–t2 paths P1 and P2, respectively. As explained earlier
in Section 1, the remaining path P3 always exists and can be found in O(m)
time. Therefore, the proof of Theorem 2 is complete.

References

1. Cormen, T., Stein, C., Rivest, R., Leiserson, C.: Introduction to Algorithms.
McGraw-Hill Higher Education, New York (2001)

2. Ford, L., Fulkerson, D.: Flows in Networks. Princeton University Press, Princeton
(1962)

3. Marx, D.: Eulerian Disjoint Paths Problem in Grid Graphs is NP-Complete. Discrete
Applied Mathematics 143, 336–341 (2004)

4. Robertson, N., Seymour, P.D.: Graph Minors XIII. The Disjoint Paths Problem.
Journal of Combinatorial Theory (Series B) 63, 65–110 (1995)

5. Schrijver, A.: Combinatorial Optimization. Springer, Berlin (2003)
6. Shiloach, Y.: A Polynomial Solution to the Undirected Two Paths Problem.

J. ACM 27(3), 445–456 (1980)
7. Shiloach, Y., Perl, Y.: Finding Two Disjoint Paths between Two Pairs of Vertices

in a Graph. J. ACM 25(1), 1–9 (1978)
8. Tholey, T.: Solving the 2-Disjoint Paths Problem in Nearly Linear Time. In: Diek-

ert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 350–361. Springer,
Heidelberg (2004)

9. Tholey, T.: Improved Algorithms for the 2-Vertex Disjoint Paths Problem. In:
Nielsen, M., Kucera, A., Miltersen, P.B., Palamidessi, C., Tuma, P., Valencia, F.D.
(eds.) SOFSEM 2009. LNCS, vol. 5404, pp. 546–557. Springer, Heidelberg (2009)

R-Programs: A Framework for Distributing
XML Structural Joins across Function Calls

David Bednárek�

Department of Software Engineering, Faculty of Mathematics and Physics
Charles University in Prague
bednarek@ksi.mff.cuni.cz

Abstract. Structural joins and, in particular, twig joins are essential
operations in XML query processing. Algorithms presented so far treat
a twig join as a single operator with multiple inputs. However, in XQuery
and XSLT, a twig pattern may be scattered across several functions (tem-
plates); thus, function integration is required before the application of
a twig join operator. This paper presents R-programs – a novel eval-
uation framework based on an expanding network of operators. In this
environment, a function may repeatedly and bidirectionally interact with
its caller; consequently, a structural join algorithm may be distributed
across the boundary of a function. Given this ability, function integration
is no longer required and twig join algorithms become applicable even in
the presence of recursive functions.

1 Introduction

The most successful XML query-processing methods are based on the archi-
tecture inherited from relational database systems [1]. The XML-specific part of
query processing is concentrated mainly in various versions of structural join op-
erators. A number of methods that process more than one structural relationship
at a time were developed; both theory and experiments show that such holistic
approach is advantageous because it avoids unnecessary intermediate results.
In the query, twig patterns are detected [2], containing ancestor-descendant or
parent-child relationships, OR operators, and, in the most advanced methods,
negation. For example, a twig pattern, corresponding to the XPath expression
a/b[c]/d/e is shown in Fig. 2a.

In the physical plan, a holistic twig join is represented by an n-ary operator
that consumes n streams assigned to the nodes of the twig pattern, as shown
in Fig. 2b. Each stream carries XML elements that meet the local condition of
the corresponding twig node (in our example, the condition on their element
names).

This approach works well when a twig pattern is located inside an XPath
expression. However, functions may be defined in XQuery and, thus, a twig
� Supported by the Project GA201/09/0983 – Agile systems and service-oriented soft-

ware of the Czech Science Foundation.

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 176–187, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

R-Programs: A Framework for Distributing XML Structural 177

for $X in a

return f($X)

declare function f($X)

{ for $Y in $X/b[c]/d

return g($Y)

};

declare function g($Y)

{ $Y/e

};

Fig. 1. A twig pattern scattered across functions

pattern may be scattered across function boundaries. An example, containing
the same pattern as in Fig. 2b, is shown in Fig. 1.

In such a case, integration of the bodies of the functions into the main ex-
pression is required because the twig-join algorithm is represented as an atomic
physical operator that can not be spanned across function calls. Such integration
is expensive (as it may lead to exponential expansion of the program size) and
generally impossible in the presence of recursive functions.

In this paper, we suggest that centralized implementations of twig joins be
replaced by distributed versions as shown in the example in Fig. 2c. Note that
the word distributed does not necessarily mean that the algorithm is run on
more than one computing node; nevertheless, the original centralized algorithm
is divided into smaller blocks that run conceptually in parallel, communicating
using pipes.

Our approach allows a twig algorithm to run on the whole twig pattern scat-
tered across several functions, even though there is no inter-procedural detection
of twig patterns. Each function may be compiled independently, producing a par-
tial network; at run-time, the connected networks will behave exactly like a twig
join algorithm.

Although this idea is quite simple, it requires significant changes in the ar-
chitecture of the query evaluation system. At run time, function evaluation may
no longer follow the usual call-return scheme. Instead, function bodies must run
in parallel with their callers and they must be able to exchange data in both
directions.

In this paper, we present a mathematical model of such a system,
named R-program. R-programs may be used as an intermediate language for
both logical and physical plans, depending on the set of operators used.

An R-program is conceptually a network of computing nodes, connected by
pipes carrying relations (more exactly, sequences of tuples). Each node performs
a relational or XML-specific operation. Instead of calling, functions are expanded,
i.e. added to the existing network at run-time so that they can run in parallel
with their callers, exchanging data in both directions. While there is one-to-one
correspondence between R-program functions and XQuery functions, a single
expansion of an R-program function corresponds to multiple calls to the corre-
sponding XQuery function. This fact ensures that the cost of the expansion is
relatively small with respect to the amount of data processed.

The rest of this paper is organized as follows: The principle of twig join and
the common skeleton found in most existing twig join algorithms is reviewed in
Sect. 2. In Sect. 3 we will show how a twig-join algorithm may be rewritten in

178 D. Bednárek

GL
G

G
GR

ReRdRbRa

EL
E

E
ER

GL

Rc

EL

SL
S

S
SR

SL

a
b

c

d
e

ReRdRbRa Rc

TwigStack

(a) twig pattern

b) centralized algorithm c) distributed algorithm

Fig. 2. Centralized vs. distributed processing of a twig pattern

distributed manner; we will also discuss which twig-join algorithms can fit into
our schema. In Sect. 4, we will define the mathematical model of R-programs,
we will explain their evaluation and show the principles of the translation from
XQuery. In the last section, we will summarize the contribution of this paper
and compare our approach to the most important related work.

2 Preliminaries

In XML databases, especially in schema-oblivious systems, structural relation-
ship is usually represented using node numbering – a scheme that allows decod-
ing the position of a XML node from its identification (number). Structural-join
algorithms are traditionally presented using region encoding (also called Dietz
numbering) [3]. In region encoding, nodes are identified using a pair of pre-order
and post-order ranks L and R, usually augmented with the depth D of the node.
In this encoding, XPath axes are represented using a combination of compar-
isons, like L1 < L2 ∧R2 < R1 for the descendant axis.

Holistic twig joins were developed from binary structural joins, through path-
joins. Later, ability to handle OR operators and negation [5] were added. Many
current algorithms are still presented using the same skeleton, shown in Alg. 1,
which was presented already in the TwigStack algorithm [4].

Twig-join algorithms have two phases; the first phase scans the inputs, pro-
ducing a stream of path solutions that are merged in the second phase (by the
routine mergeAllPathSolutions). Except of negation-enabled algorithms, the first

R-Programs: A Framework for Distributing XML Structural 179

Algorithm 1. Skeleton of the TwigStack algorithm, adapted from [4]

1: while ¬end(qroot) do
2: q := getNext(qroot)
3: cleanStack(Sq, next(Cq))
4: cleanStack(Sparent(q), next(Cq))
5: if isRoot(q) ∨

¬empty(Sparent(q)) then
6: pushToStack(Sq, next(Cq),

linkToTop(Sparent(q)))
7: if isLeaf(q) then
8: showSolutions(q)
9: popStack(Sq)

10: advance(Cq)
11: mergeAllPathSolutions()

function getNext(q)
12: if isLeaf(q) then
13: return q
14: for qi ∈ children(q) do
15: ni := getNext(qi)
16: if ni �= qi then
17: return ni

18: Lmax := getLMax(Cq1 , . . . , Cqk)
19: while nextR(Cq) < Lmax do
20: advance(Cq)
21: nmin := minargni

nextL(Cni)
22: if nextL(Cq) < nextL(Cnmin) then
23: return q
24: else
25: return nmin

phase requires time linear with respect to the size of the inputs, while the second
phase is linear with respect to the size of the output.

In the first phase, the elements from all inputs Cq are read in the document
order. The getNext function retrieves the nearest element across all inputs that
has a lower extension, i.e. there is a match in the corresponding twig sub-tree.
When processing OR-predicates, the function getLMax (line 18) is altered to
produce minimal instead of maximal positions. Negated predicates require ad-
ditional processing placed usually before the final test at line 22.

The main algorithm (lines 1–10) maintains a stack Sq in each twig-pattern
node q to hold the corresponding elements that intersect with the current po-
sition. Elements returned by the function getNext are pushed on the stack of
the corresponding twig node only if the stack of the parent twig node is not
empty, which ensures the existence of an upper extension. Therefore, whenever
the area of non-empty stacks reaches a leaf node, the elements in the stacks
form at least one match of the whole twig pattern. In this moment, the function
showSolutions generates a set of path solutions combining the information from
the stacks along the path to the leaf q.

The presented version reads the input elements one-by-one, by the advance
statements at the lines 20 and 10. Advanced versions like [6] replace these calls
by skip commands, employing indexes on the inputs similarly to zig-zag joins.

3 Distributed Twig-Join Algorithm

In this section, we present a distributed version of the twig-join algorithm shown
in Sect. 2. Since the main purpose of this section is to show the motivation for the
introduction of R-programs, we describe only the basic version of the algorithm

180 D. Bednárek

and we will omit some technical details. Figure 2c shows the three levels that
form the twig-join algorithm:

The G-level corresponds to the getNext function (the GL and GR-boxes
are specialized for twig pattern leaves and the root, respectively). Each G-box
receives the corresponding input stream Cq and a vector of GGqi streams from
its children. Each G-box produces a GGq stream to the parent (if any) and
a GE q stream leading to the corresponding E-box.

The E-level implements the lines 3–6 of Alg. 1 which maintain the stacks and
propagate information down in the twig pattern tree. Each E-box receives the
GE q stream from the corresponding G-box and an EE q stream from the parent
(if any). Each E-box produces a vector of EE qi streams to its children and an
ES q stream to the S-level.

The S-level replicates the stacks maintained by the E-level and implements the
routine showSolutions which collects path solutions in the leaf-to-root direction.
Additionally, in nodes with more than one children, it performs the joins required
to merge path solutions in the second phase of the original algorithm. An S-box
receives the ES q stream from the E-level and several SS qi streams from the
children. Each S-box produces the SS q stream; the GR-box produces the final
result of the twig join.

The internal streams carry the following information: Each GGq stream car-
ries a copy of those elements from the input Cq stream that have lower extension.
It corresponds to the executions of the line 23 of Alg. 1.

The outgoing GE q stream merges all the incoming GGqi streams (line 25)
with a copy of the output stream GGq. The merged elements are document
ordered (line 22) and augmented with an identification i of their origin (child
index or zero).

Each EE q stream is a copy of the corresponding GGq stream in the opposite
direction, with the results of empty(Sparent(q)) and linkToTop(Sparent(q)) added
to each element.

ES q streams merely replicate their respective GE q streams.
SS q streams carry the tuples of partial solutions corresponding to the twig

sub-tree q, each tuple is augmented with a link to the stack Sparent(q). For syn-
chronization, the partial solutions are interleaved with elements copied from the
ES q stream.

The life cycles of the G and E-boxes are shown in Alg. 2; the GR/GL as well
as ER/EL-boxes are derived from these algorithms. The S/SL/SR-boxes imple-
ment the showSolutions and mergeAllPathSolutions routines from the original
algorithm.

As illustrated in Fig. 2c which shows the function boundaries using dashed
lines, if the twig pattern is spanned across a function call, the three layers of the
distributed twig algorithm require three communication channels between the
function body and its caller. In the first layer, data are sent from the function to
the caller and the caller responds back in the second layer – during the processing
in the caller, internal state of the called must be preserved. This is the motivation
for the introduction of the R-programs in the following section.

R-Programs: A Framework for Distributing XML Structural 181

Algorithm 2. Life cycles of the G and E-boxes
procedure G-box(q)
1: Lmax := getLMax(GGq1 , . . . ,GGqk)
2: while nextR(Cq) < Lmax do
3: advance(Cq)
4: imin := minargi nextL(GG i)
5: if nextL(Cq) < nextL(GG imin) then
6: send(GGq, next(Cq))
7: send(GE q , next(Cq), 0)
8: advance(Cq)
9: else

10: send(GE q , next(GG imin), imin)
11: advance(GG imin)

procedure E-box(q)
12: cleanStack(Sq , next(GE q))
13: if nextI(GEq) �= 0 then
14: send(EEnextI(GEq), next(GE q),

empty(Sq), linkToTop(Sq))
15: if ¬empty(Sq) then
16: send(ES q, next(GE q))
17: else
18: if ¬nextEmpty(EEq) then
19: pushToStack(Sq, next(EE q))
20: send(ES q, next(EEq), 0)
21: advance(EE q)
22: advance(GE q)

4 R-Programs

An R-program consists of a set of R-functions. The interior of each R-function is
described by a directed graph of operators and R-function calls. Each R-function
receives one or more relations as its input arguments and produces one or more
relations at its output.

The notion of R-net forms the core of our formalism, representing a directed
graph of operations. Besides physical operators, function calls are allowed. Note
that, unlike in classical relational algebra, we allow an operator to have more
than one output.

Note that the definition of R-net does not require that the directed graph be
acyclic. Acyclicity will be studied on the complete R-program, allowing a kind
of cycle around a function call. Such a cycle does not necessarily paralyze the
evaluation of the program; it may just require multiple entry and exit to the
same function. This approach to acyclicity is crucial as it allows distributed
computations like the one described in the previous section.

Definition 1 (R-net). Let RelOp be a set of operators, ArcNm be a vocabulary
of arc names, and Fncs be a set of function names. R-net over Fncs is a tuple

N = (Plcs, Ops, In, Out, op, ini, fin)

where Plcs is a finite set of places, Ops is a finite set of operations, ini, fin ∈ Ops
are initial and final operations. In : (Ops \ {ini}) × ArcNm → Plcs and Out :
(Ops \ {fin}) × ArcNm → Plcs are finite partial mappings that define the input
and output arcs. The Out mapping must be a projection, i.e. rng(Out) = Plcs.
An R-net is called non-redundant if the mapping Out is an injection.

op : (Ops \ {ini, fin}) → (RelOp ∪ { trigger} ∪ { call[f] | f ∈ Fncs })

is a mapping that assigns operators to operations. The number of input/output
arcs for an operation t, as well as their arc names, must correspond to the number
of input/output arguments of the operator op(t), except for call operations.

182 D. Bednárek

We will use the notation
p

a−→
N

t as an abbreviation for p = InN (t, a) and t
a−→
N

p for p = OutN (t, a).

Definition 2 (R-program). R-program is a tuple

M = (Fncs, Plcs, Ops, In, Out, op, ini, fin, ownerP , ownerT , main)

where Fncs is a finite set of function names. ownerP : Plcs → Fncs and ownerT :
Ops → Fncs are total functions that divide Plcs and Ops into partitions Pf ,
Tf for each f ∈ Fncs. The partitioning of places and transitions then induces
partitioning of the remaining elements such that the following tuple

N(f) = (Pf , Tf , Inf , Outf , opf , inif , finf)

is a correct R-net. main ∈ Fncs is called the main function. Finally, for each
t ∈ Ops such that op(t) = call[f], the following conditions must be met for each
a:{

a | p1
a−→
M

t
}

=
{
a | ini(f) a−→

M
p2

}
∧
{

a | p3
a−→
M

fin(f)
}

=
{

a | t
a−→
M

p4

}

4.1 Dependency Closure and Acyclicity

The following definitions form the condition of acyclicity.

Definition 3 (Dependency closure). Let d be a binary relation on the places
of an R-program M such that

d ⊆ { 〈p1, p2〉 ∈ PlcsM × PlcsM | ownerPM (p1) = ownerPM (p2) }

The dependency closure of d is the smallest relation d ⊆ PlcsM × PlcsM such
that d ⊆ d,

〈p1, p2〉 ∈ d ∧ 〈p2, p3〉 ∈ d ⇒ 〈p1, p3〉 ∈ d

and ⎛
⎝opM (t) = call[f] ∧ p1

a−→
M

t ∧ iniM (f) a−→
M

p2

∧〈p2, p3〉 ∈ d ∧ p3
b−→

M
finM (f) ∧ t

b−→
M

p4

⎞
⎠⇒ 〈p1, p4〉 ∈ d

for each p1, p2, p3, p4 ∈ PlcsM , a, b ∈ ArcNm, t ∈ OpsM , and f ∈ FncsM

Note that all conditions in the definition of dependency closure are implications
with conjunctive positive premises. Therefore, the set of relations d that satisfy
these conditions is closed under intersection. Consequently, a single minimum
with respect to inclusion exists.

Definition 4 (Acyclic R-program). Let D be the relation (called primitive
dependency relation) induced by the primitive operators in an R-program M , i.e.

D =

{
〈p1, p2〉

∣∣∣∣∣ (∃t ∈ Ops, a1, a2 ∈ ArcNm)
(p1

a−→
M

t ∧ t
b−→

M
p2 ∧ opM (t) ∈ RelOp)

}

R-Programs: A Framework for Distributing XML Structural 183

function gfunction f

GL
G

G
GR

ReRdRb

Ra

EL
E

E

ER
GL

Rc

SL
S

SR

call f
call g

Fig. 3. The R-program corresponding to the query from Fig. 1

The R-program M is called acyclic if the dependency closure D of the primitive
dependency relation is antisymmetric and irreflexive, i.e.

〈p1, p2〉 ∈ D ⇒ 〈p2, p1〉 /∈ D

An R-program is displayed in Fig. 3, corresponding to the XQuery program from
Fig. 1. Although the graphs are cyclic in the usual graph-theoretical sense, the
R-program is acyclic in the sense of Def. 4.

For acyclic R-programs, evaluation is possible. However, the evaluation may
not follow the classical call-return scheme; instead, the R-program functions
must be gradually instantiated and integrated into the main function.

4.2 Semantics of R-Programs

The execution of an R-program is based on instantiation of R-functions and
merging them into one R-net. A call tree corresponds to a (partial) expansion of
the R-program. The expansion creates copies of the instantiated function bodies
and glues them together using identity operators on their input and output
arguments.

In this section, we will present a simplified definition of R-program seman-
tics, based on complete expansion of the program code. For recursive programs,
more elaborate definition is required, based on partial expansion driven by trig-
gers ; partial expansion is also used to avoid unnecessary expansion of function
calls that do not contribute to the result. The full definition of the semantics is
presented in the thesis [7].

184 D. Bednárek

Definition 5 (Call tree). Call tree of an R-program M is any finite tree whose
nodes are mapped to functions, the root is mapped to mainM , and edges are
labelled with call operations that exist in the function associated to the parent.
We will represent a call tree using the language (over the alphabet formed by call
operations) of label strings collected over all the paths (starting at the root) in
the call tree.

Definition 6 (Complete expansion). Let c be a call tree of an R-program M
The expansion of M associated to c is the R-net N whose elements are defined
using the following auxiliary definitions:

C = { 〈s, t, f〉 | t ∈ OpsM ∧ f ∈ FncsM ∧ opM (t) = call[f] }
K = { 〈λ, mainM 〉 } ∪ { 〈s.t, f〉 | 〈s, t, f〉 ∈ C }

(C is the set of function calls and K is the set of function expansions.)
The expansion N is composed of copies of places, operations (except of func-

tion calls and initial/final operations), and arcs from the functions of the
R-program M – for each 〈s, f〉 ∈ K, the function f is copied.

In addition, there are identity operations corresponding to passing input argu-
ments to R-functions and returning output arguments, for each expanded func-
tion call 〈s, t, f〉 ∈ C, connecting the actual argument places in the expansion
〈s, f〉 with the corresponding formal argument places in the expansion 〈s.t, f〉.

Lemma 1 (Acyclicity of expansion)
Let M be an acyclic R-program, c1 be a call tree of M , N be the complete
expansion of M associated to c. Then the R-net N is a directed acyclic graph.

The proof of this lemma follows directly from the definitions of expansion and
R-program acyclicity.

The following definition defines the computation of an R-net with no function
calls.

Definition 7 (Computation of R-net). Let N be an R-net and U be a uni-
verse of values (relations). Computation of N is any mapping κ : PlcsN → U
that satisfies the condition κ(qj) = #j(κ(p1), . . . , κ(pn)) for each t ∈ OpsN and

each j such that t
j−→
N

qj, where pi
i−→
N

t for i ∈ {1, . . . , n} and #j is the imple-

mentation of the operator opN (t) with respect to its j-th output argument.

4.3 Evaluation of R-Programs

R-programs require pipelined evaluation in the architecture shown in Fig. 4. The
R-program is gradually expanded by the expander into an R-net. The expansion
is controlled by triggers inserted into the expanded R-net in all places where
an unexpanded R-function is called. When a trigger encounters the first tuple of
data arriving in the actual arguments of the R-function, a further expansion step
is invoked, consisting of integration of the R-function body into the expanded
R-program.

R-Programs: A Framework for Distributing XML Structural 185

R-program

pipelined
interpreter

expander expanded
R-program

triggers

XML
DB

XML
DB

Fig. 4. Pipelined R-program run-time

4.4 Translation from XQuery to R-Programs

The R-program representation is created from the XQuery program during a pro-
cess called transcription. Before the transcription, a mode selection phase ana-
lyzes the XQuery program and determines the evaluation mode assigned to each
variable, expression, and operation in the source program. Each mode consists of
a set of relations that hold the value of a variable or expression and transcription
rules for each XQuery operator or statement. Some transcription rules form a
bridge between different modes.

Our distributed twig-join algorithm is represented as a pair of modes, applied
to the control variables and return values of the FLWOR statements that par-
ticipate in the twig pattern. Besides these twig-specific modes, there are modes
designed to handle output trees, Boolean values, unordered context etc. [7].
Most of the modes are not general; therefore the main goal of the mode selec-
tion phase is determining the applicability of the modes at various places in the
source program. Where no alternate mode applies, the evaluation fails back to
the canonical mode [8] which follows the W3C definition of XQuery semantics
(but still employs bulk-evaluation based on relational representation).

Each mode is essentially a group of pipes carrying relational data; in the
terminology of R-programs, the pipes correspond to places. To bind transcription
rules together, these places are identified using the common dictionary ArcNm
of arc names.

Employing the flexibility of R-programs, transcription rules may reverse the
flow of information partially; in the case of distributed twig join algorithms, the
G-layer propagates information against the original data flow associated to the
control variables.

A static analysis algorithm for rule-based selection of the transcription mode
was presented in [8]; the ability to handle reversed flow was added in the thesis [7].
The time complexity of the algorithm is O(n · m4) while the space complexity
is O(n ·m2) where n is the size of the XQuery program and m is the maximal
number of local variables visible at any place in the program.

5 Conclusion and Related Work

Twig join algorithm form an important branch in research of XML data bases;
nevertheless, little is known about the application of a twig join algorithm in

186 D. Bednárek

a fully-featured XQuery system. One of the obstacles that an implementation
must overcome is the presence of functions. This paper contributes to the solution
of this problem with the following ideas:

First, we have shown in Sect. 3 that holistic twig join algorithms may be
rewritten in a distributed way, using a set of binary operators instead a single
n-way join. In this arrangement, a twig pattern scattered across several functions
does not require compile-time detection and integration; consequently, indepen-
dent compilation of functions is possible.

Second, we have presented a mathematical model, called R-programs, as an
intermediate representation into which XQuery programs are translated.
R-programs are based on the same principle of bulk evaluation as the majority
of XQuery systems based on a relational-like algebra (see, for instance, the loop-
lifting technique in MonetDB [1]). On the other hand, R-programs offer the
ability of data-flow reversal which is required in the distributed version of twig
join.

Consequently, R-programs allow application of twig join algorithms across
function boundaries, a feature that would not be possible in purely algebraic
systems. Systems like Pathfinder [2] can achieve this goal using function inte-
gration; thus, at the cost of code expansion.

Twig-join algorithms extended to OR and NOT predicates [5] may be trans-
formed to distributed versions similarly. On the other hand, skipping versions
like [6] cannot be transformed to R-programs because of the mutual dependency
between input cursors which violates the acyclicity requirement. Some twig-join
algorithms replace the path-solution streams by lists [9,10] – such algorithms
do not fit to the scheme shown in Sect. 2; it is not yet known whether these
algorithms may be rewritten in distributed manner suitable for R-programs. Fi-
nally, since there is no twig-pattern detection, our system can not make use of
extended labeling schemes like TJFast [11] or DataGuide trees [12].

Besides the ability to handle twig joins across function calls, the R-program
model naturally allows distributed evaluation over several computing nodes on
cluster or grid architectures. The proposed architecture may also be useful out-
side the area of XML data bases, whenever a complex transformation of streams
is required.

References

1. Grust, T., Rittinger, J.: Jump through Hoops to Grok the Loops Pathfinder’s
Purely Relational Account of XQuery-Style Iteration Semantics. In: Proceedings
of the ACM SIGMOD/PODS 5th International Workshop on XQuery Implemen-
tation, Experience and Perspectives, XIME-P 2008 (2008)

2. Grust, T., Mayr, M., Rittinger, J.: XQuery Join Graph Isolation: Celebrating 30+
Years of XQuery Processing Technology. In: ICDE 2009, Proceedings of the 2009
IEEE International Conference on Data Engineering, Washington, DC, USA, pp.
1167–1170. IEEE Computer Society, Los Alamitos (2009)

3. Haw, S.C., Lee, C.S.: Extending Path Summary and Region Encoding for Efficient
Structural Query Processing in Native XML Databases. Journal of Systems and
Software 82(6), 1025–1035 (2009)

R-Programs: A Framework for Distributing XML Structural 187

4. Bruno, N., Koudas, N., Srivastava, D.: Holistic Twig Joins: Optimal XML Pattern
Matching. In: SIGMOD 2002, Proceedings of the 2002 ACM SIGMOD Interna-
tional Conference on Management of Data, pp. 310–321. ACM, New York (2002)

5. Che, D.: Holistically Processing XML Twig Queries with AND, OR, and NOT
Predicates. In: InfoScale 2007, Proceedings of the 2nd International Conference on
Scalable Information Systems, ICST, Brussels, Belgium, pp. 1–4. ICST (Institute
for Computer Sciences, Social-Informatics and Telecommunications Engineering)
(2007)

6. Fontoura, M., Josifovski, V., Shekita, E., Yang, B.: Optimizing Cursor Movement
in Holistic Twig Joins. In: CIKM 2005, Proceedings of the 14th ACM International
Conference on Information and Knowledge Management, pp. 784–791. ACM, New
York (2005)

7. Bednárek, D.: Bulk Evaluation of User-Defined Functions in XQuery. PhD The-
sis, Department of Software Engineering, Charles University, Prague, the Czech
Republic (2009)

8. Bednárek, D.: Reducing Temporary Trees in XQuery. In: Atzeni, P., Caplinskas, A.,
Jaakkola, H. (eds.) ADBIS 2008. LNCS, vol. 5207, pp. 30–45. Springer, Heidelberg
(2008)

9. Qin, L., Yu, J.X., Ding, B.: TwigList: Make Twig Pattern Matching Fast. In: Ko-
tagiri, R., Radha Krishna, P., Mohania, M., Nantajeewarawat, E. (eds.) DASFAA
2007. LNCS, vol. 4443, pp. 850–862. Springer, Heidelberg (2007)

10. Li, J., Wang, J.: TwigBuffer: Avoiding Useless Intermediate Solutions Completely
in Twig Joins. In: Haritsa, J.R., Kotagiri, R., Pudi, V. (eds.) DASFAA 2008. LNCS,
vol. 4947, pp. 554–561. Springer, Heidelberg (2008)

11. Lu, J., Chen, T., Ling, T.W.: TJFast: Effective Processing of XML Twig Pattern
Matching. In: Ellis, A., Hagino, T. (eds.) WWW (Special Interest Tracks and
Posters), pp. 1118–1119. ACM, New York (2005)

12. Bača, R., Krátký, M., Snášel, V.: On the Efficient Search of an XML Twig Query
in Large DataGuide Trees. In: IDEAS 2008, Proceedings of the 2008 International
Symposium on Database Engineering and Applications, pp. 149–158. ACM, New
York (2008)

Fast Arc-Annotated Subsequence
Matching in Linear Space

Philip Bille and Inge Li Gørtz

Technical University of Denmark
{phbi,ilg}@imm.dtu.dk

Abstract. An arc-annotated string is a string of characters, called bases,
augmented with a set of pairs, called arcs, each connecting two bases.
Given arc-annotated strings P and Q the arc-preserving subsequence
problem is to determine if P can be obtained from Q by deleting bases
from Q. Whenever a base is deleted any arc with an endpoint in that base
is also deleted. Arc-annotated strings where the arcs are “nested” are a
natural model of RNA molecules that captures both the primary and
secondary structure of these. The arc-preserving subsequence problem
for nested arc-annotated strings is basic primitive for investigating the
function of RNA molecules. Gramm et al. [ACM Trans. Algorithms 2006]
gave an algorithm for this problem using O(nm) time and space, where m
and n are the lengths of P and Q, respectively. In this paper we present a
new algorithm using O(nm) time and O(n+m) space, thereby matching
the previous time bound while significantly reducing the space from a
quadratic term to linear. This is essential to process large RNA molecules
where the space is a likely to be a bottleneck. To obtain our result we
introduce several novel ideas which may be of independent interest for
related problems on arc-annotated strings.

1 Introduction

An arc-annotated string S is a string augmented with an arc set AS . Each
character in S is called a base and the arc set AS is a set of pairs of positions
in S connecting two distinct bases. We say that S is a nested arc-annotated
string if no two arcs in AS share an endpoint and no two arcs cross each other,
i.e., for all (il, ir), (i′l, i

′
r) ∈ AS we have that il < i′l < ir iff il < i′r < ir. Given

arc-annotated strings P and Q we say that P is a arc-preserving subsequence
(APS) of Q, denoted P $ Q, if P can be obtained from Q by deleting 0 or more
bases from Q. Whenever a base is deleted any arc with an endpoint in that base
is also deleted. The arc-preserving subsequence problem (APS) is to determine if
P $ Q. If P and Q are both nested arc-annotated strings we refer to the problem
as the nested arc-preserving subsequence problem (NAPS). Fig. 1(a) shows an
example of nested arc-annotated strings.

Ribonucleic acid (RNA) molecules are often modeled as nested arc-annotated
strings. Here, the string consists of bases from the 4-letter alphabet {A, U, C, G},
called the primary structure, and an arc set consisting of pairings between bases,

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 188–199, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Fast Arc-Annotated Subsequence Matching in Linear Space 189

1110987654321

87654321 9
1, 11

3, 8

5, 7

9, 10

1, 9

3, 5 7, 8P

Q

A U

CGG

G

C

CC AAA

AAAA U U

U

U

(a) (b)

TQ

TP

Fig. 1. (a) Nested arc-annotated strings P and Q. Here, P and Q contain arcs con-
necting their first and last bases. (b) The corresponding trees TP and TQ induced by
the arcs.

called the secondary structure. RNA molecules are central for many biological
functions and NAPS is a basic primitive for investigating the precise functionality
of RNA molecules. The key idea is to model a specific function of RNA molecules
as an arc-annotated string F . Given a RNA molecule R we can then determine
(to some extent) if R performs the same function by computing if F $ R.

Building on earlier work in a related model of RNA molecules by Vialette [16],
Gramm et al. [10] introduced and gave an algorithm for NAPS using O(nm) time
and space, where m and n are the lengths of P and Q, respectively. Kida [12]
presented an experimental study of this algorithm and Damaschke [8] considered
a special restricted case of the problem.

Results. We assume a standard unit-cost RAM model with word size Θ(log n)
and a standard instruction set including arithmetic operations, bitwise boolean
operations, and shifts. The space complexity is the number of words used by
the algorithm. All of the previous results are in same model of computation.
Throughout the paper P and Q are nested arc-annotated strings of lengths m
and n, respectively. In this paper we present a new algorithm with the following
complexities.

Theorem 1. Given nested arc-annotated strings P and Q of lengths m and n,
respectively, we can solve the nested arc-preserving subsequence problem in time
O(nm) and space O(n + m).

Hence, we match the running time of the currently fastest known algorithm and
at the same time we improve the space from O(nm) to O(n + m). This space
improvement is critical for processing large RNA molecules. In particular, an
algorithm using O(nm) space quickly becomes infeasible, even for moderate sizes
of RNA molecules, due to costly accesses to external memory. An algorithm using
O(m+n) space is much more scalable and allows us to handle significantly larger
RNA molecules. Furthermore, we note that obtaining an algorithm using O(nm)
time and o(nm) space is mentioned as an open problem in Gramm et al. [10].

Compared to the previous work by Gramm et al. [10] our algorithm is not only
more space-efficient but also simpler. Our algorithm is based on a single unified dy-
namic programming recurrence, whereas the algorithm by Gramm et al. requires

190 P. Bille and I. Li Gørtz

computing and tabulating auxiliary information in multiple phases mixed with
dynamic programming. Our approach allows us to better expose the features of
NAPS and is essential for obtaining a linear space algorithm.

Techniques. As mentioned above, our algorithm is based on a new dynamic pro-
gramming recurrence. Essentially, the recursion expresses for any pair of sub-
strings P ′ and Q′ of P and Q, respectively, the longest prefix of P ′ which is an
arc-preserving subsequence of Q′ in term of smaller substrings of P ′ and Q′. We
combine several new ideas with well-known techniques to convert our recurrence
into an efficient algorithm.

First, we organize the dynamic programming recurrence into Γ sequences. A Γ
sequence for a given substring Q′ of Q is a simple O(m) space representation
of the longest arc-preserving subsequences of each prefix of P in Q′. We show
how to efficiently manipulate Γ sequences to get new Γ sequences using a small
set of simple operations, called the primitive operations. Secondly, we organize
the computation of Γ sequences using a recursive algorithm that traverses the
tree structure of the arcs in Q. The algorithm computes the Γ sequence for each
arc in Q using the primitive operations. To avoid storing too many Γ sequences
during the traversal we direct the computation according to the well-known
heavy-path decomposition of the tree. This leads to an algorithm that stores at
most O(log |AQ|) Γ sequences. Since each Γ sequence uses O(m) space the total
space becomes O(m log |AQ|+ n).

Finally, to achieve linear space we exploit a structural property of Γ sequences
to compress them efficiently. We obtain a new representation of Γ sequences that
only requires O(m) bits. Plugging in the new representation into our algorithm
the total space becomes O(n + m) as desired. However, the resulting algorithm
requires many costly compressions and decompressions of Γ sequences at each
arc in the traversal. As a practical and more elegant solution we show how to aug-
ment the compressed representation of Γ sequences using standard rank/select
indices to obtain constant time random access to elements in Γ sequences. This
allows us to compress each Γ sequence only once and avoid decompression en-
tirely without affecting the complexity of the algorithm.

Related Work. Arc-annotated strings are a natural model of RNA molecules
that captures both the primary and secondary structure of these. Consequently,
a wide range of pattern matching problems for them have been studied, see
e.g., [1–3, 6, 9, 10, 14]. Among these, NAPS is one of the most basic and funda-
mental problems.

The NAPS problem generalizes the tree inclusion problem for ordered
trees [4, 7, 13]. Here, the goal is to determine if a tree can be obtained from
another tree by deleting nodes. This is equivalent to NAPS where all bases in
both strings have an incident arc. The authors have shown how to solve the
tree inclusion problem in time O(nm/ log n + n log n) and space O(n + m) [4].
Compared to our current result for NAPS the space complexity is the same
but the time complexity for tree inclusion is a factor O(log n) better for most
values of m and n. Though our obtained complexities for the tree inclusion

Fast Arc-Annotated Subsequence Matching in Linear Space 191

problem and NAPS are very similar, the ideas and techniques behind the results
differ significantly. While the definition of the two problems seems very similar
it appears that the more general NAPS is significantly more complicated. We
leave it as an interesting research direction to determine the precise relationship
between NAPS and the tree inclusion problem.

Several generalizations of NAPS have also been studied relaxing the require-
ment that arcs should be nested [5, 9, 10]. In nearly all cases the resulting
problem becomes NP-complete.

Due to lack of space some of the proof are omitted from this extended abstract.
They can be found in the full version of the paper.

2 Preliminaries and Notation

Let S be an arc-annotated string with arc set AS . The length of S is the number
of bases in S and is denoted |S|. We will assume that our input strings P and Q
have the arcs (1, |P |) and (1, |Q|), respectively. If this is not the case we may
always add additional connected bases to the start and end of P and Q without
affecting the solution or complexity of the problem. We do this only to ensure
that the nesting of the arcs form a tree (rather than a forest) which simplifies
the presentation of our algorithm.

The arc-annotated substring S[i1, i2], 1 ≤ i1, i2 ≤ |S|, is the string of bases
starting at i1 and ending at i2. The arc set associated with S[i1, i2] is the subset of
AS of arcs with both endpoints in [i1, i2]. We define S[i1] = S[i1, i1] and S[i1, i2] =
ε (the empty string) if i1 > i2. Note the arc set of an arc-annotated string of length
≤ 1 is also empty. A split of S is a partition of S into two substrings S[1, i] and
S[i + 1, |S|], for some i, 0 ≤ i ≤ |S|. The split is an arc-preserving split if no arcs
in AS cross i, i.e., all arcs either have both endpoints in S[1, i] or S[i + 1, |S|]. We
say that the index i induces a (arc-preserving) split of S.

An embedding of P in Q is an injective function f : {1, . . . , m} → {1, . . . , n}
such that

1. for all j ∈ {1, . . . , m}, P [j] = Q[f(j)]. (base match condition)
2. for all indices jl, jr ∈ {1, . . . , m}, (jl, jr) ∈ AP ⇔ (f(jl), f(jr)) ∈ AQ. (arc

match condition)
3. for all j ∈ {1, . . . , m}, i < j ⇔ f(i) < f(j). (order condition)

If f(j) = i we say that j is matched to i in the embedding. From the definition
of arc-preserving subsequences we have that P $ Q iff there is an embedding
of P in Q.

3 The Dynamic Programming Recurrence

In this section we give our dynamic programming recurrence for the NAPS
problem. Essentially, the recursion expresses for any pair of substrings P ′ and Q′

of P and Q, respectively, the longest prefix of P ′ which is an arc-preserving
subsequence of Q′ in terms of smaller substrings of P ′ and Q′.

We show the following key properties of arc-preserving splits.

192 P. Bille and I. Li Gørtz

Lemma 1 (Splitting Lemma). Let P ′ and Q′ be arc-annotated substrings
of P and Q, respectively, and let (Q1, Q2) be any arc-preserving split of Q′.

(i) If P ′ $ Q′ then there exists an arc-preserving split (P1, P2) of P ′ such that
P1 $ Q1 and P2 $ Q2.

(ii) Let (P1, P2) be an arc-preserving split of P ′. Then P1 $ Q1 and P2 $ Q2 ⇒
P ′ $ Q′.

For 1 ≤ jl ≤ m, l ∈ {1, 2} and 1 ≤ i1 ≤ i2 ≤ n define γ(j1, j2, i1, i2) to be the
largest integer k such that P [j1, k] $ Q[i1, i2] and k induces an arc-preserving
split of P [j1, j2]. It follows that γ(1, m, 1, n) = m if and only if P $ Q.

The Splitting Lemma gives us a very useful property of γ: The requirement
that k induces an arc-preserving split of P [j1, j2] in the definition of γ implies
that if there exists an embedding f of P [k + 1, j2] in Q[i2, i] for some i then
by the Splitting Lemma the embedding of P [j1, k] in Q[i1, i2] (which exists by
the definition of γ) can be extended with f to get an embedding of P [j1, j2] in
Q[i1, i]. This would not be true if we dropped the requirement that k induces an
arc-preserving split of P [j1, j2]. Formally,

Corollary 1. Let i be an index inducing an arc-preserving split of Q[i1, i2].
Then, γ(j1, j2, i1, i2) = γ(γ(j1, j2, i1, i) + 1, j2, i + 1, i2).

Intuitively, the corollary says that to compute the largest prefix of P that can
be embedded in Q we can greedily match the bases and right endpoints of arcs
of P as much to the left in Q as possible. The dynamic programming recurrence
for γ is as follows.

Base cases. γ(j1, j2, i1, i2) is equal to

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

j1 − 1 if j1 > j2, (1)
j1 if i1 = i2 and P [j1] = Q[i1] and

(j1, jr) �∈ AP for all jr ≤ j2, (2a)
j1 − 1 if i1 = i2 and (P [j1] �= Q[i1] or

(j1, jr) ∈ AP for some jr ≤ j2). (2b)

Recursive cases. i1 < i2 and j1 ≤ j2.

If (i1, ir) �∈ AQ for all ir ≤ i2 then γ(j1, j2, i1, i2) is equal to

{
γ(j1 + 1, j2, i1 + 1, i2) if (j1, jr) �∈ AP for all jr ≤ j2 and P [j1] = Q[i1], (3)
γ(j1, j2, i1 + 1, i2) if (j1, jr) ∈ AP for some jr ≤ j2 or P [j1] �= Q[i1], (4)

If (i1, ir) ∈ AQ for some ir < i2, then γ(j1, j2, i1, i2) is equal to

γ(γ(j1, j2, i1, ir) + 1, j2, ir + 1, i2) (5)

Fast Arc-Annotated Subsequence Matching in Linear Space 193

P

Q
i1 i2

j1 j2
P

Q
i1 i2

j1 j2

Q
i1 i2

P

Q
i1 i2

j1 j2
P

Q
i1 i2

j1 j2

Case 3 Case 4

Case 5

Case 6 Cases 7 and 8

jr

ir

jr

Fig. 2. The main cases from the recurrence relation. Case (3): Neither P or Q starts
with an arc. Case (4): P starts with an arc, Q does not. Case (5): Q starts with an
arc not spanning Q. We split Q after the arc and compute γ first in the first half and
then continue the computation in the other. Case (6): Q starts with an arc, P does
not. Case (7)-(8): Both P and Q starts with an arc.

If (i1, i2) ∈ AQ then γ(j1, j2, i1, i2) is equal to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

max{γ(j1, j2, i1 + 1, i2),
γ(j1, j2, i1, i2 − 1)} if (j1, jr) �∈ AP for all jr ≤ j2, (6)

γ(j1, j2, i1 + 1, i2) if (j1, jr) ∈ AP for some jr ≤ j2, (7)
and P [j1] �= Q[i1] or P [jr] �= Q[i2],

max{φ, γ(j1, j2, i1 + 1, i2)} if (j1, jr) ∈ AP for some jr ≤ j2, (8)
P [j1] = Q[i1] and P [jr] = Q[i2],

where

φ =

{
jr if γ(j1 + 1, jr − 1, i1 + 1, i2 − 1) = jr − 1
j1 − 1 otherwise.

The cases are visualized in Fig. 2.
The base cases (1) − (2) cover the cases where P [j1, j2] is the empty string

(j2 > j1) or Q[i1, i2] is a single base (i1 = i2). Let k = γ(j1, j2, i1, i2). Case (3)
and (5) follows directly from Corollary 1. In case (4) and (7) the base Q[i1]
cannot be part of an embedding of P [j1, k] in Q[i1, i2] and thus γ(j1, j2, i1, i2) =
γ(j1, j2, i1+1, i2). In case (6) either Q[i1] or Q[i2], but not both, can be part of an
embedding of P [j1, k] in Q[i1, i2]. Thus, γ(j1, j2, i1, i2) = max{γ(j1, j2, i1, i2−1),
γ(j1, j2, i1 + 1, i2)}. Case (8) is the most complicated one. Both Q[i1, i2] and
P [j1, j2] starts with an arc and the bases of the arcs match. An embedding
of P [j1, k] into Q[i1, i2] either (i) matches the two arcs, (ii) matches the arc
(j1, jr) and the rest of P [j1, k] in Q[i1 + 1, i2] or (iii) matches nothing
(k=j1−1). In case (ii) γ(j1, j2, i1, i2) = γ(j1, j2, i1 +1, i2). Case (i) requires that
P [j1 + 1, jr − 1] $ Q[i1 + 1, i2 − 1]. We express this in the recurrence by using
an auxiliary function φ which is jr if γ(j1 + 1, jr − 1, i1 + 1, i2 − 1) = jr − 1 and

194 P. Bille and I. Li Gørtz

j1 − 1 otherwise, since in the last case the arc (j1, jr) cannot be matched to the
arc (i1, i2). Since we want the largest match we take the maximum of the two
cases (i) and (ii) (case (iii) is covered by these two).

In the next sections we show how to transform the recurrence into a space
efficient algorithm for NAPS.

4 The Algorithm

We now present an algorithm to solve NAPS in O(nm) time and O(m log |AQ|+n)
space. In the next section we show how to further reduce the space to O(n + m)
to get Theorem 1. The result relies on a well-known path decomposition for
trees applied to arc-annotated strings combined with a new idea to organize the
dynamic programming recurrence computation.

Heavy-Path Decomposition of Arc-Annotated Sequences. Let S be a nested arc-
annotated string containing the arc (1, |S|) (recall that we assume that both P
and Q have this arc). The arcs in AS induce a rooted and ordered tree TS rooted
at the arc (1, |S|) as shown in Fig. 1(b). We use standard tree terminology for
the relationship between arcs in TS . Let (il, ir) be an arc in AS . The depth of
(il, ir) is the number of edges on the path from (il, ir) to the root in TS. An
arc with no children is a leaf arc and otherwise an internal arc. Define TS(il, ir)
to be the subtree of TS rooted at (il, ir) and let size(il, ir) be the number of
arcs in TS(il, ir). Note that size(1, |S|) = |AS |. If (i′l, i

′
r) is an arc in TS(il, ir)

then (il, ir) is an ancestor of (i′l, i
′
r) and if also (i′l, i

′
r) �= (il, ir) then (il, ir) is

a proper ancestor of (i′l, i
′
r). If (il, ir) is a (proper) ancestor of (i′l, i

′
r) then (i′l, i

′
r)

is a (proper) descendant of (il, ir).
As in [11] we partition TS into disjoint paths. We classify each arc as either

heavy or light. The root is light. For each internal arc (il, ir) we pick a child
(ihl , ihr) of maximum size and classify it as heavy. The remaining children are
light. An edge to a light child is a light edge and an edge to a heavy child is
a heavy edge. Let lightdepth(il, ir) denote the number of light edges on the path
from (il, ir) to the root of TS. We use the following well-known bound for trees
restated for nested arc-annotated sequences.

Lemma 2 (Harel and Tarjan [11]). Let S be a nested arc-annotated string
containing the arc (1, |S|). For any arc (il, ir) ∈ AS, lightdepth(il, ir) ≤
log |AS |+ O(1).

Removing the light edges we partition TS into heavy paths.

Manipulating Γ Sequences. For positions i1 and i2 in Q, i1 ≤ i2, define the
Γ sequence for i1 and i2 as

Γ (i1, i2) = γ(m, m, i1, i2), γ(m− 1, m, i1, i2), . . . , γ(1, m, i1, i2).

Thus, Γ (i1, i2) is the sequence of endpoints of the longest prefixes of each suf-
fix of P that is an arc-preserving subsequence of Q[i1, i2]. We can efficiently
manipulate Γ sequences as suggested by the following lemma.

Fast Arc-Annotated Subsequence Matching in Linear Space 195

Extend Combine Meld

Fig. 3. The extend, combine, and meld operations, respectively. For each operation the
substring range(s) below the string indicate the endpoints of the input Γ sequence(s)
needed in the operation to compute the Γ sequence for the entire string.

Lemma 3. For any positions i1 and i2 in Q, i1 ≤ i2, we can compute in O(m)
time

(i) Γ (i2, i2).
(ii) Γ (i1, i2) from Γ (i1 + 1, i2) if (i1, ir) �∈ AQ for any ir ≤ i2.
(iii) Γ (i1, i2) from Γ (i1, ir) and Γ (ir + 1, i2) if (i1, ir) ∈ AQ for some ir < i2.
(iv) Γ (i1, i2) from Γ (i1, i2−1), Γ (i1+1, i2), and Γ (i1+1, i2−1) if (i1, i2) ∈ AQ.

Proof. All the cases follow directly from the dynamic programming recurrence.
Case (i) follows from case (2) of the recurrence, Case (ii) from case (3) and (4)
of the recurrence, Case (iii) from case (5) of the recurrence and Case (iv) from
case (6)–(8) of the recurrence. �

We will use each of 4 cases in Lemma 3 as primitive operations in our algorithm
and we refer to (i), (ii), (iii), and (iv) as an initialize, an extend, a combine, and
a meld operation, respectively. Fig. 3 illustrates the extend, combine, and meld
operations. An extend operation from Γ (i1 + k, i2) to Γ (i1, i2), for some k > 1,
is defined to be the sequence of k extend operations needed to compute Γ (i1, i2)
from Γ (i1 + k, i2).

The Algorithm. We now present our main algorithm. Initially, we construct TQ

with a heavy path decomposition in O(n) time and space. Then, we recursively
compute Γ sequences for each arc (il, ir) ∈ AQ in a top-down traversal of TQ. The
Γ sequence for the root contains the value γ(1, m, 1, n) and hence this suffices
to solve NAPS. At an arc (il, ir) ∈ AQ in the traversal there are two cases to
consider:

Case 1: (il, ir) is a leaf arc. We compute Γ (il, ir) as follows.

1. Initialize Γ (ir, ir) and Γ (ir − 1, ir − 1).
2. Extend Γ (ir, ir) and Γ (ir − 1, ir − 1) to get Γ (il + 1, ir), Γ (il, ir − 1), and

Γ (il + 1, ir − 1).
3. Meld Γ (il + 1, ir), Γ (il, ir − 1), and Γ (il + 1, ir − 1) to get Γ (il, ir).

Case 2: (il, ir) is an internal arc. Let (i1l , i
1
r), . . . , (i

s
l , i

s
r) be the childen arcs

of (il, ir) in left-to-right order. To simplify the algorithm we set i0r = il. We
compute Γ (il, ir) as follows.

1. Recursively compute Rh := Γ (ihl , ihr), where (ihl , ihr) is the heavy child arc of
(il, ir).

196 P. Bille and I. Li Gørtz

(a) (b) (c)

(d) (e) (f)

Fig. 4. Snapshot of the Γ sequences computed at an internal arc. The ranges below
the arc-annotated sequences represent Γ sequence endpoints. (a) After the recursive
call to the heavy child in line 1. (b) After the extend operations in line 3. (c) After the
recursive call in line 4(a) (d) After the combine operations in line 4(b). (e) Before the
meld operation in line 6. (f) After the meld operation.

2. Initialize Γ (ir, ir) and Γ (ir − 1, ir − 1).
3. Extend Γ (ir, ir) and Γ (ir−1, ir−1) to get Γ (isr +1, ir) and Γ (isr +1, ir−1).
4. For k := s down to 1 do:

(a) If k �= h recursively compute Rk := Γ (ikl , ikr).
(b) Combine Rk with Γ (ikr + 1, ir) and with Γ (ikr + 1, ir − 1) to get Γ (ikl , ir)

and Γ (ikl , ir − 1).
(c) Extend Γ (ikl , ir) and Γ (ikl , ir − 1) to get Γ (ik−1

r + 1, ir) and Γ (ik−1
r + 1,

ir − 1).
5. Extend Γ (il + 1, ir − 1) to get Γ (il, ir − 1).
6. Meld Γ (il + 1, ir), Γ (il, ir − 1), and Γ (il + 1, ir − 1) to get Γ (il, ir).

The computation in case 2 is illustrated in Fig. 4. Note that when k = 1 in the
loop in line 4, line 4(c) computes Γ (i0r+1, ir) = Γ (il+1, ir) and Γ (i0r+1, ir−1) =
Γ (il + 1, ir − 1). In both cases above the algorithm computes several local Γ
sequences of the form Γ (i, ir) and Γ (i, ir − 1), for some i ≤ ir. These sequences
are computed in order of decreasing values of i and each sequence only depends
on the previous one and recursively computed Γ sequences. Hence, we only need
to store a constant number of local sequences during the computation at (il, ir).

Analysis. We first consider the time complexity of the algorithm. To do so
we bound the total number of primitive operations. For each arc in AQ there
is 1 initialize and 1 meld operation and for each internal arc there is 1 combine
operation. Hence, the total number of initialize, meld, and combine operations
is O(|AQ|). To count the number of extend operations we first define for any arc
(il, ir) ∈ AQ the set spaces(il, ir) as the set of positions inside (il, ir) but not
inside any child arc of (il, ir), that is,

spaces(il, ir)={i | il ≤ i ≤ ir but not ikl ≤ i≤ ikr for any child (ikl , ikr) of (il, ir)}.

For example, spaces(1, 11) for Q in Fig. 1(a) is {1, 2, 11}. The spaces sets for all
arcs is a partition of the positions in Q and thus

∑
(il,ir)∈AQ

spaces(il, ir) = n.

Fast Arc-Annotated Subsequence Matching in Linear Space 197

At an arc (il, ir) the algorithm performs O(spaces(il, ir)) extend operations and
hence the total number of extend operations is O(n). By Lemma 3 each primitive
operation takes O(m) time and therefore the total running time of the algorithm
is O(|AQ|m + nm) = O(nm).

For the space complexity we bound the number of Γ sequences stored by the
algorithm. When the algorithm visits an arc (il, ir) we are currently processing
a nested sequence of recursive calls corresponding to a path p in TQ from the
root to (il, ir). The number of Γ sequences stored at each of these recursive calls
is the total number of Γ sequences stored. Consider an edge e in p from a parent
(i′l, i

′
r) to a child (i′′l , i′′r). If e is heavy the recursive call to (i′′l , i′′r) is done in

line 1 of case 2 in the algorithm immediately at the start of the visit to (i′l, i
′
r).

Therefore, no Γ sequence at (i′l, i
′
r) is stored. If e is light the recursive call to

(i′′l , i′′r) is done in line 4(a). The algorithm stores at most 3 Γ sequences, namely
Γ (i′′r +1, i′r), Γ (i′′r +1, i′r−1), and Γ (ihl

′
, ihr

′), where (ihl
′
, ihr

′) is the heavy child of
(i′l, i

′
r). By Lemma 2 there are at most log |AQ|+ O(1) light ancestors of (il, ir)

in TQ and therefore the total space for stored Γ sequences is O(m log |AQ|). The
additional space used by the algorithm is O(n). We have,

Lemma 4. Given nested arc-annotated strings P and Q of lengths m and n,
respectively, we can solve the nested arc-preserving subsequence problem in time
O(nm) and space O(m log |AQ|+ n).

5 Squeezing into Linear Space

We now show how to compress Γ sequence into a compact representation using
O(m) bits. Plugging the new representation into our algorithm the total space
becomes O(n + m) as desired for Theorem 1.

Our compression scheme for Γ sequences relies on the following key property
of the values of γ.

Lemma 5. For any integers j1, j2, i1, i2, 1 ≤ j1 ≤ j2 ≤ m, 1 ≤ i1 ≤ i2 ≤ n,

j1 − 1 ≤ γ(j1, j2, i1, i2) ≤ γ(j1 + 1, j2, i1, i2) ≤ m

Proof. Adding another base in front of the substring P [j1+1, j2] cannot increase
the endpoint of an embedding of P [j1+1, j2] in Q and therefore γ(j1, j2, i1, i2) ≤
γ(j1+1, j2, i1, i2). Furthermore, for any substring P [j1, j2] we can embed at most
j1 − j2 bases and at least 0 bases in Q implying the remaining inequalities. �

Let i1, i2 be indices in Q such that i1 ≤ i2 and consider the sequence

Γ (i1, i2) = γ(m, m, i1, i2), . . . , γ(1, m, i1, i2) = γm, . . . , γ1

By Lemma 5 we have that γm, . . . , γ1 is a non-increasing and non-negative se-
quence where γm is either m or m− 1. We encode the sequence efficiently using
two bit strings V and U defined as follows. The string V is formed by the concate-
nation of m bit strings sm, . . . , s1, that is, V = sm · sm−1 · · · s1, where · denotes

198 P. Bille and I. Li Gørtz

concatenation. The string sm is the single bit sm = m− γm and sk, 1 ≤ k < m,
is given by

sk =

⎧⎪⎨
⎪⎩

0 if γk+1 − γk = 0
1 · · · 1︸ ︷︷ ︸

γk+1−γk times

if γk+1 − γk > 0

Let Dk denote the sum of bits in string sm · · · sk. We have that m − Dm =
m − sm = γm and inductively m − Dk = γk. The string U is the bit string
of length |V | consisting of a 1 in each position where a substring in V ends.
Given V and U we can therefore uniquely recover γm, . . . , γ1. Since γm, . . . , γ1

can decrease by at most m + 1 the total number of 1s in V is at most m + 1.
The total number of 0s is at most m and therefore |V | ≤ 2m + 1. Hence, our
representation uses O(m) bits. We can compress γm, . . . , γ1 into V and U in
a single scan in O(m) time. Reversing the process we can also decompress in
O(m) time. Hence, we have the following result.

Lemma 6. We represent any Γ sequence using O(m) bits. Compression and
decompression takes O(m) time.

We modify our algorithm from Section 4 to take advantage of Lemma 6. Let
(il, ir) be an internal arc in AQ. Immediately before a recursive call to a light
child (ikl , ikr) of (il, ir) we compress the at most 3 Γ sequences maintained at
(il, ir), namely Γ (ihl , ihr), where (ihl , ihr) is the heavy child, Γ (ikr + 1, ir),
and Γ (ikr + 1, ir − 1)). Immediately after returning from the recursive call we
decompress the sequences again.

The total number of compressions and decompressions is O(n). Hence, by
Lemma 6 the additional time used is O(nm) and therefore the total running
time of the algorithm remains O(nm). The space for storing the O(log |AQ|)
Γ sequences becomes O(m log |AQ|) = O(m log n) bits. Hence, the total space is
O(n + m). In conclusion, we have shown Theorem 1.

Avoiding Decompression. The above algorithm requires O(n) decompressions.
We briefly describe how one can these by augmenting the representation of Γ se-
quences slightly. A rank/select index for a bit string B supports the operations
rank(B, k) that returns the number of 1 in B[1, k] and select(B, k) that re-
turns the position of the kth 1 in S. We can construct a rank/select index
in O(|B|) time that uses o(|B|) bits and supports both operations in constant
time [15]. We add a rank/select index to the bit strings V and U in our com-
pressed representation. Since these use o(m) bits this does not affect the space
complexity. Let γm, . . . , γ1 be a Γ sequence compressed into bit strings V and U
augmented with a rank/select index. For any k, 1 ≤ k ≤ m we can compute the
element γk in constant time as

m− rank(V, select(U, m + 1− k))

To see the correctness, first note that select(U, m + 1− k) is end position of the
m+1−kth substring in V . Therefore, rank(V, select(U, m+1−k)) is the sum

Fast Arc-Annotated Subsequence Matching in Linear Space 199

of the bits in the first m+1−k substrings of V . This is Dk and since γk = m−Dk

the computation returns γk. In summary, we have the following result.
Lemma 7. We can represent any Γ sequence in O(m) bits while allowing con-
stant time access to any element.
The algorithm now only needs to compress Γ sequences once. Whenever, we
need an element of a compressed Γ sequence we extract it in constant time as
above. Hence, the asymptotic complexities of the algorithm remains the same.

References

1. Alber, J., Gramm, J., Guo, J., Niedermeier, R.: Computing the Similarity of Two
Sequences with Nested Arc Annotations. Theor. Comput. Sci. 312(2-3), 337–358
(2004)

2. Backofen, R., Landau, G.M., Möhl, M., Tsur, D., Weimann, O.: Fast RNA Struc-
ture Alignment for Crossing Input Structures. In: Proc. 20th CPM (2009)

3. Bafna, V., Muthukrishnan, S., Ravi, R.: Computing Similarity between RNA
Strings. In: Galil, Z., Ukkonen, E. (eds.) CPM 1995. LNCS, vol. 937, pp. 1–16.
Springer, Heidelberg (1995)

4. Bille, P., Gørtz, I.L.: The Tree Inclusion Problem: In Optimal Space and Faster. In:
Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP
2005. LNCS, vol. 3580, pp. 66–77. Springer, Heidelberg (2005)

5. Blin, G., Fertin, G., Rizzi, R., Vialette, S.: What Makes the Arc-Preserving Sub-
sequence Problem Hard? In: Proc. 5th ICCS, pp. 860–868 (2005)

6. Blin, G., Touzet, H.: How to Compare Arc-Annotated Sequences: The Alignment
Hierarchy. In: Crestani, F., Ferragina, P., Sanderson, M. (eds.) SPIRE 2006. LNCS,
vol. 4209, pp. 291–303. Springer, Heidelberg (2006)

7. Chen, W.: More Efficient Algorithm for Ordered Tree Inclusion. J. Algorithms 26,
370–385 (1998)

8. Damaschke, P.: A Remark on the Subsequence Problem for Arc-Annotated Se-
quences with Pairwise Nested Arcs. Inf. Process. Lett. 100(2), 64–68 (2006)

9. Evans, P.: Algorithms and Complexity for Annotated Sequence Analysis. PhD
Thesis, University of Victoria (1999)

10. Gramm, J., Guo, J., Niedermeier, R.: Pattern Matching for Arc-Annotated Se-
quences. ACM Trans. Algorithms 2(1), 44–65 (2006); Announced at: Agrawal, M.,
Seth, A.K. (eds.) FSTTCS 2002. LNCS, vol. 2556, pp. 182–193. Springer, Heidel-
berg (2002)

11. Harel, D., Tarjan, R.E.: Fast Algorithms for Finding Nearest Common Ancestors.
SIAM J. Comput. 13(2), 338–355 (1984)

12. Kida, T.: Faster Pattern Matching Algorithm for Arc-Annotated Sequences. In:
Jantke, K.P., Lunzer, A., Spyratos, N., Tanaka, Y. (eds.) Federation over the Web.
LNCS (LNAI), vol. 3847, pp. 25–39. Springer, Heidelberg (2006)

13. Kilpeläinen, P., Mannila, H.: Ordered and Unordered Tree Inclusion. SIAM J.
Comput. 24, 340–356 (1995)

14. Lin, G., Chen, Z.-Z., Jiang, T., Wen, J.: The Longest Common Subsequence Prob-
lem for Sequences with Nested Arc Annotations. J. Comput. Syst. Sci. 65(3), 465–
480 (2002)

15. Munro, I.: Tables. In: Chandru, V., Vinay, V. (eds.) FSTTCS 1996. LNCS,
vol. 1180, pp. 37–42. Springer, Heidelberg (1996)

16. Vialette, S.: On the Computational Complexity of 2-Interval Pattern Matching
Problems. Theor. Comput. Sci. 312(2-3), 223–249 (2004); Announced at CPM 2002

Automated Deadlock Detection in Synchronized
Reentrant Multithreaded Call-Graphs�

Frank S. de Boer1 and Immo Grabe1,2

1 CWI, Amsterdam, The Netherlands
2 Christian-Albrechts-University Kiel, Germany

Abstract. In this paper we investigate the synchronization of multi-
threaded call graphs with reentrance similar to call graphs in Java pro-
grams. We model the individual threads as Visibly Pushdown Automata
(VPA) and analyse the reachability of a state in the product automaton
by means of a Context Free Language (CFL) which captures the synchro-
nized interleaving of threads. We apply this CFL-reachability analysis to
detect deadlock.

1 Introduction

Due to the behavioural complexity formal methods are needed when it comes to
reasoning about a program. This is particularly true for concurrent (or multi-
threaded) programs. Such programs in general involve the synchronization of dif-
ferent processes (or threads) which may lead to undesirable deadlock situations.

A group of activities competing for a number of resources can block each
other if each of them holds resources another one needs. A typical example of
such a resource is exclusive access to a part of the system, i.e. a class or object,
guarded by a lock. Modern programming languages like Java opt for an implicit
lock handling, i.e. instead of explicitly grabbing a lock a region is declared to be
subject to a lock and the lock handling is done by the execution platform rather
than the programmer.

These languages also allow for reentrance, i.e. a thread is allowed to enter each
region guarded by a lock several times if it holds the lock. In such a setting the
number of times a thread has entered a lock-guarded region has to be counted
to decide when to release the lock again. Though there are some techniques to
avoid this problem (preemption, global lock orders) on the programming level
most concurrent programming languages have to deal with this problem.

The combination of multithreading, implicit lock handling and reentrance
makes the detection of deadlocks hard. This explains the need for methods and
tools to do automatic deadlock analysis.

� This work has been supported by the EU-project IST-33826 Credo: Modelling and
analysis of evolutionary structures for distributed services. For more information, see
http://credo.cwi.nl

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 200–211, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Automated Deadlock Detection 201

Contribution. In order to develop an automated method for deadlock detec-
tion applicable to Java-like languages we abstract from data and focus on the
control flow of method calls and returns. The unsynchronized interleaving of a
finite number of reentrant (abstract) threads is naturally modelled as a multi-
stack Visibly Pushdown Automaton [2]. In order to analyse the synchronization
between threads we apply Context-Free-Language(CFL)-reachability as intro-
duced in [11] to the underlying finite state automaton. Information about the
ownership of the locks is included in the CFL to model synchronized sequences
of calls and returns and to identify deadlock states.

In general however CFLs are not closed under arbitrary interleavings. We re-
solve this lack of expressive power of CFL languages in this particular setting
by showing that for every (synchronized) interleaving there exists a reschedul-
ing which does not affect the synchronization and is included in the CFL lan-
guage. In fact, the CFL language only restricts the scheduling of the returns and
we can anticipate returns of synchronised method calls without affecting the
synchronization.

To the best of our knowledge this is the first automata based approach tailored
to deadlock detection of the abstract control flow of method calls and returns of
multithreaded reentrant programs. A sketch of an implementation is described
in the concluding section. In this implementation the programmer only needs
to indicate a finite number of threads, i.e., for each thread class the number of
threads involved in the deadlock analysis.

Related Work. In [12] Rinard gives an overview of recent techniques to analyse
multithreaded programs. Deadlock detection is only covered for languages com-
municating via pairwise rendezvous. Ramalingam (see [10]) has shown that the
analysis of synchronization problems is not decidable even for only two threads
if a CCS-style pairwise rendezvous is used to synchronize among the threads.

In [7] Kahlon et al. give a compositional method to reason about programs
synchronizing via locks based on Visibly Pushdown Automata. Visibly Push-
down Automata are a kind of pushdown automata tailored to the generation
of nested words reflecting the structure of traces generated by languages with
nested call and return structures. The languages generated by these automata
are closed under intersection. The result from [10] is generalized by showing
that the reachability problem is not decidable for two threads communicating
via non-nested locks. The language presented is non-reentrant and uses explicit
acquire and release primitives. The automata are extended by so called acquisi-
tion histories to record relevant locking information to synchronize the threads.
These acquisition histories can be used together with the explicit acquire primi-
tives to identify deadlock situations. As soon as reentrance is allowed the setting
gets more complicated. Due to reentrance the number of calls to synchronised
methods has to be counted to decide whether or not to release a lock. Note that
Java provides a nested call and return structure (with respect to one thread)
which implies a nested acquire and release of locks.

Kidd et al. [8] introduce a technique called language strength reduction to re-
duce reentrant locks to non-reentrant locks in the context of Visibly Pushdown

202 F.S. de Boer and I. Grabe

Languages. They check for atomic-set serializability violations, i.e. an illegal data
access pattern. Due to this goal they take data into consideration. They create a
CFL for each thread and for each lock. These languages are approximated by regu-
lar languages. Additionally a language describing a violation of a data access pat-
tern is defined and the intersection of all languages is checked for emptiness. Up to
our understanding there is no natural way to express a deadlock in this setting.

Lammich and Müller–Olm [9] present a model that can deal with thread
creation and reentrant monitors. Their analysis is also focused on atomic-set
serializability violations. Their approach is based on a fixpoint construction.
They also use acquisition histories but only for synchronization purposes again.
To reduce the number of executions to analyse they reduce the executions to
a restricted subset involving the notion of a macrostep, i.e. a number of steps by
one thread such that the stack only grows that is there are at most new locks
taken after a macrostep but none are freed. In general, their analysis answers
whether a given program location and a stack of method calls can be reached by
a computation. However solutions to this reachability problem do not solve the
more abstract problem of checking the reachability of a deadlock configuration.

In [5] Carotenuto et al. introduce Visibly Pushdown Automata with a finite
number of stacks. The languages generated by these automata are also closed
under intersection. However the emptiness problem is not decidable for these
automata.

A variety of other synchronization and communication mechanisms in concur-
rent programs with recursion have been studied (we only mention here [3,6]). In
[4] Bouajjani et al. present a formalism to compute abstractions of multithreaded
call-graphs.

Outline. This paper is organized as follows. We start with a section on the
syntax and semantics of synchronised multithreaded programs. In section 3 we
introduce Thread Automata to model the individual threads. Based on Thread
Automata we introduce a technique based on CFL-reachability for the analysis
of the product automaton in section 4. In section 5 we prove soundness and
completeness of our method. We conclude in section 6.

2 Synchronized Multithreaded Programs

We abstract from data which includes object identities. In our setting locks are
bound to classes. A system consists of a finite number of given classes and a finite
number of given threads synchronizing via locks.

2.1 Syntax

We assume a given set of method names M with typical element m. Methods
are specified by the following regular expressions.

r ::= τ | m | r; r | r + r | r∗

Here τ denotes an internal step and m denotes a call.

Automated Deadlock Detection 203

We denote by Ms the synchronised methods and by Mu the unsynchronised
ones. Every method is either synchronised or not:

M = Ms ∪Mu and Ms ∩Mu = ∅

We assume a given set D of method definitions. A method definition consists of
a method name m and a method body given by a regular expression m ::= r.
Furthermore we assume a finite partitioning C of the method names into classes
with typical element c.

For every class c, we denote by

– M c its methods,
– M c

s its synchronised methods,
– M c

u its unsynchronised methods.

We assume that every method belongs to exactly one class.
The set of method definitions D and the set of classes C define a program P .

The behaviour of a program is defined in terms of a given set of threads T with
typical element t. Each thread t has an initial (run) method denoted by run(t).

2.2 Operational Semantics

The operational semantics of a multithreaded program is described by a labelled
transition relation between configurations Θ which consist of pairs (t, θ), where
θ is a stack of labelled expressions m@r. We require that Θ contains for each
thread t ∈ T at most one such pair. The label m@r indicates that r is the
continuation of the execution of the body of method m. We record the name of
the method to formalize synchronization as described below. The label at the
top of the stack represents the method currently executed by the thread. By
θ ·m@r we denote the result of pushing the label m@r unto the stack θ.

In order to describe operationally the return of a method we extend the syntax
of expressions by return expression ret . We identify the method body r in a
declaration m ::= r with r; ret .

Method Calls. We have the following transition for unsynchronised methods:

Θ ∪ {(t, θ ·m@m′; r)} → Θ ∪ {(t, θ ·m@r ·m′@r′)}

with m′ ::= r′ ∈ D and m′ ∈ M c
u for some class c. A call of the method m′ thus

pushes the corresponding label on the stack. Note that upon return of m′ the
execution of m continues with r.

For synchronised methods we additionally require that no other thread is
executing a synchronised method subject to the same lock:

Θ ∪ {(t, θ ·m@m′; r)} → Θ ∪ {(t, θ ·m@r ·m′@r′)}

with m′ ::= r′ ∈ D ,m′ ∈ M c
s for some class c, and there does not exist (t′, θ′) ∈ Θ

such that t �= t′ and θ′ contains a continuation m′′@r′′ of method m′′ ∈ M c
s .

204 F.S. de Boer and I. Grabe

Return. Returning from a method is described by

Θ ∪ {(t, θ ·m@ret)} → Θ ∪ {(t, θ)}

The top of the stack thus is simply popped upon return.
The rules for the choice and iteration operators are obtained by a straightfor-

ward lifting of the corresponding transitions for regular expressions as described
in the next section.

The above transition relation maintains the following synchronization
invariant:

Corollary 1. For every class c there is at most one (t, θ) ∈ Θ such that θ
contains a continuation m@r of a synchronised method m ∈ M c

s .

This characterization of threads and locks can be modelled in a straightfor-
ward manner as a multistack pushdown automaton with counters for each class.
Reachability is not decidable in this general setting. Therefore we model the
system differently. Each thread is modelled as a Visibly Pushdown Automata
(VPA, for short). We show that the product of these automata are amenable to
analysis via a technique based on CFL-reachability. We give a grammar to steer
this analysis.

3 Thread Automata

In this section we model and analyse the operational semantics of multithreaded
programs described above in terms of thread automata. For each thread t
a Thread Automaton TA(t) is defined as a VPA, in terms of a call alphabet
Σt

call = {tm | m ∈ M } and a return alphabet Σt
ret = {tret}. By Σt we denote

the visible alphabet Σt
call ∪ Σt

ret of thread t. A call of method m by thread t is
indicated by tm. The return of thread t from a method call is indicated by tret .
The idea is that the call alphabet generates push operations, whereas the return
alphabet generates pop operations. For each thread t its local alphabet is defined
by {τ}, used to describe internal steps.

States

The set of states of TA(t) is the set Rt of regular expressions reachable from
the run method run(t). Here reachability is defined in terms of the following
standard transition relation describing the behaviour of (regular) expressions:

– m; r → r
– r1 + r2; r → ri; r for i ∈ {1, 2}
– r∗; r′ → r; r∗; r′
– r∗; r′ → r′

Transitions

The external transitions of TA(t) are of the form (r, a, r′, s), where r and r′

are states as introduced above, a is an action of the visible alphabet of t, and s

Automated Deadlock Detection 205

a stack symbol. The stack alphabet Γ t of a Thread Automaton TA(t) is given by
the set {tr | t ∈ T , r ∈ Rt}, where the regular expression r denotes the return
“address” of t. Method calls push a stack symbol upon the stack. This symbol
encodes the location to return to later. Method returns pop a symbol from the
stack. The location to return to can be derived from this symbol.

Internal transitions are of the form (r, τ, r′) with r and r′ states in terms of
regular expressions, and τ to denote the internal step.

Method call. For every state m; r′ we have the transition (m; r′, tm, r, tr′), where
m ::= r ∈ D . This transition models a move of control from state m; r′ to state r
and a push of token tr′ on the stack when reading tm . The states encode the
actual code to execute whereas the stack symbol encodes the location to return
to when the method call terminates, i.e. a return is received.

Return. For every state r, returning from a method is described by the transition
(ret , tret , r, tr) which models a move of control from state ret to state r and
a pop of token tr from the stack when reading tret . For each caller of the method
a return transition exists. The location of return to is determinate by the token
popped of the stack. Because the return location being determined by the stack
symbol an unspecific return action tret is sufficient.

Internal transitions. The choice construct is described by the transitions
(r1 + r2; r, τ, ri; r) for i ∈ {1, 2} and iteration is described by a transition mod-
elling looping (r∗; r′, τ, r; r∗; r′) and a transition modelling termination
(r∗; r′, τ, r′). Note that internal transitions do not involve an operation on the
stack.

Unsynchronised Product

We model the whole system by the product of the above automata for the indi-
vidual threads. This automaton does not take synchronization between the indi-
vidual threads into account. We add this synchronization by means of a grammar
in section 4.

Let T = {t1, . . . , tn}. By TA(T) we denote the unsynchronised product of the
automata TA(ti). This product is described by a multistack VPA with call al-
phabet Σcall = {tm | t ∈ T , m ∈ M }, return alphabet Σreturn = {tret | t ∈ T}
and for each thread t a stack over the alphabet Γ t. We denote by q0 the initial
state q0 = 〈run(t1), . . . , run(tn)〉.

States. The states of the product automaton are of the form 〈r1, . . . , rn〉 where
ri denotes the state of ti.

Transitions. We lift the transitions of the individual threads to transitions of
the product in the obvious manner. Note that this lifting still does not provide
any synchronization between the threads.

Reachability. Similar to the operational semantics for the definition of reach-
ability in TA(T) we give a declarative characterization of the synchronization
between threads in terms of arbitrary sequences of calls and returns.

206 F.S. de Boer and I. Grabe

This characterization involves the following language theoretic properties:

– Calls and returns in a sequence are matched according to formal language
theory, i.e. a bracketed grammar.

– A call without a matching return is called pending.
– A return without a matching call is called pending.
– A sequence is well-formed if it does not contain any pending returns.

Note 1. The words generated by the unsynchronised product are already
well-formed.

Now we define synchronised sequences of calls and returns:
A sequence is called synchronised if for each call tm to a synchronised method m
(m ∈ M c

s) by thread t there exists no pending call t′m′ to a synchronised
method m′ of c by a thread t′ �= t in the prefix of the sequence up to tm.

We conclude this section with the definition of reachability and a definition
of deadlock freedom in TA(T).

A state q = 〈r1, . . . , rn〉 of TA(T) is reachable in TA(T) if there exists a com-
putation in TA(T)

(q0, {⊥}n) W→ (q, θ̄)

for a synchronised sequence of calls and returns W and a tuple of stacks θ̄ =
〈θ1, . . . , θn〉. Where ⊥ denotes the empty stack.

This notion of reachability of a state does not provide enough information for
deadlock detection. Therefore we extend the definition in the obvious manner
to configurations: A configuration (q, θ̄) of TA(T) is reachable in TA(T) if there
exists a computation in TA(T)

(q0, {⊥}n) W→ (q, θ̄)

for a synchronised sequence. Furthermore a configuration (q, θ̄) is a deadlock
configuration iff (q, θ̄) �→, which indicates there is no transition possible, and at
least one thread is not yet terminated, i.e. there exists an i such that ri �= ret
or θi �= ⊥.

Finally we define the automaton TA(T) to be deadlock free iff there does not
exist a reachable deadlock configuration.

4 CFL-Reachability

For the proof of the decidability of the reachability problem and deadlock free-
dom we apply CFL-reachability to the finite state automaton FA(T) embodied
in TA(T). We first focus on the unsynchronised product and introduce synchro-
nization later.

CFL-Modelling of Unsynchronised Interleavings

The the finite state automaton FA(T) contains all internal transitions (q, τ, q′)
of TA(T). To model the push and pop transitions of TA(T) we introduce the
set of actions

Automated Deadlock Detection 207

Σ = {tmr , tr | t ∈ T , m ∈ M , r ∈ R}
where tmr denotes a call of m by t with return expression r and tr indicates that
t returns to the regular expression r. We then model the transitions (q, tm, q′, tr)
and (q, tret , q′, tr) in TA(T) by (q, tmr , q′) and (q, tr, q′), respectively.

In order to compensate for the loss of information we introduce next for each
thread t the following context free grammar which describes the structure of
recursive call/return sequences.

St ::= ε | Bt | tmr St | StSt

Bt ::= ε | tmr rt | BtBt

rt ::= Bttr

Sequences generated by the non-terminal St can contain pending calls, whereas
sequences generated by Bt do not contain pending calls. Sequences generated by
the non-terminal rt (r ∈ Rt) describe a return from a method call to the expres-
sion r. In these sequences the call itself does not appear, e.g., these sequences
contain a return tr without a matching call. Note that the non-terminal rt should
be distinguished from the corresponding terminal tr.

Starting with St or Bt the grammar produces well-formed sequences.
We lift this grammar to the definition of another CFL grammar describing the

unsynchronised interleavings of the individual threads. The non-terminals of this
grammar are sets G, where G contains for each thread t one of its non-terminals
St, Bt, and rt. The above rules are lifted to this grammar as follows.

G ::= ε (G ⊆ {St, Bt | t ∈ T})
G ∪ {St} ::= G ∪ {Bt} | tmr G ∪ {St}
G ∪ {Bt} ::= tmr G ∪ {rt}
G ∪ {rt} ::= G ∪ {Bt} tr
G1 ◦G2 ::= G1 G2

where the composition G1 ◦G2 contains for every thread a non-terminal U t for
which there exist a rule U t ::= V t

1 V
t
2 , with V t

1 in G1 and V t
2 in G2. Note that

only sets G which contain for each thread t either St or Bt can be split (in other
words, the non-terminal rt cannot be split). Note also that the non-terminal rt

cannot be generated by a split.
We denote by G0 = {St | t ∈ T} the initial configuration of a derivation.

Note 2. Not all possible interleavings can be derived by this grammar (see the
following example). But for any possible interleaving an equivalent one (with
respect to synchronization) exists which can be derived by the grammar. Since
the non-terminal rt can not be split the location of a method return is restricted.
This does not affect the reachability or deadlock analysis. The method returns
can be shuffled within certain limits (a return can be brought forward ignoring
steps of other threads and can be delayed by steps of other threads on other
locks). This holds also for the synchronised case as we show later. In the syn-
chronized case this property is ensured by the requirements with respect to the
lock sets.

208 F.S. de Boer and I. Grabe

Example 1. We give an example of a sequence that can not be derived directly.
The sequence tmr , t

′m′
r′ , tr, t

′m
r′′ , t′r′′ , t′r′ with m ∈ M c

s and m′ ∈ M c′ �=c
s . It is not

possible to find a direct derivation for G0 ⇒∗ tmr , t
′m′
r′ , tr, t

′m
r′′ , t′r′′ , t′r′ . Since the

projection on t resp. t′ contains a matching return for every call it can only be
derived by a rule starting from Bt resp. Bt′ . We have to start with Bt to get
the tmr in the front position of the sequence. The next step has to be a Bt′ step
to get t′m

′
r′ to the second position. Now G = {rt} ∪ {r′t′}. The next step has to

be a r′t
′

to get t′r′ to the end of the sequence. Now we get G = {rt} ∪ {Bt′}.
Here we are stuck. To get the tr in front of the t′mr′′ , t′r′′ we could only use the
composition rule but this one is forbidden for Gs containing a rt. Instead we can
derive tmr , tr, t

′m′
r′ , t′mr′′ , t′r′′ , t′r′ . By reordering the returns we can get the original

sequence.

According to the technique of CFL-reachability we define inductively transitions
of the form (q,G, q′), where q and q′ are states of FA(T) and G is a set of non-
terminals. Such a transition indicates that q′ is reachable from q by a sequence
generated by G.

– For every rule G ::= ε and state q we add a transition (q,G, q).
– For transitions (q, τ, q′) and (q′, G, q′′) we add a transition (q,G, q′′). Simi-

larly, for transitions (q,G, q′) and (q′, τ, q′′) we add a transition (q,G, q′′).
– Given a transition (q,G, q′), an application of a rule G′ ::= G generates

a transition (q,G′, q).
– Given transitions (q0, tmr , q) and (q,G, q1), an application of a rule G′ ::=
tmr G generates a transition (q0, G′, q1).

– Given transitions (q0, G, q) and (q, tr, q1), an application of a rule G′ ::= G tr
generates a transition (q0, G′, q1).

– Given transitions (q0, G1, q) and (q,G2, q1), an application of rule G1◦G2 ::=
G1G2 generates a transition (q0, G1 ◦G2, q1).

Reachability of a state q in FA(T) from the initial state q0 by a word G0 ⇒∗ W
then can be decided by checking the existence of a transition (q0, G0, q).

CFL-Modelling of Synchronised Interleavings

We now extend the above grammar for unsynchronised interleavings of threads
with input/output information about the locks. This information is represented
by pairs (I, L), where I, L ⊆ T×C . The set of locks I are taken by some threads
at the beginning of a derivation (step), whereas L is the set of locks that are
taken by some threads at the end of a derivation (step). We denote an element
of T × C by tc which indicates that t holds the lock of class c. We implicitly
restrict to subsets of T × C where for each class c at most one thread holds
its lock. The non-terminals of this new grammar are annotated sets (I, L) : G,
where I ⊆ L and G contains for each thread t one of its non-terminals St, Bt,
and rt.

Automated Deadlock Detection 209

We have the following rules (here Ic = {t ∈ T | tc ∈ I} and
Lc = {t ∈ T | tc ∈ L}).

(I, I) : G ::= ε (G ⊆ {St, Bt | t ∈ T})
(I, L) : G ∪ {St} ::= (I, L) : G ∪ {Bt}

| tmr (I, L) : G ∪ {St} (m �∈ M c
s or tc ∈ I ∩ L)

| tmr (I ∪ {tc}, L) : G ∪ {St} (m ∈ M c
s , Ic =∅, tc∈L)

(I, L) : G ∪ {Bt} ::= tmr (I, L) : G ∪ {rt} (m �∈ M c
s or tc ∈ I ∩ L)

| tmr (I ∪ {tc}, L ∪ {tc}) : G ∪ {rt} (m ∈ M c
s , Ic = Lc = ∅)

(I, L) : G ∪ {rt} ::= (I, L) : G ∪ {Bt} tr
(I, L) : G1 ◦G2 ::= (I, L′) : G1 (L′, L) : G2

The above grammar generates synchronised sequences. The conditions of the
rules reflect in a natural manner the locking mechanism. To characterize the
language generated by the above grammar we denote for a sequence of calls and
returns W the set of locks still taken at the end of W by Lock(W): tc ∈ Lock(W)
iff there exists a pending call to a method m by thread t with m ∈ M c

s .

Theorem 1. For every sequence W generated by (I, L) : G we have the follow-
ing properties:

– W is synchronised
– tc ∈ L iff tc ∈ I ∪ Lock(W).

Proof. The theorem is proven by induction on the length of the derivation of W.
Details of the proof can be found in the appendix.

To check reachability we add inductively transitions (q, α : G, q′) to FA(T) anal-
ogous to the unsynchronised case above.

5 Soundness and Completeness of CFL-Reachability

Soundness and completeness of our method follows from the general technique
of CFL-reachability and the following properties of our specific grammars to-
gether with the properties for sequences generated by the grammar established
in theorem 1.

We define an equivalence relation W ′ ≈W as follows: For every thread t

– the projection of W ′ on t equals that of W on t
– Lock(W ′) = Lock(W).

Lemma 1. For every well-formed synchronised sequence W there exists a well-
formed synchronised sequence W ′ such that G0 ⇒∗ W ′ with G0 = {St | t ∈ T}
and W ′ ≈W .

Proof. The lemma is proven by induction on the length of the word W . Details
of the proof can be found in the appendix.

210 F.S. de Boer and I. Grabe

We extend the notion of a synchronised sequence to a sequence synchronised
with respect to a lock set I. A sequence W is synchronised with respect to I if
for each tc ∈ I W does not contain any calls or returns of a thread t′ �= t to
a synchronised method of class c.

Lemma 2. If G0 ⇒∗ W with W synchronised then (∅,Lock(W)) : G0 ⇒∗ W .

Proof. Instead of proving the lemma directly we prove a more general statement:
If G0 ⇒∗ W with W synchronised with respect to I, then (I, I ∪ Lock(W)) :
G0 ⇒∗ W .

The statement is proven by induction on the length of the derivation G0⇒∗W .
Details of the proof can be found in the appendix.

Theorem 2. The reachability problem of TA(T) is decidable.

Our method for checking reachability of a state q in TA(T) consists of checking
the existence of a transition (q0, (∅, L) : G0, q) in FA(T).

Decidability follows from soundness and completeness proven above.

Theorem 3. The problem of deadlock freedom of TA(T) is decidable.

In this case our method consists of checking reachability of (q0, (∅, L) : G0, q)
for some state q for which there exists a subset of threads T ′ ⊆ T such that
in q each thread t ∈ T ′ is about to execute a synchronised method m ∈ M c

s

of a class c the lock of which is already held by a different thread t′ ∈ T ′, i.e.,
t′c ∈ L.

Note 3. This notion of deadlock is a refinement of the notion presented in sec-
tion 3. With this notion we do not only cover a deadlock of the whole system
but also of parts of the system.

6 Conclusion

We generalized the technique of CFL-reachability to the analysis of the synchro-
nized interleavings of multithreaded Java programs. By means of this technique
we can decide whether a state in the finite state automaton underlying the prod-
uct of the individual thread automata is reachable by a synchronized interleaving.
We also can decide deadlock freedom.

Future Work. We are working on an implementation of our approach using the
Meta Environment tools (see [13]). This work first involves the development
of a suitable ASF specification to rewrite the parse tree of a Java program to
the call graphs which form the basis of our analysis. The next step will be
to provide a Meta Environment tool to perform the actual CFL-reachability
analysis. Once this implementation for Java is finished it will be interesting to
extend the method with further static analysis of the control flow graphs and
dataflow in Java programs.

Automated Deadlock Detection 211

References

1. Alpuente, M., Vidal, G. (eds.): SAS 2008. LNCS, vol. 5079. Springer, Heidelberg
(2008)

2. Alur, R., Madhusudan, P.: Visibly Pushdown Languages. In: Babai, L. (ed.) STOC,
pp. 202–211. ACM, New York (2004)

3. Bouajjani, A., Esparza, J., Schwoon, S., Strejcek, J.: Reachability Analysis of Mul-
tithreaded Software with Asynchronous Communication. In: Sarukkai, S., Sen, S.
(eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 348–359. Springer, Heidelberg (2005)

4. Bouajjani, A., Esparza, J., Touili, T.: A Generic Approach to the Static Analysis
of Concurrent Programs with Procedures. Int. J. Found. Comput. Sci. 14(4), 551
(2003)

5. Carotenuto, D., Murano, A., Peron, A.: 2-Visibly Pushdown Automata. In: Harju,
T., Karhumäki, J., Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 132–144.
Springer, Heidelberg (2007)

6. Chaki, S., Clarke, E.M., Kidd, N., Reps, T.W., Touili, T.: Verifying Concurrent
Message-Passing C Programs with Recursive Calls. In: Hermanns, H., Palsberg, J.
(eds.) TACAS 2006. LNCS, vol. 3920, pp. 334–349. Springer, Heidelberg (2006)

7. Kahlon, V., Ivancic, F., Gupta, A.: Reasoning About Threads Communicating via
Locks. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp.
505–518. Springer, Heidelberg (2005)

8. Kidd, N., Lal, A., Reps, T.W.: Language Strength Reduction. In: Alpuente, Vidal
[1], pp. 283–298

9. Lammich, P., Müller-Olm, M.: Conflict Analysis of Programs with Procedures,
Dynamic Thread Creation, and Monitors. In: Alpuente, Vidal [1], pp. 205–220

10. Ramalingam, G.: Context-Sensitive Synchronization-Sensitive Analysis is Undecid-
able. ACM Transactions on Programming Languages and Systems 22 (2000)

11. Reps, T.W.: Program Analysis via Graph Reachability. Information & Software
Technology 40(11-12), 701–726 (1998)

12. Rinard, M.C.: Analysis of Multithreaded Programs. In: Cousot, P. (ed.) SAS 2001.
LNCS, vol. 2126, pp. 1–19. Springer, Heidelberg (2001)

13. van den Brand, M., van Deursen, A., Heering, J., de Jong, H., de Jonge, M.,
Kuipers, T., Klint, P., Moonen, L., Olivier, P., Scheerder, J., Vinju, J., Visser,
E., Visser, J.: The asf+sdf Meta-Environment: A Component-Based Language De-
velopment Environment. Electronic Notes in Theoretical Computer Science 44(2),
3–8 (2001); LDTA 2001, First Workshop on Language Descriptions, Tools and
Applications (a Satellite Event of ETAPS 2001)

A Kernel for Convex Recoloring
of Weighted Forests

Hans L. Bodlaender1 and Marc Comas2

1 Department of Information and Computing Sciences
Utrecht University, Utrecht, The Netherlands

2 Departament de Llenguatges i Sistemes Informàtics
Universitat Politècnica de Catalunya, Barcelona, Spain

Abstract. In this paper, we show that the following problem has a ker-
nel of quadratic size: given is a tree T whose vertices have been assigned
colors and a non-negative integer weight, and given is an integer k. In
a recoloring, the color of some vertices is changed. We are looking for
a recoloring such that each color class induces a subtree of T and such
that the total weight of all recolored vertices is at most k. Our result gen-
eralizes a result by Bodlaender et al. [3] who give quadratic size kernel
for the case that all vertices have unit weight.

1 Introduction

In this paper, we consider the following problem. Given is a tree T with for
each vertex a color from some given set of colors, and a non-negative integer
weight. In a recoloring of T , the color of some vertices is changed. The cost of
a recoloring is the total weight of all vertices with a changed color. A coloring is
convex, if for each color, the set of vertices with that color forms a (connected)
subtree of T . We consider the decision version of the problem: given an integer k,
we ask if there is a convex recoloring with cost at most k.

In this paper, w1e look at the parameterized variant of the problem, and
show that the problem has a quadratic kernel, i.e., we give a polynomial time
algorithm, that given an instance of the problem, transforms it to an equivalent
instance with O(k2) vertices and edges. Our result generalizes an earlier result
by Bodlaender et al. [3] who give a quadratic kernel for the unweighted version
of the problem, i.e., for the case that all vertices have unit weight. We call the
problem Weighted Convex Tree Recoloring. A generalization with only
positive weights appears to be relatively simple, by reducing it to the unweighted
case; allowing zero weight vertices asks for a different set of rules and analysis.
These zero weight vertices are interesting, also from application point of view,
as they also model vertices that initially do not have a color assigned to them.

The convex recoloring problem for trees is motivated from applications in
phylogenetic and other areas from bio-informatics and linguistics. We refer the
reader to [6,8,9] for more background and motivation of the problem.

Finding kernels of small size for combinatorial problems is a topic of much cur-
rent research, and an important topic in the area of parameterized complexity and

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 212–223, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Kernel for Convex Recoloring of Weighted Forests 213

algorithms. We assume the reader to be familiar with standard notions from pa-
rameterized complexity and kernelization; for an introduction, see e.g., [7], [5], [4]
or [10].

In [8], Moran and Snir showed that the Convex Tree Recoloring problem
is NP-complete. Also, several special cases remain NP-complete, even when
the tree is restricted to be a path. Improving some of the previous results
in [8,9,12], Bar-Yehuda et al. [2] gave a polynomial (2 + ε)-approximation algo-
rithm and an exact algorithm whose parameterized complexity, parameterized
by the number of recolorings k, is O(n2 + nk2k). Further improvements on the
running time for an exact algorithm can be found in [11].

In [8,9], different variants of the problem are presented. In [1], an algorithm
with a running time of O(4kn) is given for the case that only the leafs are colored,
and the problem asks if it is possible to recolor the leafs in such a way that the
resulting coloring can be extended to a convex one. In [3], a quadratic kernel
is given for the unweighted version of the problem. One step of the algorithm
in [3] is to generalize the problem to the case where some vertices can have
a fixed color, and to forests instead of trees. Two final steps can transform the
problem back to an instance without fixed color vertices and with a tree instead
of a forest. In [3], it is asked as an open problem if it is possible to find small
kernels for other convex recoloring variants. In this paper, we extend the result
of [3] by allowing zero weights (thus allowing leaf and other partial colorings)
and positive weights to the vertices (which generalizes the case when we allow
vertices with a fixed color), and we show that indeed, in this situation we are
also able to obtain a quadratic kernel.

2 Convex Recoloring Problem

We denote the set of non-negative integers by IN0. Let F =(V,E, μ) be a weighted
forest, with μ : V → IN0 and let C be a set of colors. A coloring of F is a function
defined from the set of vertices V to the set of colors C. Given a coloring Γ ,
any different coloring will be called a recoloring of Γ . We define the cost of
a recoloring Γ ′ of Γ , denoted costΓ (Γ ′), to be the sum of the weights of recolored
vertices:

costΓ (Γ ′) =
∑

v∈V,Γ (v) �=Γ ′(v)

μ(v)

For any forest F ′ contained in F , we denote by μΓ,c(F ′), the sum of μ(v) over
all vertices v in F ′ colored c by Γ . We also use the previous notation for any
subset of vertices of V , i.e., for W ⊆ V , μΓ,c(W) =

∑
v∈Γ−1(c)∩W μ(v), where

Γ−1(c) = {v | Γ (v) = c}.
We say that a coloringΓ is convex if for every color c,Γ−1(c) induces a connected

component. In this paper, we deal with the following parameterized problem.

Convex recoloring of a Weighted Colored Forest (crp)
Instance: A weighted forest F = (V,E, μ), a set of colors C, a coloring
Γ of F and a positive integer k.

214 H.L. Bodlaender and M. Comas

(2, g)

(1, g)

(1, y)

(2, y)

(1, r)

(2, r)

(2, w) (2, w)

Coloring Γ

(2, g)

(1, w)

(1, w)

(2, y)

(1, w)

(2, r)

(2, w) (2, w)

Recoloring Γ ′

Fig. 1. Γ ′ is the only recoloring of Γ with cost at most 3 and convex. In every node
we represent the pair weight-color.

Parameter: k
Question: Is there a convex recoloring Γ ′ of Γ with costΓ (Γ ′) ≤ k?

While the case that F is a tree is most interesting from an application point
of view, the version with forests helps to design our algorithms. As in [3], an
instance with a forest can be transformed to an instance with a tree by adding
one new vertex with cost k + 1 and making it incident to a vertex in each tree
in the forest.

In Figure 1, we can see a coloring Γ in a tree T and a convex recoloring with
cost at most 3. In fact, it is not difficult to check that Γ ′ is the only convex
recoloring with cost at most three, all other convex recolorings have larger cost.

We use the consideration introduced in [9], of adding a set of new special
colors. Formally, for each vertex v, we add a new color cv, and we allow that
a vertex v can be recolored to this color cv. Using the previous consideration, we
are going to assume that any instance with a vertex v such that μ(v) = 0, has
v colored with Γ (v) = cv. The motivation of such assumption, comes from the
fact that any convex recoloring Γ ′ of Γ will have costΓ (Γ ′) = costΓv=cv

(Γ ′) for
the coloring Γv=cv obtained from Γ by changing the color of v to cv. We make
this assumption for each vertex v with μ(v) = 0.

3 Definitions

Given a forest F = (VF , EF) and a coloring Γ , we denote by subΓ (F, c) the set
of vertices in VF colored c by Γ , i.e., subΓ (F, c) = VF ∩ Γ−1(c). For a forest F
and a color c, Bagc(F) is defined as the subset subΓ (T ∗, c) for a component T ∗

of F with maximum μΓ,c(T ∗). In other words, Bagc(F) is the set of vertices
of color c in the connected component of F in which the total weight of such
vertices is maximum.

Consider a path s between two vertices with color c, and consider the forest
F − s obtained after removing s from F . Let Tag(s) be the set consisting of all
vertices with color c′ different from c not belonging to a Bagc′(F − s), i.e.,

Tag(s) =
⋃

c′∈C\{c}
subΓ (F −Bagc′(F − s), c′). (1)

A Kernel for Convex Recoloring of Weighted Forests 215

Let
tag(s) =

∑
v∈Tag(s)

μ(v). (2)

From (1), it is not difficult to see that (2) can also be written as

tag(s) =
∑

c′∈C\{c}
μΓ,c′(F)− μΓ,c′(Bagc′(F − s)).

Proposition 1. Let s be a path between two vertices with color c. For any convex
recoloring Γ ′ such that for all vertices v in s, Γ ′(v) = c,

tag(s) ≤ costΓ (Γ ′).

Proof. If all vertices in s receive color c, then for any color c′ �= c, at most one
component of F − s can have vertices of color c′. So, we need to recolor all
vertices with color c′ in all except maybe one component of F − s. Because for
any component T in F − s we have μΓ,c′(T) ≤ μΓ,c′(Bagc′(F − s)), the cost
for recoloring vertices with color c′ is at least μΓ,c′(F) − μΓ,c(Bagc′(F − s)).
Summation over all c′ �= c gives:∑

c′∈C\{c}
μΓ,c′(F)−μΓ,c′(Bagc′(F−s)). �

The previous proposition is the motivation for the following definitions.
A k-string of color c is a path s consisting of two vertices u and v with color c
and positive weight, called endpoints, and interior vertices (vertices different
of u and v in s) with color different of c, in such a way that tag(s) ≤ k. Note
that we allow u = v. In this case, we denote the path with only the vertex v
indistinctly by sv or {v}. Let Strk be the set of all k-strings of any color and let
Strc

k be the set with all k-strings of color c. If S is a subset of Strk, we denote
by FS the forest obtained by the union of all k-strings contained in S.

Note that from Proposition 1, if two vertices with the same color are not
forming a k-string, one of them have to be recolored. Concretely, if for a vertex v
{v} is not a k-string, in a convex recoloring v is recolored.

Similar to [2,3], for every vertex v, we define a subset of C, defined by

Sk(v) = {c ∈ C | v ∈ s for some s ∈ Strc
k }.

Let S∗
k(v) = Sk(v)∪{cv}. A recoloring Γ ′ of Γ is k-normalized if for every vertex

v, Γ ′(v) ∈ S∗
k(v). This means, that in a k-normalized recoloring, any vertex v

receives a color of some k-strings containing it or a color cv.

Lemma 1. If there is a convex recoloring Γ ′ of Γ with costΓ (Γ ′) ≤ k, there is
a convex recoloring Γ ′′ of Γ with costΓ (Γ ′′) ≤ k which is k-normalized.

216 H.L. Bodlaender and M. Comas

Proof. Consider a convex recoloring Γ ′ of Γ with costΓ (Γ ′) ≤ k. Moreover,
assume Γ ′ has the maximum number of vertices colored cv. Under the last as-
sumption (being maximum in the number of vertices colored cv), we claim that
the recoloring Γ ′ is exactly the recoloring Γ ′′ of Γ defined by

Γ ′′(v) =
{
Γ ′(v) if Γ ′(v) ∈ Sk(v)
cv if Γ ′(v) /∈ Sk(v),

which is clearly k-normalized. Suppose not, this is Γ ′′ �= Γ ′. Then, there is
a vertex v with Γ ′(v) /∈ Sk(v) such that Γ ′(v) �= cv. By definition, in this
situation, Γ ′′(v) = cv. Also note that Γ (v) �= Γ ′(v), this is because if v maintain
the color, then v is forming a k-string of color Γ (v) and therefore Γ (v) ∈ Sk(v).
So, let Γ ′(v) = c (�= Γ (v)) and let Tc be the tree induced by all the vertices
colored c by Γ ′. Let x and y be two leaves in Tc having v in the path joining
them. If such a vertices don’t exists, it means that v is a leaf in Tc and therefore
can be recolored to cv maintaining the convexity and contradicting the optimality
of Γ ′ on the number of vertices colored cv. At last, note that Γ (x) = Γ (y) = c,
otherwise, if one of them (for example x) has Γ (x) �= c, then we can recolor x
to cv maintaining again the convexity and contradicting the optimality. Finally,
rest to point out that if x and y have Γ (x) = Γ (y) = Γ ′(x) = Γ ′(y) = c, the path
between x and y is forming a k-string and therefore, c ∈ Sk(v) which contradicts
the first assumption. �

4 Kernelization Rules and Analysis

The next two rules allow us to have an instance holding some desirable properties,
by recoloring some vertices or eliminating some edges in the instance.

Rule 1. Consider a vertex v such that {s} is not a k-string, i.e., tag({v}) > k.
Suppose |Sk(v)| ≤ 1. Then,

– if Sk(v) = ∅, return NO,
– if Sk(v) = {c}, recolor vertex v to c and reduce k by μ(v).

Rule 2. If Rule 1 cannot be applied, set F = FStrk
.

Lemma 2. In any instance reduced with respect to Rule 1 and Rule 2, the forest

F −
⋃

c′∈C\c

FStrc′
k

contains only vertices v with color c and cv.

Proof. By Rule 2, we have that F = FStrk
and then,

Fc = F −
⋃

c′∈C\c

FStrc′
k

only contains vertices belonging to k-strings of color c. If there exists a vertex v
in Fc with color c′ different from c and cv, then sv is not a k-string
and Sk(v) = {c}. So, vertex v is recolored to c by Rule 1. �
From now on, we assume that Rule 1 and Rule 2 cannot be applied.

A Kernel for Convex Recoloring of Weighted Forests 217

4.1 Pieces of a Color

Consider the forest Fc = F −
⋃

c′∈C\{c} FStrc′
k

. Every component of Fc is called
a piece of color c. By Lemma 2, Fc contains only vertices v with color c or cv,
and moreover, by Lemma 1, we can assume that the vertices in Fc can only
receive color c or cv. We have the following lemma,

Lemma 3. There is always an optimum recoloring such that for each piece of
color c, every vertex v in the piece is colored c or cv.

Proof. Clearly, if a piece of color c has some vertex v recolored to cv (cv or c
are the only colors in Sk(v)) by a recoloring Γ ′, then the recoloring Γ ′′ with all
vertices in the pieces colored c has at most the same cost as Γ ′, and it is not
difficult to see that this recoloring is still convex. �

Suppose that a piece W of color c has at least half of the total weight of the sum
of vertices of color c. Then, by Lemma 3, if a recoloring Γ ′ recolors some vertex
in W from c to cv, the recoloring Γ ′′ not recoloring any vertex in W from c to cv
has at most the same cost as Γ ′. So we can assume that the piece of color is not
recolored in an optimum recoloring. This argument and Lemma 3 are captured
by the following rule.

Rule 3. For every piece W of color c, contract W to a single vertex w with
color c and μ(w) defined as follows,

– if μΓ,c(W) > μΓ,c(F −W), set μ(w) = k + 1,
– otherwise set μ(w) = μΓ,c(W).

4.2 Irrelevant Colors

We say that a color c is irrelevant, if all the vertices of color c are contained
in some piece of color c, and for any vertex v with color different of c and cv,
c /∈ Sk(v). The cost of removing an irrelevant color c is defined by

Δc = μΓ,c(FStrc
k
)− μΓ,c(Bagc(FStrc

k
)).

Intuitively, when a color c is irrelevant, forests FStrc
k

and
⋃

c′∈C\{c} FStrc′
k

are
disjoint. Moreover, by Lemma 2, all the colors in one forest do not appear in
the other one. So, we can solve both forests separately. Because FStrc

k
is easy

to solve (it only contains color c and cv), we can solve FStrc
k

and reduce F to⋃
c′∈C\{c} FStrc′

k
and decrease k by Δc which is the cost of making FStrc

k
convex.

We have the following rule,

Rule 4. Suppose c is an irrelevant color in F . Then, set F =
⋃

c′∈C\{c} FStrc′
k

and decrease k by Δc.

218 H.L. Bodlaender and M. Comas

Suppose a vertex v with color c has weight greater than k, then in any recoloring
with cost at most k, v cannot be recolored. In this situation, the vertices recol-
ored in one component of F − v do not affect the vertices recolored in another
component of F − v. In other words, there are no k-strings, containing v, with
color different from v’s color. So, we can study the problem with respect to v and
each component in F − v independently. These independencies can be carried
out by splitting v into a number of copies: as many as there are components in
F − v and recolor all vertices with color c in each of these components by a new
color, unique for the component.

Rule 5. Suppose there is a vertex v with color c and μ(v) > k. Let Tv be the
component containing v in F , let F0 = F−Tv and let T1, ..., T� be the components
in Tv − v with w1, ..., w� the neighbors of v in T1, ..., T� respectively. Then,
remove the vertex v from F , connect every wi to a new vertex vi with a new
color ci and weight μΓ,c(Ti), and recolor all vertices in Ti with color c to ci (for
each i, 1 ≤ i ≤
), add an isolated vertex v0 with a new color c0 and weight
μΓ,c(F0), and recolor all vertices in F0 with color c to c0.

Lemma 4. When Rules 1-5 cannot be applied, the total weight of vertices with
a color c is at least two times the total weight of vertices in any piece of color c.
I.e., for any piece W of color c,

2μΓ,c(W) ≤ μΓ,c(F).

Proof. When Rule 3 cannot be applied, for any piece W of color c, either
μΓ,c(W) ≤ μΓ,c(F −W) or W consists of a single vertex w with μΓ,c(w) = k+1.
In the first case, we get directly that 2μΓ,c(W) ≤ μΓ,c(F). In the second case,
Rule 5 applies, which gives again that μΓ,c(w) ≤ μΓ,c(F − w) �

At this point, the kernelization is almost completed. In the rest of this section,
we assume that the next rule (Rule 6) is safe. Its safeness will be proved in the
next section.

Rule 6. If Rules 1-5 cannot be applied and
∑

c∈C μΓ,c(F) > 6k2, return NO.

From Rule 6, we know that there are at most 6k2 vertices with positive weight. It
remains to show that the number of vertices with zero weight are also bounded.
The following rules are clearly safe.

Rule 7. If a vertex v has μ(v) = 0 and deg(v) ≤ 1, remove v.

Rule 8. If a vertex v has μ(v) = 0 and deg(v) = 2, add an edge between its
neighbors and remove v.

It is well known that the number of vertices of degree greater than two in a tree
is bounded by the number of leaves. So, because every vertex with zero weight
has degree greater than 2 and every leaf has positive weight, the next result
follows.

Theorem 1. In a reduced instance, there are at most 12k2 vertices and the sum
of its weights is at most 6k2.

A Kernel for Convex Recoloring of Weighted Forests 219

4.3 Removing k-Strings and Counting Them

A skeleton of Strk is a subset R of Strk containing a minimal number of k-strings
of Strk in such a way that, if we denote the k-strings in R of color c by Rc,
for every c ∈ C, FRc = FStrc

k
. A possible procedure for generating a skeleton of

Strk can be the following: Initially, let R = Strk and then, apply the following
operation while possible, remove from R a k-string s of color c if it is contained
in the rest of k-strings of color c in R. Clearly, when the procedure ends, we have
FRc = FStrc

k
for every c ∈ C. Let TagR =

⋃
s∈R Tag(s). We say that a vertex v

is tagged by R if it is contained in TagR.

Lemma 5. In an instance reduced by Rule 1-5, for any color c in C and a skele-
ton R of Strk,

μΓ,c(F − TagR) ≤ μΓ,c(TagR).

Proof. First, we prove that all the vertices of color c not belonging to TagR are
contained in one piece of color c.

Note that a vertex of color c not belonging to TagR has to be in some piece
of color c. Suppose two vertices x and y of color c are in different components of

Fc = FStrc
k
−
⋃

c′∈C\{c}
FStrc′

k
= FRc −

⋃
c′∈C\{c}

FRc′ .

To be in different components of Fc, either there is a k-string s′ in Rc′ between
them or x and y are in different components of FStrc

k
= FRc . In the first case,

Tag(s′) contains x or y. In the second case, because by Rule 2, F = FStrk
= FR,

and therefore, either x and y have a k-string in Rc′ for some c′ different of c
between them like in the first case or they are in different component of F . In
such a case, any k-string with color different from c tags x or y. In any case,
there is always a k-string in R tagging x or y and then, x and y must be in the
same piece of color c.

Because all vertices with color c in F − Tag(R) are contained in a piece of
color c, by Lemma 4,

2μΓ,c(F − TagR) ≤ μΓ,c(F).

Using that
μΓ,c(F) = μΓ,c(F − TagR) + μΓ,c(TagR),

we get

μΓ,c(F − TagR) ≤ μΓ,c(TagR). �

Lemma 6. Rule 6 is safe.

Proof. Suppose Γ ′ is a convex recoloring with costΓ (Γ ′) ≤ k, we want to show
that in this situation

∑
c∈C μΓ,c(F) ≤ 6k2. For this, we construct a skeleton RΓ ′

of Strk in the following way, let Wc = {v | Γ (v) = Γ ′(v) = c}:

220 H.L. Bodlaender and M. Comas

– For every color c, add to RΓ ′ a minimal number of k-strings of color c in
such a way that the vertices in Wc are connected in FRΓ ′ .

– For every color c, add to RΓ ′ a minimal number of k-strings of color c in
such a way that FRc

Γ ′ = FStrc
k
.

We separate the set RΓ ′ into two parts: a subset RN
Γ ′ containing all the k-strings

added in the first step and a subset RY
Γ ′ containing the vertices added in the

second step. In other words, RN
Γ ′ contains k-strings whose endpoints are not

recolored, and RY
Γ ′ contains k-strings with some endpoint recolored.

Claim. For every convex recoloring Γ ′ with costΓ (Γ ′) ≤ k,∑
c∈C

μΓ,c(TagRY
Γ′

) ≤ k2

Proof of claim. In the way TagRY
Γ′

is constructed, for every recolored vertex at
most one k-string is added to TagRY

Γ′
. Because, costΓ (Γ ′) ≤ k, in the second

step we add at most k k-strings to RY
Γ ′ , i.e., |RY

Γ ′ | ≤ k. From k-string definition
we have

∑
c∈C μΓ,c(Tag(s)) ≤ k. Putting all together,∑

c∈C
μΓ,c(TagRY

Γ′
) =
∑
c∈C

μΓ,c(
⋃

s∈RY
Γ ′

Tag(s))

≤
∑
c∈C

∑
s∈RY

Γ ′

μΓ,c(Tag(s))

=
∑

s∈RY
Γ ′

∑
c∈C

μΓ,c(Tag(s))

≤ |RY
Γ ′ |k ≤ k2. �

Claim. For every convex recoloring Γ ′ with costΓ (Γ ′) ≤ k,∑
c∈C

μΓ,c(TagRN
Γ ′) ≤ 2k2

Proof of claim. To prove the claim, we first reduce the set RN to a subset R∗

of RN in the following way: Initially, let R∗ = RN and while possible, remove
from R∗ any k-string s such that Tag(s) ⊆

⋃
s′∈R∗\{s} Tag(s

′). After the pro-
cedure is applied, the following two properties are held by R∗, (1) TagRN

Γ′ =
TagR∗, and (2) for every k-string s in R∗ there is a vertex νs such that νs ∈
Tag(s) and for any s′ ∈ R∗ different of s, νs /∈ Tag(s′). From the last property,
we can associate to every string s of R∗ a vertex νs not tagged by any other
k-string in R∗.

Let C+ = {c ∈ C | ∃s ∈ R∗, Γ (νs) = c }. Note if c is the color of a vertex νs

associated to a k-string s, at least one vertex of color c should be recolored,
otherwise s (that is a k-string not recolored) is separating νs from Bagc(F − s)

A Kernel for Convex Recoloring of Weighted Forests 221

and then, Γ ′ cannot be convex. From previous argument, C+ has at most k colors,
i.e., |C+| ≤ k.

Let nc be the number of k-strings in R∗ with an associated vertex of color c.
We show that at least nc−1 vertices of color c are recolored by Γ ′. Suppose not.
Then, there are two vertices νs1 and νs2 with color c for two k-strings s1 and s2
in R∗. Because Γ ′ maintains νs1 and νs2 with color c, νs1 and νs2 are in the same
component of FStrc

k
. An then, the only way s1 tags νs1 but not tag νs2 is because

νs2 is in Bagc(F − s1). Implying that s1 and p(νs1 , νs2), the path going from νs1

to νs2 , intersect in some vertex, contradicting the convexity of Γ ′. Consequently,
at least nc − 1 vertices of color c are recolored by Γ ′. So,

∑
c∈C+ nc − 1 ≤ k.

Because |C+| ≤ k, we get |R∗| =
∑

c∈C+ nc ≤ 2k. Finally, putting all together,∑
c∈C

μΓ,c(TagRN
Γ′) =

∑
c∈C

μΓ,c(TagR∗)

=
∑
c∈C

μΓ,c(
⋃

s∈R∗
Tag(s))

≤
∑
c∈C

∑
s∈R∗

μΓ,c(Tag(s))

≤
∑

s∈R∗

∑
c∈C

μΓ,c(Tag(s))

≤ |R∗|k ≤ 2k2. �

Using Lemma 5 with the skeleton RΓ ′ , we have that

μΓ,c(F) = μΓ,c(TagRΓ′) + μΓ,c(F − TagRΓ ′) ≤ 2μΓ,c(TagRΓ′).

Finally, by the previous claims,

μΓ,c(F) ≤ 2(
∑
c∈C

μΓ,c(TagRY
Γ ′

) +
∑
c∈C

μΓ,c(TagRN
Γ ′)) ≤ 6k2. �

We have shown that all rules are safe, and thus, by Theorem 1 and the fact that
we can test in polynomial time if a rule can be carried out, and if so, apply it,
we obtain:

Theorem 2. There is a polynomial time kernelization algorithm for Weighted

Convex Tree Recoloring that yields a kernel with at most 12k2 vertices
whose total weight is at most 6k2.

5 Conclusions

In this paper, we gave a kernel of quadratic size for the Weighted Convex

Tree Recoloring problem. As we also allow weights that are zero, our result
also implies a kernel for the case where we have initially some uncolored vertices.
We have fewer rules than the result that we generalize from [3]. In particular,

222 H.L. Bodlaender and M. Comas

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 10 20 30 40 50 60 70 80 90 100

μ(
F

)

k

 25

 30

 35

 40

 45

 50

 55

 10 20 30 40 50 60 70 80 90 100

μ(
F

)

c

Fig. 2. On the left, we represent the maximum over 100 simulations, taking k un-
til 100 and n = 10k2. On the right, fixed k = 5 and n = 500, the maximum after
1000 simulations modifying c between 2 and 100.

we did not need most of the rules that we used in [3] to ensure that each color
is given to a linear number of vertices. In a practical setting, it is not hard to
generalize these rules from [3] to the weighted case, and add these as additional
preprocessing heuristics to our rules. An intriguing open problem is whether
a linear kernel exists for our problem, or, at least, for the unweighted case.

We implemented Rules 1-4 and applied these to randomly generated instances;
in each case, we took a randomly generated tree and then recolored k randomly
chosen vertices. The results of this experiment are shown in Figure 2. In these
random instances, it seems that in a practically point of view, the size of the
kernel is linear. Although, it is not difficult to construct instances such that
its reduced instance grows quadratically on k. We leave such an analysis (or a
different set of rules with a linear kernel) as open problem for further research.

References

1. Bachoore, E.H., Bodlaender, H.L.: Convex recoloring of leaf-colored trees. Techni-
cal Report UU-CS-2006-010, Department of Information and Computing Sciences,
Utrecht University (2006)

2. Bar-Yehuda, R., Feldman, I., Rawitz, D.: Improved Approximation Algorithm for
Convex Recoloring of Trees. Theory Comput. Syst. 43(1), 3–18 (2008)

3. Bodlaender, H.L., Fellows, M.R., Langston, M.A., Ragan, M.A., Rosamond, F.A.,
Weyer, M.: Quadratic Kernelization for Convex Recoloring of Trees. In: Lin, G.
(ed.) COCOON 2007. LNCS, vol. 4598, pp. 86–96. Springer, Heidelberg (2007)

4. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999)

5. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Secaucus (2006)
6. Gramm, J., Nickelsen, A., Tantau, T.: Fixed-Parameter Algorithms in Phylogenet-

ics. The Computer Journal 51(1), 79–101 (2008)
7. Guo, J., Niedermeier, R.: Invitation to Data Reduction and Problem Kernelization.

SIGACT News 38(1), 31–45 (2007)
8. Moran, S., Snir, S.: Efficient Approximation of Convex Recolorings. Journal of

Computer and System Sciences 73(7), 1078–1089 (2007)

A Kernel for Convex Recoloring of Weighted Forests 223

9. Moran, S., Snir, S.: Convex Recolorings of Strings and Trees: Definitions, Hardness
Results and Algorithms. Journal of Computer and System Sciences 74(5), 850–869
(2008)

10. Niedermeier, R.: Invitation to Fixed Parameter Algorithms. Oxford Lecture Series
in Mathematics and Its Applications. Oxford University Press, USA (2006)

11. Ponta, O., Hüffner, F., Niedermeier, R.: Speeding up Dynamic Programming for
Some np-Hard Graph Recoloring Problems. In: Agrawal, M., Du, D.-Z., Duan,
Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 490–501. Springer, Heidelberg
(2008)

12. Razgon, I.: A 2o(k)Poly(n) Algorithm for the Parameterized Convex Recoloring
Problem. Information Processing Letters 104(2), 53–58 (2007)

Symbolic OBDD-Based Reachability Analysis
Needs Exponential Space

Beate Bollig

LS2 Informatik, TU Dortmund
44221 Dortmund, Germany

Abstract. Ordered binary decision diagrams (OBDDs) are one of the
most common dynamic data structures for Boolean functions. Neverthe-
less, many basic graph problems are known to be PSPACE-hard if their
input graphs are represented by OBDDs. Despite the hardness results
there are not many concrete nontrivial lower bounds known for the com-
plexity of problems on OBDD-represented graph instances. Computing
the set of vertices that are reachable from some predefined vertex s ∈ V
in a directed graph G = (V, E) is an important problem in computer-
aided design, hardware verification, and model checking. Until now only
exponential lower bounds on the space complexity of a restricted class of
OBDD-based algorithms for the reachability problem have been known.
Here, the result is extended by presenting an exponential lower bound
on the space complexity of an arbitrary OBDD-based algorithm for the
reachability problem. As a by-product a general exponential lower bound
is obtained for the computation of OBDDs representing all connected
node pairs in a graph, the transitive closure.

Keywords: Computational complexity, lower bounds, ordered binary
decision diagrams, reachability analysis, transitive closure.

1 Introduction

1.1 Motivation

When working with Boolean functions as in circuit verification, synthesis, and
model checking, ordered binary decision diagrams, denoted OBDDs, introduced
by Bryant [5], are one of the most often used data structures supporting all
fundamental operations on Boolean functions.

Some modern applications require huge graphs so that explicit representa-
tions by adjacency matrices or adjacency lists are not any longer possible, e.g.,
in hardware verification and in the process of synthesis of sequential circuits
state transition graphs that consist of 1027 vertices and 1036 edges are not un-
common. Since time and space do not suffice to consider individual vertices,
one way out seems to be to deal with sets of vertices and edges represented by
their characteristic functions. Since OBDDs are well suited for the representation
and manipulation of Boolean functions, in the last years a research branch has
emerged which is concerned with the theoretical design and analysis of so-called

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 224–234, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Symbolic OBDD-Based Reachability Analysis Needs Exponential Space 225

symbolic algorithms for classical graph problems on OBDD-represented graph
instances (see, e.g., [11,12], [17,18], and [23]). Symbolic algorithms have to solve
problems on a given graph instance by efficient functional operations offered
by the OBDD data structure. At the beginning the OBDD-based algorithms
have been justified by analyzing the number of executed OBDD operations (see,
e.g., [11,12]). Since the number of OBDD operations is not directly proportional
to the running time of an algorithm, as the running time for one OBDD opera-
tion depends on the sizes of the OBDDs on which the operations are performed,
newer research tries to analyze the overall running time of symbolic methods
including the analysis of all OBDD sizes occurring during such an algorithm
(see, e.g., [23]).

In reachability analysis the task is to compute the set of states of a state-
transition system that are reachable from a set of initial states. Besides explicit
methods for traversing states one by one and SAT-based techniques for deciding
distance-bounded reachability between pairs of state sets, symbolic methods
are one of the most commonly used approaches to this problem (see,
e.g., [7,8]). In the OBDD-based setting our aim is to compute a representation for
the characteristic function XR of the solution set R ⊆ V . I.e., the input consists
of an OBDD representing the characteristic function of the edge set of a graph
G = (V,E) and a predefined vertex s ∈ V and the output is an OBDD repre-
senting the characteristic function of the vertex set R which contains all vertices
reachable from the vertex s via a directed path in G. BFS-like approaches using
O(|V |) OBDD operations [13] and iterative squaring methods using O(log2 |V |)
operations [17] are known. In [20] Sawitzki has proved that algorithms that solve
the reachability problem by computing intermediate sets of vertices reachable
from the vertex s via directed paths of length at most 2p, p ∈ {1, . . . ,)log |V |*},
need exponential space if the variable ordering is not changed during the algo-
rithms. For this result he has proved the first exponential lower bound on the
size of OBDDs representing the most significant bit of integer multiplication for
a predefined variable ordering. Afterwards, he has defined inputs for the reach-
ability problem such that during the computation of the investigated restricted
class of algorithms representations for the most significant bit of integer mul-
tiplication are necessary. In [4] his result has been improved by presenting a
larger lower bound on the OBDD size of the most significant bit for the variable
ordering considered in [20]. Lower bounds on the size of OBDDs for a predefined
variable ordering do not rule out the possibility that there are other variable
orderings leading to OBDDs of small size. Since Sawitzki’s assumption that the
variable ordering is not changed during the computation is not realistic because
in application reordering heuristics are used in order to minimize the OBDD size
for intermediate OBDD results, in [2,3] the result has been improved by present-
ing general exponential lower bounds on the OBDD size of the most significant
bit of integer multiplication. Here, we generalize Sawitzki’s result and show that
the reachability problem for graphs represented by OBDDs needs exponential
space for all possible OBDD-based algorithms.

226 B. Bollig

1.2 Results and Organization of the Paper

Our main result can be summarized as follows.

Theorem 1. The reachability problem on OBDD-represented graphs needs ex-
ponential space.

In Section 2 we define some notation and present some basics concerning OBDDs.
Section 3 contains the results of the paper. We prove that OBDD-based reach-
ability analysis needs exponential space. As a by-product a general exponential
lower bound is obtained for the computation of OBDDs representing all con-
nected node pairs in a graph, the transitive closure.

2 Preliminaries

2.1 Ordered Binary Decision Diagrams

Boolean circuits, formulae, and binary decision diagrams (BDDs), sometimes
called branching programs, are standard representations for Boolean functions.
(For a history of results on binary decision diagrams see, e.g., the monograph
of Wegener [22]). Besides the complexity theoretical viewpoint people have used
restricted binary decision diagrams in applications. Bryant [5] has introduced
ordered binary decision diagrams (OBDDs) which have become one of the most
popular data structures for Boolean functions. Among the many areas of applica-
tion are verification, model checking, computer-aided design, relational algebra,
and symbolic graph algorithms.

Definition 1. Let Xn = {x1, . . . , xn} be a set of Boolean variables. A variable
ordering π on Xn is a permutation on {1, . . . , n} leading to the ordered list
xπ(1), . . . , xπ(n) of the variables.

In the following a variable ordering π is sometimes identified with the corre-
sponding ordering xπ(1), . . . , xπ(n) of the variables if the meaning is clear from
the context.

Definition 2. A π-OBDD on Xn is a directed acyclic graph G = (V,E) whose
sinks are labeled by Boolean constants and whose non-sink (or inner) nodes are
labeled by Boolean variables from Xn. Each inner node has two outgoing edges
one labeled by 0 and the other by 1. The edges between inner nodes have to respect
the variable ordering π, i.e., if an edge leads from an xi-node to an xj-node, then
π−1(i) ≤ π−1(j) (xi precedes xj in xπ(1), . . . , xπ(n)). Each node v represents
a Boolean function fv ∈ Bn, i.e., fv : {0, 1}n → {0, 1}, defined in the following
way. In order to evaluate fv(b), b ∈ {0, 1}n, start at v. After reaching an xi-node
choose the outgoing edge with label bi until a sink is reached. The label of this
sink defines fv(b). The width of an OBDD is the maximum number of nodes
labeled by the same variable. The size of a π-OBDD G is equal to the number of
its nodes and the π-OBDD size of a function f , denoted by π-OBDD(f), is the
size of the minimal π-OBDD representing f .

Symbolic OBDD-Based Reachability Analysis Needs Exponential Space 227

The size of the reduced π-OBDD representing f is described by the following
structure theorem [21].

Theorem 2. The number of xπ(i)-nodes of the π-OBDD for f is the number si

of different subfunctions f|xπ(1)=a1,...,xπ(i−1)=ai−1 , a1, . . . , ai−1 ∈ {0, 1}, that es-
sentially depend on xπ(i) (a function g depends essentially on a Boolean vari-
able z if g|z=0 �= g|z=1).

Theorem 2 implies the following simple observation which is helpful in order to
prove lower bounds. Given an arbitrary variable ordering π the number of nodes
labeled by a variable x in the reduced π-OBDD representing a given function f
is not smaller than the number of x-nodes in a reduced π-OBDD representing
any subfunction of f .

It is well known that the size of an OBDD representing a function f , that is
defined on n Boolean variables and depends essentially on all of them, depends
on the chosen variable ordering and may vary between linear and exponential
size. Since in applications the variable ordering π is not given in advance we have
the freedom (and the problem) to choose a good ordering for the representation
of f .

Definition 3. The OBDD size or OBDD complexity of f is the minimum of
all π-OBDD(f).

2.2 Graph Representations by OBDDs

In the following for z = (zn−1, . . . , z0) ∈ {0, 1}n let |z| :=
∑n−1

i=0 zi2i. Let
G = (V,E) be a graph with N vertices v0, . . . vN−1. The edge set E can be
represented by an OBDD for its characteristic function, where XE(x, y) = 1 ⇔
(|x|, |y| < N)∧ (v|x|, v|y|) ∈ E, x, y ∈ {0, 1}n and n = +logN,. Undirected edges
are represented by symmetric directed ones. In the rest of the paper we assume
that N is a power of 2 since it has no bearing on the essence of our results.

Figure 1 shows an example of a directed graph G = (V,E), where |V | =
N = 23, and the OBDD representation for the characteristic function of its
edge set E (with respect to the variable ordering x0, y0, x1, y1, x2, y2). (Note,
that the represented graph G is only a toy example so that the difference in the
representation size is only small.)

3 OBDD-Based Reachability Analysis Needs Exponential
Space

In this section we prove Theorem 1 and show that OBDD-based reachability
analysis needs exponential space. The proof structure is the following one. First,
we define a sequence Gn of pathological graph instances. Gn is an input for the
reachability problem. We show that the size of the corresponding OBDD repre-
sentation for the characteristic function of its edge set is polynomial with respect
to the number of Boolean variables. Furthermore, we choose the vertex s which

228 B. Bollig

x0

y0y0

x1 x1

y1

x2

y2

y1

x2

y2

1 0

1

1

1

1

1

1

1

1

101

110

111

000

001

010

011

100

0 1

0

0

0 0

0

0

00

0 0 1

1

Fig. 1. A directed graph G = (V, E) together with an encoding of its vertices and the
corresponding OBDD representation of its edge set E

is also a part of the input in a clever way so that the characteristic function
of the vertex set R, that consists of all vertices reachable from the vertex s via
directed paths in Gn, is equal to a Boolean function called permutation test
function PERMn. The OBDD complexity of PERMn is known to be exponen-
tial [14,15]. Therefore, every OBDD-based algorithm that solves the reachability
problem needs exponential space with respect to its input size. Note, that this
result is independent of the chosen variable ordering for the output OBDD. Now,
we make our ideas more precise.

1. The definition of the input graph Gn:
The graph Gn consists of 2n2

vertices vi1,...,in , ij ∈ {0, . . . , 2n − 1} and
j ∈ {1, . . . , n}. All vertices vi1,...,in for which there exists an index ij where
ij is not a power of 2, j ∈ {1, . . . , n}, are isolated vertices with no incom-
ing or outgoing edges. A vertex vi1,...,in , where ij is a power of 2 for all
j ∈ {1, . . . , n}, has n − 1 directed outgoing edges. There exists an edge
(vi1,...,in , vl1,...,ln) in E iff there exists k ∈ {1, . . . n − 1} such that
i1 = l1, . . . , ik−1 = lk−1, ik = lk+1, ik+1 = lk, ik+2 = lk+2, . . . , in = ln. The
vertex s is equal to vi1,...,in , where i1, . . . , in are different powers of 2, i.e.,
ij := 2n−j .

The graph Gn can be described in the following way. If we write the bi-
nary representation of the indices ij , 1 ≤ j ≤ n, in a rowwise manner one
below the other such that the indices are represented by a Boolean matrix
of dimension n × n, the vertices that correspond to matrices where there

Symbolic OBDD-Based Reachability Analysis Needs Exponential Space 229

is not exactly one 1-entry in each row are isolated vertices. For the other
vertices there exists a directed edge from one vertex to another iff the binary
matrix representing the indices of one vertex can be obtained by exchanging
two neighbored rows in the matrix corresponding to the other vertex. The
vertex s corresponds to a matrix where there exists exactly one 1-entry in
each row and in each column. Such a matrix can be seen as an encoding
of a permutation π in Sn. For our construction this property is sufficient
for the definition of the distinguished vertex s. For a unique definition we
define s is such a way that the binary representation of s corresponds to the
permutation 1 2 . . . n.

2. The polynomial upper bound on the size of the OBDD representation for
the characteristic function of the edge set of Gn:

The characteristic function XE of the edge set depends on 2n2 Boolean
variables. Our aim is to prove that XE can be represented by OBDDs of
size O(n4) according to the variable ordering

x11, y11, x12, y12, . . . , xnn, ynn,

where xj1, . . . , xjn is the Boolean representation of the index ij and xjn the
least significant bit.

Theorem 2 tells us that it is sufficient to prove that there are only O(n2)
different subfunctions obtained by replacements of the first i variables with
respect to the considered variable ordering, i ∈ {0, . . . , 2n2 − 1}. Then we
can conclude that the OBDD size is at most O(n4) since there are only
2n2 variables altogether. Different subfunctions represent in a certian sence
different information about partial assignments to some of the variables. Let
x� = (x�1, . . . , x�n),
 ∈ {1, . . . , n}, and y� analogously defined. The OBDD
for XE checks whether x� = y� and x�1 + · · · + x�n = 1. This can be done
by a part of the OBDD of width 3. (Figure 2 shows an OBDD with respect
to the variable ordering x�1, y�1, . . . , x�n, y�n which represents the function
x� = y�.)

If xj = yj and xj1 + · · ·+xjn = 1 for j <
, x� �= y� but x�1 + · · ·+x�n = 1
and y�1 + · · · + y�n = 1, the values for x� and y� are stored, afterwards it
is checked whether x�+1 = y�, x� = y�+1, xi = yi, and xi1 + · · · + xin = 1
for i >
 + 1. The values are stored in the sense that partial assignments
corresponding to different values for x� and y� lead to different nodes in
the OBDD for XE . (The reason is that in this case different values for x�

and y� correspond to different subfunctions.) If all requirements are fulfilled,
the function value of XE is 1, otherwise it is 0. Since x� and y� are binary
representations of powers of 2, there are only

(
n
2

)
possibilities for different

values for x� and y�. (If one of them is not a power of 2 the function value
is 0 and we do not have to store anything.) Therefore, the different values for
x� and y� can be stored by a part of the OBDD with width

(
n
2

)
. Altogether

the width of the OBDD for XE is bounded above by O(n2). (Figure 3 shows
the first part of an OBDD for XE with respect to the considered variable
ordering and n = 3.)

230 B. Bollig

0

0

0

0

0 0

0 0

0

1

1

1

1

1

1

1

···

x�1

y�n

1

y�1y�1

0

0

y�2

x�2 x�2

y�2y�2

x�3 x�3

y�3 y�3y�3

y�n

Fig. 2. An OBDD that checks whether x� = y� and x�1 + · · · + x�n = 1. Missing edges
are leading to the 0-sink.

Since there are altogether 2n2 Boolean variables, the OBDD for the func-
tion XE has size at most O(n4).

3. The exponential lower bound on the size of the OBDD representation for
the characteristic function of the vertex set R:

It remains to show that the output XR has exponential OBDD complexity.
In [14,15] exponential lower bounds of Ω(n−1/22n) on the size of so-called
nondeterministic read-once branching programs representing the function
PERMn, the test whether a Boolean matrix contains exactly one 1-entry in
each row and in each column, have been presented. It is not difficult to see
that the characteristic function of the set R of reachable vertices from s in Gn

is equal to the function PERMn. The reasoning is the following. Since the
number of 1-entries in a column of a Boolean matrix does not change if rows

Symbolic OBDD-Based Reachability Analysis Needs Exponential Space 231

y11

0

0

0

0 0 0

0 0 0 0 0 0

0 0 0 0 0

0
0

0 0 0

1

1 1

1 1

1 1 1

1 1 1

1 1 1

⎡
⎣|x1| = 22

and
|y1| = 21

⎤
⎦

x11

x12x12

y12y12

x13x13

y13y13y13y13

x13x13

y12y12

x12

y12

x13

y13y13

x13 x13

y13y13

y12

x12

y11

x13

0

⎡
⎣|x1| = 22

and
|y1| = 20

⎤
⎦

⎡
⎣|x1| = 21

and
|y1| = 22

⎤
⎦

⎡
⎣|x1| = 20

and
|y1| = 22

⎤
⎦

⎡
⎣|x1| = 21

and
|y1| = 20

⎤
⎦

⎡
⎣|x1| = 20

and
|y1| = 21

⎤
⎦

⎡
⎣x1 = y1

and
x11+x12+x13 = 1

⎤
⎦

Fig. 3. The first part of an OBDD for the characteristic function of the edge set XE,
where n = 3 and the variable ordering x11, y11, x12, y12, x13, y13 Missing edges are
leading to the 0-sink. [. . .] contains the necessary and sufficient information about the
partial assignments to the variables x11, . . . , y13. Different information lead to different
subfunctions.

are exchanged, in Gn there are only directed paths from s to vertices whose
binary representations correspond to Boolean matrices with exactly one
1-entry in each row and in each column, i.e., the binary encodings correspond
to permutations in Sn. Moreover, each permutation π in Sn can be obtained
from 1 2 . . . n by using only swaps between two neighbored integers. As
a result we can conclude that there exists a directed path from s to a vertex
vi1,...,in iff the binary representation of i1, . . . , in corresponds to a Boolean
matrix with exactly one 1-entry in each row and in each column. Summa-
rizing XR is equal to PERMn. Since read-once branching programs are even
a more general model than OBDDs, we obtain the desired exponential lower
bound on the size of our output OBDD.

By simple variable replacements the reachability problem can be reduced to the
computation of an OBDD for all connected node pairs, the so-called transitive
closure. The problem is an important submodule in many OBDD-based
graph algorithms (see, e.g., [13,17,23]).

232 B. Bollig

Corollary 1. Let transitive closure be the problem to compute an OBDD rep-
resenting all connected node pairs for a graph symbolically represented by an
OBDD. The problem transitive closure is not computable in polynomial space.

If we replace the x-variables by the binary representation of the vertex s in an
OBDD for the characteristic function of the transitive closure of Gn, we obtain
an OBDD for PERMn. As we have mentioned before, Theorem 2 implies that
the OBDD size for a subfunction of a Boolean function f cannot be larger than
the OBDD size of f . Therefore, we are done.

Sawitzki [19] has commented that it is easy to show that the computation
of (strong) connected components in a (directed) graph is a problem which is
not computable in polynomial space for OBDD-based algorithms by looking at
graphs without any edges since then the number of (strong) connected compo-
nents is exponential with respect to the number of Boolean variables. Never-
theless, it would be nice to have an example for a graph where the
OBDD-representation is small but for which at least one connected component
has exponential OBDD-size. Obviously, our graphs fulfills the required proper-
ties. Let a connected component be non-trivial if it contains more than a single
vertex. Our graph Gn has 2n−1 non-trivial connected components.

4 Concluding Remarks

Representing graphs with regularities by means of data structures smaller than
adjacency matrices or adjacency lists seems to be a natural idea. But problems
typically get harder when their input is represented implicitly. For circuit repre-
sentations this has been shown in [1,10,16]. These results do not directly carry
over to problems on OBDD-represented inputs since there are Boolean func-
tions like some output bits of integer multiplication whose OBDD complexity
is exponentially larger than its circuit size [6]. In [9] it has been shown that
even the very basic problem of deciding whether two vertices s and t are con-
nected in a directed graph G, the so-called graph accessibility problem GAP,
is PSPACE-complete on OBDD-represented graphs. Despite the hardness re-
sults there are not many nontrivial lower bounds known for the complexity of
problems on OBDD-represented graph instances. The challenge is to prove small
upper bounds on the OBDD size of input graphs and simultaneously large lower
bounds on the size of OBDDs occuring during the computation. In [20] expo-
nential lower bounds on OBDD-based algorithms for the single-source shortest
paths problem, the maximum flow problem, and a restricted class of algorithms
for the reachability problem have been presented. We have extended these re-
sults by presenting a concrete exponential lower bound on the space complexity
of general OBDD-based algorithms for the reachability problem and the transi-
tive closure, where the input and the output OBDD can be ordered according
to different variable orderings.

Moreover, since the exponential lower bound on the representation size for the
permutation test function PERMn has been shown for so-called nondeterministic

Symbolic OBDD-Based Reachability Analysis Needs Exponential Space 233

read-once branching programs [14,15], our results do also carry over to a more
general model than OBDDs.

Acknowledgment. The author would like to thank the anonymous referees for
their helpful comments.

References

1. Balcázar, J.L., Lozano, A.: The Complexity of Graph Problems for Succinctly
Represented Graphs. In: Nagl, M. (ed.) WG 1989. LNCS, vol. 411, pp. 277–285.
Springer, Heidelberg (1990)

2. Bollig, B.: On the OBDD Complexity of the Most Significant Bit of Integer Multi-
plication. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS,
vol. 4978, pp. 306–317. Springer, Heidelberg (2008)

3. Bollig, B.: Larger Lower Bounds on the OBDD Complexity of Integer Multiplica-
tion. In: Dediu, A.H., Ionescu, A.M., Mart́ın-Vide, C. (eds.) LATA 2009. LNCS,
vol. 5457, pp. 212–223. Springer, Heidelberg (2009)

4. Bollig, B., Klump, J.: New Results on the Most Significant Bit of Integer Multipli-
cation. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS,
vol. 5369, pp. 883–894. Springer, Heidelberg (2008)

5. Bryant, R.E.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Trans. on Computers 35, 677–691 (1986)

6. Bryant, R.E.: On the Complexity of VLSI Implementations and Graph Repre-
sentations of Boolean Functions with Application to Integer Multiplication. IEEE
Trans. on Computers 40, 205–213 (1991)

7. Burch, J.R., Clarke, E.M., Long, D.E., Mc Millan, K.L., Dill, D.L., Hwang, L.J.:
Symbolic Model Checking: 1020 States and Beyond. In: Proc. of Symposium on
Logic in Computer Science, pp. 428–439 (1990)

8. Coudert, O., Berthet, C., Madre, J.C.: Verification of Synchronous Sequential Ma-
chines Based on Symbolic Execution. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407,
pp. 365–373. Springer, Heidelberg (1990)

9. Feigenbaum, J., Kannan, S., Vardi, M.V., Viswanathan, M.: Complexity of Prob-
lems on Graphs Represented as OBDDs. In: Meinel, C., Morvan, M. (eds.) STACS
1998. LNCS, vol. 1373, pp. 216–226. Springer, Heidelberg (1998)

10. Galperin, H., Wigderson, A.: Succinct Representations of Graphs. Information and
Control 56, 183–198 (1983)

11. Gentilini, R., Piazza, C., Policriti, A.: Computing Strongly Connected Components
in a Linear Number of Symbolic Steps. In: Proc. of SODA, pp. 573–582. ACM Press,
New York (2003)

12. Gentilini, R., Piazza, C., Policriti, A.: Symbolic Graphs: Linear Solutions to Con-
nectivity Related Problems. Algorithmica 50, 120–158 (2008)

13. Hachtel, G.D., Somenzi, F.: A Symbolic Algorithm for Maximum Flow in 0 − 1
Networks. Formal Methods in System Design 10, 207–219 (1997)

14. Jukna, S.: The Effect of Null-Chains on the Complexity of Contact Schemes. In:
Csirik, J.A., Demetrovics, J., Gecseg, F. (eds.) FCT 1989. LNCS, vol. 380, pp.
246–256. Springer, Heidelberg (1989)

15. Krause, M., Meinel, C., Waack, S.: Separating the Eraser Turing Machine Classes
Le, NLe, co-NLe and Pe. Theoretical Computer Science 86, 267–275 (1991)

234 B. Bollig

16. Papadimitriou, C.H., Yannakakis, M.: A Note on Succinct Representations of
Graphs. Information and Control 71, 181–185 (1986)

17. Sawitzki, D.: Implicit Flow Maximization by Iterative Squaring. In: Van Emde
Boas, P., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2004. LNCS,
vol. 2932, pp. 301–313. Springer, Heidelberg (2004)

18. Sawitzki, D.: Lower Bounds on the OBDD Size of Graphs of Some Popular Func-
tions. In: Vojtáš, P., Bieliková, M., Charron-Bost, B., Sýkora, O. (eds.) SOFSEM
2005. LNCS, vol. 3381, pp. 298–309. Springer, Heidelberg (2005)

19. Sawitzki, D.: Algorithmik und Komplexität OBDD-repräsentierter Graphen. PhD
Thesis, University of Dortmund, in German (2006)

20. Sawitzki, D.: Exponential Lower Bounds on the Space Complexity of OBDD-Based
Graph Algorithms. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS,
vol. 3887, pp. 781–792. Springer, Heidelberg (2006)

21. Sieling, D., Wegener, I.: NC-Algorithms for Operations on Binary Decision Dia-
grams. Parallel Processing Letters 48, 139–144 (1993)

22. Wegener, I.: Branching Programs and Binary Decision Diagrams – Theory and
Applications. SIAM Monographs on Discrete Mathematics and Applications (2000)

23. Woelfel, P.: Symbolic Topological Sorting with OBDDs. Journal of Discrete Algo-
rithms 4(1), 51–71 (2006)

A Social Vision of Knowledge Representation
and Reasoning

François Bry and Jakub Kotowski

Institute for Informatics, University of Munich
Oettingenstr. 67, 80538 München, Germany

http://pms.ifi.lmu.de

Abstract. Knowledge representation and reasoning so far have focused
on the ideal ultimate goal, thus stressing logical consistency and semantic
homogeneity. On the way to consistent and homogenous knowledge rep-
resentation and reasoning, inconsistencies and divergent opinions often
have to be dealt with. In this article, a social vision of knoweldge repre-
sentation is proposed which accomodates conflicting views that possibly
even result in logical inconsistencies; reasoning is used to track divergent,
possibly incompatible viewpoints. This approach to knowledge repsresen-
tation and reasoning has been developped for a social software, a social
semantic wiki.

1 Introduction

Traditionally knowledge representation and reasoning focuses on processing of
consistent data curated by experts in advance to conform to predfined schemes.
This paper explores the needs of social semantic software, such as semantic
Wikis, with respect to reasoning and knowledge representation. The phrase “Se-
mantic Wiki” can have two basic meanings [1]: “Wiki enhanced with semantic
technologies” and “Wiki for ontology engineers”. This paper is focused primar-
ily on the first sense. Several semantic Wikis were developed, e.g. [2,3,4,5], this
paper presents a part of work developed in the project KiWi – Knowledge in
a Wiki1 – which develops a social semantic platform inspired by Wikis and the
main application of which is a Wiki. In social software, knowledge representation
is usually restricted to keyword tagging. Traditional keyword tagging can be ex-
tended in a number of ways, some of which have been investigated previously
[6,7,8]. We are proposing a generalization of tagging which we call structured
tagging (section 3) to provide expressive power to casual users while maintaining
the simplicity of traditional tagging. Section 4 outlines how this formalism can
be used together with an inconsistency-tolerant rule-based language to “emerge
semantics” from user specified annotations with the help of rules. Finally, sec-
tion 5 shows how a rule-language about annotations can be extended to provide
further support of user-annotation and explanation by means of rule scopes and
tracking of origins of newly derived annotations. This work is related to CSCW2

1 http://www.kiwi-project.eu/
2 Computer-supported collaborative learning.

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 235–246, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.kiwi-project.eu/

236 F. Bry and J. Kotowski

but is more flexible, does not rely on complex prescribed knowledge and pro-
cess models. It is also closely related to work on collaborative learning with a
shared knowledge artifact (“trialogical learning”), as e.g. in [9], but the focus
is more specifically on supporting collaboration through automated reasoning.
The concept of shared understanding is found to be very important for collabo-
rative learning (both in synchronous learning e.g. for educational purposes and
in asynchronous settings where information exchange is the main goal), see for
example [10,11] for more details. In this paper we use a similar in spirit but
more technical, annotation-based notion of shared understanding which is also
close to a kind of social provenance information that [12] calls for. To the best
of our knowledge there is currently little or no research on rule-based languages
for social semantic environment.

2 Motivation

KiWi is an enterprise social platform that should support knowledge workers in
their varied, creative work which does not adhere to predefined schemes (e.g.
ontologies) and involves inadvertent transient inconsistencies. Inconsistencies
are even desirable in creative process. An enterprise social semantic application
should support such work and should not hinder it by enforcing unnecessary
constraints. Concepts and schemes should emerge, inconsistencies should be tol-
erated, and users should be supported in discovering them and resolving them.

Knowledge representation and reasoning the Wiki way. Traditionally, knowl-
edge is represented in complex formalisms by experts cooperating with domain
experts. Such an approach is neither possible nor desirable in social software.
Casual users should be able to semantically enrich content. The approach we sug-
gest is to provide users with a means of creating annotations which can be made
gradually more formal and precise and which can accomodate inconsistencies
and incompatible viewpoints.

Emergent semantics: from informal to formal knowledge representation. Tradi-
tional approaches to knowledge representation impose a rigid prior structure on in-
formation. In contrast, collaborative tagging leads to emergence of folksonomies3

advantages of which over predefined taxonomies have been discussed before. We
argue that, given proper tools, user collaboration can gradually lead to seman-
tically rich structures. We suggest that the right tools are structured tags and
inconsistency-tolerant rule-based reasoning which can accomodate both formal
(e.g. RDF/S) and informal (e.g. simple tags and structured tags) annotations.

Negative information. In real life, people are used to working with negative in-
formation. We suggest negative tagging as a way to express negative information
in KiWi. For example someone can tag a page as “–risky” to express that in his

3 We use the word folksonomy to mean a user-generated taxonomy. Folksonomy is im-
plicitly present in the bag of all tags but can also be extracted and represented the
way traditional taxonomies are represented.

A Social Vision of Knowledge Representation and Reasoning 237

or her opinion that the project described on the page is not risky. A manager
could be interested in finding all projects that are not risky and have not been
reviewed yet. This query refers to explicitly assigned negative tag “–risky” (ex-
plicit negation) and to a missing tag “reviewed” (negation as failure). We argue
that users will benefit from both kinds of negations as they increase expressivity
of the knowledge representation formalism.

3 Conceptual Model

This section shortly reviews the basic concepts a user will interact with within
the KiWi system, focus is on concepts most relevant to reasoning. It is based
on work published in [13], refer there for a detailed discussion of the conceptual
model.

Content Items. Content items, the primary unit of information in the KiWi
wiki, are composable, non-overlapping documents. Every content item has
a unique URI and can be addressed and accessed individually. As a consequence,
there is by default no inherent distinction between Wiki pages and content items.

Annotations. Annotations are meta-data that can be attached to content items
and which convey information about their meaning or properties. Annotations
can be assigned by the user, either manually or via rules. Content items and tag
assignments also have system meta-data such as their creation date and their
author(s). There are three kinds of annotations: simple tags, structured tags, and
RDF triples whereas simple tags can be seen as a special case of structured tags.
Tags allow to express knowledge informally, that is, without having to use a pre-
defined vocabulary. RDF triples are used for formal knowledge representation,
possibly using a pre-defined vocabulary. Structured tags can serve as a step
in-between: they are structured but not yet formal.

RDF. The KiWi system chooses the RDF/S language [14,15] to specify its on-
tologies [16] because it is in many ways simpler than OWL [17] and yet it is
sufficient for most purposes in KiWi. Simple and structured tags are represented
in RDF using a predefined vocabulary in order to make them accessible to se-
mantic querying and reasoning.

Tags. For the purpose of this paper we identify a tag with the content item
that (optionally) describes it. Therefore each tag has a unique URI and can be
referred to by its name (label) which can be disambiguated by cooperation of
the user with the system.

Tagging. The assignment of a tag, a tagging, means the association of a content
item with a tag and a user (who assigned the tag). The assignment additionally
includes maintenance information. A tagging is thus a tuple consisting of a tag,
a user, the tagged page, and maintenance information needed for a processing
of taggings such as information about the origin of the tagging, the date when
the tagging was created, a marker which allows to distinguish between explicit,
derived, and system taggings. Tagging can be either positive or negative. This

238 F. Bry and J. Kotowski

is distinguished by a polarity property. Negative taggings are displayed with
a minus (“–”) sign directly in front of their tag label.

Negative taggings. Although negative tagging could be seen as classical negation,
it in fact is only a very weak form of classical negation because only pure taggings
can be negated, not general formulae (or sets of taggings), and the only way to
interpret this kind of negation is by introducing a rule which says that from
tagging “t” and tagging “–t” a contradiction symbol should be derived.

Structured tags. Structured tags can be used as an intermediate step between
simple tags and formal RDF annotations. Two basic operations lie at the core
of structured tagging: grouping and characterization. Grouping, denoted “()”,
allows to relate several (complex or simple) tags using the grouping operator.
The group can then be used for annotation. Example: a Wiki page describes
a meeting that took place in Warwick, UK and involved a New York customer.
Using atomic tags, this page can be tagged as “Warwick”, “New York”, “UK”
leaving an observer in doubts whether “Warwick” refers to the city in UK or to
a town near New York. Grouping can be used in this case to make the tagging
more precise: “(Warwick, UK), New York”. Note that, if Warwick was already
defined in RDF, it could be disambiguated using its URI. Structured tags help
when concepts are undefined and thus have no URI yet.

Characterization enables the classification or, in a sense, naming of a tag. The
characterization operator, denoted “:”, can be used to make the tagging even
more precise. For example, if we wanted to tag the meeting Wiki page with a
geo-location of the city Warwick, we could tag it as “(52.272135, -1.595764)”
using the grouping operator. This, however, would not be sufficient as the group
is unordered. Therefore we could use the characterization operator to spec-
ify which number refers to latitude and which to longitude: “(lat:52.272135,
lon:-1.595764)” and later perhaps specify that the whole group refers to a geo-
location: “geo:(lat:52.272135, lon:-1.595764)”.

An important feature of structured tagging is that it allows users to work with
concepts which are not fully clear. Users can begin with only a set of tags, later
group them and only then realize that they, in fact, are describing a specific
concept. In contrast, a formalism such as RDF/S makes its users to think in
terms of concepts or classes from the very beginning and therefore constrains
them in cases when the concepts are not yet clear.

The meaning of a structured tagging rests, for the most part, on the user who
specified it. Structured tags do not impose strict rules on their use or purpose,
they only allow users to introduce structure into taggings. It can be seen as
a Wiki-like approach to annotation which enables a gradual, bottom-up refine-
ment process during which meaning emerges as the user’s work and understand-
ing develop.

Minimal rules are, however, necessary in order to ensure a flexible, useful order
and to avoid unfruitful chaos. Grouping can be applied on positive and negative
simple tags and groups. Groups are unordered, cannot contain two identical
members (e.g. “(Bob, Bob, Anna)” is not allowed), can be nested, are equal to a
tag when the tag is the only one in the group, i.e. “(Anna)” is equal to “Anna”.

A Social Vision of Knowledge Representation and Reasoning 239

Characterization can be used on positive and negative atomic tags and groups.
Characterization is not commutative, i.e. “geo:x” is not the same as “x:geo”.
Structured tags have to be syntactically correct, e.g. “Bob:190cm,90kg” is not a
valid structured tag.

The above described way of structuring geo-location is only one of several.
Other may include: “geo:(x:y):(1,23:2,34)” or “geo:1,23:2,34”, and many more.
This heterogeneity is an advantage. It provides users with freedom and it can
be beneficial for different communities to encode similar kinds of information
differently as the precise meaning of a similar concept may differ. Consider e.g.
geo-tagging using different coordinate systems in different communities – dif-
ferent geo-tagging encoding would facilitate automatic translation of structured
tags to formal annotations because it would allow to distinguish the two concepts
structurally.

4 A Social Approach to Knowledge Representation –
Emergent Semantics

Structured tags allow users to enrich ordinary tags by structuring them in order
to clarify their context or qualify the thought statement that the tag is supposed
to express. These structural hints can then be used to translate structured tags
to formal RDF annotations via rules that specify their mapping to a predefined
ontology. The advantage is that the simplicity of tagging is preserved: users can
first tag and make the tagging more precise only later and eventually map it to
a formal annotation. The approach could thus be summarized as “Tag, Think,
Qualify, Map” – a cycle consisting of four steps. Let us take a look at an example.

Consider an enterprise Wiki in which each employee has a profile
page. Alice, a junior assistant from the HR department of a company, has just
hired a new employee, Bob. She creates a new page in the Wiki for Bob and
decides to tag it with a few pieces of information about him. She assigns two
tags to the page: “manager” and “programmer” because it is what came to
her mind first. Later she realizes that the tagging can be confusing. Therefore
she qualifies the tags to make it apparent that Bob is a manager with a pro-
gramming background: “position:manager”, “experience:programmer”. Claire,
a more experienced colleague of Alice, notices Alice’s tags and lets her know
about a new Wiki feature that their IT team is about to introduce. It is an
org-chart widget that, given a name of an employee, displays the name of his or
her manager and employees which report to him or her. The widget would be
a nice addition to profile pages, so Alice and Claire talk to a contact from the
IT department to ask how to include it. It turns out to be rather easy. The Wiki
will automatically display the org-chart on any user page. User page is a page
with type ucont:Employee defined in the company’s UCONT4 RDF/S ontol-
ogy. Therefore all it takes to use the widget is to create a new rule in the Wiki:
position : manager→ rdf : type ucont : Employee. It translates each structured

4 UCONT stands for “use-case ontology.”

240 F. Bry and J. Kotowski

tag “position:manager” to a formal RDF annotation “rdf:type ucont:Employee”.
Alice and Claire don not have to learn anything about ontologies and RDF/S
and they still can indirectly enrich the Wiki content with formal annotations.
Maybe, in the future, another widget will be able to summarize skills of an
employee in which case Alice and Claire will benefit from their distinguishing
between e.g. “experience:programmer” and “position:programmer”.

This admittedly simplified example indicates how knowledge can emerge from
initial tagging and user collaboration inside and outside a Wiki environment
by taking advantage of structured tags and rules.5 Rules could of course be
more sophisticated. In the above scenario users could add the rule: “type :
$TypeName → ucont : $TypeName” and use simple structured tags of the
form “type:typeName” to specify RDF/S types from the company’s predefined
ontology. Using similar rules, user taggings could be enriched with information
from e.g. a SKOS6 thesaurus.

5 A Social Approach to Automated Reasoning

Reasoning suitable for social software such as Wikis should be in line with their
main defining traits: simplicity and collaboration. This section proposes an ap-
proach to automated reasoning which supports users collaboration and facilitates
user understanding of reasoning.

5.1 Shared Understanding

During collaborative work it is important that every member knows what other
members think about a subject in question. In a Wiki-like environment, col-
laboration takes place in and around content items. Users’ understanding of
a content item in KiWi can be expressed via annotations. Therefore the set of
annotations of an item could be seen as the shared understanding of the item of
all users who annotated it. Inconsistencies found within a shared understanding
may be indicative of disagreements or misunderstandings of the item between
the users. Such inconsistencies can be important for the future success and ef-
ficiency of the collaborative effort. The reasoning we propose is able to work
in presence of inconsistencies and to point them out to users. Note that incon-
sistencies can emerge through constraint rules, are treated as special symbols
that can be derived but cannot be matched in rule bodies and thus the classical
principle “ex falso quodlibet” (anything can be inferred from a contradiction) is
avoided (see [18] for details).

Often it is also important to know who worked on what topic, who approved
which content item or who agreed with something. The reasoning system we
5 Note that structured tags are only an unrestrictive formalism. The actual imple-

mentation is likely to provide a more convenient UI metaphor for them than textual
which should also allow for easy continuous development of existing annotations.

6 SKOS stands for Simple Knowledge Organization System – a data model to support
the use of thesauri and other classification schemes, see
http://www.w3.org/2004/02/skos/

http://www.w3.org/2004/02/skos/

A Social Vision of Knowledge Representation and Reasoning 241

propose will keep track of how which annotation originated – depending on which
users and which content-items. Therefore the system is capable of answering
questions such as: “What are the inconsistencies stemming from annotations
originating in content items X, Y, and Z?” and “What follows from information
entered by Alice, Bob, and Claire?”

Authorship of derived annotations. The author of a derived annotation is defined
as the author of the rule by which the annotation was derived. An annotation
may be derived based on annotations by multiple users – this kind of information
is called the user-origin of the annotation. Similarly, the content-item origin
of an annotation contains information about which content-items the derived
annotation depends on.

5.2 Rule Scope

In professional context the quality and source of information is often very impor-
tant. For collaborative work it means that it can be effective only when people
know with whom they collaborate. Consider the example from the previous sec-
tion again. It could be the case that only the marketing department is allowed to
decide which bugs must be fixed. Rule R2 should therefore apply only to tags by
users who work in the marketing department; the rule’s scope should be limited
only to marketing users.

Limiting the rule scope with respect to users is only one of several options.
Rule scope restricts a rule to only certain data. Data in a Wiki are usually
created by users and divided into pages. Therefore, content items are another
candidate for a rule scope.

User scope and content item scope. Users and content items are the most impor-
tant candidates for rule scope in KiWi. After all, almost everything in KiWi is
represented by a content item, including users. However, a distinction has to be
made between users and content items with respect to scope. Restricting a rule
to a set of users understood as a set of content items would restrict them to the
actual content items and not to the tags entered by these users.
Other notions of scope. There could be other candidates for a rule scope, notably
time – to restrict a rule to only a certain period of time. There is, however,
a significant difference between time as scope and users or content items as scope.
Users and content items are a kind of provenance data of derived annotations
meaning that they change according to who and where created the annotations
used in the rule antecedent. Time, in contrast, does not propagate via rules.
This means that while a rule with a time scope can easily be rewritten to an
equivalent rule without time scope, it is not as simple in the case of rules with
a user or content item scope. Such rules still could possibly be rewritten but
they would necessarily have to “walk the tag dependency tree” and gather all
the (user and content item) information on the way. This would have to be
done before each rule application for each tag. So, at the very least, it would be
inefficient. Therefore a further support from the rule language and reasoning is
necessary for efficient evaluation of rules with user and/or content item scopes.

242 F. Bry and J. Kotowski

The focus in the following is therefore on user and content item scopes as they
are more than a mere syntactic sugar.

Extensional vs. intensional scope. So far, it was silently assumed that the user
and content item scope is defined extensionally, i.e. that it consist of an explicit
list of users and an explicit list of content items. The groups could also be defined
intensionally: a rule could be meant to be applied only to tags by managers
who have worked for the company for at least three years. The KiWi system
will support extensional scopes. Intensional groups remain as a possible future
extension because they can increase the amount of interdependencies between
rules and in a language with negation as failure lead even to reasoning loops. In
the following text, the words group and scope refer to the extensional meaning
unless stated otherwise.

Fig. 1. A scenario illustrating how rule scope affects negation as failure. The ap-
plied rule is “(not reviewed → toReview)WithScopeMarketing”, where Marketing =
{Melissa, John}.

Rule scope and negation as failure. Rule scope limits rule application to only
certain data. Negation as failure in a rule is also subject to this limitation. See
Figure 1. If a rule, such as rule R1, with negation as failure has scope consisting of
two users, Melissa and John, then a negated tag in the rule body will be satisfied
even if there exists this tag but is assigned by someone else than Melissa or John.
In the scenario in Figure 1, Patrick tags content item “Ci1” as “reviewed” which
does not lead to removal of the tag “toReview” because Patrick is not in the scope
of rule R1. The “toReview” tag is removed only after Melissa tags the content
item as “reviewed”. Rule scope in combination with negation as failure therefore
leads to a concept similar to Axel Polleres’s scoped negation as failure [19].

5.3 Computing Shared Understanding

Shared understanding of a group of users of a group of content items is the
set of all tags of these content items assigned by these users. Knowing what
a shared understanding looks like may help users to assess the influence a group
of users or a group of content items has on the overall state of knowledge. Thus,

A Social Vision of Knowledge Representation and Reasoning 243

shared understandings can play the role of additional explanation of the system
behaviour. This section outlines how shared understandings can be computed in
an efficient fashion. For space reasons, only user-origin of annotations is discussed
in detail, for content-item-origins analogical analysis can be made.

Definition 1. Author of an explicit annotation is the user who assigned the
annotation. Author of an implicit annotation is the user who created the rule by
which the annotation was derived.

User-origin of an annotation consists of all the users based on whose annotations
the annotation was derived. As there can be multiple ways to derive a certain
annotation, the user-origin can consist of multiple sets of users.

Definition 2. User-origin of an annotation is a set of sets of users. User-origin
of an explicit annotation t, denoted UO(t), is a set containing a singleton set
containing the author of the annotation. User-origin of an implicit annotation t,
UO(t), derived via rule B → t, where t1, ..., tn are all annotations in the rule
body B, is

UO(t) =

{
n⋃

i=1

si|s1 ∈ UO(t1) and . . . and sn ∈ UO(tn)

}
.

Consider the following example: UO(bug) = {{Melissa}}, UO(−processed) =
{{John}}. The user-origin of the “todo” tag derived by rule bug∧−processed→
todo is then UO(todo) = {{Melissa, John}}. If, in addition, it was possible to
derive the tags “bug” and “-processed” by other rules and taggings by John’s
and Melissa’s colleagues Alice and Bob and the user-origins were UO(bug) =
{{Melissa}, {Alice,Bob}} and UO(−processed) = {{John}, {Alice}} then the
origin of “todo” would be

UO(todo) = {{Mel., John}, {Mel., Alice}, {Alice,Bob, John}, {Alice,Bob}} .

UO(t) intuitively consists of such “groups” of users where each group “agrees
on / supports” the annotation t. Or in other words: the distributed knowledge7

of each group of users from UO(t) implies the annotation t.

Definition 3. Shared understanding of a set of users U of a set of content
items C, designated SU(U,C), is

SU(U,C) = { t | t ∈ A(C) and (∃s ∈ UO(t))s ⊆ U} ,

where A(C) is a set of annotations assigned to content items C. It is a set of
annotations where the user-origin set of each annotation contains a set which is
a subset of U .

User-scope of a rule is a set of users. Each rule has a user-scope. The default
user-scope is the set of all users.
7 In the modal logic sense.

244 F. Bry and J. Kotowski

Looking at the above example (by Definition 2), it is easy to see that tracking
origins can lead to a combinatorial explosion if all possible combinations users
and all possible combination of content items are tracked. For n users there are
n! possible user-origin sets. On the one hand, users can ask a question about any
of these user-origin sets, on the other hand, it is likely that they are interested
mainly in the sets that correspond for example to teams of their company. A team
is basically a group of employees, in our case that would be a group of users.
It is likely that teams would be defined as groups of users in an enterprise
Wiki. Therefore, it is reasonable to focus on tracking origin-sets with respect
to predefined groups of users and content items. This way the combinatorial
explosion can be avoided while providing the same functionality to users.

User-origin sets with groups. When tracking user-origin sets using groups, the
way of computing the origin sets is basically the same, only each origin set is
replaced by the smallest predefined “group” which subsumes the origin set8. The
user-origin set is then a set of predefined groups. For this to work correctly and
as expected, a number of groups (from the full lattice of groups) has to be added.
First, a group containing all users has to be added to the predefined groups so
as to ensure that there always is a smallest encompassing group. Also, a group
for each single user needs to be added as it is natural to require that user-scopes
are possible to define for single users too.

With groups, the shared understanding of a set of users U can be computed
the same way as in Definition 3 as long as the set of users U is one of the
predefined groups. If the set of users is not one of the predefined groups then:

SU(U,C) =
⋃
i∈I

SU(Gi, C) � (Gi ∩ U) , (1)

where |Gi ∩ U | ≥ 1 for all i ∈ I, Gi are all the predefined groups, and A � G
filters out all annotations from the set of annotations A the user origin-set of
which does not contain a set which is a subset of G, and A � ∅ = ∅. Equation 1
is correct under the assumption that each rule has one of the predefined groups
as a user-scope (because then if U has a subset U ′ which is not subset of any Gi

then there are no derivations dependent on tags by users U ′). A consequence
of this assumption is that the administrator of the system can influence what
gets precomputed by creating predefined groups. The assumption could be gen-
eralized to allow the scope to be a set of groups. This would allow the user to
restrict a rule to a combination of teams (resp. teams and employees) instead of
restricting it to a single group.

Content-item origins with groups. Content-item origins can be adapted in a sim-
ilar way to allow to work with groups of content-items. A group of content items
could be imagined as a working space of a group of users which is separate from
other content items with respect to annotations and other users. In this sense,
each group of content items could be seen as a “knowledge space” - a closed
group of content items “generating knowledge” which is self-contained: depends

8 This is correct if each rule scope is one of the predefined groups.

A Social Vision of Knowledge Representation and Reasoning 245

only on these and no other content items. If the KiWi system included a mech-
anism for dividing pages into strictly separate groups (e.g. with different access
rights, etc.), the mechanism of content-items groups as rule scope would allow
to ensure this separation at the level of reasoning too.

5.4 Explanation

Explanation is a desirable feature of a user-friendly system enhanced with reason-
ing. The approach to explanation and user-friendliness in KiWi is manifold and in-
herent in the general approach. Zacharias [20] points out four principles for building
tool support for the creation of rule bases: interactivity, visibility (users should be
informed about possible rule interactions), declarativity (all aspects or rule-base
development should be declarative, i.e. including “debugging”), modularization
(prevention of unintended interaction by providing means to modularize the rule
base). The KiWi reasoning and explanation system tries to build on these princi-
ples. For example rule scope helps to modularize the rule base by limiting possible
rule interactions. There are plans to support true modularization – of the rule base
and of the knowledge base. Modularization of knowledge base is one step towards
providing higher efficiency and therefore responsiveness and interactivity of the
system as a set of rules will operate only on a specific, relevant part of the whole
knowledge base (determined by the author of the rules). Of course, this is com-
plemented by an explanation system which presents an interactive, pre-processed
derivation tree of any derived annotation or inconsistency. In addition to a deriva-
tion tree, origins of derived facts are displayed too so that users can spot possible
culprits of conflicts and inconsistencies more easily.

6 Conclusion

In this paper we presented a rule-based language about annotations suitable for
a social semantic environment such as semantic Wikis. The approach stresses the
importance of user-friendliness and lenience of both the formalism and reasoning
by tolerating inconsistencies, allowing rules about not fully specified semi-formal
annotations (structured tags) and we also show how simple explanations can be
enhanced and enriched.

Acknowledgements. The research leading to these results is part of the project
“KiWi - Knowledge in a Wiki” and has received funding from the European Com-
munity’s Seventh Framework Programme (FP7/2007-2013) under grant agree-
ment No. 211932.

References

1. Krötzsch, M., Schaffert, S., Vrandecic, D.: Reasoning in Semantic Wikis. In: Rea-
soning Web Summer School 2007, pp. 310–329 (2007)

2. Auer, S., Dietzold, S., Riechert, T.: Ontowiki - a Tool for Social, Semantic Col-
laboration. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika,
P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 736–749.
Springer, Heidelberg (2006)

246 F. Bry and J. Kotowski

3. Oren, E.: Semperwiki: a Semantic Personal Wiki. In: Proceedings of 1st Workshop
on The Semantic Desktop - Next Generation Personal Information Management
and Collaboration Infrastructure, Galway, Ireland (2005)

4. Schaffert, S., Westenthaler, R., Gruber, A.: Ikewiki: A User-Friendly Semantic
Wiki. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011. Springer,
Heidelberg (2006)

5. Popitsch, N., Schandl, B., Amiri, A., Leitich, S., Jochum, W.: Ylvi - Multimedia-
izing the Semantic Wiki. In: Proceedings of the 1st Workshop SemWiki 2006 -
From Wiki to Semantics, Budva, Montenegro (2006)

6. Bar-Ilan, J., Shoham, S., Idan, A., Miller, Y., Shachak, A.: Structured vs. Unstruc-
tured Tagging a Case Study. In: Proceedings of the WWW 2006 Collaborative Web
Tagging Workshop (2006)

7. Sereno, B., Shum, B., Motta, E.: Formalization, User Strategy and Interaction
Design: Users’ Behaviour with Discourse Tagging Semantics. In: Proceedings of
the Workshop on Social and Collaborative Construction of Structured Knowledge,
WWW 2007 (2007)

8. Yang, J., Matsuo, Y., Ishizuka, M.: Triple Tagging: Toward Bridging Folksonomy
and Semantic Web. In: ISWC 2007, p. 14 (2007)

9. Tzitzikas, Y., Christophides, V., Flouris, G., Kotzinos, D., Plexousakis, D.,
Spyratos, N.: Emergent Knowledge Artifacts for Supporting Trialogical E-Learning.
International Journal of Web-based Learning and Teaching Technologies 3, 19–41
(2007)

10. Mulder, I., Swaak, J., Kessels, J.: Assessing Group Learning and Shared Under-
standing in Technology-Mediated Interaction. Educational Technology & Society 1,
35–47 (2002)

11. Hinds, P., Weisband, S.: 2. Virtual Teams that Work: Creating Conditions for
Virtual Team Effectiveness. Jossey-Bass (2003)

12. Harth, A., Polleres, A., Decker, S.: Towards a Social Provenance Model for the
Web. In: Workshop on Principles of Provenance (PrOPr), Edinburgh, Scotland
(2007)

13. Bry, F., Eckert, M., Kotowski, J., Weiand, K.: What the User Interacts with:
Reflections on Conceptual Models for Sematic Wikis. In: Proceedings of the Fourth
Semantic Wiki Workshop (SemWiki 2009), ESWC 2009 (2009)

14. Manola, F., Miller, E.: Rdf Primer (2004)
15. Brickley, D., Guha, R.: Rdf Vocabulary Description Language 1.0: Rdf Sschema

(2004)
16. Gruber, T., et al.: A Translation Approach to Portable Ontology Specifications.

Knowledge Acquisition, p. 199 (1993)
17. McGuinness, D.L., van Harmelen, F.: Owl Web Ontology Language Overview

(2004)
18. Bry, F., Kotowski, J.: Towards Reasoning and Explanations for Social Tagging. In:

Proc. of ExaCt 2008 - ECAI 2008 Workshop on Explanation-Aware Computing.
Patras, Greece (2008)

19. Polleres, A., Feier, C., Harth, A.: Rules with contextually scoped negation. In:
Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 332–347. Springer,
Heidelberg (2006)

20. Zacharias, V.: Tackling the Debugging Challenge of Rule Based Systems. In: Fil-
ipe, J., Cordeiro, J. (eds.) ICEIS 2008. LNBIP, vol. 19, pp. 144–154. Springer,
Heidelberg (2009)

Flavors of KWQL, a Keyword Query Language
for a Semantic Wiki

François Bry and Klara Weiand

Institute for Informatics, University of Munich
Oettingenstr. 67, 80538 München, Germany

http://pms.ifi.lmu.de

Abstract. This article introduces KWQL, spoken “quickel”, a rule-
based query language for a semantic wiki based on the label-keyword
query paradigm. KWQL allows for rich combined queries of full text,
document structure, and informal to formal semantic annotations. It of-
fers support for continuous queries, that is, queries re-evaluated upon
updates to the wiki. KWQL is not restricted to data selection, but also
offers database-like views, enabling “construction”, the re-shaping of the
selected (meta-)data into new (meta-)data. Such views amount to rules
that provide a convenient basis for an admittedly simple, yet remarkably
powerful form of reasoning.

KWQL queries range from simple lists of keywords or label-keyword
pairs to conjunctions, disjunctions, or negations of queries. Thus, queries
range from elementary and relatively unspecific to complex and fully
specified (meta-)data selections. Consequently, in keeping with the “wiki
way”, KWQL has a low entry barrier, allowing casual users to easily
locate and retrieve relevant data, while letting advanced users make use
of its full power.

1 Introduction

Wikis are a popular tool for managing personal and professional knowledge.
Wiki content usually consists of simple hypertext documents, that is, web pages
which are connected through simple hyperlinks.

In traditional wikis, knowledge is expressed mostly as natural language text and
is not directly amenable to automated semantic processing. Therefore, knowledge
in wikis can be located only through full-text keyword search or simple (mostly
user-generated) structures like tables of content and inter-page links. More sophis-
ticated functionalities such as querying, reasoning and semantic browsing, highly
desirable in knowledge intensive, professional contexts such as software develop-
ment and project management, are not provided.

Semantic wikis promise to provide at least some of these enhancements by
relying on so-called semantic technologies, that is knowledge representation for-
malisms and automated reasoning methods. Semantic wikis add to conventional

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 247–258, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

248 F. Bry and K. Weiand

wikis informal tags and –more or less sophisticated– formal languages for ex-
pressing knowledge as annotations to (textual as well as multimedia) wiki pages
that are machine processable. These annotations can range from informal, freely
chosen tags to semi-formal tags selected from a pre-defined vocabulary to for-
mal concepts and relationships from an ontology. Thus, semantic wikis are often
referred to as “wikis enhanced with semantic technologies” or, after [19], “se-
mantics for wikis”. Semantic wikis have also been called “Semantic Web in the
small” [7]. On the other hand, semantic wikis are also used as wikis for knowl-
edge engineering, that is, ontology editors of some kind, or after [19], “wikis for
semantics”. This article uses the term “semantic wiki” in the first sense.

If the data include not only text but also informal and formal semantic an-
notations, then querying necessarily becomes a difficult task – so at least a
conventional wisdom. Conventional web query languages [3] [13] are tools for
precise data selection and processing by informed users. As such, they are no
candidate query languages for a wiki which is a social application where users
should be able to locate content without investing much time or effort.

In line with this reasoning, easier to use query language for semi-structured
data aimed at casual users have been developed, often using keywords to express
queries. Queries in these languages are usually very simple and imprecise, infor-
mation retrieval techniques such as fuzzy matching and ranking are consequently
used to find documents relevant to the query. While this practice is suitable and
convenient for helping casual users retrieve content, the expressive power of such
languages is limited. This means that the exact selection of data according to
complex criteria is not possible.

KWQL aims to fill the gap between these two kinds of query languages that
becomes evident in the social semantic web where selecting data (and being
able to do so with precision) is an essential task but where not all users can be
expected to be querying experts.

In this article, we introduce KWQL, a query language under development
for the semantic wiki KiWi 1. KWQL refutes the above-mentioned conventional
wisdom by relying on the label-keyword query paradigm to allow for selections
from full text, from semantic annotations and structure-based selection. Fur-
thermore, following the concept of database views, KWQL offers means not only
for selections, but also for “constructions”, that is the re-shaping of the selected
(meta-)data into new (meta-)data.

The contributions of this article are: (1) Requirements for a wiki query lan-
guage (2) The syntax of a versatile rule-based label-keyword query language
fulfilling these requirements.

The remainder of this article is organized as follows: Section 2 gives and
overview over the conceptual model of the KiWi wiki. Section 3 outlines the re-
quirements for a Semantic wiki query language. Section 4 uses example queries
to introduce KWQL, Section 5 gives an outlook on query evaluation and func-
tionality to be added in the future. Section 6 presents related work and gives
a conclusion.

1 http://kiwi-project.eu

Flavors of KWQL, a Keyword Query Language for a Semantic Wiki 249

2 Conceptual Model

In the KiWi wiki, information is represented in the form of content items, links
between content items, annotations, meta-data and the structure of content
items and fragments.

Content items. Content items, the primary unit of information in the KiWi
wiki, are composable documents. A content item may consist of a sequence
of (included) content items, for example a chapter may consist of a sequence
of paragraphs. For reasons of simplicity, content item composition precludes
any form of overlapping or of cycles. Thus, content item composition provides
a conventional structuring of documents and a content item can be seen as
a tree (of content items). Atomic content items may consist of either text or
multimedia. A content item is directly addressable by a unique URI. There is no
inherent distinction between wiki pages and content items, or rather, by default,
all content items are wiki pages. Root nodes, that is, content items that are
not embedded in another content items, then have a special status in that they
encompass all content that forms a cohesive unit. In this, they can be seen as
being alike to a wiki page in a regular wiki.

Fragments. Text Fragments are continuous portions of text that can be anno-
tated. Text fragments are useful for –especially collaborative– document editing
for adding annotations like “improve transition”, “style to be polished” or “is
this correct?”. For the purpose of this article, it is assumed that fragments can
be nested but do not overlap and do not span over content items. Fragments
of this kind are generally desirable, but are problematic with respect to query
evaluation.

Links. Links, that is simple hypertext links as in HTML, can be used for relating
content items to each other. Links have a single origin, which is a content item,
an anchor in this origin, and a single target, which is also a content item. Links
can be annotated.

Annotations. Annotations are meta-data that can be attached to content items
and links. Two kinds of annotations are available: tags and RDF triples. Tags al-
low to express knowledge informally, that is, without having to use a pre-defined
vocabulary, while RDF triples are used for formal knowledge representation,
possibly using an ontology or other application-dependent vocabulary.

Tag syntax and normalization are of significant practical concern but irrele-
vant to the present paper, thus not addressed in the following.

In the KiWi wiki, annotations can be in the form of –simple or complex– free
tags or RDF, but regular users are generally not confronted with RDF, which
is considered an enhancement for experienced users. However, querying RDF
annotations will be supported in KWQL at a later point.

System meta-data. Finally, content items and tag assignments have system meta-
data. These meta-data are automatically generated by the system and cannot
be edited by the user. System meta-data represent for example the creation and
last edit date and the author(s) of a content item or tagging.

250 F. Bry and K. Weiand

In the following, resources refers to the basic concepts in the data model –
content items, links, fragments and tag assignments (referred to as “tag”)– and
qualifiers refers to properties of resources like their meta-data and tags.

3 Requirements for a Wiki Query Language

Low Entry Barrier. A wiki query language should reflect the “wiki way” [21],
that is, have a low entry barrier, enabling users to find the information they
need without forcing them to undergo extensive training. Searching for wiki
pages containing a string, say “query language”, should be expressible as this
very keyword query, “query language”. A more complex syntax might become
necessary as more complex selections are expressed – but only in such cases. The
transition between simple and complex queries should be smooth and flexible.
Conventional web query languages [3] [13] are no candidate query languages
for a wiki: With such languages, for example XPath [9] and XQuery [8], even
elementary keywords selections turn out to be complex and demanding.

Full Awareness of the Conceptual Model. The query language can help express
more or less complex selections using any concept of the wiki or combinations
thereof. Thus, a content item selection should be possible that refers not only to
its textual content but also to the structuring of the content items it includes, to
the links from or to the content item, and to its atomic or structured annotations.
In short, the query language should be fully aware of the conceptual model.

Answer-closedness. The data queried and the query results should adhere to the
same data model [26]. That means that query answers are amenable to further
queries. This is desirable because no new concept needs to be introduced to
represent query answers – the consistency and simplicity of the conceptual model
are maintained – and because answer-closedness means that rule chaining can
be realized naturally without transformations between different data formats.

Monotonicity. As a query gets more complex, it should become more selec-
tive. This property, which we call “monotonicity”, ensures the intuitiveness of a
query language. Monotonicity has limits, of course, primarily when negation is
concerned: If “Q” is a query, then the answers to “NOT Q” cannot be expected
to be a subset of the answers to “Q”.

Construction. In a wiki, views are desirable. “View” is understood here in the
database sense of pre-defined queries used for making implicit data explicit. If
wiki pages contain management information on a project, it might be convenient
to generate a wiki page listing the persons contributing to the project from
mentions of personal wiki pages within the project pages. Views require more
than selection. They require construction, that is, the capability to specify how
the selected data are re-organized in a new wiki page, a “view”.

Continuous Queries. As wikis are tools for work in progress, furthermore in
a collaborative setting, tracking wiki data is an essential activity of a wiki user.
KQWL’s continuous queries are a means for the automation of this activity. We

Flavors of KWQL, a Keyword Query Language for a Semantic Wiki 251

call queries continuous that are posed once, and, as the data evolve, are auto-
matically evaluated again and again. For efficiency reasons, continuous queries
call for incremental evaluation.

Ranking and Grouping. Ranking and grouping are convenient ways to deliver
query answers. Inexperienced users tend to pose short, simple queries that may
not be very precise and yield many results; grouping enables facetted browsing
of query results which helps the user locate the information she is looking for,
while the ranking mechanism makes sure that the most relevant results are at
the top of the result list.

No Striving for Completeness. Completeness is often a desirable property of
a query language. Relational completeness ensures that no data can remain
unfound in a relational database. We suggest that completeness, however it might
be defined, might not be an essential property of the query language of a wiki.
Language simplicity is more important and browsing remains an option.

4 KWQL Query Examples

Keywords for full-text search. In KWQL, query terms consist of resources which
are associated with lists of qualifiers –functioning as labels– and their values,
that is, keywords.

ci(text:Java title:XML)

This query selects content items whose text contains “Java” and which have
“XML” in their title. ci is the resource, a content item, and text and title are
the qualifiers. KWQL has an implicit conjunctive semantics, i.e., if no opera-
tor is given, conjunction is assumed. The two qualifier-value pairs here need to
separated only by whitespace to indicate that both conditions must be met.

The query ci(fragment(text:Java)) selects fragments which contain
“Java”. Since links, fragments and tags are always anchored or contained in
a content item, they are considered to be sub-resources of a content item. A query
can refer to sub-resources by nesting one resource term inside another, as shown
above. Not only content items, but also fragments and links have sub-resources,
namely tags and, in the case of fragments, links. Table 1 lists the possible sub-
resources for the different resource types.

Query answers in KWQL are always (sets of) content items, ensuring answer-
closedness. When no construction is specified, matching content items or frag-
ments are returned. Links and tags are never returned as query answers since
they cannot be easily displayed or understood outside of the context of their
associated content item or fragment and to maintain answer-closedness.

The list of matching content items is itself displayed as a content item. The
content items returned as answers are either wiki pages or Lowest Common
Ancestor (LCA) [15] content items. Wiki pages are defined as content items not
embedded in any other content item. Wiki pages are the units of informations
visible while browsing, which makes it natural to return them as query answers.
On the other hand, the user might only be interested in the parts of a wiki page

252 F. Bry and K. Weiand

Table 1. KWQL resources and qualifiers

Resource content item fragment link tag

Qualifiers URI URI target URI
author author anchorText author
created created created
lastEdited descendant name
title child
text
numberEdits
descendant
child

Subresources fragment
link link
tag tag tag

relevant to his query. In this case, he can select to return only the content item
that is an ancestor to all content items in the wiki page that match the query.

Keywords for system meta-data and tags. Meta-data are qualifiers (see the list
given in table 1). The following query selects content items authored by the user
Mary: ci(author:Mary)

If both a resource and qualifier are given in the query, the description is assumed
to be complete, i.e. sub-resources not stated in the query are not matched when
they fulfill the criterion given in the qualifier-value pair.

This strictness of interpretation is required in order to be able to explicitly
refer to e.g. a content item’s author (ci(author:Mary)) but not the author of
one of its tags (ci(tag(author:Mary))).

Both resources and qualifiers are optional and do not have to be specified
in the query, extending the query to all resources or qualifiers respectively. If
no qualifier is specified, the query is matched against all qualifier values of the
given resource type. “Child”, “descendant” and “target” are excluded from this
to unintended avoid link traversals. On the other hand, if no resource is given but
a qualifier is present, the query matches all resources with the given qualifier(s)
and value(s), regardless of resource type.

If only a value but no qualifier or resource are stated, the query is matched
on all qualifier values (except those of “child”, “descendant” and “target”) of all
types of resources.

The fact that everything in a KWQL query apart from keywords, that is,
qualifier values, is optional, enables more general queries that, at the same time,
are easier to construct than fully specified queries.

author:Mary

This query, not stating a resource, returns content items of which Mary is the
author or that contain tag assignments by Mary.

Flavors of KWQL, a Keyword Query Language for a Semantic Wiki 253

tag(Mary)

Here, no qualifier is given, but the matching is restricted to tag assignments
where “Mary” occurs as a qualifier value.

Finally, the most simple KWQL query consists of only a single value, a key-
word matched over all qualifiers of content items. It returns all content items
where Mary occurs anywhere in the qualifier values of the content items or
a contained sub-resource: Mary.

“tag” is used to query the tags of content items, links and fragments. The
following query selects content items which have a tag containing “Java”.

ci(tag(name:Java))

Values do not have to be singular but can also be sets as in this query which
matches content items that have a tag in whose name both Java and XML occur:

ci(tag(name:(Java XML)))

The same type of resource can occur several times within another resource, e.g.
a content items can contain several links or can be tagged with multiple tags. To
specify criteria that two or more distinct instances of a resource should fulfill,
the resource and its respective selection criteria have to be given the appropriate
number of times. For example, to match a content item tagged with two distinct
tags, “Java” and “XML”, the query is ci(tag(name:Java) tag(name:XML)).
Keywords for Structure. KWQL allows for the selection of data based on the
structure of documents, that is, content items and fragments using the “child”
and “descendant” qualifiers. KWQL does not offer qualifiers for parent and an-
cestors so to avoid navigational queries, this keeping the language simple. [22]
has shown that queries using qualifiers ancestor and/or parent can be expressed
without the qualifiers.

KWQL structure qualifiers give rise to recursive data retrieval through a wiki
page structure. For example, the following query selects content items which
have a tag “Java” and a child content item which has a tag “XML”.

ci(tag(name:Java) child:ci(tag:XML))

Structure qualifiers can thus be seen as links to other content items or fragments
and recursive querying as a kind of graph traversal.

Link traversal can be expressed similarly:

ci(tag(name:Java) link(target:ci(title:XML)))

Here, content items which have a tag “Java” and include a link that points
to a content item that has XML in its title are matched: Note that, although
numerous structural queries or link traversals can be nested, no infinite loops can
occur. This is because the query is always finite and KWQL does not support
Kleene closure.

Connectives and Negation. To support more expressive queries, KWQL allows
for the combination of several query terms through not only conjunction (which
can be explicitly stated as “AND”) but also disjunction, expressed as “OR”. The
following query matches resources authored by Mary or tagged with Java.

254 F. Bry and K. Weiand

author:Mary OR tag(name:Java)

Query operators are evaluated in order, parentheses are used to specify
precedence.

ci(text:Java) OR (ci(text:XML) AND ci(title:Java))

The unary operator “NOT” is used to express the negation of a query or query
term. The following query selects content items which contain “Java” but not
“XML” in their text.

ci(text:Java AND NOT XML)

Variables and Construction. Variables and a construction specification enable
a fine-grained customization of query results.

ci(author:$A title:$T)

In this query, the variables TandA are bound to the titles of content items and
their authors respectively. Variable assignments are qualifier-value-like terms
where the qualifier specifies the value that the variable name, given in place of
a value, is bound to. qualifier-value pairs thus express selection constraints, while
qualifier-variable pairs indicate variable assignments.

There are cases where the need to use a qualifier both with a selection con-
straint and a variable binding arises, for example in conjunction with partial
matchings. When all content item tags labels that contain “Java” are to be re-
trieved and bound to a variable, there is a constraint on the tag labels, but at
the same time, the tag labels are to be assigned to a variable.

ci(tag(name:(Java -> $X)))

“OPTIONAL” is a unary operator used in connection with variables. In the
query below, the authors of content items that have “Java” in their text are
bound to the variable X. Only if the content items has been assigned at least
one tag, additionally the tag name(s) are bound to the variable Y. In the con-
struction, Y can then be used where present, otherwise a value which must be
specified by the user (e.g. “no tags assigned”) is inserted. The functionality of
OPTIONAL could be replicated using two queries, one with the selection of tags
and one without, and fusing the results. However, this would be inconvenient for
the user and more costly in terms of evaluation.

ci(text:Java author:$X OPTIONAL tag(name:$Y))

The construction part of a rule creates new data or meta-data from the variables
bound in the query part of the rule. There is thus a clear separation between
constraining results and selecting data and processing them for display - the con-
struction part of a rule never selects data, while the query part is not concerned
with the presentation of the results.

To maintain answer-closedness, constructions always specify at least one con-
tent item. Content items can be created explicitly in the construction, in re-
source(qualifier:value) syntax. If no content item is specified, the result of the
construction is wrapped into a content item automatically.

Flavors of KWQL, a Keyword Query Language for a Semantic Wiki 255

Given a query that binds titles of content items to T and authors to A, the
construct term below creates a list which for an author gives the content items
he helped create, presented in a content item with the title ”Contents”.

ci(title:"Contents" text:$A "-" ALL($T,",")))

The “ALL” construct serves to collect all possible bindings for the given variable
returned by the query. It takes a variable or nesting of variables and construct
terms as a parameter. A second, optional parameter indicates the string that is to
be used as a separator between the individual variable bindings. The construction
below thus yields a name of an author, followed by a dash and a comma separated
list of content item titles. “SOME N” can be used in the similarly as “ALL”,
collecting at most N variable binding instances. N is given as a second parameter.

In addition to re-shaping data, new information can be computed in the con-
struction through the aggregation of data, for example in the form of counting,
or determining minima, maxima and averages.

ci(title:"Number of Content items" text:$A "-" COUNT($T)))

Putting it all together: Rules The query part and the construction part are fused
together to form a complete rule.

ci(title:"Content" text:$A"-"ALL($T,",")))@ci(title:$T author:$A)

Rules in KWQL as presented here are limited to selecting, reshaping and aggre-
gating data into views. By allowing for a broader functionality in the construction
part, for example by allowing for the assignment of new tags to existing content
items, a simple but powerful language for reasoning could easily be derived.

5 Outlook

Ranking and grouping. Ranking should leverage properties specific to semantic
wikis to determine a document’s relevance such as the number and extent of
edits, the approval rating and the author’s equity value or relation to the user
posing the query. Since a semantic wiki may contain big amounts of data, it is
desirable to be able to generate the top-k answers without having to compute
query results exhaustively.

The grouping, or clustering, and ranking of results complement each other in
helping the user navigate the query results. Facetted browsing of query results,
enabled by result clusters, helps the user find the query results most relevant
to him by grouping results under several aspects. In the semantic wiki context,
these could be for example tags assigned, but also explicit or implicit social
relations between users.

Evaluation of Selections. The restrictions imposed on content item and tag com-
position –cycles in content item structure and in tag orderings are precluded–
make an evaluation without memoing possible; however, memoing is necessary
in evaluating some RDF/S selections which may be supported in the future. The
extent of the RDF query facilities KWQL should offer is still is an open issue.

256 F. Bry and K. Weiand

Evaluation of Rules. Both forward and backward rule processing might make
sense in a wiki context. Forward rule processing amounts to materializing all
views so far specified, thus improving the efficiency of querying and browsing.
Functionalities of a wiki such as personalization services might however rely on
too large a number of views for full materialization. In such a case, backward
rule processing would be necessary.

We currently investigate how rules are used for wiki functionalities, e.g. per-
sonalization, aiming at finding a clear-cut separation between rule sets to be
evaluated by forward and by backward processing. An evaluation relying on for-
ward processed “system” or “meta rules” implementing a backward processing of
application, or “object rules” a la “backward fix-point procedure” [6] or relying
on the “magic set rewriting” [4] seems promising.

Evaluation of Continuous Queries. Continuous queries are rules that are re-
evaluated after each update of the wiki so as to deliver to the user – or service
– subscribing to the query an “incremental answer”, that is a difference to the
previously returned answer(s). The key to computing incremental answers is
finite differencing [24]. Finite differencing of a KWQL rule can be pre-computed,
resulting in an “incremental” version of the original rule.

The presentation of incremental answers to the user is an issue requiring more
research. Both novel answers caused by the last update and invalidated answers
“destroyed” by the last update have to be presented to the user. It is an open
issue whether simple listings, or more sophisticated presentations are desirable
in a wiki context.

6 Related Work and Conclusion

6.1 Related Work

In recent years, research has been undertaken towards keyword querying of struc-
tured data, both in databases [17,16] and for XML and RDF data [31]. Unlike
KWQL, the keyword query languages suggested usually do not allow for the cre-
ation of views and combined queries over heterogeneous data, although efforts
have been made towards combining RDF and XML querying [5,12]. Further,
many of the keyword query languages do not offer a rich syntax, being limited to
simple keywords or label-keyword pairs and an implicit conjunctive semantics.

While the need for simple but powerful retrieval of semantic information in
semantic wikis has been pointed out [25], current semantic wikis use either simple
full-text search [18,10,1,20], allow querying of annotations using a traditional
query language like SPARQL, or both [11,29,28,23,2,27]; however in the latter
case, the two are not integrated but used separately. Embedded queries, a form
of views, are possible in several semantic wikis [25].

Semantic Media Wiki [30] uses a query language using a syntax based on
a property:value pairs which offers limited capabilities for construction, querying
over non-annotation elements of the wiki.

Flavors of KWQL, a Keyword Query Language for a Semantic Wiki 257

[14] use queries consisting of multiple simple keywords that are translated
into conjunctive SPARQL queries to query SMW. Their query language has
no connectives, variables or possibilities for customizing views and is limited to
querying annotations.

6.2 Conclusion

In this article, we outlined the requirements for querying in a semantic wiki. We
presented KWQL, a rule-based query language that is versatile with respect to
the expressiveness and, at the same time, simplicity, of queries, and versatile in
the respect that it can be used to combine queries over textual data, annotations
and structure.

Building on these principles, KWQL enables querying, re-shaping and aggre-
gation of semantic wiki content. An implementation of the core of KWQL as
described here is currently underway, while further research is being undertaken
to enable the querying of versions and RDF triples and ranking and grouping
mechanisms.

Acknowledgements. The research leading to these results is part of the project
“KiWi - Knowledge in a Wiki” and has received funding from the European Com-
munity’s Seventh Framework Programme (FP7/2007-2013) under grant agree-
ment No. 211932.

References

1. Auer, S., Dietzold, S., Riechert, T.: OntoWiki – a Tool for Social, Semantic Col-
laboration. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika,
P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 736–749.
Springer, Heidelberg (2006)

2. Aumueller, D., Auer, S.: Towards a Semantic Wiki Experience – Desktop Inte-
gration and Interactivity in WikSAR. In: 1st Workshop on the Semantic Desktop
(2005)

3. Bailey, J., Bry, F., Furche, T., Schaffert, S.: Web and Semantic Web Query Lan-
guages: A Survey. In: Eisinger, N., Ma�luszyński, J. (eds.) Reasoning Web 2005.
LNCS, vol. 3564, pp. 35–133. Springer, Heidelberg (2005)

4. Bancilhon, F., Ramakrishnan, R.: An Amateur’s Introduction to Recursive Query
Processing Strategies. SIGMOD Record 15(2) (1986)

5. Battle, S.: Round-Tripping between XML and RDF. In: Intern. Semantic Web
Conf. (2004)

6. Bry, F.: Query Evaluation in Deductive Databases: Bottom-up and Top-down Rec-
onciled. Data & Knowledge Engineering 5(4) (1990)

7. Bry, F., Baumeister, J., Kiesel, M.: Semantic Wikis. IEEE Software 25(4) (2008)
8. Chamberlin, D.: XQuery: A Query Language for XML. In: ACM SIGMOD Int.

Conf. on Management of Data (2003)
9. Clark, J., DeRose, S.: XML Path Language (XPath) Version 1.0. W3C (1999)

10. El Ghali, A., Tifous, A., Buffa, M., Giboin, A., Dieng-Kuntz, R.: Using a Semantic
Wiki in Communities of Practice. In: 2nd Intern. Workshop on Building Technology
Enhanced Learning Solutions for Communities of Practice (2007)

258 F. Bry and K. Weiand

11. Fischer, J., Gantner, Z., Rendle, S., Stritt, M., Schmidt-Thieme, L.: Ideas and
Improvements for Semantic Wikis. In: Sure, Y., Domingue, J. (eds.) ESWC 2006.
LNCS, vol. 4011, pp. 650–663. Springer, Heidelberg (2006)

12. Furche, T., Bry, F., Bolzer, O.: XML Perspectives on RDF Querying: Towards Inte-
grated Access to Data and Metadata on the Web. In: Grundlagen von Datenbanken
(2005)

13. Furche, T., Linse, B., Bry, F., Plexousakis, D., Gottlob, G.: RDF Querying: Lan-
guage Constructs and Evaluation Methods Compared. In: Barahona, P., Bry, F.,
Franconi, E., Henze, N., Sattler, U. (eds.) Reasoning Web 2006. LNCS, vol. 4126,
pp. 1–52. Springer, Heidelberg (2006)

14. Haase, P., Herzig, D., Musen, M., Tran, T.: Semantic Wiki Search. In: European
Semantic Web Conf. (2009)

15. Harel, D., Tarjan, R.: Fast Algorithms for Finding Nearest Common Ancestors.
SIAM Journal on Computing 13(2) (1984)

16. Hristidis, V., Papakonstantinou, Y.: DISCOVER: Keyword Search in Relational
Databases. In: 28th Intern. Conf. on Very Large Data Bases (2002)

17. Hulgeri, A., Nakhe, C.: Keyword Searching and Browsing in Databases Using
BANKS. In: 18th Intern. Conf. on Data Engineering (2002)

18. Kiesel, M.: Kaukolu: Hub of the Semantic Corporate Intranet. In: First Workshop
on Semantic Wikis: From Wiki to Semantics (2006)

19. Krötzsch, M., Schaffert, S., Vrandecic, D.: Reasoning in Semantic Wikis. In: An-
toniou, G., Aßmann, U., Baroglio, C., Decker, S., Henze, N., Patranjan, P.-L.,
Tolksdorf, R. (eds.) Reasoning Web 2007. LNCS, vol. 4636, pp. 310–329. Springer,
Heidelberg (2007)

20. Kuhn, T.: Acewiki: A Natural and Expressive Semantic Wiki. In: Semantic Web
User Interaction (2008)

21. Leuf, B., Cunningham, W.: The Wiki Way: Quick Collaboration on the Web.
Addison-Wesley, Reading (2001)

22. Olteanu, D., Meuss, H., Furche, T., Bry, F.: XPath: Looking forward. In: Chaudhri,
A.B., Unland, R., Djeraba, C., Lindner, W. (eds.) EDBT 2002. LNCS, vol. 2490,
pp. 109–127. Springer, Heidelberg (2002)

23. Oren, E.: SemperWiki: a Semantic Personal Wiki. In: 1st Workshop on the Seman-
tic Desktop (2005)

24. Paige, R.: Symbolic Finite Differencing - Part I. In: Jones, N.D. (ed.) ESOP 1990.
LNCS, vol. 432, pp. 36–56. Springer, Heidelberg (1990)

25. Panagiotou, D., Mentzas, G.: A Comparison of Semantic Wiki Engines. In:
22nd European Conf. on Operational Research (2007)

26. Schaffert, S., Bry, F.: Querying the Web Reconsidered: A Practical Introduction
to Xcerpt. In: Extreme Markup Languages (2004)

27. Schaffert, S., Westenthaler, R., Gruber, A.: Ikewiki: A User-Friendly Semantic
Wiki. In: 3rd European Semantic Web Conf. (2006)

28. Souzis, A.: Building a Semantic Wiki. IEEE Intelligent Systems 20(5) (2005)
29. Tazzoli, R., Castagna, P., Campanini, S.: Towards a Semantic Wiki Wiki Web. In:

3rd Intern. Semantic Web Conf. (2004)
30. Völkel, M., Krötzsch, M., Vrandecic, D., Haller, H., Studer, R.: Semantic

Wikipedia. In: 15th Intern. Conf. on World Wide Web (2006)
31. Weiand, K., Furche, T., Bry, F.: Quo Vadis, Web Queries. In: Intern. Workshop on

Semantic Web Technologies (2008)

On Pattern Density and Sliding Block Code
Behavior for the Besicovitch and Weyl

Pseudo-distances

Silvio Capobianco

Institute of Cybernetics at Tallinn University of Technology
Akadeemia tee 21, 12618 Tallinn, Estonia

silvio@cs.ioc.ee

Abstract. Initially proposed by Formenti et al. for bi-infinite sequences,
the Besicovitch and Weyl pseudo-distances express the viewpoint of an
observer moving infinitely far from the grid, rather than staying close as
in the product topology. We extend their definition to a more general
setting, which includes the usual infinite hypercubic grids, and highlight
some noteworthy properties. We use them to measure the “frequency”
of occurrences of patterns in configurations, and consider the behavior
of sliding block codes when configurations at pseudo-distance zero are
identified. One of our aims is to get an alternative characterization of
surjectivity for sliding block codes.

Keywords: Pattern, pseudo-distance, sliding block code.

Mathematics Subject Classification 2000: 37B15, 68Q80.

1 Introduction

The Besicovitch and Weyl pseudo-distances [1] were defined in the context of
one-dimensional cellular automata (ca) as a way to overcome several unwanted
properties of the ordinary product topology. One of the requirements for such
distances was to be invariant by translations; which is impossible for any distance
that induces the product topology. The basic idea is to take a “window” of the
form Xn = [−n, . . . , n], and evaluate the density of the set of points under the
window where two configurations take different values.

– For the Besicovitch pseudo-distance, the window is kept in place, progres-
sively enlarged, and the upper limit dB of the density computed.

– For the Weyl pseudo-distance, the window is moved all around between
enlargements, and the upper limit dW of the maximum density computed.

In the case of bi-infinite words, these pseudo-distances show remarkable proper-
ties, such as the requested invariance by translations. When two configurations

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 259–270, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

260 S. Capobianco

are identified if and only if their pseudo-distance is zero, a quotient space is ob-
tained whose topology is very different from the product one. Interestingly, ca

are well-defined on equivalence classes, and the properties of the transformations
induced by ca can provide information on those of the original ca.

In this respect, one of the most renowned properties possessed by ca regards
the characterization of surjectivity. Namely, there is a configuration which is not
reachable via the global law of a ca, if and only if there is a pattern which has
no predecessor according to the local law of the ca.

In this paper, which is ideally a continuation of both [1] and our previous
work [5], we look for a similar characterization of global behavior in local terms
which may hold for the Besicovitch and Weyl spaces. By doing so, the first
difficulty is encountered: in fact, it follows from the definitions that both pseudo-
distances make finite differences vanish, i.e., identify configurations that only
differ on finitely many points. However, while single occurrences cannot make
any difference, the set of all occurrences might. This leads to the problem of
having a measure of sets which is compatible with the given pseudo-distance. To
this aim, we re-use the idea of enlarging windows.

To make our results more general, we consider a definition of dB and dW

that holds for arbitrary finitely generated groups [7], which includes all of the
usual d-dimensional grids. The role of expanding windows is taken by exhaustive
sequences of finite sets growing up to cover the whole group. Moreover, we con-
sider sliding block codes (briefly, sbc) which respect local constraints such as ca

do, but operate between space of configurations with possibly different alpha-
bets. Under suitable conditions, which hold in the 1D case considered in [1] as
well as its straightforward generalization to arbitrary dimension d, sbc induce
transformations of the Besicovitch (resp., Weyl) quotient spaces.

In parallel with these pseudo-distances, we consider two densities on subsets
of the groups, which in a certain sense provide similar information in different
context. In particular, we consider the Besicovitch (resp., Weyl) density of (the
set of occurrences of) a given pattern in a given configuration. These quantities
are shown to be equivalence class invariants, i.e., the Besicovitch (resp., Weyl)
density of a given pattern is the same for any two configurations having Besi-
covitch (resp., Weyl) distance zero. It is then meaningful to define the density
of a pattern in a point of the Besicovitch or Weyl space.

One could now ask whether such density can give any information about the
behavior of the induced map. Our main result is that—provided that certain
conditions on the group and the windows are satisfied—a transformation be-
tween Besicovitch (resp., Weyl) spaces induced by a sbc is surjective if and only
if, given any pattern p, there is a configuration c such that p occurs in F (c)
with positive Besicovitch (resp., Weyl) density. This is parallel to the previously
stated characterization of surjective sbc in the product topology. Most impor-
tant, said conditions are also verified in the rather common case when the group
is Zd and the windows are d-dimensional hypercubes. As a concluding remark,
we show that—again, under suitable conditions—injective ca induce injective
transformations of these quotient spaces.

Pattern and sbc Behavior for Pseudo-distances 261

2 Background

Let f, g : N → [0,+∞). We write f(n) � g(n) if there exist n0 ∈ N and C, β > 0
such that f(n) ≤ C · g(βn) for all n ≥ n0; we write f(n) ≈ g(n) if f(n) � g(n)
and g(n) � f(n). Observe that, if either f or g is a polynomial, the choice β = 1
is always allowed.

Let G be a group. Call 1G the identity of the group G. Product and inverse
are extended to subsets of G element-wise. If E ⊆ G is finite and nonempty,
the closure and boundary of X ⊆ G w.r.t. E are the sets X+E = {g ∈ G |
gE ∩X �= ∅} = XE−1 and ∂EX = X+E \X , respectively. In general, X �⊆ X+E

unless 1G ∈ E. V ⊆ G is a set of generators if every g ∈ G can be obtained as
a word on V ∪V −1. A group is finitely generated (briefly, f.g.) if it has a finite
set of generators (briefly, fsog). The length of g ∈ G w.r.t. V is the minimal
length of a word on V ∪V −1 that equals g; the distance between g and h w.r.t.
V is the length of g−1h. The disk of center g and radius r w.r.t. the fsog V
will be indicated by Dr,V (g); we will omit g if equal to 1G, and V if irrelevant or
clear from the context. Observe that Dr(g) = gDr and (Dn,V)+Dr,V = Dn+r,V .
For the rest of the paper, we will only consider f.g. infinite groups.

The growth function of G w.r.t. V is γV (n) = |Dn,V |. It is well-known [6]
that γV (n) ≈ γV ′(n) for any two fsog V , V ′. G is of sub-exponential growth
if γV (n) � λn for all λ > 1; G is of polynomial growth if γV (n) ≈ nk for some
k ∈ N. Observe that, if G = Zd, then γV (n) ≈ nd.

A sequence {Xn} of finite subsets of G is exhaustive if Xn ⊆ Xn+1 for
every n ∈ N and

⋃
n∈N

Xn = G. {Dn} is an exhaustive sequence. An exhaustive
sequence is amenable [6,7,9] if limn→∞ |∂EXn|/|Xn|=0 for every finite E⊆G;
a finitely generated group is amenable if it has an amenable sequence. If G is of
sub-exponential growth, then {Dn} contains an amenable subsequence, and is
itself an amenable sequence if G is of polynomial growth (cf. [6]).

An alphabet is a set S s.t. 2 ≤ |S| < ∞. If S is an alphabet and G is a f.g.
group, the space SG of configurations on G over S, endowed with the product
topology, is homeomorphic to the Cantor set. In this topology, limk→∞ ck = c if
and only if, for all g ∈ G, |{k ∈ N | ck(g) �= c(g)}| <∞.

If S is a set and G is a group, the transformation c �→ cg of SG defined by
cg(h) = c(gh) for all h ∈ G, is called a translation. For S = {0, 1}, G = Z and
g = +1, the translation c �→ c+1 is the shift map.

If E ⊆ G is finite, a pattern over S with support E is a map p : E → S. An
occurrence of a pattern p with support E in a configuration c ∈ SG is a point
g ∈ G such that cg|E = p; we indicate by occ(p, c) the set of occurrences of p
in c.

A sliding block code (briefly, sbc) over G is a quadruple K = 〈S, T,N , f〉,
where S and T are the source and target alphabets, the neighborhood index
N ⊆ G is finite and nonempty, and the local function f maps SN into T . The
map FK : SG → TG defined by

(FK(c))(g) = f (cg|N) (1)

262 S. Capobianco

is the global function of K. Observe that FK is continuous in the product
topology and commutes with translations; Hedlund’s theorem (cf. [8, Propo-
sition 1.5.8]) states that any F : SG → TG with these two properties is the
global function of some sbc. A sbc where S = T is usually called a cellular
automaton (briefly, ca). K is injective, surjective, and so on, if FK is.

Let K = 〈S, T,N , f〉 be a sbc on G. A configuration c ∈ TG \ FK(SG) is
a Garden of Eden (briefly, GoE) for K. A pattern p on T with support E
is an orphan for K if it has no occurrence in FK(c) for every c ∈ SG. It is
well-known (cf. [10, Lemma 2]) that a sbc has a GoE configuration (i.e., it is
non-surjective) iff it has an orphan pattern.

A pseudo-distance on a set X is a symmetric map d : X × X → [0,+∞)
that satisfies the triangle inequality and such that d(x, x) = 0 for all x ∈ X . If
d is a pseudo-distance on X , then x1 ∼ x2 iff d(x1, x2) = 0 is an equivalence
relation, and d(κ1, κ2) = d(x1, x2) with xi ∈ κi is a distance on X/ ∼.

Let U,W ⊆ G be nonempty. A (U,W)-net is a set N ⊆ G such that the
sets xU , x ∈ N , are pairwise disjoint, and NW = G. Any subgroup is
a (U,U)-net for any set U of representatives of its right cosets. By Zorn’s lemma,
for every nonempty U ⊆ G there exists a (U,UU−1)-net.

3 The Besicovitch and Weyl Distances

If X ⊆ G is finite, call HX(c1, c2) = |{g ∈ X | c1(g) �= c2(g)}| the Hamming
distance of c1, c2 ∈ SG relative to X . If X = Dn,V for some fsog V and n ∈ N,
we may write Hn,V instead of HDn,V .

If X = {Xn} is an exhaustive sequence for G, then

dB,X (c1, c2) = lim sup
n∈N

HXn(c1, c2)
|Xn|

(2)

and

dW,X (c1, c2) = lim sup
n∈N

sup
g∈G

HgXn(c1, c2)
|Xn|

(3)

are pseudo-distances on SG, and are distances if and only if G is finite. In the
latter case, they coincide with the discrete distance; otherwise, they are not
continuous in the product topology.

Example 1. Suppose ck(g) = c(g) if and only if g ∈ Xk. Then ck → c in the
product topology, but dB(ck, c) = dW (ck, c) = 1 for all k.

Definition 1. The quantity (2) is the Besicovitch distance of c1 and c2 w.r.t. X .
The quotient space BesS,G

X = SG/ ∼ where c1 ∼ c2 iff dB,X (c1, c2) = 0, is the
Besicovitch space on SG induced by X . The Weyl distance and the Weyl space
WeyS,G

X are similarly defined according to (3).

Since c1 and c2 differ on y = gx ∈ gX if and only if cg1 and cg2 differ on x ∈ X ,
we get for free

dW,X (c1, c2) = lim sup
n∈N

sup
g∈G

HXn(cg1, c
g
2)

|Xn|
. (4)

Pattern and sbc Behavior for Pseudo-distances 263

Observe that dW,X (c1, c2) ≥ dB,X (c1, c2). WeyS,G
X is thus finer-grained than

BesS,G
X , i.e., every class of Besicovitch equivalence is union of classes of Weyl

equivalence.

Example 2. Let S = {0, 1}, G = Z, V = {+1}, Xn = Dn,V = {−n, . . . , n}.
(We shall call this the standard case in the rest of the paper.) Let c1(x) = 0 for
all x, and let c2(x) = 1 if and only if |x| ∈ {2k, . . . , 2k + k} for some k. Then
dB,X (c1, c2) = 0 but dW,X (c1, c2) = 1.

Similarly to dB and dW , one can define for a set U the Besicovitch upper density

dens supB,XU = lim sup
n∈N

|U ∩Xn|
|Xn|

(5)

and the Weyl upper density

dens supW,XU = lim sup
n∈N

sup
g∈G

|U ∩ gXn|
|Xn|

= lim sup
n∈N

sup
g∈G

|gU ∩Xn|
|Xn|

. (6)

Symmetrically, we can consider the corresponding lower densities dens infB,XU
and dens infW,XU , defined as the lower limits of the corresponding quantities.

Observe that dB,X (c1, c2) = dens supB,X ({g ∈ G | c1(g) �= c2(g)}). Also
observe that dens supB,X (U) = dB,X (χU , χ∅), where χU (x) is s1 if x ∈ U and
s0 �= s1 if x �∈ U . A similar “dualism” occurs between dW,X and dens supW,X .

The properties of the Besicovitch and Weyl distances usually depend on the
choice of the exhaustive sequence X . In [1] it is shown that dB,X is invariant
by translations—i.e., dB,X (cg1, c

g
2) = dB,X (c1, c2) for any c1, c2 and g—in the

standard case. On the other hand, in [5] an example is given where the Besi-
covitch distance is not invariant by translations (the other one is immune to
this flaw) and a sufficient condition is provided for translational invariance. The
latter holds in particular for G = Zd and Xn = {−n, . . . , n}d. Observe that such
Xn is the disk of radius n with respect to the d-dimensional Moore neighborhood

Md = {x ∈ Zd | |xi| ≤ 1 ∀i ≤ d} ; (7)

in this case, dW,X is actually a limit because of Fekete’s lemma (cf. [2]).
Since there are several neighborhoods of choice, each being a fsog for Zd,

one could ask what happens to the quotient space when one or another of those
is chosen. In the case of Zd, things are remarkably tame, making the choice as
free as possible.

Lemma 1. Let S be an alphabet. Let G be a group of polynomial growth of
order d. Let V , V ′ be fsog for G. There exist C, β, n0 > 0 such that for any
n > n0, c1, c2 ∈ SG

Hn,V ′(c1, c2)
γV ′(n)

≤ C · Hβn,V (c1, c2)
γV (βn)

. (8)

One can, for instance, choose C = α1β
d/α2, where D1,V ′ ⊆ Dβ,V and γV (n) ≤

α1n
d, γV ′(n) ≥ α2n

d are satisfied for all n > n0.

264 S. Capobianco

From Lemma 1 and the arbitrariness of c1, c2, V and V ′ follows

Theorem 1. Let G be a group of polynomial growth. Let I be the family of ex-
haustive sequences X of the form Xn = Dn,V for some fsog V . The Besicovitch
distances dB,X for X ∈ I are pairwise metrically equivalent; in particular, they
all induce the same notion of convergence, and the same equivalence classes.

The above remain true if dB,V is replaced with dW,V .

Topologically, BesS,G
X and WeyS,G

X are rather different from SG. For instance, in
the standard case, BesS,G

X is not compact and (WeyS,G
X , dW,X) is not complete [1].

Moreover, as we have seen before and will see later on, some of their properties
depend on those of X . It is thus remarkable that the following result extends
immediately from the standard to the general case.

Theorem 2. (BesS,G
X , dB,X) is a complete metric space.

Theorem 2 generalizes [1, Proposition 2] from G = Z and X = {[−n, . . . , n]}n∈N

to arbitrary G and X : indeed, the key ideas are the same both in the standard [1]
and general case. First, being “near” in the Besicovitch pseudo-distance means
being equal outside a “sparse” set. Next, a Cauchy sequence has at most one
limit point, so that it is convergent if it has a convergent subsequence. Finally,
G is infinite and X is exhaustive, so that |Xn| is unbounded: which allows, given
an arbitrary Cauchy sequence, to construct a convergent sub-sequence.

A detailed proof of Theorem 2 is given in [4].

4 Patterns in Besicovitch and Weyl Spaces

Consider a pattern p and a configuration c. The set occ(p, c) of the occurrences
of p in c has Besicovitch and Weyl upper and lower densities. What kind of
information do these quantities provide?

Suppose dens supB,Xocc(p, c) = 0. Can we infer that there exists c′ such that
dB,X (c, c′) = 0 and p does not occur in c′? The answer is negative.

Example 3. In the standard case, let c ∈ SZ such that c(i) = 1 iff i ≥ 0. Choose
E = {0, 1} and define p : E → S as p(i) = i: then dens supB,X (p, c) = 0.
However, any c′ s.t. dB,X (c, c′) = 0 must have at least one occurrence of p.
Indeed, if occ(p, c′) = ∅, then either c′(x) = 0 for all x ∈ Z, or c′(x) = 1 for all
x ∈ Z, or there exists y ∈ Z such that c′(x) = 0 iff x ≥ y. In the first two cases,
dB,X (c, c′) = 1

2 ; in the third one, c′(x) �= c(x) for all x such that |x| > |y|, so
that dB,X (c, c′) = 1.

Suppose now dB,X (c1, c2) = 0. Suppose that dens supB,Xocc(p, c1) = D. What
can we infer from this about dens supB,Xocc(p, c2)? The answer is welcome.

Theorem 3. Let dB,X (c1, c2) = 0. For every pattern p, dens supB,Xocc(p, c1) =
dens supB,Xocc(p, c2) and dens infB,Xocc(p, c1) = dens infB,Xocc(p, c2). These
hold for Weyl pseudo-distance and densities as well.

Pattern and sbc Behavior for Pseudo-distances 265

Proof. Let Di = dens supB,Xocc(p, ci). Suppose, for the sake of contradiction,
D1 > D2. Let δ > 0 and let {nk} ⊆ N be a strictly increasing sequence such
that |occ(p, c1)∩Xnk

| ≥ (D2 + δ) |Xnk
| for all k ∈ N. On the other hand, for all

k large enough,

|occ(p, c2) ∩Xnk
| <
(
D2 +

δ

2

)
|Xnk

| . (9)

Let E be the support of p. There are at least
⌊

1
2
δ|Xnk

|
⌋

points g ∈ G such

that gE ⊆ Xnk
, cg1|E = p, and cg2|E �= p: hence, HXnk

(c1, c2) ≥
⌊

1
2|E|δ|Xnk

|
⌋

for every k ∈ N. This implies dB,X (c1, c2) ≥
δ

2|E| , against the hypothesis that

dB,X (c1, c2) = 0. The case D1 < D2 is analogous, as is the proof for lower
densities.

The proof in the Weyl case is similar, replacing (9) with

|occ(p, c2) ∩ gkXnk
| <
(
D2 +

δ

2

)
|Xnk

| (10)

for suitable gk ∈ G s.t. |occ(p, c1) ∩ gkXnk
| ≥ (D2 + δ) |Xnk

| for every k ∈ N.

Theorem 3 states that the Besicovitch upper and lower densities of the occur-
rences of a pattern in a configuration are preserved by the Besicovitch equiva-
lence, and similarly for the Weyl case. We can then speak, for example, of the
Besicovitch upper density of a pattern p in a point x ∈ BesS,G

X .
The condition of Theorem 3 is sufficient, but not necessary.

Example 4. In the standard case, let c1(x) = 1 iff x ≥ 0, c2(x) = 1 iff x < 0.
It is straightforward to check that any density of any pattern is the same for c1
and c2. However, dB,V (c1, c2) = 1.

As another application of our tools, we consider a generalization of higher block
codes, a common construct of one-dimensional symbolic dynamics.

Definition 2. Let E ⊆ G s.t. |E| < ∞ and 1G ∈ E. The E-shaped block
transform (briefly, E-sbt) of c : G → S is the configuration c[E] : G → SE

defined as c[E](g) = cg|E , that is,

(c[E](g))(e) = c(ge) ∀g ∈ G, e ∈ E . (11)

The value of c[E] at g is the set of values of c on a set shaped as E and based
on g. This is what is done in the 1D case, where the N -th higher block code is
obtained by taking E = {0, . . . , N − 1} (cf. [8, Section 1.4]).

The construction of higher block transforms commutes with translations. In
fact, let g ∈ G: then for every h ∈ G, e ∈ E(

(c[E])g(h)
)

(e) = (c[E](gh))(e) = c(ghe) = cg(he) = ((cg)[E](h))(e) ,

266 S. Capobianco

so that
(
c[E]
)g

= (cg)[E]. This commutation property is satisfied even on non-
commutative groups, because translations operate via left multiplication, while
E-sbt operate via right multiplication.

Neither the Besicovitch nor the Weyl distance are preserved in the passage to
E-shaped block transform.

Example 5. In the standard case, let N = 2 (i.e., E = {0, 1}), c1(x) = 0 for
all x, c2(x) = x mod 2. Then dB,X (c1, c2) = 1

2 but dB,X (c[E]
1 , c

[E]
2) = 1.

Again, what is preserved is the equivalence class. This time, however, an addi-
tional hypothesis is needed.

Theorem 4. Let X be an amenable sequence for G. Let c1, c2 ∈ SG. For each
finite E ⊆ G s.t. 1G ∈ E,

dB,X (c1, c2) ≤ dB,X

(
c
[E]
1 , c

[E]
2

)
≤ |E| · dB,X (c1, c2) . (12)

In particular, the following are equivalent:

1. dB,X (c1, c2) = 0.
2. dB,X

(
c
[E]
1 , c

[E]
2

)
= 0 for some finite E s.t. 1G ∈ E.

3. dB,X
(
c
[E]
1 , c

[E]
2

)
= 0 for all finite E s.t. 1G ∈ E.

The same hold with dW,X in place of dB,X .

Proof. If c1(x) �= c2(x) then c
[E]
1 (x) �= c

[E]
2 (x) as well, from which the first

inequality in (12) follows easily.
For the second one, given U ⊆ G, to each x ∈ U s.t. c[E]

1 (x) �= c
[E]
2 (x) corre-

spond no more than |E| points y ∈ UE s.t. c1(y) �= c2(y), i.e.,

HU (c[E]
1 , c

[E]
2) ≤ |E| ·HUE(c1, c2) . (13)

But UE = U+E−1
= U ∂E−1U because 1G ∈ E, hence HUE(c1, c2) ≤ HU

(c1, c2) + |∂E−1U |. From this, (13), and the fact that {Xn} is amenable follows
the thesis.

The corresponding statements for dW,X can be proved similarly.

5 Sliding Block Codes in Besicovitch and Weyl Spaces

We have seen what happens to configuration spaces if, instead of staying near the
grid, we move infinitely far from them. We are then interested in understand-
ing what happens to sliding block codes, which are a very noteworthy family
of transformations between configuration spaces. In particular, there are two
questions that we ask ourselves.

1. Do sbc preserve Besicovitch and/or Weyl equivalence?
2. In this case, are properties of sbc linked to those of the maps they induce

on Besicovitch and Weyl spaces?

Pattern and sbc Behavior for Pseudo-distances 267

The first question might have a positive answer if sbc were, at least under certain
conditions, continuous w.r.t. the Besicovitch and/or Weyl distance. This is not
immediate, because sbc are ensured to be continuous only w.r.t. the product
topology; and we have seen that the notions of convergence in these spaces are
completely uncorrelated.

If the choice of the sequence X is “good”, something more than continuity
actually happens. Recall that F : X → Y is Lipschitz continuous w.r.t. the pair
of (pseudo-)distances (dX , dY) if there exists L > 0 such that

dY (F (x1), F (x2)) ≤ L · dX(x1, x2) ∀x1, x2 ∈ X . (14)

In [5, Theorem 3.7] we prove that any ca is Lipschitz continuous w.r.t. the pair
(dB,X , dB,X), provided {Xn} is either amenable or a sequence of disks. Since sbc

commute with translations, the argument in the proof of [5, Theorem 3.7] can
be adapted to prove

Theorem 5. Let G be a f.g. group and let K = 〈S, T,N , f〉 be a sbc over G.

1. If X is amenable, then FK satisfies (14) w.r.t. (dB,X , dB,X) and (dW,X ,
dW,X), with L = |N ∪ {1G}|.

2. If Xn = Dn,V for all n for some fsog V , and N ⊆ Dr,V , then FK satisfies
(14) w.r.t. (dB,X , dB,X) and (dW,X , dW,X), with L = (γV (r))2.

Theorem 5 is not completely surprising. In fact, if V is a fsog for G, then

dV (c1, c2) = 2− inf{r≥0|∃g∈Dr,V |c1(g) �=c2(g)} (15)

with the conventions inf ∅ = +∞, 2−∞ = 0, is a distance that induces the
product topology on SG. Thus, if K = 〈S, T,N , f〉 is a sbc, and N ⊆ Dr,V , then
dV (FK(c1), FK(c2)) ≤ 2rdV (c1, c2). However, Lipschitz continuity is a property
of the (pseudo-)distances, rather than the topologies.

The converse of Theorem 5 does not hold, i.e., commutation with translations
and Lipschitz continuity w.r.t. (dB, dB) (resp., (dW , dW)) are not sufficient to
ensure that F : BesS,G

X → BesT,G
X (resp., F : WeyS,G

X → WeyT,G
X) is the global

function of some sbc.

Example 6 (Taken from [1], Example 7). In the standard case, let T ={0, 1, τ}=
S ∪ {τ}. Consider the function F : T Z → T Z defined as follows:

– If c(x) = τ then (F (c))(x) = τ .
– If c(x) ∈ S, let l = sup{z ≤ x− 1 | c(z) ∈ S}, r = inf{z ≥ x+ 1 | c(z) ∈ S},

with the conventions sup ∅ = −∞, inf ∅ = +∞, and let I = {x, l, r} ∩ Z.
Then (F (c))(x) =

∑
i∈I c(i) mod 2.

F is clearly translation-commuting. Moreover, the value of c at a point can influ-
ence the value of F (c) at no more than three points: consequently, F satisfies (14)
w.r.t. (dB,X , dB,X) and (dW,X , dW,X), with L = 3. However, F is not continuous
in the product topology, and thus not a ca global function. (Intuitively, F needs
an unbounded neighborhood.) Indeed, let c(0) = 0 and c(x) = τ if x �= 0; let
ck(x) = c(x) if x �= k, ck(k) = 1. Then dV (ck, c) = 2−k but dV (F (ck), F (c)) = 1.

268 S. Capobianco

From Theorem 5 follows that, for any group G and sequence X “good enough”
and any sbc K = 〈S, T,N , f〉 on G two Lipschitz continuous transformations
FB : BesS,G

X → BesT,G
X and FW : WeyS,G

X → WeyT,G
X are well-defined, respec-

tively, as FB([c]B) = [FK(c)]B and FW ([c]W) = [FK(c)]W .
At this point we have what we need to make an attempt towards a charac-

terization akin to [10, Lemma 2]. Instead of linking surjectivity to single occur-
rences of patterns (which are meaningless in our quotient topologies) we take
into account the density of the set of occurrences of given patterns—which, by
Theorem 3, is a property of the equivalence class of a configuration.

To make our ground more solid, we observe that the argument for point 1 of [5,
Theorem 3.11] can be adapted to establish, at least under “good” conditions, a
link between the surjectivity of a sbc and that of the induced maps.

Theorem 6. Let G be an amenable f.g. group and let K = 〈S, T,N , f〉 be a sbc

on G. If X contains an amenable sub-sequence, then the following are equivalent.

1. FK is surjective.
2. For every cT ∈ TG there exists cS ∈ SG such that dB,X (FK(cS), cT) = 0.
3. For every cT ∈ TG there exists cS ∈ SG such that dW,X (FK(cS), cT) = 0.

Theorem 6 can be proved via [5, Lemma 3.10], which we restate as we are going
to need it again: if X is amenable and N is a (U,W)-net with |U |, |W | < ∞,
then dens infB,X N ≥ 1/|W | and dens supB,X N ≤ 1/|U |.

Theorem 7. Let G be an amenable f.g. group and let K = 〈S, T,N , f〉 be a sbc

on G. If X contains an amenable sub-sequence, then the following are equivalent.

1. For every cT ∈ TG there exists cS ∈ SG such that dB,X (cT , FK(cS)) = 0.
(Thus, FK is surjective by Theorem 6.)

2. For every finite E ⊆ G and every p : E → T there exists cS ∈ SG such that
dens supB,Xocc(p, FK(cS)) > 0.

The same hold with dW and dens supW in place of dB and dens supB.

Proof. Let p : E → T . Suppose DR ⊇ E. Let N be a (DR, D2R)-net. Define
cT ∈ TG as

cT (g) =
{
p(x−1g) if ∃x ∈ N | x−1g ∈ E ,
arbitrary otherwise . (16)

Then each x ∈ N is an occurrence of p in c, so that dens supW,X occ(p, cT) ≥
dens supB,Xocc(p, cT) ≥ dens supB,XN ≥ 1/γ(2R). If dB,X (cT , FK(cS)) = 0 for
some cS ∈ SG, then dens supB,Xocc(p, F (cS)) ≥ 1/γ(2R) as well. The previous
statement holds if dB and dens supB are replaced by dW and dens supW . The
thesis then follows by Theorem 6.

We stress that the hypotheses of Theorems 6 and 7 do not, as far as we know,
ensure that FB and FW are well-defined. They are if G is of sub-exponential
growth (e.g., Zd) and X is a sequence of disks (e.g., Xn = {−n, . . . , n}d).

We conclude with a short note about injectivity.

Pattern and sbc Behavior for Pseudo-distances 269

Definition 3. A group G is surjunctive if, for every alphabet S, every injective
continuous map F : SG → SG which commutes with translations is surjective.

We stress that Definition 3 does not require the group to be finitely generated.
Amenable groups (e.g., Zd) are surjunctive. Currently, no example of a non-
surjunctive group is known [11].

Let G be a f.g. group: by Hedlund’s theorem, G is surjunctive if and only if
every injective ca on G is surjective. This cannot be extended to arbitrary sbc,
for if S is a proper subset of T , then embedding SG into TG yields an injective,
non-surjective sbc. The last theorem of this paper thus holds only for ca.

Theorem 8. Let A be a ca and let F be its global map. Suppose G is surjunctive
and {Xn} is either amenable or a sequence of disks. If F is injective then FB

and FW are injective.

Proof. Since F is injective and G is surjunctive, F is a bijection. As a conse-
quence of Hedlund’s theorem (cf. [3, Corollary 3.11]) P = F−1 is the global map
of some ca, and it is Lipschitz continuous w.r.t. (dB,X , dB,X) and (dW,X , dW,X)
by Theorem 5.

Suppose then [c1]B �= [c2]B. Put χi = F (ci): then PB([χ1]B) = [P (χ1)]B �=
[P (χ2)]B = PB([χ2]B). Since PB is a function by Theorem 5, FB([c1]B) =
[χ1]B �= [χ2]B = FB([c2]B). A similar argument holds for FW .

6 Conclusions

The Besicovitch and Weyl distances and densities represent points of view rad-
ically different from that of the usual product topology. Nonetheless, several of
their features have been shown to be relevant and useful in the study of sym-
bolic dynamics and the properties of sbc global functions. The main result of
this paper, that sbc surjectivity can be checked through an application of these
concepts, belongs to this thread of research.

Many more questions arise about these spaces. It is of interest, for instance, to
describe in detail the topologies of these quotient spaces; we specifically address
compactness and connectedness, which in the 1D case are known to be very
different from those of the product topology. Other research topics are related to
finding suitable dense subspaces that may be “handy” in the study of both spaces
and sbc properties; this is especially important since periodic configurations
are not dense in the Besicovitch and Weyl spaces. For the former, an option
(suggested in [1]) is provided by Toeplitz configurations, which are not necessarily
periodic, but where every pattern occurs periodically.

In our hopes, the small compendium of results presented in this paper shall
raise interest in the subject and attract more researchers towards this field.

Acknowledgements. The author was supported partially by the Estonian Cen-
tre of Excellence in Theoretical Computer Science (EXCS) mainly funded by
European Regional Development Fund (ERDF). The author wishes to thank

270 S. Capobianco

Tommaso Toffoli, Patrizia Mentrasti, and Tarmo Uustalu for their suggestions
and encouragements. The author also thanks the anonymous referees for their
thorough reviews and helpful suggestions.

References

1. Blanchard, F., Formenti, E., Kůrka, P.: Cellular Automata in Cantor, Besicovitch,
and Weyl Topological Spaces. Complex Systems 11(2), 107–123 (1999)

2. Capobianco, S.: Multidimensional Cellular Automata and Generalization of
Fekete’s Lemma. Disc. Math. Theor. Comp. Sci. 10(3), 95–104 (2008)

3. Capobianco, S.: On the Induction Operation for Shift Subspaces and Cellular Au-
tomata as Presentations of Dynamical Systems. Inform. Comput. 207(11), 1169–
1180 (2009)

4. Capobianco, S.: Some Notes on Besicovitch and Weyl Distances over Higher-
Dimensional Configurations. In: de Oliveira, P.P.B., Kari, J. (Eds.): Proceedings of
Automata 2009: 15th International Workshop on Cellular Automata and Discrete
Complex Systems, Universidade Presbiteriana Mackenzie, São Paulo, SP, Brazil,
Section 2: Short Papers, pp. 300–308 (2009)

5. Capobianco, S.: Surjunctivity for Cellular Automata in Besicovitch Spaces. J. Cell.
Autom. 4(2), 89–98 (2009)

6. de la Harpe, P.: Topics in Geometric Group Theory. The University of Chicago
Press (2000)

7. Fiorenzi, F.: Cellular Automata and Strongly Irreducible Shifts of Finite Type.
Theor. Comp. Sci. 299, 477–493 (2003)

8. Lind, D., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cam-
bridge University Press, Cambridge (1995)

9. Namioka, I.: Følner’s Condition for Amenable Semi Groups. Math. Scand. 15, 18–
28 (1962)

10. Toffoli, T., Capobianco, S., Mentrasti, P.: When—and How—Can a Cellular Au-
tomaton be Rewritten as a Lattice Gas? Theor. Comp. Sci. 403, 71–88 (2008)

11. Weiss, B.: Sofic Groups and Dynamical Systems. Sankhyā: Indian J. Stat. 62, 350–
359 (2000)

On a Labeled Vehicle Routing Problem

Hatem Chatti, Laurent Gourvès, and Jérôme Monnot

LAMSADE, CNRS FRE 3234 & Université de Paris-Dauphine
{hatem.chatti,laurent.gourves,monnot}@lamsade.dauphine.fr

Abstract. In this paper, we study the complexity and (in)approximabi-
lity of the minimum label vehicle routing problem. Given a simple com-
plete graph G = (V, E) containing a special vertex 0 called the depot
and where the edges are colored (labeled), the minimum label k-vehicle
routing problem consists in finding a k-vehicle routing E′, i.e. a collection
of cycles of size at most k + 1 which all contain the depot 0, and such
that every customer v ∈ V \ {0} is visited once, minimizing the number
of colors used.

1 Introduction

In many graph connectivity problems each edge is associated with a numerical
attribute, which may represent length, weight or cost, depending on the related
real-life context, and the task is to identify a minimum cost subgraph satisfy-
ing given connectivity requirements. In contrast with this standard framework,
labeled optimization supposes that the set of available edges is partitioned into
classes, each of which can be purchased in its entirety or not at all. A conve-
nient representation of such a model couples each edge with a label, or color,
that specifies its class, and a subset of labels forms a feasible solution when the
edges whose labels belong to this subset induce a subgraph satisfying the given
connectivity requirements. The objective is to find a solution that optimizes the
number of picked labels.

The main fundamental labeled connectivity problems, namely spanning tree,
s-t-path, matching, traveling salesman problems have been studied in the litera-
ture from a complexity and approximation theories point of view, see for instance
[2,3,4,8,10]. In all these labeled problems, if for example every color represents
a technology consulted by a different vendor, then we wish to use as few colors
as possible, so as to diminish incompatibilities among different technologies.

We are interested in studying the complexity and approximability of a vehicle
routing problem. Vehicle routing problems that involve the periodic collection
and delivery of goods and services such as mail delivery or trash collection are
of great practical importance. Usually there is a constraint on the number of
customers visited by a vehicle. This constraint reflects the assumption that the
vehicle has a finite capacity and that it collects from the customers (or distributes
among them) a commodity.

Simple variants of these real problems can be modeled naturally with graphs.
Unfortunately even simple variants of vehicle routing problems are NP-hard [1].

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 271–282, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

272 H. Chatti, L. Gourvès, and J. Monnot

For the well known metric k-vehicle routing problem (Metric kVRP in
short), we are given a complete graph Kn+1 of (n + 1) vertices {0, . . . , n} con-
taining a special vertex 0 (the depot), an integer k ≥ 1 and a distance d between
pair of vertices satisfying the triangular inequality. The objective is to find a col-
lection of cycles C1, . . . , Cp of Kn+1 minimizing

∑k
i=1

∑
e∈Ci

d(e) where vertices
of {1, . . . , n} are visited once by the collection of cycles, each cycle Ci is of size at
most k+1 and contains the depot. It is easy to see that 2VRP is polynomial time
solvable. For k ≥ 3, Metric kVRP was proved NP-hard in [6]. In [7], the au-
thors gave a (5

2 −
3
2k)-approximation for Metric kVRP. In [1], an improvement

to 197
99 is proposed for Metric 3VRP and some other approximation bounds

are presented using the differential measure. To the best of our knowledge, these
performance ratios are the best known for any fixed k ≥ 3.

This paper deals with a labeled version of kVRP. In the minimum label vehicle
routing problem, n customers have to be served by vehicles of limited capacity
from a common depot. A solution consists of a set of routes, where each starts
at the depot and returns there after visiting a subset of customers, such that
each customer is visited exactly once. In the model studied in this paper, each
route has a label and we seek solutions which use a minimum number of distinct
labels.

The problem arises in multimodal transportation networks [12]. In such prob-
lems, it is desirable to provide a complete service using the minimum number
of companies. The multimodal transportation network is represented by a graph
where each edge is assigned a label, denoting a different company managing
that edge. Another example is the following. Suppose that the customers are
distributed over an area (e.g. a map). This area is partitioned into zones which
are owned by some entities (e.g. countries). An entity can own several zones. To
enter a zone, one needs to get an authorization from its owner. It is assumed that
an authorization concerns all zones owned by an entity and not only a subset.
One can model the situation as a labeled vehicle routing problem where there
are as many labels as entities. A trip between two points (two customers or the
depot and a customer) has label �e if one needs to enter a zone owned by en-
tity e. If each authorization induces a cost or a delay, the goal is to minimize
their number. In other words, a routing which minimizes the number of labels
is sought. In this paper, we consider that all authorizations have the same cost
and every trip has a unique label but natural extensions can be investigated as
a future work.

Contribution and organization of the paper. In Section 2 we formally
define the labeled vehicle routing problem and give some properties that are
often used in the proofs. Some simple polynomially solvable cases are identified in
Section 3. Section 4 and 5 are devoted to hardness and inapproximability results
which draw a rather complete picture of the complexity of the labeled vehicle
routing problem. Before we conclude and list future directions in Section 7, some
approximation results are given Section 6.

On a Labeled Vehicle Routing Problem 273

2 Definitions, Notations and Some Properties

Given a simple graph G = (V, E) where V = {v1, . . . , vn}, a path P of G is
a sequence P = (vr1 , . . . , vrk+1) where [vri , vri+1] ∈ E for i = 1, . . . , k and
vri �= vrj for i �= j. A cycle C of G is a sequence P = (vr1 , . . . , vrk+1 , vr1)
where [vri , vri+1] ∈ E for i = 1, . . . , k, [vrk+1 , vr1] ∈ E and vri �= vrj for
1 ≤ i < j ≤ k + 1. For a path P or cycle C, V (P) and V (C) denote the set of
the vertices of P and C respectively. The length of a path P or cycle C (denoted
by |P | and |C| respectively) is the number of its edges. So, with the previous
notations, we get V (P) = V (C) = {vr1 , . . . , vrk+1}, |P | = k = |V (P)| − 1 and
|C| = k + 1 = |V (C)|.

Given a complete graph Kn+1 of (n + 1) vertices {0, . . . , n} containing a special
vertex 0 (the depot) and an integer k ≥ 1, a k-vehicle routing E′ of Kn+1 is
a collection of cycles C1, . . . , Cp of Kn+1 such that

(a) ∀i = 1, . . . , p, 0 ∈ V (Ci),
(b) ∪p

i=1V (Ci) = {0, . . . , n},
(c) V (Ci) ∩ V (Cj) = {0} for 1 ≤ i < j ≤ p,
(d) ∀i = 1, . . . , p, |V (Ci)| ≤ k + 1.

The vertices of V (Kn+1) \ {0} will be called the customers. In other words, each
vehicle starts at the depot 0, visits at most k customers and returns to the depot.
Each customer is visited exactly once. The specific solution E0 = {C1, . . . , Cn}
where Ci = (0, i, 0) will be called the star of Kn+1 and it will be extensively
studied in this paper (see Figure 1). When Ci = (0, i, 0) is used, the edge [0, i]
and its color will be counted once.

In the minimum label k-vehicle routing problem for k ≥ 1 (lvrp(k) in short),
we are given a complete graph Kn+1 of (n + 1) vertices {0, . . . , n} containing
a special vertex 0 (the depot) and an edge-labeling function L : E(Kn+1) → L =
{�1, . . . , �q}. The objective is to find a k-vehicle routing E′ of Kn+1 minimizing
the number of colors used by E′, i.e., |L(E′)|, where L(E′) = {L(e) : e ∈ E′}.
The minimum label vehicle routing problem (lvrp in short) is the restriction of
the minimum label k-vehicle routing problem when k ≥ n.

Given I = (Kn+1,L) instance of lvrp(k), the frequency of color �i, denoted by
f(�i), is the number of times that color �i appears in I. For L′ ⊆ L = {�1, . . . , �q},
the frequency of L′, denoted by f(L′) is the maximum frequency of colors in L′,

0 0

11

22

33

44

Fig. 1. Two equivalent representations of the star E0

274 H. Chatti, L. Gourvès, and J. Monnot

i.e., f(L′) = max{f(�) : � ∈ L′}. The frequency of I is the maximum number of
times that a color appears in I, i.e., f(L). Using abusive notations, the frequency
of a set E′ of edges, denoted by f(E′), is the maximum frequency of colors used
by E′, i.e., f(E′) = f(L(E′)). The restriction of lvrp(k) to instances where the
frequency is upper bounded by f is denoted by lvrp(k, f).

Given an instance I = (Kn+1,L) of lvrp(k) and a feasible (resp., optimal)
k-vehicle routing E′ = {Ci : i = 1, . . . , p} (resp., E∗ = {C∗

i : i = 1, . . . , p∗}) of I,
s′i (resp., s∗i) for i = 2, . . . , k + 1 denotes the number of cycles of E′ (resp., E∗)
of size exactly i. We have the following properties:

Property 1. We can always assume that:

(i) s′3 = 0.
(ii) For each cycle Ci = (0, x1, x2, . . . , xp−1, xp, 0) of size p + 1 ≥ 4 of E′, the

color(s) L([x1, x2]) and L([xp−1, xp]) appears at least twice in E′.
(iii) s′2 +

∑k+1
i=4 (i− 1)s′i = n.

Obviously Property 1 also holds if we consider the optimal solution E∗.

3 Polynomial Cases

We present some simple polynomial cases of lvrp(k, f). In each case, the star E0

will be an optimal solution.

Theorem 1. The following cases are polynomial:

• lvrp(k, f) if f = 1 or k = 1, 2.
• lvrp(3, 2) if f(E0) = 1.

4 Hardness Results

All the hardness results presented here will be done from the k-path partition
problem (denoted by k-ppp). In k-ppp, we are given a simple graph G = (V, E)
with |V | = kq and we want to decide whether a collection of q vertex-disjoint
paths, each of length exactly k − 1, exists.

This problem is NP-complete for any k ≥ 3, and polynomial oth-
erwise, [5,9]. More recently, k-ppp has been proved NP-complete in bipartite
graphs of maximum degree 3 for any k ≥ 3, [11].

4.1 When f(E0) = 1

From Theorem 1, we know that lvrp(3, 2) when f(E0) = 1 is polynomial (we
recall f(E0) = 1 means that for each edge [0, x], the color L([0, x]) appears
exactly once in the instance). Now, we prove that it is not the case for lvrp(3, 3).

On a Labeled Vehicle Routing Problem 275

Theorem 2. lvrp(3, 3) with f(E0) = 1 is NP-hard.

When we deal with lvrp(k) with k ≥ 4, we can obtain stronger hardness results
since similar results hold with a frequency equal to 2.

Theorem 3. For any k ≥ 4, lvrp(k, 2) with f(E0) = 1 is NP-hard.

Proof. The proof is very similar to Theorem 2, except that we start from k-ppp
and we duplicate the graph twice instead of 3 times. Formally, fix k ≥ 4 and
let G = (V, E) with |V | = kq be an instance of k-ppp. We build an instance
I = (K2kq+1,L) of lvrp(k, 2) as follows:

• Color each edge of G with a unique color.
• Make two copies of G, denoted by Gi = (Vi, Ei) for i = 1, 2.
• Add a depot 0 and complete the graph into K2kq+1 by adding a unique color

per missing edge.

Obviously, I is an instance of lvrp(k, 2) with f(E0) = 1.
We claim that G admits a collection P = {P1, . . . , Pq} of q vertex-disjoint

paths with |Pi| = k − 1 iff there is a k-vehicle routing E′ of I with |L(E′)| ≤
q(k + 3).

Let P = {P1, . . . , Pq} be a collection of paths of G, vertex-disjoint and such
that |Pi| = k−1. Consider E′ = {Ci : i = 1, . . . , 2q} where Ci+(j−1)q is the cycle
in the j-th copy Gj for = 1, 2, isomorphic to (0, Pi, 0). E′ is a feasible solution
of I and since f(E0) = 1, |L(E′)| = |L(E′ ∩E0)|+ |L(E′ \E0)| = 4q+(k−1)q =
q(k + 3).

Conversely, let E′ = {C1, . . . , Cr} be a k-vehicle routing of I such that
|L(E′)| ≤ q(k + 3). Since the frequency of I is 2 and the problem studied is
lvrp(k), we deduce that |L(E′ \E0)| ≥ (

∑k+1
i=4 (i− 2)s′i)/2. On the other hand,

by hypothesis, we have f(E0) = 1; so, |L(E′ ∩ E0)| = s′2 + 2
∑k+1

i=4 s′i. Finally,
using arguments similar to those given in Theorem 2 (in this case, equality (iii)
of Property 1 gives s′2 = 2qk −

∑k+1
i=4 (i− 1)s′i), we obtain:

|L(E′)| = |L(E′ \ E0)|+ |L(E′ ∩E0)| ≥ 2kq −
∑k+1

i=4 (i− 4)s′i
2

(1)

Using inequality (1) and |L(E′)| ≤ q(k + 3), we obtain:

k+1∑
i=4

(i− 4)s′i ≥ 2q(k − 3) (2)

Since (i − 4) ≤ k − 3 for i ∈ {4, . . . , k + 1}, we deduce from inequality (2), the
bound

k+1∑
i=4

s′i ≥ 2q (3)

276 H. Chatti, L. Gourvès, and J. Monnot

On the other hand, since
∑k+1

i=4 (i− 4)s′i =
∑k+1

i=4 (i− 1)s′i − 3
∑k+1

i=4 s′i, by using
equality (iii) of Property 1, i.e.

∑k+1
i=4 (i− 1)s′i = 2qk − s′2, we obtain:

k+1∑
i=4

(i− 4)s′i = 2kq − s′2 − 3
k+1∑
i=4

s′i (4)

Using inequalities (2) and (4), we deduce:

6q ≥ s′2 + 3
k+1∑
i=4

s′i (5)

From inequalities (3) and (5), we obtain s′2 ≤ 0, that is s′2 = 0. Then, we also
deduce that

∑k+1
i=4 s′i = 2q. Using this last equality and 2qk =

∑k+1
i=4 (i − 1)s′i

(given by (iii) of Property 1) we obtain
∑k+1

i=4 (i − 1)s′i = 2qk = k
∑k+1

i=4 s′i or
equivalently

∑k+1
i=4 (k + 1 − i)s′i. This implies that s′i = 0 for i = 4, . . . , k and

then in conclusion, we get:
s′k+1 = 2q (6)

Hence, from equality (6), we deduce that |L(E′)| = q(k + 3). This means that
the edges of E′ \ E0 corresponds to edges of G and in particular E′ ∩ E1 (the
edges of E′ in the first copy G1) is a collection of q vertex-disjoint paths, each
of length exactly k − 1 in G1 and then in G. �

4.2 lvrp(3) with Frequency 2

We conclude this section by studying the complexity of lvrp(3) with frequency 2.
Hence, we will get a complete description of the complexity of lvrp(k) following
the parameters k, f(E0) and the frequency.

Theorem 4. lvrp(3, 2) is NP-hard.

Proof. We polynomially reduce 3-ppp to lvrp(3, 2). Let G = (V, E) with
|V | = 3q and E = {e1, . . . , em} be an instance of 3-ppp. We build an instance
I = (K3q+m+1,L) of lvrp(3, 2) as follows:
• Color each edge ei of G with a unique color L(ei).
• Add m new vertices 3q + i for i = 1, . . . , m and set L([0, 3q + i]) = L(ei)
• Add a depot 0 and complete the graph into K3q+m+1 by adding a unique

color per missing edge.

Obviously, I is an instance of lvrp(3, 2).
We claim that G admits a collection P = {P1, . . . , Pq} of q vertex-disjoint

paths with |Pi| = 2 iff there is a 3-vehicle routing E′ of I with |L(E′)| ≤ 2q +m.
Let P = {P1, . . . , Pq} be a collection of vertex-disjoint paths of G such that

|Pi| = 2. Consider E′ = {Ci : i = 1, . . . , q + m} where for i ≤ q, Ci = (0, Pi, 0)
while for i = q + 1, . . . , q + m, Ci = (0, 3q + i, 0). E′ is a 3-vehicle routing of I
and |L(E′)| = 2q + m.

Conversely, let E′ = {C1, . . . , Cr} be a 3-vehicle routing of I such that
|L(E′)| ≤ 2q + m. Let us prove that the following property holds:

On a Labeled Vehicle Routing Problem 277

Property 2. We can always assume that {(0, 3q+i, 0) : i = q+1, . . . , q+m} ⊂ E′.

Proof. By contradiction, assume that some vertex 3q+i is contained in a cycle Ci

of E′ with |Ci| > 2. Using (i) of Property 1 and the fact that E′ is a 3-vehicle
routing, we get |Ci| = 4. Since the color of every edge incident to 3q + i, except
L([0, 3q+ i]) appears once, we obtain a contradiction with (ii) of Property 1. �

Now, since |L(E′ ∩ E0)| ≤ |L(E′)| ≤ 2q + m and |L((E′ ∩ E0) \ E)| = m
(from Property 2 where we recall that E is the edge set of G), we deduce that
|L(E′∩E0∩E)| ≤ 2q because f(E0∩E) = 1. On the other hand, |L(E′∩E0∩E)| ≥
2|V |/3 = 2q since E′ is a 3-vehicle routing. Thus, |L(E′ ∩ E0 ∩ E)| = 2q, and
then every cycle of E′ which is in the complete subgraph induced by V ∪{0}, has
a length 4. We also deduce that |L(E′ \ E0)| = |L(E′ ∩ E)| = m. Thus E′ \ E0

are edges of G. In conclusion, G admits a collection of q vertex-disjoint paths,
each of length exactly 2. �

5 Inapproximation Results

We now present for some value of k, some inapproximation results of lvrp(k),
that is, we produce some lower bounds that the performance ratio of any ap-
proximation algorithms can not reach unless P=NP. For this, we will apply
a gap-reduction from MaxPkPacking. This problem consists, given a simple
graph G = (V, E), of finding a maximum number of vertex-disjoint paths of
length k − 1. In [11], it is proved that MaxPkPacking, for k ≥ 3, admits
a constant εk > 0, such that for every bipartite graph G = (V, E) of maximum
degree 3, it is NP-hard to decide between opt(G) = |V |

k and opt(G) ≤ (1−εk) |V |
k .

Here opt(G) is the value of a maximum Pk-Packing on G. All these results hold
if |V | is assumed to be even.

Theorem 5. There is a constant ε3 > 0, such that for all ε > 0, lvrp(3, 2) is
not (13+2ε3

13 − ε)-approximable unless P=NP.

The same kind of result holds if we consider lvrp(4).

Theorem 6. There is a constant ε4 > 0, such that for all ε > 0, lvrp(4, 2) is
not (7+ε4

7 − ε)-approximable unless P=NP.

If we study lvrp(k) where k depends on the number of customers, we can obtain
stronger results. For instance, for the labeled vehicle routing problem lvrp,
i.e. without any constraint on the length of each cycle, we prove that lvrp is
not n1−ε-approximable, for all ε ∈ (0; 1). On the other hand, any Hamiltonian
cycle of Kn+1, which is a feasible solution of I = (Kn+1,L), guarantees the
performance ratio n +1. Indeed the Hamiltonian cycle uses at most n +1 colors
while opt(I) ≥ 1.

Theorem 7. For all ε∈(0; 1), for any k≥nε, lvrp(k) is not n1−ε-approximable
unless P=NP, where n is the number of customers.

278 H. Chatti, L. Gourvès, and J. Monnot

Proof. Let ε > 0 and let G = (V, E) be an instance of the Hamiltonian s-t-path
problem on a graph with two specified vertices s, t ∈ V having degree 1 in G. The
Hamiltonian s-t-path problem is defined as follows: given a graph G = (V, E)
with two specified vertices s, t ∈ V , decide whether G has an Hamiltonian path
from s to t (see [5]). The restriction of the Hamiltonian s-t-path problem on
graphs where vertices s, t are of degree 1 remains NP-complete.

Let p = + 1
ε, − 1. We construct the following instance I of lvrp(k) where

k ≥ qε, q is the number of customers of the resulting instance: take a graph
consisting of np copies of G and add a depot 0, where the i-th copy is denoted
by Gi = (Vi, Ei) and si, ti are the corresponding copies of vertices s and t. Set
L(e) = c0 for every e ∈ ∪np

i=1Ei, L([si, 0]) = c0 and L([ti, 0]) = c0 for all i =
1, . . . , np. Complete this graph by taking a new color per remaining edge. This
construction can obviously be done in polynomial time, and the resulting graph
has np+1+1 vertices. Moreover since q = np+1, then k ≥ n. Let I = (Knp+1+1,L)
be the resulting instance of lvrp(k) and let E∗ be an optimal k-vehicle routing
of I with value opt(I) = |L(E∗)|.

• If G has an Hamiltonian s-t-path P , then let Pi be the Hamiltonian s-t-path
in Gi. By setting E∗ = {(0, Pi, 0) : i = 1, . . . , np}, we get opt(I) = 1.

• Otherwise, G (and then, each copy Gi) has no Hamiltonian path for any pair
of vertices since vertices s, t ∈ V have a degree 1 in G. Hence OPT (I) ≥ np,
because on the one hand, for each copy Gi, there is at least one vertex vi

which is incident to an edge ei ∈ E∗ with L(ei) �= c0, and on the other hand
there are np copies.

We deduce that it is NP-complete to distinguish between OPT (I) = 1 and
OPT (I) ≥ |V (Knp+1+1) \ {0}|1−

1
p+1 ≥ |V (Knp+1+1) \ {0}|1−ε. �

6 A Simple Approximation

We first analyze how far the star E0, i.e. the solution where every customer is
covered by a cycle of length 2, is from an optimal k-vehicle routing. We provide
tight bounds on the approximation ratio. Next we show that local improvements
made on the star E0 lead to better worst case performances.

Theorem 8. For all f ≥ 2 and k ≥ 3, The star E0 is a f(k−2)+1
k−1 -approximation

for lvrp(k, f) when f≤ k+1
2 and it is a f(k−2)+k+1

k+1 -approximation for lvrp(k, f)
when f ≥ k+1

2 .

The following proposition shows the upper bounds on the approximation ratio
of the star are tight.

Proposition 1. Given f ≥ 2 and k ≥ 4, the star E0 is at most a f(k−2)+1
k−1 -

approximation of the optimum when f ≤ k+1
2 and at most a f(k−2)+k+1

k+1 -approxi-
mation of the optimum when f ≥ k+1

2 .

On a Labeled Vehicle Routing Problem 279

We recall that the surplus of any k-vehicle routing E′′ is defined as R(E′′) =
|E′′ ∩ E0| − |L(E′′ ∩ E0)| where E0 = {(0, v, 0) : v ∈ V (Kn+1) \ {0}} is the
star of I (see Theorem 8). For instance, if f = 2, then for any A ⊆ E(Kn+1),
R(A) counts the number of colors � which appears twice in A and such that the
two edges of color � are incident to the depot. One can see that the following
property holds:

Property 3. For any couple of sets A, B of E, we have:

A ⊆ B ⇒ R(A) = R(A ∩E0) ≤ R(B ∩ E0) = R(B) (7)

Proof. Actually, if e /∈ E0 (or e ∈ E0 and L(e) /∈ L(A ∩ E0)) then R(A) =
R(A ∪ {e}); otherwise, R(A ∪ {e}) = R(A) + 1. �

Now, we focus on a restriction of lvrp(3, f) for f ≥ 2 where no two edges
incident to the depot have the same color. In other words, there are n colors
incident to the depot, or equivalently we assume R(E0) = 0. In the light of
Theorems 3 and 4, this restriction remains NP-hard for any f ≥ 2 and for
instance, the star E0 is exactly a 3

2 -approximation for lvrp(3, 2) when R(E0) = 0
(see the tightness in Proposition 1). More generally, one can prove that the
star E0 is, in this case (i.e., R(E0) = 0), a 3

2 -approximation of the optimum
for lvrp(3, f) for every f ≥ 2. Below we analyze an algorithm which, starting
from E0, resorts to local improvements to try to reduce the number of labels.
A simple (informal) description of the algorithm (called here Loc Improv) is
the following: Start with L′ := L(E0). While there exists � ∈ L′ such that the set
of edges having a color in L′ \ {�} contains a 3-vehicle routing, do L′ := L′ \ {�}.
Return a 3-vehicle routing E′ such that L(E′) = L′. Formally, the algorithm
maintains a feasible 3-vehicle routing E′ which is initialized to E0. While it
is possible, a label is removed from L(E′) by replacing three cycles of length
two by one cycle of length four: Take three nodes u, v and w which are all
covered by a cycle of length 2 in E′, then do E′ ← E′ ∪ {[u, v], [v, w]} \ {[0, v]}
if L(E′) ⊃ L(E′ ∪ {[u, v], [v, w]} \ {[0, v]}). At the end, the algorithm
returns a 3-vehicle routing E′, a local minimum, which uses |L(E′)| labels. Loc

Improv is clearly polynomial and it provides a
(
1 + f+3

2f+8

)
-approximation of

the optimum for lvrp(3, f) when R(E0) = 0 which is always better than 3
2 .

Theorem 9. For every f ≥ 2, Loc Improv is a
(
1 + f+3

2f+8

)
-approximation for

lvrp(3, f) when R(E0) = 0.

Proof. Let f ≥ 2 and let I = (Kn+1,L) be an instance of lvrp(3, f) such that
R(E0) = 0. Let E′ = C′2 ∪ C′4 and E∗ = C∗2 ∪ C∗4 be the approximate and an
optimal solutions respectively where C′i and C∗i for i = 2, 4 are the cycles of size i
of E′ and E∗ respectively (using (i) of Property 1, we know that C∗3 = C′3 = ∅).
Moreover, using the previous notations, we have s′i = |C′i| and s∗i = |C∗i | for
i = 2, 4. By construction, the algorithm may only delete some colors which
appear once in the star E0; hence, we get |L(E′)| = |L(E′ ∩ E0)|. Since, by

280 H. Chatti, L. Gourvès, and J. Monnot

hypothesis, R(E0) = 0, inequality (7) of Property 3 leads to the conclusion that
R(E′′) = 0 for every E′′ ⊆ E(Kn+1). In particular, R(E′) = R(E∗) = 0. Thus,
|L(E′ ∩ E0)| = |E′ ∩E0| = n− s′4 and we obtain:

apx(I) = |L(E′ ∩ E0)| = n− s′4 (8)

Concerning the optimal solution E∗, let C∗4,0 = {C ∈ C∗4 : L(C) ⊆ L(E0)} and
C∗4,1 = C∗4 \ C∗4,0. This means that for each cycle C = (0, x, y, z, 0) ∈ C∗4,1, we have
L([x, y]) /∈ L(E0) or L([y, z]) /∈ L(E0) or both. Let s∗4,i = |C∗4,i| for i = 0, 1; by
construction, s∗4 = s∗4,0 + s∗4,1. We have the following inequality:

|L(E∗) \ L(E0)| ≥
s∗4,1

f
(9)

Actually, |L(E∗) \ L(E0)| is the number of colors of the cycles of C∗4 which do
not belong to L(E0). By construction, these cycles are in C∗4,1 and each one has
at least one edge with a color in L(E∗)\L(E0). Finally, since each color appears
at most f times, the result follows.

On the other hand, we also have |L(E∗)∩L(E0)| ≥ |L(E∗ ∩E0)| = |E∗ ∩E0| =
n− s∗4. Hence, using this latter inequality, inequality (9) and opt(I) = |L(E∗) \
L(E0)|+ |L(E∗) ∩ L(E0)|, we obtain:

opt(I) ≥ n− s∗4 +
1
f

s∗4,1 (10)

Since R(E0) = 0, we also deduce for every f ≥ 2:

1
2
opt(I) ≥ s∗4 = (s∗4,0 + s∗4,1) (11)

Actually, the edges of E∗ incident to the depot have distinct colors because
R(E0) = 0. Hence, since E∗ contains s∗4 cycles of cycles 4, we get opt(I) ≥ 2s∗4.

Now, we prove the main inequality:

Property 4. The following inequality holds:

s∗4,0 ≤ (f + 4)s′4 (12)

Using equality (8) and inequalities (10), (11), (12), we obtain:

apx(I) = n− s′4
≤ n− s∗

4,0
f+4

≤
(
n− s∗4,0 + 1

f s∗4,1

)
+ (f+3)

f+4 s∗4,0 + (f−1)
f s∗4,1

≤ opt(I) + f+3
f+4 (s∗4,0 + s∗4,1)

≤ opt(I) + 1
2 ×

f+3
f+4opt(I)

≤ (1 + f+3
2f+8)opt(I)

The result follows. �

On a Labeled Vehicle Routing Problem 281

�1

�2

�2
�2

�3 �4 �4�4

�5

�5
�5
�6 �7

�7�7

�8

�8�8 �9

�9

�10

�10

�10
�11

�11
�11

�12

�12

�13�13�13

�14
�14

�14

�15
�16 �16

�16
�17

�17

�17

�18

�18

00

E′ E∗

Fig. 2. An instance of lvrp(3, 2) with R(E0) = 0 where E′ is a 17
12

-approximation
of the optimum. The value of approximate solution E′ is apx = |L(E′)| = 17 where
L(E′) = {�1, . . . , �17} while the value of optimal solution E∗ is opt = |L(E∗)| = 12
where L(E∗) = {�2, �4, �5, �7, �8, �10, , �11, �13, �14, �16, �17, �18}.

Below, an instance proving that E′ is exactly a
(
1 + f+3

2f+8

)
-approximation for

lvrp(3, f) when R(E0) = 0 for f = 2. In Figure 2, only the edges of E′ ∪E∗ are
indicated. We complete the graph by adding a new color for each missing edge.

7 Conclusion

The results presented in this article give a good picture of the computational
complexity of the problem. Indeed lvrp(k, f) is polynomial when k = 1, 2 or
f = 1. lvrp(3, 2) is polynomial if f(E0) = 1 and NP-hard otherwise. In addition
lvrp(k, 2) for k > 3 and lvrp(3, f) for f > 2 are NP-hard, even if f(E0) = 1.
Without any bound on f , the problem is - from an approximability point of view
- closed since the approximation guarantee of any Hamiltonian cycle is almost
the best we can expect.

In this paper we provide a non trivial analysis of simple approximation so-
lutions like the star (or minimal solutions with respect to the colors used in
some particular cases) but it would be interesting to investigate more elaborate
approximation algorithms.

As a future work, it would be interesting to study the case when every label
has a weight. The goal is to minimize the total weight of the labels used by
a feasible solution, not the cardinality.

In another related problem, there is a known positive cost ci,j , called reload cost,
associatedwith every change from label i to label j.Thegoal isnot theminimization
of the number of labels but to minimize the sum of reload costs induced by the k-
vehicle routing. Reload costs captures situations where the travel time crucially
depends on the number of times the transportation mode is changed.

282 H. Chatti, L. Gourvès, and J. Monnot

References

1. Bazgan, C., Hassin, R., Monnot, J.: Approximation Algorithms for Some Routing
Problems. Discrete Applied Mathematics 146, 3–26 (2005)

2. Broersma, H., Li, X.: Spanning Trees with Many or Few Colors in Edge-Colored
Graphs. Discussiones Mathematicae Graph Theory 17(2), 259–269 (1997)

3. Chang, R.-S., Leu, S.-J.: The Minimum Labeling Spanning Trees. Information Pro-
cessing Letters 63(5), 277–282 (1997)

4. Couetoux, B., Gourvès, L., Monnot, J., Telelis, O.: On Labeled Traveling Sales-
man Problems. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008.
LNCS, vol. 5369, pp. 776–787. Springer, Heidelberg (2008)

5. Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory
of NP-Completeness. Freeman, CA (1979)

6. Haimovich, M., Rinnooy Kan, A.H.G.: Bounds and Heuristics for Capacitated
Routing Problems. Mathematics of Operations Research 10, 527–542 (1985)

7. Haimovich, M., Rinnooy Kan, A.H.G., Stougie, L.: Vehicle Routing Methods and
Studies. In: Golden, A. (ed.) Analysis of Heuristics for Vehicle Routing Problems,
pp. 47–61. Elsevier, Amsterdam (1988)

8. Hassin, R., Monnot, J., Segev, D.: Approximation Algorithms and Hardness Results
for Labeled Connectivity Problems. J. of Combinatorial Optimization 14(4), 437–
453 (2007)

9. Kirkpatrick, D.G., Hell, P.: On the Completeness of a Generalized Matching Prob-
lem. In: Proceedings of STOC 1978, pp. 240–245 (1978)

10. Monnot, J.: The Labeled Perfect Matching in Bipartite Graphs. Information Pro-
cessing Letters 96, 81–88 (2005)

11. Monnot, J., Toulouse, S.: The Path Partition Problem and Related Problems in
Bipartite Graphs. Operations Research Letters 35, 677–684 (2007)

12. Van-Nes, R.: Design of Multimodal Transport Networks: A Hierarchical Approach.
PhD Thesis. Delft University Press (2002)

Improved Matrix Interpretation�

Pierre Courtieu, Gladys Gbedo, and Olivier Pons

Cédric – CNAM, Paris, France

Abstract. We present a new technique to prove termination of Term
Rewriting Systems, with full automation. A crucial task in this con-
text is to find suitable well-founded orderings. A popular approach con-
sists in interpreting terms into a domain equipped with an adequate
well-founded ordering. In addition to the usual interpretations: natural
numbers or polynomials over integer/rational numbers, the recently in-
troduced matrix based interpretations have proved to be very efficient
regarding termination of string rewriting and of term rewriting. In this
spirit we propose to interpret terms as polynomials over integer matri-
ces. Designed for term rewriting, our generalisation subsumes previous
approaches allowing for more orderings without increasing the search
space. Thus it performs better than the original version. Another ad-
vantage is that, interpreting terms to actual polynomials of matrices, it
opens the way to matrix non linear interpretations. This result is imple-
mented in the CiME3 rewriting toolkit.

1 Introduction

The property of termination, well-known to be undecidable, is fundamental in
many aspects of computer science and logic. It is crucial in the proof of programs
correctness, it underlies induction proofs, etc. Despite its non-decidability, many
heuristics have been proposed to provide automation for termination proofs. In
particular, many heuristics have been defined in the framework of term rewrit-
ing systems (TRS). All of them require, possibly after several transformations
of the initial termination problem, to search a well-founded ordering satisfying
some properties. Among the different kinds of orderings, polynomial interpreta-
tions [19,4,6] and recursive path ordering [8] are the most used.

More recently matrix interpretation introduced in the context of string rewrit-
ing [16] and adapted to term rewriting system by Endrullis et al. in [11] has
proved to be very efficient. They interpret term into vectors associating to each
symbol a linear mapping with matrix coefficients. We propose a generalization
of this method interpreting term into matrix and associating to each symbol
an actual matrix polynomial. Our generalization subsumes the previous meth-
ods and allows for more matrices and more orderings. In particular it allows for
more systems to be proved to be terminating without increasing the bounds for
coefficients or the size of matrices.
� Work partially supported by A3PAT project of the French ANR (ANR-05-BLAN-

0146-01).

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 283–295, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

284 P. Courtieu, G. Gbedo, and O. Pons

Due to the monotonicity requirement for interpretations, the original matrix
interpretations are restricted to matrices with a strictly positive upper left co-
efficient, and the associated strict ordering only considers the upper coefficient
on vectors. We propose weaker limitation still preserving monotonicity. We re-
quire for each matrices to have a fixed sub-matrix with no null columns. The
strict ordering only consider coefficients corresponding to this sub-matrix. In
this framework the original matrix interpretation is a particular case where the
sub-matrix is reduced to the upper left coefficients.

Section 2 recalls preliminary notions on term rewriting systems, termination
criteria, usual orderings and presents the matrix interpretation. It also introduces
our model of presentation of termination proof as an inference tree [5]. Section 3
presents the extension we propose and the proof of its correctness. Section 4
describes the proof search and Section 5 presents severals examples. Section 6
illustrate the efficiency of our method on the termination problems database
(TPDB) and show how it improves previous methods. Finally we present future
work and conclude in Section 7.

2 Preliminaries

2.1 Term Rewriting Systems

We assume that the reader is familiar with basic concepts of term rewriting [9,3]
and termination. We recall the usual notions, and give our notations.

Terms. A signature Σ is a finite set of symbols with fixed arities. Let X be
a countable set of variables; T (Σ,X) denotes the set of finite terms on Σ and X .
Λ(t) is the symbol at the root position in term t. We write t|p for the subterm
of t at position p and t[u]p for term t where t|p is replaced by u. Substitutions
are mappings from variables to terms and tσ denotes the application of a sub-
stitution σ to a term t.

Monotonicity. A function f : Dn→D on a domainD is monotonic with respect
to a relation R on D iff ∀d1, d2 ∈ D, ∀1 ≤ i ≤ n : ∀a1, . . . ai−1, ai+1, . . . , an ∈
D, d1 R d2 ⇒ f(a1, . . . , ai−1, d1, ai+1, . . . , an)R f(a1, . . . , ai−1, d2, ai+1, . . . , an).
We say that a relation on terms R is monotonic if all function symbols are
monotonic with respect to R.

Rewriting. A term rewriting system (TRS for short) over a signatureΣ is a set S
of rewrite rules l → r with l, r ∈ T (Σ,X). In this work we only consider finite
systems. A TRS S defines a monotonic relation→S closed under substitution (aka
a rewrite relation) in the following way: s→S t (s reduces to t) if there is a position
p such that s|p = lσ and t = s[rσ]p for a rule l → r ∈ S and a substitution σ.
We shall omit systems and positions that are clear from the context. We denote
the reflexive-transitive closure of a relation → by →�. Symbols occurring at root
position in the left-hand sides of rules in S are said to be defined, the others are
said to be constructors. We denote →1 . →2 the relation defined by x →1 . →2

y iff ∃z, x→1 z →2 y where →1 and →2 are two relations.

Improved Matrix Interpretation 285

Ordering. Termination proofs usually make use of orderings and ordering
pairs [18]. We use a slightly restricted definition of ordering pair but it does
not interfere with the topic of this work. An ordering pair is a pair (≥, >) of
relations over T (F , X) such that: 1) ≥ is a quasi-ordering, i.e. reflexive and tran-
sitive, 2) > is a strict ordering, i.e. irreflexive and transitive, and 3) ≥ ·> = >.

An ordering > is well-founded (denoted by WF(>)) if there is no infinite
strictly decreasing sequence t1 > t2 > An ordering pair (≥, >) is well-
founded (denoted by WF(≥, >) if its strict ordering is well-founded. An ordering
< is stable by substitution if ∀σ∀t∀u, t < u⇒ tσ < uσ. An ordering pair is stable
if > and ≥ are stable by substitution. If a strict ordering > is monotonic we call
it strictly monotonic (denoted SM(>)). An ordering pair (≥, >) is weakly mono-
tonic (denoted by WM(≥, >) if ≥ is monotonic and strictly monotonic(denoted
by SM(≥, >)) if > is monotonic.

Termination. A term is S-strongly normalizable if it cannot reduce infinitely
many times for →S . A rewrite relation →S terminates if any term is S-strongly
normalizable, which we denote SN(→S). In such case we may say that S ter-
minates. A termination criterion due to Manna and Ness [3] states that it is
sufficient to find a stable and well-founded strictly monotonic ordering > such
that for all rule l → r ∈ S, l > r. This is stated in the rule MN below.

Moreover, it is also well known that the lexicographic combination of two
well-founded relations is well-founded. This is stated in the rule Lex below. An
effective termination criterion using this property is described in [13]. It allows
to prove the so-called relative termination of a relation of the form →∗

S1
. →S2

by finding a strictly monotonic, stable and well-founded ordering pair (≥, >)
for which all rules of S1 decrease for ≥ and all rules of S2 decrease for >. This
is stated in the rule Lexax below.

Dependency pairs. The set of unmarked dependency pairs [2] of a TRS S,
denoted DP(S) is defined as {〈u, v〉 | u→ t ∈ S and t|p = v and Λ(v) is defined}.
Let D be a set of dependency pairs, a dependency chain in D is a sequence of
dependency pairs 〈ui, vi〉 with a substitution σ such that ∀i, viσ

�=Λ �−−−→
S

ui+1σ.
Remark that to enhance this technique, implementations may distinguish the
root symbols of dependency pairs (by means of marks). We will omit the details
of this technique as it is not crucial in this work. Given a TRS S and a set
of dependency pairs D , s �=Λ �−−−→

S
uσ

Λ−−−−−→
〈u,v〉∈D

vσ ≡ t is denoted by s�D,S t. The

main theorem of dependency pairs of [2] is the following: Let S be a TRS,
�DP(S),S terminates if and only if→S terminates. This is stated in the inference
rule DP below. An effective technique for proving that �D,S terminates consists
in discovering a stable and well-founded weakly monotonic ordering pair (≥, >)
for which S ⊆≥ and D ⊆>. This is stated in the rule DPax below.

Termination proofs. The algorithms of an automated termination prover is
usually presented as popularised by the AProVE processors [15]. It transforms
recursively problems into equivalent sets of sub-problems until each sub-problem
can be directly solved by a suitable well-founded ordering (pair). We call crite-

286 P. Courtieu, G. Gbedo, and O. Pons

rion a transformation of a well-foundation problem p into a set of new problems
p1 . . . pn such that p is well-founded iff p1 . . . pn are. Following the idea intro-
duced in [5,7] we model a termination proof by an inference tree where inference
rules are criteria possibly guarded by a parameter (an ordering) and conditions.
Guard conditions are properties that are not proved by inference trees but must
be checked when applying rules. The termination criteria described above are
summarized by the rules below1. Rules MN, Lexax and DPax are axioms of the
inference system. In automated termination provers, these orderings are typically
found by constraint solvers. In particular, term interpretation is a well-known
method to define such orderings.

MN(>)
SN(→S)

WF(>) ∧ SM(>)
∧∀l → r ∈ S, l > r

Lex
SN(→S1) SN(→∗

S1 . →S2)
SN(→S1∪S2)

Lexax(≥, >)
SN(→∗

S1 . →S2)

WF(≥, >) SM(≥, >)
∀l → r ∈ S2, l > r
∀l → r ∈ S1, l ≥ r

DP
SN(�DP (S),S)

SN(→S)
DPax(≥,>)

SN(�D,S)

WF(≥, >) WM(≥, >)
∀〈l, r〉 ∈ D , l > r
∀l → r ∈ S, r ≥ l

2.2 Orderings by Interpretation

As explained in section above, a crucial task in termination proofs is to find
strictly or weakly monotonic ordering pairs. In this section we describe the
general framework of homomorphic interpretations which allows for both. All
the following results are well known and can be found in [14,8,3]. In the se-
quel we suppose a non empty set D (domain), a quasi-ordering ≥D on D, and
>D = ≥D − ≤D. Therefore (≥D, >D) is an ordering pair. The following defini-
tions and results are well known:

Definition 2.2.1. A valuation function is a function v : X → D from variables
to D.

Definition 2.2.2. A homomorphic interpretation ϕ is a function that takes
a symbol f and returns a function [f]ϕ : Dn → D, where n is the arity
of f . We define the homomorphic interpretation ϕ(t) of a (possibly non-closed)
term t as a function from valuation functions to D by induction on t as follows:
ϕ(x)(v) = v(x) and ϕ(f(t1, . . . , tn))(v) = [f]ϕ(ϕ(t1)(v), . . . , ϕ(tn)(v)).

Definition 2.2.3. We define the ordering pair (�ϕ,1ϕ) on terms by: s�ϕt iff
∀v ∈ (X → D), ϕ(s)(v) ≥D ϕ(t)(v) and s 1ϕ t iff ∀v ∈ (X → D), ϕ(s)(v) >D

ϕ(t)(v).

Theorem 2.2.1. (�ϕ,1ϕ) is stable, and well-founded if (≥D, >D) is.

Theorem 2.2.2. If [f]ϕ is monotonic with respect to >D (respectively ≥D),
then (�ϕ,1ϕ) is strictly monotonic (respectively weakly monotonic).

1 Refer to [7] for a detailed presentation of more criteria in a similar framework.

Improved Matrix Interpretation 287

2.3 Matrix Interpretation

The main idea of matrix interpretation of [11] is to define homomorphic inter-
pretations suitable to apply rules MN, Lexax(strictly monotonic), and DPax
(weakly monotonic) by interpreting terms as vectors (D = Nd) using linear
mappings represented by polynomials with matrix coefficients. The ordering
pair on Nd, that we note (≥Nd , >Nd) is defined as follows: (ui) ≥Nd (vi) iff
∀i, ui ≥N vi and (ui) >Nd (vi) iff ∀i, ui ≥N vi and u1 >N v1. As homomorphic
interpretations defined by matrix polynomials may not be monotonic, Endrullis
et alf [11] propose a restriction on the form of vectors and matrices to ensure
strict monotonicity: the upper-left coefficient of vectors and matrices must be
strictly positive.

In the following we define a family of interpretations parmetrized by the set of
coefficients considered by the strict ordering. We adapt the restriction accordingly.

3 Generalized Matrix Interpretation

We use polynomials with matrix constants instead of vectors (D = Nd×d). This
corresponds to the usual notion of polynomials where constants and coefficients
have the same type. However all the following results and proofs are applicable
to interpretations as defined in [11].

We define in the following matrix interpretation as homomorphic interpreta-
tions as defined in Section 2.2. First we define the ordering (family) (≥Nd×d , >E

Nd×d)
on the domain, then we define the form of an interpretation, finally we prove in
which cases interpretations are weakly and strictly monotonic.

3.1 The Ordering

We define a family of orderings (≥Nd×d , >E
Nd×d) parametrized by the set E ⊂ N of

column and line numbers that can be considered for strict comparison between
matrices (the large comparison being on all coefficients).

Definition 3.1.1. We define the orderings ≥Nd×d and >E
Nd×d on Nd×d as follows:

Let m,m′ ∈ Nd×d and E ⊆ {1, ..., d}, m ≥Nd×d m′ ⇐⇒ ∀i, k ∈ [1..d],mik ≥N m′
ik

and m >E
Nd×d m

′ ⇐⇒ ∀i, k ∈ [1..d],mik ≥N m′
ik ∧ ∃i, j ∈ E,mij >N m′

ij

Remark 1. By definition, if E ⊂ E′ then >E
Nd×d⊂>E′

Nd×d.

Lemma 3.1.1. For any E, (≥Nd×d , >E
Nd×d) is a well-founded ordering pair.

Proof. >E
Nd×d is well-founded because it is included in the ordering >Σ defined by

m >Σ m′ ⇐⇒
∑

1≤i,j≤d mik >N

∑
1≤ik≤d mik which is well-founded. Moreover

≥Nd×d . >E
Nd×d⊆>E

Nd×d follows from ≥N . >N=>N on each coefficient. �

3.2 The Interpretation

We now define the homomorphic interpretation of a symbol f ∈ Σ by a matrix
linear polynomial, as explained in definition 2.2.2.

288 P. Courtieu, G. Gbedo, and O. Pons

Definition 3.2.1 (matrix interpretation). Given a signature Σ and a di-
mension d ∈ N, a matrix interpretation ϕ is a homomorphic interpreta-
tion that takes a symbol f of arity n and returns a function of the form:
[f]ϕ(m1, . . . ,mn) = F1m1 + · · ·+Fnmn +Fn+1 where Fi ∈ Nd×d and m1, . . . ,mn

take their values in Nd×d.

Definition 3.2.2 (E-interpretation). An E-interpretation is a matrix inter-
pretation where the ordering pair used on matrices is (≥Nd×d , >E

Nd×d).

Definition 3.2.3. The ordering pair (�ϕ,1E
ϕ) is defined from (≥Nd×d , >E

Nd×d) as
explained in definitions 2.2.3 (with D = Nd×d).

Lemma 3.2.1. Given an interpretation ϕ, The ordering pair (�ϕ,1E
ϕ) is

(1) stable by substitution and (2) well-founded.

Proof. (1) is proved by theorem 2.2.1 and (2) by theorems 2.2.1 and 3.1.1. �

The following lemma shows that homomorphic interpretations are weakly mono-
tonic with respect to (�ϕ,1E

ϕ).

Lemma 3.2.2. Let ϕ be a matrix interpretation. Then (�ϕ,1E
ϕ) is weakly

monotonic.

Proof. By lemma 2.2.2 it is sufficient to prove that for all symbol f , [f]ϕ is
monotonic with respect to ≥Nd×d . Let f ∈Σ of arity n and 1≤ k≤n. Let x, y,
a1 . . . an ∈ Nd×d s.t. x ≥Nd×d y, let us show that [f]ϕ(a1, ..., ak−1, x, ..., an) ≥Nd×d

[f]ϕ(a1, ..., ak−1, y, ..., an). By definition there exists n+1 matrices Fi such that:

[f]ϕ(a1, ..., ak−1, x, ..., an) = F1a1 + ...+ Fkx+ ...+ Fnan + Fn+1

= [f]ϕ(...,0, ...) + Fkx
[f]ϕ(a1, ..., ak−1, y, ..., an) = F1a1 + ...+ Fky + ...+ Fnan + Fn+1

= [f]ϕ(...,0, ...) + Fky

Since the (matrix × matrix) product is monotonic with respect
to ≥Nd×d , Fkx ≥Nd×d Fky and thus [f]ϕ(a1, ..., ak−1, x, ..., an) ≥Nd×d

[f]ϕ(a1, ..., ak−1, y, ..., an). �

Remark 2. The corollary of this lemma is that all matrix interpretations are
suitable to define weakly monotonic orderings on terms, whatever E is. Therefore
according to remark 1 we will always chose the maximal E = {1, . . . , d} when
searching weakly monotonic ordering pairs.

Remark 3. Since the (matrix × matrix) product is not monotonic with respect
to >E

Nd×d , there exists some E-interpretation such that (�ϕ,1E
ϕ) is not strictly

monotonic.

Therefore we define the set of E-compatible matrices, parametrized by E, on
which (matrix × matrix) product is monotonic with respect to >E

Nd×d.

Improved Matrix Interpretation 289

Definition 3.2.4. Let E ⊆ {1, ..., d}, we call an E-position in a matrix
m ∈ Nd×d a position mij where i ∈ E and j ∈ E. We also call E-columns and
E-lines the sub-columns and sub-lines of E-positions.

Definition 3.2.5 (E-compatible matrices). Let E ⊆ {1, ..., d}, we say that
a matrix m ∈ Nd×d is E-compatible if and only if each E-column is non null,
that is at least one E-position on each E-column is non null.

For example the matrix

⎛
⎜⎜⎝

0 1 0 0
0 0 0 0
2 3 1 0
0 2 1 0

⎞
⎟⎟⎠ is {1, 3}-compatible whereas

⎛
⎜⎜⎝

1 1 0 0
0 0 0 0
2 3 0 0
0 2 1 0

⎞
⎟⎟⎠ is

not.

Definition 3.2.6 (E-compatible interpretation). Let ϕ be a matrix
interpretation. We say that ϕ is E-compatible if for all symbol f s. t.
[f]ϕ(m1, . . . ,mn) = F1m1 + · · · + Fnmn + Fn+1, the matrices F1 . . . Fn are
E-compatible. Notice that Fn+1 does not need to be E-compatible.

The following lemma shows that E-compatible homomorphic interpretations are
strictly monotonic with respect to (�ϕ,1E

ϕ).

Lemma 3.2.3. Let ϕ be an E-compatible interpretation. Then (�ϕ,1E
ϕ) is

strictly monotonic.

Proof. We proceed as above: By lemma 2.2.2 it is sufficient to prove that the
following property holds for all symbol f (of arity n):

∀1 ≤ k ≤ n, ∀a1 . . . ai−1, ai+1 . . . an ∈ Nd×d, ∀x, y ∈ Nd×d, x >E
Nd×d y →

[f](a1, . . . , ak−1, x, ak+1, . . . , an) >E
Nd×d [f](a1, . . . , ak−1, y, ak+1, . . . , an)

By definition there exists n E-compatible matrices F1 . . . Fn and a matrix
Fn+1 s.t.:

[f](a1..., x, ...an)=F1m1+...+Fkx+ ...+ Fnmn + Fn+1 = [f](...,0, ...) + Fkx
[f](a1..., y, ...an)=F1m1+ ...+ Fky+...+ Fnmn + Fn+1 = [f](...,0, ...) + Fky

Therefore it is sufficient to prove that ∀1 ≤ k ≤ n, ∀x, y ∈ Nd×d, x >E
Nd×d y =⇒

Fkx >E
Nd×d Fky. Since the product (E compatible matrix) × (matrix) is mono-

tonic with respect to >E
Nd×d , the statement of the lemma follows. �

The corollary of this lemma is that when an E-interpretation is E-compatible,
it can be used to build a strictly monotonic ordering pair on terms.

3.3 Proving Termination

To prove termination of a given TRS R using rules MN, Lexax or DPax, we
need to compare matrix interpretations of the left hand side and the right hand
side of rules with 1ϕ. These interpretations can be computed by developing
polynomials, as stated by the two following lemmas:

290 P. Courtieu, G. Gbedo, and O. Pons

Lemma 3.3.1. Let ϕ be a matrix interpretation and t, a term with n free vari-
ables x1 . . . xn. There exists n + 1 matrices M1 . . .Mn+1 such that ϕ(t)(v) =
M1v(x1) + · · ·+Mnv(xn) +Mn+1.

Proof. By induction on t. If t is a variable x, then by definition 2.2.2 the property
holds: ϕ(x)(v) = v(x). If t = f(t1, . . . , tm) then by definition 2.2.2: ϕ(t)(v) =
[f]ϕ(ϕ(t1)(v), . . . , ϕ(tm)(v)) = F1(ϕ(t1)(v)) + · · ·+Fm(ϕ(tm)(v)) +Fm+1 where
by induction hypothesis each ϕ(ti)(v) is itself a linear polynomial of the form∑

j Mijv(xj) + Min+1 . Thus ϕ(t)(v) is equal to (
∑

k FkMk1) v(x1) + · · · +
(
∑

k FkMkn) v(xn) +
(∑

k FkMkn+1

)
+ Fm+1. �

Lemma 3.3.2. Let ϕ be an E-compatible homomorphic interpretation and t
a term containing n variables x1 . . . xn. There exists a set of n E-compatible
matrices M1 . . .Mn and a matrix Mn+1 such that ϕ(t)(v) = M1v(x1) + · · · +
Mnv(xn) + Mn+1.

Proof. We proceed by the same induction as above and in equation above
F1 . . . Fn are E-compatible matrices by hypothesis, and Mk1 . . .Mkn are
E-compatible matrices by induction hypothesis. Since matrix addition and prod-
uct are stable on E-compatible matrices we can conclude that the

∑
k FkMki

are E-compatible matrices in equation above. �

Therefore in order to check that rules or dependency pairs are decreasing, we
must compare matrix linear polynomials, which is decidable:

Lemma 3.3.3. Let t and u be terms such that ϕ(t)(v) = L1v(x1) + · · · +
Lkv(xk) + Lk+1 and ϕ(u)(v) = R1v(x1) + · · · + Rkv(xk) + Rk+1. If ∀1 ≤ i ≤
k + 1, Li ≥Nd×d Ri then ϕ(t)(v) ≥Nd×d ϕ(u)(v) for any valuation v : Nk → N.
If moreover Lk+1 >E

Nd×d Rk+1, then ϕ(t)(v) >E
Nd×d ϕ(u)(v) for any valuation

v : Nk → N.

Proof. Let v be a valuation. Since ∀1 ≤ i ≤ k + 1, Li ≥Nd×d Ri, the matrix m =
ϕ(t)(v)−ϕ(u)(v) is such that m =

∑k
i=1 ((Li −Ri)v(xi))+Lk+1−Rk+1 ≥Nd×d 0

which proves the first property. If Lk+1 >E
Nd×d Rk+1 then moreover we have

m ≥Nd×d Lk+1 −Rk+1 >
E
Nd×d 0. �

4 Proof Search

In this section we describe the adaptation of the method of [11] for generating
termination proofs. The main differences are the choice of an E, the treatment
of E-compatibility and the ordering constraints using E.

Due to the symmetrical shape of our orderings with respect to matrices, it is
clear that for E and E′ having the same cardinality, if there exists
an E-interpretation satisfying conditions of lemma 3.3.3, then there exists
an E′-interpretation satisfying the same conditions, obtained by applying to all
matrices the same column and line permutation. Therefore it is enough to try
each E of the form {1, . . . , n} where 2 ≤ n ≤ d.

Improved Matrix Interpretation 291

4.1 Manna and Ness Criterion

In order to prove the termination of a given TRS S using Rule MN, we need
to find an E and an E-compatible matrix interpretation ϕ such that
∀l → r ∈ S, ϕ(l) 1E

ϕ ϕ(r). This amounts to solving constraints on matrix
coefficients. More precisely, for each rule l → r ∈ S, where ϕ(l) =

∑n
1 Lixi+Ln+1

and ϕ(r) =
∑n

1 Rixi +Rn+1 (If r has less variables than l, the corresponding Ri

are null matrices), we have the following constraint: ∀1 ≤ i ≤ n, Li ≥Nd×d Ri

and Ln+1 >
E
Nd×d Rn+1. The E-compatibility of interpretation are also expressed

as constraints on E-positions.
We try to solve these constraints using a SAT solver, which is common prac-

tice [12,1],[11]. In order to call the SAT solver once, we encode the constraints
corresponding to all desired sizes of E in one disjunctive formula.

4.2 Lexicographic Composition Criterion

In order to use the lexicographic criteria we need to split the TRS S into two
systems S1 and S2, such that we can apply rule Lexax to prove SN(→∗

1 . →2).
Then we are left with the property SN(S1) that can be proved by any other
criterion recursively.

Lex

...
SN(→S1)

Lexax(�ϕ,�E
ϕ)

SN(→∗
S1 . →S2)

WF(�ϕ,�E
ϕ) SM(�ϕ,�E

ϕ)
∀l → r ∈ S2, l �E

ϕ r
∀l → r ∈ S1, l �ϕ r

SN(→S1∪S2)

In order to find ϕ we first fix E then we solve the following constraint: ∀l →
r ∈ S, l �ϕ r ∧ ∃l → r ∈ S, l 1E

ϕ r. The existential part of this property may be
expressed by a disjunction on rules of S. If a solution is found, then S2 is the set
of strictly decreasing rules and S1 the remaining ones. As previously we can try
several E.

4.3 Dependency Pairs Criterion

In order to use the dependency pair criterion, we first need to apply DP then
find an matrix interpretation ϕ satisfying the condition of Rule DPax. This is
done by similar techniques than above taking the maximal E as explained in
remark 2.

4.4 Comparison with Previous Notions of Matrix Interpretation

The interpretation defined in [11] almost corresponds to one member of our
family of interpretations, namely {1}-interpretations. To be precise it corre-
sponds to {1}-interpretations where constant coefficients of polynomials are vec-
tors instead of matrices. In the following we analyze the differences between
{1}-interpretations and E-interpretations where |E| > 1 in the case of each
criterion. For the symmetry reasons given in Section 4, we focus on {1, . . . , k}-
interpretations.

292 P. Courtieu, G. Gbedo, and O. Pons

MN and Lexax—. In the strict monotonic setting, when E �= {1} matrix
interpretations do not solve the same sets of problems. This is due to several
facts. On one hand a greater E makes more matrices comparable. For instance(

1 0
1 1

)
and

(
1 0
0 1

)
are comparable with >

{1,2}
N2×2 but not with >

{1}
N2×2 . Therefore

the comparison of constant coefficient of polynomials is more powerful when E is
greater.

On the other hand strict monotonicity constraints (for non constant coeffi-
cients) are such that the sets of allowed matrices are different when E changes.
More precisely there is no inclusion relation between them. For example if f is

a unary symbol, then [f](m) =
(

0 0
1 1

)
m+

(
1 0
1 0

)
is {1, 2}-compatible and not

{1}-compatible, whereas [f](m) =
(

1 0
1 0

)
m +

(
1 0
1 0

)
is {1}-compatible and

not {1, 2}-compatible. Therefore the set of ordering problems solved by different
sizes of E are usually different. For this reason an implementation should try all
possible size for E. In practice in our prototype CiME3 this is configurable.

DPax— In the weak monotonic setting, there is no monotonicity constraint
on matrices, therefore the set of allowed matrices is the same whatever E is.
Therefore the maximal E = {1, . . . , n} is always more powerful because, as said
above, it allows for more matrices to be compared strictly.

However this statement is not true anymorewhen trying to remove only one pair
〈l, r〉 of a set of dependency pairs D . This is done (for example in the graph refine-
ment) by finding a weakly monotonic well-founded ordering pair (≥, >) such that:
l > r and ∀〈t, u〉 ∈ D , t ≥ u and ∀t→ u ∈ D , t ≥ u. In that case, the fact that only
one pair needs to be ordered strictly implies that if a solution exists with any non
emptyE, then by the adequate permutation of columns and lines, we can obtain an
interpretation which also works for E = {1}. Therefore for example the choice of
E is not critical anymore when using the graph refinement, as shown in the results
of section 6. However, a greaterE may lead to shorter proofs, which is interesting
in the framework of termination certificate (see Section 7).

As a conclusion, we see that the best strategy is to try all possible sizes of E
for MN and LEX, and only the maximal E for DP.

5 Examples

In this section we show examples of rewrite systems where {1, 2}-interpretations
are used to prove termination, whereas {1}-interpretations cannot. In all these
examples, matrix coefficients are forced to be 0 or 1. It is worth noticing that
some of these examples can be solved by {1}-interpretations if the bound on
matrix coefficients is higher, but at a price of a greater search space.

Lex and Lexax— Consider the following rewrite system:
{(1)plus(plus(x, y), z) → plus(x, plus(y, z)); (2) times(x, s(y)) →
plus(x, times(y, x))}. Rule (2) can be removed as explained in section 4.2
by the following interpretation:

Improved Matrix Interpretation 293

[plus]ϕ(x, y) =
(

1 0
0 1

)
x+

(
1 0
0 1

)
y +
(

1 0
0 0

)
[s]ϕ(x) =

(
1 1
1 1

)
x+

(
1 1
1 1

)
[times]ϕ(x, y) =

(
1 1
1 1

)
x+

(
0 1
1 0

)
y

and rule (1) by: [plus]ϕ(x, y) =
(

1 0
0 1

)
y +
(

1 1
0 1

)
x+

(
0 1
1 1

)
DP— Consider the system:f(0, x) → f(s(x), x); f(x, s(z)) → s(f(0, z))
which leads to the following dependency pairs: 〈f(x, s(z)), f(0, z)〉 and
〈f(0, x), f(s(x), x)〉. There is no matrix {1}-interpretation (with coefficients
bound ≤ 1) such that all pairs are strictly decreasing and all rule weakly de-
creasing. However there is a {1, 2}-interpretation (DPax):

[f]ϕ(x, y) =
(

0 0
0 1

)
x+

(
1 0
1 0

)
y [s]ϕ(x) =

(
1 0
0 0

)
x+

(
0 1
0 0

)
[0]ϕ() =

(
1 1
0 1

)

6 Results

The benchmarks were made with a prototype of CiME on the 1436 problems
of the termination problems database (TPDB) (category standard TRS termi-
nation, 2008-11-04 termination competition). Ordering constraints are solved by
giving an upper bound b to matrix coefficients and then by translation to the
SAT solver minisat2 [10]. Each call to the SAT solver is limited to 100s and the
overall timeout is 300s for each problem. The first table compares the number of
problems solved using matrix 2×2 interpretations only with different E and b.
The tested criteria are: MN, LEX, DP, DPG (graph refinement of dependency
pairs), LGST (LEX then graph and subterm refinements). The latter being close
to the best heuristic of CiME. The second table shows the results using the strat-
egy LGST and the usual combination of orderings of CiME (linear polynomial,
RPO, simple polynomial) followed by matrix interpretations (2×2 and 3×3). This
shows how our matrix interpretations increase the power of the full system2.

Ordering = Matrix interpretation only, matrix size = 2
Criterion MN LEX DP
Bounds 1 2 3 1 2 3 1 2 3
E={1} 88 167 186 230 278 285 266 345 358
E={1,2} +41,-0 +14,-0 +6,-6 +26,-0 +39,-2 +36,-3 +63,-0 +11,-1 +3,-2

Ordering = Matrix interpretation only, matrix size = 2
Criterion DPG LGST
Bounds 1 2 3 1 2 3
E={1} 433 448 452 466 479 482
E={1,2} +0,-0 +0,-6 +0,-12 +14,-0 +30,-11 +30,-7

Ordering = usual+Matrix interpretation
Criterion LGST (mat. 2×2) LGST (mat. 3×3)
Bounds 1 2 3 1 2 3
E={1} 576 583 586 592 588 587
E={1, 2} +5,-0 +12,-0 +16,-1 +3,-0 +7,-10 +10,-10
E={1, 2, 3} N/A N/A N/A +7,-3 +13,-19 +10,-17

2 CiME is devoted to certification of termination proofs, it only implements criteria
that it can certify and it is not multi-threaded. Therefore it performs lower than
state of the art provers such as AProVE.

294 P. Courtieu, G. Gbedo, and O. Pons

A cell containing +n,−m sums up the comparison with E = {1}: n new
problems solved, m problems not solved anymore because of timeouts. Timeouts
are caused by larger E leading to more complex constraints, despite the search
space is the same. Our benchmarks showed an average overhead time of 20
to 30%. This explains why the current state of our implementation does not
always reflect the expected improvement of our interpretations, in particular
with 3×3 matrices. Except those timeouts, larger E is, as expected, always more
powerful excepted in the DPG column (see section 4.4).

7 Conclusion and Future Work

Our approach generalizes the original matrix interpretations. It should naturally
extend to other refinement of matrix interpretations such as arctic interpreta-
tions (where the usual plus/times operations are generalized to an arbitrary
semi-ring [17]). Our approach using true polynomials over matrices, instead of
mixing matrices and vectors, may allow for matrix non linear polynomials. An-
other point is that when discovering a solution our implementation (an early
prototype of CiME-3) produces a proof trace which we translate into a proof
certificate[5] for verification. We are currently working on adapting our proofs
to our matrix interpretations.

References

1. Annov, E., Codish, M., Giesl, J., Schneider-Kamp, P., Thiemann, R.: A Sat-Based
Implementation for rpo Termination. In: International Conference on Logic for Pro-
gramming, Artificial Intelligence and Reasoning (Short Paper) (November 2006)

2. Arts, T., Giesl, J.: Termination of Term Rewriting Using Dependency Pairs. The-
oretical Computer Science 236, 133–178 (2000)

3. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

4. Cherifa, A.B., Lescanne, P.: Termination of Rewriting Systems by Polynomial In-
terpretations and Its Implementation. Science of Computer Programming 9(2),
137–159 (1987)

5. Contejean, E., Courtieu, P., Forest, J., Pons, O., Urbain, X.: Certification of Au-
tomated Termination Proofs. In: Konev, B., Wolter, F. (eds.) FroCos 2007. LNCS
(LNAI), vol. 4720, pp. 148–162. Springer, Heidelberg (2007)

6. Contejean, É., Marché, C., Tomás, A.P., Urbain, X.: Mechanically Proving Termi-
nation Using Polynomial Interpretations. Journal of Automated Reasoning 34(4),
325–363 (2005)

7. Courtieu, P., Forest, J., Urbain, X.: Certifying a Termination Criterion Based on
Graphs, without Graphs. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs
2008. LNCS, vol. 5170, pp. 183–198. Springer, Heidelberg (2008)

8. Dershowitz, N.: Orderings for Term Rewriting Systems. Theoretical Computer Sci-
ence 17(3), 279–301 (1982)

9. Dershowitz, N., Jouannaud, J.-P.: Rewrite Systems. In: van Leeuwen, J. (ed.) Hand-
book of Theoretical Computer Science, vol. B, pp. 243–320. North-Holland, Ams-
terdam (1990)

Improved Matrix Interpretation 295

10. Eén, N., Biere, A.: Effective Preprocessing in SAT Through Variable and Clause
Elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp.
61–75. Springer, Heidelberg (2005)

11. Endrullis, J., Waldmann, J., Zantema, H.: Matrix Interpretations for Proving Ter-
mination of Term Rewriting. Jar 40(2-3), 195–220 (2008)

12. Fuhs, C., Middeldorp, A., Schneider-Kamp, P., Zankl, H.: Sat Solving for Termi-
nation Analysis with Polynomial Interpretations. In: Marques-Silva, J., Sakallah,
K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 340–354. Springer, Heidelberg (2007)

13. Geser, A.: Relative Termination. Dissertation, Fakultät für Mathematik und Infor-
matik, Universität Passau, Germany (1990) 105 pages. Also available as: Report
91-03, Ulmer Informatik-Berichte, Universität Ulm (1991)

14. Giesl, J. (ed.): RTA 2005. LNCS, vol. 3467. Springer, Heidelberg (2005)
15. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and Improving

Dependency Pairs. Journal of Automated Reasoning 37(3), 155–203 (2006)
16. Hofbauer, D., Waldmann, J.: Termination of String Rewriting with Matrix In-

terpretations. In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 328–342.
Springer, Heidelberg (2006)

17. Koprowski, A., Waldmann, J.: Arctic Termination..Below Zero. In: Voronkov, A.
(ed.) RTA 2008. LNCS, vol. 5117, pp. 202–216. Springer, Heidelberg (2008)

18. Kusakari, K., Nakamura, M., Toyama, Y.: Argument Filtering Transformation. In:
Nadathur, G. (ed.) PPDP 1999. LNCS, vol. 1702, pp. 47–61. Springer, Heidelberg
(1999)

19. Lankford, D.S.: On Proving Term Rewriting Systems Are Noetherian. Tech-
nical Report MTP-3, Mathematics Department, Louisiana Tech. Univ. (1979),
http://perso.ens-lyon.fr/pierre.lescanne/not_accessible.html

http://perso.ens-lyon.fr/pierre.lescanne/not_accessible.html

Efficient Algorithms for Two Extensions
of LPF Table: The Power of Suffix Arrays�

Maxime Crochemore1,3, Costas S. Iliopoulos1,4,
Marcin Kubica2, Wojciech Rytter2,5,��, and Tomasz Waleń2

1 Dept. of Computer Science, King’s College London, London WC2R 2LS, UK
2 Institute of Informatics, University of Warsaw, Warsaw, Poland

3 Université Paris-Est, France
4 Digital Ecosystems & Business Intelligence Institute, Curtin University

of Technology, Perth WA 6845, Australia
5 Faculty of Math. and Informatics, Copernicus University, Torun, Poland

Abstract. Suffix arrays provide a powerful data structure to solve sev-
eral questions related to the structure of all the factors of a string. We
show how they can be used to compute efficiently two new tables stor-
ing different types of previous factors (past segments) of a string. The
concept of a longest previous factor is inherent to Ziv-Lempel factoriza-
tion of strings in text compression, as well as in statistics of repetitions
and symmetries. The longest previous reverse factor for a given position
i is the longest factor starting at i, such that its reverse copy occurs
before, while the longest previous non-overlapping factor is the longest
factor v starting at i which has an exact copy occurring before. The pre-
vious copies of the factors are required to occur in the prefix ending at
position i− 1. We design algorithms computing the table of longest pre-
vious reverse factors (LPrF table) and the table of longest previous non-
overlapping factors (LPnF table). The latter table is useful to compute
repetitions while the former is a useful tool for extracting symmetries.
These tables are computed, using two previously computed read-only
arrays (SUF and LCP) composing the suffix array, in linear time on any
integer alphabet. The tables have not been explicitly considered before,
but they have several applications and they are natural extensions of
the LPF table which has been studied thoroughly before. Our results
improve on the previous ones in several ways. The running time of the
computation no longer depends on the size of the alphabet, which drops
a log factor. Moreover the newly introduced tables store additional in-
formation on the structure of the string, helpful to improve, for example,
gapped palindrome detection and text compression using reverse factors.

Keywords: Longest previous reverse factor, longest previous non-over-
lapping factor, longest previous factor, palindrome, runs, Suffix Array,
text compression.

� Research supported in part by the Royal Society, UK.
�� Supported by grant N206 004 32/0806 of the Polish Ministry of Science and Higher

Education.

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 296–307, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Efficient Algorithms for Two Extensions of LPF Table 297

1 Introduction

In this paper we show new algorithmic results which exploit the power of suffix
arrays [5]. Two useful new tables related to the structure of a string are computed
in linear time using additionally the power of data structures for Range Minimum
Queries (RMQ, in short) [7]. We assume throughout the paper we have an integer
alphabet, sortable in linear time. This assumption implies we can compute the
suffix array in linear time, with constant coefficient independent of the alphabet
size.

The first problem is to compute efficiently, for a given string y, the LPrF table,
that stores at each index i the maximal length of factors (substrings) that both
start at position i in y and occur reverse at a smaller position.

The LPrF table is a concept close to the LPF table for which the previous
occurrence is not reverse (see [6] and references therein). The latter table extends
the Ziv-Lempel factorization of a text [17] intensively used for conservative text
compression (known as LZ77 method, see [1]). In the sense of the definition the
LPnF table differs very slightly from LPF (because the latter allows overlaps
between the considered occurrences while the former does not), but the LPF
table is a permutation of the LCP array, while LPnF usually is not, and the
algorithms for LPnF differ much from those for LPF.

The LPrF table generalises a factorization of strings used by Kolpakov and
Kucherov [13] to extract certain types of palindromes in molecular sequences.
These palindromes are of the form uvw where v is a short string and w is the
complemented reverse of u (complement consists in exchanging letters A and U,
as well as C and G, the Watson-Crick pairs of nucleotides). These palindromes
play an important role in RNA secondary structure prediction because they
signal potential hair-pin loops in RNA folding (see [3]). In addition the reverse
complement of a factor has to be considered up to some degree of approximation.

An additional motivation for considering the LPrF table is text compression.
Indeed, it may be used, in connection with the LPF table, to improve the Ziv-
Lempel factorization (basis of several popular compression software) by consid-
ering occurrences of reverse factors as well as usual factors. The feature has
already been implemented in [10] but without LPrF and LPF tables, and our
algorithm provides a more efficient technique to compress DNA sequences under
the scheme.

As far as we know, the LPrF table of a string has never been considered before.
Our source of inspiration was the notion of LPF table and the optimal methods
for computing it in [6]. It is shown there that the LPF table can be derived from
the Suffix Array of the input string both in linear time and with only a constant
amount of additional space.

Our second problem, the computation of the LPnF table of non-overlapping
previous factors, emerged from a version of Ziv-Lempel factorization. An alterna-
tive algorithm solving this problem was given in [16]. The factorization it leads
to plays an important role in string algorithms because the work done on an
element of the factorization is skipped since already done on one of its previous
occurrences. A typical application of this idea resides in algorithms to compute

298 M. Crochemore et al.

repetitions in strings (see [4,14,12]). It happens that the algorithm for the LPnF
table computation is a simple adaptation of the algorithm for LPrF. It may be
surprising, because in one case we deal with exact copies of factors and in the
second with reverse copies.

In this article we show that the computation of the LPrF and LPnF tables of
a string can be done in linear time from its Suffix Array. So, we get the same
running time as the algorithm described in [13] for the corresponding factoriza-
tion although our algorithm produces more information stored in the table and
ready to be used. Based on it, the factorizations of strings used for designing
string algorithms may be further optimised.

In addition to the Suffix Array of the input string, the algorithm makes use of
the RMQ data structure that yields constant-time queries answers. The question
of whether for integer alphabets a direct linear-time algorithm not using all this
machinery exists is open.

2 Preliminaries

Let us consider a string y = y[0 . . n−1] of length n. By yR we denote the reverse
of y, that is yR = y[n− 1]y[n− 2] . . . y[0]. The LPF table (see [6] and references
therein), and the two other tables we consider, LPrF and LPnF, are defined (for
0 ≤ i < n) as follows (see Figure 2):

LPF[i] = max{j : ∃0≤k<i : y[k . . k + j − 1] = y[i . . i+ j − 1]}
LPrF[i] = max{j : ∃0≤k≤i−j : y[k . . k + j − 1]R = y[i . . i+ j − 1]}
LPnF[i] = max{j : ∃0≤k≤i−j : y[k . . k + j − 1] = y[i . . i+ j − 1]}

It can be noted that in the definition of the LPF table the occurrences of y[k . . k+
j − 1] and y[i . . i + j − 1] may overlap, while it is not the case with the other
above concepts. For example, the string y = abbabbaba has the following tables:

position i 0 1 2 3 4 5 6 7 8
y[i] a b b a b b a b a

LPF[i] 0 0 1 5 4 3 2 2 1
LPrF[i] 0 0 2 1 3 3 2 2 1
LPnF[i] 0 0 1 3 3 3 2 2 1

We start the computation of these arrays with computation of the Suffix Array
for the text y. It is a data structure used for indexing the text. It comprises two

a b b a b b a b a

abb

abb

a b b a b b a b a

a b b

abb

a b b a b b a b a

LPnF[4]=3 LPrF[4]=3LPF[4]=4

abb b

abb b

Fig. 1. Illustration of LPF[4], LPnF[4] and LPrF[4] for the string abbabbaba

Efficient Algorithms for Two Extensions of LPF Table 299

b b b a a b b a a a b b a a b b a a b b b y

a b b a a b b

a b b a a b b

LPF

LPF

a b b a a

a b b a a

LPnF

LPnF

a b b a a b b b

b b b a a b b a

LPRF

LPRF

Fig. 2. Comparison of LPF, LPrF and LPnF notions; it shows differences between LPF
and LPnF

tables denoted by SUF and LCP, and defined as follows. The SUF array stores
the list of positions in y sorted according to the increasing lexicographic order
of suffixes starting at these positions. That is, the SUF table is such that:

y[SUF[0] . . n− 1] < y[SUF[1] . . n− 1] < . . . < y[SUF[n− 1] . . n− 1]

Thus, indices of SUF are ranks of the respective suffixes in the increasing lex-
icographic order. The Suffix Array can be built in time O(n) (see [5]). The
LCP array is also indexed by the ranks of the suffixes, and stores the lengths
of the longest common prefixes of consecutive suffixes in SUF. Let us denote by
lcp(i, j) the length of the longest common prefix of y[i . . n− 1] and y[j . . n− 1]
(for 0 ≤ i, j < n). Then, we set LCP[0] = 0 and, for 0 < r < n, we have:

LCP[r] = lcp(SUF[r − 1], SUF[r])

For example, the Suffix Array of the text y = abbabbaba is:

rank r 0 1 2 3 4 5 6 7 8
SUF[r] 8 6 3 0 7 5 2 4 1
LCP[r] 0 1 2 5 0 2 3 1 4

In the algorithms presented in this paper we use the Minimum (Maximum)
Range Query data-structure (RMQ, in short). Let us assume, that we are given
an array A[0 . . n − 1] of numbers. This array is preprocessed to answer the
following form of queries: given an interval [
 . . r] (for 0 ≤
 ≤ r < n), find the
minimum (maximum) value A[k] for
 ≤ k ≤ r.

The problem RMQ has received much attention in the literature. Bender and
Farach-Colton [2] presented an algorithm with O(n) preprocessing complexity
and O(1) query time, using O(n logn)-bits of space. The same result was previ-
ously achieved in [9], albeit with a more complex data structure. Sadakane [15],
and recently Fischer and Heun [8] presented a succinct data structures, which
achieve the same time complexity using only O(n) bits of space.

3 The Technique of Alternating Search

At the heart of our algorithms for computing the LPrF and LPnF tables, there
is a special search in a given interval of the table SUF for a position k (the best

300 M. Crochemore et al.

candidate) which gives the next value of the table (LPrF or LPnF). This search is
composed of two simple alternating functions, so we call it here the alternating
search.

Assume we have an integer function Val(k) which is non-increasing for k ≥ i.
Our goal is to find any position k in the given range [i . . j], which maximises
Val(k) and satisfies some given property Candidate(k) (we call values satisfying
Candidate(k) simply candidates). We assume, that Val(k) and Candidate(k) can
be computed in O(1) time. Let us also assume, that the following two functions
are computable in O(1) time:

– FirstMin(i, j) — returns the first position k in [i . . j] with the minimum
value of Val(k),

– NextCand(i, j) — returns any candidate k from [i . . j) if there are any, oth-
erwise it returns some arbitrary value not satisfying Candidate(k).

Without loss of generality, we can assume that j is a candidate — otherwise, we
can narrow our search to the range [i . .NextCand(i, j)]. Please, observe, that:

Val(k) > Val(j) for i ≤ k < FirstMin(i, j)

Hence, if FirstMin(i, j) > i and NextCand(i,FirstMin(i, j)) is a candidate,
then we can narrow our search to the interval [i . .NextCand(i,FirstMin(i, j))].
Otherwise, j is the position we are looking for.

Consequently, we can iterate FirstMin and NextCand(i, k) queries, increasing
with each step the value of Val(j) by at least one unit. This observation is crucial
for the complexity analysis of our algorithms.

Algorithm 1. Alternating-Search(i, j)
k := initial candidate in the range [i . . j], satisfying Candidate;
while Candidate(k) do

j := k; k := NextCand(i,FirstMin(i, j));
return j;

Lemma 1. Let k = Alternating-Search(i, j). The execution time of Alternating-
Search(i, j) is O(Val(k)−Val(j) + 1).

Proof. Observe, that each iteration of the while loop, except the last one, in-
creases Val(k) by at least one. The last iteration assigns the value of k to j,
which is then returned as a result. Hence, the number of iterations performed
by the while loop is not greater than Val(k)−Val(j)+1. Each iteration requires
O(1) time, what concludes the proof. �

In the following two sections, we apply the Alternating-Search algorithm to
compute the LPrF and LPnF tables. Our strategy is to design the algorithm in
which, in each invocation of the Alternating-Search algorithm, the initial value
of Val(k) is smaller than the previously computed element of the LPrF/LPnF
table by at most 1. In other words, we start with a reasonably good candidate,

Efficient Algorithms for Two Extensions of LPF Table 301

and the cost of a single invocation of the Alternating-Search algorithm can be
charged to the difference between two consecutive values. The linear time follows
from a simple amortisation argument. The details are in the following sections.

4 Computation of the LPrF Table

This section presents how to calculate the LPrF table, for a given string y of
size n, in O(n) time. First, let us create a string x = y#yR of size N = 2n+ 1
(where # is a character not appearing in y). For the sake of simplicity, we set
that y[n] = # and y[−1] = x[−1] = x[N] are defined and smaller than any
character in x[0 . . N − 1].

Let SUF be the suffix array related to x, RANK be the inverse of SUF (that is
SUF[RANK[i]] = i, for 0 ≤ i < N), and LCP be the longest common prefix table
related to x. Let i and j, 0 ≤ i, j < N be two different positions in x, and let
i′ = RANK[i] and j′ = RANK[j]. Observe, that:

lcp(i, j) = min{LCP[min(i′, j′) + 1 . .max(i′, j′)]}
LPrF[i] = max{lcp(i, j) : j ≥ N − i}

Let us define two arrays: LPrF> and LPrF<, which are variants of the LPrF array
restricted to the case, where the first mismatch character in the reversed suffix is
greater (smaller) than the corresponding character in the suffix. More formally,
using x:

LPrF>[i] = max
{
j : ∃N−i≤k≤N−j : x[k . . k + j − 1] = x[i . . i+ j − 1]

and x[k + j] > x[i+ j]

}

LPrF<[i] = max
{
j : ∃N−i≤k≤N−j : x[k . . k + j − 1] = x[i . . i+ j − 1]

and x[k + j] < x[i+ j]

}

The following lemma, formulates an important property of the LPrF array, which
is extensively used in the presented algorithm.

x = y # y R

LPrF>[i]

< [i]LPrF

b a a b a b aa b a b a a b

b a a b a

b a a b a b a

b a a b a

b a a b a b a

 b a b a b a a b a a b a a b a a b a b a a

b a b a b a a b a a b a a b a a b a b a a y =

i

a b a a b b a a b a

a a b a b a a b a a b a a b a a b a b a b#

Fig. 3. Examples of LPrF> and LPrF< values, in the text y and in x = y#yR

302 M. Crochemore et al.

Lemma 2. For 0 < i < n, we have LPrF>[i] ≥ LPrF>[i− 1]− 1 and LPrF<[i] ≥
LPrF<[i− 1]− 1.

Proof. Without loss of generality, we can limit the proof to the first property.
Let LPrF>[i−1] = j. So, there exists some k < i−1, such that: y[k−j+1 . . k]R =
y[i− 1 . . i+ j − 2] and y[k − j] > y[i+ j − 1]. Omitting the first character, we
obtain: y[k − j + 1 . . k − 1]R = y[i . . i + j − 2] and y[k − j] > y[i + j − 1] and
hence LPrF>[i] ≥ j − 1 = LPrF>[i− 1]− 1. �

In the algorithm computing the LPrF array, we use two data structures for RMQ
queries. They are used to answer, in constant time, two types of queries:

– FirstMinPos(p, q, LCP) returns the first (from the left) position in the range
[p . . q] with minimum value of LCP,

– MaxValue(p, q, SUF) returns the maximal value from SUF[p . . q].

Lemma 3. The MaxValue(p, q, SUF) and FirstMinPos(p, q, LCP) queries require
O(n) preprocessing time, and then can be answered in constant time.

Proof. Clearly, the SUF and LCP arrays can be constructed inO(n) time (see [5]).
The MaxValue(p, q, SUF) and FirstMinPos(p, q, LCP) queries are applied to the
sequence of O(n) length. Hence they require O(n) preprocessing time and then
can be answered using Range Minimum Queries in constant time (see [7]). Note
that, in the FirstMinPos query we need slightly modified range queries, that
return the first (from the left) minimal value, but the algorithms solving RMQ
problem can be modified to accommodate this fact. �

Algorithm 2. Compute-LPrF>

initialization: LPrF>[0] := 0; k0 := 0 ;
for i = 1 to n− 1 do

ri := RANK(i) { start Alternating Search } ;
k := InitialCandidate(ki−1, LPrF>[i− 1]) ;
while k ≥ N − i do

ki := k; rk := RANK(k) ;
r′k := FirstMinPos(ri + 1, rk, LCP); LPrF>[i] := LCP[r′k] ;
if ri +1 < r′k then k := MaxValue(ri +1, r′k − 1, SUF) else break;

return LPrF>;

Function InitialCandidate(k, l)

if l > 0 then return k + 1 else return N ;

Algorithm 2 computes the LPrF> array from left to right. In each iteration it
also computes the value ki, which is the position of the substring (in the second
half of x), that maximizes LPrF>[i]. Namely, if LPrF>[i] = j, then:

y[i . . i+ j − 1] = x[ki . . ki + j − 1] = y[N − ki − j + 1 . .N − ki]R

Efficient Algorithms for Two Extensions of LPF Table 303

Suffix array

i
ri

ki

optimal c0c1

FirstMinPos
MaxValue

Fig. 4. Iterations of the while loop of Algorithm 2

Lemma 4. Algorithm 2 works in O(n) time.

Proof. We prove this lemma using amortized cost analysis. The amortization
function equals LPrF>[i]. Initially we have LPrF>[0] = 0.
Observe, that the body of the for loop is an instance of the Algorithm 1, with:

Val(k) = lcp(i, k), Candidate(k) ≡ k ≥ N − i

FirstMin(i, k) = FirstMinPos(RANK[i] + 1,RANK[k], LCP)
NextCand(i, j) = MaxValue(RANK[i] + 1, j − 1, SUF)

Hence, by Lemmas 1 and 2, each iteration of the for loop takes O(LPrF>[i] −
LPrF>[i− 1] + 2) time, and the overall time complexity of Algorithm 2 is O(n+
LPrF[n− 1]− LPrF[0]) = O(n).

The correctness of the algorithm follows from the fact that (for each i)
the body of the while loop is executed at least once (as a consequence of
Lemma 2). �

Theorem 1. The LPrF array can be computed in O(n) time. For (polynomially
bounded) integer alphabets the complexity does not depend on the size of the
alphabet.

Proof. The table LPrF< can be computed using similar approach in O(n) time.
Then, LPrF[i] = max(LPrF<[i], LPrF>[i]). �

5 Longest Previous Non-overlapping Factor

This section presents how to calculate the LPnF table in O(n) time. First, let us
investigate the values of the LPnF array. For the sake of simplicity, we set that
y[n] is defined and smaller than any character in y[0 . . n − 1]. For each value
j = LPnF[i], let us have a look at the characters following the respective factors
of length j. Let 0 ≤ k < i be such that y[k . . k + j − 1] = y[i . . i+ j − 1]. There
are two possible reasons, why these factors cannot be extended:

– either the following characters do not match (that is, y[k+ j] �= y[i+ j]), or
– they match, but if the factors are extended, then they would overlap (that

is, y[k + j] = y[i+ j] and k + j = i).

304 M. Crochemore et al.

We divide the LPnF problem into two subproblems, and (for 0 ≤ i < n) define:

LPnFM [i] = max
{
j : ∃k<j : y[k . . k + j − 1] = y[i . . i+ j − 1],

y[k + j] �= y[i+ j] and k + j ≤ i

}
LPnFO[i] = max{j : ∃k<j : y[k . . k + j − 1] = y[i . . i+ j − 1] and k + j = i}

It is easy to see that LPnF[i] = max{LPnFM [i], LPnFO[i]}. The LPnFO[i] is, in
fact, the maximum radius of a square that has its center between positions i− 1
and i. Such array can be easily computed in linear time from runs, using approach
proposed in [12]. The LPnFO array can also be computed without using runs,
however we leave it for the full version of the paper.

We have to show how to compute the LPnFM array. Following the same scheme
we have used for the LPrF problem, we reduce this problem to the computation
of two tables, namely LPnFM

> and LPnFM
< , defined as LPnFM with the restriction

that the mismatch character in the previous factor y[k + j] is greater (smaller)
than y[i+ j]. More formally:

LPnFM
> [i] = max

{
j : ∃0≤k≤i−j : y[k . . k + j − 1] = y[i . . i+ j − 1]

and y[k + j] > y[i+ j]

}

LPnFM
< [i] = max

{
j : ∃0≤k≤i−j : y[k . . k + j − 1] = y[i . . i+ j − 1]

and y[k + j] < y[i+ j]

}
Clearly, LPnFM [i] = max(LPnFM

> [i], LPnFM
< [i]). Without loss of generality, we

can limit our considerations to computing LPnFM
> . Just like LPrF, the LPnFM

>

array has the property, that for any i, 1 < i ≤ n, LPnFM
> [i] ≥ LPnFM

> [i− 1]− 1.

Algorithm 4. Compute-LPnF>

initialization: LPnFM
> [0] := 0; k0 = 0 ;

for i = 1 to n− 1 do
ri := RANK[i]; (k, l) = InitialCandidate(ki−1, LPnFM

> [i− 1]) ;
while l = 0 or k + l ≤ i do

ki = k; rk := RANK[k]; r′k := FirstMinPos(ri + 1, rk, LCP) ;
LPnFM

> [i] := l ;
if [ri + 1 ≤ r′k − 1] �= ∅ then

k := MinValue(ri + 1, r′k − 1, SUF); l := lcp(ri,RANK[k]) ;
else break;

return LPnFM
> ;

Function InitialCandidate(k, l)

if l > 0 then return (k + 1, l− 1) else return (n, 0);

Lemma 5. For 0 < i < n, we have LPnFM
> [i] ≥ LPnFM

> [i− 1]− 1.

Proof. Let LPnFM
> [i− 1] = j. So, there exists some 0 ≤ k ≤ i− j − 1, such that

y[k . . k + j − 1] = y[i − 1 . . i + j − 2] and y[k + j] > y[i + j − 1]. If we omit

Efficient Algorithms for Two Extensions of LPF Table 305

the first characters, then we obtain y[k + 1 . . k + j − 1] = y[i . . i + j − 2] and
y[k + j] > y[i+ j − 1], and hence LPnFM

> [i] ≥ j − 1 = LPnFM
> [i− 1]− 1. �

In the algorithm computing the LPnFM
> array, we use two data structures for

RMQ queries. They are used to answer, in constant time, two types of queries:

– FirstMinPos(p, q, LCP) returns the first (from the left) position in the range
[p . . q] with minimum value of LCP,

– MinValue(p, q, SUF) returns the minimal value from SUF[p . . q].

Lemma 6. Algorithm 4 works in O(n) time.

Proof. We prove this lemma using amortized cost analysis. The amortization
function equals LPnFM

> [i]. Initially we have LPnFM
> [0] = 0. Please observe, that

the body of the for loop is an instance of the Algorithm 1, with:

Val(k) = lcp(i, k), Candidate(k) ≡ k + l ≤ i or l = 0
FirstMin(i, k) = FirstMinPos(RANK[i] + 1,RANK[k], LCP)

NextCand(i, j) = MinValue(RANK[i] + 1, j − 1, SUF)

Hence, by Lemmata 1 and 5, each iteration of the for loop takes O(LPnFM
> [i]−

LPnFM
> [i−1]+2) time, and the overall time complexity of Algorithm 4 is O(n+

LPnFM
> [n− 1]− LPnFM

> [0]) = O(n).
The correctness of the algorithm follows from the fact that (for each i) the

body of the while loop is executed at least once (as a consequence of 5). �

Theorem 2. The LPnF array can be computed in O(n) time (without using the
suffix trees). For (polynomially bounded) integer alphabets the complexity does
not depend on the size of the alphabet.

Proof. The table LPnFM
< can be computed using similar approach in O(n) time.

As already mentioned, the LPnFO array can also be computed in O(n) time.
Then, LPnF[i] = max(LPnFM

< [i], LPnFM
> [i], LPnFO[i]). �

6 Applications to Text Compression

Several text compression algorithms and many related software are based on
factorizations of input text in which each element is a factor of the text occurring
at a previous position possibly extended by one character (see [1] for variants of
the scheme). We assume, to simplify the description, that the current element
occurs before as it is done in LZ77 parsing [17], which is related a notion of
complexity of strings.

An improvement on the scheme, called optimal parsing, has been proposed
in [11]. It optimises the parsing by utilising a semi-greedy algorithm. The al-
gorithm reduces the number of elements of the factorization. Algorithm 6 is an
abstract semi-greedy algorithm for computing factorization of the word w. At
a given step, instead of choosing the longest factor starting at position i and

306 M. Crochemore et al.

Algorithm 6. AbstractSemiGreedyfactorization(w)
i = 1; j = 0; n = |w| ;
while i ≤ n do

j = j + 1 ;
if w[i] doesn’t appear in w[1 . . (i − 1)] then fj = w[i];
else

fj = u such that uv is the longest prefix of w[i . . n] for which u appears
before position i and v appears before position i + |u|.

i = i + |fj | ;
return (f1 . . . fj)

occurring before, which is the greedy technique, the algorithm chooses the fac-
tor whose next factor goes to the furthest position. The semi-greedy scheme is
simple to implement with the LPF table. We should also note, that LPrF array
can be used to construct reverse Lempel-Ziv factorization described in [13] in
O(n) time, while in [13] authors present O(n logΣ) algorithm.

Combining reverse and non-reverse types of factorization is a mere application
of the LPF (or LPnF) and LPrF tables as shown in Algorithm 7. We get the next
statement as a conclusion of the section.

Theorem 3. The optimal parsing using factors and reverse factors can be com-
puted in linear time independently of the alphabet size.

Algorithm 7. LinearTimeSemiGreedyfactorization(w)
i = 1; j = 0; n = |w| ;
compute LPF and LPrF arrays for word w ;
let maxF[i] = max{LPF[i], LPrF[i]} ;
let maxF

+[i] = maxF[i] + i ;
prepare maxF

+ for range maximum queries ;
while i ≤ n do

j = j + 1 ;
if w[i] doesn’t appear in w[1 . . (i − 1)] then fj = w[i];
else

let k = maxF[i] ;
find i ≤ q < i + k such that maxF

+[q] is maximal ;
fj = w[i . . q] ;

return (f1 . . fj)

References

1. Bell, T.C., Clearly, J.G., Witten, I.H.: Text Compression. Prentice Hall Inc., New
Jersey (1990)

2. Bender, M.A., Farach-Colton, M.: The LCA Problem Revisited. In: Gonnet, G.H.,
Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg
(2000)

Efficient Algorithms for Two Extensions of LPF Table 307

3. Böckenhauer, H.-J., Bongartz, D.: Algorithmic Aspects of Bioinformatics. Springer,
Berlin (2007)

4. Crochemore, M.: Transducers and Repetitions. Theoretical Computer Sci-
ence 45(1), 63–86 (1986)

5. Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on Strings. Cambridge Uni-
versity Press, Cambridge (2007)

6. Crochemore, M., Ilie, L., Iliopoulos, C., Kubica, M., Rytter, W., Waleń, T.: LPF
Computation Revisited. In: Fiala, J., Kratochv́ıl, J., Miller, M. (eds.) IWOCA
2009. LNCS, vol. 5874, pp. 158–169. Springer, Heidelberg (2009)

7. Fischer, J., Heun, V.: Theoretical and Practical Improvements on the RMQ-
Problem, with Applications to LCA and LCE. In: Lewenstein, M., Valiente, G.
(eds.) CPM 2006. LNCS, vol. 4009, pp. 36–48. Springer, Heidelberg (2006)

8. Fischer, J., Heun, V.: A New Succinct Representation of RMQ-Information and
Improvements in the Enhanced Suffix Array. In: Chen, B., Paterson, M., Zhang, G.
(eds.) ESCAPE 2007. LNCS, vol. 4614, pp. 459–470. Springer, Heidelberg (2007)

9. Gabow, H., Bentley, J., Tarjan, R.: Scaling and Related Techniques for Geome-
try Problems. In: Symposium on the Theory of Computing (STOC), pp. 135–143
(1984)

10. Grumbach, S., Tahi, F.: Compression of DNA Sequences. In: Data Compression
Conference, pp. 340–350 (1993)

11. Hartman, A., Rodeh, M.: Optimal Parsing of Strings. In: Apostolico, A., Galil,
Z. (eds.) Combinatorial Algorithms on Words, Computer and System Sciences,
vol. 12, pp. 155–167. Springer, Berlin (1985)

12. Kolpakov, R.M., Kucherov, G.: Finding Maximal Repetitions in a Word in Linear
Time. In: FOCS, pp. 596–604 (1999)

13. Kolpakov, R.M., Kucherov, G.: Searching for Gapped Palindromes. In: Ferragina,
P., Landau, G.M. (eds.) CPM 2008. LNCS, vol. 5029, pp. 18–30. Springer, Heidel-
berg (2008)

14. Main, M.G.: Detecting Leftmost Maximal Periodicities. Discret. Appl. Math. 25,
145–153 (1989)

15. Sadakane, K.: Succinct Data Structures for Flexible Text Retrieval Systems. Jour-
nal of Discrete Algorithms 5(1), 12–22 (2007)

16. Tischler, G.: Personal communication
17. Ziv, J., Lempel, A.: A Universal Algorithm for Sequential Data Compression. IEEE

Transactions on Information Theory, 337–343 (1977)

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 308–320, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Query Optimization through Cached Queries
for Object-Oriented Query Language SBQL

Piotr Cybula1 and Kazimierz Subieta2,3

1 Institute of Mathematics and Computer Science, University of Lodz, Lodz, Poland
cybula@math.uni.lodz.pl

2 Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland
subieta@ipipan.waw.pl

3 Polish-Japanese Institute of Information Technology, Warsaw, Poland

Abstract. We present a new approach to optimization of query languages using
cached results of previously evaluated queries. It is based on the stack-based ap-
proach (SBA) and object-oriented query language SBQL, which assume descrip-
tion of semantics in the form of abstract implementation of query/ programming
language constructs. Pragmatic universality of SBQL and its precise, formal op-
erational semantics make it possible to investigate various crucial issues related to
this kind of optimization, in particular, organization of the cache enabling fast re-
trieval of cached queries, decomposition of complex queries into smaller ones and
query normalization enabling higher reuse of cached queries, development of fast
method to recognize consistency of queries after database updates and develop-
ment of methods of incremental altering of cached query results after database
updates. This paper is focused on the issues concerning optimal and fast utiliza-
tion of the result cache and on the elimination method devoted to detecting cached
queries that become inconsistent after a database update.

1 Introduction

Caching results of previously evaluated queries seems to be an obvious method of
query optimization. It assumes that there is a relatively high probability that the same
query will be issued again by the same or another application, thus instead of evaluat-
ing the query the cached result can be reused. There are many cases when such an
optimization strategy makes a sense. This concerns the environments where data are
not updated or are updated not frequently. Examples are data warehouses (OLAP
applications), various kinds of archives, legal regulations databases, knowledge bases,
decision support systems, etc. Some operational databases, where the frequency of
updates is small in comparison to the frequency of retrieval (say, one update for
100 retrieval operations) are also candidates for application caching queries methods.

Besides the frequency of database updates, which is critical to such methods, an-
other critical factor concerns the probability of caching query reuse. For some envi-
ronments this probability is very high. For instance, in a typical internet shop we can
estimate that 90% of requests concerns some 10% of products, hence queries address-
ing these 10% products are worth to be cached. Such caching (in the form of HTML
pages or XML files) is assumed in many commercial Web applications, in particular,

 Query Optimization through Cached Queries for SBQL 309

in projects that we were involved in. For databases where the probability of cached
query reuse is low such methods are of course inefficient. For instance, a database on
current mobile phone connections gives a little chance to reuse a cached query before
it will be invalid due to a database change.

Cached queries remind materialized views, which are also snapshots on database
states and are used for enhancing information retrieval. There are, however, two essen-
tial differences. The first one concerns the scale. One can expect that there will be at
most dozens of materialized views, but the number of cached queries could be thou-
sands or millions. Such a scale difference implies the conceptual difference. The second
difference concerns transparency: while materialized views are explicit for the users,
cached queries are an internal feature that is fully transparent for the users. Our research
is just about how this transparent mechanism can be used to query optimization, assum-
ing no changes in syntax, semantics and pragmatics of the query language itself.

Cached queries are also similar to database indices. Both cached queries and indi-
ces are server-side auxiliary structures that are used for fast retrieval. For instance, an
item of a dense index having a key value “designer” from the Job attribute of the
Person table can be perceived as a cached SBQL query <Person where Job = “de-
signer”, collection of OIDs>, where the ‘collection of OIDs’ is a non-key index value
(object identifiers returned by the query) associated with the key value “designer” in
the index. This observation suggests implementation of cached queries in the form of
data structures, where a collection of similar cached queries is represented by a query
with a parameter, augmented by a two-column table. Its first column contains the
value of the parameter (key value) and the second column contains the query result
for this parameter (non-key value). For fast retrieval such a structure can be imple-
mented e.g. as a hash table or B-tree, similarly to the methods of organizing indices.
However cached queries are conceptually different from indices. Indices usually ma-
terialize very simple queries, while in general we can cache arbitrarily complex que-
ries if they are promising to be reused. For instance, we can consider caching queries
containing multi-parameterized selections, aggregations, long path expressions,
grouping, etc. Indices are also made in advance, while cached queries are a side effect
of previous query evaluations. Indices contain items for all database values of the
given attribute (e.g. for all values of the Job attribute), while cached queries usually
contain only a subset of them. There is also a difference in updating: indices are usu-
ally automatically updated after altering a database, while for cached queries the up-
dating problem is a research issue (that we will try to discuss in this paper). For these
reasons cached queries imply quite new research and implementation problems.

In the following we assume a special server-side data structure recording all cached
queries; we call it query cache registry or simply cache. Conceptually, the cache can
be understood as a two-column table, where one column contains queries in some
internal format (e.g. normalized syntactic query trees), and the second column con-
tains query results. A query result can be stored as a collection of OIDs, but for spe-
cial purposes can also be stored e.g. as an XML file enabling further quick reuse in
Web applications. There are several strategies of dealing with cached queries and a lot
of combinations of these strategies. A cached query can be created as a side effect of
normal evaluation of user query or by the database administrator in advance. It is also
possible that not all queries are to be cached, but only some of them that are promis-
ing for reuse. There are also several strategies of removing cached queries from the

310 P. Cybula and K. Subieta

cache (providing limits of the cache size or limited maintenance cost). The choice of a
combination of particular strategies can be predefined, or alternatively can be the
subject of more complex strategy involving some query evaluation cost model. The
model must involve at least the following costs:

• The cost of creating cached query. As suggested by the above strategies, the cost
is less significant concerning creation of the cached query itself (creation is
a side effect), but can be increased if putting a query into the cache requires ad-
ditional actions, e.g. checking the query if it is promising to be reused, if it
should be decomposed to subqueries, etc.

• The cost of an extra RAM and/or disk space. Nowadays this is a minor problem.
• The cost of using the cache. If the cache would be very large, searching for

a given query may be a time-consuming process, in many cases unsuccessful
(the input query is not cached).

• The cost of cache maintenance. After a database update some cached queries are
no more consistent thus should be removed, altered or re-calculated. The issue is
the bottleneck of the whole affair and therefore in this paper we devote to it
more attention.

In this paper we deal mainly with the methods of fast retrieval of cached queries and
the method allowing fast recognition which cached queries are affected by a database
update (thus must be removed, altered or re-calculated). Our concept of cached que-
ries follows the work presented in [17] and [21], devoted to a kind of a network data-
base model. In comparison, object-oriented and XML-oriented data models and their
query languages present new qualities, thus the methods that we discuss and propose
are significantly different. Our research is done within the Stack-Based Approach
(SBA) to object-oriented query/programming languages. SBA is a formal theory and
a universal conceptual frame addressing this kind of languages, thus it allows precise
reasoning concerning various aspects of caching queries, in particular, query seman-
tics, query decomposition, query indexing in the cache, and so on. The caching query
methods we have implemented as a part of the optimizer developed for the query
language SBQL (Stack-Based Query Language) in our last project ODRA (Object
Database for Rapid Application development) devoted to Web and grid applications
[15]. In [7] we have described how query caching can be used to enhance perform-
ance of applications operating on grids. We based our consideration on grid architec-
ture where the key element is the mechanism of updatable views. We showed where
in this architecture caching can be implemented and how query rewriting techniques
can use these cached results.

The database literature contains few papers devoted to cached queries. A relevant,
but rather obsolete work [12] (oriented towards the relational algebra) concerns usability
of a set of cached queries in the query optimization processes. The approach of main-
taining cached queries assumed in the paper resembles the idea presented in [2], but the
relationship between the number of database updates and the data units to maintain is in
the case of cached queries opposite to that of materialized views case described in the
paper. There are many papers concerning maintenance of relational materialized views,
for instance see [3,4]. The papers assume some restrictions on a query language expres-
sions and cached structures. Such materialized views are currently implemented in
popular relational database systems as DB2 and Oracle [10,16]. Materialization of query

 Query Optimization through Cached Queries for SBQL 311

results in object-oriented algebras in the form of materialized views is considered in [1]
and [11]. In [5] and [19] a solution for XML query processing using materialized
XQuery views is proposed. The authors of these papers present an algebraic approach
for incremental maintenance of such views.

New Oracle 11g database system [16] offers also caching of SQL and PL/SQL re-
sults. The cached results of SQL queries and PL/SQL functions are automatically
reused while subsequent invocation and updated after database modifications. On the
other hand, in opposition to our proposal, materialization of the results is not fully
transparent. Query results are cached only when query code contains a comment with
a special parameter 'result_cache', so the evaluation of old codes without the parame-
ter is not optimized. Cache update is also supported with dedicated syntactic clause
'relies_on' in stored function declaration with a list of tables, modification of which
extorts the invalidation of the results while next call of the function.

Query cache is also implemented into MySQL database [14], where only full SE-
LECT query texts together with the corresponding results are stored in the cache. In
the solution caching does not work for subselects and stored procedure calls (even if it
simply performs select query). Queries must be absolutely the same - they have to
match byte by byte for cache utilization, because of matching of not normalized query
texts (e.g. the use of different letter case causes insertion of different queries into the
query cache). MySQL maintains table level granularity for invalidation – if a table
changes, all cached queries that use the table become invalid and are removed from
the cache. There is no incremental update mechanism.

The paper is organized as follows. In section 2 we briefly present the Stack-Based
Approach. Section 3 describes the architecture of query optimization using cached
queries, main problems concerning it and our suggestions for solving them. Section 4
contains the description of the cache update strategies, in particular the elimination
method proposed for recognizing of cached query independence of database update.
Section 5 presents experimental results and Section 6 concludes.

2 Overview of the Stack-Based Approach (SBA)

The Stack-Based Approach (SBA) along with its query language SBQL (Stack-Based
Query Language) is the result of investigations into a uniform conceptual and seman-
tic platform for integrated query and programming languages for object-oriented
databases. SBA assumes that query languages are a special case of programming
languages. The approach is abstract and universal, which makes it relevant to a gen-
eral object model. SBA makes it possible to precisely determine the semantics of
query languages, their relationships with object-oriented concepts, with imperative
programming constructs, and with programming abstractions, including procedures,
functional procedures, views, modules, etc. SBA respects the naming-scoping-binding
principle, which means that each name occurring in a query is bound to the appropri-
ate run-time entity (an object, attribute, method parameter, etc) according to the scope
of this name. One of its basic mechanisms is an environment stack (ES), which is
responsible for scope control and for binding names. In contrast to classical stacks, it
does not store objects, but some structures built upon object identifiers, names, and

312 P. Cybula and K. Subieta

values. SBA assumes the principles of semantic relativity, orthogonal persistence and
full internal identification.

Stack-Based Query Language (SBQL) is in details described in [19,20]. The lan-
guage has several implementations - for the XML DOM model, for OODBMS Objec-
tivity/DB, and recently for the object-oriented ODRA system [15]. SBQL is based on
an abstract syntax and the principle of compositionality: it avoids syntactic sugar and
syntactically separates as far as possible query operators. In contrast to SQL and
OQL, SBQL queries have the useful property: they can be easily decomposed into
subqueries, down to atomic ones, connected by unary or binary operators. The prop-
erty simplifies implementation and greatly supports query optimization. The syntax of
SBQL is as follows:

• A single name or a single literal is an (atomic) query. For instance, Student,
name, year, x, y, “Smith”, 2, 2500, etc, are queries.

• If q is a query, and σ is a unary operator (e.g. sum, count, distinct, sin, sqrt),
then σ(q) is a query.

• If q1 and q2 are queries, and θ is a binary operator (e.g. where, dot, join, +, =,
and), then q1 θ q2 is a query.

received_by [1..*]

Student [0..*]

year: integer
grades [0..*]: integer

avgGrade(): real

Training [0..*]

subject: string
duration: integer

Dept [0..*]

dname: string

Person [0..*]

name: string
birthday: date
age(): integer

Emp [0..*]

 job: string
salary: real
rating: real

prev_job [0..*]

company: string
years: string

receives [1..*]

works_in

employs [0..*]

supervises [0..*]

supervised_by

boss

Fig. 1. Class diagram of the example database

To present an example SBA object store we assume the class diagram in Fig.1. The
schema defines five classes (i.e. five collections of objects): Training, Student, Emp,
Person, and Dept. The classes Training, Student, Emp and Dept model students re-
ceiving trainings, which are supervised by employees of departments organizing these
trainings. Person is the superclass of the classes Student and Emp. An Emp objects
can contain multiple complex prev_job subobjects (previous jobs). Names of classes
(as well as names of attributes and links) are followed by cardinality numbers, unless
the cardinality is 1.

 Query Optimization through Cached Queries for SBQL 313

3 Optimization Using Cached Queries

Cache registry organization. Since the amount of cached queries may be very large,
structures used to implement the query registry must ensure very fast access and
search capabilities. We propose the linear hashing table [13] with a single, primary
key as fast and efficient search data structure for cached results. The single key
retrieval is very simple to implement and independent of the query type - the response
time is short and always the same regardless of the complexity of request. There are
several candidate solutions for the search key. The simplest one is simply a query text
(normalized using some sophisticated techniques) considered as a character string.
Taking into account the equivalence of text of a query and its syntactic tree, instead of
difficult searching within the set of syntactic trees of cached queries, we can search in
the efficient and proved linear hashing index structure containing texts. Non-key
values of the index are references to the metabase nodes containing meta-information
concerning cached queries, i.e. a signature of cached results for type-checking
purposes and a reference to the data store node containing compiled cached query (for
further reevaluation), cached results, statistic data and auxiliary structures for efficient
update of the results after database change (maintained in the next section). Queries
are cached both in the physical object store (persistent memory cache guarantying
maintenance of the cache after database restart) and in virtual object store (volatile
main memory cache guarantying fast access).

Query optimization steps. Query optimization using cached results involves main
subsystems of query evaluation environment, such query optimizer, query interpreter
and query cache registry placed in the object store and a metabase. We propose the
following algorithm of the optimization using cached queries in query evaluation
environment for SBA:

1. A user sends a query to a database system.
2. The parser receives it and transforms to form of a syntactic tree.
3. This tree is sent to the cache optimizer being one of many optimizers, which re-

writes it. To prevent from placing in the cache queries with different text forms
but the same semantic meanings we introduce several query text normalization
methods. Most of these methods can be easily applied in a way of reconstructing
a query text from early generated query syntactic tree. The main methods are:
alphabetical ordering of operands for operators, which for a succession of oper-
ands is not substantial, ordering of operators (e.g. putting sum operations before
subtractions), object name and auxiliary name unification. The normalization
methods are thoroughly presented in [8].

4. Additionally the optimizer analyses the query as a candidate for caching. Too
simple queries (without object names or non-algebraic operators) are omitted. If
possible, it is virtually decomposed into one or many simpler candidate subque-
ries. Query decomposition is a useful mechanism to speed up evaluating a
greater number of new queries. If we materialize a small independent subquery
instead of a whole complex query, then the probability of reusing of its results is
risen. In addition, a simple semantic of the decomposed query reduces the costs
of its updating. We use such decomposition techniques (widely described in [8])

314 P. Cybula and K. Subieta

such factoring out independent subqueries, removing path expressions finalizing
query evaluation and transforming queries into equivalent forms using opera-
tions on Boolean expressions and on sets of query results (bags). Finally the
modified query evaluation plan is produced.

5. The optimizer analyses the query in context of the set of cached queries defined
in the query cache registry. Query is converted to the text form and the opti-
mizer performs search process using query index stored in the cache registry.
Each (sub)tree of found cached (sub)query is replaced with call of an appropri-
ate special cache function defined in the registry for the chosen cached query
(parameterized with references to its nodes in the metabase and object store).
Each not yet cached candidate (sub)query is also replaced with call of the cache
function – new cached query is placed into query index. In this case query node
in object store doesn't contain query results – it is marked as not fully cached
and will be populated with its results while the first need of use. Finally the
modified query syntactic tree is compiled into query evaluation plan and ana-
lyzed by the type-checker.

6. The plan is executed by the query interpreter. Call of the special cache function
causes returning materialized results of used cached query from the query cache
registry. Not yet cached or marked for update queries are evaluated and their re-
sults are stored and utilized immediately. If a cached query is used, the system
updates its use counter. Use counters are used to generate global cache statistics
implemented as priority lists of use levels in form of MRU lists. The system
controls the cache by deleting unprofitable, rarely used cached queries (by count
of use cases or last use time stamp) or queries dependent on too often updates.
Such cache adaptability property is performed under the control of the adminis-
trator, who configures cache system parameters. For each new cached query
system generates additional structures, which describe a subset of involved ob-
jects for maintenance purposes. The system updates cached results after changes
in the database accordingly to the algorithm presented in the next section.

7. After the evaluation of whole query plan interpreter sends its results to the user.

Taking into account the client/server architecture the above scenario is valid when all
the query processing is performed on the server (c.f. SQL). In the ODRA system
majority of query processing is shifted to the client side, to avoid server overloading.
In such a case the method of cached queries needs to be changed. Firstly, similarly to
indices, the cached query registry is stored at the server. Hence the client-side query
optimizer should look up in this registry before starts optimization and processing
a given query. Secondly, the storing of the query result should also be processed dif-
ferently. Because only the client knows the form of the query and its result, the client
is responsible to send the pair <query, result> to the server in order to include it
within the caching query registry.

4 Update of Cached Results

The main problem of the cache maintenance concerns an aspect of synchronization of
the cache with the database state. If a database is updated then some of cached queries

 Query Optimization through Cached Queries for SBQL 315

may not be up to date - their results may be wrong, therefore some synchronization
steps are required. On the other hand, reevaluating all of the queries materialized in
the cache may spend too much time, at the expense of a cost necessary to answer for
other queries. It is necessary to recognizing the possibly small group of cached que-
ries which could be affected by the changes in a database. We have chosen for this
purpose an elimination method introduced for first time in the context of the NETUL
query language, which was constructed for network databases [17], [21].

The elimination method. The elimination method aims at removing from consideration
those queries that are certainly not influenced by a database update. Since in the
modified database they still remain valid, their cached results can be eliminated from the
synchronization process, and in consequence the process will proceed much faster. To
facilitate this task the method based on the concept of “subschema” is used. A
subschema sufficient for a query is a part of the database schema necessary to process
the query. Similarly, a subschema sufficient for an update contains that part of the
database schema, instances of which have been altered, removed or inserted. The
subschema for a cached query is generated by a special function when the query is
cached and is stored together with cached query results. The subschema for an update is
generated by another function, which analyses the transaction registry and the metabase.

Recognizing if a query result is affected by a database update requires comparing
the sufficient subschemas for the query and the update. If these subschemas are dis-
joint (in a proper sense) then the update cannot influence the cached query. Thus the
query is eliminated from the updating process. Such comparison must be done for all
cached queries. The comparison can be much fasten by a properly organized index
(presented in the next subsection) which makes it possible fast retrieval of all the
queries that can be affected by an update.

The efficiency of elimination may depend on the applied subschema language and
in consequence on the data structures and algorithms used for storing the subschemas
and comparing them. Subschema languages with better precision (which better ap-
proximate necessary parts of the database schema) allow to eliminate more cached
queries. More precise languages, however, may cause performance difficulties when
generating sufficient subschemas and testing whether they are disjoint. Note that the
considered subschema language is an internal feature, transparent for the users. Hence
we have a lot of freedom concerning how it has to be constructed.

For SBA we propose subschema function definitions based on the database schema
graph. Each node of the graph describing a database object has an internal unique
identifier being a reference to the node. We use these identifiers as basic building
blocks of our subschema language. According to the SBA assumptions, during the
static analysis of a query each name occurring in it is associated with a database
schema node. The node identifiers are fixed-length integer values, so proposed sub-
schemas are light-weight structures which can be easy compared and maintained.
Then, the algorithm of subschema extracting is as follows:

• Query subschema function subQ returns for a query q the set of the schema
graph node references of all object names Nq occurring in the query syntactic
tree. The set contains therefore references of names of root objects, their native
and derived properties and methods, which are involved within the query.

316 P. Cybula and K. Subieta

• Update subschema function subU returns for each update u the set of the refer-
ences of all names Nu of objects influenced by the update. If some complex objects
were removed, altered or inserted, then the references of all their native or inherited
subobjects names are also in the set. If a name reference of objects of a subclass is
in the set, the references of names of all its superclasses are also included.

To compare the subschemas we should only check, whether there are common ele-
ments in the generated subschemas using the above functions for a query and an up-
date. If there are no such elements, the subschemas are disjoint. Below we present an
example of the elimination method activity, which utilizes proposed subschema defi-
nitions. To simplify examples we use object names instead of references to schema
graph nodes.

For the example we use the database schema presented in Fig.1. For query q:

(Emp where salary > 1200).(name, works_in.Dept.dname)

we obtain the set of involved names subQ(q) = {Emp, salary, name, works_in, Dept,
dname}. The name name is an example of inherited subname - objects named Emp
inherit all subobjects and methods from class Person. Example updates are:

u1: (Emp where works_in.Dept.dname = “Trade”).salary :=
1300

u2: delete Emp where name = “Brown”

u3: (Student where name = “Smith”).(grades as g where g
= 3) := 4

After the update u1 only objects named salary are changed, hence subU(u1) = {sal-
ary} and subQ(q) ∩ subU(u1) ≠ ∅, therefore after the update u1 cached q should be
removed or the result of q has to be corrected. After that decision query should be
marked in the cache registry as update needed. Identifiers of changed, inserted or
deleted objects (in the case identifiers of changed salary objects) are stored for possi-
bly incremental update presented later in the section. The cached query will be up-
dated immediately after the commitment of the update (or multi-update within
a database transaction) or while next use of its cached results (deferred update).

The update u2 deletes from the database entire objects of class Emp together with
all their subobjects (with inherited from class Person), thus subU(u2) = {Emp, Person,
name, birthday, job, salary, rating, works_in, prev_job, company, years, employs}.
By constructing the subschema we have assumed that at least one of the deleted (by
update u2) Emp objects has contained the prev_job subobject. Name Person is in-
cluded in the set, because of the inheritance relation between Emp and Person objects.
The subschema contains also name employs, which represents the subobject of objects
named Dept not included in the set. Object named employs was deleted by the update,
because of the deletion of its twin pointer object named works_in. On the other hand
we have assumed that before the update all of the deleted Emp objects didn't have got
subobjects named supervises nor manages, so the subschema omits them and their
twin pointer object names supervised_by and boss. We obtain subQ(q) ∩ subU(u2)
≠ ∅, thus, like after the update u1, after the update u2 query q should be corrected.

 Query Optimization through Cached Queries for SBQL 317

The update u3 modifies objects named grades, thus subU(u3) = {grades}, subQ(q)
∩ subU(u3) = ∅, so this update does not influence the results of the query q, which in
the situation may be omitted by updating process.

Subschema index for efficient elimination. As we have mentioned earlier, efficiency
of elimination may depend on the applied subschema language and in consequence on
the data structures and algorithms used for storing the subschemas and comparing them.
The subschema language proposed in previous subsection is set-based, therefore, to
compare the subschemas, one has to check, whether there are common elements in the
subschemas sufficient for a query and an update. After a database update, the database
system generates the subschema sufficient for the update and, according to the
elimination method, compares the subschema with subschemas of all cached queries to
recognize which of them were not influenced by the update. If the database is updated
quite often, this check process may be very expensive. Some optimization mechanisms
have to be introduced for subschema comparison implementation.

Firstly, set-based subschema organization allows for very simple way for reduction
of the comparison process frequency by accumulation of a few successive updates
into one update. After each single update system caches its subschema and waits for
another database update. After several such operations, the number of which is system
specific and may depend on time since the first update subschema was cached, system
generates the subschema sufficient for a group of the updates. This new global sub-
schema is realized as a sum of the particular cached subschemas, which is simply the
sum of sets. This optimization step may cause temporarily, that the results of some
cached queries will not comply with current database state.

Second way to speed up the comparison of subschemas is to introduce special in-
dex for a set of cached query subschemas. The number of subschemas to traverse is
significant, thus the index must be very fast. Searched elements are sets, which the
common elements occurrence is to be checked for. In our approach we can assume
that the schema of the database is fixed or at least changes very rarely. Taking into
account this assumption we recognize, that a set of all object name references being
elements of the searched sets is also fixed. For set-valued index elements, the inverted
file organization supposes to be very convenient, as recognized in [9].

Our data structure for efficient query elimination, called subschema index, consists
therefore of a directory containing all distinct values that can be searched for (identifiers
of schema graph nodes) and a list for each value containing all references to data items
in which the corresponding value appears (identifiers of cached queries which subsche-
mas contain the object name identifier). We place the search values of the directory in a
B-tree [6] for quick access. The first bytes of a node in the B-tree directory are used to
store the offset of the first free byte on a page. In leaf nodes we have search-keys along
with the references to the corresponding list of data item references. In inner nodes we
store references to child nodes which are separated by search keys. The occurrence lists
are sorted and compressed by storing the gaps between values instead of proper values
(indexed query identifiers). The technique decreases the size of them significantly and
in effect increases the performance of the index structure.

Performing elimination, we search all occurrence lists for all elements occurring in
the subschema generated for an database update (using subU function) and then we
sum all the lists. The resultant list contains identifiers of all cached queries that should

318 P. Cybula and K. Subieta

be deleted or corrected after the update – other queries are eliminated from synchroni-
zation process. In case of insertion of new cached query its identifier is added to the
occurrence lists for all values appearing in the subschema produced for that query by
subQ function. Deletion of a cached query deletes its identifier from all corresponding
occurrence lists (based on the subschema stored within the cached query node in the
cache registry). So implementing the subschema comparison using the inverted-file,
we index the subschemas sufficient for cached queries as indexed sets. Having a
given set being the subschema for an update of the database, it is very quick to recog-
nize such group of cached queries, subschemas of which overlap (have common ele-
ments) with the given set.

Incremental update. Queries influenced by an update (not eliminated using the
elimination method) should be updated in order to comply with the database state.
The full reevaluation of such queries may be very expensive, so some optimization is
required. Changes in the database are usually local, that means concern relatively
small part of the database. Therefore, the majority of cached query results remain
wholly or partly valid for the new database state. Instead of results reevaluation, it is
preferred to correct them. The correction means deleting from materialized results of
the query all the uncertain elements and completing the remainder with the
appropriate missing elements. Such correction is often called an incremental updating
and our proposals for the method are explained in detail in [8].

5 Experimental Results

We have tested the performance of the optimizer by calculating a response times for
100 subsequent requests using a set of the same queries retrieving data from database
containing over 100000 objects, comparing four optimization strategies: without op-
timization (NoCache), caching in volatile memory (TMP), caching in persistent
memory (DB) and mixed caching (TMP+DB). Results presented in Fig.2 show that in
case of TMP strategy average response time is more than 10 times shorter than re-
sponse without using of the cache. In many cases, specially for more complex queries,
responses were 100 times faster.

Fig. 2. Efficiency of optimization using cached queries

0

5

10

15

20

25

 1 10 20 30 40 50 60 70 80 90 100

su
m

m
ar

y
re

sp
on

se
 ti

m
e

[s
]

NoCache TMP DB TMP+DB

0

50

100

150

200

250

av
er

ag
e

re
sp

on
se

 ti
m

e
[m

s]
 .

NoCache TMP DB TMP+DB

 Query Optimization through Cached Queries for SBQL 319

6 Conclusions and Future Work

We have presented a new approach to optimization of query languages using caching
of results of previously answered queries. Our solution addresses the stack-based
approach (SBA) to object-oriented query languages, which is a new and powerful
concept in the database systems research. The cached queries as a tool for the optimi-
zation ensure short and scalable response time to any user request types. Proper struc-
tures for fast retrieval of cached queries results were proposed. Important problem of
this optimization method is the high cost of updating results of cached queries after a
database state modification. The elimination method, based on the concept of sub-
schemas, reduces the cost of maintenance of the cache up to date by estimating and
removing from consideration after a database update those queries that are for sure
not influenced by the update. The subschemas generated by sets of object names were
proposed and the data structures aiding fast comparison of the subschemas sufficient
for queries and updates are also introduced.

The work on cached queries is continued. There are many open research areas con-
cerning the optimization method. The main areas concern some additional features of
SBA and SBQL not mentioned in this paper. In general, the problem is practical
rather than theoretical, hence much effort should be devoted to experiments with
different strategies of caching queries and keeping in sync their stored results.

References

1. Ali, M.A., Fernandes, A.A.A., Paton, N.W.: MOVIE: An Incremental Maintenance Sys-
tem for Materialized Object Views. In: Proc. of Data & Knowledge Engineering, vol. 47,
pp. 131–166 (2003)

2. Blakeley, J.A., Larson, P., Tompa, W.M.: Efficiently Updating Materialized Views. In:
Proc. of ACM SIGMOD, pp. 61–71 (1986)

3. Chaudhuri, S., Krishnamurthy, R., Potamianos, S., Shim, K.: Optimizing Queries with Ma-
terialized Views. In: Proc. of Intl. Conf. on Data Engineering, pp. 190–200 (1995)

4. Chen, C.M., Roussopoulos, N.: The Implementation and Performance Evaluation of the
ADMS Query Optimizer: Integrating Query Result Caching and Matching. In: Jarke, M.,
Bubenko, J., Jeffery, K. (eds.) EDBT 1994. LNCS, vol. 779. Springer, Heidelberg (1994)

5. Chen, L., Rundensteiner, E.A.: ACE-XQ: A CachE-ware XQuery Answering System. In:
Proc. of WebDB, pp. 31–36 (2002)

6. Comer, D.: The Ubiquitous B-Tree. Computing Surveys 11(2), 121–137 (1979)
7. Cybula, P., Kozankiewicz, H., Stencel, K., Subieta, K.: Optimization of Distributed Que-

ries in Grid via Caching. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM-WS 2005.
LNCS, vol. 3762, pp. 387–396. Springer, Heidelberg (2005)

8. Cybula, P., Subieta, K.: Cached Queries in the Stack-Based Approach. Institute of Com-
puter Science, Polish Academy of Sciences, Report 985, Warsaw (2005)

9. Helmer, S., Moerkotte, G.: A Study of Four Index Structures for Set-Valued Attributes of
Low Cardinality. Technical Report 2/99, Universität Mannheim (1999)

10. IBM DB2 Universal Database SQL Reference, 2, Version 8 (2002); Faster Federated Que-
ries with MQTs, DB2 Magazine 8(3) (2003)

11. Kemper, A., Moerkotte, G.: Access Support in Object Bases. In: Proc. of ACM SIGMOD,
pp. 364–376 (1990)

320 P. Cybula and K. Subieta

12. Larson, P., Yang, H.: Computing Queries from Derived Relations. In: Proc. of VLDB, pp.
259–269 (1985)

13. Litwin, W.: Linear Hashing: A New Tool for File and Table Addressing. In: Proc. of 6th
VLDB, pp. 212–223 (1980)

14. MySQL 5.4 Reference Manual, Ch. 7.5.5: The MySQL Query Cache (2009)
15. ODRA (Object Database for Rapid Application Development), Description and Program-

mer Manual, http://sbql.pl/various/ODRA/ODRA_manual.html
16. Oracle 9i Materialized Views, An Oracle White Paper (May 2001); On Oracle Database

11g, Oracle Magazine, vol. XXI(5)(2007)
17. Rzeczkowski, W., Subieta, K.: Stored Queries – a Data Organization for Query Optimiza-

tion. In: Proc. of Data & Knowledge Engineering, vol. 3, pp. 29–48 (1988)
18. EL-Sayed, M., Wang, L., Ding, L., Rundensteiner, E.A.: An Algebraic Approach for In-

cremental Maintenance of Materialized XQuery Views. In: Proc. of WIDM (2002)
19. Subieta, K.: Theory and Practice of Object Query Languages. Polish-Japanese Institute of

Information Technology (2004) (in Polish)
20. Subieta, K., Beeri, C., Matthes, F., Schmidt, J.W.: A Stack Based Approach to Query Lan-

guages. In: Proc. of 2nd Springer Workshops in Computing (1995)
21. Subieta, K., Rzeczkowski, W.: Query Optimization by Stored Queries. In: Proc. of VLDB,

pp. 369–380 (1987)

Perfect Matching for Biconnected Cubic Graphs
in O(n log2 n) Time

Krzysztof Diks and Piotr Stanczyk

Institute of Informatics, University of Warsaw
Banacha 2, 02-097 Warsaw, Poland
{diks,stanczyk}@mimuw.edu.pl

Abstract. The main result of this paper is a new perfect matching
algorithm for biconnected cubic graphs. The algorithm runs in time
O(n log2 n). It is also possible, by applying randomized data structures,
to get O(n log n log log3 n) average time. Our solution improves the one
given by T. Biedl et al. [3]. The algorithm of Biedl et al. runs in time
O(n log4 n). We use a similar approach. However, thanks to exploring
some properties of biconnected cubic graphs we are able to replace com-
plex fully-dynamic biconnectivity data structure with much simpler, dy-
namic graph connectivity and dynamic tree data structures. Moreover,
we present a significant modification of the new algorithm which makes
application of a decremental dynamic graph connectivity data structure
possible, instead of one supporting the fully dynamic graph connectivity.
It gives hope for further improvements.

Let G = (V,E) be a graph and let n denote the number of vertices and m the
number of edges of the graph. In this paper by a graph we mean an undirected
multigraph. A matching of G is a subset M ⊂ E of the edges such that no
two edges in M have a common vertex. A maximum matching is a matching
of maximum cardinality. Any matching of cardinality |V |

2 is called a perfect
matching. An alternating cycle is a cycle of even length with edges alternately
belonging and not belonging to the matching.

A graph G is connected if there is a path in G between any two of its vertices.
Every maximal connected subgraph of a graph is called a connected component.
Two vertices belonging to the same connected component are called connected.
A connected graph is called vertex (edge) biconnected if removal of any vertex
(edge) leaves the graph connected. A bridge is an edge which removal increases
the number of connected components of the graph. Graph is bridgeless if it does
not contain any bridge. Graph G is cubic if every vertex in G has degree 3.
Observe that every vertex biconnected cubic graph is also edge biconnected and
vice versa.

In this paper we present a new algorithm for computing perfect matching
in cubic biconnected graphs running in time O(n log2 n). Moreover, we prove
that if there exists a decremental dynamic graph connectivity data structure
for sparse graphs, with query/update time O(f(n)), then our algorithm can be
implemented in time O(n f(n)).

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 321–333, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

322 K. Diks and P. Stanczyk

The history of matchings in graphs goes back to the end of the nineteenth
century when Petersen published a pioneering paper on matchings [9]. Find-
ing a maximum matching is one of the most fundamental problems both in
the classic and in the algorithmic graph theory [7,10,11]. The fastest known al-
gorithm for computing maximum matching in general graphs proposed by M.
Mucha and P. Sankowski [17] runs in O(nω) time1, but it is very complicated and
impractical. Although N. J. A. Harvey [18] managed to greatly simplify the al-
gorithm, because of utilization of complex fast matrix multiplication algorithm,
this approach does not turn into practical solution of the matching problem. By
applying classical techniques it is possible to construct a maximum matching in
O(
√
nm) time [8]. A maximum matching in a bipartite graph can be computed

faster, i.e. in time O(n1.5
√
m logn) [1]. In 2001 Therese Biedl showed a linear

reduction from the maximum matching problem in general graphs to the max-
imum matching problem in 3-regular (cubic) graphs [2]. Her result implies that
any O(f(m)) algorithm for maximum matching in 3-regular graphs yields an
O(f(m) +m) algorithm for maximum matching in arbitrary graphs. R. Green-
law and R. Petreschi in [19] survey algorithms for the different classes of cubic
graphs giving motivation for further exploration.

This paper goes back to the pioneering work of Petersen from 1891. Petersen
proved that every cubic graph without bridges (actually two bridges are allowed)
has a perfect matching. It is interesting from the algorithmic point of view how
quickly such a perfect matching can be computed. In 2001 Biedl at al. [3] showed
an algorithm for computing a perfect matching in a bridgeless cubic graph run-
ning in time O(n log4 n). Our paper contains a significant modification of the
previous algorithm leading to a time complexity of O(n log2 n). Moreover, we
show what is needed to get time complexity of O(n logn). There are linear time
complexity algorithms for computing perfect matching in some classes of cubic
biconnected graphs. Biedl at al. [3] showed that it is possible for planar graphs
and Schrijver [12] did the same for bipartite graphs. This gives hope for a linear
time algorithm for computing a perfect matching in cubic biconnected graph as
well.

The paper is organized into 3 sections. The first section introduces Frink’s
quadratic time algorithm and its implementation proposed by T. Biedl et al.
leading to O(n log4 n) time complexity. The second section presents a new algo-
rithm with O(n log2 n) time complexity. A randomized implementation runs in
O(n log n log log3 n) average time. The third section presents possible improve-
ments and introduces a modification of the algorithm which requires only edge
deletions from the dynamic graph connectivity data structure. This makes pos-
sible to utilize only decremental counterpart of this data structure.

1 Frink’s Algorithm

The keys to Frink’s algorithm are Petersen’s Theorem and Frink’s Theorem.

1 O(nω) is an optimal matrix multiplication time. It is known that ω < 2.38.

Perfect Matching for Biconnected Cubic Graphs in O(n log2 n) Time 323

A B

C

D

E F

(a)

A B

E F

(b)

A B

E F

(c)

Fig. 1. (a) Vertices C and D are to be removed from the graph. (b) The first type
of reduction — vertex A is connected with E, vertex B is connected with F . (c) The
second type of reduction — vertex A is connected with F , vertex B is connected with E.

Petersen’s Theorem [9]: If a cubic graph does not contain a perfect matching,
it contains at least three bridges.

It follows that every biconnected cubic graph has a perfect matching.

Frink’s Theorem [4]: Let G be a biconnected cubic graph with at least 4 ver-
tices. Consider a single edge e = (C,D). Let A and B be the neighbors of
vertex C in G different from D. Let E and F be the neighbors of D different
from C (see Figure 1).

At least one of two reductions of graph G consisting of removing vertices C
and D and reconnecting vertices A, B, E and F in one of two ways — by adding
edges (A,E) and (B,F) or (A,F) and (B,E) (cases (b) and (c) in Figure 1),
leads to a biconnected cubic graph.

The above observation allows to perform a sequence of reductions of graph G
(preserving biconnectivity) until it consists of only 2 vertices. Testing which of
the two possible reductions leads to a biconnected graph can be performed by
applying a fully-dynamic data structure for 2-edge connectivity problem. The
best known algorithm for solving this problem runs inO(log4 n) time per query or
update. It is then possible to match one of the edges in the final 2-vertices graph
(constructing initial perfect matching) and extend it by reverting the sequence of
reductions. Any single reversion can lead to one of four possible cases presented
in Figure 2. The only problematic case is when both edges being reverted belong
to the perfect matching. In such a situation it is required to find an alternating

A B

C

D

E F

(a)

A B

E F F

A B

C

D

E

(b)

A B

E F

A B

C

D

E F

(c)

A B

E F F

A B

C

D

E

(d)

A B

E F

Fig. 2. (a) None of the edges being reverted are matched — add edge (C, D) to the
matching. (b) Edge (A, E) is in the matching — remove (A,E) from the matching and
add (A,C) and (D, E) to the matching. (c) Edge (B, F) is in the matching — remove
(B, F) from the matching and add (B, C) and (D, F) to the matching. (d) Both edges
(A,E) and (B, F) are in the matching — find an alternating cycle containing at least
one of these two edges ((B, F) in the example) and switch the matching on the cycle.
This way case (d) is reduced to one of cases (a), (b) or (c).

324 K. Diks and P. Stanczyk

cycle containing at least one of these edges, which takes time O(n) [3,14]. The
total execution time of the algorithm is O(n2).

T. Biedl et al. proposed a clever implementation of Frink’s algorithm [3]. An
invariant of their algorithm guaranties that at most one edge being reverted
is matched. For an arbitrary edge e of a biconnected cubic graph there always
exists a perfect matching not containing e [9]. The Biedl’s algorithm first selects
an arbitrary edge e = (A,C) (we will refer to this edge as excluded — the
algorithm constructs a perfect matching not containing e). Then reduction step
against an edge f = (C,D) incident to e is performed — let g = (A,E) be the
added edge incident to A. The reduced graph G′ is biconnected and cubic, so it
is possible to find a perfect matching M ′ in G′ not containing g (using the same
approach). Matching M ′ can be easily extended to a perfect matching M in G
not containing e, without the need of finding an alternating cycle (since the case
when both edges being reverted are in the matching does not occur). This leads
to the O(n log4 n) time complexity.

2 New Algorithm

It turns out that it is possible to perform biconnectivity testing for each reduc-
tion performed by Frink’s algorithm without utilizing complex dynamic bicon-
nectivity data structure. By taking into account some biconnected cubic graphs’
properties and by applying a fully-dynamic connectivity data structure and the
Sleator/Tarjan’s dynamic trees, it is possible to solve the problem faster.

For fully-dynamic graph connectivity problem we apply the data structure
presented in [6]. This data structure supports the following operations:

– edge insertion,
– edge deletion,
– answering a question whether two given vertices of a graph are connected.

Each of the above operations is performed in O(log2 n) amortized time. M. Tho-
rup introduced another dynamic data structure for solving the same problem
which supports the same set of operations in O(log n log log3 n) expected time
per operation [15]. Choosing one of these data structures leads to a perfect
matching algorithm for biconnected cubic graphs running in O(n log2 n) time or
O(n log n log log3 n) expected time.

The second data structure to be used are dynamic trees of Sleator and Tar-
jan [13]. It maintains a dynamic forest and supports edge deletion and insertion
in O(log n) time per operation. It also supports computation of the nearest com-
mon ancestor of any two vertices of a rooted tree in O(log n) time per query.

Both dynamic connectivity data structures from [6] and [15] maintain a span-
ning forest of graph G. A newly added edge e = (X,Y) becomes the forest
edge if X and Y were not connected in G prior to insertion of e. No other
edge of G changes its status (is removed or added to the spanning forest). In
case of removal of a spanning forest edge e = (X,Y), the algorithm tries to
find a replacement edge reconnecting components of X and Y in the spanning

Perfect Matching for Biconnected Cubic Graphs in O(n log2 n) Time 325

forest. Any operation over dynamic connectivity data structure results in O(1)
inserted/removed edges in the maintained spanning forest. Our algorithm during
execution needs to know the lowest common ancestor of some pairs of vertices in
the arbitrary rooted spanning tree of G. To answer these questions we represent
trees of the forest (after being rooted) using Tarjan’s dynamic trees.

Our algorithm works in the following way:

– Initialize dynamic connectivity data structure D by adding all edges of an
input biconnected cubic graph G.

– Initialize dynamic tree data structure T by adding all spanning tree edges
of D.

– Perform Frink/Biedl algorithm but instead of using dynamic biconnectivity
data structure for verifying which reduction is correct, use the new approach
described below.

We already know that one of two possible reductions performed in each step
of Frink’s algorithm leads to a biconnected graph. Searching for the correct re-
duction might be hard sometimes. However, if we find out that one connection
does not preserve biconnectivity then Frink’s theorem implies that the other
reduction is the one of our interest. In order to find the correct reduction we
first need to update data structure D by removing edges (A,C), (B,C), (C,D),
(D,E) and (D,F), leading to graph G′. Two different scenarios are now possi-
ble — graph G′ stays connected or not (this can be verified using data structure
D by querying if A is connected with B, E and F).

2.1 Case 1: G′ Is Unconnected

Since graph G is biconnected, each of the removed edges ((A,C), (B,C), (C,D),
(D,E) and (D,F)) lies on some cycle in G. As G has a cycle containing (C,D),
there has to be at least one of the following paths in G′:

– between A and E
– between A and F
– between B and E
– between B and F

Assume (without loss of generality) that G′ contains a path connecting A and E
(see Figure 3). There has to be another cycle (or cycles) in G containing edges

A B

C

D

E F

(a)

A B

E F

(b)

A B

E F

(c)

Fig. 3. (a) The structure of G prior to edge deletions (every edge to be removed lies
on some cycle). (b) Reduction leading to a biconnected graph. (c) Reduction leading
to unconnected graph.

326 K. Diks and P. Stanczyk

(B,C) and (D,F). Since G′ is unconnected but A and E are connected, there
has to be a path between B and F in G′. In order to maintain biconnectivity of
the reduced graph it is required to connect A with F and B with E (the second
type of connection leads to unconnected graph and Frink’s theorem implies that
the first connection is the one we are looking for).

2.2 Case 2: G′ Is Connected

As G′ is connected, it is possible to use Tarjan’s trees to compute the lowest
common ancestor for any pair of vertices of G′ in a rooted spanning tree T being
maintained. Consider the subtree T ′ of the spanning tree T consisting of all
edges lying on paths connecting vertices A, B, E and F in T . We need to select
one of the two possible connections of vertices A, B, E and F using new edges
u and v such that every edge of T ′ lies on some cycle in T ′∪{u, v}. As we prove
later, such a connection guarantees biconnectivity of the reduced graph.

If we connected A with E and B with F , edges lying on paths connecting A
with E and B with F would be included in cycles of T ′ ∪ {u, v}. The only edges
in question are located between the lowest common ancestor LCA(A,E) of A
and E and the lowest common ancestor LCA(B,F) of B and F . There are three
possible cases depending on the relative position of LCA(A,E) and LCA(B,F)
in T ′:

– LCA(A,E) = G, LCA(B,F) = H , LCA(G,H) = I, I �= G,H (parts (a),
(b) of Figure 4) — after connecting A with F and B with E (LCA(A,F) =
LCA(B,E) = I), every edge of T ′ lies on some cycle in T ′ ∪ {u, v}.

– LCA(A,E) = I, LCA(B,F) = I (parts (c), (d) of Figure 4) — after con-
necting A with E and B with F , every edge of T ′ lies on some cycle in
T ′ ∪ {u, v}.

– LCA(A,E) = G, LCA(B,F) = I, LCA(G, I) = I (parts (e), (f) of Figure 4,
LCA(G, I) = G is the symmetric case) — it is required to add such edges
which generate cycles containing all edges between vertices G and I in T ′, so
edge w connecting G with its parent in T ′ has to be a part of the added cycles

A B

C

D

E F

(a)

G H

I

A B

E F

(b)

G H

I

A B

C

D

E F

(c)

G H

I

A B

E F

(d)

G H

I

A B

C

D

E F

(e)

G

H

I

(f)

A B

E F

G

H

I

Fig. 4. (a) Example graph G with LCA(A, E) = G, LCA(B,F) = H and
LCA(G, H) = I . (b) Graph G′ obtained from (a) after reduction. (c) Example graph G
with LCA(A, E) = I = LCA(B, F). (d) Graph G′ obtained from (c) after reduction.
(e) Example graph G with LCA(A,E) = G, LCA(B,F) = I . (f) Graph G′ obtained
from (e) after reduction.

Perfect Matching for Biconnected Cubic Graphs in O(n log2 n) Time 327

as well. If a cycle obtained by connecting B and F contains w (which can be
tested by checking if LCA(B,G) = G or LCA(F,G) = G) then connection
of A with E and B with F is the correct reduction. Otherwise, we have a
situation presented in case (e) — edges between G and H are not included
in any cycle. However, by taking the second possibility — connection of A
with F and B with E — the edges are included in both cycles.

What remains is to prove that if every edge of T ′ is included in some cycle in
T ′ ∪ {u, v}, the graph resulting from the reduction is biconnected. In order to
prove this fact it is sufficient to show that every edge of reduced graph G′ lies
on some cycle (as all bridgeless cubic graphs are biconnected).

It has been already shown that it is possible to perform reduction in such
a way that every edge of T ′ ∪ {u, v} lies on some cycle. The proof of this fact
remains for the rest of the edges. Let’s consider such an edge e ∈ G′/(T ′∪{u, v}).
As G is biconnected, there is a cycle c in G containing e. Assume (without loss
of generality) that when performing the reduction we have connected A with E
and B with F . A few cases have to be considered:

– Cycle c does not contain any of removed edges — c is also a cycle in the
reduced graph, so e stays on a cycle.

– Cycle c contains three removed edges (A,C), (C,D) and (D,E) (symmetri-
cally (B,C), (C,D) and (D,F)) — replacing those edges in c with (A,E)
(symmetrically (B,F)) leads to a cycle containing e in the reduced graph.

– c contains two edges (A,C) and (B,C) (symmetrically (D,E) and (D,F)) —
T ′ is a tree, so there exists a path d connecting A and B in T ′ (symmetrically
E and F). Symmetric difference of c and d ∪ {(A,C), (B,C)} is a collection
of cycles and one of them contains e.

– c contains three edges (A,C), (C,D) and (D,F) (symmetrically (B,C),
(C,D) and (D,E)) — T ′ is a tree, so there exists a path d connecting A
and F in T ′ (symmetrically B and E). Symmetric difference of c and d is
a collection of cycles and one of them contains e.

– c contains four removed edges (A,C), (B,C), (E,D) and (D,F) — by re-
placing those edges with (A,E) and (B,F) we obtain a cycle (possibly two
cycles) containing e.

The above completes the proof that reduced graph stays biconnected.
The proposed implementation requires O(n) operations on both dynamic

connectivity and dynamic tree data structures, so its total execution time is
O(n log2 n) in case of applying dynamic connectivity algorithm from [6] and
O(n log n log log3 n) expected time in case of the data structure from [15].

3 Further Improvements

In this section we present a sketch of a modification of our algorithm which makes
it possible to replace dynamic connectivity data structure with its decremental
counterpart. If we did not need to insert new edges to the graph G we could

328 K. Diks and P. Stanczyk

have applied a decremental dynamic connectivity data structure. It may turn
out to be more efficient than fully-dynamic one as it does not have to support
edge insertions. M. Thorup proposed such a data structure [16]. It starts from an
n-vertex graph with m edges and maintains a spanning forest of the graph and al-
lows to perform m deletion operations in O(min{n2,mn logn}+

√
nm log2.5 n)

expected time. In case of graphs with Ω(n log6 n) edges the time reduces to
O(log n) per operation, while for graphs with Ω(n2) to O(1) per operation. This
data structure does not help in our case as the graphs under consideration are
very sparse. However, there is a chance that one may design a more efficient
decremental algorithm for biconnected cubic graphs in the future.

In order to utilize a decremental dynamic connectivity data structure, apart
from original graph G we maintain a modified representation of that graph —
graph G′. At the beginning each vertex X of G is represented in G′ with two
vertices X1 and X2 connected by an edge (X1, X2). Each edge (X,Y) of G is re-
placed with four edges (X1, Y1), (X1, Y2), (X2, Y1), (X2, Y2). The representation
of edge (X,Y) from graph G in graph G′ is presented in Figure 5(a). As it is not
possible to add edges to G′ (we want to use only a decremental data structure)
we represent new edges of G by utilizing parts of already removed edges.

Figure 6 presents the change of graph G′ by the process of performing a sin-
gle reduction – in G five edges are removed and two edges are added. Every
added edge is represented in a special way as a subgraph of G′. Such an edge is
called disallowed as it is not possible to perform further reductions against it.
A general representation of a disallowed edge is given in Figure 5(c). In course
of the algorithm it may turn out that it is required to perform reduction against
a disallowed edge. In such a case a reverse process is applied to the decremental
dynamic connectivity data structure (described later in this section) leading to
appearance of another type of edges presented in Figure 5(b). We refer to them
as allowed as the reductions against them are possible.

The decremental dynamic connectivity data structure is used to maintain
a spanning tree T of G′ (just like in the algorithm from the previous section). If
all edges that represent vertices (all edges (X1, X2) for X ∈ V (G)) are included

(a) (b) (c)

X

X X

Y

Y Y

Fig. 5. (a) Initial representation of two vertices X and Y connected by an edge.
(b) General representation of an allowed edge — X1 is connected by a path with Y1, X2

with Y2. In addition the paths are joined by a ,,crossing”. (c) General representation
of a disallowed edge.

Perfect Matching for Biconnected Cubic Graphs in O(n log2 n) Time 329

(a) (b) (c)

Fig. 6. (a) Set of 5 edges with the allowed center edge to be reduced. (b) First type
of reduction — the representations of added disallowed edges are obtained from the
representations of the removed edges. (c) Second type of reduction.

(a) (b) (c) (d) (e)

Fig. 7. The process of performing reductions along an even cycle. The lower row
presents changes in graph G, while the upper row contains corresponding graph G′.
Light edges represent edge e which is excluded from the matching. (a) Initial graph G
and its corresponding graph G′. (b) G and G′ after the first reduction along the cycle.
(c) G and G′ after the second reduction along the cycle. This reduction introduces a
double edge which has to be reduced in the way depicted in Figure 8. (d) State of G and
G′ after reduction of the double edge. (e) State of the data structure after executing a
restoration point and fixing representation of all disallowed edges in G′.

in T 2 it is easy to derive a spanning tree of G from T — edge (X,Y) is a spanning
edge of G if edges from T representing (X,Y) form a path in T connecting X
with Y . This way it is possible to verify in a constant time if a given edge of G
is a tree edge (it is sufficient to maintain a counter of the number of tree-edges
of T representing an edge under consideration).

The algorithm starts by selecting a single edge e from G which is not to be
included in the perfect matching. A sequence of reductions is then performed

2 It can be easily fulfilled in case of the data structures used in our algorithm from
the previous section by adding vertex-edges to G′ before edges that represent edges
of G.

330 K. Diks and P. Stanczyk

(a) (b) (c)

Fig. 8. (a) Reduction of a double edge maintaining graph biconnectivity. (b) The case
of extending perfect matching when an edge that had replaced double edge is included
in the matching. (c) The case of extending perfect matching when an edge that had
replaced double edge is not included in the matching.

(b) (d)(c)(a)

Fig. 9. The process of performing reductions along an odd cycle. The lower row presents
changes in graph G while the upper row contains corresponding graph G′. Light edges
represent edge e which is excluded from the matching. (a) Initial graph G and its
corresponding graph G′. (b) G and G′ after the first reduction along the cycle. (c) G
and G′ after the second reduction along the cycle. (d) The last reduction along the
cycle leads to not biconnected graph (edge e is connected with the rest of the graph
by a bridge), so this reduction cannot be performed by the algorithm.

— each of them against one of 4 edges incident to edge e. Apart from the way
of detecting tree edges of G there are yet no differences in comparison with the
algorithm utilizing fully-dynamic connectivity data structure. The only problem
shows up when it turns out that a reduction is about to be performed against
disallowed edge. In such a situation it is not possible to update G′ to reflect
changes in G. In order to go around this problem we extend the decremental
dynamic data structure with the possibility of creating restoration points. Any
restoration point allows to restore the state of the data structure to the moment
when restoration point was created. Restoration points can be easily realized
by recording all modifications to the data structure and reverting them upon

Perfect Matching for Biconnected Cubic Graphs in O(n log2 n) Time 331

(b) (d)(c)(a) (e)

Fig. 10. The process of reductions in case of encountering disallowed edge f , different
from e. The lower row presents changes in graph G while the upper row contains corre-
sponding graph G′. Light edges represent edge e which is excluded from the matching.
(a) Initial graph G and its corresponding graph G′. (b) The first sequence of reductions.
(c) Reduction rm which makes edge f disallowed. (d) The second sequence of reduc-
tions. (e) Reduction to be performed is against disallowed edge f which is different
from e. In order to make this reduction possible, it is required to execute restoration
point created before stage (c). This way, all disallowed edges introduced into G after
stage (b) can be turned into allowed representation, while the reduction is also possible.

restoration point execution. There is no additional performance cost (by means
of asymptotic time complexity) to record changes made to the data structure.
Time required to execute a restoration point is amortized by the process of per-
forming operations on the data structure. Before performing a single reduction
a restoration point needs to be created. This way it is possible to restore the
state of the data structure before any reduction.

Two situations are possible when it turns out that the next reduction is to
remove disallowed edge f — f can be edge e, i.e. the edge where the reduction
process has started from (see Figure 7, 9), or not (see Figure 10).

If f turns out to be e it means that a sequence of reductions performed since
the last selection of the excluded edge e has lead to creation of a cycle. If the
cycle was of even length we would not be able to meet e on our way — first
we would have encountered a double edge case (see Figure 7) and the algorithm
would have done a reduction from Figure 8. Representation of removed edge e
can be used to fix all disallowed edges introduced by the sequence of reductions
performed for e. To do so restoration point created prior to the first reduction
with excluded edge e has to be executed (see Figure 7).

If the cycle was of odd length the reduction performed prior to encountering
excluded edge would have generated a bridge in the graph (see Figure 9) which
is not possible as algorithm maintains biconnectivity of the graph.

332 K. Diks and P. Stanczyk

If f is not e it must have been added to the graph as a result of one of not
reverted reductions. Denote by r1, r2, . . ., rk a sequence of reductions that has
not yet been reverted (each of these reductions has a restoration point). Let
rm be the reduction which made edge f disallowed. Reduction rk+1 is to be
executed against f , so f has been encountered twice by a sequence of reductions
(see Figure 10). Reduction rm splits representation of an excluded edge e into
two parts — the part obtained prior to execution of rm and the part generated
after rm. By executing a restoration point for rm it is possible to use reverted
edges of G′ (the once that were removed from the graph by reductions
rm+1 . . . rk) to make all disallowed edges added to the graph after rm allowed.
Edge f is one of those edges, so it is possible to reduce it.

Once the graph G consists of only two vertices it is possible to extend the
perfect matching to the initial graph, as it was done in the algorithm from
the previous section. Each reduction step executes O(1) restoration points (the
cost of such an operation is amortized by all operations being reverted by
the restoration point) and O(1) edge deletions. Hence the total execution time
of the algorithm is bounded by O(n logn + nf(n)) where f(n) is the cost of
a single operation over the decremental dynamic connectivity data structure.
If one designs an algorithm running in O(log n) time per operation for sparse
graphs it is possible to find perfect matching in biconnected cubic graphs in time
O(n log n).

References

1. Alt, H., Blum, N., Mehlhorn, K., Paul, M.: Computing a Maximum Cardinality
Matching in a Bipartite Graph in Time O(n1.5

√
m/ log n). Information Processing

Letters 37, 237–240 (1991)
2. Biedl, T.C.: Linear Reductions of Maximum Matching. In: SODA 2001, pp. 825–

826 (2001)
3. Biedl, T., Bose, P., Demaine, E., Lubiw, A.: Efficient Algorithms for Petersen’s

Matching Theorem. Journal of Algorithms 38, 110–134 (2001)
4. Frink, O.: A Proof of Petersen’s Theorem. The Annals of Mathematics, Se-

ries 2 27(4), 491–493 (1926)
5. Henzinger, M., King, V.: Fully Dynamic 2-Edge Connectivity Algorithm in Polylog-

arithmic Time per Operation. Technical Note, Digital Equipment Corp., Systems
Research Ctr. (June 12, 1997)

6. Holm, J., De Lichtenserg, K., Thorup, M.: Poly-Logarithmic Deterministic Fully-
Dynamic Algorithms for Connectivity, Minimum Spanning Tree, 2-Edge and Bi-
connectivity. Journal of the ACM (JACM) 48, 723–760 (2001)

7. Lovasz, L., Plummer, M.D.: Matching Theory. North-Holland Publishing Co., Am-
sterdam (1986)

8. Micali, S., Vazirani, V.V.: An O(
√

nm) Algorithm for Finding Maximum Matching
in General Graphs. In: Proceedings of FOCS 1980, pp. 17–27. IEEE, Los Alamitos
(1980)

9. Petersen, J.: Die Theorie der regulären Graphs. Acta Mathematica 15, 193–220
(1891)

10. Karpiński, M., Rytter, W.: Fast Parallel Algorithms for Graph Matching Problem.
Oxford University Press, Oxford (1998)

Perfect Matching for Biconnected Cubic Graphs in O(n log2 n) Time 333

11. Schrijver, A.: Combinatorial Optimization – Polyhedra and Efficiency. Parts II
and III. Springer, Berlin (2003)

12. Schrijver, A.: Bipartite Edge Coloring in O(Δm) Time. SIAM Journal on Com-
puting 28(3), 841–846 (1999)

13. Sleator, D.D., Tarjan, R.E.: A Data Structure for Dynamic Trees. In: Proceedings
of the Thirteenth Annual ACM Symposium on Theory of Computing, pp. 114–122
(1981)

14. Tarjan, R.E.: Data Structures and Network Algorithms. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia (1983)

15. Thorup, M.: Near-Optimal Fully-Dynamic Graph Connectivity. In: Proceedings of
the Thirty-Second Annual ACM Symposium on Theory of Computing, pp. 343–350
(2000)

16. Thorup, M.: Decremental Dynamic Connectivity. In: Proceedings of the 8th ACM
Symposium on Discrete Algorithms (SODA), pp. 305–313 (1997)

17. Mucha, M.: Finding Maximum Matchings via Gaussian Elimination. PhD Thesis,
Warsaw University, Faculty of Mathematics, Informatics and Mechanics

18. Harvey, N.J.A.: Algebraic Algorithms for Matching and Matroid Problems. Com-
puter Science and Artificial Intelligence Laboratory, Massachusetts Institute of
Technology

19. Greenlaw, R., Petreschi, R.: Cubic Graphs. ACM Computing Surveys
(CSUR) 27(4), 471–495 (1995)

Destructive Rule-Based Properties and
First-Order Logic

David Duris

Equipe de Logique Mathématique - Université Paris 7
duris@logique.jussieu.fr

Abstract. We study properties characterized by applying successively
a “destructive” rule expressed in first-order logic. The rule says that
points a1, . . . , ak of a structure can be removed if they satisfy a certain
first-order formula ϕ(a1, . . . , ak). The property defined this way by the
formula is the set of finite structures such that we are able to obtain
the empty structure when applying the rule repeatedly. Many classi-
cal properties can be formulated by means of a “destructive” rule. We
do a systematic study of the computational complexity of these prop-
erties according to the fragment of first-order logic in which the rule
is expressed. We give the list of minimal fragments able to define NP-
complete properties and maximal fragments that define only PTIME
properties (unless PTIME = NP), depending on the number k of free
variables and the quantifier symbols used in the formula. We also study
more specifically the case where the formula has one free variable and is
universal.

Keywords: Finite model theory, definability, complexity, model check-
ing, destructive rule.

1 Introduction

Checking a property by eliminating successively elements of a finite structure
satisfying a certain condition is quite natural in algorithmics. A good illustrat-
ing example is graph acyclicity: removing one by one elements of degree at most
one will yield the empty graph if and only if the graph does not contain a cycle.
From a logical point of view, defining a property amounts to giving a formula
which describes the condition for an element to be eliminated. In the example
of graph acyclicity, this formula says “x is a vertex of degree at most 1”. In
this paper, we do a systematic study of the expressive power of first-order logic
in this framework. We will consider properties defined by means of a “destruc-
tive” rule expressed in first-order logic on finite relational structures. We call
a rule “destructive” if it is in the following form: if elements a1, . . . , ak satisfy
a first-order formula ϕ(a1, . . . , ak) then we can remove a1, . . . , ak from the struc-
ture. The structure satisfies the property defined by the rule if applying the rule
successively can lead to the empty structure. There are many classes of struc-
tures that can be naturally expressed this way. For instance, we can define many

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 334–345, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Destructive Rule-Based Properties and First-Order Logic 335

first-order properties like partial and linear orders and, more generally, every
universal first-order property. We can also define properties that cannot be ex-
pressed in first-order logic like acyclic graphs, directed paths, function graphs,
connected graphs, γ-, β- and α-acyclic hypergraphs (cf. [4]), graphs having a per-
fect matching and even NP-complete properties like collections of 3-sets having
an exact cover. In this study, we are concerned with algorithmic issues depending
on the syntax of the formula ϕ(x1, . . . , xk). We consider fragments of first-order
logic defined by the quantifier symbols and the number of free variables used in
the formula and we evaluate the influence of these fragments to the computa-
tional complexity of the properties they can define. As a main result, we give
a complete classification of the fragments that contain NP-complete properties
and those included in PTIME.

This destructive rule framework can be seen as a particular case of graph
rewriting with first-order preconditions (see [10]). It is also connected to defla-
tionary fixed point inductions (a concept dual to inflationary fixed points) that
are studied in [6].

2 Preliminaries

The structures we consider are finite and relational. More precisely, they are
in the form A = (A, {RA | R ∈ σ}), where A is a finite set, σ is a signature
containing only relation symbols and RA is the interpretation of R in A. A sub-
structure of a structure A is a substructure B of A induced by some B included
in A, i.e. B = (B, {RA ∩Br : R ∈ σ}) (with r the arity of R). For convenience,
the notation A \ B will designate the substructure of A induced by A \ B. An
extension of A is a structure E such that A is a substructure of E .

A property is a set of structures closed under isomorphisms. A property P is
preserved under substructures (resp. preserved under extensions) if every sub-
structure (resp. extension) of a structure in P is in P .

The interpretation of first-order formulas (FO) on σ is standard (see for in-
stance [3]). For quantifier symbols Q1, . . . , Qn in {∀, ∃}, the fragment of first-
order logic Q1 . . . QnFO consists of the formulas of the form Q1x1 . . .Qnxnψ
where ψ is quantifier free. The use of the symbol ∗ after a quantifier means
that it can be repeated any finite number of times. More precisely, for every i,
Q1 . . .Q

∗
i . . . QnFO is the union of every fragment Q1 . . . Q

1
i . . .Q

k
i . . .QnFO (for

k ≥ 0) where, for every l, Ql
i = Qi. Universal and existential formulas are re-

spectively the formulas in ∀∗FO and ∃∗FO.

3 General Case

Definition 1 (Destructive rule-based properties). Let ϕ(x1, . . . , xk) be
a first-order formula with k free variables x1, . . . , xk and let A be a finite
relational structure. Let Rϕ(x1,...,xk) be the following rule: if there exist elements
a1, . . . , ak of A such that A |= ϕ(a1, . . . , ak) then remove a1, . . . , ak from A,
i.e. replace A with the substructure A\{a1, . . . , ak}. The set DR(ϕ(x1, . . . , xk))

336 D. Duris

is the property containing every structure A such that there is a way to apply
the rule Rϕ(x1,...,xk) to A successively until we obtain the empty structure. More
precisely, A ∈ DR(ϕ(x1, . . . , xk)) if there exist pairwise disjoint subsets of A
{a1

1, . . . , a
1
k}, . . . , {an

1 , . . . , a
n
k} such that:

•
⋃n

l=1{al
1, . . . , a

l
k} = A, and

• for every i < n, A \
⋃i

l=1{al
1, . . . , a

l
k} |= ϕ(ai+1

1 , . . . , ai+1
k).

The class DRk is the set of properties that can be written DR(ϕ(x1, . . . , xk))
for some ϕ(x1, . . . , xk). The class DR is the union of every DRk for k ≥ 1.

(Note that the sets {al
1, . . . , a

l
k} are not necessarily of size k.) We give some

examples of classical properties that belong to DR.

Example 1

• DR((∀u∀v(¬Euu ∧ (Euv ⇒ Evu))) ∧ (∃uExu ∨ ∀u x = u)) is the set of
connected graphs. Indeed, if a graph is connected, we can remove every
element one after another so that the successive obtained subgraphs are
always connected (so there is always some vertex a connected to another).
And if there are at least two connected components, there will always remain
at least two disconnected vertices.

• DR(x �= y) = Even the class of structures of even size.
• DR(Exy) is the class of digraphs having a perfect matching, i.e. a set M of

disjoint edges such that every vertex is an endpoint of some edge of M .
• On the signature {T } (with T of arity 3), DR(Txyz) = X3C the set of

collections of 3-sets (sets of size 3) having an exact cover. (An exact cover
for a collection B = {B1, . . . , Bn} of 3-sets is a subcollection {Bi1 , . . . , Bik

}
such that the Bil

are pairwise disjoint and their union is equal to ∪B.)
• In the case of hypergraphs, we consider the signature {∈}. We have a ∈ b

if a is a vertex, b is a hyperedge and a belongs to b. In order to have mod-
els that actually represent hypergraphs, we add to each rule the condition
∀u∀v∀w¬(u ∈ v ∧ v ∈ w). The following formula ϕα(x) (which says “x is an
isolated vertex or x is a hyperedge included in some other hyperedge”) is such
that DR(ϕα(x)) is the set of α-acyclic hypergraphs (see for instance [4]).
This is usually called the GYO-reduction (for Graham-Yu-Ozsoyoglu).

ϕα(x) = ∀u∀v((x ∈ u ∧ x ∈ v) ⇒ u = v) ∨ ∃w(w �= x ∧ ∀t(t ∈ x⇒ t ∈ w)).

There also exist a ϕβ(x) and a ϕγ(x) such that DR(ϕβ(x)) and DR(ϕγ(x))
are respectively the sets of β- and γ-acyclic hypergraphs (cf. [2]):

ϕβ(x) = ∀u∀v((x ∈ u ∧ x ∈ v) ⇒ (∀t(t ∈ u⇒ t ∈ v)
∨ ∀t(t ∈ v ⇒ t ∈ u))) ∨ ∀t¬(t ∈ x)

and ϕγ(x) = ∀u∀v((x ∈ u ∧ x ∈ v) ⇒ ∀t(t ∈ u⇔ t ∈ v)) ∨
∀u(∀t(t ∈ x⇒ t ∈ u) ∨ ∀t(t ∈ x⇒ ¬(t ∈ u))).

Note that ϕβ(x) and ϕγ(x) are universal. There is no universal formula
for α-acyclicity because this notion is not preserved under substructures
and, as we will see, every DR(ϕ(x)) with ϕ(x) universal is preserved under
substructures.

Destructive Rule-Based Properties and First-Order Logic 337

• It is not hard to see that, if ψ(x) = ∀u¬Eux∧∀v∀w((Exv∧Exw) ⇒ v = w),
then DR(ψ(x) ∧ ∀t(ψ(t) ⇒ t = x)) is the set of directed paths.

There are formulas ϕ(x1, . . . , xk) such that the property DR(ϕ(x1, . . . , xk)) is
NP-complete (X3C for example). We will see more precisely which fragments
of FO contain such formulas and which ones are such that DR(ϕ(x1, . . . , xk))
is always in PTIME.

Definition 2. Let Q1, . . . , Qn be quantifier symbols (i.e. Qi ∈ {∀, ∃}), pos-
sibly followed by a ∗ symbol. For every integer k, Q1 . . .QnDRk is the class
of properties in the form DR(ϕ(x1, . . . , xk)) where ϕ(x1, . . . , xk) is a formula
of Q1 . . . QnFO with k free variables. Quantifier free DRk denotes the class of
properties DR(ϕ(x1, . . . , xk)) where ϕ(x1, . . . , xk) is quantifier free.

The next sections contain the proof of the following theorem.

Theorem 1. We have the following classification.

Contain NP-complete properties: Included in PTIME:

∃∀DR1 ∃∗DR1

∀∃DR1 ∀∗DR1

∃DR2 Quantifier free DR2

∀DR2

Quantifier free DR3

Unless PTIME = NP, these are precisely the minimal fragments containing
NP-complete properties and the maximal fragments containing only PTIME
properties.

Note that this classification enables us to know for each fragment Q1 . . .QnDRk

if it contains NP-complete properties or if it is included in PTIME.
We finish this section with a remark concerning confluent properties.
Since in many cases it is hard to find an execution of the rule such that we

obtain the empty structure, it would be convenient for instance to detect the
confluent formulas. These are the formulas such that, for every finite structure,
the fact of obtaining the empty structure does not depend on the order we
successively apply the rule. More formally, a formula ϕ(x1, . . . , xk) is confluent
for DRk if, for every A ∈ DR(ϕ(x1, . . . , xk)), there are no pairwise disjoint
subsets of A {a1

1, . . . , a
1
k}, . . . , {an

1 , . . . , a
n
k} such that:

• for every i < n, A \
⋃i

l=1{al
1, . . . , a

l
k} |= ϕ(ai+1

1 , . . . , ai+1
k),

•
⋃n

l=1{al
1, . . . , a

l
k} �= A, and

• A \
⋃n

l=1{al
1, . . . , a

l
k} |= ∀x1 . . . ∀xk¬ϕ(x1, . . . , xk).

In particular, it is not hard to see that this condition for a formula ϕ(x1, . . . , xk)
ensures that the property DR(ϕ(x1, . . . , xk)) is in PTIME. However, not sur-
prisingly, detecting confluent formulas is an undecidable problem, even for DR1.

338 D. Duris

Proposition 1. The following problem is undecidable:

INPUT: a first-order formula ϕ(x).
OUTPUT: is ϕ(x) confluent for DR1?

Proof. According to Theorem 20 from [1], the following two sets F0 and F1 are
recursively inseparable (i.e. there is no recursive set E such that F0 ⊂ E and
F1 ∩ E = ∅):
• F0 is the set of first-order sentences which have no model.
• F1 is the set of first-order sentences with exactly one finite model (and this

model has size at least 2).

Let not be the (recursive) function that maps each sentence ψ to ¬ψ∧x = x (so
that x appears as a free variable). Let C be the set of confluent formulas. If ψ
is in F0, every structure is a model of ¬ψ. Thus for every finite structure A and
every a in A, we have A |= ¬ψ ∧ a = a. So, when removing elements satisfying
the rule R¬ψ∧x=x, we will necessarily obtain the empty structure, which means
that not(ψ) is confluent. If ψ is in F1, there is only one finite structure, say S,
which does not satisfy ¬ψ, and this structure has size at least 2. As |S| ≥ 2,
there is a structure A such that the substructures of A of size |S| are not all
isomorphic to S and at least one of these substructures is isomorphic to S.
Moreover, for every finite structure B not isomorphic to S and for every b ∈ B,
we have B |= ¬ψ ∧ b = b. So we have the choice: either we decide to remove
elements b successively until we obtain S (and in this case we cannot apply
R¬ψ∧x=x anymore) or we avoid obtaining an S (i.e. we fix some substructure of
size |S| that is not isomorphic to S and remove all other elements one by one)
and we will be able to continue until we obtain the empty structure. This shows
that not(ψ) is not confluent. Consequently, if C was recursive, not−1(C) would
recursively separate F0 and F1, which is a contradiction.

Corollary 1. The confluence problem is not recursively enumerable.

Proof. This is because it is co-recursively enumerable. Indeed, we can enumerate
finite relational structures and linear orders on them until we find a structure
and two orders on it (corresponding to applications of the rule) such that one of
them yields the empty structure and the other does not.

4 NP-Complete Properties

In this section, we give examples of NP-complete properties in the following
classes: ∃∀DR1, ∀∃DR1, ∃DR2, ∀DR2 and quantifier free DR3. This is the list
of minimal fragments of DR containing NP-complete properties. They are min-
imal because we will see in Section 5 that every strictly smaller fragment (those
contained in ∃∗DR1, ∀∗DR1 or quantifier free DR2) is included in PTIME.

The fact that DR is included in NP is clear by definition. An NP algorithm
for deciding if a structure A belongs to DR(ϕ(x1, . . . , xk)) consists in guess-
ing the subsets {a1

1, . . . , a
1
k}, . . . , {an

1 , . . . , a
n
k}, checking that they form a parti-

tion of A and that, for every i < n, A \
⋃i

l=1{al
1, . . . , a

l
k} |= ϕ(ai+1

1 , . . . , ai+1
k).

Destructive Rule-Based Properties and First-Order Logic 339

The latter is polynomial in the size of A because computing the substructure
A \

⋃i
l=1{al

1, . . . , a
l
k} takes polynomial time and the model checking for FO is

polynomial in the size of the structure. As a result, it remains to prove NP-
hardness.

In each case (except the last one), we give a polynomial time reduction of the
Sat problem to some DR(ϕ(x1, . . . , xk)) with ϕ(x1, . . . , xk) in the appropriate
fragment of FO. An instance of Sat is a formula of propositional logic f :=
∧i∈[1,n]Ci. For every i, Ci is a clause ∨j∈[1,ni]Bj , where Bj is a propositional
variable (Aj) or the negation of a propositional variable (¬Aj). The question is
to know if there is a truth value assignment for the variables such that f is true.
For every fragment of FO under consideration, we describe a transformation
which associates to each instance f of Sat a structure m(f) (a digraph) on the
signature {E} with E binary. Then we define a formula ϕ(x1, . . . , xk) in this
fragment such that f is satisfiable if and only if m(f) ∈ DR(ϕ(x1, . . . , xk)).
Each case is illustrated with an example in Figure 1.

∃∀DR1: For each propositional variable A appearing in f , there are two points
0A and 1A in m(f). They represent the two possible truth value assignments for
the variable A. For each clause C, there is a point pC . Each pC is connected to
every 0A or 1A such that the assignment 0 or 1 to the variable A makes C true.
More precisely, m(f) contains the edge (1A, pC) if A appears positively in C (C
contains A) and the edge (0A, pC) if A appears negatively in C (C contains ¬A).

∃∀DR1:
∀∃DR1:

∃DR2:
∀DR2:

Fig. 1. Examples of structures m(U ∧ V ∧ W) for the Sat-reductions of Section 4. In
each case, U = ¬A, V = A ∨ B and W = A ∨ ¬B, except for the ∃DR2 case where
U = ¬A ∨ B.

340 D. Duris

Moreover m(f) contains the edges (0A, 0A), (1A, 1A), (0A, 1A) and (1A, 0A) for
every variable A. We set

ϕ(x) := ∃u∀v((Eux ∧ ((Euv ∧ Evu) ⇒ v = u)) ∨Exx).

Applying successively Rϕ(x) to m(f) consists of choosing a truth value assign-
ment (by removing a point a satisfying Eaa) or removing a clause satisfied by
this assignment (i.e. a clause containing an A such that 1A is still in m(f) or
a ¬A such that 0A is still in m(f)). We cannot remove a clause before the assign-
ment is done (i.e. when 0A and 1A are both still here) because the subformula
(Euv ∧Evu) ⇒ v = u ensures that 0A or 1A has been removed. After every sat-
isfiable clause is removed from m(f), we can remove every remaining 0A or 1A

by applying Exx. Thus, the only elements left in m(f) will be the unsatisfiable
clauses of f . This proves that f is satisfiable if and only if m(f) ∈ DR(ϕ(x)).

∀∃DR1: For each propositional variable A of f , there are three points 0A, 1A

and sA in m(f). Again, m(f) contains a point pC for each clause C. For every
variable A and every C containing an occurrence of A (A or ¬A), the following
edges are in m(f):

• (sA, 0A), (0A, sA), (sA, 1A), (1A, sA), (0A, 0A), (1A, 1A),
• (0A, pC), (pC , 1A),
• (sA, pC) if ¬A belongs to C and
• (pC , sA) if A belongs to C.

We set
ϕ(x) := ∀u∃v(((¬Evv ∧ (Evx ∨ Exv))

∧((Euu ∧ Eux) ⇒ (Evx ∧Euv ∧Evu))
∧((Euu ∧Exu) ⇒ (Exv ∧ Euv ∧ Evu)))

∨(Exv ∧ Evx)).

If f is satisfiable then we can apply the rule repeatedly and obtain the empty
structure. Indeed, let a ∈ {0, 1}vars(f) be an assignment of the variables of f
making f true. Then, for every A, we choose to remove the point εA (with
ε ∈ {0, 1}) such that a(A) = 1 − εA (i.e. we keep the 0A or 1A that has been
assigned to A by the assignment a). The point εA can be removed because there
is a v (εA itself) such that EεAv ∧ EvεA holds. Then every pC can be removed
because now for every u there is a v (any sA such that a(A) makes the clause
pC true) such that the only point connected to sA and pC corresponds to the
assignment (either a(A) = 0 and we have EupC and EvpC or a(A) = 1 and we
have EpCu and EpCv). After removing every pC , we can remove the remaining
points a(A)A and sA for every A by removing first sA (applying the subformula
saying that there exists a v (= a(A)A) such that Exv ∧ Evx holds) and then
a(A)A (again by applying this subformula).

Conversely, suppose we can obtain the empty structure and consider one of the
execution of the rule giving the empty structure. In particular, every pC will be
removed. Let C be a clause and consider the step where pC is actually removed.
There is no point sA still in m(f) such that 0A and 1A are not in m(f) anymore

Destructive Rule-Based Properties and First-Order Logic 341

because in this case sA will never be removed (the only way to remove sA is
to apply the formula saying that there exists a v such that Exv ∧ Evx) which
contradicts the fact that we consider an execution giving the empty structure.
There is necessarily at least one sA connected to pC (there is a v such that
¬Evv ∧ (Evx ∨ Exv)). The points 0A and 1A cannot be both connected to pC .
Indeed, suppose for instance that A appears positively in C (the case where ¬A
is in C is symmetric). Let v be the point associated to u = 0A in the formula
ϕ(x). We have E0A0A and E0ApC , so we must have EvpC ∧ E0Av ∧ Ev0A.
The only v satisfying E0Av ∧ Ev0A is sA, but we have not EsApC because
A appears positively in C. So we have the contradiction that ϕ(pC) does not
hold. We have proved that either 0A or 1A remains at this step but not both.
The corresponding value 0 or 1 is an assignment of A satisfying C. Indeed, if for
instance 1A is the remaining point then, since E1A1A ∧ EpC1A holds, we have
EpCsA which means that A appears positively in C ; so assigning the value 1 to
A makes the clause C true. Let εC,A be the element of {0, 1} such that εC,A

A is
the remaining point between 0A and 1A. Let a be any assignment in {0, 1}vars(f)

such that, for every C, a(A) = εC,A. This assignment clearly satisfies f .

∃DR2: For this case, we assume that each variable appears in exactly three
clauses and at least one time positively and one time negatively. This is still
an NP-complete instance of Sat (cf. [11] proof of Theorem 2.1). We can even
assume thatA appears two times positively and one time negatively (by replacing
A by ¬A if necessary). For every variable A, there are four points sA, 1A, 2A, 3A

inm(f) and edges (sA, sA), (sA, 1A), (sA, 2A), (sA, 3A) and (3A, sA). For everyA,
let C1, C2 and C3 be the clauses containing A, where A appears positively in C1

and C2 and negatively in C3. Then m(f) contains the edges

(1A, pC1), (2A, pC2), (1A, pC2), (pC2 , 1A), (2A, pC1), (pC1 , 2A) and (3A, pC3).

We set
ϕ(x, y) := ∃t((Exx ∧ Exy ∧ ¬Eyx ∧Eyt ∧Ety)

∨(Ett ∧ x �= t ∧Etx ∧ Exy ∧ ¬Eyx)
∨(Ett ∧ Etx ∧ x �= t ∧ x = y)
∨(Exx ∧ Exy ∧ Eyx ∧ x �= y)).

Note that the only two ways to remove sA are by

a. removing {sA, 3A} (via the fourth line of ϕ(x, y)) or
b. removing a {sA, εA} with ε ∈ {1, 2} (via the first line of ϕ(x, y)).

In the former case, the point 3A becomes unavailable to remove pC3 via line 2
with x = 3A. In the latter case, suppose that ε = 1 (without loss of generality
because the case ε = 2 is symmetric). Then pC1 could not be removed by applying
line 2 with x = 1A (the presence of 1A is required to remove {sA, 1A}. And pC2

could not be removed via line 2 with x = 2A, because either pC2 is removed before
{sA, 1A} and then line 1 could not remove {sA, 1A} anymore (pC2 is required
in the role of t), or {sA, 1A} is removed before pC2 and then sA is not available
anymore to use line 2 with x = 2A. Thus, in a sense, the case a. corresponds
to the case where we choose the value 1 for the variable A and the case b. is

342 D. Duris

the choice of the value 0. When this choice is made (resp. a. or b.) but not yet
applied (sA is still in m(f)), we can either use a point εA (resp. with ε ∈ {1, 2}
or ε = 3) to remove pCε via line 2 with x = εA or just remove εA via line 3 if
pCε is already removed with some χB where B �= A and χ ∈ {1, 2, 3}. There is
a choice a. or b. for each variable A that allows to remove every pC (and obtain
the empty structure) if and only if f is satisfiable.

∀DR2: Let A be a variable of f with k negative occurrences and l positive
occurrences in f . The digraph m(f) contains the points 0A1 , . . . , 0Ak

and 1A1 ,
. . . , 1Al

and the edges (0Ai , 0Ai), (1Aj , 1Aj), (0Ai , 1Aj) and (1Aj , 0Ai) for every
i ∈ [1, k] and j ∈ [1, l]. Moreover, for every i and j, there is an edge (0Ai , pD)
where D contains the i-th negative occurrence of A and an edge (1Aj , pE) where
E contains the j-th positive occurrence of A. We set

ϕ(x, y) := ∀u((Exy ∧ ¬(u �= x ∧ Eux ∧ Exu)) ∨ (Exy ∧ x = y)).

Each point pC can only be removed with an εAi connected to it and when there
is no point u = (1− ε)Aj remaining in m(f). In this case, it means that we have
chosen the assignment ε for A. We can remove every pC (and every other point
using the subformula Exy ∧ x = y) if and only if f is satisfiable.

Quantifier free DR3: An example of an NP-complete property on the signature
{E} is the set of digraphs having a partition into triangles (cf. [5] p. 68). It is
equal to DR(Exy ∧ Eyz ∧ Ezx).

5 Polynomial Time Fragments

In this section, we investigate ∀∗DR1, ∃∗DR1 and quantifier free DR2, the
maximal fragments of DR containing only properties in PTIME.

We begin with ∃∗DR1 and quantifier free DR2. To illustrate the former case,
we can notice for example that DR(∃u(Exu∨Eux)) is the set of digraphs such
that every connected component contains a loop.

Proposition 2. ∃∗DR1 ⊂ PTIME.

Proof. Suppose we have a finite structure A and an existential formula ϕ(x) and
we want to check if A ∈ DR(ϕ(x)). In this proof, the notation A(e0, . . . , em)
designates the substructure of A induced by {e0, . . . , em}.

First we take any element a0 of A such that A(a0) |= ϕ(a0). If there is no
such a0, then we already know that A �∈ DR(ϕ(x)) because, before obtaining the
empty structure, we need to find a point satisfying the rule in a substructure with
one element. Then we take any a1 different from a0 such that A(a0, a1) |= ϕ(a1).
We continue to take points (a2, a3, etc.) as long as possible. At step i, we choose
ai different from a0, . . . , ai−1 such that A(a0, . . . , ai) |= ϕ(ai). It is not hard
to see that this process can be done in polynomial time. Indeed, we choose at
most |A| points ai, and choosing a point consists in doing at most |A| FO model
checkings (which take O(|A|k) time for some k). So the whole process takes
O(|A|k+2) time.

Destructive Rule-Based Properties and First-Order Logic 343

Let an be the last point we choose. To complete the proof, we prove that
A is in DR(ϕ(x)) if and only if {a0, . . . , an} = A. Clearly, by definition of the
points ai, if {a0, . . . , an} = A, then the sequence (an, an−1, . . . , a0) is such that
we can remove every point of A according to the rule in this order and obtain
the empty structure. Conversely, suppose that A ∈ DR(ϕ(x)), i.e. there exists
a sequence (b0, . . . , bm) such that {b0, . . . , bm} = A and A(b0, . . . , bi) |= ϕ(bi)
for every i. Suppose that {b0, . . . , bm} �= {a0, . . . , an}. Let bl be the first element
different from a0, . . . , an in the sequence (b0, . . . , bm). In particular, we have
{b0, . . . , bl−1} ⊂ {a0, . . . , an}. It is well-known that existential formulas are pre-
served under extensions. In particular, since A(b0, . . . , bl) |= ϕ(bl), we also have
A(bl, a0, . . . , an) |= ϕ(bl). This means that the point bl could be chosen as point
an+1 in our preceding construction. This is a contradiction. So {a0, . . . , an} = A.

The second case is quantifier free DR2. In a sense, every property in this frag-
ment is a particular instance of the PerfectMatching problem.

Proposition 3. Quantifier free DR2 is included in PTIME.

Proof. Let A be a finite structure and let ϕ(x, y) be a quantifier free formula.
We define the graph G := (A, {{a, b} | A |= ϕ(a, b)}). The graph G has a perfect
matching {{a1, b1}, . . . , {an, bn}} if and only if there is a partition {a1, b1}, . . . ,
{an, bn} of A such that, for every i < n, A\

⋃i
l=1{al, bl} |= ϕ(ai+1, bi+1). This is

because quantifier free formulas are preserved under substructures and extension
(i.e. for every substructure B of A containing a and b, A |= ϕ(a, b) if and only
if B |= ϕ(a, b)). Thus, deciding if A is in DR(ϕ(x, y)) takes polynomial time
because PerfectMatching is in PTIME (see for instance [8]).

We now consider the ∀∗DR1 fragment. We have seen that for instance the sets of
directed paths, acyclic graphs, γ- and β-acyclic hypergraphs belong to ∀∗DR1.
For this fragment, we can prove a little more than PTIME recognition.

Proposition 4. ∀∗FO � ∀∗DR1.

Proof. Let ϕ be a universal first-order sentence. We have A |= ϕ if and only if
A ∈ DR(ϕ∧x = x). Indeed, if A �|= ϕ, then the rule Rϕ∧x=x will not remove any
element. If A |= ϕ, then we remove any element and so on until all elements are
removed (because ϕ is preserved under substructures). This shows the inclusion.
The equality does not hold because graph acyclicity is in ∀∗DR1 and this is
well-known that it is not in FO.

Notation. We call PS the class of properties preserved under substructures
(this notation is not standard).

Proposition 5. ∀∗DR1 � PS ∩PTIME.

Proof. ∀∗DR1 ⊂ PS: Suppose ϕ(x) is universal, A ∈ DR(ϕ(x)) and B is a sub-
structure of A. Let (a1, . . . , an) be a sequence such that we can remove these
elements from A by Rϕ(x) in this order, i.e. ai is the i-th element we remove.

344 D. Duris

In particular {a1, . . . , an} = A. Let (aik
)k∈[1,m] be the subsequence containing

the elements of B, i.e. {aik
| k ∈ [1,m]} = B. For every l ∈ [1,m], we have

B \ {aik
| k ∈ [1, l− 1]} |= ϕ(ail

) because B \ {aik
| k ∈ [1, l − 1]} is included in

A \ {ai | i ∈ [1, il − 1]}, A \ {ai | i ∈ [1, il − 1]} |= ϕ(ail
) and ϕ(x) is preserved

under substructures. So (aik
)k∈[1,m] is a sequence such that the elements of B

can be removed in this order by Rϕ(x). Thus B ∈ DR(ϕ(x)).

∀∗DR1 ⊂ PTIME: When ϕ(x) is universal, it is preserved under substructures.
So, if an element a could be removed according to Rϕ(x), it will be removed any-
way (possibly later). This implies that ϕ(x) is confluent for DR1. At each step,
we can remove any a satisfying ϕ(a) without changing the result (obtaining
the empty structure or not). Testing if an element a satisfies ϕ(a) takes poly-
nomial time (O(|A|k) where k is the number of quantified variables in ϕ(x)).
Updating the structure (replacing A with A \ {a}) takes linear time. Checking
A ∈ DR(ϕ(x)) consists in doing not more than |A|2 tests of the rule and at
most |A| updates, so it takes O(|A|k+2) time.

∀∗DR1 �= PS ∩PTIME: Graph planarity is preserved under substructures
and it is in PTIME (there even exists a linear time algorithm). But it is
not in ∀∗DR1. In fact, it is not even in DR. Indeed, suppose Graph pla-

narity=DR(ϕ(x1, . . . , xk)) and let q be the quantifier rank of ϕ(x1, . . . , xk).
There exist two graphs A and B equivalent under ≡q+k (i.e. they satisfy the
same sentences of quantifier rank at most q + k) such that B is planar and A is
not and such that every proper subgraph of A is planar (cf. Figure 2). They
are equivalent under ≡q+k because they have the same neighborhoods. More
precisely, by Hanf-locality of first-order logic (see for instance [9] Chap. 4), there
is an integer Nq+k such that, if two structures have the same neighborhoods of
radius Nq+k then they are equivalent under ≡q+k. Thus, if each dotted line in
Figure 2 has length greater than Nq+k, then A and B have the same neighbor-
hoods of radius Nq+k and so A ≡q+k B. As B is planar there are elements b1,
. . . , bk in B which can be removed by Rϕ(x1,...,xk). But A ≡q+k B, so A sat-
isfies also ∃x1 . . .∃xkϕ(x1, . . . , xk) and so there are also elements a1, . . . , ak in
A that can be removed by Rϕ(x1,...,xk). But since A \ {a1, . . . , ak} is planar and
Graph planarity=DR(ϕ(x1, . . . , xk)), then A ∈ DR(ϕ(x1, . . . , xk)). This is
a contradiction.

Fig. 2. The dotted lines represent long (enough) paths. We have A ≡q+k B. A is not
planar but its proper subgraphs are planar and B is planar.

Destructive Rule-Based Properties and First-Order Logic 345

6 Concluding Remarks

A possible objective would be to detect more PTIME properties defined in the
framework of destructive rules. We could find semantical conditions that are easy
to check or other syntactical conditions. We can notice that, when we remove
a point via a rule, we do not keep information about the original structure.
So, we could add the possibility of remembering the removed points or marking
certain remaining points each time we apply a rule.

The classification of Theorem 1 is concerned with the class of all digraphs
and the presence of loops and directed edges seems to be important in the Sat-
reductions of Section 4. Thus, it is possible that there is another classification of
polynomial fragments in the case of undirected graphs. We can remark that such
a distinction plays a crucial role in [7]. The classification is maybe also different
on the class of hypergraphs seen as structures over {∈} without elements a, b
and c such that a ∈ b ∈ c. In particular, it would be interesting if α-acyclicity of
hypergraphs belonged to a polynomial fragment of DR in this particular case.

Acknowledgements. I am grateful to Arnaud Durand for his help and his
precious advice. I also want to thank the anonymous referees for their comments
and suggestions.

References

1. Alechina, N., Gurevich, Y.: Syntax vs Semantics on Finite Structures. In: Mycielski,
J., Rozenberg, G., Salomaa, A. (eds.) Structures in Logic and Computer Science.
LNCS, vol. 1261, pp. 14–33. Springer, Heidelberg (1997)

2. Duris, D.: Some Characterizations of γ and β-Acyclicity of Hypergraphs (2008),
http://hal.archives-ouvertes.fr/hal-00360321/fr/

3. Ebbinghaus, H.-D., Flum, J., Thomas, W.: Mathematical Logic. Springer, Heidel-
berg (1994)

4. Fagin, R.: Degrees of Acyclicity for Hypergraphs and Relational Database Schemes.
J. of the ACM 30(3), 514–550 (1983)

5. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman, New York (1979)

6. Grädel, E., Kreutzer, S.: Will Deflation Lead to Depletion? on Non-Monotone Fixed
Point Inductions. In: Proceedings of the 18th Annual IEEE Symposium on Logic
in Computer Science (LICS 2003), pp. 158–167 (2003)

7. Gottlob, G., Kolaitis, G., Schwentick, T.: Existential Second-Order Logic over
Graphs: Charting the Tractability Frontier. J. of the ACM 51, 664–674 (2000)

8. Jungnickel, D.: Graphs, Networks and Algorithms. Springer, Heidelberg (2005)
9. Libkin, L.: Elements of Finite Model Theory. Springer, Heidelberg (2004)

10. Nagl, M.: Graph-Grammatiken: Theorie, Anwendungen, Implementierung. Vieweg
(1979)

11. Tovey, C.A.: A Simplified NP-Complete Satisfiability Problem. Discrete Applied
Mathematics 8(1), 85–90 (1984)

http://hal.archives-ouvertes.fr/hal-00360321/fr/

Learning User Preferences for 2CP-Regression
for a Recommender System

Alan Eckhardt1,2 and Peter Vojtáš1,2

1 Department of Software Engineering, Charles University
2 Institute of Computer Science, Czech Academy of Science

Prague, Czech Republic
{eckhardt,vojtas}@ksi.mff.cuni.cz,

Abstract. In this paper we deal with a task to learn a general user
model from user ratings of a small set of objects. This general model
is used to recommend top-k objects to the user. We consider several
(also some new) alternatives of learning local preferences and several al-
ternatives of aggregation (with or without 2CP-regression). The main
contributions are evaluation of experiments on our prototype tool Pref-
Work with respect to several satisfaction measures and the proposal of
method Peak for normalisation of numerical attributes. Our main ob-
jective is to keep the number of sample data which the user has to rate
reasonable small.

1 Introduction

The problem studied in this paper is based on the idea of automating to help
the user in making right decisions when selecting an object from a large number
of objects. The main motivation lies in e-commerce, where user might benefit
from a recommendation of top-k objects that might interest her without need-
ing to process all the objects manually. This recommendation should be rather
automatic and transparent, because user typically does not want to fill in any
complicated forms and she is annoyed when spending too much time on her
search.

When user is buying, for example, a notebook, she is considering such at-
tributes as price, producer, size of RAM, hard disk and display. In traditional
e-shop environment, it is possible to make some restrictions on these attributes
and thus lower the number of notebooks the user has to process manually. But
these restrictions are inflexible - when the user selects the price under 2000$,
any notebook with price 2001$ would not appear in the result set although it
might be very interesting for the user. This is the reason for a flexible search,
based on scoring (fuzzy) user preferences.

In this paper we deal with preference learning - user is assumed to rate a
small set S of notebooks according to her preference. Recommender system
constructs her preference model from these ratings; the model allows evaluation
of all notebooks in database. The process of preference learning is in Figure 1.

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 346–357, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Learning User Preferences for 2CP-Regression for a Recommender System 347

S

Recommender
system

User

Construction of
user model

User decision
making

Fig. 1. Interaction between user and recommender system

Main contributions of this paper are:

– Proposal of method Peak for normalisation of numerical attributes for 2CP
regression

– Comparison of proposed approach with other approaches
– Introducing several measures of satisfaction of user

Related work is studied in Section 2. Our particular model is described in Section
3. It is based on two steps - the first step is the learning of degree of preference for
each attribute, which acts as normalisation of attribute values. E.g. value 15,4”
is transformed to its preference degree 0.7, which was learnt from the ratings
of notebooks. The second step is to learn the combination of these preference
degrees into the overall rating of the notebook (it is expected that the user would
assign this rating to the notebook if she was asked to). This paper is focused on
the first step and particularly on the normalisation of numerical domains such
as price.

In Section 4 are described several methods for local preference learning. Then
the new approach Peak is tested in Section 5, we use several error measures and
provide comparison using our prototype tool PrefWork [1] for the evaluation of
quality of preference learning method. We end with conclusion and future work
in Section 6.

2 Related Work

User preferences are a wide field so there is a plenty of research areas. For
automated decision process, the user preference learning is the most important
one.

We focus on content based learning, which means that the preferences are
based on the attributes of objects. This approach corresponds well to how users
decide in the real world in our view. The difficulty is that users are often incon-
sistent or they take into account attributes that are not known or impossible to
quantify, such as the design of a notebook.

In this area, the main focus was on the search of documents in the past [2,3].
This is a specific area, because the features of documents are of little structure.

348 A. Eckhardt and P. Vojtáš

We are interested more in the recommendation of more complicated objects like
notebooks, with clear attribute structure.

Following works [4,5,6,7] deal with general, more structured, objects. One of
our main inspirations were also CP-nets [8]. This model captures complex user
preferences in graph representation, in which a preference over one attribute
may depend on the values of other attributes. There are many papers dealing
with CP-nets, but there is very few which describes a way to construct a CP-net
automatically, by learning from a simple user input (user ratings, in our case).
First, paper [9] propose a method for learning CP-nets but only those without
preferential dependencies, which degrades the CP-net to the set of isolated ver-
tices. Second, and the last paper currently available, is [10], which use preference
elicitation - it poses questions directly about her preferences. This approach re-
quires a lot of effort from the user, so we do not consider it. Finally, in [11] is an
extensive inspection of CP-nets learning from a given set of object comparisons.
In this work, theoretical limits of learning are studied, no particular algorithm
is presented.

Because preferences over attribute A1 may depend on another attribute A2,
user has to specify her preferences not only for all values of A1 but she has to
do it for every possible value of A2. This means very much work and insight
for user, work that probably few people will undergo (according to [12], as little
as 9 out of 260 people provided a more complex feedback to their system). That
is why learning of CP-nets is important for us.

Another different approach for representing user preferences are preference
relations, or especially fuzzy preference relations [13]. Studying of preference re-
lations often concerns of detecting and removing cycles in preferences. However,
preference relations without cycles can be easily mapped to the approach using
ratings commonly used in recommender systems. We do not consider this model;
we rather follow approach identified by R.Fagin in [14] and consider user ratings
as fuzzy sets.

The relation to decision theory (e.g. [15]) is very close, except the terminology.
Our local preferences are objectives (Chapter 15 in [15]) in decision theory,
with exactly the same meaning, except that in our view, every user can have
different objectives – one wants small display, another wants large display. Utility
function (Chapter 16 in [15]) corresponds to our aggregation with again the
same meaning – to resolve the possible conflict between attributes (incompatible
objects on the Pareto front). On the other hand, decision support theory is
focused more on the case with few alternatives and very complex decision process.
Decision support then tries to help the user to orient himself in the structure of
objectives. Our approach focuses on recommender systems, with a large number
of objects, changing objectives, utility and very small amount of user ratings.

3 Two Step Monotone User Model

We describe the same model as in [16,17]. To be self contained we describe it
briefly. Experiments compare this model to the adapted one, which uses the
CP-net learning, which is described in Section 4.4.

Learning User Preferences for 2CP-Regression for a Recommender System 349

3.1 Notation

We will work with a set of objects X , which is a set of notebooks in our experi-
ment. User’s overall rating of a small sample of objects S is a fuzzy subset of X ,
i.e. a function r(o) : S → [0, 1], where 0 means the least preferred and 1 means
the most preferred. In practical applications this can be {1 = the worst,...,5 =
the best}. Every object has attributes A1, ..., AN with domains DA1 , ..., DAN .

Let X ⊆
N∏

i=1

DAi . We will use X(A1 = a) when denoting a set of objects with a

as the value of attribute A1.
User model, in our view, is a method for representing user decision process

when considering user’s preference of an object o ∈ X that is an extension of r
to r̂ : X → [0, 1], preserving some criteria. Our user model consists of two steps.

Local Preferences. In the first step, which we call local preferences, every at-
tribute value of object o is normalised using a fuzzy set fi : DAi → [0, 1]. These
fuzzy sets are also called objectives or preferences over attributes. With this

transformation, the original space of objects’ attributes X ⊂
N∏

i=1

DAi is trans-

formed into X ′ ⊂ [0, 1]N . Moreover, we know that the object with transformed
attribute values equal to [1, ..., 1] is the most preferred object. It probably does
not exist in the real world, though. On the other side, the object with values
[0, ..., 0] is the least preferred, which is more probable to be found in reality.

Global Preferences. In the second step, called global preferences, the nor-
malised attributes are aggregated into the overall score of the object using an
aggregation function @ : X ′ → [0, 1]. Aggregation functions are also often called
utility functions ([15]).

Aggregation function may have different forms; one of the most common is a
weighted average, as in the following formula:

@(o) = (2 ∗ fPrice(o) + 1 ∗ fDisplay(o) + 3 ∗ fHDD(o) + 1 ∗ fRAM (o))/7,

where fA is a fuzzy set for normalisation of attribute A.
For 2CP model, we use a slightly adapted model, see Section 4.4 for details.

3.2 Aggregation Function Learning

We focus on the learning of user model. User is expected to rate a small sample
S ⊆ X of objects (r : S → {0, 0.25, 0.5, 0.75, 1}), where |S| 3 |X | . The size
of the training set is expected to be very small. Our model consist of f1, ..., fN

and @, so we expect to construct these functions from user ratings of S. Learning
of aggregation function is described in following section. This paper focuses on
the learning of local preferences, which is described in Section 4.

In this section we describe some methods of aggregation of local preferences
given by fi.

350 A. Eckhardt and P. Vojtáš

Statistical. Aggregation function serves to combine preferences over attributes
into a single rating that represents the preference of the object as a whole. There
are many ways to aggregate local preferences; we are currently using a weighted
average with weights learnt from user ratings. Method called ”Statistical” was
described in [17,18].

The distributions of ratings for attribute values ai ∈ A are considered when
determining the weight of attribute A. In Figure 2 is an example of distribution
of ratings across the domain of attribute Producer. If there is a lot of ratings
near one value as in Figure 2 for HP or Asus, the attribute value is considered
as decisive when doing the overall rating. However, if the distribution is rather
uniform such as in Figure 2 for Dell, then attribute value ai does not play an
important role in the overall rating. The measure of importance of an attribute
value is computed with formula

imp(ai) = 1/
∑

o∈X(A=ai)

|r(o) − avgo∈X(A=ai)r(o)|/|X(A = ai)|

where X(A = ai) denotes the set of objects o with ai as the value of attribute A.
Then the importance of attribute A is computed as

W (A) = 1/(
∑

ai∈A imp(ai/|A|).

Instances. Another possible aggregation function uses objects from the train-
ing set as delimiters for the rating of objects from testing set. This method is
called “Instances” and was proposed in [17]. It is based on the idea of Pareto
dominance – if an object o1 is better in all attributes than object o2, than
r(o1) ≥ r(o2). When given an object o to evaluation, Instances search the train-
ing set for objects that are dominated by o and uses maximum of their rating
as an estimate of rating of o.

There is an example how the training set can be used for rating estimation
in Figure 3. White circles Sj

i are objects from the training set with rating j
and id i. Black circles x and y are objects from testing set - in our case, x gets
rating 0.9 and y gets 1.0. The distance from objects from the training set also
plays role and can be taken into account. Interested reader may see [17].

Number of objects

Asus

HP

Rating

Producer

Dell

Fig. 2. Uniform and expressive distribu-
tions of ratings over an categorical attribute

0.9

1.0

Fig. 3. Instances

Learning User Preferences for 2CP-Regression for a Recommender System 351

Other Possible Approaches. Our approach is certainly not the only one –
any data mining technique can be used here, e.g. SVM, multilayer perceptron
etc. This means a method that given a function S → [0, 1] constructs a globally
defined function X → [0, 1].

Reader can easily imagine training e.g. a multilayer perceptron with nor-
malised attribute values. This will make use of normalisation that should help
these data mining methods for better learning. However, we did not do any
experiment with this approach yet.

4 Local Preferences Learning

As mentioned in Section 3, our user model is divided into two steps.
The first step is used for normalisation of every attribute value to interval

[0, 1], so that the best object would have coordinates [1, ..., 1]. This can be viewed
also as monotonisation of data - if the normalised attribute values of object o1
are all lower than those of object o2, then o2 is surely preferred to o1 (if the
normalisation is determined correctly). In the following section, the main task is
to find the normalisation of attribute Ai, i.e. to find a function fi : DAi → [0, 1].

4.1 Linear Regression

Linear regression is very useful method that serves to find a relation in a set of data
in form of a linear function. It can be used for finding the preference of attribute
values for numerical attributes, e.g. price. When given a set of prices and ratings of
notebooks, linear regression creates a linear function fprice(price) = α∗price+β.
Then we can normalise all values of price using this function.

Linear regression is based on minimising squares of errors. It typically
uses the mean squared error as the error function, which has the form of
MSE(fi) =

∑
o∈X

(fi(o)− r(o))2.

4.2 Quadratic Regression

Quadratic regression is an extension of linear regression (see 4.1). It also uses
a set of ratings and prices, but the output is a quadratic function fprice(price) =
α ∗ price ∗ price + β ∗ price + γ. The obvious fact is that quadratic function is
more complex than linear function but also more costly to find. Again, quadratic
regression minimises MSE(fi).

Another, maybe not so obvious, disadvantage of quadratic regression is that
it requires more points for its construction. Linear regression requires at least
two points, quadratic requires three. We did not succeed to find any comparison
of linear and quadratic regressions with respect to the size of the training set
and to the accuracy in literature. It is possible that the linear regression may
perform better on small training sets, but we did not made any experiment to
confirm this idea.

352 A. Eckhardt and P. Vojtáš

4.3 Peak – A Method for Finding Triangular Fuzzy Functions

Because it is natural for user to have the most preferred value of an attribute, we
created a new method for finding triangular fuzzy functions. We made a simplify-
ing assumption that triangular function is composed of only two linear functions
(often fuzzy triangular function consists of two linear functions and two intervals
on both extremes of the domain, where the value is 0). This method is called
Peak, but the functions do not have to share the common point at the top.

Peak works on any numerical domain. It traverses values of the domain present
in the training set and the value a is tried if it is a good “peak”. We construct two
linear functions, one is defined on numbers lower than a and the other defined
on higher numbers. Then the error is measured using MSE(fi). After traversing
all the domain, we choose the best peak (that with minimal MSE(fi)) for that
attribute.

An illustrative example of such a peak in attribute price is in Figure 4. White
circles represent objects with given price and rating forming the training set.
Note that the peak needs not to be at the top - this method would also learn
the most unpreferred value. In that case, the peak would be at the bottom of
axis y forming a shape more similar to a “valley”.

0

0

1

10 000 [$]

PeakRating

Price

Fig. 4. Example of a peak in price

The obvious argument against Peak is that it is not a very efficient method.
That is surely true, but we expect to work with small sets of ratings, up to
50 objects in the training set. Also some values may repeat in the set, e.g. sizes
of hard disk or display whose domains are rather limited. These factors reduce
the work needed to find the right peak.

4.4 2CP-Regression

In our previous work we proposed a method 2CP for finding relations between
attributes that allowed us to construct a very simple CP-net in [16]. For more
details about CP-nets see [8].

Learning User Preferences for 2CP-Regression for a Recommender System 353

In brief, 2CP serves as normalisation of a numerical attribute A1. It tries to
find a relation between A1 and another nominal attribute A2. The motivation for
this is that e.g. the preferred price of a notebook may depend on the producer.
For producers HP, IBM, Lenovo, Toshiba and Sony the best price may be 2200$,
because these producers are renowned. But for Fujitsu-Siemens, Acer, Asus and
MSI the best price is 750$ because user is not willing to pay more money for these
producers. After having found this relation, a method such as linear regression
is used to normalise the numerical attribute that is split by values of A2.

Using 2CP changes slightly the user model - instead of having f1 : DA1 →
[0, 1], the normalisation is rather f1 : DA1 ×DA2 → [0, 1]. This fact also affect
the monotonicity of the user model - it is no longer monotone with regard to
particular attributes. The training set S is split into subsets Sa1 , ..., Sak

, k = |A2|
with the same value of attribute A2 (each of Sa is monotone). 2CP constructs
a function fa

1 : DA1 → [0, 1] for each value a ∈ A2 using only corresponding Sa.
For better learning, a clustering on the values of A2 can be performed - see more
the future work in Section 6.1.

2CP is not a regression technique by itself - it has to be combined with one
of the methods presented above (linear, quadratic or Peak regressions).

5 Experiments

5.1 Experiment Settings

We used the same dataset as in [16], so the description of experiment setting
remains the same: Our experiment was done on a set of 200 notebooks crawled
from a web shop. There are five attributes: hard disk, display, price, producer
and ram. We have created an artificial user U with preferences on the scale
{1,2,3,4,5} for every notebook. Preferences were generated using a set of fuzzy
sets fi and an aggregation function @.

The user preferences on price were dependent on the actual value of the pro-
ducer of the notebook. As it was mentioned in Section 4.4, for producers HP,
IBM, Lenovo, Toshiba and Sony the best price was set to 2200$ and for Fujitsu-
Siemens, Acer, Asus and MSI the best price was set to 750$. Hence the same
price would produce different degree of preference for different producers.

Testing was performed with an altered cross-validation method. Because we
are dealing with user ratings, it can not be expected that the user rates many
objects. That is why we limited the training set size (TSS in following text) up
to 60 ratings at maximum. Methods were tested on the rest of the set. When
the user model is constructed from the first 10 notebooks, it is tested on the
remaining 190 notebooks. Then the next 10 notebooks are taken as the training
set and the model is tested on the remaining 190. For TSS = 20 the model is
tested on the remaining 180 notebooks. Resulting errors are averaged for every
TSS so that the results are reliable.

354 A. Eckhardt and P. Vojtáš

We have tested various methods with following parameters:

– Local preferences learning : Linear, Quadratic or Peak
– Use of 2CP procedure: it is indicated by presence or absence of “2CP” at

the end of the name of the method.
– Aggregation function learning : Statistical (see [18,17] and 3.2) and Instances

(see [17] and 3.2).

We also tested methods Mean and Support Vector Machine. Method Mean re-
turns the average rating from the training set. Mean serves as indicator, whether
a method is useful or not. Finally, Support Vector Machine, a traditional data
mining method, was tested, using default implementation from Weka [19].

No tuning of any method was performed - these methods are supposed to work
on arbitrary data automatically without the need of adjusting any parameters.

Methods in following figures were divided into two groups - in the first group,
only methods that use 2CP are compared; in the second group, non-2CP methods
are compared to Statistical with Peak and with 2CP.

5.2 Experiment Results

We studied three types of error measures. The first and most commonly used is
RMSE - root mean squared error. RMSE captures the average error across the
whole testing set. The second, Weighted RMSE, adds weight to each contribution
to the error. The weight associated is the same as the real rating, because good
objects are of greater concern than objects that are not preferred. In other words,
it is worse if a good notebook does not appear on the first page of results than if
a bad notebook does. Finally, the third is Kendall tau rank coefficient. Kendall
tau rank coefficient is a measure of correspondence between two ordered lists
: objects from the testing set ordered by the real user preferences are in the
first list. The second list consists of the same objects, ordered by preferences

RMSE for 2CP methods

0,055

0,06

0,065

0,07

0,075

0,08

0,085

0,09

0,095

0,1

2 5 10 15 20 40 60
Number of training data

Statistical,Linear2CP
Statistical,Quadratic2CP
Statistical,Peak2CP
Intances, Peak2CP
Intances,Linear2CP
Intances,Quadratic2CP
Mean

Fig. 5. RMSE for 2CP methods

RMSE

0,05

0,06

0,07

0,08

0,09

0,1

0,11

0,12

2 5 10 15 20 40 60
Number of training data

Statistical,Peak2CP
Statistical,Peak
Statistical,Quadratic
Statistical
Intances,Quadratic
Mean
weka,SVM

Fig. 6. RMSE for various methods

Learning User Preferences for 2CP-Regression for a Recommender System 355

Weighted RMSE for 2CP
methods

0,6

0,8

1

1,2

1,4

1,6

1,8

2 5 10 15 20 40 60
Number of training data

Statistical,Linear2CP
Statistical,Quadratic2CP
Statistical,Peak2CP
Intances, Peak2CP
Intances,Linear2CP
Intances,Quadratic2CP
Mean

Fig. 7. Weighted RMSE for 2CP methods

Weighted RMSE

0,6

0,7

0,8

0,9

1

1,1

1,2

1,3

1,4

2 5 10 15 20 40 60
Number of training data

Statistical,Peak2CP
Statistical,Peak
Statistical,Quadratic
Statistical
Intances,Quadratic
Mean
weka,SVM

Fig. 8. Weighted RMSE for various
methods

Tau for 2CP methods

0,2

0,25

0,3

0,35

0,4

0,45

0,5

0,55

0,6

0,65

0,7

2 5 10 15 20 40 60
Number of training data

Statistical,Linear2CP
Statistical,Quadratic2CP
Statistical,Peak2CP
Intances, Peak2CP
Intances,Linear2CP
Intances,Quadratic2CP
Mean

Fig. 9. Tau coefficient for 2CP methods

Tau

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

0,55

0,6

0,65

2 5 10 15 20 40 60
Number of training data

Statistical,Peak2CP
Statistical,Peak
Statistical,Quadratic
Statistical
Intances,Quadratic
Mean
weka,SVM

Fig. 10. Tau coefficient for various
methods

proposed by the tested method. In this way, we can estimate the similarity of
the ordering given by the method and the ordering given by the real user. Tau
coefficient ranges from -1 to 1; 1 means the absolute correlation, i.e. the same
lists, and -1 means the opposite correlation, i.e. the reversed lists. Tau coefficient
of 0 means that there is no correlation between the two lists.

In Figures 5 and 6 are results for RMSE. Clearly, Statistical with Linear or
Peak normalisation are the best, with Peak having a small advantage. Strange
is that Statistical with Quadratic normalisation is the worst from Statisticals.
Instances were overall worse than Statistical. Mean is worst for larger TSS but
not as bad as Instances for smaller TSS. The most surprising was the very
bad performance of SVM - for smaller training sets of size 5,10,15 and 20, it
performed even worse than Mean. It begins to improve from 20.

356 A. Eckhardt and P. Vojtáš

When looking to Weighted RMSE (Figure 7,8), the phenomenon is even
clearer. Instances are on average worse than Statisticals.

The results for Tau coefficient, are mixed (Figure 9,10). The only exception is
again Statistical with Peak2CP, which is the clear winner. Instances are on the
average worse than Statisticals again, and SVM is good only for the two largest
training sets.

6 Conclusions

Several possibilities for finding normalisation of numerical domain have been
studied in this paper. They have been tested with a method for the learning of
simple CP-nets and have been tested thoroughly.

We have also proposed a method for finding the preference dependence be-
tween two attributes, which was demonstrated on the example of a user for whom
the ideal price depends on the producer of the notebook. We are aware that our
model does not correspond to CP-nets completely, but the proposed part of our
fuzzy model can be considered as a simple CP-net. This method proved itself to
be very efficient in case when ceteris paribus phenomenon occurs. Method Peak
for finding the triangular fuzzy sets was also tested with good results.

6.1 Future Work

We would like to extend 2CP to finding relations between more than two at-
tributes, making a more general nCP-regression. However, this will be strongly
influenced by the small size of the training set.

The other important issue is to be able to find if there is a relation between
the preference of two attributes, and to be able to measure the strength of the
relation. This will enable to detect, whether to use 2CP regression or not. In the
current settings, we are always looking for the dependence. To solve this, we can
either use the information about the correctness of the normalisation or we can
measure the degree of the preference dependence between the two attributes.

Finally, a clustering on fa
i can be performed to allow a more robust regression

on similar values. E.g. in our example, we have learnt the regression for each
producer separately. Clustering would enable to have only two functions for the
two clusters of producers.

Acknowledgment. The work on this paper was supported by Czech projects
MSM 0021620838, 1ET 100300517 and GACR 201/09/H057.

References

1. Eckhardt, A.: Prefwork – a Framework for User Preference Learning Methods
Testing. In: Vojtas, P. (ed.) Proceedings of ITAT 2009 Information Technologies -
Applications and Theory, Slovakia, CEUR-WS.org (to appear, 2009)

Learning User Preferences for 2CP-Regression for a Recommender System 357

2. Joachims, T.: Optimizing Search Engines Using Clickthrough Data. In: KDD 2002:
Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 133–142. ACM Press, New York (2002)

3. Joachims, T., Granka, L., Pan, B., Hembrooke, H., Gay, G.: Accurately Interpret-
ing Clickthrough Data as Implicit Feedback. In: SIGIR 2005: Proceedings of the
28th Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, pp. 154–161. ACM, New York (2005)

4. Cao-Van, K.: Supervised Ranking, from Semantics to Algorithms. Ph.D. Disserta-
tion, Ghent University (2003)

5. Apolloni, B., Zamponi, G., Zanaboni, A.M.: Learning Fuzzy Decision Trees. Neural
Networks 11(5), 885–895 (1998)

6. Holland, S., Ester, M., Kiessling, W.: Preference Mining: A Novel Approach on
Mining User Preferences for Personalized Applications. In: Lavrač, N., Gamberger,
D., Todorovski, L., Blockeel, H. (eds.) PKDD 2003. LNCS (LNAI), vol. 2838, pp.
204–216. Springer, Heidelberg (2003)

7. Jung, S.Y., Hong, J.H., Kim, T.S.: A Statistical Model for User Preference. Knowl-
edge and Data Engineering. IEEE Transactions on Knowledge and Data Engineer-
ing 17(6), 834–843 (2005)

8. Boutilier, C., Brafman, R.I., Hoos, H.H., Poole, D.: Cp-Nets: A Tool for Repre-
senting and Reasoning with Conditional Ceteris Paribus Preference Statements.
Journal of Artificial Intelligence Research 21 (2004)

9. Lang, J., Mengin, J.: The Complexity of Learning Separable Ceteris Paribus Pref-
erences. In: International Joint Conference on Artificial Intelligence (2009)

10. Koriche, F., Zanuttini, B.: Learning Conditional Preference Networks with Queries.
In: Boutilier, C. (ed.) Proc. 21st International Joint Conference on Artificial Intel-
ligence (IJCAI 2009), pp. 1930–1935 (2009)

11. Chevaleyre, Y., Koriche, F., Lang, J., Mengin, J., Zanuttini, B.: Learning Ordi-
nal Preferences on Multiattribute Domains: the Case of Cp-Nets. In: Fürnkranz,
J., Hüllermeier, E. (eds.) To appear in the Book Preference Learning. Springer,
Heidelberg

12. Middleton, S.E., Shadbolt, N., Roure, D.D.: Capturing Interest through Inference
and Visualization: Ontological User Profiling in Recommender Systems. In: K-CAP
2003 (2003)

13. de Baets, B., Fodor, J.C.: Twenty Years of Fuzzy Preference Structures (1978–
1997). Decisions in Economics and Finance 20, 45–66 (1997)

14. Fagin, R., Lotem, A., Naor, M.: Optimal Aggregation Algorithms for Middleware.
In: Proceedings of Twentieth ACM Symposium on Principles of Database Systems
(PODS 2001), pp. 102–113. ACM, New York (2001)

15. Clemen, R.T.: Making Hard Decisions: an Introduction to Decision Analysis.
Duxbury Press, Belmont (1996)

16. Eckhardt, A., Vojtáš, P.: How to Learn Fuzzy User Preferences with Variable Ob-
jectives. In: Proceedings of 2009 IFSA World Congress/EUSFLAT Conference,
Lisbon, Portugal, July 2009, pp. 938–943 (2009)

17. Eckhardt, A., Vojtáš, P.: Considering Data-Mining Techniques in User Preference
Learning. In: 2008 International Workshop on Web Information Retrieval Support
Systems, pp. 33–36 (2008)

18. Eckhardt, A.: Inductive Models of User Preferences for Semantic Web. In: Pokorný,
J., Snášel, V., Richta, K. (eds.) DATESO 2007. CEUR Workshop Proceedings,
vol. 235, pp. 108–119. Matfyz Press, Praha (2007)

19. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

Parallel Randomized Load Balancing:
A Lower Bound for a More General Model

Guy Even and Moti Medina

School of Electrical Engineering, Tel-Aviv Univ., Tel-Aviv 69978, Israel
{guy,medinamo}@eng.tau.ac.il

Abstract. We extend the lower bound of Adler et. al [1] and Beren-
brink [2] for parallel randomized load balancing algorithms.

The setting in these asynchronous and distributed algorithms is of n
balls and n bins. The algorithms begin by each ball choosing d bins inde-
pendently and uniformly at random. The balls and bins communicate to
determine the assignment of each ball to a bin. The goal is to minimize
the maximum load, i.e., the number of balls that are assigned to the same
bin. In [1,2], a lower bound of Ω(r

√
log n/ log log n) is proved if the com-

munication is limited to r rounds.
Three assumptions appear in the proofs in [1,2]: the topological as-

sumption, random choices of confused balls, and symmetry. We extend
the proof of the lower bound so that it holds without these three as-
sumptions. This lower bound applies to every parallel randomized load
balancing algorithm we are aware of [1,2,3,4].

Keywords: Static randomized parallel allocation, load balancing, balls
and bins, lower bounds.

1 Introduction

We consider randomized parallel distributed algorithms for the following dis-
tributed load balancing problem. We are given a set of N terminals and n servers,
for N 4 n. Suppose a random subset of n terminals, called the set of clients, is
selected. Assume that clients do not know of each other. Each client must choose
a server, and the goal is to minimize the maximum number of clients that choose
the same server. We consider algorithms in which the number of communication
rounds is limited as well as the number of messages each client can send in each
communication round.

This load balancing problem was studied in a sequential setting by Azar
et al. [5]. They regarded the clients as balls and the servers and bins. If each ball
selects a bin uniformly and independently at random, then with high probability
(w.h.p.)1 the maximum load of a bin is Θ(lnn/ ln lnn) [6,7]. Azar et al. proved
that, if each ball chooses two random bins and each ball is sequentially placed in
a bin that is less loaded among the two, then w.h.p. the maximum load is only
ln lnn/ ln 2 +Θ(1).
1 We say that an event X occurs with high probability if Pr (X) ≥ 1 − O

(
1
n

)
.

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 358–369, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Parallel Randomized Load Balancing 359

This surprising improvement of the maximum load has spurred a lot of inter-
est in randomized load balancing in various settings. Adler et al. [1] studied ran-
domized load-balancing algorithms in a parallel, distributed, asynchronous set-
ting. They presented asymptotic bounds for the maximum load using r rounds of
communication. The upper and lower bounds match and equalΘ(r

√
lnn/ ln lnn).

This lower bound holds for constant number of rounds and constant number of
bin choices. Another parallel algorithm with the same asymptotic bounds was pre-
sented by Stemann [3] with a single synchronization point. Berenbrink et al. [2]
generalized to r ≤ log logn communication rounds and to weighted balls.

In this paper we extend the proof of lower bounds so that they hold without
assumptions on the algorithms that appear in [1,2]. The proof of the lower
bound applies to every parallel randomized load balancing algorithms we are
aware of [1,2,3,4] (these algorithms are described in the full version).

2 Preliminaries

2.1 The Model for Parallel Randomized Load Balancing Algorithms

We briefly describe the model for parallel randomized load balancing algorithms
used in [1,2].

There are n balls and n bins. Each ball and each bin has a unique name called
its identifier (ID). In the beginning, each ball chooses a constant number of bins
independently and uniformly at random (i.u.r). The number of bins chosen by
each ball is denoted by d.

The communication graph is a bipartite graph over the balls and the bins.
Each ball is connected to each of the d bins it has chosen. Messages are sent only
along edges in the communication graph. Communication proceeds in rounds.
There is a bound on the number of rounds. This bound is denoted by r. Each
round consists of messages from balls to bins and responses from bins to balls.
We assume that each node (i.e., ball or bin) may simultaneously send messages
to all its neighbors in the communication graph. In the last round, each ball
decides which bin to be assigned to, and sends a commitment message to one of
the d bins that it has chosen initially. Thus the last round is, in effect, “half”
a round whose sole purpose is the transmission of the commitment messages. In
this model, no limitation is imposed over the length of messages.

We are interested in asynchronous parallel algorithms. Each ball and bin runs
its own program without a central clock. Messages are delayed arbitrarily, and
a bin or a ball may wait for a message only if it is guaranteed to be sent to it.
In particular, arrival of messages may be delayed so that messages from later
rounds may precede messages from earlier rounds.

2.2 The Access Graph

Consider the case that each ball chooses two bins, i.e., d = 2. Following [1,2]
we associate a random graph with these choices. The random graph has n vertices

360 G. Even and M. Medina

that correspond to the bins and n edges that correspond to the balls. If ball b
choose bins u0 and u1, then the edge corresponding to b is (u0, u1). This random
graph is called the access graph. Extensions for d = O(1) are discussed in Sect. 3.4
(Case (III)).

We consider two versions of the access graph: the labeled version and the
unlabeled version. In the labeled version, the “name” of each vertex is the ID of
the corresponding bin and the “name” of each edge is the ID of the corresponding
ball.

In the unlabeled version, the ID’s of the ball and bins are hidden. Namely, we
do not know which ball corresponds to which edge and which bin corresponds
to which vertex.

The notation we use to distinguish between the labeled and unlabeled access
graphs is as follows. The labeled access graph is denoted by G. The vertices are
ID’s of bins and are denoted by u0, u1, etc. The edges are ID’s of balls and are
denoted by b. The endpoints of a labeled edge b are denoted by u0(b) and u1(b).

The unlabeled access graph is denoted by G′. An unlabeled edge is denoted
by e. We denote by e(b) the unlabeled edge in G′ whose label in G is b.

Neighborhoods. The r-neighborhood of a vertex v is the set of all vertices
and edges reachable from v by a path containing r edges. We denote the
r-neighborhood of v by Nr(v). For example, N0(v) = {v} and N1(v) is the star
whose center is v.

The r-neighborhood of an edge e = (v1, v2) is the set Nr(e)
�= Nr(v1)∪Nr(v2).

Let vj denote an endpoint of an edge e. The r-endpoint-neighborhood of vj

with respect to e is the r-neighborhood of vj in the graph G′ − {e}. We denote
it by Nr,e(vj).

2.3 The Witness Tree

Following [1,2,8], the lower bound is proved by showing that a high load is ob-
tained with at least constant probability conditioned on the existence of a witness
tree, defined below.

We denote a complete rooted unlabeled tree of degree T and height r by
a (T, r)-tree (see Fig. 1).

The Witness Tree Event. We say there exists a witness tree if there exists a copy
of a (T, r)-tree in the unlabeled access graph 2. We refer to such a copy of
a (T, r)-tree as the witness tree 3.

The following theorems state that a witness tree exists with constant
probability.

Theorem 1 ([8,1]). Let r ≤ log logn, d = 2, and T = O(r
√

lnn/ ln lnn). The
unlabeled access graph G′ contains a copy of a (T, r)-tree with probability at
least 1/2.
2 The (T, r)-tree need not be isolated as in [1,2] since we consider a synchronous

oblivious adversary (see Sect. 3.1).
3 If there is more than one copy, then select one arbitrarily.

Parallel Randomized Load Balancing 361

ρ

b1
b2 b3

b4

Fig. 1. A (4, 2)-tree. For every ball bi, the two endpoint-neighborhoods of radius 1 are
isomorphic, e.g., stars of 3 edges.

Theorem 2 ([1]). Let r = O(1), d = O(1), and T = O(r
√

lnn/ ln lnn). The
unlabeled access hypergraph G′ contains a copy of a (T, r)-tree with constant
probability.

2.4 Previous Lower Bounds and Gaps in Their Application

In [1,2], a lower bound of Ω(r
√

lnn/ ln lnn) was proved for the maximum load
obtained by parallel randomized load balancing algorithms, where r denotes the
number of rounds and n denotes the number of bins and balls. These lower
bounds hold for d = 2 and r ≤ log logn [2], or for a constant d and a con-
stant r [1]. The proof is based on Theorems 1 and 2 that prove that a witness
tree exists in the unlabeled access graph with constant probability. In addition,
the proof of the lower bound relies on the assumptions described below.

The Topological Assumption. The topological assumption [1,2] states that
each ball’s decision is based only on collisions between choices of balls, as for-
malized below.

Assumption 1 [Topological Assumption]. The decision of a ball b in round r
is a randomized function4 of the subgraphNr−1(e(b)) in the unlabeled access graph.

We emphasize that topology in the unlabeled graph does not include ID’s of balls
and bins, and therefore ID’s do not affect the decisions. In fact, the topological
assumption as stated in [1,2], requires a deterministic decision except for the
case of a confused ball defined below. Note that, in an asynchronous setting,
after r− 1 rounds, a ball b may be aware of a subgraph of the access graph that
strictly contains Nr−1(e(b)) (see also Sect. 3.2).

The Confused Ball Assumption. Under the confused ball assumption [1,2],
if the topology of both (r−1)-endpoint-neighborhoods of a ball in the unlabeled

4 Let μ : Ω → [0, 1] denote a probability measure over a finite set Ω. A randomized
function is a function f : X → Y Ω . Therefore, for every x ∈ X, f(x) is a random
variable attaining values in Y whose distribution over Y is determined by μ.

362 G. Even and M. Medina

access graph are isomorphic, then the ball commits to one of the chosen bins by
flipping a fair coin. Such balls are referred to in [1] as confused balls.

A rooted subgraph is a subgraph with a special vertex called the root. We
regard each endpoint-neighborhood Nr−1,e(uj) as a rooted subgraph in which
the root is uj . An isomorphism between rooted subgraphs is an isomorphism of
subgraphs that maps a root to a root.

Assumption 2 [Confused Ball Assumption]. If Nr−1,e(b)(u0(b)) and
Nr−1,e(b)(u1(b)) are isomorphic rooted subgraphs of the unlabeled access graph,
then the ball b commits to an endpoint of e(b) by flipping a fair coin.

The Symmetry Assumption. Under the symmetry assumption [2], all balls
and bins perform the same underlying algorithm, as formalized below.

Assumption 3 [Symmetry Assumption]. For every execution σ of the al-
gorithm, and for any permutation π of the balls and bins (i.e., renaming), the
corresponding execution π(σ) is a valid execution of the algorithm.

The symmetry assumption captures the notion of identical algorithms in each
ball and bin. Moreover, these algorithms are insensitive to ID’s of balls and bins.

Gaps in the Application of the Lower Bounds. Even et al. [4]. showed
that the topological assumption and the confused ball assumption do not hold for
algorithms pgreedy and threshold presented in [1]. The reason these assump-
tions do not hold is that the commitment is based on nontopological information
such as heights and round numbers. Since the proof of the lower bound in [1,2] is
based on the topological assumption and the confused ball assumption, and since
it is natural to design algorithms that violate these assumptions, the question of
proving general lower bounds for the maximum load in parallel randomized load
balancing algorithms was reopened. In Even et al. [4] specific proofs of the lower
bounds were given for pgreedy (d = 2 and r = 2) and threshold algorithms.
In this paper we prove the lower bound without requiring Assumptions 1-3.

3 The Lower Bound

We prove a lower bound for the maximum load of randomized parallel algorithms
(see Theorems 3, 4 and 5). The lower bound holds with respect to algorithms with
r rounds of communication in which each ball chooses i.u.r. a constant number
of d bins. For n balls and n bins, the maximum load is Ω(r

√
lnn/ ln lnn).

We prove this lower bound conditioned on the event that a witness tree exists
(see Sect. 2.3). Recall that, by Theorems 1 and 2, a witness tree exists with
constant probability. We begin by assuming that d = 2 and r = 2, and close this
sect. with extensions to other cases.

3.1 The Adversary

In this sect. we describe the adversary for the lower bound. Recall that in proving
a lower bound, the weaker the adversary, the stronger the lower bound.

Parallel Randomized Load Balancing 363

An oblivious adversary in our model is unaware of the random choices made by
the algorithm. A concrete specification of a rather limited oblivious adversary is
simply a sequence of delays {di}i∈N. Suppose the messages are sorted according
to their transmission times. Then the time it takes the i’th message to arrive
to its destination is di, and this is the only influence the adversary has over the
execution of the algorithm. Moreover, we also use the convention that the delay
of a message also includes the time it took to compute it, thus computation of
the messages incurs no extra delay.

We refer to an oblivious adversary that assigns the same delay to all messages
as a synchronous adversary. Indeed, all messages of the same “half” round are
transmitted simultaneously and received simultaneously. Messages transmitted
or received simultaneously are ordered uniformly at random by the adversary
(namely, every permutation is equally likely).

Note that an oblivious synchronous adversary is not aware of traffic conges-
tion, sources or destinations of messages, or contents of messages. Moreover, the
adversary may not drop or corrupt messages.

3.2 Propagation of Information in Rounds

Recall that we do not have any limitation over the length of the messages. For
the sake of the lower bound proof, we assume that, in each round, each ball or
bin forwards all the information it has to its neighbors. Thus, in the beginning of
round r, all the information that a ball has is included in the last two messages
that the ball received from its two chosen bins in round r − 1.

The following lemma captures the notion of locality of information after r−1
rounds of communication. It states that after
 rounds, each ball or bin gathers
information only from its
-neighborhood in the labeled access graph.

Lemma 1. Under a synchronous oblivious adversary, after
 rounds of com-
munication, each ball b gatherers information only from N�(b), and each bin u
gathers information only from Nr(u).

Proof. The proof is by induction on the number of rounds. The base of the
induction for
 = 1 holds since every bin u has been accessed by the balls that
have chosen it. Every bin forwards this information to the balls that have chosen
it. We assume the lemma holds for
′ <
. By the induction hypothesis, the
information gathered by a bin u after round
 is gathered from ∪b∈N1(u)N�−1(b).
Indeed, N�(u) = ∪b∈N1(u)N�−1(b). Now the information gathered by a ball b after

 rounds is gathered from ∪j∈{0,1}N�(uj(b)). Indeed, N�(b) = ∪j∈{0,1}N�(uj(b)),
and the lemma follows.

3.3 The Probability Space

We give a nonformal description of the probability space S over the possible ex-
ecutions of the algorithm. Each execution is influenced by the following events:
(i) Random choices made by the balls (i.e., the d chosen bins of each ball) as well as
additional random bits used by the balls and bins. (ii) The ordering in each round
of incoming messages to each ball or bin. (iii) The final decisions of the balls.

364 G. Even and M. Medina

3.4 The Lower Bound Proof

Since all information held by balls and bins is forwarded in each message, the
decision of each ball b is based on the last messages that it received from the two
bins u0(b) and u1(b). Let I denote the set of possible pairs of data that a ball
receives from the bins in round r − 1 before making its decision.

Let {I0(b), I1(b)} ∈ I denote the pair of messages sent to b by its chosen
bins, u0(b) and u1(b), in round r− 1. The accumulation of data described above
implies the following fact.

Fact 1. The final decision of a ball b can be modeled by a decision function fb:
I → [0, 1]. Namely, fb({I0(b), I1(b)}) equals the probability that ball b chooses
bin u0(b).

Note that in contrary to the symmetry assumption in [1] (see Assumption 3),
we allow different balls to use different decision functions fb.

(I) The Case d = 2, r = 2.

Notation. In the sequel we assume that a (T, 2)-tree exists in the unlabeled
access graph (see Sect. 2.3). Let τ denote this (T, 2)-tree. The root ρ of τ is
unlabeled as well as the edges incident to it. Since the tree τ is unlabeled, the
ID of each edge (i.e., ball) is not determined, and hence the ID of each edge is
a random variable. We denote by bi the random variable that equals the ID of
the ball corresponding to the i’th edge incident to the root ρ. Let load(ρ) denote
the random variable that equals the load of the root ρ. Let χi be a random
variable defined by: χi = 1 if bi chooses the root ρ, and χi = 0 otherwise. The
load of the root load(ρ) equals

∑T
i=1 χi.

We now analyze the expected value of each χi. It is important to note that
the random variables {χi}T

i=1 are not independent. Indeed, the analysis shows
that they are equally distributed and uses linearity of expectation but not in-
dependence. Let us fix an edge incident to the root ρ. Consider the i’th edge
and the random variable bi. Fix two ID’s u0 and u1 and assume that bi chose u0

and u1. Let {I0, I1} ∈ I denote a specific pair of data.

Definition 1. Let A denote the event that: (i) Ball bi chooses bins whose ID’s
are u0 and u1 and (ii) bi gathers information Ij from uj, for j ∈ {0, 1}.

Note that while bi is a random variable, the ID’s u0 and u1 and the data I0 and
I1 are not random variables. Namely, A is a set of executions characterized by
(i, u0, u1, I0, I1). For simplicity we write A instead of A(i, u0, u1, I0, I1).

Definition 2. Let j ∈ {0, 1}. Let Aj denote the event A∩{ρ = uj} (i.e., ball bi
gathers information I0, I1 from bins u0, u1, respectively, and the root ρ is labeled
by uj).

We emphasize that in this setting the ball bi has no way of distinguishing between
the events A0 and A1.

Parallel Randomized Load Balancing 365

v4

v6

v1

v2

v3

v5

u0u1 bi

β3β6

β5

β4 β1

β2

v1

v3

v4

v5

v6

v2

u0 u1bi

β6

β5

β4β1

β2

β3

(I) (II)

Fig. 2. (I) An execution in A0 from the “point of view” of ball bi. Ball bi chooses
bins u0 and u1. Bin u0 is also chosen by balls β1, β2, β3. Bin u1 is also chosen by balls
β4, β5, β6. The root ρ of the witness tree is u0 and is depicted by an unfilled circle.
(II) The mirror execution of (I). This mirror execution is in A1. The mirror permutation
swaps u0 and u1, etc. Since ball bi cannot distinguish between executions (I) and (II),
it follows that if ball bi chooses u0 in (I) then it also chooses u0 in (II).

Lemma 2. Pr[A0 | A] = Pr[A1 |A].

Proof. The proof is based on the fact that the labeling of vertices and edges in
the witness tree τ is a random permutation. Hence, given an execution in A, we
can apply a “mirror” automorphism with respect to bi, as depicted in Fig. 2.
Note that this mirror automorphism is applied only to N2(bi); all other edges
and vertices are fixed. We claim that this automorphism is a one-to-one measure
preserving mapping between executions in A0 and executions in A1.

The automorphism “mirrors” ID’s of balls and bins labels in N2(bi), and each
element inherits the random bits tossed by its pre-image. Indeed, if vertex u is
mapped to vertex v, then v inherits the label of u and all its random bits.

As for the ordering of messages. The bins u0 and u1 have the same labeled
neighbors before and after the automorphism. Hence, the adversary orders their
incoming messages in the same way. All other bins might change their neighbors
as a result of the automorphism (e.g., v4 may be a leaf in (I) but is a nonleaf
in (II)). Therefore, the order of messages incoming to a bin v �∈ {u0, u1} is
inherited from its unlabeled vertex in the access graph G′.

Note that the root is not affected by the mirror automorphism. This is depicted
in Fig. 2 by the fixed unfilled circle. From the point of view of u0, u1, and
bi the executions before and after the automorphism are identical. Hence, the
automorphism maps executions in A0 to executions in A1.

Therefore, the probability of an execution in A0 equals the probability of
the image of this execution under the mirror permutation. Finally, the mirror
automorphism is one-to-one since differences between two executions in A0 are
not “erased” by the automorphism.

Lemma 3. For every 1 ≤ i ≤ T , Pr[χi = 1] = 1/2.

Proof. Lemma 2 and Fact 1 imply that:

Pr[χi = 1 | A] =
1
2
· Pr[χi = 1 | A0] +

1
2
· Pr[χi = 1 | A1] (1)

366 G. Even and M. Medina

=
1
2
· fbi({I0, I1}) +

1
2
· (1− fbi({I0, I1}))

=
1
2
.

Since Equation 2 holds for every A (i.e., choice of (i, u0, u1, I0, I1)), it follows
that Pr[χi = 1] = 1/2.

Theorem 3. If d = 2 and r = 2, then the maximum load obtained by any load
balancing algorithm in the model is Ω(

√
lg n/ lg lgn) with constant probability.

Proof. By linearity of expectation and by Lemma 3:

E[load(ρ) | ∃witness tree] = E[
T∑

i=1

χi] = T · E[χi] = T/2 .

By applying Markov’s inequality to T − load(ρ), we conclude that

Pr[load(ρ) > T/4 | ∃witness tree] ≥ 1/3.

The theorem follows from Theorem 1.

(II) The Case d = 2, r ≤ lg lg n. The same arguments prove the next
theorem.

Theorem 4. If d = 2 and r ≤ lg lgn, then the maximum load obtained by
any load balancing algorithm in the model is Ω(r

√
lgn/ lg lg n) with constant

probability.

(III) The Case d = O(1), r = O(1). In this sect. we outline the differences
between this case and Case (I). Proofs similar to the case d = 2 are omitted.

An access hypergraph G over the bins is associated with the d random choices
of each ball [1]. For each ball b, the hyperedge e(b) equals the d bins (u0(b), . . . ,
ud−1(b)) chosen5 by b.

Let {I0(b), . . . , Id−1(b)} ∈ I denote the information that is gathered by a ball b
from its d chosen bins, u0(b), . . . , ud−1(b), in round r − 1.

Fact 2. The final decision of a ball b can be modeled by a decision function
fb: I → [0, 1]d i.e., fb({I0(b), . . . , Id−1(b)}) equals to a probability vector p =
〈p0, p2, . . . , pd−1〉 where pj is the probability that ball b chooses bin uj(b).

Notation. In the sequel we assume that a (T, r)-hypertree exists (see Fig. 3)
in the unlabeled access hypergraph (see Sect. 2.3). Let τ denote this (T, r)-
hypertree. The root ρ of τ is unlabeled as well as the hyperedges incident to it.
We denote by bi the random variable that equals the ID of the ball corresponding

5 For simplicity, we assume here that the d choices are distinct. Otherwise, we would
need to consider hyperedges with repetitions.

Parallel Randomized Load Balancing 367

b1

ρ

b3b2

Fig. 3. A (3, 2)-tree is the witness hypertree for the case of r = 2 and d = 3

to the i’th hyperedge incident to the root ρ. We denote the load of the root ρ by
load(ρ). Let χi be a random variable defined by: χi = 1 if bi chooses the root ρ,
and χi = 0 otherwise. The load of the root load(ρ) equals

∑T
i=1 χi.

We now analyze the expected value of each χi. As in the case d = 2, it
is important to note that the random variables {χi}T

i=1 are not independent.
Let us fix an hyperedge incident to the root ρ. Consider the i’th hyperedge
and the random variable bi. Fix d ID’s u0, . . . , ud−1 and assume that bi chose
u0, . . . , ud−1. Let {I0, I1, . . . , Id−1} denote a specific d-tuple of data.

Definition 3. Let A denote the event that: (i) Ball bi chooses bins whose ID’s
are u0, u1, . . . , ud−1 and (ii) bi gathers information Ij from uj, for
j ∈ {0, 1, . . . , d− 1}.

Definition 4. For j ∈ {0, 1, . . . , d − 1}, let Aj denote the event A ∩ {ρ = uj}
(i.e., ball bi gathers information I0, I1, . . . , Id−1 from bins u0, u1, . . . , ud−1, re-
spectively, and the root ρ is labeled by uj).

bi

u2 u0

u1

v6v7

v4

v3v10

v9

v11 v2

v12 v1

v8 v5

bi

u0 u1

v9

v10v11

v8

v7v2

v1

v3 v6

v4 v5

v12
u2

(I) (II)

Fig. 4. (I) An execution in A0 from the “point of view” of ball bi. Ball bi chooses
bins u0, u1 and u2. The root ρ of the witness tree is u0 and is depicted by an unfilled
circle. (II) The rotated execution of (I). This rotated execution is in A1. The rotation
permutation rotates the bins in bi in a counter-clockwise manner. Since ball bi cannot
distinguish between executions (I) and (II), it follows that if ball bi chooses u0 in (I)
then it also chooses u0 in (II).

368 G. Even and M. Medina

Lemma 4. For every
 ∈ {0, 1, . . . , d−1}, Pr[A� |A] = Pr[A�+1 (mod d) |A], and
therefore Pr[A�] = 1

d · Pr[A].

Proof sketch: As in Lemma 2, we apply a one-to-one measure preserving
mapping from A� to A�+1 (mod d). The mapping is a “rotation” mapping. An
example for d = 3 and r = 2 is depicted in Fig. 4. �

Lemma 5. For every 1 ≤ i ≤ T , Pr[χi = 1] = 1/d.

Proof. Lemma 4 and Fact 2 imply that:

Pr[χi | A] =
1
d
·

d−1∑
�=0

Pr[χi | A�] =
1
d
·

d−1∑
�=0

p� =
1
d
.

Since Equation 2 holds for every A, it follows that Pr[χi = 1] = 1/d.

Based on Theorem 2 we conclude with the following theorem.

Theorem 5. For d = O(1) and r = O(1), the maximum load obtained by
any load balancing algorithm in the model is Ω(r

√
lgn/ lg lg n) with constant

probability.

4 Discussion

We prove the lower bounds from [1,2] without relying on Assumptions 1-3. The
proof applies to parallel load balancing algorithms in which each ball selects
d bins independently and uniformly at random. The proof allows each ball and
bin to run a completely different randomized program that depends on its ID.
The proof does not limit the message length; hence, all local information can be
gathered by the balls via messages.

In [4], we presented a heuristic, H-retry, and simulations that matched the
loads obtained by the best known sequential load balancing algorithms [5,9] for
1-8 million balls and bins. The proof presented here shows that such heuristics
do not obtain better asymptotic loads.

A key technical issue in our proof is the distinction between a labeled and
unlabeled access graph. In the labeled access graph, each node is labeled by an
ID of a bin and each edge is labeled by an ID of a ball. In the unlabeled graph,
ID’s are “hidden”. The proofs that a witness tree exists with constant probability
hold, in fact, with respect to the unlabeled access graph. Given the existence of
an “unlabeled” witness tree, we show that a constant fraction of the labelings
of the tree incur a high load in the root.

The adversary we consider in the proof is very limited. It assigns identical
delays to all messages, and orders simultaneous messages uniformly at random.

It is possible to extend the lower bound also for constant d provided that
r ≤ log logn/(1 + log d). In this case, the lower bound on the maximum load is
Ω(r

√
log n

1
r log log n+log 1

d

).

Parallel Randomized Load Balancing 369

References

1. Adler, M., Chakrabarti, S., Mitzenmacher, M., Rasmussen, L.E.: Parallel Random-
ized Load Balancing. Random Struct. Algorithms 13(2), 159–188 (1998)

2. Berenbrink, P., auf der Heide, F.M., Schröder, K.: Allocating Weighted Jobs in
Parallel. Theory of Computing Systems 32(3), 281–300 (1999)

3. Stemann, V.: Parallel Balanced Allocations. In: SPAA 1996, pp. 261–269. ACM,
New York (1996)

4. Even, G., Medina, M.: Revisiting Randomized Parallel Load Balancing Algorithms.
In: SIROCCO 2009 (2009)

5. Azar, Y., Broder, A., Karlin, A., Upfal, E.: Balanced Allocations. SIAM Journal on
Computing 29(1), 180–200 (2000)

6. Raab, M., Steger, A.: “Balls into Bins” - A Simple and Tight Analysis. In: Rolim,
J.D.P., Serna, M., Luby, M. (eds.) RANDOM 1998. LNCS, vol. 1518, pp. 159–170.
Springer, Heidelberg (1998)

7. Kolchin, V., Sevastyanov, B., Chistyakov, V.: Random Allocations. John Wiley &
Sons, Chichester (1978)

8. Czumaj, A., auf der Heide, F., Stemann, V.: Contention Resolution in Hashing
Based Shared Memory Simulations. SIAM Journal On Computing 29(5), 1703–1739
(2000)

9. Voecking, B.: How Asymmetry Helps Load Balancing. Journal of the ACM 50(4),
568–589 (2003)

Ant-CSP: An Ant Colony Optimization
Algorithm for the Closest String Problem

Simone Faro and Elisa Pappalardo

Università di Catania, Dipartimento di Matematica e Informatica
Viale Andrea Doria 6, I-95125 Catania, Italy

{faro,epappalardo}@dmi.unict.it

Abstract. Algorithms for sequence analysis are of central importance
in computational molecular biology and coding theory. A very interesting
problem in this field is the Closest String Problem (CSP) which consists
in finding a string t with minimum Hamming distance from all strings in
a given finite set. To overcome the NP-hardness of the CSP problem, we
propose a new algorithm, called Ant-CSP, based on the Ant Colony Op-
timization metaheuristic. To assess its effectiveness and robustness, we
compared it with two state-of-the-art algorithms for the CSP problem,
respectively based on the simulated annealing and the genetic algorithm
approaches. Experimental results show that Ant-CSP outperforms both
of them in terms of quality of solutions and convergence speed.

Keywords: Closest string problem, string comparison problems, meta-
heuristic algorithms, ant colony optimization, NP-hard problems.

1 Introduction

The task of finding a string that is close to each of the strings in a given finite set
is a combinatorial optimization problem particularly important in computational
biology and coding theory. In molecular biology, one of the main issues related
to DNA or protein sequences comparison is to find similar regions. Such prob-
lem finds applications, for instance, in genetic drug target and genetic probes
design [16], in locating binding sites [25,11], and in coding theory [6,5], where
one is interested in determining the best way to encode a set of messages [24].

A precise definition of the Closest String Problem (CSP, for short) is given
next. To begin with, for a string s over a finite alphabet Σ, we denote by |s|
and s[i] the length of s and the i-th character of s, respectively. The Hamming
distance H(s, t) between two strings s and t, of equal length, is the number of
positions in which s and t differ.

Definition 1 (CSP problem). Let S = {s1, s2, . . . , sn} be a finite set of
n strings, over an alphabet Σ, each of length m. The Closest String Problem
for S is to find a string t over Σ, of length m, that minimizes the Hamming
distance H(t, S) =Def maxs∈S H(t, s).

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 370–381, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Ant-CSP 371

Recently, the CSP problem has received much attention. Frances and Litman [5]
have proved the NP-hardness of the problem for binary codes. Gramm et al.
[9,10] provided a fixed-parameter algorithm for the CSP problem with running
time O(nm + ndd+1), where d is the parameter. Plainly, for large values of d,
such approach becomes prohibitive.

Several approximation algorithms have been proposed for the CSP problem:
Gasieniec et al. [6] and Lanctot et al. [16] developed two (4/3 + ε)-polynomial
time approximation algorithms. Then, based on such results, Li et al. [17] and
Ma and Sun [20] presented two new polynomial-time approximation algorithms.
However, the running time of these algorithms make them of theoretical im-
portance only. We mention also an approach based on the integer-programming
formulation proposed by Meneses, Pardalos et al. in [21]: the CSP is reduced to
an integer-programming problem, and then using a branch-and-bound algorithm
to solve it. Despite the high quality of solutions, such algorithm is not always ef-
ficient and has an exponential time complexity. Moreover, the branch-and-bound
tecnique leads easily to memory explosion.

Another approach to NP-hard problems consists in using heuristics. In 2005,
Liu et al. [18] proposed to apply two heuristic algorithms to solve the CSP
problem, based on the simulated annealing and the genetic algorithm approaches;
then in [19], Liu and Holger presented a hybrid algorithm which combines both
the genetic and the simulated annealing approaches, though limited only to
binary alphabets. We mention also the approach in [8], based on a combination
of a 2-approximation algorithm with local search strategies, consisting in taking
a string s and modifying it until a local optimal solution is found. However,
approximation algorithms sacrifice solution quality for speed [12].

In this paper we propose a new heuristic solution, Ant-CSP, based on the Ant
Colony Optimization (ACO) metaheuristic, and we compare it to those proposed
by Liu et al. [18], which are to date the fastest algorithms for the CSP problem.
The ACO metaheuristic is inspired by the foraging behaviour of ant colonies [3].
Artificial ants implemented in ACO are stochastic procedures that, taking into
account heuristic information and artificial pheromone trails, probabilistically
construct solutions by iteratively adding new components to partial solutions.

The paper is organized as follows. In Sections 2 and 3, we present in some
detail the two heuristic algorithms by Liu et al. [18] for the CSP problem, respec-
tively based on the simulated annealing and the genetic algorithm approaches.
Then, in Section 4, after describing the Ant Colony Optimization metaheuristic,
we illustrate our proposed solution, Ant-CSP. In Section 5, we discuss the results
of an extensive experimental comparison of our algorithm with the ones by Liu
et al. [18]. Finally, we report our conclusions in Section 6.

2 A Simulated Annealing Algorithm for the CSP
Problem

Simulated Annealing (SA) is a generalization of Monte Carlo methods, originally
proposed by Metropolis and Ulam [23,22] as a means of finding the equilibrium

372 S. Faro and E. Pappalardo

configuration of a collection of atoms at a given temperature. The basic idea of
SA was taken from an analogy with the annealing process used in metallurgy,
a technique involving heating and controlled cooling of a material to increase the
size of its crystals and reduce their defects. In the original Metropolis scheme,
an initial state of a thermodynamic system is chosen, having energy E and
temperature T . Keeping T constant, the initial configuration is perturbed, and
the energy change ΔE is computed. If ΔE is negative, the new configuration
is always accepted, otherwise it is accepted with a probability given by the
Boltzmann factor e−(ΔE/T). This process is repeated L times for the current
temperature, then the temperature is decremented and the entire process is
repeated until a frozen state is reached at T = 0. Due to such characteristics,
methods based on the SA may accept not only transitions that lead to better
solutions, but also transitions that lead to worse ones, though with probabilities
which tend to 0: at the beginning of the search, when temperatures are high,
the algorithm behaves as a random search and therefore bad solutions can be
accepted; whereas for lower values of T , solutions are located in promising regions
of the search space.

Kirkpatrick [15] first proposed to apply SA to solve combinatorial optimization
problems. The SA algorithm for the CSP problem by Liu et al. [18] works much
along the same lines as Kirkpatrick’s algorithm. Initially, the temperature T is
set to m/2, where m is the common string length. For each temperature value, a
block of L iterations is performed. At each iteration, a new string u′ of length m,
over Σ, is constructed in the following way: the current string u is split around a
random point and the two substrings are interchanged. Then the energy change
ΔE = H(u′, S) − H(u, S) is evaluated, where S is the input set of strings. If
ΔE ≤ 0, u′ becomes the new current solution, otherwise u′ is choosen as current
solution with probability e−(ΔE/T) only. At the end of each block of iterations,
the temperature value is multiplied by a reduction factor γ. Liu et al. [18] report
experiments with the parameters L = 100 and γ = 0.9. The algorithm stops
when a suitable termination criterion is met.

The pseudo-code of the algorithm SA for the CSP problem (SA-CSP) is shown
below.

3 A Genetic Algorithm for the CSP Problem

Genetic algorithms were first proposed by John Holland [13,7,14,1] as an abstrac-
tion of the biological evolution of living organisms. Genetic algorithms are based
on natural selection and sexual reproduction processes. The first mechanism de-
termines which members of a population survive and are able to reproduce, the
second one assures genic recombination among individuals of a same population.
The principle of selection is based on a function, called fitness, that measures
“how good is an individual”: individuals with better fitness have higher proba-
bility to reproduce and survive.

In the genetic algorithm for the CSP problem (GA-CSP, for short) proposed
by Liu et al. [18], an initial population P of random candidate solutions ind0, ...,

Ant-CSP 373

Algorithm 1. SA-CSP(S)
1: randomly generate an initial string u
2: set an initial T = Tmax

3: set the number of iterations L
4: set γ
5: while not (TERMINATION CRITERION) do
6: for 0 ≤ I < L do
7: u′ ← mutate(u);
8: Δ = evaluate energy(u′, S) − evaluate energy(u,S);
9: if ((Δ ≤ 0) or

(
(Δ > 0) and

(
e−Δ/T > random(0, 1)

))
) then

10: u ← u′;
11: end if
12: end for
13: T ← γ · T ;
14: end while

indpopsize−1 is generated. An individual/solution is a string of length m over the
alphabet Σ of the input string set S. The fitness function f is evaluated for each
string in the current population, where f = m−Hmax and Hmax is the maximum
Hamming distance of s from all strings in S: therefore the larger is f , the better
will be the solution represented by the string. A crossover step allows to generate
new individuals from members of the current population. More specifically, firstly
two “parental” individual indx and indy, are randomly selected according to
their crossover probability pc, which is proportional to the fitness value of each
individual. Then the crossover operator simply exchanges a randomly selected
segment in the pair of “parents” so that two new strings are generated, each
inheriting a part from each of the parents. At this intermediate stage, there are
two populations, namely, parents and offsprings. To create the next generation,
an elitist strategy is applied, i.e., the best individuals from both populations
are selected, based on their fitness. Finally, a mutation operator is applied to
each individual, depending on a probability pm: this consists in exchanging two
random positions in the string. Reproduction and mutation steps are repeated
until a termination criterion is met. We report the pseudo-code of GA-CSP as
Algorithm 2 below.

4 Ant Colony Optimization

We present now a new algorithm for the CSP problem based on the Ant Colony
Optimization (ACO) metaheuristic.

ACO is a multi-agent metaheuristic approach particularly suited for hard
combinatorial optimization problems. ACO was firstly proposed by Dorigo [3] as
an innovative approach to the Traveling Salesman problem. It has been inspired
by the real behaviour of ant colonies, where the behaviour of single ants is di-
rected to the survival of the whole colony. In particular, in his analysis Dorigo
observed the foraging behaviour of colonies: when a new food source is found,

374 S. Faro and E. Pappalardo

Algorithm 2. GA-CSP(S)
1: t ← 0
2: initialize P (t) = {indi ∈ P (t), i = 0, 1, ...popSize − 1}
3: evaluate P (t) to get the fitness of each individual in S
4: calculate the probability of each individual, pi ∝ indi.fitness
5: currentBest = best ind(P (t));
6: bestInd = indcurrBest;
7: while t < TERMINATION CRITERION do
8: i = 0;
9: while i < popSize/2 do

10: select (indxindy) from P (t) according to their pind

11: {chd(2i), chd(2i+1)} = crossover(indx, indy);
12: end while
13: i = 0;
14: while i < popSize do
15: r ← random(0, 1);
16: if (r < pm) then
17: mutate(chdi);
18: end if
19: P (t + 1) ← P (t + 1)

⋃
chdi

20: end while
21: evaluate P (t + 1) to get the fitness of each individual in S
22: calculate the probability of each individual, pi ∝ indi.fitness
23: worst = worst ind(P (t + 1));
24: indworst ← bestInd;
25: currBest = best ind(P (t + 1));
26: if (indcurrBest.fitness > bestInd.fitness) then
27: bestInd = indcurrBest;
28: end if
29: t ← t + 1;
30: end while

ants search the shortest and easiest way to return to nest. While walking from
food sources to the nest, and vice versa, ants deposit on the ground a substance
called pheromone [4]. Ants can smell pheromones and, when choosing their way,
they select, with higher probability, paths marked by strong pheromone con-
centrations. It has been proved that pheromone trails make shortest paths to
emerge over other paths [2], due to the fact that pheromone density tends to be
higher on shortest paths.

In analogy with the real behaviour of ant colonies, ACO applies pheromone
trails and social behaviour concepts to solve hard optimization problems. In
short, ACO algorithms work as follows: a set of asynchronous and concurrent
agents, a colony of ants, moves through the states of the problem. To determine
the next state, ants apply stochastic local decisions based on pheromone trails.
Ants can release (additional) pheromone into a state, while building a solution,
and/or after a solution has been built, by moving back to all visited states.

Ant-CSP 375

In an elitist strategy, only the ant that has produced the best solution is
allowed to update pheromone trails. In general, the amount of pheromone de-
posited is proportional to the quality of the solution built.

To avoid a too rapid convergence towards suboptimal regions, ACO algo-
rithms include another mechanism for the updating of pheromone trails, namely,
pheromone evaporation. This consists in decreasing over time the intensity of
the components of pheromone trails, as pheromone density tends to increase on
shortest paths. Thus, the evaporation mechanism limits premature stagnation,
namely situations in which all ants repeatedly construct the same solutions,
which would prevent further explorations of the search space.

The ACO metaheuristic has two main application fields: NP-hard problems,
whose best known solutions have exponential time worst-case complexity, and
shortest path problems, in which the properties of the problem’s graph repre-
sentation can change over time, concurrently with the optimization process. As
the CSP problem is NP-hard, and searching a closest string can be viewed as
finding a minimum path into the graph of all feasible solutions, it is natural to
apply the ACO heuristic to the CSP problem. This is what we do next.

4.1 The Ant-CSP Algorithm

We describe now our proposed ACO algorithm for the CSP problem, called
Ant-CSP. Given an input set S of n strings of length m, over an alphabet Σ,
at each iteration of the Ant-CSP algorithm, a COLONY consisting of u ants
is generated. Each of the artificial ant, say COLONYi, searches for a solution
by means of the find solution procedure, by building a string while it moves
character by character on a table T , represented as a |Σ|×mmatrix. The location
T [i, j], with 1 ≤ i ≤ |Σ| and 0 ≤ j ≤ m − 1, mantains the pheromone trail for
the i-th character at the j-th position of the string.

Ants choose “their way” probabilistically, using a probability depending on
the value T [i, j] of the local pheromone trail: the normalized probability for
each character is computed, depending on the pheromone value deposited on it.
So, the algorithm probabilistically chooses a character. Initially, T [i, j] = 1/|Σ|;
when each ant has built and evaluated its own solution, respectively by means
of the find solution() and evaluate solution() procedures, pheromone trails are
updated. We adopted an elitist strategy, so that only the ant that has found the
best solution, say COLONYbest , updates the pheromone trails, by depositing
on the characters that appear in the best solution an amount of pheromone
proportional to the quality of the solution itself. In particular:

T (t+1)[i, j] = T (t)[i, j] +
(

1− HD
m

)
,

where HD is the maximum Hamming distance of the current string from all
strings in S. Thus, the larger is the pheromone trail for the i-th character, the
higher will be the probability that this character will be chosen in the next
iteration.

376 S. Faro and E. Pappalardo

Pheromone values are normalized and are used as probabilities. After addi-
tional pheromone trail on the best string has been released, the evaporation
procedure is applied: this consists in decrementing each value T [i, j] by a con-
stant factor ρ; in our experiments, we put ρ = 0.03.

The pseudo-code of the Ant-CSP algorithm is shown as Algorithm 3 below.

Algorithm 3. Ant-CSP(S)
1: initialize table T
2: for i ← 1 to m do
3: for j ← 1 to |Σ| do
4: Tij ← 1/|Σ|
5: end for
6: end for
7: initialize COLONY
8: while not (TERMINATION CRITERION) do
9: for i ← 1 to u do

10: COLONYi ← new ant()
11: COLONYi.find solution()
12: COLONYi.evaluate solution()
13: end for
14: for i ← 1 to m do � start pheromone evaporation
15: for j ← 1 to |Σ| do
16: Tij ← (1 − ρ) · Tij ;
17: end for
18: end for � end pheromone evaporation
19: COLONYbest.update trails()
20: end while

5 Experimental Results

We have tested the SA-CSP, the GA-CSP, and the ACO-CSP algorithms using the
azotated compounds alphabet Σ = {A,C,G, T } of the fundamental components
of nucleic acids.
In our test platform, we considered a number of input strings n ∈
{10, 20, 30, 40, 50}, and string length m ∈ {10, 20, ..., 50} ∪ {100, 200, . . . , 1000}.
For each of a randomly generated problem instances, all algorithms were run
20 times.

The total colony size for the Ant-CSP algorithm as well as the population size
for the GA-CSP algorithm have been set to 10, whereas the number of generations
has been set to 1500. In the case of the SA-CSP algorithm, we fixed the number
of function evaluations in 15,000, making the number of function evaluations
comparable to the computational work performed by the former two algorithms.

Our tests have been performed on an Intel Pentium M 750, 1.86 GHz, 1 GB
RAM, running Ubuntu Linux.

We report the results of our tests in the five tables below: HD indicates
the Hamming distance value, that we want to minimize, Time is the running

Ant-CSP 377

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

200 400 600 800 1000

ru
nn

in
g

tim
e

(m
s)

size (#chars)

inputset n=20

Ant-CSP
SA-CSP
GA-CSP

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

200 400 600 800 1000

ru
nn

in
g

tim
e

(m
s)

size (#chars)

inputset n=40

Ant-CSP
SA-CSP
GA-CSP

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000
 20000

200 400 600 800 1000

ru
nn

in
g

tim
e

(m
s)

size (#chars)

inputset n=30

Ant-CSP
SA-CSP
GA-CSP

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

200 400 600 800 1000

ru
nn

in
g

tim
e

(m
s)

size (#chars)

inputset n=50

Ant-CSP
SA-CSP
GA-CSP

Fig. 1. Running times plot for n = 20, 30, 40, 50. Notice that, as n increases, the gap
between Ant-CSP and the other two algorithms becomes more noticeable.

time in milliseconds. For each length, we computed the average (AVG) of the
closest string scores found in the 20 runs and the standard deviation σ. Also, we
computed the average of the running time over the 20 runs (AVG). Best results
are reported in bold.

Experimental results show that almost always the Ant-CSP outperforms both
the GA-CSP and the SA-CSP algorithms both in terms of solution quality and

Table 1. Results for inputset of 10 strings of length m

SA-CSP GA-CSP Ant-CSP
Size (m) HD Time HD Time HD Time

AVG σ AVG AVG σ AVG AVG σ AVG
10 8.45 0.497 67.5 6.9 0.3 1840 7.05 0.218 50.5
20 15.9 0.384 112 13.3 0.714 1860 13.1 0.589 97
30 23.6 0.663 216 19.6 0.583 2700 19.3 0.557 200
40 31.4 0.589 313 25.3 0.714 3040 25.1 0.654 281
50 38.8 0.678 428 31.8 0.994 3220 31.6 0.805 386
100 75.9 0.943 465 63.4 1.31 2060 62.2 0.766 433
200 151 1.04 901 129 1.43 2290 124 1.58 855
300 226 1.18 1350 195 2.19 2540 188 1.57 1290
400 301 2.01 1780 262 2.52 2720 252 1.68 1700
500 375 2.05 2190 330 2.52 2940 317 2.15 2110
600 450 1.87 2740 400 3.71 3800 385 2.5 2920
700 525 1.68 3980 470 3.43 4860 451 2.95 4270
800 600 1.51 3720 540 4.04 4370 517 2.11 3860
900 675 1.19 5670 610 4.01 6110 585 4.05 5690
1000 750 1.53 7720 680 4.12 7850 652 3.72 7850

378 S. Faro and E. Pappalardo

efficiency. As a matter of fact, the tables below show that our algorithm is much
faster than both the GA-CSP and SA-CSP algorithms. In particular, in the case
of short instances, i.e. for 10 ≤ m ≤ 50, the Ant-CSP algorithm is from 5 to
36 times faster than GA-CSP.

Furthermore, it turns out that as n increases, the gap between the run-
ning time of the Ant-CSP and the SA-CSP algorithms becomes considerable. In
Figure 1 we report the running times of the algorithms for some sets of strings.

We also remark that the Ant-CSP provides results of a better quality than
the other two algorithms in terms of Hamming distance. In fact, the coopera-
tion among the colony ants and the pheromone trails tend to orient the search
towards optimal solutions, allowing to explore and modify local optima. On
the other hand, the SA-CSP algorithm behaves as a random search, as it sim-
ply modifies a string without considering local promising solutions. Likewise,

Table 2. Results for inputset of 20 strings of length m

SA-CSP GA-CSP Ant-CSP
Size (m) HD Time HD Time HD Time

AVG σ AVG AVG σ AVG AVG σ AVG
10 8.95 0.384 211 7.95 0.218 3560 7.95 0.218 132
20 17.1 0.589 342 14.8 0.4 3460 14.8 0.4 258
30 24.8 0.536 502 21.6 0.497 3300 21.4 0.49 370
40 32.5 0.497 602 28.1 0.477 3220 28 0.632 452
50 40.1 0.726 735 35 0.589 3300 34.8 0.536 546
100 78.4 0.663 874 69.5 0.921 2250 67.7 0.853 646
200 154 0.917 2070 140 1.74 3370 135 0.963 1460
300 229 1.16 2300 210 2.09 2970 203 1.95 1810
400 305 1.18 4460 281 1.95 4980 272 1.56 3090
500 380 1.25 5270 353 2.52 4930 341 1.65 3510
600 456 1.46 4610 426 1.89 4180 411 1.68 3660
700 531 1.16 6280 499 3.51 4770 482 1.95 4350
800 607 1.32 11300 572 1.88 9370 553 2.84 7780
900 682 1.49 13700 645 2.58 10800 623 2.51 10400
1000 757 1.69 15700 720 2.79 11800 695 2.49 11800

Table 3. Results for inputset of 30 strings of length m

SA-CSP GA-CSP Ant-CSP
Size (m) HD Time HD Time HD Time

AVG σ AVG AVG σ AVG AVG σ AVG
10 9 0 245 8.25 0.433 2830 8.15 0.357 148
20 17.3 0.458 518 15.3 0.458 3460 15.2 0.4 341
30 25.1 0.357 772 22.7 0.458 3520 22.4 0.477 508
40 33 0.316 985 29.5 0.5 3720 29.1 0.357 638
50 40.9 0.539 1230 36.9 0.357 4180 36.1 0.436 814
100 79.3 0.557 1280 72.2 0.726 2450 70.8 0.536 850
200 156 0.829 4760 144 1.08 5800 140 0.975 2750
300 232 0.831 6640 216 1.77 6610 209 1.27 4260
400 308 0.829 9160 290 2.93 8160 280 1.28 5550
500 383 0.963 11110 362 1.66 8830 351 1.79 6760
600 459 1.24 12500 436 2.14 9800 423 1.95 7610
700 534 1.03 14500 510 2.57 10900 495 2.01 9430
800 610 1.14 17700 583 2.57 12600 568 2.36 10300
900 686 1.69 19800 658 3.42 13200 640 2.09 11400
1000 760 2.24 19800 731 2.97 12400 713 2.29 10700

Ant-CSP 379

Table 4. Results for inputset of 40 strings of length m

SA-CSP GA-CSP Ant-CSP
Size (m) HD Time HD Time HD Time

AVG σ AVG AVG σ AVG AVG σ AVG
10 9.4 0.49 428 8.9 0.3 4000 8.55 0.497 252
20 17.6 0.477 742 15.9 0.218 3990 15.8 0.433 471
30 25.6 0.49 1210 23.1 0.384 4690 22.9 0.384 754
40 33.3 0.458 1540 30.4 0.572 4640 30.1 0.218 962
50 41.2 0.433 1940 37.5 0.497 5070 37 0.589 1220
100 80 0.669 2080 73.6 0.663 3420 71.7 0.477 1260
200 157 0.889 5740 146 1.24 5570 142 0.669 3230
300 233 0.889 8760 219 0.954 8640 214 1.05 5550
400 309 0.831 10090 293 1.87 9510 285 1.16 6560
500 385 0.748 14800 368 2.07 11000 358 1.24 7330
600 461 1.01 17800 441 1.69 13100 431 1.91 7940
700 536 1.05 21700 515 2.1 14300 503 1.01 11700
800 612 1.1 23500 590 2.34 14300 577 1.93 11300
900 688 1.34 26700 664 2.52 17200 649 2.31 15600
1000 763 1.43 30900 738 2.62 15900 722 1.91 16000

Table 5. Results for inputset of 50 strings of length m

SA-CSP GA-CSP Ant-CSP
Size (m) HD Time HD Time HD Time

AVG σ AVG AVG σ AVG AVG σ AVG
10 9.45 0.497 574 9 0 4390 8.85 0.357 334
20 17.8 0.433 1030 16.2 0.4 4620 16.1 0.218 620
30 25.9 0.3 1490 23.5 0.5 4820 23.2 0.4 899
40 33.5 0.497 1960 30.9 0.357 5070 30.6 0.497 1180
50 41.7 0.458 2410 38.2 0.433 5270 37.8 0.433 1450
100 80.6 0.49 2970 74.7 0.64 3970 73.3 0.64 1750
200 158 0.671 9090 148 0.91 8530 144 0.698 5550
300 234 0.678 14000 222 0.91 10900 216 0.889 8320
400 310 0.792 18500 297 1.65 13100 289 1.41 11100
500 386 1.16 21900 369 1.69 14800 362 1.24 12900
600 462 1.13 21200 444 1.5 14500 434 1.74 12200
700 538 1.14 26800 519 1.9 17300 508 1.7 15500
800 614 1.43 28900 594 2.9 14000 582 2.29 13900
900 689 1.1 33500 667 1.64 19700 656 2.11 18800
1000 765 1.19 36600 742 3.09 21000 729 1.68 18300

the GA-CSP algorithm performs random mutations and crossovers, whereas the
Ant-CSP probabilistically selects each character for the solution.

We note also that the Ant-CSP algorithm is quite robust, as its standard
deviation σ remains low.

The above considerations show that our algorithm represents a valid and
innovative alternative to the SA-CSP and GA-CSP algorithms.

6 Conclusions

In this paper, we proposed a new promising method for the CSP problem and
we presented and commented some experimental results.

380 S. Faro and E. Pappalardo

We compared our approach, Ant-CSP, to two heuristic algorithms proposed
by Liu et al. [18]: the SA-CSP algorithm, based on the simulated annealing
approach, and the GA-CSP algorithm, based on the genetic algorithm approach.
Experimental results show that our algorithm computes almost always better
solutions and is much faster than the GA-CSP and SA-CSP algorithms, regardless
the number and the length of input strings.

Future works will be focused on two fronts: performance improvements and
search for heuristic information to improve quality of solutions and convergence
speeds. Additionally, we plan to extend our algorithm to the Closest Substring
Problem.

Acknowledgments. The authors thank the referees for their helpful comments.

References

1. Booker, L.B., Goldberg, D.E., Holland, J.H.: Classifier Systems and Genetic Algo-
rithms. Artif. Intell. 40(1-3), 235–282 (1989)

2. Deneubourg, J.L., Aron, S., Goss, S., Pasteels, J.M.: The Self-Organizing Ex-
ploratory Pattern of the Argentine Ant. Journal of Insect Behavior 3(2), 159–168
(1990)

3. Dorigo, M.: Optimization, Learning and Natural Algorithms. PhD Thesis, Dipar-
timento di Elettronica, Politecnico di Milano, Italy (1992)

4. Dorigo, M., Caro, G.D., Gambardella, L.M.: Ant Algorithms for Discrete Opti-
mization. Artificial Life 5(2), 137–172 (1999)

5. Frances, M., Litman, A.: On Covering Problems of Codes. Theory of Computing
Systems 30(2), 113–119 (1997)

6. Gasieniec, L., Jansson, J., Lingas, A.: Efficient Approximation Algorithms for the
Hamming Center Problem. In: Proceedings of the 10th Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pp. 905–906. Society for Industrial and Applied
Mathematics, Philadelphia (1999)

7. Goldberg, D.E., Holland, J.H.: Genetic Algorithms and Machine Learning. Machine
Learning 3(2), 95–99 (1988)

8. Gomes, F.C., Meneses, C.N., Pardalos, P.M., Viana, G.V.R.: A Parallel Multi-
start Algorithm for the Closest String Problem. Computers and Operations Re-
search 35(11), 3636–3643 (2008)

9. Gramm, J., Niedermeier, R., Rossmanith, P.: Exact Solutions for Closest String and
Related Problems. In: Eades, P., Takaoka, T. (eds.) ISAAC 2001. LNCS, vol. 2223,
pp. 441–453. Springer, Heidelberg (2001)

10. Gramm, J., Niedermeier, R., Rossmanith, P.: Fixed-Parameter Algorithms for Clos-
est String and Related Problems. Algorithmica 37(1), 25–42 (2003)

11. Hertz, G.Z., Hartzell, G.W., Stormo, G.D.: Identification of Consensus Patterns in
Unaligned DNA Sequences Known to Be Functionally Related. Bioinformatics 6(2),
81–92 (1990)

12. Hochba, D.S.: Approximation algorithms for NP-hard problems, vol. 28. ACM,
New York (1997)

13. Holland, J.H.: Adaptation in Natural and Artificial Systems. MIT Press, Cam-
bridge (1992)

Ant-CSP 381

14. Holland, J.H.: Genetic Algorithms Computer Programs that “Evolve” in Ways that
Resemble Natural Selection Can Solve Complex Problems even Their Creators Do
not Fully Understand. Scientific American 267, 62–72 (1992)

15. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by Simulated Annealing.
Science 220(4598), 671–680 (1983)

16. Lanctot, J.K., Li, M., Ma, B., Wang, S., Zhang, L.: Distinguishing String Selection
Problems. In: Proceedings of the 10th Annual ACM-SIAM Symposium on Dis-
crete Algorithms, pp. 633–642. Society for Industrial and Applied Mathematics,
Philadelphia (1999)

17. Li, M., Ma, B., Wang, L.: On the Closest String and Substring Problems. Journal
of the ACM 49(2), 157–171 (2002)

18. Liu, X., He, H., Sykora, O.: Parallel Genetic Algorithm and Parallel Simulated An-
nealing Algorithm for the Closest String Problem. In: Li, X., Wang, S., Dong, Z.Y.
(eds.) ADMA 2005. LNCS (LNAI), vol. 3584, pp. 591–597. Springer, Heidelberg
(2005)

19. Liu, X., Holger, M., Hao, Z., Wu, G.: A Compounded Genetic and Simulated An-
nealing Algorithm for the Closest String Problem. In: 2nd International Conference
on Bioinformatics and Biomedical Engineering, ICBBE 2008, pp. 702–705 (2008)

20. Ma, B., Sun, X.: More Efficient Algorithms for Closest String and Substring Prob-
lems. In: Vingron, M., Wong, L. (eds.) RECOMB 2008. LNCS (LNBI), vol. 4955,
pp. 396–409. Springer, Heidelberg (2008)

21. Meneses, C.N., Lu, Z., Oliveira, C.A.S., Pardalos, P.M.: Optimal Solutions for the
Closest-String Problem via Integer Programming. Informs Journal on Comput-
ing 16(4), 419–429 (2004)

22. Metropolis, N., Rosenbluth, A.E., Rosenbluth, M.N., Teller, A.H., Teller, E.: Per-
spective on Equation of State Calculations by Fast Computing Machines. J. Chem.
Phys. 21, 1087–1092 (1953)

23. Metropolis, N., Ulam, S.: The Monte Carlo Method. Journal of the American
Statistical Association 44(247), 335–341 (1949)

24. Roman, S.: Coding and information theory. Springer, Heidelberg (1992)
25. Stormo, G.D., Hartzell, G.W.: Identifying Protein-Binding Sites from Unaligned

DNA Fragments. Proc. Natl. Acad. Sci. USA 86, 1183–1187 (1989)

Linear Complementarity Algorithms
for Infinite Games�

John Fearnley1, Marcin Jurdziński1, and Rahul Savani2

1 Department of Computer Science, University of Warwick, UK
2 Department of Computer Science, University of Liverpool, UK

Abstract. The performance of two pivoting algorithms, due to Lemke
and Cottle and Dantzig, is studied on linear complementarity problems
(LCPs) that arise from infinite games, such as parity, average-reward,
and discounted games. The algorithms have not been previously studied
in the context of infinite games, and they offer alternatives to the classi-
cal strategy-improvement algorithms. The two algorithms are described
purely in terms of discounted games, thus bypassing the reduction from
the games to LCPs, and hence facilitating a better understanding of the
algorithms when applied to games. A family of parity games is given,
on which both algorithms run in exponential time, indicating that in
the worst case they perform no better for parity, average-reward, or dis-
counted games than they do for general P-matrix LCPs.

1 Introduction

In this paper we consider infinite-duration zero-sum games played on finite graphs,
such as parity, average-reward, and discounted games. Parity games are impor-
tant in the theory of algorithmic formal verification because they provide a com-
binatorial characterization of the meaning of nested inductive and co-inductive
definitions, as formalized in the modal μ-calculus and other fixpoint logics [12].
In particular, deciding the winner in parity games is polynomial-time equivalent
to checking non-emptiness of non-deterministic parity tree automata, and to the
modal μ-calculus model checking, two fundamental algorithmic problems in au-
tomata theory, logic, and verification [7,18,12]. Discounted and average-reward
games have been introduced by Shapley [17] and Gillette [11] in the 1950s, and
they have been extensively studied in the game theory, mathematical program-
ming, algorithms, and AI communities [21,8]. Parity, average-reward, and dis-
counted games have an intriguing complexity-theoretic status. The problems of
deciding the winner in these games are some of the few known combinatorial prob-
lems in NP ∩ co-NP (and even UP ∩ co-UP [13]) that are not known to be solvable
in polynomial time.

The linear complementarity problem (LCP) is a fundamental problem in
mathematical programming. It naturally captures equilibrium problems, as well
as the complementary slackness and Karush-Kuhn-Tucker conditions of linear
� An extended version of this paper with full proofs is available as arXiv:0909.5653.

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 382–393, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Linear Complementarity Algorithms for Infinite Games 383

and quadratic programming, respectively. The monograph of Cottle et. al. [6] is
the authoritative source on the LCP. In general, deciding if an LCP has a so-
lution is NP-complete [3]. If, however, the matrix (which is a part of the LCP
input) is a P-matrix (i.e., if all its principal minors are positive) then the problem
is arguably easier computationally. Every P-matrix LCP (P-LCP) has a unique
solution and computing it is in PLS ∩ PPAD. A significant amount of effort has
been invested by the mathematical programming community towards finding an
efficient algorithm for the P-LCP, which has led to a wide body of literature
in this area. Polynomial-time reductions from simple stochastic games [10,19]
and discounted games [14] to the P-LCP have been recently proposed, however
the techniques commonly used to solve P-LCPs remain largely unknown in the
infinite games community. It is possible that these techniques could shed new
light on the computational complexity of solving infinite games.

In this paper we consider two classical pivoting algorithms for the P-LCP,
Lemke’s algorithm and the Cottle-Dantzig principal pivoting algorithm, and we
study their performance on P-LCPs obtained from discounted games by the
reduction of Jurdziński and Savani [14]. Our first main contribution is to describe
both algorithms purely as a process that works on the original discounted game,
bypassing the reduction from games to the P-LCP, and hence we facilitate their
analysis without the need to consider or understand concepts of the LCP theory.
We present the algorithms for discounted games because they have technical
advantages that make the exposition particularly transparent [14]. We argue,
however, that this is done without loss of generality: the algorithms can be
readily applied to parity games and average-reward games because there are
transparent polynomial-time reductions from parity games to average-reward
games [16,13], and from average-reward games to discounted games [21].

It has long been known that the two algorithms can take exponential time
when applied to P-LCPs. However, it is not known whether these lower bounds
hold for the LCPs that arise from infinite games. Our second main contribution
is to prove that there is a family of discounted games on which the algorithms
of Lemke, and Cottle and Dantzig run in exponential time, and hence we indi-
cate limitations of the classical LCP theory in the context of infinite games. Our
family of examples are derived from those given by Björklund and Vorobyov [2]
for their strategy improvement algorithm for average-reward games. For tech-
nical convenience and without loss of generality, we present these families of
hard examples as discounted games; it is easy to construct parity and average-
reward games from which those discounted games are obtained via the standard
reductions [16,13,21].

We stress that these lower bounds are not fatal. The lower bound for Lemke’s
algorithm requires a specific covering vector and the lower bound for the Cottle-
Dantzig algorithm relies on a specific choice of ordering on the vertices. The
covering vector and the ordering are free choices left up to the user of the al-
gorithm. This situation can be compared to the classical strategy improvement
algorithms for infinite games [5,20,2]. It has long been known that these al-
gorithms can be made to run in exponential time by choosing sufficiently bad

384 J. Fearnley, M. Jurdziński, and R. Savani

vertices to switch [15]. However, it has only recently been shown that reasonable
switching policies can be made to run in exponential time [9]. The complexity of
our algorithms when equipped with reasonable covering vectors and reasonable
orderings remains open. The literature on LCPs contains exciting complexity
results for special cases. For example Adler and Megiddo [1] studied the per-
formance of Lemke’s algorithm for the LCPs arising from linear programming
problems. They showed that for randomly chosen linear programs and a care-
fully selected covering vector, the expected number of pivots performed by the
algorithm is quadratic. Our results open the door to extending such analyses to
infinite games.

2 Preliminaries

A binary discounted game is given by a tuple G = (V, VMax, VMin, λ, ρ, r
λ, rρ, β),

where V is a set of vertices and VMax and VMin partition V into the set of vertices
of player Max and the set of vertices of player Min, respectively. Each vertex
has exactly two outgoing edges which are given by the left and right successor
functions λ, ρ : V → V . Each edge has a reward associated with it given by the
functions rλ, rρ : V → R. Finally, the discount factor β is such that 0 ≤ β < 1.

The game begins with a token on a starting vertex v0. In each round, the
player who owns the vertex on which the token is placed chooses one of the
two successors of that vertex and moves the token to that successor. In this
fashion the two players form an infinite path π = 〈v0, v1, v2, . . . 〉 where vi+1 is
equal to either λ(vi) or ρ(vi). The path yields the infinite sequence of rewards
〈r0, r1, r2, . . . 〉, where ri = rλ(vi) if λ(vi) = vi+1, and ri = rρ(vi) otherwise. The
payoff of an infinite path is denoted by D(π) =

∑∞
i=0 β

iri. Since the game is
zero-sum, player Max wins D(π) and player Min loses an equal amount.

A positional strategy for player Max is a function that, for each vertex belong-
ing to player Max, chooses one of the two successors of the vertex. The strategy
is denoted by χ : VMax → V with the condition that, for every vertex v in VMax,
the function χ(v) is equal to either λ(v) or ρ(v). Positional strategies for player
Min are defined analogously. The sets of pure positional strategies for Max and
Min are denoted by ΠMax and ΠMin, respectively. Given a pair of positional
strategies, χ and μ for Max and Min respectively, and an initial vertex v0, there
is a unique infinite path 〈v0, v1, v2 . . . 〉, where χ(vi) = vi+1 if vi is in VMax and
μ(vi) = vi+1 if vi is in VMin. This path, referred to as the play induced by the
two strategies, will be denoted by Play(χ, μ, v0).

For all v in V , we define Val∗(v) = minμ∈ΠMin maxχ∈ΠMax D(Play(χ, μ, v)),
and Val∗(v) = maxχ∈ΠMax minμ∈ΠMin D(Play(χ, μ, v)). These will be known as
the lower and upper values of v, respectively. It is always true that Val∗(v) ≤
Val∗(v). It is well known that for discounted games the two values are equal,
a property known as determinacy.

Theorem 1 ([17]). For every discounted game G and every vertex v ∈ V , we
have Val∗(v) = Val∗(v).

Linear Complementarity Algorithms for Infinite Games 385

The value of the game starting at a vertex v, equal to both Val∗(v) and Val∗(v), is
denoted by Val(v). The computational task associated with discounted games is
to compute Val(v). Moreover, we want to find optimal strategies, i.e., a strategy χ
that achieves the upper value and a strategy μ that achieves the lower value.

For convenience, we introduce the concept of a joint strategy σ : V → V that
specifies moves for both players. The notation σ � Max and σ � Min will be used
to refer to the individual strategies of Max and Min that constitute the joint
strategy. For a vertex v, the function σ(v) gives the successor of v not chosen
by σ. The functions rσ and rσ give the reward on the edge chosen by σ and the
reward on the edge not chosen by σ, respectively. The path denoted by Play(σ, v)
is equal to the path Play(σ � Max, σ � Min, v). The joint strategy is optimal if
both σ � Max and σ � Min are optimal. For a given joint strategy σ, the value
of a vertex v when σ is played will be denoted by Valσ(v) = D(Play(σ, v)).

Given a joint strategy σ and a vertex v, the balance of v is the difference
between the value of v and the value of the play that starts at v, moves to σ(v)
in the first step, and then follows σ,

Balσ(v) =

{
Valσ(v)− (rσ(v) + β · Valσ(σ(v))) if v ∈ VMax,

(rσ(v) + β · Valσ(σ(v))) −Valσ(v) if v ∈ VMin.
(1)

A vertex v is said to be switchable under σ if Balσ(v) < 0. If Balσ(v) = 0
for some vertex then that vertex is said to be indifferent. There is a simple
characterisation of optimality in terms of switchable vertices.

Theorem 2 ([17]). If no vertex is switchable in a joint strategy σ then it is an
optimal strategy for every choice of starting vertex.

The two algorithms that we will present use only positional joint strategies. From
now on, all joint strategies that we refer to can be assumed to be positional joint
strategies. If a play begins at a vertex v and follows a positional joint strategy σ
then the resulting infinite path can be represented by a simple path followed by
an infinitely repeated cycle. Let Play(σ, v)=〈v0 , v1, . . . , vk−1, 〈c0, c1, . . . , cl−1〉ω〉.
It is then easy to see that

Valσ(v) =
k−1∑
i=0

βi · rσ(vi) +
l−1∑
i=0

βk+i

1− βl
· rσ(ci).

Therefore, the amount that the reward on the outgoing edge of a vertex u con-
tributes towards the value of v can be defined as follows.

Definition 1 (Contribution Coefficient). For vertices v and u, and for a po-
sitional joint strategy σ, we define:

Dv
σ(u) =

⎧⎪⎨
⎪⎩
βi if u = vi for some 0 ≤ i < k,
βk+i

1−βl if u = ci for some 0 ≤ i < l,

0 otherwise.

386 J. Fearnley, M. Jurdziński, and R. Savani

3 Lemke’s Algorithm for Discounted Games

Lemke’s algorithm is a classical algorithm for solving the linear complementarity
problem [6]. We can apply Lemke’s algorithm to a discounted game by utilising
the reduction of Jurdziński and Savani [14], however this yields little insight
into how the algorithm works on a discounted game. In this section we bypass
the reduction, and give a description of Lemke’s algorithm entirely in terms of
discounted games.

Lemke’s algorithm begins with the joint strategy σ0 = ρ that selects the right
successor for every vertex in the game. This is actually a free choice since the
left and right successors can be swapped to obtain an arbitrary starting strategy.
The algorithm will then move through a sequence of strategies until it arrives at
the optimal strategy. The algorithm will also construct a modified game for each
strategy that it considers. The modified games will take the following form.

Definition 2 (Modified Game for Lemke’s Algorithm). For a real number
z, we define the game Gz to be the same as G but with a modified left-edge reward
function, denoted by rλ

z , and defined, for every vertex v, by:

rλ
z (v) =

{
rλ(v)− z v ∈ VMax,

rλ(v) + z v ∈ VMin.
(2)

For a modified game Gz, the function rσ
z will give the rewards on the edges

chosen by σ. The notations Valσz and Balσz will give the values the balances of
the vertices in the gameGz, respectively. For every strategy σi that is considered,
the algorithm must choose an appropriate value zi so that σi is optimal in Gzi .
Moreover, we want to choose the minimum value zi for which this property holds.
The next proposition shows how to compute this for the initial strategy σ0.

Proposition 1. Let z0 = max{−Balσ0(v) : v ∈ V }. The strategy σ0 is optimal
in Gz0 and the vertex v in V that maximizes −Balσ0(v) is indifferent. Moreover,
there is no value y < z0 for which σ0 is optimal in Gy.

Proposition 1 gives an initial value for the parameter z. The principal idea behind
the algorithm is to drive z down from its initial value to 0, while maintaining
optimality of the current strategy in Gz . Unfortunately, Proposition 1 implies
that we cannot drive z down further without losing the optimality of σ0 inGz. We
do however know that there is some vertex v that is indifferent under σ0 in Gz0 .
We define σ1 = σ0[σ0(v)/v], i.e., σ1(u) = σ0(u) if u = v, and σ1(u) = σ0(u)
otherwise. The operation of modifying a strategy by changing the successor of a
vertex v will be referred to as switching v.

The value of no vertex changes when switching an indifferent vertex in a strat-
egy. Since σ0 was optimal in Gz0 and v was indifferent we therefore have that σ1

is optimal in Gz0 . There is one important difference however, whereas z could not
be decreased without σ0 losing its optimality, the parameter z can be decreased
further whilst maintaining the optimality of σ1. The task now is to find z1, the
minimum value of z for which σ1 is still optimal.

Linear Complementarity Algorithms for Infinite Games 387

At a high level, when the algorithm arrives at a strategy σi its task is to
find zi, the minimum value of z for which σi is optimal in Gz. As we shall show,
for this minimum value of z there will always be at least one vertex that is
indifferent under σi played in Gz . The algorithm then switches this indifferent
vertex to create σi+1 and the process is repeated. The remainder of this section
is dedicated to showing how zi can be computed.

Each step begins with a strategy σi and the value zi−1, which was the min-
imum value of z for which σi−1 was optimal in Gz. We now wish to know how
much further z can be decreased before σi ceases to be optimal. From Theorem 2
we know that a strategy is optimal as long as no vertex is switchable and that
a vertex is switchable only when it has a negative balance. It is for this reason
that we want to know how the balance of each vertex changes as z is decreased.
In order to understand this, we must first know how the value of each vertex
changes as z is decreased. We will use the notation ∂−z Valσz (v) to denote the
rate of change of the value of v as z decreases, i.e., −∂z Valσz (v). This notation
will be used frequently throughout the rest of the paper to denote the rate of
change of various expressions. For a proposition p, we define [p] to be equal to 1
if p is true, and 0 otherwise. We can now give an explicit formula for ∂−z Valσz (v),
which is based on the left edges that are passed through after visiting the ver-
tex v while playing the strategy σ, and the contribution coefficient of those edges
to the value of v.

Proposition 2. For a vertex v and a joint strategy σ, let L be the set of vertices
for which σ picks the left successor, L = {v ∈ V : σ(v) = λ(v)}. The rate of
change of the value of v is

∂−z Valσz (v) =
∑
u∈L

([u ∈ VMax]− [u ∈ VMin]) ·Dv
σ(u).

From equation (1) we know that the balance of a vertex is computed as a dif-
ference of the values of two vertices. We now show how the rate of change of
the balance can be derived by substituting the rate of change of the values into
equation (1).

Proposition 3. For a vertex v and a joint strategy σ we have

∂−z Balσz (v) =

{
∂−zValσz (v)− ([σ(v) = λ(v)] + β · ∂−zValσz (σ(v))) if v ∈ VMax,

−[σ(v) = λ(v)] + β · ∂−zValσz (σ(v))− ∂−zValσz (v) if v ∈ VMin.

Now that we have an expression for the rate of change of the balance of a vertex,
we can compute how far z can be decreased from zi−1 before some vertex gets
a negative balance. For each vertex v, the expression Balσi

zi−1
(v)/∂−z Balσi

z (v)
gives the amount that z can be decreased before v gets a negative balance, and
so the minimum over all these ratios gives the amount that z can be decreased
before some vertex gets a negative balance. It should also be clear that a vertex
that achieves this minimum will be indifferent in the modified game when z is
decreased by this amount. We can also show that this is the minimum value of z
for which σi is optimal in Gz .

388 J. Fearnley, M. Jurdziński, and R. Savani

Proposition 4. Let a joint strategy σi be optimal in the modified game Gzi−1 ,
and

zi = zi−1 −min
{ Balσzi−1

(v)
∂−z Balσz (v)

: v ∈ V and ∂−z Balσz (v) < 0
}
. (3)

Then strategy σ is optimal in Gzi , and it is not optimal in Gx for all x < zi.

Until now, we have ignored the possibility of reaching a strategy σ in which
there is more than one indifferent vertex. In LCP algorithms this is known as
a degenerate step. In this case, the task is to find a strategy in which every
indifferent vertex v satisfies ∂−z Balσz (v) > 0, so that z can be decreased further.
It is not difficult to prove that such a strategy can be reached by switching
only the indifferent vertices. One method for degeneracy resolution is Bland’s
rule, which uses the least index method to break ties, and another is to use
lexicographic perturbations; both methods are well-known, and are also used
with the simplex method for linear programming [4].

Algorithm 1. Lemke(G)
i := 0; σ0 := ρ; z0 := max{−Balσ0(v) : v ∈ V }
while zi > 0 do

σi+1 := σi[σi(v)/v] for some vertex v with Balσi
zi

(v) = 0

zi+1 := zi − min{ Bal
σi+1
zi

(v)

∂−z Bal
σi+1
z (v)

: v ∈ V and ∂−z Balσi+1
z (v) < 0}

i := i + 1
end while

Lemke’s algorithm is shown as Algorithm 1. Since in each step we know that
there is no value of z < zi for which σi is optimal in Gz and we decrease z
in every step it follows that we can never visit the same strategy twice with-
out violating the condition that the current strategy should be optimal in the
modified game. Therefore the algorithm must terminate after at most 2|V | steps,
which corresponds to the total number of joint strategies. The algorithm can
only terminate when z has reached 0, and G0 is the same game as G. It follows
that whatever strategy the algorithm terminates with must be optimal in the
original game.

Theorem 3. Algorithm 1 terminates, with a joint strategy σ that is optimal
for G after at most 2|V | iterations.

Lemke’s algorithm for LCPs allows a free choice of covering vector, and in our
description we used a unit covering vector. This can be generalised by giving a
positive covering value to every vertex. If each vertex v has a covering value dv

then the modification of the left edges in Definition 2 becomes:

rλ
z (v) =

{
rλ(v)− dv · z v ∈ VMax,

rλ(v) + dv · z v ∈ VMin.

The algorithm can then easily be modified to account for this altered definition.

Linear Complementarity Algorithms for Infinite Games 389

4 The Cottle-Dantzig Algorithm for Discounted Games

The principle idea behind the Cottle-Dantzig algorithm is to maintain a set of
vertices whose balance is non-negative. The algorithm begins with an arbitrary
strategy, and it goes through a series of major iterations, where in each iteration
one vertex is brought into the set of vertices with non-negative balances, while
maintaining the non-negative balances of the vertices that are already in that
set. It is clear that if such a task can be accomplished, then the algorithm will
terminate after |V | major iterations.

We require a method for bringing some distinguished vertex v into the set
of vertices with a non-negative balance without the vertices currently in the set
getting a negative balance in the process. To accomplish this we will modify the
game by adding a bonus to the edge that the strategy currently chooses at v.
We will then drive the bonus up from 0 while maintaining an optimal strategy
for the modified game. Eventually the balance of v will become 0 in the modified
game, at which point the strategy at v can be switched away from the edge with
the bonus attached to it, and the bonus can be removed. We will prove that
after this procedure v will have a positive balance.

In this section we will override many of the notations that were used to de-
scribe Lemke’s algorithm.

Definition 3 (Modified Game for the Cottle-Dantzig Algorithm). For
a real number w, a joint strategy σ, and a distinguished vertex v, we define the
game Gw to be the same as G but with a different reward on the edge chosen
by σ at v. If σ chooses the left successor at v then the left reward function is
defined, for every u in V , by:

rλ
w(u) =

⎧⎪⎨
⎪⎩
rλ(u) + w if u = v and u ∈ VMax,
rλ(u)− w if u = v and u ∈ VMin,
rλ(u) otherwise.

If σ chooses the right successor at v then rρ modified in a similar manner.

We begin the major iteration with a strategy σ0, a value w0 = 0, and a set
of vertices with non-negative balances P . The task is to raise w from 0 until
Balσw(v) = 0, while maintaining the invariant that every vertex in P has a non-
negative balance. This can be accomplished using methods that are similar to
those used in Lemke’s algorithm. For every vertex in P we must compute how
the balance of that vertex changes as w is increased. The following propositions
are analogues of Propositions 2, 3, and 4.

Proposition 5. Consider a vertex u and a joint strategy σ. Suppose that v is
the distinguished vertex. The rate of change ∂w Valσw(u) is Du

σ(v).

Proposition 6. Consider a vertex u and a joint strategy σ in the game Gw.
The rate of change ∂w Balσw(u) is:

∂w Balσw(u) =

{
∂w Valσw(u)− β · ∂w Valσw(σ(u)) if u ∈ VMax,

β · ∂w Valσw(σ(u))− ∂w Valσw(u) if u ∈ VMin.

390 J. Fearnley, M. Jurdziński, and R. Savani

Algorithm 2. Cottle-Dantzig(G, σ)
P := ∅
while P �= V do

i := 0; w0 := 0; v := Some vertex in V \ P
while Balσwi

(v) < 0 do

wi+1 := wi + min{−
Balσwi

(u)

∂w Balσw(u)
: u ∈ P ∪ {v} and ∂w Balσw(u) < 0}

σ := σ[σ(u)/u] for some vertex u with Balσwi
(v) = 0

i := i + 1
end while
σ := σ[σ(v)/v]; P := P ∪ {v}

end while

Proposition 7. Consider a modified game Gw, a joint strategy σ, and a set of
vertices P which must not have negative balances. Let

y = w + min{− Balσw(u)
∂w Balσw(u)

: u ∈ P ∪ {v} and ∂w Balσw(u) < 0}.

No vertex in P has a negative balance in Gy. Moreover, one vertex in P ∪ {v}
is indifferent, and for all values x > y that vertex has a negative balance in Gx.

The process of raising w up from 0 until the balance of v is 0 in the modified
game is the same as the process of decreasing z in Lemke’s algorithm, only using
the different definitions from Propositions 5, 6, and 7. Once the balance of v has
reached 0 we can stop increasing w. Since v is now indifferent we can switch it
away from the edge that has the bonus attached to it. Once this has been done,
the values of all vertices are no longer affected by w, since the edge to which it
is attached is no longer chosen by the current strategy. Therefore we can remove
the bonus and recover the original game. The major iteration then terminates
with a strategy in which every vertex in P ∪{v} has a non-negative balance, and
the next major iteration can begin.

Theorem 4. Algorithm 2 terminates, with the optimal joint strategy, after at
most 2|V | iterations.

5 Exponential Lower Bounds

We show that both Lemke’s and the Cottle-Dantzig algorithms take exponen-
tially many steps on the family of games shown in Figure 1. Max vertices are
depicted as squares and Min vertices are depicted as circles. For every vertex,
we define the right successor to be the vertex with the same owner as the vertex
itself, and the left successor to be the vertex that belongs to the other player.
Recall that the initial strategy for Lemke’s algorithm is the one that chooses the
right successor for every vertex. When speaking about vertices in the game we
often refer to either the leftmost or the rightmost vertex with a certain property.

Linear Complementarity Algorithms for Infinite Games 391

. . .

. . .

−23−24 −21−22

−21−22−23−24

2324 2122

24 23 22 21
0

−2n−1

2n−1

−2n−1

2n−1

−2n

2n

Fig. 1. The game Gn

In this context, the vertex being referred to is the one that is furthest to the
right or to the left in Figure 1.

For ease of exposition, we will describe the steps of the algorithm as if the
discount factor was 1. Although this is forbidden by the definition of a discounted
game, since the game contains one cycle, whose value is zero, the value of every
vertex under every strategy will be finite. As long as the discount factor is chosen
sufficiently close to 1, the algorithm will behave as we describe.

Note that the game graph is symmetric with respect to the line that separates
the vertices of the two players. We frequently refer to a vertex and the vertex
that it is opposite to, and hence we introduce the concept of vertex reflections.
For a vertex v that is not the sink, we write v to denote the reflection of v,
that is the vertex belonging to the other player that is shown directly opposite v
in Figure 1. We say that a joint strategy σ is symmetric if for all vertices v,
the strategy σ chooses the right successor of v if and only if it chooses the right
successor of v. The initial strategy for Lemke’s algorithm is a symmetric strategy.
Lemke’s algorithm always switches v directly before or after v and so it can be
seen as traversing through symmetric strategies.

Before discussing the modified games that Lemke’s algorithm constructs, we
give a simple characterisation of when a vertex is switchable in the original game.

Proposition 8. If σ is a symmetric joint strategy, then a vertex v is switchable
if and only if the path from v has an even number of left edges.

We now use this characterisation to give a simple formula for ∂−z Balσz (v) for
every vertex v under every symmetric joint strategy σ.

Proposition 9. If σ is a symmetric joint strategy, then ∂−z Balσz (v), the rate
of change of the balance of a vertex v, is 1 if v is switchable, and −1 otherwise.

Together, Propositions 8 and 9 imply that the parameter z can be set to the
largest balance of a switchable vertex. We show that the largest balance will
always belong to the rightmost switchable vertex.

Proposition 10. Let σ be a symmetric joint strategy, v be the rightmost switch-
able Max vertex, and z = −Balσ(v). Then no vertex in Gz is switchable, both v
and the reflection of v are indifferent, and for every real number y < z, there is
a switchable vertex in Gy.

392 J. Fearnley, M. Jurdziński, and R. Savani

Proposition 10 implies that whenever Lemke’s algorithm is considering a sym-
metric joint strategy, it must choose a z so that the rightmost switchable vertex
is indifferent. We show that this leads to an exponential number of switches.

Theorem 5. Lemke’s algorithm performs 2n+1 − 2 iterations on the game Gn.

The Cottle-Dantzig algorithm is sensitive to the order in which to bring the
vertices into the non-negative set. We prove that there is an order that causes
exponential-time behaviour for this algorithm. The sequence of strategies is sim-
ilar to the sequence that Lemke’s algorithm follows.

Theorem 6. Consider an order in which all Min vertices precede Max vertices,
and Max vertices are ordered from right to left. The Cottle-Dantzig algorithm
performs 2n+1 − 1 iterations.

We have shown that both algorithms can take an exponential number of steps
on the discounted game Gn. We argue that this also implies an exponential lower
bound for parity and average-reward games. From the game Gn we can obtain a
parity game by replacing the reward ±2c with the priority c. The standard re-
ductions [16,21,13] convert this parity game into average-reward and discounted
games where priority c is replaced with reward (−n)c, and the discount factor
is chosen to be very close to 1. All arguments used to prove Theorems 5 and 6
continue to hold if rewards of magnitude 2c are replaced with rewards of magni-
tude nc, which implies the exponential lower bounds also hold for parity games
and average-reward games.

6 Future Work

Our adaptation of Lemke’s algorithm for solving discounted games corresponds
to its implementation in which the unit covering vector is used [6], and our lower
bounds are specific to this choice. Similarly our lowerbounds for theCottle-Dantzig
algorithm require a specific choice of ordering over the vertices. Randomizing these
choices may exhibit better performance and should be considered.

Adler and Megiddo [1] studied the performance of Lemke’s algorithm for the
LCPs arising from linear programming problems. They showed that, for ran-
domly chosen linear programs and a carefully selected covering vector, the ex-
pected number of pivots performed by the algorithm is quadratic. A similar
analysis for randomly chosen discounted games should be considered.

References

1. Adler, I., Megiddo, N.: A Simplex Algorithm whose Average Number of Steps is
Bounded between Two Quadratic Functions of the Smaller Dimension. Journal of
the ACM 32(4), 871–895 (1985)

2. Björklund, H., Vorobyov, S.: A Combinatorial Strongly Subexponential Strategy
Improvement Algorithm for Mean Payoff Games. Discrete Applied Mathemat-
ics 155(2), 210–229 (2007)

Linear Complementarity Algorithms for Infinite Games 393

3. Chung, S.J.: NP-Completeness of the Linear Complementarity Problem. Journal
of Optimization Theory and Applications 60(3), 393–399 (1989)

4. Chvátal, V.: Linear Programming. Freeman, New York (1983)
5. Condon, A.: On Algorithms for Simple Stochastic Games. In: Advances in Com-

putational Complexity Theory. DIMACS Series in Discrete Mathematics and The-
oretical Computer Science, vol. 13, pp. 51–73. American Mathematical Society
(1993)

6. Cottle, R.W., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problem.
Academic Press, London (1992)

7. Emerson, E.A., Jutla, C.S., Sistla, A.P.: On Model-Checking for Fragments of
μ-Calculus. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 385–396.
Springer, Heidelberg (1993)

8. Filar, J., Vrieze, K.: Competitive Markov Decision Processes. Springer, Heidelberg
(1997)

9. Friedman, O.: A Super-Polynomial Lower Bound for the Parity Game Strategy
Improvement Algorithm as We Know It. In: Logic in Computer Science (LICS).
IEEE, Los Alamitos (to appear, 2009)

10. Gärtner, B., Rüst, L.: Simple Stochastic Games and P-Matrix Generalized Linear
Complementarity Problems. In: Lískiewicz, M., Reischuk, R. (eds.) FCT 2005.
LNCS, vol. 3623, pp. 209–220. Springer, Heidelberg (2005)

11. Gillette, D.: Stochastic Games with Zero Stop Probabilities. In: Contributions to
the Theory of Games, pp. 179–187. Princeton University Press, Princeton (1957)

12. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games.
A Guide to Current Research. LNCS, vol. 2500. Springer, Heidelberg (2002)

13. Jurdziński, M.: Deciding the Winner in Parity Games Is in UP ∩ co-UP. Informa-
tion Processing Letters 68(3), 119–124 (1998)

14. Jurdziński, M., Savani, R.: A Simple P-Matrix Linear Complementarity Problem
for Discounted Games. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.)
CiE 2008. LNCS, vol. 5028, pp. 283–293. Springer, Heidelberg (2008)

15. Melekopoglou, M., Condon, A.: On the Complexity of the Policy Improvement
Algorithm for Markov Decision Processes. ORSA Journal on Computing 6, 188–
192 (1994)

16. Puri, A.: Theory of Hybrid Systems and Discrete Event Systems. PhD Thesis,
University of California, Berkeley (1995)

17. Shapley, L.S.: Stochastic Games. Proceedings of the National Academy of Sciences
of the United States of America 39(10), 1095–1100 (1953)

18. Stirling, C.: Local Model Checking Games (Extended abstract). In: Lee, I., Smolka,
S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 1–11. Springer, Heidelberg (1995)

19. Svensson, O., Vorobyov, S.: Linear Complementarity and P-Matrices for Stochastic
Games. In: Virbitskaite, I., Voronkov, A. (eds.) PSI 2006. LNCS, vol. 4378, pp.
409–423. Springer, Heidelberg (2007)

20. Vöge, J., Jurdziński, M.: A Discrete Strategy Improvement Algorithm for Solving
Parity Games (Extended abstract). In: Emerson, E.A., Sistla, A.P. (eds.) CAV
2000. LNCS, vol. 1855, pp. 202–215. Springer, Heidelberg (2000)

21. Zwick, U., Paterson, M.: The Complexity of Mean Payoff Games on Graphs. The-
oretical Computer Science 158, 343–359 (1996)

Mixing Coverability and Reachability to Analyze
VASS with One Zero-Test

Alain Finkel1,� and Arnaud Sangnier2,��

1 LSV, ENS Cachan & CNRS, France
finkel@lsv.ens-cachan.fr

2 Dipartimento di Informatica, Università di Torino, Italy
sangnier@di.unito.it

Abstract. We study Vector Addition Systems with States (VASS) ex-
tended in such a way that one of the manipulated integer variables can be
tested to zero. For this class of system, it has been proved that the reacha-
bility problem is decidable. We prove here that boundedness, termination
and reversal-boundedness are decidable for VASS with one zero-test. To
decide reversal-boundedness, we provide an original method which mixes
both the construction of the coverability graph for VASS and the com-
putation of the reachability set of reversal-bounded counter machines.
The same construction can be slightly adapted to decide boundedness
and hence termination.

1 Introduction

Vector Addition Systems with States (VASS), which are equivalent to Petri nets,
are a model which has received a lot of attention and thousands of papers exist
on this subject [17]. Whereas many problems are decidable for VASS [4], it is
well-known that VASS with the ability for testing to zero (or with inhibitor
arcs) have the power of Turing machines. Hence all the non-trivial problems are
undecidable for this class of models.

Recently in [18], Reinhardt proved that the reachability problem for VASS
with an unique integer variable (or counter) tested to zero is decidable in reduc-
ing this problem to the reachability problem for Petri nets, which is decidable
(see the papers of Kosaraju [12] and Mayr [14] and Leroux [13] for a conceptual
decidability proof of reachability). For VASS, many problems like zero reach-
ability, coverability (is it possible to reach a configuration larger than a given
configuration?), boundedness (whether the reachability set is finite?) and termi-
nation (is there an infinite execution?) can be reduced to reachability and this is
still true for extended (well-structured) Petri nets [3,9] (polynomial reductions of
reachability for well-structured Petri nets extensions are given in [2]). For VASS
with one zero-test, coverability reduces (as usual) to reachability but it is less
clear for the other properties like boundedness whether the known reductions
� Partly supported by project AVERISS (ANR-06-SETIN-001).

�� Supported by a post-doctoral scolarship from DGA/ENS Cachan.

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 394–406, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Mixing Coverability and Reachability to Analyze VASS with One Zero-Test 395

can be adapted. Note that in [1], Abdulla and Mayr proposes a method to decide
coverability for VASS with one zero-test without using the Reinhardt’s result.

In many verification problems, it is convenient not only to have an algo-
rithm for the reachability problem, but also to be able to compute effectively
the reachability set. In [10], the class of reversal-bounded counter machines is
introduced as follows: each counter can only perform a bounded number of al-
ternations between increasing and decreasing mode. Ibarra shows that reversal-
bounded counter machines enjoy the following nice property: their reachability
set is a semi-linear set which can be effectively computed. In a recent work [7],
we have proved that reversal-boundedness is decidable for VASS, whereas for
VASS extended with two counters which can be tested to zero this property is
undecidable.

Our contribution. We investigate here the three following problems: given a VASS
with one zero-test, can we decide whether it is bounded, whether it is reversal-
bounded and whether it terminates. We first consider the most difficult problem,
which is the reversal-boundedness problem and from the algorithm for solving it,
we deduce another algorithm for solving boundedness. The decidability of termi-
nation is then obtained by a classical reduction into boundedness. The algorithm
we propose mix the classical construction of the coverability graph for VASS [11]
and the computing of the reachability set of reversal-bounded counter machines.

Due to lack of space, some details are omitted and can be found in [8].

2 VASS with One Zero-Test and Reversal-Bounded
Property

2.1 Useful Notions

Let N (resp. Z) denotes the set of nonnegative integers (resp. integers). The
usual total order over Z is written ≤. By Nω, we denote the set N ∪ {ω} where
ω is a new symbol such that ω /∈ N and for all k ∈ Nω, k ≤ ω. We extend
the binary operation + and − to Nω as follows : for all k ∈ N, k + ω = ω and
ω − k = ω. For k, l ∈ Nω with k ≤ l, we write [k..l] for the interval of integers
{i ∈ N | k ≤ i ≤ l}.

Given a set X and n ∈ N, Xn is the set of n-dim vectors with values in X . For
any index i ∈ [1..n], we denote by v(i) the ith component of a n-dim vector v. We
write 0 the vector such that 0(i) = 0 for all i ∈ [1..n]. The classical order on Zn

is also denoted ≤ and is defined by v ≤ w if and only if for all i ∈ [1..n], we have
v(i) ≤ w(i). We also define the operation + over n-dim vectors of integers in
the classical way (ie for v, v′ ∈ Zn, v+v′ is defined by (v+v′)(i) = v(i)+v′(i)
for all i ∈ [1..n]).

Let n ∈ N. A subset S ⊆ Nn is linear if there exist k+1 vectors v0,v1, . . . ,vk

in Nn such that S = {v | v = v0 + λ1.v1 + . . . + λk.vk with λi ∈ N for
all i ∈ [1..k]}. A semi-linear set is any finite union of linear sets. We extend the
notion of semi-linearity to subsets of Q × Nn where Q is a finite (non-empty)
set. This can be easily done assuming Q is for instance a finite subset of N. For

396 A. Finkel and A. Sangnier

an alphabet Σ, we denote by Σ∗ the set of finite words over Σ and ε represents
the empty word.

2.2 Counter Machines

We call a n-dim guarded translation (shortly a translation) any function t :
Nn → Nn characterized by # ∈ {=,≤,≥}n, μ ∈ Nn and δ ∈ Zn such that
dom(t) = {v ∈ Nn | v#μ and v + δ ∈ Nn} and for all v ∈ dom(t), t(v) = v + δ.
We will sometimes use the encoding (#, μ, δ) to represent a translation. With
this notation # and μ encode a test and δ an update. In the following, Tn will
denote the set of the n-dim guarded translations.

Definition 1. A n-dim counter machine (shortly counter machine) is a tuple
S = 〈Q,E〉 where Q is a finite set of control states and E is a finite relation
E ⊆ Q× Tn ×Q.

The semantics of a counter machine S = 〈Q,E〉 is given by its associated tran-
sition system TS(S) = 〈Q × Nn,→〉 where →⊆ (Q × Nn) × Tn × (Q × Nn) is
a relation defined as follows: (q,v) t→ (q′,v′) iff ∃ (q, t, q′) ∈ E such that
v ∈ dom(t) and v′ = t(v). We write (q,v) → (q′,v′) if there exists t ∈ Tn such
that (q,v) t→ (q′,v′). The relation →∗ represents the reflexive and transitive
closure of →. Given a configuration (q,v) of TS(S), Reach(S, (q,v)) = {(q′,v′) |
(q,v) →∗ (q′,v′)}. Given a counter machine S = 〈Q,E〉 and an initial configu-
ration c0 ∈ Q× Nn, the pair (S, c0) is an intialized counter machine. Since, the
notations are explicit, in the following we shall write counter machine for both
(S, c0) and S.

Definition 2. A counter machine (S, c0) is bounded if there exists k ∈ N such
that for all (q, v) ∈ Reach(S, c0) and for all i ∈ [1..n], we have v(i) ≤ k.

Note that a counter machine has a finite number of reachable configurations if
and only if it is bounded. It is well-known [15] that many verification problems,
such as the reachability of a control state or the boundedness, are undecidable
for 2-dim counter machines. We present in the sequel some restricted classes of
counter machines for which these problems become decidable.

2.3 VASS with One Zero-Test

Definition 3. A n-dim counter machine〈Q,E〉 is a Vector Addition System
with States (shortly VASS) if for all transitions (q, t, q′) ∈ E, t is a guarded
translation (#, μ, δ) such that # = (≥, . . . ,≥),

Hence in VASS, it is not possible to test if a counter value is equal to a constant
but only if it is greater than a constant. In opposite to general counter machines,
many problems are decidable for VASS, for instance the problem of the reach-
ability of a configuration or the boundedness [11,12,14]. We finally present here
another class of counter machine, which extends the VASS.

Mixing Coverability and Reachability to Analyze VASS with One Zero-Test 397

Definition 4. A n-dim counter machine S = 〈Q,E〉 is a VASS with one zero-
test if Q = Q′5{q?0, q=0}, E = E≥5{(q?0, g=0?, q=0)} where g=0? is the guarded
translation ((=,≥, . . . ,≥),0,0) and S≥ = 〈Q′ 5 {q?0}, E≥〉 is a VASS.

Without loss of generality we will impose that the transition (q?0, g=0?, q=0) is the
only transition leading to q=0 in S. We see that in a VASS with one zero-test, the
transition (q?0, g=0?, q=0) has the ability to test if the value of the first counter
is 0. Even if this class of counter machines has been less studied than VASS,
it has been proved in [18] that the problem of reachability of a configuration
is decidable for it. Note that we restrict this class of machines to use only one
transition with an equality test over the first counter, but this is only to improve
the readability of our work. In fact, our results still hold for any VASS with more
than one zero-test on the first counter.

If we define the ≤1 in Nn × Nn as follows, v ≤1 v′ if and only if v ≤ v′ and
v(1) = v′(1), then VASS with one zero-test enjoy the following property:

Lemma 5. Let S = 〈Q,E〉 be a n-dim VASS with one zero-test and TS(S) =
〈Q×Nn,→〉 its associated transition system. We consider (q, v), (q,w) in Q×Nn,
if v ≤1 w and if there exists (q′, v′) ∈ Q × Nn such that (q, v) → (q′, v′) then
there exists (q′,w′) ∈ Q× Nn such that (q,w) → (q′,w′) and v′ ≤1 w′.

In the following, we will propose a new method to analyze VASS with one zero-
test.

2.4 Reversal-Bounded Counter Machines

In [10], the class of reversal-bounded counter machines has been introduced as
follows: each counter can only perform a bounded number of alternations between
increasing and decreasing mode. This class of counter machines is interesting
because it has been shown that these machines have a semi-linear reachability
set which can be effectively computed. We recall here their formal definition.

Let S = 〈Q,E〉 be a n-dim counter machine and TS(S) = 〈Q × Nn,→〉
its associated transition system . From it, we define another transition system
TSrb(S) = 〈Q × Nn × {↓, ↑}n × Nn,→rb〉. For a configuration (q,v,m, r) ∈
Q × Nn × {↓, ↑}n × Nn, the vector v contains the values of each counter, the
vector m is used to store the current mode of each counter -increasing (↑) or
decreasing (↓)- and the vector r the numbers of alternations performed by each
counter. A formal definition of TSrb(S) is given in [8].

We denote by →∗
rb the reflexive and transitive closure of →rb. Given a con-

figuration (q,v, r,m) of TSrb(S), Reachrb(S, (q,v,m, r)) = {(q′,v′,m′, r′) |
(q,v,m, r) →∗

rb (q′,v′,m′, r′)}. We extend this last notation to the configu-
rations of TS(S), saying that if (q,v) ∈ Q × Nn is a configuration of TS(S),
then Reachrb(S, (q,v)) is equal to the set Reachrb(S, (q,v, ↑,0)) where ↑ denotes
here the vector with all components equal to ↑.

Definition 6. A counter machine (S, c0) is reversal-bounded if and only if there
exists k ∈ N such that for all (q, v,m, r) ∈ Reachrb(S, c0) and for all i ∈ [1..n],
we have r(i) ≤ k.

398 A. Finkel and A. Sangnier

Using a translation into a finite automaton and the fact that the Parikh map of
a regular language is a semi-linear set [16], Ibarra proved in [10] the following
result:

Theorem 7. [10] The reachability set of a reversal-bounded counter machine is
an effectively computable semi-linear set.

3 Computing Coverability

3.1 Coverability Graph of a VASS

In [11], Karp and Miller provide an algorithm to build from a VASS a labeled
tree, the Karp and Miller tree. We recall here the construction of this tree. We
first define a function Acceleration : Nn

ω ×Nn
ω → Nn

ω as follows, for w,w′ ∈ Nn
ω

such that w ≤ w′, we have w′′ = Acceleration(w,w′) if and only if for all
i ∈ [1..n]:

– if w(i) = w′(i) then w′′(i) = w(i),
– if w(i) < w′(i) then w′′(i) = ω.

The Karp and Miller tree is a labeled tree (P, δ, r, l) where P is a finite set of
nodes, δ ⊆ P × Tn × P is the transition relation, r ∈ P is the root of the tree,
and l : P → Q×Nn

ω is a labeling function. To represent a node p with the label
l(p) = (q,w), we will sometimes directly write p[q,w]. The Algorithm 1 shows
how the Karp and Miller tree is obtained from an initialized VASS.

The main idea of this tree is to cover in a finite way the reachable configu-
rations using the symbol ω, when a counter is not bounded. It has been proved
that the Algorithm 1 always terminates and that the produced tree enjoys some
good properties. In particular, this tree can be used to decide the boundedness
of a VASS. In [19], Vack and Vidal-Naquet have proposed a further construction
based on the Karp and Miller tree in order to test the regularity of the language
of the unlabeled traces of a VASS. This last construction is known as the cover-
ability graph. To obtain it, the nodes of the Karp and Miller tree with the same
label are gathered in an unique node. If (S, c0) is a n-dim VASS, we denote by
KMG(S, c0) its coverability graph.

For a vector w ∈ Nn
ω, we denote by Inf(w) the set {i ∈ [1..n] | w(i) = ω}

and Fin(w) = [1..n] \ Inf(w). Using these notions, it has been proved that the
coverability graph satisfies the following properties.

Theorem 8. [11,19] Let (S, c0) be a n-dim VASS with S = 〈Q,E〉, TS(S) =
〈Q × Nn,→〉 its associated transition system and KMG(S, c) = 〈P, δ, r, l〉 its cov-
erability graph.

1. If p[q,w] is a node in KMG(S, c0), then for all k ∈ N, there exists (q, v) ∈
Reach(S, c0) such that for all i ∈ Inf(w), k ≤ v(i) and for all i ∈ Fin(w),
w(i) = v(i).

2. For σ ∈ T ∗
n , if c σ→ (q, v) then there is a unique path in KMG(S, c0) labeled by

σ and leading from r to a node p[q,w] and for all i ∈ Fin(w), v(i) = w(i).

Mixing Coverability and Reachability to Analyze VASS with One Zero-Test 399

Algorithm 1. T = KMT(〈Q,E〉, c0)
Input : (〈Q, E〉, c0) an initialized VASS;
Output : T = 〈P, δ, r, l〉 the Karp and Miller tree;
1: P = {r}, δ = ∅, l(r) = c0

2: ToBeTreated = {r}
3: while ToBeTreated �= ∅ do
4: Choose p[q,w] ∈ ToBeTreated
5: if there does not exist a predecessor p′[q, w] of p in T then
6: for each (q, (#, μ, δ), q′) ∈ E do
7: if μ ≤ w then
8: let w′ = w + δ
9: if there exists a predecessor p′[q′,w′′] of p in T

such that w′′ < w′ then
10: let w′ = Acceleration(w′′,w′)
11: end if
12: Add a new node p′ to P such that l(p′) = (q′,w′)
13: Add (p, 〈#, μ, δ〉, p′) to δ
14: Add p′ to ToBeTreated
15: end if
16: end for
17: end if
18: Remove p of ToBeTreated
19: end while

3.2 Minimal Covering Set

We present here the notion of minimal covering set of a set, notion that we will
use later to build the coverability graph of a reversal-bounded VASS with one
zero-test. The minimal covering set of a possibly infinite set of vectors is the
smallest set of vectors which cover all the vectors belonging to the considered
set. Before giving its definition, we introduce some notations.

If V ⊆ Nn, we denote by Inc(V), the set of the increasing sequences of
elements of V . Each (vn)n∈N ∈ Inc(V) has a least upper bound in Nn

ω de-
noted lub((vn)n∈N). We then define the set Lub(V) of elements of Nn

ω as the set
{lub(vn)n∈N | (vn)n∈N ∈ Inc(V)}. Note that in [6], this last set is defined using
the least upper bound of the directed subsets of V , but in the case of vectors of
integers, it is equivalent to use the set of increasing sequences. If we consider the
maximal elements of Lub(V) under the classical order over Nn

ω, we obtain what
is called the minimal covering set of V .

Definition 9. [5,6] Let n ∈ N \ {0} and V ⊆ Nn. The minimal covering set
of V , denoted by MinCover(V), is the set Max(Lub(V)).

Using the definition of MinCover(V) and the fact that (Nn
ω,≤) is a well-quasi-

order, we have the following proposition.

400 A. Finkel and A. Sangnier

Proposition 10. [5] Let V ⊆ Nn. We have then:

– MinCover(V) is finite, and,
– for all u ∈ MinCover(V), ∀k ∈ N, there exists v ∈ V such that ∀i ∈ Fin(u),

v(i) = u(i) and ∀i ∈ Inf(v), k ≤ v(i) and,
– for all v ∈ V , there exists u ∈ MinCover(V) such that v ≤ u.

Furthermore, for what concerns the minimal covering set of a semi-linear set, we
have the following result.

Lemma 11. Given a semi-linear set L, the set MinCover(L) can effectively be
computed.

Note that this last result can not be extended to any recursive set V . In fact if
we were able to compute the minimal covering set of a recursive set V , we would
be able to deduce if it is finite or not, which is known as an undecidable problem
(this being a consequence of Rice’s theorem).

4 Decidability Results for VASS with One Zero-Test

4.1 Counting the Number of Alternations in a VASS

In [10], it has been proved that the problem to decide whether a counter machine
is reversal-bounded or not is undecidable, but this problem becomes decidable
when considering VASS [7]. We recall here how this last result is obtained.

Let S = 〈Q,E〉 be a n-dim counter machine. We build a 2n-dim counter ma-
chine S̃ = 〈Q×{↑, ↓}n, E′〉 in which the n-th last counters count the alternations
between increasing and decreasing modes of the n-th first counters. A formal def-
inition of E′ is is given in [8]. Note that by construction, since we never test the
values of the added counters, if S is a VASS then S̃ is a VASS too. For an initial
configuration c0 = (q0,v0), if we denote by c̃0 the pair ((q0, ↑), (v0,0)), we have
the following proposition:

Proposition 12. A n-dim counter machine (S, c0) is reversal-bounded if and
only if there exists k ∈ N such that for all ((q,m), v) ∈ Reach(S̃, c̃0) and for all
i ∈ [1..n], v(n+ i) ≤ k.

Using the result of Theorem 8, we deduce that a VASS (S, c0) is reversal-bounded
if and only if for all nodes p[q,w] of the coverability graph of (S̃, c̃0) and for all
i ∈ [1..n], w(n + i) �= ω. Hence:

Theorem 13. [7] Reversal-boundedness is decidable for VASS.

In the sequel, we will see how this method can be adapted to the case of VASS
with one zero-test, which will allow us to extend the result of the previous
theorem.

Mixing Coverability and Reachability to Analyze VASS with One Zero-Test 401

4.2 Mixing the Coverability Graph and Reachability Analysis

In this section, we will give an algorithm to build a labeled graph which will
provide us a necessary and sufficient condition to decide whether a VASS with
one zero-test is reversal-bounded. The classical construction of the Karp and
Miller Tree cannot be used in the case of VASS with one zero-test, because
when we introduce the symbol ω for the counter which might be tested to zero,
we do not know for which values this ω stands for, and hence it is not possible
to evaluate the test to zero when it occurs.

Let (S, c0) be a n-dim counter machine with S = 〈Q,E〉. We define a (S, c0)-
labeled graph G as a tuple 〈P, δ, r, l〉 where P is a set of nodes, δ ⊆ P × Tn × P
is a set of edges labeled with guarded commands, r ∈ P is the initial node and
l : P → Q × Nn

ω is a labeling function such that l(r) = c0. If G = 〈P, δ, r, l〉 is
a (S, c0)-labeled graph, then 〈P, δ〉 defines a counter machine we will denote by
SG. Furthermore to SG we associate the initial configuration r0 = (r,v0) where
v0 is the valuation function associated to c0.

In the sequel we will consider a n-dim VASS with one zero-test (S, c0) and its
associated 2n-dim counter machine (S̃, c̃0) in which we count the alternations
between increasing and decreasing mode. Note that since when we build S̃ we
only introduce counters which never decrease, we have that (S, c0) is reversal-
bounded if and only if (S̃, c̃0) is reversal-bounded. As for S, we denote by S̃≥
the 2n-dim VASS obtained from S̃ removing all the transitions of the form
(q, g=0?, q

′).
We propose the Algorithm 2 to build a partial coverability graph of (S̃, c̃0).

We will then use this graph to decide whether the input VASS with one zero-test
is reversal-bounded or not. Our algorithm builds a (S̃, c̃0)-labeled graph G as
follows:

– First, we build the coverability graph of (S̃≥, c̃0) and test if (S̃≥, c̃0) is
reversal-bounded. The predicate ConditionRB(G) will ensure that.

– If (S̃≥, c̃0) is not reversal-bounded, we can already deduce that (S̃, c̃0) is not
reversal-bounded and we stop our construction.

– If (S̃≥, c̃0) is reversal-bounded, so is (SG, r0). We then compute the reach-
ability set of (SG, r0) to know which test to zero will be accepted and we
compute the minimal covering set of the vectors we obtain after realizing
one test to zero (Lines 8-9 of Algorithm 2).

– From this covering set, we obtain a new set of labeled nodes from which we
build again the coverability graph of S̃≥. Doing so we complete the graph
G. We then again test if (SG, r0) is reversal-bounded and if it is the case we
proceed as previous considering again all the nodes from which a zero-test
is done.

– Finally, in order to ensure termination (in case ConditionRB(G) is always
evaluated to True) we insert ω when computing the reachability set for the

1 p′ is a predecessor of p if there exists a path in G of length greater than or equal to
1 from p′ to p.

2 p′′ is a one step successor of p if there exists t such that (p, t, p′′) ∈ δ.

402 A. Finkel and A. Sangnier

Algorithm 2. G = CoverGraph(S, c0)
Input : (S, c0) VASS with one zero-test
Output : G = 〈P, δ, r, l〉 a graph
1: HasChanged = True /*This boolean becomes True when G is changed*/
2: Compute (S̃, c̃0) /*See the definition on the previous page*/
3: 〈P, δ, r, l〉 = KMG(S̃≥, c̃0) /*S̃≥ is a VASS obtained from S̃ deleting the zero-tests*/

4: G = 〈P, δ, r, l〉
5: while HasChanged = True and ConditionRB(G) = True do
6: HasChanged = False
7: for each p[(q?0, m),u] ∈ P do
8: Vp = {v | (p,v) ∈ Reach(SG, r0) ∧ v(1) = 0}

/*(SG, r0) is the counter machine obtained from G */
9: Compute MinCover(Vp)

10: for each u ∈ MinCover(Vp) do
11: if there exists a predecessor1p′[(q=0,m),u′]of p such that u′ ≤1 u then
12: u = Acceleration(u′,u)
13: end if
14: if there is no one-step successor2 p′′[(q=0,m),u′′]of p such that u ≤ u′′

then
15: HasChanged = True
16: Let t ∈ T2n with dom(t) = {v | ∀i ∈ Fin(u). v(i) ≤ u(i)} and ∀v.t(v) =

v
17: if there exists a predecessor p′′′[(q=0,m),u]of p then
18: Add (p, t, p′′′) to δ
19: else
20: Add a new node newp[(q=0, m),u] to P
21: Add (p, t, newp) to δ

22: G′ = KMG(S̃≥, ((q=0,m),u))
23: Add G′ to G merging the root node of G′ and newp
24: end if
25: end if
26: end for
27: end for
28: end while

zero-test we encounter a covering vector bigger than a preceding one (Line
11-12 of Algorithm 2).

An example of the result of the computation of Algorithm 2 is provided in [8].
We will now analyze more formally the Algorithms 2. First, we define

the condition ConditionRB(G) for a (S̃, c̃0)-labeled graph G as follows:
ConditionRB(G) = True if and only if for all nodes p[q,u] of G, for all i ∈ [1..n],
we have u(n + i) �= ω.

Note that the first graph we compute being the coverability graph of (S̃≥, c̃0),
according to Proposition 12, we have that (S̃≥, c̃0) is reversal-bounded if and
only if the predicate ConditionRB(G) is true.

Mixing Coverability and Reachability to Analyze VASS with One Zero-Test 403

In order to prove that our algorithm is correct, we need to prove the following
points:

1. If G is a (S̃, c̃0)-labeled graph computed during the execution of the Algo-
rithm 2 and if ConditionRB(G) = True then (SG, r0) is reversal-bounded,

2. For any VASS with one zero-test (S, c0), the algorithm CoverGraph(S, c0)
terminates.

The first point is a sufficient condition which allows us to compute effectively
the set Vp at Line 8 of the Algorithm 2 and also the set MinCover(Vp). In fact,
if (SG, r0) is reversal-bounded, according to Theorem 7, the set Reach(SG, r0) is
an effectively computable semi-linear set and consequently so is the correspond-
ing set Vp = {v | (p,v) ∈ Reach(SGi , r0) ∧ v(1) = 0}, and hence from Lem-
mas 10 and 11, we also deduce that MinCover(Vp) is finite and can be effectively
computed.

Let (S, c0) be a n-dim VASS with one zero-test and let G = (P, δ, r, l) be
a (S̃, c̃0)-labeled graph obtained at Line 4 after some iterations of the loop of
Algorithm 2. We recall that by construction, l(r) = c̃0 and that the initial
configuration r0 of the counter machine SG associated to the graph G is the pair
(r,v0) where v0 is the vector associated to the configuration c̃0. We have then
the following lemma:

Lemma 14. For all (p, v) ∈ Reach(SG, r0), if l(p) = (q,u), then for all
i ∈ [1..2n], we have v(i) ≤ u(i).

Since by construction in the counter machine SG the n-th last counters count
the numbers of alternations of the n-th first counters and since the graph G has
a finite number of nodes we deduce that if ConditionRB(G) = True then there
exists a constant k which bounds the number of alternations for each counter in
(SG, r0), consequently:

Proposition 15. If ConditionRB(G) = True then (SG, r0) is reversal-bounded.

At Line 8 of Algorithm 2, when we compute the reachability set Reach(SG, r0),
we are hence sure that the counter machine (SG, r0) is effectively reversal-
bounded and according to Theorem 7 and Lemma 11 we can effectively com-
pute this set and also its minimal covering set. Finally, we have the following
proposition:

Proposition 16. The Algorithm 2 always terminates when its input is a VASS
with one zero-test.

Idea of proof: This is ensured by the fact that if the algorithm does not terminate
we can extract an infinite sequence of vectors (ui)i∈N such that for all i ∈ N,
ui(1) = 0 and ui belongs to a node predecessor of the node containing ui+1 and
for all i, j ∈ N, ui �= uj . Using that {u ∈ N2n

ω | u(1) = 0} together with the
order ≤1 is a well-quasi order, we deduce that we can extract from this sequence
an infinite strictly increasing sequence of vectors, but this is not possible because
if u preceeds u′ in this sequence then there are strictly more components equal
to ω in u′ than in u (thanks to the function Acceleration) and so this sequence
cannot be infinite. �

404 A. Finkel and A. Sangnier

4.3 Reversal-Boundedness

In this last section, we will show how to use the (S̃, c̃0)-labeled graph produced
in output of the Algorithm 2 to decide whether the VASS with one zero-test
(S, c0) is reversal-bounded or not. First, we will show that if the graph
G = CoverGraph(S, c0) is such that ConditionRB(G) = False, i.e. there exists
a node p[q,u] and i ∈ [1..n] such that u(n + i) = ω then the counter machine
(S̃, c̃0) is not reversal-bounded. This is due to the following lemma:

Lemma 17. If p[q,u] is a node of CoverGraph(S, c0) and if i ∈ Inf(u) then for
all k ∈ N, there exists a configuration (q, v) ∈ Reach(S̃, c̃0) such that v(i) > k.

We then prove that if G = CoverGraph(S, c0) is such that ConditionRB(G) =
True then (S̃, c̃0) and hence (S, c0) are reversal-bounded. To prove this, we have
to prove that for each reachable configuration (q,v) of (S̃, c̃0) there is a node
of G which “covers” this configuration. This point can be proved by induction on
the length of any execution of Reach(S̃, c̃0) and leads to the following lemma:

Lemma 18. If G = CoverGraph(S, c0) is such that ConditionRB(G) = True

then for all configurations (q, v) ∈ Reach(S̃, c̃0), there exists a node p[q′,u] in G
such that q = q′ and for all i ∈ [1..2n], v(i) ≤ u(i).

Using the two previous lemma and the result of Proposition 12, we deduce the
following theorem:

Theorem 19. A n-dim VASS with one zero-test (S, c0) is reversal-bounded if
and only if for all nodes p[q,u] in CoverGraph(S, c0), for all i∈ [1..n], u(n+i) �=ω.

Proof: Assume there exists a node p[q,u] in CoverGraph(S, c0) and i ∈ [1..n],
such that u(n + i) = ω. Then according to Lemma 17 for all k ∈ N, there
exists a configuration (q,v) ∈ Reach(S̃, c̃0) such that v(n + i) > k, hence using
Proposition 12, we deduce that (S, c0) is not reversal-bounded. If for all nodes
p[q,u] in CoverGraph(S, c0), for all i ∈ [1..n], u(n+ i) �= ω, since the number of
nodes in CoverGraph(S, c0) is finite, we can find a k ∈ N such that for all nodes
p[q,u] in CoverGraph(S, c0), for all i ∈ [1..n], u(n+ i) ≤ k. Using lemma 18, we
deduce that for all configurations (q,v) ∈ Reach(S̃, c̃0), for all i ∈ [1..n], we have
v(n + i) ≤ k, hence according to Proposition 12 (S, c0) is reversal-bounded. �
Consequently, we obtain that:

Corollary 20. Reversal-boundedness is decidable for VASS with one zero-test.

4.4 Boundedness and Termination

We can adapt the reasoning we have performed to decide reversal-boundedness
in order to decide boundedness for VASS with one zero-test. In fact, we still
use the Algorithm 2 but instead of building the coverability graph of (S̃, c̃0), we

Mixing Coverability and Reachability to Analyze VASS with One Zero-Test 405

build directly the one of (S, c0) and instead of using condition ConditionRB, we
use the following condition on a (S, c0)-labeled graph G:

– for all i ∈ [1..n], for all nodes p[q,u] of G, we have u(i) �= ω.

The idea here is exactly the same as for reversal-boundedness. In fact, at the
first step of the Algorithm 2, the coverability graph of (S≥, c0) is computed and
it can be directly tested if this VASS is bounded or not. If it is not bounded,
the algorithm stops, because all the executions in (S≥, c0), are also executions
in (S, c0) and hence if (S≥, c0) is not bounded, then (S, c0) is also not bounded.
In the other case, if (S≥, c0) is bounded, then its coverability graph corresponds
exactly to its reachability graph. The algorithm can then proceed its computation
exactly as for deciding reversal-boundedness. This consideration allows us to
deduce the following result:

Theorem 21. Boundedness is decidable for VASS with one zero-test.

Note that this implies also the decidability of the termination problem for VASS
with one zero-test. In fact, the termination problem for counter machines, which
consists in deciding whether the counter machine has an infinite execution or
not, can be reduced easily to the boundedness. This is due to the following con-
sideration: if a counter machine is not bounded, then it has an infinite execution
and if it is bounded, then it is possible to build its reachability graph and hence
to decide whether there exists an infinite execution or not.

Corollary 22. Termination is decidable for VASS with one zero-test.

5 Conclusion

In this paper, we have provided an original method to decide whether a VASS
extended with one-zero test is reversal-bounded (resp. bounded) or not. The
main idea consists in mixing the construction of the classical coverability graph
for VASS and the computing of the reachability set of reversal-bounded VASS.
In the future, we would like to continue our investigation on methods to analyze
this class of system and our aim would be to find a construction of a complete
coverability graph for VASS with one-zero test. This would in particular gives
us a way to decide the problem of place-boundedness which consists in deciding
whether a set of counters has bounded values or not. In fact, the method we
present in this paper does not allow us to solve this problem, because the graph
we build is partial and the construction stops whenever it encounters a non
reversal-bounded (resp. non bounded) behavior.

References

1. Abdulla, P.A., Mayr, R.: Minimal Cost Reachability/Coverability in Priced Timed
Petri Nets. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 348–363.
Springer, Heidelberg (2009)

406 A. Finkel and A. Sangnier

2. Dufourd, C.: Réseaux de Petri avec Reset/Transfert: décidabilité et indécidabilité.
Thèse de doctorat, Laboratoire Spécification et Vérification, ENS Cachan, France
(1998)

3. Dufourd, C., Finkel, A.: Polynomial-Time Many-One Reductions for Petri Nets. In:
Ramesh, S., Sivakumar, G. (eds.) FST TCS 1997. LNCS, vol. 1346, pp. 312–326.
Springer, Heidelberg (1997)

4. Esparza, J.: Petri Nets, Commutative Context-Free Grammars, and Basic Parallel
Processes. Fundam. Inform. 31(1), 13–25 (1997)

5. Finkel, A.: The Minimal Coverability Graph for Petri Nets. In: Rozenberg, G. (ed.)
APN 1993. LNCS, vol. 674, pp. 210–243. Springer, Heidelberg (1993)

6. Finkel, A., Goubault-Larrecq, J.: Forward Analysis for WSTS, Part II: Complete
WSTS. In: Albers, S., et al. (eds.) ICALP 2009, Part II. LNCS, vol. 5556, pp.
188–199. Springer, Heidelberg (2009)

7. Finkel, A., Sangnier, A.: Reversal-Bounded Counter Machines Revisited. In:
Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 323–334.
Springer, Heidelberg (2008)

8. Finkel, A., Sangnier, A.: Mixing Coverability and Reachability to Analyze VASS
with One Zero-Test. Research Report, Laboratoire Spécification et Vérification,
ENS Cachan (2009)

9. Hack, M.: Petri Net Language. Technical Report, Massachusetts Institute of Tech-
nology (1976)

10. Ibarra, O.H.: Reversal-Bounded Multicounter Machines and Their Decision Prob-
lems. J. ACM 25(1), 116–133 (1978)

11. Karp, R.M., Miller, R.E.: Parallel Program Schemata: A Mathematical Model for
Parallel Computation. In: FOCS 1967, pp. 55–61. IEEE, Los Alamitos (1967)

12. Kosaraju, S.R.: Decidability of Reachability in Vector Addition Systems (prelimi-
nary version). In: STOC 1982, pp. 267–281. ACM, New York (1982)

13. Leroux, J.: The General Vector Addition System Reachability Problem by Pres-
burger Inductive Invariants. In: LICS 2009, pp. 4–13. IEEE Computer Society
Press, Los Alamitos (2009)

14. Mayr, E.W.: An Algorithm for the General Petri Net Reachability Problem. SIAM
J. Comput. 13(3), 441–460 (1984)

15. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall, Inc., Up-
per Saddle River (1967)

16. Parikh, R.: On Context-Free Languages. Journal of the ACM 13(4), 570–581 (1966)
17. http://www.informatik.uni-hamburg.de/TGI/PetriNets/
18. Reinhardt, K.: Reachability in Petri Nets with Inhibitor Arcs. ENTCS 223, 239–264

(2008)
19. Valk, R., Vidal-Naquet, G.: Petri Nets and Regular Languages. J. Comput. Syst.

Sci. 23(3), 299–325 (1981)

http://www.informatik.uni-hamburg.de/TGI/PetriNets/

Practically Applicable Formal Methods

Jędrzej Fulara and Krzysztof Jakubczyk

Institute of Informatics, University of Warsaw
ul. Banacha 2, 02-097 Warsaw, Poland

Abstract. Formal methods are considered to be highly expensive.
Therefore, they are currently applied almost only in high risk software
development. In this paper, we show that formal techniques can be also
efficiently used in standard large-scale applications. We focus on the gen-
eration of specifications which state the termination condition of for
loops in Java code (expressed as so called Java Modeling Language de-
creases clauses). We demonstrate that with help of relatively simple tech-
niques it is possible to successfully generate the clauses for almost 80%
of the loops in a number of widely deployed applications. Moreover, it
turns out that the remaining 20% cases contain loops which should be
carefully reviewed by software quality assurance personnel. The results
show that our technique might be helpful in spreading the usage of for-
mal methods onto typical business software.

Keywords: Formal methods, annotation generation, Java, termination.

1 Introduction

Commercial applications often do not make use of specification and verification
techniques, because people believe that such theoretical solutions are not ap-
plicable to software created for the real market. Business managers know that
employing formal methods would increase quality of produced software, but
these methods are considered to be very expensive and impractical. Therefore
program specification and verification methods are used only in critical compo-
nents or high risk software, e.g. avionics [10] or in nuclear power plants control
software [23], places where correctness and reliability is crucial. It is considered
to be not profitable to apply these techniques to standard code.

In standard program production unit tests [4] are used to assure clients that
created code meets their requirements and to assure code producers that the
code is faultless. The structure of the majority of specifications languages, such
as JML [19] for Java or Microsoft Code Contracts for .NET platform [3] follows
the structure of programming languages, so it seems that specifications should
be written by the same team that has developed the code. Since the most expen-
sive resource in the code production is programmers’ time, letting them write
annotations along with the code would increase overall costs, making company
not competitive on the market. To reduce costs of verification techniques, one
can generate annotations automatically. They can be used later by static analy-
sis tools (e.g. ESC/Java2 [9]). Automatic generation of annotations has already

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 407–418, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

408 J. Fulara and K. Jakubczyk

been explored and several generators were presented, e.g. CANAPA [8] for JML,
Houdini [15] for ESC/Java or Daikon [14] for various programming languages.

In this paper, we present an approach to develop formal techniques which
may be useful in typical code. This approach relies on existing tools that check
if the code realises given specifications, like ESC/Java2 or JmlRAC [7] but it
broadens their applicability by automatic generation of specifications based on
the existing code. If the code is mature and its functionality was well tested
using common testing techniques, generated specifications may still be helpful,
when someone wants to turn the code into a library or may act as documentation
for maintenance. If the code is immature, automatic generation of specifications
describing correctness properties of the program (such as loop termination, ab-
sence of NullPointerExceptions and ArrayIndexOutOfBoundsExceptions, etc.)
combined with static checking can give feedback on what errors are present in
the code. With these scenarios in mind we have developed a tool which helps
to build annotations generators and reveals code fragments that are not obvious
and should be reviewed by a human. In addition we have conducted an experi-
ment which shows that our approach, using even very basic techniques, can give
promising results on real, large-scale code.

Applicability of formal methods has been discussed in [5], but the considera-
tions are mostly limited to safety-critical systems. A great number of examples
of formal method applications can be found in [12]. There exist also tools that
analyse various source code properties. For example, Eclipse Metrics plugin [22]
helps to find unnecessarily complex places in the code. Semmle, a more powerful,
commercial code analyser, comes with its own Query Language [21]. It allows
to create and run your checks to enforce specific architecture rules and coding
standards. FindBugs [17] detects code instances that are likely to be errors. Our
CodeStatistics is designed to find any user defined patterns and is able to insert
annotations into the code. In [2], statistics collected on Java libraries are used as
a motivation to focus on particular aspect of the code in termination analysis. In
our approach statistics are used to estimate coverage of a given formal method.

1.1 JML

The Java Modelling Language is a behavioural specification language for Java
programs [18]. It allows to write specifications in the design-by-contract fashion,
introduced by B. Meyer for Eiffel [20]. JML includes annotations which make
possible to describe the invariant properties that are maintained by objects,
method specifications (pre- and postconditions) and some lower level properties
of the code (e.g. loop invariants). JML annotations are written in Java comments,
so they do not disturb standard Java compilers. JML already has very rich tool
support [6].

In our research presented in Section 3 we focus on generation of decreases
clauses to prove loop termination. These clauses consist of the decreases JML
keyword followed by expression whose value is decreased in each loop iteration
(and cannot be smaller than 0). Figure 1 shows a simple loop together with
a valid decreases formula.

Practically Applicable Formal Methods 409

//@ decreases 15 - i;
for (int i = 0; i < 15; i++) {

// Loop body that does not change i
}

Fig. 1. Simple for loop with decreases formula

1.2 Formal Methods

This work is an attempt to answer the question what does it mean to create
specification-based formal methods suitable for typical large-scale business appli-
cations, where code correctness is not considered to be critical. A formal method
designed for the real market cannot increase development costs too much. The
”80/20” rule applies to the development process: 20% of work produces 80% of
a project— big parts of systems can even be generated automatically from re-
quirements or specifications [16], so business managers may expect the same
from formal methods. Thus we should provide them solutions that cover auto-
matically at least 80% of the code and leave the remaining 20% (often unclear,
messy and unnecessarily complicated) to be reviewed by the programmers.

If we could show that a formal method gives acceptable results on various,
existing projects, then the code producers might expect that this method would
be applicable also to their software. Thus, to rate the created formal method,
a large set of well known projects should be used.

Modern programming languages offer developers big flexibility in creating the
code. This may lead to some inconsistencies in the code that can result in errors
which are hard to find. Using tests we can check, if the code meets functional
requirements, but to find programming errors (such as null pointer dereferences,
not terminating loops etc.) that occur in rare, but sometimes critical situations,
we should employ other techniques. This is especially important when the code
changes its original context of use, what often happens in case it is turned to
a library or is subject to maintenance tasks. Generating logical conditions assur-
ing absence of such inconsistencies may be the first step in introducing formal
methods in real, large-scale code. Such conditions can be safely generated auto-
matically. However specifications that describe program semantics (for example
method pre- or postconditions) might be generated only for mature and well
tested code. When they would be generated from incorrect code, they could be
even misleading.

We suggest building simple verification methods iteratively. This process in-
volves following steps:

1. Select code constructions you want to handle — e.g. for loops
2. Execute created method on the selected set of projects.
3. Find cases that are not handled yet.
4. From these cases pick up one for which you are able to provide generic

solution.
5. Mark as solved cases covered by the solution.

410 J. Fulara and K. Jakubczyk

6. Generate statistics and calculate effectiveness.
7. If effectiveness does not meet the selected threshold, go to step 2.

To apply this strategy in practice, one has to identify interesting construc-
tions and their frequencies in the real code. Collecting frequencies should be
done automatically, based on a big, representative sample of software. In our
work we have developed a flexible tool to compute necessary statistics on the
code and estimate how effective given annotation generation (and verification)
method is.

For example let us classify Java for loops in the context of generating ter-
mination condition. First step will be to identify all interesting code construc-
tions – that is all for loops that appear in the code. Next we need to take
a look at all loops and try to find patterns, for which we could easily generate
the termination condition. The simplest pattern is a for loop which increments
a counter up to some constant, see Figure 1. Termination condition for this case
is trivial.

Now we should generate statistics — how many loops matching this pattern
are present in the code and discover what part of all for loops is covered by
this case. After this we know for how many loops we can generate termination
condition. If this coverage does not meet the selected threshold, we should do
another iteration — look at the for loops that are not covered and produce new
patterns.

Each iteration of the presented methodology can take advantage of different
strategy and technique as far as the goal — achieving desired threshold, is ac-
complished. The main advantage of the presented procedure is a possibility to
use different verification techniques, each applied where it performs the best.

A formal method created using this approach will give satisfying results on
a large and representative set of projects. It should convince managers and de-
velopers that such solution can be successfully applied in their work.

In our research we have checked if it is possible to achieve, using simple meth-
ods, the expected by the market 80% coverage for a practical problem. We have
applied the above described methodology to generate annotations for loop ter-
mination in Java programs. Our results are described in Section 3.

2 The CodeStatistics Tool

To make the above described approach applicable in practice, a tool that helps
to rate the effectiveness of a verification method for different programming lan-
guages, is necessary. In our work we have developed CodeStatistics 1, a tool for
Java. It can recognize patterns specified by the user, count their frequencies in
given Java projects and output all matching code fragments, together with their
locations in the project. Patterns are defined in XPath and correspond to nodes
from the Abstract Syntax Tree (AST) of the processed project.

1 Available at http://www.mimuw.edu.pl/~fulara/CodeStatistics

http://www.mimuw.edu.pl/~fulara/CodeStatistics

Practically Applicable Formal Methods 411

2.1 Source Code Representation

Source code can be represented as an AST [1]. Each node in AST denotes a con-
struct occurring in the source code. Figure 2 contains an example of AST repre-
sentation for a small code fragment. Patterns that CodeStatistics finds, can be
expressed as structural conditions for the AST. Our tool is generic. The patterns
are not hardcoded, but supplied by the user as a part of the system configuration.
They should be written in a simple and expressive language. We have decided
to adapt XML as an AST text representation format and XPath as a query
language (described in Section 2.2).

while (x>y) {
a = a + 1;

}

(a) Source code

while

>

x y

Block

=

a +

a 1

(b) Abstract Syntax Tree

<While>
<Cond> ... <Cond>
<Block>
<Assignment>
<Left>

<Var name="a"/>
</Left>
<Right>...</Right>

</Assignment>
</Block>

</While>
(c) XML representation

Fig. 2. Sample AST representation

2.2 XML and XPath

The Extensible Markup Language (XML) is a general-purpose specification for
creating custom markup languages recommended by the World Wide Web Con-
sortium (W3C). It is used in our tool to represent the AST.

In CodeStatistics user defines queries in XPath. XPath is a language for find-
ing information in an XML document and provides the ability to navigate around
the tree, selecting nodes by a variety of criteria. A path notation is used to nav-
igate over the hierarchical XML structure.

An XPath query that finds all while loops that assign something to variable a
(such as the loop in Figure 2) is presented in Figure 3. It finds all <While>
elements that have <Block> child that has Assignment descendant (but maybe
not direct child) that has <Left> child that has <Var> child which has attribute
name set to a.

//While[Block//Assignment/Left/Var/attribute::name="a"]

Fig. 3. XPath query example

412 J. Fulara and K. Jakubczyk

2.3 CodeStatistics in Eclipse

CodeStatistics works as an Eclipse plugin. One can generate statistics for any
part of a Java project (for any subtree of the project tree in Eclipse) or print
out the XML representation of the AST for a selected class.

User specifies path to his configuration file in CodeStatistics submenu available
from Preferences in Window menu. One can choose there also output file location
and the desired logging level.

3 Experiment

In our experiment we have developed a generator of termination conditions of
for loops in Java programs. According to the approach described in this pa-
per, we have analysed structural properties of real, productional code. We have
categorized for loops in the following open source applications:

– Apache Hadoop2 is a software platform that lets one easily write and
run applications that process vast amounts of data. It implements MapRe-
duce [13], using the Hadoop Distributed File System. Hadoop was tested on
clusters with 2000 nodes.

– Google App Engine3 lets you run your web applications on Google’s in-
frastructure. App Engine applications are easy to build, easy to maintain,
and easy to scale as your traffic and data storage needs grow. With App
Engine, there are no servers to maintain: You just upload your application,
and it’s ready to serve your users.

– JEdit4 is a cross platform programmer’s text editor that is customizable
with plugins. JEdit provides syntax highlighting for more than 130 pro-
gramming languages and supports the most important character encodings.

– Hibernate5 is a powerful, high performance object/relational persistence
and query service. Hibernate lets you develop persistent classes following
object-oriented idiom — including polymorphism, association, inheritance,
composition and collections. Hibernate allows you to express queries in its
own portable SQL extension (HQL), as well as in native SQL, or with an
object-oriented Criteria and Example API.

– Oracle Berkeley DB6 is an open source, fast, embeddable database that
eliminates the overhead of SQL. It stores arbitrary key/value pairs as byte
arrays. Berkeley DB can handle multiple threads or concurrent processes
accessing the database.

– Tomcat7 is a servlet container developed by the Apache Software Founda-
tion. It implements the Java Servlet and Java Server Pages specifications
and it provides a web server for Java code to run.

2 http://hadoop.apache.org/
3 http://code.google.com/appengine/
4 http://www.jedit.org/
5 http://www.hibernate.org/
6 http://www.oracle.com/technology/products/berkeley-db/index.html
7 http://tomcat.apache.org/

http://hadoop.apache.org/
http://code.google.com/appengine/
http://www.jedit.org/
http://www.hibernate.org/
http://www.oracle.com/technology/products/berkeley-db/index.html
http://tomcat.apache.org/

Practically Applicable Formal Methods 413

Details of these projects are presented in Figure 4.

Project Size No. of for loops
Apache Hadoop 221 1817
Google App Engine 184 1048
JEdit 108 974
Hibernate 247 720
Oracle Berkeley DB 154 1191
Tomcat 181 1452

Fig. 4. Details of analysed projects (sizes are given in Kilo Lines of Code)

Our goal was to prove automatically termination property of at least 80% of
for loops in the code. The ideas used in this research are very basic. The main
advantage of our approach is that we are showing the effectiveness of such meth-
ods in practical, large-scale applications.

Literal. Let us start with the simplest category of for loops. It can be classified
as loops, where the control variable (which is not modified in the loop body) is
compared to a literal.

For loops that match this pattern, we can automatically generate the appro-
priate JML decreases formula (Figure 5a presents such loop together with valid
decreases formula). Using CodeStatistics one can find out that this kind of loops
covers 2% of all for loops (in the set of projects used in this experiment).

Constant. In the next step we focus on loops that use in the comparison a con-
stant defined in the code and do not modify the control variable in the loop body
(an example is shown in Figure 5b). Also for loops that match this pattern, the
decreases formula can be generated automatically. These two categories cover
together 8,4% of for loops.

Local expression. Another simple case that can be easily solved automatically is
when the control variable is compared to an arithmetic expression composed of
local variables that are not modified in the loop body.

The automatically generated decreases formula for the loop from Figure 6,
would be n + m − 7 − i. 18,6% of all for loops are recognized using the "local
expression pattern". Together 27% are solved now.

int j = 0;
//@ decreases 5 - i;
for (int i = 0; i < 5; i += 1){
j += i;

}

(a) For to a literal

public final static int CONST = 5;
...
//@ decreases i - CONST;
for (int i = 15; i > CONST; i--){

...
}

(b) For to a constant

Fig. 5. Examples of loops that match the basic patterns

414 J. Fulara and K. Jakubczyk

int j = 0, m = 9, n = 12;
//@ decreases n + m - 7 - i;
for (int i = 0; i < n + m - 7; i++)

j += i;

Fig. 6. For to a non-modified local variable

int[] tab = new int[17];
//@ decreases tab.length - i;
for (int i = 0; i < tab.length; i++)

tab[i] = i * i;

Fig. 7. For to a final field

Final field. Often programmers iterate over a table. This case can be generalized
as iterating to a final field in an object (Figure 7). We have chosen a very re-
strictive "alias safe" approach. If the guard (in our simple example tab.length)
was of form o1.o2.o3...on, then

– o1 must either be declared as final or be a local variable that is not assigned
in the loop body,

– all o2, o3, ... on must be declared as final.

In this case, the well-known problem of modification using aliases (when the
same object is referenced by multiple variables and modifications to one of them
induces changes of the others) is eliminated. Using CodeStatistics it occurs that
47,7% of all for loops match this pattern. All the above described categories
cover 74,7% of all for in the code.

Literal or constant

8.4%

Local expression

18.6%

Final field

47.7%

Not classified

25.3%

Fig. 8. Contribution of each loop type

All the above described categories can be expressed by pure syntactic criteria.
In order to verify that the obtained results should also apply to other projects,
we have checked our method against a fresh set of applications:

– AspectJ8 is a seamless aspect-oriented extension to the Java programming
language that enables clean modularization of these ’crosscutting concerns’.

8 http://www.eclipse.org/aspectj/

http://www.eclipse.org/aspectj/

Practically Applicable Formal Methods 415

– Spring9 is an application framework for Java platform. It includes Inversion
of Control container that manages object lifecycles.

– Vuze10 is an application to exchange and distribute data over the Internet,
currently the most popular BitTorrent client.

On these projects the recognized loop types cover 71% of for loops.

3.1 Bad Loops Found

Using CodeStatistics, we were also able to find non-trivial loops. They were some-
times written improperly, sometimes could be simplified, may contain bugs, or
cause errors after the maintenance. Our tool provides them (their code, loca-
tion in the project etc.) so that a programmer can handle them manually. Using
output generated by CodeStatistics it was very easy to select examples for this
section. We have just taken random examples from the code snippets that were
marked as "not classified" and were short enough to be included in this paper.

for (int i=nSamples - 1; i < nSamples - nRemove; i--)
deltas.remove(i);

Fig. 9. Vuze: NetworkAdminSpeedTesterBTImpl.java, lines 644-645

In the code fragment from Figure 9 it is not obvious why the loop should
be terminating. At first it seems correct but one can notice that the inequality
direction in termination condition is against intuition. The loop will terminate
only if nSamples - nRemove gets smaller than i, but this can be done only
inside the deltas.remove method.

In the next example (Figure 10) the termination depends on data stored in
some array (data). If it contained only negative numbers, the loop would not
terminate (and would probably cause an ArrayIndexOutOfBoundsException).

for (int shift=0; ; shift+=15) {
long s=data[index++];
if (s < 0) {
val+=(-1 - s) << shift;

} else {
val+=s << shift;
break;

}
}

Fig. 10. BerkeleyDB: PackedOffsets.java, lines 120-128

9 http://www.springsource.org/
10 http://www.vuze.com

http://www.springsource.org/
http://www.vuze.com

416 J. Fulara and K. Jakubczyk

In the example from Figure 11 the control variable j is decreased in the loop
body. Since in some iterations j does not change, and count is not modified in
the loop body, it is not clear why should this loop terminate (in fact it terminates,
because count is decreased inside removeHeader(j−−) function call).

for (int j=i + 1; j < count; j++)
if (headers[j].getName().equalsIgnoreCase(name))
removeHeader(j--);

Fig. 11. Tomcat: MimeHeaders.java, lines 268-272

In all examples presented in this section, it is not obvious why the loops
are eventually terminating. It should be at least documented why it is working
correctly. It should be explained in the loop and in the place which is responsible
for the termination (e.g. in example from Figure 9, in the deltas.remove()
function it should be marked that termination of some loop depends on changes
made here to the nremove field). Finding such error prone code fragments is
crucial also for maintenance.

3.2 Verification

We have used ESC/Java2 tool to verify loop termination property of for loops
enriched with decreases annotations inserted by CodeStatistics tool. ESC/Java2
provides -LoopSafe option that can be used to verify these annotations. Since
ESC/Java2 accepts only Java 1.4 source code and selected projects use features
introduced in Java 1.5 (generics and enums), we had to adapt source code to
older Java version. We have done this successfully to jEdit project. Unfortunately
ESC/Java2 did not manage to verify all files containing for loops — there were
some fatal errors caused by missing or invalid standard library specifications
(most of them caused by java.awt package). All files that were successfully pro-
cessed by ESC/Java2 did not return any errors or warnings concerning decreases
formulae.

4 Summary

We have presented a simple approach for creating verification methods and de-
scribed the CodeStatistics tool that supports this methodology. We have also
applied the approach in an experiment— simple loop termination prover for
Java for loops. The received results show that basic verification techniques can
be successfully used in real, productional code. Tools similar to ours can be re-
ally helpful in Quality Assurance process. Code reviewers can pay less attention
to simple cases, hence they can focus on difficult aspects that are usually more
error prone. Such methods can even guarantee correctness of some aspect of the
code (in our case that for loops terminate). They can be used as a first step in
introducing formal methods into business applications.

Practically Applicable Formal Methods 417

5 Future Work

We plan to employ the described way of creating verification methods,
CodeStatistics and Abstract Interpretation techniques [11] to prove that no in-
correct array accesses may occur during program execution (or find places where
such errors could possibly occur).

Acknowledgements. This work was partly supported by Polish government
grant 177/6.PR UE/2006/7 and Information Society Technologies programme of
the European Commission FET project IST-2005-015905 MOBIUS. This paper
reflects only authors’ views and the Community is not liable for any use that
may be made of the information contained therein.

References

1. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques,
and Tools, 2nd edn. Addison Wesley, Reading (2006)

2. Albert, E., Arenas, P., Genaim, S., Puebla, G.: Dealing with Numeric Fields in
Termination Analysis of Java-Like Languages. In: FTfJP, pp. 77–87 (2008)

3. Andersen, M., Barnett, M., FÄhndrich, M., Grunkemeyer, B., King, K., Logozzo,
F.: Code Contracts User Manual

4. Beck, K.: Test Driven Development: By Example. Addison-Wesley Professional,
Reading (2002)

5. Bowen, J.P., Hinchey, M.G.: The Use of Industrial-Strength Formal Methods. In:
Proceedings of 21st International Computer Software and Application Conference
(COMPSAC 1997), pp. 332–337. IEEE Computer Society Press, Los Alamitos
(1997)

6. Burdy, L., Cheon, Y., Cok, D.R., Ernst, M.D., Kiniry, J.R., Leavens, G.T., Leino,
K.R.M., Poll, E.: An Overview of JML Tools and Applications. Int. J. Softw. Tools
Technol. Transf. 7(3), 212–232 (2005)

7. Chalin, P., Rioux, F.: JML Runtime Assertion Checking: Improved Error Reporting
and Efficiency Using Strong Validity. In: Cuellar, J., Maibaum, T., Sere, K. (eds.)
FM 2008. LNCS, vol. 5014, pp. 246–261. Springer, Heidelberg (2008)

8. Cielecki, M., Fulara, J., Jakubczyk, K., Jancewicz, L.: Propagation of JML Non-
Null Annotations in Java Programs. PPPJ, 135–140 (2006)

9. Cok, D.R., Kiniry, J.R.: ESC/Java2: Uniting ESC/Java and JML: Progress and
Issues in Building and Using ESC/Java2 and a Report on a Case Study Involving
the Use of ESC/Java2 to Verify Portions of an Internet Voting Tally System. In:
Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.) CASSIS 2004.
LNCS, vol. 3362, pp. 108–128. Springer, Heidelberg (2005)

10. Cousot, P.: Avionic Software Verification by Abstract Interpretation. In: 2007
ISoLA Workshop On Leveraging Applications of Formal Methods, Verification
and Validation. Special Workshop Theme: Formal Methods in Avionics, Space and
Transport, Poitiers, France, December 12-14 (2007)

11. Cousot, P., Cousot, R.: Abstract Interpretation: a Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In: Con-
ference Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, Los Angeles, California, pp. 238–252. ACM
Press, New York (1977)

418 J. Fulara and K. Jakubczyk

12. Craigen, D., Craigen, D., Canada, O., Canada, O., Gerhart, S., Gerhart, S., Ral-
ston, T., Brown, R.H.: An International Survey of Industrial Applications of Formal
Methods, vol. 2 Case studies (1993)

13. Dean, J., Ghemawat, S.: Mapreduce: Simplified Data Processing on Large Clusters.
Commun. ACM 51(1), 107–113 (2008)

14. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S.,
Xiao, C.: The Daikon System for Dynamic Detection of Likely Invariants. Science
of Computer Programming 69(1-3), 35–45 (2007)

15. Flanagan, C., Rustan, K., Leino, M.: Houdini, an Annotation Assistant for
ESC/Java. In: Oliveira, J.N., Zave, P. (eds.) FME 2001. LNCS, vol. 2021, pp.
500–517. Springer, Heidelberg (2001)

16. Harel, D., Marelly, R.: Specifying and Executing Behavioral Requirements: the
Play-in/Play-out Approach. Software and System Modeling 2(2), 82–107 (2003)

17. Hovemeyer, D., Pugh, W.: Finding Bugs is Easy. SIGPLAN Not. 39(12), 92–106
(2004)

18. Leavens, G., Cheon, Y.: Design by Contract with JML (2003)
19. Leavens, G.T., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D., Kiniry, J.: JML

Reference Manual
20. Meyer, B.: Object-Oriented Software Construction. Prentice Hall PTR, Englewood

Cliffs (1997)
21. Moor, O., Sereni, D., Verbaere, M., Hajiyev, E., Avgustinov, P., Ekman, T., Ongk-

ingco, N., Tibble, J.: QL: Object-Oriented Queries Made Easy. In: Generative
and Transformational Techniques in Software Engineering II: International Sum-
mer School, GTTSE 2007, Braga, Portugal, Revised Papers, July 2-7, pp. 78–133
(2008)

22. Walton, L.: Eclipse Metrics Plugin, http://metrics.sourceforge.net/
23. Yoo, J., Cha, S., Jee, E.: A Verification Framework for fbd Based Software in

Nuclear Power Plants. In: APSEC 2008: Proceedings of the 2008 15th Asia-Pacific
Software Engineering Conference, Washington, DC, USA, pp. 385–392. IEEE Com-
puter Society, Los Alamitos (2008)

http://metrics.sourceforge.net/

Fast and Compact Prefix Codes�

Travis Gagie1,2, Gonzalo Navarro2, and Yakov Nekrich3

1 Research Group in Genome Informatics, Bielefeld University
travis.gagie@gmail.com

2 Department of Computer Science, University of Chile
gnavarro@dcc.uchile.cl

3 Department of Computer Science, University of Bonn
yasha@cs.uni-bonn.de

Abstract. It is well-known that, given a probability distribution over
n characters, in the worst case it takes Θ(n log n) bits to store a prefix
code with minimum expected codeword length. However, in this paper
we first show that, for any ε with 0 < ε < 1/2 and 1/ε = O(polylog(n)), it
takes O(n log log(1/ε)) bits to store a prefix code with expected codeword
length within an additive ε of the minimum. We then show that, for any
constant c > 1, it takes O

(
n1/c log n

)
bits to store a prefix code with

expected codeword length at most c times the minimum. In both cases,
our data structures allow us to encode and decode any character in O(1)
time.

1 Introduction

Compression is most important when space is in short supply, so popular com-
pressors are usually heavily engineered to reduce their space usage. Theory has
lagged behind practice in this area, however, and there remain basic open ques-
tions about the space needed for even the simplest kinds of compression. For
example, while compression with prefix codes is familiar to any student of in-
formation theory, very little has been proven about compression of prefix codes.
Suppose we are given a probability distribution P over an alphabet of n char-
acters. Until fairly recently, the only general bounds known seem to have been,
first, that it takes Θ(n log n) bits in the worst case to store a prefix code with
minimum expected codeword length and, second, that O(n) bit suffice to store
a prefix code with expected codeword length within 1 of the minimum.

In 1998 Adler and Maggs [1] showed it generally takes more than (9/40)n1/(20c)

logn bits to store a prefix code with expected codeword length at most cH(P),
where H(P) is P ’s entropy and a lower bound on the expected codeword length.
(In this paper we consider only binary codes, and by log we always mean log2.)
In 2006 Gagie [6,7] (see also [8]) showed that, for any constant c ≥ 1, it takes
O
(
n1/c logn

)
bits to store a prefix code with expected codeword length at most

� Funded in part by Millennium Institute for Cell Dynamics and Biotechnology
(ICDB), Grant ICM P05-001-F, Mideplan, Chile.

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 419–427, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

420 T. Gagie, G. Navarro, and Y. Nekrich

cH(P) + 2. He also showed his upper bound is nearly optimal because, for any
positive constant ε, we cannot always store a prefix code with expected codeword
length at most cH(P)+o(logn) in O

(
n1/c−ε

)
bits. Gagie proved his upper bound

by describing a data structure that stores a prefix code with the prescribed
expected codeword length in the prescribed space and allows us to encode and
decode any character in time at most proportional to its codeword’s length. This
data structure has three obvious defects: when c = 1, it is as big as a Huffman
tree, whereas its redundancy guarantee can be obtained with just O(n) bits [10];
when H(P) is small, a possible additive increase of 2 in the expected codeword
length may be prohibitive; and it is slower than the state of the art.

In this paper we answer several open questions related to efficient represen-
tation of codes. First, in Section 3 we show that, for any ε with 0 < ε < 1/2
and 1/ε = O(polylog(n)), it takes O(n log log(1/ε)) bits to store a prefix code
with expected codeword length within an additive ε of the minimum. Thus, if we
can tolerate an additive increase of, say, 0.01 in the expected codeword length,
then we can store a prefix code using only O(1) bits per character. Second, in
Section 4 we show that, for any constant c > 1, it takes O

(
n1/c logn

)
bits to

store a prefix code with expected codeword length at most c times the minimum,
with no extra additive increase. Thus, if we can tolerate a multiplicative increase
of, say, 2.01, then we can store a prefix code in O(

√
n) bits. In both cases, our

data structures allow us to encode and decode any character in O(1) time on
a unit-cost word RAM.

2 Related Work

A simple pointer-based implementation of a Huffman tree takes O(n logn) bits
and it is not difficult to show this is an optimal upper bound for storing a prefix
code with minimum expected codeword length. For example, suppose we are
given a permutation π over n characters. Let P be the probability distribution
that assigns probability 1/2i to the π(i)th character, for 1 ≤ i < n, and proba-
bility 1/2n−1 to the π(n)th character. Since P is dyadic, every prefix code with
minimum expected codeword length assigns a codeword of length i to the π(i)th
character, for 1 ≤ i < n, and a codeword of length n− 1 to the π(n)th charac-
ter. Therefore, given any prefix code with minimum expected codeword length
and a bit indicating whether π(n − 1) < π(n), we can find π. Since there are
n! choices for π, in the worst case it takes Ω(log n!) = Ω(n logn) bits to store
a prefix code with minimum expected codeword length.

Considering the argument above, it is natural to ask whether the same lower
bound holds for probability distributions that are not so skewed, and the answer
is ‘no’. A prefix code is canonical [19] if the first codeword is a string of 0s and
any other codeword can be obtained from its predecessor by adding 1, viewing
its predecessor as a binary number, and appending some number of 0s. (See,
e.g., [16,14] for more recent work on canonical codes.) Given any prefix code,
without changing the length of the codeword assigned to any character, we can
put the code into canonical form by just exchanging left and right siblings in

Fast and Compact Prefix Codes 421

the code-tree. Moreover, we can reassign the codewords such that, if a character
is lexicographically the jth with a codeword of length
, then it is assigned the
jth consecutive codeword of length
. It is clear that it is sufficient to store the
codeword length of each character to be able to reconstruct such a code, and
thus the code can be represented in O(n logL) bits, where L is the length of the
longest codeword.

The above gives us a finer upper bound. For example, Katona and Nemetz [13]
showed that, if a character has probability p, then any Huffman code assigns it
a codeword of length at most about log(1/p)/ logφ, where φ ≈ 1.618 is the golden
ratio, and thus L is at most about 1.44 log(1/pmin), where pmin is the smallest
probability in P . Alternatively, one can enforce a value for L and pay a price
in terms of expected codeword length. Milidiú and Laber [15] showed how, for
any L > +logn,, we can build a prefix code with maximum codeword length at
most L and expected codeword length within 1/φL−�log(n+�log n�−L)�−1 of the
minimum. Their algorithm works by building a Huffman tree T1; removing all
the subtrees rooted at depth greater than L; building a complete binary tree T2

of height h whose leaves are those removed from T1; finding the node v at depth
L−h−1 in T1 whose subtree T3’s leaves are labelled by characters with minimum
total probability (which they showed is at most 1/φL−�log(n+�log n�−L)�−1); and
replacing v by a new node whose subtrees are T2 and T3.

A simple upper bound for storing a prefix code with expected codeword length
within a constant of the minimum, follows from Gilbert and Moore’s proof [10]
that we can build an alphabetic prefix code with expected codeword length less
than H(P) + 2 and, thus, within 2 of the minimum. Moreover, in an optimal
alphabetic prefix code, the expected codeword length is within 1 of the mini-
mum [18,20] which, in turn, is within 1 of the entropy H(P). In an alphabetic
prefix code, the lexicographic order of the codewords is the same as that of the
characters, so we need store only the code-tree and not the assignment of code-
words to characters. If we store the code-tree in a succinct data structure due
to Munro and Raman [17], then it takes O(n) bits and encoding and decoding
any character takes time at most proportional to its codeword length. This can
be improved to O(1) by using table lookup, but doing so may worsen the space
bound unless we also restrict the maximum codeword length, which may in turn
increase the expected codeword length.

The code-tree of a canonical code can be stored in just O
(
L2
)

bits: By its defi-
nition, we can reconstruct the whole canonical tree given only the first codeword
of each length. Unfortunately, Gagie’s lower bound [7] suggests we generally can-
not combine results concerning canonical codes with those concerning alphabetic
prefix codes.

Constant-time encoding and decoding using canonical code-trees is simple.
Notice that if two codewords have the same length, then the difference between
their ranks in the code is the same as the difference between the codewords them-
selves, viewed as binary numbers. Suppose we build an O

(
L2
)
-bit array A and

a dictionary D supporting predecessor queries, each storing the first codeword
of each length. Given the length of a character’s codeword and its rank among

422 T. Gagie, G. Navarro, and Y. Nekrich

codewords of the same length (henceforth called its offset), we can find the ac-
tual codeword by retrieving the first codeword of that length from A and then,
viewing that first codeword as a binary number, adding the offset minus 1. Given
a binary string starting with a codeword, we can find that codeword’s length and
offset by retrieving the string’s predecessor in D, which is the first codeword of
the same length; truncating the string to the same length in order to obtain the
actual codeword; and subtracting the first codeword from the actual codeword,
viewing both as binary numbers, to obtain the offset minus 1. (If D supports
numeric predecessor queries instead of lexicographic predecessor queries, then
we store the first codewords with enough 0s appended to each that they are
all the same length, and store their original lengths as auxiliary information.)
Assuming it takes O(1) time to compute the length and offset of any character’s
codeword given that character’s index in the alphabet, encoding any character
takes O(1) time. Assuming it takes O(1) time to compute any character’s index
in the alphabet given its codeword’s length and offset, decoding takes within
a constant factor of the time needed to perform a predecessor query on D. For
simplicity, in this paper we consider the number used to represent a character in
the machine’s memory to be that character’s index in the alphabet, so finding
the index is the same as finding the character itself.

In a recent paper on adaptive prefix coding, Gagie and Nekrich [9] (see also
[12]) pointed out that if L = O(w), where w is the length of a machine word,
then we can implement D as an O

(
w2
)
-bit dictionary data structure due to

Fredman and Willard [5] such that predecessor queries take O(1) time. (We
note that Beame and Fich’s well-known lower bound [2] on predecessor queries
does not apply when the size of the dictionary is proportional to the length of
a word.) This seems a reasonable assumption since, for any string of length m
with logm = O(w), if P is the probability distribution that assigns to each
character probability proportional to its frequency in the string, then the small-
est positive probability in P is at least 1/m; therefore, the maximum codeword
length in either a Huffman code or a Shannon code for P is O(w). Gagie and
Nekrich used O(n logn)-bit arrays to compute the length and offset of any char-
acter’s codeword given that character’s index in the alphabet, and vice versa,
and thus achieved O(1) time for both encoding and decoding.

A technique we will use to obtain our first result, presented in section 3, is
the wavelet tree of Grossi et al. [11], and more precisely the multiary variant
due to Ferragina et al. [3]. The latter represents a sequence S[1, n] over an
alphabet Σ of size σ such that the following operations can be carried out in
O
(

log σ
log log n

)
time on the RAM model with a computer word of length Ω(log n):

(1) Given i, retrieve S[i]; (2) given i and a ∈ Σ, compute ranka(S, i), the number
of occurrences of a in S[1, i]; (3) given j and a ∈ Σ, compute selecta(S, j),
the position in S of the j-th occurrence of a. The wavelet tree requires
nH0(S)+O

(
n log log n

logσ n

)
bits of space, where H0(S) ≤ log σ is the empirical zero-

order entropy of S, defined as H0(S) = H({occ(a, S) /n}a∈σ), where occ(a, S)
is the number of occurrences of a in S. Thus nH0(S) is a lower bound to the

Fast and Compact Prefix Codes 423

output size of any zero-order compressor applied to S. It will be useful to write
H0(S) =

∑
a∈σ

occ(a,S)
n log n

occ(a,S) .
Our second result is based on constructing a length-restricted canonical code

with maximum codeword length L. We divide all symbols into “probable” sym-
bols that are assigned codewords of length at most L/c + 2 and “improbable”
symbols that are assigned codewords of length greater than L/c + 2. It will be
shown in section 4 that all “probable” symbols can be encoded and decoded in
O(1) time using O(n1/c logn) bits. We replace all codewords of length at least
L/c + 3 with codewords of length L, so that the “improbable” symbols can be
encoded and decoded in constant time but we do not have to store the new
codewords explicitly.

3 Additive Increase in Expected Codeword Length

In this section we exchange a small additive penalty over the optimal prefix code
for a space-efficient representation of the encoding, which in addition enables
encode/decode operations in constant time.

It follows from Milidiú and Laber’s bound [15] that, for any ε with 0 < ε < 1/2,
there is always a prefix code with maximum codeword length L = +logn, +
+logφ(1/ε),+ 1 and expected codeword length within an additive

1
φL−�log(n+�log n�−L)�−1

≤ 1
φL−�log n�−1

≤ 1
φlogφ(1/ε)

= ε

of the minimum. The techniques described in the previous section give a way
to store such a code in O

(
L2 + n logL

)
bits, yet it is not immediately obvious

how to do constant-time encoding and decoding. Alternatively, we can achieve
constant-time encoding and decoding using O

(
w2 + n logn

)
bits for the code-

tree, if L = O(w).
To achieve constant encoding and decoding times without ruining the space,

we use multiary wavelet trees. We use a canonical code, and sort the characters
(i.e., leaves) alphabetically within each depth, as described in the previous section.
Let S[1, n] be the sequence of depths in the canonical code-tree, so that S[a] (1 ≤
a ≤ n) is the depth of the character a. Now, the depth and offset of any a ∈ Σ
is easily computed from the wavelet tree of S: the depth is just S[a], while the
offset is rankS[a](S, a). Inversely, given a depth d and an offset o, the corresponding
character is selectd(S, o). The O

(
w2
)
-bit data structure of Gagie and Nekrich [9]

converts in constant time pairs (depth,offset) into codes and vice versa (if L =
O(w)), whereas the multiary wavelet tree on S requires n logL + O

(
n log log n

logL n

)
bits of space and completes encoding/decoding in time O

(
log L

log log n

)
. Under the

restriction 1/ε = O(polylog(n)), the space is O
(
w2
)
+n logL+ o(n) and the time

is O(1). This is the key to the result of this section.

Theorem 1. For any ε with 0 < ε < 1/2 and 1/ε = O(polylog(n)), and under
the RAM model with computer word size w, so that the text to encode is of

424 T. Gagie, G. Navarro, and Y. Nekrich

length 2O(w), we can store a prefix code with expected codeword length within
an additive term ε of the minimum, using O

(
w2 + n log log(1/ε)

)
bits, such that

encoding and decoding any character takes O(1) time.

Proof. The data structure we have described achieves the given time bounds if
we assume the text to encode is of length m = 2O(w), as usual under the RAM
model of computation, and thus L = O(w) enables constant-time encoding and
decoding [9].

As for the space, we have shown it is O
(
w2
)

+ n logL+ o(n). To achieve the
claim of the theorem we show that H0(S) is at most log(L−+logn,+1)+O(1),
so we can store S in O(n log(L− logn+ 1) + n) = O(n log log(1/ε)) bits.

To see this, consider S as two interleaved subsequences, S1 and S2, of length n1

and n2, with S1 containing those lengths less than or equal to +logn, and S2

containing those greater. Thus nH0(S) ≤ n1H0(S1) + n2H0(S2) + n.
Since there are at most 2� codewords of length
, assume we complete S1

with spurious symbols so that it has exactly 2� occurrences of symbol
. This
completion cannot decrease n1H0(S1) =

∑
1≤�≤�log n� occ(
, S1) log n1

occ(�,S1)
, as

increasing some occ(
, S1) to occ(
, S1) + 1 produces a difference of f(n1) −
f(occ(
, S1)) ≥ 0, where f(x) = (x + 1) log(x + 1)− x log x is increasing. Hence
we can assume S1 contains exactly 2� occurrences of symbol 1 ≤
 ≤ +logn,;
straightforward calculation then shows that n1H0(S1) = O(n1).

On the other hand, S2 contains at most L−+logn, distinct values, soH0(S2) ≤
log(L−+logn,), unless L = +logn,, in which case S2 is empty and n2H0(S2) = 0.
Thus n2H0(S2) ≤ n2 log(+logφ(1/ε),+ 1) = O(n2 log log(1/ε)).

Combining both bounds, we get H0(S) = O(1 + log log(1/ε)) and the theorem
holds. �

In other words, under mild assumptions, we can store a code using
O(n log log(1/ε)) bits at the price of increasing the average codeword length
by ε, and in addition have constant-time encoding and decoding. For constant ε,
this means that the code uses just O(n) bits at the price of an arbitrarily small
constant additive penalty over the shortest possible prefix code.

4 Multiplicative Increase in Expected Codeword Length

In this section we focus on a multiplicative rather than an additive penalty over
the optimal prefix code, in order to achieve a sublinear-sized representation of
the encoding, which still enables constant-time encoding and decoding.

Our main idea is to divide the alphabet into probable and improbable char-
acters and to store information about only the probable ones. Given a constant
c > 1, we use Milidiú and Laber’s algorithm [15] to build a prefix code with
maximum codeword length L = +logn,+ +1/(c− 1),+ 1. We call a character’s
codeword short if it has length at most L/c + 2, and long otherwise. Notice
there are at most 2L/c+3 − 1 = O

(
n1/c

)
characters with short codewords. Also,

although applying Milidiú and Laber’s algorithm may cause some exceptions,
characters with short codewords are usually more probable than characters with

Fast and Compact Prefix Codes 425

long ones. We will hereafter call infrequent characters those encoded with long
codewords in the code of Milidiú and Laber.

We transform this length-restricted prefix code into a canonical code as de-
scribed in Section 2; specifically, we sort the characters lexicographically within
each depth. We use a dictionary data structure F due to Fredman, Komlós and
Szemerédi [4] to store the indices of the characters with short codewords. This
data structure takes O

(
n1/c logn

)
bits and supports membership queries in O(1)

time, with successful queries returning the target character’s codeword. We also
build)L/c*+ 2 arrays that together store the indices of all the characters with
short codewords; for 1 ≤
 ≤)L/c* + 2, the
th array stores the indices of
the characters with codewords of length
, in lexicographic order by codeword.
Again, we store the first codeword of each length in O

(
w2
)

bits overall, following
Gagie and Nekrich [9], such that it takes O(1) time to compute any codeword
given its length and offset, and vice versa. With these data structures, we can
encode and decode any character with a short codeword in O(1) time. To en-
code, we perform a membership query on the dictionary to check whether the
character has a short codeword; if it does, we receive the codeword itself as satel-
lite information returned by the query. To decode, we first find the codeword’s
length
 and offset j in O(1) time as described in Section 2. Since the codeword
is short,
 ≤)L/c*+ 2 and the character’s index is stored in the jth cell of the

th array. These data structures use a total of O

(
w2 + n1/c logn

)
bits of space.

We replace each long codeword with new codewords: instead of a long code-
word α of length
, we insert 2L+1−� new codewords α · s, where · denotes
concatenation and s is an arbitrary binary string of length L + 1 −
. Figure 1
shows an example. Since c > 1, we have n1/c < n/2 for sufficiently large n, so
we can assume without loss of generality that there are fewer than n/2 short
codewords; hence, the number of long codewords is at least n/2. Since every
long codeword is replaced by at least two new codewords, the total number of
new codewords is at least n. Since new codewords are obtained by extending
all codewords of length
 > L/c+ 1 in a canonical code, all new codewords are
binary representations of consecutive integers. Therefore the i-th new codeword
equals to αf + i − 1, where αf is the first new codeword. If a is an infrequent
character, we encode it with the a-th new codeword, αf + a − 1. To encode
a character a, we check whether a belongs to the dictionary F . If a ∈ F , then
we output the codeword for a. Otherwise we encode a as αf + a− 1. To decode
a codeword α, we read its prefix bitstring sα of length L + 1 and compare sα

with αf . If sα ≥ αf , then α = sα is the codeword for sα−αf +1. Otherwise, the
codeword length of the next codeword α is at most L/c+1 and α can be decoded
as described in the previous paragraph. Notice we do not need to store the new
codewords we just described, so the total space used is still O

(
w2 + n1/c logn

)
bits.

Theorem 2. For any constant c > 1, under the RAM model with computer word
size w, so that the text to encode is of length 2O(w), we can store a prefix code
with expected codeword length within c times the minimum in O

(
w2 + n1/c logn

)
bits, such that encoding and decoding any character takes O(1) time.

426 T. Gagie, G. Navarro, and Y. Nekrich

1100000 + char − 1

c
i
a
h
m
p

00
010
011
1000
1001
1010
1011 a

b

c

d

e

f g

h

i

j

k

l

m

n o

p

b d e f g k l n o

b
d
e
f
g
k
l
n
o

j

Fig. 1. An example with n = 16 and c = 3. The tree consisting of the nodes drawn as
large circles and squares (in black) is the result of applying the algorithm of Milidiú
and Laber on the original prefix code. Now, we set L = 6 according to our formula,
and declare short the codeword lengths up to �L/c� + 2 = 4. Short codewords — i.e.,
those above the dashed line — are stored unaltered in a dictionary (in blue). Longer
codewords — i.e., those below the dashed line — are changed: All are extended up to
length L+1 = 7 and reassigned a code according to their values in the contiguous slots
of length 7 (in red).

Proof. The structure described throughout the section achieves the promised
time and space bounds. We analyze now the expected codeword length.

By analysis of the algorithm by Milidiú and Laber [15] we can see that the
codeword length of a character in their length-restricted code exceeds the code-
word length of the same character in an optimal code by at most 1, and only when
the codeword length in the optimal code is at least L−+logn,−1 = +1/(c−1),.
Hence, the codeword length of a character encoded with a short codeword ex-
ceeds the codeword length of the same character in an optimal code by a factor
of at most �1/(c−1)�+1

�1/(c−1)� ≤ c. Every infrequent character is encoded with a code-
word of length L + 1. Since the codeword length of an infrequent character in
the length-restricted code is more than L/c + 2, its length in an optimal code
is more than L/c + 1. Hence, the codeword length of a long character in our
code is at most L+1

L/c+1 < c times greater than the codeword length of the same
character in an optimal code. Hence, the average codeword length for our code
is less than c times the optimal one. �

Fast and Compact Prefix Codes 427

Again, under mild assumptions, this means that we can store a code with ex-
pected length within c times the optimum, in O

(
n1/c logn

)
bits and allowing

constant-time encoding and decoding.

References

1. Adler, M., Maggs, B.M.: Protocols for Asymmetric Communication Channels.
Journal of Computer and System Sciences 63(4), 573–596 (2001)

2. Beame, P., Fich, F.E.: Optimal Bounds for the Predecessor Problem and Related
Problems. Journal of Computer and System Sciences 65(1), 38–72 (2002)

3. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: Compressed Representa-
tions of Sequences and Full-Text Indexes. ACM Transactions on Algorithms 3(2),
Article 20 (2007)

4. Fredman, M.L., Komlós, J., Szemerédi, E.: Storing a Sparse Table with O(1) Worst
Case Access Time. Journal of the ACM 31(3), 538–544 (1984)

5. Fredman, M.L., Willard, D.E.: Surpassing the Information Theoretic Bound with
Fusion Trees. Journal of Computer and System Sciences 47(3), 424–436 (1993)

6. Gagie, T.: Compressing Probability Distributions. Information Processing Let-
ters 97(4), 133–137 (2006)

7. Gagie, T.: Large alphabets and incompressibility. Information Processing Let-
ters 99(6), 246–251 (2006)

8. Gagie, T.: Dynamic asymmetric communication. Information Processing Let-
ters 108(6), 352–355 (2008)

9. Gagie, T., Nekrich, Y.: Worst-Case Optimal Adaptive Prefix Coding. In: Proceed-
ings of the Algorithms and Data Structures Symposium (WADS), pp. 315–326
(2009)

10. Gilbert, E.N., Moore, E.F.: Variable-Length Binary Encodings. Bell System Tech-
nical Journal 38, 933–967 (1959)

11. Grossi, R., Gupta, A., Vitter, J.: High-Order Entropy-Compressed Text Indexes.
In: Proceedings of the 14th Symposium on Discrete Algorithms (SODA), pp. 841–
850 (2003)

12. Karpinski, M., Nekrich, Y.: A Fast Algorithm for Adaptive Prefix Coding. Algo-
rithmica 55(1), 29–41 (2009)

13. Katona, G.O.H., Nemetz, T.O.H.: Huffman Codes and Self-Information. IEEE
Transactions on Information Theory 22(3), 337–340 (1976)

14. Klein, S.T.: Skeleton Trees for the Efficient Decoding of Huffman Encoded Texts.
Information Retrieval 3(4), 315–328 (2000)

15. Milidiú, R.L., Laber, E.S.: Bounding the Inefficiency of Length-Restricted Prefix
Codes. Algorithmica 31(4), 513–529 (2001)

16. Moffat, A., Turpin, A.: On the Implementation of Minimum-Redundancy Prefix
Codes. IEEE Transactions on Communications 45(10), 1200–1207 (1997)

17. Munro, J.I., Raman, V.: Succinct Representation of Balanced Parentheses and
Static Trees. SIAM Journal on Computing 31(3), 762–776 (2001)

18. Nakatsu, N.: Bounds on the Redundancy of Binary Alphabetical Codes. IEEE
Transactions on Information Theory 37(4), 1225–1229 (1991)

19. Schwarz, E.S., Kallick, B.: Generating a Canonical Prefix Encoding. Communica-
tions of the ACM 7(3), 166–169 (1964)

20. Sheinwald, D.: On Binary Alphabetic Codes. In: Proceedings of the Data Com-
pression Conference (DCC), pp. 112–121 (1992)

New Results on the Complexity of Oriented
Colouring on Restricted Digraph Classes

Robert Ganian and Petr Hliněný�

Faculty of Informatics, Masaryk University
Botanická 68a, Brno, Czech Republic
{xganian1,hlineny}@fi.muni.cz

Abstract. Oriented colouring is a quite intuitive generalization of undi-
rected colouring, yet the problem remains NP-hard even on digraph
classes with bounded usual directed width measures. In light of this fact,
one might ask whether new width measures are required for efficient
dealing with this problem or whether further restriction of traditional
directed width measures such as DAG-width would suffice. The K-width
and DAG-depth measures (introduced by [Ganian et al, IWPEC’09]) are
ideal candidates for tackling this question: They are both closely tied
to the cops-and-robber games which inspire and characterize the most
renowned directed width measures, while at the same time being much
more restrictive.

In this paper, we look at the oriented colouring problem on digraphs
of bounded K-width and of bounded DAG-depth. We provide new
polynomial algorithms for solving the problem on “small” instances as
well as new strong hardness results showing that the input restrictions
required by our algorithms are in fact “tight”.

Keywords: Directed graph, complexity, oriented colouring, DAG-depth.

1 Preliminaries

1.1 Introduction

The study of ordinary colourings of graphs has become the focus of many authors
and lead to a number of interesting results. However, only in the last decade has
this been extended to directed graphs. The notion of oriented colouring was
first introduced by Courcelle [2], see Definition 1. Briefly, while an ordinary
colouring is a homomorhpism into a complete graph, an oriented colouring is
a homomorhpism into an orientation of a complete graph.

Properties of oriented colouring have been studied by several authors, see e.g.
the work of Nešetřil and Raspaud [11] or the survey by Sopena [14]. Similarly
� This research has been supported by the Czech research grants GAČR 201/-

08/0308 (P. Hliněný) and 201/09/J021 (R. Ganian), and by the research intent
MSM0021622419 of the Czech Ministry of Education.

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 428–439, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

New Results on the Complexity of Oriented Colouring 429

to undirected colouring, computing the oriented chromatic number (further re-
ferred to as OCN) and deciding oriented colourability of digraphs are both
NP-hard problems. However, while undirected colouring becomes easy if we re-
strict the input to the graph class of trees, deciding oriented colourability already
by 4 colours (OCN4) remains NP-hard even on on acyclic digraphs (DAGs) [3].
Apart from being an interesting notion from a theoretical point of view, oriented
colouring also has practical applications, e.g. in mobile networks.

There exists a wide range of width parameters for digraphs: directed tree-
width [8], DAG-width [1,12], Kelly-width [7], and cycle rank [4] perhaps being
the best known. A shared feature of all these width parameters is that they
assume their minimum values on DAGs. Thus, it is impossible to use a bound
on any of these width parameters to efficiently decide oriented colourability at
all— there will always be instances in which deciding OCN4 remains NP-hard.

One way to interpret this finding is to ask whether there exist stronger, more
restrictive digraph width parameters which could help with computing OCN.

Very recently, a possible lead to answering this question has been given in [6].
Two new directed width measures have been introduced in that article, both
related to cops-and-robber games (and thus to the classical directed width mea-
sures) and both very restrictive. The first one is K-width (Def. 2) which restricts
the maximum number of directed paths between pairs of vertices, and the sec-
ond one is DAG-depth (Def. 3) which on the other hand restricts the maximum
number of moves in a cops-and-robber game.

These parameters have been successfully used in [6] to design some new FPT
algorithms, e.g. for the Hamiltonian Path and c-Paths problems. We analyse the
relationship of these new measures to OCN. The first results of this paper (Sec-
tion 2) are two new polynomial algorithms for computing OCN on digraphs of
DAG-depth 2, and on digraphs of K-width 1 with a “single reachable fragment”.
Then we show that, although our algorithms do seem relatively simple and one
would expect there to be more involved variants for (at least slightly) more
general cases, the bounds in these algorithms are in fact “tight”. To this end
we introduce a new reduction proving that the OCN4 problem is NP-complete
already for digraphs with K-width 1 and DAG-depth 3 (Theorem 5).

1.2 Definitions

We assume that the reader is familiar with all basic definitions related to undi-
rected and directed graphs. Keep in mind that digraph stands for directed graph
and DAG stands for acyclic digraph. Our digraphs are simple; they have no par-
allel arcs or loops, but can have two arcs in opposite directions.

Let G,H be digraphs. A homomorphism of G to H is a mapping f : V (G) →
V (H) such that for all (a, b) ∈ E(G), it holds (f(a), f(b)) ∈ E(H).

Definition 1 ([2]). The k-oriented chromatic number (OCNk) problem is de-
fined as follows: Given a digraph G, is there a homomorphism from G to Hk,
where Hk is some (irreflexive antisymmetric) orientation of edges of the complete
graph on k vertices?

430 R. Ganian and P. Hliněný

There is also the natural optimization variant (OCN)— to find the minimum k
such that OCNk is true.

For simplicity, we will sometimes say that a set of vertices of G have the same
colour— meaning that they all map into the same vertex of H . Notice that each
colour class is an independent set in G, and that if there is an arc from a vertex
coloured a to a vertex coloured b, then there can never be an arc from a vertex
coloured b to a vertex coloured a. This is a useful and intuitive way of looking
at oriented colouring.

Next, we introduce the first of the two aforementioned width parameters:

Definition 2 ([6]). A digraph G has K-width k if k is the lowest integer such
that, for any pair of vertices s, t ∈ V (G), the number of distinct directed paths
from s to t is at most k. Note that these paths need not be pairwise disjoint.

K-width is related to the better-known DAG-width [1,12] in the sense that
bounded K-width implies bounded DAG-width. More precisely, the K-width of
a G is greater or equal to the DAG-width of G minus one [6]. On the other hand,
DAGs (which have DAG-width 0) can have arbitrarily high K-width.

The last part of the definitions introduces DAG-depth, an interesting directed
counterpart to the better known tree-depth [10]. First, we need to formalize the
notion of reachable fragments. For a digraph G and any v ∈ V (G), let Gv denote
the subdigraph of G induced by the vertices reachable from v. The maximal
elements of the poset {Gv : v ∈ V (G) } in the digraph-inclusion order are
then called reachable fragments of G (further referred to as RF(G)). Notice that
reachable fragments in the undirected case coincide with connected components.

Definition 3 ([6]). The DAG-depth ddp(G) of a digraph G is inductively de-
fined as follows: If |V (G)| = 1, then ddp(G) = 1. If G has a single reach-
able fragment, then ddp(G) = 1 + min{ddp(G − v) : v ∈ V (G)}. Otherwise,
ddp(G) = max{ddp(F) : F ∈ RF(G)}.

DAG-width has a beautiful characterization [12] via a “cops and robber” game:
In this game, on a digraph G, the robber can move between the vertices of G
along cop-free directed paths at great speed, while cops move to vertices of G
in a helicopter which the robber can see and escape. The DAG-width of G then
equals the minimum number t of cops sufficient to catch the robber in G (by
landing at him when he has no escape route). Similarly:

Theorem 1 ([6]). The DAG-depth of a digraph G is at most t if, and only if,
the cop player has a “lift-free” winning strategy in the t-cops and robber game
on G, i.e. a strategy that never moves a cop from a vertex once he has landed.

Based on the game characterization, it is easy to see that DAG-depth may never
be higher than DAG-width. However, DAG-depth is in fact much more restrictive
than DAG-width: [6] The number of vertices on the longest directed path in a
digraph G is at most 2t − 1 where t = ddp(G). Theorem 1 will be useful for
determining the DAG-depth of some digraphs in the next sections.

New Results on the Complexity of Oriented Colouring 431

2 The Algorithms

First of all, we remark that the problems OCN2 and OCN3 are trivially solvable,
see e.g.[3]. We present our results for solving OCN4 on digraphs of K-width 1
consisting of a single reachable fragment, and of DAG-depth 2.

2.1 Digraphs of K-Width 1

We begin by proving a few structural properties of digraphs G with K-width 1
consisting of a single reachable fragment (i.e. having |RF(G)| = 1). First, choose
any vertex such that the whole digraph G is reachable from that vertex. This
will be the unique source of G, or s. Then perform a Depth-First search of G
from s to create a Depth-First search tree; the paths from s to the leaves of this
Depth-First search tree will be called branches, and the (x, y) arcs where y is
a predecessor of x in some branch will be called back-arcs.

Proposition 1. For any two branches X = (x0, x1, . . . xa) and Y = (y0, y1,
. . . yb) starting in s = x0 = y0, the following holds:

1) For any two vertices x ∈ V (X)\V (Y) and y ∈ V (Y)\V (X), there is no (x, y)
arc in G.

2) X and Y intersect in a single path starting in s.
3) For any back-arc (xi, xj), i > j, it holds that no xk, i ≥ k > j can be the start

point of a back-arc, and no xl, i > l ≥ j can be the endpoint of a back-arc.
4) If xi = yi is the last vertex in common of X and Y , and there is a back-arc

(xm, xn),m > i > n, then there can be no back-arc (yp, yq), p > i > q.

Proof. Points 1) and 2) follow trivially from the digraph having K-width 1.
For point 3), if xk, i ≥ k > j were the starting point of a back-arc in G, then

there would be two paths from xk to xk−1: One would use the back-arc starting
at xk and then follow down the branch, the other would follow down the branch,
use the back-arc (xi, xj) and then follow down the branch to xk−1. On the other
hand, if xl, i > l ≥ j were the endpoint of a back-arc in G, again there would be

Fig. 1. Forbidden situations by 1), 2), 3) and 4) respectively

432 R. Ganian and P. Hliněný

two paths from xl+1 to xl: One would go down the branch and use the back-arc
ending at xl, the other would go down to xi, use the back-arc (xi, xj) and then
follow down to xl.

As for point 4), if there was a back-arc (yp, yq), p ≥ i > q, there would be two
paths from xi to xi−1: One going through X and using (xm, xn), the other going
through Y and using (yp, yq). �

This means that our digraph is formed by a set of (non-disjoint) branches from
a common source, which at some point disconnect from one another and each
end up at separate leaves. Cycles only occur when a back-edge is present, and
each back-edge corresponds to precisely one cycle, since there is only one path
from the endpoint of the back-edge to its start. And, finally, any two cycles can
only intersect in at most one vertex. From these facts, we get:

Theorem 2. A digraph G with K-width 1 consisting of a single reachable frag-
ment either contains a directed cycle of length 2 or 5, or can be orientedly
coloured by 4 colours in polynomial time.

Proof. It is a trivial observation that directed cycles of length 5 require 5 colours
for oriented colouring. Cycles of length 2 can not be orientedly coloured at all.
We prove the oriented colourability of digraphs without such cycles by providing
an algorithm for colouring them using 4 colours:

We start by giving the following orientation of arcs in the target 4-vertex
digraph H4 (cf. Def. 1).

34

1 2

Notice that, given any cycle (of length other than 2 and 5) with fixed colouring
at one single vertex, such a cycle always remains colourable by using H . For
cycles of length 3 and 4, one can fill in the colours by using the 3-cycles and
4-cycle in H , and any number above 5 can be decomposed into a sum of threes
and fours – which provides a suitable colouring for such cycles.

Our algorithm works as follows:

– First, find a source s of the reachable fragment by performing a reversed
Depth-First search on G.

– Then, start a Depth-First search from s. The only reason for this Depth-First
search is to identify back-arcs (we remember whether every arc is normal or
a back-arc).

– Next, start a new, slightly modified Depth-First search from s. During the
search, colour every traversed vertex in accordance with H until an incoming
back-arc b is reached. The arc b corresponds to a cycle, and we must ensure
that the colouring respects this cycle. So, go to the vertex x starting the
back-arc b = (x, y) and then backtrack via normal arcs all the way up to
the end y of b. If we had not avoided back-arcs, we could have ended up

New Results on the Complexity of Oriented Colouring 433

backtracking further down the Depth-First search tree. While backtracking,
we record the length of the cycle so that we can colour accordingly. Note
that even if this means that vertices can be visited more often than in an
ordinary Depth-First search, in fact the number of visits only goes up by at
most two. Once we reach the end y of the back-arc b (where we had originally
started backtracking), start colouring in a manner respecting the length of
the cycle and always choose the branch leading to the start of the back-arc.

– If we ever find a 2-cycle or 5-cycle, return false. Otherwise, using Proposition
1, we are left with a valid oriented 4-colouring when the algorithm ends. �

We remark that the previous algorithm can be trivially adjusted to find an
oriented 5-colouring for any digraph of K-width 1 consisting of a single reachable
fragment, unless a directed 2-cycle is present.

Corollary 1. There is a polynomial algorithm that, given a digraph G of K-
width 1 consisting of a single reachable fragment, determines the oriented chro-
matic number of G.

Proof. (sketch) First check for directed cycles of length 2. If any are present, the
digraph is not orientedly colourable. Otherwise run the algorithms for OCN2,
OCN3 (always polynomial) and the introduced algorithms for OCN4 and OCN5.
One of them must suceed. �

2.2 Digraphs of DAG-Depth 2

Again, we start by introducing a few structural remarks about digraphs
of DAG-depth 2. We then use these remarks to prove that all digraphs of
DAG-depth 2 are either orientedly 3-colourable or contain a 2-cycle by providing
an algorithm for computing a valid 3-colouring.

Remark 1. Digraphs of DAG-depth 2 contain none of the following subgraphs:

Proposition 2. In a digraph of DAG-depth 2, for any two paths of length 2
P = (a1, a2, a3), Q = (b1, b2, b3), and any v ∈ V (P)∩V (Q), it holds v = ai = bi
for some 1 ≤ i ≤ 3. Also, an arc (ai, bj) can only exist if j > i.

Proof. (sketch) It is easy to check that all other possibilities result in a path of
length 3, which is forbidden by Remark 1. �

Theorem 3. Digraphs of DAG-depth 2 without 2-cycles are always orientedly
3-colourable. Furthermore, there exists a simple polynomial algorithm computing
a 3-colouring for such digraphs.

434 R. Ganian and P. Hliněný

Proof. We utilize the fact that DAG-depth 2 implies no path of length
higher than 2. H = (V,E) will be defined as follows: V = {1, 2, 3}, E =
{(1, 2), (1, 3), (2, 3)}. Start by colouring all paths of length 2 by colours 1,
2, 3 for the first, second and third vertices respectively. If a 2-cycle is found,
return “false” and terminate. If there are no 2-cycles then this is a valid partial
oriented colouring by H – paths will remain properly coloured even when they
intersect or have arcs between them thanks to Proposition 2.

Now, iteratively run through all arcs with at least one endpoint in an un-
coloured vertex. Note that all arcs from uncoloured vertices must start at sources
and all arcs into uncoloured vertices must end at sinks, since otherwise an un-
coloured 2-path would be present. Simply colour all the sinks by 3 and sources
by 1, and the remaining disconnected vertices can be coloured arbitrarily. We
end up with a valid oriented 3-colouring, assuming the digraph had DAG-depth
2 and no 2-cycles. �

3 Hardness Proofs

3.1 Acyclic Digraphs

The first NP-hardness proof in this article is for OCN4 on the class of DAGs.
Although the same result was claimed true already by the authors of [3], their
paper only sketched a reduction gadget with a picture, and the sketch missed
a key point— which would require further work and proving to ensure that no
cycles are present in the resulting digraph. So, we decided to include our own
reduction here, which is more straightforward and avoids the aforementioned
problem. Another reason for proving the acyclic case first is that it serves as
a motivation for the DAG-depth and K-width reduction (Theorem 5), and allows
us to introduce tools which are useful for both of these cases. Please note that
the target homomorphism digraph for our reduction is necessarily H of Fig. 3;
the reasons will be made clear in the proof of Theorem 4.

Lemma 1. Consider the gadget S from Fig. 2 and the target H from Fig. 3.

a1

t b

f

a2

m

x

¬x s

l1

l2

s′

l3

Fig. 2. Gadgets L to the left and S to the right

New Results on the Complexity of Oriented Colouring 435

AB

T F

Fig. 3. The unique target colouring digraph H for our reductions

1. For any precolouring (l1, l2, l3) �→ {T, F}3 of S with the exception of
(F, F, F), there is a homomorphism S → H extending it.

2. No homomorphism S → H maps (l1, l2, l3) to (F, F, F).

Proof. To explain one issue in advance, we remark that the same statement holds
also for a “simpler” gadget S′ which results from S by identifying s with s′. It
is, however, that this S′ has DAG-depth 4 while S has only 3, cf. Theorem 5.

1. As the proof, we show a table containing instructions on how to colour S for
all combinations of T and F at l1, l2, l3 (except for triple-F). For each li, the
table contains the colours to be used in the sequence of vertices from s to li.

(l1, l2, l3) Evaluation l1-branch l2-branch l3-branch
T,T,T BFAT BFABT BFBTFABT
T,T,F BFAT BFABT BFBTFABF
T,F,T BFAT BFABF BFBTFABT
T,F,F BFAT BFABF BFBTFABF
F,T,T ABTF ABFAT ABABFABT
F,T,F ABTF ABFAT ABABFABF
F,F,T FABF FABTF FAFABFAT

2. Here we show another table, this time describing the relationship between
the colour of s and possible li colourings. As one can see, all combinations
are possible except for triple-F , thus concluding our proof.

Colour at s Admissible l1 col. Admissible l2 col. Admissible l3 col.
A F T T,F
B T T,F T,F
T T T,F T,F
F T,F F T

�

Theorem 4. The OCN4 problem is NP-complete even on the class of DAGs.

Proof. We reduce 3-SAT to OCN4 with the use of two gadgets, S for clauses
and L for literals – see Fig. 2.

The reduction works as follows: Given a 3-SAT formula, for every literal we
construct a copy of the gadget L consisting of vertices {a1, f, b, t, a2,m} as de-
picted by the figure. For every clause we then construct a copy of the gadget S,

436 R. Ganian and P. Hliněný

where l1, l2 and l3 are identified with the vertices we have created for the appro-
priate literals or their negations which appear in that particular clause.

Assume we have a 3-SAT evaluation. Then we must show that it is possible
to provide a valid oriented 4-colouring of this digraph. Let us name the colours
A,B, F, T (Fig. 3). The vertices a1, a2, b, t, f will be coloured in accordance to
their names, m will be coloured by B and every x and ¬x will be coloured
by T and F depending on whether the literal is true or false in the 3-SAT
evaluation — if it is true, then the vertex marked x in the figure will be coloured
by T and ¬x by F , and otherwise the colours will be switched. The T –F and
F–T paths of length 5 are 4-colourable by the sequences (T,A, F, T,A, F) and
(F, T,A,B, F, T) respectively. All that remains now is to orientedly colour all S
gadgets. Notice that the arcs between colours allow us to use H as the orientation
of edges for the colouring. So, the colourability of S is certified by Lemma 1(1).

On the other hand, assume we are given an oriented 4-colouring of such a di-
graph and want to find a valid 3-SAT evaluation. Vertices a1, t, b, f all need to
have distinct colours, and without loss of generality we can again name these
colours A, T,B, F . The arcs between these four vertices in L, and the existence
of an arc (f, a2) easily leave the homomorphism image H from Fig 3 as the only
admissible variant of colouring. Notice that a2 and m must then be coloured by
A,B respectively.

Now all the vertices x and ¬x have to be coloured by either T or F . Our goal
is to have T represent “true” and F represent “false”, but for that to make sense
x and ¬x may not be both coloured by the same colour—that is where the
interconnecting 5-path is used. It is easy to verify that a 5-path starting with T
(or F) can not end with T (or F). So right now, we are given an evaluation
of literals in the 3-SAT formula by the colouring: If the appropriate literal is
coloured by T in x, evaluate it as “true”, otherwise evaluate it as “false”.

But what certifies that such an evaluation of all literals satisfies the 3-SAT
formula? Here the specifics of S come into play. As proved in Lemma 1(2),
S allows any combination of the colours T, F at l1, l2, l3 except for F, F, F .

So, to recapitulate, it is possible to straightforwardly translate an
oriented 4-colouring of such a digraph to the evaluation of the 3-SAT formula.
The digraph structure guarantees that the evaluation will be sound (i.e. every
literal is “true” iff its negation is “false”) and that the evaluation will satisfy the
formula. This concludes our proof. �

Remark 2. The digraph instances of the OCN4 problem in Theorem 4 are of
K-width 3 and DAG-depth 5.

3.2 Digraphs of DAG-Depth 3 and K-Width 1

Here we prove NP-hardness of the OCN4 problem on another very restricted
(c.f. Remark 2) digraph class—those that have simultaneously K-width 1 and
DAG-depth 3. Although the constructed instances are not acyclic, all the values
of traditional directed width parameters such as directed tree-width [8],
DAG-width [1,12], Kelly-width [7] and cycle rank [4] remain bounded and very

New Results on the Complexity of Oriented Colouring 437

small. To recapitulate, these bounds on K-width and DAG-depth mean that
there exists at most one path between any two vertices and that the robber can
always be caught by cops in 3 moves in the cops-and-robber game of Theorem 1.
This is just a little less restrictive than in Theorems 2 and 3.

Theorem 5. The OCN4 problem is NP-complete even on the class of digraphs
with K-width 1 and DAG-depth 3.

Proof. We prove the theorem by a reduction very similar to the case of Theo-
rem 4. Notice that if the gadget S is applied on literals which are sinks in the
graph, then the conditions on DAG-depth and K-width hold. We will however
use a different variable gadget L1 (Fig. 4) of smaller K-width and DAG-depth.

p

q r

u b

¬x

.

x

Fig. 4. Gadget L1

Then, for every literal in the 3-SAT formula we create a separate copy of L1,
for each clause a separate copy of S and merge the copies of vertices x and ¬x
with l1, l2, l3 of S in accordance with clauses of the formula. It is easy to verify
that such a digraph will have K-width 1 and DAG-depth 3: Since the gadget S
only intersects with other gadgets in copies of li and all li are sinks, K-width can
only be increased above 1 by L1. However, the K-width of L1 is also 1. As for
DAG-depth, the robber can be caught in 3 moves regardless of his starting point
in S or L1. Specifically, if the robber is in L1 and starts in n, x or ¬x, then he
can be caught trivially. Otherwise, place cops on q, u and then he is caught by
the third one. Catching the robber in S is also simple and we leave the details
to the reader as an exercise.

So, assume we have a 3-SAT evaluation. We will use the same H as in the pre-
vious reduction. If the literal is true in the evaluation, then we colour (p, q, r, u, b)
as (F,A,B, T,B) and x,¬x as T and F . If it is false, we colour (p, q, r, u, b) as
(B, T, F,A,B) and x,¬x as F and T . Finally, colour S by Lemma 1(1).

On the other hand, assume we have a valid oriented 4-colouring of such a di-
graph. Choose any 4-cycle C in a copy of L1. C must be coloured by 4 distinct
colours, without loss of generality let’s say p, q, r, u are coloured by some colours
P,Q,R,U respectively. This forces a 4-cycle in H and at this moment the only
two orientations of arcs which remain undetermined in H are {P,R} and {Q,U}.

If x and ¬x were to be coloured by R and P (i.e. without using a “cross
arc” in the cycle), we would not be able to assign any colour to B. So, only two
possibilities can occur:

438 R. Ganian and P. Hliněný

UP

Q R

UP

Q R

Fig. 5. The colour digraphs H1 and H2 respectively

1. ¬x coloured by P and x coloured by U . Then b must be coloured by R and
we obtain H = H1 (Fig. 5 and 3). By identifying (R,U, P,Q) = (B, T, F,A)
we see that this is isomorhpic to H as before.

2. ¬x coloured by Q and x coloured by R. Then b must be coloured by P and
we obtain H = H2 (Fig. 5 and 3). By identifying (R,U, P,Q) = (F,A,B, T)
we again see that this is isomorhpic to H .

So both admissible cases lead to the same (up to isomorphism) and only possible
orientation of arcs in H . Since the aforementioned holds separately for every copy
of L1, each copy of x and ¬x must be coloured only by T or F and never by
the same colour as the other. Lemma 1(2) already certifies that under these
conditions S forces every clause in the 3-SAT formula to hold true, concluding
our proof. �

4 Conclusions

There are two possible interpretations of the results of the article. One is opti-
mistic: there are some positive results and the problem can be algorithmically
solved for DAG-depth 2 and special cases of K-width 1. This is a step forward,
since no such positive results exist for traditional directed width parameters. It
also remains an open question whether the algorithm for K-width 1 could be ex-
tended to a parameterized FPT algorithm with respect to the number of sources
in the digraph.

In light of OCN4 remaining NP-hard even after such severe restriction of
the class of input graphs, we believe that new width parameters are needed
for tackling this and perhaps other hard problems on digraphs. The recently
introduced bi-rank-width measure [9], a natural directed extension of rank-width,
could be a promising candidate. However, bi-rank-width is conceptually quite
far away from the aforementioned width measures—these are mostly inspired by
cops-and-robber games and undirected tree-width (see e.g. [13])—while bi-rank-
width is close to the undirected clique-width and rank-width measures.

A strong positive aspect of bi-rank-width is that it performs much better [6]
than the other aforementioned directed width measures with respect to an exis-
tence of polynomial algorithms for hard problems on digraphs (such as Directed
Steiner Tree or Directed Feedback Vertex Set). Particularly, the OCNc prob-
lem can be solved in FPT time on digraphs of bounded bi-rank-width for every
fixed c [6].

New Results on the Complexity of Oriented Colouring 439

There still are many unanswered questions though. One such question is the
parameterized complexity of computing the oriented chromatic number (the op-
timization variant OCN) on digraphs of bounded bi-rank-width, as the algorithm
used for computing the ordinary chromatic number on graphs of bounded rank-
width [5] can not be straightforwardly extended to oriented colourings.

The major question in this context seems to be the following: Can one find
a more restrictive directed width measure which is conceptually related to tree-
width (and to cops and robber games), and which at the same time allows to
solve the OCNc problem efficiently?

References

1. Berwanger, D., Dawar, A., Hunter, P., Kreutzer, S.: DAG-Width and Parity Games.
In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 524–536.
Springer, Heidelberg (2006)

2. Courcelle, B.: The Monadic Second Order-Logic of Graphs VI: on Several Repre-
sentations of Graphs by Relational Structures. Discrete Appl. Math. 54, 117–149
(1994)

3. Culus, J.-F., Demange, M.: Oriented Coloring: Complexity and Approximation.
In: Wiedermann, J., Tel, G., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM
2006. LNCS, vol. 3831, pp. 226–236. Springer, Heidelberg (2006)

4. Eggan, L.: Transition Graphs and the Star-Height of Regular Events. Michigan
Mathematical Journal 10(4), 385–397 (1963)

5. Ganian, R., Hliněný, P.: Better Polynomial Algorithms on Graphs of Bounded
Rank-Width. In: IWOCA 2009, Extended Abstract. LNCS. Springer, Heidelberg
(to appear, 2009)

6. Ganian, R., Hliněný, P., Kneis, J., Langer, A., Obdržálek, J., Rossmanith, P.: On
Digraph Width Measures in Parameterized Algorithmics. In: Chen, J., Fomin, F.V.
(eds.) IWPEC 2009. LNCS, vol. 5917, pp. 185–197. Springer, Heidelberg (2009)

7. Hunter, P., Kreutzer, S.: Digraph Measures: Kelly Decompositions, Games, and
Orderings. Theor. Comput. Sci. 399(3), 206–219 (2008)

8. Johnson, T., Robertson, N., Seymour, P.D., Thomas, R.: Directed Treewidth.
J. Combin. Theory Ser. B 82(1), 138–154 (2001)

9. Kanté, M.: The Rank-Width of Directed Graphs. arXiv:0709.1433v3 (2008)
10. Nešetřil, J., Ossona de Mendez, P.: Tree-Depth, Subgraph Coloring and Homomor-

phism Bounds. European J. Combin. 27(6), 1024–1041 (2006)
11. Nešetřil, J., Raspaud, A.: Colored Homomorphisms of Colored Mixed Graphs.

J. Combin. Theory Ser. B 80(1), 147–155 (2000)
12. Obdržálek, J.: DAG-Width: Connectivity Measure for Directed Graphs. In: SODA

2006, pp. 814–821. ACM-SIAM (2006)
13. Robertson, N., Seymour, P.: Graph Minors X. Obstructions to Tree-Decomposition.

J. Combin. Theory Ser. B 52(2), 153–190 (1991)
14. Sopena, É.: Oriented Graph Coloring. Discrete Math. 229, 359–369 (2001)

Smooth Optimal Decision Strategies
for Static Team Optimization Problems

and Their Approximations

Giorgio Gnecco1,2 and Marcello Sanguineti2

1 Department of Computer and Information Science (DISI), University of Genova
Via Dodecaneso, 35, 16146 Genova, Italy

2 Department of Communications, Computer, and System Sciences (DIST)
University of Genova

Via Opera Pia 13, 16145 Genova, Italy
giorgio.gnecco@dist.unige.it, marcello@dist.unige.it

Abstract. Sufficient conditions for the existence and uniqueness of
smooth optimal decision strategies for static team optimization problems
with statistical information structure are derived. Approximation meth-
ods and algorithms to derive suboptimal solutions based on the obtained
results are investigated. The application to network team optimization
problems is discussed.

Keywords: Team utility function, value of a team, statistical informa-
tion structure, approximation schemes, suboptimal solutions, network
optimization.

1 Introduction

Decision makers (DMs) cooperating to achieve a common goal, expressed via
a team utility function, model a variety of problems in engineering, economic
systems, management science and operations research, in which centralization is
not feasible and so distributed optimization processes have to be performed. Each
DM has at disposal various possibilities of decisions generated via strategies, on
the basis of the available information that it has about a random variable, called
state of the world. In the model that we adopt, the information is expressed via
a probability density function, so we have a statistical information structure [13,
Chapter 3].

In general, one centralized DM that, relying on the whole available informa-
tion, maximizes the common goal, provides a better performance than a set of
decentralized DMs, each of them having partial information. However, central-
ization is not always feasible. For example, each DM may have access only to
local information that cannot be instantaneously exchanged. Alternatively, the
cost of making the whole information available to one single DM may be too
high with respect to having several DMs with different information. This is of-
ten the case, e.g., in communication and computer networks extending in large

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 440–451, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Smooth Optimal Decision Strategies 441

geographical areas, production plants, energy distribution systems, and traffic
systems in large metropolitan areas divided into sectors.

In the team optimization problems that we address in this paper, the infor-
mation of each DM depends on the state of the world but is independent of the
decisions of the other DMs. These are called static teams, in contrast to dynamic
teams, for which each DM’s information can be affected by the decisions of the
other members. However, many dynamic team optimization problems can be
reformulated in terms of equivalent static ones [28].

Static teams were first investigated by Marschak and Radner [22,23,24], who
derived closed-form solutions for some cases of interest. Then, dynamic teams
were studied [5]. Unfortunately, closed-form solutions to team optimization prob-
lems can be derived only under quite strong assumptions on the team utility
function and the way in which each DM’s information is influenced by the state
of the world (and, in the case of dynamic teams, by the decisions previously taken
by the other DMs). In particular, most available results hold under the so-called
LQG hypotheses (i.e., linear information structure, concave quadratic team util-
ity, and Gaussian random variables) and with partially nested information, i.e,
when each DM can reconstruct all the information available to the DMs that
affect its own information [7,12]. However, as remarked in [9], these assumptions
are often too simplified or unrealistic. For more general problems, closed-form
solutions are usually not available, so one has to search for suboptimal solutions.

In this paper, we derive sufficient conditions for the existence and uniqueness
of smooth optimal decision strategies, for static team optimization problems with
statistical information structure. Then, we show that a sufficiently high degree of
smoothness of the optimal decision strategies is a useful property when searching
for suboptimal solutions.

The paper is organized as follows. Section 2 introduces definitions and as-
sumptions and formulates the family of static team optimization problems under
consideration. Section 3 investigates existence and uniqueness of smooth opti-
mal strategies for such problems. Section 4 examines some consequences of the
obtained results in developing approximation methods and algorithms to derive
suboptimal solutions. Section 5 discusses the application of our results to static
network team optimization problems.

2 Problem Formulation

The context in which we shall formalize the optimization problem and derive
our results is the following.

– Static team of n decision makers (DMs), i = 1, . . . , n.
– x ∈ X ⊆ Rd0 : vector-valued random variable, called state of the world,

describing a stochastic environment. The vector x models the uncertainties
in the external world, which are not controlled by the DMs.

– yi ∈ Yi ⊆ Rdi : vector-valued random variable, which represents the informa-
tion that the DM i has about x.

442 G. Gnecco and M. Sanguineti

– si : Yi → Ai ⊆ R: measurable strategy of the i-th DM.
– ai = si(yi): decision that the DM i chooses on the basis of the information yi.
– u : X ×Πn

i=1Yi ×Πn
i=1Ai ⊆ RN → R, where N =

∑n
i=0 di + n: real-valued

team utility function.
– The information that the n DMs have on the state of the world x is modelled

by an n-tuple of random variables y1, . . . , yn, i.e., by a statistical information
structure [6] represented by a joint probability density ρ(x, y1, . . . , yn) on the
set X ×Πn

i=1Yi.

We shall address the following family of static team optimization problems.

Problem STO (Static Team Optimization with Statistical Informa-
tion). Given the statistical information structure ρ(x, y1, . . . , yn) and the team
utility function u(x, y1, . . . , yn, a1, . . . , an), find

sup
s1,...sn

v(s1, . . . , sn) ,

where
v(s1, . . . , sn) = Ex,y1,...,yn {u(x, {yi}n

i=1, {si(yi)}n
i=1)} .

The quantity sups1,...sn
v(s1, . . . , sn) is called the value of the team.

Throughout the paper, we make the following three assumptions. For Ω⊆Rd,
by C(Ω) we denote the space of continuous functions on Ω; for a positive integer
m > 0, by Cm(Ω) we denote the spaces of functions on Ω, which are continuous
together with their partial derivatives up to the order m.

A1. The sets X,Y1, . . . , Yn are compact, and A1, . . . , An are bounded closed
intervals. For an integer m ≥ 2, the team utility u is of class Cm on an open set
containing X ×Πn

i=1Yi ×Πn
i=1Ai, and ρ a (strictly) positive probability density

on X ×Πn
i=1Yi, which can be extended to a function of class Cm on an open set

containing X ×Πn
i=1Yi.

A concave function f defined on a convex set Ω has concavity at least τ > 0
if for all u, v ∈ Ω and every supergradient1 pu of f at u one has f(v) − f(u) ≤
pu · (v− u)− τ‖v− u‖2. If f is of class C2(Ω), then a necessary condition for its
concavity at least τ is supu∈Ω λmax(∇2f(u)) ≤ −τ , where λmax(∇2f(u)) is the
maximum eigenvalue of the Hessian ∇2f(u).

A2. There exists τ > 0 such that the team utility function u : X × Πn
i=1Yi ×

Πn
i=1Ai is separately concave in each of the decision variables, with concavity at

least τ (i.e., if all the arguments of u are fixed except the decision variable ai,
then the resulting function of ai has concavity at least τ).

Assumption A2 is motivated by tractability reasons and encountered in prac-
tice. For example, in economic problems it can be motivated by the “law of
diminishing returns”, i.e., the fact that the marginal productivity of an input
usually diminishes as the amount of output increases [23, p. 99 and p. 110].
1 For Ω ⊆ Rd convex and f : Ω → R concave, pu ∈ Rd is a supergradient of f at u ∈ Ω

if for every v ∈ Ω it satisfies f(v) − f(u) ≤ pu · (v − u) .

Smooth Optimal Decision Strategies 443

A3. For every n-tuple {s1, . . . , sn} of strategies, the strategies defined as

ŝ1(y1) = argmax
a1∈A1

Ex,y2,...,yn |y1{u(x, {yi}n
i=1, a1, {si(yi)}n

i=2)} ∀y1 ∈ Y1 ,

. . .

ŝn(yn) = argmax
an∈An

Ex,y1,...,yn−1 |yn{u(x, {yi}n
i=1, {si(yi)}n−1

i=1 , an)} ∀yn ∈ Yn

do not lie on the boundaries of A1, . . . , An, respectively.
The interiority condition in Assumption A3 can be imposed a-priori, by

strongly penalizing the team utility function on the boundary. Simple exam-
ples of problems for which Assumptions A1, A2 and A3 hold simultaneously can
be constructed by starting from a problem in which there is no interaction among
the DMs (i.e., u(x, y1, . . . , yn, s1(y1), . . . , sn(yn)) =

∑n
i=1 ui(x, y1, . . . , yn, si(yi)),

so that the assumptions are easy to impose), then adding to the team utility
function a sufficiently small smooth interaction term.

3 Existence and Uniqueness of Smooth Optimal
Strategies

The next theorem (which takes the hint from [13, Theorem 11, p. 162], and
extends it to a higher degree of smoothness) gives conditions guaranteeing that
Problem STO has a solution made of an n-tuple of strategies that are Lipschitz
continuous together with their partial derivatives up to a certain order. For
limitations of space, we only sketch the proof for n = 2; details can be found
in [8, Chapter 5].

Theorem 1. Let Assumptions A1, A2 and A3 hold. Then Problem STO admits
an n-tuple (so

1, . . . , s
o
n) of Cm−2 optimal strategies with partial derivatives that

are Lipschitz up to the order m− 2.

Sketch of proof. Let n = 2. Consider a sequence {sj
1, s

j
2} of pairs of strategies,

indexed by j ∈ N+, such that limj→∞ v(sj
1, s

j
2) = sups1,s2

v(s1, s2) (such a se-
quence exists by the definition of supremum). From the sequence {sj

1, s
j
2}, we

generate another sequence {ŝj
1, ŝ

j
2} defined by

ŝj
1(y1) = argmax

a1∈A1

M j
1 (y1, a1)∀y1 ∈ Y1 ,

ŝj
2(y2) = argmax

a2∈A2

M j
2 (y2, a2)∀y2 ∈ Y2 ,

where for every (y1, a1) ∈ Y1 ×A1 and (y2, a2) ∈ Y2 ×A2, we let

M j
1 (y1, a1) = Ex,y2 |y1{u(x, y1, y2, a1, s

j
2(y2))} ,

M j
2 (y2, a2) = Ex,y1 |y2{u(x, y1, y2, ŝ

j
1(y1), a2)} .

Since the probability density ρ(x, y1, y2) is of class Cm and strictly positive on an
open set containing X×Y1×Y2, we obtain that the conditional density ρ(x, y2|y1)

444 G. Gnecco and M. Sanguineti

is of class Cm on the compact set X × Y1 × Y2 and the team utility function u
is of class Cm on the compact set X × Y1 × Y2 ×A1 ×A2. So M j

1 , as an integral
dependent on parameters, is of class Cm on the compact set Y1×A1, with upper
bounds on the sizes of its partial derivatives up to the order m independent
of y1, a1, and j. In particular, it is easy to show that M j

1 has concavity at least τ
in a1. By such continuity and concavity properties of M j

1 with respect to a1,
for all y1 ∈ Y1 the set argmaxa1∈A1

M j
1 (y1, a1) consists of exactly one element.

An analogous conclusion holds for argmaxa2∈A2
M j

2 (y2, a2). So ŝj
1 and ŝj

2 are
well-defined.

Let y′1, y′′1 ∈ Y1. By the definition of ŝj
1, exploiting the concavity τ of M j

1

with respect to a1 and taking the supergradient 0 of M j
1 with respect to the

second variable at (y′1, ŝ
j
1(y

′
1)) and (y′′1, ŝ

j
1(y

′′
1)), respectively, we get

M j
1 (y′1, ŝ

j
1(y

′′
1))−M j

1 (y′1, ŝ
j
1(y

′
1)) ≤ −τ |ŝj

1(y
′′
1)− ŝj

1(y
′
1)|2 (1)

and
M j

1 (y′′1, ŝ
j
1(y

′
1))−M j

1 (y′′1, ŝ
j
1(y

′′
1)) ≤ −τ |ŝj

1(y
′
1)− ŝj

1(y
′′
1)|2 . (2)

By (1) and (2) we obtain

|M j
1 (y′1, ŝ

j
1(y

′′
1))−M j

1 (y′1, ŝ
j
1(y

′
1))|+ |M j

1 (y′′1, ŝ
j
1(y

′
1))−M j

1 (y′′1, ŝ
j
1(y

′′
1))|

≥ 2τ |ŝj
1(y

′′
1)− ŝj

1(y
′
1)|2 . (3)

Let L1 > 0 (which can be chosen independently of j) be an upper bound on the
Lipschitz constant of M j

1 . Then by (3) we obtain 2L1‖y′′1− y′1‖ ≥ 2τ |ŝj
1(y

′′
1)−

ŝj
1(y

′
1)|2 , i.e.,

|ŝj
1(y

′′
1)− ŝj

1(y
′
1)| ≤

√
L1

τ

√
‖y′′1 − y′1‖ , (4)

which proves the Hölder continuity of ŝj
1, hence its continuity and measurability.

Continuity and measurability of ŝj
2 can be proved in the same way. Then it makes

sense to evaluate v(ŝj
1, ŝ

j
2), and by construction we have v(ŝj

1, ŝ
j
2) ≥ v(sj

1, s
j
2)).

Let us focus on the strategies of the first DM. The next step consists in
showing that there exists a subsequence of {ŝj

1} that converges uniformly to
a strategy so

1 ∈ Cm−2(Y1) with Lipschitz (m − 2)-order partial derivatives. By

Assumption A3, for every y1 ∈ Y1 ŝj
1(y1) is interior, so ∂Mj

1
∂a1

∣∣∣
a1=ŝj

1(y1)
= 0 .

Then, by the Implicit Function Theorem, for every k = 1, . . . , d1 we get ∂ŝj
1

∂y1,k
=

−
(

∂2Mj
1

∂ŝj
1
2

)−1
∂2Mj

1

∂ŝj
1∂y1,k

, where
(

∂2Mj
1

∂ŝj
1
2

)
≤ −τ < 0 by the concavity at least τ

of M j
1 in a1 and its smoothness.

As M j
1 is of class Cm, by taking higher-order partial derivatives we conclude

that ŝj
1(y1) is locally of class Cm−1. As this holds for every y1 ∈ Y1, it is of

class Cm−1 on all Y1. Since M j
1 has upper bounds on the sizes of its partial

Smooth Optimal Decision Strategies 445

derivatives up to the order m that are independent of y1, a1, and j, then for ev-
ery (i1, . . . , id1) such that i1 + . . .+ id1 = m−1, there exists a finite upper bound

on

∣∣∣∣∣ ∂m−1ŝj
1

∂y
i1
1,1,...,∂y

id1
1,d1

∣∣∣∣∣, which is independent of y1 and j. So, one can easily show

that for every (i1, . . . , id1) such that i1 + . . .+ id1 = m− 2, the functions of the

sequence

{
∂m−2ŝj

1

∂y
i1
1,1,...,∂y

id1
1,d1

}
are equibounded and have the same upper bound on

their Lipschitz constants, so they are uniformly equicontinuous on Y1. Hence, by
Ascoli-Arzelà’s Theorem [1, Theorem 1.30, p. 10], such sequence admits a sub-
sequence that converges uniformly to a function defined on Y1, which is also
Lipschitz, with the same upper bound on its Lipschitz constant as above.

By integrating m − 2 times, we conclude that also the integrals of these
subsequences converge uniformly to the integrals of the limit functions. There-
fore, there exists a subsequence of {ŝj

1} that converges uniformly to a strat-
egy so

1 ∈ Cm−2(Y1) with Lipschitz (m − 2)-order partial derivatives. Similarly,
one proves that there exists a subsequence of {ŝj

2} that converges uniformly to
so
2 ∈ Cm−2(Y1) with Lipschitz (m− 2)-order partial derivatives.
By the continuity of the functional v(s1, s2) on C(Y1) × C(Y2) with the re-

spective sup-norms, finally we obtain v(so
1, s

o
2) = limj→∞ v(ŝj

1, ŝ
j
2) = sups1,s2

v(s1, s2) . �

The next theorem show that, under additional conditions, the optimal n-tuple
of smooth strategies is unique. We denote by C(Yi, Ai) the set of continuous
functions from Yi to Ai with the sup-norm. Without loss of generality, we restrict
the spaces of admissible strategies to C(Yi, Ai), as one can show that under the
assumptions of Theorem 1 any optimal strategy coincides almost everywhere
with a continuous function. To simplify the statement, in Theorem 2 we consider
the case of n = 2 DMs, but it can be extended to n ≥ 2 DMs.

Theorem 2. Let the assumptions of Theorem 1 hold with m ≥ 3 and n = 2,

and let also
β1,2

τ < 1, where β1,2 = max(a1,a2)∈A1×A2

∣∣∣∣ ∂2

∂a1∂a2
u(x, y1, y2, a1, a2)

∣∣∣∣.
Then (so

1, s
o
2) given in Theorem 1 is the unique optimal pair of strategies in

C(Y1, A1)× C(Y2, A2).

Sketch of proof. Inspection of the first part of the proof of Theorem 1 shows
that there exists a (possibly nonlinear) operator T : C(Y1, A1) × C(Y2, A2) →
C(Y1, A1)× C(Y2, A2) such that

T1(s1, s2)(y1) = argmax
a1∈A1

Ex,y2 |y1{u(x, y1, y2, a1, s2(y2))} ∀y1 ∈ Y1,

T2(s1, s2)(y2) = argmax
a2∈A2

Ex,y1 |y2{u(x, y1, y2, T1(s1, s2)(y1), a2)} ∀y2 ∈ Y2.

Let (so′
1 , s

o′
2) ∈ C(Y1, A1) × C(Y2, A2) be an optimal pair of strategies. Then

it is easy to see that (so′
1 , s

o′
2) = T (so′

1 , s
o′
2) is a necessary condition for its

446 G. Gnecco and M. Sanguineti

optimality. By Assumption A3 and the compactness of Y1 and Y2, for any
(s1, s2) ∈ C(Y1, A1) × C(Y2, A2) the strategies T1(s1, s2) and T2(s1, s2) belong
respectively to the interiors of C(Y1, A1) and C(Y2, A2). So, Problem STO is re-
duced to an unconstrained infinite-dimensional game theory problem, for which
one can apply the techniques developed in [17] to study the stability of Nash
equilibria. This can be done since every pair of optimal strategies for Problem
STO constitutes a Nash equilibrium for a two-player game, for which the individ-
ual utilities J1 and J2 are the same and are equal to v(s1, s2). By using the norm√

Eyi{(si(yi))2} on C(Y1, A1) and C(Y2, A2) (instead of the usual sup-norms),
computing the Frechét derivatives of the integral functional v up to the second
order and applying [17, Theorem 1, formula (1)], one can show that, for m ≥ 3,
T is a contraction operator with contraction constant bounded from above by
β2
1,2
τ2 < 1. So, T has at most a unique fixed point (so′

1 , s
o′
2) ∈ C(Y1, A1)×C(Y2, A2),

which by Theorem 1 coincides with (so
1, s

o
2). �

4 Approximation Methods and Algorithms

In this section, we discuss how the existence and uniqueness of an optimal n-
tuple of strategies with a sufficiently high degree of smoothness can be exploited
when searching for suboptimal solutions to Problem STO.

4.1 Estimates of the Accuracy of Suboptimal Solutions by
Nonlinear Approximation Schemes

In [10, Propositions 4.2 and 4.3] we have shown that, for a degree of smooth-
ness m in Assumption A1 that is linear in maxi{di} (i.e., the maximum di-
mension of the information vectors yi), the smooth optimal strategies so

1, . . . , s
o
n

(whose existence is guaranteed by Theorem 1), can be approximated by suit-
able nonlinear approximation schemes modelling one-hidden-layer neural net-
works [11] with Gaussian and trigonometric computational units, with upper
bounds on the approximation errors of order k−1/2, where k is the number
of computational units used in such schemes. This is an instance of the so-
called blessing of smoothness [21]. We are currently investigating the extension
of such results to other nonlinear approximation schemes with sigmoidal and
spline computational units. The numerical results in [2,3,4] show that often these
approximation schemes (which belong to the wider family of variable-basis ap-
proximation schemes [15,16]) are able to find accurate suboptimal solutions to
team optimization problems with high-dimensional states, using a small num-
ber of parameters to be optimized. Variable-basis approximation schemes have
been successfully exploited also in other optimization tasks (see the references
in [30,31]).

4.2 Application of Quasi-Monte Carlo Methods

Another consequence of a sufficiently high degree of smoothness of the optimal
strategies is that it allows the application of quasi-Monte Carlo methods [20]

Smooth Optimal Decision Strategies 447

and related ones (such as Korobov’s method; see [29] and [14, Chapter 6])
for the approximate computation of the multidimensional integrals v(so

1, . . . , s
o
n)

and v(s̃1, . . . , s̃n), where s̃1, . . . , s̃n are smooth approximations of so
1, . . . , s

o
n. For

example, upper bounds on the error in the approximate evaluation of a multidi-
mensional integral by quasi-Monte Carlo methods can be obtained via Koksma-
Hlawka’s inequality [20, p. 20], which requires that the integrand has a finite
variation in the sense of Hardy and Krause [20, p. 19]. Considering, e.g., the
case of an integrand f defined on a r-dimensional unit-cube [0, 1]r, the most
common formula [20, p. 19, formula (2.5)] used to prove that f has a finite
variation in the sense of Hardy and Krause requires that f ∈ Cr([0, 1]r) (i.e.,
its degree of smoothness has to be at least equal to the number of variables).
With the obvious changes in notation, Theorem 1 provides such a degree of
smoothness, for m ≥

∑n
i=0 di + 2.

4.3 Algorithms for Suboptimal Solutions

Finally, we investigate some implications of our results in the development of
algorithms to find suboptimal solutions to Problem STO. For simplicity of ex-
position, we consider the case of n = 2 agents.

Recall that under the assumptions of Theorem 2, the operator T defined in
the proof of such theorem is a contraction operator. Then, given any initial pair
of smooth suboptimal strategies (s̃01, s̃02) and the unique (and a-priori unknown)
optimal one (so

1, s
o
2), for every positive integer M one has

max
{

max
y1∈Y1

|so
1(y1)− s̃M

1 (y1)|, max
y2∈Y2

|so
2(y2)− s̃M

2 (y2)|
}

≤
(
β2

1,2

τ2

)M

max
{

max
y1∈Y1

|so
1(y1)− s̃01(y1)|, max

y2∈Y2
|so

2(y2)− s̃02(y2)|
}
, (5)

where
(s̃M

1 , s̃M
2) = T M (s̃01, s̃

0
2) (6)

and
β2
1,2
τ2 < 1. So, for the algorithm (6), the upper bound (5) shows that the rate

of convergence to the optimal pair of strategies is exponential in M .
In practice, however, the operator T itself has to be replaced by a finite-

dimensional approximating operator. Consider, e.g., an approximation scheme
in which one searches for suboptimal strategies of the form

s̃1 =
h∑

j=1

cj,1φj,1 and s̃2 =
h∑

j=1

cj,2φj,2 ,

where the positive integer h and the basis functions {φj,1}h
j=1 and {φj,2}h

j=1 are
fixed, and {cj,1}h

j=1, {cj,2}h
j=1 are real coefficients to be optimized. Let

ũ(x, y1, y2, {cj,1}, {cj,2}) = u(x, y1, y2, s̃1(y1), s̃2(y2)) .

448 G. Gnecco and M. Sanguineti

Then, one can replace (6) by

({cMj,1}, {cMj,2}) = T̃ M
h

(
{c0j,1}, {c0j,2}

)
, (7)

where one chooses the approximating operator T̃h such that

T̃h,1({cj,1}, {cj,2}) = argmax
{ĉj,1}

Ex,y1,y2{ũ(x, y1, y2, {ĉj,1}, {cj,2})} , (8)

T̃h,2({cj,1}, {cj,2}) = argmax
{ĉj,2}

Ex,y1,y2{ũ(x, y1, y2, Th,1({cj,1}, {cj,2}), {ĉj,2})} (9)

(for simplicity, we are assuming that there exist unique maxima). Exploiting
Assumption A2, one can show that finding the argmax in (8) and (9) for fixed
{cMj,1}, {cMj,2} requires one to solve two stochastic finite-dimensional concave op-
timization problems, to which the information-based-complexity results [27] and
the efficient algorithms described in [19, Chapter 14] may be applied.

Subjects of future research include studying the properties of the above-
defined operator T̃h and of other approximating operators. In particular, it is
of interest finding conditions under which

– the operator T̃h is a contraction operator (like T);
– the minimum positive integer h and the minimum number of elementary

operations of the algorithms described in [19, Chapter 14], required to find
a suboptimal solution to Problem STO with an error at most ε > 0, grow
“slowly” with respect to 1/ε.

5 Network Team Optimization

For static network team optimization problems [10], our smoothness results take
on a simplified form. For these problems, the team utility function u can be
written as the sum of a finite number of individual utility functions ui, each
one associated with a single DM (e.g., a router) or with a shared resource in
the network (e.g., a communication link). In addition, each ui depends only on
a subset of the DMs. This situation can be described by a multigraph, where the
DMs are the nodes and there is an edge between two DMs if and only if both
appear in a same individual utility function.

Figure 1 gives an idea of a network team optimization problem modeling
a store-and-forward packet-switching telecommunication network (see [2,4]).
Suppose that the DMs are n routers acting as members of a same team (i.e., they
aim to maximize a common objective, decomposable into the sum of several in-
dividual objectives related, e.g., to the congestion of the links). Each router has
at its disposal some private information (e.g., the total lengths of its incoming
packet queues). Assume also that the traffic flows can be described by continu-
ous variables. Then, on the basis of its private information, each router decides
how to split the incoming traffic flows into its output links. The network team
optimization problem consists in finding optimal (or nearly optimal) n-tuples of

Smooth Optimal Decision Strategies 449

DM1

DM2

DM3

DM5

DM4

Fig. 1. An example of store-and-forward packet-switching telecommunication network
(left). An example of graph model with buffers at the nodes (right).

strategies according to some given optimality criterion (for simplicity we ignore
any dynamics in the problem, and we model it as a static one).

Compared with a general instance of Problem STO, the particular structure
of a static network team optimization allows various simplifications:

– For any n-tuple of strategies, the integral v(s1, . . . , sn) can be decomposed
into the sum of a finite number of integrals, each usually dependent on
less than

∑n
i=0 di real variables. So, the minimum degree m of smoothness

required to apply [20, p. 19, formula (2.5)] is usually less than
∑n

i=0 di + 2
(compare with the general case in Section 4).

– Since the strategy of each DM is influenced only by those of its neighbors in
the network, Assumption A3 may be easier to impose.

– One can show that an extension of Theorem 2 to n > 2 DMs can be for-
mulated in terms of interaction terms βi,j , where (i, j) are pairs of different
DMs in the team. For a static network team optimization problem, usually
most of the βi,j are equal to 0 (since the interaction of each DM is limited
to its neighbors in the graph), so such extension takes a simplified form.

As to specific applications to static network team optimization problems, our
smoothness results may be applied, e.g., to stochastic versions of the congestion,
routing, and bandwidth allocation problems considered in [18, Lectures 3 and 4],
which are stated in terms of smooth and concave individual utility functions.

Acknowledgement. The authors were partially supported by a grant “Progetti
di Ricerca di Ateneo 2008” of the University of Genova, project “Solution of
Functional Optimization Problems by Nonlinear Approximators and Learning
from Data”.

450 G. Gnecco and M. Sanguineti

References

1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)
2. Baglietto, M., Parisini, T., Zoppoli, R.: Distributed-Information Neural Control:

The Case of Dynamic Routing in Traffic Networks. IEEE Trans. on Neural Net-
works 12, 485–502 (2001)

3. Baglietto, M., Parisini, T., Zoppoli, R.: Numerical Solutions to the Witsenhausen
Counterexample by Approximating Networks. IEEE Trans. on Automatic Con-
trol 46, 1471–1477 (2001)

4. Baglietto, M., Sanguineti, M., Zoppoli, R.: The Extended Ritz Method for Func-
tional Optimization: Overview and Applications to Single-Person and Team Opti-
mal Decision Problems. Optimization Methods and Software 24, 15–43 (2009)

5. Basar, T., Bansal, R.: The Theory of Teams: A Selective Annotated Bibliography.
Lecture Notes in Control and Information Sciences, vol. 119. Springer, Heidelberg
(1989)

6. Blackwell, D.: Equivalent Comparison of Experiments. Annals of Mathematical
Statistics 24, 265–272 (1953)

7. Chu, K.C.: Team Decision Theory and Information Structures in Optimal Control
Problems – Part II. IEEE Trans. on Automatic Control 17, 22–28 (1972)

8. Gnecco, G.: Functional Optimization by Variable-Basis Approximation Schemes.
PhD Thesis in Mathematics and Applications, Dept. of Mathematics, University
of Genova (2009)

9. Hess, J., Ider, Z., Kagiwada, H., Kalaba, R.: Team Decision Theory and Integral
Equations. J. of Optimization Theory and Applications 22, 251–264 (1977)

10. Gnecco, G., Sanguineti, M.: Suboptimal Solutions to Network Team Optimization
Problems. In: CD-Proc. of the Int. Network Optimization Conf. 2009 (INOC 2009),
Pisa, Italy (April 2009)

11. Haykin, S.: Neural Networks. A Comprehensive Foundation. MacMillan, New York
(1994)

12. Ho, Y.C., Chu, K.C.: Team Decision Theory and Information Structures in Optimal
Control Problems - Part I. IEEE Trans. on Automatic Control 17, 15–22 (1972)

13. Kim, K.H., Roush, F.W.: Team Theory. Ellis Horwood, Chichester (1987)
14. Krommer, A.R., Ueberhuber, C.W.: Computational Integration. SIAM, Philadel-

phia (1998)
15. Kůrková, V., Sanguineti, M.: Error Estimates for Approximate Optimization by

the Extended Ritz Method. SIAM J. of Optimization 18, 461–487 (2005)
16. Kůrková, V., Sanguineti, M.: Geometric upper Bounds on Rates of Variable-Basis

Approximation. IEEE Trans. on Information Theory 54, 5681–5688 (2008)
17. Li, S., Basar, T.: Distributed Algorithms for the Computation of Noncooperative

Equilibria. Automatica 23, 523–533 (1987)
18. Mansour, Y.: Computational Game Theory. Tel Aviv University, Israel (2006),

http://www.cs.tau.ac.il/~mansour/course_games/2006/course_games_05_

06.htm

19. Nemirovski, A.: Efficient Methods in Convex Programming. Technion, Haifa, Israel
(1994), http://www2.isye.gatech.edu/~nemirovs/Lect_EMCO.pdf

20. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods.
SIAM, Philadelphia (1992)

21. Poggio, T., Smale, S.: The Mathematics of Learning: Dealing with Data. Notices
of the American Mathematical Society 50, 537–544 (2003)

http://www.cs.tau.ac.il/~mansour/course_games/2006/course_games_05_06.htm
http://www.cs.tau.ac.il/~mansour/course_games/2006/course_games_05_06.htm
http://www2.isye.gatech.edu/~nemirovs/Lect_EMCO.pdf

Smooth Optimal Decision Strategies 451

22. Marschak, J.: Elements for a Theory of Teams. Management Science 1, 127–137
(1955)

23. Marschak, J., Radner, R.: Economic Theory of Teams. Yale University Press, New
Haven (1972)

24. Radner, R.: Team Decision Problems. Annals of Mathematical Statistics 33, 857–
881 (1962)

25. Rantzer, A.: Using Game Theory for Distributed Control Engineering. In:
3rd World Congress of the Game Theory Society Games (2008); (Tech. Rep. ISRN
LUTFD2/TFRT--7620–SE, Dept. of Aut. Contr., Lund Univ., Sweden) (July 2008)

26. Segall, A.: The Modeling of Adaptive Routing in Data–Communication Networks.
IEEE Trans. on Communications 25, 85–95 (1977)

27. Traub, J.F., Wasilkowski, G.W., Woźniakowski, H.: Information Based Complexity.
Academic Press, New York (1988)

28. Witsenhausen, H.S.: Equivalent Stochastic Control Problems. Mathematics of Con-
trol, Signals, and Systems 1, 3–11 (1988)

29. Zinterhof, T.: High Dimensional Integration: New Weapons Fighting the Curse of
Dimensionality. Physics of Particles and Nuclei Letters 5, 145–149 (2008)

30. Zoppoli, R., Parisini, T., Baglietto, M., Sanguineti, M.: Neural Approximations for
Optimal Control and Decision. Springer, London (in preparation)

31. Zoppoli, R., Sanguineti, M., Parisini, T.: Approximating Networks and Extended
Ritz Method for the Solution of Functional Optimization Problems. J. of Opti-
mization Theory and Applications 112, 403–439 (2002)

Algorithms for the Minimum Edge Cover
of H-Subgraphs of a Graph

Alexander Grigoriev, Bert Marchal, and Natalya Usotskaya

School of Business and Economics
Department of Quantitative Economics, Maastricht University

PO Box 616, 6200 MD Maastricht, The Netherlands
{a.grigoriev,b.marchal,n.usotskaya}@maastrichtuniversity.nl

Abstract. We consider the following problem: given graph G and a set
of graphs H = {H1, . . . , Ht}, what is the smallest subset S of edges in G
such that all subgraphs of G that are isomorphic to one of the graphs
from H contain at least one edge from S? Equivalently, we aim to find
the minimum number of edges that needs to be removed from G to make
it H-free. We concentrate on the case where all graphs Hi are connected
and have fixed size. Several algorithmic results are presented. First, we
derive a polynomial time dynamic program for the problem on graphs
of bounded treewidth and bounded maximum vertex degree. Then, if
H contains only a clique, we adjust the dynamic program to solve the
problem on graphs of bounded treewidth having arbitrary maximum ver-
tex degree. Using the constructed dynamic programs, we design a Baker’s
type approximation scheme for the problem on planar graphs. Finally, we
observe that our results hold also if we cover only induced H-subgraphs.

Keywords: Minimum edge deletion, H-free graph, bounded treewidth,
Baker’s approximation scheme, planar graph.

1 Introduction

In the field of combinatorial graph theory, lately there has been an increased
interest in graphs that do not contain some specified graph as a subgraph or as
an induced subgraph. An apparent reason for this is that many combinatorial
problems on graphs become easier when restricted to graphs that exclude certain
subgraphs. For some examples of such problems, we refer to [1,8,11]. In this
paper, we present methods for turning an arbitrary input graph into a graph
that excludes certain subgraphs. This will be done by removing edges from the
input graph. Given input graph G and a finite set of graphs H = {H1, . . . , Ht},
we call a subgraph of G an H-subgraph of G if it is isomorphic to one of the
graphs in set H . In this context, graph G is usually referred to as the text and H
as the set of patterns. Graph G is called H-free if there are no H-subgraphs in G.
The set of edges that needs to be removed from G to make it H-free obviously
covers all occurrences of an H-subgraph in G. The problem that is addressed in
this paper can therefore be formulated in the following two ways:

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 452–464, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Algorithms for the Minimum Edge Cover of H-Subgraphs of a Graph 453

PROBLEM: H-Free Edge Deletion
Input: Text graph G and finite set of patterns H = {H1, . . . , Ht}
Question: What is the minimum number of edges that needs to be

deleted from G to make it H-free?

PROBLEM: H-Subgraph Edge Cover
Input: Text graph G and finite set of patterns H = {H1, . . . , Ht}
Question: What is the cardinality of a smallest set of edges of G

covering all H-subgraphs of G?

From here on, we will stick to the problem H-Subgraph Edge Cover and by de-
fault, we intent to find a minimum edge cover of the set of all H-subgraphs
of G. By making some small adjustments in the dynamic program that is de-
scribed later, we can also deal with the problem of covering the set of all induced
H-subgraphs of G. We leave the details to the full journal version of the paper.

The decision version of the problem H-Subgraph Edge Cover (given integer k,
is it possible to cover all H-subgraphs of G with at most k edges?) is NP-
complete, since the case where G is planar and has maximum degree 7 and H =
{K3} was shown to be NP-complete by Brügmann, Komusiewicz and Moser,
see [7].

Several papers in the field deal with constructing graphs that are H-free for
a set H that often contains just one pattern, see [6,10]. Only a very limited
amount of papers deal with turning graphs intoH-free graphs. In [7], the problem
is considered of making graphs K3-free by minimum number of edge deletions.
We consider the more general problem where H is a finite set of connected
patterns of constant size.

The paper is organized in the following way: in Section 2, some preliminaries
and definitions are introduced. In Section 3, a polynomial time dynamic pro-
gram is derived for H-Subgraph Edge Cover for the case where text graph G has
bounded treewidth and bounded degree and H is one fixed connected graph. In
Section 4, we consider the case where H is a fixed clique and we present a poly-
nomial time algorithm for the problem on text graphs G that have bounded
treewidth and arbitrary maximum vertex degree. In Section 5, we describe
a Baker’s type approximation scheme (see [2]) for H-Subgraph Edge Cover for
the case where G is planar. In the last section, we briefly show how the methods
in Sections 3, 4 and 5 can be extended to deal with a finite set H = {H1, . . . , Ht}
of fixed connected patterns instead of with one such pattern.

2 Preliminaries and Definitions

A planar graph is a graph that can be drawn in the plane in such a way that
its edges intersect only at their endpoints. Such a drawing is called a planar
embedding of the graph. A planar embedding in which all vertices are on the
exterior face is called a 1-outerplanar embedding. For k ≥ 1, a planar embedding
is k-outerplanar if removing the vertices that are on the exterior face results
in a (k − 1)-outerplanar embedding. A graph is called k-outerplanar if it has

454 A. Grigoriev, B. Marchal, and N. Usotskaya

a k-outerplanar embedding. The outerplanarity index of a planar graph is the
smallest value k for which G is k-outerplanar. The following lemma is due to
Kammer, see [9]:

Lemma 1. Given a planar graph G, the outerplanarity index k of G and a k-
outerplanar embedding of G can be found in O(n2) time.

Given a planar embedding of planar graph G = (V,E), vertex v is of level 1 if it
is on the exterior face of the embedding. Let Vi be the set of all vertices of level i
or lower than i, then vertex w is in level i+ 1 if it is on the exterior face of the
embedding induced by G[V \ Vi]. We say that edge e = (v, w) ∈ E is in level i
of the embedding if both vertices v and w are in level i. We assume throughout
the rest of the paper, that a planar embedding is represented by an appropriate
data structure such that levels of vertices can be computed in linear time.

A tree decomposition of G is a pair (X,T), where T is a tree and X is a family
of bags. The bags Xi are identified with the nodes of the tree. Every bag Xi

contains a subset of V such that:

• ∀ v ∈ V ∃ Xi ∈ X : v ∈ Xi.
• ∀ (u, v) ∈ E ∃ Xi ∈ X : {u, v} ⊆ Xi.
• ∀ v ∈ V the collection of bags containing v forms a connected subtree of T .

The width w of tree decomposition (X,T) of G is equal to the size of its largest
bag minus one. The treewidth tw(G) of G is the minimum width over all tree
decompositions of G. The following lemma is due to Bodlaender, see [4]:

Lemma 2. The treewidth of a k-outerplanar graph is at most 3k − 1.

A lot of research has been dedicated to the fixed parameter case for treewidth,
i.e. check whether the treewidth of a graph is at most some constant w and if so,
return a tree decomposition of width at most w. For an overview of this work
we refer to [5]. Finally, in [3] the following result was obtained:

Lemma 3. Given a graph of treewidth at most w, a tree decomposition of width
at most w can be obtained in linear time.

From a practical viewpoint the algorithm is only useful for low values of w
because of a big hidden constant in the ′O′-notation in the running time of the
linear algorithm.

3 Dynamic Program for G with Bounded Δ(G), tw(G)

In this section, we consider H-Subgraph Edge Cover on text graph G that has
bounded degree and bounded treewidth and arbitrary fixed pattern H . We con-
struct a dynamic programming algorithm for this setting that solves H-Subgraph
Edge Cover in time that is exponential only in the maximum degree of G, in
the width of a tree decomposition of G and in some fixed parameters of H . As
we believe that H-Subgraph Edge Cover can be formulated in Monadic Second
Order Logic, the restriction of bounded degree is likely to be superfluous. We

Algorithms for the Minimum Edge Cover of H-Subgraphs of a Graph 455

hope to present an algorithm for the unrestricted case in a journal version of the
paper. Our algorithms run on so called nice tree decompositions of G, which we
define as follows:

Definition 1. We call a tree decomposition (X,T) of G nice when:

• all bags corresponding to leaves of T contain exactly one vertex,
• for all pairs of adjacent bags X1 and X2 in T there is a vertex v ∈ V such

that either X1 = X2 ∪ {v} or X2 = X1 ∪ {v},
• for any bag X no two neighbors bags of X contain the same vertex set.

Note that our definition of a nice tree decomposition differs from the one that
is very commonly used in the literature. We now make a simple observation
concerning nice tree decompositions of G.

Observation 1. The maximum degree in the tree of a nice tree decomposition
(X,T) of G is at most n.

Proof. Consider any bag X in T . It has no neighbors with the same vertex set, so
if X contains k vertices, then in at most k neighbor bags of X a vertex is deleted
compared to X and in at most n− k neighbor bags of X a vertex is introduced
compared to X . Hence bag X has at most n neighbor bags in (X,T). �

It is not difficult to show that any ’reasonable’ tree decomposition of G, like
one that is obtained using the algorithm from Lemma 3, can be turned into
a nice tree decomposition of the same width in linear time. From now on, we
assume that a nice tree decomposition (X,T) of G is given that is rooted in
some arbitrary bag Xr. By w, we denote the width of (X,T). The maximum
degree in G will be denoted by Δ(G) and by h and d we denote respectively the
size and the diameter of pattern H . Since G has bounded degree and bounded
treewidth and H is a fixed pattern, the values Δ(G), w, h and d are constants.

Given bag X in tree decomposition (X,T), we let TX be a subtree of T that
is rooted in X and we let G[TX] be the subgraph of G that is induced by all
vertices from the bags in TX . By EX we denote the set of all edges of G for which
both end points are present in bag X and by EX , we denote a subset of EX ,
i.e. EX ∈ 2EX . For bag X , by VX we denote the set of vertices of G that are
in bag X . For subtree TX , by VTX we denote the set of vertices of G that are
present in some bag of TX . Finally for vertex set S, by HS we denote the set of
different H-subgraphs in G that are incident to some vertex in S and by HS , we
denote a subset of HS .

Lemma 4. Given Q = h!
(
Δ(G)d+1

h

)
,

• For vertex v, |H{v}| is bounded from above by Q,
• For bag X, the value |HVX | is bounded from above by (w + 1)Q,

Proof. Given that v corresponds to some vertex of an H-subgraph in G it is
clear that all h vertices in this H-subgraph have distance at most d to v in this
H-subgraph and thus also in G. Since the maximum degree in G is Δ(G) > 1,

456 A. Grigoriev, B. Marchal, and N. Usotskaya

there are at most
∑d

i=0 Δ(G)i = Δ(G)d+1−1
Δ(G)−1 ≤ Δ(G)d+1 vertices in G that have

distance at most d to v. Since
(
Δ(G)d+1

h

)
different sets of h vertices can be chosen

among Δ(G)d+1 vertices and each such set can contain at most h! different H-
subgraphs, the result follows. The second statement is a straightforward corollary
of the first one, since |X | ≤ w + 1. �

We now present the main theorem of this section.

Theorem 2. Given G of bounded maximum degreeΔ(G), fixed connected pattern
H and a nice tree decomposition (X,T) of G of bounded width w, the problem H-
Subgraph Edge Cover on G can be solved in time O(n222w2+3(w+1)Qw4Q2), where
Q = h!

(
Δ(G)d+1

h

)
.

Proof. Given subtree TX of T , we define:

• F (EX , TX , HVX) is the minimum cardinality of a set S of edges from G[TX]
that covers all H-subgraphs from (HVTX

\ HVX) ∪ HVX in G, given that
S ∩ EX = EX

• F (EX , TX , HVX) = ∞ if H-subgraphs from (HVTX
\HVX)∪HVX can not be

covered by EX plus some set of edges from E(G[TX]) \ EX .

For each bag X in (X,T), we compute a table of such F−values for several
subtrees rooted in X , one value for each combination of a subset from EX and
a subset from HVX . One such table thus contains 2|EX|+|HVX

| values. To be more
specific, we compute a table for the following three types of subtrees:

(1) For each bag X in T , except for root bag Xr, we compute the table for the
subtree consisting of the parent X+ of X , X and all descendants of X in T .
The root bag of this subtree is X+. Such subtree will be denoted by TX+ .

(2) For each non-leaf bag X : if X has m children X1, . . . , Xm then for each j,
1 ≤ j ≤ m we compute a table for the subtree consisting of X , X1, . . . , Xj

and all descendants of X1, . . . , Xj in T . Such a subtree will be denoted by
T{X,j}. Bag X is thus the root bag of subtree T{X,j}.

(3) For each leaf bag X we compute the table for the unique subtree T{X,0} that
is rooted in X .

Since in a nice tree decomposition leaf bag X contains only one vertex and thus
EX = ∅, computing the table for the unique subtree T{X,0} that is rooted in X
is trivial (note that for leaf bag X it holds that VT{X,0} = VX):

Lemma 5. The table for subtree T{X,0} rooted in leaf bag X contains the fol-
lowing |HVX | ≤ Q values:

F (∅, T{X,0}, HVX) =
{

0 , if HVX = ∅
∞ , otherwise.

The following lemmas give recursive formulations that show how to compute the
tables for subtrees that are rooted in a non-leaf bag of (X,T). First we show
how to update the table when we combine two subtrees that are rooted in the
same bag and have only this bag in common.

Algorithms for the Minimum Edge Cover of H-Subgraphs of a Graph 457

Lemma 6. Let T ′
X and T ′′

X be two subtrees rooted in X that only share bag X.
Let TX be the subtree that is obtained by combining T ′

X and T ′′
X and let HVX ,

IVX , JVX ∈ 2HVX . Then

F (EX , TX , HVX) = min
IVX

,JVX
:HVX

⊆IVX
∪JVX

F (EX , T
′
X , IVX)+F (EX , T

′′
X , JVX)−|EX |

The next two lemmas show how to update the values for a subtree when we
extend it by the parent bag of its root.

Lemma 7. Let TY be a subtree rooted in Y and let X = Y ∪ {v} be the parent
bag of Y . Furthermore let TX = TY + and let EY = EX ∩ EY . Then:

F (EX , TX , HVX) = min
HVY

: EX\EY covers HVX
\HVY

in G
F (EY , TY , HVY)+ |EX \EY |

and F (EX , TX , HVX) = ∞ if there is no such HVY .

Lemma 8. Let TY be a subtree rooted in Y and let X = Y \ {v} be the parent
bag of Y . Furthermore, let TX = TY + . Then:

F (EX , TX , HVX) = min
EY ,HVY

: HVX
∪(H{v}\HVX

)⊆HVY
, EY ∩EX=EX

F (EY , TY , HVY)

The following lemma gives an upper bound on the time to compute one F -value.

Lemma 9. The time needed to determine an F -value by one of the Lemmas 5,
6, 7 or 8 is bounded from above by O(2w2+2(w+1)Qw4Q2).

Proof. By Lemma 5, determining the F -values for subtrees rooted in leaf bags
is a constant time operation.

To determine a value using Lemma 6 takes O(4|HVX
||HVX |2) time. Using

Lemma 4, this is bounded from above by O(4(w+1)Qw2Q2).
To determine a value using Lemma 7, for all subsets HVY we have to check

whether all elements from HVX \HVY contain an edge from EX \EY . This takes
less than 2|HVY

||HVX ||EX | time and by using Lemma 4 and the observation that
|EX | ≤ w2, this is bounded from above by O(2(w+1)Qw3Q).

To determine a value using Lemma 8, for all combinations of EY and HVY we
have to check whether HVX ⊆ HVY , whether H{v} \ HVX ⊆ HVY and whether
EY ∩ EX = EX . This takes less than 2|EY |+|HVY

|(|HVX |+ |HVX |2 + |EX |2) time
and as before this can be bounded from above by O(2w2+(w+1)Qw4Q2).

Clearly, all these running times are smaller than O(2w2+2(w+1)Qw4Q2). �

Using Lemmas 5, 6, 7 and 8, we can compute all tables. For all bags in the tree,
in post order, we can compute the tables for the necessary subtrees rooted in
this bag. By Lemma 5, computing the table for a leaf bag X is trivial. If X is
not a leaf bag, suppose X has m children X1, . . . , Xm, then for all j, 1 ≤ j ≤ m,
we compute the tables for all subtrees T{X,j}. We note that T{X,1} is the same
subtree as TX+

1
. Thus using Lemma 7 or 8 we can compute the table for subtree

T{X,1} from the already earlier computed table for subtree TX1 . For 2 ≤ j ≤ m,

458 A. Grigoriev, B. Marchal, and N. Usotskaya

we note that T{X,j} is the union of T{X,j−1} and TX+
j
. Thus we first use Lemma 7

or 8 to compute the table for subtree TX+
j

using the table for subtree TXj . Then
we use Lemma 6 to compute the table for subtree T{X,j} from the tables for
subtrees T{X,j−1} and TX+

j
. If root bag Xr has m children in T , then subtree

T{Xr,m} is equal to T . The answer to H-Subgraph Edge Cover can be found in
the table of T{Xr,m}. To be more precise, the solution is:

min
EXr

F (EXr , T{Xr ,m},HVXr
) .

Using the optimal set EXr , we can do a backward search in the tree to determine
a minimum set of edges covering all H-subgraphs in G. To estimate the running
time of the dynamic program, in the following lemma we determine an upper
bound on the number of individual F -values that will be computed:

Lemma 10. During a run of the dynamic program, at most O(n22w2+(w+1)Q)
F -values need to be determined.

Proof. Consider arbitrary bag X in (X,T). By Observation 1, X has at most
n child bags Y , so we compute tables for at most n subtrees TY + of type 1 rooted
in X . Moreover, since X has at most n child bags we compute tables for at most
n subtrees of type 2 that are rooted in X . Finally, it is obvious that we compute
tables for at most 1 subtree of type 3 that is rooted in X . Hence we compute
tables for at most O(n) subtrees of T rooted in X .

Since a nice tree decomposition of G has O(n) bags, we compute at most
O(n2) tables in total. Since the width of tree decomposition (X,T) is w, there
are at most w+1 vertices in bag X and therefore |EX | is bounded from above by
w2+w

2 ≤ w2 for w ≥ 1. Furthermore, by Lemma 4, |HVX | is bounded from above
by (w+1)Q. The latter two observations imply that the number of values in one
table is bounded from above by 2w2+(w+1)Q, from which the result follows. �

By Lemma 10, we need to compute at most O(n22w2+(w+1)Q) F -values and
by Lemma 9, it takes at most O(2w2+2(w+1)Qw4Q2) time to compute one such
value. The total time needed is thus bounded by O(n222w2+3(w+1)Qw4Q2). �

4 Dynamic Program for Clique H and Bounded tw(G)

In this section, we consider H-Subgraph Edge Cover for the special case where
H is a clique and G has bounded treewidth, i.e. compared to Section 3 we drop
the constraint that G should have bounded vertex degree. We exploit the fact
that every tree decomposition contains a bag with all vertices from the clique and
we find a polynomial time algorithm that again acts on a nice tree decomposition
of the text graph G. It is important to notice that in this section we consider
H-subgraphs of G that are induced by the vertex set of G[TX], not the vertex
set of G. The main theorem of this section is the following:

Algorithms for the Minimum Edge Cover of H-Subgraphs of a Graph 459

Theorem 3. Given arbitrary text graph G, clique pattern H of size h and a nice
tree decomposition (X,T) of G of bounded width w. Then H-Subgraph Edge
Cover on graph G can be solved in O(n222w2

w4
(

w
h−1

)
h2) time.

Proof. For subtree TX of T rooted in bag X , we define:

• F (EX , TX) is the minimum cardinality of a set S of edges from G[TX] that
covers all H-subgraphs of G[TX], given that S ∩ EX = EX .

• F (EX , TX) = ∞, if not all H-subgraphs of G[TX] can be covered by EX

plus some set of edges from E(G[TX]) \ EX .

We compute tables for the same subtrees as in the previous section. Note that
one table for a subtree rooted in bag X now consists of 2|EX| F -values. Using
similar arguments as those used in the previous section, it is easy to show that:

Lemma 11. During a run of the dynamic program, at most O(n22w2
) individual

F -values have to be determined.

The table for a leaf bag X contains only one value: F (∅, T{X,0}) = 0. The
following lemmas give recursive formulations that show how to compute the
tables for subtrees that are rooted in a non-leaf bag of T . The first lemma shows
how we can combine subtrees that are rooted in the same bag and have only
this bag in common.

Lemma 12. Let TX be obtained by taking the union of subtrees T ′
X and T ′′

X such
that the root X of T ′

X and T ′′
X is the only bag that belongs to both subtrees. Then

F (EX , TX) = F (EX , T
′
X) + F (EX , T

′′
X)− |EX |.

The next two lemmas show how to update the values for a subtree when we
extend it by the parent bag of its root.

Lemma 13. Let TY be a subtree of T rooted in bag Y , let X = Y ∪ {v} be the
parent bag of Y in T . Furthermore let TX = TY + and let EY = EX ∩ EY . Then:

F (EX , TX)=

⎧⎨
⎩
F (EY , TY) + |EX \ EY | , if EX covers all H-subgraphs of

G[TX] that are incident to vertex v.
∞ , otherwise.

Indeed, since X is the only bag containing v in TX , it also contains all neighbors
of v in G[TX]. Therefore, all edges of an H-subgraph of G[TX] that is incident
to v are part of EX and thus if such an H-subgraph is not covered by EX then
it is not covered at all.

Lemma 14. Let TY be a subtree of T rooted in bag Y , let X = Y \ {v} be the
parent bag of Y in T and let TX = TY + . Then

F (EX , TX) = min
EY : EY ∩EX=EX

F (EY , TY).

460 A. Grigoriev, B. Marchal, and N. Usotskaya

In the previous section, it is explained how Lemmas 12, 13 and 14 can be used
to determine the tables for all necessary subtrees. If root bag Xr has m children,
then the minimum value in the table of subtree T{Xr,m} is the solution to Triangle
Free Edge Deletion.

Lemma 15. The time needed to determine an F -value in the algorithm is
bounded from above by O(2w2

w4
(

w
h−1

)
h2).

Proof. Determining the value for a subtree rooted in a leaf bag or by using
Lemma 12 takes constant time. When using Lemma 13, we check whether
EX covers all H-subgraphs of G[TX] that are incident to v. Vertex v has at
most w neighbors in G[TX], so we have to check for each of the at most

(
w

h−1

)
different combinations of (h− 1) such neighbors whether they form an h-clique
with v in G[TX] for which all h2−h

2 edges are in EX \EX . Since |EX | is bounded
by O(w2), this takes at most O(w2

(
w

h−1

)
h2) time.

When using Lemma 14 to determine an F -value, for all EY we have to check
whether EY ∩EX = EX , which can be done in time O(2w2

w4). Clearly, all these
algorithmic time complexities are bounded from above by O(2w2

w4
(

w
h−1

)
h2).

By Lemma 11, we need to compute at mostO(n22w2
) F -values and by Lemma 15,

it takes at most O(2w2
w4
(

w
h−1

)
h2) time to compute one such value. Therefore,

the dynamic program runs in O(n222w2
w4
(

w
h−1

)
h2) time. �

5 Baker’s Approximation Scheme for Planar Graphs

In this final section, we consider H-Subgraph Edge Cover for planar text graphs
and patterns. By using the dynamic programs from Section 3 and 4, we construct
a Baker’s approximation scheme for the two cases where respectively G has
bounded degree and where H is a 3-clique or 4-clique.

Lemma 16. Given planar text graph G of bounded maximum degree Δ(G) and
bounded outerplanarity index l and a fixed connected pattern H. Then an optimal
solution for H-Subgraph Edge Cover can be obtained in time O(n2218l2+9lQl4Q2),
where Q = h!

(
Δ(G)d+1

h

)
.

Proof. By Lemma 1, the outerplanarity index l of G can be determined in O(n2)
time. By Lemma 2, tw(G) ≤ 3l− 1 and by Lemma 3, a tree decomposition of G
of width w ≤ 3l−1 can be obtained in linear time that can be turned into a nice
tree decomposition in linear time. By Theorem 2 we can use this nice tree decom-
position to solve H-Subgraph Edge Cover on G in time O(n222w2+3(w+1)Qw4Q2).
Since w ≤ 3l− 1, the result follows. �

A similar result can be obtained for H-Subgraph Edge Cover on planar graphs
when H is a 3-clique or 4-clique.

Lemma 17. Given planar text graph G of bounded outerplanarity index l and
pattern H that is either a K3 or K4, an optimal solution for H-Subgraph Edge
Cover on G can be obtained in time O(n2218l2 l4

(
3l−1
h−1

)
h2).

Algorithms for the Minimum Edge Cover of H-Subgraphs of a Graph 461

Proof. Similar as proof of Lemma 16. By Theorem 3, H-Subgraph Edge Cover
on G can be solved in O(n222w2

w4
(

w
h−1

)
h2). Since w ≤ 3l − 1, the result

follows. �

H-Subgraph Edge Cover on planar graphs of bounded degree with fixed pat-
tern and H-Subgraph Edge Cover on planar graphs with clique pattern are thus
both fixed parameter tractable, since they are tractable when parameterized by
outerplanarity index l of G. We now use this property to construct a Baker’s
approximation scheme that can be applied to both problems. In the following
theorem and its proof, we denote by Eopt a minimum set of edges from G covering
all H-subgraphs of G and by OPT we denote the size of Eopt.

Theorem 4. For planar text graph G of bounded degree, fixed connected pat-
tern H and any positive s, there is an O(n3218l2+9lQl4Q2)-time algorithm for
H-Subgraph Edge Cover on G that finds a solution of size at most (s+1

s)OPT .

Proof. First, we use Lemma 1 to determine G’s outerplanarity index k and a k-
outerplanar embedding of G in O(n2) time. I.e, each vertex of G belongs to one of
the k levels. Similarly, we determine H ’s outerplanarity index k′ in O(h2) time.
Now for some fixed 2k′ ≤ l ≤ k and for each i ∈ I = {mk′+1 | 0 ≤ m ≤) l

k′ −2*}
we construct a set Gi of induced subgraphs of G, consisting of the l-outerplanar
subgraphs of G:

• induced by levels 1 to i+ k′ − 1.
• induced by levels j(l − k′) + i to j(l − k′) + i+ l − 1, 0 ≤ j ≤)k−i−l+1

l−k′ *.
• induced by levels)k−i−l+1

l−k′ *(l − k′) + i+ l − k′ to k.

See Figure 1 for an illustration. Note that i+ k′ − 1 ≤) l
k′ − 2*k′ + 1 + k′ − 1 ≤

l − k′ < l and also that k − ()k−i−l+1
l−k′ *(l − k′) + i + l − k′) + 1 ≤ k − (k −

i − 2l + 1 + k′ + i + l − k′) + 1 = l, so both the subgraph induced by the first
bullet and the one induced by the third bullet are l-outerplanar. Clearly, also
the subgraphs under the second bullet are l-outerplanar. Since |I| =) l

k′ − 1*
and for each i we construct)k−i−l+1

l−k′ + 3* subgraphs, in total we construct less
than (l−k′

k′)(k+2l+1
l−k′) = k+2l+1

k′ ≤ 3k ≤ 3n = O(n) induced subgraphs of G for
fixed value of l.

outerplanarity levels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

set G1

set G4

of text G

Fig. 1. Suppose text G has 15 outerplanarity levels and pattern H is 3-outerplanar.
For l = 9, we construct two sets (G1 and G4) of 9-outerplanar subgraphs of G. For
example, the first graph in G1 is induced by all vertices in G’s first three levels.

462 A. Grigoriev, B. Marchal, and N. Usotskaya

Observation 5. For every i ∈ I, the vertices in the following set of levels are
the only vertices that are part of more than one graph from Gi:

• levels j(l − k′) + i, . . . , j(l − k′) + i+ k′ − 1, 0 ≤ j ≤)k−i−l+1
l−k′ * and

• levels)k−i−l+1
l−k′ *(l − k′) + i+ l − k′ to)k−i−l+1

l−k′ *(l − k′) + i+ l − 1

Observation 6. For at least one i ∈ I the set of levels from Observation 5
contain at most k′

l−2k′OPT edges from Eopt.

Proof. For any two different values of i from I, the two sets of levels from Ob-
servation 5 are disjoint. Thus if for all i ∈ I, the sets of levels would contain
strictly more than k′

l−2k′OPT edges from Eopt, then all these levels would contain
strictly more than

� l
k′ −2�∑
m=0

k′

l − 2k′
OPT =) l

k′
− 1* k′

l − 2k′
OPT ≥ (

l − k′

k′
− 1)

k′

l− 2k′
OPT = OPT

edges from Eopt, a contradiction. �

Now for each i ∈ I, we use Lemma 16 to compute optimal solutions to H-
Subgraph Edge Cover for all l-outerplanar subgraphs. Since for all values of i
together, the number of l-outerplanar subgraphs is bounded by O(n), this can
be done in time O(n3218l2+9lQl4Q2). We note that for each i, any H-subgraph
of G is present in at least one of the subgraphs of G induced by this i. Therefore,
for each i, the union of the optimal solutions for its induced subgraphs is a set
of edges that covers all H-subgraphs in G. The algorithm picks the best of these
unions as an approximation to the optimal solution. To see that this approxima-
tion is at most (s+1

s)OPT , consider again an optimal solution Eopt for G. We
pick the value i that by Observations 5 and 6 has not more than k′

l−2k′OPT edges
from Eopt in intersecting levels of graphs from Gi. For each element S ∈ Gi we
let ES be the set of edges in Eopt in subgraph S. Furthermore, we let E′

S be the
edges in an optimal solution of H-Subgraph Edge Cover for S. For this choice of i,
we thus have a solution of H-Subgraph Edge Cover for G of size no larger than
the sum of the |E′

S |’s. Clearly for each S it holds that |E′
S | ≤ |ES |. Moreover,

since at most k′
l−2k′OPT edges are counted twice while summing the |ES |’s, we

conclude that
∑

S∈Gi |E′
S | ≤

∑
S∈Gi |ES | ≤ k′

l−2k′OPT + OPT = l−k′
l−2k′OPT .

Thus in total time O(n2) + O(h2) + O(n3218l2+9lQl4Q2) we constructed a so-
lution of size at most l−k′

l−2k′OPT . By choosing l = (s + 2)k′ ≥ 2k′ ∀s > 0, we
obtain the (s+1

s)-approximation to OPT . �

Theorem 7. For planar text graph G, pattern H that is either a K3 or K4 and
any positive s, there is a O(n3218l2 l4

(
3l−1
h−1

)
h2)-time algorithm for H-Subgraph

Edge Cover on G that finds a solution of size at most (s+1
s)OPT .

Proof. Same as proof of Theorem 4, with the only difference that Lemma 17 is
used instead of Lemma 16. �

Algorithms for the Minimum Edge Cover of H-Subgraphs of a Graph 463

6 Generalization to Finite Sets of Patterns

In this section we generalize the results from the previous sections for a finite
set H = {H1, . . . , Ht}, t > 1 of fixed connected patterns. If Hi is a subgraph
of Hj , j �= i, then Hj is not relevant, as any edge cover of all occurrences of Hi

as a subgraph would also cover all occurrences of Hj . For the set of cliques this
means that only the smallest clique is significant and hence there is no need
to generalize the result from Section 4. Thus we consider graph G of bounded
maximum degree and a finite set H of fixed connected patterns such that for
each 1 ≤ i �= j ≤ t, Hi is not isomorphic to a subgraph of Hj . By hi, di and ki

we denote respectively the size, the diameter and the outerplanarity index of
pattern Hi. The following theorem generalizes the result of Theorem 2:

Theorem 8. Given text graph G of bounded maximum degree Δ(G), finite set
of fixed connected patterns H and a nice tree decomposition (X,T) of G of
bounded width w, the problem H-Subgraph Edge Cover on G can be solved in
time O(n222w2+3(w+1)Qw4Q2), where Q =

∑t
i=1 hi!

(
Δ(G)di+1

hi

)
.

Proof. We repeat the proof of Theorem 2, taking Q =
∑t

i=1 hi!
(

Δ(G)di+1

hi

)
as

a new upper bound on the number of the considered subgraphs of G. �

Theorem 9. For planar text graph G of bounded degree, finite set of fixed con-
nected patterns H and any positive s, there is a O(n3218l2+9lQl4Q2)-time algo-
rithm for H-Subgraph Edge Cover on G that finds a solution of size at most
(s+1

s)OPT .

Proof. The proof is similar to the proof of Theorem 4, with Q as defined in
Theorem 8 and k′ = max1≤i≤t ki. �

References

1. Alon, N., Krivelevich, M., Sudakov, B.: Maxcut in H-Free Graphs. Comb. Probab.
Comput. 14(5-6), 629–647 (2005)

2. Baker, B.S.: Approximation Algorithms for NP-Complete Problems on Planar
Graphs. J. ACM 41(1), 153–180 (1994)

3. Bodlaender, H.L.: A Linear-Time Algorithm for Finding Tree-Decompositions of
Small Treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)

4. Bodlaender, H.L.: A Partial k-Arboretum of Graphs with Bounded Treewidth.
Theor. Comput. Sci. 209(1-2), 1–45 (1998)

5. Bodlaender, H.L.: Discovering Treewidth. In: Vojtáš, P., Bieliková, M., Charron-
Bost, B., Sýkora, O. (eds.) SOFSEM 2005. LNCS, vol. 3381, pp. 1–16. Springer,
Heidelberg (2005)

6. Bohman, T.: The Triangle-Free Process. Advances in Math. 221(5), 1653–1677
(2009)

7. Brügmann, D., Komusiewicz, C., Moser, H.: On Generating Triangle-Free Graphs.
Electronic Notes in Discrete Mathematics 32, 51–58 (2009)

464 A. Grigoriev, B. Marchal, and N. Usotskaya

8. Dunbar, J.E., Frick, M.: The Path Partition Conjecture is True for Claw-Free
Graphs. Discrete Math. 307(11-12), 1285–1290 (2007)

9. Kammer, F.: Determining the Smallest k Such That G Is k-Outerplanar. In: Arge,
L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 359–370.
Springer, Heidelberg (2007)

10. Osthus, D., Taraz, A.: Random Maximal H-Free Graphs. Random Struct. Algo-
rithms 18(1), 61–82 (2001)

11. Robertson, N., Seymour, P.D., Thomas, R.: Hadwiger’s Conjecture for K6-Free
Graphs. Combinatorica 13(3), 279–361 (1993)

On the Complexity of the
Highway Pricing Problem

Alexander Grigoriev1, Joyce van Loon1,�, and Marc Uetz2

1 Maastricht University, Quantitative Economics,
P.O. Box 616, NL–6200 MD Maastricht, The Netherlands

{a.grigoriev,j.vanloon}@ke.unimaas.nl
2 University of Twente, Applied Mathematics,

P.O. Box 217, NL–7500 AE Enschede, The Netherlands
m.uetz@utwente.nl

Abstract. The highway pricing problem asks for prices to be de-
termined for segments of a single highway such as to maximize the
revenue obtainable from a given set of customers with known valuations.
The problem is NP-hard and a recent quasi-PTAS suggests that a
PTAS might be in reach. Yet, so far it has resisted any attempt for
constant-factor approximation algorithms. We relate the tractability of
the problem to structural properties of customers’ valuations. We show
that the problem becomes NP-hard as soon as the average valuations of
customers are not homogeneous, even under further restrictions such as
monotonicity. Moreover, we derive an efficient approximation algorithm,
parameterized along the inhomogeneity of customers’ valuations.
Finally, we discuss extensions of our results that go beyond the highway
pricing problem.

Keywords: Pricing problems, highway pricing problem, computational
complexity, approximation algorithm.

1 Introduction

We consider the highway pricing problem, introduced by Guruswami et al. [9].
The problem is motivated by determining revenue-maximizing tolls to be charged
for segments of a highway. The highway is thought of as a simple path, and
capacity is considered unlimited. There are potential customers, each of them
requesting to travel a sub-path of the highway, and the maximal valuation for
utilizing the requested sub-path is considered public knowledge. The objective
is to find prices to be charged for the segments of the highway so as to maximize
the total revenue obtained by the customers.

More formally, let I = {1, . . . ,m} represent the highway segments, and regard
them as consecutive edges on a simple path. Let J = {1, . . . , n} denote the set of
potential customers. Every customer j ∈ J requests a sub-path of the highway,
� Supported by METEOR, the Maastricht Research School of Economics of Technol-

ogy and Organizations.

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 465–476, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

466 A. Grigoriev, J. van Loon, and M. Uetz

denoted Ij ⊆ I, and we assume that each Ij is of the form Ij = {k, k+1, . . . ,
},
k ≤
. The valuation vj for traveling sub-path Ij is publicly known. This is quite
reasonable when assuming that the valuation is a monetary expression for the
time saving that can be realized by using the highway instead of the next-fastest
alternative route. We assume vj > 0, for otherwise that customer can be deleted
from the instance. Given a vector of prices p = (p1, . . . , pm), containing one price
for each highway segment, denote by W = {j ∈ J |

∑
i∈Ij

pi ≤ vj} the set of
winners.

Definition 1. The highway pricing problem asks for a vector of prices
(p1, . . . , pm), one for each segment of the highway, such that the total revenue∑

j∈W

∑
i∈Ij

pi extracted from the set W of winners is maximal.

1.1 Related Work

The complexity of the highway problem was left open in [9], but it was shown
weakly NP-hard by Briest and Krysta [2]. A more recent paper claims strong
NP-hardness [4]. Guruswami et al. [9] propose a polynomial time dynamic pro-
gramming algorithmwhen the valuations are boundedby a constant, and a pseudo-
polynomial time dynamic programming algorithm when the lengths of the
sub-paths are bounded by a constant. Note that the problem can be interpreted as
a bilevel linear program,and if either the price vector or the set ofwinners is known,
the problem is polynomially solvable [7,9], even under the requirement of integral
prices. Balcan and Blum [1] derive an O(logm)-approximation algorithm for the
highwayproblem, improving upon the previous O(logm+logn)-approximation of
Guruswami et al. [9], wherem is the number of highway segments andn is the num-
ber of customers.Under themonotonicity condition that the total price of any given
path is no more than the total price of a longer path, Grigoriev et al. [8] show that
a O(logB)-approximation exists, where B is an upper bound on the valuations.
Furthermore, Grigoriev et al. [7] derive an FPTAS, assuming that the maximum
capacity of any segment of the highway is bounded by a constant. Finally, Elbas-
sioni et al. [5] present a quasi-polynomial time approximation scheme for both the
capacitated and uncapacitated version of the problem, thereby suggesting that a
PTAS is likely to exist.

1.2 Motivation and Results

Intrigued by the gap between NP-hardness on the one hand, and only logarithmic
polynomial-time approximation algorithms on the other hand, in this paper we
interpret customers’ valuations in such a way that we come a step closer towards
understanding this complexity gap. To start with, let us make the following
definition, illustrated also by Example 1 below.

Definition 2 (Inhomogeneity of valuations). For any instance of the high-
way pricing problem, define v̄j = vj/|Ij | as the average (per segment) valuation
of customer j, and define the inhomogeneity of valuations as

α = max
j,k∈J

{
v̄j

v̄k

}
.

On the Complexity of the Highway Pricing Problem 467

Example 1. Figure 1 shows an example with three segments, I = {1, 2, 3}, and
six customer requests J = {1, . . . , 6}. The left part of this figure shows the
underlying highway with its alternative roads and distances, and the right part
shows the corresponding instance of the highway problem. The valuation for
traveling from the start of segment k until the end of segment
 is denoted vk,�.
This instance has inhomogeneity α = 2; comparing the valuations for {1, 2, 3}
and {2}.

7

v1,1 = 7
v2,2 = 10
v3,3 = 8
v1,2 = 12
v2,3 = 14
v1,3 = 15

15

14

10 8

12

Fig. 1. An instance of the highway pricing problem

Notice that α ≥ 1, and that the problem becomes trivial as soon as the
valuations are homogeneous (that is, α = 1), since this corresponds to the case
where all customers’ valuations per segment are identical; see Section 2.

Our first result is to show that, in contrast to the trivially solvable homoge-
neous case, the problem with inhomogeneity of valuations is (weakly) NP-hard.
While this does not sound very surprising, the main point is that this NP-
hardness result holds even if the inhomogeneity α is bounded from above by
any constant 1 + ε. In some sense, we thereby delineate the borderline between
triviality and NP-hardness for the highway pricing problem.

Furthermore, the NP-hardness result remains true even if we impose further
restrictions on customers’ valuations, such as monotonicity, that is,

vj ≤ vk for all Ij ⊆ Ik ,

and monotonicity of average valuations, that is,
vj

|Ij |
≥ (≤, resp.)

vk

|Ik|
for all Ij ⊆ Ik .

Our second result is a parametric approximation algorithm for the highway pric-
ing problem that complements the NP-hardness result. The proposed algorithm
has performance guarantee O(logα) and computation time O(n(logn + m)),
where the constant hidden in the O-notation of the performance bound is not
more than e. More specifically, it is easy to see that an α-approximation exists,
and for large values of α we show how to improve this bound to 1 + lnα+ ε for
any ε > 0. Notice that this is a constant-factor approximation algorithm as soon
as the inhomogeneity α of customers’ valuations is bounded by some constant.
We believe that such a constant bound is not unreasonable in practical appli-
cations, and note that α ≤ m for the case of monotone and decreasing average
valuations.

468 A. Grigoriev, J. van Loon, and M. Uetz

Finally, we briefly comment on the fact that the O(logα) approximation result
even holds for the more general bundle pricing problem where customers are
interested in arbitrary bundles instead of sub-paths only. In this context, notice
that if there exists any constant upper bound on the inhomogeneity α then the
semi-logarithmic inapproximability result of Demaine et al. [3] for that problem is
not longer valid. For that problem we also derive a (strong) NP-hardness result,
again for any constant upper bound on the inhomogeneity of the valuations.

2 Complexity of the Highway Problem with
Inhomogeneous Valuations

We start with the short argument that the highway problem with homogeneous
average valuations is trivially solvable: consider the average valuation v̄, which
is, by homogeneity, the same for each customer, and define the price pi = v̄ for
every segment i ∈ I. Clearly, each customer contributes her entire valuation to
the revenue, and the obtained solution is optimal.

Surprisingly enough, even if we allow only arbitrarily small deviations of ho-
mogeneous valuations, the highway problem becomes intractable. The following
theorem shows that the problem with inhomogeneous valuations remains NP-
hard even in further restricted settings.

Theorem 1. The highway problem is NP-hard even when restricted to the in-
stances satisfying the following conditions:

1. the inhomogeneity α ≤ 1 + ε where ε is an arbitrary positive constant;
2. customers valuations are monotone, i.e., vj ≤ vk for any j, k ∈ J such that

Ij ⊆ Ik;
3. customers average valuations are monotone decreasing, i.e., v̄k ≤ v̄j for any

j, k ∈ J such that Ij ⊆ Ik.

Proof. The reduction is from the Partition problem, and extends an idea by
Briest and Krysta [2]. Partition: Given integers a1, . . . , a2L and A, does there
exist a set S ⊆ {1, . . . , 2L} such that

∑
�∈S a� =

∑
�/∈S a� = A? This problem is

known to be NP-hard, even under the additional restriction that |S| = L; see [6].
We may assume that L > 3/ε, for otherwise Partition is solvable in polynomial
time. Without loss of generality, we also assume that 0 ≤ a1 ≤ . . . ≤ a2L and
a� ≤ A for all
 = 1, . . . , 2L. Let a′� = a� + (4L+ 2)A for all
 = 1, . . . , 2L, and
A′ = (4L2 + 2L+ 1)A. Note that

∑2L
�=1 a

′
� = 2A′.

We now create an instance H of the highway problem with 7L + 3 segments
combined in gadgets. Gadget
 = 1, . . . , 2L contains two segments, i = 2
 − 1
and i = 2
. Each of these two segments are requested by 2L− 1 customers with
valuation a′�. The combination of two segments, 2
 − 1 and 2
, is requested by
one customer with valuation (2− 1

L)a′�. Finally, gadget 2L+ 1 contains 3L+ 3
segments, where the first three segments, 4L+1, 4L+2, 4L+3, are requested by
one customer with valuation 12

4L+3A
′ and the last 3L segments, 4L+4, . . . , 7L+3,

are requested by 3 customers with valuation 12L
4L+3A

′. All segments in gadget

On the Complexity of the Highway Pricing Problem 469

1 2
Gadget 1

a′1 a′1

(2− 1
L)a′1

4L 4L+ 1
Gadget 2L

a′2L

(2− 1
L)a′2L

4L+ 3 4L+ 4
Gadget 2L+ 1

12
4L+3A

′ 12L
4L+3A

′a′2L

7L+ 3

(4− 1
L)A′

d = 2L − 1 d = 3

d = 3d = 1d = 1

d = 1

d = 1d = 2L − 1 d = 2L − 1d = 2L − 1

4L− 1

12L
4L+3A

′

4L+ 2

Fig. 2. Instance H

2L + 1 are also requested by 3 customers with valuation 12L
4L+3A

′. There is one
big customer, who requests the first 4L + 3 items with valuation (4 − 1

L)A′.
Instance H is displayed in Figure 2, where the number of customers interested
in a sub-path is presented by d.

Though it requires a quite extensive case study, one can straightforwardly
verify that conditions (1)-(3) of Theorem 1 are satisfied. For the first condition,
we have that α = 1 + O(1/L) implying that it can be upper bounded by 1 + ε
where ε is any positive constant.

Now we claim that there exists a feasible solution to Partition if and only
if there is a feasible solution to instance H of the highway problem with a total
revenue of at least

(
8L+ 72L

4L+3 −
1
L

)
A′.

(⇒) Given a set S ⊆ {1, . . . , 2L} such that
∑

�∈S a� =
∑

�/∈S a� = A and |S| = L.
For all
 ∈ {1, . . . , 2L}, let p2�−1 = p2� = a′� if
 ∈ S and p2�−1 = p2� = (1− 1

2L)a′�
if
 /∈ S. Furthermore, we set p4L+1 = . . . = p7L+2 = 0 and p7L+3 = 12L

4L+3A
′.

Applying this price vector, the revenue without contribution of the big customer
is equal to (4L−2)a′� in each gadget
 = 1, . . . , 2L. The big customer contributes
her entire valuation (4− 1

L)A′. In gadget 2L+1, the customer requesting segments
4L+ 1, 4L+ 2, 4L+3 gets this path for free. The other customers in this gadget
contribute their respective valuations. The total revenue generated with this
pricing vector equals

(4L− 2)
2L∑
�=1

a′� +
(

4− 1
L

)
A′ + 6 · 12L

4L+ 3
A′ =

(
8L+

72L
4L+ 3

− 1
L

)
A′.

(⇐) Given is an optimal solution to instance H with a total revenue at least
(8L + 72L

4L+3 −
1
L)A′. First, we observe that in such optimal solution, segments

4L + 1, 4L + 2, 4L + 3 are necessarily priced to 0 and the total price of the
remaining segments in gadget 2L+1 is 12L

4L+3A
′, yielding revenue 72L

4L+3A
′. To see

this, we notice that the total demand on the first three segments in this gadget
is 5 and on the latter 3L segments the demand is 6. Therefore, if the total price
on the first three segments of gadget 2L+1 is 0 < x ≤ 12

4L+3A
′, the total revenue

obtained in the gadget is at most 72L
4L+3 − x, that is, we receive x from the big

470 A. Grigoriev, J. van Loon, and M. Uetz

customer and at most x + 3(12L
4L+3A

′ − x) + 3(12L
4L+3A

′) from the customers in
gadget 2L+1. The above suggested pricing does not decrease revenue generated
in gadgets 1, . . . , 2L, and generates the total revenue in gadget 2L + 1 equal
to 72L

4L+3 .
Second, in the optimal solution to the highway problem, there could be only

two alternative pricing strategies in gadgets
 = 1, . . . , 2L: either p2�−1 = p2� =
a′� or p2�−1 + p2� = (2 − 1

L)a′�, where both prices do not exceed a′�. In both
realizations, the contribution of the gadget (without big customer) to the total
revenue is (4L − 2)a′�. Therefore, in the optimal solution to instance H with
revenue at least (8L+ 72L

4L+3 −
1
L)A′, the big customer must contribute her entire

valuation. This amount is to be spent in the first 4L segments as the price of
segments 4L+ 1, 4L+ 2 and 4L+ 3 is set to 0.

Define set S = {
 ∈ {1, . . . , 2L} : p2�−1 = p2� = a′�}. The payment of the big
customer is

∑
�∈S 2a′� +

∑
�/∈S(2 − 1/L)a′�. As this must be equal to the valua-

tion of the big customer, we have
∑

�∈S a
′
� =

∑
�/∈S a

′
� = A′ and consequently,∑

�∈S a� =
∑

�/∈S a� = A. �

3 O(log α)-Approximation Algorithm

The idea for the approximation algorithm is as follows. We partition the set
of customers J into O(lnα) subsets S1, . . . , SK , such that in each subset any
two customers have average valuations different from each other by at most
a constant factor δ > 1. Denote by Πk the maximum revenue for the highway
problem restricted to the set of customers Sk (referred to as Sk-restricted prob-
lem). Then

∑K
k=1 Πk is clearly an upper bound for the optimum Π of the original

problem. Therefore, the highest maximum revenue maxk=1,...,K Πk over all re-
stricted problems is at least Π/K. Next, from the fact that the inhomogeneity
of the average valuations in Sk is bounded by at most factor of δ, we derive
that for the Sk-restricted problem there exists a price vector generating revenue
at least Πk/δ. Thus, taking the pricing vector yielding the highest revenue over
all restricted problems, we generate a total revenue at least Π/δK. Finally, we
optimize the performance guarantee over parameters K and δ.

To partition the set of customers J into subsets S1, . . . , SK , we use the follow-
ing recursive procedure running in K steps. At step k = 1, . . . ,K, we construct
subset Sk. Consider the set of customers Jk not yet assigned to any of the sub-
sets S1, . . . , Sk−1, assuming J1 = J . Add all customers j ∈ Jk to Sk for which
v̄j ≤ δkv̄min, where v̄min = minj∈J{v̄j} and δ > 1 to be defined later. Set
Jk+1 = Jk \ Sk and recurse on this set.

By definition of the inhomogeneity α, we have v̄k ≤ αv̄j for every pair of
customers k, j ∈ J . Then, by straightforward induction on k, one can prove that
the ratio between the highest and the lowest average valuations in Jk is at most
α/δk−1, yielding K ≤ 1 + logδ α = 1 + lnα/ ln δ. Thus, we derived the first
ingredient of the approximation algorithm, formulated in the following lemma.

Lemma 1. For any δ > 1 the number of subsets K is at most 1 + lnα/ ln δ.

On the Complexity of the Highway Pricing Problem 471

Second, we show that there is a solution to the Sk-restricted problem such that
(i) the set of winners W = Sk; and (ii) the revenue generated in this solution
is at least Πk/δ. Consider the pricing vector pk = (pk

1 , . . . , p
k
m) where price pk

i

of segment i ∈ I is determined as follows. Let Sik ⊆ Sk be the set of customers
requesting segment i. If Sik = ∅, then price pk

i can be chosen arbitrarily. If
Sik �= ∅, define pk

i = min{v̄j | j ∈ Sik}. Now, consider a customer j ∈ Sk. By
definition of price vector pk, the price of sub-path Ij is

∑
i∈Ij

pk
i ≤

∑
i∈Ij

v̄j = vj ,
and therefore j ∈ W . By definition of set Sk, maxj∈Sk

v̄j/minj∈Sk
v̄j ≤ δ, that

yields the revenue of the solution is at least Πk/δ. Thus, we proved the following
lemma.

Lemma 2. In the Sk-restricted problem, price vector pk yields a revenue at
least Πk/δ.

Clearly, the combination of Lemma 1 and Lemma 2 immediately implies that
the total revenue generated by the best price vector p∗ from {pk| k = 1, . . . ,K}

is at least Π/δ(1 + lnα
ln δ), which is maximized for δ = e

(
1
2+
√

1
4+ 1

ln α

)−1

. Notice
that for big α the value of δ is close to e. Therefore, we have the following result.

Theorem 2. Price vector p∗ yields a total revenue at least Π/(e lnα + e) for
the highway problem, where Π is the maximal revenue, and it can be computed
in O(n(log n+m)) time.

We arrive at the computation time as follows. First, we order the customers
according to their average valuation (increasingly), which takes O(n logn) time.
Then, for all k = 1, . . . ,K, we use binary search to create set Sk in O(logn) time,
and for all items i = 1, . . . ,m we determine the set of customers that request
the item in O(n) time, and the item price and the revenue in constant time. So,
the total runtime is O(n logn+K(logn+nm)), which is in O(n(logn+m)), as
K is a constant.

There are several directions for improvement of the obtained approximate
solution to the highway problem. First, instead of the constructed price vec-
tors pk, k = 1, . . . ,K, we can use price vectors maximizing the revenue in
the Sk-restricted problems, with given set of winners W = Sk. Notice that, for
any set of winners W ⊆ J , the price vector maximizing the revenue obtained
from W can be found in polynomial time by solving a simple linear program;
see [7,9]. Unfortunately, this approach does not necessarily lead to any provable
improvement of the performance guarantee.

The second approach allows us to improve the performance guarantee, and is
based on more careful analysis of the revenue generated by price vector p∗ when
applied to the entire set J instead of Sk only. By construction of the partition of
J , for any two subsets Sk and Sk′ , k ≤ k′, the average valuation of any customer
from Sk is at most the average valuation of a customer from Sk′ . Therefore, for
any k = 1, . . . ,K, and for all k′ ≥ k, if Sk ⊆ W , then Sk′ ⊆ W as well. By
definition of the subsets, the maximum average valuation in set Sk+1 is at most
δ times the maximum average valuation in set Sk. Thus, we have that the revenue
generated by price vector pk applied to the set of customers J is at least

472 A. Grigoriev, J. van Loon, and M. Uetz

Rk =
1
δ
Πk +

1
δ2
Πk+1 + . . .+

1
δK−k+1

ΠK , ∀k = 1, . . . ,K.

These equalities can be equivalently represented by the following recurrent
formulas

Rk =
1
δ
Πk +

1
δ
Rk+1, ∀k = 1, . . . ,K − 1, (1)

with an additional equality

RK =
1
δ
ΠK . (2)

Summing up all Equations (1) and (2) and dividing both sides by K, we derive

R̄ =
1
K

K∑
k=1

Rk =
1
Kδ

K∑
k=1

Πk +
1
Kδ

K∑
k=1

Rk −
1
Kδ

R1.

Let R1 = φR̄. Since
∑K

k=1 Πk ≥ Π , we derive

R̄ ≥ Π

K(δ − 1) + φ
.

Taking the maximum revenue over all price vectors pk, k = 1, . . . ,K, we obtain

max
k=1,...,K

Rk ≥ max{R1, R̄} ≥ max
{

φΠ

K(δ − 1) + φ
,

Π

K(δ − 1) + φ

}
,

that is minimized with φ = 1, yielding

max
k=1,...,K

Rk ≥
Π

δ(1 + ln α
ln δ)− lnα

ln δ

.

Clearly, price vector p∗ yields a total revenue at least Π/(δ(1+ ln α
ln δ)− lnα

ln δ). Note
that δ(1 + ln α

ln δ)− lnα
ln δ < δ lnα+ δ. Given ε > 0, let δ = 1 + ε/(lnα+ 1). Then,

δ lnα+ δ =
(

1 +
ε

lnα+ 1

)
lnα+

(
1 +

ε

lnα+ 1

)
= 1 + lnα+ ε,

and we arrive at the following theorem.

Theorem 3 (Improved Bound). Price vector p∗ yields a total revenue at least
Π/(1 + lnα+ ε) for the highway problem for any ε > 0, and it can be computed
in O(n(log n+m)) time.

4 General Bundle Pricing

As a matter of fact, in all arguments developed in the previous sections, we did
not make use of the fact that the subsets Ij requested by customers are sub-paths
of a path. Hence, the results hold for the more general bundle pricing problem
where customers request arbitrary subsets of a given set of items, each of which
available in unlimited supply (digital goods, for example). This problem is in
general known to be inapproximable by a semi-logarithmic factor in the number
of customers n [3]. This inapproximablity result is no longer valid as soon as the
inhomogeneity is bounded by a constant, since we have:

On the Complexity of the Highway Pricing Problem 473

Corollary 1. Given ε > 0, the bundle pricing problem admits an approximation
algorithm that yields a revenue at least (1+lnα+ε)−1 times the optimal revenue,
with computation time O(n(logn +m)).

For this problem, we can even derive a stronger negative result than for the more
restrictive highway pricing problem.

Theorem 4. The bundle pricing problem is strongly NP-hard, even when re-
stricted to the instances satisfying the following conditions:

1. the inhomogeneity α ≤ 1 + ε where ε is an arbitrary positive constant;
2. customers valuations are monotone, i.e., vj ≤ vk for any j, k ∈ J such that

Ij ⊆ Ik;
3. customers average valuations are monotone decreasing, i.e., v̄k ≤ v̄j for any

j, k ∈ J such that Ij ⊆ Ik.

Proof. We show that the bundle pricing problem is strongly NP-hard by using
a reduction from the strongly NP-hard problem IndependentSet [6]. Given
a graph G = (V,E) and integer s ≤ |V |. Does there exist a set of vertices that
are pairwise non-adjacent with cardinality at least s. We define an instance I of
the pricing problem as follows. Given an ε > 0, let M > max{1/ε, s+ 1/2}. For
every vertex v ∈ V we create two vertex-items, v1 and v2, and for every edge
e ∈ E we introduce two edge-items, e1 and e2. Every vertex- and edge-item is
requested by 2M2 + 2M − 1 customers with valuation M + 1. For every vertex
v ∈ V , there is one customer interested in bundle {v1, v2} and similarly, for every
edge e ∈ E, there is one customer interested in bundle {e1, e2}. These customers
have valuation 2M + 2− 1/M . There is one customer interested in item x with
valuation M + 1, and there are 2 customers interested in bundle y of size M
with valuation M2. Also, there are two customers requesting bundle {x, y} (of
size M + 1) with valuation M2 +M . Then, for every edge e = {u, v} ∈ E, there
is one customer interested in bundle {u1, u2, v1, v2, e1, e2} ∪ {x} with valuation
7M+6−2/M . One customer requests all vertex items and item x, that is, bundle
{v1, v2 : v ∈ V } ∪ {x}, with valuation (2M + 2− 1/M)|V |+M + (1/M)s. The
instance is displayed in Figure 3.

Let us give a short intuition as to why we need these particular bundles.
The bundles on the vertex- and edge-items determine which vertices are in the
independent set of G and bundles {u1, u2, v1, v2, e1, e2} ∪ {x} assure later that
a feasible solution to the general bundle pricing problem corresponds to an inde-
pendent set in G. Bundle {v1, v2 : v ∈ V }∪{x} assures that a feasible solution to
the pricing problem corresponds to an independent set of cardinality s. Finally,
bundles {x}, {y} and {x, y} are present to fulfill the conditions required in this
theorem.

The single-item bundles have the largest average valuation of M+1, and bun-
dles {y} and {x, y} have the smallest average valuation ofM , thus α = 1+1/M <
1+ε. Though it requires an extensive case study, one can straightforwardly verify
that conditions (2) and (3) are also satisfied.

We define πi as the revenue obtained from the customers requesting a bundle
from set {i1, i2, {i1, i2}} for all i ∈ I = V ∪E. We define πe as the revenue from

474 A. Grigoriev, J. van Loon, and M. Uetz

u v w

e f

u1 u2 v1 v2 w1 w2

e1 f1e2 f2

(2M + 2− 1
M)|V |+M + 1

M s

7M + 6− 2
M 7M + 6− 2

M

M + 1 M + 1 M + 1 M + 1 M + 1 M + 1

M + 1 M + 1 M + 1 M + 1

2M + 2− 1
M

d = 2M2 + 2M − 1

d = 1 d = 1 d = 1

d = 1d = 1

d = 1 d = 1

d = 1

G = (V, E)

V = {u, v, w}E = {e, f}

M + 1

M2

size = M

M2 +M

d = 1

d = 2

d = 2

y

x

d = 2M2 + 2M − 1
d = 2M2 + 2M − 1

d = 2M2 + 2M − 1
d = 2M2 + 2M − 1

d = 2M2 + 2M − 1

d = 2M2 + 2M − 1
d = 2M2 + 2M − 1

d = 2M2 + 2M − 1
d = 2M2 + 2M − 1

2M + 2− 1
M 2M + 2− 1

M

2M + 2− 1
M 2M + 2− 1

M

Fig. 3. An instance of the bundle pricing problem created from original graph G above

the customers requesting {u1, u2, v1, v2, e1, e2}∪{x} for some e = {u, v} ∈ E.
We define πxy as the revenue received from customers requesting a bundle
from set {x, y, {x, y}}, and finally, πV represents the revenue obtained from
the customer requesting {v1, v2 : v ∈ V } ∪ {x}. Obviously, the total revenue
is π =

∑
i∈I πi +

∑
e∈E πe + πxy + πV . Also, let C be a constant equal to

(|V |+ |E|)(4M3 +8M2 +2M −2)|+ |E|(7M +6−2/M)+4M2 +4M . We claim
that there exists an independent set in G of size s if and only if there exists
a solution to the general bundle pricing problem with revenue at least C+ s/M .

Given an independent set V ′ ⊆ V of size |V ′| = s. Define E0 = {e = {u, v} ∈
E : u, v /∈ V ′}. Let pi = (pi1 , pi2) be defined by pi = (M + 1,M + 1) if
i ∈ V ∩ V ′ or i ∈ E ∩ E0 and pi = (M + 1 − 1

2M ,M + 1 − 1
2M) if i ∈ V \ V ′

or i ∈ E \ E0. Also, let px = M and py = M2, where py denotes the sum
of all M item prices in bundle {y}. Under this pricing strategy, we see that
πi = 4M3 + 8M2 + 2M − 2 for all i ∈ I = V ∪ E, irrespective of which pricing
is used for item i. Then, every edge e = {u, v} ∈ E contains one item priced
at (M + 1,M + 1) and two at (M + 1 − 1

2M ,M + 1 − 1
2M) by definition of the

pricing and set E0. As px = M , we have πe = 2(M +1)+4(M +1− 1
2M)+M =

7M + 6 − 2/M . The customer requesting all vertex-items and item x spends
(2M+2−1/M)|V \V ′|+(2M+2)|V ′|+px = (2M+2−1/M)|V |+M+(1/M)s.
Then, the total revenue is π = (|V |+ |E|)πi + |E|πe + πxy + πV = C + (1/M)s.

For the converse, we are given a solution to instance I with revenue at least
C + (1/M)s. First, we consider πxy. If the customer requesting bundle {x, y}
is not a winner, the maximum revenue is M + 1 + 2M2. Otherwise, let px be

On the Complexity of the Highway Pricing Problem 475

the price for item x. Then, the maximum revenue is px + 2(M2 + M − px) +
(M2 + M), where px ∈ [M,M + 1] such that all customers are winners. Then,
πxy ≤ 4M2 + 3M (attained when px = M). For every item i ∈ I, we have
πi = max{2(2M2 +2M −1)(M +1), (2M2 +2M −1+1)(2M+2−1/M)}. Both
values are equal and therefore, πi = 4M3 + 8M2 + 2M − 2. Clearly, for every
e ∈ E, the revenue πe is at most the valuation 7M + 6 − 2/M . Now, we know
that the revenue from the customer requesting bundle {v1, v2 : v ∈ V } ∪ {x} is

πV = π − (|V |+ |E|)πi − |E|πe − πxy ≥ (2M + 2− 1/M)|V |+M + (1/M)s.

Thus, the minimum revenue is at least equal to the valuation. As this customer
cannot contribute more than the valuation, it should be equality throughout.
This also means that all other revenues described above attain their maximum,
thus px = M and py = M2. Now, let V ′ = {v ∈ V : pv = (M + 1,M + 1)} and
E0 = {e ∈ E : pe = (M +1,M+1)}. As πe = 7M+6−2/M and px = M for all
e = {u, v} ∈ E, we know that either u ∈ V ′ and v /∈ V ′, e /∈ E0, or v ∈ V ′ and
u /∈ V ′, e /∈ E0, or e ∈ E0 and u, v /∈ V ′. Thus, for each edge, either one vertex
is in V ′ or both are not in. Hence, V ′ is an independent set. Furthermore, the
customer requesting bundle {v1, v2 : v ∈ V } ∪ {x} pays

(2M+2−1/M)|V \V ′|+(2M+2)|V ′|+px = (2M+2−1/M)|V |+M+(1/M)|V ′|.

As this payment is equal to the revenue, which in turn has to be equal to the
valuation, we know that |V ′| = s. �

5 Conclusions

Clearly, the existence of a quasi-PTAS for the highway pricing problem suggests
that a PTAS might be in reach [4,5]. Yet, we leave it as an open problem to
derive a PTAS, even for bounded inhomogeneity of valuations.

References

1. Balcan, M.F., Blum, A.: Approximation Algorithms and Online Mechanisms for
Item Pricing. In: Proceedings of the 7th ACM Conference on Electronic Commerce,
pp. 29–35. ACM, New York (2006)

2. Briest, P., Krysta, P.: Single-Minded Unlimited Supply Pricing on Sparse Instances.
In: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 1093–1102. ACM-SIAM (2006)

3. Demaine, E.D., Feige, U., Hajiaghayi, M.T., Salavatipour, M.R.: Combination Can
Be Hard: Approximability of the Unique Coverage Problem. In: Proceedings of the
17th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 162–171. ACM-
SIAM (2006)

4. Elbassioni, K., Raman, R., Ray, S., Sitters, R.: On Profit-Maximizing Pricing for the
Highway and Tollbooth Problems. Retrieved from arXiv:0901.1140v3 (June 2009)

5. Elbassioni, K., Sitters, R., Zhang, Y.: A Quasi-PTAS for Profit-Maximizing Pricing
on Line Graphs. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS,
vol. 4698, pp. 451–462. Springer, Heidelberg (2007)

476 A. Grigoriev, J. van Loon, and M. Uetz

6. Garey, M.R., Johnson, D.S.: Computers and Intractability: a Quide to the Theory
of NP-Completeness. W.H. Freeman, New York (1979)

7. Grigoriev, A., van Loon, J., Sitters, R., Uetz, M.: Optimal Pricing of Capacitated
Networks. Networks 53(1), 79–87 (2009)

8. Grigoriev, A., van Loon, J., Sviridenko, M., Uetz, M., Vredeveld, T.: Bundle Pricing
with Comparable Items. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007.
LNCS, vol. 4698, pp. 475–486. Springer, Heidelberg (2007)

9. Guruswami, V., Hartline, J.D., Karlin, A.R., Kempe, D., Kenyon, C., McSherry, F.:
On Profit-Maximizing Envy-Free Pricing. In: Proceedings of the 16th Annual ACM-
SIAM Symposium on Discrete Algorithms, pp. 1164–1173. ACM-SIAM (2005)

Accelerating Smart Play-Out�

David Harel1, Hillel Kugler2, Shahar Maoz1, and Itai Segall1

1 The Weizmann Institute of Science, Israel
{dharel,shahar.maoz,itai.segall}@weizmann.ac.il

2 Microsoft Research, Cambridge, UK
hkugler@microsoft.com

Abstract. Smart play-out is a method for executing declarative scenario-
based specifications, which utilizes powerful computation methods to
compute safe supersteps, thus helping to avoid violations that may be
caused by näıve execution. Major challenges for smart play-out are per-
formance and scalability. In this work we show how to accelerate smart
play-out by adapting and applying ideas inspired by formal verification
and compiler optimization. Specifically, we present an algorithm that can
reduce the size of the specification considered for smart play-out, while
maintaining soundness and completeness. Experimental results show sig-
nificant performance improvements and thus open the way to the appli-
cation of smart play-out to large scenario-based programs.

1 Introduction

Scenario-based modeling using various variants of sequence diagrams has at-
tracted intensive research efforts in recent years (see, e.g., [1,2,3,4,5]). In this
paper, we focus on the language of live sequence charts (LSC), which has been
suggested in [3] as a highly expressive extension of message sequence charts
(MSCs) [6]. LSC has been endowed with an operational semantics termed play-
out, where a specification consisting of a set of charts is executed directly [4].
In the original play-out algorithm, non-determinism is solved ad-hoc without
considering the future effects of its choices. To help alleviate this, smart play-out
was proposed in [7], where formal reasoning (originally, model-checking) is used
to compute safe execution paths. In [8] we prove smart play-out to be PSPACE-
hard for the general case, and NP-hard if multiple copies of the same chart are
not allowed.

In this paper we introduce an algorithm that accelerates smart play-out of
scenario-based specifications. The algorithm exploits special syntactic and se-
mantic properties of the language in order to reduce the size of the specification
� This research was partially supported by the John von Neumann Minerva Center

for the Development of Reactive Systems at the Weizmann Institute of Science, and
by an Advanced Research Grant from the European Research Council (ERC) under
the European Community’s 7th Framework Programme (FP7/2007-2013).

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 477–488, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

478 D. Harel et al.

before smart play-out is computed. It consists of several steps, each aimed at
identifying different types of constructs that may be temporarily removed from
the specification without affecting correctness. First, entire charts are removed
in a cone-of-influence-like iterative fixpoint algorithm [9], computing a safe ap-
proximation (an over approximation) of the set of charts that may influence the
current computation. Second, constructs within the remaining LSCs are pre-
computed or eliminated using an approach inspired by compiler optimization
methods, such as constant propagation and early evaluation. All these result
in an overall smaller specification that is then used as the input for the smart
play-out computation.

The algorithm takes advantage of the following typical features of LSC spec-
ifications. First, the breakdown of the specification into user-friendly intuitive
scenarios often creates redundancies that can be removed without affecting the
execution. Second, intentional under-specification can sometimes be abstracted
away from the smart play-out mechanism and be left for the näıve implemen-
tation. Third, the execution paths we are looking for are typically rather short
and local, involving only a subset of the specification, especially in large sys-
tems. Finally, the specification may be exponentially more succinct than the
state space of the model it induces; we benefit from attacking the problem al-
ready at the level of the specification, before the input model for smart play-out
is constructed.

Our work can be viewed as an adaptation and application of well-known
program analysis and abstraction techniques from the domains of compiler op-
timization and formal verification to our specific need, which is the acceleration
of smart execution of scenario-based specifications.

A technical report with additional details and proofs is available [10].

2 Preliminaries

LSC [3] is an extension of message sequence charts (MSC) [6]. Both contain
vertical lines, termed lifelines, which denote objects, and events, which involve
one or more of these objects. The most basic construct of the language are mes-
sages: a message is denoted by an arrow between two lifelines (or from a lifeline
to itself), representing the event of the source object sending a message to the
target object. More advanced constructs, like conditions, if-then-else, loops,
etc., can also be expressed. A typical LSC consists of a prechart (denoted by
a blue dashed hexagon), and a main chart (denoted by a solid frame). Roughly,
the intended semantics is that whenever the prechart is satisfied in a run of the
system, eventually the main chart must also be satisfied (see Fig. 1).

LSCs are multi-modal; almost any construct in the language can be either cold
(usually denoted by the color blue) or hot (denoted by red), with a semantics of
“may happen” or “must happen”, respectively. If a cold element is violated (say
a condition that is not true when reached), this is considered a legal behavior
and some appropriate action is taken. Violation of a hot element, however, is
considered a violation of the specification and is not allowed to happen in an
execution.

Accelerating Smart Play-Out 479

2.1 An Example

An example specification, consisting of six LSCs, is given in Fig. 1. It describes
a simple telephone system with three objects – a phone, an operator, and a log-
ger. The operator may wish to force low-priority calls to disconnect (e.g., due to
a system overload). The LSC HangupAllLowPri, in Fig. 1(a), refers to the oper-
ator notifying the phone that a low-priority hangup is called for. Specifically, the
LSC states that if the phone sends the message InCall to the operator, and the
operator sends HangupLowPri to itself, then the operator sends HangupLowPri
to the phone.

Fig. 1(b) shows LSC CheckPri, where the phone checks whether it is in a low-
priority mode. The LSC uses an if-then-else construct, represented by two se-
quential boxes, with a condition at the beginning of the first box. It states that
if the message HangupLowPri is sent from the operator to the phone (note that
this is the same message sent in the main chart of the previous LSC; the process
of deciding at runtime that the messages are the same is termed unification),
then if the property LowPri of the telephone is true, it should send hangup to
itself. Otherwise, it sends NoLowPri to the operator, and the operator replies
with an Ack.

Fig. 1(c) shows LSC Hangup, which describes the hangup process. It states that
whenever the phone sends Hangup to itself, it sends StartHangup to the logger,
then sends InCall(False) to itself, and CallTime(0) to itself. The logger also
sends LogHangup to itself. Finally, the phone sends EndHangup to the logger. Two
features worth noting in this LSC are the following: (1) The partial order of an
LSC is defined by the lifelines (from top to bottom) and the messages (and other
multi-lifeline constructs) that synchronize between lifelines. Therefore, in this
example, no explicit order is defined between the LogHangupmessage and the two
messages InCall(False) and CallTime(0), while these two must be executed
in this order. The message EndHangup, appearing on both lifelines, is executed
last. (2) Some messages change object properties. For example, InCall(False)
changes the property InCall of the phone to be false. Similarly, CallTime(0)
sets Tel1.CallT ime to be 0.

The LSC Logger, in Fig. 1(d), specifies how the logger replies to the tele-
phone: If the phone sends StartHangup to the logger, the Logger.On condition
is checked. If it is true, the execution continues, and the logger sends Ack to the
phone. If the Logger.On is false, then being a cold condition, the chart exits
gracefully and the Ack is not sent. The LSC NotifyHangup, in Fig. 1(e), spec-
ifies the notification to the operator that the hangup has completed. Finally,
the LSC CorrectLogging, given in Fig. 1(f), is an anti-scenario; it states that
the scenario in which the three messages, StartHangup from the phone to the
logger, EndHangup from the phone to the logger, and Ack from the logger to the
phone, are sent in this order is forbidden.

Throughout the paper, we consider a generalization of this example specifica-
tion, for n phones, in which the six LSCs are replicated n times. In replica i, the
object Tel1 is replaced by Teli. Note that LSCs, in general, support symbolic in-
stances (lifelines that represent entire classes rather than concrete objects), with

480 D. Harel et al.

(a) The HangupAllLowPri LSC (b) The CheckPri LSC

(c) The Hangup LSC (d) The Logger LSC

(e) The NotifyHangup LSC (f) The CorrectLogging LSC

Fig. 1. A 6-LSC specification for a simple phone system in which the operator may
decide to hang up low priority calls

Accelerating Smart Play-Out 481

which this replication could have been avoided [4]. However, since as of now
none of the currently known smart play-out implementations supports symbolic
instances, we avoid using them in this paper.

2.2 Play-Out

An operational semantics and an execution technique termed play-out were de-
fined for the LSC language in [4]. Play-out remembers at each point in time the
set of active LSCs (those for which the prechart has already completed, but the
main chart hasn’t), and for each such LSC it holds the current cut (listing what
has already happened, and what has not). At each step, the play-out mechanism
chooses one message that is enabled in some LSC (i.e., it appears directly after
the current cut), and does not violate any other chart (a message is violating if
it appears in an active chart but is not enabled in it), and executes it.

The original play-out mechanism of [4] is näıve, in the sense that there is
no look-ahead when selecting the action to be executed. Thus, non-determinism
is solved ad-hoc without considering the long-term consequences of the choice.
Two “smart” techniques have been suggested thus far to partly address this
issue: (1) model-checking based play-out, termed smart play-out [7], and (2) AI
planning-based play-out, termed planned play-out [11]. In this paper we use the
term smart play-out to refer to the general idea of smart look-ahead execution
of scenario-based programs, and not only to the specific model-checking based
implementation thereof.

While näıve play-out chooses its steps one by one, smart play-out reacts to an
external event by seeking a sequence of system events that drive the specification
to completion. The problem of smart play-out can be defined as follows: given
a specification and a current configuration (the set of current cuts, together
with the current state of all objects and variables), find a sequence of legal steps
that lead the system to a stable state, i.e., one in which no main charts remain
active. This sequence of steps is termed a superstep. Both known smart play-
out implementations solve this by reduction: they translate a given specification
and configuration into a model, and then use powerful computational methods
(model-checking or planning) in order to find an appropriate path in this model.
When found, such a path is translated back into a superstep in the original
specification. The model created by both algorithms is proportional in size to
that of the LSC specification, which refers to the number of lifeline locations
in it. Thus, any reduction in the size of the LSC specification fed to a smart
play-out algorithm will yield a smaller model created by them, which in turn
may result in better running time.

3 Accelerating Smart Play-Out

We now show how to reduce the size of the specification before smart play-
out is computed, by exploiting the special structure of LSCs, and details of
its operational semantics. Our algorithm identifies constructs that are either ir-
relevant to the current superstep, or are unnecessary input for smart play-out.

482 D. Harel et al.

Fig. 2. An overview of the accelera-
tion algorithm

These constructs are then temporarily re-
moved from the specification.

The algorithm consists of four steps. The
first three are performed iteratively, until
a fixpoint is reached, and then the last one
is applied; see Fig. 2. Intuitively, Activa-
tion Closure detects charts that cannot par-
ticipate in the superstep, Early Evaluation
pre-evaluates conditions and assignments
whenever possible, Unreachable Elimination
removes superfluous unreachable constructs,
and finally Construct Elimination eliminates
constructs for which no reasoning is needed
to order them correctly during execution of
the superstep. Note that each step acts on
the result of the previous steps, which will, in
general, be a smaller specification. Thus, for
example, a construct that is reachable in the
original specification may become unreach-
able by some early evaluation, and will be removed by later steps.

3.1 The Example

We refer here to the example from Fig. 1, expanded to support three phones by
replicating all six LSCs three times, and replacing the Tel1 object with Tel1, Tel2,
and Tel3 in each replica. We denote the copy number of each LSC by a subscript
(e.g., Hangup1 denotes the Tel1 copy of LSC Hangup). Also, we denote the event

of object o1 sending message msg to object o2 by o1
msg−−−→ o2.

We consider the following initial configuration: Phone 1 is in a low priority
call (i.e., the message InCall was sent from Tel1 to Operator, and Tel1.LowPri
is true). Phone 2 is in a high priority call (i.e., the message InCall was sent
from Tel2 to Operator, and Tel2.LowPri is false). Phone 3 is not in a call (i.e.,
the message InCall was never sent from Tel3 to the Operator).

Now, suppose the operator decides it must hang up all low priority calls,
i.e., the message HangupLowPri is sent from the operator to itself. At this point
some main charts become active, and smart play-out starts. The initial con-
figuration is as follows: two main charts are active – HangupAllLowPri1 and
HangupAllLowPri2 – and all other charts are closed. Recall that Tel1.LowPri
is true and Tel2.LowPri is false. Also assume that Logger.on is true.

3.2 Activation Closure

Consider the message Operator
HangupLowPri−−−−−−−−−−−→ Operator in the example. It

does not appear in any main chart, and therefore will never be sent again
throughout the superstep. Since LSC HangupAllLowPri3 is not active, we can

Accelerating Smart Play-Out 483

conclude that it will never become active in the superstep (as one of its prechart
messages will not be sent). Therefore this LSC can be safely removed from the

specification. Now we know that Operator
HangupLowPri−−−−−−−−−−−→ Tel3 will not be

sent, since it appears in no main chart of the remaining specification, and hence
CheckPri3 can be removed.

The Activation Closure step removes from the specification LSCs that can not
become active in the superstep by computing the least fixpoint of LSCs, such
that for every LSC in the activation closure, each message in its prechart appears
in some main chart in the closure (regardless of their order in the prechart).

We ignore here the case where advanced constructs such as if-then-else,
appear in the prechart. To adapt the method to the more general case, one
needs to add an LSC to the activation closure not only if its entire prechart is
contained in the set of possible messages, but even if some set of messages that
could satisfy the prechart is contained in it.

3.3 Early Evaluation

Now consider phones 1 and 2. Their value of LowPri cannot change throughout
the superstep (there is no main chart message that changes them in the speci-
fication). Therefore, the condition of the if-then-else construct in CheckPri1

and CheckPri2 can be evaluated in advance. This will be carried out by the
Early Evaluation step.

More generally, the Early Evaluation step locates properties that will not be
changed during any superstep, and pre-evaluates all conditions and assignments
that use their value. This step does not affect the set of legal supersteps.

3.4 Unreachable Elimination

Following the early evaluation of conditions, some parts of the LSC may become
unreachable. In our example, the “else” part in CheckPri1 and the “if” part in
CheckPri2 are both unreachable now, and can be removed. This will be done by
the Unreachable Elimination step.

Note that even if a message is unreachable in one LSC, it may be executed
by another chart, so that unreachable messages can still cause chart violations
if executed when not enabled, and one needs to take extra care when eliminat-
ing messages. Therefore, we eliminate a message only if all its appearances in
main charts are unreachable. To avoid changing the partial order of the LSC,
eliminated constructs are replaced by an appropriate synchronization construct
(a constant true condition covering the relevant lifelines). The Unreachable Elim-
ination step does not affect the set of legal supersteps.

3.5 Repeating Steps 1-3

Applying the steps on the example as above may lead to the conclusion that

Tel2
Hangup−−−−−−→ Tel2 will not be sent. Therefore by rerunning Activation Closure

484 D. Harel et al.

we can conclude that Hangup2, for example, can now also be removed. This
illustrates why the first three steps are executed repeatedly until a fixpoint is
reached.

In general, the set of messages appearing in main charts of the Activation Clo-
sure dictates which properties may be modified in the superstep, thus affecting
the Early Evaluation and Unreachable Elimination steps. In turn, those steps af-
fect the Activation Closure computation, by removing messages from the charts.
Therefore, the three steps need to be computed iteratively until a (greatest)
fixpoint is reached.

Since each step removes only elements (or entire LSCs) that will never take
part in any superstep and does not change the set of legal supersteps, the same
applies to the repeated execution.

Note that in our example, Activation Closure is exact; all LSCs in the final
specification will take part in the superstep. In the general case, this is not
necessarily true. Activation Closure calculates a safe approximation of the set of
LSCs that may participate in the execution, and not necessarily the exact set.

3.6 Construct Elimination

All steps mentioned so far eliminate constructs that cannot participate in the
superstep. The purpose of the Construct Elimination step is to identify (and
eliminate) constructs that may participate in the superstep, but for which the
exact timing is not important.

For example, consider the message Logger
LogHangup−−−−−−−−→ Logger. It appears in

one main chart only, Hangup1 (we have already removed Hangup2 and Hangup3),
and does not change any object property. Therefore, there is no real need for
smart evaluation in determining when to send it; sending it whenever it is en-
abled is fine. This is the purpose of the last step, Construct Elimination, which
identifies constructs for which no smart evaluation is needed and removes them.

The most important part of this step is identifying constructs that are redun-
dant in terms of the smart play-out computation. For example, a message that
changes no properties and appears only once in the (already reduced) specifica-
tion can be sent whenever it is enabled, without the need for any smart ordering.
These messages are removed by the Construct Elimination step. Similarly, this
step identifies redundant conditions, subcharts and entire LSCs, and removes
them.

3.7 Superstep Reconstruction

The output of our algorithm is a new specification and initial configuration,
which can then be given as input to any smart play-out method. However, in
general, a superstep found by this combined method, though legal in the modified
specification, is not necessarily legal in the original one.

Consider the result of applying the algorithm to the example, as shown in
Section 3.1. As we saw, the Activation Closure step removed the LSCs related to
phone 3. These LSCs will never become active in this superstep, therefore there

Accelerating Smart Play-Out 485

is nothing to do regarding them in the superstep reconstruction. Similarly, the
modifications performed by Early Evaluation and Unreachable Elimination do
not affect the set of legal supersteps, and their modifications need not be taken
into account in the superstep reconstruction.

However, the last step, Construct Elimination, does affect the set of super-
steps and we must take its modifications into account when constructing a le-
gal superstep for the original specification. In the example above we saw that

Logger
LogHangup−−−−−−−−→ Logger is removed from the specification by this step. As

opposed to previous steps, this is not because it will not participate in any su-
perstep but because it is easy to decide when to execute it: it can be executed
whenever enabled. For example, consider the LSC Hangup1, and suppose the mes-

sage Logger
LogHangup−−−−−−−−→ Logger is the only one removed from it. Now consider

a superstep found by applying smart play-out to the modified specification. This

superstep may activate this LSC and then send the message Tel1
StartHangup−−−−−−−−−−→

Logger. As a result, the message Logger
LogHangup−−−−−−−−→ Logger becomes enabled

(in the original specification); since it was removed by Construct Elimination,
we know it should be executed (näıvely) whenever enabled, therefore we should
now execute it and advance the cut accordingly.

This example is representative of the general rule that constructs removed
by Construct Elimination should be executed whenever enabled. Therefore, in
order to reconstruct a legal superstep in the original specification, one merely
needs to start executing the superstep found for the new one. Following each
step, the list of eliminated constructs should be checked. Any construct that was
eliminated and is now enabled can, and should, be safely executed.

3.8 Complexity

It is easy to see that all steps of our algorithm take time polynomial in the size
of their input (the LSC specification). Moreover, the number of times they are
performed is linear in the size of the specification (each iteration must remove
at least one construct in order for a fixpoint not to be reached). Therefore, the
entire algorithm is in PTIME.

Clearly, the algorithm is heuristic. On some specifications it may work very
well, while on others it might not change the specification at all. Section 4 shows
cases for which the algorithm yields a significant improvement in running time,
as well as a case for which no improvement is achieved.

4 Experimental Results

Consider a parameterized generalization of the example introduced in Section 2,
containing n phones, and an initial configuration where half of the phones are in
call, and half of those are low priority. Fig. 3 plots the running time (log scale) of
model-checking-based smart play-out on a standard PC, as a function of n, for
four different specifications: (1) The original specification with no acceleration,

486 D. Harel et al.

Fig. 3. Running time as a function of the number of phones, for different setups. Smart
play-out runs that did not terminate within one hour were aborted, thus the maximum
number of phones that could be handled within this time frame are 4 (no optimization),
8 (Activation Closure only), 10 (first 3 steps) and 16 (full optimization).

(2) the specification after applying Activation Closure only, (3) the specification
with the first three steps applied iteratively until a fixpoint is reached, and (4) the
specification with the complete acceleration algorithm applied. It is evident from
the figure that each step adds a significant improvement to the running time,
and allows a better scale-up of the size of the specification.

Interestingly, by a slight modification of the initial configuration, in which we
set logger.On to be false (instead of true as in the previous run), the acceleration
algorithm ends up with an empty specification: it removes all constructs, as it
finds that non of them is crucial for the smart play-out algorithm. This means
that all supersteps from the initial state are correct, and any naive play-out
would succeed in this case. We are thus able to completely avoid running the
model-checker; smart play-out computation time reduces to zero.

We have also applied our algorithm to two previously published specifications:
(1) The Depannage telecommunication system described in [12]. Two subsets of
the specification were executed. For the first, the acceleration saved 36% of the
running time (21 seconds instead of 33), and for the second, the algorithm ended
with an empty specification (smart play-out computation time reduces to zero).
(2) The elevator example presented in [11]. The algorithm made no changes to
the specification, thus no improvement was achieved in running time.

In all experiments, the running time of the algorithm itself was negligible.

5 Related and Future Work

In model-checking, the cone of influence method [9] attempts to locate only
those variables that affect variables referred to in the specification, and remove
all other variables. Thus, parts of our method may be viewed as a variant of the
cone of influence method.

Accelerating Smart Play-Out 487

The Early Evaluation step can be viewed as a special case of constant prop-
agation [13], which is used in compiler optimization to pre-evaluate expressions
for which the value is known in advance.

Our work may also be viewed as a mix of static and dynamic forward program
slicing [14], but applied to models rather than to code. In this sense, the reduced
specification represents a safe approximation of the minimal forward model slice
required for a correct superstep computation.

In this paper we focus on execution of LSCs, an extension of MSC. We believe
some of the ideas presented here may be adapted to accelerate execution and
simulation of other variants of MSCs, see, e.g., [1,15].

Our algorithm uses ideas from static analysis of code, such as early evaluation
of conditions [16]. Additional ideas could probably be adapted to our needs. For
example, we could probably conduct better data-flow and control-flow analysis
to identify which messages are dependent on which others, and thus gain better
knowledge for the acceleration process. Clearly, there is a trade-off between the
power of the acceleration method and its own running time. The goal is to find
the best possible approximation of the minimal specification needed for the smart
play-out method. The better the approximation, the less running time will be
needed for the smart play-out itself.

Some limitations of our approach are worth noting. In the Activation Closure
step we do not consider the order of messages but only whether they are included
in the LSCs or not. This results in an over approximation; in the worst case the
fixpoint may include all LSCs in the specification, even though only a small sub-
set of them may participate in one of the possible supersteps. Other limitations
relate to data; e.g., we ignore the value assigned in property set messages so we
may fail to identify some conditions that can be evaluated early.

In model-checking, partial order reduction [9] reduces the state-space to be
explored by identifying transitions that result in the same state when executed
in different orders. Similarly, some steps of scenario-based specifications, when
executed in different order, may result in the same global system state. Therefore,
methods and ideas similar to those used in partial order reduction may help in
improving smart play-out as well. Note that our Construct Elimination step may
have the effect of a partial order reduction.

Our method reduces the size of the LSC specification, which in turn reduces
the size of the model given to the smart play-out techniques. However, smart
play-out efficiency may be improved also by adding constraints, such as anti-
scenarios or forbidden elements. This would make the LSC specification larger
but could induce a smaller state-space for applying smart play-out.

As mentioned above, our algorithm computes a safe approximation of the
minimal forward model slice required for a correct superstep computation, for
the purpose of smart play-out acceleration. However, this model slice can also
be used for model comprehension, since presenting it to the user may aid in
focusing on the more important LSCs, modulo a given configuration. Developing
techniques for presenting scenario-based model slices to the user, textually or
visually, is an interesting direction for future work.

488 D. Harel et al.

Acknowledgments. We thank Moshe Vardi for his advice on this work. We
thank Andrew Phillips for comments on a draft of this paper.

References

1. Alur, R., Etessami, K., Yannakakis, M.: Inference of Message Sequence Charts.
IEEE Trans. Software Eng. 29(7), 623–633 (2003)

2. Broy, M.: A Semantic and Methodological Essence of Message Sequence Charts.
Sci. Comput. Program. 54(2-3), 213–256 (2005)

3. Damm, W., Harel, D.: LSCs: Breathing Life into Message Sequence Charts. J. on
Form. Meth. in Sys. Design 19(1), 45–80 (2001)

4. Harel, D., Marelly, R.: Come Let’s Play: Scenario-Based Programming Using LSCs
and the Play-Engine. Springer, Heidelberg (2003)

5. Uchitel, S., Kramer, J., Magee, J.: Synthesis of Behavioral Models from Scenarios.
IEEE Trans. Software Eng. 29(2), 99–115 (2003)

6. ITU: International Telecommunication Union Recommendation Z.120: Message Se-
quence Charts. Technical report (1996)

7. Harel, D., Kugler, H., Marelly, R., Pnueli, A.: Smart Play-out of Behavioral
Requirements. In: Aagaard, M.D., O’Leary, J.W. (eds.) FMCAD 2002. LNCS,
vol. 2517, pp. 378–398. Springer, Heidelberg (2002)

8. Harel, D., Kugler, H., Maoz, S., Segall, I.: How Hard is Smart Play-Out? On
the Complexity of Verification-Driven Execution. In: Perspectives in Concurrency
Theory (Festschrift for P.S. Thiagarajan), pp. 208–230. University Press, India
(2009)

9. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

10. Harel, D., Kugler, H., Maoz, S., Segall, I.: Accelerating Smart Play-Out. Technical
Report, Weizmann Institute of Science (2009)

11. Harel, D., Segall, I.: Planned and Traversable Play-Out: A Flexible Method for
Executing Scenario-Based Programs. In: Grumberg, O., Huth, M. (eds.) TACAS
2007. LNCS, vol. 4424, pp. 485–499. Springer, Heidelberg (2007)

12. Combes, P., Harel, D., Kugler, H.: Modeling and Verification of a Telecommuni-
cation Application Using Live Sequence Charts and the Play-Engine Tool. Int. J.
Soft. Sys. Mod (SoSyM) 7(2), 157–175 (2008)

13. Callahan, D., Cooper, K.D., Kennedy, K., Torczon, L.: Interprocedural Constant
Propagation. In: Proc. SIGPLAN Symp. on Compiler Construction (CC 1986), pp.
152–161. ACM, New York (1986)

14. Korel, B., Yalamanchili, S.: Forward Computation of Dynamic Program Slices. In:
Proc. ACM SIGSOFT Int. Symp. on Software Testing and Analysis (ISSTA 1994),
pp. 66–79. ACM, New York (1994)

15. Krüger, I.: Capturing Overlapping, Triggered, and Preemptive Collaborations Us-
ing MSCs. In: Pezzé, M. (ed.) FASE 2003. LNCS, vol. 2621, pp. 387–402. Springer,
Heidelberg (2003)

16. Pezzé, M., Young, M.: Software Testing and Analysis: Process, Principles and Tech-
niques. John Wiley & Sons, Chichester (2008)

Optimum Broadcasting in Complete
Weighted-Vertex Graphs

Hovhannes Harutyunyan1 and Shahin Kamali2

1 Department of Computer Science and Software Engineering
Concordia University, Montreal, QC, H3G 1M8, Canada

haruty@cs.concordia.ca
2 David R. Cheriton School of Computer Science

University of Waterloo, Waterloo, ON, N2L 3G1, Canada
s3kamali@cs.uwaterloo.ca

Abstract. The weighted-vertex broadcast model is an extension of the
original model of broadcasting to the graphs with weighted vertices.
A vertex of weight ω is supposed to wait for ω time rounds before sending
data to its neighbors; after this delay, in each round, it can inform one of
its neighbors with no additional delay. We consider the problem in com-
plete weighted-vertex graphs, and introduce a set of properties which
describe a class of optimum solutions. Based on these, we present an
algorithm which gives optimum broadcast schemes in polynomial time.

1 Introduction

The classical broadcasting problem is defined as follows: Given a graph G and an
originator vertex r ∈ V (G) containing a message, find a scheme that broadcast
the message to all vertices in the minimum number of time steps. The communi-
cation is assumed to be synchronous, i.e., occurs in discrete rounds, and in every
round an informed vertex is allowed to send the message to at most one of its
neighbors. For some results and surveys on the classical model see [5,6,11,12,13].

In [9], the classical model is enhanced to the graphs with weighted vertices.
The weights on the vertices may have different meanings. In parallel computers
they reflect an internal process a machine needs to perform before informing its
uninformed neighbors (sometimes we refer to the weights as internal process or
internal delay). In modelling large networks, a node may represent a smaller
network (cluster) and the weight of a vertex is an upper bound for the broadcast
time of the network it represents. The weights on the vertices can also represent
the delay involved in receiving the message due to the input device limitations.
Another application of weighted-vertex model is in Satellite-Terrestrial networks
where each vertex is either a satellite or a terrestrial station [1]. Since the delay
and cost of communication through satellite nodes is higher than terrestrial
nodes, these networks are modelled by weighted-vertex graphs with positive
weights for satellite nodes and weight 0 for terrestrial nodes [1,17,14].

Broadcasting in weighted-vertex model is defined as follows [9]: Let G=(V,E)
be an undirected graph and r ∈ V be the originator node. Each node v has a non-
negative integer weight ω(v). Suppose v ’receives’ the message at time t from

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 489–502, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

490 H. Harutyunyan and S. Kamali

one of its neighbors. Then, v should wait for ω(v) rounds before it can inform
any uninformed neighbors; this is the time in which v ’completes’ handling its
delay. After v completes, in each round it can inform at most one neighbor. In
this way, the ith neighbor of v receives at time t(v) + ω(v) + i. Note that there
is distinction between receive time in which a vertex gets informed and complete
time in which the vertex completes its delay. The broadcast time of a scheme T ,
denoted by b(T), is the maximum complete time of all vertices.

There is another model for broadcasting in weighted-vertex graphs defined in
[15]. In this model, a vertex of weight ω is busy for ω rounds for informing any
of its neighbors; hence two consecutive neighbors receive the message with a de-
lay of ω rounds. Such model is in close connection with LogP model [4] where
ω represents the gap (g) for transmitting successive messages. In the model we
concern, a vertex of weight ω needs to wait once for ω rounds and after com-
pleting this delay, in each round, it can inform an uninformed neighbor with
no additional delay. Regardless of some similarities in the definition, two mod-
els have totally different characteristics. In particular, in the mentioned model,
broadcasting problem remains NP-hard for complete graphs [15]; however we
show this is not the case for the weighted-vertex model.

In unweighted graphs, any broadcast scheme can be described by a directed
spanning tree of the graph rooted at the originator [16]. In [9], this result is
extended to the weighted-vertex graphs and a linear algorithm for broadcasting
in weighted-vertex trees is provided. Consequently, in this paper we present any
broadcast scheme with a tree in which the children of a node receive from left
to right. Note that the root and the leaves of such broadcast trees have also
weights that are a part of the broadcast time, i.e., when a leaf x receives, the
broadcasting is not complete before additional ω(x) time units.

The weights on the vertices are non-negative integers. When all weights are 0,
the model is equivalent to the classical model. Since it is NP-hard to perform
broadcasting in minimum time in the classical model [8], it is also NP-hard to find
an optimum broadcast time in he more generalized weighted-vertex graphs. In [9]
some approximation results are provided for broadcasting in general weighted-
vertex graphs, and in [10] some heuristics are suggested to the problem.

In this paper we present a polynomial algorithm for finding an optimum broad-
cast scheme in complete weighted-vertex graphs. Besides being simple and fast
for message dissemination, complete graphs are important in modeling networks
in which the exact underlying structure is unknown [2]. It is not obvious that the
optimum schemes for broadcasting in weighted-vertex complete graphs can be
found in polynomial time. The broadcasting problem in complete graphs with
weights on the edges (instead of vertices) is NP-hard [3]. Also there are com-
munication models for which the broadcasting problem and its variants remain
NP-hard even in unweighted complete graphs (see [7] for some results on the
difficulty of broadcasting and gossiping under telegraph model in unweighted
complete graphs). Consequently, it makes sense to consider the broadcasting
problem in complete weighted-vertex graphs as a separate, nontrivial problem.

Optimum Broadcasting in Complete Weighted-Vertex Graphs 491

In Section 2 of the paper, the problem is formulated and the structure of
optimum solutions is described. In Section 3 an algorithm is introduced which
provides an optimum solution in polynomial time. Section 4 concludes the paper.

2 Weighted Broadcasting in Complete Graphs

The broadcasting problem asks for a scheme to inform all vertices in minimum
number of rounds. The problem is easy in unweighted complete graphs as in
each round an informed vertex can send the message to any of the uninformed
vertices. In complete weighted-vertex graphs the problem is not that easy as the
weights are not uniform and in each round, an informed vertex should look at
the weights of the uninformed vertices and choose one to send the message to.

It is good to inform lighter vertices sooner as they can perform their in-
ternal process faster and participate in informing other nodes. However, this
approach does not always create the optimum broadcast scheme. Figure 1 shows
two broadcast schemes for the same complete graph. In the first scheme, where
the vertices with lower receive sooner, the broadcasting completes in 11 units;
while the second scheme depicts the optimum broadcast scheme with broadcast
time equal to 7. This example shows an optimum scheme may switch the priority
between light and heavy vertices for several times; as at time t = 1 the heaviest
vertex (K) is informed, then at t = 2 the lightest vertex is informed (B), and at
t = 3 again the heaviest uninformed vertices (I, J) are informed.

We propose a set of properties that describe a certain class of optimum
schemes for broadcasting in complete weighted-vertex graph. We show that
any optimum scheme informs the vertices in almost the same order as these
schemes. The presence of all edges in a complete graph gives freedom to ma-
nipulate a broadcast tree to achieve better broadcast schemes. In fact any tree
rooted at r containing all vertices is an eligible broadcast scheme. We present
some methods for modifying an arbitrary scheme to get better schemes with
certain properties.

0

0

1

1

2

3

3

5

4

7
2

3

3

5

4

7

4

8

5

11

4

8

(a) A scheme in which the vertices
with smaller weights receive first

0

0

6

7

3

7

4

7

5

7
6

7

1

7

2

2

3

7

4

7

5

7

(b) An optimum scheme

Fig. 1. Two broadcast schemes for the same complete graph. The numbers on the right
of vertices are the weights, while the numbers on the left are the time in which vertices
receive the message (top) and complete their delay (bottom).

492 H. Harutyunyan and S. Kamali

Lemma 1. Any broadcast tree T0 with b(T0) = τ can be modified to a broadcast
tree T1 with b(T1) ≤ τ in which the weight of any internal node is not greater
than the weight of (any of) its children (η0 property).

To see the proof, suppose there is an internal node u in T0 with a child x such
that ω(u) > ω(x); swapping u and x gives a tree with broadcast time at most
equal to that of T0. Here, swapping u and x is an atomic modification involving
two nodes of the tree. In general, to achieve a new broadcast tree which holds
a specific property, we sort the vertices by their receive time and apply the
appropriate atomic modification on the first pair violating the desired property.
Suppose (u, x) be such a pair and t(u) < t(x), the atomic modification does not
change the previously checked vertices, i.e., the receive time of a node v with
t(v) < t(u) would not be affected by the modification on (u, x).

Next we consider non-laziness of broadcast schemes. A non-lazy scheme is
a scheme in which every vertex, in each round after it completes, informs exactly
one neighbor until all neighbors receive the message. In complete graphs, this
term can be redefined more explicitly: A non-lazy broadcast scheme is a scheme
in which for any two nodes u and v we have t(u) + ω(u) + deg(u) + 1 ≥ t(v).

Lemma 2. For any complete weighted-vertex graph, a lazy broadcast tree T1

with b(T1) = τ can be modified to a non-lazy tree T2 with b(T2) ≤ τ .

Proof. Let T1 be such a lazy tree, so there is an internal node u which is idle at
time t after it completes while another node v receives at time t′ > t. A better
broadcast tree can be achieved by placing the subtree rooted at v as the rightmost
subtree of u.

Lemma 3. If a broadcast tree T1 with b(T1) = τ has η0 property, it can be modi-
fied to a broadcast tree T2 with b(T2) ≤ b(T1) in which for any two internal nodes
(excluding the root) the one with smaller weight receives sooner (η1 property).

Proof. Let u and v be two internal nodes in T1 which violate the property, i.e.,
ω(u) < ω(v) and t(u) > t(v). To simplify notation let ω(u) = ω, ω(v) = ω + z,
t(u) = t+ k, and t(v) = t (for some positive z,k). Also let d and d′ respectively
denote the number of children of u and v. Suppose the children of u and v are
labeled as u1, u2, . . . ud and v1, v2, . . . vd′ from left to right; so vi receives at time
t+ω+z+i and ui receives at t+k+ω+i [Figure 2(a)]. To create the new tree T2

consider two cases: If k ≤ d′, swap the subtree rooted at u with the one rooted
at v [Figure 2(b)]; so u receives at time t and v receives at t+k. Also remove the
first k children of v and attach them to u. Consider an ordering of the children
of u in the new tree in which the recently added children (v1, v2, . . . vk) receive
before the old children (v1, v2, . . . vd); so ui receives at time t+ω+k+ i which is
the same time prescribed by T1. Similarly a node vi (i > k) receives in the same
time it receives in T1. Moreover any node vi(i ≤ k) receives at t + ω + i, which
is an improvement comparing to t + ω + i + z prescribed by T1. Now consider
the other case in which k > d; replace u with v and set u as the parent of v,
{v1 . . . vd′}, and {u1..ud} [Figure 2(c)]. Informing children of v in the same order

Optimum Broadcasting in Complete Weighted-Vertex Graphs 493

time: t
weight: + z

vi receives at
t + + z + i

time: t + k
weight:

ui receives at
t + k + + i

u

u1 ud

v

v1 vd’

(a) A broadcast tree T1

time: t
weight:

vi k receives at t + + i
ui receives at t + + k + i

time: t + k
weight: + z

vi >k receives at
t + + z + i

u

v1 vk u1 ud

v

vk+1 vd’

(b) T2 when d′ ≥ k

time: t
weight:

v completes at t + 2 + 1 + z b(T1)
vi receives at t + + 1 + i
ui receives at t + + 1+ d’ + i

v1 vd’ u1 udv

u

(c) T2 when d′ < k

Fig. 2. The original tree T1 can be modified to a tree T2 with improved (or same)
broadcast time in which internal nodes with smaller weights receive sooner

gives a broadcast scheme for the new tree which is not worst than T1. Note that
τ ≥ t+ω+z+1+ω(v1); since T1 satisfies η0 property, we gives ω ≤ ω(v1) which
implies b(T1) ≥ t+ω+1+ω+ z. The last term is the time in which v completes
in T2, which means attaching v to u does not increase the broadcast time of T2

comparing to T1. Also, note that vis receive at t+ ω + 1 + i, which is not worst
than t+ ω + z + i by T1 (since z ≥ 1). Similarly, ui receives at t+ ω + 1 + d+ i
which is not worst than t+ k + ω + i.

Lemma 4. If a broadcast tree T1 with b(T1) = τ has η0 property, it can be
modified to a broadcast tree T2 with b(T2) ≤ τ in which the weight of any internal
node is not greater than the weight of any of the leaves.

The proof of this lemma is almost the same as the previous one. Figure 3 il-
lustrates how to apply the modification for a pair (u, x) violating the desired
property. Based on the properties described above, we define normal trees as
a kind standard broadcasting schemes for complete graphs:

Definition 1. A broadcast tree Tη is normal iff the followings hold:

- Tη is non-lazy
- for any two internal nodes u, v �= r, ω(u) ≤ ω(v) ⇔ t(u) ≤ t(v) [η1 property]
- for any internal node u(�= r) and leaf x, ω(u) ≤ ω(x) [η2 property]

Theorem 1. A broadcast tree T with b(T) = τ can be modified to a normal
tree Tη with b(Tη) ≤ τ .

time: t
weight: + z

ui receives at t + + z + i

u1 ud

u x
time: t’

weight:

(a) A broadcast tree Tβ

time: t
weight:

u completes at t + 2 + 1 + z b(T)
ui receives at t + + 1 + i

u1 ud

x

utime: t + +1
weight: + z

(b) The modified tree Tγ

Fig. 3. The original tree Tβ can be modified to a tree Tγ with improved (or same)
broadcast time such that internal nodes have smaller weights than leaves

494 H. Harutyunyan and S. Kamali

Proof. The proof is a direct result of Lemma 1,2,3,4. We just need to be careful
as the set of atomic modifications applied for achieving one property may disrupt
other properties. So instead of applying a set of modifications to tackle a property
and then going to the next one, we walk on the original tree in the order of the
receive time of vertices. For any node that receives at time t, we look at future
vertices to set the first pair which violates a property and apply the appropriate
atomic modification. It is easy to see the modifications does not affect previously
checked vertices (those which receive before t). Hence, after a limited number of
modifications, we achieve the broadcast tree holding all desired properties.

An optimum scheme is not necessarily normal; also a normal scheme is not
necessarily optimum. The following definition introduces two more properties
which connect broadcast trees to a candidate broadcast time br.

Definition 2. A broadcast tree T with b(T) = τ ’respects’ a candidate broadcast
time br if b(T) ≤ br and for any internal node u and leaf x the followings hold:

- t(x) < t(u) ⇒ t(u) + ω(x) > br (ρ1 property)
- t(x) < t(u) ⇒ t(x) + ω(u) + 1 + ω(x) > br (ρ2 property)

In fact, in a scheme that respects a candidate solution, the leaves are informed as
late as possible, with the restriction that the broadcast time should not exceed
the candidate broadcast time. By property ρ1 if we swap a leaf x with an internal
node u informed after x, the broadcast time exceeds the candidate time br;
similarly property ρ2 implies x cannot be informed as a descendant of u. The
proof of the following lemma gives a more clear understanding of these properties.

Lemma 5. Let Tη be a broadcast tree with b(Tη) = τ . For any candidate time
br ≥ τ , Tη can be modified to a broadcast tree Tρ which respects br.

Proof. We modify Tη to get a new tree Tρ with broadcast time not more than
br (Figure 4). Let x and u respectively represent a leaf and an internal node in
Tη with t(x) < t(u). If t(u) + ω(x) ≤ br, swap the subtree rooted at u with x
[Figure 4(b)]. So u completes at t(u)+ω(x) which is not greater than br while the
broadcast time of the subtree rooted at u improves. If t(x) + ω(u) + 1 + ω(x) ≤
br, swap x and u and let x be the leftmost child of u [Figure 4(c)]. One can
see x completes within br , while receive time of other children of u is also
improved.

The construction in this lemma may result in broadcast trees with higher broad-
cast time; but this is not a problem as the broadcast time is enough to be
smaller or equal to the candidate time br. When br is large, the schemes con-
verge to a naive scheme in which the vertices with smaller weights receive sooner
[Figure 1(a)]. In fact we are interested in a normal schemes that respect the
smallest value of br (this will be more discussed in the next section).

Theorem 2. Let Tη be a broadcast tree with b(Tη) = τ . For any candidate time
br ≥ τ , Tη can be modified to a normal broadcast tree which respects br.

Optimum Broadcasting in Complete Weighted-Vertex Graphs 495

time: t + k
weight: u

ui receives at t + k + u + i

u1 ud

ux
time: t

weight: x

(a) A broadcast tree Tη

time: t + k
weight: x

ui receives at t + u + i

u1 ud

u xtime: t
weight: u

x completes at
t + k + x br

(b) Tρ when tη(u)+ω(x) ≤ br

time: t+ u+ 1
weight: x

ui receives at
t + u + 1 + i

u1 ud

u

x

time: t
weight: u

x completes at
t + u + 1 + x br

(c) Tρ when tη(x)+ω(u)+
1 + ω(x) ≤ br

Fig. 4. Broadcast tree Tη which completes within br can be modified to another tree
Tρ which respects br

This theorem is a direct result from the Theorem 1 and Lemma 5. Like before,
the modifications applied in the proof of Lemma 5 may disrupt normality of the
tree. We use the same idea as presented in the proof of Theorem 1 to address
this problem. So instead of constructing a normal tree and modifying it to a tree
which respects br, we tackle all desired properties with one walk on the tree.

Next, we present an important theorem which informally states all normal
schemes which respect a candidate time are the same. We are mainly concerned
with internal nodes as they define the structure of the tree. It is shown the set of
internal nodes informed in any round are the same in all broadcast trees which
are normal and respect a candidate broadcast time br. When the equivalence of
vertices is concerned, it is assumed they are labeled by their weights.

Theorem 3. Let T0, T1 be two normal broadcast trees which respect a broadcast
time br, and I0(t), I1(t) be the set of internal nodes informed at time t by these
two schemes respectively. Then, for each round t ≤ br, I0(t) = I1(t).

Proof. Let t′ denote the first round when I0(t′) �= I1(t′); so both schemes inform
the same set of internal nodes in same times in previous rounds. Adding this
to non-laziness of schemes, both schemes inform exactly k nodes at time t′.
Consider T0 informs k0 internal nodes in round t′. Properties η1, η2 imply that
these are k0 uninformed nodes with minimum weights. Similarly, T1 informs
k1 uniformed nodes with minimum weights. So k0 = k1 implies I0(t′) = I1(t′)
(contradiction).

Now let k0 < k1, i.e., there is an internal node v informed at time t′ by T1

which is not informed by T0. Since both schemes inform k nodes at t′, there
should be a leaf x where x ∈ I1(t′) and x /∈ I0(t′). To summarize, v is an internal
node in T0 and x is a leaf in T1 while t′ = t0(x) = t1(v). Let I ′ denote the
set of informed vertices before time t′ (would be same for both trees). Consider
those vertices informed by T0 at period [t′, t′′ − 1] where t′′ = t0(v). Denote
with B the members of this set except those internal nodes informed at t′. Note
that members of B are all leaves in T0, since if there is an internal node v′ among
them, by property η1 for T0 we get ω(v′) < ω(v), which contradicts property η1

for T1 as v is informed before v′ in T1. We claim not all members of B can receive
at [t′, t′′ − 1] in T1. The reason is that by ρ2 property, for any z ∈ B we have
t′+ω(v)+1+ω(z) > br which implies those members of B informed at [t′, t′′−1]

496 H. Harutyunyan and S. Kamali

should find their parents in I ′. By non-laziness of T1, members of I ′ can exactly
inform b = |B| nodes in this time period. Since v /∈ B is already one of these
b vertices, there should be another node y ∈ B which is informed either in [0, t′]
or [t′′, br]. We show that none of these can happen. If y receives in period [0, t′−1]
then it should be a leaf in T1 (internal nodes of both schemes are the same in
this period). Property ρ1 for T1 implies that t′ + ω(v) > br. Also T0 completes
within br which means t0(y) + ω(y) ≤ br; adding this to t′ < t0(y) we come to
contradiction. If y receives in [t′′, br], property ρ1 for T0 implies t′′ + ω(y) > br.
Also T1 completes in br time which means t1(y) + ω(y) ≤ br; adding this to
t′ < t1(y) we come to contradiction. As a result, there is no round t′ such that
I0(t′) �= I1(t′) which completes the proof.

3 An Algorithm for Finding Optimum Schemes

We design an algorithm named BroadGuess which gets as input a weighted
complete graph G, an originator vertex r, and a guess value br as the can-
didate broadcast time. If br is not greater than the optimum broadcast time,
the algorithm returns a scheme which completes within br; otherwise, it returns
Bad Guess. Note that an upper bound for the broadcast time is n−1+W , where
n is the number of vertices and W is the total weight of the graph [9]. Provided
by this, we conduct a binary search to find the smallest value of br for which the
algorithm returns a scheme. Such scheme would be the optimum scheme.

Any broadcast scheme is represented with a spanning tree directed from the
originator to the leaves. The algorithm is based on the following construction:
It starts with the originator r as the broadcast tree and repeatedly sticks new
vertices to it until all the vertices gets attached. During this process the algorithm
may fail and return Bad Guess.

In each round of the algorithm, the vertex set V (G) is partitioned into Tree
Vertices denoted by T and Uninformed Vertices denoted by U . Tree vertices
are those which are already attached to the tree, while uninformed vertices are
waiting to be attached. At the beginning of the algorithm these sets are respec-
tively initiated by {r} and V (G) − {r}. The algorithm ends when all vertices
are moved from U to T . The following notations are used in the algorithm: For
any u ∈ T : par(u) is the parent of u in the tree, chi(u) is the child of u at
index i (initialized by NULL), and avi(u) is the smallest index of u such that
chavi(u) = NULL (initialized by 1). Also, max,min ∈ U are two uninformed
vertices with the maximum and minimum weights. These variables get updated
when a new node sticks to the tree. Algorithm 1 illustrates these updates.

In each round of the algorithm a member of U with either minimum or maxi-
mum weight (min or max) is selected to be attached to the tree. Note that after
attaching a new vertex the broadcast time of the tree should remain smaller
or equal to the guess value br. Let y be a node of the tree which minimizes
t(y) + ω(y) + avi(y). Define α as t(y) + ω(y) + avi(y), which means the unin-
formed vertices cannot receive the message sooner than α. If the weight of min
is small enough that attaching it to y guarantees that max can be attached later

Optimum Broadcasting in Complete Weighted-Vertex Graphs 497

Algorithm 1. Stick
Input: A vertex x ∈ U , a vertex p ∈ T , an integer i as the index of x among children of
p { Updating control values when new node x sticks to node p }
1: t(x) ← t(p) + ω(p) + i
2: par(x) ← v chi(p) ← x
3: if i = avi(v) then
4: avi(v) ← the smallest j > i having chj(v) = Null
5: end if
6: U = U − {x}, T = T ∪ {x}

as a descendant of min, then we stick min to y. More formally, we stick min to
y if α + ω(min) + 1 + ω(max) ≤ br. If max cannot be informed through min,
it should stick max somewhere in the current tree; but we try to inform it as
late as possible. The reason is max cannot inform other vertices [otherwise min
could be its parent], and just needs to receive in a time to complete within br.

If we cannot attach max anywhere in the tree in a way that it completes
within br, the algorithm returns Bad Guess. It happens when min is heavy and
in the last consecutive rounds just maxs have been attached to the tree. In this
case, the tree does not have an available index for the current max and the
algorithm fails to create a scheme which completes within time br.

Algorithm 2 illustrates BroadGuess in more details. Note that all nodes stick
to the tree in Lines 7 and 14 of the algorithm, while in Lines 6 and 9 it is
checked the broadcast time of the tree not exceed br after attaching new nodes.
Consequently, if the algorithm returns a broadcast scheme, it completes within
the candidate time br. Hence, to prove the correctness of the algorithm it suffices
to show if the output is Bad Guess for a candidate time br, there is no scheme
which completes in br time.

Let T ∗ be the tree created by the algorithm just before returning Bad Guess,
and t∗ be the time unit in which the last vertex receives in this tree. We describe
a set of properties for tree T ∗ to show this tree has all properties of a normal
broadcast tree which respects candidate time br.

Lemma 6. If a vertex v sticks to T ∗ as a max node (Line 14 of the algorithm),
then v is a leaf of the tree.

Proof. Suppose v has a child x; so in the iteration in which v sticks to the tree we
have α+ω(v)+1+ω(x) ≤ br. Note that x is a feature vertex, so ω(x) ≥ ω(min)
which gives α+ω(v) + 1 +ω(min) ≤ br. But v has been added as a max vertex
in this iterations; so α+ ω(min) + 1 + ω(v) > br which is a contradiction.

Lemma 7. A vertex is added as min if and only if it is an internal node in T ∗.

Proof. By Lemma 6 any vertex added as max is a leaf which implies all internal
nodes are added as min. For the other side, we need to show any vertex v added
as min is internal in T ∗. Since v is added as min in some iteration i, we get
t(v) + ω(v) + 1 + ω(max) ≤ br (since max is the heaviest uninformed vertex in

498 H. Harutyunyan and S. Kamali

Algorithm 2. BroadGuess
Input: A weighted complete graph G, the originator r, and candidate time br
Output:A broadcast tree T which completes within br or Bad Guess

1: Initialize the sets T and U with {r}, V − {r} respectively
2: while U �= Φ do {main loop}
3: Set max,min ∈ U as the vertices with extreme weights
4: Find y ∈ T which minimizes t(y) + ω(y) + avi(y)
5: Set α = t(y) + ω(y) + avi(y)
6: if α + ω(min) + 1 + ω(max) ≤ br then
7: call Stick(min, y, avi(y)) {Stick min to y at index avi(y) }
8: else
9: Set P = {v ∈ T |t(v)+ω(v)+avi(v)+ω(max)≤ br} {feasible parents of max}

10: if P = Φ then
11: return Bad Guess
12: else
13: Find a pair (v, k) where v ∈ P and chk(v) = Null with maximum t(v) +

ω(v) + k such that t(v) + ω(v) + k + ω(max) ≤ br {inform max as late as
possible}

14: call Stick(max, v, k){Stick max to v at index k}
15: end if
16: end if
17: end while

the iteration i). Since the vertex z which failed to stick is uniformed in iteration i
we have ω(z) ≤ ω(max) which implies t(v)+ω(v)+1+ω(z) ≤ br. So if v has no
children, it can be the parent of z, which is not true as z failed to stick to T ∗.

The following theorem states T ∗ is a normal broadcast tree and respects the
candidate time br (for which the algorithm returned Bad Guess). We show T ∗

is partially non-lazy, i.e., the completed vertices are not idle at any time t ≤ t∗.
Since the uninformed vertices are missing in T ∗, they are considered as a separate
class of vertices along with the internal nodes and leaves of T ∗:

Theorem 4. The tree T ∗ has the following properties:

– it is partially non-lazy
– for any internal node u ∈ T ∗(u �= r): [η1 property]

◦ for any internal node v ∈ T ∗(v �= r), ω(u) ≤ ω(v) ⇔ t(u) ≤ t(v)
– for any internal node u ∈ T ∗(u �= r): [η2 property]

◦ for any leaf x ∈ T ∗, ω(u) ≤ ω(x)
◦ for any vertex z ∈ U , ω(u) ≤ ω(z)

– for any leaf x ∈ T ∗: [ρ1 property]
◦ for any internal node u ∈ T ∗, t(x) < t(u) ⇒ t(u) + ω(x) > br

– for any leaf x ∈ T ∗: [ρ2 property]
◦ for any internal node u ∈ T ∗, t(x) < t(u) ⇒ t(x) +ω(u) + 1 +w(x) > br

◦ for any vertex z ∈ U , t(x) + w(z) + 1 + w(x) > br

Optimum Broadcasting in Complete Weighted-Vertex Graphs 499

The proof of this theorem can be found in the appendix. As this theorem im-
plicitly guaranties T ∗ is a normal broadcast tree which respects the candidate
time br, we can extend previous results to this tree. In particular we can state
the following theorem which is an extension of Theorem 3:

Theorem 5. Given T ∗ as the created tree just before returning Bad Guess for
candidate time br, and t∗ be the latest time a vertex receives in T ∗, for each
round t < t∗ we have IT∗(t) = Iℵ(t) where ℵ is a normal scheme respecting br
and I(t) is the set of internal nodes informed at time t.

Note that ℵ represents all normal schemes that respect br since all these schemes
inform the same set of internal nodes in all rounds (Theorem 3). Theorem 5 states
that any internal node informed by these schemes before round t∗ is present in
T ∗ and is informed at the same time unit. The proof of the theorem is similar to
that of Theorem 3. It is just needed to consider more scenarios as T ∗ does not
contain all vertices of ℵ. A detailed proof is presented in the appendix.

Theorem 6. If the output of the algorithm BroadGuess is Bad Guess for a can-
didate broadcast time br, then b(G) > br.

Proof. Suppose there is a scheme which completes within br. By Theorem 2 this
scheme can be modified to a normal scheme ℵ which respects br. Let T ∗ be
the constructed tree before returning Bad Guess and M be the set of internal
nodes of T ∗. We can apply Theorem 5 to state any member of M receives at the
same time in ℵ as in T ∗. Now consider the leaves of T ∗ which are k nodes with
maximum weights (the algorithm picks the vertices with maximum weight). All
these nodes should find their parents (in ℵ) among the members of M ; otherwise
their missing parents in T ∗ should have been attached to T ∗ by η2 property.
Similarly, the vertex z which failed to attach to T ∗ has its parent (in ℵ) among
the members of M . Consequently vertices of M in ℵ are parents of at least k+1
nodes with weights not less than ω(z). This contradicts the fact that the same
vertices with same broadcast time failed to inform these k + 1 nodes in T ∗.

With a rough implementation, BroadGuess algorithm needs O(n2) time to com-
plete. Recall that n+W +1 is an upper bound for broadcasting in any weighted
graph where W is the sum of all weights of vertices; so we need to run Broad
Guess O(log(n+W)) times. Consequently, the total time complexity would be
O(n2 log(n + W)), which is polynomial even if W be exponential with respect
to n.

4 Conclusion

We investigated the problem of broadcasting in complete weighted-vertex graphs,
discussed why the problem is not trivial, and provided a set of properties an
optimum solution may have. Based on these, we presented an algorithm which
gives an optimum solution for an instance of the problem in time O(n2 log(n +
W)) time, where n is the size and W is the total weight of the graph.

500 H. Harutyunyan and S. Kamali

References

1. Asaka, T., Miyoshi, T., Tanaka, Y.: Multicast Routing in Satellite-Terrestrial Net-
works. In: Fifth Asia-Pacific Conference on Communications and Fourth Optoelec-
tronics and Communications Conference, vol. 1, pp. 768–771 (1999)

2. Bar-Noy, A., Kipnis, S.: Designing Broadcasting Algorithms in the Postal Model
for Message-Passing Systems. In: ACM Symposium on Parallel Algorithms and
Architectures, pp. 13–22 (1992)

3. Bar-Noy, A., Nir, U.: The Generalized Postal Model-Broadcasting in a System
with Non-Homogeneous Delays. In: Electrotechnical Conference, 1998. MELECON
1998, 9th Mediterranean, May 18-20, vol. 2, pp. 1323–1327 (1998)

4. Culler, D., Karp, R., Patterson, D., Sahay, A., Schauser, K.E., Santos, E., Subramo-
nian, R., Von Eicken, T.: Logp: Towards a Realistic Model of Parallel Computation.
SIGPLAN Not. 28(7), 1–12 (1993)

5. Elkin, M., Kortsarz, G.: Sublogarithmic Approximation for Telephone Multicast:
Path Out of Jungle (extended abstract). In: SODA 2003, Proceedings of the Four-
teenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 76–85 (2003)

6. Fraigniaud, P., Lazard, E.: Methods and Problems of Communication in Usual
Networks. Discrete Appl. Math. 53(1-3), 79–133 (1994)

7. Fraigniaud, P., Vial, S.: Approximation Algorithms for Information Dissemination
Problems. In: IEEE Second International Conference on Algorithms and Architec-
tures for Parallel Processing (ICAPP), pp. 155–162 (1996)

8. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory
of NP-Completeness. W.H. Freeman & Co., New York (1990)

9. Harutyunyan, H., Kamali, S.: Broadcasting in Weighted-Vertex Graphs. In: ISPA
Intl Symposium on Parallel and Distributed Processing with Applications, pp.
301–307 (2008)

10. Harutyunyan, H., Kamali, S.: Efficient Broadcasting in Networks with Weighted
Nodes. In: ICPADS Intl Conference on Parallel and Distributed Systems, pp. 879–
884 (2008)

11. Hedetniemi, S.M., Hedetniemi, S.T., Liestman, A.L.: A Survey of Gossiping and
Broadcasting in Communication Networks. Networks 18(4), 319–359 (1998)

12. Hromkovic, J., Klasing, R., Monien, B., Peine, R.: Dissemination of Information
in Interconnection Networks (Broadcasting & Gossiping). Combinatorial Network
Theory, 125–212 (1996)

13. Hromkovič, J., Klasing, R., Pelc, A., Ružička, P., Unger, W.: Dissemination of In-
formation in Communication Networks: Broadcasting, Gossiping, Leader Election,
and Fault-Tolerance. Springer Monograph. Springer, Heidelberg (2005)

14. hsu Chang, C., Wu, E.H.: An Intelligent Multicast Protocol for Satellite-Terrestrial
Broadband Network, 138–143 (October 2002)

15. Khuller, S., Kim, Y.-A.: Broadcasting in Heterogeneous Networks. Algorith-
mica 48(1), 1–21 (2007)

16. Slater, P.J., Cockayne, E.J., Hedetniemi, S.T.: Information Dissemination in
Ttrees. SIAM Journal on Computing 10(4), 692–701 (1981)

17. Wu, E.H.-k., Chang, C.: Adaptive Multicast Routing for Satellite-Terrestrial Net-
work. In: Global Telecommunications Conference, GLOBECOM 2001, vol. 3, pp.
1440–1444. IEEE, Los Alamitos (2001)

Optimum Broadcasting in Complete Weighted-Vertex Graphs 501

Appendix

Proof (Theorem 4)
non-laziness: Let x be a vertex which receives at time t∗ [such a vertex exists by
definition of t∗]; so we have t∗ +ω(x) ≤ br. Since x is the last node that receives
in T ∗, it is a leaf and sticks to the tree as max (Lemma 7). Now consider a
vertex z fails to stick to the tree; since it is uninformed in the iteration in which
x sticks, we get ω(z) ≤ ω(x) which implies t∗ + ω(z) ≤ br. So if a node is idle
at any round t ≤ t∗, it can be the parent of z to inform it in this round; this
contradicts the fact z failed to stick to the tree.

η1: Let u and v be two internal nodes with ω(u) ≤ ω(v). Both u and v stick
to the tree as min (Lemma 7). Since u is lighter than v, it sticks to the tree in
an iteration in which v is still among uninformed vertices. In this iteration, the
algorithm finds a node y to inform u as soon as possible [Line 4 of the algorithm].
So u receives sooner than all uninformed vertices in this iteration including v.

η2: Suppose a leaf x sticks to T ∗ before an internal node u. By Lemma 7, x has
the maximum weight among all uninformed vertices including u in the iteration
in which it sticks to T ∗, i.e., ω(u) ≤ ω(x). Similarly, if u sticks to T ∗ before x
(uninformed vertex z), it has the minimum weight among all uninformed vertices
in the iteration it sticks to T ∗; x (and z) are among these uninformed vertices
which implies ω(u) ≤ ω(x) (and ω(u) ≤ ω(z)).

ρ1: Consider an internal node u receives after a leaf x, so t(x) < t(u); we need
to show t(u) + ω(x) > br. Note that u and x stick to the tree as min and max
respectively. Also u sticks to T ∗ after x since u sticks asmin and receives not later
than any uninformed vertex. Suppose ρ1 does not hold, i.e., t(u) + ω(x) ≤ br.
Consider the iteration in which x sticks to T ∗; if the parent of u (par(u)) is
already in the tree in this iteration, we can stick x in the appropriate index of
par(u) to inform it at time t(u)(> t(x)); this contradicts x being informed as
late as possible [Line 13]. If par(u) is not in the tree, t(u) + ω(x) ≤ br implies
t(par(u))+ω(par(u))+1+ω(x) ≤ br. Note the algorithm could attach the vertex
with minimum weight (min) with t(min) ≤ t(par(u)) [min receives sooner than
any other uninformed node] and ω(min) ≤ ω(par(u)). Consequently, we get
t(min) +ω(min) + 1 + ω(x) ≤ br which contradicts x being stick as max in the
iteration [Line 6].

ρ2: Let u be an internal node and x be a leaf such that t(u) > t(x); so u is un-
informed in the iteration in which x sticks to the tree. Having α as the earliest
time a vertex can be informed [Line 5], we get t(x) ≥ α; also x is the uninformed
vertex with the maximum weight, i.e., ω(u) is not smaller than min. So if we
assume t(x) + ω(u) + 1 + ω(x) ≤ br then α+ ω(min) + 1 + ω(max) ≤ br, which
contradicts x being stick as max. Similarly, any z /∈ T ∗ is uninformed at the
iteration in which x sticks, and ω(z) is not smaller than min. Consequently,
assuming t(x) + ω(z) + 1 + ω(x) ≤ br implies α + ω(min) + 1 + ω(max) ≤ br
which is a contradiction.

502 H. Harutyunyan and S. Kamali

Proof (Theorem 5)
We start with the observation that the weight of any leaf in T ∗ is not smaller
than the weight of vertices in U . The reason is that the leaves of T ∗ stick as
max, which implies they have been the heaviest uninformed vertices when added
to the tree. We refer to this property as μ property.

Let t′ ≤ t∗ be the first round such that Iℵ(t′) �= IT (t′). Both schemes inform
exactly k nodes at time t′ as both are non-lazy (in period [0, t∗]) and have
informed the same set of internal nodes in the same times in previous rounds.
Also properties η1 and η2 guaranty the internal nodes informed at t′ are the
same; so there is an internal node v informed at t′ by one of the schemes which
is replaced by a leaf x in the other scheme. We discuss different cases and come
to contradiction in all:

Consider the case in which T ∗ and ℵ respectively inform x and v at time t′

while v is not missing in T ∗; then we can apply the same reasoning as in the
proof of Theorem 3; just replace T0 and T1 with T ∗ and ℵ in the proof.

Consider the case in which T ∗ and ℵ respectively inform x and v at t′ while
v is missing in T ∗ (v is uninformed). Let B denote the set of vertices of T ∗ that
received in time period [t′, t∗]. All members of B are leaves, since by η1 and
η2 properties v is the first internal node which receives after t′ in T ∗. Since v is
missing, there is no internal node informed after t′ in T ∗. Also property ρ2 for T ∗

along with non-laziness of schemes imply there is a vertex y ∈ B that receives
out of the period [t′, t∗] in ℵ. By property ρ1 for ℵ, y cannot receive in [0, t′],
hence it receives in [t∗ + 1, br]. Since the output has been Bad Guess, there is
a vertex z ∈ U such that t∗ +1+ω(z) > br. Moreover, μ property for T ∗ implies
ω(y) > ω(z) which means t∗ + ω(y) > br. Applying tℵ(y) + ω(y) ≤ br we get
t∗ > tℵ(y) which contradicts informing y in [t∗ + 1, br].

Consider the case in which T ∗ and ℵ respectively inform v and x. Let t′′ denote
the time in which v receives in ℵ, i.e., t′′ = tℵ(v). First we show t′′ < t∗: define S
as the set of leaves of T ∗, included to it the single vertex z failed to attach to T ∗

(t∗+1+ω(z) > br). By μ property, the weights of members of S cannot be smaller
than z. Having t′′ ≥ t∗ requires the leaves of ℵ informed within t∗ receive through
members I ′. Adding to this the non-laziness of T ∗ (before t∗), there should be a
member s of S informed after t∗ in ℵ, i.e., t∗ + 1 +ω(s) ≤ br. Since ω(s) ≥ ω(c),
we get t∗ + 1 + ω(z) ≤ br which is a contradiction. Now consider t′′ ≤ t∗; let
B denote the set of leaves informed by ℵ in period [t′, t′′ − 1]. By ρ2 property
for ℵ, members of B should find their parents in I ′. Since T ∗ and ℵ are both
non-lazy in period [t′, t′′ − 1], and v is one of the vertices informed by I ′ in this
period, there exists a vertex y ∈ B which is not informed by T ∗ in [t′, t′′ − 1].
We discuss y should be a node of T ∗: ρ2 property for ℵ implies t′′ + ω(w) > br.
Moreover, t∗ is defined as the latest time in which a leaf c receives which implies
t∗ + ω(c) ≤ br. Applying t′′ < t∗, we conclude ω(c) < ω(y); by μ property, y
should be a node of T ∗. Now we can use similar techniques as previous parts;
y receives in T ∗ either in [0, t′] or [t′′, t∗]. Applying ρ1 property for T ∗ and ℵ
respectively, none of these two cases can happen.

On Contracting Graphs to Fixed Pattern Graphs

Pim van ’t Hof1,�, Marcin Kamiński2, Daniël Paulusma1,�, Stefan Szeider1,
and Dimitrios M. Thilikos3,��

1 School of Engineering and Computing Sciences, University of Durham
Science Laboratories, South Road

Durham DH1 3LE, England
{pim.vanthof,daniel.paulusma,stefan.szeider}@durham.ac.uk

2 Computer Science Department, Université Libre de Bruxelles
Boulevard du Triomphe CP212, B-1050 Brussels, Belgium

marcin.kaminski@ulb.ac.be
3 Department of Mathematics, National and Kapodistrian University of Athens

Panepistimioupolis, GR15784 Athens, Greece
sedthilk@math.uoa.gr

Abstract. For a fixed graph H , the H-Contractibility problem asks
if a graph is H-contractible, i.e., can be transformed into H via a se-
ries of edge contractions. The computational complexity classification
of this problem is still open. So far, H has a dominating vertex in all
cases known to be polynomially solvable, whereas H does not have such
a vertex in all cases known to be NP-complete. Here, we present a class
of graphs H with a dominating vertex for which H-Contractibility

is NP-complete. We also present a new class of graphs H for which H-
Contractibility is polynomially solvable. Furthermore, we study the
(H,v)-Contractibility problem, where v is a vertex of H . The input
of this problem is a graph G and an integer k. The question is whether G
is H-contractible such that the “bag” of G corresponding to v contains
at least k vertices. We show that this problem is NP-complete whenever
H is connected and v is not a dominating vertex of H .

1 Introduction

There are several natural and elementary algorithmic problems that check if
the structure of some fixed graph H shows up as a pattern within the struc-
ture of some input graph G. This paper studies the computational complexity
of one such problem, namely the problem of deciding if a given graph G can
be transformed into a fixed pattern graph H by performing a sequence of edge
contractions. Theoretical motivation for this research, which started in [2] and
was continued in [11,12], comes from hamiltonian graph theory [9] and graph
minor theory [13], as we will explain below. Practical applications include sur-
face simplification in computer graphics [1,3] and cluster analysis of large data
� Supported by EPSRC (EP/D053633/1).

�� Supported by the project “Kapodistrias” (AΠ 02839/28.07.2008) of the National
and Kapodistrian University of Athens (project code: 70/4/8757).

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 503–514, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

504 P. van ’t Hof et al.

sets [4,8,10]. In the first practical application, graphic objects are represented
using (triangulated) graphs and these graphs need to be simplified. One of the
techniques to do this is by using edge contractions. In the second application,
graphs are coarsened by means of edge contractions.

Basic Terminology. All graphs in this paper are undirected, finite, and have
neither loops nor multiple edges. Let G and H be two graphs. The edge con-
traction of edge e = uv in G removes u and v from G, and replaces them by
a new vertex adjacent to precisely those vertices to which u or v were adjacent.
If H can be obtained from G by a sequence of edge contractions, vertex deletions
and edge deletions, then G contains H as a minor. If H can be obtained from G
by a sequence of edge contractions and vertex deletions, then G contains H as
an induced minor. If H can be obtained from G by a sequence of edge contrac-
tions, then G is said to be contractible to H and G is called H-contractible. This
is equivalent to saying that G has a so-called H-witness structure W , which is
a partition of VG into |VH | sets W (h), called H-witness sets, such that eachW (h)
induces a connected subgraph of G and for every two hi, hj ∈ VH , witness sets
W (hi) and W (hj) are adjacent in G if and only if hi and hj are adjacent in H .
Here, two subsets A,B of VG are called adjacent if there is an edge ab ∈ EG with
a ∈ A and b ∈ B. Clearly, by contracting the vertices in the witness sets W (h)
to a single vertex for every h ∈ VH , we obtain the graph H . See Figure 1 for
an example that shows that in general the witness sets W (h) are not uniquely
defined.

Fig. 1. Two P4-witness structures of a graph

Known Results. The problemsH-Minor Containment,H-Induced Minor

Containment andH-Contractibility ask if a graph has H as an induced mi-
nor, has H as a minor or is H-contractible, respectively. A celebrated result by
Robertson and Seymour [13] states that H-Minor Containment can be solved
in polynomial time for every fixed graph H . The complexity classification of the
other two problems is still open. Fellows et al. [6] give both polynomially solvable
and NP-complete cases for the the H-Induced Minor Containment problem.
Theirmain result is that, for everyfixedH , theH-InducedMinorContainment

problem is polynomially solvable for planar input graphs.Brouwer andVeldman [2]
initiated the research on the H-Contractibility problem. Their main result is
stated below. A dominating vertex is a vertex adjacent to all other vertices.

Theorem 1 ([2]). Let H be a connected triangle-free graph. The H-Contract-

ibility problem is in P if H has a dominating vertex, and is NP-complete
otherwise.

On Contracting Graphs to Fixed Pattern Graphs 505

Note that a connected triangle-free graph with a dominating vertex is a star and
that H = P4 (path on four vertices) and H = C4 (cycle on four vertices) are
the smallest graphs H for which H-Contractibility is NP-complete. Levin et
al. [11,12] continued the research of [2].

Theorem 2 ([11,12]). Let H be a connected graph with |VH | ≤ 5. The H-
Contractibility problem is in P if H has a dominating vertex, and is NP-
complete otherwise.

The NP-completeness results in Theorem 1 and 2 can be extended using the no-
tion of degree-two covers. Let dG(x) denote the degree of a vertex x in a graphG.
A graph H ′ with an induced subgraph H is called a degree-two cover of H if
the following two conditions both hold. First, for all x ∈ VH , if dH(x) = 1 then
dH′ (x) ≥ 2, and if dH(x) = 2 and its two neighbors in H are adjacent then
dH′ (x) ≥ 3. Second, for all x′ ∈ VH′ \ VH , either x′ has one neighbor and this
neighbor is in H , or x′ has two neighbors and these two neighbors form an edge
in H .

Theorem 3 ([11]). Let H ′ be a degree-two cover of a connected graph H. If
H-Contractibility is NP-complete, then so is H ′-Contractibility.

In [2,11] a number of other results are shown. To discuss these we need some
extra terminology (which we will use later in the paper as well). For two graphs
G1 = (V1, E1) and G2 = (V2, E2) with V1 ∩ V2 = ∅, we denote their join by
G1 �� G2 = (V1 ∪ V2, E1 ∪ E2 ∪ {uv | u ∈ V1, v ∈ V2}), and their disjoint union
by G1 ∪ G2 = (V1 ∪ V2, E1 ∪ E2). For the disjoint union G ∪ G ∪ · · · ∪ G of
k copies of the graph G, we write kG; for k = 0 this yields the empty graph
(∅, ∅). For integers a1, a2, . . . , ak ≥ 0, we let H∗

i (a1, a2, . . . , ak) be the graph
Ki �� (a1P1 ∪ a2P2 ∪ · · · ∪ akPk), where Ki is the complete graph on i vertices
and Pi is the path on i vertices. Note that H∗

1 (a1) denotes a star on a1+1 vertices.
Brouwer and Veldman show that H-Contractibility is polynomially solvable
for H = H∗

1 (a1) or H = H∗
1 (a1, a2) for any a1, a2 ≥ 0. Observe that H∗

i (0) = Ki

and that Ki-Contractibility is equivalent to Ki-Minor Containment, and
consequently, polynomially solvable. These results have been generalized in [11]
leading to the following theorem.

Theorem 4 ([11]). The H-Contractibility problem is in P for:

1. H = H∗
1 (a1, a2, . . . , ak) for any k ≥ 1 and a1, a2, . . . , ak ≥ 0

2. H = H∗
2 (a1, a2) for any a1, a2 ≥ 0

3. H = H∗
3 (a1) for any a1 ≥ 0

4. H = H∗
i (0), for any i ≥ 1.

So far, in all polynomially solvable cases of the H-Contractibility problem
the pattern graph H has a dominating vertex, and in all NP-complete cases H
does not have such a vertex.

Our Results and Paper Organization. The presence of a dominating vertex
seems to play an interesting role in the complexity classification of the H-
Contractibility problem. However, in Section 2.1 we present a class of graphs

506 P. van ’t Hof et al.

H with a dominating vertex for which H-Contractibility is NP-complete.
In Section 2.2 we extend Theorem 4 by showing that H∗

4 (a1) is polynomially
solvable for all a1 ≥ 0. In Section 3 we study the following problem.

(H, v)-Contractibility

Instance: A graph G and a positive integer k.
Question: Does G have an H-witness structure W with |W (v)| ≥ k?

We show that (H, v)-Contractibility is NP-complete whenever H is con-
nected and v is not a dominating vertex of H . For example, let P3 = p1p2p3.
Then the (P3, p3)-Contractibility problem is NP-complete (whereas P3-Con-

tractibility is polynomially solvable). Section 4 contains the conclusions and
mentions a number of open problems.

2 The H-Contractibility Problem

2.1 NP-Complete Cases with a Dominating Vertex

We show the existence of a class of graphs H with a dominating vertex such that
H-Contractibility is NP-complete. To do this we need the following.

Proposition 1. Let H be a graph. If H-Induced Minor Containment is
NP-complete, then so are (K1 �� H)-Contractibility and (K1 �� H)-Induced

Minor Containment.

Proof. Let H and G be two graphs. Write K1 = ({x}, ∅). We claim that the
following three statements are equivalent.

(i) G has H as an induced minor;
(ii) K1 �� G is (K1 �� H)-contractible;
(iii) K1 �� G has K1 �� H as an induced minor.

“(i) ⇒ (ii)” Suppose G has H as an induced minor. Then, by definition, G con-
tains an induced subgraph G′ that is H-contractible. We extend an H-witness
structure W of G′ to a (K1 �� H)-witness structure of K1 �� G by putting x
and all vertices in VG \ VG′ in W (x). This shows that K1 �� G is (K1 �� H)-
contractible.

“(ii) ⇒ (iii)” Suppose K1 �� G is (K1 �� H)-contractible. By definition, K1 �� G
contains K1 �� H as an induced minor.

“(iii) ⇒ (i)” Suppose K1 �� G has K1 �� H as an induced minor. Then K1 �� G
contains an induced subgraphG∗ that is K1 �� H-contractible. LetW be a (K1 ��
H)-witness structure of G∗. If x ∈ VG∗ , then we may assume without loss of
generality that x ∈ W (x). We delete W (x) and obtain an H-witness structure
of the remaining subgraph of G∗. This subgraph is an induced subgraph of G.
Hence, G contains H as an induced minor. �

On Contracting Graphs to Fixed Pattern Graphs 507

Fig. 2. The graph H̄

Fellows et al. [6] showed that there exists a graph H̄ on 68 vertices such that
H̄-Induced Minor Containment is NP-complete; this graph is depicted in
Figure 2. Combining their result with Proposition 1 (applied repeatedly) leads
to the following corollary.

Corollary 1. For any i ≥ 1, (Ki �� H̄)-Contractibility is NP-complete.

2.2 Polynomial Cases With Four Dominating Vertices

In this section, we extend Theorem 4 by showing that H-Contractibility is
polynomially solvable for H = H∗

4 (a1) for any integer a1 ≥ 0.
Let H and G be graphs such that G is H-contractible. Let W be an H-witness

structure of G. We call the subset of vertices in a witness set W (hi) that are
adjacent to vertices in some other witness set W (hj) a connector CW(hi, hj).
We use the notion of connectors to simplify the witness structure of an H∗

4 (a1)-
contractible graph. Let G[U] denote the subgraph of G induced by U ⊆ VG.
Let y1, . . . , y4 denote the four dominating vertices of H∗

4 (a1) and let x1, . . . , xa1

denote the remaining vertices of H∗
4 (a1).

Lemma 1. Let a1 ≥ 0. Every H∗
4 (a1)-contractible graph has an H∗

4 (a1)-witness
structure W ′ such that 1 ≤ |CW′(xi, yj)| ≤ 2 for all 1 ≤ i ≤ a1 and for all
1 ≤ j ≤ 4.

Proof. LetW be anH∗
4 (a1)-witness structure of an H∗

4 (a1)-contractible graphG.
Below we transform W into a witness structure W ′ that satisfies the statement
of the lemma.

From each W (xi) we move as many vertices as possible to W (y1)∪· · ·∪W (y4)
in a greedy way and without destroying the witness structure. This way we obtain
an H∗

4 (a1)-witness structure W ′ of G. We claim that 1 ≤ |CW′(xi, yj)| ≤ 2 for
all 1 ≤ i ≤ a1 and for all 1 ≤ j ≤ 4.

Suppose, for contradiction, that |CW′(xi, yj)| ≥ 3 for some xi and yj . Let
u1, u2, u3 be three vertices in CW′(xi, yj). Then G[W ′(xi) \ {u1}] has at least

508 P. van ’t Hof et al.

one component that contains a vertex of CW′(xi, y1) ∪ · · · ∪ CW′(xi, y4). Let
L1, . . . , Lp denote the vertex sets of these components. Observe that each Lq

must be adjacent to at least two witness sets from {W ′(y1), . . . ,W ′(y4)} that
are not adjacent to W ′(xi) \ Lq, since otherwise we would have moved Lq to
W ′(y1)∪· · · ∪W ′(y4). Since u1 is adjacent to at least one witness set, we deduce
that p = 1. The fact that p = 1 implies that u1 must even be adjacent to at least
two unique witness sets from {W ′(y1), . . . ,W ′(y4)}, i.e., that are not adjacent
to W ′(xi) \ {u1}; otherwise we would have moved u1 and all components of
G[W ′(xi)\{u1}] not equal to L1 to W ′(y1)∪· · ·∪W ′(y4). By the same arguments,
exactly the same fact holds for u2 and u3. This is not possible, as three vertices
cannot be adjacent to two unique sets out of four. �

We need one additional result, which can be found in [11] but follows directly
from the polynomial time result on minors in [13].

Lemma 2 ([11]). Let G be a graph and let Z1, . . . , Zp ⊆ VG be p specified
non-empty pairwise disjoint sets such that

∑p
i=1 |Zi| ≤ k for some fixed inte-

ger k. The problem of deciding whether G is Kp-contractible with Kp-witness
sets U1, . . . Up such that Zi ⊆ Ui for i = 1, . . . , p is polynomially solvable.

We are now ready to state the main result of this section.

Theorem 5. The H∗
4 (a1)-Contractibility problem is solvable in polynomial

time for any fixed non-negative integer a1.

Proof. Let G=(V,E) be a connected graph. We guess a set S={CW(xi, yj) | 1 ≤
i ≤ a1, 1 ≤ j ≤ 4} of connectors of size at most two. For each vertex u in each
connector CW(xi, yj) ∈ S we pick a neighbor of u that is not in S and place it
in a set Zj . This leads to four sets Z1, . . . , Z4. We remove S from G and call the
resulting graph G′. We check the following. First, we determine in polynomial
time whether Z1∪· · ·∪Z4 is contained in one component T of G′. If so, we check
whether T is K4-contractible with K4-witness sets U1, . . . , U4 such that Zi ⊆ Ui

for i = 1, . . . , 4. This can be done in polynomial time due to Lemma 2. We then
check whether the remaining components of G′ together with the connectors
CW(xi, yj) ∈ S form witness sets W (xi) for i = 1, . . . , a1. Also, this can be done
in polynomial time; there is only one unique way to do this because witness
sets W (xi) are not adjacent to each other. If somewhere in the whole process
we get stuck, we check another set S of connectors and start all over. Due to
Lemma 1, it indeed suffices to consider only sets of connectors that have size
at most two. Hence, the total number of different 5-tuples (S, Z1, . . . , Z4) is
bounded by a polynomial in a1, and consequently, the polynomial time result
follows. �

3 The (H, v)-Contractibility Problem

We start with an observation. A star is a complete bipartite graph in which one
of the partition classes has size one. The unique vertex in this class is called the

On Contracting Graphs to Fixed Pattern Graphs 509

center of the star. We denote the star on k + 1 vertices with center c and leaves
b1, . . . , bp by Kp,1.

Observation 1. The (Kp,1, c)-Contractibility problem is polynomially solv-
able for all p ≥ 1.

Proof. Let graph G = (V,E) and integer k form an instance of the (Kp,1, c)-
Contractibility problem. We may without loss of generality assume that
|V | ≥ k+p. IfG isKp,1-contractible, then there exists aKp,1-witness structureW
of G such that |W (bi)| = 1 for all 1 ≤ i ≤ k. This can be seen as follows. As long
as |W (bi)| ≥ 2 we can move vertices from W (bi) to W (c) without destroying the
witness structure. Our algorithm would just guess the witness sets W (bi) and
check whether V \ (W (b1) ∪ · · ·W (bp)) induces a connected subgraph. As the
total number of guesses is bounded by a polynomial in p, this algorithm runs in
polynomial time. �

We expect that there are relatively few pairs (H, v) for which (H, v)-Con-

tractibility is in P (under the assumption P �= NP). This is due to the
following observation and the main result in this section that shows that (H, v)-
Contractibility is NP-complete whenever v is not a dominating vertex of H .

Observation 2. Let H be a graph. If H-Contractibility is NP-complete,
then (H, v)-Contractibility is NP-complete for every vertex v ∈ VH .

Theorem 6. LetH be a connected graph and let v ∈ VH . The (H, v)-Contract-

ibility problem is NP-complete if v does not dominate H.

Proof. LetH be a connected graph, and let v be a vertex ofH that does not dom-
inate H . LetNH(v) denote the neighborhood of v inH . We partition VH\{v} into
three sets V3 := VH \(NH(v)∪{v}), V2 := {w ∈ NH(v) | w is not adjacent to V3}
and V1 := {w ∈ NH(v) | w is adjacent to V3}. Note that neither V1 nor V3 is
empty because H is connected and v does not dominate H ; V2 might be empty.

Clearly, (H, v)-Contractibility is in NP, because we can verify in poly-
nomial time whether a given partition of the vertex set of a graph G forms
an H-witness structure of G with |W (v)| ≥ k. In order to show that (H, v)-
Contractibility is NP-complete, we use a reduction from 3-SAT, which is
well-known to be NP-complete (cf. [7]). Let X = {x1, . . . , xn} be a set of vari-
ables and C = {c1, . . . , cm} be a set of clauses making up an instance of 3-SAT.
Let X := {x | x ∈ X}. We introduce two additional literals s and t, as well as
2n additional clauses si := (xi ∨ xi ∨ s) and ti := (xi ∨ xi ∨ t) for i = 1, . . . , n.
Let S := {s1, . . . , sn} and T := {t1, . . . , tn}. Note that all 2n clauses in S∪T are
satisfied for any satisfying truth assignment for C. For every vertex w ∈ V1 we
create a copy Xw of the set X , and we write Xw := {xw

1 , . . . , x
w
n }. The literals

sw, tw and the sets X
w
, Cw, Sw and Tw are defined similarly for every w ∈ V1.

We construct a graph G such that C is satisfiable if and only if G has an
H-witness structure W with |W (v)| ≥ k. In order to do this, we first construct
a subgraph Gw of G for every w ∈ V1 in the following way:

510 P. van ’t Hof et al.

x
w

1
x

w

2
x

w

3 x
w

n

x
w

1 x
w

2
x

w

3
x

w

n

s
w

t
w

c
w

1
c
w

m
s

w

1
t
w

1
s

w

n
t
w

n

︸︷︷︸ ︸︷︷︸︸︷︷︸︸︷︷︸ ︸︷︷︸︸︷︷︸

L L L L L L

Fig. 3. A subgraph Gw, where cw
1 = (xw

1 ∨ xw
2 ∨ xw

3)

• every literal in Xw ∪ X
w ∪ {sw, tw} and every clause in Cw ∪ Sw ∪ Tw is

represented by a vertex in Gw

• we add an edge between x ∈ Xw ∪Xw ∪ {sw, tw} and c ∈ Cw ∪ Sw ∪ Tw if
and only if x appears in c;

• for every i = 1, . . . , n−1, we add edges xw
i x

w
i+1, x

w
i x

w
i+1, x

w
i x

w
i+1, and xw

i x
w
i+1

• we add edges swxw
1 , swxw

1 , twxw
n , and twxw

n

• for every c ∈ Cw ∪ Sw ∪ Tw, we add L vertices whose only neighbor is c;
we determine the value of L later and refer to the L vertices as the pendant
vertices.

See Figure 3 for a depiction of subgraph Gw. For clarity, most of the edges
between the clause vertices and the literal vertices have not been drawn. We
connect these subgraphs to each other as follows. For every w, x ∈ V1, we add an
edge between sw and sx in G if and only if w is adjacent to x in H . Let v∗ be some
fixed vertex in V1. We add an edge between sv∗

1 and sw
1 for every w ∈ V1\{v∗}. No

other edges are added between vertices of two different subgraphs Gw and Gx.
We add a copy of H [V2 ∪ V3] to G as follows. Vertex x ∈ V2 is adjacent to sw

in G if and only if x is adjacent to w in H . Vertex x ∈ V3 is adjacent to both sw

and tw in G if and only if x is adjacent to w in H . Finally, we connect every
vertex x ∈ V2 to sv∗

1 . See Figure 4 for an example.
We define L := (2 + 2n)|V1| + |V2| + |V3| + 1 and k := (L + 1)(m + 2n)|V1|.

We prove that G has an H-witness structure W with |W (v)| ≥ k if and only if
C is satisfiable.

Suppose t : X → {T, F} is a satisfying truth assignment for C. Let XT

(respectively XF) be the variables that are set to true (respectively false) by t.
For every w ∈ V1, we define Xw

T := {xw
i | xi ∈ XT } and X

w

T := {x | x ∈ Xw
T };

the sets Xw
F and X

w

F are defined similarly. We define the H-witness sets of G as
follows. Let W (w) := {w} for every w ∈ V2 ∪ V3, and let W (w) := {sw, tw} ∪
Xw

F ∪X
w

T for every w ∈ V1. Finally, let W (v) := VG \ (
⋃

w∈V1∪V2∪V3
W (w)). Note

On Contracting Graphs to Fixed Pattern Graphs 511

H G

v

Fig. 4. A graph H , where v∗ is the black vertex, and the corresponding graph G

that for every w ∈ V1 and for every i = 1, . . . , n, exactly one of xw
i , x

w
i belongs

to Xw
F ∪Xw

T . Hence, G[W (w)] is connected for every w ∈ V1.
Since t is a satisfying truth assignment for C, every cwi is adjacent to at least

one vertex of Xw
T ∪ X

w

F for every w ∈ V1; by definition, this also holds for
every sw

i and twi . This together with the edges between sv∗
1 and sw

1 for every
w ∈ V1 \ {v∗} assures that G[W (v)] is connected. So the witness set G[W (w)] is
connected for every w ∈ VH . By construction, two witness sets W (w) and W (x)
are adjacent if and only if w and x are adjacent in H . Hence W := {W (w) | w ∈
VH} is an H-witness structure of G. Witness set W (v) contains n|V1| literal
vertices, (m + 2n)|V1| clause vertices and L pendant vertices per clause vertex,
i.e., |W (v)| = (L+ 1)(m + 2n)|V1|+ n|V1| ≥ k.

Suppose G has an H-witness structure W with |W (v)| ≥ k. We first show
that all of the (m + 2n)|V1| clause vertices must belong to W (v). Note that for
every w ∈ V1, the subgraph Gw contains 2 + 2n+ (L+ 1)(m+ 2n) vertices: the
vertices sw and tw, the 2n literal vertices in Xw∪Xw

, the m+2n clause vertices
and the L(m+ 2n) pendant vertices. Hence we have

|VG| = (2 + 2n+ (L + 1)(m+ 2n))|V1|+ |V2|+ |V3|.

Suppose there exists a clause vertex c that does not belong to W (v). Then
the L pendant vertices adjacent to c cannot belong to W (v) either, as W (v) is
connected and the pendant vertices are only adjacent to c. This means that W (v)
can contain at most |VG|−(L+1) = (L+1)(m+2n)|V1|−1 vertices, contradicting
the assumption that W (v) contains at least k = (L+1)(m+2n)|V1| vertices. So
all of the (m + 2n)|V1| clause vertices, as well as all the pendant vertices, must
belong to W (v).

We define Wi :=
⋃

w∈Vi
W (w) for i = 1, 2, 3 and prove four claims.

Claim 1: V3 = W3.

The only vertices of G that are not adjacent to any of the clause vertices or
pendant vertices in W (v) are the vertices of V3. As W3 contains at least |V3|
vertices, this proves Claim 1.

512 P. van ’t Hof et al.

Claim 2: For any w ∈ V1, both sw and tw belong to W1.

Let w be a vertex in V1, and let w′ ∈ V3 be a neighbor of w in H . Recall that both
sw and tw are adjacent to w′ in G. Suppose that sw or tw belongs to W (v)∪W2.
By Claim 1, w′ ∈ W3. Then W (v) ∪W2 and W3 are adjacent. By construction,
this is not possible. Suppose that sw or tw belongs to W3. Then W3 and W (v) are
adjacent, as sw and tw are adjacent to at least one clause vertex, which belongs
to W (v). This is not possible.

Claim 3: For any w ∈ V1, at least one of each pair xw
i , x

w
i of literal vertices

belongs to W (v).

Let w ∈ V1. Suppose there exists a pair of literal vertices xw
i , x

w
i both of which

do not belong to W (v). Apart from its L pendant vertices, the vertex twi is only
adjacent to xw

i , xw
i and tw. The latter vertex belongs to W1 due to Claim 2.

Hence twi and its L pendant vertices induce a component of G[W (v)]. Since
G[W (v)] contains other vertices as well, this contradicts the fact that G[W (v)]
is connected.

Claim 4: There exists a w ∈ V1 for which at least one of each pair xw
i , x

w
i of

literal vertices belongs to W1.

Let S′ := {sw | w ∈ V1} and T ′ := {tw | w ∈ V1}. By Claim 2, S′ ∪ T ′ ⊆ W1.
Suppose, for contradiction, that for every w ∈ V1 there exists a pair xw

i , x
w
i of

literal vertices, both of which do not belong to W1. Then for any x ∈ V1, the
witness set containing tx does not contain any other vertex of S′ ∪ T ′, as there
is no path in G[W1] from tx to any other vertex of S′ ∪ T ′. But that means W1

contains at least |V1| + 1 witness sets, namely |V1| witness sets containing one
vertex from T ′, and at least one more witness set containing vertices of S′. This
contradiction to the fact that W1, by definition, contains exactly |V1| witness
sets finishes the proof of Claim 4.

Let w ∈ V1 be a vertex for which of each pair xw
i , x

w
i of literal vertices exactly

one vertex belongs to W1 and the other vertex belongs to W (v); such a vertex
w exists as a result of Claim 3 and Claim 4. Let t be the truth assignment that
sets all the literals of Xw∪Xw

that belong to W (v) to true and all other literals
to false. Note that the vertices in Cw form an independent set in W (v). Since
G[W (v)] is connected, each vertex cwi ∈ Cw is adjacent to at least one of the
literal vertices set to true by t. Hence t is a satisfying truth assignment for C. �

4 Conclusions and Open Problems

The main open problem is to finish the computational complexity classifica-
tion of the H-Contractibility problem. All previous evidence suggested some
working conjecture stating that this problem is polynomially solvable if H con-
tains a dominating vertex and NP-complete otherwise. However, in this paper we
presented an infinite family of graphs H with a dominating vertex for which H-
Contractibility is NP-complete. As such, it sheds a new light on this problem
and raises a whole range of new questions.

On Contracting Graphs to Fixed Pattern Graphs 513

1. What is the smallest graph H that contains a dominating vertex for which
H-Contractibility is NP-complete?

The smallest graph known so far is the graph K1 �� H̄, where H̄ is the graph on
68 vertices depicted in Figure 2. By Observation 2, we deduce that (K1 �� H̄, v)-
Contractibility is NP-complete for all v ∈ VK1��H̄ . The following question
might be easier to answer.

2. What is the smallest graph H that contains a dominating vertex v for which
(H, v)-Contractibility is NP-complete?

We showed that (H, v)-Contractibility is NP-complete if H is connected and
v does not dominate H . We still expect a similar result for H-Contractibility.

3. Is the H-Contractibility problem NP-complete if H does not have a dom-
inating vertex?

Lemma 1 plays a crucial role in the proof of Theorem 5 that shows that
H∗

4 (a1)-Contractibility is polynomially solvable. This lemma cannot be gen-
eralized such that it holds for the H∗

i (a1)-Contractibility problem for i ≥ 5
and a1 ≥ 2. Hence, new techniques are required to attack the H∗

i (a1)-
Contractibility problem for i ≥ 5 and a1 ≥ 2.

4. Is H∗
5 (a1)-Contractibility in P for all a1 ≥ 0?

We expect that the (H, v)-Contractibility problem is in P for only a few
target pairs (H, v). One such class of pairs might be (Kp, v), where v is an ar-
bitrary vertex of Kp. Using similar techniques as before (i.e., simplifying the
witness structure), one can easily show that (Kp, v)-Contractibility is poly-
nomially solvable for p ≤ 3.

5. Is (Kp, v)-Contractibility in P for all p ≥ 4?

We finish this section with some remarks on fixing the parameter k in an instance
(G, k) of the (H, v)-Contractibility problem. The complexity class XP is de-
fined in the framework of parameterized complexity as developed by Downey
and Fellows [5]. It consists of parameterized decision problems Π such that for
each instance (I, k) it can be decided in O(f(k)|I|g(k)) time whether (I, k) ∈ Π ,
where f and g are computable functions depending only on k. That is, XP con-
sists of parameterized decision problems which can be solved in polynomial time
if the parameter is considered as a constant.

Proposition 2. The (P3, p3)-Contractibility problem is in XP.

Proof. We first observe that any graph G that is a yes-instance of this problem
has a P3-witness structure W with |W (p1)| = 1. This is so, as we can move all
but one vertex from W (p1) to W (p2) without destroying the witness structure.
Moreover, such a graph G contains a set W ∗ ⊆ W (p3) such that |W ∗| = k and
G[W ∗] is connected. Hence we act as follows.

Let G be a graph. We guess a vertex v and a set V ∗ of size k. We put all
neighbors of v in a set W2. We check if G[V ∗] is connected. If so, we check for

514 P. van ’t Hof et al.

each y ∈ VG \ (V ∗∪N(v)∪{v}) whether it is separated from N(v) by V ∗ or not.
If so, we put y in V ∗. If not, we put y in W2. In the end we check if G[W2] and
G[V ∗] are connected. If so, G is a yes-instance of (P3, p3)-Contractibility, as
W (p1) = {v}, W (p2) = W2 and W (p3) = V ∗ form a P3-witness structure of G
with |W (p3)| ≥ k. If not, we guess another pair (v, V ∗) and repeat the steps
above. Since these steps can be performed in polynomial time and the total
number of guesses is bounded by a polynomial in k, the result follows. �

6. Is (H, v)-Contractibility in XP whenever H-Contractibility is in P?

References

1. Andersson, M., Gudmundsson, J., Levcopoulos, C.: Restricted Mesh Simplification
Using Edge Contraction. In: Chen, D.Z., Lee, D.T. (eds.) COCOON 2006. LNCS,
vol. 4112, pp. 196–204. Springer, Heidelberg (2006)

2. Brouwer, A.E., Veldman, H.J.: Contractibility and NP-Completeness. Journal of
Graph Theory 11, 71–79 (1987)

3. Cheng, S., Dey, T., Poon, S.: Hierarchy of Surface Models and Irreducible Trian-
gulations. Computational Geometry Theory and Applications 27, 135–150 (2004)

4. Cong, J., Lim, S.K.: Edge Separability-Based Circuit Clustering with Application
to Multilevel Circuit Partitioning. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 23, 346–357 (2004)

5. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Com-
puter Science. Springer, Heidelberg (1999)

6. Fellows, M.R., Kratochv́ıl, J., Middendorf, M., Pfeiffer, F.: The Complexity of
Induced Minors and Related Problems. Algorithmica 13, 266–282 (1995)

7. Garey, M.R., Johnson, D.S.: Computers and Intractability. W.H. Freeman and Co.,
New York (1979)

8. Harel, D., Koren, Y.: On Clustering Using Random Walks. In: Hariharan, R.,
Mukund, M., Vinay, V. (eds.) FSTTCS 2001. LNCS, vol. 2245, pp. 18–41. Springer,
Heidelberg (2001)

9. Hoede, C., Veldman, H.J.: Contraction Theorems in Hamiltonian Graph Theory.
Discrete Mathematics 34, 61–67 (1981)

10. Karypis, G., Kumar, V.: A Fast and High Quality Multilevel Scheme for Partition-
ing Irregular Graphs. SIAM Journal on Scientific Computing 20, 359–392 (1999)

11. Levin, A., Paulusma, D., Woeginger, G.J.: The Computational Complexity of
Graph Contractions I: Polynomially Solvable and NP-Complete Cases. Net-
works 51, 178–189 (2008)

12. Levin, A., Paulusma, D., Woeginger, G.J.: The Computational Complexity of
Graph Contractions II: Two Tough Polynomially Solvable Cases. Networks 52,
32–56 (2008)

13. Robertson, N., Seymour, P.D.: Graph Minors. XIII. The Disjoint Paths Problem.
Journal of Combinatorial Theory, Series B 63, 65–110 (1995)

Dynamic Edit Distance Table under a General
Weighted Cost Function

Heikki Hyyrö1, Kazuyuki Narisawa2,3, and Shunsuke Inenaga4

1 Department of Computer Sciences, University of Tampere, Finland
heikki.hyyro@cs.uta.fi

2 Department of Informatics, Kyushu University, Japan
3 Japan Society for the Promotion of Science (JSPS)

k-nari@i.kyushu-u.ac.jp
4 Graduate School of Information Sci. and Electrical Eng., Kyushu University, Japan

inenaga@c.csce.kyushu-u.ac.jp

1 Introduction

String comparison is a fundamental task in theoretical computer science, with
applications in e.g., spelling correction and computational biology. Edit distance
is a classic similarity measure between two given strings A and B. It is the
minimum total cost for transforming A into B, or vice versa, using three types
of edit operations: single-character insertions, deletions, and/or substitutions.

Landau et al. [1] introduced the problem of left incremental edit distance com-
putation: Given a solution for the edit distance between A and B, the task is to
compute a solution for the edit distance between A and B′, where B′ = bB. The
alternative problem in which B and B′ are interchanged is called the left decre-
mental edit distance computation. Applications of left incremental/decremental
edit distance computation include cyclic string comparison and computing ap-
proximate periods (see [1,2,3] for more).

Let m and n be the lengths of A and B, respectively. The basic dynamic pro-
gramming method for the above problem requiresΘ(mn) time per added/deleted
character in front of B. For a unit edit cost function (the insertion, deletion, and
substitution costs are all 1), Landau et al. [1] presented a fairly complicated
O(k)-time algorithm, where k is an error threshold with 1 ≤ k ≤ max{m,n}.
When k is not specified, then the algorithm takes O(m+n) time. Other O(m+n)-
time solutions for the unit cost function were presented in [2,3,4].

This paper deals with a more general, weighted edit cost function: we allow
the edit cost function to have arbitrary non-negative integer costs. Schmidt [2]
presented a complicated O(n logm) time solution per added/deleted character
for a general cost function. In this paper, we present a simple O(min{c(m+ n),
mn})-time algorithm for the same problem, where c is the maximum weight in
the cost function. This translates into O(m + n) time under constant weights.
Our algorithm uses a difference table, a representation of a dynamic programming
table proposed by Kim and Park [3]. We also show that the algorithm of Kim
and Park is not easily applicable to the case of general weights.

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 515–527, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

516 H. Hyyrö, K. Narisawa, and S. Inenaga

We report some preliminary experimental results which show advantages of
our algorithm over a basic dynamic programming method for general edit cost
functions and the Kim-Park algorithm for the unit cost function.

2 Preliminaries

Let Σ be a finite alphabet. An element of Σ is called a character and that of Σ∗ is
called a string. The empty string is denoted by ε. For any string A = a1a2 · · · am,
let A[i : j] = ai · · · aj for 1 ≤ i ≤ j ≤ m. For convenience, let A[i : j] = ε if i > j.

For any string A = a1a2 · · · am, we define the three editing operations:

1. Insert character b after position i of A, where i = 0 means inserting at front.
2. Delete character ai from position i of A.
3. Substitute character b for character ai at position i of A.

The above operations can be represented as pairs (ε, b), (ai, ε), and (ai, b), re-
spectively. Each (x, y) has a positive cost function δ(x, y). That is, δ : ({ε}×Σ)
∪(Σ × {ε}) ∪ (Σ ×Σ) → N , where N denotes the set of non-negative integers.
For any a, b ∈ Σ, we assume δ(a, b) = 0 if a = b, and δ(a, b) > 0 otherwise.

The edit distance of between strings A and B under cost function δ is the
minimum total cost of editing operations under δ that transform A into B,
or vice versa. Such an edit distance between A and B under δ is denoted by
edδ(A,B).

The fundamental solution for edδ(A,B) is to compute a dynamic program-
ming table D of size (m + 1) × (n + 1) s.t. D [i, j] = edδ(A[1 : i], B[1 : j]) for
0 ≤ i ≤ m and 0 ≤ j ≤ m, using the well-known recurrence (1) shown below.

D [i, 0] =
∑i

h=1 δ(ah, ε) for 0 ≤ i ≤ m,

D [0, j] =
∑j

h=1 δ(ε, bh) for 0 ≤ j ≤ n, and

D [i, j] = min{D [i, j − 1] + δ(ε, bj),D [i− 1, j] + δ(ai, ε),
D [i− 1, j − 1] + δ(ai, bj)}, for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

(1)

As seen above, for a given D -table for A and B[1 : j], we are able to compute
edδ(A,B[1 : j + 1]) and edδ(A,B[1 : j − 1]) in O(m) time. This paper deals
with the symmetric problem of left incremental (resp. decremental) edit distance
computation: Given a representation of edδ(A,B[j : n]) for strings A and B,
compute a representation of edδ(A,B[j − 1 : n]) (resp. edδ(A,B[j + 1 : n])).

3 The Kim-Park Algorithm

A unit cost function δ1 is s.t. δ1(ε, b) = 1 for any b ∈ Σ, δ1(a, ε) = 1 for any
a ∈ Σ, and δ1(a, b) = 1 for any a �= b. The unit cost edit distance is known
as the Levenshtein edit distance or edit distance. This section briefly recalls the
algorithm of Kim and Park [3] that solves the problem in O(m+ n) time for δ1.

Dynamic Edit Distance Table under a General Weighted Cost Function 517

3.1 Solution for the Unit Cost Function

Essentially the same techniques can be used to solve both the left incremental
and decremental problems; as in [3], we concentrate on the decremental problem.

Let D denote the D -table for A and B, and D ′ denote the D -table for A and
B ′ = B[2 : n]. We find it convenient to use 1-based column indices with D ′. Now
column 1 acts as the left boundary column with values D [i, 1] =

∑i
h=1 δ(ah, ε),

and columns j = 2 . . . n obey recurrence (1) in normal fashion. Now D ′[i, j] =
edδ(A[1 : i], B[2 : j]) and cell (i, j) corresponds to ai and bj in both D and D ′.

Kim and Park use a difference representation (the DR-table) of the D -table,
where each position (i, j) has two fields such that DR[i, j].U = D [i, j]−D [i−1, j]
and DR[i, j].L = D [i, j] − D [i, j − 1]. DR[i, j].U is the difference to the upper
neighbor and DR[i, j].L is the difference to the left neighbor when row indices
grow downwards and column indices towards right.

Let DR′ denote the DR-table of strings A and B′. In what follows, we recall
how the Kim-Park algorithm computes the DR′-table from the DR-table.

The Kim-Park algorithm is essentially based on the change table Ch, which
is defined under our indexing convention1 as Ch[i, j] = D ′[i, j]−D [i, j].

Lemma 1 ([3]). For the unit cost function δ1, each Ch[i, j] is −1, 0, or 1.

Lemma 2 ([3]). For any 0 ≤ i ≤ m, let f(i) = min{j | Ch[i, j] = −1} if such
j exists, and let f(i) = n otherwise. Then, Ch [i, j′] = −1 for f(i) ≤ j′ < n and
f(i) ≥ f(i − 1) for 1 ≤ i ≤ m. Also, for any 0 ≤ j ≤ n, let g(j) = min{i |
Ch[i, j] = 1} if such i exists, and let g(j) = m+ 1 otherwise. Then, Ch [i′, j] = 1
for g(j) ≤ i′ ≤ m and g(j) ≥ g(j − 1) for 1 ≤ j < n.

Ch[i, j] is said to be affected if Ch[i− 1, j − 1], Ch[i− 1, j], and Ch [i, j − 1] are
not of the same value. DR′[i, j] is also said to be affected if Ch[i, j] is affected.

Lemma 3 ([3]). If DR′[i, j] is not affected, then DR′[i, j] = DR[i, j]. If DR′[i, j]
is affected, then DR′[i, j].U = DR[i, j].U−Ch[i, j]+Ch[i−1, j] and DR′[i, j].L =
DR[i, j].L− Ch[i, j] + Ch[i, j − 1].

By Lemmas 1 and 2, there are O(m+n) affected entries in Ch, and these entries
are categorized into two types: (-1)-boundaries and 1-boundaries. Consider the
four neighbors Ch[i−1, j−1], Ch [i−1, j], Ch[i, j−1] and Ch[i, j]. Among these,
the upper-right entry Ch[i − 1, j] belongs to the (−1)-boundary if and only if
Ch[i− 1, j] = −1 and at least one of the other three entries is not -1. In similar
fashion, the lower-left entry Ch[i, j− 1] belongs to the 1-boundary if and only if
Ch[i, j − 1] = 1 and at least one of the other three entries is not 1.

The Kim-Park algorithm scans the (-1)- and 1-boundaries of Ch and computes
the affected entries in DR′ using Lemma 3.

Theorem 1 ([3]). The algorithm of Kim and Park [3] transforms DR to DR′

in O(m+n) time for δ1.

1 [3] used 0-based indexing with D ′ and defined Ch[i, j] = D ′[i, j] − D [i, j + 1].

518 H. Hyyrö, K. Narisawa, and S. Inenaga

a
b
b
b
b
c
a

a c a a a a a
5 10 15 20 25 30 350
0 5 10 15 20 25 301
1 5 10 15 20 25 302
2 6 10 15 20 25 303
3 7 11 15 20 25 304
4 8 12 16 20 25 305
5 4 9 14 19 24 296
6 5 4 9 14 19 247

D

a
b
b
b
b
c
a

c a a a a a
5 10 15 20 25 300
5 5 10 15 20 251
6 6 10 15 20 252
7 7 11 15 20 253
8 8 12 16 20 254
9 9 13 17 21 255
5 10 14 18 22 266
6 5 10 14 18 227

D'

a
b
b
b
b
c
a

c a a a a a
-5 -5 -5 -5 -5 -5-5
0 -5 -5 -5 -5 -51
1 -4 -5 -5 -5 -51
1 -3 -4 -5 -5 -51
1 -3 -3 -4 -5 -51
1 -3 -3 -3 -4 -51
1 1 0 -1 -2 -31
1 1 1 0 -1 -21

Ch

Fig. 1. From left to right, D, D′ and Ch tables for strings A = abbbbca and
B = acaaaaa, with cost function δ(ε, b) = 5 for any character b, δ(a, ε) = 1 for any
character a, and δ(a, b) = 5 for any characters a �= b

3.2 Exponential Lower Bound for a General Cost Function

As became evident in the preceding section, the primary principle of the Kim-
Park algorithm could be frased as “trace the x-boundary in Ch for each possible
boundary-type x”. Here we consider how a direct application of this principle
would to a general weighted function δ. An important fact is that now Lemma 1
does not hold. See Fig. 1 that illustrates D, D′ and Ch for A = abbbbca and
B = acaaaaa, with δ(ε, b) = 5 for any b ∈ Σ, δ(a, ε) = 1 for any a ∈ Σ, and
δ(a, b) = 5 for any a �= b. The entries of the Ch-table have seven different values
-5, -4, -3, -2, -1, 0, and 1.

Even if we leave aside the non-trivial question of how to define the possible
boundary types under general costs, the feasibility of “tracing each possible
x-boundary” seems to depend heavily on the number of different values in Ch.

It was shown in [5] that the number of different values in Ch is constant if
each edit operation cost is a constant rational number. Let us now consider an
integer cost function that may have an exponential edit cost w.r.t. the length of
a given string. We may obtain the following negative result. The proof is omitted
due to lack of space.

Theorem 2. Let A = a1a2 · · · am and B = b1b2 · · · bm+1 be strings such that
ai �= ai′ for any 1 ≤ i �= i′ ≤, bj �= bj′ for any 1 ≤ j �= j′ ≤ m + 1, and ai �= bj
for any 1 ≤ i ≤ m and 1 ≤ j ≤ m+ 1. Let δ(ε, σ) = δ(σ, ε) = (m− 1)2m − 1 for
any σ ∈ Σ, δ(ai, bj) = 2m if i �= j, and δ(ai, bj) = 2i−1 if i = j. Then, Ch-tables
under δ can have Ω(2m) different values.

Due to the above theorem, a natural extension of the Kim-Park algorithm might
need to check if there is an x-boundary in the Ch-table for exponentially many
different values x. Note e.g. from Fig. 1 that different boundaries do not all begin
from column 1, and now the boundaries may also be non-contiguous, making
their tracing more difficult. Also note the input strings may define which of the
Ω(2m) values actually appear within the O(mn) entries of the Ch-table.

Dynamic Edit Distance Table under a General Weighted Cost Function 519

In part due to these difficulties, we propose in the next section an algorithm
that discards the notion of tracing boundaries.

4 A Simple Algorithm for a General Cost Function

As became evident in the preceding discussion, the essential question in incre-
mental/decremental edit distance computation is: Which entries in DR do we
need to change in order to transform DR into DR′? The algorithm of Kim and
Park finds such changed entries by traversing the affected entries of the Ch-table.

We ignore the Ch-table and concentrate only on the difference table DR (and
its updated version DR′). Recurrence (1) showed how to compute the value
D [i, j] when the three neighboring values D [i, j−1], D [i−1, j] and D [i−1, j−1]
are known. Consider Fig. 2, where the values of D [i, j−1], D [i−1, j] and D [i, j]
are represented by using D [i−1, j−i] = d as a base value. Now DR[i−1, j].L = x
and DR[i, j − 1].U = y.

j − 1 j

i− 1

i

d+x

d+zd+y

d

Fig. 2. Illustration of
computing DR[i, j]

Computing DR[i, j] consists of computing DR[i, j].U
= d+z−(d+x) = z−x and DR[i, j].L = d+z−(d+y) =
z−y. If we assume that DR[i−1, j].L = x and DR[i, j−
1].U = y are already known, then the only missing
value is z. Based on recurrence (1), the relationship
between the values in Fig. 2 fulfills the condition d+z =
min{d+y+ δ(ε, bj), d+x+ δ(ai, ε), d+ δ(ai, bj)}. Since
d appears in each choice within the min-clause, we may
drop it from both sides. Now z = min{y + δ(ε, bj), x+
δ(ai, ε), δ(ai, bj)}. This leads directly into the following
recurrence (2) for the entry DR[i, j].

DR[i, 0].U = δ(ai, ε) for every 1 ≤ i ≤ m,

DR[0, j].L = δ(ε, bj) for every 1 ≤ j ≤ n, and

DR[i, j].U = z −DR[i− 1, j].L and DR[i, j].L = z −DR[i, j − 1].U,where

z = min{DR[i− 1, j].L+ δ(ε, bj),DR[i, j − 1].U + δ(ai, ε), δ(ai, bj)}, for
every 1 ≤ i ≤ m and every 1 ≤ j ≤ n.

(2)

To avoid references to the Ch-table, we use the following alternative to decide if
DR′[i, j] is affected, that is, if it is possible that DR′[i, j] �= DR[i, j]. The next
lemmas follows directly from recurrence (2).

Lemma 4. For 1 ≤ i ≤ m and 1 ≤ j ≤ n, the entry DR′[i, j] is affected if and
only if DR′[i− 1, j].L �= DR[i− 1, j].L or DR′[i, j − 1].U �= DR[i, j − 1].U .

Our algorithm for transforming DR into DR′ uses Lemma 4 to keep track of
which entries in DR may become different. All such affected entries are recom-
puted using recurrence (2).

The columns j = 1 . . . n of DR′ are processed one column at a time in the
order of increasing j. During the computation we maintain a prevΔ-table as

520 H. Hyyrö, K. Narisawa, and S. Inenaga

follows: When starting to process column j, the table prevΔ contains the row
numbers i for which DR′[i, j − 1].U �= DR[i, j − 1].U . These row numbers are
recorded in increasing order.

The column j = 1 of DR is a special case. It is transformed directly into the
first boundary column of DR′ by setting DR′[i, 1].U = δ(ai, ε) for i = 1 . . .m. For
simplicity we add each i = 1 . . .m, into prevΔ even if DR′[i, 1].U = DR[i, 1].U .

Each column j = 2 . . . n is processed according to Lemma 4 that states that
the value DR′[i, j] needs to be computed (i.e. its value may change from DR[i, j])
only if DR′[i, j − 1].U �= DR[i, j − 1].U or DR′[i− 1, j].L �= DR[i− 1, j].L.

The entries DR′[i, j] are recomputed for all i that appear in prevΔ, in the
order of increasing row indices i. This handles all entries in column j where the
first condition, DR′[i, j − 1].U �= DR[i, j − 1].U , of Lemma 4 is true.

The second condition, DR′[i − 1, j].L �= DR[i − 1, j].L, corresponds to re-
computed and consequently changed values in the currently processed column j.
This is easily checked during the computation as we proceed along increasing
row indices i: Whenever we recompute the entry DR′[i, j], that is, recompute
DR′[i, j].U and DR′[i, j].L, we also check whether DR′[i, j].L �= DR[i, j].L. If
this condition is true, then the next-row entry DR′[i + 1, j] is affected and
will be recomputed next. This ensures that also all entries DR′[i, j], for which
DR′[i− 1, j].L �= DR[i− 1, j].L holds, will be recomputed in column j.

In order to prepare the table prevΔ for the next column j + 1, we record
each row index i where DR′[i, j].U �= DR[i, j].U into a second table currΔ. This
is done whenever an entry DR′[i, j] has been computed. When we later move
from column j to column j + 1, the roles of the tables prevΔ and currΔ are
interchanged. Hence the affected row indices recorded into currΔ in column j
will be read from prevΔ in column j + 1, and the new affected row indices in
column j + 1 will be recorded to currΔ, which previously acted as prevΔ in
column j and was holding the affected values for column j − 1.

The above-described steps are implemented by Algorithm 1. Let us present
the following clarifying comments on the pseudocode of the algorithm:

– In the pseudocode we do not use the separate notation DR′ to refer to the
transformed version of DR.

– In the pseudocode, the tables prevΔ and currΔ are indexed starting from 1.
The variables prevIdx and currIdx, respectively, denote the current posi-
tions in these tables.

– The end of the table prevΔ is marked by inserting a sentinel value m+ 1 as
the last value in the table. Also the loop on lines 1-2 does this (and instead
leaves out the first row 1, as the computation in any case starts by using the
row index i = 1).

– Lines 6-8 compute the updated values DR′[i, j].L and DR′[i, j].U into the
variables new.L and new.U according to recurrence (2).

– Line 9 stores the old values DR[i, j].L and DR[i, j].U into the variables old.L
and old.U

– Lines 13-18 check the condition DR′[i− 1, j].L �= DR[i− 1, j].L of Lemma 4
in the following way: Line 15 increments the current row index i as if the

Dynamic Edit Distance Table under a General Weighted Cost Function 521

Algorithm 1. Generalized traversal of affected entries
for i ← 1 to m do1

prevΔ[i] ← i + 1; DR[i, 1].U ← δ(ai, ε)2

i ← 1; j ← 1; DR[0, j].L ← δ(ε, bj); currIdx ← 1; prevIdx ← 13

while i ≤ m and j ≤ n do4

while i ≤ m do5

x ← DR[i − 1, j].L; y ← DR[i, j − 1].U6

z ← min{x + δ(ai, ε), y + δ(ε, bj), δ(ai, bj)}7

new.L ← z − y; new.U ← z − x8

old.L ← DR[i, j].L; old.U ← DR[i, j].U9

DR[i, j].L ← new.L; DR[i, j].U ← new.U10

if old.U �= new.U then11

currΔ[currIdx] ← i; currIdx ← currIdx + 112

i ← i + 113

if old.L = new.L then14

now = i15

repeat16

i ← prevΔ[prevIdx]; prevIdx ← prevIdx + 117

until i ≥ now18

currΔ[currIdx] ← m + 119

Interchange the roles of the tables currΔ and prevΔ20

currIdx ← 1; i ← prevΔ[1]; prevIdx ← 2; j ← j + 121

condition would be true and i+ 1 would be the next row to process. Line 16
checks if this condition was not true. If it was not, the repeat-until reads still
unused row indices from the prevΔ-table until either one which is at least
i + 1 is found (and it becomes the next row to process) or prevΔ becomes
fully processed (sentinel m + 1 was read).

– Line 19 adds the end sentinel m+ 1 to the table currΔ.
– Line 20 corresponds in practice to e.g. swapping two pointers that point to

the Δ-tables.
– Line 21 already reads the first row value i = prevΔ[1] for column j + 1.

Therefore prevIdx becomes 2.
– The main loop of line 4 stops either when line 21 sets i = m + 1, which

means that the prevΔ-table for the current column was empty, or when the
last column n has been processed.

Let #j denote the number of actually changed entries in column j. That is,
#j = |{i : DR′[i, j] �= DR[i, j]}|.

Theorem 3. Algorithm 1 recomputes a total of Θ(m) entries in columns j =
1 . . . 2 and a total of O(

∑n
j=2 #j) entries in columns j = 3 . . . n.

Proof. The case for columns j = 1 . . . 2 follows directly from how the m entries
DR′[i, j].U in column 1 are recomputed (i.e. reset) and how the prevΔ-table is
initialized with Θ(m) row indices prior to processing column 2.

When the algorithm starts to process a column j > 2, the prevΔ-table con-
tains O(#j−1) row indices (and one sentinel). Hence in column j at least these

522 H. Hyyrö, K. Narisawa, and S. Inenaga

i

j − 1 j

p

q1
q2

r1

r2

s

i

i− 1

j

p

q1
q2

r1

r2

s

0 1 0 1 c)a) b) 0 1

j

i′
p1

p2
q

i

Fig. 3. Illustration of crossing paths in proof of Theorem 4

O(#j−1) entries will be recomputed. In addition to these, further entries DR′[i, j]
will be recomputed only if the entry DR′[i−1, j] was recomputed and it became
different than DR[i− 1, j]. The number of such entries is at most #j . No other
cells are recomputed in column j. Hence the total number of cells recomputed in
any column j > 2 is at most O(#j−1+#j). Therefore the total number of entries
recomputed in columns j = 3 . . . n is O(

∑n
j=3(#j−1 + #j)) = O(

∑n
j=2 #j). �

Theorem 3 states that Algorithm 1 makes the minimum possible work in columns
j > 2, as clearly any algorithm that transforms DR into DR′ must change at
least #j values in column j. The columns j = 1 and j = 2 possibly involve up to
Θ(m) unnecessary work due to how the boundary column j = 1 and the prevΔ-
table are first initialized. Minor modifications and a further preprocessing stage
would allow us to make the algorithm completely minimal, i.e. to recompute
only O(#1 + #2) entries in the first two columns. We omit this consideration
for now, as one of the main goals of this paper is to propose an algorithm that
is both general and practical. The current form of Algorithm 1 seems to fulfill
this goal well. The pseudocode is compact but nevertheless already provides
such a detailed description of the algorithm that it is very straight-forward to
compose a working implementation in real code, even if one has little background
knowledge. We believe that our Algorithm 1 is not only more general than the
previous algorithm of Kim and Park; it also seems even simpler in terms of
implementing and understanding all steps of the algorithm. These are valuable
qualities in practice.

Corollary 1. Algorithm 1 transforms DR into DR′ in O(m+n) time under the
unit cost function δ1.

Proof. It follows from Theorems 1 and 3 and the preceding discussion that the
work is at most O(m + n) +Θ(m) = O(m + n). �

Theorem 4. Let c be the highest weight in the used cost function δ, that is,
c = max{δ(a, b) : a, b ∈ Σ ∪ {ε}}. Then

∑n
j=1 #j = O(c(m + n)).

Proof. We analyse the tables DR′, DR and Ch in similar fashion as Schmidt in
the proof of Theorem 6.1 in [2]. The basis is to consider table D as a weighted grid

Dynamic Edit Distance Table under a General Weighted Cost Function 523

graph that has a horizontal edge with weight δ(ε, bj) from D[i, j−1] to D[i, j] for
i = 0 . . .m and j = 1 . . . n, a vertical edge with weight δ(ai, ε) from D[i−1, j] to
D[i, j] for i = 1 . . .m and j = 0 . . . n, and a diagonal edge with weight δ(ai, bj) for
i = 1 . . .m and j = 1 . . . n. Now the edit distance D[i, j] = edδ(A[1 : i], B[1 : j])
is equal to the cost of the cheapest weighted path from D[0, 0] to D[i, j].

Let us consider the rows i in column j where DR′[i, j].U �= DR[i, j].U . Since
D ′[i, j] = D [i, j] + Ch [i, j], we have that DR′[i, j].U = D ′[i, j] − D ′[i − 1, j] =
D [i, j] + Ch [i, j]−D [i− 1, j]−Ch[i− 1, j] = DR[i, j].U + Ch [i, j]−Ch[i− 1, j].
That is, DR′[i, j].U �= DR[i, j].U if and only if Ch[i, j] �= Ch[i− 1, j].

Figure 3a depicts minimum cost paths corresponding to the distances D [i, j] =
p, D [i − 1, j] = q1 + q2, D ′[i, j] = r1 + r2 and D ′[i − 1, j] = s. The path from
D[0, 0] to D[i−1, j] must cross with the path from D[0, 1] to D[i, j]. In Figure 3a,
the crossing point divides these paths into the subpaths q1, q1, r1 and r2.

Each path and subpath has a minimal cost, and so the inequalities p ≤ q1 +r2
and s ≤ r1 + q2 hold. Hence D [i, j] + D ′[i− 1, j] = p + s ≤ q1 + r2 + r1 + q2 =
D [i − 1, j] + D ′[i, j]. This leads into the inequality D ′[i − 1, j] − D [i − 1, j] ≤
D ′[i, j] − D [i, j], that is, Ch[i − 1, j] ≤ Ch[i, j]. Since we deal with integers,
Ch[i, j] �= Ch [i− 1, j] iff Ch[i, j] ≥ Ch[i− 1, j] + 1. Note that the Ch [i, j] values
are non-decreasing with growing i, and the minimum increment is 1.

Now consider the possible range of values for Ch[i, j] when i ≥ 1 and j ≥ 1.
The value D[i, j] can never be larger than the alternative of first going to D[0, 1]
along the edge with weight δ(ε, b2) and then following the minimal path of cost
D ′[i, j]. That is, Ch[i, j] ≥ −δ(ε, b2) ≥ c, where c is the maximum weight in δ. On
the other hand, the value D ′[i, j] can never be worse than the alternative of going
directly down until the path corresponding to D[i, j] is reached in some point
D[i′, 1], and then following that path to the end. This is depicted in Figure 3c
so that D [i, j] = p1 + p2 and q is the cost of the direct downward path from
D[0, 1] up to the point of crossing D[i′, 1]. The paths (with costs) p1 and q

have the same cost
∑i′−1

h=1 δ(ah, ε) up to row i′ − 1. It is not difficult to show
that q + p2 ≤ p1 + p2 + min{δ(ε, b1), δ(ai′ , b1) − δ(ai′ , ε)}, which means that
Ch[i, j] ≤ min{δ(ε, b1), δ(ai′ , b1)− δ(ai′ , ε)} ≤ c.

Since −c ≤ Ch [i, j] ≤ c and the Ch-values are non-decreasing with increments
≥ 1, column j may contain at most O(c) different rows i where Ch [i, j] �=
Ch[i−1, j], that is, at most O(c) different rows i where DR′[i, j].U �= DR[i, j].U .

In similar fashion we may show each row i contains at most O(c) columns j
where DR′[i, j].L �= DR[i, j].L. As seen by comparing Figures 3a and 3b, the
underlying cases are very similar. We omit further details due to lack of space.

The end result is that columns j = 1 . . . n contain O(cn) points (i, j) where
DR′[i, j].U �= DR[i, j].U , and rows i = 1 . . .m contain O(cm) points (i, j) where
DR′[i, j].L �= DR[i, j].L. Since an entry DR′[i, j] is affected only in the preceding
types of points, we may conclude that

∑n
j=1 #j = O(c(m + n)). �

Corollary 2. Algorithm 1 transforms DR into DR′ in O(min{c(m + n),mn})
time under an arbitrary cost function δ whose maximum weight is c, and in
O(m + n) time under a cost function δ with constant (but arbitrary) weights.

524 H. Hyyrö, K. Narisawa, and S. Inenaga

Proof. The O(mn) bound is due to the fact that Algorithm 1 recomputes each
of the O(mn) entries at most once. The other bounds follow from Theorems 3
and 4. �

5 Experiments

In all experiments of this section, we computed a representation of D for A and
B[j : n] for each j = n, n− 1, . . . , 1, where the length of both A and B was n.
All the experiments were conducted on a CentOS Linux desktop computer with
two 3GHz dual core Xeon processors and 16GB memory.

5.1 Random Data

First we performed some experiments to investigate the performance of our al-
gorithm under various edit operation costs. The running times shown in this
section are average times for 10 runs with randomly generated string pairs.

Figures 4a-4c show the running times of our algorithm for random texts of
length 5000 with an alphabet of size 26.

a)
2

2.5

3

3.5

4

4.5

5

5.5

0 5 10 15 20 25 30 35 40 45 50

Ti
m

e
(s

ec
on

ds
)

Insertion Cost b)
2

2.5

3

3.5

4

4.5

5

5.5

0 5 10 15 20 25 30 35 40 45 50

Ti
m

e
(s

ec
on

ds
)

Deletion Cost

c)
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

0 10 20 30 40 50 60 70 80 90 100

Ti
m

e
(s

ec
on

ds
)

Substitution Cost

Fig. 4. Running times of our algorithm on random text data of length 5000 from an
alphabet of size 26 with; a) variable insertion cost from 1 to 50 and fixed deletion
and substitution costs 1, b) variable deletion cost from 1 to 50 and fixed insertion and
substitution costs 1, c) variable substitution cost from 1 to 100 and fixed insertion and
deletion costs 50.

Dynamic Edit Distance Table under a General Weighted Cost Function 525

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 5 10 15 20 25 30 35 40 45 50 55

Ti
m

e
(s

ec
on

ds
)

Alphabet Size

our method
naive method

0

20

40

60

80

100

120

140

160

180

200

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Ti
m

e
(s

ec
on

ds
)

Length

our method
naive method

Fig. 5. Running times of our algorithm and the naive method on random text data
with; (left) fixed length 1000 and variable alphabet sizes from 2 to 52, (right) fixed
alphabet size 26 and variable lengths from 100 to 5000

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 5 10 15 20 25 30 35 40 45 50 55

Ti
m

e
(s

ec
on

ds
)

Alphabet Size

our method

Kim Park method

0

0.5

1

1.5

2

2.5

3

3.5

0 500 1000 1500 2000 2500 3000

Ti
m

e
(s

ec
on

ds
)

Length

our method
Kim Park method

Fig. 6. Running times of our algorithm and the Kim and Park algorithm on random
text data with; (left) fixed length 1000 and variable alphabet sizes from 2 to 52, (right)
fixed alphabet size 26 and variable lengths from 100 to 3000

In the test of Fig. 4a, deletion and substitution costs were fixed to 1 and
the insertion cost varied from 1 to 50. Fig. 4b is otherwise similar, but now
the insertion and substitution costs were fixed to 1 and the deletion cost varied
from 1 to 50. From these it is evident how our algorithm becomes slower as the
insertion or deletion cost becomes larger.

Fig. 4c corresponds to a test where the insertion and deletion costs were fixed
to 50 and the substitution cost varied from 1 to 100.

Next we performed experiments to compare running times of our algorithm
with the naive method and the Kim-Park algorithm [3] on random text data,
varying the alphabet size and string length as parameters. Ours and the Kim-
Park algorithm compute DR-tables, while the naive method computes D -tables.

Fig. 5 shows running times of our algorithm and the naive method on random
text data with; (left) fixed length 1000 and variable alphabet sizes from 2 to 52,
(right) fixed alphabet size 26 and variable lengths from 100 to 5000. In these
experiments, the insertion, deletion, and substitution costs for our algorithm and
the naive method were randomly selected to be 137, 116 and 242, respectively.

Fig. 6 shows running times of our algorithm and the Kim-Park algorithm
under the unit cost function on random text data with; (left) fixed length 1000

526 H. Hyyrö, K. Narisawa, and S. Inenaga

and variable alphabet sizes from 2 to 52, (right) fixed alphabet size 26 and
variable lengths from 100 to 3000. The Kim-Park algorithm has more variance,
probably due to the poor locality of its memory access patterns.

5.2 Corpora Data

In this section, we show our experimental results on data from two corpora: one
consists of English texts from Reuters-21578 text categorization test collection2,
and the other of biological data from the canterbury corpus [6].

Table 1. Comparison of running times
for the Reuters data (in seconds)

length our method naive method
1000 0.04 1.50
2000 0.27 12.0
3000 0.71 40.4
4000 1.36 97.1
5000 2.29 189

Table 2. Comparison of running times
for the E.coli data (in seconds)

length our method naive method
1000 0.01 1.43
2000 0.09 11.5
3000 0.23 38.8
4000 0.43 92.8
5000 0.70 181

Table 3. Cost function
for the E.coli data

δ ε A C G T

ε - 3 3 3 3
A 3 0 2 1 2
C 3 2 0 2 1
G 3 1 2 0 2
T 3 2 1 2 0

Table 1 compares the running times of our algorithm
and the naive method when processing English text.
In this experiment, we used the same randomly se-
lected insertion, deletion, and substitution costs which
are 137, 116 and 242, respectively. For each length
l = 1000, 2000, 3000, 4000, 5000, we randomly selected
10 files of length around l and performed left incremen-
tal edit distance computation between each possible file
pair within the selected similar-length files. The table
shows the average time in seconds over all computa-
tions with the given length.

Table 2 shows a similar comparison when processing DNA sequences from
“E.coli”, the complete genome of the E. Coli bacterium of length 4638690. For
each length l = 1000, 2000, 3000, 4000, 5000, we randomly picked 10 substrings of
length l and performed left incremental edit distance computation between each
equal-length substring pair. In this experiment we used the cost function shown
in Table 3, which was proposed in [7] for weighted edit distance computation
between DNA sequences.

The difference between the highest costs 242 and 3 in these two experiments
seemed to result in the difference of running times of our algorithm, since our
algorithm runs in O(min{c(m+n),mn}) time, where c is the highest cost used.

2 http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html

http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html

Dynamic Edit Distance Table under a General Weighted Cost Function 527

References

1. Landau, G.M., Myers, E.W., Schmidt, J.P.: Incremental String Comparison. SIAM
J. Comp. 27(2), 557–582 (1998)

2. Schmidt, J.P.: All Highest Scoring Paths in Weighted Grid Graphs and Their Ap-
plication in Finding All Approximate Repeats in Strings. SIAM J. Comp. 27(4),
972–992 (1998)

3. Kim, S.R., Park, K.: A Dynamic Edit Distance Table. J. Disc. Algo. 2, 302–312
(2004)

4. Hyyrö, H.: An Efficient Linear Space Algorithm for Consecutive Suffix Alignment
under Edit Distance. In: Amir, A., Turpin, A., Moffat, A. (eds.) SPIRE 2008. LNCS,
vol. 5280, pp. 155–163. Springer, Heidelberg (2008)

5. Masek, W.J., Paterson, M.: A Faster Algorithm Computing String Edit Distances.
J. Comput. Syst. Sci. 20(1), 18–31 (1980)

6. Arnold, R., Bell, T.: A Corpus for the Evaluation of Lossless Compression Algo-
rithms. In: Proc. DCC 1997, pp. 201–210 (1997),
http://corpus.canterbury.ac.nz/

7. Kurtz, S.: Approximate String Searching under Weighted Edit Distance. In: Proc.
3rd South American Workshop on String Processing (WSP 1996), pp. 156–170
(1996)

http://corpus.canterbury.ac.nz/

How to Complete
an Interactive Configuration Process?

Configuring as Shopping

Mikoláš Janota1, Goetz Botterweck2, Radu Grigore3, and Joao Marques-Silva3

1 Lero, University College Dublin, Ireland
2 Lero, University of Limerick, Ireland
3 University College Dublin, Ireland

Abstract. When configuring customizable software, it is useful to pro-
vide interactive tool-support that ensures that the configuration does
not breach given constraints. But, when is a configuration complete and
how can the tool help the user to complete it? We formalize this problem
and relate it to concepts from non-monotonic reasoning well researched
in Artificial Intelligence. The results are interesting for both practition-
ers and theoreticians. Practitioners will find a technique facilitating an
interactive configuration process and experiments supporting feasibility
of the approach. Theoreticians will find links between well-known formal
concepts and a concrete practical application.

1 Introduction

Software Product Lines (SPLs) build on the assumption that when developing
software-intensive systems it is advantageous to decide upfront which products
to include in scope and then manage construction and reuse systematically [4].

This approach is suitable for families of products that share a significant
amount of their user-visible or internal functionality. Parnas identified such pro-
gram families as: . . . sets of programs whose common properties are so extensive
that it is advantageous to study the common properties of the programs before
analyzing individual members. [20]

A key aspect of SPLs is that the scope of products is defined and described
explicitly using models of various expressivity [14,1,23,10]. Conceptually, we can
consider an SPL as a mapping from a problem space to a solution space. The
problem space comprises requirements that members of the product line satisfy,
and, the solution space comprises possible realizations, e.g., programs in C++.
These spaces are defined by some constraints, i.e., requirements or solutions
violating the constraints are not within the respective space.

A specification for a new product is constructed from the requirements which
must be matched to the constraints that define the scope of the product line.
In effect, the purchaser picks a particular member of the problem space. Subse-
quently, software engineers are responsible for delivering a product, a member
of the solution space, corresponding to the given specification.

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 528–539, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

How to Complete an Interactive Configuration Process? 529

If the problem space is complex, picking one of its members is not trivial.
Hence, we strive to support interactive configuration with configurator tools. De-
spite the fact that this has been researched extensively (see [17,8,1,24,11,9]), little
attention has been paid to the completion of a configuration process. Namely,
how shall we treat variables of the configuration model that have not been bound
by the user at all? (This issue has been noted by Batory in [1, Section 4.2].)

This article studies this problem (Sect. 2.2) and designs an enhancement of
a configurator that helps the user to get closer to finishing the configuration pro-
cess by binding variability without making decisions for the user, i.e., it is aiming
at not being overly smart. The article focuses mainly on this functionality for
propositional configuration (Sect. 3) and it relates to research on Closed World
Assumption (Sect. 3.4). The general, non-propositional, case is conceptualized
relying on the notion of preference (Sect. 4).

2 Background and Motivation

Kang et al. developed a methodology Feature Oriented Domain Analysis
(FODA), where feature models are used to carry out domain analysis—a system-
atic identification of variable and common parts of a family of systems [14]. For
the purpose of this article, it is sufficient to consider a feature as “a prominent or
distinctive user-visible aspect, quality, or characteristic of a software system or
system” [14], and a product as a combination of its features. A Software Product
Line is a system for developing products from a certain family captured as a set
of feature combinations defined by a feature model.

The semantics of a feature model is typically defined with propositional logic.
Each feature f is represented by a propositional variable vf and a Boolean for-
mula is constructed as a conjunction of formulæ representing the different model-
ing primitives. The satisfying assignments of the resulting formula define the set of
possible feature combinations [23]. A popular notation is the FODA notation [14]
with the primitives in Fig. 1a exemplified by Fig. 1b whose semantics is in Fig. 1c.
The corresponding feature combinations, defining the problem space, are listed in
Fig. 1d. The FODA notation has several extensions, e.g., feature attributes repre-
sent values such as price. For general attributes, Boolean logic is insufficient and
the semantics is expressed as a Constraint Satisfaction Problem [2].

2.1 Configuration Process

In the interactive configuration process, the user specifies his requirements step-
by-step, gradually shrinking the problem space (see Fig. 1e). Hence, this process
can be seen as a step-wise refinement of the constraint defining the space [5,11].
How the problem space is refined in each step is called a decision.

A configurator is a tool that displays the model capturing the constraints,
presents the user with possible (manual) decisions, and infers necessary (auto-
matic) decisions. The tool discourages the user from making decisions inconsis-
tent with the constraints, and, it suggests decisions that are necessary to satisfy

530 M. Janota et al.

root feature

xor-group

parent feature

optional child

mandatory
child

(a) Modeling primitives

x

y

a b c d

⇔

⇐ ⇐

xor

(b) Feature model example

vx ∧
vy ⇔ vx ∧
vc ⇒ vx ∧ vd ⇒ vx ∧
va ⇒ vy ∧ vb ⇒ vy ∧
vy ⇒(va ∨ vb) ∧
vy ⇒¬(va ∧ vb)

(c) Its semantics

{x, y, a, c}

1

2

3

{x, y, b}{x, y, b, d}
{x, y, b, c, d}{x, y, b, c}

{x, y, a} {x, y, a, d}

{x, y, a, c, d}

(d) Example configuration of Fig. 1b

φ0 φ2φ1 φk

(e) Configuration schematically

Fig. 1. FODA notation and Configuration Processes

the constraints. For convenience, configurators enable the user to retract previ-
ously made decisions; some even enable to temporarily violate the constraints
but this is out of the scope of this article and gradual refinement will be assumed.

For illustration consider the feature model in Fig. 1b and the following steps
(see Fig. 1d). (1) The user selects the feature a. This implicitly deselects b as a
and b are in an xor-group and there are no feature configurations with both a
and b. (2) The user selects the feature c, which has no further effects. (3) Finally,
he deselects the feature d and the process is completed since exactly one feature
combination is left, i.e., each feature is either in the product or not.

In summary, the input to the configurator is a constraint defining a large set
of possibilities—the outermost ellipse in Fig. 1e. Gradually, this set is shrunk
until exactly one possibility is left (assuming the user succeeded).

2.2 Completing a Configuration Process and the Shopping Principle

The concepts introduced in the previous sections are well known [8]. However,
the configuration literature does not study the completion of a configuration
process. As stated above, at the end of the process the decisions must determine
exactly one feature combination (the innermost ellipse in Fig. 1e). So, how does
the user achieve this? This article introduces the following classification.

M (Manual). The user makes decisions up to the point when all considered
variables have been bound, i.e., each variable has been assigned a value by the
user or by a decision inferred by the configurator. The disadvantage of this
approach is that the user needs to fill in every single detail, which is cumbersome
especially if there are some parts of the problem that are not of a high relevance
to the user. The only assistance the tool provides is the mechanism that infers
new decisions or disables some decision. We will not discuss this case further.

How to Complete an Interactive Configuration Process? 531

A (Full blind automation). A function automatically computes some values for
all variables that do not have a value yet. The disadvantage of this option is that
it takes all the control from the user as it is essentially making decisions for him.

A+ (Smart automation). If we make some form of a priori, common sense as-
sumptions, there is an approach somewhere between the options M and A. In
the example above, the user had to explicitly deselect the optional feature d but
would it be possible to instead say that all features not selected should be des-
elected? The motivation for this approach can be explained by an analogy with
shopping for groceries (thus the shopping principle). The customer asks only for
those items that he wants rather than saying for each item in the store whether
he wants it or not. If some variables cannot be bound according to this principle,
due to some dependencies, the tool will highlight them since it is possible that
the user forgot to make a certain decision, e.g., we wouldn’t want the tool to
decide between features in an xor-group (a and b).

In some sense, the scenario A+ is a more careful version of scenario A. Both
support the user to complete the configuration process. Scenario A binds all
variables, whereas A+ only those for which this doesn’t mean deciding something
for the user. The following section investigates these scenarios in constraints
defined as Boolean formulæ (recall that FODA produces Boolean formulæ).

3 Propositional Configuration

First, let us recall some basic terms from propositional logic. Let V be some
finite set of variables. The propositional formulæ discussed from now on will be
only on these variables. A variable assignment assigns either true or false to
each considered variable. Often it is useful to think of a variable assignment as
the set of variables that are assigned the value true, e.g., the variable assignment
x �→ true, y �→ false corresponds to the set {x} in the set-based notation.

A model of a formula φ is such a variable assignment under which φ evaluates
to true. We say that the formula φ is satisfiable, denoted as Sat(φ), if and only
if φ has at least one model, e.g., the formula x ∨ y is satisfiable whereas the
formula x ∧ ¬x is not. We write φ |= ψ to denote that the formula ψ evaluates
to true under all models of φ, e.g., it holds that x ∧ y |= x.

3.1 Propositional Configuration Process

In order to reason about the feature model and the user’s requirements, the con-
figurator translates them in some form of mathematical representation. In this
section we assume that the model has already been translated into propositional
logic (see Fig. 1c for illustration).

Definition 1. A propositional configuration process for some finite set of vari-
ables V and a satisfiable propositional formula φ only on the variables from V is
a sequence of propositional formulæ φ0, . . . , φk such that φ0

def= φ, φi+1
def= φi ∧ ξi

for all i ∈ 0 . . . k−1, and φk is satisfied by one variable assignment. The formulæ

532 M. Janota et al.

ξi are decisions made by the user or decisions inferred by the configurator. If ξi
is of the form v for some variable v ∈ V, then we say that the variable v has been
assigned the value true in step i; if ξi is of the form ¬v, we say that it has been
assigned the value false in step i. Observe that φi+1⇒φi for all i ∈ 0 . . . k − 1,
i.e., the set of models is shrunk along the process.

Example 1. Let φ0
def= (¬u∨¬v)∧ (x⇒ y). The user sets u to true (φ1

def= φ0∧u);
the configurator sets v to false as u and v are mutually exclusive (φ2

def= φ1∧¬v).
The user sets y to false (φ3

def= φ2 ∧ ¬y); the configurator sets x to false (φ4
def=

φ3 ∧ ¬x). The process is finished as all variables were assigned a value.

The inference mechanism of the configurator typically inspects for all variables
v ∈ V whether φl |= v, in which case it sets v to true, and whether φl |= ¬v, in
which case it sets v to false. If a value has been inferred, the user is discouraged
by the user interface to change it (“graying out”). This can be computed with
the help of a SAT solver [9] or Binary Decision Diagrams (BDDs) [8].

3.2 Completing a Propositional Configuration Process

Let us look at the scenarios for completing a propositional configuration process.
Earlier, we have identified two types of functions that the user may invoke at
any step of the process: (A) a function that binds all the remaining variables;
(A+) a function that finds values for only some variables according to an a priori
knowledge; we call this function a shopping principle function.

The case A is straightforward, finding a solution to the formula φi in step i
is a satisfiability problem which can be solved by a call to a SAT solver or by
a traversal of a BDD corresponding to φi (see [9,8] for further references).

The scenario A+, however, is more intriguing. The a priori knowledge that we
apply is the shopping principle (see Sect. 2.2), i.e., what has not been selected
should be false. According to our experience and intuition (as well as other
researchers [1, Section 4.2]), this is well in accord with human reasoning: the
user has the impression that if a variable (a feature in a feature model) has not
been selected, then it should be deselected once the process is over.

However, it is not possible to set all unassigned variables to false in all cases.
For instance, in u∨v we cannot set both u and v to false—the user must choose
which one should be true, and we do not want to make such decision for him
(otherwise we would be in scenario A). Another way to see the problem is that
setting u to false will force the variable v to be true, and vice-versa. If we consider
the formula x⇒(y∨z), however, all the variables can be set to false at once and
no further input from the user is necessary.

In summary, the objective is to maximize the set of variables that can be
set to false without making any decisions for the user, i.e., variables that can be
deselected safely. Upon a request, the configurator will set the safely-deselectable
variables to false and highlight the rest as they need attention from the user.

How to Complete an Interactive Configuration Process? 533

3.3 Deselecting Safely

We start with an auxiliary definition that identifies sets of variables that can be
deselected at once. This definition enables us to specify those variables that can
be deselected safely; we call such variables dispensable variables (we kindly ask
the reader to distinguish the terms deselectable and dispensable).

Definition 2 (Deselectable). A set of variables X ⊆ V is deselectable w.r.t.
the formula ψ, denoted as D(ψ,X), iff all variables in X can be set to false at
once. Formally defined as D(ψ,X) def= Sat

(
ψ ∧

∧
v∈X ¬v

)
. Analogously, a single

variable v ∈ V is deselectable w.r.t. the formula ψ iff it is a member of some
deselectable set of variables, i.e., D(ψ, v) def= Sat(ψ ∧ ¬v).

Definition 3 (Dispensable variables). A variable v ∈ V is dispensable w.r.t.
a formula ψ iff the following holds: (∀X ⊆ V) (D(ψ,X)⇒D(ψ ∧ ¬v,X)).

In plain English, a variable v is dispensable iff any deselectable set of variables X
remains deselectable after v has been deselected (set to false). Intuitively, the
deselection of v does not force selection of anything else, which follows the moti-
vation that we will not be making decisions for the user. In light of the shopping
principle (see Sect. 2.2), a customer can skip a grocery item only if skipping
it does not require him to obtain some other items. The following examples
illustrate the two definitions above.

Example 2. Let φ def= (u ∨ v) ∧ (x⇒ y). Each of the variables is deselectable but
only x and y are dispensable. The set {x, y} is deselectable, while the set {u, v}
is not. The variable u is not dispensable as {v} ceases to be deselectable when u
is set to false; analogously for v. The variable x is dispensable since after x has
been deselected, y can still be deselected and the variables u, v are independent
of x’s value. Analogously, if y is deselected, x can be deselected.

Observe that we treat true and false asymmetrically, deselecting y forces x
to false, which doesn’t collide with dispensability; deselecting u forces v to true
and therefore u is not dispensable.

Example 3. Let φ be defined as in the previous example and the user is perform-
ing configuration on it. The user invokes the shopping principle function. As x
and y are dispensable, both are deselected (set to false). The variables u and v
are highlighted as they need attention. The user selects u, which results in the
formula φ1

def= φ ∧ u. The variable v becomes dispensable and can be deselected
automatically. The configuration process is finished as all variables have a value.

As we have established the term dispensable variable, we continue by studying
its properties in order to be able to compute the set of dispensable variables and
to gain more intuition about them.

Lemma 1. Let Υφ denote the set of all dispensable variables of φ. For a satis-
fiable ψ, the dispensable variables can be deselected all at once, i.e., D(ψ, Υφ).

534 M. Janota et al.

Proof. By induction on the cardinality of subsets of Υψ . Let Υ0
def= ∅, then

D(ψ, Υ0) as ψ is satisfiable. Let Υi, Υi+1 ⊆ Υψ s.t. Υi+1 = Υi ∪{x}, |Υi| = i, and
|Υi+1| = i+ 1. Since x is dispensable and D(φ, Υi), then D(φ ∧ ¬x, Υi), which is
equivalent to D(φ, Υi ∪{x}).

The following lemma reinforces that the definition of dispensable variables ad-
heres to the principles we set out for it, i.e., it maximizes the number of deselected
variables while not arbitrarily deciding between variables.

Lemma 2. The set Υφ—the set of all dispensable variables of φ—is the inter-
section of all maximal sets of deselectable variables of φ.

Proof (sketch). From definition of dispensability, any deselectable set remains
deselectable after any dispensable variable is added to it, hence Υφ is a subset of
any maximal deselectable set. Υφ is a maximal set with this property because for
each deselectable set that contains at least one non-dispensable variable there is
another deselectable set that does not contain this variable.

3.4 Dispensable Variables and Non-monotonic Reasoning

After defining the shopping principle in mathematical terms, the authors of this
article realized that dispensable variables correspond to certain concepts from
Artificial Intelligence as shown in this subsection.

The Closed World Assumption (CWA) is a term from logic programming and
knowledge representation. Any inference that takes place builds on the assump-
tion that if something has not been said to be true in a knowledge base, then it
should be assumed false. Such reasoning is called non-monotonic as an increase
in knowledge does not necessarily mean an increase in inferred facts. In terms
of mathematical logic, CWA means adding negations of variables that should be
assumed false in the reasoning process. Note that not all negateable variables
(φ � v) can be negated, e.g., for the formula x ∨ y both x and y are negateable
but negating both of them would be inconsistent with the formula.

The literature offers several definitions of reasoning under Closed World As-
sumption [3,7]. A definition relevant to this article is the one of the Generalized
Closed World Assumption (GCWA) introduced by Minker [19] (see [3, Def. 1]).

Definition 4. The variable v is free of negation in the formula φ iff for any
positive clause B for which φ � B, it holds that φ � v ∨B. The closure C(φ) of
a formula φ is defined as C(φ) def= φ∪ {¬K | K is free for negation in φ}.
It is not difficult to see that dispensable variables are those that are free of
negation as shown by the following lemma.

Lemma 3. Dispensable variables coincide with those that are free of negation.

Proof. Observe that φ � ψ iff Sat(φ ∧ ¬ψ), then the definition above can be
rewritten as: For B′ def=

∧
v∈VB

¬v for some set of variables VB for which Sat(φ∧
B′), it holds that Sat(φ ∧ ¬v ∧ B′). According to the definition of D, this is
equivalent to D(φ, VB)⇒D(φ ∧ ¬v, VB) (compare to Definition 3).

How to Complete an Interactive Configuration Process? 535

Table 1. Experimental Results

Name Features Clauses Length Done Minimal models

tightvnc 21 22 5.5 5.5 1.0 ± 0.0
apl 27 41 12.2 11.9 1.0 ± 0.0
gg4 58 139 10.0 3.8 15.3 ± 22.6
berkeley 94 183 26.6 17.9 1.7 ± 1.1
violet 170 341 56.1 47.1 1.6 ± 0.9

Circumscription, in our case the propositional circumscription, is another impor-
tant form of reasoning [18]. A circumscription of a propositional formula φ is a
set of minimal models of φ. Where a model α of a formula φ is minimal iff φ has
no model α′ which would be a strict subset of α, e.g., the formula x∨ y has the
models {x}, {y}, {x, y} where only {x} and {y} are minimal. We write φ |=min ψ
to denote that ψ holds in all minimal models of φ, e.g., x ∨ y |=min ¬(x ∧ y).

The following lemma relates minimal models to dispensable variables (The
proof of equivalence between minimal models and GCWA is found in [19]).

Lemma 4. A variable v is dispensable iff it is false in all minimal models.

Example 4. Let φ0
def= (u ∨ v) ∧ (x⇒ y). The minimal models of the formula φ0

are {u}, {v}, hence φ0 |=min ¬x and φ0 |=min ¬y. Then, if the user invokes the
shopping principle function, x and y are deselected, i.e., φ1

def= φ0∧¬x∧¬y. And,
the user is asked to resolve the competition between u∨v, he selects u, resulting
in the formula φ2

def= φ1 ∧ u with the models {u} and {u, v} where only the
model {u} is minimal hence v is set to false as dispensable. The configuration
process is complete because u has the value true and the rest are dispensable.

3.5 Experimental Results

The previous section shows that dispensable variables can be found by enumer-
ating minimal models. Since the circumscription problem is ΠP

2 -complete [7] it is
important to check if the computation is feasible in practice. We applied a simple
evaluation procedure to five feature models1: For each feature model we simu-
lated 1000 random manual configuration processes (scenario M). At each step
we enumerated minimal models. (Algorithmic details can be found online [12].)
We also counted how many times there was exactly one minimal model: At those
steps the configuration process would have been completed if the user invoked
the shopping principle function.

The results appear in Table 1. The column Length represents the number
of user decisions required if the shopping principle function is not invoked; the
column Done represents in how many steps an invocation of the shopping prin-
ciple function completes the configuration; the column Minimal models shows
that the exponential worst case tends not to occur in practice and therefore
enumeration of all minimal models is feasible.
1 From http://fm.gsdlab.org/index.php?title=Model:SampleFeatureModels

http://fm.gsdlab.org/index.php?title=Model:SampleFeatureModels

536 M. Janota et al.

4 Beyond Boolean Constraints

The previous section investigated how to help a user with configuring proposi-
tional constraints. Motivated by the shopping principle, we were trying to set as
many variables to false as possible. This can be alternatively seen as that the
user prefers the undecided variables to be false.

This perspective helps us to generalize our approach to the case of non-
propositional constraints under the assumption that there is some notion of
preference between the solutions. First, let us establish the principles for pref-
erence that are assumed for this section. (1) It is a partial order on the set in
question. (2) It is static in the sense that all users of the system agree on it, e.g.,
it is better to be healthy and rich than sick and poor. (3) If two elements are
incomparable according to the ordering, the automated support shall not decide
between them, instead the user shall be prompted to resolve it.

To be able to discuss these concepts precisely, we define them in mathematical
terms. We start by a general definition of the problem to be configured, i.e., the
initial input to the configurator, corresponding to the set of possibilities that the
user can potentially reach—the outermost ellipse in Fig. 1e.

Definition 5 (Solution Domain). A Solution Domain (SD) is a triple
〈V , D, φ〉 where V is a set of variables V = {v1, . . . , vn}, D is a set of respective
domains D = {D1, . . . , Dn}, and the constraint φ ⊆ D1 × · · · ×Dn is an n-ary
relation on the domains (typically defined in terms of variables from V).

A variable assignment is an n-tuple 〈c1, . . . , cn〉 from the Cartesian product
D1 × · · · × Dn, where the constant ci determines the value of the variable vi

for i ∈ 1 . . . n. For a constraint ψ, a variable assignment α is a solution iff it
satisfies the constraint, i.e., α ∈ ψ.

An Ordered Solution Domain (OSD) is a quadruple 〈V , D, φ, ≺〉 where
〈V , D, φ〉 is an SD and ≺ is a partial order on D1 × · · · ×Dn. For a constraint
ψ, a solution α is optimal iff there is no solution α′ of ψ s.t. α′ �= α and α′ ≺ α.

Recall that the user starts with a large set of potential solutions, gradually dis-
cards the undesired ones until only one solution is left. From a formal perspective,
solution-discarding is carried out by strengthening the considered constraint,
most typically by assigning a fixed value to some variable.

Definition 6 (Configuration Process). Given a Solution Domain 〈V , D, φ〉,
an interactive configuration process is a sequence of constraints φ0, . . . , φk such
that φ0

def= φ and |φk| = 1. The constraint φj+1 is defined as φj+1
def= φj ∩ ξj

where the constraint ξj represents the decision in step j for j ∈ 0 . . . k − 1. If ξj
is of the form vi = c for a variable vi and a constant c ∈ Di, we say that the
variable vi has been assigned the value c in step j. Observe that φj+1 ⊆ φj for
j ∈ 0 . . . k − 1 and φj ⊆ φ for j ∈ 0 . . . k.

A configurator in this process disables certain values or assigns them automati-
cally. In particular, the configurator disallows selecting those values that are not
part of any solution of the current constraint, i.e., in step l it disables all values

How to Complete an Interactive Configuration Process? 537

c ∈ Di of the variable vi for which there is no solution of the constraint φl of
the form 〈c1, . . . , c, . . . cn〉. If all values but one are disabled for the domain Di,
then the configurator automatically assigns this value to the variable vi.

Now as we have established the concept for general configuration, let us as-
sume that a user is configuring an Ordered Solution Domain (Definition 5) and
we wish to help him with configuring variables that have lesser importance for
him, similarly as we did with the shopping principle. The configuration pro-
ceeds as normal except that after the user configured those values he wanted, he
invokes a function that tries to automatically configure the unbound variables
using the given preference.

The assumption we make here is that the variables that were not given a value
yet should be configured such that the result is optimal while preserving the
constraints given by the user so far. Since the preference relation is a partial
order, there may be multiple optimal solutions. As we do not want to make
a choice for the user, we let him focus only on optimal solutions.

If non-optimal solutions shall be ruled out, the configurator identifies such
values that never appear in any optimal solution to reduce the number of deci-
sions that the user must focus on. Dually, the configurator identifies values that
appear in all optimal solutions, the following definitions establish these concepts.

Definition 7 (Settled variables.). For a constraint ψ and a variable vi, the
value c ∈ Di is non-optimal iff the variable vi has the value c only in non-
optimal solutions of ψ (or, vi has a different value from c in all optimal solutions
of ψ). A value c is settled iff vi has the value c in all optimal solutions of ψ.
A variable vi is settled if there is a settled value of vi.

Observation 1. For some constraint and the variable vi, a value c ∈ Di is
settled iff all values c′ ∈ Di different from c are non-optimal.

Example 5. Let x, y, z ∈ {0, 1}. Consider a constraint requiring that at least one
of x,y,z is set to 1 (is selected). The preference relation expresses that we prefer
lighter and cheaper solutions where x, y, and z contribute to the total weight by
1, 2, 3 and to the total price by 10, 5, and 20, respectively. Hence, the solutions
satisfy (x + y + z > 0), and 〈x1, y1, z1〉 ≺ 〈x2, y2, z2〉 iff (10x1 + 5y1 + 20z1 ≤
10x2 + 5y2 + 20z2)∧ (1x1 + 2y1 + 3z1 ≤ 1x2 + 2y2 + 3z2). Any solution setting z
to 1 is non-optimal as z is more expensive and heavier than both x and y, and
hence the configurator sets z to 0 (it is settled). Choosing between x and y,
however, needs to be left up to the user because x is lighter than y but more
expensive than y.

Propositional configuration, studied in the previous section, is a special case of
a Solution Domain configuration with the variable domains {true, false}. The
following observation relates settled and dispensable variables (definitions 7, 3).

Observation 2. For a Boolean formula understood as an OSD with the prefer-
ence relation as the subset relation, a variable is settled iff it is dispensable or
it is true in all models (solutions). Additionally, if each variable is settled, the
invocation of the shopping principle function completes the configuration process.

538 M. Janota et al.

This final observation is an answer to the question in the title, i.e., configura-
tion may be completed when all variables are settled. And, according to our
experiments this happens frequently in practice (column Done in Table 1).

5 Related Work
Interactive configuration as understood in this article has been studied e.g., by
Hadžić et al. [8], Batory [1], and Janota [9]. In an analogous approach Jan-
ota et al. [11] discuss the use of interactive configuration for feature model con-
struction. The work of van der Meer et al. [24] is along the same lines but for
unbounded spaces. Lottaz et al. [17] focus on configuration of non-discrete do-
mains in civil engineering.

There is a large body of research on product configuration (see [22] for an
overview), which typically is conceptualized rather as a programming paradigm
than a human-interaction problem. Moreover, the notion rules are used instead
of formulæ. Similarly as do we, Junker [13] applies preference in this context.
We should note that preference in logic has been studied extensively, see [6].

The problem how to help the user to finish the configuration process was
studied by Krebs et al. [16] who applied machine learning to identify a certain
plan in the decisions of the user.

Circumscription has been studied extensively since the 80’s [18,19,7]. Calcula-
tion of propositional circumscription was studied by Reiter and Kleer [21]; calcu-
lation of all minimal models by Kavvadias et al. and work referenced therein [15].

6 Summary

This article proposes a novel extension for configurators—the shopping principle
function (Sect. 3.2). This function automates part of the decision-making but is
not trying to be too smart: it does not make decisions between equally plausible
options. The article mainly focuses on the propositional case, as software engi-
neering models’ semantics are typically propositional. The relation with GCWA,
known from Artificial Intelligence, offers ways how to compute the shopping
principle function (Sect. 3.4). Several experiments were carried out suggesting
that the use of the shopping principle function is feasible and useful (Sect. 3.5).
The general, non-propositional, case is studied at a conceptual level opening
doors to further research (Sect. 4). The authors are planning to integrate this
function into a configurator and carry out further experiments as future work.

Acknowledgment. This work is partially supported by Science Foundation Ire-
land under grant no. 03/CE2/I303 1 and the IST-2005-015905 MOBIUS project.
The authors thank Don Batory and Fintan Farmichael for valuable feedback.

References
1. Batory, D.: Feature Models, Grammars, and Propositional Formulas. In: Obbink, H.,

Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg (2005)
2. Benavides, D., Trinidad, P., Ruiz-Cortés, A.: Automated Reasoning on Feature

Models. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520,
pp. 491–503. Springer, Heidelberg (2005)

How to Complete an Interactive Configuration Process? 539

3. Cadoli, M., Lenzerini, M.: The Complexity of Closed World Reasoning and Cir-
cumscription. In: The Eighth National Conference on Artificial Intelligence (1990)

4. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns.
Addison-Wesley, Reading (2002)

5. Czarnecki, K., Helsen, S., Eisenecker, U.: Staged Configuration Using Feature Mod-
els. In: Nord, R.L. (ed.) SPLC 2004. LNCS, vol. 3154, pp. 266–283. Springer, Hei-
delberg (2004)

6. Delgrande, J., Schaub, T., Tompits, H., Wang, K.: A Classification and Survey
of Preference Handling Approaches in Nonmonotonic Reasoning. Computational
Intelligence 20(2), 308–334 (2004)

7. Eiter, T., Gottlob, G.: Propositional Circumscription and Extended Closed World
Reasoning Are ΠP

2 -Complete. Theoretical Computer Science (1993)
8. Hadzic, T., Subbarayan, S., Jensen, R., Andersen, H., Møller, J., Hulgaard, H.:

Fast Backtrack-Free Product Configuration Using a Precompiled Solution Space
Representation. In: The International Conference on Economic, Technical and Or-
ganizational Aspects of Product Configuration Systems, DTU (2004)

9. Janota, M.: Do SAT Solvers Make Good Configurators? In: First Workshop on
Analyses of Software Product Lines, ASPL (2008)

10. Janota, M., Kiniry, J.: Reasoning about Feature Models in High-Order Logic. In:
SPLC (2007)

11. Janota, M., Kuzina, V., Wasowski, A.: Model Construction with External Con-
straints: An Interactive Journey from Semantics to Syntax. In: Czarnecki, K., Ober,
I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp.
431–445. Springer, Heidelberg (2008)

12. Janota, M., Marques-Silva, J., Grigore, R.: Algorithms for Finding Dispensable
Variables, http://arXiv.org/abs/0910.0013

13. Junker, U.: Preference Programming for Configuration. In: Workshop on Configu-
ration (2001)

14. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-
Oriented Domain Analysis (FODA), feasibility study. Technical Report, SEI,
Carnegie Mellon University (1990)

15. Kavvadias, D.J., Sideri, M., Stavropoulos, E.C.: Generating All Maximal Models
of a Boolean Expression. Information Processing Letters (2000)

16. Krebs, T., Wagner, T., Runte, W.: Recognizing User Intentions in Incremental
Configuration Processes. In: Workshop on Configuration (2003)

17. Lottaz, C., Stalker, R., Smith, I.: Constraint Solving and Preference Activation for
Interactive Design. AI EDAM 12(01), 13–27 (1998)

18. McCarthy, J.: Circumscription—a Form of Non-Monotonic Reasoning. Artificial
Intelligence 13, 27–39 (1980)

19. Minker, J.: On Indefinite Databases and the Closed World Assumption. In: Love-
land, D.W. (ed.) CADE 1982. LNCS, vol. 138. Springer, Heidelberg (1982)

20. Parnas, D.L.: On the Design and Development of Program Families. IEEE Trans-
actions on Software Engineering (1976)

21. Reiter, R., de Kleer, J.: Foundations of Assumption-Based Truth Maintenance
Systems: Preliminary Report. In: Proceedings of AAAI (1987)

22. Sabin, D., Weigel, R.: Product Configuration Frameworks-a Survey. IEEE Intelli-
gent Systems 13(4), 42–49 (1998)

23. Schobbens, P.-Y., Heymans, P., Trigaux, J.-C.: Feature Diagrams: A Survey and a
Formal Semantics. In: Requirements Engineering Conference, RE (2006)

24. van der Meer, E.R., Wasowski, A., Andersen, H.R.: Efficient Interactive Configu-
ration of Unbounded Modular Systems. In: Symp. Applied Comput. (SAC) (2006)

http://arXiv.org/abs/0910.0013

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 540–551, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Design Patterns Instantiation Based on Semantics
and Model Transformations

Peter Kajsa and Ľubomír Majtás

Faculty of Informatics and Information Technologies, Slovak University of Technology,
Ilkovičova 3, Bratislava, 842 16, Slovakia
{kajsa,majtas}@fiit.stuba.sk

Abstract. Design patterns provide generalized and verified solutions of non-
trivial design problems. The application of patterns improves the quality of
software design considerably. This paper presents a method of design pattern
application support in software projects. The method reduces problems found in
traditional tools and contributes to design pattern instantiation at more levels of
abstraction. The elaborated method is based on semantics defined via UML pro-
file and transformations of models. Semantics defined via UML profile support
specialization of pattern instances and model transformations support and
automate the concretization of design pattern instances. The method supports
the variation and customization of design patterns and also puts into practice
ideas of model driven, iterative and incremental development of software sys-
tems. Moreover, the transformation of models is driven by models of design
patterns. So the method is not limited only to design pattern support but also
provides technique for the creation and addition of support of another custom
model structures which are often created in models mechanically.

Keywords: Design patterns, UML profiles, MDA.

1 Introduction

Design patterns represent important part of developers’ equipment in software design
construction. Application of design patterns in software projects guides to creation of
a modifiable, recursive and extensible software design [4]. Software development
teams are capable to produce better software effectively thank to patterns application.
Consequently, tool based support of design patterns application has great significance.

In general, when creating the instances of design patterns we can distinguish two
different processes, which are depicted on the Figure 1. The first of these two proc-
esses is the specialization process of the general design pattern form. The goal of this
process is to recast the general form of the design pattern to the single application
specific form. The specialization process of the design pattern instantiation is
achieved mainly by defining of associations between parts of design pattern instance
and the rest of the application model, etc. Simply, it is integration of pattern instance
and its parts into the domain specific context, in this case into the model of develop-
ing application. This process is difficult to automate, because it requires very special-
ized and detailed understanding of the domain context and the specific application
,

 Design Patterns Instantiation Based on Semantics and Model Transformations 541

Fig. 1. Two processes of design pattern instantiation [5]

itself. This knowledge is only available to the developers and the domain experts
associated with the design process. Despite this difficulty, it is possible to support and
make this process much easier by providing an appropriate mechanism for the appli-
cation of design patterns to the developer.

The second process of design pattern instantiation is the concretization process of
the design pattern abstract form. The goal of this process is to recast abstract form of
the design pattern into concrete form with all its parts, methods, attributes and asso-
ciations, but only within the scope of the pattern instance and its participants, but not
the rest of application model. The more parts that the structure of the pattern instance
contains, the more concrete it becomes. The most concrete level of the design pattern
instance is source code, because at this level of abstraction the pattern instance con-
tains all parts from its structure.

It is important to remark that from the perspective of the MDA approach, the con-
cretization process is included within transitions between computer independent,
platform independent, platform specific models and source code level [3], [6].

The majority of activities in the concretization process depend on stable and fixed
definition of the design pattern structure so that these activities are fairly routine. So
that gives us a good initial assumption for automation of this process.

2 Problem Outline

Design patterns support in traditional CASE or other modeling tools is usually based
on UML templates of each design pattern [1], [2] which are copied into the model
when instances of design patterns are created. The support provided by these tradi-
tional tools lies only in the insertion of some UML template of chosen pattern into a
model. In addition to such support, some CASE tools provide wizard dialogues with
options to choose an appropriate configuration of design pattern instances. However,
these dialogues are often long and tedious and so they are not very useful.

The most significant deficiencies of this traditional support of design patterns are
demonstrated in an example of the Observer pattern instance creation in the CASE
tool Borland Together Architect [7]. As can be noticed in the Figure 2, the instance of
the Observer pattern created by this tool has not been recast from its general form into

542 P. Kajsa and Ľ. Majtás

Fig. 2. Design pattern support in Borland Together Architect [7]

the application specific form. So it has not been integrated into the rest of developing
application model, e.g. it lacks associations with the rest of the application model, the
names of pattern parts are general, and so on. In consequence, there is absence of
specialization process support.

Another observation concerning Figure 2 is the lack of automation and support of
the concretization process. A developer is not allowed to choose appropriate variant
or concrete structure of the design pattern. Only one generic form is offered to the
developer for use in the concrete application realization. Any other adjustments needs
to be performed by a developer manually without any tool based support. A summary
of the deficiencies of traditional tools is as follows:

− design pattern support is usually based on UML templates for each pattern,
which are then copied into the model with minimal possibilities for modification

− there is no support of specialization process - the recasting of the general form
of the template of pattern into application specific form has to be done manually

− there is weak support of the concretization process – adjustments of concrete
form of design patterns must be done manually

− there is no support of design pattern variations
− it is not possible to work with pattern instances at more levels of abstraction

3 Improvement Proposal

In order to eliminate the previously identified drawbacks, it is necessary to provide an
appropriate mechanism of the application of required semantics into the application
model. In consequence, tool would be able to understand the model of the application
and recognize its parts. In other words, it would be possible to recognize relations and
parts of design patterns that are present in the application model already. This mecha-
nism has to support insertion of semantics directly on elements of application model
and in this way support specialization process of design pattern instantiation.

 Design Patterns Instantiation Based on Semantics and Model Transformations 543

Further it is necessary to automate concretization process by model transformation
in a suitable way giving the possibility to choose appropriate configuration or variant
of pattern instances. In addition, it would be useful to support the work with instances
of design patterns at more levels of abstraction according to ideas of the MDA devel-
opment process and in such way improve simultaneous application of both significant
elements of software engineering and consider ideas of model driven, iterative and
incremental development of software systems.

Proposal of this described process of design patterns instantiation process is pre-
sented below in the Figure 3.

Fig. 3. Proposal of the design pattern instantiation process

It is important to remark, that the first transformation to platform specific models
(PSM) is also necessary, because it is at this level that the first differences between
instances of design patterns may occur. For example, some platforms allow multiple
inheritances, other provides interfaces, etc.

4 Realization

Our approach to design pattern support is based on applying semantics into models
provided by the UML profiles. UML profiles contain definitions of stereotypes,
tagged values or meta-attributes of stereotypes, enumeration and constraints that
could be applied directly to specific model elements, such as Classes, Attributes,
Operations and so on [6]. So in this way it is possible to specify participants of design
patterns and relations between them directly in the context of the application model.
With such techniques we do not need to force the developer to explicitly mark the
pattern participants. Our approach is to encourage him just to suggest the pattern
instance occurrence while the rest of the instantiation process can be automated. For
example, in the Figure 4 there is shown suggestion of the Observer pattern instance
application via applying one stereotype <<Observes>> on desired association. From such

544 P. Kajsa and Ľ. Majtás

Fig. 4. An example of an application of the Observer pattern to a model. It represents specified
platform independent instance and thus the most abstract form of the Observer pattern instance.

information the tool can recognize that the source element of the association should
represent Concrete Observer, the destination element should be Concrete Subject, and
other pattern participants need to be added to the model.

Consequently, the application of a desired pattern can usually consists only of ap-
plying one suggestion mark – stereotype onto specified model element by user, who
only specifies instance of pattern. Any other activities will be subsequently completed
by a tool via model transformations. In this phase developers do not have to bother
themselves about the concrete details of pattern structure and they can comfortably
work with pattern instances at its higher level of abstraction. The application of de-
sired pattern is realized on elements of system model or context and thus specializa-
tion process is supported.

UML profiles provide suitable way to define semantics for each design pattern and
allow applying this semantics directly to elements of a developing application model.
The design of UML profile definition for Observer pattern is shown in Figure 5.

Fig. 5. Design of UML profile for Observer pattern

As it has been mentioned, the generation of the rest of the structure of a specified pat-
tern instance (the concretization process) is realized by transformations of marked mod-
els to the lower levels of abstraction according to the proposal presented in Figure 3. We

 Design Patterns Instantiation Based on Semantics and Model Transformations 545

have considered two kinds of model transformations. In MDA terminology, the first is
the transformation of a platform independent model to platform specific model and, the
second is the transformation of platform specific model to source code.

Before each start of the model transformation it is allowed to set up desirable val-
ues of meta-attributes - tagged values of each applied stereotype. This simple way
allows us to control or to adjust transformation process and its results. In other words,
developer is allowed to choose appropriate concrete form or desired variant of pattern
instance. Even it is possible to allow implementing particular parts of pattern instance
via other pattern instance. Moreover, this step is optional, because default values of
the tagged values have been set up.

Inconsistent configurations of values are handled with enumeration and OCL con-
straints defined in UML profile of design patterns and evaluated immediately during
values setting (example of such constraint has been shown in Figure 5). UML profile
also represents standard extension of UML meta-model and thus is compliant with
majority of other UML tools [6].

Then concretization process is automated and supported as well as variations of de-
sign patterns. In the following section we will look closer on the process of design
pattern instances creation.

4.1 Design Pattern Instances Creation in Action

In the previous text we have explained that the process of creating a concrete instance
of a desired design pattern consists of three steps:

1. Application of desired design pattern – insertion of applicable stereotypes (marks)
onto specified elements of the application model or context suggesting the pattern
instance occurrence.

2. (Optional step) Choice of the adjustment of the concrete form or desired variant of
the patter instance – set up desirable values of tagged values (meta-attributes) of
appropriate stereotype.

3. Launching the appropriate model transformation to desired destination platform.

The whole process described above and its sample result is demonstrated in the Fig-
ure 6. Since two kinds of model transformations have been proposed, it is possible to
perform the described steps on a resulting PSM model again (at lower level of ab-
straction). In this way it is possible to get to the lowest level of abstraction – source
code. The only difference is that at the lower level of abstraction (PSM) in step 2
more implementation dependent choices (e.g. data types) are offered, with which
a developer was not asked to bother himself at the previous PIM level. In this way,
our approach has achieved support for processing pattern instances in three different
levels of abstraction:

• Pattern suggestion level (for example model in the Figure 4)
• Design model level
• Source code level

546 P. Kajsa and Ľ. Majtás

F
ig

. 6
. O

bs
er

ve
r

pa
tt

er
n

in
st

an
ce

 c
re

at
io

n
in

 a
ct

io
n.

 I
n

th
e

fi
rs

t
st

ep
 t

he
 d

ev
el

op
er

 s
pe

ci
fi

es
 w

he
re

 a
nd

 w
hi

ch
 d

es
ig

n
pa

tt
er

n
in

st
an

ce
 h

e
w

an
ts

 to

ap
pl

y
vi

a
th

e
in

se
rt

io
n

of
 s

em
an

tic
s

in
to

 t
he

 m
od

el
.

N
ex

t
he

 s
pe

ci
fi

es
 t

he
 v

ar
ia

nt
 o

f
pa

tt
er

n
in

st
an

ce
 a

nd
 t

he
 w

ay
 h

e
w

an
ts

 i
ts

 t
o

ge
ne

ra
te

 v
ia

se

tt
in

g
up

 th
e

va
lu

es
 o

f
st

er
eo

ty
pe

 m
et

a-
at

tr
ib

ut
es

..
S

ub
se

qu
en

tl
y,

 u
si

ng
 th

is
 s

pe
ci

fi
ca

ti
on

 th
e

tr
an

sf
or

m
at

io
n

to
ol

 is
 c

ap
ab

le
 p

ro
pe

rl
y

ge
ne

ra
te

 th
e

re
st

 o
f

pa
tte

rn
 in

st
an

ce
 in

 d
es

ir
ed

 f
or

m
.

 Design Patterns Instantiation Based on Semantics and Model Transformations 547

 4.2 Tool Under the Hood

Transformations performed by the tool are driven by properly specified models of
design patterns. These prepared models cover all pattern variants and possible modifi-
cations. Each element of these models is marked. There are two types of marks in
pattern models. The first type of marks expresses the role of element in scope of pat-
tern. On the basis of this type of marks the tool is capable of creating mappings be-
tween models. The second type of marks expresses the affiliation of the element to the
variant of the pattern. On the basis of this type of marks the tool is capable of decid-
ing which element should be generated into the model and in what form. For the sec-
ond type of marks the following notation is defined:

[~]?StereotypeName::Meta-attributeName::value;

An element from pattern model is generated into the model only if the specified meta-
attribute of the specified stereotype has set the specified value. These marks can be
joined via “;”while the symbol “~” expresses negation. If an element has no mark, it
will be always generated into the model. A sample section of the model of Observer
pattern is exposed in the Figure 7.

Fig. 7. Sample section of Observer pattern model by which is transformation driven

The whole process of the tool performance is captured in the Figure 8. The first ac-
tion performed by the tool after starting the transformation is comparison of first type
of marks in the prepared design pattern models with marks in the model of the appli-
cation on which the transformation has been started. Based on this comparison the
tool is capable of making a mapping between these marked models and consequently,
to recognize which parts of the structure of the design pattern instance are in the
model of developing application already presented and which are not.

For example, in Figures 4 and 6 in the previous sections we have shown the appli-
cation of Observer pattern by applying one stereotype <<observes>> on the directed
association. From such marked association, the tool can recognize that parts Concrete
Observer and Concrete Subject of this Observer pattern instance have been presented

548 P. Kajsa and Ľ. Majtás

in model already and it knows which elements (in this case classes) of application
model represent these roles or parts.

Decisions about which variant of pattern and which elements from the pattern
model need to be generated into the application model are based on the comparison of
the second type marks in the pattern model with the values of the meta-attributes of
stereotypes. These values are set up by the developer in the second step of the crea-
tion of pattern instance (see preceding sub-section and Figures 6 and 7).

Fig. 8. Principles of tool functioning - tool under the hood

After decision-making and selection of the desired pattern form, final transforma-
tion from the pattern suggestion level to the lower level of abstraction is performed.
Results of transformation are correctly specialized and concrete instances of patterns
in chosen and desired form, as presented in Figure 6 in the previous sub-section.

Driving the model transformations by pattern models allows us to determine and to
adjust results of transformations also by modifying the pattern models that drive the
transformations. Marks in the models ensure, that tools is always capable create cor-
rect mappings betweens the model of application and the model by which is transfor-
mation driven and consequently decide which element should be generated into the
model and in what form. So this way it is possible to model any custom structure and
achieve support of its application into model.

4.3 Implementation

The presented method and the tool itself was implemented and verified in the form of
an IBM Rational Software Modeler transformation plug-in. Till now the following
features have been implemented:

 Design Patterns Instantiation Based on Semantics and Model Transformations 549

− Semantics in the UML profile for the patterns Factory Method, Decorator, Ob-
server and Mediator

− Transformation of the highest level of abstraction (PIM) to the lower level (PSM)
and transformation of PSM to source code

− Transformation of PIM to the lower level model PSM is driven by pattern models.
− Models of design pattern covered all pattern variants and modifications which

provide the basis upon which the transformational tool is driven
− Mechanism for adjustments of concrete form or desired variant of patter instance

for the patterns Factory Method, Decorator, Observer and Mediator

5 Evaluation

The presented method and the implemented tool have been evaluated in several ways.
The first evaluation was realized through experiments in which we have monitored
the time of carrying out of an assigned task with and without usage of the tool. Also
the count of generated and added source code lines has been observed. The tasks
consisted of implementing specified instances of design patterns in specified form.
Average results of the experiments on a group of five programmers and five master
degree students of software engineering are summarized in the Table 1.

Table 1. Average results of executed experiments

Time with
using the
tool t1

Time without
using the tool
t2

Speed up
t2/t1

Number of
generated
code lines Ng

Number of
added code
lines Nd

Improving
coefficient
(Ng / Nd) + 1

< 30 min > 120 min > 4 478 52 10,2

The quantity of the generated source code has been evaluated for each design pat-

tern via metrics. Results of this evaluation are shown in Table 2.

Table 2. Quantity of generated source code

Design Pattern LOC NOA NOC NOCON NOIS NOM NOO
Decorator pattern 223 9 6 7 11 103 22
Mediator pattern 212 6 6 7 9 50 15
Observer pattern 193 14 6 1 10 60 14

Results of experiments show a significant improvement gained by use of the
method and tool in the area.

6 Related Work

There exist several approaches introducing their own tool based support for the pat-
tern instantiation. El Boussaidi et. al. [11] present model transformations based on
Eclipse EMF and JRule framework. Wang et. al. [12] provide similar functionality by

550 P. Kajsa and Ľ. Majtás

XSLT based transformations of the models stored in XMI-Light format. Both ap-
proaches can be considered as the single template driven while they are focusing most
on the transformation process and do not set a space for the pattern customizations.

Another method was introduced by Ó Cinnéide et. al. [13]. They have presented
a methodology for the creation of behavior-preserving design pattern transformations
and applied this methodology to GoF design patterns. While Ó Cinnéide's approach is
supposed to guide the developers to pattern employment in the phase of refactoring
(based on source code analysis), Briand et. al. [8] are trying identify the spots for
pattern instance in design phase (based on UML model analysis). They provide semi-
automatic suggestion mechanism based on decision tree combining evaluation the
automatic detection rules with user queries.

All the former approaches were focusing on the creation of pattern instances. The
ones presented by Dong et. al. presume the presence of the pattern instances in the
model. They are providing the support for the evolution of the existing pattern in-
stances resulting from the application changes. The first one [9] implementation em-
ploys QVT based model transformations, the other one [10] does the some by the
XSLT transformations over the model stored as XMI. However, both are working
with the single configuration pattern template allowing only the changes in presence
of hot spots participants. Other possible variabilities are omitted.

All of these approaches are based on strict forward participants generation - par-
ticipants of all roles are created according the single template. Our approach empha-
sizes on collaboration between the developer and the CASE tool. We allow the
developer specify via application of semantics into models, where to apply the in-
stance of what pattern, and which variant and how he want to generate. On the basis
of this specification and pattern model the transformation tool is capable of properly
generating the rest of the pattern instance according to the desired form.

7 Conclusion

The presented approach focuses on application of the design patterns at higher levels of
abstraction by allowing the developer to place pattern occurrence suggestions into the
model that can be subsequently automatically processed by the tool into final pattern
instance form. The approach splits details of concrete design pattern instantiation into
two levels of abstraction. Following this approach, developers do not need to take care
about concrete details of pattern structure and comfortably work with pattern instance at
its higher level of abstraction. Further, the approach supports the specialization process
and automates the concretization process of design pattern instances creation. A devel-
oper is allowed to decide which concrete form or desired variant of a pattern instance he
wishes to generate into a model. So the approach supports variability of design patterns.

Moreover the method provides to developer further option to adjust result of trans-
formation also via modification of design pattern models by which is the transforma-
tion driven. Developer is in this way capable to model any custom structure or create
a new one and in this way achieve support for his custom needs. The method is not
strictly oriented only to GoF design pattern support but represents also framework of
creation and addition of support for another custom model structures which are often
created in models mechanically.

 Design Patterns Instantiation Based on Semantics and Model Transformations 551

Our approach is based on standard extension of UML meta-model and thus is
compliant with majority of other UML tools and it is also considering ideas of model
driven, iterative and incremental development process.

Acknowledgments. This work was partially supported by the Scientific Grant
Agency of Republic of Slovakia, grant No. VEGA 1/0508/09 and by Slovak Research
and Development Agency, grant No. APVV-0391-06 “Semantic Composition of Web
and Grid Services”.

References

1. Arlow, J., Neustadt, I.: Enterprise Patterns and MDA: Building Better Software with Ar-
chetype Patterns and UML. Addison-Wesley, Reading (2003)

2. France, R., Dae-kyoo, K., Ghosh, S.: A UML-Based Pattern Specification Technique.
IEEE Transactions on Software Engineering, 193–206 (2004)

3. Frankel, D.: Model Driven Architecture: Applying MDA to Enterprise Computing. Wiley
Publishing, Chichester (2003)

4. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns, Elements of Reusable
Object-Oriented Software. Addison-Wesley Professional Computing Series (1995)

5. Návrat, P., Bieliková, M., Smolárová, M.: A Technique for Modeling Design Patterns. In:
Knowledge-Based Software Engineering - JCKBSE 1998, pp. 89–97. IOS Press, Amster-
dam (1998)

6. Object Management Group: MDA, MOF, UML Specifications (accessed May 9th, 2009),
http://www.omg.org/

7. Borland Software Corporation: Borland Together Architect. (accessed February 5th,
2009), http://www.borland.com/together/

8. Briand, L., Labiche, Y., Sauve, A.: Guiding the Application of Design Patterns Based on
uml Models. In: ICSM 2006, Proceedings of the 22nd IEEE International Conference on
Software Maintenance, Washington, DC, USA, pp. 234–243. IEEE Computer Society, Los
Alamitos (2006)

9. Dong, J., Yang, S.: Qvt Based Model Transformation for Design Pattern Evolutions
10. Dong, J., Yang, S., Zhang, K.: A Model Transformation Approach for Design Pattern Evo-

lutions. In: ECBS 2006: Proceedings of the 13th Annual IEEE International Symposium
and Workshop on Engineering of Computer Based Systems, Washington, DC, USA, pp.
80–92. IEEE Computer Society, Los Alamitos (2006)

11. Boussaidi, G., Mili, H.: A Model-Driven Framework for Representing and Applying De-
sign Patterns. In: COMPSAC 2007: Proceedings of the 31st Annual International Com-
puter Software and Applications Conference, Washington, DC, USA, pp. 97–100. IEEE
Computer Society, Los Alamitos (2007)

12. Wang, X.-B., Wu, Q.-Y., Wang, H.-M., Shi, D.-X.: Research and Implementation of De-
sign Pattern-Oriented Model Transformation. In: ICCGI 2007: Proceedings of the Interna-
tional Multi-Conference on Computing in the Global Information Technology, Washing-
ton, DC, USA. IEEE Computer Society, Los Alamitos (2007)

13. Cinnéide, M., Nixon, P.: Automated Software Evolution Towards Design Patterns. In: IW-
PSE 2001: Proceedings of the 4th International Workshop on Principles of Software Evo-
lution, pp. 162–165. ACM, New York (2001)

A Complete Symbolic Bisimulation for
Full Applied Pi Calculus

Jia Liu1,2,� and Huimin Lin1

1 State Key Laboratory of Computer Science
Institute of Software, Chinese Academy of Sciences

2 Graduate University, Chinese Academy of Sciences
{jliu,lhm}@ios.ac.cn

Abstract. Symbolic characterizations of bisimilarities for the applied
pi-calculus proposed so far are sound but incomplete, even restricted
to the finite fragment of the calculus. In this paper we present a novel
approach to symbolic semantics for the applied pi-calculus, leading to
a notion of symbolic bisimulation which is both sound and complete with
respect to the standard concrete bisimulation. Moreover, our approach
accommodates recursions hence works for the full calculus.

1 Introduction

The applied pi-calculus [2] can be regarded as a generalization of the spi-
calculus [3] in that it allows user-provided primitives for cryptographic oper-
ations. The calculus inherits the constructs for communication, concurrency and
scope extrusion from the original pi-calculus [21]. It has a special mechanism
for outputting compound messages which entails an auxiliary substitution con-
struct of the form {M/x}, known as an “active substitution” that behaves like
a floating “let” and serves to capture the partial environmental knowledge.

As in the standard operational semantics for the pi-calculus and value-passing
CCS, in the applied pi-calculus an input may give rise to an infinite num-
ber of branches, which hinders the efforts to develop automated tools for the
calculus. The standard approach is to develop symbolic theory which enables
more amenable and more efficient automatic verification. Symbolic semantics
have been developed smoothly for the value-passing CCS and many of its
derivatives[15,9,18], in which all possible values offered by the environment are
replaced by a single “symbolic variable”. However it turns out that defining
a symbolic semantics for the applied pi-calculus is unexpectedly technically dif-
ficult [13]. Despite various efforts from the community, up till now no complete
symbolic semantics has been established for the applied pi-calculus, even when
restricted to the finite fragment of the calculus, i.e. the fragment without recur-
sions.
� This work is supported by the National Natural Science Foundation of China (Grants

No.60721061 and No.60833001) and the National High Technology Development
Program of China (Grant No.2007AA01Z147).

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 552–563, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Complete Symbolic Bisimulation for Full Applied Pi Calculus 553

Symbolic bisimulations for value-passing CCS [15] and the pure pi-
calculus [18,9] are indexed by boolean conditions to constrain the sets of values
which symbolic variables may take. To achieve completeness, when comparing
two processes for bisimilarity, it is necessary to “partition” the indexing condi-
tion into some sub-conditions in such a way that the two processes can simu-
late each other’s transitions under each sub-condition. In the applied pi-calculus
a symbolic bisimulation will be indexed by constraints each of which encompass
a similar condition as well as deducibilities. The concept of deducibilities is by
now widely used in modeling security protocols to represent all the messages
that can be computed by intruders using a given set of messages [20,12,4,13].
As such deducibilities can not, and should not, be partitioned. In the previous
work on symbolic bisimulation for the applied pi-calculus, not only conditions
and deducibilities are entangled together in constraints, but also constraints and
processes are mixed in transitions and bisimulations. This makes it impossible
to partition indexing conditions, causing incompleteness.

To harness the difficulty we need to separate constraints from processes and
conditions from deducibilities. To this end we extend the language for boolean
expressions with two novel operators, σ � Φ, read “σ guards Φ”, and Hn.Φ,
read “hide n in Φ”. In σ � Φ, the substitution σ represents (partial) environ-
mental knowledge for the variables occurring in Φ. In Hn.Φ the name n is made
local in Φ. With these operators we are able to make constraints completely
independent of processes and to clearly separate conditions from deducibilities.
As a result our notion of a symbolic bisimulation will be of the form A ≈(D,Φ) B,
where D is a special set of deducibilities and Φ a condition formula, only the
later is subject to partitioning when A and B are compared for bisimilarity.
Besides, recursions were outside the scope of [13,14], due to difficulties arising
from infinite name binders. Having hiding in formulas helps to keep track of the
scope of names in constraints, which enables us to handle recursions smoothly
with an “on-the-fly” approach.

The main contributions of the paper are twofold: (1) establishing the first
sound and complete theory of symbolic bisimulation for the applied pi-calculus,
and (2) our result covers recursions and is the first symbolic theory for the full
applied pi-calculus.

Related work. Our work is inspired by [13,14] and the notion of “intermediate
processes” used in this paper is taken from there. An ad hoc symbolic method
relying on a notion of unification is proposed in [8] for the analysis of security
protocols in a calculus akin to the applied pi-calculus. In [17,5] two variants
of the applied pi-calculus, called the extended pi-calculi and psi-calculi respec-
tively, are proposed aiming at being more amenable to technical treatments.
Automated tools for security protocols in the context of the applied pi calculus
are reported in [6,7]. A sound symbolic semantics for spi-calculus is introduced
in [11]. Recently this semantics is revised to achieve completeness in [10], but
their techniques are not applicable to the applied pi-calculus.

Due to space limitation proofs have been omitted from this extended abstract.
They can be found in the full version of this paper [19].

554 J. Liu and H. Lin

2 Applied Pi-Calculus

2.1 Syntax

We assume two disjoint, infinite sets N and V of names and variables, respec-
tively. A signature is a finite set of function symbols, such as f, h, each having
a non-negative arity. Terms are defined by the grammar:

M,N ::= a, b, c, · · · , k, · · · ,m, n, · · · , s name
x, y, z variable
f(M1, · · · ,M�) function application

We write names(M) and vars(M) for the sets of names and resp. variables in M .
Let atoms(M) = vars(M) ∪ names(M). A ground term is a term containing no
variable.

We rely on a sort system including a universal base sort and a channel sort.
The sort system splits N and V respectively into channel names Nch and base
names Nb, channel variables Vch and base variables Vb. Function symbols take
arguments and produce results of the base sort only. We will use a, b, c as channel
names, s, k as base names, and m,n as names of any sort. We use meta variables
u, v, w to range over both names and variables. We abbreviate tuples u1, · · · , u�

and M1, · · · ,M� to ũ and M̃ respectively.
Plain processes are constructed using the standard operators 0 (nil), | (paral-

lel composition), νn (name restriction), if-then-else (conditional), u(x) (input),
u〈N〉 (output), and recursion. Extended processes are created by extending plain
processes with active substitutions that float and apply to any process coming
into contact with it. The grammar for plain processes and extended processes
are given below:

Pr, Qr, Rr ::= plain processes Ar, Br, Cr ::= extended processes
0 Pr

Pr | Qr Ar | Br

νn.Pr νn.Ar

if M = N then Pr then Qr νx.Ar

u(x).Pr {M/x}
u〈N〉.Pr

K〈M̃〉

As in the pi-calculus, u(x), νn and νx are binding, which lead to the usual notions
of bound and free names and variables. We shall use fn(Ar), bn(Ar), fv(Ar), and
bv(Ar) to denote the sets of free names and bound names (resp. variables), of
Ar. Let fnv(Ar) = fn(Ar) ∪ fv(Ar) and bnv(Ar) = bn(Ar) ∪ bv(Ar). We shall
identify α-convertible processes. Capture of bound names and bound variables
is avoided by implicit α-conversion.

To define recursive processes we use process constants, ranged over by K,
each of which is associated with a declaration of the form K(x̃) � Pr, where
fv(Pr) ⊆ {x̃} and fn(Pr) = ∅.

A Complete Symbolic Bisimulation for Full Applied Pi Calculus 555

Substitutions are sort-respecting partial mappings of finite domains. Substi-
tutions of terms for variables, ranged over by σ, θ, are always required to be
cycle-free. The domain and range of σ are denoted by dom(σ) and range(σ),
respectively. We say σ is idempotent if dom(σ) ∩ vars(range(σ)) = ∅. We write
vars(σ) and names(σ) for the sets of variables and names occurring in σ, respec-
tively. Also let atoms(σ) = vars(σ) ∪ names(σ). Let Z be an expression which
may be a term, a process, or a substitution. The application of σ to Z is written
in postfix notation, Zσ. Let {M1/x1, · · · ,Mn/xn}σ = {M1σ/x1, · · · ,Mnσ/xn}.
The composition of substitutions is denoted σ1 ◦ σ2, and Z(σ1 ◦ σ2) = (Zσ2)σ1.
σ∗ is the result of composing with σ repeatedly until obtaining an idempotent
substitution. We use σ1∪σ2 to denote the union when their domains are disjoint.

Due to technical reasons active substitutions are required to be defined on
the base sort only, but this does not impose any restrictions on applications.
In an extended process, active substitutions must be cycle-free and there is at
most one substitution for each variable and exactly one when the variable is
restricted. We say Ar is closed if every variable is either bound or defined by an
active substitution. A frame is an extended process built up from 0 and active
substitutions by parallel composition and restriction. The domain of frame φ,
denoted by dom(φ), is the set of variables x for which φ contains a substitution
{M/x} not under νx. The frame of an extended process Ar, denoted by φ(Ar),
is obtained by replacing every plain process embedded in Ar with 0. Note that
dom(Ar) is the same as dom(φ(Ar)).

2.2 Semantics

A context is an extended process with a hole. An evaluation context is a context
in which the hole is not under an input, an output or a conditional. A term
context is a term with holes. Terms are equipped with an equational theory =E

that is an equivalence relation closed under substitutions of terms for variables,
one-to-one renamings and term contexts. We write M �=E N for the negation
of M =E N . Structural equivalence ≡ is the smallest equivalence relation on
extended processes closed by evaluation contexts, α-conversion and such that:

Ar ≡ Ar | 0
Ar | Br ≡ Br | Ar

Ar | (Br | Cr) ≡ (Ar | Br) | Cr

νx.{M/x} ≡ 0 νn.0 ≡ 0
{M/x} ≡ {N/x} when M =E N νu.νv.Ar ≡ νv.νu.Ar

{M/x} | Ar ≡ {M/x} | Ar{M/x} Ar | νu.Br ≡ νu.(Ar | Br) when u /∈ fnv(Ar)

The labeled operational semantics is given in Fig. 1. To handle recursions, we
take advantage of an internal transition to unfold them.1 We denote by =⇒ the

1 We have chosen to use recursions with K〈M̃〉 τ−→ Pr{M̃/x̃} to avoid the technical
difficulties arising from the structural equivalence rule K〈M̃〉 ≡ Pr{M̃/x̃} or !P ≡
P |!P . Our results will carry over if replication is used with this rule removed and
replaced by !P τ−→ P |!P in the operational semantics.

556 J. Liu and H. Lin

Then if M = M then Pr else Qr
τ−→ Pr Else if M = N then Pr else Qr

τ−→ Qr

if M, N are ground terms and M �=E N

Comm a〈M〉.Pr | a(x).Qr
τ−→ Pr | Qr{M/x} Rec K〈M̃〉 τ−→ Pr{M̃/x̃} where K(x̃) � Pr

In a(x).Pr
a(M)−−−→ Pr{M/x} Out-atom a〈u〉.Pr

a〈u〉−−−→ Pr where u ∈ Nch ∪ Vb

Open-atom
Ar

a〈u〉−−−→ Br a �= u

νu.Ar
νu.a〈u〉−−−−−→ Br

Scope
Ar

α−→ Br u does not occur in α

νu.Ar
α−→ νu.Br

Par
Ar

α−→ A′
r bnv(α) ∩ fnv(Br) = ∅

Ar | Br
α−→ A′

r | Br

Struct
Ar ≡ Cr

α−→ C′
r ≡ Br

Ar
α−→ Br

Fig. 1. The Operational Semantics

reflexive and transitive closure of τ−→, and write α=⇒ for =⇒ α−→=⇒, and α̂=⇒ for
α=⇒ if α is not τ and =⇒ otherwise.
We say two terms M and N are equal in the frame φ, written (M = N)φ,

iff φ ≡ νñ.σ, Mσ =E Nσ and {ñ} ∩ names(M,N) = ∅ for some names ñ and
substitution σ. The notion of static equivalence is introduced to ensure that two
processes expose the same information to the environment. Static equivalence is
decidable for a large class of equational theories [1].

Definition 1. Two closed frames φ1 and φ2 are statically equivalent, written
φ1 ∼ φ2, if dom(φ1) = dom(φ2), and for all terms M and N such that
vars(M,N) ⊆ dom(φ1) it holds (M = N)φ1 iff (M = N)φ2. Two closed ex-
tended processes Ar and Br are statically equivalent, written Ar ∼ Br, when
their frames are.

Definition 2. Labeled bisimilarity (≈) is the largest symmetric relation R on
closed extended processes such that ArRBr implies:

1. Ar ∼ Br

2. if Ar
α−→ A′

r and fv (α) ⊆ dom(Ar) and bn(α) ∩ fn(Br) = ∅, then Br
α̂=⇒ B′

r

and A′
r RB′

r for some B′
r.

2.3 Intermediate Representation

The intermediate representation was introduced in [13] as a means to circumvent
the difficulties caused by structural equivalence for developing symbolic seman-
tics. In the sequel we shall abbreviate “intermediate” to “inter.”. The grammar
of inter. processes is given below:

P,Q,R := inter. plain processes F,G,H := inter. framed processes
0 P
P | Q {M/x}
if M = N then P else Q F | G
u(x).P A,B,C := inter. extended processes
u〈M〉.P F

K〈M̃〉 νn.A

A Complete Symbolic Bisimulation for Full Applied Pi Calculus 557

Γ (0) = 0 Γ (u(x).Pr) = νñ.u(x).P where Γ (Pr) = νñ.P

Γ (K〈M̃〉) = K〈M̃〉 Γ (u〈N〉.Pr) = νñ.u〈N〉.P where Γ (Pr) = νñ.P

Γ (if M = N then Pr else Qr) = νñ.νm̃. if M = N then P else Q
where Γ (Pr) = νñ.P, Γ (Qr) = νm̃.Q

Γ (Ar | Br) = νñ.νm̃.(F | G)ϕ(F | G)∗ where Γ (Ar) = νñ.F, Γ (Br) = νm̃.G

Γ ({M/x}) = {M/x} Γ (νn.Ar) = νn.Γ (Ar) Γ (νx.Ar) = Γ (Ar)\x

where Γ (Ar)\x is obtained by replacing {M/x} in Γ (Ar) with 0

Fig. 2. Transformation

Inter. processes are required to be applied, that is, each variable in dom(A)
occurs only once in A. Thus, for example, a〈f(k)〉 | {f(k)/x} is applied while
a〈x〉 | {f(k)/x} is not. For an inter. framed process F , we write ϕ(F) for the
substitution obtained by taking the union of the active substitutions in F . As an
example, ϕ(a〈f(k)〉 | {k/x} | {h(k)/y}) = {k/x, h(k)/y}. An inter. evaluation
context is an inter. extended process with a hole not under an input, an output
or a conditional. We shall also identify α-convertible inter. processes.

The function Γ in Fig. 2 turns an extended processes into an inter. extended
process(“↓” in [13]) where we assume bound names are pairwise-distinct and dif-
ferent from free names. It transforms an extended process into an inter. extended
process by pulling all name binders to the top level, applying active substitu-
tions and eliminating variable restrictions. For example, Γ (νx.(a〈f(x)〉.νn.a〈n〉 |
νk.{h(k)/x})) = νn.νk.(a〈f(h(k))〉.a〈n〉 | 0). For a recursion K〈M̃〉 it is feasi-
ble to work “on-the-fly” and keep K〈M̃〉 invariant under Γ . It can be shown
that Γ preserves α-conversion.

The inter. processes are a selected subset of the original processes. It turns out
that it is sufficient to build symbolic semantics on top of inter. processes only.
Thus this representation behaves like some kind of “normal form” and indeed
facilitates the development of a symbolic framework.

3 Constraints

Symbolic bisimulations for value-passing CCS [15] and original pi-calculus [18,9]
are indexed by boolean conditions under which transitions can be fired, and to
achieve completeness it is essential to partition the indexing boolean conditions
when comparing processes for bisimilarity. In the applied pi-calculus a symbolic
bisimulation will be indexed by constraints, each of which encompass a similar
condition as well as deducibilities. The concept of deducibilities is by now widely
used in modeling security protocols to represent all the messages that can be
computed by intruders using a given set of messages [20,12,4,13]. In the previous
work on symbolic bisimulation for the applied pi-calculus, not only conditions
and deducibilities are entangled together in constraints, but constraints and
processes are mixed in transitions and bisimulations. This makes it impossible
to partition conditions, thus causing incompleteness.

558 J. Liu and H. Lin

In our framework constraints are separated from processes. Furthermore,
a constraint is split into a “trail” of deducibilities and a formula, only the latter
is subject to partitioning when two processes are compared for bisimilarity.

A deducibility takes the form x : U where x ∈ V , U is a finite subset of
Nch ∪ Vb, and x /∈ U . Let names(U) = U ∩ N and vars(U) = U ∩ V . We say
that a set of deducibilities is a trail if it can be ordered as x1 : U1, · · · , x� : U�

satisfying the following conditions:

1. x1, · · · , x� are pairwise-distinct and do not appear in any Uj (1 ≤ j ≤
);
2. for each 1 ≤ i <
, names(Ui) ⊇ names(Ui+1) and vars(Ui) ⊆ vars(Ui+1).

We shall use D, E ,F to range over trails.
Let E = { xi : Ui | 1 ≤ i ≤
 } be a trail. We write dom(E) for the set

{x1, · · · , x�} and atoms(E) for the set dom(E) ∪
⋃ �

i=1 Ui. We shall often abuse
the notation by writing fnv (E) for atoms(E). A substitution θ respects E if

1. dom(θ) = dom(E), and
2. for any 1 ≤ i ≤
, vars(xiθ) ⊆ Ui and names(xi θ) ∩ Ui = ∅.

Given an inter. extended process A = νñ.F , we say E is compatible with A if

1. dom(E) ∩ dom(A) = ∅,
2. vars(

⋃�
i=1 Ui) ⊆ dom(A), fv (A) ⊆ dom(A) ∪ dom(E), and

3. for any xi : Ui and y ∈ vars(Ui), xi /∈ vars(yϕ(F)).

Our notion of a deducibility relies on a set of names and variables rather than a set
of terms [20,4] or a frame [13]. By dropping the details, a collection of processes can
share a common trail. In the above definition of trail, the sets Ui are in increasing
order on variables while decreasing on names. It records the variables which can be
usedandnameswhich cannotbeusedbyxi . Intuitively vars(Ui) canbeunderstood
as a snapshot of environmental knowledge at the time when xi is input. Since the
knowledge never decreases, the order of deducibilities on variables reflects a coarse-
grained order of inputs recorded by timing information in [11,10].

Example 1. Let A = x3〈k〉 | c(x) | {f(x1)/y} | {g(x1, x2)/z}, D =
{x1 : ∅, x2 : {y}, x3 : {y, z}} and E = {x3 : {c}, x1 : ∅, x2 : {y}}. Clearly both D
and E are trails and compatible with A. Let θ = {k/x1, f(y)/x2, c/x3}. Then
θ respects D but not E , because E forbids x3 to access c.

Formulas are specified by the following grammar:

Φ, Ψ ::= Hn.Φ | Φ ∧Φ | σ � Φatom | Φatom

Φatom ::= true |M = N |M �= N

where σ is idempotent. We identify σ � Φatom with Φatom when dom(σ) = ∅.
We write fn(Φ) and fv (Φ) for the sets of free names and free variables of Φ,
respectively. In particular,

fn(Hn.Φ) � fn(Φ) \ {n} fv (Hn.Φ) � fv (Φ)
fn(σ � Φ) � names(σ) ∪ fn(Φ) fv (σ � Φ) � vars(σ) ∪ fv(Φ)

In Hn.Φ the name n is binding, and we shall identify α-convertible formulas.

A Complete Symbolic Bisimulation for Full Applied Pi Calculus 559

The satisfiability relation |= between idempotent substitutions θ and formu-
las Φ are defined by induction on the structure of Φ:

θ |= true
θ |= M = N if Mθ =E Nθ
θ |= M �= N if Mθ �=E Nθ
θ |= σ � Φ if θσ is cycle-free and (θσ)∗ |= Φ
θ |= Φ ∧Ψ if θ |= Φ and θ |= Ψ
θ |= Hn.Φ if n /∈ names(θ) and θ |= Φ

In σ � Φ, σ represents the environmental knowledge accumulated so far to define
some variables occurring in Φ, hence Φ should be evaluated with the application
of σ. Having substitutions embedded in formulas echoes the fact that active sub-
stitutions are part of the syntax for the extended processes in applied pi-calculus.
Hn.Φ hides n in Φ. In the original pi-calculus, a restricted name can never ap-
pear in any constraint since this private information cannot be accessed. In
contrast, the applied pi-calculus provides a mechanism to indirectly access a da-
tum which may contain restricted names. For example, by the rules in Fig. 1, we

have νk. (a(x). if x = k then c else 0 | {k/y}) a(y)−−−→ νk. (if y = k then c else 0 |
{k/y}) ≡ νk. (if k = k then c else 0 | {k/y}) τ−→ νk. (c | {k/y}). To reflect
this we equip every equality test on terms with its own “private” environmen-
tal knowledge, which relies on the introduction of hidden names in formulas.
This makes it possible for formulas to “stand alone”, without depending on
processes, which significantly simplifies technical developments. In particular,
α-conversion, which was forbidden in the symbolic semantics of [13,14], is
allowed in our framework. Furthermore, introducing hidden names enables us to
handle recursions smoothly, which is beyond the scope of any previous approach.

We call a pair (D,Φ) a constraint, where D is a trail and Φ a formula. We
denote by Ω(D,Φ) the set of substitutions that respect D and satisfy Φ. Note
that “θ respects D” if and only if θ ∈ Ω(D, true), and Ω(D,Φ) ⊆ Ω(D, true) for
any Φ. We also observe that Ω(D,Φ ∧Ψ) = Ω(D,Φ) ∩Ω(D,Ψ). For a collection
of formulas Σ, we use Ω(D,

∨
Σ) to refer to the set

⋃
Ψ∈Σ Ω(D,Ψ).

Definition 3. A collection of formulas Σ is a partition of Φ under D if
Ω(D,Φ) ⊆ Ω(D,

∨
Σ).

Example 2. Let Φ = Hm.Hs.({enc(m, s)/y} � (dec(x, s) = m)) where enc
and dec are encryption and decryption functions, respectively, with the equa-
tion dec(enc(x, y), y) =E x. Clearly {enc(m, s)/x} |= dec(x, s) = m. From
{y/x}{enc(m, s)/y} = {enc(m, s)/x}, we have {y/x} |= Φ. Let D = {x : {y}}.
Then Ω(D,Φ) = Ω(D, x = y) = { {M/x} | vars(M) ⊆ {y},M =E y }.

4 Symbolic Semantics

Symbolic structural equivalence ≡s is the smallest equivalence relation on inter.
extended processes which is closed by application of inter. evaluation contexts
and α-conversion and satisfies:

560 J. Liu and H. Lin

assume u, v ∈ Nch ∪ Vch

Thens if M = N then P else Q
M=N, τ−−−−−→ P

Elses if M = N then P else Q
M �=N, τ−−−−−→ Q

Comms u〈M〉.P | v(x).Q
u=v, τ−−−−→ P | Q{M/x}

Ins u(x).P
true, u(x)−−−−−−−→ P Outchs u〈v〉.P true, u〈v〉−−−−−−→ P

Outts u〈M〉.P true, νx.u〈x〉−−−−−−−−→ P | {M/x} Recs K〈M̃〉 true, τ−−−−→ νm̃.P{M̃/x̃}
x ∈ Vb, x /∈ fv(u〈M〉.P) K(x̃)�Pr, Γ (Pr)=νm̃.P, {m̃}∩fn(M̃)=∅

Pars
A

Ψ, α−−−→ νñ.F bv(α)∩fv(B)={ñ}∩fn(B)= ∅

A | B
Φ, α−−−→ νñ.(F | B)

Φ=

{
Ψ if fv(Ψ) = ∅
(σ ∪ ϕ(B)) � Ψ1 else ifΨ=σ � Ψ1 and dom(B)∩dom(σ)=∅

Scopes
A

Ψ, α−−−→ A′
n/∈names(α)

νn.A
Φ, α−−−→ νn.A′ Φ =

{
Ψ if n /∈ fn(Ψ)
Hn.Ψ otherwise

Openchs
A

Φ, u〈c〉−−−−→ A′
u �=c, c∈Nch

νc.A
Φ, νc.u〈c〉−−−−−−→ A′

Structs
A ≡s B

Φ, α−−−→ B′ ≡s A′

A
Φ, α−−−→ A′

Fig. 3. Symbolic Operational Semantics

A ≡s A | 0 A | B ≡s B | A A | (B | C) ≡s (A | B) | C

A symbolic action is either an internal action τ , an input action u(x) with u ∈
Nch ∪ Vch and x ∈ V , an output action u〈v〉 with u, v ∈ Nch ∪ Vch, or an bound
output action νw.u〈w〉 with u ∈ Nch ∪ Vch and w ∈ Nch ∪ Vb.

Symbolic transition relations
Φ, α−−→, where Φ is a formula and α a symbolic

action, are defined by the rules in Fig. 3.
In Scopes, we hide the restricted name n in Ψ so that it will not be exposed

to the environment. In Pars, when A is put in parallel with B, some of the
variables recorded in the formula Ψ will be subject to the active substitutions
in B, therefore we extract these substitutions from B (using operator ϕ) and add
them to Ψ so that the formula Φ contains necessary environmental knowledge.

Example 3. By Thens, Pars and Scopes, we have νk.(if x = k then P else Q |
{h(k)/y}) Φ, τ−−→ νk.(P | {h(k)/y}) with Φ = Hk.({h(k)/y} � (x = k)).

When unfolding a recursion K〈M̃〉, we transform Pr to Γ (Pr) first. This causes
a problem that the result of evolution of an inter. framed process may contain
bound names. To obtain an inter. extended process, in Pars rule the parallel
component is placed inside the restricted names before juxtaposing it.

Example 4. Let K(x) � Pr with Pr = x(z).νn.z〈h(n)〉.K〈x〉. Clearly Γ (Pr) =
νn. x(z).z〈h(n)〉.K〈x〉. By Recs and Pars, K〈a〉

true, τ−−−−→ νn. a(z).z〈h(n)〉.K〈a〉
and K〈a〉 | a〈c〉 true, τ−−−−→ νn. (a(z).z〈h(n)〉.K〈a〉 | a〈c〉).

A Complete Symbolic Bisimulation for Full Applied Pi Calculus 561

Suppose a trail D = { xi : Ui | 1 ≤ i ≤
 } is compatible with A and A
Φ,α−−→ A′.

Then we define

X (α, dom(A),D) �

⎧⎨
⎩
D ∪ {x : dom(A)} α is u(x)
{ xi : Ui ∪ {c} | 1 ≤ i ≤
 } α is νc. u〈c〉
D otherwise

and we can show that X (α, dom(A),D) is also a trail compatible with A′. In-
tuitively, function X updates the current trail so that the resulting trail will be
compatible with the residual process after a transition. It records the current
environmental knowledge on inputs and prevents the prior input variables from
using the fresh names generated by bound outputs.

Example 5. Starting with an empty trail, we have

νk.νc. (a(x).b〈c〉 | {h(k)/z}) ∅
true,a(x)−−−−−−→ νk.νc. (b〈c〉 | {h(k)/z}) {x : {z}}
true,νc.b〈c〉−−−−−−−→ νk. {h(k)/z} {x : {c, z}}

The updated trails are shown on the right. When inputting x, the knowledge
represented by z is available to x. The private channel name c are opened after
the input of x, hence x cannot access c.

To compare the knowledge of two inter. processes, we define symbolic static
equivalence similar to [13,4].

Definition 4. Let (D,Φ) be a constraint, A = νñ1.F1 and B = νñ2.F2 inter.
extended processes. A and B are symbolically statically equivalent w.r.t. (D,Φ),
written A ∼(D,Φ) B if

1. D is compatible with A and B,
2. dom(A) = dom(B),
3. for some fresh variables x, y ∈ Vb, then Ω(E ,Φ∧Φ1) = Ω(E ,Φ∧Φ2) where
E = D∪{x : dom(A), y : dom(A) } and Φi = Hñi. ϕ(Fi) � (x = y), i = 1, 2.

Intuitively, x = y can be understood as representing a set of concrete equality
tests on terms like M = N . The above definition symbolically characterizes the
idea that such equality tests will be satisfied simultaneously by the frames of the
concrete processes corresponding to A and B.

The symbolic weak transition relations
Φ, γ
=⇒ (γ is α or ε) are defined thus:

A
true, ε
=⇒ A A

Φ, α−−→ B implies A
Φ, α
=⇒ B

A
Φ, τ−−→Ψ, γ

=⇒ B implies A
Φ∧Ψ, γ

=⇒ B A
Φ, γ
=⇒ Ψ, τ−−→ B implies A

Φ∧Ψ, γ
=⇒ B

We write
Φ, α̂
=⇒ to mean

Φ, α
=⇒ if α is not τ and

Φ, ε
=⇒ otherwise. Let

[α = β] �

⎧⎪⎪⎨
⎪⎪⎩
u = v α = u(x), β = v(x)

or α = νw.u〈w〉, β = νw.v〈w〉
(u = v) ∧ (w = w′) α = u〈w〉, β = v〈w′〉
true α = β = τ

562 J. Liu and H. Lin

We now proceed to define the notion of a symbolic bisimulation. In the definition
below, we assume x ∈ Vch, y ∈ Vb and c ∈ Nch.

Definition 5. A constraint indexed family of symmetric relations S = {S(D,Φ)}
between inter. extended processes is a symbolic bisimulation if for any (A,B) ∈
S(D,Φ),

1. A ∼(D,Φ) B
2. for some Δ = {x, y, c} and Δ ∩ fnv(A,B,D,Φ) = ∅, if A

Φ1, α−−−→ A′ and
bnv(α) ⊂ Δ, let F = X (α, dom(A),D), then there is a partition Σ of Φ∧Φ1

under F , such that for any Ψ ∈ Σ there are Φ2, β, B
′ satisfying

(a) B
Φ2, β̂
=⇒ B′

(b) Ω(F ,Ψ) ⊆ Ω(F , [α = β] ∧ Φ2)
(c) (A′, B′) ∈ S(F ,Ψ).

We write A ≈(D,Φ) B if there is a symbolic bisimulation S such that (A,B) ∈
S(D,Φ) and S(D,Φ) ∈ S.

Now we state the main result of this paper:

Theorem 1. Let Ar and Br be two closed extended processes. Then Ar ≈ Br

iff Γ (Ar) ≈(∅, true) Γ (Br).

Example 6. LetA = νc. a(x). x〈c〉 andB = νc. a(x). if x = a then a〈c〉 else x〈c〉.
Clearly A ≈ B. Let B1 = νc. if x = a then a〈c〉 else x〈c〉. The following sets con-
stitute a symbolic bisimulation (the symmetric pairs are omitted):

S(∅, true) = {(A, B)} S({x: ∅}, true) = {(νc. x〈c〉, B1)}
S({x: ∅}, x=a) = {(νc. x〈c〉, νc. a〈c〉)} S({x: ∅}, x �=a) = {(νc. x〈c〉, νc. x〈c〉)}
S({x: {c}}, x=a) = {(0, 0)} S({x: {c}}, x �=a) = {(0, 0)}.
Hence A ≈(∅, true) B.

This is a typical example which shows partitions of indexing conditions are
necessary for symbolic bisimulations to be complete. Simple as they are,A and B
are not symbolically equivalent according to any previous symbolic theory for
the applied pi-calculus [13,14].

Observational equivalence has been shown to coincide with the labeled bisim-
ilarity in [2]. Hence by transitivity, our symbolic bisimulation is fully abstract
w.r.t observational equivalence.

5 Conclusion

We have presented a symbolic framework for the applied pi calculus in which
a sound and complete notion of symbolic bisimulation is devised. This is achieved
by a careful separation of condition formulas from deducibilities, and constraints
from processes. Moreover, our framework accommodates recursions hence our
result works for the full applied pi calculus. To the best of our knowledge, this
is the first symbolic theory for the applied pi calculus which is both sound and
complete and which allows recursion.

As future work we would like to formulate a symbolic style proof system for
the applied pi calculus along the lines of [16,9,18].

A Complete Symbolic Bisimulation for Full Applied Pi Calculus 563

References
1. Abadi, M., Cortier, V.: Deciding Knowledge in Security Protocols under Equational

Theories. Theor. Comput. Sci. 367(1-2), 2–32 (2006)
2. Abadi, M., Fournet, C.: Mobile Values, New Names, and Secure Communication.

In: POPL, pp. 104–115 (2001)
3. Abadi, M., Gordon, A.D.: A Calculus for Cryptographic Protocols: the spi Cal-

culus. In: CCS 1997: Proceedings of the 4th ACM Conference on Computer and
Communications Security, pp. 36–47. ACM, New York (1997)

4. Baudet, M.: Deciding Security of Protocols against Off-Line Quessing Attacks. In:
CCS 2005: Proceedings of the 12th ACM Conference on Computer and Commu-
nications Security, pp. 16–25. ACM, New York (2005)

5. Bengtson, J., Johansson, M., Parrow, J., Victor, B.: Psi-Calculi: Mobile Processes,
Nominal Data, and Logic. In: LICS 2009: Proceedings of the 2009 24th Annual
IEEE Symposium on Logic In Computer Science, pp. 39–48 (2009)

6. Blanchet, B.: An Efficient Cryptographic Protocol Verifier Based on Prolog Rules.
In: CSFW 2001: Proceedings of the 14th IEEE Workshop on Computer Security
Foundations, p. 82 (2001)

7. Blanchet, B., Abadi, M., Fournet, C.: Automated Verification of Selected Equiva-
lences for Security Protocols. In: LICS, pp. 331–340 (2005)

8. Boreale, M., Buscemi, M.: A Method for Symbolic Analysis of Security Protocols.
Theor. Comput. Sci. 338(1-3), 393–425 (2005)

9. Boreale, M., De Nicola, R.: A Symbolic Semantics for the Pi-Calculus. Inf. Com-
put. 126(1), 34–52 (1996)

10. Borgström, J.: A Complete Symbolic Bisimilarity for an Extended spi Calculus.
Electron. Notes Theor. Comput. Sci. 242(3) (2009)

11. Borgström, J., Briais, S., Nestmann, U.: Symbolic Bisimulation in the spi Calculus.
In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 161–176.
Springer, Heidelberg (2004)

12. Comon-Lundh, H., Shmatikov, V.: Intruder Deductions, Constraint Solving and
Insecurity Decision in Presence of Exclusive or. In: LICS 2003: Proceedings of the
18th Annual IEEE Symposium on Logic in Computer Science, p. 271 (2003)

13. Delaune, S., Kremer, S., Ryan, M.D.: Symbolic Bisimulation for the Applied Pi
Calculus. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp.
133–145. Springer, Heidelberg (2007)

14. Delaune, S., Kremer, S., Ryan, M.D.: Symbolic Bisimulation for the Applied pi Cal-
culus. Journal of Computer Security (to appear, 2009)

15. Hennessy, M., Lin, H.: Symbolic Bisimulations. Theor. Comput. Sci. 138(2), 353–
389 (1995)

16. Hennessy, M., Lin, H.: Proof Systems for Message-Passing Process Algebras. For-
mal Asp. Comput. 8(4), 379–407 (1996)

17. Johansson, M., Parrow, J., Victor, B., Bengtson, J.: Extended Pi-Calculi. In: Aceto,
L.,Damg̊ard, I.,Goldberg,L.A.,Halldórsson,M.M., Ingólfsdóttir,A.,Walukiewicz, I.
(eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 87–98. Springer, Heidelberg (2008)

18. Lin, H.: Complete Inference Systems for Weak Bisimulation Equivalences in the
Pi-Calculus. Inf. Comput. 180(1), 1–29 (2003)

19. Liu, J., Lin, H.: A Complete Symbolic Bisimulation for Full Applied pi Calculus
(full version) (2009), http://lcs.ios.ac.cn/~jliu

20. Millen, J., Shmatikov, V.: Constraint Solving for Bounded-Process Cryptographic
Protocol Analysis. In: CCS 2001: Proceedings of the 8th ACM Conference on Com-
puter and Communications Security, pp. 166–175. ACM, New York (2001)

21. Milner, R.: Communicating and Mobile Systems: the pi Calculus. Cambridge Uni-
versity Press, Cambridge (1999)

http://lcs.ios.ac.cn/~jliu

OTwig: An Optimised Twig Pattern Matching
Approach for XML Databases�

Jun Liu and Mark Roantree

Interoperable Systems Group, Dublin City University, Ireland
{jliu,mark.roantree}@computing.dcu.ie

Abstract. Twig based optimisation is one of the current approaches to
improving XML query performance. It uses structural joins to find all
pairs of elements in the XML documents satisfying the primitive struc-
tural relationships specified in the XML queries. They focus on parent-
child and ancestor-descendant relationships. Efficient location of all joins
is one of the core operations in XML query processing. In this paper, we
propose a pattern matching algorithm called OTwig, which extends exist-
ing research on twig pattern matching. It demonstrates an improvement
over existing pattern matching algorithms while also optimising memory
usage.

Keywords: Twig pattern matching, xml query processing.

1 Introduction

As the usage of XML for data representation increases, the poor performance
of XML queries becomes a greater problem. XML documents are represented
in a tree-structured data model, and XML queries express patterns of selection
predicates on multiple elements across the data tree. Efficient location of every
occurrence of requested twig patterns in an XML database is a core operation
for XML query processing. Early work adopted a relational technique to solve
the structural relationships existing in the XML database to locate appropriate
twig patterns. However, it has been shown [1,2] that using traditional RDBMS
join algorithms is both costly and slow. Subsequent research concentrated on
structural-join algorithms [2] and twig pattern matching algorithms [3,4,5,6,7] to
address this problem for finding XML patterns. To the best of our acknowledge,
TwigList [7] is the most efficient pattern matching algorithms for providing a fast
pattern matching process.

1.1 Motivation and Contribution

The research presented in this paper is part of the FASTX project [8], the goal of
which is to provide fast read and write queries for XML data sources. This aspect
of the FASTX project improves on the algorithms presented in [7] (TwigList) to
obtain better query performance.
� Funded by Enterprise Ireland Grant No. CFTD/07/201.

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 564–575, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

OTwig: An Optimised Twig Pattern Matching Approach for XML Databases 565

In this paper, we present an bottom-up algorithm called OTwig, which extends
the work in [7] (TwigList). The enhancement is achieved through the following
points:

– Based on the bottom-up approach, we process nodes as they reside in their
index streams, rather than creating an additional working stack as described
in [7]. This allows us to enhance the query processing performance by avoid-
ing pop and push operations performed on each node.

– Applying efficient pruning rules to reduce the total number of nodes to be
processed, which further reduces the memory requirements. The reason for
that is because we do not need to maintain nodes, which do not contribute
themselves to any match result, in memory.

This paper is organised as follows: we first give an overview of the related work
in §2. In §3, we discuss the background knowledge and notations. In §4, we
discuss the existing TwigList algorithm followed by our OTwig algorithm. We
provide a detailed experimental evaluation in §5 against the current fastest twig
matching algorithm TwigList. We outline our conclusions in §6.

2 Related Work

Twig pattern matching over XML documents has been researched extensively
due to its fast query processing speed. One of the first efforts resulted in the
Multi-Predicate Merge Join algorithm (MPMGJN) [1], whose implementation
is similar to the classical merge-join algorithm developed RDBMS. Their exper-
iment demonstrates that MPMGJN is much faster than traditional approach.
Later Al-Khalifa et al. [2] observed that MPMGJN fails to process the parent-
child relationship efficiently as many unnecessary nodes are visited. Motivated
by this, they proposed a binary structural-join algorithm called StackTree.

TwigStack was then proposed by [3] to reduce the intermediate results gener-
ated by the binary approach. Rather than locating matches for each binary path,
TwigStack finds potential instances for every root-to-leaf paths. Before any in-
stance can be determined as a potential element for a pattern match, it must be
evaluated all the way to the leaf node so that it has at least one instance for each
of its descendants. This step significantly reduces the amount of useless inter-
mediate results generated by the algorithm. However, it achieves optimality for
twig queries with ancestor-descendant relations only. It is not optimised as long
as there are sibling relations or parent-child relationship exist. TwigStackList [5]
extends TwigStack by reducing the size of intermediate results to be a subset of
the size generated by TwigStack. TwigStackList utilises a “looks ahead” tech-
nique which caches some data in the main memory in advance to make it optimal
when all parent-child relationships are under non-branching nodes.

According to TwigStack, Lu et al. [6] proposed a holistic algorithm called
TJFast, which is based on a variation of Dewey encoding scheme represented
by a tuple of idPath and tagPath. As stated by Gou et al. [9], although Dewey-
based join algorithms typically read fewer nodes from index than PrePost-based

566 J. Liu and M. Roantree

join algorithms, the process of reading the idPath and tagPath of data nodes
to derive their ancestors is essentially backward navigation, which might involve
accessing large numbers of query-irrelevant nodes. Therefore, Dewey-based join
might be less efficient than PrePost-based join algorithms when the XML data
tree is deep or when ancestor query nodes are very selective.
Twig2Stack [4] and TwigList [7] are two other twig pattern match processing

approaches, which mainly focus on reducing the merge cost spent in the second
phase of TwigStack and TJFast. Twig2Stack avoids the step of producing inter-
mediate results as it utilises a complicated hierarchical stack encoding structure
for storing nodes. Each query node is assigned a stack and each hierarchical
stack consists of an ordered sequence of stack tree (ST), where ST contains one
or more elements. Although this approach bypasses the issues of producing large
amount of intermediate results by encoding twig matches in a set of stacks, it
has to randomly access the memory space many times. To our best knowledge
TwigList [7] is the most up-to-date technique for twig pattern matching. It is
claimed to be fast than both Twig2Stack and TJFast. TwigList simply main-
tains a list for each query node. These lists maintain the pattern matches for
twig pattern query in a compact fashion. It finally enumerates elements in the
lists to obtain the results of an n-ary tuples for a twig pattern query.

3 Background

In this section, we provide an background overview followed by a description of
the numbering encoding scheme for XML trees, often referred to as positional
region encoding scheme, which is used in [3,4,5,6,7] and in this paper as well.

3.1 Data Model and Notations

For an XML document D (e.g., Figure 1a), it can be modeled as a rooted, or-
dered and node-labeled tree, T (e.g., Figure 1b). Each XML node within T is
represented as a node (u) and the edge between elements can be either parent-
child relationship (P-C) or ancestor-descendant (A-D) relationship. We treat the
label of an arbitrary node as a value that always belongs to a type (tag-name).
Therefore, a given node in T with value xi belongs to a type X (denoted xi ∈ X).
For instance, a1 in Figure 1b is type of A. Furthermore, a twig pattern query can
be treated as a fragment of the XPath expressions. It can be also represented
to a tree-structured layout as shown in Figure 1e. A twig pattern query within
this paper is denoted as Q(V,E) (abbr. Q) where V = {V1, V2, · · · , Vn} is a set
of query nodes representing the node type, e.g., in Figure 1e, V ={A,B,D, F}.
E is a set of edges describing the relationships between Vi and Vi+1. For in-
stance, E between type B and D can be either associated with an XPath axis
operator // or /, represented as B//D or B/D. We use the method edge to
return the relationship between either two query nodes (types) or two elements,
e.g., edge(B, D) returns relationship between two query nodes and edge(b1, d2),
where b1 ∈ B and d2 ∈ D, returns relationship between two elements. V1 repre-
sents the root of Q.

OTwig: An Optimised Twig Pattern Matching Approach for XML Databases 567

< r >

< a >

< b >11< /b >

< d >

< f >1< /f >

< /d >

< c >< f > 2 < /f >< /c >

< d >3< /d >

< /a >

< a >

< c >

< f >10< /f >

< /c >

< /a >

< a >

< b >5< /b >

< c >6< /c >

< c >7< /c >

< b >8< /b >

< d >

< f >9< /f >

< /d >

< /a >

(a) XML Document

(1,56)

r1

(2,23)

a1

(3,6)

b1

(4,5)

11

(7,12)

d1

(8,11)

f1

(9,10)

1

(13,18)

c1

(14,17)

f2

(15,16)

2

(19,22)

d2

(20,21)

3

(24,31)

a2

(25,30)

c2

(26,29)

f3

(27,28)

10

(32,55)

a3

(33,36)

b2

(34,35)

5

(37,40)

c3

(38,39)

6

(41,44)

c4

(42,43)

7

(45,48)

b3

(46,47)

8

(49,54)

d3

(50,53)

f4

(51,52)

9

(b) XML Tree

[a1, a2, a3] Stream A (SA)

[b1, b2, b3] Stream B (SB)

[d1, d2, d3] Stream D (SD)

[f1, f2, f3, f4] Stream F (SF)

(c) Streams

LA[]

LB [] LD[]

LF []

(d) Empty Lists

A

B D

F

(e) Twig
Pattern

Fig. 1. XML Document and XML Tree

During twig pattern matching process, each query node Vi is associated with
a pre-generated stream SVi (e.g., Figure 1c) containing all instances of Vi. The
nodes within the streams are stored based on their end value (described in §3.2)
sorted in ascending order. We use front to return the first node in SVi , denoted
by front(SVi). Additionally, each query node Vi is also associated with a list LVi

(e.g., Figure 1d). These lists are populated during evaluation with nodes that
may potentially participate to a valid match. For instance, LA in Figure 1d
should contain A-typed nodes, ai, where ai ∈ A. The result of a twig pattern
query Q(V,E) is denoted by tupn(Q). tupn(Q) is a set of all n arity (n-ary)
tuples. A single n-ary tuple is represented by (v1, v2, · · · , vn) where vi ∈ Vi and
1 ≤ i ≤ n. An illustration is shown in Example 1.

Example 1. Given thatQ(V,E)=//A[./B]//F , where V ={A,B, F},E={/,//},
searching for Q over T (Figure 1b) will generate four 3-ary tuples. tup3(Q)) =
{(a1, b1, f1), (a1, b1, f2), (a3, b2, f4), (a3, b3, f4)}.

3.2 Logical Encoding Scheme

Indexing of XML data has been studied by many researchers [2,10,11,12,13].
However, many of the existing twig pattern matching algorithms adopt a po-
sitional region encoding scheme originally developed by [2]. It represents the
position of a node u as a triple (start, end, level) based on the document order,
where start and end can be generated by counting word numbers from the be-
ginning of the document node until the start and the end of the element (e.g.,

568 J. Liu and M. Roantree

the label above each node in Figure 1b). The region of u can be represented as
reg(u). level is the depth of u in T denoted by dep(u). The structural relation-
ship can be easily determined by this positional labeling scheme for P-C and
A-D relationships.

Property 1 (Region Containment). Given two nodes u and v, the region of u is
contained in the region of v iff u.start > v.start and u.end < v.end, denoted by
reg(u) ⊂ reg(v).

Property 2 (Ancestor). Given two nodes ui and ui+1, ui ∈ T and ui+1 ∈ T . ui

is the ancestor of ui+1 iif reg(ui+1) ⊂ reg(ui).

Property 3 (Parent). Given two nodes ui and ui+1, ui ∈ T and ui+1 ∈ T . ui is
the parent of ui+1 iif reg(ui+1) ⊂ reg(ui) and dep(ui) + 1 = dep(ui+1).

4 Twig Pattern Matching

In this section, we give an overview of the TwigList algorithm followed by a de-
tailed discussion of our OTwig algorithm.

4.1 TwigList Algorithm

The major difference between TwigList and previous works [3,4] is that previous
require the maintenance of complicated hierarchical-stacks for nodes in a query
tree Q (e.g., Twig2Stack), TwigList simply maintains a set of lists, LV1 , LV2 ,
· · · , LVn . It minimises the cost of enumerating results compared to the previous
works as the merging procedure of n joins is avoided.

Given an XML tree T (Figure 1b) and a twig pattern query Q(V,E) =
//A[.//B]//F , where V = {A, B, F}, A = {a1, a2, a3}, F = {f1, f2, f3, f4}
and B = {b1, b2, b3}, TwigList reads nodes base on the ascending order of their
start value. Therefore, it reads a1, b1, f1, f2, a2, f3, a3, b2, b3 and f4 in order.
TwigList makes use of a working stack S to temporarily store the nodes. Before
any node is added to a list (e.g., LA, LB in Figure 1d), it is pushed onto S. If
either the context node is a descendant of the top node in S or there is no node

S

a1

f1

LA

LB LF

[]

[b1] []

(a) After traversal to f1

S

a2

f3

LA

LB LF

[a1]

[b1] [f1 f2]

(b) After traversal to f2

S

LA

LB LF

[a1a3]

[b1 b2 b3] [f1 f2 f3 f4]

(c) End of evaluation

Fig. 2. TwigList Algorithm

OTwig: An Optimised Twig Pattern Matching Approach for XML Databases 569

in S at all, it is then pushed onto S. Otherwise, the top node of S is popped.
TwigList continuously compares the context node to the top node on the stack
until either an ancestor of the context node is found or there is no node left in S.
In both of the situation, the context node is then pushed onto S. In this case,
a1 is the first node to be evaluated, therefore, it is pushed onto S directly with
no further process. b1 is a descendant of a1, hence, it is also pushed onto S. f1 is
the next node being processed. As f1 is not a descendant of the top node, b1,
in S. b1 is popped out and appended to LB (Figure 2a). f1 is then pushed onto S
as it is a descendant of a1. Since f2 is not descendant of f1, f1 is popped from S
and appended to LF . f2 is then pushed onto S. a2 is then retrieved. As a2 is not
a descendant of f2 and a1, f2 and a1 are popped out of S and appended to their
corresponding lists, LF and LA respectively. a1 then points to its descendants
in LB and LF (Figure 2b). a2 is then pushed onto S. The next node f3 is pushed
onto S as it is a descendant of a2 (Figure 2b). Since a3 is not the descendant
of f3 or a2, both of them are popped from S. f3 is appended to LF as it is the
leaf node, whereas a2 is abandoned as it does not have any descendant in LB

and will not have any subsequent descendants because there is no further incom-
ing node u that satisfies the condition of reg(u) ⊂ reg(a2). Next, a3 is pushed
onto S. b2 is also pushed onto S since it is a descendant of a3. b3 is then pushed
onto S as it is a descendant of b2. Since f4 is not the descendant of b3 and b2, b3
and b2 are popped out and appended to LB. f4 is then pushed onto S. All nodes
in S are then popped and appended into their corresponding lists (Figure 2c)
as f4 is the last node. Each node in the list will have a start and end pointer
which specifies the interval for its Vi-typed descendants. Eventually, TwigList
merges all existing nodes and insert them into a set of 3-ary tuples. The result
of Q would be {(a1, b1, f1), (a1, b1, f2), (a3, b2, f4), (a3, b3, f4)}.

The drawback of TwigList can be summarised into two parts: 1) every node
has to be pushed onto a working stack first and popped out at a later stage. The
pop and push operations performed on each node increase the processing steps
during query evaluation. 2) TwigList maintains a large number of nodes in the
lists which will not contribute themselves to any valid matches. This is because
there is no way for TwigList to pre-determine whether an existing node within
a list will have an ancestor in another list. e.g., f3 in Figure 2c does not have an
ancestor in LA. We refine the TwigList algorithm based on these two drawbacks.

4.2 OTwig Algorithm

Our OTwig algorithm is a bottom-up approach that retrieves nodes based on
their end position value. OTwig applies a set of pruning rules to evaluate nodes
retrieved from T before they can be appended to their corresponding lists. This
application avoids the extra processing steps caused by the push/pop operations,
and also reduces the maintenance cost resulting from the storing nodes in the
lists.

For a given twig pattern query Q(V,E) and nodes uA and uB, where
V = {A,B}, uA ∈ A and uB ∈ B. One of the following situations may arise:

570 J. Liu and M. Roantree

1) Suppose uB is the current node being evaluated by OTwig and uA is the
first node in stream SA.

Rule 1 (Pruning By Ancestor). uB is pruned from the result set iff reg(uB)
� reg(uA) when edge(A,B) is ancestor-descendant relationship. If edge(A,B)
is parent-child relationship, then uB is pruned iff reg(uB) � reg(uA) or dep(uA)
+ 1 ! = dep(uB).

2) Suppose uA is the current node being processed, uB is the node that has
already been evaluated before uA, and it is the last node stored in LB.

Rule 2 (Pruning By Descendant). uA is pruned iff reg(uB) � reg(uA)
when edge(A,B) is ancestor-descendant relationship. If edge(A,B) is parent-
child relationship, then uA is pruned iff reg(uB) � reg(uA) or dep(uA) + 1 ! =
dep(uB).

According to Rule 1 and Rule 2, OTwig guarantees that before a node is added
to a list, it should always have an ancestor (in SVi) and descendants (in LVi)
exist. This step further reduces the memory requirements as invalid nodes are
eliminated.

4.3 OTwig Algorithm by Example

In this section, we explain how OTwig works using the example of evaluating the
twig pattern query Q(V,E) = //A[.//B]//D//F (Figure 1e) over T (Figure 1b),
where V = {A, B, D, F}. We use a set of streams to represent source data cate-
gorised by node types within Q (Figure 1c), SA = {a1, a2, a3}, SB = {b1, b2, b3},
SD = {d1, d2, d3} and SF = {f1, f2, f3, f4}. OTwig generates 4 empty lists at the
start of processing, to maintain all potential matches for Q (Figure 1d). Each
node will hold a set of start and end pointers which specify the node interval
(interval between the node pointed by the start pointer and the node pointed
by the end pointer) for its Vi-typed descendant, e.g., the start and end pointers
of uA, where uA ⊆ A, to its B-typed descendant is denoted by (startB , endB).
We first give a brief description of the major methods used in the algorithms.
SearchMatch calls other methods for handling XML tree nodes and searching for

Algorithm 1. OTwig Algorithm
Require: Q(V, E), where V = {V1, V2, · · · , Vn}, T ;
Ensure: a set of n-ary tuples, tupn(Q);
1: let LV1 be the root of Q, LV1 [start] and LV1 [end] are the start and end elements

in LV1 ;
2: let LVi [start] and LVi [end] be the start and end elements pointed by the elements

in its parent list;
3: let cur be the cursor point to the current position in LVi , start < cur < end;
4: initialise list LVi , where Vi ∈ V
5: tupn(Q) = SearchMatch(Q, T)
6: return tupn(Q)

OTwig: An Optimised Twig Pattern Matching Approach for XML Databases 571

7: procedure SearchMatch(Q, T)
8: while (uVi

← GetNext(Q)) �= null do
9: MoveToList(uVi

, LVi
);

10: if Vi is root and reg(uVi
) � reg(front(SVi

)) then
11: MergeResult();
12: end if
13: end while
14: if LVi

is not empty then
15: MergeResult();
16: end if
17: end procedure

18: procedure GetNext(Q)
19: get uVi

with smallest end in SVi
;

20: check if reg(uVi
) ⊆ reg(front(SVk

)), where Vk

21: is ancestor of Vi within Q;
22: end procedure

Fig. 3. SearchMatch

23: procedure MoveToList(uVi
, LVi

)
24: if uV is a leaf node then
25: add uVi

into LVi
;

26: else
27: for all Vj is descendant of Vi do
28: check whether uVi

has a valid
29: descendant in LVj

; ;
30: if uVi

has a valid descendant then
31: set uVi

.start to the first element
32: that is a valid descendant of uVi

in LVj
;

33: set uVi
.end to last element in LVj

;
34: end if
35: end for
36: if uVi

is valid then
37: add uVi

into LVi
;

38: end if
39: end if
40: end procedure

Fig. 4. MoveToList

potential matches. GetNext recursively retrieves nodes starting from the small-
est end value from streams, and also validates whether a node that has been
retrieved is valid or not (by Rule 1). MoveToList validates whether the context
node has valid descendants in its descendant lists (by Rule 2) and appends valid
ones to their corresponding list. MergeResult merges existing nodes within each
list, and forms a set of n-ary tuples as the answer to a twig pattern query. (Due
to space limitation, only part of the algorithm is shown in this paper, the rest
can be found in our technical report [14]).

OTwig starts by creating a set of empty lists for maintaining valid nodes
(Line 4 in Algorithm 1). During query evaluation, OTwig reads nodes based on
their end value in ascending order, b1, f1, d1, f2, d2, a1, f3, a2, b2, b3, f4, d3

and a3. b1 is the first node returned by GetNext as the smallest end value 5.
It is then validated by GetNext at Line 23 to check whether it has an A-typed
ancestor in SA. b1 is valid as it has an ancestor a1 in SA, where reg(a1) ⊂
reg(b1). b1 is then appended to LB (Figure 5a) by MoveToList at Line 27 .
f1 is the next node returned by GetNext (Line 8). f1 is appended to LF as it
has an ancestor d1 in SD (Line 23) as well as it is the leaf node (Line 27).
The next node d1 is checked by Line 23 and 30. It is then appended to LB as
it is a valid node. After that, the startF and endF of d1 point to its F -typed
descendants in LF . In this case, only f1 exists in LF , therefore, d1’s startF and
endF point to f4 (Line 33) as shown in Figure 5b.
a1 is the next node to be evaluated. Due to A being the root query node,

therefore, a1 is not required to be validated against its ancestor. However, a1 is
validated by the existing nodes within its B-typed and D-typed descendant lists.
Since both LB and LD are not empty, and they both contain valid descendants of
a1 (e.g., b1, d1). Hence, a1 is considered to be valid and appended into LA with its
(startB , endB) and (startD, endD) points to b1 and d1 respectively (Figure 5c).
Thereafter a1 is inserted to LA. At this stage, OTwig will first check whether
A is the root node of Q. It then compares a1 to front(SA) if A is the root of Q
(Line 10). Furthermore, if reg(a1) � reg(front(SA)), OTwig then merges the
existing elements in the lists and generates a set of n-ary tuples. If reg(a1) ⊂

572 J. Liu and M. Roantree

LA

LB LD

LF

[]

[b1] []

[]

(a) After traverse
to b1

LA

LB LD

LF

[]

[b1] [d1]

[f1]

(b) After traverse
to d1

LA

LB LD

LF

[a1]

[b1] [d1]

[f1]

(c) After traverse
to a1

LA

LB LD

LF

[a1]

[b1] [d1]

[f1]

(d) After traverse
to f3

LA

LB LD

LF

[]

[] []

[]

(e) After traverse
to a2

LA

LB LD

LF

[]

[b2 b3] []

[]

(f) After traverse
to b3

LA

LB LD

LF

[]

[b2 b3] [d3]

[f4]

(g) After traverse
to d3

LA

LB LD

LF

[a3]

[b2 b3] [d3]

[f4]

(h) After traverse
to a3

Fig. 5. OTwig Algorithm

reg(front(SA)), OTwig will continue to process until the next A-typed node is
reached. In this case, reg(a1) � reg(front(SA)), therefore, (a1, b1, d1, f1) is
generated. All lists are then cleared for further process. When f3 is reached for
processing, it is pruned (Line 23) as it does not have a valid ancestor in SD.
Therefore, it will not be appended into LF as shown in Figure 5d. a2 is the next
node to be processed. a2 is pruned as there is no descendant of a2 existing in
either LB or LD. b2 and b3 are processed after a2. Due to B is the leaf node
of Q and both of them have a valid ancestor a3 in SA, consequently, they are
appended to LB (Figure 5f). For the same reason, f4 is also appended to LF . d3 is
valid as it has a valid ancestor a3 in SA as well as a valid F -typed descendant f4

in LF . It is then appended in LD, and both of its startF and endF point to f4

(Figure 5g).
Eventually, a3 is about to be evaluated. Since A is the root of Q, there-

fore, a3 is validated against its descendants only. As it has valid descendants of
both B-typed and D-typed nodes, hence, it is appended into LA (Figure 5h).
MergeResult is then called to generate matches as there is no more node to be
evaluated. Together with the previous tuple, the result of Q are a set of 4-ary
tuples, tup4(Q) = {(a1, b1, d1, f1), (a3, b2, d3, f4), (a3, b3, d3, f4)}.

5 Experimental Evaluation

In this section we first demonstrate the efficiency of the OTwig approach against
TwigList by processing on three real and synthetic datasets DBLP (428MB),
XMark (683MB) and PSD (568MB). The comparison is based on returning
matches for each query and demonstrates our performance against similar ap-
proach. Then by applying a set of pruning rules, we demonstrate that while

OTwig: An Optimised Twig Pattern Matching Approach for XML Databases 573

comparing to TwigList, we are also memory optimised by evaluating twig queries
in main-memory. We implemented both our own OTwig and the TwigList pat-
tern matching algorithms. All systems were implemented using Java JDK 6.
Experiments ran on workstations with Intel Core2 Duo CPU 2.66GHz proces-
sor, 4GB main memory and Windows XP SP3 OS.

5.1 Performance

Figure 6 shows the processing time and memory usage spent on evaluating the
queries listed in Table 1 by both OTwig and TwigList algorithms. OTwig is
considered to be both time and memory optimised according to the experimental
result depicted below.

DBLP Dataset As shown in Figure 6a, OTwig outperforms TwigList for all
queries. However, both performance and memory usage are very close, except for
DB4 and DB5, which requires relatively more memory space by TwigList. This is
because the amount of nodes pruned by OTwig is larger than TwigList, especially
for DB5 and DB6. This is due to that OTwig prunes 35% and 65% nodes for DB5
and DB6, however, TwigList only prunes very few nodes as shown in Table 2.
Therefore, the memory required by TwigList is much higher.

PSD Dataset OTwig is optimised for both performance and memory usage
(Figure 6d and 6c). For query PSD1, the same amount of nodes are pruned
by both OTwig and TwigList. However, OTwig is faster and requires far less
memory. The main reason is because OTwig clears all lists after processing of
each instance of the root node of the query. OTwig has a far higher pruning rate
for the rest of the PSD queries this is the main reason why the performance for
PSD2 to PSD6 by TwigList is much slower than OTwig.

XMARK Dataset For queries XM1 and XM2, a similar amount of nodes are
processed (see Table 2). TwigList requires almost identical time for both queries
and OTwig is more efficient for both queries, especially XM2. This is because
77% of nodes are pruned. However, it spends approximately half of the time
evaluating XM1 comparing to XM2. Apart from pruning, it requires far less

Table 1. Twig Pattern Queries

DBLP Dataset

DB1: //dblp/inproceedings[./title]/author
DB2: //dblp/inproceedings[./cite][./title]/author
DB3: //article[./volume][./cite]/journal
DB4: //article[./mdate][./volume][./cite/label]/journal
DB5: //inproceedings[./key][./mdate][./author][./year][./url]/title
DB6: //article[./title][./author][./year][./ee]/key
Protein Sequence Database

PSD1: //ProteinEntry[./header[./accession]/created date]/protein/name
PSD2: //ProteinEntry[./organism/source][./reference[.//year][.//month]

//group]//gene
PSD3: //ProteinEntry[.//gene][.//label]/header/accession
PSD4: //ProteinEntry[./genetics[./label]/gene][./reference]/protein/name
PSD5: //ProteinEntry[./reference[./accinfo]//title]/classification
PSD6: //ProteinEntry[./classification/superfamily][./feature/description]

/keywords
XMark Dataset

XM1: //item[location]/description//keyword
XM2: //person[.//address/zipcode]/profile/education
XM3: //item[location][.//mailbox/mail//emph]/description//keyword
XM4: //item[//location][.//mail//date]//payment
XM5: //person[./emailaddress][./phone]/profile[.//age]/education

Table 2. Data Pruning

Query Total Nodes. OTwig TwigList Matches
Pruned Rate Pruned Rate

DB1 4082019 1272822 31% 1270976 31% 1595488
DB2 4254420 1923963 45% 1322555 31% 290144
DB3 1297362 502686 39% 21 0.000016% 47324
DB4 2376462 1170749 49% 81 0.000034% 13785
DB5 8093639 2853343 35% 8723 0.001% 1595475
DB6 6501573 4029283 62% 81 0.000012% 608053
PSD1 1948174 312506 16% 312506 16% 323043
PSD2 1169008 573758 49% 0 0% 2075
PSD3 1751474 395890 23% 312506 17.8% 709176
PSD4 1900571 864999 46% 396504 20.9% 4074
PSD5 1269229 230061 18% 0 0% 144505
PSD6 967704 271366 28% 40916 4.2% 207373
XM1 900871 394164 44% 180101 20% 136282
XM2 915971 708996 77% 0 0% 15859
XM3 1464611 848493 58% 316087 21.6% 86533
XM4 991628 499471 50% 102950 10.4% 104430
XM5 1012120 732783 72% 0 0% 7966

574 J. Liu and M. Roantree

4000

5000

6000

7000

8000

g
Ti
m
e
(m

s)

PostTwig

TwigList

0

1000

2000

3000

4000

DB1 DB2 DB3 DB4 DB5 DB6

Pr
oc
es
si
ng

DBLP Query

(a) DBLP Processing
Time

1500

2000

2500

Ti
m
e
(m

s)

PostTwig

TwigList

0

500

1000

PSD1 PSD2 PSD3 PSD4 PSD5 PSD6

Pr
oc
es
si
ng

T

PSD Query

(b) PSD Processing Time

600

800

1000

1200

g
Ti
m
e
(m

s)

PostTwig

TwigList

0

200

400

600

XM1 XM2 XM3 XM4 XM5

Pr
oc
es
si
ng

XMARK Query

(c) XMARK Processing
Time

150000

200000

250000

300000

U
sa
ge

(K
B)

PostTwig

TwigList

0

50000

100000

150000

DB1 DB2 DB3 DB4 DB5 DB6

M
em

or
y
U

DBLP Query

(d) DBLP Memory Usage

100000

120000

140000

160000

180000

U
sa
ge

(K
B)

PostTwig

TwigList

0

20000

40000

60000

80000

PSD1 PSD2 PSD3 PSD4 PSD5 PSD6

M
em

or
y

PSD Query

(e) PSD Memory Usage

20000

25000

30000

35000

40000

U
sa
ge

(K
B)

PostTwig

TwigList

0

5000

10000

15000

20000

XM1 XM2 XM3 XM4 XM5

M
em

or
y
U

XMark Query

(f) XMARK Memory
Usage

Fig. 6. Experimental Result Charts

joins than XM1, approximately 10%. As we can see from Table 2, a similar
situation applies to XM4 and XM5. By observation, query XM3 in Table 2 and
2, 58% of the nodes have been pruned, therefore OTwig is both time and memory
optimised when processing XM3.

6 Conclusions

With the need for managing and querying large XML datastores, comes the ad-
ditional requirement for improving the poor query response times. One approach
to improving query performance is twig pattern matching to quickly locate rel-
evant matches in an XML document or database. In this paper, we make use
of the traditional encoding scheme together with a query processing strategy
utilising new pruning logic to reach new levels of performance. We employed
traditional benchmarking databases and queries. OTwig is faster for all queries
when compared against TwigList.

References

1. Zhang, C., Naughton, J., DeWitt, D., Luo, Q., Lohman, G.: On Supporting Con-
tainment Queries In Relational Database Management Systems. SIGMOD Rec.,
425–436 (2001)

2. Al-khalifa, S., Patel, J.M.: Structural Joins: A Primitive for Efficient XML Query
Pattern Matching. In: Proceedings of the 18th International Conference on Data
Engineering. IEEE Computer Society, Los Alamitos (2002)

OTwig: An Optimised Twig Pattern Matching Approach for XML Databases 575

3. Bruno, N., Koudas, N., Srivastava, D.: Holistic Twig Joins: Optimal XML Pattern
Matching. In: Proceedings of the 2002 ACM SIGMOD International Conference
on Management of Data. ACM, New York (2002)

4. Chen, S., Li, H.G., Tatemura, J., Hsiung, W.P., Agrawal, D., Candan, K.S.:
Twig2Stack: Bottom-up Processing Of Generalized Tree Pattern Queries over
XML Documents. In: Proceedings of the 32nd International Conference on Very
Large Data Bases. ACM, New York (2006)

5. Lu, J., Chen, T., Ling, T.W.: Efficient Processing Of XML Twig Patterns With
Parent Child Edges: A Look-Ahead Approach. In: Proceedings of the Thirteenth
ACM International Conference on Information and Knowledge Management, pp.
533–542. ACM, New York (2004)

6. Lu, J., Chen, T., Ling, T.W.: TJFast: Effective Processing Of XML Twig Pattern
Matching. In: WWW (Special Interest Tracks and Posters), pp. 1118–1119. ACM,
New York (2005)

7. Qin, L., Yu, J.X., Ding, B.: Twiglist: Make Twig Pattern Matching Fast. In: Ko-
tagiri, R., Radha Krishna, P., Mohania, M., Nantajeewarawat, E. (eds.) DASFAA
2007. LNCS, vol. 4443, pp. 850–862. Springer, Heidelberg (2007)

8. Marks, G., Roantree, M.: Pattern Based Processing of xpath Queries. In: IDEAS
2008: Proceedings of the 2008 International Symposium on Database Engineering
Applications, pp. 179–188. ACM, New York (2008)

9. Gou, G., Chirkova, R.: Efficiently Querying Large XML Data Repositories: A Sur-
vey. IEEE Trans. on Knowl. and Data Eng., 1381–1403 (2007)

10. Wu, X., Lee, M.L., Hsu, W.: A Prime Number Labeling Scheme for Dynamic Or-
dered XML Trees. In: ICDE 2004: Proceedings of the 20th International Conference
on Data Engineering, pp. 66–78. IEEE Computer Society, Los Alamitos (2004)

11. Wang, H., Park, S., Fan, W., Yu, P.S.: Vist: a Dynamic Index Method for Querying
XML Data by Tree Structures. In: SIGMOD, pp. 110–121. ACM, New York (2003)

12. Rao, P., Moon, B.: Prix: Indexing and Querying XML Using Prufer Sequences. In:
ICDE, pp. 288–300. IEEE Computer Society, Los Alamitos (2004)

13. Wang, H., Meng, X.: On the Sequencing of Tree Structures for XML Indexing. In:
ICDE 2005, pp. 372–383. IEEE Computer Society, Los Alamitos (2005)

14. Liu, J.: Using OTwig to Boost XML Query Performance. TechReport, Dublin City
University (November 2008)

Picture Recognizability with Automata Based
on Wang Tiles�

Violetta Lonati1 and Matteo Pradella2

1 Dipartimento di Scienze dell’Informazione, Università degli Studi di Milano
Via Comelico 39�41, 20135 Milano, Italy

��������	�
�����
��
2 IEIIT, Consiglio Nazionale delle Ricerche

Via Golgi 40, 20133 Milano, Italy
�����
��������������
��

Abstract. We introduce a model of automaton for picture language recognition
which is based on tiles and is called Wang automaton, since its description re-
lies on the notation of Wang systems. Wang automata combine features of both
online tessellation acceptors and 4-ways automata: as in online tessellation accep-
tors, computation assigns states to each picture position; as in 4-way automata,
the input head visits the picture moving from one pixel to an adjacent one, ac-
cording to some scanning strategy. We prove that Wang automata recognize the
class REC, i.e. they are equivalent to tiling systems or online tessellation accep-
tors, and hence strictly more powerful than 4-way automata. We also consider
a very natural notion of determinism for Wang automata, and study the resulting
class, comparing it with other deterministic classes considered in the literature,
like DREC and Snake-DREC.

Keywords: Picture languages, 2D languages, tiling systems, 4-way automata,
online tessellation acceptors, Wang systems, determinism.

1 Introduction

Picture languages are a generalization of string languages to two dimensions: a picture
is a two-dimensional array of elements from a finite alphabet. The literature on picture
languages is quite rich of models, see e.g. [14,12,17,9,5,7,3,8]. Here we regard class
REC, introduced in [12] with the aim to generalize to 2D the class of regular string
languages. REC is a robust class that has various characterizations: for instance it is the
class of picture languages that can be generated by online tessellation automata [13],
tiling systems [11], or Wang systems [10].

In this paper we characterize REC by introducing a new model of 2D automata based
on tiles. We call such model Wang automaton, since its description is based on the no-
tation of Wang systems. Wang automata combine features of both online tessellation

� This work has been supported by the MIUR PRIN projects “Mathematical aspects and emerg-
ing applications of automata and formal languages”, and “D-ASAP: Dependable Adaptable
Software Architecture for Pervasive Computing”.

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 576–587, 2010.
c� Springer-Verlag Berlin Heidelberg 2010

Picture Recognizability with Automata Based on Wang Tiles 577

acceptors [13] and 4-ways automata [14]: as in online tessellation acceptors, computa-
tion assigns states to each input picture position; as in 4-way automata, the input head
visits the input picture following a given scanning strategy, that is a method to visit its
positions.

The choice of a suitable scanning strategy is a central issue in this context. In particu-
lar it has been considered recently in [2,6]. Here we introduce polite scanning strategies,
that sort all positions in a picture, and visit each of them exactly once, in such a way that
the next position to visit is always adjacent to the previous one, and depends only on
this information: which neighboring positions have already been visited, and which di-
rection we are moving from. Examples of such scanning strategies are those following
the boustrophedonic order, spirals, and many others.

Di�erently from 4-way automata, Wang automata directed by polite scanning strate-
gies visit each position exactly once; moreover, one can consider various polite scan-
ning strategies, but next position cannot depend on the input symbol (in a sense, like
traditional finite state automata on strings). However, we prove that this kind of au-
tomata are equivalent to tiling systems, thus they are strictly more powerful than 4-way
automata [12].

An interesting aspect of this new model is the possibility to introduce quite naturally
the notion of determinism, yielding class Scan-DREC, which is closed under comple-
ment and rotation. Determinism is a crucial concept in language theory, whereas in
two dimensions it is far from being well understood. Tiling systems are implicitly non-
deterministic: REC is not closed under complement, and the membership problem is
NP-complete [15].

In the literature several notions of determinism for recognizable languages and au-
tomata have been proposed. For 4-way automata the definition of determinism is straight-
forward [14]. Online tessellation acceptors have a diagonal-based kind of determinism
[13] and this notion is extended in [1], with the definition of a deterministic class we
denote by Diag-DREC (the original name was DREC). In [16] we introduced the class
Snake-DREC which is based on a boustrophedonic scanning strategy and proved that
Snake-DREC properly extends Diag-DREC. Here we prove that Scan-DREC properly
extends Snake-DREC (and hence Diag-DREC) and is closed under complement and ro-
tation. Several questions concerning the relationship among these classes remain open
and are proposed in the conclusions.

We cite also an interesting and radically di�erent notion of determinism, proposed
in [4], which is not based on prefixed scanning strategies. Such notion is built upon
a definition of language recognized by a tiling system which is di�erent from the usual
one, e.g. of [12], so it is hard to compare it with other approaches. For instance, while
it is decidable to check if a tiling system is deterministic in one of the senses presented
before, at present we do not know anything about decidability for [4].

The paper is organized as follows. In Section 2 we recall some basic definitions
and properties on two-dimensional languages, tiling systems, Wang systems, and deter-
minism. In Section 3 we introduce polite scanning strategies and compare them with
scanning strategies already studied in the literature. In Section 4 we present our model
of Wang automaton and prove the main theorem characterizing REC as the class of pic-
ture languages recognized by Wang automata directed by polite scanning strategies. In

578 V. Lonati and M. Pradella

Section 5 we introduce the concept of determinism natural in this framework, and com-
pare the corresponding class with Diag-DREC and Snake-DREC. In the last section we
propose some open questions concerning determinism in 2D.

2 Preliminaries

The following definitions are taken and adapted from [12].
Let � be a finite alphabet. A two-dimensional array of elements of � is a picture

over �. The set of all pictures over � is ���. A picture language is a subset of ���. If C
denotes some kind of picture-accepting device, then �(C) denotes the class of picture
languages recognized by such devices.

For n�m � 1, �n�m denotes the set of pictures of size (n�m); # � � is used when
needed as a boundary symbol; p̂ refers to the bordered version of picture p. That is, for
p � �n�m, it is

p �

p(1� 1) � � � p(1�m)
���

� � �
���

p(n� 1) � � � p(n�m)

p̂ �

� � � #
p(1� 1) � � � p(1�m)
���

���
� � �

���
���

p(n� 1) � � � p(n�m)
� � � #

�

A pixel is an element p(i� j) of p. We call (i� j) the position in p of the pixel. We will
sometimes use position (i� j) with i or j equal to 0, or n � 1, or m � 1 for referring to
borders. We use the term picture domain (or domain for short) to refer to the set of
possible positions in a generic picture of size (n�m), not considering borders, i.e. the
set n � m � �1� 2� � � � � n� � �1� 2� � � � �m�. Each position has four edges, and an edge is
identified by a pair of (vertically or horizontally) adjacent positions.

We will sometimes consider the 90o clockwise rotation of a picture p. E.g. if p �

a b
c d

, then
c a
d b

is its rotation. Naturally, the same operation can be applied to lan-

guages, and classes of languages, too.

2.1 Tiling Systems

We call tile a square picture of size (2,2). We denote by T (p) the set of all tiles contained
in a picture p.

Let � be a finite alphabet. A (two-dimensional) language L � ��� is local if there
exists a finite set � of tiles over the alphabet ���#� such that L � �p � ��� 	 T (p̂) � ��.
We will refer to such language as L(�).

Let � : �
 � be a mapping between two alphabets. Given a picture p � ���,
the projection of p by � is the picture �(p) � ��� such that �(p) (i� j) � �(p(i� j)) for
every position (i� j). Analogously, the projection of a language L � ��� by � is the set
�(L) � ��(p) 	 p � ���� � ���.

A tiling system (TS) is a 4-tuple � � ��� �� �� �� where � and � are two finite al-
phabets, � is a finite set of tiles over the alphabet � � �#� and � : �
 � is a projec-
tion. A picture language L � ��� is tiling recognizable if there exists a tiling system

Picture Recognizability with Automata Based on Wang Tiles 579

��� �� �� �� such that L � �(L(�)). We say that � generates L and denote by REC the
class of picture languages that are tiling recognizable, i.e, REC � �(TS). Notice in
particular that any local language is tiling recognizable.

Example 1. Consider the language Lhalf of pictures of size (n� 2n) with the first row like
x x̄, where x̄ is the reverse of x. We show that Lhalf is recognized by a tiling system.
Let � be the set of letters of the form ��, with �� 	 � �. For each picture p in Lhalf,
consider the picture p� � ��� where subscripts are used to connect each letter in x to
the corresponding letter in x̄, along nested paths following a �-like form. Below there
is an example of such pair of pictures p and p�:

p �

a b c c b a

b b a c b a

c a a b a a

� p� �

aa bb cc cc� bb aa

ba bb ab cb bb aa

ca aa aa ba aa aa

�

One can show that the language of pictures p� is local, and hence Lhalf is in REC.

2.2 Wang Systems

In [10] a model equivalent to tiling systems but based on a variant of Wang tiles was
introduced. A Wang tile is a unitary square with colored edges. Color represents com-
patibility: two tiles may be adjacent only if the color of the touching edges is the same.
A labeled Wang tile is a Wang tile bearing also a label; a set of such tiles is called Wang
system.

More formally, given a finite alphabet Colrs of colors, and a finite alphabet � of
labels, a labeled Wang tile is a quintuple (n� s� e�w� x), with n� s� e�w � Colrs � �#�
(where, as usual, # is a color representing borders), and x � �. Intuitively, n� s� e�w
represent the colors respectively at the top, bottom, right, and left of the tile. For better

readability, we represent the labeled Wang tile (n� s� e�w� x) as
n

w x e
s

�

Given
 � Colrs4 � �, a Wang-tiled picture over
 is any picture in
�� such that
adjacent pixels are compatible, also considering borders, as in the following example:

#
a 4

1

#
4 b #

3
1

b 2
#

3
2 a #

#

�
2�2�

The label of a Wang-tiled picture P over
 is the picture over � having for pixels the

labels of pixels of P. For instance, the label of the example above is
a b
b a

.

A Wang system � is a triple (Colrs� ��
). The language generated by � is the lan-
guage over � of all labels of Wang-tiled pictures over
.

580 V. Lonati and M. Pradella

Example 2. A Wang system recognizing Lhalf can be defined using the same idea pre-
sented in Example 1. The resulting Wang-tiled pictures have the form

P �

#
a

a

#
 b

b

#
 c c

#
c c

#
 b

b

#
 a #

a
a

b

a

b
 b b

b a b

b c b

b
b b

a
 a #

a
a

c a
#

a a a
#

a a a
#

a b a
#

a a a
#

a
a a #

#

� (1)

2.3 Diagonal- and Snake-Deterministic Tiling Systems

Tiling systems are implicitly nondeterministic: REC is not closed under complement,
and the membership problem is NP-complete [15]. Moreover, any notion of determin-
istic tiling systems seems to require some pre-established “scanning strategy” to read
the picture, an important issue we deal with in the following section. Here we recall
two notions of determinism recently introduced in the literature. They are both defined
using the notation of tiling systems, but it is quite natural translate them from tiling
systems to Wang systems.

Diagonal determinism [1] is inspired by the deterministic version of online tes-
sellation acceptors [13], which are directed according to a corner-to-corner direction
(namely, from top-left to bottom-right, or tl2br). Consider a scanning strategy that fol-
lows the tl2br direction: any position (x� y) is read only if all the positions that are above
and to the left of (x� y) have already been read. An example of such scanning strat-
egy is depicted in Figure 1(a). Roughly speaking, tl2br determinism means that, given
a picture p � ���, its preimage p� � L(�) � ��� can be build deterministically when
scanning p with any such strategy: tl2br-deterministic tiling systems guarantee this con-
dition (the formal definition can be found in [1]). They are proved to be equivalent to
deterministic online tessellation acceptors.

Snake-determinism [16] is based on boustrophedonic scanning strategies. Given a
tiling system � � ��� �� �� �� and a picture p � ���, imagine to build one preimage
p� � L(�), �(p�) � p, by scanning p as follows: start from the top-left corner, scan
the first row of p rightwards, then scan the second row leftwards, and so on, as in
Figure 1(b). This means that we scan odd rows rightwards and even row leftwards,
assigning a symbol in � to each position. A tiling system is snake-deterministic if this
choice is guaranteed unique (the formal definition can be found in [16]).

Diag-DREC (resp. Snake-DREC) is the family of languages such that one of their ro-
tations is recognized by a tl2br-deterministic (resp. snake-deterministic) tiling system.
Diag-DREC � Snake-DREC � REC with all proper inclusions.

Picture Recognizability with Automata Based on Wang Tiles 581

3 Two-Dimensional Scanning Strategies

The notions of determinism in [1,16] are all based on some fixed and pre-established
kinds of scanning strategy. This approach can be limiting, so we plan to define and
consider here a wider range of possible strategies. We will start by introducing the
central concept of scanning strategy, and then discussing the two related approaches
of [2] and [6].

Definition 1. A scanning strategy is a family

� � ��n�m : �1� 2� � � ��
 n � m�n�m

and �m�n is called the scanning function over domain n�m. A scanning strategy is said
to be continuous if �n�m(i � 1) is adjacent to �n�m(i) for every n�m� i; it is said to be
one-pass if each scanning function �n�m restricted to �1� 2� � � � � nm� is a bijection.

Intuitively, a scanning strategy provides a method to visit positions in any picture do-
main: �n�m(i) is the position visited in domain n � m at time i. One-pass strategies are
those that visit each position in each domain exactly once.

Some one-pass scanning strategies are illustrated in Figure 1. Actually they are not
fully defined: only the function �3�4 is depicted whereas the other functions should be
defined analogously; each position c of domain 3 � 4 contains the number i such that
c � �3�4(i). The strategy (a) is not continuous and visits one row after the other, from
left to right and from top to bottom; the other strategies are all continuous.

In the literature on 2D languages, two recent works considered the problem of defin-
ing scanning strategies for pictures, namely [2] and [6].

In [2] an automata model called tiling automaton is introduced, with the aim to define
a general computational model for recognizable languages. This approach is centered
upon the concept of scanning strategy itself, which directly depends on the size of the
picture to be scanned. This definition is very general, and may exploit the size of the
picture to perform “jumps”, thus allowing complex behaviors. This freedom, together
with the potential knowledge of the picture size, may be exploited to exceed REC (in
practice, scanning strategies presented and used in [2] are simpler, and do not exhibit
this issue). Consider e.g. the 1D non-regular language x x̄, with x � �a� b�� and x̄ equal
to the reverse of x: if we are able to jump back and forth, starting from the first character,

1 2 3 4

5 6 7 8

9 10 11 12

1 2 3 4

8 7 6 5

9 10 11 12

1 2 3 4

10 11 12 5

9 8 7 6

1 12 9 8

2 11 10 7

3 4 5 6

1 2 11 10

4 3 12 9

5 6 7 8

(a) (b) (c) (d) (e)

Fig. 1. Some one-pass scanning strategies: the number in each pixel denotes its scanning order.
(a) is not continuous (b) has a boustrophedonic behavior, (c) has a spiral behavior, (d) draws
nested �-like paths, (e) combines the behavior of (b) in the first half of the picture and a counter-
clockwise variant of (c) in the second one.

582 V. Lonati and M. Pradella

and then going to the last, then considering the second, the last-but-one and so on, we
can easily define an accepting automaton.

The very recent work [6] is also based on the concept of scanning strategy. In it, the
considered strategies are “continuous” (hence called “snakes”, not to be confused with
the homonym we used before), in the sense that the next considered position is adjacent
to the current one. The actual definition of such strategies is not formally presented,
as the authors preferred more qualitative considerations. This aspect could be source
of some problems, since may admit di�erent strategies depending on the picture size
or shape (e.g. Peano-Hilbert curves are suitable only for square pictures). For exam-
ple, if we consider unary languages, having di�erent strategies which depends on the
shape�size of the figure itself may be exploited to exceed REC also in this case.

In our opinion all these issues could be addressed by introducing a qualitative con-
cept, that we will call of blindness of the strategy. We consider blind a strategy which
proceeds locally, by scanning adjacent positions, and cannot “see” neither the picture
content, nor its size: it can only “feel” a border and an already considered position, when
it reaches it. Considering the strategies presented in Figure 1, (a) is not blind, since it
uses the knowledge of picture’s width, after reaching the end of a row, to “jump” back
to the beginning of the next row. Analogously, (e) is not blind, since it exploits the
knowledge of the width of picture, to change direction when reaching its half. We ac-
cept all the other presented strategies, as they only depend on local information: already
considered positions, and borders.

In the following we try to capture this idea of blindness, by adding some constraints
to the scanning strategies we consider. To this aim, we shall need some notations.

Given a position y, we use edges(y) to denote the set of 4 edges adjacent to y. Dirs
is the set of directions �r� l� t� b�. For every position y, and d � Dirs, the edge of y in
direction d is denoted by y	d, and the position adjacent to y in direction d is denoted by
y � d.

A next-position function is a partial function : 2Dirs � Dirs
 Dirs such that
(D� d) �� if d � D. Informally, the meaning of is that, for a given position, we have
a set of already considered edges, given by the set D of directions, and d, the “last-
considered” one. is used to choose where to go next, i.e. the direction towards the
position to visit next.

Now fix any next-position function , any starting corner cs �Corners� �tl� tr� br� bl�
and any starting direction ds � Dirs. Then, for every picture domain n�m, consider the
following scanning function �n�m over n � m.

– The starting position is

�n�m(1) �

�
�������
�������

(1� 1) if cs � tl
(1�m) if cs � tr
(n� 1) if cs � bl
(n�m) if cs � br

moreover we define E1 as the set of outer edges (i.e. those adjacent to borders) of
the picture domain n � m, and we set d1 � ds.

Picture Recognizability with Automata Based on Wang Tiles 583

– The inductive definition1 of �n�m(i � 1) for i � 1 is given by:

Di � �d � Dirs : �n�m(i)	d � Ei� Ei�1 � Ei � edges(�n�m(i))

di�1 � (Di� di) �n�m(i � 1) � �n�m(i) � di�1

Notice that �n�m(1)	d1 must be in E1 for (D1� d1) to be defined.

We say that � � ��n�m�n�m is the scanning strategy induced by the triple �� cs� ds�.

Definition 2. A scanning strategy is blind if it is induced by a triple �� cs� ds�, where
is a next-position function, cs a starting corner, and ds a starting direction.

Notice that, in general, a blind scanning strategy is not one-pass. However, it is con-
tinuous and satisfies the other requirements we need. First, all scanning functions are
defined by the same triple �� cs� ds� for every picture domain; second, the next position
to visit always depends only on this information: which neighboring positions have al-
ready been visited, and which direction we are moving from. This yields the following
definition.

Definition 3. A scanning strategy is called polite if it is blind and one-pass.

4 Wang Automata

We are now able to formally introduce Wang automata and to show that they are equiv-
alent to tiling systems.

Let Colrs be a set of colors. If the edges adjacent to a position are (partially or fully)
colored, a coloring will be used to summarize their colors. Formally, we call coloring
any partial function � : Dirs
 Colrs. The set of directions where � is defined is
denoted by ��. If �� � Dirs, then � is called a full coloring. Given �1� �2 � Colrs, we
say that �2 extends �1 if �2(d) � �1(d) for every d � ��1 .

Definition 4. A �-directed Wang automaton (�-WA) is a tuple ���Colrs� Æ� �� F� where:

– � is a finite input alphabet,
– Colrs is a finite set of colors, and C is the set of colorings over Colrs,
– F is a set of full colorings over Colrs,
– Æ : � � C � Dirs
 2C is a partial function such that each coloring in Æ(�� �� d) is

full and extends �,
– � is a blind scanning strategy induced by some �� cs� ds� such that Æ(�� �� d) � �

implies (��� d) ��.

A Wang automaton can be seen as having a head that visits a picture, by moving from
a position to an adjacent one, and coloring at each step the edges of the position it is
visiting (in a sense, the element of C � Dirs are the states of the automaton). For each

1 In the definition, also di� Di, and Ei depend on n and m. For better readability, this dependence
is not explicit.

584 V. Lonati and M. Pradella

accepting computation, the automaton produces a Wang-tiled picture whose label is
equal to the input picture. The movements of the head are lead by the scanning strategy
�, whereas the coloring operations the automaton performs are determined by a finite
control formalized by function Æ. Since the scanning strategy � is blind, the automaton
visits the picture positions independently of the input symbols, and only the choice of
colors to assign to edges is nondeterministic.

More precisely, the behavior of a �-directed Wang automaton over an input picture
p can be described as follows. At the beginning, the head of the automaton points at the
position in the starting corner cs and the current direction is set to ds. When the current
direction is d, the head is pointing at position y, the pixel of p at position y is �, and the
colors of borders of y are summarized by �, then let d� � (��� d) and �� � Æ(�� �� d).
Hence the automaton may execute this move: apply �� to the borders of y, set the current
direction to d�, and move to the position y � d�. If no move is possible, the automaton
halts. The input picture p is accepted if there is a computation such that the coloring of
the final position is in F.

As illustrated in the following theorem, for nondeterministic Wang automata the
choice of the scanning strategy (as long as it is polite) is not relevant from the point of
view of the recognizing power of the device. In the next section we will show that this
is no longer true when determinism is concerned.

Theorem 1. For every polite scanning strategy �, we have �(�-WA) � REC.

Proof. REC being generated by Wang systems [10], the result is proved if we show
that, for every polite �, �-directed Wang automata are equivalent to Wang systems.

First let A � ���Colrs� Æ� �� F� be a �-WA recognizing a language L. Then, define
the Wang system � � (Colrs � Dirs� ��
) by setting, for every �� � Æ(�� �� d) and
d� � (��� d),

(��(t)� a(t))
(��(l)� a(l)) � (��(r)� a(r))

(��(b)� a(b))
�
�

where a(x) may represent current direction d or next direction d�, i.e.

a(x) �

�
����
����

d� if x � d�

d if x � �d
� otherwise,

where � b � t��t � b��l � r��r � l�

Together with their labels, these labeled Wang tiles carry two pieces of information: the
colors assigned by the automaton and the path followed by the head of the automaton,
corresponding to the scanning strategy �. One can verify that each Wang-tiled picture
over
 corresponds to an accepting computation of the automaton. Hence, the language
generated by � is L.

Vice versa, let � � (Colrs�Dirs� ��
) be a Wang system recognizing a language L.
Then, take any polite scanning strategy �, and define the �-WA A � ���Colrs� Æ� �� F�
where F is the set of all full colorings over Colrs, and Æ is defined only for those triples

Picture Recognizability with Automata Based on Wang Tiles 585

(�� �� d) such that (��� d) ��, and there exists some labeled Wang tile

c(t)
c(l) � c(r)

c(b)
�
 with �(x) � c(x) if �(x) �� �

In this case, also set Æ(�� �� d) � �� where ��(x) � c(x) for every direction x. One can
prove that the language generated by A is L and this concludes the proof. ��

5 Determinism in Wang Automata

In the framework of Wang automata, it is quite natural to introduce the concept of
determinism:

Definition 5. A �-WA ���Colrs� Æ� �� F� is deterministic if Æ(�� �� d) has at most one
element for every symbol � � �, coloring � over Colrs, and direction d. Determinis-
tic �-WA are denoted by �-DWA. The union of classes �(�-DWA) over all polite � is
denoted by Scan-DREC.

Example 3. Consider the language Lhalf presented in Example 1 and let � be the scan-
ning strategy that draws�-like paths, represented in Figure 1(d). Starting from the Wang
system sketched in Example 2, one can define an equivalent�-DWA. Indeed, the Wang-
tiled picture P in Equation (1) can be build deterministically from p by scanning it
according to �.

Proposition 1. For any polite �, �(�-DWA) is a boolean sub-class of REC.

Proof (sketch). Given two �-DWAs A1 and A2 recognizing two languages L1 and L2

respectively, one can reason as in [12, Theorem 7.4] to build a �-DWA recognizing the
intersection L1 � L2 (the set of colors will be the set of pairs (k1� k2) where each ki is
a color used by Ai).

The closure under complement is quite easy, too. Let A � ���Colrs� Æ� �� F� be a �-
DWA recognizing L. We show how to build a deterministic Wang automaton recog-
nizing the complement of L. First of all, modify Æ so that any computation of A scans
the whole input picture. For example, one can use a special color k to complete the
computations that halt prematurely: for any coloring �, let �k be the full coloring that
extends � with color k; then, whenever Æ(�� �� d) is empty but (��� d) ��, then set
Æ�(�� �� d) � ��k�; also set Æ(�� �� d) � ��k� if � already assigns k to some edge. Finally,
let � be in F� if and only of it is not in F. One can verify that ���Colrs � �k�� Æ�� �� F��

is a �-DWA accepting the complement of L.
The closure under union is a consequence of the previous properties. ��

Corollary 1. Scan-DREC is closed under complement and rotation.

Proof (sketch). The closure under complement is a straightforward consequence of the
previous proposition. The closure under rotation is quite obvious, since one could easily
define the rotation of a scanning strategy (and consequently the rotation of a �-WA) and
this operation preserves determinism. ��

586 V. Lonati and M. Pradella

In particular, if � is the spiral scanning strategy represented in Figure 1(c), one can
prove the following lemma.

Lemma 1. �(�-DWA) is closed under rotation.

Proof (sketch). Let �� be the scanning strategy obtained as the 90o clockwise rotation
of �. Then any ��-DWA can be simulated by a �-DWA as follows: propagate the
symbols in the first row downwards and check them in the second spiral round; the rest
of the computation is as before. ��

Proposition 2. Snake-DREC � Scan-DREC � REC.

Proof (sketch). Let � be a snake-deterministic tiling system. First, one can slightly mod-
ify the construction in [10, Proposition 12] in order to build a Wang system equivalent
to � preserving its snake-determinism. Then, one can apply the construction of Theo-
rem 1 (second part) to build an equivalent �-WA, where � is the boustrophedonic scan-
ning strategy represented in Figure 1(b). Such automaton can be proved to be �-DWA,
hence by applying rotations one gets Snake-DREC � Scan-DREC.

To prove that the inclusion is proper, consider the language L of square pictures
of even size with the first row like x x̄, where x̄ is the reverse of x, and let LR be its
intersection with all its rotations. Then, one can prove L is in Snake-DREC; however, by
counting reasons it is possible to prove that LR is not in Snake-DREC. On the contrary,
improving the reasoning of Example 3, one can prove that�(�-DWA) contains L, hence
it contains also LR by Lemma 1.

The last inclusion is a consequence of the previous proposition, since REC is not
closed under complement. ��

6 Conclusion and Open Problems

In this paper we have introduced a new model of 2D automata that recognize class REC
and hence are strictly more powerful than traditional 4-way automata. The deterministic
version of such a model is very natural and satisfies some interesting properties: it de-
fines a class of picture languages which is closed under complement and extends some
relevant subclasses of REC already studied in the literature. We conclude by stating
some open problems concerning determinism in 2D.

Is Scan-DREC closed under union or intersection? Notice that the argument in proof of
Theorem 1 cannot be applied when we have to intersect languages that are recognized
by DWAs directed according to di�erent scanning strategies.

Which is the relation among Snake-DREC, �(�-DWA) and�(�-DWA)? We have some
examples that distinguish these classes: for instance the language LR used to prove
Proposition 2 is in �(�-DWA) but not in Snake-DREC. However we do not know
whether these classes are included one in another.

Which is the relation between Scan-DREC and the class of languages recognized by
deterministic 4-way automata? We know that the latter class is incomparable to both
Diag-DREC and Snake-DREC. But the language that separates them and is not in
Snake-DREC is again the one used to prove Proposition 2, which is in Scan-DREC.

Picture Recognizability with Automata Based on Wang Tiles 587

References

1. Anselmo, M., Giammarresi, D., Madonia, M.: From Determinism to Non-Determinism in
Recognizable Two-Dimensional Languages. In: Harju, T., Karhumäki, J., Lepistö, A. (eds.)
DLT 2007. LNCS, vol. 4588, pp. 36–47. Springer, Heidelberg (2007)

2. Anselmo, M., Giammarresi, D., Madonia, M.: Tiling Automaton: A Computational Model
for Recognizable Two-Dimensional Languages. In: Holub, J., Žďárek, J. (eds.) CIAA 2007.
LNCS, vol. 4783, pp. 290–302. Springer, Heidelberg (2007)

3. Bertoni, A., Goldwurm, M., Lonati, V.: On the Complexity of Unary Tiling-Recognizable
Picture Languages. Fundamenta Informaticae 91(2), 231–249 (2009)

4. Borchert, B., Reinhardt, K.: Deterministically and Sudoku-Deterministically Recognizable
Picture Languages. In: Proc. LATA 2007 (2007)

5. Bozapalidis, S., Grammatikopoulou, A.: Recognizable Picture Series. Journal of Automata,
Languages and Combinatorics 10(2�3), 159–183 (2005)

6. Brijder, R., Hoogeboom, H.J.: Perfectly Quilted Rectangular Snake Tilings. Theoretical
Computer Science 410(16), 1486–1494 (2009)

7. Cherubini, A., Crespi Reghizzi, S., Pradella, M.: Regional Languages and Tiling: A Unify-
ing Approach to Picture Grammars. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008.
LNCS, vol. 5162, pp. 253–264. Springer, Heidelberg (2008)

8. Cherubini, A., Pradella, M.: Picture Languages: From Wang Tiles to 2D Grammars. In: Boza-
palidis, S., Rahonis, G. (eds.) CAI 2009. LNCS, vol. 5725, pp. 13–46. Springer, Heidelberg
(2009)

9. Crespi Reghizzi, S., Pradella, M.: Tile Rewriting Grammars and Picture Languages. Theo-
retical Computer Science 340(2), 257–272 (2005)

10. de Prophetis, L., Varricchio, S.: Recognizability of Rectangular Pictures by Wang Systems.
Journal of Automata, Languages and Combinatorics 2(4), 269–288 (1997)

11. Giammarresi, D., Restivo, A.: Recognizable Picture Languages. International Journal Pattern
Recognition and Artificial Intelligence 6(2-3), 241–256 (1992); Special Issue on Parallel
Image Processing

12. Giammarresi, D., Restivo, A.: Two-Dimensional Languages. In: Salomaa, A., Rozenberg, G.
(eds.) Handbook of Formal Languages, Beyond Words, vol. 3, pp. 215–267. Springer, Berlin
(1997)

13. Inoue, K., Nakamura, A.: Some Properties of Two-Dimensional On-Line Tessellation Ac-
ceptors. Information Sciences 13, 95–121 (1977)

14. Inoue, K., Takanami, I.: A Survey of Two-Dimensional Automata Theory. Information Sci-
ences 55(1-3), 99–121 (1991)

15. Lindgren, K., Moore, C., Nordahl, M.: Complexity of Two-Dimensional Patterns. Journal of
Statistical Physics 91(5-6), 909–951 (1998)

16. Lonati, V., Pradella, M.: Snake-Deterministic Tiling Systems. In: Královič, R., Niwiński, D.
(eds.) MFCS 2009. LNCS, vol. 5734, pp. 549–560. Springer, Heidelberg (2009)

17. Matz, O.: On Piecewise Testable, Starfree, and Recognizable Picture Languages. In: Nivat,
M. (ed.) FOSSACS 1998. LNCS, vol. 1378, pp. 203–210. Springer, Heidelberg (1998)

Unilateral Orientation of Mixed Graphs

Tamara Mchedlidze and Antonios Symvonis

Dept. of Mathematics, National Technical University of Athens, Athens, Greece
{mchet,symvonis}@math.ntua.gr

Abstract. A digraph D is unilateral if for every pair x, y of its ver-
tices there exists a directed path from x to y, or a directed path from y
to x, or both. A mixed graph M = (V, A,E) with arc-set A and edge-
set E accepts a unilateral orientation, if its edges can be oriented so
that the resulting digraph is unilateral. In this paper, we present the
first linear-time recognition algorithm for unilaterally orientable mixed
graphs. Based on this algorithm we derive a polynomial algorithm for
testing whether a unilaterally orientable mixed graph has a unique uni-
lateral orientation.

1 Introduction

A large body of literature has been devoted to the study of mixed graphs (see [1]
and the references therein). A mixed graph is strongly orientable when its undi-
rected edges can be oriented in such a way that the resulting directed graph is
strongly connected, while, it is unilaterally orientable when its undirected edges
can be oriented in such a way that for every pair of vertices x, y there exists
a path from x to y, or from y to x, or both.

Several problems related to the strong orientation of mixed graphs have been
studied. Among them are the problems of “recognition of strongly orientable
mixed graphs” [2] and “determining whether a mixed graph admits a unique
strong orientation” [3,5].

In this paper we answer the corresponding questions for unilateral orientations
of mixed graphs, that is, firstly we develop a linear-time algorithm for recogniz-
ing whether a mixed graph is unilaterally orientable and, secondly, we provide
a polynomial algorithm for testing whether a mixed graph accepts a unique
unilateral orientation.

1.1 Basic Definitions

We mostly follow the terminology of [1]. A graph G = (V, E) consists of a non-
empty finite set V of elements called vertices and a finite set E of unordered
pairs of vertices, called edges. A directed graph or digraph D = (V, A) consists
of a non-empty set of vertices V and a set A of ordered pairs of vertices called
arcs (or directed edges). We say that in (di)graph G vertex y is reachable from
vertex x if there is a (directed) path from vertex x to vertex y.

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 588–599, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Unilateral Orientation of Mixed Graphs 589

A mixed graph M = (V, A, E) contains both arcs (ordered pairs of vertices
in A) and edges (unordered pairs of vertices in E). A path in a mixed graph
is a sequence of edges and arcs in which consecutive elements (i.e., edges or
arcs) are incident on the same vertex and all arcs are traversed in their forward
direction. Note that, since a graph (digraph) is a mixed graph having only edges
(resp. only arcs), any definition or property concerning mixed graphs also applies
to graphs (resp. digraphs).

A biorientation of a mixed graph M = (V, A, E) is obtained from M by
replacing every edge (x, y) ∈ E by either arc (x, y), or arc (y, x), or the pair of
arcs (x, y) and (y, x). If every edge is replaced by a single arc, we speak of an
orientation of a mixed graph M . The complete biorientation of a mixed graph
M = (V, A, E), denoted by

←→
M , is a biorientation of M such that every edge

(x, y) ∈ E is replaced in
←→
M by the pair of arcs (x, y) and (y, x).

An underlying graph UG(M) of a mixed graph M = (V, A, E) is the unique
undirected graph G resulting by “removing” the direction from each arc of M ,
i.e., by turning each arc of A into an edge. A mixed graph M is connected if
UG(M) is connected.

A digraph D is strongly connected (or, just strong) if, for every pair x, y of
distinct vertices in D, x and y are mutually reachable from each other. A strong
component of a digraph D is a maximal subdigraph of D which is strong. The
strong component digraph SC(D) of D is obtained by contracting strong com-
ponents of D and by identifying any parallel arcs obtained during this process
into a single arc. The digraph SC(D) for any digraph D is acyclic as any cycle
is fully contained within a single strongly connected component. A digraph D
is unilateral if, for every pair x, y of vertices of D, either x is reachable from y
or y is reachable from x (or both).

The definitions for the connectivity-related terms can be extended for the
case of mixed graphs. A mixed graph M is strongly connected (or strong) if its
complete biorientation

←→
M is strongly connected. A mixed graph M is unilaterally

connected (or unilateral) if its complete biorientation
←→
M is unilateral.

A mixed graph M is strongly (unilaterally) orientable (or, equivalently, M ad-
mits a strong (unilateral) orientation) if there is an orientation of M which is
strongly (resp. unilaterally) connected. A mixed graph M admits a hamilto-
nian orientation, if there is an orientation

−→
M of M which is hamiltonian. Note

that a graph that admits a hamiltonian orientation also admits a unilateral
orientation.

1.2 Problem Definition and Related Work

Given a mixed graph M , it is natural to examine whether M is strongly or
unilaterally orientable. The mixed graph M1 of Figure 1a, is strongly orientable
as it is demonstarted by digraph D1 (Fig. 1b). The directed graphs D2 and D3

(Fig. 1c and Fig. 1d) show two unilateral orientations of M , non of which is
strong. Robbins [9] proved that an undirected graph is strongly orientable if

590 T. Mchedlidze and A. Symvonis

D DDM

(d)(c)(a) (b)

v

v
v

v

v

v
v

v
1 32

v

1

v

vv
vv

v v11

4 4

2 2

3 3

2

4

1

3

2

4

1

3

Fig. 1. (a) A mixed graph M1. (b) A strong orientation of M1. (c) & (d) Unilateral
orientations of M1 that are not strong, as there is no path from v3 to v1.

and only if it is connected and has no bridge1. Boesch and Tindel [2] general-
ized Robbins’ result, showing that a mixed multigraph is strongly orientable if
and only if it is strongly connected and has no bridges. Given that a digraph
with n vertices and m arcs can be tested for strong connectivity and for being
bridgeless in O(m + n) time, the characterization given by Boesch and Tindel
immediately leads to a polynomial time recognition algorithm of strongly ori-
entable mixed graphs. Chung et al [4] presented an algorithm that computes
a strong orientation of a mixed multigraph in linear time. Chartrand et al. [3]
provided a characterization of unilaterally orientable graphs by showing that:

Theorem 1 (Chartrand et al., [3]). A connected graph G has a unilateral
orientation if and only if all of the bridges of G lie on a common path.

As the unilateral orientation presents a different notion of connectivity, it is nat-
ural to ask wether a mixed graph admits a unilateral orientation. Even though
unilateral orientation is a weaker notion of connectivity, not all mixed graphs
admit a unilateral orientation. For example, the mixed graph M2 in Fig. 2a does
not admit a unilateral orientation since there is no directed path between ver-
tices v2 and v3 in either direction. In this paper, we present a characterization
of unilaterally orientable mixed graphs that leads to a linear-time recognition
algorithm. Our characterization can be considered to be a generalization of The-
orem 1 for mixed graphs.

Observe that not all mixed graphs admit more than one distinct orienta-
tion (strong or unilateral). For example, the mixed graph M3 of Fig. 2b ad-
mits a unique unilateral orientation (given in Fig. 2c). Consider a mixed graph
M = (V, A, E) which has a unique strong (unilateral) orientation D. Then, we
say that D is a forced strong (resp. unilateral) orientation for M .

Let G = (V, E1 ∪ E2) be a graph, let A be an arc-set obtained from an
orientation of the edges in E1, and let M = (V, A, E2) be the resulting mixed
graph. If M has a forced strong (unilateral) orientation then we say that A is
a forcing set for a strong (resp. unilateral) orientation of G, or simply a strong
(resp. unilateral) forcing set.

1 An edge e of a connected mixed graph M is a bridge if M \ {e} is not connected.
A mixed graph containing no bridge is called bridgeless.

Unilateral Orientation of Mixed Graphs 591

(a) (c)(b)

M
3

D

(d)

M
4

M
2 21

v

v
v

v v

v
v

v v

v e
v

v

vv v3

6v

5v
4

4 v

3

2

4

11

4

2

33

2

4

1

Fig. 2. (a) A mixed graph M2 which does not admit any unilateral orientation.
(b) A mixed graph M3 which has a forced unilateral orientation. (c) The unique uni-
lateral orientation of M3. (d) A bridgeless unilateral mixed graph that does not admit
a unilateral orientation.

The concept of forced strong (unilateral) orientation of graphs was first in-
troduced by Chartrand et al [3] who defined the forced strong (resp. unilateral)
orientation number of an undirected graph G to be the cardinality of the minimal
forcing set for a strong (resp. unilateral) orientation of G. Strong orientations
of graphs were later studied by Farzad et et al [5]. Forced unilateral orienta-
tions were studied by Pascovici [8]. In her work, she mentions that finding an
efficient algorithm for calculating the forced unilateral orientation number of
a graph is an open question which, to the best of our knowledge, has not been
answered yet. In this paper, we partially resolve this question. Given a mixed
graph M = (V, A, E), we provide an algorithm which tests in polynomial time
whether A is a forcing set for a unilateral orientation of M (i.e., it tests whether
M has a unique unilateral orientation).

The paper is organized as follows: In Section 2 we develop a linear-time al-
gorithm for recognizing whether a mixed graph accepts a unilateral orientation
and, in the case it does, we produce such an orientation. In Section 3, we give
a lemma which implies a polynomial algorithm for testing whether a mixed graph
accepts a unique unilateral orientation. We conclude in Section 4.

2 Recognition of Unilaterally Orientable Mixed Graphs

2.1 Preliminaries

The following theorem, due to Boesch and Tindell, gives necessary and sufficient
conditions for a mixed graph to have a strongly connected orientation.

Theorem 2 (Boesch and Tindell [2]). A mixed multigraph M admits a strong
orientation if and only if M is strong and the underlying multigraph of M is
bridgeless.

Note that, a corresponding theorem for unilaterally orientable graphs (i.e., "a
mixed multigraph M has a unilateral orientation if and only if M is unilateral
and the underlying multigraph of M is bridgeless") does not hold. This is demon-
strated by the mixed graph M4 in Fig. 2d which is unilateral and bridgeless, but,

592 T. Mchedlidze and A. Symvonis

it does not have a unilateral orientation. To see that, observe that if edge (v3, v6)
is oriented towards v6, then vertices v4 and v6 are not connected by a directed
path in either direction, while, if edge (v3, v6) is directed towards v3 then vertices
v2 and v6 are not connected by a directed path in either direction.

Lemma 1 ([6], pp. 66). Digraph D is unilateral if and only if D has a spanning
directed walk2.

Lemma 2 ([3]). A tree T admits a unilateral orientation if and only if T is
a path.

A vertex of a directed graph having in-degree (out-degree) equal to zero is re-
ferred to as a source (resp. sink). An st-digraph is a directed acyclic digraph
having a single source (denoted by s) and a single sink (denoted by t).

Lemma 3 ([7]). Let D be an st-digraph that does not have a hamiltonian path.
Then, there exist two vertices in D that are not connected by a directed path in
either direction.

2.2 A Characterization for Unilaterally Orientable Mixed Graphs

Consider a mixed graph M = (V, A, E) and let V ′ ⊆ V . The mixed subgraph
of M induced by V ′, denoted by M(V ′), is defined as M(V ′) = (V ′, A′, E′) where,
A′ = {(u, v) | (u, v) ∈ A and u, v ∈ V ′} and E′ = {(u, v) | (u, v) ∈ E and u,
v ∈ V ′}.

Let M be a mixed graph, let Di = (Vi, Ei), 1 ≤ i ≤ k, be the strong com-
ponents of the complete biorientation

←→
M of M . The strong components Mi,

1 ≤ i ≤ k, of mixed graph M are defined as: Mi = M(Vi), 1 ≤ i ≤ k, that is, Mi

is the mixed subgraph of M induced by Vi. Note that each Mi is strong since,
by definition, Di is its complete biorientation.

The strong component digraph of a mixed graph M , denoted by SC(M), is
obtained by contracting each strong component of M into a single vertex and by
identifying all parallel arcs that are created during this process into a single arc.
Fig. 3a shows a mixed graph having three strong components and Fig. 3b shows
its corresponding strong component digraph. Note that the strong component
digraph of any mixed graph is acyclic.

The next lemma gives the first necessary condition for a mixed graph M to
have a unilateral orientation.

Lemma 4. If a mixed graph M admits a unilateral orientation then its strong
component digraph SC(M) has a hamiltonian path.

Proof. For the sake of contradiction, assume that SC(M) has no hamiltonian
path. Since SC(M) is an acyclic digraph, it has at least one source and at least
2 A spanning directed walk of a digraph is a directed path that visits all the vertices

of the digraph, some possibly more than once.

Unilateral Orientation of Mixed Graphs 593

(c)

(a) (d)

(b)

321 3

31

2

33

1

25

1

28

2

26

3

19 20

17

15

21

12
1

32

30

29

27

24

23

18

1,2

16

1,1

14

1,3

2,1

13

2,2

11

2,3

8

3,1
7

3,2

10
9

6

5

4

3

31
2

22

2

s−BC(M)

MMM

M

bb

a

b

a a

BC(M)

m

m

m

m

m

m

m

m

SC(M)
mm m

Fig. 3. (a) A mixed graph M . M1, M2 and M3 are the three strong components of
M . Dashed edges connect Mi with Mj , i, j ∈ {1, 2, 3}, i �= j. The bold edges are the
bridges of each Mi. (b) The strong component digraph SC(M) of M . (c) The bridgeless-
component mixed graph BC(M) of M . (d) The simplified bridgeless-component mixed
graph for mixed graph M , where the vertices ai, bi denote the endpoints of a bridge
path B(Mi).

one sink. If there are two or more sources (sinks) then it is clear that any two
of the sources (sinks) are not connected by a directed path in either direction.
If there is exactly one source and exactly one sink in SC(M) then SC(M)
is an st-digraph and, by Lemma 3, there are two vertices of SC(M) that are
not connected by a directed path in either direction. So, in either case, we can
identify two vertices of SC(M), call them mi and mj , that are not connected
by a directed path in either direction.

By the definition of the strong component digraph SC(M), mi and mj corre-
spond to contracted strong components of M . Let these strong components be
Mi and Mj , respectively. Since mi and mj are not connected by a directed path
in either direction, then for each vertex u of Mi and for each vertex v of Mj

there is no directed path in the complete biorientation digraph
←→
M connecting u

with v. Therefore, there is no path in the mixed graph M connecting u and v in
either direction, and thus, there can be no orientation of M that creates a di-
rected path connecting u with v in either direction. This is a clear contradiction
of the assumption that M admits a unilateral orientation. �	

Let M = (V, A, E) be a strong mixed graph and B ⊆ E be the bridges of M .
Note that B might be empty. Then, all components of graph M \B are strong
and bridgeless.

The bridge graph of a strong mixed graph M , denoted by B(M), is obtained
by contracting in M the vertices of each strong component of M \B. Note that
a bridge graph of any strong mixed graph is a tree. Fig. 4 shows a strong mixed
graph and its bridge graph.

594 T. Mchedlidze and A. Symvonis

(b)(a)

4

1 5

7

9
10

8 11

14

16

12

13

15

18 17

2019 5

3

4

6

321

2

cc

M

B(M) ccc

Fig. 4. (a) A strong mixed graph M . (b) The bridge graph B(M) of M .

The following lemma gives the second necessary condition for the mixed graph
to have a unilateral orientations.

Lemma 5. If a mixed graph M admits a unilateral orientation then the bridge
graph of each of its strong components is a path.

Proof. Consider a unilateral orientation D of M . By Lemma 1, D has a spanning
walk. This spanning walk of D induces an orientation of the bridges of M and,
thus, an orientation of B(M) which is unilateral. Recall that B(M) is a tree.
Then, by Lemma 2 we conclude that the bridge graph B(M) of M is a path. �	

Let M = (V, A, E) be a mixed graph and let Mi, 1 ≤ i ≤ k, be its strong com-
ponents. Moreover, let Bi be the bridges of Mi, 1 ≤ i ≤ k, and let B =

⋃i=k
i=1 Bi.

Then, the set of strong components of the mixed graph M \B is the union of the
strong components of each Mi \Bi, 1 ≤ i ≤ k. The bridgeless-component mixed
graph of a mixed graph M , denoted by BC(M), is obtained by contracting in M
the vertices of each strong component of M \B into a single vertex and by identi-
fying any parallel arcs created during this process into a single arc. Fig. 3c shows
the bridgeless-component mixed graph for the mixed graph of Fig. 3a. Note that
the edge set of the bridgeless-component mixed graph BC(M) is exactly set B.
Moreover, BC(M) can be considered to consist of a set of (undirected) trees
(the bridge graph B(Mi) of each strong component Mi of M) connected by arcs
which do not create any cycle. Also observe that the strong component digraph
SC(M) of M can be obtained from BC(M) by contracting all bridgeless com-
ponents of Mi into a single vertex and by identifying all parallel edges created
by this process into a single arc.

Observation 1. Let M be a mixed graph. Then any orientation of BC(M) is
acyclic.

Proof. It follows from the facts that (i) the strong component digraph SC(M)
is acyclic and (ii) the bridge graph B(M ′) of any strong component M ′ of M is
a tree. �	

Unilateral Orientation of Mixed Graphs 595

The following theorem provides a characterization of unilaterally orientable
mixed graphs.

Theorem 3. A mixed graph M admits a unilateral orientation if and only if the
bridgeless-component mixed graph BC(M) admits a hamiltonian orientation.

Proof. (⇒) We assume that a mixed graph M admits a unilateral orientation
and we show that BC(M) admits a hamiltonian orientation. Consider a unilat-
eral orientation of M . By Lemma 1, the unilateral orientation of M has a span-
ning walk. That spanning walk induces a spanning walk on BC(M). Since any
orientation of BC(M) is acyclic (Observation 1) the induced spanning walk on
BC(M) is a hamiltonian path. Thus, BC(M) admits a hamiltonian orientation.

(⇐) We assume now that BC(M) admits a hamiltonian orientation and we
show that M admits a unilateral orientation. Recall that the vertices of BC(M)
correspond to the bridgeless strong components of M . By Theorem 2, it follows
that each of these components admits a strong orientation. This strong orienta-
tion implies a spanning walk between any pair of vertices of the strong bridgeless
component. The hamiltonian orientation of BC(M) implies an orientation of the
bridges of the strong components of M . The strong orientation of the strong and
bridgeless components of M together with the orientation of the bridges of the
strong components of M , result to orientation D of M .

The hamiltonian orientation of BC(M) implies a hamiltonian path and, in
turn, an ordering of the strong bridgeless components of M . Based on this order-
ing, we can easily construct a spanning walk on orientation D. Thus, based on
Lemma 1, D is a unilateral orientation. We conclude that M admits a unilateral
orientation. �	

2.3 The Algorithm

Based on the the characterization of Section 2.2, Algorithm 1 decides whether
a mixed graph that is given to its input is unilaterally orientable. In the first step
of Algorithm 1, we construct the strong connected digraph SC(M) of M . In order
to do so, we have to compute the strongly connected components of the complete
biorientation

←→
M of M . This can be easily accomplished in O(V + A + E) time.

In the second step of Algorithm 1, we test whether SC(M) has a hamiltonian
path. Note that since SC(M) is an acyclic digraph, it has a hamiltonian path
if and only if it has a unique topological ordering. This can be easily tested in
linear time to the size of SC(M). In the third step of Algorithm 1, we construct
the bridge graph BM(Mi) for each strong component Mi of M . Identifying all
bridges can be trivially done by testing whether the removal of each individual
edge disconnects the component. By using a depth-first-search based method,
the identification of all bridges and the construction of all bridge graphs can be
completed in O(V + A + E) time. Testing whether each bridge graph is a path
is trivial and can be completed in linear time to the size of the bridge graph.

By utilizing the already constructed bridge graphs of step 3 of the algorithm,
we can construct the bridgeless-component mixed graph BC(M) of M in time

596 T. Mchedlidze and A. Symvonis

proportional to its size. Now, it remains to test whether BC(M) is hamiltonian.
Note that, since we have reached the fourth step of Algorithm 1, it holds that
our graph satisfies two properties. Firstly, all of its bridge graphs are paths
(thus, we refer to them as bridge paths) and, secondly, its strong component
digraph SC(M) is hamiltonian. We will exploit these properties in order to
decide whether BC(M) is hamiltonian in linear time.

Let Mi, 1 ≤ i ≤ k, be the strong components of M and assume without loss
of generality that they appear on the hamiltonian path of SC(M) in this order.
Firstly observe that in a hamiltonian path of BC(M), if one exists, all vertices of
the bridge path B(Mi) are visited before the vertices of the bridge path B(Mj),
for all i < j. Since the graph SC(M) is acyclic, if we leave component Mi before
visiting all of its vertices there is no way to return to it and, thus, no hamiltonian
path exists. Also observe that, in a hamiltonian path of BC(M) each bridge
path is traversed from one of its endpoint to the other and, thus, there are two
possible orientation of the bridge path. As a consequence, the hamiltonian path
of BC(M), if any, only uses arcs which leave from the endpoints of a bridge
path B(Mi) and enter the endpoints of a bridge path B(Mj), i < j. In addition,
these arcs connect consecutive bridge paths. Thus, when testing whether the
bridgeless-component mixed graph BC(M) has a hamiltonian path, we can use
a simplified leveled mixed graph, denoted by s-BC(M), resulting by eliminating
all vertices which are not endpoints of a bridge graph and all arcs that enter
or leave them, as well as all arcs connecting vertices on non consecutive bridge
pahts. Thus, each level of the graph is either an edge or a single vertex, and the
levels which correspond to the strong components of M appear in the order of
their corresponding strong component. Fig. 3d shows the simplified bridgeless-
component mixed graph for mixed graph M , where the vertices ai, bi denote the
endpoints of a bridge path B(Mi).

We can decide whether the s-BC(M) has a hamiltonian path by using a sim-
ple dynamic programming algorithm. Let pa

i be a boolean variable which takes
the value true if and only if there is a hamiltonian path that traverses all ver-
tices of the first i levels of s-BC(M) and terminates at vertex ai, 1 ≤ i ≤ k.
Similarly we define pb

i . It is easy to see that the following recursive relations hold:

pa
1 = pb

1 = true
pa

i =
(
pa

i−1 = true ∧ ∃(ai−1, bi) ∈ A′) ∨ (pb
i−1 = true ∧ ∃(bi−1, bi) ∈ A′)

pb
i =
(
pb

i−1 = true ∧ ∃(bi−1, ai) ∈ A′) ∨ (pa
i−1 = true ∧ ∃(ai−1, ai) ∈ A′)

(for 1 < i ≤ k)

Based on the above equations, we can decide whether there is a hamiltonian
path in s-BC(M) (and, as a consequence in BC(M)) in O(k) time.

Observation 2. The bridgeless-component mixed graph BC(M) of a mixed
graph M has exactly one hamiltonian path if and only if pa

i ⊕ pb
i =

true, 1 ≤ i ≤ k, where k is the number of strong components of M .

We also note that, in the case where a unilateral orientation exists, we can
compute one in linear time. This can be achieved by orienting the bridges of

Unilateral Orientation of Mixed Graphs 597

Algorithm 1. Unilateral-Orientation(M)

input : A Mixed graph M = (V, A, E).
output : “YES” if M has a unilateral orientation, “NO” otherwise.
1. Construct the strong connected digraph SC(M) of M .

{Denote the strong components of SC(M) by M1, . . . , Mk.}
2. if SC(M) has no hamiltonian path then return(“NO”)

else
3. For each strong component Mi of M , 1 ≤ i ≤ k,

Construct the bridge graph B(Mi);
if BMi is not a simple path then return(“NO”);

{ All bridge graphs BMi are paths. }
4. Construct the bridgeless-component mixed graph BC(M) of M
5. if BC(M) has no hamiltonian path then return(“NO”);
6. return(“YES”);

BC(M) according to the hamiltonian path of BC(M) and by using a strong
orientation for each bridgeless strong component of the bridge graphs.

From the above description, we can state the following theorem:

Theorem 4. Given a mixed graph M = (V, A, E) , we can decide whether M ad-
mits a unilateral orientation in O(V +A+E) time. Moreover, if M is unilaterally
orientable, a unilateral orientation can be computed in O(V + A + E) time.

We also note that we can prove an additional characterization for unilaterally
orientable mixed graphs that can be considered to be a counterpart of Theorem 1
given by Chartrand et al [3]. The proof of the following theorem is based on
the properties of the strong component digraph SC(M), and the bridgeless-
component mixed graph BC(M) for a mixed graph M .

Theorem 5. A mixed graph admits a unilateral orientation if and only if all
the bridges of its strong components lie on a common path.

3 Recognition of Unilateral Forcing Sets

Let M = (V, E, A) be a mixed graph. In this section we present a simple lemma
stating whether M has a forced unilateral orientation or, equivalently, whether
A is a unilateral forcing set for M . Based on this lemma and Algorithm 1, we
infer a polynomial algorithm for testing whether A is a unilateral forcing set
for M or, equivalently, G has a unique unilateral orientation.

Forced unilateral orientations were studied by Pascovici in [8], where she gave
a general lower bound for the forced unilateral orientation number and showed
that the unilateral orientation number of a graph G having edge connectivity 1
is equal to m−n+2, where m and n are the numbers of edges and vertices of G,
respectively.

598 T. Mchedlidze and A. Symvonis

Lemma 6. A mixed graph M = (V, A, E) admits a unique unilateral orientation
if and only if for each edge e = (u, v) ∈ E either (V, A∪{(u, v)}, E \ {(u, v)}) or
(V, A ∪ {(v, u)}, E \ {(u, v)}) has a unilateral orientation, but not both.

Proof. (⇒) Let M admit a unique unilateral orientation and assume, for the sake
of contradiction, that both (V, A∪{(u, v)}, E \ {(u, v)}) and (V, A∪{(v, u)}, E \
{(u, v)}) have a unilateral orientation. Then these unilateral orientations differ
in at least one edge and hence are distinct. A clear contradiction. Otherwise,
if we assume that neither (V, A ∪ {(u, v)}, E \ {(u, v)}) nor (V, A ∪ {(v, u)}, E \
{(u, v)}) has a unilateral orientation, then we have a contradiction again, as M
was supposed to have at least one unilateral orientation.

(⇐) Assume now that for each edge e = (u, v) ∈ E either (V, A∪{(u, v)}, E \
{(u, v)}) or (V, A ∪ {(v, u)}, E \ {(u, v)}) has a unilateral orientation, but not
both of them. It is clear that M has at least one unilateral orientation. Assume,
for the sake of contradiction, that M has more than one unilateral orientations.
Consider any two arbitrary unilateral orientations of M . As these orientations are
distinct they differ in at least one edge, say e′ = (u′, v′) ∈ E. So we conclude that
both (V, A∪{(u′, v′)}, E \ {e′}) and (V, A∪{(v′, u′)}, E \ {e′}) have a unilateral
orientation, a clear contradiction. �	

Theorem 6. Given a mixed graph M = (V, A, E), we can decide whether A is
a unilateral forcing set for M in O(E(V + A + E)) time.

Proof. Follows directly from Theorem 4 and Lemma 6. �	

4 Conclusion

For a mixed graph M = (V, A, E), we presented a linear-time algorithm that
recognizes whether M is unilaterally orientable, and in the case where it is, we
also presented a characterization leading to a polynomial algorithm for deter-
mining whether A is a unilateral forcing set for M . Future research includes the
study of the number of unilateral orientations of a mixed graph, as well as the
complexity of the problem of finding a unilateral forcing set of minimum size.

References

1. Bang-Jensen, J., Gutin, G.: Digraphs: Theory, Algorithms and Applications.
Springer, Heidelberg (2007)

2. Boesch, F., Tindell, R.: Robbins’s Theorem for Mixed Multigraphs. American
Mathematical Monthly 87(9), 716–719 (1980)

3. Chartrand, G., Harary, F., Schultz, M., Wall, C.E.: Forced Orientation Numbers
of a Graph. Congressus Numerantium 100, 183–191 (1994)

4. Chung, F.R.K., Garey, M.R., Tarjan, R.E.: Strongly Connected Orientations of
Mixed Multigraphs. Networks 15(4), 477–484 (1985)

5. Farzad, B., Mahdian, M., Mahmoodian, E.S., Saberi, A., Sadri, B.: Forced Orien-
tation of Graphs. Bulletin of Iranian Mathematical Society 32(1), 79–89 (2006)

6. Harary, F., Norman, R.Z., Cartwright, D.: Structural Models: An Introduction to
the Theory of Directed Graphs. Addison-Wesley, Reading (1965)

Unilateral Orientation of Mixed Graphs 599

7. Mchedlidze, T., Symvonis, A.: Crossing-Optimal Acyclic Hamiltonian Path Com-
pletion and Its Application to Upward Topological Book Embeddings. In: Das,
S., Uehara, R. (eds.) WALCOM 2009. LNCS, vol. 5431, pp. 250–261. Springer,
Heidelberg (2009)

8. Pascovici, D.: On the Forced Unilateral Orientation Number of a Graph. Discrete
Mathematics 187, 171–183 (1997)

9. Robbins, H.E.: A Theorem on Graphs, with an Application to a Problem of Traffic
Control. American Mathematical Monthly 46, 218–283 (1939)

Maintaining XML Data Integrity in Programs
An Abstract Datatype Approach

Patrick Michel and Arnd Poetzsch-Heffter

University of Kaiserslautern, Germany
{p michel,poetzsch}@cs.uni-kl.de

Abstract. In service-oriented loosely coupled distributed information
systems, the format and semantics of the exchanged data become more
and more important. We envisage that there will be an increasing num-
ber of general and domain-specific XML-based data formats for service-
oriented computing. A typical example is a tax declaration form. If the
schemas defining the formats specify structural and additional integrity
constraints, we speak of constrained XML.

The paper describes a technique for an integration of constrained XML
data into programming, which is able to handle integrity constraints. Our
technique allows us to automatically check the correctness of programs
manipulating constrained XML data. In our approach, constrained XML
data is treated like an abstract data type with an interface of schema-
specific procedures. Programs use these procedures to manipulate the
XML data. The preconditions of the procedures guarantee that proce-
dures maintain the constraints. Our approach allows us to automatically
generate the preconditions and to simplify them to a minimal form. The
technique is based on a path representation and logical embedding of
XML data. The weakest precondition generation is implemented and ex-
ploits an SMT-solver for simplification.

1 Introduction

In service-oriented loosely coupled distributed information systems, the format
and semantics of the exchanged data become more and more important. Having
standardized data formats will simplify communication between different appli-
cations as well as among enterprises and clients. We envisage that there will be
an increasing number of general and domain-specific complex data formats for
service-oriented computing. Typical examples are formats for tax declaration or
for negotiating insurance contracts. As XML has become a de facto standard
to represent structured data, we assume that the formats are defined by XML
schema languages.

We present a technique to improve programming support for constrained XML
data where constrained means that the XML data satisfies a structural schema and
additional integrity constraints. Our technique allows us to automatically check
the correctness of programs manipulating constrained XML data. In particular,

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 600–611, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Maintaining XML Data Integrity in Programs 601

we guarantee that the XML data resulting from the manipulation satisfies the con-
straints. This is a first for integrity constraints, which are far more complex than
structural constraints.

In our approach, constrained XML data is treated like an abstract data type
with an interface of schema-specific procedures. These interface procedures can
be used in a host programming language to manipulate the XML data. They hide
the special aspects of structured XML data handling behind a host language API.
The implementation of the interface procedures is kept separate from the host
language and is tailored to the specific aspects of XML data handling. Domain
experts develop the interface procedures together with the schema.

Implementing such an approach splits into a number of key challenges, which
have to be tackled together. Both the schema language and the language for
interface procedures have to be accessible by domain experts and feature explicit
data specific primitives. To verify the correctness of interface procedures, their
semantics have to be formally defined and they have to relate to the semantics of
schemata. In realistic scenarios, however, correctness proofs cannot be created
by domain experts, as this would require them to have extensive knowledge
in formal methods. So to offer comprehensive support for the definition and
correct usage of XML data with integrity constraints, it is necessary to maintain
schemata as invariants automatically.

The contributions of this paper are the following:

– An abstract datatype approach for the integration of XML data with in-
tegrity constraints, which automatically guarantees that updates are indeed
valid.

– A logical framework based on a path representation of XML data, which
allows us to use the necessary automated analysis techniques.

– A pattern-based schema language with embedded integrity constraints, whose
semantics can be completely expressed within the logical framework.

– An update language used to formulate the interface procedures of the data-
types, whose semantics can also be expressed within the framework.

– A direct application of the automated techniques first described in [7], which
allow us to generate minimal preconditions that guarantee that the integrity
constraints defined by the schema are maintained by procedures.

Related work. Support for constrained XML data has always been weak in pro-
gramming languages. Low level APIs like DOM [10] and SAX [9] are cumbersome
to use and offer no support to check or maintain schema constraints. Data bind-
ing approaches like JAXB [8] and language extensions like XJ [5] have eased
the problem at least for basic structural constraints, yet they are unable to cope
with integrity constraints. New languages like XDuce [6] have been developed
to offer comprehensive support for sophisticated structural type systems. Such
languages, however, do not integrate well into the existing languages and tools
and suffer from being too specific. In the case of XDuce, the language excels
at handling severe structural changes and transformations, which is not needed
when working with a fixed schema. It also does not cover integrity constraints
at all.

602 P. Michel and A. Poetzsch-Heffter

Gardner, et al. applied context logic [1] to an XML subset and a correspond-
ing fragment of the DOM API [4]. Using their weakest precondition generation,
they are able to analyze straight-line Java code. As an example they show how
to prove structural schema invariants. Schema constraints are directly expressed
in context logic, which makes them hard to read for common programmers. They
do not define a higher level schema language and do not show how integrity con-
straints could be supported. Furthermore, there is currently no technique avail-
able to simplify preconditions. Their approach relies on manual proofs, rather
than automated methods, which renders the technique inaccessible to domain
experts.

In [7] we have presented an assertion language together with a technique to
automatically generate preconditions for a core update language. These precondi-
tions guarantee that integrity constraints are maintained. As the constraints can
be complex, we developed a technique that allows us to simplify the preconditions
to a minimal form. In particular, we do not want to check the full set of integrity
constraints of the manipulated XML data at every call site. Many constraints are
unaffected by an update and remain true, so they need not be checked over and
over. Other affected constraints can be checked by a much smaller incremental
check. By using this technique, we are able to present minimal preconditions to
the programmer in a readable form, so he can prevent individual constraints from
failing and knows how to react to the failure of others.

Overview. Section 2 describes our approach in more detail and gives an illus-
trating example. Section 3 introduces the formalization on which the rest of the
paper is based. Section 4 and 5 define the schema and the update language,
respectively. Section 6 concludes the paper.

2 XML Data as Abstract Datatype

We propose to view XML data as an abstract datatype and interface it with
a target language by a set of interface procedures. To perform more complex
tasks, programs can be written that use the interface procedures as primitive
operations. In this way, the intricacies of the constraint handling are hidden
from the programmer. The interface procedures are developed together with the
schema by domain experts in a light-weight XML manipulation language which
incorporates concepts for constrained data. We explain the manipulation lan-
guage that we developed with a tiny usage scenario: Clients exchanging packets.
Each packet has a packet header represented as constrained data. Here is the
schema that a domain expert might develop for packet headers:
packetheader {

capacity { INT [sum(//kind/count) ≤ .] } &

kind ∗ {
count { INT [. > 0] }

}
}

Maintaining XML Data Integrity in Programs 603

A header consists of an integer expressing the capacity of the packet and
a set of kind elements. A kind element records for each kind of item in the
packet the count of items of that kind. Implicitly, the schema defines for each
element an identifier attribute. If elements can occur with an arbitrary multiplic-
ity, like the kind elements, all their identifiers have to be pairwise distinct. This
implicit uniqueness constraint is enforced to make sure that elements are always
structurally distinguishable. In addition, the above schema defines two integrity
constraints: A count has always to be positive and the capacity of the packet
has to be larger than the sum of the counts. These constraints are expressed by
the embedded context rules enclosed in brackets. The dot refers to the element
to which the context rule is attached.

For the manipulation of packet headers, the domain expert writes interface
procedures. The following interface procedure adds amount items of kind k to an
implicit packet header argument. If the amount is negative or zero, procedure
add fails. Otherwise it creates a new element for items of kind k if necessary and
increases the count:

add(ident k, int amount) {
assume amount > 0;

if not //kind[k] then

new //kind[k];

new //kind[k]/count;

//kind[k]/count := 0

fi

//kind[k]/count := //kind[k]/count + amount

}

We are able to automatically generate weakest preconditions for such proce-
dures and translate them to languages like Java. The example procedure add
would result in a member method of a type Packetheader with the following
signature:

// Precondition:

// amount > 0 (AssumptionException)

// sum (//kind/count) + amount <= //capacity (CapacityException)

Packetheader add(Ident k, Integer amount) { ... }

In Java programs, the interface procedures are used to manipulate data of
the schema type and realize more complex tasks. The Ident type is provided
by the generated API and can be assumed to subsume at least all Strings. The
exceptions raised by failing preconditions are generated as unchecked exceptions,
as programmers should have the liberty to ignore them in contexts where they
are sure they cannot arise. A Java method for packing a list of items and sending
them to other clients could look like this:

void pack(List<Ident> items) {

Packetheader cur = new Packetheader(42); // 42 is packet capacity

for(Ident item : items) {

604 P. Michel and A. Poetzsch-Heffter

try { cur.add(item, 1); }

catch(CapacityException e) {

sendPacket(cur);

cur = new Packetheader(42).add(item, 1);

}

}

sendPacket(cur);

}

The method creates new packets and fills them up with items. The program-
mer has to make sure that whenever he calls the add method, he can either
guarantee the precondition or handle its failure. As the amount is set to the
constant 1, the only thing that can possibly go wrong is that the packet is al-
ready full. In this case, the add method will abort without changing anything in
the packet. The pack method then sends the full packet and creates a new one.
Adding the item to the new packet will now never result in an exception, so the
call is safe.

3 Paths and Documents

As usual in the domain of XML, we will refer to constrained XML data as docu-
ments. The basis of our approach is a path representation and logical embedding
of such documents. Paths are an intuitive concept known to domain experts. At
the same time, however, paths are the key to using automated methods to en-
sure schema correctness of manipulating procedures. We use paths to identify
and give an identity to elements in a document. Documents can then easily be
defined as sets of paths with attached values.

Example path: /packetheader/kind[k]/count

We present an enhanced version of the original formalization described in [7],
which is in particular prepared to handle arbitrary values. The weakest precon-
dition generation and simplification techniques described there easily extend to
these changes.

Our formalization supports identifiers, strings, integers and the special com-
plex value clx, which marks elements without value and inner elements of a doc-
ument. There can be arbitrary many constants c and variables v of each value
type and it is possible to cast values to the base types.

values V ::= I | S | Z | clx | D(P)
identifier I ::= cI | vI | null | castI(V)

strings S ::= cS | vS | castS(V)
integer Z ::= 0 | 1 | vZ | Z + Z | Z ∗ Z | −Z | castZ(V)

| sum(V ∗) | count(V ∗) | rcount(V, V ∗)

Identifiers I and strings S are words over the alphabets ΣI and ΣS and we
assume those words can be distinguished. Z represents the integer numbers with
common arithmetic connectives. The constant null refers to the empty identifier.
D(P) denotes reading a value from document D at path P .

Maintaining XML Data Integrity in Programs 605

Paths represent the different elements in a document. The root path is denoted
by root. Longer paths can be constructed by extending another path with a
label, to select an element with that name, and an identifier, which separates
this element from others with that name. Labels L are non-empty words on the
alphabet ΣL, like packetheader or capacity in the example.

labels L ::= cL

paths P ::= root | P/L[I]
documents D ::= blank | D[P → V] | D[P →] | $

The example path from above has the following formal representation:

Formal path: root/packetheaderL[null]/kindL[kI]/countL[null]

A document consequently is a finite map from paths to values, where the
blank document represents an initial document, which only contains the root
path mapping to clx. We support local modifications in the form of adding (or
replacing) a single path-value-pair and removing all pairs for a path and all its
extensions. The dollar symbol is the only variable we use for documents. For
example, the initial document with count of kind k set to zero is expressed with
the following expression, in slightly abbreviated path syntax:

Example document: $
[
/packetheader/kind[k]/count → 0

]
The sorts V ∗ and P ∗ represent value and path multisets and offer the usual

singleton and union operations. We allow variables vm on value multisets, have
a constant named ’all’, representing complete I, and can convert path multisets
to value multisets by reading from the document using the syntax D(P ∗). Path
multisets can also be created by extending all paths in another multiset with
a label and an identifier from a value multiset, using the same syntax ./.[.] as for
single paths.

value multisets V ∗ ::= V | V ∗ ∪ V ∗ | D(P ∗) | all | vm

path multisets P ∗ ::= P | P ∗ ∪ P ∗ | P ∗/L[V ∗]

To sum up all the count elements in the example, we first create a path multiset
representing all these elements and then read their values from the document.
Within our schema, the expression sum(//kind/count) expands to:

Example: sum
(
$
(
root/packetheaderL[null]/kindL[all]/countL[null]

))

4 Schema Language

In this section, we show by example how a schema language accessible by domain
experts can look like. Any paradigm and feature, which can be translated into
propositions on the terms of Section 3, can be supported.

We choose to combine the simplicity of a pattern-based approach in the spirit
of abbreviated Relax NG [2,3] with a rule-based approach. The patterns define
the structure of documents, while the rules define arbitrary integrity constraints.
By embedding paths directly into the logic, integrity constraints can be under-
stood and written by domain experts and read by programmers.

606 P. Michel and A. Poetzsch-Heffter

4.1 Syntax

We support a usual base of patterns, namely the empty pattern, groups, choice,
element definitions and repetition of elements. The content of elements can be
complex, a type or an enumeration (cf. pattern example in Section 2).

pattern Q ::= ε | Q&Q | Q|Q | L{C} | L ∗ {C}
content C ::= Q | T | E
enums E ::= V | E|E

Integrity constraints are defined in a rule-based approach, as propositions on
paths and values. We support the normal boolean connectives, equality, integer
comparisons and top level quantification over identifier variables. To formulate
structural constraints and guards, we can also express that a path is contained
in a document and that a value has a specific type.

formulas G ::= ∀vI .G | F
F ::= false | F ∧ F | F ∨ F | ¬F

| α = α | Z < Z | P ∈ D
types T ::= INT | ID | STR | CLX | typeOf(V)

4.2 Semantics

Patterns. The semantics of patterns are given in terms of the assertion language,
i.e. patterns are completely translated into formulas. Each element definition in
a pattern defines a set of paths using the same labels, but different identifiers.
The existence of each of these paths is tied to that of other paths, like the parent
path or non-optional children.

To formulate these dependencies, we define the characterizing path of an ele-
ment definition. To compute the characterizing path of an element, the charac-
terizing path of the next enclosing element definition is extended with the label
of the element and the null identifier. For repeated elements, we choose a fresh
variable as identifier instead, which is quantified in the context. If there is no
next enclosing element definition, we extend the root path.

The characterizing paths for all element definitions of the example schema are
the following:

/packetheader /packetheader/kind[x]
/packetheader/capacity /packetheader/kind[x]/count

Using these paths, the relations defined by patterns can be expressed as propo-
sitions. For each element, for example, a proposition is created, which ensures
the existence of its parent:

∀x. /packetheader/kind[x]/count ∈ $ → /packetheader/kind[x] ∈ $

Groups of elements exist if both patterns exist. For patterns combined in
a choice, at least one of them has to exist. Both the empty pattern and a repeated
element always exist, as the latter can also be an empty sequence.

Maintaining XML Data Integrity in Programs 607

Elements containing non-complex content, i.e. a datatype or enumeration of
values, are translated into similar propositions. The typeOf function is used
to guarantee that an assigned value has the appropriate type. Enumerations
translate into a disjunction of equalities testing the different values.

Example: ∀x. /packetheader/kind[x]/count ∈ $ →
typeOf

(
$(/packetheader/kind[x]/count)

)
= INT

Propositions. The semantics of propositions are given in terms of the respective
models of values, paths, multisets and documents, with respect to an interpreta-
tion of all variables, called evaluation environment E. We denote an evaluation
in environment E with

�
·
�

E
. In order for the techniques of [7] to work and to fa-

cilitate static analysis, the semantics have to be carefully designed. Nevertheless,
we are able to support the intuition behind the connectives.

Due to space limitations, we do not define them formally here and point out
the important aspects instead. For simplicity of the logic, both the read function
and all cast functions are defined as total, i.e. they return default values for
invalid parameters. Section 4.4 explains how to deal with this behavior. The
multiset operations sum and ./.[.], as well as .(.), are selective in the sense that
they ignore values of the wrong type or paths which are not present in the
document, respectively. This leads to much simpler specifications and allows us
to use infinite path multisets to create finite value multisets by reading from
documents.

4.3 Embedding Rules

We now extend the classical pattern-based structural schema language with the
possibility to embed rules. A rule is a single proposition attached to an element
definition. This approach has the following benefits:

– By tying rules to a structural schema, the paths in rules can be checked for
validity, resulting in the detection of more errors at compile time.

– Paths in rules can use the usual convenience axes, like parent or descendants.
– The context of a rule is implicitly given by the location of the rule in the

pattern, allowing us to use much shorter relative paths starting with the dot.

Rules can be embedded in any element definition, regardless if it is repeated or
not, by enclosing it in brackets. Defining a rule at the top level is also possible,
which means it has the root path as context. To support more navigational
axes and relative paths, we extend the sort P ∗ as follows and introduce explicit
conversions of singleton sets to paths using castP .

paths P ::= root | P/L[I] | castP (P ∗)
path multisets P ∗ ::= {P} | P ∗ ∪ P ∗ | P ∗/L[V ∗]

| . | P ∗/.. | P ∗/.L | P ∗//L[V ∗]

The dot refers to the characterizing path of the enclosing element definition. The
double dot can be used to navigate to a direct parent, whereas the single dot

608 P. Michel and A. Poetzsch-Heffter

followed by a label jumps to the next parent of that name. A double slash refers
to all possible descendants matching the supplied label.

To be able to use the new axes to select meaningful multisets and even single
paths, the resulting path multisets have to be filtered with the paths defined
in the structural schema. The set of all these paths is derived analogously to
characterizing paths. The only difference is that instead of inserting a variable
as identifier for repeated element definitions, we add an infinite number of paths,
consisting of one version for each identifier.

With this set of paths, the semantics of the new constructs can be defined to
work within the limits of the schema. Again, the formal definition of the new
constructs leaves the scope of the paper, yet it is easily possible to capture the
intuition behind them. Note that the reverse axes parent and ancestor both need
to filter out duplicates, as they could otherwise produce an infinite number of
duplicates of paths.

In order to further improve readability and conciseness of schema specifica-
tions, a concrete syntax for embedded rules will offer the following features:

– Implicit casts both on values and paths. In almost every case, the needed
sort of an expression can be inferred from the context and a cast introduced
accordingly.

– Implicit document both for reading values and domain checks. Schema con-
straints always refer to the document $, without any manipulations, which
makes the $ obsolete. We can then neglect the parenthesis used for reading
and the ∈ symbol, as the context makes clear if a value or proposition is
needed.

– Implicit all and null. Leaving out the brackets in a path step has the implicit
meaning of ’all’ for path multisets and ’null’ for single paths.

– Implicit root. All paths start with root, either as unique path or singleton
set, so in concrete syntax absolute paths just start with a slash.

4.4 Specification Errors

Although all operators are defined as total, there are several situations which
should be considered specification errors and can in fact support the development
of schemata immensely. Resulting empty sets, for instance, should be considered
specification errors, as they most likely do not reflect the intention of the pro-
grammer, but reveal an inconsistency with the schema or just a simple typo. In
particular it is undesirable that one of the following ever happens:

– A castI/S/Z fails and returns the default value of that sort instead.
– A castP fails and returns the root path instead.
– A non-existent path is read from the document, resulting in the value clx.

All of these can easily be prevented by construction or treated as error by mod-
ifying the specification. In embedded rules, for example, it makes sense to auto-
matically guard each document access using a unique path with a domain check
for this path. The implied semantics is that a rule need only hold, if the paths

Maintaining XML Data Integrity in Programs 609

used actually exist in the document in question. Especially the specification of
rules in repeated elements benefits from this implicit assumption.

In procedures, it may be desirable to assert that no cast or document access
fails, by extending the precondition of statements containing such terms with
a guard for each. Value casts can be guarded using typeOf, unique document
access with ∈. We have defined the structural schema language in such a way,
that all typeOf comparisons can be statically decided. A castP on a singleton
path should be rejected if it is not statically decidable, which only happens in the
context of choices or repeated elements and hints at bad programming practice.

Finally, it is possible to transform a formula such that failing casts and reads
are treated as errors. This is done by case analysis and simply removing literals
containing a failed cast or read access from their disjunction in conjunctive
normal form. The underlying idea is that a literal containing a term raising an
exception can no longer contribute to fulfilling a disjunction.

5 Procedures

We now define an exemplary core procedural update language, which can be
used by domain experts to define the atomic manipulations necessary to use
a schema. Analogous to the schema language defined in Section 4, any paradigm
and feature can be supported, as long as the semantics of the language can be
described in the logical framework of Section 3. In particular, all modifications
have to translate to set .[.→ .] or delete .[.→] operations.

The guiding principal for the core language is to provide the means to en-
capsulate alien aspects like paths from the host language and allow experts to
build a toolset of atomic procedures to work with. At the same time, the lan-
guage allows us to use automated methods to show the programmer the minimal
conditions he has to ensure for an interface procedure to maintain the integrity
constraints.

5.1 Syntax

Procedures have a name, a list of variables marked as parameters and a body
containing a sequence of statements. A statement can create a new element,
free an element or set the value of an existing one. It is possible to annotate
assumptions and use conditionals for alternative control flows. Finally, variables
for single values and value multisets can be declared and assigned.

procedures R ::= L (M) { U }
parameters M ::= int vZ | str vS | ident vI | M, M
sequences U ::= O | U ; U

statements O ::= new P | free P | P := V
| assume G | if F then U else U fi
| vZ = Z | vS = S | vI = I | vm = V ∗

Note that formulas in conditionals have to be quantifier-free. We do not support
loops, as these would prevent automated weakest precondition generation.

610 P. Michel and A. Poetzsch-Heffter

5.2 Semantics

The operational semantics of procedures define how sequences of statements
modify evaluation environments: U, E 	 E′. As there is only one document
variable, we use the abbreviated notation E

�
D

�
E

instead of E
[
$ �→

�
D

�
E

]
.

Ua, E 	 E′ Ub, E
′ 	 E′′

Ua; Ub, E 	 E′′

�
P/L[I] �∈ $

�
E

�
P ∈ $

�
E

new P/L[I], E 	 E
�
$[P/L[I] → clx]

�
E

�
P ∈ $

�
E

P �= root

free P, E 	 E
�
$[P →]

�
E

�
P ∈ $

�
E

P �= root

P := V, E 	 E
�
$[P → V]

�
E

�
F

�
E

Ut, E 	 E′

if F then Ut else Ue fi, E 	 E′

�
¬F

�
E

Ue, E 	 E′

if F then Ut else Ue fi, E 	 E′

�
G

�
E

assume G, E 	 E vm = V ∗, E 	 E
[
vm �→

�
V ∗�

E

]
vI/S/Z = I/S/Z, E 	 E

[
vI/S/Z �→

�
I/S/Z

�
E

]
The initial environment is constructed by binding the input document to $,

the parameter values to the declared parameter variables and default values to
all other variables used in statements.

Note that although the formalization of documents permits arbitrary finite
maps from paths to values, it is in practice desirable to only deal with documents
which represent a tree. A document is a tree, if for every path it contains, it also
contains all prefixes of that path. The presented update language is designed in
such a way, that this property is maintained by all statements.

Weakest precondition generation for sequences and statements is defined as
follows. The weakest preconditions for sequences and conditionals are as usual.
We use the syntax G[b/a] to express that a is substituted by b in the formula G.

wp (new P/L[I], G) = G[
$[P/L[I]→clx]

/
$
] ∧ P ∈ $ ∧ P/L[I] �∈ $

wp (free P, G) = G[
$[P→]

/
$
] ∧ P ∈ $ ∧ P �= root

wp (P := V, G) = G[
$[P→V]

/
$
] ∧ P ∈ $ ∧ P �= root

wp (assume Ga, G) = G ∧ Ga

wp (vI/S/Z = I/S/Z, G) = G[
I/S/Z

/
vI/S/Z

]
wp (vm = V ∗, G) = G[

V ∗
/

vm

]
The document manipulations of statements in procedures are directly expressed
in the logical embedding. In [7] we have introduced the necessary rewriting rules
to remove the two document manipulations from formulas. In most cases, these
rules even reduce the size of formulas and lead to subsequent simplification. In
this way, the weakest preconditions can indeed be checked on the prestate of
procedures.

Maintaining XML Data Integrity in Programs 611

6 Conclusion

In this paper we presented a first approach to deal with XML data with in-
tegrity constraints from within common programming languages. Such XML
data is seen as abstract datatype, exposing an interface of basic procedures for
manipulation. Domain experts write structural schemata in a normal pattern-
based approach, but can also embed sophisticated integrity constraints using
paths. Using these paths, they also define the basic atomic manipulations associ-
ated with the schema as procedures. We are able to automatically translate and
analyze procedures, forming a comprehensive approach to correctness.

The weakest preconditions of procedures are derived automatically and can
also automatically be reduced to a minimal form. These preconditions guarantee
that a procedure maintains the integrity constraints. The programmer using
procedures is able to read the preconditions, guarantee them on calls or react
to their failure. Procedures interface with the host language by using primitive
types, especially identifiers.

All this is made possible by the underlying path-based formalization first
presented in [7]. It allows specifications both to be easily accessible by domain
experts and programmers and to be processed by automated tools. We have im-
plemented a prototype system integrating an SMT-solver for simplification. In all
example specifications, the system was able to derive the minimal precondition
automatically.

References

1. Calcagno, C., Gardner, P., Zarfaty, U.: Context Logic and Tree Update. SIGPLAN
Not. 40(1), 271–282 (2005)

2. Clark, J.: RELAX NG Compact Syntax (November 2002),
http://www.oasis-open.org/committees/relax-ng/compact-20021121.html

3. Clark, J., Makoto, M.: RELAX NG Specification (December 2001),
http://www.oasis-open.org/committees/relax-ng/spec-20011203.html

4. Gardner, P.A., Smith, G.D., Wheelhouse, M.J., Zarfaty, U.D.: Local Hoare Rea-
soning about DOM. In: PODS 2008: Proceedings of the Twenty-Seventh ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp.
261–270. ACM, New York (2008)

5. Harren, M., Raghavachari, M., Shmueli, O., Burke, M.G., Bordawekar, R.,
Pechtchanski, I., Sarkar, V.: XJ: Facilitating XML Processing in Java. In:
WWW 2005: Proceedings of the 14th International Conference on World Wide
Web, pp. 278–287. ACM, New York (2005)

6. Hosoya, H., Pierce, B.C.: XDuce: A Statically Typed XML Processing Language.
ACM Trans. Internet Techn. 3(2), 117–148 (2003)

7. Michel, P., Poetzsch-Heffter, A.: Assertion Support for Manipulating Constrained
Data-Centric XML. In: International Workshop on Programming Language Tech-
niques for XML (PLAN-X 2009) (January 2009)

8. Microsystems, S.: Java Architecture for XML Binding (JAXB),
http://java.sun.com/developer/technicalArticles/WebServices/jaxb//

9. Sourceforge. Simple API for XML (SAX),http://www.saxproject.org/
10. W3C. Document object model (DOM), http://www.w3.org/DOM/

http://www.oasis-open.org/committees/relax-ng/compact-20021121.html
http://www.oasis-open.org/committees/relax-ng/spec-20011203.html
http://java.sun.com/developer/technicalArticles/WebServices/jaxb//
http://www.saxproject.org/
http://www.w3.org/DOM/

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 612–626, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Improving Classification Performance with Focus on the
Complex Areas

Seyed Zeinolabedin Moussavi1, Kambiz Zarei1, and Reza Ebrahimpour1,2

1 Departments of Electrical Engineering, Shahid Rajaee University, Tehran, Iran
Smoussavi@srttu.edu,
kambiz_zarei@yahoo.com

2 School of Cognitive Sciences, Institute for Studies on Theoretical Physics and
Mathematics, Niavaran, Tehran, Iran

ebrahimpour@ipm.ir

Abstract. In combining classifiers, effort is made to achieve higher accuracy in
comparison with the base classifiers that form the ensemble. In this paper, we
make modifications to the conventional decision template, DT, method, so that
its classification performance is improved in experiments with Satimage, Image
Segmentation and Soybean datasets. In our modified version, DT, an elegant
strategy in classifier fusion, is used in the first stage of classification task, and
in the second stage, the most misclassified classes are directed to a classifier
that is specifically devoted to those classes. To identify the most misclassified
classes, the confusion matrix of the output of the decision template stage is con-
sidered. Experimental results demonstrate the improved performance of the
modified version by a 3% increase in the recognition rate for Satimage dataset
in comparison with previously published results on Satimage dataset, a 10.57%
increase in the recognition rate for Image Segmentation and 4.88% for Soybean
dataset, in comparison with the conventional method.

Keywords: Combining classifier system, classifier fusion, classifier ensembles,
decision template method.

1 Introduction

A combining classifiers system, composed of several simple classifiers or experts, is
a possible way of solving a complex problem which might need a complicated net-
work to be handled with [3,11,13]. Fig. 1 in the following page illustrates the general
framework of a combining classifiers system.

There are two main strategies in combining classifiers: fusion and selection. In
classifier fusion, it is supposed that each ensemble member is trained over the whole
feature space, whereas in classifier selection, each member is assigned to learn a part
of the feature space and are thereby considered as competitive rather than comple-
mentary [1,4,6]. This way, in the former strategy, the final decision is made consider-
ing the decisions of all members, while in the latter strategy, the final decision is
made by aggregating the decisions of one or a few of experts [1,2].

 Improving Classification Performance with Focus on the Complex Areas 613

Fig. 1. General framework of a combining classifiers system

Our proposed method makes a modification to the decision template, DT, tech-
nique. In a multi-class classification problem, DT represents the decisions of a set of
classifiers on each class. In other words, DT is formed according to the outputs of all
classifiers on patterns of a particular class.

DTs have been compared with other techniques such as Naïve Bayes [5], behavior
knowledge space, and Dempster Shafer aggregation [7,8,16] for combining classifiers
and it has been shown that it outperforms those methods in terms of higher recogni-
tion rate and less computational complexity [1].

In our modified version of DT, we first try to find the classes that are mostly mis-
classified, hereafter referred to as “conflicting classes”. This way, when DT realizes
that an input sample belongs to one of the conflicting classes, it is then directed to a
specific classifier that is trained to classify such classes. The point is that the specific
classifier has to decide between a smaller number of classes in comparison with DT,
therefore its classification is more accurate and reliable.

To find the conflicting classes we use the confusion matrices, CMs, of base classi-
fiers. CM j is a KK × matrix obtained from the output of classifier jD with training

set as its input. Each element of CM j
 matrix, cm j

k,s, expresses the number of input

patterns whose true class label is k, but were incorrectly assigned to class s .
To label the patterns we use squared Euclidean distance to evaluate the similarity

between the decision profile matrix, ()XDP , and each K,=i,DTi 1,2,... . In the follow-

ing we briefly describe DP(X).

614 S.Z. Moussavi, K. Zarei, and R. Ebrahimpour

Let's consider nX ℜ∈ (nℜ is the initial feature space with n features), as
a feature vector and {1,2,...,K} the label set of K classes and DP(X), the decision
profile matrix for X in which, entries are the intermediate features. The classifier
outputs can be organized in a decision profile matrix, DP(X) similar to the one
shown below [1, 2]:

() () () ()

() () ()

() () ()⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

XdXdXd

XdXdXd

XdXdXd=XDP

pkpjp1

ikiji1

......

......

......

......

...... 1k1j11

Where dpk, for a given sample X, is the posterior probability that the pth classifier
estimates that x belongs to the kth class.

Our experimental results support the proposed modified version of DT. We test our
method on the Satimage dataset, known as a benchmark test for evaluating the per-
formance of combining methodologies.

The remainder of this paper is organized as follows: Section 2 is devoted to the de-
tails of classifier fusion. Section 3 describes our proposed DT scheme. It is followed by
experimental results in Section 4. Finally, section 5, concludes and summarizes the
paper.

2 Classifier Combining Schemes

Combining schemes can be coarsely divided into the two categories of classifier se-
lection and classifier fusion. In classifier selection one (or a number of) expert(s) are
responsible for learning a part of the feature space; that is, each part of the feature
space is assigned to one (or a number of) expert(s) to be learned. When a feature
vector is presented to a system of this type, the output of the expert(s) responsible for
that area of the feature space is given the highest credit.

In classifier fusion, all classifiers are equally trained over the whole feature space
rather than part of it, and their outputs are fused to form the classification result of an
input feature vector [5, 6]. The method that we use in this paper, DT, falls under the
category of classifier fusion.

As the outputs of classifiers in the fusion type are to be combined, an important is-
sue is the form of their outputs. Scaling the outputs of all classifiers into the interval
of [0, 1] is a common way of having outputs that are effortlessly combinable [15].

The output vector of a classifier may be defined in one of the three types of Ab-
stract level [12], Rank level [9] and Measurement level [8]. These levels are described
in Table 1.

 Improving Classification Performance with Focus on the Complex Areas 615

Table 1. The three type of classifier output. Refer to text for the description of symbols.

Type of Classifier Output Definition

Abstract Level () { } n
ij X,XD ℜ∈∈ 0,1

Rank Level () [] n
ij X,XD ℜ∈∈ 0,1

Measurement Level [8] () n
ij XΖ,XD ℜ∈∈

Considering { }p2 D,,D,D=D ...1

 as the set of classifiers and { }k2 W,,W,W=Ω ...1
 as

the label set of the classes, an input vector nX ℜ∈ to each classifier, returns
a K -dimensional output vector (e.g. the i th classifier returns the vector as

() () () ()[]XdXdXd=XD iki2i1i ...), where ()Xdij
 is the degree of support

given by classifier iD to the decision that input vector X belongs to class j .

The output of a combining classifier system or in other words or the support for
class ()()Xi i

D
 given by the combining network based on the DP(X) can be obtained

in two ways:
First, using some fusion methods like product, average, minimum, maximum and

fuzzy integral. These methods use only the i th column of DP(X) for calculating the
support for class iW . Such methods are known as “class-conscious”. The alternative

approach is called “class-indifferent” in which all the elements of DP(X) is used to
calculate the support for each class. In this approach, all elements of DP(X) as “inter-
mediate feature space” are used to design the second (combining) stage. Methods
such as “Decision template” and “Dempster-Shafer aggregation” fall in this group.

Note that ‘class-conscious’ methods use the context of DP(X) and only one column
per class, and ignore the rest of information, while “class-indifferent” methods use all
elements of DP(X) but do not use the context [1].

3 Proposed Method

3.1 Confusion Matrix

A common criterion to evaluate a classifier, Dj, is to form its confusion matrix, CM.
Each column of the matrix represents samples in a predicted class, while each row
represents the instances in an actual class. One benefit of a confusion matrix is that it
is easy to see if the system is confusing two classes.

Classifier Precision, for class i, is defined as the proportion of the predicted posi-
tive cases that were correct and Classifier Recall as the proportion of positive cases
that were correctly identified.

Example 1:
Consider a 3×3 33×CM shown below. We can calculate the PM (precision matrix)

and RM (recall matrix) as so:

616 S.Z. Moussavi, K. Zarei, and R. Ebrahimpour

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

390175

183207

911480

CM

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=⇒

94.004.001.0

05.092.002.0

02.002.096.0

PM

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=⇒

93.005.001.0

04.091.001.0

02.003.097.0

RM

Note that the PM and RM are actually vectors for multi-class problems which we call
them matrices. We can see from the above CM that the actual number of patterns for
class 1W is 480+11+9=500 and the total number of patterns labeled into class 1W is

480+7+5=492.
Thus such a classifier assigned %2.2

911480

11 =
++

 of elements whose real class

is 1W to class 2W and %3.4
390189

18 =
++

 of elements that actually belong to

class 2W is labeled as class 3W .

In brief, we can use the internal information available in rows and columns of con-
fusion matrices, CMs, of base classifiers to improve the results (outputs) of a Multiple
Classifier System (MCS). Another term which we can use to analyze a classifier be-
havior is its normalized CM. To calculate it, each and every element of the confusion
matrix must be divided by the sum of all elements of the CM.

Following criterion can be obtained from CM:

• Classifier precision for class iW

It declares how much percent of the elements of iW is labeled correctly by the

classifier. To calculate this criterion, the diagonal elements of that particular class
in the row must be divided by sum of the elements of that row:

∑

k

=k

Cik

Cii
=Pi

1

 (1)

The classifier average precision for all classes is calculated like this:

 K

Pi
=Pav

k

=i
∑

1 (2)

• Classifier recall for class iW
It states how much percent of the elements that are labeled by Dj into class Wi in
truth belong to it. To calculate it, the diagonal element of Wi in the column must

 Improving Classification Performance with Focus on the Complex Areas 617

be divided by the sum of the elements of the column which the diagonal element
is in (Eq. (3))

∑

k

=i

Cki

Cii
=Ri

1

 (3)

3.2 Decision Templates

Decision templates, DTs , is a powerful tool for classifier fusion. Using outputs of
all classifiers and comparing them with a characteristic template for each class,
DT calculates the final support for each class [1] (therefore referred to as character-
istic template).

Consider a set of labeled training data set, { }n2 X,,X,X=X ...1 , nX ℜ∈ and apply

them to the combining system { }p2 D,,D,D=D ...1
. Based on the output vector of clas-

sifiers, DP matrices are calculated.
iDT can be obtained by averaging all DP matri-

ces which belong to the elements of class Wi. The mathematical interpretation of DT
is shown in Eq. (4) [10]:

KSPK ,...,2,1,...,2,1

i),Ind(X

)(Xdi),Ind(X

sk,dt
N

1j

j

N

1j

jksj

i

(4)

where Ind (Zj,i) is an index function which its value is 1 if Xj has crisp label i and 0
otherwise [10] and dks Xj is the degree of support for Wj

 given by Dk to class Ws. So
K decision templates (one per class) are calculated.

3.3 Decision Template Scheme

In our method we use confusion matrices of all classifiers, CMi , i = 1,...,P. As men-
tioned before CMs express the classifier behavior and represent it in terms of classi-
fier precision and recall criteria. Therefore, using the precision criterion, we can
acquire which classes are mostly overlapped or in other words which classes' patterns
are mostly misclassified. This way, we are able to develop a two-stage combining
system with which we can better handle overlapped and non-overlapped classes. The
basic idea is to feed the samples that are classified as one of the overlapped groups to
the second stage classifier which is devoted to those classes. More details are given in
the following.

In order to find the overlapped classes, we consider the CMs of each class that is ob-
tained according to the output of each classifier with the training set as its input. When a
test sample is given to the network, it is first checked whether it belongs to the over-
lapped or non-overlapped classes. If it is classified as a non-overlapped class, the result

618 S.Z. Moussavi, K. Zarei, and R. Ebrahimpour

is considered as the final output, but in case it is categorized as a member of overlapped
classes, it is directed to the second stage network for more accurate classification.

The second stage classifiers are those which are trained over the overlapped classes
and therefore can classify them more effectively and accurately. To find whether
a sample belongs to the first or second stage, we calculate its DP from the first stage
and use a similarity measure to match it to DTi, i = 1,...,K and this way, the support
for each class, ()Xiμ , is found. We use the squared Euclidean distance to measure the

similarity between the obtained DP (X) and DTi, i = 1,...,K (Eq. (5))

KP

DPDT

XdkiDT
KP

d

j

P

i

K

k
kijE

2

1 1

2
,

1

)(),(
1

1

(5)

Based on this similarity measure, among the calculated Ed for each class the mini-

mum one determines the class label for sample X.

4 Experimental Results

In our experiments we use the Satimage dataset from the ELENA database, Image
Segmentation dataset and Soybean dataset. The Satimage data was generated from
Landset Multi-Spectral Scanner image data. It consists of 6435 pixels with
36 attributes (4 spectral bands 9 pixels in a 3x3 neighborhood) which are crisply clas-
sified into the six classes of red soil (23.82%), cotton crop (10.92%), grey
soil (21.1%), damp grey soil (9.73%), soil with vegetation stubble (10.99%), and very
damp grey soil (23.43%) and are presented in random order in the database [1]. In-
stances of Image Segmentation dataset (Vision Group, University of Massachu-
setts, 1990) were drawn randomly from a database of 7 outdoor images. The images
were hand segmented to create a classification for every pixel. Each instance is a 3x3
region.

The Image Segmentation dataset consists of seven classes of brick face, sky, foli-
age, cement, window, path and grass. There are 210 samples for training data (30
instances per class for training data) and 2100 samples for test data (300 instances per
class for test data) with 19 continuous features. In our version of Soybean dataset,
there are 17 classes which we use only 14 of them without any missing value. These
classes are diaporthe-stem-canker, charcoal-rot, rhizoctonia-root-rot, brown-stem-rot,
powdery-mildew, downy-mildew, brown-spot, bacterial-blight, bacterial-pustule,
purple-seed-stain, anthracnose, phyllosticta-leaf-spot, alternarialeaf-spot, frog-eye-
leaf-spot. The folklore seems to be that the other four classes are unjustified by the
data since they have so few examples or have missing value that is not appropriate for
our experiment; In addition, there are 35 categorical attributes, some nominal and
some ordered. Number of instances in this dataset is 307 which we duplicate it
into 420 to have equal classes’ distribution and take 310 samples for training and use
the rest in the test phase.

 Improving Classification Performance with Focus on the Complex Areas 619

Fig. 2. Structure of proposed method

Table 2. (a) Description of the datasets used in the Experiments. (b) Number of Patterns used in
the Experiments.

(a)

Dataset #Classes
#Attributes

Satimage 6 36
Image Segmenta-

tion
 7 19

Soybean 13 35

(b)

Dataset

#Patterns
Train Test

 Expert MCS

Satimage 3000 1290 2145

Image Segmentation 210 1050 1050

Soybean 310 70 70

For the first stage of our proposed method, four individual classifiers were allo-

cated and the approximate accuracy of 87.27% over Satimage dataset with the 3000-
element training set; 66.57% over Image Segmentation dataset with 210–
element training set and 83.45% over Soybean dataset with 310–element training set

620 S.Z. Moussavi, K. Zarei, and R. Ebrahimpour

were obtained. The learning parameters, constant eta, were 0.051 for Satimage, 0.056
for Image Segmentation and 0.08 for Soybean and the training epochs were 200, 250
and 310, respectively. The rest of the dataset, the 3435 other elements in Satimage
data, 2100 in Image Segmentation data and 140 in Soybean data, were used in the test
phase (Table 2). The training and test sets were chosen randomly.

The normalized CMs for the first-stage classifiers, 41 CM,,CM ... , on Satimage

dataset are shown below:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡=

0.9030.1010.4560.00300

0.0360.7900.04300.0630.009

0.04200.2800.3100.0080

0.0180.0200.2100.96000.015

00.033000.9290

00.0540.0080.00400.971CM

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0.8970.0870.4650.00400

0.0300.8310.05200.0230.009

0.04800.3330.0430.0070

0.02100.1400.94100.120

0.0030.033000.9680

00.0470.0090.01100.977=CM2

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0.8910.1010.4470.00300

0.0270.7830.04300.0700.006

0.0630.0130.3680.0620.0070

0.0180.0060.1310.92100.015

00.040000.9210

00.0540.0090.01100.977=CM3

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0.9090.1010.4210.00700

0.0270.7900.05200.0390.009

0.04500.3770.0410.0080

0.0150.0060.1400.93700.015

0.0030.03300.0040.9520

00.0670.0080.00400.975=CM4

 Improving Classification Performance with Focus on the Complex Areas 621

the normalized CMs for the first-stage classifiers, 41 CM,,CM ... , on Image Segmenta-

tion dataset are:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

973.00447.0027.0640.00401.0

026.0973.0184.0486.0093.00506.0

00263.00160.00026.0

0026.0105.0419.0026.0094.0066.0

0000080.000

000067.00905.00

0000000

1 =CM

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

000.1026.0644.0108.0826.00533.0

0973.0210.0229.0040.00440.0

00144.00040.000

000513.0013.0081.0026.0

0000080.000

000135.00919.00

000013.0000

2 =CM

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

000.10631.0108.0800.00520.0

0000.1197.0202.0026.00386.0

00144.00040.000

000432.0026.00053.0

0000106.000

000216.00000.10

000040.000040.0

3 =CM

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

000.1026.0486.0081.0693.00440.0

0720.0039.0094.0026.00200.0

00302.0013.0146.00026.0

0186.0092.0544.0013.00173.0

0000.0080.000

000229.00000.10

0066.0079.0027.0040.0016.0

4 =CM

And finally, the normalized CMs for the first-stage classifiers, 41 CM,,CM ... , on Soy-

bean dataset are:

622 S.Z. Moussavi, K. Zarei, and R. Ebrahimpour

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

5.02.0000001.0001.0000

2.02.002.00000000000

06.012.002.02.00002.0000

2.0006.00002.0000000

00001000000000

000008.000000000

0000006.0000002.00

2.0000002.04.0000000

00000000100000

00000000010000

2.00000002.0008.0000

2.02.0000002.0000100

0000000000008.00

00000000000001

1 =CM

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

2.02.0000000001.0000

4.02.0000000000000

00100002.0002.0000

0008.00000000000

00001002.002.00000

00000102.0000000

0000008.00000000

02.000002.02.0000000

2.00000000100000

0000000008.00000

2.00000000006.0000

02.0000002.0000100

0000000000008.00

02.002.00000002.002.01

2 =CM

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

00002.0000000000

4.04.02.00002.02.02.002.0000

008.000000000000

000100002.000000

00008.0002.0000000

000008.000000000

02.000008.00000000

02.0000004.0000000

000000006.000000

2.00000000010000

2.00000002.0006.0000

00000000002.0100

00000000000010

2.02.00002.000000001

3 =CM

 Improving Classification Performance with Focus on the Complex Areas 623

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

00000000001.0000

2.04.02.02.00000000000

008.00002.00000000

2.02.008.002.000000000

00001002.0000000

2.000008.000000000

02.000008.00000000

00000002.0002.02.000

00000002.0100000

2.00000000010000

2.02.0000002.0008.0000

000000000008.000

00000000000010

00000002.0000001

4 =CM

Considering CMs we can observe the performance of each classifier. Apparently, on
Satimage dataset, we observe that all classifiers have problems in recognizing patterns
of class 4 and incorrectly classify them as class 6. on Image Segmentation dataset the
problem is in recognizing between the patterns of classes 3 and 7 incorrectly classify
them as class 7 and these two conflicting classes in Soybean dataset are 13 and 14
(Table 3).

Table 3. Conflicting classes’ number in experimented datasets

Problem Most Conflicting
Classes

Satimage 4 and 6
Image Segmentation 3,5 and 7

Soybean 13 and 14

To decrease the error rate, we first find the most conflicting classes. The row and

column number of maximum non-diagonal value of CM yields the label of those
classes that the classifier has misclassified their samples. So, a second-stage MLP
network is used, which actually consists of one single classifier and is trained over the
classes with the most conflicting number of samples, or the conflicting classes; in this
experiment there are 830 samples of classes 4 and 6 in Satimage dataset, 315 samples
of classes 3, 5 and 7 in Image Segmentation dataset and 80 samples of classes 13
and 14 in Soybean dataset.

In Satimage dataset, classes 4 and 6 have 415 and 1036 samples, respectively. We
take all 415 samples of class 4 and select 415 elements of the class 6 randomly and
put them together to build the training set (note that taking all 1036 elements of
class 6, causes the network to have a bias towards the particular class and therefore
decrease the accuracy of classification). In Image Segmentation and Soybean number
of patterns of those conflicting classes are equal.

624 S.Z. Moussavi, K. Zarei, and R. Ebrahimpour

Comparing our modified DT version with the classic scheme introduced in [1], we
can experimentally achieve 3% increase in accuracy on Satimage dataset. The average
test accuracy of DT in its conventional style is about 84.48%, whereas the average
recognition rate of our model on Satimage data is 87.27%. The final normalized CM
of our model on Satimage dataset is shown below:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0.7640.0950.0850.00800

0.0190.7950.01400.0640.007

0.2010.0290.7200.0600.0160.001

0.01400.1700.92600.021

00.012000.9190.001

00.0660.0090.00400.966=CMMCS

The average test accuracy of DT in its conventional style on Image Segmentation data-
set is about 56%, whereas the average recognition rate of our model is 66.57%. The
final normalized CM of our model on Image Segmentation dataset is shown below:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

959.0000000

0953.0127.0294.0047.00443.0

006.0013.0550.0033.0167.00178.0

000440.0020.0007.0066.0

026.00308.0073.0745.00291.0

000106.00993.00

006.0033.0013.0053.0020.00019.0

=CMMCS

And finally, the average test accuracy of DT in its conventional style on Soybean data-
set is about 78.57%, whereas the average recognition rate of our model is 83.45%. The
final normalized CM of our model on Image Segmentation dataset is shown below:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

5.02.0000001.0001.0000

3.05.002.001.001.001.02.0000

00100001.0000000

0008.00000000000

00001000000000

000009.000000000

00000010000000

1.00000004.0000000

00000000100000

01.000000009.00000

1.01.0000002.0007.0000

00000000000100

00000000000010

01.0000001.0000001

=CMMCS

 Improving Classification Performance with Focus on the Complex Areas 625

Note that we focused only on the greatest non-diagonal values of CMs for detecting
the most misclassified classes in our method, but all non-diagonal values can be em-
ployed to have a more accurate viewpoint about the difficulty of each class in being
classified. Furthermore, a larger sample size for training the second-stage classifier
can be generated by duplicating samples of a particular class with fewer elements and
put them randomly among those of other classes, so that a stronger and more accurate
classification can be achieved for such classes. Additionally, a lot more can be done
to measure the similarity between DP(x) and DTs by using other techniques instead
of squared Euclidean distance.

5 Conclusion

In combining classifiers the goal is to achieve superior performance by dividing
a complex task into a number of simple ones, and approach the whole solution by
solving the simplified tasks.

In this paper we propose to improve the classification performance by finding the
most misclassified classes in a dataset and devoting specific classifiers for such classes.
In our proposed method, four MPL networks are trained on the training set, which are
combined in a Decision Template framework. Considering the Decision Profiles of each
classifier, two of the most conflicting classes were identified, and a network in the sec-
ond stage was trained over these classes. This way, when a sample is classified as the
conflicting classes, the decision of the second stage network is considered as the final
output. The proposed method was tested on Satimage data of the ELENA dataset, on
Image Segmentation dataset and on Soybean dataset, and an overall classification rates
of 87.27% for Satimage, 66.57% for Image Segmentation and 83.45% for Soybean were
achieved, which demonstrates a 3%, 10.57%, and 4.88% increase in comparison with
the best of the state of the art methods on Satimage dataset, Image Segmentation dataset
and Soybean dataset, respectively.

References

1. Kuncheva, L.I., Bezdek, J.C., Duin, R.P.W.: Decision Templates for Multiple Classifier
Fusion: An Experimental Comparison. Pattern Recognition 34, 299–314 (2001)

2. Kuncheva, L.I.: Combining Classifiers by Clustering, Selection and Decision Templates.
Pattern Recognition

3. Ghaderi, R.: Arranging Simple Neural Networks to Solve Complex Classification Prob-
lems. Ph.D. Thesis, Surrey University (2000)

4. Kuncheva, L.I.: Using Measures of Similarity and Inclusion for Multiple Classifier Fusion
by Decision Templates. Fuzzy Sets and Systems 122, 401–407 (2001)

5. Xu, L., Krzyzak, A., Suen, C.Y.: Methods of Combining Multiple Classifiers and Their
Application to Handwriting Recognition. IEEE Trans. System Man Cybernet 22, 418–435
(1992)

6. Ng, K.-C., Abramson, B.: Consensus Diagnosis: a Simulation Study. IEEE Trans. System
Man Cybernet. 22, 916–928 (1992)

7. Rogova, G.: Combining the Results of Several Neural Network Classiffiers. Neural Net-
works 7, 777–781 (1994)

626 S.Z. Moussavi, K. Zarei, and R. Ebrahimpour

8. Lu, Y., Tan, C.L.: Combination of Multiple Classifiers Using Probabilistic Dictionary and
Its Application to Postcode Recognition. Pattern Recognition 35, 2823–2832 (2002)

9. Cerisara, C., Fohr, D.: Multi-Band Automatic Speech Recognition. Computer Speech and
Language 15(2), 151–174 (2001)

10. Kuncheva, L.I., Kounchev, R.K., Zlatev, R.Z.: Aggregation of Multiple Classification De-
cisions by Fuzzy Templates. In: Proceedings of the Third European Congress on Intelli-
gent Technologies and Soft Computing, EUFIT 1995, Aachen, Germany, August 1995, pp.
1470–1474 (1995)

11. Jacobs, R.A., Jordan, M.I., Nowlan, S.E., Hinton, G.E.: Adaptive Mixture of Experts. Neu-
ral Comput. 3, 79–87 (1991)

12. Nabavi, S.H.: Thesis: Combining of Multiple Classifiers Based on Their Diversities (2005)
13. Ebrahimpour, R., Kabir, E., Esteky, H., Yousefi, M.R.: View-Independent Face Recogni-

tion with Mixture of Experts, accepted 2007. Neurocomputing 71, 1103–1107 (2008)
14. Haykin, S.: Neural Networks—A Comprehensive Foundation, 2nd edn. Prentice-Hall,

Englewood Cliffs (1998)
15. Bezdek, J.C., Keller, J.M., Krishnapuram, R., Pal, N.R.: Fuzzy Models and Algorithm for

Pattern Recognition and Image Processing. Kluwer Academic Publisher, Dordrecht (1999)
16. Woods, K., Kegelmeyer, W.P., Bowyer, K.: Combination of Multiple Classiffiers Using

Local Accuracy Estimates. IEEE Trans. Pattern Anal. Mach. Intell. 19, 405–410 (1997)

CD-Systems of Restarting Automata Governed
by Explicit Enable and Disable Conditions

Friedrich Otto

Fachbereich Elektrotechnik/Informatik, Universität Kassel
34109 Kassel, Germany

otto@theory.informatik.uni-kassel.de

Abstract. We introduce a new mode of operation for CD-systems of
restarting automata by providing explicit enable and disable conditions
in the form of regular constraints. We show that, for each CD-system M
of restarting automata and each mode m of operation considered by
Messerschmidt and Otto, there exists a CD-system M′ of restarting
automata of the same type as M that, working in the new mode ed,
accepts the language Lm(M) that M accepts in mode m. Further, we
will see that in mode ed, a locally deterministic CD-system of restarting
automata of type RR(W)(W) can be simulated by a locally deterministic
CD-system of restarting automata of the more restricted type R(W)(W).

Keywords: Restarting automaton, CD-system, modes of operation.

1 Introduction

The restarting automaton was introduced by Jančar et al. as a formal tool to
model the analysis by reduction, which is a technique used in linguistics to an-
alyze sentences of natural languages [3]. This technique consists in a stepwise
simplification of a given sentence in such a way that the correctness or incor-
rectness of the sentence is not affected.

A (one-way) restarting automaton, RRWW-automaton for short, is a device M
that consists of a finite-state control, a flexible tape containing a word delimited
by sentinels, and a read/write window of a fixed size. This window is moved from
left to right until the control decides (nondeterministically) that the content of
the window should be rewritten by some shorter string. In fact, the new string
may contain auxiliary symbols that do not belong to the input alphabet. After
a rewrite, M can continue to move its window until it either halts and accepts,
or halts and rejects, or restarts, that is, it places its window over the left end
of the tape, and reenters the initial state. Thus, each computation of M can be
described through a sequence of cycles (which each contain a single application
of a rewrite) that is followed by a tail (which is the part of a computation that
follows after the last restart step).

Many restricted types of restarting automata have been studied and put into
correspondence to more classical classes of formal languages. For recent surveys
see [8] and [9]. Also further extensions of the model have been considered. In

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 627–638, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

628 F. Otto

particular, in [5] cooperating distributed systems (CD-systems) of restarting
automata have been introduced, and it has been shown that CD-systems of
restarting automata working in mode = 1 correspond to nonforgetting restarting
automata [4,7]. Also some other modes of operation were introduced. In the = j
mode (j ≥ 2) the active component automaton is required to execute exactly
j cycles, while in the t mode the active component stays active until it cannot
execute another cycle anymore. Hence, the former mode is static, as the number
of cycles executed by the active component automaton is always the same, while
the latter mode is dynamic, as the number of cycles executed by the active
component automaton depends on the tape content and that component itself.

Here we introduce another dynamic mode of operation for CD-systems of
restarting automata by associating explicit enable and disable conditions with
each component automaton. These conditions are given as regular constraints.
A component automaton can only become active if at that moment its enable
condition is satisfied by the current tape content, and it stays active until its
disable condition is satisfied by the (then modified) tape content. This is
motivated by similar modes of operation considered for CD-grammar sys-
tems [1,2]. We study the expressive power of CD-systems of restarting automata
working under this mode of operation, which we call ed mode. We will see that, for
each CD-system M and each mode m of operation considered in [5], there exists
a CD-systemM′ of restarting automata of the same type as M that, working in
mode ed, accepts the language Lm(M) thatM accepts in mode m. On the other
hand, the mode ed computations of a CD-system of RR(W)(W)-automata can be
simulated by mode = 1 computations of a modified CD-system of the same type
of restarting automata, which proves that CD-systems of RR(W)(W)-automata
working in mode = 1 and CD-systems of RR(W)(W)-automata working in mode
ed have the same expressive power. Actually these results also extend to CD-
systems of RR(W)(W)-automata that are locally or globally deterministic. Fur-
ther, we will see that in mode ed, a locally deterministic CD-system of restarting
automata of type RR(W)(W) can be simulated by a locally deterministic CD-
system of restarting automata of the more restricted type R(W)(W). This is the
first time that a non-monotone type of R-automaton without auxiliary symbols
is shown to be as expressive as the corresponding type of RR-automaton.

This paper is structured as follows. In Section 2 we introduce CD-systems
of restarting automata, in Section 3 we define the new mode of operation and
compare it to the previously studied modes, and in Section 4 we establish the
equivalence between locally deterministic CD-R(W)(W)-systems and locally de-
terministic CD-RR(W)(W)-systems working in mode ed. The paper closes with
a number of open problems in Section 5.

2 Definitions

We first describe the types of restarting automata we will be dealing with. Then
we restate the definition of a CD-system of restarting automata from [5].

A one-way restarting automaton, abbreviated as RRWW-automaton, is a one-
tape machine that is described by an 8-tuple M = (Q, Σ, Γ, c, $, q0, k, δ), where

CD-Systems of Restarting Automata 629

Q is a finite set of states, Σ is a finite input alphabet, Γ is a finite tape alphabet
containing Σ, the symbols c, $ �∈ Γ serve as markers for the left and right border
of the work space, respectively, q0 ∈ Q is the initial state, k ≥ 1 is the size of the
read/write window, and δ is the transition relation that associates a finite set
of transition steps to each pair (q, w) consisting of a state q ∈ Q and a possible
content w of the read/write window. There are four types of transition steps:
move-right steps, rewrite steps, restart steps, and accept steps. However, the
behaviour of M can be described more succinctly through a finite set of so-
called meta-instructions (see below).

A configuration of M is described by a string αqβ, where q ∈ Q, and either
α = ε (the empty word) and β ∈ {c} · Γ ∗ · {$} or α ∈ {c} · Γ ∗ and β ∈ Γ ∗ · {$};
here q represents the current state, αβ is the current content of the tape, and it is
understood that the head scans the first k symbols of β or all of β when |β| ≤ k.
A restarting configuration is of the form q0cw$, where w ∈ Γ ∗; if w ∈ Σ∗, then
q0cw$ is an initial configuration.

A rewriting meta-instruction for M has the form (E1, u → v, E2), where E1

and E2 are regular expressions, and u, v ∈ Γ ∗ are words satisfying k ≥ |u| > |v|.
To execute a cycle M chooses a meta-instruction of the form (E1, u→ v, E2). On
trying to execute this meta-instruction M will get stuck (and so reject) starting
from the restarting configuration q0cw$, if w does not admit a factorization of the
form w = w1uw2 such that cw1 ∈ L(E1) and w2$ ∈ L(E2). On the other hand,
if w does have factorizations of this form, then one such factorization is chosen
nondeterministically, and q0cw$ is transformed into the restarting configuration
q0cw1vw2$. This computation, which is called a cycle, is expressed as w �c

M

w1vw2. In order to describe the tails of accepting computations we use accepting
meta-instructions of the form (E1, Accept), which simply accepts the strings
from the regular language L(E1).

A computation of M now consists of a finite sequence of cycles that is followed
by a tail computation. An input word w ∈ Σ∗ is accepted by M , if there is
a computation of M which starts with the initial configuration q0cw$, and which
finishes by executing an accepting meta-instruction. By L(M) we denote the
language consisting of all words accepted by M .

We are also interested in various restricted types of restarting automata. They
are obtained by combining two types of restrictions:

(a) Restrictions on the movement of the read/write window (expressed by the
first part of the class name): RR- denotes no restriction, and R- means that
each rewrite step is immediately followed by a restart.

(b) Restrictions on the rewrite-instructions (expressed by the second part of the
class name): -WW denotes no restriction, -W means that no auxiliary symbols
are available (that is, Γ = Σ), and -ε means that no auxiliary symbols are
available and that each rewrite step is simply a deletion.

Obviously, a rewriting meta-instruction for an RWW-automaton has the form
(E1, u→ v, Γ ∗ · $), which will be abbreviated as (E1, u → v).

630 F. Otto

A cooperating distributed system of RRWW-automata (or a CD-RRWW-system
for short) consists of a finite collection M := ((Mi, σi)i∈I , I0) of RRWW-
automata Mi = (Qi, Σ, Γi, c, $, q

(i)
0 , k, δi) (i ∈ I), successor relations σi ⊆ I

(i ∈ I), and a subset I0 ⊆ I of initial indices. Here it is required that
I0 �= ∅, that σi �= ∅ for all i ∈ I, and that i �∈ σi for all i ∈ I. Further, let
m ∈ {t} ∪ {= j,≤ j,≥ j | j ≥ 1 } be the chosen mode of operation.

The computation ofM in mode = j (≤ j, ≥ j) on an input word w proceeds as
follows. First an index i0 ∈ I0 is chosen nondeterministically. Then the RRWW-
automaton Mi0 starts the computation with the initial configuration q

(i0)
0 cw$,

and executes j (at most j, at least j) cycles. Thereafter an index i1 ∈ σi0 is
chosen nondeterministically, and Mi1 continues the computation by executing
(at most, at least) j cycles. This continues until, for some l ≥ 0, the machine
Mil

accepts. Should at some stage the chosen machine Mil
be unable to execute

the required number of cycles, then the computation fails.
In mode t the chosen automaton Mil

continues with the computation until it
either accepts, in which case M accepts, or until it can neither execute another
cycle nor an accepting tail, in which case an automaton Mil+1 with il+1 ∈ σil

takes over. Should this machine not be able to execute a cycle or an accepting
tail, then the computation of M fails.

By Lm(M) we denote the language that the CD-RRWW-system M accepts
in mode m. It consists of all words w ∈ Σ∗ that are accepted by M in mode m
as described above. If X is any of the above types of restarting automata, then
a CD-X-system is a CD-RRWW-system for which all component automata are
of type X. By Lm(CD-X) we denote the class of languages that are accepted by
CD-X-systems working in mode m.

A CD-system M := ((Mi, σi)i∈I , I0) of restarting automata is called locally
deterministic if Mi is a deterministic restarting automaton for each i ∈ I. As the
successor system is chosen nondeterministically from among all systems Mj with
j ∈ σi, computations of a locally deterministic CD-system of restarting automata
are in general not completely deterministic. To avoid this remaining nondeter-
minism the following variant of determinism has been introduced. A CD-system
M := ((Mi, σi)i∈I , I0) is called globally deterministic if I0 is a singleton, if Mi is
a deterministic restarting automaton for each i ∈ I, and if, for each i ∈ I, each
restart operation of Mi is combined with an index from the set σi. Thus, when
Mi finishes a part of a computation according to the actual mode of operation
by executing the restart operation δi(q, u) = (Restart, j), where j ∈ σi, then the
component Mj takes over. In this way it is guaranteed that all computations of
a globally deterministic CD-system are deterministic. However, for a component
system Mi there can still be several possible successor systems. This is reminis-
cent of the way in which nonforgetting restarting automata (see, e.g., [7]) work.
We use the prefixes det-local- and det-global- to denote locally, respectively glob-
ally, deterministic CD-systems. As shown in [6] the following inclusions hold for
each type of restarting automaton X ∈ {R, RR, RW, RRW, RWW, RRWW}:

L(det-X) ⊆ L=1(det-global-CD-X) ⊆ L=1(det-local-CD-X) ⊆ L=1(CD-X).

CD-Systems of Restarting Automata 631

3 A New Mode of Operation

Let M := ((Mi, σi)i∈I , I0) be a CD-system of restarting automata, and let
(Si, Ti)i∈I be a set of pairs of regular expressions. The system M is working in
mode ed with enable conditions (Si)i∈I and disable conditions (Ti)i∈I , if a com-
ponent automaton Mi chosen (be it as the initial component or as a successor
component in the course of a computation) can become active only if the cur-
rent tape content cw$ belongs to the language L(Si) – if not, then the current
computation fails – and it stays active until it either accepts, rejects, or until
the tape content cw′$ produced by the latest cycle of Mi belongs to the lan-
guage L(Ti). Thus, if Mi is chosen, and if the current tape content cw$ ∈ L(Si),
then Mi executes a cycle, thereby transforming cw$ into cw′$. If cw′$ ∈ L(Ti),
then a system Mj with j ∈ σi takes over, otherwise Mi executes another cycle.
By Led(M) we denote the language consisting of all words w ∈ Σ∗ that the
CD-system M accepts in mode ed, and by Led(CD-X) we denote the class of
languages that are accepted by CD-X-systems working in mode ed.

Example 1. Let M := ((Mi, σi)i∈I , I0) be the CD-R-system that is specified by
I := {0, 1, 2}, I0 := {0}, σ0 := {1}, σ1 := {2}, σ2 := {0}, where the
R-automata M0, M1, and M2 are given through the following meta-instructions.
Here Σ0 := {a, b} and x, y ∈ Σ0:

M0 : (c · ((Σ2
0)+ · xy ·#)+ · (Σ2

0)+, xy · $ → x · $),
(c · (xy ·#)+ · xy · $, Accept),

M1 : (c · ((Σ2
0)+ ·Σ0 ·#)∗ · (Σ2

0)+, xy ·# → x ·#),

M2 : (c · ((Σ2
0)+ ·#)∗ · (Σ2

0)+, x ·#→ #),
(c · ((Σ2

0)+ ·#)+ · (Σ2
0)+, x · $→ $).

In [6] Proposition 13 it is shown that Lt(M) coincides with the iterated copy
language Lcopy∗ := {w(#w)n | w ∈ (Σ2

0)+, n ≥ 1 }. Now we assign regular
enable and disable constraints to the components of the system M:

S0 := c · ((Σ2
0)+ ·#)+ · (Σ2

0)+ · $, T0 := c · ((Σ2
0)+ ·#)+ · (Σ2

0)+ ·Σ0 · $,
S1 := T0, T1 := c · ((Σ2

0)+ ·Σ0 ·#)+ · (Σ2
0)+ ·Σ0 · $,

S2 := T1, T2 := S0.

Observe that Lcopy∗ ⊆ L(S0) holds. Given an input word w ∈ Σ∗, M will
reject immediately if c · w · $ �∈ L(S0); otherwise, w can be written as w =
w0#w1# . . . #wn for some words w0, . . . , wn ∈ (Σ2

0)+ and some integer n ≥ 1.
If all factors wi are of length 2, and if they all coincide, then w ∈ Lcopy∗ , and
M0 accepts in a tail computation. If all factors are of length at least 4, and if
they all end with the same suffix xy of length 2, then M0 executes the cycle

w = w0#w1# . . . #wn �c
M0

w0#w1# . . . #znx =: x1,

where wi = zixy for all i = 0, . . . , n. In all remaining cases M0 will reject, but
then w �∈ Lcopy∗ anyway.

632 F. Otto

So assume that M0 executes the cycle above. As c·x1·$ ∈ L(T0), M0 terminates
after this cycle, and M1 takes over. As S1 = T0, the enable condition of M1 is
satisfied, and M1 performs the following computation:

x1 = w0#w1# . . .#znx �c∗
M1

z0x#z1x# . . . #znx =: x2.

As c · x2 · $ ∈ L(T1), M1 now terminates, and M2 takes over, which is possible
as S2 = T1 holds. Now M2 performs the computation

x2 = z0x#z1x# . . . #znx �c∗
M2

z0#z1# . . . #zn =: x3,

and as c · x3 · $ ∈ L(T2), M2 then terminates. Now M0 takes over again, and
as T2 = S0, this is indeed possible. Inductively it follows that the input word x
is accepted if and only if w belongs to the language Lcopy∗ , that is, Led(M) =
Lcopy∗ follows. Thus, using the given enable and disable conditions M accepts
in mode ed the same language that it accepts in mode t.

Actually the above construction generalizes to arbitrary CD-systems of restart-
ing automata.

Theorem 1. Let M := ((Mi, σi)i∈I , I0) be a CD-X-system for any X ∈
{R, RR, RW, RRW, RWW, RRWW}. Then there exists a collection of regular en-
able and disable conditions (Si, Ti)i∈I such that, with respect to these conditions,
the languages Led(M) and Lt(M) coincide.

An analogous result can be established for the = 1 mode by choosing appropriate
enable and disable conditions.

Theorem 2. Let M := ((Mi, σi)i∈I , I0) be a CD-X-system for any X ∈
{R, RR, RW, RRW, RWW, RRWW}. Then there exists a collection of regular en-
able and disable conditions (Si, Ti)i∈I such that, with respect to these conditions,
the languages Led(M) and L=1(M) coincide.

Theorems 1 and 2 hold in particular also for CD-X-systems that are locally or
globally deterministic.

A CD-system of restarting automata that is working in mode = j for some
j ≥ 2 can also be simulated by a CD-system of restarting automata that is
working in mode ed. However, the simulating system has j component automata
for each component automaton of the system being simulated.

Theorem 3. Let M := ((Mi, σi)i∈I , I0) be a CD-X-system for any X ∈ {R, RR,
RW, RRW, RWW, RRWW}, and let j ≥ 2. Then there exists a CD-X-system
M′ := ((M ′

(i,μ), σ
′
(i,μ))(i,μ)∈I×{1,...,j}, I

′
0) and regular enable and disable condi-

tions (S(i,μ), T(i,μ)), (i, μ) ∈ I ×{1, . . . , j}, such that the languages Led(M′) and
L=j(M) coincide. In addition, if M is globally deterministic or locally deter-
ministic, then so is M′.

For nondeterministic CD-systems of restarting automata, Theorem 3 also ex-
tends to modes ≤ j and ≥ j. Thus, the ed mode is sufficiently powerful to
simulate all the other modes considered so far. On the other hand, it can be
shown that the = 1 mode is as expressive as the ed mode.

CD-Systems of Restarting Automata 633

Theorem 4. Let M := ((Mi, σi)i∈I , I0) be a CD-X-system for any X ∈
{RR, RRW, RRWW}, and let (Si, Ti,), i ∈ I, be a collection of regular en-
able and disable conditions for M. Then there exists a CD-X-system M′ :=
((M ′

i , σ
′
i)i∈I′ , I ′0) such that the languages L=1(M′) and Led(M) coincide. In ad-

dition, if M is locally deterministic, then a locally deterministic system M′ can
be taken.

Proof. Let M := ((Mi, σi)i∈I , I0) be a CD-X-system, and let (Si, Ti,), i ∈ I,
be a collection of regular enable and disable conditions for M. Without loss of
generality we can assume that I = {1, . . . , n}.

We define a CD-X-system M′ := ((M ′
i , σ

′
i)i∈I′ , I ′0) as follows. Each compo-

nent Mi of M will be simulated by n + 2 components of M′. In addition, we
need three components for each initial component of M. Accordingly, we take
I ′ := (I × {1, . . . , n + 2}) ∪ { (̂i, j) | i ∈ I0, 1 ≤ j ≤ 3 }. For each i ∈ I and
each j ∈ {1, . . . , n + 2}, M ′

(i,j) is a copy of Mi, and for each i ∈ I0 and each
j ∈ {1, 2, 3}, M ′

(̂i,j)
is another copy of Mi. These copies are modified as follows:

– For j = 1, . . . , n, component M ′
(i,j) verifies with each of its meta-instructions

that the tape content cw$ of the actual restarting configuration belongs to
the regular set L(Si)∩L(Tj), that is, that it satisfies the enable condition of
component Mi and the disable condition of component Mj . In the affirma-
tive, it just executes the current meta-instruction of Mi, but in the negative
it halts and rejects.

– For j = n + 1, n + 2, component M ′
(i,j) verifies with each of its meta-

instructions that the tape content cw$ of the actual restarting configuration
does not belong to the regular set L(Ti), that is, that it does not satisfy the
disable condition of component Mi. In the affirmative, it just executes the
current meta-instruction of Mi, but in the negative it halts and rejects.

– For i ∈ I0, component M ′
(̂i,1)

verifies with each of its meta-instructions that
the tape content cw$ of the actual restarting configuration belongs to the reg-
ular set L(Si), that is, that it satisfies the enable condition of component Mi.
Components M ′

(̂i,2)
and M ′

(̂i,3)
verify with each of their meta-instructions

that the tape content cw$ of the actual restarting configuration does not
belong to the regular set L(Ti), that is, that it does not satisfy the disable
condition of component Mi.

For the initial indices of M′ we take the set I ′0 := { (̂i, 1) | i ∈ I0 }, and we define
the successor relations as follows:

σ′
(i,j) := {(i, n + 1)} ∪ { (l, i) | l ∈ σi } for all i ∈ I and all 1 ≤ j ≤ n,

σ′
(i,n+1) := {(i, n + 2)} ∪ { (l, i) | l ∈ σi } for all i ∈ I,

σ′
(i,n+2) := {(i, n + 1)} ∪ { (l, i) | l ∈ σi } for all i ∈ I,

σ′
(̂i,1)

:= {(̂i, 2)} ∪ { (l, i) | l ∈ σi } for all i ∈ I0,

σ′
(̂i,2)

:= {(̂i, 3)} ∪ { (l, i) | l ∈ σi } for all i ∈ I0,

σ′
(̂i,3)

:= {(̂i, 2)} ∪ { (l, i) | l ∈ σi } for all i ∈ I0.

634 F. Otto

Now, given an input w ∈ Σ∗, an index i0 ∈ I0 is chosen, and component Mi0

begins the computation ofM on input w by executing a certain number of cycles.
Actually, it is first checked whether cw$ belongs to the regular set L(Si0), and
then Mi0 continues with the computation until it either terminates (accepting
or non-accepting) or until the tape content cw1$ obtained belongs to the regular
set L(Ti0). Then an index i1 ∈ σi0 is chosen, and component Mi1 continues
with the computation, provided that the tape content belongs to the regular set
L(Si1). This continues until the actual component terminates.

Now let us consider the possible mode = 1 computations of M′ on input w.
Here we can choose the initial component M ′

(̂i0,1)
. It verifies that the tape content

belongs to the regular set L(Si0), and in the affirmative it executes the same cycle
as Mi0 . Then M ′

(̂i0,2)
becomes active. It checks that the current tape content does

not belong to the regular set L(Ti0), and in the affirmative it executes the same
cycle as Mi0 . Thereafter M ′

(̂i0,3)
becomes active. Thus, by alternating between

the latter two components the computation of Mi0 described above is being
simulated. At some stage the index (i1, i0) ∈ σ′

(̂i0,j)
(j ∈ {1, 2, 3}) is chosen,

and component M ′
(i1,i0)

continues with the computation. It verifies that the
actual tape content belongs to the regular set L(Si1) as well as to the regular
set L(Ti0), which corresponds to the situation in the above computation of M
when component Mi1 takes over from component Mi0 . If these constraints are
met, then M ′

(i1,i0) executes the same cycle as Mi1 , and then M ′
(i1,n+1) becomes

active. It checks that the current tape content does not belong to the regular set
L(Ti1), and in the affirmative it executes the next cycle of Mi1 . It follows that
in mode = 1, M′ can simulate all mode ed computations of M. Conversely, it
can be shown that the mode = 1 computations of M′ can only simulate mode
ed computations of M. It follows that L=1(M′) = Led(M) holds. Further, M′

is locally deterministic, if M is. �	

Thus, we have the following consequences.

Corollary 1. For all X ∈ {RR, RRW, RRWW},
Led(CD-X) = L=1(CD-X) and Led(det-local-CD-X) = L=1(det-local-CD-X).

For globally deterministic CD-RR(W)(W)-systems we have a corresponding re-
sult. However, for these systems we need a different technique for constructing
the system M′.

Theorem 5. LetM := ((Mi, σi)i∈I , I0) be a globally deterministic CD-X-system
for any X ∈ {RR, RRW, RRWW}, and let (Si, Ti,), i ∈ I, be a collection of regular
enable and disable conditions for M. Then there exists a globally determinis-
tic CD-X-system M′ := ((M ′

i , σ
′
i)i∈I′ , I ′0) such that the languages L=1(M′) and

Led(M) coincide.

Proof. Let M := ((Mi, σi)i∈I , i0) be a globally deterministic CD-X-system, and
let (Si, Ti,), i ∈ I, be a collection of regular enable and disable conditions forM.
Again we can assume without loss of generality that I = {1, . . . , n}.

CD-Systems of Restarting Automata 635

We define a globally deterministic CD-X-system M′ := ((M ′
i , σ

′
i)i∈I′ , i′0) as

follows. Each component Mi of M will be simulated by three components of
M′. Accordingly, we take I ′ := I × {1, 2, 3}, and take i′0 := (i0, 1). For each
i ∈ I, the three components M ′

(i,μ), 1 ≤ μ ≤ 3, are obtained as copies of Mi that
are slightly modified as follows:

– M ′
(i,1) verifies with each of its meta-instructions that the tape content cw$

of the actual restarting configuration belongs to regular set L(Si). In ad-
dition, it checks with each of its rewriting meta-instructions whether the
tape content cw1vw2$ produced by applying this meta-instruction belongs
to the regular set L(Ti). In the affirmative, the restart operation of this
meta-instruction is associated to the index (l, 1), where l ∈ σi is the index
that is associated with the corresponding restart operation of Mi. In the
negative, that is, if the resulting tape content does not yet meet the disable
condition of Mi, the restart operation of this meta-instruction is associated
to the index (i, 2).

– For s ∈ {2, 3}, M ′
(i,s) checks with each of its rewriting meta-instructions

whether the tape content cw1vw2$ produced by applying this meta-
instruction belongs to the regular set L(Ti). In the affirmative, the restart
operation of this meta-instruction is associated to the index (l, 1), where
l ∈ σi is the index that is associated with the corresponding restart opera-
tion of Mi. In the negative the restart operation of this meta-instruction is
associated to the index (i, 5− s).

Thus, M′ is indeed a globally deterministic CD-X-system. Further, it is easily
seen that in mode = 1 it simulates the mode ed computations of M. It follows
that L=1(M′) = Led(M) holds. �	

Currently it remains open whether Theorems 4 and 5 extend to CD-R(W)(W)-
systems. Thus, it is not known whether the inclusion L=1(CD-R(W)(W)) ⊆
Led(CD-R(W)(W)) of Theorem 2 is proper or not.

4 Locally Deterministic CD-R-Systems versus Locally
Deterministic CD-RR-Systems

Here we compare the expressive power of locally deterministic CD-R(W)(W)-
systems working in mode ed to that of locally deterministic CD-RR(W)(W)-
systems working in mode ed. To this end we first study the information that
a description by meta-instructions reveals on a deterministic RRWW-automaton.

Let M = (Q, Σ, Γ, c, $, q0, k, δ) be a deterministic RRWW-automaton, and let
I0 = (E0, Accept) and Ii = (Ei, ui → vi, E

′
i) (1 ≤ i ≤ n) be a sequence of meta-

instructions that describe the behaviour of M . Here we can assume without loss
of generality that |ui| = k holds for all i = 1, . . . , n. As M is deterministic, the
above meta-instructions are used as follows. Assume that M is in the restarting
configuration q0cw$. Then M scans the tape from left to right until it detects
the shortest prefix w1 of w such that w1 = w3ui and cw3 ∈ L(Ei) for some

636 F. Otto

i ∈ {1, . . . , n}. It then rewrites ui into vi and checks whether the corresponding
suffix w2 of w belongs to the language L(E′

i). At the same time it checks whether
the original tape content cw$ belongs to the language L(E0). If the latter holds,
then M halts and accepts; if cw$ �∈ L(E0), but w2$ ∈ L(E′

i), then M restarts
in the restarting configuration q0cw3viw2$. Finally, if w2$ ∈ L(E′

i) does not
hold, either, then M halts and rejects. If no prefix of the above form is found,
then M halts and rejects as well, unless cw$ ∈ L(E0) holds, in which case
M halts and accepts. Thus, we can replace each regular constraint Ei by a regular
constraint Fi satisfying

L(Fi) = { cw ∈ L(Ei) | No proper prefix of cwui is in
n⋃

r=1

(L(Er) · ur) },

and the resulting meta-instructions I ′i = (Fi, ui → vi, E
′
i) (1 ≤ i ≤ n) will

describe M together with I0.
The new constraints have the following advantage. If cw$ ∈⋃n

i=1 (L(Fi) · ui · L(E′
i)), then there exist a unique index i ∈ {1, . . . , n}

and a unique factorization w = w1uiw2 such that cw1 ∈ L(Fi) and w2$ ∈ L(E′
i)

hold. Thus, if it is known that cw$ ∈
⋃n

i=1 (L(Fi) · ui · L(E′
i)) holds, then on

detecting a prefix w1 of w satisfying cw1ui ∈ L(Fi) · ui, it is guaranteed that
the corresponding suffix w2 of w satisfies the condition w2$ ∈ L(E′

i). Observe,
however, that in general the intersection L(E0) ∩

⋃n
i=1 (L(Fi) · ui · L(E′

i)) will
not be empty, that is, some words are accepted by M in tail computations that
have a prefix belonging to the language L(Fi) · ui for some value of i. We now
use this observation for establishing the following result on locally deterministic
CD-R(W)(W)-systems working in mode ed.

Theorem 6
For all X ∈ {λ, W, WW}, Led(det-local-CD-RRX) ⊆ Led(det-local-CD-RX).

Proof. Because of Corollary 1 it suffices to consider locally deterministic
CD-RRX-systems that are working in mode = 1. So let M := ((Mi, σi)i∈I , I0)
be a locally deterministic CD-RRX-system, and let L = L=1(M). Each compo-
nent Mi can be described by a finite sequence of meta-instructions of the form
(Ii,0, Ii,1, . . . , Ii,ni), where Ii,0 = (Ei,0, Accept) is an accepting meta-instruction,
and Ii,j = (Ei,j , ui,j → vi,j , E

′
i,j) (1 ≤ j ≤ ni) are rewriting meta-instructions.

We now construct a locally deterministic CD-RX-system M′ and enable and
disable conditions such that Led(M′) = L holds. In this construction we will
have two components P(i,a) and P(i,c) for each component Mi. Thus, we take
M′ := ((P(i,μ), σ(i,μ))i∈I,μ∈{a,c}, I

′
0), where

σ(i,a) := σ(i,c) := { (j, a), (j, c) | j ∈ σi } for all i ∈ I,

and
I ′0 := { (i, a), (i, c) | i ∈ I0 }.

For each index i ∈ I, the component P(i,a) is described by the accepting meta-
instruction Ii,0. Its enable condition S(i,a) is simply the language c · Γ ∗ · $,
where Γ is the (combined) tape alphabet of the components of M, and its

CD-Systems of Restarting Automata 637

disable condition T(i,a) is the same language. If this component is called during
a computation of M′, then the computation necessarily ends: either the tape
content cw$ belongs to the regular language L(Ei,0) and P(i,a) accepts, or it
does not belong to this language, and then P(i,a) rejects.

It remains to define the components P(i,c) and the enable and disable condi-
tions S(i,c) and T(i,c) for all i ∈ I. Let i ∈ I, and let j ∈ {1, . . . , ni}. By Fi,j we
denote a regular expression for the language

L(Fi,j) = { cw ∈ L(Ei,j) | No proper prefix of cwui,j is in
ni⋃

r=1

(L(Ei,r) · ui,r) }.

We define P(i,c) by the meta-instructions I ′i,j := (Fi,j , ui,j → vi,j) (1 ≤ j ≤ ni),
and take

S(i,c) :=
ni⋃

j=1

(L(Fi,j) · ui,j · L(E′
i,j)), and T(i,c) := c · Γ ∗ · $.

If this component is called during a computation of M′, and if cw$ is the
corresponding restarting configuration, then the enable condition S(i,c) checks
whether w admits a factorization of the form w = w1ui,jw2 for some index
j ∈ {1, . . . , ni} such that cw1 ∈ L(Fi,j) and w2$ ∈ L(E′

i,j). If such a factor-
ization does not exist, then P(i,c) halts and rejects. However, we see from the
discussion above that then none of the meta-instruction Ii,j (1 ≤ j ≤ ni) of Mi

is applicable, either. Otherwise, let w1ui,j be the shortest prefix of w to which a
meta-instruction of Mi applies. Then P(i,c) executes exactly the same cycle that
Mi would execute in this situation. From the disable condition T(i,c) we see that
in mode ed the component P(i,c) will execute a single cycle only. It follows that
Led(M′) = L=1(M). �	

Together with Corollary 1 and the trivial inclusion

Led(det-local-CD-RX) ⊆ Led(det-local-CD-RRX)

this yields the following equalities.

Corollary 2. For all X ∈ {λ, W, WW},

Led(det-local-CD-RX) = Led(det-local-CD-RRX) = L=1(det-local-CD-RRX).

5 Concluding Remarks

It currently remains open whether Theorem 6 also holds for globally determinis-
tic CD-systems. IfM is a globally deterministic CD-RRWW-system, and if cw$ is
the tape content at the beginning of a cycle in which component automaton Mi

is active, then the suffix w2 of a factorization w = w1ui,jw2, where cw1 ∈ L(Ei,j)
for a meta-instruction (Ei,j , ui,j → vi,j , E

′
i,j) of Mi, may determine the corre-

sponding successor component. However, the corresponding component automa-
ton of a simulating globally deterministic CD-RWW-system will need to actually

638 F. Otto

read this suffix in the corresponding cycle. Hence, the construction from the
proof of Theorem 6 does not carry over to globally deterministic CD-systems.
Further, it is open whether the corresponding result holds for nondeterministic
CD-systems. Also the following questions and problems remain for future work:

1. Does Theorem 4 extend to CD-R-, CD-RW-, and CD-RWW-automata? If so,
then together with Theorem 6 this would imply that also in mode = 1 locally
deterministic CD-R(W)(W)-systems are as expressive as locally deterministic
CD-RR(W)(W)-systems.

2. Does Theorem 4 extend to other modes of operation? Or is it possible to
establish a proper separation result, at least for those types of restarting
automata that have no auxiliary symbols?

3. Another topic for research is the question about the number of components
that are needed to accept a certain language. From the proofs above it ap-
pears that less components may be needed in the ed mode of operation than
in the = 1 mode of operation.

Acknowledgement. The author thanks Erzsébet Csuhaj-Varjú for a very in-
teresting discussion on the enable/disable mode for CD grammar systems.

References

1. Csuhaj-Varjú, E., Dassow, J., Kelemen, J., Păun, G.: Grammar Systems. A Gram-
matical Approach to Distribution and Cooperation. Gordon and Breach, London
(1994)

2. Dassow, J., Kelemen, J.: Cooperating/Distributed Grammar Systems: A Link be-
tween Formal Languages and Artificial Intelligence. Bulletin of the EATCS 45, 131–
145 (1991)

3. Jančar, P., Mráz, F., Plátek, M., Vogel, J.: Restarting Automata. In: Reichel, H.
(ed.) FCT 1995. LNCS, vol. 965, pp. 283–292. Springer, Heidelberg (1995)

4. Messerschmidt, H., Otto, F.: On Nonforgetting Restarting Automata that Are De-
terministic and/or Monotone. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds.)
CSR 2006. LNCS, vol. 3967, pp. 247–258. Springer, Heidelberg (2006)

5. Messerschmidt, H., Otto, F.: Cooperating Distributed Systems of Restarting Auto-
mata. Int. J. Found. Comput. Sci. 18, 1333–1342 (2007)

6. Messerschmidt, H., Otto, F.: On Deterministic CD-Systems of Restarting Automata.
Int. J. Found. Comput. Sci. 20, 185–209 (2009)

7. Messerschmidt, H., Stamer, H.: Restart-Automaten mit mehreren Restart-
Zuständen. In: Bordihn, H. (ed.) Workshop Formale Methoden in der Linguistik
und 14. Theorietag Automaten und Formale Sprachen. Proc., Institut für Infor-
matik, pp. 111–116. Universität Potsdam (2004)

8. Otto, F.: Restarting Automata and Their Relations to the Chomsky Hierarchy. In:
Ésik, Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 55–74. Springer, Heidelberg
(2003)

9. Otto, F.: Restarting Automata. In: Ésik, Z., Martin-Vide, C., Mitrana, V. (eds.)
Recent Advances in Formal Languages and Applications. Studies in Computational
Intelligence, vol. 25, pp. 269–303. Springer, Berlin (2006)

Source Code Rejuvenation Is Not Refactoring

Peter Pirkelbauer, Damian Dechev, and Bjarne Stroustrup

Department of Computer Science and Engineering
Texas A&M University

College Station, TX 77843-3112
{peter.pirkelbauer,dechev}@tamu.edu, bs@cse.tamu.edu

Abstract. Programmers rely on programming idioms, design patterns,
and workaround techniques to make up for missing programming lan-
guage support. Evolving languages often address frequently encountered
problems by adding language and library support to subsequent releases.
By using new features, programmers can express their intent more di-
rectly. As new concerns, such as parallelism or security, arise, early id-
ioms and language facilities can become serious liabilities. Modern code
sometimes benefits from optimization techniques not feasible for code
that uses less expressive constructs. Manual source code migration is
expensive, time-consuming, and prone to errors.

In this paper, we present the notion of source code rejuvenation, the
automated migration of legacy code and very briefly mention the tools
we use to achieve that. While refactoring improves structurally inade-
quate source code, source code rejuvenation leverages enhanced program
language and library facilities by finding and replacing coding patterns
that can be expressed through higher-level software abstractions. Rais-
ing the level of abstraction benefits software maintainability, security,
and performance.

1 Introduction

Popular programming languages evolve over time. One driver of evolution is
a desire to simplify the use of these languages in real life projects. For example,
in the early 1970ies the C programming language was developed as a system
programming language for the UNIX operating system on the PDP-11 [1]. With
the proliferation of UNIX to other platforms, C evolved to reflect concerns such
as portability and type safety. Later Stroustrup enhanced C with higher level
abstractions to simplify the development of a distributed and modularized UNIX
kernel [2]. Compared to C, ISO C++ [3] directly supports the program design
with classes, dynamic dispatch, templates, exception handling, and more [2].
Abstraction mechanisms present in C++ can be compiled to efficient machine
code on many architectures. This makes C++ suitable for software development
of embedded systems, desktop computers, and mainframe architectures. C++’s
proliferation and success is a constant source of ideas for enhancements and ex-
tensions. The ISO C++ standards committee has released a draft of the next
revision of the C++ standard, commonly referred to as C++0x [4] [5]. C++0x will

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 639–650, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

640 P. Pirkelbauer, D. Dechev, and B. Stroustrup

address a number of modeling problems (e.g., object initialization) by providing
better language and library support. Until compiler and library implementa-
tions of C++0x become widely available, C++ programmers solve these problems
through programming idioms and workaround techniques. These “solutions” are
typically more involved than they would be in C++0x and can easily become
another source of errors and maintenance problems.

This paper draws its examples from C++0x’s proposed extensions to the lan-
guage and its standardized libraries [6], but the topic is equally valid for other
widely used and evolving languages, such as Python [7], C# [8], and Java [9].
For example, Java is currently undergoing its sixth major revision since its first
release in 1995. Extensions under consideration for Java 7 include support for clo-
sures, null safe method invocations, extended catch clauses to catch and rethrow
groups of exceptions, type inference for generics and others [10].
The contributions of this paper are:

– We define the term source code rejuvenation and delineate it from related
fields.

– We demonstrate source code rejuvenation with examples that migrate code
from C++03 to C++0x.

The rest of this paper is outlined as follows: In §2, we define the term source code
rejuvenation. In §3, we demonstrate source code rejuvenation based on C++0x
language features. In §4, we put our work in context to refactoring. In §5, we
describe the tool we use to implement source code rejuvenation tools. In §6, we
summarize.

2 What Is Source Code Rejuvenation?

Source code rejuvenation is a source-to-source transformation that replaces dep-
recated language features and idioms with modern code. Old code typically
contains outdated idioms, elaborate and often complex coding patterns, dep-
recated language features (or data structures). The rejuvenated code is more
concise, safer, and uses higher level abstractions. What we call outdated idioms
(and patterns) are techniques often developed in response to the lack of direct
language support. When programming languages and techniques evolve, these
coding styles become legacy code, as programmers will express new code in terms
of new language features. This leads to a mix of coding styles, which compli-
cates a programmer’s understanding of source code and can cause maintenance
problems. Furthermore, the teaching and learning can be greatly simplified by
eliminating outdated language features and idioms.

Source code rejuvenation is a unidirectional process that detects coding tech-
niques expressed in terms of lower-level language and converts them into code
using higher-level abstractions. High-level abstractions make information explicit
to programmers and compilers that would otherwise remain buried in more in-
volved code. We aim to automate many forms of code rejuvenation and to pro-
vide program assistance for cases where human intervention is necessary. In other
words, our aim is nothing less than to reverse (some forms of) (software) entropy!

Source Code Rejuvenation Is Not Refactoring 641

Preserving behavioral equivalence between code transformations is necessary
to claim correctness. In the context of source code rejuvenation, a strict interpre-
tation of behavior preservation would disallow meaningful transformations (e.g.,
see the initializer list example §3.1). We therefore argue that a valid source code
rejuvenation preserves or improves a program’s behavior. In addition, when a re-
juvenation tool detects a potential problem but does not have sufficient informa-
tion to gurantee a correct code transformation, it can point the programmer to
potential trouble spots and suggest rejuvenation. For example, a tool can pro-
pose the use of the C++0x’s array class instead of C style arrays. A C++0x array
object passed as function argument does not decay to a pointer. The argument
retains its size information, which allows a rejuvenation tool to suggest bounds
checking of data accesses in functions that take arrays as parameters.

2.1 Applications

Source code rejuvenation is an enabling technology and tool support for source
code rejuvenation leverages the new languages capabilities in several aspects:
Source Code Migration: Upgrading to the next iteration of a language can in-
validate existing code. For example, a language can choose to improve static
type safety by tightening the type checking rules. As result formerly valid code
produces pesty error or warning messages. An example is Java’s introduction of
generics. Starting with Java 5 the compiler warns about the unparametrized use
of Java’s container classes.

Even with source code remaining valid, automated source code migration makes
the transition tonew languageversions smoother.For example, programmerswould
not need to understand and maintain source files that use variousworkaround tech-
niques instead of (later added) language constructs. For example, a project might
use template based libraries (e.g., Standard Template Library (STL) [11], STAPL
[12]) where some were developed for C++03 and others for C++0x. In such a situa-
tion, programmers are required to understand both.
Education: Integration with a smart IDE enables “live” suggestions that can
replace workarounds/idioms with new language constructs, thereby educating
programmers on how to better use available language and library constructs.
Optimization: The detection of workarounds and idioms can contribute a sig-
nificant factor to both the development cost of a compiler and the runtime, as
the detection and transformation requires time. Compiler vendors are often re-
luctant to add optimizations for every single scenario. The introduction of new
language constructs can enable more and better optimizations (e.g., const expr

lets the compiler evaluate expressions at compile time [5]). Automated source
code migration that performs a one-time source code transformation to utilize
the new language support enables optimizations that might be forgone otherwise.

3 Case Studies

In this section, we demonstrate source code rejuvenation with examples taken
from C++0x, namely initializer lists and concept extraction.

642 P. Pirkelbauer, D. Dechev, and B. Stroustrup

3.1 Initializer Lists

In current C++, the initialization of a container (or any other object) with an
arbitrary number of different values is cumbersome. When needed, programmers
deal with the problem by employing different initialization idioms.

Consider initializing a vector of int with three constant elements (e.g., 1, 2, 3).
Techniques to achieve this include writing three consecutive push back operations,
and copying constants from an array of int. We can “initialize” through a series
of push back()s:

// using namespace std;
vector<int> vec;

// three consecutive push backs
vec.push back(1);
vec.push back(2);
vec.push back(3);

Alternatively, we can initialize an array and use that to initialize the vector:

// copying from an array
int a[] = {1, 2, 3};
vector<int> vec(a,a+sizeof(a)/sizeof(int));

These are just the two simplest examples of such workarounds observed in real
code. Although the described initialization techniques look trivial, it is easy to
accidentally write erroneous or non-optimal code. For example, in the first exam-
ple the vector resizes its internal data structure whenever the allocated memory
capacity is insufficient to store a new value; in some situations that may be a per-
formance problem. The second example is simply a technique that people often
get wrong (e.g. by using the wrong array type or by specifying the wrong size for
the vector). Other workarounds tend to be longer, more complicated, and more-
error prone. Rejuvenating the code to use C++0x’s initializer list construction
[13] automatically remedies this problem.

// rejuvenated source code in C++0x
vector<int> vec = {1, 2, 3};

In C++0x, the list of values (1, 2, 3) becomes an initializer list. Initializer list
constructors take the list of values as argument and construct the initial object
state. As a result, the rejuvenated source code is more concise – needs only
one line of code (LOC) when compared to two and four LOC needed by the
workaround techniques. The rejuvenated source code becomes more uniform:
every workaround is replaced by the same construct. In this particular case, we
gain the additional effect that the rejuvenated code code style is analogous to C
style array initialization (compare the definition of the array a in the code snippet
with the workaround examples). Thus, the reader does not have to wonder about
the irregularities of C++98 initialization.

Source Code Rejuvenation Is Not Refactoring 643

3.2 Partial Order of Templated Functions in a Generic Function
Family

Current C++ supports generic programming with its template mechanism. Tem-
plates are a compile time mechanism that parametrize functions or classes over
types. With current C++, the requirements that make the instantiation of tem-
plate bodies succeed cannot be explicitly stated. To type check a template, the
compiler needs to instantiate the template body with concrete types. Program-
mers have to look up the requirements in documentation or infer them from the
template body. Attempts to instantiate templates with types that do not meet
all requirements fail with often hard to comprehend error messages [14]. Con-
cepts [14] [15] is a mechanism designed for C++0x to make these requirements
explicit in source code. A concept constrains one or more template arguments
and provides for the separation of template type checking from template instan-
tiation.
Concept extraction: In [16], we discuss tool support for extracting syntactic
concept requirements from templated source code. For example, consider the
STL [11] function advance that is defined over input-iterator:

template <class Iter, class Dist>
void advance(Iter& iterator, Dist dist) {

while (dist−−) ++iterator;
}

Our tool extracts the following concept requirements:

concept AdvInputIter <typename Iter, typename Dist> {
Dist::Dist(const Dist&); // to copy construct arguments
void operator++(Iter&); // advance the iterator by one
bool operator−−(Dist&, int); // decrement the distance

}

Likewise, our tool extracts the following requirements from the advance imple-
mentations for bidirectional-iterators:

// for Bidirectional−Iterators
template <class Iter, class Dist>
void advance(Iter& iterator, Dist dist) {

if (dist > 0)
while (dist−−) ++iterator;

else
while (dist++) −−iterator;

}
concept AdvBidirectIter <typename Iter, typename Dist> {

Dist::Dist(const Dist&);
void operator++(Iter&); // move the iterator forward
void operator−−(Iter&); // move the iterator backward
bool operator++(Dist&, int); // post−increment
bool operator−−(Dist&, int); // post−decrement

}

644 P. Pirkelbauer, D. Dechev, and B. Stroustrup

and random access-iterators:

// for RandomAccess−Iterators
template<class RandomAccessIterator, class Distance>
void advance(RandomAccessIterator& i, Distance n) {

i += n;
}
concept AdvRandomAccessIter <typename Iter, typename Dist> {

Dist::Dist(const Dist&);
void operator+=(Iter&, Dist&); // constant time positioning operation

}

Callers of a generic function, such as the advance family, are required to incor-
porate the minimal concept requirements in its concept specification. Consider
a function random elem, that moves the iterator to a random position and returns
the underlying value:

template <class Iter>
typename Iter::value type random elem(Iter iter, size t maxdist) {

advance(iter, rand(maxdist));
return ∗iter;

}

The concept requirements on Iter depend on the minimal concept require-
ments of the generic function advance. From the concept requirements that were
extracted for the advance family, the hierarchical concept relationship (or a base
implementation) cannot be inferred. The sets of requirements extracted for
input- and bidirectional-iterator can be ordered by inclusion. However, the set of
requirements for randomaccess-iterator is disjoint from the other two sets. The
minimal set of requirements cannot be automatically determined.

The lack of explicit information on the hierarchical order of templated function
declarations is not only a problem for a concept extraction tool, but also for
programmers. Without more information compilers cannot discern overloaded
template functions for a given set of argument types. To overcome this problem,
programmers have invented idioms, such as tag dispatching [17] and techniques
that utilize the substitution failure is not an error mechanism [18]. This section
of the paper demonstrates that a rejuvenation tool can recover the concept
hierarchy by identifying the tag dispatching idiom in legacy code.
Tag dispatching: The tag dispatching idiom adds an unnamed non template
parameter to the signature of each function-template in a generic function family
(e.g., inputiterator tag, bidirectional iterator tag, . . .).

template<class InputIterator, class Distance>
void advance(InputIterator& iter, Distance dist, inputiterator tag);

template<class RandomAccessIterator, class Distance>
void advance(RandomAccessIterator& iter, Distance dist, randomaccess iterator tag);

With the extra argument, the compiler can discriminate the tagged functions
based on the non template argument dependent parameter type. A templated

Source Code Rejuvenation Is Not Refactoring 645

access function uses the class family iterator traits [19] to construct an object of
the proper tag type. An iterator tag is an associated type (i.e., iterator category)
of the actual iterator (or its iterator traits).

template<class InputIterator, class Distance>
void advance(InputIterator& iter, Distance dist) {

advance(i, dist, iterator traits<InputIterator>::iterator category());
}

Recovering structural information from tags: To distinguish tags from regular
classes, we require parameters used as tags to possess the following properties.

– all template functions of a generic function family have unnamed parame-
ter(s) at the same argument positions(s).

– the type tuple of tag parameters is unique for each function template within
a generic function family.

In addition, we require that for each generic function family exist an access
function that has the same number of non-tag arguments (and types). Tag classes
are not allowed to have non-static members.

By identifying tag classes, our tool can deduce the refinement relationship of
template functions from the inheritance relationship of the tag classes. Consider,
the hierarchy of the iterator classes:

struct input iterator tag {};
struct forward iterator tag : input iterator tag {};
struct bidirectional iterator tag : forward iterator tag {};
struct randomaccess tag : bidirectional iterator tag {};

By knowing that input iterator is the base of the tag hierarchy, we can propagate
the requirements of the corresponding template function advance to the require-
ments of its callers. For example, the requirements of function random elem are:

concept RandomElem <typename Iter, typename Dist> {
// requirements propagated from advance
Dist::Dist(const Dist&); // to copy construct arguments
void operator++(Iter&); // advance the iterator by one
bool operator−−(Dist&, int); // decrement the distance

// additional requirements from random elem
Iter::Iter(const Iter&); // to copy construct arguments

}

4 Refactoring

The term refactoring is derived from the mathematical term “factoring” and
refers to finding multiple occurrences of similar code and factoring it into a single
reusable function, thereby simplifying code comprehension and future mainte-
nance tasks [20]. The meaning of refactoring has evolved and broadened. In [21],

646 P. Pirkelbauer, D. Dechev, and B. Stroustrup

Opdyke and Johnson define refactoring as an automatic and behavior preserv-
ing code transformations that improves source code that was subject to gradual
structural deterioration over its life time. Essentially, refactorings improve the
design of existing code [22] [23].

Traditionally, refactoring techniques have been applied in the context of object-
oriented software development. Automated refactoring simplifies modifications
of a class, a class hierarchy, or several interacting classes [21]. More recently,
refactoring techniques have been developed to support programs written in other
programming styles (i.e., functional programming [24]).

Refactorings capture maintenance tasks that occur repeatedly. Opdyke [25]
studied recurring design changes (e.g., component extraction, class (interface)
unification). Refactoring is a computer assisted process that guarantees cor-
rectness, thereby enabling programmers to maintain and develop software more
efficiently. In particular, evolutionary (or agile) software development methodolo-
gies [26], where rewriting and restructuring source code frequently is an inherent
part of the development process of feature extensions, benefit from refactoring
tools.

“Anti-patterns” [27] and “code smells” [22] are indicators of design deficien-
cies. Anti-patterns are initially structured solutions that turn out to be more
troublesome than anticipated. Examples for anti-patterns include the use of
exception-handling for normal control-flow transfer, ignoring exceptions and er-
rors, magic strings, and classes that require their client-interaction occur in a par-
ticular sequence. Source code that is considered structurally inadequate is said
to suffer from code smell. Examples for “code smell” include repeated similar
code, long and confusing functions (or methods), overuse of type tests and type
casts. The detection of code smell can be partially automated [28] and assists
programmers in finding potentially troublesome source locations. Refactoring of
anti-patterns and “code smells” to more structured solutions improves safety
and maintainability.

Refactoring does not emphasize a particular goal or direction of source code
modification – e.g., refactoring supports class generalization and class specifica-
tion [25], refactoring can reorganize source code towards patterns and away from
patterns (in case a pattern is unsuitable) [23].

Refactoring strictly preserves the observable behavior of the program. The
term “observable behavior”, however, is not well defined [20]. What observable
behavior exactly requires (e.g., function call trace, performance, . . .) remains
unclear. Refactoring does not eliminate bugs, but can make bugs easier to spot
and fix.

4.1 Source Code Rejuvenation and Refactoring

Table 1 summarizes characteristics of source code rejuvenation and refactoring.
Both are examples of source code analysis and transformations that operate on
the source level of applications. Refactoring is concerned to support software de-
velopment with tools that simplify routine tasks, while source code rejuvenation
is concerned with a one-time software migration. Both are examples of source

Source Code Rejuvenation Is Not Refactoring 647

Table 1. Source Code Rejuvenation vs. Refactoring

Source Code Rejuvenation Refactoring

Transformation Source-to-source Source-to-source

Behavior preserving Behavior improving Behavior preserving

Directed yes no
Raises the level of abstraction

Drivers Language / library evolution Feature extensions
Design changes

Indicators Workaround techniques / idioms Bad smells
Anti-patterns

Applications One-time source code migration Recurring maintenance tasks

code analysis and transformation. Source code rejuvenation gathers information
that might be dispersed in the source of involved workaround techniques and
makes the information explicit to compilers and programmers. Refactoring em-
phasizes the preservation of behavior, while source code rejuvenation allows for
and encourages behavior improving modifications.

We might consider code rejuvenation a “subspecies” of refactoring (or vise
versa), but that would miss an important point. The driving motivation or code
rejuvenation is language and library evolution rather than the gradual improve-
ment of design within a program. Once a rejuvenation tool has been configured,
it can be applied to a wide range of programs with no other similarities than
they were written in an earlier language dialect or style.

5 Tool Support for Source Code Rejuvenation

Source code evolution and modernization projects are an active branch of aca-
demic and industrial research. For our implementation of a source code rejuvena-
tion tools, we utilize the Pivot source-to-source transformation framework [29].
The Pivot’s internal program representation (IPR) allows for representing a su-
perset of C++ including some programs written in the next generation of C++.
IPR can be conceived as a fully typed abstract syntax tree. IPR represents C++
programs at a level that preserves most information present in the the source
code. For example, IPR preserves uninstantiated template code. This allows us
to analyse template and improve template definitions, for example, by deducing
concepts or rejuvenating template function bodies.

We stress that the IPR is fully typed. Type information enables the implemen-
tation of source code rejuvenation that is type sensitive. Most of the potential
rejuvenation analysis and transformations depend on type information. For ex-
ample, concept extraction distinguishes operations that are template argument
dependent from operations that are not. Likewise, the implementation to migrate
source code to use initializer lists depends on whether the container type supports
initializer-list constructors. This is the case for standard STL containers.

648 P. Pirkelbauer, D. Dechev, and B. Stroustrup

Related work includes systems for source code evolution and transformations.
MoDisco [30], which is part of Eclipse, provides a model driven framework for
source code modernization. The Design Maintenance System (DMS) [31] is an
industrial project that provides a transformation framework. DMS supports
the evolution of large scale software written in multiple languages.
Stratego/XT [32] is a generic transformation framework that operates on an
annotated term (ATerm) representation. Rose [33] provides a source-to-source
translation framework for C++ and Fortran programs.

6 Conclusion

In this paper, we have discussed source code rejuvenation, a process that au-
tomates and assists source code changes to take advantage of improvements to
programming languages and its libraries. We have supported our arguments with
two specific examples from the migration from C++03 to C++0x.

We are aware that refactoring has been used to describe semantic preserv-
ing code transformations that migrate code to use new frameworks (e.g., Tip
et al. [34], Tansey and Tilevich [35]). In this paper, we have demonstrated with
examples that the difference between language evolution related code transfor-
mations and refactoring is subtle but important. We prefer and suggest the term
“source code rejuvenation” for describing one-time and directed source code
transformations that discover and eliminate outdated workaround techniques
and idioms.

References

1. Ritchie, D.M.: The Development of the C Language. In: HOPL-II: The Second
ACM SIGPLAN Conference on History of Programming Languages, New York,
pp. 201–208. ACM, New York (1993)

2. Stroustrup, B.: The Design and Evolution of C++. ACM Press/Addison-Wesley
Publishing Co. (1994)

3. ISO/IEC 14882 International Standard: Programming Languages: C++. American
National Standards Institute (September 1998)

4. Stroustrup, B.: The Design of C++0x. C/C++ Users Journal (2005)
5. Becker, P.: Working Draft, Standard for Programming Language C++. Technical

Report N2914 (June 2009)
6. Becker, P.: The C++ Standard Library Extensions: A Tutorial and Reference, 1st

edn. Addison-Wesley Professional, Boston (2006)
7. van Rossum, G.: The Python Language Reference Manual. Network Theory Ltd.,

Paperback (September 2003)
8. ECMA: The C# Language Specification. Technical Report, ECMA (European As-

sociation for Standardizing Information and Communication Systems), Geneva,
Switzerland (June 2006)

9. Arnold, K., Gosling, J., Holmes, D.: The Java Programming Language, 4th edn.
Prentice Hall PTR, Englewood Cliffs (2005)

10. Miller, A.: http://tech.puredanger.com/java7 (retrieved on July 6, 2009)

http://tech.puredanger.com/java7

Source Code Rejuvenation Is Not Refactoring 649

11. Austern, M.H.: Generic Programming and the STL: Using and Extending the C++
Standard Template Library. Addison-Wesley Longman Publishing Co., Inc., Boston
(1998)

12. An, P., Jula, A., Rus, S., Saunders, S., Smith, T., Tanase, G., Thomas, N., Am-
ato, N., Rauchwerger, L.: STAPL: A Standard Template Adaptive Parallel C++
Library. In: Dietz, H.G. (ed.) LCPC 2001. LNCS, vol. 2624, pp. 193–208. Springer,
Heidelberg (2003)

13. Merrill, J., Vandevoorde, D.: Initializer Lists — Alternative Mechanism and Ra-
tionale. Technical Report N2640, JTC1/SC22/WG21 C++ Standards Committee
(2008)

14. Gregor, D., Järvi, J., Siek, J., Stroustrup, B., Dos Reis, G., Lumsdaine, A.: Con-
cepts: Linguistic Support for Generic Programming in C++. In: OOPSLA 2006:
Proceedings of the 21st Annual ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages, and Applications, pp. 291–310. ACM Press,
New York (2006)

15. Gregor, D., Stroustrup, B., Siek, J., Widman, J.: Proposed Wording for Concepts
(Revision 4). Technical Report N2501, JTC1/SC22/WG21 C++ Standards Com-
mittee (February 2008)

16. Pirkelbauer, P., Dechev, D., Stroustrup, B.: Extracting Concepts from C++
Generic Functions. Technical Report, Dept. of Computer Science and Engineer-
ing, Texas A&M (October 2009)

17. Abrahams, D., Gurtovoy, A.: C++ Template Metaprogramming: Concepts, Tools,
and Techniques from Boost and Beyond. C++ in Depth Series. Addison-Wesley
Professional, Reading (2004)

18. Järvi, J., Willcock, J., Hinnant, H., Lumsdaine, A.: Function Overloading Based
on Arbitrary Properties of Types. C/C++ Users Journal 21(6), 25–32 (2003)

19. Myers, N.C.: Traits: a New and Useful Template Technique. C++ Report (1995)
20. Mens, T., Tourwé, T.: A Survey of Software Refactoring. IEEE Trans. Softw.

Eng. 30(2), 126–139 (2004)
21. Opdyke, W.F., Johnson, R.E.: Creating Abstract Superclasses by Refactoring. In:

CSC 1993: Proceedings of the 1993 ACM Conference on Computer Science, pp.
66–73. ACM, New York (1993)

22. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improv-
ing the Design of Existing Code. Addison-Wesley Longman Publishing Co., Inc.,
Boston (1999)

23. Kerievsky, J.: Refactoring to Patterns. Pearson Higher Education, London (2004)
24. Lämmel, R.: Towards Generic Refactoring. In: RULE 2002: Proceedings of the 2002

ACM SIGPLAN Workshop on Rule-Based Programming, pp. 15–28. ACM, New
York (2002)

25. Opdyke, W.F.: Refactoring Object-Oriented Frameworks. PhD Thesis, University
of Illinois at Urbana-Champaign, Champaign, IL, USA, UMI Order No. GAX93-
05645 (1992)

26. Abrahamsson, P., Salo, O., Ronkainen, J.: Agile Software Development Methods:
Review and Analysis. Technical Report, VTT Electronics (2002)

27. Brown, W.J., Malveau, R.C., McCormick III, H.W., Mowbray, T.J.: AntiPatterns:
Refactoring Software, Architectures, and Projects in Crisis. John Wiley & Sons,
Inc, New York (1998)

28. Parnin, C., Görg, C., Nnadi, O.: A Catalogue of Lightweight Visualizations to
Support Code Smell Inspection. In: SoftVis 2008: Proceedings of the 4th ACM
Symposium on Software Visualization, pp. 77–86. ACM, New York (2008)

650 P. Pirkelbauer, D. Dechev, and B. Stroustrup

29. Stroustrup, B., Dos Reis, G.: Supporting SELL for High-Performance Computing.
In: Ayguadé, E., Baumgartner, G., Ramanujam, J., Sadayappan, P. (eds.) LCPC
2005. LNCS, vol. 4339, pp. 458–465. Springer, Heidelberg (2006)

30. Eclipse MoDisco Project, http://www.eclipse.org/gmt/modisco/ (retrieved on
September 20, 2009)

31. Baxter, I.D.: DMS: Program Transformations for Practical Scalable Software Evo-
lution. In: IWPSE 2002: Proceedings of the International Workshop on Principles
of Software Evolution, pp. 48–51. ACM, New York (2002)

32. Bravenboer, M., Kalleberg, K.T., Vermaas, R., Visser, E.: Stratego/XT 0.16: Com-
ponents for Transformation Systems. In: PEPM 2006: Proceedings of the 2006
ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program
Manipulation, pp. 95–99. ACM, New York (2006)

33. Quinlan, D., Schordan, M., Yi, Q., Supinski, B.R.d.: Semantic-Driven Paralleliza-
tion of Loops Operating on User-Defined Containers. In: Rauchwerger, L. (ed.)
LCPC 2003. LNCS, vol. 2958. Springer, Heidelberg (2004)

34. Balaban, I., Tip, F., Fuhrer, R.: Refactoring Support for Class Library Migration.
In: OOPSLA 2005: Proceedings of the 20th Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications, pp. 265–
279. ACM, New York (2005)

35. Tansey, W., Tilevich, E.: Annotation Refactoring: Inferring Upgrade Transforma-
tions for Legacy Applications. In: OOPSLA 2008: Proceedings of the 23rd ACM
SIGPLAN Conference on Object-Oriented Programming Systems Languages and
Applications, vol. 43, pp. 295–312. ACM, New York (2008)

http://www.eclipse.org/gmt/modisco/

Empirical Evaluation of Strategies to Detect
Logical Change Dependencies

Guenter Pirklbauer

Software Competence Center Hagenberg
Softwarepark 21, A-4232 Hagenberg, Austria

guenter.pirklbauer@scch.at

Abstract. Change impact analysis plays an immanent role in the main-
tenance and enhancement of software systems. There still exist many ap-
proaches to support change impact analysis. In the last years researchers
try to utilize data in software repositories to gain findings for support-
ing miscellaneous aspects of software engineering, e.g. software evolution
analysis or change impact analysis. In the context of change impact anal-
ysis, approaches (=strategies) try to detect logical dependencies among
artifacts based on the version histories of files in the concurrent versioning
system (e.g. CVS). They try to infer logical couplings of files (artifacts)
based on co-changes (files which are frequently changed together). Based
on these findings we want to contribute with the presentation of insights
of deeper investigation of historical information in concurrent version-
ing systems in general. In this paper we have identified and described
existing strategies to detect logical change couplings. These strategies
will be illustrated by practical use cases. We have empirically evaluated
these strategies based on versioning system repositories of two industrial
projects. The analysis figures the absolute and relative contribution of
dependency results per strategy. Furthermore we show overlappings of
dependency results.

Keywords: Logical change dependencies, logical change couplings,
change impact analysis, change prediction, mining software repositories.

1 Introduction

Change impact analysis (identifying the potential consequences of a change, or
estimated what needs to be modified to accomplish a change [1]), is coined by
approaches that try to exploit historical data in the versioning system [2,3,4,5,6].
These approaches have one thing in common: They try to detect logical change
dependencies of artifacts based on co-changes in the versioning system. Logical
change dependencies are relevant for change impact analysis and enlarge physical
dependencies which are extracted by static code analysis. The basis of most of
these approaches is the fact that files which are frequently changed together have
dependencies to each other. “Changed together” in this context means, that files
are in the same transaction of a unique commit of a developer. Transactions in
versioning systems are the base of operations used by most approaches to detect

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 651–662, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

652 G. Pirklbauer

logical change dependencies. Transactions represent one strategy to find logical
change dependencies. A strategy in this sense is an algorithm or a rule that
describes how to detect a specific kind of change dependency in the versioning
system repositories. Fluri et al. attempt to discover patterns of change types
using agglomerate hierarchical clustering [7]. The result of the work are low-
level activities of developers.

The motivation of this research work is to support change impact analysis
activities in software development and maintenance by the investigation of ver-
sioning system repositories in more detail. This will be performed by analyzing
the check-in behavior of developers based on typical project scenarios and in
consequence mining versioning system repositories under this aspect. Starting
with the commonly used strategy to detect dependencies in the versioning sys-
tem (see 3.1) we analyzed further strategies that contribute with additional de-
pendencies which are relevant for change impact analysis. We have implemented
these strategies to show results of empirical evaluation of two industrial projects.

The objective of this paper is to present strategies to detect logical change
dependencies in versioning system repositories and to evaluate these strategies.
Therefore the paper is structured as follows: Section 2 presents the study ap-
proach, Section 3 describes the investigation of strategies in industrial settings
and Section 4 provides the results of the empirical evaluation and draws some
conclusions, Section 5 outlines the related work in mining software repositories
for change impact analysis and Section 6 summarizes the paper.

2 Study Approach

Our goal is to determine the quantities of results of each strategy by empirical
research study. We analyze the contribution of each strategy in relation to the
results of a transaction-based strategy (transaction-based strategy results serve
as a basis). For this, we have investigated versioning system repositories (CVS
and PVCS) of two industrial projects. We have implemented two components:
(1) A parser which parses log files of versioning system repositories (supporting
several log formats) and stores the data in database, and (2) a dependency detec-
tor which extracts dependencies from this database according to four strategies
(see Section 3). Both are implemented as Java-RCP plug-ins. In the evaluation
we show commons and differences of each result. Besides quantities of dependen-
cies of each strategy we want to identify overlapping dependency quantities. Our
results are confirmed by project staff regarding the correctness and plausibility
of data.

As mentioned before we have analyzed versioning system repositories of two
projects. The first is a Java-based ERP application to support processes in
the building and construction industry which lasts over 3 years. The second
is a COBOL- and 4GL-based application for a national insurance company that
lasts for 8 years including maintenance and enhancement. Table 1 on page 653
holds some key-data of these projects.

Empirical Evaluation of Strategies to Detect Logical Change Dependencies 653

Table 1. Key-Data of evaluated Projects

Measure Project 1 Project 2
Number of Check-Ins 32.785 68.606
Number of Developers 12 66
Check-Ins / Developer [avg.] 2732 1039
Number of Transactions 4.291 32.728
Check-Ins / Transaction [avg.] 7,6 2,1
Number of Files 7.913 13.820
Check-Ins / File [avg.] 4,1 4,9
Number of Check-Ins with Change-ID
[abs.] 15.093 4.809

Check-Ins with Change ID [rel.] 46% 7%
Change-ID-based Dependencies [rel.] 55,6% 3,5%

3 Strategies

As described in Section 2 the basis of our research are dependencies that
result from implementing transaction-based strategy. This strategy is well es-
tablished [2,3,4,5,6] and therefore often used to detect co-changes in versioning
system, especially in CVS. In the case of CVS, the sliding time window technique
is used to reconstruct transactions [8].

In the next Subsections the strategies will be described in detail. The
Transaction-basedStrategy [2,3,4,5,6] iswell known in the community and therefore
servers as abasis for three further strategieswehave identified.TheComment-based
Strategy isalsopartof theresearchofZimmermannetal. [4].Change-ID-basedStrat-
egy is integrated in theworkofZimmermannetal. [4], Sliwerski etal. [9],Robbes [10]
and also implemented in Mylyn [11].Change-Hierarchy-based Strategy is the fourth
strategy we have found in the literature [12]. Additionally each strategy will be il-
lustrated by practical use cases of daily project life. Furthermore, preconditions
and limitations of strategies are analyzed.

3.1 Transaction-Based Strategy

This strategy is based on the project scenario on which developers check-in
files which are changed together in the workspace. Based on the description of
a bug, change request or an enhancement request, developers checkout all files
which they believe that will change. Then implementation work will be done
and afterwards all changed files will be checked in together. Together has the
meaning of “in the same transaction”.

Because of the fact that some versioning systems (e.g. CVS, PVCS) are not
able to handle atomic transactions, the sliding time window approach [8] will be
used to reconstruct transactions. Files in the same transaction will probably co-
change in future. As mentioned before, a lot of approaches are using transactions
to detect logical change dependencies in versioning systems.

654 G. Pirklbauer

Fig. 1. Transaction-based Strategy

Preconditions and Limitations. The limitation of this strategy is, that
changes that take several check-ins - and hence several transactions - can not
be reconstructed. As can be seen in Figure 1 on page 654 the developer imple-
mented feature a motivated by a change request. At first, he checked out file f1,
and f2, implemented the feature and did the check-in with the comment “Imple-
menting feature a (transaction t1). Afterwards he found out that he forgot to
change file f3 and f4. He checked out the files, finished implementing feature a
and checked in with comment “Implementing feature a” (transaction t2). Here,
two transactions (transaction t1 with files f1 and f2 and transaction t2 with
file f3 and f4) are done in the versioning system. Thus, the strategy is able
to detect dependencies between files f1, f2 and files f3, f4. But transaction t1
and transaction t2 belong together, because the same feature was implemented.
Hence, co-changes between the files f1, f2 and files f3, f4 are still not detected.
The next strategy is introduced to reconstruct this setting of co-changed files.

3.2 Comment-Based Strategy

To overcome the problem to interrelate transaction t1 and t2 we have introduced
the comment-based strategy [13]. This strategy is able to detect dependencies
between files in transaction t1 and t2 by checking if comments of transactions are
corresponding. The central point of the strategy is the fact that developers tend
to use the same comments for content-depending check-ins in the versioning
system. Based on string-comparing or string matching the strategy is able to
interrelate transaction t1 and t2. As can be seen on the left hand side in Figure
2 on page 655, the comments of transaction t1 and t2 are matching by the
comment “Implementing feature a”. Therefore, dependencies between the files
f1, f2, f3 and f4 can be stated.

Preconditions and Limitations. As can be seen on the right hand side in
Figure 2 on page 655, the limit of this strategies will be reached if the developer
will use a different comment in transaction t2 than in transaction t1. Here,
transaction t2 has the comment “Supplementing Impl. of feature a”, not the same
comment of transaction t1. But the strategy is not able to interrelate transaction
t1 and t2, because it is based on a simple string-matching algorithm. To overcome
this problem, the next strategy is introduced.

Empirical Evaluation of Strategies to Detect Logical Change Dependencies 655

Fig. 2. Comment-based Strategy

3.3 Change-ID-Based Strategy

Here, the fix of a bug, change request or an enhancement needs several transac-
tions in the versioning system of one ore more developers, typically over a time
period of several days [13]. For example developer d1 changes file f1 and f2
in an eclipse plug-in, does a check-in with the comment “Implementing feature
a (Change #123)” in transaction t1. Afterwards he changes file f3 and f4 and
does a check-in again in transaction t2 with the comment “Supplementing Impl.
of feature a (Change #123)”.

Here developer d1 uses an integrated task management system to interrelate
change-sets in the workspace. As can be seen on the left hand side in Figure 3 on
page 656, comments of check-ins are automatically enriched with IDs of related
items in the mentioned repositories. As can be seen, comments of transaction t1
and t2 include the ID of the related change, in this case #123. So, afterwards,
it is easy to reconstruct all related files in the context of a certain change.
Furthermore, the URL of the change in the repository can be composed. The
URL typically consists of the servername and the coded change-ID as one of the
arguments.

After the implementation work of developer d1 the version number of the plug-
in has to be updated for delivery the software product to customers. This will
be accomplished by developer d2 that is responsible for preparing the software
product for delivery. Developer d2 also uses the integrated task management
system. Therefore, developer d2 changes file f5 and does the check-in with the
comment “Updating plug-in-properties (Change #123)” in transaction t3.

Here we can see the benefit of using integrated task management systems.
But, generally, if comments of transactions are enriched by an unique change-
ID, content-depending transactions and in succession content-depending depen-
dencies between files can be determined. The strategy allows reconstructing
dependencies independent of the actual comment, independent of time and in-
dependent of the developer who does the check-in.

Preconditions and Limitations. The precondition of this strategy is the im-
portance of enriching the check-in comment with the related change-ID, which
holds the context of the entire change. As can be seen on the left hand side in
Figure 4 on page 656, several changes belong together if a main feature will be

656 G. Pirklbauer

structured down in sub-features. This will be the case, if for example one change
is to large to represent one task for one developer. Then the project manager,
the software architect or the analyst breaks down the main change into several
sub-changes. The criterion how to subdivide the main change maybe of technical
or architectural reasons. In this case, the main change is structured into a change
for the server-, client- and database-software (Change #121, Change #122 and
Change #123).

Figure 3 on page 656 (right hand side) shows check-ins according to the case
described above. None of up to now presented strategies are able to detect depen-
dencies between files in transactions t1, t2 and t3. (There is no transaction with
Change #120, because this change only holds together Change #121, Change
#122 and Change #123. Therefore Change #120 has no relevant content for
developers.)

In a nutshell, the essential point in implementing this strategy is to insert the
change-ID in check-in.

3.4 Change-Hierarchy-Based Strategy

This strategy is very valuable to detect co-changes of files which are changed in
the course of several (sub-) changes (check-ins marked with change-IDs) which
belong to one top main change (see Figure 4 on page 656) [12]. Here, for the first

Fig. 3. Change-ID-based Strategy

Fig. 4. Change-Hierarchy based Strateg

Empirical Evaluation of Strategies to Detect Logical Change Dependencies 657

time we need additional data from outside the versioning system. In the case of
Bugzilla, this kind of down-structuring of changes will be interrelated through
"depends on-" and "blocks-” links. So, with extraction of linking-information this
strategy is able to correspond logical related changes. Down-structuring of items
in issue-, bug-tracking- or change management systems is a widespread approach
in software engineering. Therefore, though additional data from these systems is
needed, this strategy benefits by supporting change impact analysis with further
dependencies.

Preconditions and Limitations. The most important precondition of this
strategy is the fact that data from outside versioning system is needed to inter-
relate co-changes in files.

4 Results and Discussion

As mentioned in Section 2 the evaluation has the goal to show unique and over-
lappings of dependencies and interprets results. The results of the investigation
are shown in Table 2 on page 657 and Table 3 on page 658.

In the next paragraphs we will explain each column to create understanding
of data which will be discussed in Subsection 4.1 - 4.3. In the first column the
dependency-types resulting from strategies are quoted. In our paper we define
a dependency d as an interrelation between two check-ins c1x and c2y of file f1
and f2. This means, that file f1 and f2 can have more than one dependency based
on available check-ins of file f1 (c10 ... c1n) and f2 (c20 ... c2m). The interrelation
causes a change in file f2 if file f1 changes with a specific probability. The

Table 2. Results of Investigation of Project 1

Overlapping

D
ep

en
d
en

cy
T
y
p
es

N
o.

of
D

ep
.

U
n
iq

u
e

N
o.

of
D

ep
.
[a

b
s]

U
n
iq

u
e

N
o.

of
D

ep
.
[r

el
]

U
n
iq

u
e-

R
at

io
of

D
ep

.

T
ra

n
s.

-b
as

ed

C
om

m
en

t-
b
as

ed

C
h
an

ge
-I

D
-b

as
ed

C
h
.-
H

ie
r.

-b
as

ed

Transaction-
based

269.838 0 0% 0% X 44,1% 55,9% 0,1%

Comment-
based

196.184 77.102 39% 78,9% 60,7% X - 0,2%

Change-ID-
based

658.791 506.670 77% 12% 22,9% - X -

Ch.-Hier.-
based

60.037 58.470 97% 9,1% 0,3% - 2,6% X

Total 1.184.850 642.242 100%

658 G. Pirklbauer

Table 3. Results of Investigation of Project 2

Overlapping
D

ep
en

d
en

cy
T
y
p
es

N
o.

of
D

ep
.

U
n
iq

u
e

N
o.

of
D

ep
.
[a

b
s]

U
n
iq

u
e

N
o.

of
D

ep
.
[r

el
]

U
n
iq

u
e-

R
at

io
of

D
ep

.

T
ra

n
s.

-b
as

ed

C
om

m
en

t-
b
as

ed

C
h
an

ge
-I

D
-b

as
ed

C
h
.-
H

ie
r.

-b
as

ed

Transaction-
based

39.306 0 0% 0% X 95,2% 4,8% -

Comment-
based

818.982 781.575 95% 96,4% 4,6% X - -

Change-ID-
based

30.935 29.036 94% 3,6% 6,1% - X -

Total 889.223 100%

quantity of probability is not considered in our investigation. A dependency d
based on c1x and c2y can be detected by one or more than one strategy. If
a dependency d is detected by more than one strategy, we label the dependency
as overlapping.

In the second column you can see the absolute number of dependencies. In
the last row of this column the total amount of dependencies is added up.

Column three and four (Unique No. of Dep. [abs], Unique No. of Dep. [rel])
hold the absolute and relative number of unique dependencies in relation to
all identified dependencies per strategy. A dependency between file f1 and f2
is always based on two check-ins (check-in c1 and c2). Now, a dependency is
unique, if check-in c1 and c2 is unique between file f1 and f2. In consequence,
a dependency is not unique, if file f1 and f2 interrelate based on check-in c1
and c2 was identified by more than one strategy. In other words: A dependency
is unique if it was detected by one strategy.

Column Unique-Ratio of Dep. cites the part of unique dependencies found
with a certain strategy in relation to the sum of all unique dependencies which
were found. In the last row of this column, the sum of all unique-ratios is of
course 100%.

The following four columns describe the relatively overlapping quantities of
dependencies per strategy. For example, transaction-based dependencies have
a overlapping of 44% with comment-based dependencies. If fields hold an "-”,
no overlapping can be stated.

4.1 Distribution of Dependencies

Figure 5 on page 659 shows the distribution of dependency-types in Project 1
and Project 2. This illustration does not consider overlappings of dependencies,

Empirical Evaluation of Strategies to Detect Logical Change Dependencies 659

but only the number of dependencies found per strategy. We can see, that the
majority of dependencies in Project 1 is detected by Change-ID-based Strategy
with a quantity of 55,6% (658.791). In Project 2 this type of dependencies only
scale 3,5% (30.935). The reason for this phenomenon will be discussed later.

In Project 1, dependencies detected byTransaction-based Strategy have a quan-
tity of 22,8% (269.838). In Project 2 Transaction-based Strategy have a quantity of
4,4% (39.306). The tilt of quantities of transaction-based dependencies of Project
1 and Project 2 is caused by (1) the difference in check-ins per transaction on
average and (2) the difference of contingent of check-ins with change-IDs (both
see 1). Check-ins enriched with change-IDs in Project 1 represent a higher frac-
tion than in Project 2. This results in a lower fraction of transaction-based de-
pendencies. Comment-based dependencies scale 16,6% (196.184) in Project 1 and
92,1% (818.982) in Project 2. The reason for disparity again is based on the ratio of
check-ins enriched by change-IDs. In our study, the implementation of Comment-
based Strategy considers only check-ins with no change-ID added, because these
dependencies will be covered completely by Change-ID-based Strategy. Change-
hierarchy dependencies have a ratio of 5,1% (60.037) in Project 1. In Project 2
no change-hierarchy dependencies are available, because the tool for issue-, bug-
and change-management changed several times during the project and therefore
it was not possible to extract valuable information.

4.2 Unique and Overlapping Dependency Results

In Project 1, dependencies detected by Transaction-based Strategy which are
unique have a quantity of 0%. They are covered completely by dependencies
found by Change-ID-based Strategy (44,1%), Comment-based Strategy (55,9%)
and Change-Hierarchy-based Strategy (0,1%). In Project 2, unique dependencies
identified by Transaction-based Strategy also have a quantity of 0%. They are
also covered completely by change-ID-based dependencies (4,8%) and comment-
based dependencies (95,2%). The splitting of transaction-based dependencies
is obvious, because check-ins in a certain transaction have at least the same

Fig. 5. Distribution of Dependency-Types in Project 1 and Project 2

660 G. Pirklbauer

comment and ideally a change-ID inserted in the comment. Change-hierarchy-
dependencies (5,1% in Project 1, 0% in Project 2) are covered by transaction-
based- (0,3%) and change-ID-based-dependencies (2,6%). The coverage rates
are because check-ins in one transaction can include several change-IDs, if a de-
veloper implements more than one change simultaneously. If these change-IDs
are related in the task management system, change-hierarchy-based strategy is
able to detect additional but redundant dependencies. The majority of change-
hierarchy-dependencies (97,1%) is unique and contribute well because of the
direct relation to other changes established manually in Bugzilla.

4.3 Ratio of Check-ins with Change-ID and Change-ID-Based
Dependencies

By analyzing the data of Project 1 and Project 2, the most important finding is
the coherence between inserted change-IDs in comments of check-ins and num-
ber of dependencies found by Change-ID-based Strategy. If we look at Table 1 on
page 653 (last two rows), we stated that in Project 1 a ratio of 46% of change-
ID-enriched check-ins lead to a change-ID-based dependency ratio of 55,6%.
In contrast, Project 2 has a ratio of 7% of change-ID-enriched check-ins and
a change-ID-based dependency ratio of just 3,5%. Project 1 and Project 2 are
very oppositional if we are looking at these measures. Change-ID-based depen-
dencies are truthful in nature, because check-ins belonging to a change in the
bug-tracking-, issue-tracking- or change management system are implicit content
coherent. Therefore change-ID-based dependencies are high reliable dependen-
cies for change impact analysis. I conclude, that in projects which have a majority
of comments with change-IDs, Change-ID-based strategy will detect more de-
pendencies. Here we can see the benefit of inserting change-IDs in comments
of check-ins. Based on this finding, it advocates using tools that integrate the
bug-tracking-, issue-tracking- or change management system with the versioning
system and the IDE to get the relation of check-ins and changes automatically
(change-IDs are inserted automatically in comments of check-ins). If developers
have to insert change-IDs manually, they are lingered in their daily business and
get demotivated. So introducing integrated task management tools contribute
to support change impact analysis. So, overall, it can be stated that Change-ID-
based dependencies implicate the most information in context of change impact
analysis, because the homogeneity of commits is best and can be directly re-
lated to a change. So, using integrations like Mylyn benefits by enabling the
detection of these dependencies. Change-Hierarchy-based dependencies are able
to contribute, if the separation of changes does not lead to completely content-
detached changes. In this case, no change impact related dependency between
changes will be given. Comment-based dependencies contribute if comments with
less content (e.g. “Refactoring”, “Merging”) are excluded. Transaction-based de-
pendencies are traditionally and empirically evaluated in many case studies (see
Section 5).

Empirical Evaluation of Strategies to Detect Logical Change Dependencies 661

5 Related Work

In 2003 Harald C. Gall et al. [2] elaborated methods to analyze the evolution of
software systems. The QCR-approach was used to learn about the evolution of
a software system based on its (change) history. The approach comprises quan-
titative analysis, change sequence analysis and relation analysis to determine
logical dependencies between different parts of a system. These logical couplings
(dependencies) will be used to find architectural shortcomings in the software
system.

Fluri et al. [3] use software evolution analysis tools [14] to extract historical
data from CVS for change type pattern discovering. Here, the extraction of
change dependencies is limited on sliding time window technique.

Zimmermann et al. [4] apply data mining techniques to find association rules
to 1) suggest and predict likely changes, 2) prevent errors due to incomplete
changes and 3) detect couplings undetectable by program analysis. The approach
is able to compute rules based on transaction in the CVS. But, nevertheless,
the basis of co-changes are transactions. They have not investigated additional
strategies to find further logical change couplings in the CVS to broaden the
data basis.

Kagdi et al. [5] combine single-version and evolutionary dependencies for es-
timating software changes. This approach is particular interesting, because they
combine methods of dependency analysis and MSR-analysis. They hypothesize,
that combining dependencies out of classical impact analysis approaches (e.g.
dependency analysis) and out of mining software repositories will improve the
support of software change prediction.

Zhou et al. [6] developed an approach to predict change couplings with a
Bayesian network. One pillar of this framework is the extraction of historical
CVS data. They also use the already elaborated tool EVOLIZER to retrieve
modification reports from CVS using the sliding time window algorithm.

6 Summary

In this paper we presented strategies to detect logical change dependencies in
common versioning systems. These dependencies contribute to avoid defects in
implementing changes by supporting change impact analysis activities of ana-
lysts and developers. Based on transactions we have identified four strategies to
investigate versioning system data in more detail to detect logical change de-
pendencies. We have evaluated our findings in two industrial projects. Our next
steps in research will be to integrate these strategies in an overall framework
for change impact analysis as described in [15]. We aim to combine physical
dependencies and logical dependencies to improve change impact analysis in the
maintenance of software systems.

662 G. Pirklbauer

References

1. Arnold, R.S., Bohner, S.A.: Software Change Impact Analysis. IEEE Computer
Society Press, Los Alamitos (1996)

2. Gall, H.C., Jazayeri, M., Krajewski, J.: CVS Release History Data for Detecting
Logical Couplings. In: Proceedings of the International Workshop on Principles of
Software Evolution, Helsinki, Finland, pp. 13–23. IEEE Computer Society Press,
Los Alamitos (2003)

3. Fluri, B., Gall, H.C., Pinzger, M.: Fine-Grained Analysis of Change Couplings.
In: Proceedings of the 5th International Workshop on Source Code Analysis and
Manipulation, Budapest, Hungary, pp. 66–74. IEEE Computer Society Press, Los
Alamitos (2005)

4. Zimmermann, T., Weißgerber, P., Diehl, S., Zeller, A.: Mining Version Histories to
Guide Software Changes. IEEE Transaction on Software Engineering 31(6), 429–
445 (2005); Student Member-Thomas Zimmermann and Member-Andreas Zeller

5. Kagdi, H., Maletic, J.I.: Combining Single-Version and Evolutionary Dependencies
for Software-Change Prediction. In: MSR 2007: Proceedings of the Fourth Inter-
national Workshop on Mining Software Repositories, Washington, DC, USA, , p.
17. IEEE Computer Society, Los Alamitos (2007)

6. Zhou, Y., Würsch, M., Giger, E., Gall, H.C.: A Bayesian Network Based Approach
for Change Coupling Prediction. In: Proceedings of the 15th Working Conference
on Reverse Engineering (WCRE). IEEE Computer Society Press, Los Alamitos
(2008)

7. Fluri, B., Giger, E., Gall, H.C.: Discovering Patterns of Change Types. In: Pro-
ceedings of the 23rd International Conference on Automated Software Engineering.
IEEE Computer Society, Los Alamitos (2008) (to appear) (short paper)

8. Fogel, K., O’Neill, M.: cvs2cl.pl: Cvs-Log-Message-to-Changelog Conversion Script
(September 2002), http://www.red-bean.com/cvs2cl/

9. Sliwerski, J., Zimmermann, T., Zeller, A.: When Do Changes Induce Fixes? In:
MSR 2005: Proceedings of the 2005 International Workshop on Mining Software
Repositories, pp. 1–5. ACM Press, New York (2005)

10. Robbes, R.: Mining a Change-Based Software Repository. In: MSR 2007: Pro-
ceedings of the Fourth International Workshop on Mining Software Repositories,
Washington, DC, USA, p. 15. IEEE Computer Society, Los Alamitos (2007)

11. Mylyn (2008), http://www.eclipse.org/mylyn/
12. Canfora, G., Cerulo, L.: Impact Analysis by Mining Software and Change Request

Repositories. In: METRICS 2005: Proceedings of the 11th IEEE International Soft-
ware Metrics Symposium (METRICS 2005), Washington, DC, USA, p. 29. IEEE
Computer Society, Los Alamitos (2005)

13. Ying, A.T.T., Ng, R., Chu-Carroll, M.C.: Predicting Source Code Changes by
Mining Change History. IEEE Trans. Softw. Eng. 30(9), 574–586 (2004); Member-
Gail C. Murphy

14. Fluri, B., Wuersch, M., Pinzger, M., Gall, H.: Change Distilling: Tree Differencing
for Fine-Grained Source Code Change Extraction. IEEE Trans. Softw. Eng. 33(11),
725–743 (2007)

15. Pirklbauer, G., Rappl, M.: A Novel Approach to Support Change Impact Analysis
in the Maintenance of Software Systems. In: Cordeiro, J., Filipe, J. (eds.) ICEIS
(1), pp. 453–456 (2008)

http://www.red-bean.com/cvs2cl/
http://www.eclipse.org/mylyn/

Efficient Testing of Equivalence of Words
in a Free Idempotent Semigroup�

Jakub Radoszewski1 and Wojciech Rytter1,2

1 Department of Mathematics, Computer Science and Mechanics
University of Warsaw, Warsaw, Poland

{jrad,rytter}@mimuw.edu.pl
2 Faculty of Mathematics and Informatics

Copernicus University, Toruń, Poland

Abstract. We present an automata–theoretic approach to a simple
Burnside–type problem for semigroups. For two words of total length n
over an alphabet Σ, we give an algorithm with time complexity O (n · |Σ|)
and space complexity O(n) which tests their equivalence under the idem-
potency relation x2 ≈ x. The algorithm verifies whether one word can be
transformed to another one by repetitively replacing any factor x2 by x or
z by z2. We show that the problem can be reduced to equivalence of acyclic
deterministic automata of size O (n · |Σ|). An interesting feature of our al-
gorithm is small space complexity — equivalence of introduced automata
is checked in space O(n), which is significantly less than the sizes of the
automata. This is achieved by processing the acyclic automata layer by
layer, each layer only of size O(n), hence only small part of a large virtual
automaton is kept in the memory.

Keywords: Burnside–type problem, finite automata, efficient algorithm.

1 Introduction

In this paper we study algorithmic aspects of some problems related to Burnside–
type problems in semigroups. In 1902, Burnside [2] raised the following famous
problem: “Is every group with a finite number of generators and satisfying an
identical relation xr ≈ 1 finite?”. Although the problem was solved negatively
in 1968 by Adjan and Novikov [1], it has given birth to several related problems,
including the Burnside problem for semigroups. The problem was first studied
by Green and Rees, who proved [8] in 1952 that a finitely generated semigroup
satisfying the identity xr+1 ≈ x is finite provided any finitely generated group
satisfying the identity xr ≈ 1 is finite. In particular the free idempotent semi-
group, i.e., satisfying the identity x2 ≈ x is finite.

Although the theory of free Burnside semigroups was developed much slower
than the corresponding theory for groups, tremendous progress was achieved in
the former in the last 15 years — a summary of the known results can be found in
� Supported by grant N206 004 32/0806 of the Polish Ministry of Science and Higher

Education.

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 663–671, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

664 J. Radoszewski and W. Rytter

the excellent survey by do Lago and Simon [7]. In general, the semigroups satis-
fying xr+s ≈ xr for r, s ≥ 1 are analyzed from different points of view: finiteness,
regularity of languages corresponding to congruence classes of ≈, the structure
of maximal subgroup of the semigroup and finally the word problem, in which it
is investigated whether testing of u ≈ v is decidable. For r ≥ 3 the word problem
was proved to be decidable (due to the work of several authors [3,4,5,6,9,10,15]),
for r = 2 the problem remains open (although for some cases effective algorithms
were established, as in the recent paper [16]), finally for r = 1 the decidability
of the word problem for groups implies decidability for semigroups [11].

To the best of our knowledge, the problem of efficient implementation of the
algorithm for the word problem under idempotency relation (r = 1) has never
been studied previously. For words u, v ∈ Σ∗ such that |u|+|v| = n, we design an
algorithm with time complexity O

(
n · |Σ|

)
and memory complexity O

(
n
)
. Here

we introduce an intuitive assumption that |Σ| = O(n). This result is far better
than a straightforward dynamic programming solution which yields O

(
n5
)

time
complexity. Additionally, an interesting part of our result is that it combines
methods from algebra, finite automata and algorithm analysis.

Let Σ be an arbitrary finite alphabet, |Σ| = K. Let Σ∗ be the set of all words
over the alphabet Σ and let Σ+ = Σ∗ \ {ε} where ε is the empty word. We
introduce the idempotency relation ∼i in Σ∗

∀x∈Σ∗ xx ∼i x

and denote by ≈ the congruence it generates. Then, the free idempotent semi-
group (also called the free band) M generated by Σ is the set

M = Σ∗/ ≈ .

There also exists an alternative definition of M that is more relevant to our
paper. We say that two words u, v ∈ Σ∗ are equivalent (u ≈ v) if v can be
derived from u, and vice versa, by a finite (possibly 0) number of applications
of the rules:

– replace a factor x of u by its square xx, or
– replace a square factor xx by the word x.

Relation ≈ is an equivalence relation and the set of equivalence classes of this
relation forms a semigroup (under concatenation) that is isomorphic to M .

Due to the Green–Rees theorem, the set M generated by any finite set Σ is
also finite. The proof of the theorem [8,12,13,14] not only specifies its cardinality

K∑
i=0

(
K

i

) ∏
1≤j≤i

(i− j + 1)2
j

but also provides a recursive criterion for verification of equivalence of u and v
under ≈ (see Theorem 1).

Efficient Testing of Equivalence of Words in a Free Idempotent Semigroup 665

2 An Abstract Algorithm and Factor Automata

For u = u1 . . . uk, by u[i. .j] we denote a factor of u equal to ui . . . uj (in particular
u[i] = u[i. .i]) and by |u| we denote length of u, i.e. k. Words u[1. .i] are called
prefixes of u, and words u[i. .k] suffixes of u.

Let Alph(u) be the set of all letters appearing in u. With each u ∈ Σ+ we
associate a (characteristic) quadruple

u
 (p, a, b, q), where:

– a, b ∈ Σ, pa is a prefix and bq is a suffix of u;
– Alph(p) = Alph(u) \ {a}, and Alph(q) = Alph(u) \ {b}.

Example
ababbbcbcbc
 (ababbb, c, a, bbbcbcbc)

Theorem 1 (equivalence criterion). [8]
Assume u
 (p, a, b, q), v
 (p′, a′, b′, q′). Then,

u ≈ v iff (p ≈ p′ ∧ a = a′ ∧ b = b′ ∧ q ≈ q′).

The theorem implies correctness of the following abstract algorithm testing if
u ≈ v.

Algorithm TEST(u, v)
if Alph(u) �= Alph(v) then return false
if Alph(u) = ∅ then return true
let u
 (p, a, b, q), v
 (p′, a′, b′, q′)
if a �= a′ ∨ b �= b′ then return false
return TEST(p, p′) ∧ TEST(q, q′)

Let Σ be a disjoint copy of the alphabet Σ. For each letter a ∈ Σ denote
by a its copy. For words u, v with the same set of letters we define the factor
automaton Au,v as follows:

– The set of input symbols is Σ∪Σ and the set of states is the set of all factors
of u and v.

– If x is a factor and x
 (p, a, b, q) then we have two transitions

x
a−→ p, x

b−→ q .

Other transitions are undefined.
– There is only one accepting state: the empty word ε.

Observation 1. From every state of Au,v there exists an accepting path.

Recall that two states x, y of an automaton are called equivalent (notation:
x ∼ y) if the sets of labels of all accepting paths starting at x and at y are equal.

Lemma 1. u ≈ v iff u and v are equivalent as states of the factor automa-
ton Au,v.

666 J. Radoszewski and W. Rytter

Proof. We prove that for any two states x, y, x ∼ y iff x ≈ y, by induction
on min(|x|, |y|) (here we refer to x and y both as states of Au,v and as words
from Σ∗).

The basis is very simple: if x = ε or y = ε then x ∼ y iff both x and y are
accepting states x = y = ε, what is equivalent to x ≈ y.

If |x|, |y| > 0 then let

x
 (p, a, b, q), y
 (p′, a′, b′, q′) .

In x there are transitions
x

a−→ p, x
b−→ q

whereas in y:

y
a′
−→ p′, y

b′−→ q′ .

Assume that x ∼ y. Due to Observation 1, there exists an accepting path start-
ing from p, consequently there exists an accepting path from x starting with
a transition with label a. Because a �= b′, this implies that a = a′ and p ∼ p′.
Similarly, there exists an accepting path starting from q, so b = b′ and q ∼ q′.
Thus we proved that

x ∼ y ⇒ a = a′, b = b′, p ∼ p′, q ∼ q′ .

Conversely, let us observe that none of the states x, y is accepting. Therefore, by
definition

a = a′, b = b′, p ∼ p′, q ∼ q′ ⇒ x ∼ y .

Combining both implications, we obtain that x ∼ y iff a = a′, b = b′, p ∼ p′,
q ∼ q′. Due to the inductive hypothesis, the last two conditions are equivalent to
p ≈ p′, q ≈ q′. We conclude the proof applying the criterion from Theorem 1. �	

We reduced equivalence of factors to equivalence of states in a deterministic
automaton, however this does not give directly an efficient algorithm since the
definition of the automaton is rather abstract.

3 Interval Automata: More Efficient Automata

We introduce interval automata as efficient implementation of factor automata.
Because it is more convenient to deal with the same single word, we introduce
the word w = u$v, |w| = n, where $ is a special delimiter that we add to Σ.
From now on we deal only with the word w.

For a word w define the rank of an interval [i. .j] as |Alph(w[i. .j])|. We say
that an interval [i. .j] is k–left (for a fixed j) iff i is the smallest number such
that [i. .j] is of rank k, similarly we define the k–right interval [i. .j] (for a fixed i)
as the one for which j is the largest number such that [i. .j] is of rank k.

The k–left and k–right intervals are called k–intervals, and their set is denoted
by Ik and called here the kth layer. Let I be the union of all Ik’s.

Efficient Testing of Equivalence of Words in a Free Idempotent Semigroup 667

_
a

b

c, c
_

[1..12] = a b a b d b d d c c c b

[1..8] = a b a b d b d d [4..12] = b d b d d c c c b

[1..4] = a b a b [4..8] = b d b d d [9..12] = c c c b

[1..1] = a [4..4] = b [12..12] = b[9..11] = c c c[7..8] = d d

Accepting state

c

_
a d

b a
_

b c
_

_

_

d c

d

a, a

d, d_ b, b
_ _

b, b
_

Fig. 1. The interval automaton of the word w = ababdbddcccb. For simplicity, the
figure does not contain intervals from I that are not located on any path from [1. .12]
to the accepting state ∅.

We define interval automaton G(w) as follows. The set of states is I and the
input alphabet is the same as for the factor automaton. If

x
 (p, a, b, q), where x = w[i. .j], p = w[i. .k], q = w[l. .j]

then we have two transitions

[i. .j] a−→ [i. .k], [i. .j] b−→ [l. .j] .

Other transitions are undefined. There is only one accepting state: the empty
interval ∅ corresponding to the empty word ε.

Lemma 2. Intervals corresponding to u and v within w = u$v are states of the
interval automaton G(w) and are equivalent iff their corresponding states are
equivalent in the factor automaton Au,v.

Proof. Let us note that intervals corresponding to u and v are |Alph(u)|– and
|Alph(v)|–intervals in w, therefore they appear in G(w). Moreover, if states rep-
resenting factors containing the $ symbol are omitted, G(w) is a subautomaton
of Au,v and contains only the states that are “important” w.r.t. the algorithm
of testing if u ≈ v. In particular, since the defined transitions in G(w) always
lead to intervals from I, all factors of w accessible from u and v are present
in G(w). �	

The kth layer Ik will be represented by tables LEFTk, RIGHTk where:
LEFTk[j] = i if [i. .j] is a k–left interval;
RIGHTk[i] = j if [i. .j] is a k–right interval;

668 J. Radoszewski and W. Rytter

if a corresponding k–left or k–right interval does not exist, LEFTk[j]
and RIGHTk[i] are undefined.

Lemma 3

a) For each k we can compute in time and space O(n) the set of intervals of
rank k represented by the tables LEFTk, RIGHTk.

b) The interval automaton G(w) can be constructed in O(n · |Σ|) time layer
by layer, starting from layer 0 and finishing in layer K, in such a way that
the construction of layer i requires only knowledge of layer i − 1 and O(n)
additional storage.

Proof. To construct the table RIGHTk for a given k ∈ {0, 1, . . . , K}we use a slid-
ing window algorithm (see the pseudocode of Compute RIGHT1 and Fig. 2).

Algorithm Compute RIGHT1(w, n, k)
j ← 0
Z ← ∅ (* a multiset *)
for i = 1, 2, . . . , n do

if i > 1 then Z ← Z \ {w[i − 1]}
while j < n and |Z ∪ {w[j + 1]}| ≤ k do

j ← j + 1
Z ← Z ∪ {w[j]}

if |Z| = k then RIGHTk[i] ← j

In the ith step of the for loop of the algorithm we compute the multiset of
characters

Z = {w[i], w[i + 1], . . . , w[j]} such that RIGHTk[i] = j

using the observation that for each i, RIGHTk[i + 1] ≥ RIGHTk[i].
If Z is implemented as a count array of size K = O(n), it can be initialized

in O(n) time and all necessary operations on Z — inserting elements, deleting
elements and computing the number |Z| of different letters present in Z — can
be performed in O(1) time. The following pseudocode is an implementation of
algorithm Compute RIGHT1 using a count array.

Algorithm Compute RIGHT2(w, n, k)
Z : array[1. .K] = (0, 0, . . . , 0)
size ← 0; j ← 0
for i = 1, 2, . . . , n do

if i > 1 then (* performing the assignment “Z ← Z \ {w[i − 1]}” *)
Z[w[i − 1]] ← Z[w[i − 1]] − 1
if Z[w[i − 1]] = 0 then size ← size − 1

while j < n and (Z[w[j + 1]] �= 0 or size < k) do
j ← j + 1
if Z[w[j]] = 0 then size ← size + 1
Z[w[j]] ← Z[w[j]] + 1

if size = k then RIGHTk[i] ← j

Efficient Testing of Equivalence of Words in a Free Idempotent Semigroup 669

a d a a b b b a b a b a c c a b c a d a b

Alph(u[1..12])={a,b,d}

Alph(u[2..12])={a,b,d} Alph(u[3..18])={a,b,c}

Fig. 2. Sliding window appearing during the computation of RIGHT3[1] = 12,
RIGHT3[2] = 12 and RIGHT3[3] = 18 for the word adaabbbababaccabcadab

The total number of steps of the while loop of the algorithm is O(n), since
in each step j increases by one. Thus, the total time and memory complexity of
Compute RIGHT2 is O(n).

Computation of LEFTk can be performed analogically, what concludes the
proof of point a).

Point b) follows from a), since transitions from interval [i. .j] in the interval
automaton lead to intervals

[i. .RIGHTk[i]] and [LEFTk[j]. .j]

where k + 1 = |Alph(w[i. .j])|, and are labeled with letters

w[RIGHTk[i] + 1] and w[LEFTk[j]− 1]

respectively. �	

4 Testing Equivalence of States in G(w)

Our final goal is to design an algorithm for testing equivalence of states of the
interval automaton G(w). Let us first note that G(w) also has the property
mentioned in Observation 1.

Observation 2. From every state of G(w) there exists an accepting path.

Lemma 4. If x, y are states of G(w) and x ∼ y then x, y ∈ Ik for some k ∈
{0, 1, . . . , K}.

Proof. Because G(w) is acyclic, contains exactly one accepting state ∅ and all
transitions from layer Ik for k ≥ 1 lead to layer Ik−1, it can be proved by simple
induction that all accepting paths starting from x ∈ Ik are of length k. By
Observation 2 there exists at least one such path for every x. This concludes
that equivalent states of G(w) cannot belong to different layers. �	

We will label all states of G(w) layer by layer in the order k = 0, 1, . . . , K in
such a way that equivalent states from a single layer receive equal labels.

670 J. Radoszewski and W. Rytter

Lemma 5. The following labeling �:

– �(∅) = 0
– �(x) = (�(p), a, b, �(q)) for every state x ∈ Ik such that transitions in x are

labeled with letters a and b and lead to states p, q ∈ Ik−1 resp.

preserves the equivalence of states.

Proof. It is a consequence of the definition of G(w) and Observation 2. �	

Unfortunately, the labels assigned as in Lemma 5 can be quite large. However, we
can keep them of constant size if we renumber the quadruples in each layer with
integers of size O(n). This is always possible since each layer of G(w) contains
at most 2n states. The renumbering can be performed by radix sort in O(n)
time and space per each layer by using arrays of size O(n) and K = O(n) for
dimensions 1, 4 and 2, 3 of the quadruples resp.

Let us summarize the whole discussion. Due to Lemma 3, the interval automa-
ton can be constructed layer by layer in O(n) time and space per each layer. We
have described an algorithm for labeling of states of G(w) that preserves equiv-
alence of states, executes in the same ordering of layers as the algorithm from
Lemma 3 and has the same complexity. Due to Lemmas 1 and 2, this implies
the following result.

Theorem 2 (Main result)
There exists an algorithm for checking whether u ≈ v for two words of total
length n in O (n · |Σ|) time and O(n) space.

5 Final Remarks

It can be observed that almost all labels of transitions in the automaton G(w)
can be removed without changing the output of the algorithm. More precisely, all
labels from Σ apart from the transitions starting in layer 1 and all labels from Σ
can be replaced by a special label # /∈ Σ, resulting in automaton G′(w). It can
be proved by a layer–by–layer induction that u ∼ v in G′(w) iff u ∼ v in G(w).
Unfortunately, this does not lead to any improvement of the time complexity of
the whole algorithm. We would like to thank Marcin Andrychowicz for showing
us this observation.

We described a very efficient algorithm for testing if u ≈ v in a free idempotent
semigroup. The remaining problem is to design an algorithm that transforms u
to v replacing factors x2 by x or z by z2.

Lemma 6. If u, v ∈ Σ∗, |u|+ |v| = O(n) and u ≈ v then there exists a sequence
of “idempotent” transformations from u to v of length O(2|Σ|n).

Proof. The proof of the Green–Rees theorem is constructive and the sequence
of transformations it generates is of length O(2|Σ|n). �	

The length of the sequence of steps from Lemma 6 is exponential in |Σ|. Thus
the following open problems remain:

Efficient Testing of Equivalence of Words in a Free Idempotent Semigroup 671

– Does there exist a polynomial time deterministic algorithm that always gen-
erates a sequence of transformations that is of polynomial length in terms
of n and |Σ|?

– Does there exist such an algorithm for finding the smallest number of steps
necessary to transform u to v?

References

1. Adjan, S.I.: The Burnside Problem and Identities in Groups. In: Ergebnisse der
Mathematik und ihrer Grenzgebiete 95 [Results in Mathematics and Related Ar-
eas]. Translated from Russian by John Lennox and James Wiegold. Springer, Berlin
(1979)

2. Burnside, W.: On an Unsettled Question in the Theory of Discontinuous Groups.
Quart. J. Pure Appl. Math. 33, 230–238 (1902)

3. de Luca, A., Varricchio, S.: On Non-Counting Regular Classes. In: Paterson, M.
(ed.) ICALP 1990. LNCS, vol. 443, pp. 74–87. Springer, Heidelberg (1990)

4. de Luca, A., Varricchio, S.: On Non-Counting Regular Classes. Theoret. Com-
put. Sci. 100, 67–104 (1992)

5. do Lago, A.P.: On the Burnside Semigroups xn = xn+m. In: Simon, I. (ed.) LATIN
1992. LNCS, vol. 583, pp. 329–343. Springer, Heidelberg (1992)

6. do Lago, A.P.: On the Burnside Semigroups xn = xn+m. Int. J. Algebra Comput. 6,
179–227 (1996)

7. do Lago, A.P., Simon, I.: Free Burnside Semigroups. Theoret. Informatics Appl. 35,
579–595 (2001)

8. Green, J.A., Rees, D.: On Semigroups in which xr = x. Math. Proc. Camb. Phil.
Soc. 48, 35–40 (1952)

9. Guba, V.S.: The Word Problem for the Relatively Free Semigroup Satisfying tm =
tm+n with m ≥ 3. Int. J. Algebra Comput. 2, 335–348 (1993)

10. Guba, V.S.: The Word Problem for the Relatively Free Semigroup Satisfying tm =
tm+n with m ≥ 4 or m = 3, n = 1. Int. J. Algebra Comput. 2, 125–140 (1993)

11. Kaďourek, J., Polák, L.: On Free Semigroups Satisfying xr = x. Simon Stevin 64,
3–19 (1990)

12. Karhumaki, J.: Combinatorics on Words. Notes in pdf
13. Lallement, G.: Semigroups and Combinatorial Applications. J. Wiley and Sons,

New York (1979)
14. Lothaire, M.: Combinatorics on Words. Addison-Wesley, Reading (1983)
15. McCammond, J.: The Solution to the Word Problem for the Relatively Free Semi-

groups Satisfying ta = ta+b with a ≥ 6. Int. J. Algebra Comput. 1, 1–32 (1991)
16. Plyushchenko, A.N., Shur, A.M.: Almost Overlap-Free Words and the Word Prob-

lem for the Free Burnside Semigroup Satisfying x2 = x3. In: Proc. of WORDS 2007
(2007)

An Amortized Search Tree Analysis for
k-Leaf Spanning Tree

Daniel Raible and Henning Fernau

Univ.Trier, FB 4—Abteilung Informatik
54286 Trier, Germany

{raible,fernau}@informatik.uni-trier.de

Abstract. The problem of finding a spanning tree in an undirected
graph with a maximum number of leaves is known to be NP-hard. We
present an algorithm which finds a spanning tree with at least k leaves
in time O∗(3.4575k) which improves the currently best algorithm. The
estimation of the running time is done by using a non-standard measure.
The present paper is one of the few examples that employ the Measure
& Conquer paradigm of algorithm analysis, developed within the field of
Exact Exponential-Time Algorithmics, within the area of Parameterized
Algorithmics.

1 Introduction

In this paper we address with the following problem in graphs:

k-Leaf Spanning Tree

Given: An undirected graph G(V, E), and the parameter k.
We ask: Is there a spanning tree for G with at least k leaves?

The problem has a notable applicability in the design of ad-hoc sensor networks
[1, 18]. In this area it might be referred to as Connected Dominating Set. A
spanning tree with k leaves is equivalent to a connected dominating set with n−k
vertices. The k-leaf spanning tree problem already has been widely studied with
regard to its approximability. Solis-Oba [17] obtained a 2-approximation running
in polynomial time. In almost linear time Lu and Ravi [16] provided a 3-approxi-
mation. Bonsma and Zickfeld [3] could show that the problem is 3

2 -approximable
when the input is restricted to cubic graphs.

Concerning parameterized algorithms, a sequence of papers culminated in the
one of Kneis, Langer and Rossmanith [14]. This fairly simple branching algo-
rithm achieves a running time of O∗(4k)1. Prior to this there were running time
achievements by Bonsma et al. [2] of O∗(9.49k), by Estivill-Castro et al. [8] of
O∗(8.12k) and by Bonsma and Zickfeld [4] of O∗(6.75k). These bounds all have
been obtained by using combinatorial arguments. The best kernelization result
is due to [8] where they exhibited a kernel size of 3.75k (see [7] for a formal

1 The O∗()-notation suppresses polynomial factors in n.

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 672–684, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

An Amortized Search Tree Analysis for k-Leaf Spanning Tree 673

definition of kernel). There is also a directed version of the problem: Find an
out-branching with k leaves. Here an out-branching in a directed graph is a tree
in the underlying undirected graph. But the arcs are directed from the root to the
leaves, which are the vertices of out-degree zero. The algorithm of Kneis, Langer
and Rossmanith [14] solves also this problem in time O∗(4k). Moreover, in Dali-
gault et al. [6] an upper-bound of O∗(3.72k) is stated. Koutis and Williams [15]
could derive a randomized O∗(2k)-algorithm for the undirected version.

1.1 Our Framework: Parameterized Complexity

A parameterized problem P is a subset of Σ∗ × N, where Σ is a fixed alphabet
and N is the set of all non-negative integers. Therefore, each instance of the
parameterized problem P is a pair (I, k), where the second component k is
called the parameter. The language L(P) is the set of all YES-instances of P . We
say that the parameterized problem P is fixed-parameter tractable [7] if there is
an algorithm that decides whether an input (I, k) is a member of L(P) in time
f(k)|I|c, where c is a fixed constant and f(k) is a function independent of the
overall input length |I|.

1.2 Our Contributions

We developed the simple and elegant algorithm of [14] further. The running
time improvement of O∗(3.4575k) is due to two reasons: 1. We could improve
the bottleneck case by new branching rules. 2. Due using amortized analysis,
we were able to prove a tighter upper-bound on the running time. For this we
use a non-standard measure which in its form is quite related to the measure &
conquer-approach (M&C) in exact, non-parameterized algorithmics, see Fomin,
Grandoni and Kratsch [12]. Notice however that there are only few examples for
using M&C in parameterized algorithmics. In addition, we analyze our algorithm
with respect to the number of vertices and obtain also small improvements for
the Minimum Connected Dominating Set problem. This seems to be the
first attempt to analyze the same algorithm both with respect to the standard
parameter k and with respect to the number of vertices n. We mention that the
approaches of [6, 9] is going to some extent into the same direction. The basic
scheme of the algorithms is similar. Nevertheless, our running time shows that
our results are different. Moreover, the first paper does not make use of M&C
techniques and the second follows a non-parameterized route. Due to lack of
space we refrain from giving all the proofs.

1.3 Terminology

We are considering undirected simple graphs G(V, E) with vertex set V and edge
set E ⊆ {{u, v} | u, v ∈ V }. An edge {x, y} might also be abbreviated as x y.
The neighborhood of a vertex v ∈ V is NG(v) := {u | {u, v} ∈ E} and the degree
of v is dG(v) = |NG(v)|. The closed neighbor is NG[v] = NG(v) ∪ {v}. For some
V ′ ⊆ V let N(V ′) := (∪v∈V ′N(v)) \ V ′ and EV ′(v) := {{u, v} ∈ E | u ∈ V ′}.

674 D. Raible and H. Fernau

In case we have V ′ = V or E′ = E we might suppress the subscript. G[V ′] and
G[E′] are the graphs induced on V ′ and E′, respectively. An edge cut set is a
subset Ê ⊂ E such that G[E \ Ê] is not connected. A tree is a subset of edges
T ⊆ E such that G[T] is connected and cycle-free. A spanning tree is a tree such
that

⋃
e∈T e = V . A tree T ′ extends another tree T if T ⊆ T ′. We will write

T ′ � T . A bridge e ∈ E leaves G[E \ {e}] disconnected. For any E′ ⊆ E let
leaves(E′) := |{v ∈ V | dE′(v) = 1}| and internal(E′) := {v ∈ V | dV (v) =
|EV (v) ∩ E′|}.

1.4 Overall Strategy

We address the following annotated version of our problem:

Rooted k-Leaf Spanning Tree

Given: An undirected graph G(V, E) a root vertex r ∈ V , and the parameter k.
We ask: Is there a spanning tree T for G with leaves(T) ≥ k with dT (r) ≥ 2?

An algorithm solving this problem will also solve k-leaf spanning tree (with
a polynomial delay) by considering every v ∈ V as the root. All throughout the
algorithm we will maintain a tree T ⊆ E whose vertices are VT :=

⋃
e∈T e. Let

V T := V \VT . T will be seen as predetermined to be part of the solution. During
the course of the algorithm, T will have two types of leaves. Namely, leaf nodes
(LN) and branching nodes (BN). The first mentioned will also appear as leaves
in the solution. The latter ones can be leaves or internal vertices. Generally, we
decide this by branching as far as reduction rules do not enforce exactly one
possibility. Internal nodes (IN) are already determined to be non-leaves in T .

The algorithm will also produce a third kind of leaves: floating leaves (FL).
These are vertices from V T which are already determined to be leaves, but
are not attached to the tree T yet. If a vertex is neither a branching node
nor a leaf node nor a floating leaf nor an internal node we call it free. We
will refer to the different possible roles of a vertex by a labeling function lab :
V → {IN, FL, BN, LN, free} := D. A given tree T ′ defines a labeling VT ′ → D
to which we refer by labT ′ . Let INT ′ := {v ∈ VT ′ | dT ′(v) ≥ 2}, LNT ′ :=
{v ∈ VT ′ | dV T ′ (v) = 0, d(v) = 1} and BNT ′ = VT ′ \ (IN ∪ LN). Then for any
ID ∈ D \ {FL, free} we have IDT ′ = lab−1(ID). We always ensure that labT

and lab are the same on VT . The subscript might be suppressed if T ′ = T . If
T ′ � T , then we assume that INT ⊆ INT ′ and LNT ⊆ LNT ′ . So, the labels IN
and LN remain once they are fixed. For the labels, we have the following possible
transitions: FL → LN, BN→ {LN, IN} and free→ D \ {free}. Subsequently, we
assume |V | > 4.

1.5 Parameterized Measure and Conquer

We follow a more general approach of how to measure the running time in a pa-
rameter k than in the, say, traditional way where during the branching process
usually recursive calls will be made with parameters k′ < k. Our point of view
is that we are given an initial budget k. During the execution of the algorithm

An Amortized Search Tree Analysis for k-Leaf Spanning Tree 675

this budget will be decremented due to obtained structural information. This
structural information does not necessarily refer to the case that some objects
are fixed to be in the future solution. It can comprise much more (i.e. degree-
one vertices, four-cycles). We allow to count such structural information only
fractional. Clearly, we have to show that the budget never increases on applying
reduction rules and even decreases in case of recursive calls. But additionally
once our budget has been consumed we must be able to give an appropriate
answer in polynomial time. As in general we counted more than only future so-
lution objects this might become a hard and tedious task. If we are able to fulfill
all the recited conditions we can prove a running time of the form O∗(ck).

2 Reduction Rules and Observations

2.1 Reduction Rules

We assume that reduction rule (i) is applied before (i+1). The rules (1)-(3)
also appeared in previous work [9].

(1) If there is an edge e ∈ E \ T with e ⊆ VT , then delete e.
(2) Every v ∈ BN with d(v) = 1 becomes a leaf node.
(3) Let u ∈ BN. If the removal of EV T

(u) in G[V \ FL] or G[V] creates two
components then u becomes internal.

(4) Let u, v be free and assume that there is a bridge {u, v} ∈ E \ T in G[V],
where C1, C2 are the two components created by deleting {u, v}. If
|V (C1)| > 1 and |V (C2)| > 1 then contract {u, v}. The new vertex is also
free.

(5) Delete {u, v} ∈ E if u and v are floating leaves.
(6) Delete {u, v} ∈ E \ T if dV (u) = 2 and a) dV (v) = 2, or b) v ∈ FL.
(7) Delete {u, v} if u ∈ BN with d(u) = 2, NV T

(u) = {v} and dVT (v) ≥ 2, see
Figure 1(a).

(8) If u, x1, x2 form a triangle, x1 is free and {h} = N(x1) \ {x2, u} such that
d(h) = 1, see Figure 1(b). Then x1 becomes a floating leaf and h will be
deleted.

(9) Let h ∈ V T be a free vertex such that a) NV T
(h) = {q} and d(q) = 1

or b) dV T
(h) = 0, see Figure 1(c). Then h becomes a floating leaf and q is

deleted in case a).

Lemma 1. The reduction rules are sound.

Lemma 2. Reduction rule (1) does not create bridges in E \ T .

From now on we assume that G is reduced due to the given reduction rules.

2.2 Observations

If N(internal(T)) ⊆ internal(T)∪ leaves(T), we call T an inner-maximal tree.

676 D. Raible and H. Fernau

u

q

v

(a) RR7

uh

x1 x2

(b) RR8

h

q

(c) RR9

w

v

x1

x2

q

(d) RR10

w

v

x1

x2

co(v)

q

(e) RR10

Fig. 1. Bold edges are from T . Dotted edges may be present or not.

v

x1

x2

z

(a) Lemma 7.1

v

x1

x2

z

(b) Lemma 7.1

v

x1 x2

z y

(c) Lemma 7.2

v

x1 x2

z y

(d) Lemma 7.2

Fig. 2. Bold edges are from T . Dotted edges may be present or not.

Lemma 3 ([14] Lemma 4). Let v ∈ BNT where T is a inner-maximal span-
ning tree. Then if there is a spanning tree T ′ � T such that v ∈ internal(T ′)
there is also inner-maximal spanning tree T ′′�T with |leaves(T ′)|≤|leaves(T ′′)|.

By the above lemma we can restrict our attention to inner-maximal spanning
trees. And in fact the forthcoming algorithm will only construct such trees. Then
for a v ∈ internal(T) we have that EV (v) ⊆ T as by Lemma 3 we can assume
that T is inner-maximal. Thus, in the very beginning we have T = EV (r).

Lemma 4. Let v ∈ BNT and NV T
(v) = {u}. Then u is free and dV T

(u) ≥ 2.

Proof. Note that dV (v) = 2. Moreover, u �∈ IN ∪ BN ∪ FL due to (1), (3)
and (6.b). Thus, u is free. If dV T

(u) = 0 then (9.b) could be applied.
If dV T

(u) = 1 then either we can apply (3) (if {u, v} is a bridge) or (6.a) or
(7) depending on whether dVT (u) ≥ 2 or not. �	

We are now going to define some function co : BN→ V . For v ∈ BN, let

co(v) =
{

v : dV T
(v) ≥ 2

u : NV T
(v) = {u}

Note that co is well defined as we have dV T
(v) ≥ 1 (otherwise it becomes a leaf

node (2)). Note that we have dV T
(co(v)) ≥ 2. Either dV T

(v) ≥ 2 or dV T
(v) = 1.

In the latter case, Nfree(v) = NV T
(v) = {u}, such that dV T

(u) ≥ 2 by Lemma 4.
This property will be used frequently.

Lemma 5 ([14] Lemma 5). Let v ∈ BNT such that NV T
(v) = {u}. If there is

no spanning tree T ′ � T with k leaves and labT ′(v) = LN, then there is also no
spanning tree T ′′ � T with k leaves, labT ′′(v) = IN and labT ′′(u) = LN.

An Amortized Search Tree Analysis for k-Leaf Spanning Tree 677

Observe that for a vertex v with co(v) �= v once we set lab(v) = IN then it is
also valid to set lab(co(v)) = IN. By Lemma 5 we must only ensure that we also
consider the possibility lab(v) = LN.

A Further Reduction Rule With the assertion of Lemma 4 we state another
reduction rule:

(10) Let w ∈ BN with x1 ∈ Nfree(w) such that a degree one vertex q is attached
to x1, see Figure 1(d). Further, if a) there exists v ∈ BN with NV T

(v) =
{x1, x2} and {x1, x2} ∈ E or b) there exists v ∈ BN with co(v) �= v and
NV T

(co(v)) = {x1, x2}, see Figure 1(e), then set lab(v) = LN.

Lemma 6. Rule (10) is sound.

The next lemmas refer to the case where there is a v ∈ BNT with dV T
(v) = 2.

In the following we use N := {co(v), x1, x2}.

Lemma 7. Let T ⊆ E be a given tree such that v ∈ BNT and N(co(v)) =
{x1, x2}. Let T ′, T ∗ be optimal spanning trees under the restrictions T ′ � T ,
T ∗ � T , labT ′(v) = LN, labT∗(v) = labT∗(co(v)) = IN and labT∗(x1) =
labT∗(x2) = LN.

1. If there is a z ∈ ((N(x1)∩N(x2)) \ {co(v)}), then leaves(T ′) ≥ leaves(T ∗).
2. If co(v) = v, y ∈ N(x2) \ {v}, z ∈ N(x1) \ {v} with labT∗(z) = IN, then

leaves(T ′) ≥ leaves(T ∗) .
3. If co(v) �= v and if there is a z ∈ ((N(x1)∪N(x2)) \N) with labT∗(z) = IN,

then leaves(T ′) ≥ leaves(T ∗).

Proof
1. Firstly, suppose co(v) = v. Consider T + := (T ∗ \ {v x1, v x2}) ∪ {z x1, z x2},

see Figures 2(a) and 2(b). We have labT+(v) = LN and z can be the only
vertex besides v where labT+(z) �= labT∗(z). Thus, z could be the only
vertex with labT+(z) = IN and labT∗(z) = LN. Therefore, leaves(T ′) ≥
leaves(T +) ≥ leaves(T ∗). Secondly, if co(v) �= v then consider T # :=
(T ∗ \ {v co(v), co(v)x2}) ∪ {z x1, z x2} instead of T +.

2. Consider T + := (T ∗ \ {v x1, v x2}) ∪ {z x1, y x2}, see Figures 2(c) and 2(d).
We have labT+(v) = LN and at most for y we could have labT∗(y) = LN and
labT+(y) = IN. Hence, leaves(T ′) ≥ leaves(T +) ≥ leaves(T ∗).

3. Consider T # := (T ∗ \ {v co(v)}) ∪ {z x1}. We have labT#(v) = LN and
therefore leaves(T ′) ≥ leaves(T #) ≥ leaves(T ∗). �	

Lemma 8. Let T ⊆ E be a given tree such that v ∈ BNT and N(co(v)) =
{x1, x2}. Let T ′, T ∗ be optimal spanning trees under the restrictions T ′ � T ,
T ∗ � T , labT ′(v) = LN, labT∗(v) = labT∗(co(v)) = IN and labT∗(x1) = LN.

1. If co(v) = v, {x1, x2} ∈ E, N(x2) \ FL = {v, x1} and if there is a z ∈
N(x1) \ N with labT∗(z) = IN, then leaves(T ′) ≥ leaves(T ∗).

2. If co(v) �= v, N(x2) \ FL ⊆ {co(v), x1} and if there is a z ∈ N(x1) \ N with
labT∗(z) = IN, then leaves(T ′) ≥ leaves(T ∗).

678 D. Raible and H. Fernau

Algorithm 1. Description of the branching algorithm
Data: A graph G = (V, E), k and a tree T ⊆ E.
Result: YES if there is a spanning tree with at least k leaves and NO otherwise.

if G[V \ FL] is not connected or BN = ∅ then
return NO

else if κ ≤ 0 then
return YES

else
Apply the reduction rules exhaustively
Choose a vertex v ∈ BN of maximum degree
if dV T

(co(v)) ≥ 3 then
〈v ∈ LN; v, co(v) ∈ IN〉 (B1)

else if NV T
(co(v)) = {x1, x2} then

Choose v according to the following priorities:
case ({x1, x2} ⊆ FL) or (B2.a)
(x1 free & dV T \N (x1) = 0) or (B2.b)

(x1 free & NV T \N (x1) = {z} & (dV T \N (z) ≤ 1 or z ∈ FL)) (B2.c)
〈v ∈ LN; v, co(v) ∈ IN〉 (B2)

case x1 free, x2 ∈ FL or (B3.a)
x1, x2 free, NFL(x2) ⊆ {x1, co(v)} or (B3.b)
x1, x2 free & dV T \N (x2) = 1 (B3.c)

〈v ∈ LN; v, co(v) ∈ IN, x1 ∈ LN; v, co(v), x1, co(x1) ∈ IN〉 (B3)

case x1, x2 free & ∃z ∈
⋂

i=1,2 NFL\N (xi)
〈v ∈ LN; v, co(v), x2, co(x2) ∈ IN, x1 ∈ LN; v, co(v), x1, co(x1) ∈ IN〉
(B4)

otherwise
〈v ∈ LN; v, co(v) ∈ IN, x1, x2 ∈ LN; v, co(v), x2, co(x2) ∈ IN, x1 ∈
LN; v, co(v), x1, co(x1) ∈ IN〉 (B5)

3. If labT∗(x2) = IN, dT∗(x2) = 2, EV T
(co(v)) is not a edge cut-set in G and if

there is a z ∈ N(x1) \N with labT∗(z) = IN, then leaves(T ′) ≥ leaves(T ∗).

In [14] the bottleneck case was when branching on a vertex v ∈ BN with at
most two non-tree neighbors, that is dV T

(v) ≤ 2. The last two lemmas deal with
this case. If the bottleneck case also matches the conditions of Lemma 7 or 8
we either can skip some recursive call or decrease the yet to be defined measure
by an extra amount. Otherwise we show that the branching behavior is more
beneficial. This is a substantial ingredient for achieving a better running time
upper bound.

3 The Algorithm

We are now ready to present Algorithm 1. We mention that if the answer YES is
returned a k-leaf spanning tree can be constructed easily. This will be guaranteed
by Lemma 9. For the sake of a short presentation of the different branchings,

An Amortized Search Tree Analysis for k-Leaf Spanning Tree 679

we introduce the following notation 〈b1; b2; . . . ; bn〉 called a branching. Here the
entries bi are separated by a semicolon and stand for the different parts of the
branching. They will express how the label of some vertices change. For example:
〈v ∈ LN; v, co(v) ∈ IN〉.This stands for a binary branching where in the first part
we set lab(v) = LN and in the second lab(v) = lab(co(v)) = IN. When we set
lab(v) = IN then we also set T ← T ∪ {{u, v} ∈ E | u �∈ VT }. This is justified
by Lemma 3. If we set lab(v) = LN, then we delete {{u, v} ∈ E | {u, v} �∈ T } as
these edges will never appear in any solution. To derive an upper-bound on the
running time for our algorithm, we use the measure

κ := k − ωf · |FL| − ωb · |BN| − |LN| with ωb = 0.5130 and ωf = 0.4117.

κ is defined by a tree T and a labeling (which both are to be built up by our
algorithm). Thus, we use a subscript when we are referring to this, i.e., κT .

3.1 Correctness

In every branching of our algorithm, the possibility that lab(v) = LN is consid-
ered. This recursive call must be possible as otherwise (3) would have been
triggered before. Now consider the case co(v) �= v. If the recursive call for
lab(v) = LN does not succeed, then we consider lab(v) = IN. Due to Lemma 5
we immediately can also set lab(co(v)) = IN. This fact is used throughout the
branchings (B1)-(B5). Nonetheless, in the branchings (B1), (B2), (B3) and (B5)
every possibility for v, x1 and x2 is considered in one part of the branching.
(B4) is an exception to this as it does not consider the possibility that lab(v) = IN
and lab(x1) = lab(x2) = LN. Here we refer to Lemma 7.1, which states that a no
worse solution can be found when we set lab(v) = LN.

When our algorithm returns YES, then T might still not be a spanning tree.
We first have to attach all the floating leaves to T . It is possible that a branching
node turns into a internal node and thus κ increases. The next important lemma
shows if we take all the floating leaves and branching nodes into account then
κ decreases.

Lemma 9. If given a labeling our algorithm returns YES, a spanning tree T̂
with leaves(T̂) ≥ k can be constructed in polynomial time.

Proof. Delete FL and compute a depth-first spanning tree DT for the remaining
graph starting from T . Then attach the vertices from FL to one of its neighbors.
This way we obtain a spanning tree T̂ � T . Let LBN = BNT ∩ LNT̂ and
IBN = BNT \ LBN. For c ∈ IBN let Tc be the subtree rooted at c in T̂ . Clearly,
leaves(Tc) ≥ 1 (✸). Observe that every vertex v ∈ FL ∪ LBN now has weight
zero. Thus, κT̂ was decreased by (1− ωf) or (1− ωb), resp., with respect to κT

due to making v a leaf node. Due to the next inequality we have leaves(T̂) ≥ k.

k − |LNT̂ | = κT̂ ≤ κT − |LBN| · (1− ωb) + |IBN| · ωb − |FL| · (1− ωf)

≤ κT + |IBN| · ωb −
∑

c∈IBN
leaves(Tc) · (1− ωf)

≤ κT + |IBN| · (ωb + ωf − 1) ≤ κT ≤ 0 (by (✸)) �	
Next we consider the interaction of the reduction rules with the measure.

680 D. Raible and H. Fernau

Lemma 10. An exhaustive application of the reduction rules never increases κ.

3.2 Run Time Analysis

In our algorithm the changes of κ are due to reduction rules or branching. In
the first case Lemma 10 ensures that κ will never increase. In the second case
we have reductions of κ of the following type. When a vertex v ∈ BN is made
a leaf node (i.e., we set lab(v) = LN) then κ will drop by an amount of (1−ωb).
On the other hand when v becomes an internal node (i.e., we set lab(v) = IN)
then κ will increase by ωb. This is due to v not becoming a leaf. Moreover,
the free neighbors of v become branching nodes and the floating leaves become
leaf nodes, due to Lemma 3. Therefore κ will be decreased by ωb and 1 − ωf ,
respectively. We point out that the weights ωb and ωf have to be chosen such
that κ will not increase in any part of a branching of our algorithm.

Analyzing the Different Cases
(B1) Let i := |NV T

(v) ∩ FL| and j := |NV T
∩ free|. Note that i + j ≥ 3. Then

the branching vector is: (1− ωb, i · (1− ωf) + j · ωb − ωb).

(B2) a) The branching vector is (1− ωb, 2 · (1− ωf)− ωb).
b) When we set lab(v) = lab(co(v)) = IN the vertex x1 will become a leaf node

due to (1). The branching vector is (1− ωb, 1 + min{1− ωf , ωb} − ωb).
c) Firstly, suppose that z ∈ FL.

1. d(z) = 1:
(a) co(v) = v: If {x1, x2} �∈ E then either (9.a) or (3) applies (depending

whether dVT (x1) > 0). If {x1, x2} ∈ E then there is z1 ∈ NVT (x1) \
{v} as otherwise (8) applies. But then (10.a) applies.

(b) co(v) �= v: If dVT (x1) = 0 then either (8) or (4) applies (depending
whether {x1, x2} ∈ E). If dVT (x1) > 0 then (10.b) applies.

2. d(z) ≥ 2 : After setting lab(v) = IN and applying (1) exhaustively we
have d(x1) = 2 and x1, x2 ∈ BN afterwards. Observe that adding an edge
to T does not create a bridge. The same holds for rule (1) (Lemma 2).
Thus, rules (3) or (4) are not triggered before the rules with lower
priority. As (2) and (5) do not change the local setting (6.b) will delete
{x1, z}, leading to a (1− ωb, 1 + min{1− ωf , ωb} − ωb) branch.

The case that z ∈ free can be seen by similar arguments.

Remark 1. From this point on, w.l.o.g., for a free vertex xi, i = 1, 2, we have:

1. dV T \N (xi) ≥ 2 or
2. NV T \N (xi) = {zi} such that dV T \N (zi) ≥ 2 and zi �∈ FL.

If dV T \N (xi) = 0 then (B2.b) would apply. If dV T \N (xi) = 1 and 2. would fail,
then case (B2.c) applied.

Note that if 2. applies to xi, then when we set lab(v) = IN we have that co(xi) =
zi after the application of the reduction rules. In this sense (with a slight abuse
of notation) we set co(xi) = xi if case 1. applies and co(xi) = zi if case 2. applies.

An Amortized Search Tree Analysis for k-Leaf Spanning Tree 681

(B3) If xi is free let fli := |(N(co(xi)) \N)∩FL| and fri := |(N(co(xi)) \N)∩
free|. Due to Remark 1 we have fli + fri ≥ 2.

a) Note that we must have that S := NFL(x1) \N �= ∅ due to (3). If co(v) = v,
then also N(xi) \ {v} �= ∅ (i = 1, 2) due to (3). In the second part of the
branch, every vertex in S can be assumed to be a leaf node in the solution.
Otherwise, due to Lemmas 7.2 and 7.3, a solution, which is no worse, can
be found in the first part of the branch when we set lab(v) = LN. Hence, for
q ∈ S we get ωf if lab(q) = free as we set lab(q) = FL. If lab(q) = BN, we
set lab(q) = LN and receive 1−ωb. We have the following reduction in κ for
the different parts of the branching.
v ∈ LN: 1− ωb.
v ∈ IN, co(v) ∈ IN, x1 ∈ LN: 1+fr1·ωf+max{0, 1−fr1}·(1−ωb)+1−ωf−ωb

v, co(v), x1, co(x1) ∈ IN: 1− ωf + fl1(1− ωf) + fr1 · ωb − ωb.

Remark 2. Note that from this point we have that x1 and x2 are free.

b) There is a z1 ∈ NFL\N (x1) (by (3)). If co(v) = v then we must have
{x1, x2} ∈ E due to (3). Thus, either Lemma 8.1 or 8.2 apply (depending
whether co(v) = v or not). Hence, analogously as in a) we obtain
min{ωf , 1−ωb} in addition from z1 in the second part of the branch. Thus,
we have the branching vector (1 − ωb, 1 + fr1 · ωf + max{0, 1 − fr1}·
(1− ωb) + ωb − ωb, ωb + fl1(1− ωf) + fr1 · ωb − ωb) (✧).

Remark 3. Observe that from now on there is always a vertex
zi ∈ NFL\N (xi) (i = 1, 2) due to the previous case.

c) Let z1 be defined as above and T̃ � T be an optimal spanning tree such
that labT̃ (v) = labT̃ (co(v)) = IN and labT̃ (x1) = LN. If labT̃ (x2) = LN then
Lemmas 7.2 and 7.3 apply. This means in the branch setting v, co(v) ∈ IN,
x1 ∈ LN, we can assume that vertices in (N(x1 ∪N(x2)) \ N are leaves, i.e,
we can adjoin them to FL or LN. This leads to an additional reduction of
at least min{ωf , 1 − ωb}. If labT̃ (x2) = IN then we must have dT̃ (x2) = 2.
Thus, Lemma 8.3 applies. This entails the same branch as in (✧).

(B4) Due to Lemma 7.1 a (1 − ωb, 1 + fr2 · ωb + fl2 · (1 − ωf) − ωb, ωb + fr1 ·
ωb + fl1 · (1− ωf)− ωb) branch can be derived.

(B5) In this case
⋂

i=1,2 NFL\N (xi) = ∅ is true as otherwise (B4) applies. This
means for i = 1, 2 there are two different vertices zi ∈ NFL\N (xi). Due (B3.c) we
have dV T \N (xi) ≥ 2. Thus in the second part we additionally get (fr1 +fr2) ·ωf

due to Lemmas 7.2 and 7.3. If fri = 0 we get an amount of 1−ωb by Remark 3.
v ∈ LN: 1− ωb.
v, co(v) ∈ IN, x1, x2 ∈ LN: 2+ (fr1 + fr2) ·ωf + (max{0, 1− fr1}+ max{0, 1−

fr2}) · (1− ωb)− ωb

v, co(v), x2, co(x2) ∈ IN, x1 ∈ LN: 1 + fl2 · (1− ωf) + fr2 · ωb − ωb

v, co(v), x1, co(x1) ∈ IN: ωb + fl1 · (1− ωf) + fr1 · ωb − ωb.

We have calculated the branching number for every mentioned recursion such
that 2 ≤ fri + fl1 ≤ 5, i = 1, 2, with respect to ωb and ωf . The branching

682 D. Raible and H. Fernau

number of any other recursion is upper-bounded by one of these. We mention
the bottleneck cases which attain the given running time: Case (B5) such that
dV T \N (xi) = 2 and a) fl1 = fl2 = 0, fr1 = fr2 = 2, b) fr1 = 2, fl1 = 0,
fr2 = fl2 = 1; Compared to [6] case (B5) has been improved. We can find at
least two vertices which are turned from free vertices to floating leaves or from
branching nodes to leaf nodes. In [6] only one vertex with this property can be
found in the worst case. Thus, due to the previous case analysis we can state
our main result:

Theorem 1. k-Leaf Spanning Tree can be solved in time O∗(3.4575k).

4 Conclusions and Exact Exponential Time Analysis

Exponential Time Analysis. Fomin, Grandoni and Kratsch [13] gave an exact
exponential-time algorithm with running time O∗(1.9407n). Based on and re-
analysing the parameterized algorithm of Kneis, Langer and Rossmanith [14],
this was recently improved to O∗(1.8966n), see [9]. We can show further (slight)
improvements by re-analyzing our parameterized algorithm. We define a new
measure:

τ := n− ωf · |FL| − ωb · |BN| − |LN| − |IN| with ωb = 0.272 and ωf = 0.4721.

The remaining task is quite easy. We only have to adjust the branching vectors
we derived with respect to κ to τ .

Theorem 2. Maximum Leaf Spanning Tree can be solved in O∗(1.89615n).

Parameterized Measure & Conquer. Amortized search tree analysis, also known
as Measure & Conquer, is a big issue in exact algorithmics. Although search
trees play an important role in exact parameterized algorithmics, this kind of
analysis has been rather seldomly applicable, the papers [5, 10, 11, 19] giving
a hitherto complete list of exceptions. This paper contributes to this topic. Let
us emphasize the difference to the, say, non-parameterized Measure & Conquer
and to this case. Usually if a measure μ, which is used to derive an upper bound
of the form c|V |, is decreased to zero then we immediately have a solution. Almost
all time this is quite clear because then the instance is polynomial-time solvable.
Now if the parameterized measure κ is smaller than zero then in general a hard
sub-instance remains. Also κ has been decreased due to producing floating leaves,
which are not attached to the tree yet. Thus, it is crucial to have Lemma 9, which
ensures that a k-leaf spanning tree can be indeed constructed. Beyond that, it
is harder to show that no reduction rules ever increase κ. As vertices which
have been counted already partly (e.g., because they belong to FL∪BN) can be
deleted, κ can even increase temporally. Concerning the traditional approach this
is a straight-forward task and is hardly ever mentioned. It is a challenge to find
further parameterized problems where this, say, parameterized M&C paradigm
can be applied.

It is worth pointing out that our algorithm is quite explicit. This means that
its statement to some extent lengthy but on the other hand easier to implement.

An Amortized Search Tree Analysis for k-Leaf Spanning Tree 683

The algorithm does not use compact mathematical expressions which might lead
to ambiguities in the implementation process.

References

1. Blum, J., Ding, M., Thaeler, A., Cheng, X.: Connected Dominating Set in Sen-
sor Networks and MANETs. In: Handbook of Comb. Opt., vol. B, pp. 329–369.
Springer, Heidelberg (2005)

2. Bonsma, P.S., Brueggemann, T., Woeginger, G.J.: A Faster FPT Algorithm for
Finding Spanning Trees with Many Leaves. In: Rovan, B., Vojtáš, P. (eds.) MFCS
2003. LNCS, vol. 2747, pp. 259–268. Springer, Heidelberg (2003)

3. Bonsma, P.S., Zickfeld, F.: A 3/2-Approximation Algorithm for Finding Spanning
Trees with Many Leaves in Cubic Graphs. In: Broersma, H., Erlebach, T., Friedet-
zky, T., Paulusma, D. (eds.) WG 2008. LNCS, vol. 5344, pp. 66–77. Springer,
Heidelberg (2008)

4. Bonsma, P.S., Zickfeld, F.: Spanning Trees with Many Leaves in Graphs without
Diamond and Blossoms. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L.
(eds.) LATIN 2008. LNCS, vol. 4957, pp. 531–543. Springer, Heidelberg (2008)

5. Chen, J., Kanj, I.A., Xia, G.: Labeled Search Trees and Amortized Analysis: Im-
proved upper Bounds for NP-Hard Problems. In: Ibaraki, T., Katoh, N., Ono, H.
(eds.) ISAAC 2003. LNCS, vol. 2906, pp. 148–157. Springer, Heidelberg (2003)

6. Daligault, J., Gutin, G., Kim, E.J., Yeo, A.: FPT Algorithms and Kernels for
the Directed k-Leaf Problem. Journal of Computer and System Sciences (2009),
http://dx.doi.org/10.1016/j.jcss.2009.06.005

7. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999)

8. Estivill-Castro, V., Fellows, M.R., Langston, M.A., Rosamond, F.A.: FPT is P-
Time Extremal Structure I. In: ACiD, pp. 1–41. King’s College Publications, Lon-
don (2005)

9. Fernau, H., Langer, A., Liedloff, M., Kneis, J.: An Exact Algorithm for the Maxi-
mum Leaf Spanning Tree Problem. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009.
LNCS, vol. 5917, pp. 161–172. Springer, Heidelberg (2009)

10. Fernau, H., Raible, D.: Exact Algorithms for Maximum Acyclic Subgraph on a
Superclass of Cubic Graphs. In: Nakano, S.-i., Rahman, M. S. (eds.) WALCOM
2008. LNCS, vol. 4921, pp. 144–156. Springer, Heidelberg (2008)

11. Fernau, H., Gaspers, S., Raible, D.: Exact and Parameterized Algorithms for Max
Internal Spanning Tree. In: WG (to appear, 2009)

12. Fomin, F.V., Grandoni, F., Kratsch, D.: A Measure & Conquer Approach for the
Analysis of Exact Algorithms. Journal of the ACM 56(5) (2009)

13. Fomin, F.V., Grandoni, F., Kratsch, D.: Solving Connected Dominating Set Faster
than 2n. Algorithmica 52(2), 153–166 (2008)

14. Kneis, J., Langer, A., Rossmanith, P.: A New Algorithm for Finding Trees with
Many Leaves. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008.
LNCS, vol. 5369, pp. 270–281. Springer, Heidelberg (2008)

15. Koutis, I., Williams, R.: Limits and Applications of Group Algebras for Parame-
terized Problems. In: Albers, S., et al. (eds.) ICALP 2009, Part I. LNCS, vol. 5555,
pp. 653–664. Springer, Heidelberg (2009)

16. Lu, H.-I., Ravi, R.: Approximating Maximum Leaf Spanning Trees in Almost Lin-
ear Time. Journal of Algorithms 29, 132–141 (1998)

http://dx.doi.org/10.1016/j.jcss.2009.06.005

684 D. Raible and H. Fernau

17. Solis-Oba, R.: 2-Approximation Algorithm for Finding a Spanning Tree with Max-
imum Number of Leaves. In: Bilardi, G., Pietracaprina, A., Italiano, G.F., Pucci,
G. (eds.) ESA 1998. LNCS, vol. 1461, pp. 441–452. Springer, Heidelberg (1998)

18. Thai, M.T., Wang, F., Liu, D., Zhu, S., Du, D.-Z.: Connected Dominating Sets in
Wireless Networks Different Transmission Ranges. IEEE Trans. Mobile Comput-
ing 6, 1–10 (2007)

19. Wahlström, M.: Algorithms, Measures and Upper Bounds for Satisfiability and
Related Problems. PhD Thesis, Department of Computer and Information Science,
Linköpings Universitet, Sweden (2007)

Approximate Structural Consistency

Michel de Rougemont and Adrien Vieilleribière

Université Paris II, & LRI CNRS
LRI, Bâtiment 490, 91400 Orsay, France

{mdr,vieille}@lri.fr

Abstract. We consider documents as words and trees on some alpha-
bet Σ and study how to compare them with some regular schemas on an
alphabet Σ′. Given an input document I , we decide if it may be trans-
formed into a document J which is ε-close to some target schema T : we
show that this approximate decision problem can be efficiently solved.
In the simple case where the transformation is the identity, we describe
an approximate algorithm which decides if I is close to a target regular
schema (DTD). This property is testable, i.e. can be solved in time in-
dependent of the size of the input document, by just sampling I . In the
general case, the Structural Consistency decides if there is a transducer T
with at most m states such that I is ε-close to I ′ and his image T (I ′)
is both close to T and of size comparable to the size of I . We show that
Structural Consistency is also testable, i.e. can be solved by sampling I .

1 Introduction

Consider documents as large labeled, unranked, ordered trees with attributes [7],
which need to be classified. We may want to transform them from some source
schema S (regular language given by regular expression on word and DTD on
trees), into a fixed target schema T . Data-Echange is a framework to address this
problem. A Data-Exchange setting [3] is a triple (S, T, ψS,T) where ψS,T a set of
constraints. Given an input document I, the existence problem decides if there
exists J ∈ T such that (I, J) |= ψS,T . If we look for an algorithmic solution, we
may want to decide if there is transducer T with m states, such that J = T (I)
of size α-close to the size of I such that (I, J) |= ψS,T .

We study an approximate solution to this problem by allowing small errors
on I and J . Property Testing [8,5] considers approximations of decision problems,
and Testers for regular trees have been proposed [6,4] and extended to Data
Exchange where predefined constraints are given by a fixed transducer T [2]. In
this paper we extend the approach when T is unknown, and we approximately
decide if there exists a T which satisfies the Data Exchange condition. Our goal is
to show that the analysis of the statistics of schemas, transducers and documents
lead to approximate algorithms whose complexity is independent of the size of
the input structures.

Fix a source schema S, a target schema T , parameters ε (the precision),
α (the ratio) and m (the number of states of a transducer T), where 0 < ε ≤ 1

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 685–696, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

686 M. de Rougemont and A. Vieilleribière

and 0 < α ≤ 1. An input I is a word wn or an unranked ordered tree τn of size n
following S.

Structural Consistency: Given a large input documentIn(word wn or tree τn),
decide if there is a transducer T with at most m states and an input I ′ ε-close
to I, such that: α · n ≤ |T (I ′)| ≤ n/α and T (I ′) is ε-close to T .

The transformed I ′ (word or tree) must satisfy two conditions: it must be of
size proportional to n within a factor α, and ε-close to the schema T . A trans-
ducer which satisfies both conditions is called ε, α compatible. This problem
captures the difficulties of Information Integration and Classification, as given
target schemas T1, ..., Tk and an input document I, we can decide which schemas
are ε, α compatible for I. For simplicity, we first consider words wn where the
techniques are simpler and generalize them to trees. Our main results are:

Theorem 1. Structural Consistency is testable on words.

Theorem 2. Structural Consistency is testable on unranked ordered trees.

We associate to a word wn the statistics vector ustatk(wn), from which we can
approximate any regular property [4]. In this paper we introduce a statistics
matrix ustatk(τn)), for an unranked ordered tree τn, from which we can similarly
approximate any regular tree property. Regular schemas such as S and T are
represented by unions of polytopes in the statistical space. A schema mapping μ
is a mapping between some summits of a polytope HS for S and some summits
of HT for T . A transducer T provides a linear transformation between the source
and the target statistics and may be ε, α compatible for μ.

In section 2 we recall the basic notions on testers and the statistical embed-
ding of [4] on words and trees. In section 3, we recall the basic results when the
transformation is the identity, and in section 4 we study the Structural Consis-
tency on words and trees.

2 Preliminaries

We consider classes of finite structures such as words and trees with possible
attributes, and schemas are regular languages given by Tree-automata or DTDs.
We approximate decision problems on such classes, given a distance between
structures. We transform these structures with specific transducers.

Approximation. The Edit distance with moves between two structures I and
I ′, written dist(I, I ′), is the minimal number of elementary operations on I to
obtain I ′, divided by max{|I|, |I ′|}. An elementary operation on a structure I
is either an insertion, a deletion of a node or of an edge, a modification of a
letter (tag) or of an attribute value, or a move. For trees, a move consists in
moving an entire subtree of τ into another position; for words, it means moving
a consecutive sequence of letter into another position. For simplicity, in this paper
we transform structures ignoring attribute values. We say that two structures
Un, Vm (words or tress), whose domains are respectively of size n and m, are

Approximate Structural Consistency 687

Fig. 1. Edit Distance with Moves: Elementary Operations

ε-close if their distance dist(Un, Vm) is less than ε×max{n, m}. They are ε-far
if they are not ε-close. We use a classical weak approximation:

Definition 1. Let ε ≥ 0 be a real. An ε-tester for a property P is a randomized
algorithm A such that: (1) If I satisfies P , A always accepts; (2) If I is ε-far
from P , then Pr[A rejects] ≥ 2/3.

A property is testable if for every sufficiently small ε > 0, there exists an ε-tester
whose time complexity depends only on ε.

Statistical embedding on strings. For a finite alphabet Σ and a given ε, let
k = 1

ε . A word w of length n is embedded into a vector ustatk of dimension |Σ|k;

ustatk(w)[u] def= #u
n−k+1 where #u is the number of occurrences of u (of length k)

in w. This embedding is called a k-gram in statistics, and is related to [1] where
the subwords of length k are called shingles.

Example 1. For Σ = {0, 1}, and k = 2, let w be the word 00011111. The statistic
of w written in the lexicographical orderis ustat2(w) = (2/7 , 1/7 , 0 , 4/7).

Statistical embedding on trees. We generalize k-grams on words to trees, us-
ing a matrix as in Figure 2. First, we transform an unranked tree with attributes
into an extended binary tree1, using the classical Rabin encoding2 (Fig. 2.). In
this encoding, paths of length k can be paths on the right successor, i.e. hori-
zontal paths in τ , paths on the left successor, i.e. vertical paths in τ , or zigzags.
There are 2k−1 types of paths, and for each type we keep the classical ustatk vec-
tor. For paths of length k, we associate their type as a boolean vector of length
k − 1. We use 0 for the left branch and 1 for the right branch. For a tree τ , let
ustatk(τ) be the matrix with 2k−1 columns and |Σ|k lines. In column 1, we have
the densities of paths of type 0..0, i.e. vertical paths in the original unranked tree.
The last column describes paths of type 1..1, i.e. horizontal paths in the original
unranked tree, and all the columns enumerate the 2k−1 types. As the matrix is
sparse we only enumerate some of the entries with their non zero probabilities.

Transformations. The transformations considered are simple top-down trans-
ductions which can be implemented by linear XSLT programs. A transducer in
1 An extended 2-ranked tree is a binary tree with a left successor, or a right successor

or both.
2 First child relations in the unranked tree are represented by left successors in the

Rabin encoding, and next sibling relations are represented by right successors.

688 M. de Rougemont and A. Vieilleribière

Fig. 2. A unranked tree with attributes, its Rabin encoding and its ustat2 matrix null
entries are not represented; the first line indicates the type of the column; “author” is
abbreviated by a, “bd” by b, and “work” by w

Fig. 3. Local transformation (q, w) → l(t, q′)

state q transforms a letter of ΣS (resp. a labeled node with attributes node, for
trees) into a word (resp. a hedge, for trees) and continues the transformation
top down, i.e. on the next letter (children, for trees) in another state q′. For
instance, in state q, a transition on trees, denoted (q, w) → l(t, q′) transforms
a node w into a node l with a first child τ and outputs the transformation of the
children of w below l, on the right of τ , in state q′. This corresponds precisely to
the linear restriction of a classical model of transduction of [7] and we restrict
the study to deterministic transducers without λ transition.

3 Approximate Membership

This section recalls the basic membership testers for words and trees and gives
a solution for Approximate Structural Consistency when the Transformation is
the identity (T = id). In all the following, let ε be fixed and k = 1/ε.

The Tester decides Approximate Membership (for words and trees) is based
on the following property: if I is close to some schema T , I can be decomposed on
simple loops, and then ustatk(I) is ε-close to some polytope HT

i of HT =
⋃

i HT
i ,

i.e. ε-close to HT
i =

∑
ti∈C λi · ti, where

∑
i λi = 1, for some C ⊆ {t1, ..., tp} of

size at most dT +1, where dT is the dimension of the target vectors (Caratheodory
theorem). Observe that for I large enough, I is ε-close to I ′ = Πi∈C(ui)λ′

i.n for
λ′

i = λi

|ui| , as λi reflects the density of loops ui. In order to obtain I ′ from I,
moves have been applied to regroup all identical loops and non loops have been
deleted.

3.1 Word Case

The word embedding associates {ustatk(w) : w ∈ r} to a regular expression r,
a union of polytopes H in the same space, such that the distance (for the L1 norm)

Approximate Structural Consistency 689

between a vector and a union of polytopes is approximately dist(w, L(r)), as
shown in [4]. For a simple regular expression such as (001)∗, the polytope is
a unique summit, the base vector, which by definition is limn→∞ustat((001)n).
For a more general regular expression, the polytope is the convex hull of the base
vectors, associated with compatible simple loops, i.e. simple loops for which there
is a run which follows them. Consider a word w as the input I, and its ustatk(w)
vector. The embedding associates with T a finite set HT of polytopes HT

i , with
summits t1, ..., tp. Each geometrical summit ti is associated with a set Ui = {uj

i}
of loops uj

i (j is an index), and all the uj
i have the same ustat vectors, i.e.

correspond to the same geometrical summit ti. Some of these loops uj
i may be

decomposed as smaller loops: if ab is a loop for an automaton associated with
a schema T , so is abab, ba, For k = 2, they all have the same statistics.
A finite set of loops {uj

i} for i = 1, . . . , p is compatible if there is an input w
which follows all these loops.

Example 2. Let k = 2 = 1/ε, w = 000111, T = (001)∗.1∗. For a lexicographic
enumeration of the length 2 binary words, ustat2(w) = (2/5, 1/5, 0, 2/5). Let t =
(1/3, 1/3, 1/3, 0) the base vector of the regular expression (001)∗, and similarly
t′ = (0, 0, 0, 1) for 1∗. The polytope H associated with T is Convex−Hull(t, t′) =
{λ.t+(1−λ).t′, λ ∈ [0, 1]} and it approximates the set of ustat2(w) when w ∈ T .
The word w is at distance 1/6 to T as it requires the removal of the first 0 to
yield the corrected word 001.11 ∈ T .

The ustatk(w) vector can be approximated for the L1 norm by taking N random
samples to define the random variable ̂ustatk(w) which approximates ustatk(w).
These techniques yield the simple testers of [4] for Membership (w, r) between
a word w and a regular expression r. Take N ∈ O(|Σ|2/ε·ln|Σ|

ε3) samples, and

let ̂ustatk(w) be the ustatk of the samples. We compute the set of polytopes H
associated with r in the same space and reject if the geometrical distance from
the point ̂ustatk(w) to H is greater than ε. If w is in r then ustatk(w) is close
to H and the membership test accepts. On the other hand, if w is ε-far from the
regular expression r, then the tester rejects with high probabilities. This shows
that the approximate Membership is testable on words.

3.2 Tree Case

Sampling. The ustatk(τ) can be approximated, for the L1 norm, by taking
random samples as follows. Select with the uniform distribution a random node
i of τ and let ûstatk(τ) be the random matrix where we add each path of
length k− 1 from i as a unit in the corresponding position (type, labels). After
N samples, we divide by the numbers of units. Observe that E(ûstatk(τ)) =
ustatk(τ), and that a Chernoff bound will determine N = O(k5 · |2Σ|2k · ln(Σ))
with k = 1/ε, to insure that |ustatk(τ)− ûstatk(τ)| ≤ ε, with high probabilities.

DTD Embedding. We now generalize the notion of base loop from words to
trees. We associate a set of base loops τi to a DTD T , i.e. a set of minimal

690 M. de Rougemont and A. Vieilleribière

2-extended tree τi in a Rabin Encoding with a distinguished leaf compatible with
the root of τi, i.e. with the same label and free successors to accept iterations.
If the root of τi has one left successor, the distinguished element of τi has a free
left successor, and similarly for the right successor or both successors. The base
loop τi has at least two nodes and the distinguished element is underlined, for
example τi = a(b, a) or a(., a). We define (τi)m as the m-th iteration of the tree τi

on the distinguished element. Let τa be a terminal tree with a root labeled
a associated with a DTD, in a Rabin Encoding, i.e. a valid subtree for the
label a and no label occurs twice in a path. For each base loop τi, a derived
loop from τi is a base loop τi where some terminal trees τa are connected to
possible nodes a of τi. There are finitely many distinct terminal trees τa for each
letter a. With each base loop and derived loop, we associate a base matrix ti =
limn→∞ustatk((τi)n). The set of ustatk(τ) for τ ∈ T is a union of polytope HT

i

which is the Convex-Hull (τ∗
1 , ..., τ∗

l) of the base vectors of compatible base loops,
restricted to some additional linear constraints. If ustatk(τ) is ε-close to Hi, then
it is also close to

∑
si∈C λi · τ∗

i where C ⊆ {τ∗
1 , . . . , τ∗

p } of size at most dT + 1,
where dT is the dimension of the vectors, i.e. 2k−1. | ΣT |.
Example 3. Consider the DTD given by the rules: {root : a∗b; a : c.d;
c : a.f + g; b : e∗}. The base loops are: τ1 = a(., a), τ2 = e(., e), τ3 =
a(c(a(., f), d), .), as the ′′.′′ indicates the absence of successor. A terminal tree
for a is τa = a(c(g, d), .) and a terminal tree for c is τc = c(g, .). A derived loop
from τ1 is τ4 = a(c(g, d), a). On the unranked trees, the base loops are equivalent
to: a∗, e∗ and a(c(a(., f), d), .)∗. The base matrices for k = 2, with the notation
of sparse matrices, are:

t1 0 1
aa 0 1

,
t2 0 1
ee 0 1

,

t3 0 1
ac 1/4 0
af 0 1/4
ca 1/4 0
cd 0 1/4

and

t4 0 1
aa 1/4 0
ac 0 1/4
cd 1/4 0
cf 0 1/4

for the derived loop t4.

If τ is ε-close to the DTD, then ustatk(τ) is ε-close to

H =

{
λ1 · t1 + λ2 · t2 + λ3 · t3 + λ4 · t4 |

∑
i

λi = 1

}
.

ε-Membership Tester

1. Sample τ (in a Rabin encoding) with N ∈ O
(

|2ΣS|2/ε ln(ΣS)
ε5

)
samples, and

let ̂ustatk(τ) be the estimation of ustatk(τ).
2. Enumerate all possible polytope HT and Accept if one is ε-close to ̂ustatk(τ),

else Reject.

This shows that Membership is testable on unranked trees. The argument is
similar to the case of words and the complexity is O(1) for the size n of the
tree τ but exponential in the size of the DTDs.

Approximate Structural Consistency 691

4 Approximate Structural Consistency

Fix a source schema S, a target schema T and parameters k = 1/ε (the preci-
sion), α (the ratio) and m (the number of states of a transducer T). Given an
input (word or tree of size n) in S, we decide if there is a transducer T with m
states, I ′ ε-close to I such that T (I ′) is ε-close to T and α · n ≤ |T (I ′)| ≤ n/α.

We approximate the k statistics of I by sampling, consider some possible base
mappings or schema mappings μ between the summits of HS and the summits
of HT , and some compatible 1-state transducer π associated with μ. The impor-
tant observation is that we can enumerate all possible μ, π in time independent
of n. We then decide if there are m input mappings π1, ..., πm defining T such
that I is ε-close to I ′ = I ′1.I

′
2, ..., I

′
m such that T (I ′) = π1(I ′1), ..., πm(I ′m) and

α · n ≤ |T (I ′)| ≤ n/α. The total number of operations is independent of n.

Sampling and decomposition. The embedding associates with S a finite
set HS of polytopes HS

i , with summits s1, ..., sp. Each geometrical summit si

is associated with a set Ui of base loops. Ui = {uj
i}, and all uj

i have the same
ustat vectors, i.e. correspond to a summit sj

i which coincide with the geomet-
rical summit si. These loops cannot be decomposed as smaller loops, and are
compatible, i.e. there is an input I which follows these loops. Similarly for T ,
we have a finite set of polytopes HT

j with summits t1, ..., tq . Given an input
I (word wn or tree tn) close to some schema S, we first take N samples as
before, and x = ̂ustatk(I). We decompose x on a simplex for some polytope
HS

i of HS , i.e. ustatk(I) is ε-close to
∑

si∈C λi · si, where
∑

i λi = 1, for some
C ⊆ {s1, ..., sp} of size at most dS + 1, where dS is the dimension of the source
vectors. Observe that for large enough I, it is ε-close to I ′ = Πi∈C(ui)λ′

i.n for
λ′

i = λi

|ui| , as λi reflects the density of loops ui. In order to obtain w′ from w,
some moves are applied to regroup all identical loops and non loops are deleted.
In the decomposition, we can assume that each λi > ε

dS
= c. Otherwise we can

find another input ε-close to I by deleting a few symbols and rounding the small
coefficient to 0. The symbols are characters for the words and nodes for the trees.

Base mappings. Let {s1..., sp} the set of summits of HS
i , and C ⊆ {s1, ..., sp}

of size at most dS + 1, where dS is the dimension of the source vectors. If
ustatk(w) is ε-close to Hi, then it is also close to

∑
si∈C λi ·si by Caratheodory’s

theorem, and the λi are larger than a fixed value c. Similarly let HT
j be one of

the polytopes associated with the schema T and let D ⊆ {t1, ..., tq} of size at
most dT + 1, where dT is the dimension of the target vectors.

Definition 2. A (partial) base mapping μ between S and T is a partial function
HS

i → HT
j , only defined on some summits of the polytope, i.e. μ(si) = tj for

si ∈ C and tj ∈ D . A 1-state transducer π between S and T , is compatible
with μ, if π(ui) = vj if μ(si) = tj, si = ustatk(ui) and tj = ustatk(vj).

In the case of words, π : ΣS → Σ∗
T and we talk about a π mapping. The domain

of μ is C and the range is D. Each summit si corresponds to a base loop of the

692 M. de Rougemont and A. Vieilleribière

regular schema S, i.e. a minimal word ui which can be iterated, and similarly
each tj corresponds to a base loop vj for the regular schema T . Let αi = |vj |

|ui|
be the ratio between the length of the target loop and the source loop and
λ′

i = λi

|ui| . A μ-compatible mapping π is (ε, α)-feasible for the decomposition∑
i∈C λi · si on C if there exists w′ = Πi∈C(ui)λ′

i.n, ε-close to w, such that

α ≤
∑

si∈C αi.λ
′
i∑

si∈C λ′
i
≤ 1

α .

4.1 Words

Notice that if W = π(w′) is the source transformed by π, then α.|w| ≤ |W | ≤
|w|/α. An (ε, α)-feasible μ-compatible mapping π yields directly a 1-state
transducer.

Lemma 1. If w is ε-close to S and there exists a μ-compatible mapping π which
is (ε, α)-feasible, there exists an (ε, α)-feasible 1-state transducer T for w, S, T .

Proof. If there is a μ-compatible mapping π, then ustatk(w) is ε-close
to
∑

si∈C λi · si, where
∑

i λi = 1, for some C ⊆ {s1, ..., sp} of size at most
dS + 1. Observe that for w large enough, w is ε-close to w′ = Πi∈C(ui)λ′

i.n, as
λi is the density of loops ui in w and the number of iteration of each loop is
λ′

i.n = λi

|ui| .n after some rounding. If we erase all the letters of w which are not
loops, and apply moves to regroup all identical loops, we obtain w′ ε-close to
w. Let T the 1-state transducer associated with π, with transitions a/π(a) for
a ∈ ΣS . By definition, αi is the expansion on loop ui and the total expansion
on w′ is less than α. Because ustatk(w′) =

∑
i∈C λi · si, W = π(w′) is such that

ustatk(π(w′) =
∑

i∈C λi · μ(si) =
∑

j∈D λT
j · tj where λT

j =
∑

i∈C,μ(si)=tj
λi,

hence π(w′) is ε close to T .

Example 4. Let k = 2 = 1/ε and S = (001)∗.(01)∗.1∗.(011)∗ with ΣS = {0, 1}
as in the previous example, with summits {s0, s1, s2, s3} associated with the
simple loops u0 = (001), u1 = (01), u2 = 1, u3 = (011) and dS = 22. Let T =
(ab)∗.a∗.(aabc)∗ with ΣT = {a, b, c}, dT = 32, and HT be the polytope with
summits {t0, t1, t2} associated with the simple loops v0 = ab, v1 = a and v2 =
aabc. Let w1 = 0101111 = (01)2.13 ∈ S. Let μ(s1) = t0, μ(s2) = t1 and let
π(0) = b, π(1) = a, which is μ-compatible as π(u1) = π(01) = ba, π(u2) =
π(1) = a, and ustat2(π(u1)∗) = ustat2((ba)∗) = ustat2((ab)∗) = ustat2((v0)∗)
and ustat2(π(u2)∗) = ustat2((v1)∗). In this case, the 1-state transducer T is such
that T (0) = b and T (1) = b, and (0, 1)-feasible for w1, i.e. α = 1, and ε = 0.
If we consider w = 000111, 1/6-close to w′ = 00111 ∈ S, T (w′) = bbaaa, at
distance 2/5 from T and α = 5/6. Therefore T is (2/5, 5/6)-feasible for w.

We now generalize to transducers with m states and consider m distinct base
mappings μ1, ..., μm, and μ-compatible mappings π1, ..., πm for the same HS

i

and HT
j . We first describe a Verification Algorithm, which given π1, ..., πm, C

a subset of summits of HS
i , D a subset of summits of HT

j , such that ustatk(w)

Approximate Structural Consistency 693

is ε-close to
∑

si∈C λi · si, where
∑

i λi = 1, decides if there is an (ε, α)-feasible
transducer T with m states for w, C, D. We can find w′ ε-close to w, such that
w′ = Πi∈C(ui)λ′

i.n for λ′
i = λi

|ui| and can also decompose w′ into m components

w′
1, ..., w

′
m, i.e. w′′ = w′

1, ..., w
′
m = (Πi∈C(ui)λ

′1.n
i)1, ..., (Πi∈C(ui)λ

′m.n
i)m such

that
∑

j=1,...,m λ
′j
i = λ′

i. We divide each λ′
i into positive λ

′j
i associated with

the mapping πj for j = 1, ..., m and some of the λ
′j
i are 0. Each πj gives an

expansion αj
i for each loop ui such that si ∈ C. The general expansion on ui is

αi =
∑

j=1,...,m λ
′j
i .αj

i

λ′
i

and the global expansion is αg =
∑

si∈C λ′
i.αi∑

si∈C λ′
i

which is either

larger or smaller than 1. We can then write two Linear programs with positive
variables {λ

′j
i , αi, αg}, whereas λ′

i, λi and αj
i are constants, and si ∈ C, one for

the case αg ≤ 1 and the other for the case αg ≥ 1 :

Linear Programs P (C, λi)

Min (1 − αg) ≥ 0 [case of αg ≤ 1]
Min (αg − 1) ≥ 0 [case of αg ≥ 1]

αi =

∑
j=1,...,m λ

′j
i .αj

i

λ′
i

, αg =

∑
si∈C λ′

i.αi∑
si∈C λ′

i

, λ′
i =

λi.n

| ui |
,
∑

j=1,...,m

λ
′j
i = λ′

i.

Let Tm be the transducer with m states operating on w′′, ε-close to w, i.e.
applying πj on w′

j in state j, for j = 1, ..., m. We solve both linear systems and
compare the parameter αg to α to decide if the transducer Tm is (ε, α)-feasible.

Lemma 2. If the solution of the linear programs P is such that α ≤ αg ≤ 1 or
1 ≤ αg ≤ 1

α , then Tm is (ε, α)-feasible for large enough inputs.

Proof. Notice that w is ε-close to w′ = Πi∈C(ui)λ′
i for λ′

i = λi

|ui| and to

w′′= w′
1, ..., w

′
m = (Πi∈C(ui)λ

′1
i .n)1, ..., (Πi∈C(ui)λ

′m
i .n)m such that

∑
j=1,...,m

λ
′j
i =λ′

i.

The solution of the linear program, if it exists, insures that the expansion factor
is within α but may yield non integer values to the λ

′j
i . We round to the closest

integer modifying slightly w′′ into w′′′, which is still ε-close to w. By construction
the image Tm(w′′′) is in T and the transducer Tm is (ε, α)-feasible.

Verification Algorithm A(w, C, D, π1, ..., πm).

1. Decompose ̂ustatk(w) (which approximates ustatk(w)) ε-close to
∑

i∈C λi ·si,
otherwise reject.

2. Solve the linear programs P (C, λi).
3. If α ≤ αg ≤ 1 or 1 ≤ 1

αg
≤ 1

α , accept else reject.

694 M. de Rougemont and A. Vieilleribière

Tester for the Existence of an (ε, α)-feasible transducer:
TE(w, S, T, ε, α, m).

1. Sample w with N ∈ O(|ΣS |2/ε·ln|ΣS|
ε3) samples, and let ̂ustatk(w) be the esti-

mation of ustatk(w).
2. Choose a possible polytope HS , ε-close to ̂ustatk(w).
3. Enumerate all possible C, D, all possible base mappings μ, and all μ-feasible

π. Accept if one A(w, C, D, π1 , ..., πm) accepts, else Reject.

Theorem 1. If there exists an (ε, α)-feasible transducer with at most m states,
then TE(w, S, T, ε, α, m) accepts. If w is ε-far from any w′ such that there exists
an (ε, α)-feasible transducer with at most m states, then TE(w, S, T, ε, α, m)
rejects with high probabilities.

Proof. If there exists an (ε, α)-feasible transducer for w, it must transform a sim-
ple loop of S into a simple loop of T . Otherwise if w = (ui)j , its image may be
far from T . Therefore each state corresponds to some base mapping μ and to
some μ-compatible mapping π. We generate all possible mappings for m states.
Because each λi > c, the number of possible mappings π is independent of n,
and only depends on ε and the dimensions. For the right choice, the Verification
will accept and so will do the Tester TE. If w is ε-far from any w’ for which
there exists an (ε, α)-feasible transducer for w, then either ustatk(w) is ε-far
from any polytope HS and this condition is detected with high probability from

̂ustatk(w), or ustatk(w) is ε-close to a polytope HS and to some
∑

i∈C λi · si but
no mapping can map simple loops of si to simple loops of tj . This last condition
is detected as we analyze all possibilities.

4.2 Trees

Recall that we associate a union of polytopes to a DTD. Let C ⊆ {s1, ..., sp}
be a polytope described by its summits. To each summit si corresponds a set
of base loops τi, i.e. extended binary trees (in a Rabin encoding) which can be
iterated, with the same statistics. As in definition 2, a (partial) base mapping μ
between two schemas S and T is a partial function HS

i → HT
j , only defined

on some summits of the polytopes, i.e. μ(si) = tj for si ∈ C and tj ∈ D.
A 1-state transducer π between S and T , is compatible with μ, if π(τi) = τj if
μ(si) = tj , ustatk(τi) = si and ustatk(τj) = tj . In this case π transforms trees.
We follow an approach similar to the word case. We first estimate ̂ustatk(τ) which
approximates ustatk(τ). If τ is close to S, then ustatk(τ) has a decomposition
on a polytope HS , i.e. ustatk(τ) is close to

∑
i∈C λi · si for some summits C

of H , where si are the base matrices. The tree τ is close to τ ′ = Πi∈C(ti)λ′
i.n

for n large enough, where each base or derived loop τi is iterated λ′
i.n times

after some rounding, as we regroup similar loops with moves and erase the other
subtrees, for λ′

i = λi

|ti| . For a given π, let αi = |tm
j |

|tl
i|

the ratio between the length
of the target loop and the source loop. A μ-compatible mapping π is ε, α-feasible
for the decomposition

∑
i∈C λi · si on C if there exists τ ′ ε-close to τ such that∑

si∈C αi.λ
′
i∑

si∈C λ′
i
≤ α and α.|τ | ≤ |π(τ ′)| ≤ |τ |/α.

Approximate Structural Consistency 695

Example 5. Consider the following source S, target T DTDs and ε = 1
2 fixed,

i.e. k = 2.
S <!ELEMENT bd (work*)>

<!ELEMENT work (author+)>
<!ATTLIST work title CDATA year CDATA>
<!ELEMENT author (EMPTY)>
<!ATTLIST author name CDATA #REQUIRED>

T <!ELEMENT bib (livre*,editeur)>
<!ELEMENT livre (titre, auteur+)>
<!ELEMENT auteur #PCDATA>
<!ELEMENT titre #PCDATA>

We use the standard abbreviations of the tags, where bd and bib are abbreviated
by b. Let τ be a large tree of S and assume that sampling τ gives us a matrix:

̂ustat2(τ). Let us explicit a (1/2, 3/4)-feasible one state transducer. The loops
of the schema S are τ1 = w(a, w) and τ2 = a(., a). For k = 2, their statistical
representation are s1 and s2. The schema T has two loops: l(t(., a), l) and a(., a),
whose statistical representations are t′1 and t′2 :

̂ustat2(τ) 0 1
aa 0 0.59
bw 0.01 0
wa 0.2 0
ww 0 0.2

,
s1 0 1
wa 1/2 0
ww 0 1/2

,
s2 0 1
aa 0 1

,

t′1 0 1
ll 0 1/3
lt 1/3 0
ta 0 1/3

and
t′2 0 1
aa 0 1

.

Take the base mapping μ(s1) = t′1 and μ(s2) = t′2. A possible admissible one state
transducer π compatible with μ given below by the transition rules in a compact
formalism : (q, b) → b(q, .) ; (q, w) → l(t, q) ; (q, a) → a, q. Since the nodes ’bd’,
’bib’ and ’editeur’ have a small impact on the statistics for big trees of S and T,
only loops are considered. Decomposed over HS , ûstat2 ≈ 0.6 · s1 + 0.4 · s2. The
distortion produced by the second rule is 3/2 and the third rule preserves size
i.e. the total distortion is 0.6× 3

2 + 0.4× 1 = 1.3 and it’s inverse (≈ 0.76923) is
higher that 3/4.

The generalization to transducers with m states is similar to the case of words.
We consider m distinct base mappings μ1, ..., μm , μ-compatible mappings π1, ...,
πm and decompose the tree τ into a forest with m components τ ′

1, ..., τ
′
m, i.e. τ ′′ =

τ ′
1, ..., τ

′
m = (Πi∈C(ti)λ

′1
i)1, ..., (Πi∈C(τi)λ

′m
i)m such that

∑
j=1,...,m λ

′j
i = λ′

i. The
forest τ ′′ is ε-close to τ , as we apply a limited number of moves. We use a linear
program P ′(C, λi) to decide if we can find the λ

′j
i , and a verification algorithm

A′(t, S, T ; C, π1, ..., πm), as in the case of words. We can use the same Verification
algorithm and the Tester (TE′) with N ∈ O

(
|2ΣS|2/ε·ln(|ΣS|)

ε5

)
samples. The

number of possible C is bounded by the dimension |ΣS |k ·2k−1, and the number
of possible μ is also bounded. We need to bound the number of possible π, as in
the case of words by the following lemma:

Lemma 3. If there exists an ε, α-feasible μ-compatible mapping π, then |π(a)| ≤
1

c·α for each letter a ∈ ΣS.

Proof. Recall that as in the case of words, the λi coefficients of the decomposition
can be supposed greater than a constant c < 1. If the expansion |π(a)| was larger
than 1

c·α , the global expansion would be larger than α.

696 M. de Rougemont and A. Vieilleribière

We can finally state our main result:

Theorem 2. If there exists an (ε, α)-feasible transducer with at most m states,
then TE′(τ, S, T, ε, α, m) accepts. If τ is ε-far from any τ ′ such that there exists
an (ε, α)-feasible transducer with at most m states, then TE′(τ, S, T, ε, α, m)
rejects with high probabilities.

5 Conclusion

The approximate embedding of trees and tree languages proposed in this pa-
per gives an efficient solution to decide Approximate Structural Consistency, as
the complexity of the algorithms only depends on the accuracy parameters. The
methods are also robust to some noise ratio, as the statistics matrices are close
on close inputs. We did not specify the exact complexity of the algorithms as
a function of the size of the DTD and leave it as an open problem. Structural
Consistency can also be applied to documents which do not have a schema, such
as data words or streams but an input schema guarantees a much smaller num-
ber of potential mappings. General problems in formal languages and rewriting
systems are often hard in their exact versions and approximate solutions are
natural.

References

1. Broder, A.: On the Resemblance and Containment of Documents. In: SEQUENCES
1997: Proceedings of the Compression and Complexity of Sequences (1997)

2. de Rougemont, M., Vieilleribière, A.: Approximate Data Exchange. In: Schwentick,
T., Suciu, D. (eds.) ICDT 2007. LNCS, vol. 4353, pp. 44–58. Springer, Heidelberg
(2006)

3. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data Exchange: Semantics and
Query Answering. In: Calvanese, D., Lenzerini, M., Motwani, R. (eds.) ICDT 2003.
LNCS, vol. 2572, pp. 207–224. Springer, Heidelberg (2002)

4. Fischer, E., Magniez, F., de Rougemont, M.: Approximate Satisfiability and Equiv-
alence. In: IEEE Logic in Computer Science, pp. 421–430 (2006)

5. Goldreich, O., Goldwasser, S., Ron, D.: Property Testing and Its Connection to
Learning and Approximation. Journal of the ACM 45(4), 653–750 (1998)

6. Magniez, F., de Rougemont, M.: Property Testing of Regular Tree Languages.
In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS,
vol. 3142, pp. 932–944. Springer, Heidelberg (2004)

7. Martens, W., Neven, F.: Typechecking Top-Down Uniform Unranked Tree Trans-
ducers. In: International Conference on Database Theory, pp. 64–78 (2002)

8. Rubinfeld, R., Sudan, M.: Robust Characterizations of Polynomials with Applica-
tions to Program Testing. SIAM Journal on Computing 25(2), 23–32 (1996)

Comprehensive System for Systematic
Case-Driven Software Reuse

Micha�l Śmia�lek1, Audris Kalnins2, Elina Kalnina2, Albert Ambroziewicz1,
Tomasz Straszak1, and Katharina Wolter3

1 Warsaw University of Technology, Poland
smialek@iem.pw.edu.pl

2 IMCS University of Latvia, Latvia
audris.kalnins@lumii.lv

3 HITeC e.V., University of Hamburg, Germany
kwolter@informatik.uni-hamburg.de

Abstract. Reuse of software artifacts (blueprints and code) is normally
associated with organising a systematic reuse framework most often con-
structed for a specific problem domain. In this paper we present a system
(language, tool, reuse process) where software reuse is based on build-
ing and retrieving of so-called software cases (large compound artifacts)
that can be reused between domains. The system is opportunistic in that
software cases result from usual (non-reuse oriented) activities where also
semantic information is added. This information is used to support reg-
ular development but may serve later to retrieve software cases. Having
this common semantic basis, we can organise a systematic cross-domain
reuse process where application logic of one system can be reused for
systems within different domains.

1 Introduction

1.1 Motivation

In 1967, McIllroy [1] has formulated a vision of global software reuse based on the
production of “software integrated circuits”. Despite many success stories it has
to be admitted that this vision is still not fulfilled. The fundamental problem that
did not find proper solution is the ability to cope with growing complexity of soft-
ware systems and broadness of their problem domains. Thus, it is extremely diffi-
cult to find relevant assets for reuse and then apply them to the current problem
at hand. The found solutions are usually very abstract (like generic design pat-
terns) or specific to only a given problem domain (“domain-specific software ICs”).
Reuse of generic solutions certainly helps in producing better systems but no sig-
nificant productivity gains can be accomplished (considering the amount of work
to find a generic solution and adapt to the current problem). Domain-specific ap-
proaches necessitate significant effort to conduct domain analysis and prepare as-
sets for reuse.Thus, theyare economically viable only forproducing large families of
similar systems (like e.g. cell phone software). Software development organisations

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 697–708, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

698 M. Śmia�lek et al.

that would like to adopt reuse processes face important barriers (see [2]). These
barriers are associated with the complexity of reuse activities (preparing assets for
reuse considering lack of proper tool support) and in resistance of developers and
managers to undertake reuse activities “for the uncertain future”.

As identified in a survey by Frakes and Kang [3], practically all approaches
to software reuse are based on domain engineering. There, domain engineering
is identified with software product lines (see below) and is declared as a key
approach and research direction. The survey also stresses the importance of ap-
proaches to reuse pattern-based architectural frameworks with component tech-
nologies as technical enablers. Several important research directions have been
identified: formal specification of architectures for automated construction of
systems; broadening the scope of domains that can participate in the reuse pro-
cess; behavioural contracts for components; reasoning support for component
libraries; ability to predict variabilities in software assets needed by the re-users.
The last research direction has been identified as a key point.

In this paper we present an approach to software reuse that follows most of
the postulated directions and can be classified as a domain engineering approach.
The main difference to the current trend of product lines is that we deliberately
exclude variability and commonality analysis. Instead of preparing assets for
reuse, we promote opportunistic reuse which is often neglected as ad-hoc and
unorganised. In our approach we make this opportunistic reuse systematic and
organise it around so-called software cases. Software cases are produced in a sys-
tematic process which is compatible with the most typical iterative approaches
(either agile or formal). The process starts with writing use cases and is followed
by architectural design and coding (repeated over iterations) where traces (de-
tailed mappings) between these elements are generated automatically. Through
following of this process, the software cases are prepared for reuse by adding se-
mantic information to the requirements specifications. The effort of adding this
information is relatively small and can be done even by unskilled people (domain
experts). Reuse of software cases is accomplished by retrieving so-called software
case slices. These slices can be extracted by determining similarity of sketched
use cases for a new system with those stored in a reuse repository. By using this
approach, a significant reduction of effort can be accomplished which is shown
through a validation experiment. What is important, this reduction is possible
even when the new system is built for a new problem domain.

1.2 Related Work

Our approach to case-driven reuse is based on use cases as basic indexes to software
cases. Thus, we will relate our work to reuse approaches where requirements for
the software systems are formulated with use cases. This research direction has
been set in 1997 by introducing Reuse-Driven Software Engineering by Jacobson
et al. [4]. In this approach, use cases drive both the software development and
reuse process. Use cases are adorned with specific variability information. This
variability analysis is supported with feature analysis as introduced in [5]. Use
cases did trace to the other artifacts in the software process like design models

Comprehensive System for Systematic Case-Driven Software Reuse 699

and code. In contrast to our work, no tool support for automatic generation of
traces existed as use cases were written in natural language.

The direction set in [4] is followed by many software product line approaches.
Detailed guidelines for specifying use cases for system families have been given
in [6]. An example notation for use case scenarios, modelling their variability
and deriving specific scenarios is given in [7]. Another approach in the context of
product line testing can be found in [8]. However, no real automation mechanisms
for deriving and mapping design and code from use cases have been developed.
A recent paper [9] shows an approach to automatic derivation of scenarios out
of use case descriptions adorned with variability information.

In order to automate the transition from use cases to code, we need rigour
in specifying use cases. A constrained language approach is introduced in [10]
where the essential scenarios are treated as reusable elements of the application
logic. This approach does not yet resolve the problem of automation as it simply
suggests manual traceability to design. In [11], the scenarios are traced to code
automatically through analysing test logs from a testing tool. Thus, scenarios
are written in a test scenario language of the test tool. In [12] the approach
to use-case based reuse is extended. The presented REUSER system compares
structural information contained in sequence diagrams associated with use cases.
By creating a partial sequence diagram one can find all similar diagrams and
associated use case diagrams. Comparison is based on graph-matching technol-
ogy. However, this approach is limited to structural comparison. No indication
on similarity of problem domains is given. On the other hand, [13] uses semantic
information from the WordNet terminology [14]. With this approach, similarity
of problem domains for different use case models can be determined.

2 Scenarios for Case-Driven Software Reuse

The process of case-driven software reuse (CDSR) is designed to be compatible
with typical software development methodologies. It assumes iterative develop-
ment which is centred around use cases. Figure 1 illustrates the general activities
of CDSR in the form of a UML activity diagram. It can be noted that for the
purpose of this paper the process is simplified and does not include - for in-
stance - testing and deployment. We now describe two typical scenarios where
the difference is in retrieving legacy use cases (see highlighted action in Fig. 1).

In a basic - non reuse-oriented - scenario, the developers start a new project
by sketching use cases. While writing initial use case descriptions, all the terms
used are defined within a domain vocabulary associated with this new software
case. Next, they plan for several iterations. Each of the iterations consists in
developing a set of use cases. For each of the use cases, detailed scenarios are
written. While writing scenarios, a complete domain vocabulary is constructed.
This is done in a tooling environment which assures strict coherence between
the vocabulary and the terms used in scenarios’ text. After completing these
detailed functional requirements, an automatic transformation generates the ar-
chitectural blueprints of the system. Within this architectural framework, code

700 M. Śmia�lek et al.

Fig. 1. Creation, storage and retrieval of software cases

is developed. The code for the application logic is taken directly from architec-
tural sequence diagrams (interaction model). The code for the business logic is
written manually for every generated business logic component and interface.
This is repeated until the complete system is built. The final action is to store
(copy) the created artifacts (requirements, architecture/design and code) with-
out modifications to a repository.

The above scenario is compatible with “normal” software development using
any of the available use case driven iterative methodologies. The main difference
is in giving enough rigour to use cases to be able to perform automatic transfor-
mations to architecture. The result of the process is a so-called software case
with its general structure presented in Figure 2. A software case can be defined
as a combination of precisely mapped requirements, design (architecture) and
code being the result of a specific project.

The use case model in a software case is structured so that all the terms used
within use case descriptions are linked to a vocabulary which is central to all
the use cases. To make the vocabulary comparable to the vocabularies of other
software cases, it is linked to a global terminology. Thus, the resulting repository
of software cases has a semantic backbone common to all the distinct software
cases (see again Fig. 2).

The global terminology is used within the second scenario which contains
the retrieval activity of Figure 1. In this scenario, after sketching the require-
ments (use cases and the related vocabulary), the developers run a query on the
repository of past cases. The query tool uses similarity measures that compute
semantic (WordNet based) and structural (graph based) distance between the
newly sketched scenarios and the legacy complete scenarios. This is illustrated
in Figure 3. When a matching use case is found within one of the stored software
cases, all related design and code artifacts can be retrieved. In particular, the

Fig. 2. General structure of a software case repository

Comprehensive System for Systematic Case-Driven Software Reuse 701

Fig. 3. General scheme for use case based retrieval of software artifact

Fig. 4. RSL model example

retrieval engine shows the mapped interaction diagrams that define the applica-
tion logic (user-system interactions) for the given use case and components that
realise the business logic (data processing algorithms).

After finding relevant use cases, their contents (scenarios, see Fig. 4) together
with the vocabularies and associated logic can be merged into the currently
built software case. The rest of the process remains basically very similar to
that without the retrieval step (the process is in fact presented as simplified to
perform retrieval only once). Scenarios for other use cases are written and the
vocabulary updated. Then, the architectural models are generated. It can be
noted that now only some of the business logic components have to be written
from scratch. These components that map from the legacy use cases are already
written and necessitate only some adaptations. In the following sections we will
give more technical details on the major steps of the above two scenarios.

3 Writing Semantically Rich Requirements

The key factor for the above described reuse process to become possible is
a semantically rich use case language. We use the Requirements Specification
Language as specified in [15] (see also [16]). The main characteristic of this lan-
guage is that it offers a detailed syntax for use case scenarios. This syntax is

702 M. Śmia�lek et al.

based on writing simple subject+verb+object(s) sentences, and is presented in
Figure 4 (see left). Moreover, scenarios written in RSL are composed of hyper-
links to a vocabulary central for a given software case (see center). As it can be
seen in the figure, the vocabulary is organised around phrases - like seek : for :
user - that constitute predicates (verbs+objects) of the scenario sentences. Nor-
mally, all the subjects and predicates should be linked to the vocabulary (not all
shown on the figure for clarity). What is important, all the phrases are grouped
by the nouns which gives order to the vocabulary and is used for automatic
transformation (see the next section).

It can be noted that the process of writing use cases is very rigourous. The
scenarios are written in a constrained language close to natural but all the words
need to be uniformly specified in a vocabulary. This poses a problem for tradi-
tional requirements engineering tools which normally operate on paragraphs of
text. Thus, we have developed a comprehensive RSL editor which highly sup-
ports writing vocabulary-oriented scenarios which is illustrated in Figure 5. The
developers write their scenarios (see top right) in a scenario editor. While writ-
ing sentences, the editor automatically updates the domain vocabulary with used
words (adding verb-object phrases; see Fig. 5 bottom right).

The above activities, supported by the RSL editor can be seen as compliant
with writing traditional requirements specifications. In such specifications, the
vocabulary (often in the form of a domain class model) is prepared together with
the functional specification. The RSL tool assures high level of coherence between
these two major parts relieving the developers from manual synchronisation. This
is in accordance with the approach proposed in [17], where the requirements
specification resembles a wikipedia with extensive use of hyper-links.

In addition to the above activities which come from general software engineer-
ing practice, we introduce an extra activity of linking vocabulary entries with a

Fig. 5. The RSL editor

Comprehensive System for Systematic Case-Driven Software Reuse 703

global terminology. This is illustrated in Fig. 4 (see right). Each of the words in
the vocabulary (both the verbs and the nouns) has to be assigned to a WordNet
element which is used as a global terminology for specifying senses of words. This
again is highly supported by the RSL editor which offers all available senses of
a given term (see Fig. 5, very bottom).

The above features of RSL can be used for transforming and mapping use
case scenarios into architectural models and code. RSL was carefully designed
to allow for generating very detailed component models with associated detailed
application logic. Moreover, these generated components can be reused through
comparing use case scenarios and retrieving traces from these scenarios to com-
ponents. This will be explained in the following two sections.

4 Generating and Mapping Design from Requirements

The algorithms for transforming from requirements to design were implemented
in the model transformation language MOLA1 [18]. MOLA, as any other such
language assumes that both the source and the target models are written in
a meta-model based language. The RSL’s meta-model is specified in [15]. The
target models are expressed in UML with its meta-model defined in [19].

The target architectural model conforms to the requirements specification
written in RSL by realising use case scenarios in a given logical architectural
framework. Thus, two aspects need to be considered: static structure of the
system and its dynamics in fulfilling the application logic (ie. use case scenarios).
These two aspects are specified at component level for the architectural model
and then refined up to implementation class level. The structure of the generated
architecture depends on the chosen architectural style. The architectural style
includes the definition of the system and model structure, the related set of design
patterns and the general design principles that are applied. The selection of the
most appropriate architecture style depends on non-functional requirements for
the system but it is out of scope for this paper.

Here we will give an example of an architectural style conforming to a wide
range of typical non-functional constraints. It is based on the most popular
layered approach to architecting contemporary business systems. We assume
four layer design with Presentation, Application Logic, Business Logic and Data
Access layers. Another basic principle used, is component based design at all
layers, with components comunicating through interfaces. In addition, several
popular design patterns are used. First, the whole design is based on a simplified
form of the MVC pattern, where no details of the view part are given. For each
domain element a data transfer object for exchanging data flowing between layers
and a data access object encapsulating persistence related operations is built.
For the domain elements participating in business logic, corresponding business
layer objects are created.

The above described architectural style provides clear guidelines as to what
elements should be created in the target model of the transformation. Figure 6 il-
1 http://mola.mii.lu.lv

704 M. Śmia�lek et al.

Fig. 6. Transformation of a vocabulary into a component structure

lustrates the correspondence between requirements and the obtained static struc-
ture on the example introduced previously (compare with Fig. 3).

The most non-trivial problem is to generate operations for all the interfaces.
This can be done only using a thorough analysis of scenario sentences within
each use case. During the analysis corresponding system behaviour is built and
operations to relevant interfaces are added. The generation of messages and the
corresponding operations depend upon the category (actor-to-system, system-
to-actor, system-to-system) of the analysed sentence. Figure 7 illustrates the
principles how the messages (and associated operations) are generated from the
sentences and the receiving lifelines selected.

In order to support reuse, mapping links from requirements to architecture
(and further to detailed design) are built by transformations. Rich mapping

Fig. 7. Transformation of a scenario to a sequence diagram

Comprehensive System for Systematic Case-Driven Software Reuse 705

links provide the basic prerequisite for traceability and software case slicing as
described in the next section.

5 Reusing Software Cases

According to the second scenario described in section 2, the newly built use cases
should be compared for similarity with use cases stored in the repository. The
retrieval engine uses the initial sketch as a query. In the following we will use the
example from Fig. 4. The query is based on the use case scenario from “Software
Case 2”. With this simple query we result with the engine showing the use case
from “Software Case 1” as most relevant. This is shown in Figure 8 (bottom).

After determining the similarity we can browse through the found software
cases and use cases. Moreover, we can determine slices which originate in the
most similar use cases. The slice contains all the interfaces and components that
are used within the interaction diagrams associated with the given use cases.
This is illustrated in the upper part of Fig. 8.

When an appropriate slice is determined, we can retrieve all the elements
contained therein. These retrieved elements are illustrated in Figures 9 and 10
(please compare with Fig 8). In the first figure we can see the possibility to reuse
code based on the common application logic. We assume that the developers have
reused the original use case scenarios. They have substituted the original notion
“user” with the new notion “guest”. This resulted in the transformation engine
generating a new interaction diagram, leading to code that is depicted in the
lower part of the figure. This can be also compared with the sequence diagram
in Fig. 7. This new application logic code is ready to be used in the new system.

What is also available for reuse is the business logic code. This code is called
from the application logic operations and performs certain data processing ac-
tivities. In Fig. 9 calls to this code are highlighted and the code itself is presented
in Fig. 10. The developers can follow the relationship between the generated ap-
plication logic (Administration) and business logic (UsersServices) component.

Fig. 8. The retrieval engine with visualisation of software case slices

706 M. Śmia�lek et al.

Fig. 9. Reuse of application logic through reusable transformations

Fig. 10. Reuse of business logic through updating code

Analogous relationship is generated for the new system (see left in Fig. 10).
What is not generated is the code of the operation. This code has to be taken
from the old software case and reworked (see highlighted code in Fig. 10).

6 Conclusion and Evaluation Results

With the presented approach, the software artifacts produced within a software
project are combined into software cases which drive reuse. The reuse environ-
ment contains many software cases which can be searched through and the most
relevant for the problem at hand – retrieved. Unlike for typical software prod-
uct line approaches, the effort of preparing a software case for reuse is highly
reduced. What is also important, this effort pays off in the current project as it
also enables automatic transformation to design.

The CDSR approach can be also used for building families of systems. A family
is produced implicitly, and not explicitly as in product lines. This implicit “family
construction” is performed through creation of consecutive software cases that
constitute variants of the previous software cases. The following software cases of
the family are added by finding the most similar one and adapting it to a slightly
different problem at hand. Thus we can call this approach an “opportunistic
product line”.

The CDSR system was developed within the ReDSeeDS (www.redseeds.eu)
project and consists of the RSL language, a comprehensive tool suite (ReDSeeDS

Comprehensive System for Systematic Case-Driven Software Reuse 707

Engine) and the CDSR process description (ReDSeeDS Methodology). In or-
der to confirm the validity of the CDSR system, these tools were used within
a comprehensive validation cycle in the industrial context. The cycle was lead by
Fraunhofer IESE with the participation of four industrial software development
teams (see Acknowledgements). One of the teams had experience with a product
line. The other teams had previously experienced only ad-hoc reuse. During the
cycle, the following experimental validation activities were performed.
1. RSL training and case creation and retrieval training (two day tutorials).
2. Case creation. More than 20 software cases, with a total of over 300 use cases

were created. The domains ranged from financial systems to rescue systems.
3. Case reuse. Four new software cases (over 80 use cases) were created through

retrieving and reusing elements from the old cases. The domains for these
new systems were significantly different than for the previous ones. Also, four
other existing software cases were extended to create variants. Depending on
the similarity of problem domains, the size of reuse ranged from single use
cases and associated design/code to 90% of the whole software cases.

4. Acceptance and usage analysis, using the UTAUT method [20].
The qualitative analysis of supplied extensive questionnaires shows very pro-
mising results. The user attitude in four areas (effort expectancy, facilitating
conditions, self efficacy, behavioural intention) is positive. In other four areas
(like performance) it is neutral. This means that the users of the system (experi-
enced software developers) believe that the approach would reduce their personal
effort and has enough technical support (tools) to be effectively applied in real
life. Moreover, the users show significant intention to use this technology in the
future. On the other hand, the users do not expect that using the system influ-
ence the performance of their work. It has to be noted that the current results
are obtained for the ReDSeeDS Engine prototype and not for a commercial and
mature product. The users have raised several issues which can further improve
the overall acceptance of the system and the CDSR approach. Detailed results
of this study are available as a ReDSeeDS project report.

The above study showed applicability of CDSR to a broad range of problem
domains. It was performed using the transformation algorithm presented in sec-
tion 4. Also, other transformation algorithms can be used and are currently de-
veloped within ReDSeeDS. These algorithms capture the implications stemming
from non-functional requirements. Obviously, the limitation of CDSR is that the
transition from non-functional requirements to transformation algorithms is a
manual process depending on experience of the transformation writers.

Acknowledgments. This work is partially funded by the EU: Requirements-
Driven Software Development System (ReDSeeDS) (contract no. IST-2006-33596
under 6FP).

References

1. McIlroy, M.D.: Mass Produced Software Components. In: Naur, P., Randell, B.,
Buxton, J.N. (eds.) Software Engineering Concepts and Techniques, Proceedings
of NATO Conference on Software Engineering, New York, pp. 88–98 (1969)

708 M. Śmia�lek et al.

2. Sherif, K., Vinze, A.: Barriers to Adoption of Software Reuse. A Qualitative Study.
Information and Management 41, 159–175 (2003)

3. Frakes, W.B., Kang, K.: Software Reuse Research: Status and Future. IEEE Trans-
actions on Software Engineering 31(7), 529–536 (2005)

4. Jacobson, I., Griss, M., Jonsson, P.: Software Reuse: Architecture Process and
Organization for Business Success. ACM Press, New York (1997)

5. Griss, M.L., Favaro, J., d’ Alessandro, M.: Integrating Feature Modeling with the
RSEB. In: Proc. 5th International Conference on Software Reuse, pp. 76–85 (1998)

6. Gomaa, H.: Designing Software Product Lines with UML: From Use Cases to
Pattern-Based Software Architectures. Addison-Wesley, Reading (2004)

7. Bertolino, A., Fantechi, A., Gnesi, S., Lami, G.: Product Line Use Cases: Scenario-
Based Specification and Testing of Requirements. In: Software Product Lines -
Research Issues in Engineering and Management, pp. 425–445. Springer, Heidelberg
(2006)

8. Kamsties, E., Pohl, K., Reis, S., Reuys, A.: Testing Variabilities in Use Case Mod-
els. In: van der Linden, F.J. (ed.) PFE 2003. LNCS, vol. 3014, pp. 6–18. Springer,
Heidelberg (2004)

9. Choi, W.S., Kang, S., Choi, H., Baik, J.: Automated generation of product use
case scenarios in product line development. In: 8th IEEE International Conference
on Computer and Information Technology, CIT 2008, pp. 760–765 (2008)

10. Biddle, R., Noble, J., Tempero, E.: Supporting Reusable Use Cases. In: Gacek, C.
(ed.) ICSR 2002. LNCS, vol. 2319, pp. 210–226. Springer, Heidelberg (2002)

11. Egyed, A., Grünbacher, P.: Supporting Software Understanding with Automated
Requirements Traceability. International Journal of Software Engineering and
Knowledge Engineering 15(5), 783–810 (2005)

12. Robinson, W.N., Woo, H.G.: Finding Reusable UML Sequence Diagrams Auto-
matically. IEEE Software 21(5), 60–67 (2004)

13. Blok, M.C., Cybulski, J.L.: Reusing UML Specifications in a Constrained Applica-
tion Domain. In: Proceedings of 1998 Asia Pacific Software Engineering Conference,
pp. 196–202 (1998)

14. Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database. MIT Press, Cam-
bridge (1998)

15. Kaindl, H., Śmia�lek, M., Svetinovic, D., Ambroziewicz, A., Bojarski, J.,
Nowakowski, W., Straszak, T., Schwarz, H., Bildhauer, D., Brogan, J.P., Mukasa,
K.S., Wolter, K., Krebs, T.: Requirements Specification Language Definition.
Project Deliverable D2.4.1, ReDSeeDS Project (2007), www.redseeds.eu

16. Śmia�lek, M., Bojarski, J., Nowakowski, W., Ambroziewicz, A., Straszak, T.: Com-
plementary Use Case Scenario Representations Based on Domain Vocabularies.
In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS,
vol. 4735, pp. 544–558. Springer, Heidelberg (2007)

17. Kaindl, H.: Using Hypertext for Semiformal Representation in Requirements En-
gineering Practice. The New Review of Hypermedia and Multimedia 2, 149–173
(1996)

18. Kalnins, A., Barzdins, J., Celms, E.: Model Transformation Language MOLA. In:
Aßmann, U., Aksit, M., Rensink, A. (eds.) MDAFA 2003. LNCS, vol. 3599, pp.
62–76. Springer, Heidelberg (2005)

19. Object Management Group: Unified Modeling Language: Superstructure, ver-
sion 2.1.1, formal/07-02-05 (2007)

20. Venkatesh, V., Smith, R.H., Morris, M.G., Davis, G.B., Davis, F.D.: User Ac-
ceptance of Information Technology: Toward a Unified View. MIS Quarterly 27,
425–478 (2003)

www.redseeds.eu

Comparison of Scoring and Order Approach
in Description Logic EL(D)

Veronika Vaneková1 and Peter Vojtáš2

1 Institute of Computer Science, Pavol Jozef Šafárik University
Košice, Slovakia

veronika.vanekova@upjs.sk
2 Faculty of Mathematics and Physics, Charles University

Prague, Czech Republic
peter.vojtas@mff.cuni.cz

Abstract. In this paper we study scoring and order approach to concept
interpretation in description logics. Only concepts are scored/ordered,
roles remain crisp. The concepts in scoring description logic are fuzzi-
fied, while the concepts in order description logic are interpreted as pre-
orders on the domain. These description logics are used for preferential
user-dependent search of the best instances. In addition to the standard
constructors we add top-k retrieval and aggregation of user preferences.
We analyze the relationship between scoring and order concepts and we
introduce a notion of order-preserving concept constructors.

1 Introduction

The main motivation of our research is a large amount of data available on the
web. It is the effort of Semantic Web community to use ontologies and description
logics (DLs) for expressing knowledge about this data. One of the approaches
to tackle with this problem are fuzzy description logics (fuzzy ontologies). The
connection of description logic and fuzzy set theory appears to be suitable for
many areas of Soft Computing and Semantic Web.

One interesting application of fuzzy DLs is representation of user preferences.
Users naturally express their preferences in a vague, imprecise way (e.g. “I want
to buy a cheap and fast car”). It is possible to handle such vague requirements
with fuzzy sets. Moreover, users often need only top-k best answers, ordered
by their specific preferences. Therefore we use modified top-k algorithm [6] for
user-dependent search of k best objects.

We explore a specific problem when the knowledge base has a simple struc-
ture but contains a large number of individuals. We choose the description logic
traditionally called EL ([1,2]), which allows only concept conjunction and exis-
tential restrictions to define complex concepts. Then we add fuzzy concepts to be
able to represent user preference. Thus an individual which belongs to a prefer-
ential concept good car to degree 0.9 is preferred more than an individual with
a membership degree 0.5. Fuzzy membership values are handled by a concrete
domain D (inspired by [11], see also [8] chapter 6 for an introduction to concrete

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 709–720, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

710 V. Vaneková and P. Vojtáš

domains). This kind of fuzziness does not affect roles, so they remain crisp. We
call the resulting DL a scoring description logic, s-EL(D).

The specific fuzzy membership value or score does not play any role in many
applications - only the order implied by the fuzzy value matters. The actual
score is hidden to user in some applications, e.g. Google search. Therefore we
present another DL called order DL o-EL(D), where concepts are interpreted as
preorders of instances, and roles remain crisp. Having such a DL enables us to
combine a part of a knowledge base describing user preferences as a module with
the rest of the knowledge base (i.e. using an ontology).

The two description logics defined in this paper have many similarities. We
can define a corresponding order concept for every scoring concept. An impor-
tant question is whether complex concepts also have this feature. The main
contributions of this paper are results on connections of o-EL(D) to s-EL(D).

2 Description Logic s-EL(D) with Scoring Concepts and
Aggregation

This section briefly recalls s-EL(D), first published in [4]. As any other DL,
s-EL(D) describes its universe of discourse (domain) using concepts and roles.
Concepts can be viewed as classes of individuals (objects), while roles can be
viewed as binary predicates describing various relationships among individuals.
See [8] for basic DL theory.

The description logic s-EL(D) is fuzzified, however, it differs from other fuzzy
DLs. It is designed especially to represent user preferences and allow preferen-
tial top-k queries. The main difference is that we use crisp roles to describe
relationships of objects from the domain and fuzzy (scoring) concepts to repre-
sent vague user preferences. Allowed constructors are top concept �, conjunc-
tion C � D and existential restriction ∃R.C. A DL knowledge base consists of
a TBox with complex concept definitions C D and C ≡ D and an ABox
with assertions about individuals (role assertions (a, c) : R and concept asser-
tions 〈a : C, t〉, where t is a truth value). We use a finite set of truth values
TVn = { i

n : i ∈ {0, . . . , n}} ⊂ [0, 1].
Every interpretation I consist of a non-empty domain ΔI and an interpreta-

tion function •I . Concepts are interpreted as fuzzy sets of elements from the do-
main (see Table 1, row 1), roles are interpreted as crisp relations RI ⊆ ΔI×ΔI .
Interpretations of complex concepts can be seen on Table 1, where A, C, D are
concept names, R is a role, u is a concrete role and a, b are individuals.

An interpretation I is a model of TBox definition C D iff ∀x ∈ ΔI :
CI(x) ≤ DI(x), definition C ≡ D, iff ∀x ∈ ΔI : CI(x) = DI(x), ABox concept
assertion 〈a : C, t〉 iff CI(a) ≥ t and role assertions (a, c) : R iff (a, c) ∈ RI .

The interpretation of existential quantifier ∃R.C is similar to other fuzzy DLs
(like sup

b∈ΔI
min{RI(a, b), CI(b)} in [11]), except that we use crisp roles, so the

value of RI(a, b) is always 0 or 1. Apart from standard EL constructors allowed
in the TBox, we add concrete domain predicates P , aggregation @U and top-k
constructor. They are described more closely throughout the rest of this section.

Comparison of Scoring and Order Approach 711

Table 1. Syntax and Semantics of s-EL(D)

Syntax Semantics

A AI : ΔI −→ TVn

� �I : ΔI −→ {1}
C � D (C � D)I(a) = min{CI(a),DI(a)}
∃R.C (∃R.C)I(a) = sup

b∈ΔI
{CI(b) : (a, b) ∈ RI}

∃u.P (∃u.P)I(a) = sup
b∈ΔD

{P (b) : (a, b) ∈ uI}

top-k(C) top-k(C)I(a) =

{
CI(a), if

∣∣b ∈ ΔI : CI(a) < CI(b)
∣∣ < k

0, otherwise

@U (C1, . . . , Cm) @U (C1, . . . , Cm)I(a) =

m∑
i=1

wiCI(a)

m∑
i=1

wi

Example 1. Let the knowledge base contain data from the used car sales. We
have a concept car and roles has horsepower, has price, has mileage. Facts
in the ABox are transfered from a (crisp) relational database, so the membership
values of both individuals Audi A3 and Mercedes Benz 280 in the fuzzy concept
car is equal to 1.

〈Audi A3 : car, 1〉
(Audi A3, 7900) : has price
(Audi A3, 73572) : has mileage
(Audi A3, 110) : has horsepower
〈Mercedes Benz 280 : car, 1〉
(Mercedes Benz 280, 9100) : has price
(Mercedes Benz 280, 127576) : has mileage
(Mercedes Benz 280, 147) : has horsepower

Different users may have different preferences to price, mileage and horsepower.
Instead of exact preferences, we support vague concepts like good price,
good mileage, good horsepower. Interpretations of these concepts vary from
user to user – for example, 20000 EUR is a good price for one user and un-
acceptable for another. Therefore all preference concepts will be user-specific
(e.g. good priceU1 for user U1) and we represent them with concrete domain
predicates [8].

We chose the concrete domain D originally defined in [11], because it con-
tains basic trapezoidal predicates, sufficient to represent user preferences. It is
defined as D = (ΔD , P red(D)), where the domain ΔD = R and the set of predi-
cates Pred(D) = {lta,b(x), rta,b(x), trza,b,c,d(x), inva,b,c,d(x)} contains monotone
and trapezoidal fuzzy sets (unary fuzzy predicates). The interpretation of fuzzy
predicates is fixed, handled by the concrete domain. Figure 1 shows lta,b(x)
(left trapezoidal membership function), rta,b(x) (right trapezoidal), trza,b,c,d(x)
(trapezoidal) and inva,b,c,d(x) (inverse trapezoidal) with one variable x and pa-
rameters a, b, c, d.

712 V. Vaneková and P. Vojtáš

xa b

1

0

rt
a,b

(x)

xa b

1

0

lt
a,b

(x)

xa c

1

0

inv
a,b,c,d

(x)

b d xa c

1

0

trz
a,b,c,d

(x)

b d

Fig. 1. Fuzzy membership functions of basic trapezoidal types

Fuzzy concrete domain D adds a concept constructor ∃u.P , where P ∈ PredD

and u is a concrete role. This constructor generates a total preorder, because P
has a fixed interpretation.

Example 2. We further extend the knowledge base stated above with preference
concepts of user U1.

good priceU1
≡ ∃(has price).lt7000,9000

good horsepowerU1
≡ ∃(has horsepower).rt100,150

good carU1
≡ car � good price� good horsepower

Then every model I of the knowledge base will satisfy the following:

〈Audi A3 : good priceU1
, 0.55〉

〈Audi A3 : good horsepowerU1
, 0.2〉

〈Audi A3 : good carU1
, 0.2〉

〈Mercedes Benz 280 : good priceU1
, 0〉

〈Mercedes Benz 280 : good horsepowerU1
, 0.94〉

〈Mercedes Benz 280 : good carU1
, 0〉

Fuzzy conjunction is not always suitable to represent user preferences because it
penalizes some objects that may be still interesting for the user. This is the case
of the individual Mercedes Benz 280, which has very good value of horsepower
for user U1, but the price is beyond preferred range. Instead of the conjunction,
we can use aggregation to obtain overall preference value. Aggregation functions
are m-ary fuzzy functions @U : TV m

n −→ TVn, monotone in all arguments and
such that @U (1, . . . , 1) = 1 and @U (0, . . . , 0) = 0. We do not require other prop-
erties such as being homogeneous, additive or Lipschitz continuous, though such
functions can be more useful for the computation. Note that aggregations are
a generalization of both fuzzy conjuctions and disjunctions. As such, unrestricted
aggregations add too much expressive power to the language [10]. According to
the paper [5], the instance problem for DLs with aggregation is polynomially
decidable, provided that the subsumption of two aggregations can be decided in
polynomial time.

If we use aggregation, the concept good carU1
from our example will be

@U1(good priceU1
, good horsepowerU1

), where the aggregation is a weighted
average @U1(x, y) = x+2y

3 . Then the minimal model will be different:

〈Audi A3 : good car, 0.32〉
〈Mercedes Benz 280 : good car, 0.63〉

Comparison of Scoring and Order Approach 713

Instead of standard reasoning tasks, we add a new task, top-k retrieval, to
our description logic: for a given concept C, find k individuals with the greatest
membership degrees. The value of top-k(C)I(a) is equal to CI(a) if a belongs
to k best individuals from preference concept C (or it is preferred equally as
kth individual). Otherwise the value is set to 0. Note that according to the defi-
nition of top-k(C)I(a) in Table 1, we return those elements for which the number
of strictly greater elements is less than k, which includes the ties on the kth po-
sition. Thus the result can possibly include more than k individuals. The
original top-k algorithm [7] is non-deterministic – instead of returning all ties
on the kth position, it chooses some of them randomly and returns exactly k ob-
jects. We use this non-standard definition in order to make the top-k constructor
deterministic.

Top-k algorithm [6] uses a preprocessing stage to generate lists of individuals
ordered by role values. In the example above it would generate three ordered lists
of individuals (for has price, has mileage and has horsepower). The lists are
traversed in specific order dependent on the particular fuzzy sets. The algorithm
evaluates aggregation function on the fly and determines threshold value to find
out if some other objects can have greater overall value than objects already
processed. This algorithm has proved to be very efficient (see [6]).

3 Description Logic o-EL(D) with Concept Instance
Ordering

Every preference concept defined in the previous section generates ordering of
individuals according to the preference value. Conjunctions or aggregations are
necessary to obtain overall order. This principle is similar to the decathlon rules:
athletes compete in ten disciplines, each discipline is awarded with points ac-
cording to scoring tables. All points are summed up to determine the final order.
This is the case when all precise scores are important to determine the final score.

There are other cases when the score itself is not important. Recall another
example from sport: in Formula 1, the first eight drivers gain points according
to the point table (10, 8, 6, 5, 4, 3, 2, 1) regardless of their exact time, speed or
headstart. The final order is also determined by summing up all points. A similar
system is used in Tour de France, where riders can earn points at the end of each
stage. The stages are divided into several types and each type has its own point
table.

To return back to computer science, user preference is often represented as
an order, partial or total. The partial order can be induced from user inputs like
“object a is better than object b” or from sample set of objects rated by the
user. Inductive learning of user preference from such rated set of objects means
finding a linear extension of the partial order and thus be able to compare any
pair of objects.

In this section we propose description logic o-EL(D) with concepts C≤ in-
terpreted as non-strict preorders on the domain, CJ

≤ . From a logical point of
view, we interpret both concepts and roles as binary predicates. If (a, b) ∈ CJ

≤ ,

714 V. Vaneková and P. Vojtáš

Table 2. Syntax and Semantics of o-EL(D)

Syntax Semantics

A≤ AJ
≤ ⊆ ΔJ × ΔJ

�≤ ΔJ × ΔJ

C≤ � D≤ {(a1, a2) : (a1, a2) ∈ CJ
≤ ∧ (a1, a2) ∈ DJ

≤}
∃R.C≤ {(a1, a2) : ∀c1 (a1, c1) ∈ RJ ∃c2 (a2, c2) ∈ RJ : (c1, c2) ∈ CJ

≤ }
∃u.P {(a1, a2) : ∀c1 (a1, c1) ∈ uJ ∃c2 (a2, c2) ∈ uJ : P (c1) ≤ P (c2)}

@U (C≤1 , . . . , C≤m) defined below

top-k(C) defined below

then a belongs to the concept C≤ less than b (or equally). If C≤ is a concept
representing user preference, we say that b is preferred to a. Complex concepts
in o-EL(D) are constructed according to Table 2 (compare with Table 1). Lower-
case letters denote individuals, except for u which denotes a concrete role. Two
additional non-standard constructors (aggregation and top-k constructor) are
defined in the subsequent text.

A preorder is a reflexive and transitive relation. We do not need the anti-
symmetry condition (as is required for partial orders) because there can be two
individuals that are not identical despite being equally preferred. We call such
individuals indiscernible according to preference concept C. A preorder is total,
if ∀a, b ∈ ΔJ : (a, b) ∈ CJ

≤ ∨ (b, a) ∈ CJ
≤ (one or both inequalities can hold).

We use the same concrete domain as in case of s-EL(D). Typical TBox def-
initions are C≤ D≤ and C≤ ≡ D≤. The ABox contains concept assertions
(a1, a2) : C≤ and role assertions (a, c) : R. To distinguish the interpretations in
o-EL(D) from s-EL(D), we denote the order-oriented interpretations as J .

An interpretation J is a model of C D iff (a, b) ∈ CJ
≤ implies (a, b) ∈ DJ

≤ ,
and C ≡ D, iff CJ = DJ . J is a model of an ABox assertion (a1, a2) : C≤ iff
(a1, a2) : CJ

≤ . Role assertions are handled in the same way as in s-EL(D).
Top concept �≤ is interpreted as a complete relation ΔJ × ΔJ , where all

individuals are equally preferred. Concept conjunction C≤ �D≤ often produces
partial preorder, even if C≤ and D≤ are total preorders. According to the order-
extension principle, it is possible to extend (C≤ � D≤)J to a total preorder.
However, this extension does not have to be unique. Sometimes it is more con-
venient to use aggregation @U instead of concept conjunction, especially when
we consider a conjunction of more than two concepts.

The semantics of ∃R.C≤ is chosen to be analogous with s-EL(D). Imagine
that the individual a1 is connected with c1, c2, c3 (values of role R), while a2 is
connected with c4, c5, c6. In the scoring case, we would simply take the supremum
of CI(c1), CI(c2), CI(c3) as the fuzzy value of ∃R.CI(a1) and analoguously for
∃R.CI(a2). Then we just compare the suprema. To simulate the “supremum”
in the ordering case, we must define that for every ci connected with a1 there
exists a better cj (with respect to the preference concept C≤) connected with a2

via role R.

Comparison of Scoring and Order Approach 715

For every @U with arity m and for every m-tuple of order concepts C≤j ⊆
ΔJ ×ΔJ aggregation @J

U (C≤1 , . . . , C≤m) ⊆ ΔJ ×ΔJ is a partial preorder. If
(a, b) ∈ CJ

≤j
for every j = 1, . . . , m, then (a, b) ∈ @J

U (C≤1 , . . . , C≤m). We define
aggregation similar to Formula 1 rules. First of all, it is necessary to define the
level of instance a in the interpretation of concept C. It is the biggest possible
length of a sequence such that the first element is a and every following element
is strictly greater than its predecessor.

level(C, a,J) = max
l∈N

{l : ∃b1, . . . , bl ∈ ΔJ ∀i ∈ {1, . . . , l − 1}(bi, bi+1) ∈
CJ ∧ (bi+1, bi) /∈ CJ ∧ b1 = a}

Next we define a scoring table for the aggregation, which is a finite strictly de-
creasing sequence score@U (score1, . . . , scorem) like (10, 8, 6, 5, 4, 3, 2, 1). The
differences bet ween adjacent elements are also decreasing, but not strictly. The
pair (a, b) belongs to aggregation @J

U (C≤1 , . . . , C≤m) if

m∑
j=1

scorelevel(C≤j
,a,J) ≤

m∑
j=1

scorelevel(C≤j
,b,J).

This means that we find the level of individual a in every preference concept CJ
≤j

,
then we determine the corresponding scores for these levels and sum up all the
scores. If the individual b has better levels in the preference concepts CJ

≤j
than

individual a, it will also have a higher sum of all scores.
It is also straightforward to define top-k queries. Let Ca = {c ∈ ΔJ : (a, c) ∈

CJ
≤ ∧ (c, a) /∈ CJ

≤ } be a set of individuals strictly greater than a in ordering
concept C≤. Then (a, b) ∈ top-k(C≤)J , iff:

1. (a, b) ∈ CJ
≤ or

2. |Ca| ≥ k

If C≤ was a total preorder, then top-k(C≤) will be also total. Top-k constructor
preserves the original order of the first k individuals, including the ties. Note
that the first k individuals often occupy less than k levels because some of them
are ties. Concerning the ties on the last included level (not necessarilly the k-th
level), we can either choose only some of them to fill up the needed amount of
elements, or we can return them all. We choose the latter possibility, even if we
end up with more than k elements in the result, because it makes our definition
deterministic. If some element a has more than k strictly greater elements in CJ

≤ ,
so that it is beyond the last included level (see condition 2), it is made lower or
equal to all other elements, which moves it to the last level in top-k(C≤)J .

Example 3. We transform the knowledge base from the previous section:

(Audi A3, Mercedes Benz 280) : car
(Mercedes Benz 280, Audi A3) : car
(Audi A3, 7900) : has price
(Audi A3, 110) : has horsepower
(Mercedes Benz 280, 9100) : has price

716 V. Vaneková and P. Vojtáš

(Mercedes Benz 280, 147) : has horsepower
good priceU1

≡ ∃(has price).lt7000,9000

good horsepowerU1
≡ ∃(has horsepower).rt100,150

good carU1
≡ car � good priceU1

� good horsepowerU1

Every model J of the knowledge base will satisfy the following:

(Mercedes Benz 280, Audi A3) : good priceU1

(Audi A3, Mercedes Benz 280) : good horsepowerU1

The latter assertion is satisfied because ∀c1 (Audi A3, c1) ∈ has horsepowerJ

∃c2 ∈ ΔJ (Mercedes Benz 280, c2) ∈ has horsepowerJ : (c1, c2) ∈ rtJ100,150.
We have only one possibility c1 = 110 and c2 = 147 and moreover (110, 147) ∈
rtJ100,150.

Note that neither the tuple (Audi A3, Mercedes Benz 280), nor the tuple
(Mercedes Benz 280, Audi A3) belongs to good carJU1

in every model J . This
is caused by the ambiguity in concept conjunctions (because the interpreta-
tion of the concept good carU1

is a partial preorder). This shows a necessity
to use aggregations instead of concept conjunctions. Let us define the scoring
table for aggregation @U1 as (3, 2, 1) and the preferential concept good carU1

as
@U1(good priceU1

, good horsepowerU1
). Individual Audi A3 has the first place

in concept good horsepowerU1
, while Mercedes Benz 280 is first in the concept

good priceU1
. The result is that both individuals gain five points in total (three

for the first place and two for the second place) and every interpretation must
satisfy both:

(Mercedes Benz 280, Audi A3) : good carU1

(Audi A3, Mercedes Benz 280) : good carU1

4 Relationship between Scoring and Order Approach

Definitions for s-EL(D) and o-EL(D) are much similar, but the two logics are not
equivalent. At the first sight, it is obvious that o-EL(D) drops exact membership
degrees, thus it loses the ability to express some features of s-EL(D). If we
have a “constant” fuzzy concept CI(a) = w ∈ TVn for every a ∈ ΔI , the
corresponding order concept in o-EL(D) will be CJ

≤ = ΔJ × ΔJ , regardless
of the value w. Similarly, if DI(a) ≤ DI(b), the corresponding order concept
contains the pair (a, b) ∈ DJ

≤ , but we lose information about the difference
DI(b)−DI(a).

If we compare a scoring concept C with ordering concept C≤, we are
concerned about the order of individuals. It is straightforward to define corre-
sponding order-preserving concept A≤ for every primitive concept A and for any
interpretation AI . We define (a, b) ∈ AJ

≤ iff AI(a) ≤ AI(b). Concept construc-
tors should also preserve order of individuals. We start from a scoring concept
A, transform it to a corresponding ordering concept A≤, use constructors (let
us denote a generic constructor as m(A), m(A≤)) on both concepts and finally

Comparison of Scoring and Order Approach 717

compare order of individuals in the results. If m(A≤) is a partial preorder, there
are many possible total extensions.

Let (a, b) ∈ AJ
≤ iff AI(a) ≤ AI(b). Constructor m(A) is order-preserving if

there exists a linear extension m(A≤)′ of m(A≤) such that ((a, b) ∈ m(A≤)′J iff
m(A)I(a) ≤ m(A)I(b)). Note that the concrete domain D is already defined in
such a way that ∃u.P is order-preserving.

Lemma 1. Existential quantification is order-preserving.

Proof. Let C≤ be order-preserving concept for C. Let (a1, a2) ∈ ∃R.CJ
≤ . Ac-

cording to the definition, ∀c1 (a1, c1) ∈ RJ ∃c2 (a2, c2) ∈ RJ : (c1, c2) ∈ CJ
≤ .

We know that the interpretation of roles is the same and C is order-preserving,
thus ∀c1 (a1, c1) ∈ RI ∃c2 (a2, c2) ∈ RI : CI(c1) ≤ CI(c2). The same inequality
holds for suprema: sup

b∈ΔI
{CI(c1) : (a1, c1) ∈ RI} ≤ sup

b∈ΔI
{CI(c2)| (a2, c2) ∈ RI}

Therefore (∃R.C)I(a1) ≤ (∃R.C)I(a2).
For the reversed implication, suppose that (∃R.C)I(a1) ≤ (∃R.C)I(a2), and

from the definition also sup
b∈ΔI

{CI(c1) : (a1, c1) ∈ RI} ≤ sup
b∈ΔI

{CI(c2) : (a2, c2) ∈

RI}. Since the set of truth values is finite, the supremum must belong to the set.
Towards the contradiction, suppose that ∃c1 (a1, c1) ∈ RI ∀c2 (a2, c2) ∈ RI :
CI(c1) > CI(c2). Then CI(c1) is upper bound of the set and it is greater than
the maximum CI(c1) > max

b∈ΔI
{CI(c2) : (a2, c2) ∈ RI} ≥ max

b∈ΔI
{CI(c1) : (a1, c1) ∈

RI} ≥ CI(c1), which is a contradiction. Thus ∀c1 (a1, c1) ∈ RI ∃c2 (a2, c2) ∈
RI : CI(c1) ≤ CI(c2). As C is order-preserving concept, we gain (a1, a2) ∈
∃R.CJ

≤ . �

Note that in case of fuzzy s-EL(D), we define sup ∅ = 0. In case of o-EL(D), if
no individual is connected to a1 with role R, then (a1, a2) ∈ ∃R.CJ

≤ , so it yields
correct inequalities for 0 ≤ x and 0 ≤ 0.

Lemma 2. Constructor top-k is order-preserving.

Proof. Let us suppose that top-k(C)I(a1) ≤ top-k(C)I(a2). Note that the con-
dition

∣∣c ∈ ΔI : CI(a) < CI(c)
∣∣ < k is equivalent to |Ca| < k because C is

order-preserving. Since top-k(C)I(x) can be either 0 or CI(x), we have three
possibilities:

– case 1) top-k(C)I(a1) = top-k(C)I(a2) = 0
– case 2) 0 = top-k(C)I(a1) ≤ top-k(C)I(a2) = CI(a2)
– case 3) CI(a1) = top-k(C)I(a1) ≤ top-k(C)I(a2) = CI(a2)

Case 1 and 2: From the definition and the equivalence of conditions above we
have |Ca1 | ≥ k. This is the condition 2 from the definition of top-k(C≤), and
thus (a1, a2) ∈ top-k(C≤)J .

Case 3: CI(a1) ≤ CI(a2) means that (a1, a2) ∈ CJ , which is the condition 1
from the definition of top-k(C≤), and thus also (a1, a2) ∈ top-k(C≤)J .

718 V. Vaneková and P. Vojtáš

Now let (a1, a2) ∈ top-k(C≤)J . This can be a consequence of the condition 1
or 2.

Let condition 2 hold – we know that |Ca1 | ≥ k and from the equivalence
of conditions

∣∣c ∈ ΔI : CI(a1) < CI(c)
∣∣ ≥ k. From the definition of top-k(C)

follows that top-k (C)I(a1) = 0, so it will always be less or equal than
top-k (C)I(a2).

Let condition 1 hold and let |Ca1 | < k (otherwise we could apply the proof
above). Because a2 is greater than a1 in preorder CJ

≤ , the set of greater el-
ements will also have cardinality less than k. Thus top-k(C)I(a1) = CI(a1)
and top-k(C)I(a2) = CI(a2) and moreover CI(a1) ≤ CI(a2), which yields top-
k(C)I(a1) ≤ top-k(C)I(a2). �

Constructor C≤�D≤ produces partial preorders. Because of the minimum func-
tion in (C �D)I , we cannot model this constructor exactly in o-EL(D). There is
no way of comparing elements without fuzzy degrees in two different preorders.

Lemma 3. Concept conjunction is order-preserving.

Proof. Let (C �D)I(a1) ≤ (C �D)I(a2). According to the definition of C �D,
min{CI(a1), DI(a1)} ≤ min{CI(a2), DI(a2)}. Let us suppose that CI(a1) =
min{CI(a1), DI(a1)} (the other case is analoguous). Then CI(a1) must be on
the first place and we have six possibilities how to order all the values:

1. CI(a1) ≤ DI(a1) ≤ CI(a2) ≤ DI(a2)
2. CI(a1) ≤ CI(a2) ≤ DI(a1) ≤ DI(a2)
3. CI(a1) ≤ CI(a2) ≤ DI(a2) ≤ DI(a1)
4. CI(a1) ≤ DI(a1) ≤ DI(a2) ≤ CI(a2)
5. CI(a1) ≤ DI(a2) ≤ DI(a1) ≤ CI(a2)
6. CI(a1) ≤ DI(a2) ≤ CI(a2) ≤ DI(a1)

In cases 1, 2 or 4 we are done, because both CI(a1) ≤ CI(a2) and ≤ DI(a1) ≤
DI(a2) hold and we have also (a1, a2) ∈ (C≤ � D≤)J . In cases 3, 5, 6 neither
(a1, a2) nor (a2, a1) belong to (C≤�D≤)J . We define the extension X to contain
the tuple (a1, a2). All tuples added this way agree with order induced by (C�D)I .
The extension X is a total preorder, so it must be reflexive, transitive and
∀a, b ∈ ΔJ : ((a, b) ∈ X ∨ (b, a) ∈ X). Because (C �D)I is also a total preorder
and all inequalities from (C�D)I hold also in X , we only have to check whether
X contains any extra tuples from (C≤ � D≤)J that could be in conflict with
(C �D)I .

Let (a1, a2) ∈ (C≤ � D≤)J . From the definition of concept conjunction,
(a1, a2) ∈ CJ

≤ ∧ (a1, a2) ∈ DJ
≤ . Concepts C, D are order-preserving, hence

CI(a1) ≤ CI(a2) ∧DI(a1) ≤ DI(a2). The same inequality holds for minimum,
min{CI(a1), DI(a1)} ≤ min{CI(a2), DI(a2)}, which means (C � D)I(a1) ≤
(C �D)I(a2). Thus X is a linear extension of (C≤ �D≤)J and preserves order-
ing of (C �D)I . �

Note that aggregations are defined differently for o-EL(D) and s-EL(D), so we
do not address their relationship here.

Comparison of Scoring and Order Approach 719

5 Related Work

There is a considerable effort concerning the connection of tractable description
logics with top-k algorithm. Papers [9,16,17] use DL-Lite, a tractable DL with
constructors ∃R, ∃R−, C1 � C2, ¬B and functional property axioms, together
with top-k retrieval. Also DL EL is a subject of intensive research, in order to
enhance the language without losing the tractability (see [3,14,15]).

The notion of instance ordering within description logics appeared in [12].
This paper defines crisp DL ALCQ(D) with special ordering descriptions that
can be used to index and search a knowledge base. The paper [13] presents
ALCfc, a fuzzy DL with comparison concept constructors, where it is possible
to define e.g. a concept of very cheap cars (with fuzzy degree of “cheap” over
some specified value), or cars that are more economy than strong. However, all
of the mentioned papers use the classical (crisp or fuzzy) concept interpretation.
To the best of our knowledge, there is no other work concerning interpreting
concepts as preorders.

We already studied EL(D) with fuzzified concepts in [4]. We suggested the
shift towards ordering approach, but the paper did not specify details of
o-EL(D), nor the relationship between scoring and ordering description logic. In
the paper [18], we proposed a basic reasoning algorithm for o-EL(D).

6 Conclusion

User preference is often represented as an order of objects. We show that it is
possible to omit fuzzy scores (membership degrees) in description logics and to
interpret concepts as preorders of the domain. We adopt the order-oriented ap-
proach for the standard concept constructors like existential restriction, concept
conjunction and concrete domain predicates. We add extra constructors @U for
aggregation and top-k for the retrieval of k best individuals from the concept.
The resulting description logic is called o-EL(D). We show that the constructors
in o-EL(D) preserve the order of individuals induced by fuzzy scores in s-EL(D).
DL o-EL(D) is especially suited for user preference modelling, but it has also
some limitations, e.g. it is difficult to adapt some classical reasoning problems
to ordering case. As a part of our future research, we want to improve the rea-
soning algorithm for instance problem in o-EL(D) [18] and to devise a reasoning
algorithm for subsumption of two order concepts.

References

1. Brandt, S.: Polynomial Time Reasoning in a Description Logic with Existential
Restrictions, GCI Axioms, and - What else? In: Proceedings of the 16th Eureo-
pean Conference on Artificial Intelligence, ECAI 2004, pp. 298–302. IOS Press,
Amsterdam (2004)

2. Baader, F., Lutz, C., Suntisrivaraporn, B.: Is Tractable Reasoning in Extensions
of the Description Logic EL Useful in Practice? In: Proceedings of the Methods for
Modalities Workshop, M4M 2005 (2005)

720 V. Vaneková and P. Vojtáš

3. Baader, F., Brandt, S., Lutz, C.: Pushing the EL Envelope Further. In: Proceedings
of the Workshop on OWL: Experiences and Directions, OWLED 2008 (2008)

4. Vaneková, V., Vojtáš, P.: A Description Logic with Concept Instance Ordering
and Top-k Restriction. In: Information Modelling and Knowledge Bases XX. Fron-
tiers in Artificial Intelligence and Applications, vol. 190, pp. 139–153. IOS Press,
Amsterdam (2009)

5. Vojtáš, P.: A Fuzzy EL Description Logic with Crisp Roles and Fuzzy Aggregation
for Web Consulting. In: Information Processing and Management under Uncer-
tainty (IPMU), pp. 1834–1841. Éditions EDK, Paris (2006)

6. Gurský, P., Vojtáš, P.: On Top-k Search with No Random Access Using Small
Memory. In: Atzeni, P., Caplinskas, A., Jaakkola, H. (eds.) ADBIS 2008. LNCS,
vol. 5207, pp. 97–111. Springer, Heidelberg (2008)

7. Fagin, R., Lotem, A., Naor, M.: Optimal Aggregation Algorithms for Middleware.
In: PODS 2001: Proceedings of the Twentieth ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems (2001); Journal of Computer and
System Sciences 66(4), 614–656 (2001)

8. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, D.F.
(eds.): Description Logic Handbook. Cambridge University Press, Cambridge
(2002)

9. Straccia, U.: Towards Top-k Query Answering in Description Logics: the Case of
DL-Lite. In: Fisher, M., van der Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA
2006. LNCS (LNAI), vol. 4160, pp. 439–451. Springer, Heidelberg (2006)

10. Baader, F., Sattler, U.: Description Logics with Aggregates and Concrete Domains.
Information Systems 28(8), 979–1004 (2003)

11. Straccia, U.: Fuzzy ALC with Fuzzy Concrete Domains. In: Proceedings of the
2005 International Workshop on Description Logics (DL 2005), vol. 147, pp. 96–
103. CEUR Workshop Proceedings (2005)

12. Pound, J., Stanchev, L., Toman, D., Weddell, G.E.: On Ordering and Indexing
Metadata for the Semantic Web. In: Proceedings of the 21st International Work-
shop on Description Logics (DL-2008). CEUR Workshop Proceedings, vol. 353
(2008)

13. Kang, D., Xu, B., Lu, J., Li, Y.: Reasoning for Fuzzy Description Logic with
Comparison Expressions. In: Proceedings of the 2006 International Workshop on
Description Logics (DL 2006). CEUR Workshop Proceedings, vol. 189 (2006)

14. Stoilos, G., Stamou, G., Pan, J.Z.: Classifying Fuzzy Subsumption in Fuzzy-EL+.
In: Proceedings of the 21st International Workshop on Description Logics (DL
2008). CEUR Workshop Proceedings, vol. 353 (2008)

15. Mailis, T., Stoilos, G., Simou, N., Stamou, G.: Tractable Reasoning Based on the
Fuzzy EL++ Algorithm. In: Proceedings of the Fourth International Workshop
on Uncertainty Reasoning for the Semantic Web (URSW 2008). CEUR Workshop
Proceedings, vol. 423 (2008)

16. Straccia, U.: Answering Vague Queries in Fuzzy DL-Lite. In: Proceedings of the
11th International Conference on Information Processing and Management of Un-
certainty in Knowledge-Based Systems (IPMU 2006), pp. 2238–2245 (2006)

17. Pan, J.Z., Stamou, G., Stoilos, G., Thomas, E., Taylor, S.: Scalable Querying Ser-
vice over Fuzzy Ontologies. In: Proceedings of the 17th International World Wide
Web Conference (WWW 2008), pp. 575–584. ACM, New York (2008)

18. Vaneková, V., Vojtáš, P.: Order-Oriented Reasoning in Description Logics. In: Pro-
ceedings of 6th Atlantic Web Intelligence Conference (AWIC 2009). Advances in
Intelligent and Soft Computing, vol. 67. Springer, Heidelberg (to appear, 2010)

Homophily of Neighborhood
in Graph Relational Classifier

Peter Vojtek and Mária Bieliková

Institute of Informatics and Software Engineering
Faculty of Informatics and Information Technologies

Slovak University of Technology
Ilkovičova 3, 842 16 Bratislava, Slovakia

{pvojtek,bielik}@fiit.stuba.sk

Abstract. Quality of collective inference relational graph classifier de-
pends on a degree of homophily in a classified graph. If we increase
homophily in the graph, the classifier would assign class-membership to
the instances with reduced error rate. We propose to substitute tradition-
ally used graph neighborhood method (based on direct neighborhood of
vertex) with local graph ranking algorithm (activation spreading), which
provides wider set of neighboring vertices and their weights. We demon-
strate that our approach increases homophily in the graph by inferring
optimal homophily distribution of a binary Simple Relational Classifier
in an unweighted graph. We validate this ability also experimentally us-
ing the Social Network of the Slovak Companies dataset.

1 Introduction

Relational classifiers extend the attribute-based classifiers by adopting relations
between classified instances, treating the dataset as a mathematical graph. For
example, we can classify web pages according to their content only, however in-
corporating the content or class-membership of neighboring web pages1 provides
better results [1,2].

Methods which utilize the relations between classified instances are well suited
for domains where instances have variable number of attributes (e.g., actors in a
movie), attribute values are very sparsely distributed and inadequately correlate
with classes, or instances have very few attributes but many relations (e.g.,
person in a social network identified by its nickname only but connected to
many other people via friendship relation).

Univariate relational classifiers with collective inference [3,4] compose an inter-
esting branch of classification methods where classified instances share only their
class-membership between themselves via their relations (edges in a graph). The
mechanism of final resolution of instance’s class-membership is based on assump-
tion of homophily – the classifier assumes that related (neighboring) instances are
more likely to share similarities (e.g., the same class) as nonrelated instances [5].
1 Neighboring web pages = connected via hyperlinks.

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 721–730, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

722 P. Vojtek and M. Bieliková

This phenomenon is present in many graphs and mostly in social networks –
people tend to group according to their race or ethnicity very strongly [6], and
similarly it is with other person attributes (i.e., class-membership). Homophily
is also induced in graphs where vertices are somewhat more abstract, like web
pages or avatars, but generally they are created by humans and so they contain
homophily tendencies.

In our work we analyze a Simple Relational Classifier [7] and discuss its de-
pendency on homophily (Section 2). We draw the attention to the basic method
of neighborhood acquisition applied in the Simple Relational Classifier and put
it into contrast with a local graph ranking algorithm named spreading activation
as an alternative in order to increase homophily. Next, we define how to measure
homophily in a classified graph utilizing information entropy and we derive re-
lationship between homophily and Simple Relational Classifier class assignment
mechanism (Section 3). In Section 4 we provide an experimental evaluation that
neighbors acquired via spreading activation outperform simple direct neighbor-
hood in terms of homophily, using the Social Network of the Slovak Companies
dataset. Section 5 contains related work and Section 6 concludes the paper and
points out some issues requiring further work.

The goal of our work is to bring following contributions:

– we propose to use spreading activation as a better method to neighborhood
acquisition in order to increase performance of the classifier,

– point out the close relation between classifier performance and dataset ho-
mophily,

– define how to measure the homophily in a classified graph,
– utilize homophily as a measure of classifier quality as an alternative to tra-

ditionally used supervised learning schema.

2 Neighborhood in Simple Relational Classifier

Simple Relational Classifier [7] estimates class-membership of the classified in-
stance according to its neighborhood, exploiting a graph based data
set G = (V, E). If p(cm|vk) is defined as a class-membership probability that
vertex vk belongs to class cm then the Simple Relational Classifier assumes
class-membership of vk using Formula 1.

p(cm|vk) =
1
W

∑
vj∈Vk|class(vj)=cm

w(vk, vj) (1)

where Vk is the set of neighboring vertices of vertex vk, w(vk, vj) is a weight of
the edge between vertices vk and vj , and W =

∑
vj∈Vk

w(vk, vj) normalizes the

result. The set of neighbors Vk contains all vertices directly connected to the
classified vertex vk via edges. If the class-membership consists of classes cm ∈ C
(C is the set of all classes), the final class assigned to vk is in Formula 2.

class(vk) = argmaxcm [p(cm|vk)] (2)

Homophily of Neighborhood in Graph Relational Classifier 723

Neighborhood Acquisition
In original Simple Relational Classifier as well as in other relational
classifiers [2,8] neighborhood of a vertex vk is designed as a set of vertices directly
connected via edges, so that Vk = {vj : vj ∈ V, exists(ekj)}, where exists(ekj)
denotes an event that the graph contains an edge between vertices vk and vj .

Our hypothesis is that the neighborhood method should be more robust in
order to absorb broader set of vertices along with weights indicating degree of
vertex proximity. Due to this reason, we propose to adopt activation spreading
algorithm [9,10], which is a local graph ranking method with following pseu-
docode2:

activate(energy E, vertex vk) {
energy(vk) = energy(vk) + E
E’ = E / |Vk|
if (E’ > T) {

for each vertex vj ∈ Vk {
activate(E’, vj)

}
}

}

Activate is a recursive algorithm, its output is a set of vertices along with their
weights (energy), indicating degree of affinity between vk and ranked vertices.
Minimum energy threshold T provides quick convergence of algorithm and |Vk|
is a number of neighboring vertices. Spreading activation assigns energy values
to the vertices, not to the edges – in order to be consistent with (1) we establish
w(vk, vj) in Formula 3.

w(vk, vj) =
energy(vk)
energy(vj)

(3)

Fig. 1(a) depicts example of a graph with unweighted edges. If we would classify
v1, then V1 = {v2, v3, v4}. However, if we adopt spreading activation (Fig. 1(b)),
we get V1 = {v2, v3, v4, v5, v6} along with weights indicating affinity between
vertices, so that w(v1, v2) = energy(v1)

energy(v2) , w(v1, v3) = energy(v1)
energy(v3) , etc.

Discussion on alternative graph ranking methods is in Section 5.

3 Measuring Homophily

Evaluating the difference between original and proposed neighborhood acquisi-
tion method in terms of classifier error rate draws our attention to an observation
that quality of Simple Relational Classifier class assignment depends on degree of

2 In order to maintain simplicity and to be coherent with graph used in experimental
evaluation, following algorithm is designed for unweighted graph, the original one
can deal with weighted graphs.

724 P. Vojtek and M. Bieliková

Fig. 1. Two methods of neighborhood acquisition

homophily in the classified graph. First we introduce homophily and its measure
and then point out its relation to the Simple Relational Classifier.

Assumption of homophily is informally defined as following [6]:

Related instances are more likely to share same class
as nonrelated instances.

We can rewrite this sentence in terms of probability theory in following way:

p(exists(ekj)|class(vk) = class(vj)) >

> p(exists(ekj)|class(vk) �= class(vj)) (4)

where class(vk) ∈ C is class-membership of vertex vk. We define the degree of
homophily of vertex vk as a measure based on class-membership distribution of
its neighboring vertices by adopting information entropy:

homophily(vk) = 1.0 +
∑

cm∈C

p(cm|vk) logbase p(cm|vk) (5)

This measure is designed to deal with unlimited number of classes and the ho-
mophily is in range 〈0, 1〉, so that 0 is the lowest homophily and 1.0 is the highest
homophily.

If we consider binary classification with classes C = {c+, c−}, base = 2 and
weights of all edges are set to 1.0 (i.e. unweighted graph), we gain following
boundary states:

– the highest homophily(vk) = 1.0 if all neighboring vertices are assigned to
c− or c+ exclusively (Fig. 2(a));

– lowest homophily(vk) = 0.0 occurs if 50% of neighboring vertices are as-
signed to class c−, the rest belongs to c+ (Fig. 2(b)).

Homophily of Neighborhood in Graph Relational Classifier 725

Fig. 2. Examples of homophily in a graph, each vertex in (a) has the same level of
homophily (similarly (b))

If we include substitution W =
∑

vj∈Vk

w(vk, vj) into (1) we can rewrite the general

Simple Relational Classifier formula as following:

p(cm|vk) =

∑
vj∈Vk|class(vj)=cm

w(vk, vj)

∑
vj∈Vk

w(vk, vj)
=

Wkcm

Wk
(6)

It is obvious that Wk =
∑

cm∈C

Wkcm
.

Because our experiments are based on binary classification, with set of classes
C = {c+, c−}, we get Wk = Wkc+

+ Wkc− . If we consider this adjustment
within (2), in order to determine impact of various neighborhood acquisition

methods we only need to observe the ratio Wkc+
: Wk. If

Wkc+
Wk

> 0.5, classified

vertex vk is assigned to positive class, if
Wkc+

Wk
< 0.5 then class(vk) = c−,

otherwise class(vk) is left unassigned.

4 Experimental Evaluation

If we return to our hypothesis presented Section 2, our goal is to compare basic
direct neighborhood with neighbors acquired with spreading activation and de-
termine how these two approaches influence homophily in a graph (which in turn
influences classifier performance). With this knowledge we will be able to dis-
tinguish which neighborhood method should be included into Simple Relational
Classifier with the aim to decrease its misclassification rate.

We employ dataset based on social network of Slovak Companies register
(http://foaf.sk/) [11]. A bipartite graph consist of two vertex types, Company
and Person and a relation between them (is_in), which indicates that person P

726 P. Vojtek and M. Bieliková

plays a role in company C as a shareholder, director, etc. The dataset contains
350 000 persons, 168 000 companies and 460 000 edges between them. It is
a typical social network with exponential distribution of vertex degree and graph
component size.

Vertices in the graph hold several attributes – name, address, basic capital,
scope of business activity, etc. A vertex class-membership is then derived from
one of these attributes. We use class-membership named is_in_Bratislava which
defines that class(vk) = c+ if person or company is located in the city Bratislava
(capital city of Slovakia), otherwise class(vk) = c−. The distribution of c+ : c−
is 27 : 73.

In practice, such a classification task is useful for two reasons: derive (at
least at the regional level) addresses of people and companies with unknown
location and validate address of instances affected by noise of the data acquisition
method3.

In our experiment we put into contrast ratios from (6). The results are sum-

marized in Fig. 3, x -axis represents the ratio of
Wkc+

Wk
and y-axis is average vertex

homophily, where vertices are grouped according to x -axis4.
In Fig. 3 we compare three curves: the optimal homophily function (as defined

in (5)) is put into contrast with the two observed homophily rates: basic neigh-
borhood and spreading activation. We see that spreading activation fits optimal
homophily much better than basic neighborhood. In terms of root mean square
error (RMSE) we gain:

– Company: RMSEbasic_neigh = 0.360 and RMSEact_spread = 0.219
– Person: RMSEbasic_neigh = 0.374 and RMSEact_spread = 0.222

For a comparison a list of contingency table derived measures is in Table 1.
We see that spreading activation clearly outperforms basic neighborhood in all
measures except the recall of Person vertex type. Imbalance of recall is induced
by imbalance between c+ : c− ratio in the dataset, where c− is assigned to 73% of
vertices, but recall is computed on the subset of c+ vertices.

There are more reasons why spreading activation outperforms basic neighbor-
hood method and provides smoother and more robust homophily lapse. Con-
sider a graph in Fig. 4. If we use basic neighborhood method, vertex v1 is
surrounded by vertices V1 = {v2, v3}. This constellation implies very disad-

vantageous homophily; class(v2) = c− and class(v3) = c+, so that
W1c+

W1
= 0.5

and homophily(v1) = 0.0. However, if we consider neighborhood computed with
spreading activation (starting with energy E = 1.0 and threshold T = 0.15), we
get neighbors with weights as depicted in Fig. 4. If we compute homophily for
this kind of neighborhood we get

W1c+
W1

= 0.625 and homophily(v1) = 0.045.

3 http://foaf.sk/ dataset is gathered via wrapping the Slovak Companies register
http://orsr.sk/ administrated by the Ministry of Justice of the Slovak Republic.

4 x -axis is sampled with step = 0.1, e.g., when a vertex vk has three neighbors with

positive class and one neighbor with negative class,
Wkc+

Wk
= 3

4
.

Homophily of Neighborhood in Graph Relational Classifier 727

Fig. 3. Homophily comparison for basic neighborhood and spreading activation

Table 1. Contingency table derived measures

Company Person
basic neigh. spread. act. basic neigh. spread. act.

recall [%] 85.8 90.8 71.0 56.8
precision [%] 18.2 59.5 24.3 89.1
f1 [%] 74.7 86.1 77.5 79.4
accuracy [%] 30.0 71.9 36.2 69.4
RMSE 0.360 0.219 0.374 0.222

Fig. 4. Example of a graph with varying homophily according to the neighborhood
acquisition method

The spreading activation energy was set to 300.0 in the experiment and thresh-
old T = 1.0 so that the neighborhood usually contains between 10 and 100 ver-
tices and the ranking converged very quickly. Increasing the energy or decreasing
the threshold would provide us broader neighborhood of a vertex, however the
computational time will heighten. Decreasing the activation energy should not
be beneficial as then the energy would spread to direct neighbors only (the flow
will be then stopped by the threshold limit), providing the same information
about vertex’ neighborhood as the basic method.

728 P. Vojtek and M. Bieliková

5 Related Work

Relational classifiers (also called ’collective’) are new and a developing branch of
predictive methods. Overview and classification of relational classifiers is avail-
able in [3,4]. More complex alternatives to Simple Relational Classifier are It-
erative Reinforcement Categorization Algorithm [2] and Relational Ensemble
Classifier [8], both capable to deal with more types of classified instances as well
as handle more than one relation in a graph.

Graph ranking algorithms as spreading activation are well analyzed, mainly
due to popularity of global ranking algorithms as PageRank and HITS in web
search, an overview of these methods is in [10]. Spreading activation is a local
ranking method similar to Random Walks with Restart [12]. We decided to em-
ploy spreading activation due to its simple understandability and effective run-
time execution – we use the same method in real time on http://foaf.sk portal
when searching for related people and companies, serving more than 500 000 page
views per month.

There exist few proposals of alternative neighborhood acquisition methods to
direct vertex neighborhood composed of directly connected vertices. Gallagher
et al. [12] employs Random Walks with Restart method in order to improve
classifier performance in graphs with weakly connected nodes, however without
deeper homophily phenomenon analysis. An overview work by Jensen et al. [4]
contains a neighborhood method concerning distance of neighboring objects but
its impact on classifier performance is not provided.

Homophily in the task of classification is referenced in several works [5,12],
using synonyms as ’auto-correlation’ or ’local consistency’. A discussion of ho-
mophily measurement methods is in [13], however the degree of homophily is
set-based (a homophily of chosen attribute in a set of vertices), while we are
focused on homophily from a single vertex’ point of view.

According to our contribution in previous sections we can refer to homophily
as a quality metric of a relational classification. Classical measures as accuracy,
recall, precision or F1 can be only derived from true and false positives/negatives
from the contingency table, which subsequently requires the data set to be
divided into a training and testing set, usually using some cross validation
method [14]. Quality of relational classifiers evaluated via these contingency table
measures is a subject of bias induced by relations between vertices in the training
and the testing set [13,15]. On the other side, homophily explicitly requires these
relations, being capable for relational classifier only (excluding attribute-based
methods).

6 Conclusion and Further Work

We analyzed quality of class assignment in a relational classifier and its cor-
relation with homophily in the classified data set represented as a graph. We
proposed to adopt spreading activation as an alternative to traditionally used
direct neighborhood in the classification of graph vertices using Simple Relational

Homophily of Neighborhood in Graph Relational Classifier 729

Classifier. We demonstrated that to determine the positive impact of spreading
activation on the misclassification rate it is sustainable to simply observe the
homophily induced by this neighborhood method rather than set up an experi-
ment with training and test set and calculate contingency table metrics, which
acquits us from the bias induces by relational component in the dataset.

In further work we derive the relation between homophily and classifier qual-
ity of other relational classifiers, mainly Iterative Reinforcement Categorization
Algorithm [2] and Relational Ensemble Classifier [8]. It is an interesting notice
that Simple Relational Classifier is in fact a kind of Iterative Reinforcement
Categorization method under specific conditions.

Acknowledgments. This work was partially supported by the Scientic Grant
Agency of Slovak Republic, grant No. VG1/0508/09 and it is the partial result of
the OPVaV - 2008/4.1/01 project ITMS 26240120005 implementation: SMART
– Support of Center of Excellence for Smart Technologies, Systems and Services
supported by the Research & Development Operational Programme funded by
the ERDF.

References

1. Getoor, L., Segal, E., Taskar, B., Koller, D.: Probabilistic Models of Text and Link
Structure for Hypertext Classification (2001)

2. Xue, G., Yu, Y., Shen, D., Yang, Q., Zeng, H., Chen, Z.: Reinforcing Web-Object
Categorization through Interrelationships. Data Min. Knowl. Discov. 12(2-3), 229–
248 (2006)

3. Macskassy, S.A., Provost, F.: Classification in Networked Data: A Toolkit and
a Univariate Case Study. J. Mach. Learn. Res. 8, 935–983 (2007)

4. Jensen, D., Neville, J., Gallagher, B.: Why Collective Inference Improves Relational
Classification. In: KDD 2004: Proceedings of the Tenth ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 593–598. ACM
Press, New York (2004)

5. Jackson, M.O.: Average Distance, Diameter, and Clustering in Social Networks
with Homophily. In: Papadimitriou, C., Zhang, S. (eds.) WINE 2008. LNCS,
vol. 5385, pp. 4–11. Springer, Heidelberg (2008)

6. Mcpherson, M., Lovin, L.S., Cook, J.M.: Birds of a Feather: Homophily in Social
Networks. Annual Review of Sociology 27(1), 415–444 (2001)

7. Macskassy, S., Provost, F.: A Simple Relational Classifier. In: Workshop Multi-
Relational Data Mining in conjunction with KDD 2003. ACM Press, New York
(2003)

8. Preisach, C., Schmidt-Thieme, L.: Relational Ensemble Classification. In: ICDM
2006: Proceedings of the Sixth International Conference on Data Mining, Wash-
ington, DC, USA, pp. 499–509. IEEE Computer Society, Los Alamitos (2006)

9. Ceglowski, M., Coburn, A., Cuadrado, J.: Semantic Search of Unstructured Data
Using Contextual Network Graphs (2003)

10. Suchal, J.: On Finding Power Method in Spreading Activation Search. In: Gef-
fert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., Bieliková, M. (eds.)
SOFSEM 2008. LNCS, vol. 4910, pp. 124–130. Springer, Heidelberg (2008)

730 P. Vojtek and M. Bieliková

11. Suchal, J., Vojtek, P.: Navigácia v sociálnej sieti obchodného registra SR. In:
DATAKON, Srní, Czech Republic (2009) (in Slovak)

12. Gallagher, B., Tong, H., Eliassi-Rad, T., Faloutsos, C.: Using Ghost Edges for
Classification in Sparsely Labeled Networks. In: KDD 2008: Proceeding of the
14th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 256–264. ACM, New York (2008)

13. Jensen, D., Neville, J.: Linkage and Autocorrelation Cause Feature Selection Bias
in Relational Learning. In: ICML 2002: Proceedings of the Nineteenth International
Conference on Machine Learning, pp. 259–266. Morgan Kaufmann Publishers Inc.,
San Francisco (2002)

14. Liu, B.: Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data, pp.
55–115. Springer, Heidelberg (2006)

15. Korner, C., Wrobel, S.: Bias-Free Hypothesis Evaluation in Multirelational Do-
mains. In: MRDM 2005: Proceedings of the 4th International Workshop on Multi-
Relational Mining, pp. 33–38. ACM Press, New York (2005)

Multilanguage Debugger Architecture

Jan Vraný and Michal Ṕı̌se�

Department of Computer Science and Engineering
Faculty of Electrical Engineering

Czech Technical University in Prague

Abstract. When debugging applications written in several programming
languages, current debuggers usually fail to provide programmers with the
same quality of user experience that is common for single-language appli-
cation debugging. As a result, development of multilanguage applications
tends to be more expensive both in terms of development and maintenance
costs.

In this paper, we propose a flexible architecture that facilitates inte-
gration of multiple single-language debuggers into a single multilanguage
debugger. In addition, we describe its proof-of-concept implementation
that allows debugging of applications written in Smalltalk, XQuery and
JavaScript.

1 Introduction

Nowadays, applications written in several programming languages are fairly com-
mon. For example, a frontend of a web application typically uses a template
engine with limited scripting capabilities while business logic of the same ap-
plication is implemented using a general purpose object-oriented language such
as Java or C# and its persistence layer consists of a set of triggers and stored
procedures written in a dialect of SQL.

The reasons for utilizing multiple languages within a single application vary:

– certain parts of the application logic can sometimes be better and more
comprehensively expressed in a different language than the rest of it,

– it might be more efficient in terms of time and programmers’ efforts to de-
velop application components in different languages because of an already
existing reusable codebase, libraries or suitable frameworks,

– a low-level language routines are often embedded into code written in
a higher-level language to gain better performance and

– utilization of several languages in one application may simply be the only
technologically viable option.

While from a broader perspective, multilanguage applications bring along many
benefits, when considering the process of debugging itself, such applications
are extremely difficult to deal with. The reason is simple: most debuggers are

� The authors would like to express many thanks to Roman Vacuĺın and anonymous
reviewers for their helpful comments.

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 731–742, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

732 J. Vraný and M. Ṕı̌se

single-language and even the few multilanguage ones usually support only a lim-
ited combination of programming languages.

Without truly multilanguage debuggers, developers are forced to debug mul-
tilanguage applications using single-language debuggers which, quite naturally,
yields poor results. For instance, when debugging an application written both in
Java and C without a suitable multilanguage debugger, developers may choose ei-
ther to not use a debugger at all, use only a Java debugger, use only a C debugger
or use both debuggers simultaneously—and none of these options is satisfactory
enough.

Insufficiency of the first option is obvious, discussion of the three remaining
options follows: using only a Java debugger provides developers with a fairly
good grasp of what is going on in those parts of the application written in Java.
However, apprehension of the behavior of the rest of the application is likely to
be very limited—developers can inspect input parameters and return values of
any Java-to-C method call but they are completely oblivious to all C-to-C calls.

On the other hand, when using only a C debugger, developers get a complete
information about the execution of the whole application. However, they also
get a complete information about the execution of the virtual machine (VM)
in which the application is running (assuming the VM is written in C) and,
unfortunately, that information is interleaved with the information about the
execution of Java code. Given the complexity of contemporary VMs, any useful
information about the behavior of Java code is therefore effectively lost.

The third option, running the application with both debuggers attached at the
same time and using the Java debugger to debug only Java code and the C debug-
ger to debug only C code, is probably the most productive one. Unfortunately,
it is not productive enough because it forces developers to deal with two distinct
user interfaces and combine information contained therein.

To summarize: using single-language debuggers to debug multilanguage appli-
cations results in developers knowing too little, too much or having the knowledge
unsuitably partititoned. Therefore, a debugger that provides the same quality of
user experience regardless of whether the application is single- or multilanguage
is highly desirable.

The aim of this paper is to propose an architecture of such a debugger. Namely,
its contributions are (i) description of a flexible architecture that facilitates in-
tegration of multiple single-language debuggers into a single multilanguage de-
bugger and (ii) description of its proof-of-concept implementation that allows
debugging of applications written in Smalltalk, XQuery and JavaScript.

The structure of this paper is the following: Sect. 2 provides the necessary
background, Sect. 3 describes the proposed solution, Sect. 4 compares our solu-
tion with the related work and Sect. 5 concludes the paper.

2 Background

This section contains a brief description of types of execution runtimes, possi-
ble approaches to integration of multiple languages within one application and
possible ways of implementing a source-level debugger.

Multilanguage Debugger Architecture 733

2.1 Compiler and Execution Runtime

An implementation of a programming language usually consists of two parts:
a compiler and a corresponding execution runtime. The role of the compiler is
to transform the source code of an application into a representation which is
understood by its respective execution runtime: a machine code, a byte code or
an abstract syntax tree. In some cases, the runtime executes the source code
directly, which eliminates the need for a compiler.

The role of the runtime is then to perform the computation by interpreting
the intermediate program representation created by the compiler. Often, there
is no need for execution runtime since the compiler generates machine code that
runs on bare hardware. However, with the progression of VM technology and,
at the same time, increasing complexity of standard libraries used in languages
compiled into native code, the distinction between pure interpretation and direct
machine code execution is getting more and more blurred. Also, from a hardware
designer’s point of view, even the machine code is interpreted by the underlying
hardware.

2.2 Multilanguage Applications

There are three basic ways of mixing two languages in a single application:

– execution runtime of one of the languages is implemented using the other
one,

– both languages share the same execution runtime and, consequently, the
same intermediate program representation and

– each language has its own execution runtime.

Writing an execution runtime (interpreter) of one of the languages in the other
one is usually employed to execute small pieces of code written in a special-
ized domain specific language[1] and is often based on the interpreter design
pattern[2]. The advantage of this approach is that it is easy to implement, mod-
ify and extend. However, its performance tends to be poor. Method invocation
across language boundaries is achieved by calling the interpreter with an iden-
tification of the called method supplied as its argument. In other words, the
developer invokes the interpreter which in turn invokes the method written in
the other language.

Runtime sharing is a way of language integration that is currently utilized
quite often as it is very effective in terms of language implementors’ efforts and
usually provides good performance. However, it is suitable only for languages
with fairly similar first-class abstractions. For example, it would probably be
very difficult to use runtime sharing to integrate a prototype-based language
with continuations and no notion of call stack with a language based on logic
programming paradigm. Nevertheless, if this approach is suitable the integra-
tion of languages is almost seamless because the intermediate representation
(compiled code) is the same.

734 J. Vraný and M. Ṕı̌se

Finally, the best efficiency and flexibility can be achieved by having both
languages have their own execution runtimes. This approach requires for both
runtimes to have some kind of support for invocation of methods written in
other languages. In other words, the calling runtime must provide a mechanism
of stepping out, converting all necessary data (e.g. parameters) and invoking the
other runtime. At present, not all runtimes provide such a mechanism.

2.3 Debuggers

There exist two basic means of collecting data about program execution: code
instrumentation and events emitted by the operating system, virtual machine or
interpreter[3].

When using code instrumentation, the application’s code is augmented to con-
tain method calls that inform their recipient of the currently executed expression.
The code may be instrumented statically—by the compiler or some kind of code
instrumentation tool—or dynamically—when it is being loaded into the memory
or even before it is executed for the first time[4].

The second approach differs from the first one in that the debugging events
are emitted by the interpreter, virtual machine or operating system[5]. In other
words, debugging-related instructions are part of the interpreter, virtual machine
or operating system, not the application itself.

Both approaches share an important common trait: the primary means of
communication is event-based.

3 Solution

This section contains a description of proposed solution: a flexible source-level
debugger architecture that facilitates integration of multiple single-language de-
buggers into a single multilanguage debugger.

Its main idea is based on the following observation: when debugging code writ-
ten in their respective languages, single-language debuggers provide a sensible
information regardless of whether the application is single-language or multilan-
guage. In other words, validity of debugging events emitted by a single-language
debugger depends solely on whether the code currently under execution has
originally been written in a language for which the debugger has been designed.

3.1 Architecture

The architecture of the debugger consists of several components that communi-
cate using event mechanism. Figure 1 shows its core components.

DebuggerAdapter. A core class that acts as a facade for underlying debugger
and respective execution engine. It is used for both accessing the control flow
structures such as contexts and variables and for controlling the execution
of the program. There is one debugger adapter for each language.

Multilanguage Debugger Architecture 735

Fig. 1. Overall architecture of multilanguage debugger

ContextAdapter, VariableAdapter and InstructionAdapter. These are
helper classes that provide uniform access to language’s runtime internals.

DebuggerService. An instance of DebuggerService is responsible for perform-
ing debugging operations such as step-into or step-over. It is a mediator
between debugger adapters and debugger’s user interface.

DebuggerMode and its subclasses. These classes represent a mode of op-
eration of the debugger.

DebuggerUI. The user interface of the debugger. It presents relevant informa-
tion to the programmer and enables them to perform debugging operations.

3.2 Debugger Adapter

As we said before, the debugger adapter is a core class of whole system. It
interfaces underlying execution engine in general way, no matter how it is imple-
mented. More precisely, the debugger adapter (i) provides an uniform access to
the current execution state, (ii) emits events whenever the execution state of the
program changes and (iii) provides facilities for suspending/resuming the execu-
tion. Generally, there is one debugger adapter for every interpreter. In practice,
debugger adapter implementations can be shared between several languages that
are implemented in same way.

For example, the Perseus framework[10] provides a rich set of reusable classes
for building language interpreters with integrated debugging facilities based on
debuggable interpreter design pattern[6]. This framework also provides a debug-
ger adapter implementation that can be used for adapters of all languages based
on the framework.

Execution state model. The execution state modeled through set of adapters:
a context adapter, a variable adapter and an instruction adapter. The adapter
objects are used by the user interface to present the state to the programmer.

736 J. Vraný and M. Ṕı̌se

Context adapter. Context stack is model-led by context adapters. Each con-
text adapter belongs to one activation record on interpreter’s execution stack.
The context adapter provides access to:

– name of the function or method that belongs to the context,
– source code of that function or method,
– context adapter of the sender (caller) context (as another instruction

adapter),
– instruction being interpreted (as instruction adapter),
– set of variables that belongs to the context (as variable adapters).

The adapter also contains a reference to the debugger adapter it belongs to.

Instruction adapter. The instruction adapter represents an instruction being
interpreted. It contains a line reference to the source code, which is used by the
debugger to visually emphasize current position in the code. Although this ob-
ject is called instruction adapter, it is generally not related to the interpreter’s
(or hardware processor’s) program counter register. Here the instruction is just
an abstraction of the smallest piece of code that is executed atomically by an in-
terpreter. An instruction might be a single bytecode or an AST node, depending
on interpreter’s internal architecture.

Variable adapter. Variable adapters abstracts function arguments and local
variables. It also enables the debugger read and modify variable’s value.

Although presented set of adapters covers wide range of programming lan-
guages, it does not completely cover all possible languages. A new kinds of
adapters and properties can be easily added using customized adapters.

Events Emitted by the Debugger Adapter. During a program execution
the debugger adapter emits number of events. These events, called announce-
ments, reflect changes in program’s execution state such as entering or leaving
a function, modifying a variable or the reach of a breakpoint. Announcements
allows other objects such as debugger service to analyze interpreter’s control
flow an react whenever certain situation occurs. Figure 2 shows hierarchy of
announcements.

Execution Control Facilities. During an interactive debugging session, the
program execution is interlaced with debugging phase. In debugging phase, the
program execution is temporarily suspended and programmers are given a chance
to interactively explore and modify program state such as variable values. At
the end of debugging phase, programmers might resume program execution by
means of debugging operation or abort the execution at all.

To enable interactive debugging, the debugger adapter expose three methods
with obvious meaning: suspend, resume and abort. Those method are used by the
debugger service to drive the execution during an interactive debugging session.

3.3 Debugger Service

The debugger service implements the debugging operations such as step-into,
step-over and continue. It acts as a model for debugger user interface. During

Multilanguage Debugger Architecture 737

Fig. 2. Announcement class hierarchy

a debugging session the debugger service is attached to the debugger adapter.
That means that the debugger service is registered to the adapter and receives
emitted announcements:

DebuggerService>>attach: anDebuggerAdapter {
adapter ← anDebuggerAdapter.

adapter

subscribe: TracepointAnnouncement

send: #onTracepoint: to: self;

subscribe: ContextAnnouncement

send: #onContextChange: to: self;

}

At the end of debugging session the debugger service detaches from the debugger
adapter:

DebuggerService>>detach {
adapter unsubscribe: self.

}

For the more detailed description of the debugging service and debugging
operation implementations please refer to [6].

3.4 Stacking Debugger Adapters

The basic idea of our unified debugger is following: in addition to to the execu-
tion stack, a stack of debugger adapters is maintained. Each debugger adapter
corresponds to a bunch of activation records on the execution stack.

Debugger adapter stack must be maintained manually (i.e. programmer should
include stack modification code into the code) whenever a program’s control

738 J. Vraný and M. Ṕı̌se

flow enters or leave a chunk of code in different language than the one currently
being executed. Two functions are provided for managing interpreter adapter
stack: pushDebuggerAdapter: and popDebuggerAdapter. When a new debugger
adapter is pushed onto a stack, all debugger services that are attached to a
current debugger adapter must attach a new debugger adapter:

DebugggerAdapter class>>

pushDebuggerAdapter: newDebuggerAdapter {
activeAdapter subscribers do:

[:subscriber|
subscriber detach.

subscriber attach: newDebuggerAdapter].

newInterpreter next: activeAdapter.

activeAdapter ← newDebuggerAdapter

}

Similarly when the topmost adapter is to be removed, all attached debugging
services must reattach the next one:

InterpreterAdapter class>>popDebuggerAdapter {
activeAdapter subscribers do:

[:subscriber|

subscriber detach.

subscriber attach: activeAdapter next].

activeAdapter ← activeAdapter next

}

Manual management of debugger adapter stack is usually not difficult since
calling foreign functions (that is routines implemented in another language) often
requires some glue code.

Consider a following example of multi-language applications written in
Smalltalk, XQuery and JavaScript. Smalltalk part of the application instantiates
an XQuery interpreter and evaluates XQuery code:

|xqInterpreter |
xqInterpreter ← XQueryIntepreter new.

xqInterpreter evaluate: query

The query variable holds an XQuery code, that defines new function for com-
puting combinatorial numbers:

import module namespace js = ”http://sma. . . ”;
declare function combinatorial-number ($n , $k) {
js:factorial($n) /

(js:factorial ($k)

* js:factorial ($n - $k))

};

combinatorial-number (5 , 3)

The XQuery code calls a function js:factorial, that is implemented in
JavaScript:

Multilanguage Debugger Architecture 739

function factorial (a) {
if (a == 0) {

return 1;

} else {
return a * factorial (a);

}
}

Figure 3 shows execution and debugger adapter stack for the example above.
The method evaluate: in unified debugger-enabled XQueryInterpreter class is

– on principle – implemented as follows:

XQueryInterpreter>>evaluate: query {
| queryTree result |
queryTree ← self parse: query.

DebuggerAdapter pushDebuggerAdapter:

(XQueryDebuggerAdapter on: self).

result ← self visit: queryTree.

InterpreterAdapter popDebuggerAdapter.

↑ result.

}

The XQuery interpreter supports number of primitives. Primitives are func-
tions that are directly callable from within an XQuery code, but whose imple-
mentation is done in different language than XQuery. The XQueryInterpreter
calls method performJsPrimitive:withArguments: to call primitive implemented
in JavaScript:

XQueryInterpreter>>evaluateJsPrimitive: primName

withArguments: args {
| result |
DebuggerAdapter pushDebuggerAdapter:

(ByteCodeDebuggerAdapter on: self).

result ← jsPrimitiveLibrary

perform: primName withArguments: args.1

DebuggerAdapter popDebuggerAdapter.

↑ result.

}

Main>>main

...

<query>

XQueryInterpreter>>evaluate:...

local:combinatorial-number (5,3)

factorial(5)

factorial(4)

Debugger Adapter Stack Execution Stack

Fig. 3. Debugger adapter stack

740 J. Vraný and M. Ṕı̌se

Fig. 4. Unified Debugger User Interface

The figure 4 shows a user interface for our unified debugger implementation.
A user can explore the stack and resume the evaluation in both step-into and
step-over manner.

4 Related Work

The authors of this paper have no intention to imply that this paper is the very
first work in the field of multilanguage debuggers. Quite the contrary—there
exists a number of multilanguage debuggers, however, majority of them is either
proprietary or ad-hoc[7]. Obviously, proprietary solutions can not be commented
upon or compared here.

Documented ad-hoc solutions, on the other hand, can. Our general opinion
about them is this: although ad-hoc solutions surely solve the problem for a cer-
tain class of applications they are not a long-term remedy because the cost of
writing an ad-hoc multilanguage debugger increases superlinearly with the num-
ber of supported languages. Conversely, the architecture proposed in this paper
keeps the costs of writing a multilanguage debugger linear with the number of
supported languages.

A more systematic approach to multilanguage debugger development is the
one featured in NetBeans[8] and Eclipse[9] integrated development environments
(IDEs). Developers of these IDEs exploit the fact that many modern languages
run on top of the Java Virtual Machine (JVM) and that applications composed
solely of some combination of these languages can be debugged by any JVM
debugger.

This approach has a huge advantage: any language implemented on top of the
JVM can be debugged by an already existing JVM debugger. In other words,

Multilanguage Debugger Architecture 741

the cost of implementing a multilanguage debugger that supports all JVM-based
languages is the same as the cost of implementing a Java-only debugger. On
the other hand, this approach implies the debugger is aware only of the JVM
metamodel and can not accurately display information that goes beyond this
metamodel—for example, it is completely oblivious to Python’s dynamically
added instance variables.

5 Conclusion and Future Work

Debugging of multiple-language applications is hard and current debuggers of-
fer little help to alleviate the problem. The only debuggable multiple-language
applications are those composed of languages compiled to the same runtime,
e.g. applications composed of C and C++ code, applications composed of Java,
JRuby and Jython code etc.

As a remedy, this paper proposed an architecture that is able to merge multi-
ple single-language debuggers into a unified one capable of debugging multiple-
language applications. The architecture introduces a new abstraction layer—the
debugger adapter—which interfaces with underlying execution runtimes. Stack
of debugger adapters then manages transition of control from one debugger
adapter to another.

Validity of this architecture is based on two assumptions: (i) it is always
possible to intercept a message invocation and (ii) it is always possible to tell
the language of the method that is about to be invoked. The first assumption is
always fulfilled as all real-world lanugages do have debuggers capable of emitting
event on method dispatch. The second assumption is fulfillable easily: compilers
of each language used in the application only need to generate a debug symbol
(or an annotation) denoting the language of the currently compiled code.

We believe that the architecture is easily extensible to merge debug infor-
mation from debuggers running in different processes. That makes it a good
candidate for debugging of RPC-based applications as well as systems in which
method invocation results in new process creation (such as shell scripts). In fu-
ture, we also plan to integrate the unified debugger into an industry strength
IDE such as NetBeans or Eclipse.

References

1. Mernik, M., Heering, J., Sloane, A.M.: When and How to Develop Domain-Specific
Languages. ACM Comput. Surv. 37(4), 316–344 (2005)

2. Gamma, E., Helm, R., Johnson, R.E., Vlissides, J.M.: Design Patterns: Abstraction
and Reuse of Object-Oriented Design. In: Nierstrasz, O. (ed.) ECOOP 1993. LNCS,
vol. 707, pp. 406–431. Springer, Heidelberg (1993)

3. Lencevicius, R.: Advanced Debugging Methods. Kluwer Academic Publishers, Dor-
drecht (2000)

4. Hofer, C.: Implementing a Backward-in-Time Debugger. Master’s Thesis
(July 2006)

742 J. Vraný and M. Ṕı̌se

5. Wu, H., Gray, J., Roychoudhury, S., Mernik, M.: Weaving a Debugging Aspect
into Domain-Specific Language Grammars. In: SAC 2005: Proceedings of the 2005
ACM Symposium on Applied Computing, pp. 1370–1374. ACM, New York (2005)

6. Vraný, J., Bergel, A.: The Debuggable Interpreter Design Pattern. In: Filipe, J.,
Shiskov, B. (eds.) ICSOFT 2007. CCIS, vol. 22. Springer, Heidelberg (2007)

7. Bothner, P.: A gcc-Based Java Implementation (1997)
8. NetBeans, http://www.netbeans.org
9. Eclipse, http://eclipse.org

10. The Perseus Framework, http://smalltalk.felk.cvut.cz/projects/perseus

http://www.netbeans.org
http://eclipse.org
http://smalltalk.felk.cvut.cz/projects/perseus

Student Groups Modeling by Integrating Cluster
Representation and Association Rules Mining

Danuta Zakrzewska

Institute of Computer Science Technical University of Lodz, Wolczanska 215,
90-924 Lodz, Poland

dzakrz@ics.p.lodz.pl

Abstract. Finding groups of students with similar preferences enables
to adjust e-learning systems according to their needs. Building models for
each group can help in suggesting teaching paths and materials according
to member requirements. In the paper, it is proposed to connect a cluster
representation, in the form of the likelihood matrix, and frequent pat-
terns, for building models of student groups. Such approach enables to
get the detailed knowledge of group members features. The research is
focused on individual traits, which are dominant learning style dimen-
sions. The accuracy of the proposed method is validated on the basis of
tests done for different clusters of real and artificial data.

Keywords: Association rules, cluster representation, student models.

1 Introduction

In distance learning, educational software performance depends on the degree it
is adjusted into students’ requirements. Adaptation of the system into individ-
ual needs may be difficult, in the case of the big amount of students. Finding
groups of learners with similar preferences and, then, personalizing the system
in compliance with their needs, seems to be the good solution.

Students may be grouped in a supervise way by tutors or automatically by us-
ing clustering technique. The last method allows to consider multiple attributes
simultaneously [1]. In that case the effectiveness of the process of the educational
system adaptation depends not only on the quality of obtained clusters but also
on the degree of the knowledge concerning their members’ features. The model of
each cluster of learners should be as much detailed as possible and should reflect
the characteristics of the majority of them. Model accuracy should not depend
on cluster shapes or sizes. The aim of the paper is to indicate the method, which
will allow to discover patterns, representing the most popular attributes and
their associations in clusters. It is proposed to integrate the cluster representa-
tion in the form of the likelihood matrix and frequent patterns, which occurred
in the cluster. As cognitive traits characterizing students, there are considered
individual learning style dimensions. The accuracy of the presented method is
validated, by experiments, done for clusters of different structures and sizes.

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 743–754, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

744 D. Zakrzewska

The paper is organized as follows. The related work is described in the next
section. Then, the overview of the whole process of finding student group models
is presented. In the following subsections of Section 3, all the phases of build-
ing group models are depicted, starting from learner models based on learning
style dimensions, till the group model defined by using association rules and
cluster representation. In Section 4 some experimental results are presented and
discussed. Finally, concluding remarks and future research are outlined.

2 Related Work

In recent years many researchers examined possibilities of improving e-learning
courses by using data mining methods. As the main goals of their applications
there should be mentioned personalization of educational systems or recommen-
dation possibilities. Most of investigations are focused on learner requirements
identification. The broad review of areas of interactions between data mining
and e-learning may be found in [2]. Many authors applied clustering for grouping
students according to their behaviors, on the basis of pages they visited or histor-
ical navigational paths (see [3],[4] for example). Tang and McCalla [3] connected
cluster analysis and collaborative filtering for the purpose of the recommender
system, which enables to adapt the course content into personal needs. Asso-
ciation rule mining was used in many recommender systems (see [5],[6]). Shen
et al. [7] connected student clustering according to their learning activities and
finding sequential patterns. Garćıa et al. [8] combined association rule mining
with collaborative filtering to build recommendations for teachers.

In the paper [9], it was presented different approach for grouping according
to student preferences. Proposed there, intelligent e-learning system, was based
on clustering methods, applied for learning styles data gathered by question-
naire surveys. That approach was farther investigated in [10]. Authors examined
different techniques for students’ learning styles investigations. Alfonseca et al.
[11] used descriptive statistics for student grouping in collaborative learning. Xu
et al. [12] built fuzzy models using learning activities and interaction history. Vi-
ola et al. [13] showed the efficiency of data-driven methods for pattern
extractions.

3 Student Groups’ Modeling

3.1 Overview of the Method

Groups created by cluster analysis are characterized by the similarity of all the
attributes. But, for the purpose of an adaptation of the educational system,
the label of each group should be known. A generative model of the cluster
consisting of the mean, standard deviation and probability of sampling values
does not take into account associations between attributes. Clustering by model-
based methods, in turn, cannot be applied if attributes are correlated [14], what
may take place for student learning style data [13].

Student Groups Modeling 745

Fig. 1. Phases of group modeling

In the presented approach, it is assumed that students are grouped according
to numeric attributes, which can be changed into nominal values, that represent
students’ characteristics. It is proposed to build group models in two steps. In
the first one, the distributions of student features are found out and presented
in the form of the matrix containing attribute likelihood. In the second phase
association rules for dominant student features are discovered. The whole process
is presented on Fig. 1. Obtained models present the rules for attribute values
that are valid, for the majority of the students in the considered cluster. In
the current study, it is assumed that students have already been assigned into
clusters. Broad review of clustering techniques for student learning style data
can be found in [10].

3.2 Student Models

Brusilovsky [15] recognized student dominant learning styles as user individual
traits, which are stable and usually extracted by specially designed psychologi-
cal tests, and that can be used for the purpose of web educational systems. The
present study focuses on Felder & Silverman [18] model, which was often indi-
cated as the most appropriate for the use in computer-based educational systems
(see [16],[17]). The model is based on Index of Learning Style (ILS) questionnaire,
developed by Felder & Soloman [19]. The ILS is a self-scoring questionnaire for
assessing preferences on 4 dimensions of the Felder & Silverman model, from
among excluding pairs: active vs. reflective, sensing vs. intuitive, visual vs. ver-
bal, sequential vs. global. After selecting answers to 44 questions, learners obtain
scores for the dimensions. The index has the form of the odd integer from the
interval [-11,11], assigned for one of the dimensions from the pairs mentioned
above. Each student, who filled ILS questionnaire, can be modeled by a vector
SL of 4 integer attributes:

SL = (sl1, sl2, sl3, sl4) = (lar, lsi, lvv, lsg) , (1)

where lar means scoring for active (if it has negative value) or reflective (if it is
positive) learning style, and respectively lsi, lvv, lsg are points for all the other
dimensions, with negative values in cases of sensing, visual or sequential learning
styles, and positive values in cases of intuitive, verbal or global learning styles.

Score from the interval [-3,3] means that the student is fairly well balanced
on the two dimensions of that scale. Values -5,-7 or 5,7 mean that student learns
more easily in a teaching environment which favors the considered dimension;

746 D. Zakrzewska

values -9,-11 or 9,11 mean that learner has a very strong preference for one
dimension of the scale and may have real difficulty learning in an environment
which does not support that preference [19]. The above principles of Felder &
Silverman model impose rules for changing SL into a vector SLN of nominal
values. As scores from -11 to -5 (5 to 11) indicate the same favorite dimension,
in our investigations nominal values will be limited to 3, as defined in (3)-(6).

SLN = (sln1, sln2, sln3, sln4) = (lnar, lnsi, lnvv, lnsg) , (2)

where

lnar =

⎧⎨
⎩

a lar = −11,−9,−7,−5,
b lar = −3,−1, 1, 3,
r lar = 5, 7, 9, 11;

(3)

lnsi =

⎧⎨
⎩

s lsi = −11,−9,−7,−5,
b lsi = −3,−1, 1, 3,
i lsi = 5, 7, 9, 11;

(4)

lnvv =

⎧⎨
⎩

vs lvv = −11,−9,−7,−5,
b lvv = −3,−1, 1, 3,
vr lvv = 5, 7, 9, 11;

(5)

lnsg =

⎧⎨
⎩

s lsg = −11,−9,−7,−5,
b lsg = −3,−1, 1, 3,
g lsg = 5, 7, 9, 11.

(6)

3.3 Group Models

A generative cluster model may not represent the average student characteristics,
in the case of learning style preferences. For example, the mean value for active
and reflective students may indicate that all of them are balanced. Instead, we
propose to use aggregate cluster profiles, based on nominal representations of
learning style attributes and the number of their appearances. Each attribute
value is associated with the support value which indicates its significance in the
cluster (see Def. 1).

Definition 1. Let CL be a cluster containing objects with SL data. As the clus-
ter representation we will consider the matrix CLR = [clrij]1≤i≤3,1≤j≤4, where
the columns represent attributes from SLN model and the rows nominal values of
attributes. Each element of CLR is calculated as likelihood (relative frequency)P
that students from CL are characterized by the certain attribute value from SLN
model and is called the support for the respective SLN attribute value in CL.

CLR =

⎡
⎣P (lnar = a), P (lnsi = s), P (lnvv = vs), P (lnsg = s)

P (lnar = b), P (lnsi = b), P (lnvv = b), P (lnsg = b)
P (lnar = r), P (lnsi = i), P (lnvv = vr), P (lnsg = g)

⎤
⎦ . (7)

Student Groups Modeling 747

Let us consider that we got M groups of students after clustering process. To
obtain cluster representations, the following steps are necessary:

[Input]: A set of M clusters CLi, containing objects with SL data,
Step 1: For each cluster CLi, i = 1, 2, ...M count number of objects Ni,
Repeat Steps: 2,3,4 for each cluster CLi, i = 1, 2, ...M :
Step 2: For each object from cluster CLi change SL attribute values
into nominal SLN according to (3),(4),(5),(6)
Step 3: Count number of each values of the attributes and calculate
respective likelihood
Step 4: Build the matrix CLRi

[Output]: Matrices CLRi for clusters CLi, i = 1, 2, ...M .

The cluster representation in the matrix form (Def. 1), allows to distinguish
dominant characteristics of the student group, indicated by maximal values of
the matrix columns. Those features can be considered as frequent items and can
be used in the next step for building association rules. Such approach enables to
use Apriori algorithm, which is based on the principle that ” all nonempty subsets
of a frequent itemset must also be frequent” [14]. The threshold of the required
frequency, depends on the number of students from the cluster, characterized
by the same dominant learning styles and should be determined according to
tutors’ criteria. Usually it is assumed to be not less than 50%.

The Apriori-type algorithm, implemented in Weka software [20], iteratively
reduces the minimum support until it finds the required number of rules with
the given minimum confidence. Application of that algorithm allows to limit the
input parameters to the minimum confidence value (confidence of the rule A ⇒ B
is the likelihood that the itemset containing A holds also B). Having the required
frequency threshold thr in the form of decimal fraction and likelihood from
cluster representation matrix, the minimal required confidence value conf(CLR)
can be calculated by dividing the threshold value by its maximal element:

conf(CLR) = thr/max {clrij , i = 1, 2, 3; j = 1..4} , (8)

Confidence value, defined by (8), guarantees that discovered rules are valid for
the majority (more than 50%)of students from the considered cluster. The re-
spective algorithm may be presented as follows:

[Input]: The set of matrices CLRi for each cluster CLi, i = 1, 2, ...M ;
required threshold of the frequency in the form of decimal fraction,
Repeat Steps: 1,2,3,4 for each cluster CLi, i = 1, 2, ...M :
Step 1: Choose the maximal value in the cluster representation CLRi,
Step 2: Count required confidence value according to (8)
Step 3: Found association rules by Apriori type algorithm
Step 4: From among rules, choose the ones that contain dominant val-
ues of attributes of each column of CLRi

[Output]: Set of rules for each cluster CLi, i = 1, 2, ...M , their confi-
dence and support values.

748 D. Zakrzewska

Obtained set of rules, together with their parameters may give the knowledge of
majority student characteristics for each cluster, however the demanded model
should also contain information from cluster representation matrix, presenting
the distribution of all the learner preferences. Number of rules may be further
limited by removing the ones containing balanced values of attributes, as bal-
anced learners are not expected to require special attention concerning learning
environments. That way the model consists of two parts: the first one indicat-
ing learning style preferences of the majority of students and the second one
presenting associations between the dominant attributes.

As an example, consider the matrix cluster representation for 75 students:⎡
⎣0.69, 0.52, 0.88, 0.12

0.31, 0.48, 0.12, 0.83
0, 0, 0, 0.05

⎤
⎦ (9)

The required confidence value for thr = 0.5 according to (8) is equal to 0.568.
The algorithm found 3 rules, with respective support and confidence:

lnsg = b ⇒ lnvv = vs supp:(0.72) conf:(0.87)
lnar = a ⇒ lnvv = vs supp:(0.57) conf:(0.83)
lnar = a ⇒ lnsg = b supp:(0.55) conf:(0.79).

After removing the rules containing balance values we obtain the association:
lnar = a ⇒ lnvv = vs. Additionally, taking into account maximal values of
columns of (9)(without the second raw, which represents balanced students) we
have the following model of cluster members:

lnvv = vs supp: (0.88), or lnar = a supp:(0.69), or
(lnar = a)⇒ (lnvv = vs) supp: (0.57), or lnsi = s supp: (0,52).

Finally, we may conclude that most of the students from the considered group are
both active and visual, those who are not visual are active and reciprocally, the
ones not active have to be visual. According to the last rule majority of students
are sensing, but there are not associations between sensing and visual as well as
between sensing and active learners, what means that, these students are mostly
balanced according to other learning style dimensions. More exemplary models,
built on different clusters, will be presented in Section 4.

The quality of an obtained model may be determined by two main criteria: its
accuracy and its usefulness. The last factor should be examined in the context of
pedagogical goals of the considered course and evaluated by tutors, who prepare
the contents, teaching paths and learning materials. The accuracy of the model
depends on the number of students, from the considered group, whose attributes
do not fit into the rules from the model. Error of the model may be measured by
likelihood that the rules are not valid for the cluster member and it is calculated
by using support values of cluster representation matrix, as well as of respective
association rules. If no rules are discovered, or the error is not acceptable, it
may mean that most of students are balanced, the cluster is of bad quality or its
members are characterized by only one learning style dimension. The first case

Student Groups Modeling 749

takes place if there are no dominant learning styles in the cluster representation.
The detailed analysis of obtained results may give more information about group
members. We propose to consider separately the rules concerning learning style
dimensions, which are not correlated. In the model presented in the example,
the error should be calculated separately for the first three rules and for the last
one. In the first case, if we take into account well known formula: P (A ∨ B) =
P (A) + P (B)−P (A∧B), the error of the statement that students are visual or
active is equal to 0, while the error that students are sensing is equal to 0.48,
what is quite a big value.

4 Experiment Results and Discussion

The aim of the experiments was to evaluate the proposed method and to compare
the results with models obtained by using only cluster representations. The tests
were done for two different data sets: real of 194 Computer Science students, who
filled ILS questionnaire and 100 artificially generated random odd integers from
the interval [-11,11]. To obtain the most impartial results, data were gathered
from students of different levels and years of studies, including part-time and
evening courses. We consider clusters of disparate structures and sizes, built by
application of different techniques, taking into account an influence of the choice
of a threshold value. We consider clusters built by three well known algorithms,
each representing different approach: statistical - EM, partitioning - K-means
and hierarchical Farthest First Traversal (FFT) (see [14]). The quality of the
obtained model should not depend on the applied clustering method, but as
was shown in [21] clusters have completely different structure depending on the
technique, which was used. In our experiments, data were divided, by each of
the algorithms, into 5 clusters: the number, for which the clustering schemas
occurred to be the optimal from the point of view of cluster qualities for
K-means and FFT algorithm (see [21]). Application of 3 different techniques,
on the two considered datasets, allows us to examine the performance of the
method on 30 clusters that were expected to be of good qualities. As it may
be easily noticed, the rules were not found for 46.7%(14) of all the clusters, in
13.3%(4) groups most learners were balanced, what may be also applied as the
characteristic feature. One rule was generated in 23.3% (7), two - in 6.7% (2) and
three in 10%(3) from all the clusters. From among those clusters, which cannot
be described by any rule, it should be distinguished the ones with one dominant
value in a cluster representation and respective small error value. There are
4 such cases with error less than 0.2 in the considered clusters. Finally, there
were no models discovered for 33.3% (10) from among considered groups. The
experiment results for considered cluster schemas and different data sets are
shown in Tables 1- 6. For each cluster there are presented their sizes and models
in the form of association rules valid for dominant learning styles and their
errors, together with dominant SLN values from cluster representations. Errors
contained in last columns of all the tables are counted as 1 − support(SLN)
and represent the likelihood that learning style of cluster member is not equal

750 D. Zakrzewska

Table 1. Clusters built by EM algorithm (real data)

No Quantity Association rules Error Cluster represent. Error

1 85 no rules visual 0.11
2 18 intuitive ∧ global 0.28 intuitive 0.17

visual ∧ intuitive 0.5 global 0.11
visual ∧ global 0.5 visual 0.39

3 21 visual ∧ sequential 0.48 sensing 0
visual ∧ sensing 0.14 visual 0.14
sequential ∧ sensing 0.38 sequential 0.38

4 56 balanced balanced
5 14 visual ∧ active 0 visual 0

sensing ∧ active 0.07 active 0
visual ∧ sensing ∧ active 0.07 sensing 0.07

Table 2. Clusters built by K-means algorithm (real data)

No Quantity Association rules Error Cluster represent. Error

1 50 active ∧ visual 0.24 active 0.14
visual 0.1

2 33 no rules visual 0.3
global 0.42
intuitive 0.45

3 35 balanced balanced
4 30 balanced balanced
5 46 sensing ∧ visual 0.5 sensing 0.41

visual 0.13

Table 3. Clusters built by hierarchical (FFT) algorithm (real data)

No Quantity Association rules Error Cluster represent. Error

1 117 no rules visual 0.24
sensing 0.47

2 8 no rules global 0.13
3 28 no rules visual 0.14

global 0.43
4 16 balanced balanced
5 25 no rules active 0.4

to SLN . In all the cases, operator ⇒ was changed into ∧ as the rules were
valid for the both sides. Comparing the results for different groups, it may
be noticed that the performance of proposed method differs depending on the
cluster schema. Taking as the example statistical algorithm for the real data set

Student Groups Modeling 751

Table 4. Clusters built by EM algorithm (artificial data)

No Quantity Association rules Error Cluster represent. Error

1 27 no rules visual 0.3
global 0.44

2 18 intuitive ∧ sequential 0.33 intuitive 0
sequential 0.33

3 17 sensing ∧ sequential 0.41 sensing 0.41
verbal ∧ sequential 0.47 sequential 0

verbal 0.47
4 17 no rules active 0
5 21 global ∧ verbal 0.33 verbal 0.19

global 0.19
sensing 0.48

Table 5. Clusters built by K-means algorithm (artificial data)

No Quantity Association rules Error Cluster represent. Error

1 16 sensing ∧ sequential 0.38 sequential 0.06
verbal ∧ sequential 0.44 sensing 0.31

verbal 0.44
2 22 no rules visual 0.27

global 0.45
3 21 global ∧ verbal 0.43 verbal 0.24

global 0.29
sensing 0.33

4 25 no rules intuitive 0.16
5 16 reflective ∧ intuitive 0.5 reflective 0.13

intuitive 0.38
visual 0.44
global 0.44

(Table 1), students from all the clusters may be modeled, with error less than
0.3. This value may be even less after detailed analysis of the obtained rules.
Contrarily, not too many rules can be built on clusters from schema obtained by
hierarchical method (Table 3), however that technique was indicated as optimal
in the case of 5 clusters for learning style data [21]. For artificially generated
data, effects are worse, in each approach, there is at least one cluster without
the rules, but the fact may be caused by the lower cluster quality for those
data [21]. In the considered schemas, groups are of different sizes, what enables
to compare the effects depending on the quantity of objects contained in each
cluster. The biggest group includes 117 objects, while the smallest one 8. For
that analysis, we divided clusters into 4 categories depending on their sizes:

752 D. Zakrzewska

Table 6. Rules for clusters built by hierarchical (FFT) algorithm (artificial data)

No Quantity Association rules Error Cluster represent. Error

1 32 no rules sequential 0.34
intuitive 0.37
verbal 0.47

2 23 no rules global 0.26
sensing 0.35
verbal 0.39

3 22 no rules visual 0.23
global 0.37
reflective 0.41

4 14 active ∧ intuitive 0.43 sensing 0.21
active 0.36
sequential 0.43

5 9 no rules active 0.11
intuitive 0.44
global 0.44

1. Very small: less than 20 instances - 11 groups
2. Small: from 20 to 40 instances - 14 groups
3. Medium: from 40 to 60 instances - 3 groups
4. Big: more than 60 instances -2 groups

In the groups from the first category, rules were not found for one cluster of
9 students (see Table 6), in the second category -for 8 clusters (57%), in the
third category rules are found for all the clusters; and in the last category, there
is one cluster of visual students, and the second group (the biggest one) without
the discovered rules. Concluding, there is no visible dependence between obtained
effects and cluster sizes.

To have the full image of the performance of the algorithm, it should be exam-
ined, how including association rules may enhance the image of students in the
group. Focusing on the clusters built by statistical method (see Table 1), we may
respectively characterize groups as follows: visual, (global ∧ intuitive) ∨ visual,
sensing ∧ (visual ∨ sequential), balanced, reflective∧ intuitive∧ active. From
among five characteristics, only two may be concluded from the cluster repre-
sentation: the first and the fourth ones. The others were drawn from discovered
association rules. If we take into account results from Table 2, in the first cluster
students are active and visual, the characteristics that cannot be drawn from the
cluster representation, the same concerns the last cluster, where half of students
are sensing and visual.

The last part of the experiments focused on the choice of the threshold value.
At the beginning it was assumed equal to 0.5, to guarantee that the rules are
fulfilled for at least half of the students in each cluster. Investigations showed
that the choice of higher value limited the number of obtained rules, however

Student Groups Modeling 753

they were valid for more students. Diminishing of the threshold results in finding
many rules but errors significantly increased. That approach may be applied,
when tutors would like to divide clusters into subgroups of strong features.

5 Concluding Remarks

In the paper, it was considered integrating cluster representation and associ-
ation rules for finding features of students, assigned into the same cluster ac-
cording to their dominant learning style dimensions. The proposed method is
based on learning style dimensions, however it can be easily implemented for any
attributes, which characterize student preferences (like usability for example).
Experiments done for real and artificial data sets showed that supplementing
a cluster representation by association rules allows to give more complete im-
age of student group characteristics. Test results indicated also that not all the
cluster schemas, even of good quality, allow to build rules. It may mean that
using association rules can help in evaluation of the semantic value of obtained
clusters.

The proposed method can be used by educators, during the process of build-
ing teaching paths or preparing course materials as well as adjusting educational
environments into student group preferences. Tutors, who know which of pre-
ferred learning style dimensions are associated in the cluster, will appropriately
adapt the course. In the example, presented in Section 3.3 most of the students
are active, visual or sensing, however only the first two features occur together
and the fact should be taken into account during the teaching process.

Future research will consist in further improvements of the proposed method,
by maximal possible automatization of the process of building models, taking
into account assumed accuracy. It should be also examined, the performance of
the considered technique, in a case of using 5 nominal attribute values instead
of 3, distinguishing that way students, whose preferences for certain learning
styles are not strong (see Section 3.2), what may give possibilities to ameliorate
the process of tailoring contents into student needs. Automatization of that step
together with the one of teaching material assignments should be also the subject
of investigations in the near future.

References

1. Perera, D., Kay, J., Koprinska, I., Yacef, K., Zäıane, O.R.: Clustering and Sequen-
tial Pattern Mining of Online Collaborative Learning Data. IEEE T. Knowl. Data
En. 21, 759–772 (2009)

2. Romero, C., Ventura, S.: Educational Data Mining: a Survey from 1995 to 2005.
Expert Syst. Appl. 33, 135–146 (2007)

3. Tang, T., McCalla, G.: Smart Recommendation for an Evolving e-Learning System.
International Journal on E-Learning 4, 105–129 (2005)

4. Talavera, L., Gaudioso, E.: Mining Student Data to Characterize Similar Behavior
Groups in Unstructured Collaboration Spaces. In: Workshop on Artificial Intelli-
gence in CSCL, 16th European Conference on Artificial Intelligence , pp. 17–23
(2004)

754 D. Zakrzewska

5. Wang, F.: On Using Data-Mining Technology for Browsing Log File Analysis in
Asynchronous Learning Environment. In: Conference on Educational Multimedia,
Hypermedia and Telecommunications, pp. 2005–2006 (2002)

6. Minaei-Bidgoli, B., Tan, P., Punch, W.: Mining Interesting Contrast Rules for a
Web-Based Educational System. In: The Twenty-First International Conference
on Machine Learning Applications, pp. 1–8 (2004)

7. Shen, R., Han, P., Yang, F., Yang, Q., Huang, J.: Data Mining and Case-Based
Reasoning for Distance Learning. Journal of Distance Education Technologies 1,
46–58 (2003)

8. Garćıa, E., Romero, C., Ventura, S., de Castro, C.: An Architecture for Making
Recommendations to Courseware Authors Using Association Rule Mining and Col-
laborative Filtering. Use Model. User-Adap. 19, 99–132 (2009)

9. Zakrzewska, D.: Cluster Analysis for Building Personalized e-Learning System. Pol.
J. Environ. Stud. 16, 330–334 (2007)

10. Zakrzewska, D.: Cluster Analysis in Personalized e-Learning Systems. In: Nguyen,
N.T., Szczerbicki, E. (eds.) Intelligent Systems for Knowledge Management. Studies
in Computational Intelligence, vol. 252, pp. 229–250. Springer, Heidelberg (2009)

11. Alfonseca, E., Carro, R.M., Martin, E., Ortigosa, A., Paredes, P.: The Impact of
Learning Styles on Student Grouping for Collaborative Learning: a Case Study.
Use Model. User-Adap. 16, 377–401 (2006)

12. Xu, D., Wang, H., Su, K.: Intelligent Student Profiling with Fuzzy Models. In:
HICSS 2002, Hawaii (2002)

13. Viola, S.R., Graf, S., Kinshuk, Leo, T.: Investigating Relationships within the In-
dex of Learning Styles: a Data Driven Approach. Interactive Technology & Smart
Education 4, 7–18 (2007)

14. Han, J., Kamber, M.: Data Mining. Concepts and Techniques, 2nd edn. Morgan
Kaufmann Publishers, San Francisco (2006)

15. Brusilovsky, P.: Adaptive Hypermedia. Use Model. User-Adap. 11, 87–110 (2001)
16. Carver, C.A., Howard, R.A., Lane, W.D.: Addressing Different Learning Styles

through Course Hypermedia. IEEE T. Educ. 42, 33–38 (1999)
17. Kuljis, J., Liu, F.: A Comparison of Learning Style Theories on the Suitability for

Elearning. In: Proc. of IASTED Conference on Web Technologies, Applications,
and Services, pp. 191–197. ACTA Press (2005)

18. Felder, R.M., Silverman, L.K.: Learning and Teaching Styles in Engineering Edu-
cation. Eng. Educ. 78, 674–681 (1988)

19. ILS Questionnaire, http://www.engr.ncsu.edu/learningstyles/ilsweb.html
20. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-

niques, 2nd edn. Morgan Kaufmann Publishers, San Francisco (2005)
21. Zakrzewska, D.: Validation of Cluster Analysis Techniques for Students’ Group-

ing in Intelligent e-Learning Systems. In: Proc. of 14th International Congress of
Cybernetics and Systems of WOSC, Wroclaw, Poland, pp. 893–901 (2008)

http://www.engr.ncsu.edu/learningstyles/ilsweb.html

Finding and Certifying Loops�

Harald Zankl1, Christian Sternagel1, Dieter Hofbauer2, and Aart Middeldorp1

1 University of Innsbruck, Innsbruck, Austria
2 Berufsakademie Nordhessen, Bad Wildungen, Germany

Abstract. The first part of this paper presents a new approach for au-
tomatically proving nontermination of string rewrite systems. We encode
rewrite sequences as propositional formulas such that a loop can be ex-
tracted from a satisfying assignment. Alternatively, loops can be found
by enumerating forward closures. In the second part we give a formal-
ization of loops in the theorem prover Isabelle/HOL. Afterwards, we use
Isabelle’s code-generation facilities to certify loops. The integration of our
approach in CeTA (a program for automatic certification of termination
proofs) makes it the first tool capable of certifying nontermination.

Keywords: Rewriting, nontermination, certification.

1 Introduction

Proving termination of term rewrite systems is a challenging endeavor since it
is undecidable in general. Nonetheless, there are many powerful algorithms that
are able to automatically prove termination of a huge class of TRSs as witnessed
by the international termination competition.1 This event (where several termi-
nation tools compete on a large set of problems) evolved in 2004. Since then, it
stimulated research and focused the efforts towards the automation of termina-
tion analysis. Surprisingly—compared to the vast amount of methods devoted to
termination—only few techniques concerning nontermination are known and im-
plemented. Nevertheless, checking for nontermination is especially useful for de-
bugging programs, since concrete counterexamples are helpful for tracking down
bugs. Most nontrivial approaches in that direction aim to find looping reductions
and comprise ancestor graphs [28], narrowing [14], match-bounds [11,25], unfold-
ings [22], and transport systems [26]. The first automated approach [21] dealing
with nonlooping nonterminating systems was presented during the 2008 edition
of the termination competition.

The increasing complexity of proofs generated by termination tools makes
certification of their output more and more important. Since 2007 a certified cat-
egory is part of the termination competition. The participating tools have to gen-
erate proofs that can automatically be certified. Recent approaches for automatic
certification of termination proofs are Coccinelle/CiME [6], CoLoR/Rainbow [4],

� This research is supported by FWF (Austrian Science Fund) project P18763.
1
http://termination-portal.org/wiki/Termination_Competition

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 755–766, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://termination-portal.org/wiki/Termination_Competition

756 H. Zankl et al.

and IsaFoR/CeTA [24]. The first two use Coq [3] as theorem prover. Coccinelle
and CoLoR are Coq-libraries on rewriting whereas CiME and Rainbow transform
proof output of a termination tool into Coq-script using the respective library.
Afterwards, Coq is used to certify the result. CeTA uses Isabelle/HOL (Isabelle
for short) as theorem prover. IsaFoR (Isabelle Formalization of Rewriting) is
an Isabelle-library on rewriting and CeTA (Certified Termination Analysis) is
a program that certifies a termination proof directly (without calling a theorem
prover). It is generated from IsaFoR using Isabelle’s code-generation facilities [16].

In Section 2 we recall term rewriting and in Section 3 we present two powerful
methods to find loops for string rewriting. Afterwards, Sections 4 and 5 discuss
our Isabelle formalization for IsaFoR and our check-functions for CeTA that are
used to certify looping nontermination. An assessment of our contributions can
be found in Section 6 before ideas for future work are addressed in Section 7.

Parts of Section 3 were first announced in two separate notes by the authors
presented at the 9th and 10th International Workshop on Termination.

2 Preliminaries

We assume familiarity with term rewriting [2] in general and termination [29]
in particular. A signature F is a set of function symbols with fixed arities. Let
V denote an infinite set of variables disjoint from F . Then T (F ,V) forms the set
of terms over the signature F using variables from V . For a term t ∈ T (F ,V) the
size and number of function symbols of t is denoted by |t| and ‖t‖, respectively.
If t = f(. . .) then f is called the root of t. Rewrite rules are pairs of terms (l, r),
usually written as l → r, where l is not a variable and all variables of r appear
in l. Function symbols that appear as roots of left-hand sides are called defined.
A term rewrite system (TRS) is a finite set of rewrite rules. Contexts are terms
over the signature F ∪ {�} with exactly one occurrence of the fresh constant �

(called hole). The expression C[t] denotes the result of replacing the hole in C by
the term t. A substitution σ is a mapping from variables to terms and tσ denotes
the result of replacing the variables in t according to σ. Substitutions change only
finitely many variables (thus written as {x1/t1, . . . , xn/tn}). The rewrite relation
induced by a TRS R is a binary relation on terms denoted by→R with s →R t if
and only if there exist a rewrite rule l → r ∈ R, a context C, and a substitution σ
such that s = C[lσ] and t = C[rσ]. The (reflexive and) transitive closure of
→R is denoted by (→∗

R) →+
R. A TRS R is called strongly normalizing (SN) or

terminating if →+
R is well-founded. A sequence t1 →R · · · →R tn →R C[t1σ] is

called a loop of length n, written ([t1, . . . , tn], C, σ).
Next we recall the dependency pair framework [1,13,15,17]. The signature F

is extended with dependency pair symbols f � for every defined f , where f � has
the same arity as f , resulting in the signature F �. In examples we write F for f �.
If l → r ∈ R and u is a subterm of r with defined root then the rule l� → u� is a
dependency pair of R. Here l� and u� are the results of replacing the roots of l
and u by the corresponding dependency pair symbols. The set of dependency
pairs of R is denoted by DP(R).

Finding and Certifying Loops 757

A DP problem is a pair of TRSs (P ,R) such that the roots of the rules in P
do neither occur in R nor in proper subterms of the left- and right-hand sides
of rules in P . The problem is said to be finite if there is no infinite sequence of
the shape s1 →P t1 →∗

R s2 →P t2 →∗
R · · · . The main theorem underlying the

dependency pair approach states that termination of a TRS R is equivalent to
finiteness of the initial DP problem (DP(R),R).

To prove finiteness of a DP problem, DP processors are employed. A DP
processor is a function taking a DP problem as input while returning a set of DP
problems or “no” as output. For proving termination they need to be sound, i.e, if
all DP problems returned by a DP processor are finite then so is the original one.
To ensure that a DP processor can be used to prove nontermination it must be
complete, i.e., if one of the DP problems returned by the DP processor is not finite
then the original DP problem is not finite. Hence if only complete DP processors
are used and one returns “no” then the original TRS is nonterminating.

3 Finding Loops

A string rewrite system (SRS) is a TRS with unary function symbols only. In-
stead of a(b(c(x))) we write abc (i.e., the variable is implicit). For a string s we
denote the i-th symbol (1 � i � ‖s‖) in s by si, e.g., abc2 = b.

Example 1. Consider the SRS S = {ab → bbaa} which admits the looping re-
duction abb→S bbaab→S bbabbaa where the initial string abb is reached again
after two rewrite steps wrapped in the context C = bb� and instantiated by the
substitution σ = {x/aa}. Thus S admits the loop ([abb, bbaab], C, σ) of length 2.

The main benefit of the dependency pair approach (for finding loops) is that
leading contexts as in Example 1 are automatically removed by construction of
the dependency pairs [14], and as a result a looping reduction in a DP prob-
lem (P ,R) takes the form t →+

P∪R tσ. Our idea is to encode a looping rewrite
sequence within the DP framework in SAT using a matrix of dimension m × n
where (0, 0) denotes the top left entry and (m− 1, n− 1) the bottom right one.
Every row in the matrix corresponds to a string and the intended meaning is that
there is a rewrite step from row i to row i+1. Nowadays many termination tools
interface SAT solvers which makes our contribution little effort to implement.

Example 2. The SRS from Example 1 admits the dependency pairs Ab → Aa
and Ab → A. In a 3 × 5 matrix a looping reduction is possible. The entries
marked with · indicate that any symbol might appear at these positions.

A b b · ·
A a b · ·
A b b a a

In the sequel we describe how to represent such matrices for a DP problem (P ,R)
in propositional logic where the following variables are used:2

2 The idea of encoding computation as propositional satisfiability goes back to [7].
Encoding cyclic structures in SAT originates from liveness properties in bounded
model checking [5].

758 H. Zankl et al.

Ma
ij symbol a occurs at position (i, j) of the matrix

Rl→r
i rule l → r is applied in row i of the matrix

pi the position (= column) in row i where the rule is applied (in
Example 2 we have p0 = 0 and p1 = 1)

ei pointing to the last symbol of the i-th string (in the example
e0 = 2, e1 = 2, and e2 = 4)

The variables pi and ei are not Boolean but represent natural numbers which are
implemented as lists of Boolean variables encoding the actual value in binary.
To distinguish them from proper propositional variables they are typeset in
boldface. Furthermore, operations such as >, �, =, and + are defined as usual
for such SAT encodings (see, e.g., [10]).

Exactly one function symbol: To get exactly one function symbol at each matrix
position, we ensure at least one symbol per entry and additionally ban multiple
symbols at the same entry. Note that dependency pair symbols (those in F � \F)
can only appear at column 0 of each row. This is encoded as follows (where
X = F if j > 0 and X = F � \ F otherwise):

αij =

(∨
a∈X

Ma
ij

)
∧
∧

a∈X

⎛
⎝Ma

ij →
∧

b∈X\{a}
¬M b

ij

⎞
⎠

Rule application: If a rule l → r applies in row i (Rl→r
i), the rule must be applied

correctly (appl→r
i) and entries unaffected by the rule application must be copied

from row i to row i + 1 (cpl→r
ij). The position of the rule application is fixed

by pi and satisfying cpl→r
ij ensures that only one rule is applied. Hence

βl→r
i = Rl→r

i →

⎛
⎝appl→r

i ∧
∧

0�j<n

cpl→r
ij

⎞
⎠

where in case of l → r ∈ R we set appl→r
i to∧

0�j<‖l‖
M

lj+1

i(pi+j) ∧
∧

0�j<‖r‖
M

rj+1

(i+1)(pi+j) ∧ (ei+1 + ‖l‖ = ei + ‖r‖) ∧ (ei � pi + ‖l‖)

and if l → r ∈ P then pi specializes to 0. The first (second) conjunct of appl→r
i

expresses that l (r) matches the string encoded in the matrix at row i (i + 1) at
the abstract position pi. The last but one conjunct demands that the end pointer
in line i+1 takes the value of ei−‖l‖+‖r‖. To ensure that the contracted redex
fits the string in line i the last conjunct must be satisfied.

The formula for cpl→r
ij is defined as � if j + max{‖l‖, ‖r‖} � n (these entries

would be outside of the matrix), as(
(j < pi) ∧

∧
a∈X

(Ma
ij ↔Ma

(i+1)j)

)
∨
(
(j � pi) ∧

∧
a∈F

(Ma
i(j+‖l‖) ↔Ma

(i+1)(j+‖r‖))

)

Finding and Certifying Loops 759

(where X = F �\F if j = 0 and X = F otherwise) if l → r ∈ R, and if l → r ∈ P
then the encoding specializes to the second disjunct (since we know that pi = 0).
All entries in the matrix before the position where the rule is applied are copied
from row i to i + 1. The second disjunct copies the entries after pi which are
unaffected when applying the rule. The positions of these entries change if the
applied rule is not length-preserving.

Initial string is reached again: To recognize a loop, the string in some row i > 0
has to match the one in row zero. Furthermore the end pointer for this row is
not allowed to be smaller than the one of row zero.

γ =
∨

0<i<m

⎛
⎜⎜⎝ ∧

a∈F�\F

(
Ma

00 ↔Ma
i0

)
∧
∧

0<j<n
a∈F

(
Ma

0j ↔Ma
ij

)
∧ (ei � e0)

⎞
⎟⎟⎠

All together: For a DP problem (P ,R) the formula loopm,n
P,R is defined as⎛

⎝ ∧
0�i<m

(∧
0�j<n

αij

)
∧ (ei < n) ∧ βi

⎞
⎠ ∧ γ

with βi =
∨

l→r∈P∪R Rl→r
i ∧

∧
l→r∈P∪R βl→r

i which expresses that one rule has
to apply in row i and that it is applied properly. The condition ei < n ensures
that all strings in the loop stay within the allowed matrix dimensions.

Different types of variables—concrete (Ma
ij) and abstract ones (Ma

ix) where x
is a list of propositional variables representing a natural number in binary—are
used. The latter are needed when a rule is applied at the abstract position pi. By
default, abstract variables M a

3[x1,x0]
and M a

3[y1,y0]
are different (since the variables

differ) and hence may take different values. If the assignments for x1 and y1 as
well as x0 and y0 are the same, we want to enforce that the variables take identical
values. In the implementation we test for every such abstract variable whether
it matches a concrete one and we identify them if that is the case in order to
obtain consistent results: ϕcons =

∧
Ma

ix

∧
0�j<n

(
(x = j)→ (Ma

ij ↔Ma
ix)
)
. This

allows to formulate the main theorem for encoding loops:

Theorem 1. A DP problem (P ,R) admits a loop of length at most m involving
strings of size at most n + 1 if the formula loopm+1,n

P,R ∧ ϕcons is satisfiable. �	

The previous theorem allows to implement a DP processor for nontermination.

Theorem 2 ([14, Theorem 26]). The DP processor that maps a DP problem
(P ,R) to “no” if (P ,R) loops and to {(P ,R)} otherwise is sound and complete.

�	

For our formalization the following lemma is essential (cf. Section 4).

Lemma 1. If P ⊆ DP(R) then any loop in the DP problem (P ,R) can be trans-
formed into a loop in R.

760 H. Zankl et al.

Proof. If P ⊆ DP(R) then any sequence t�1 →P∪R t�2 →P∪R t�3 →P∪R · · · can be
transformed into a sequence t1 →R C1[t2]→R C2[t3]→R · · · involving only the
original system by soundness of the dependency pair transformation [1]. �	

The restriction P ⊆ DP(R) does no harm since the initial DP problem (DP(R),R)
obviously satisfies it and all DP processors we employ only remove rules from P .

The next corollary combines Theorem 1 and Lemma 1. Note that strings in
the transformed loop might be of size larger than n due to additional contexts.

Corollary 1. If loopm+1,n
DP(R),R ∧ ϕcons is satisfiable then R admits a looping re-

duction of length at most m. �	

We state one nice property of the encoding from Theorem 1. Even for DP prob-
lems where all infinite minimal sequences are nonlooping our encoding may find
looping nonminimal sequences [27, Example 5.5].

An alternative characterization of loops can be given in terms of forward
closures. Define the set of right forward closures RFC(R) as the least set of
reductions containing R (as a set of one-step reductions) and being closed under
rewriting (if (t1, . . . , tn) ∈ RFC(R) and tn →R tn+1 then (t1, . . . , tn, tn+1) ∈
RFC(R)) and under right extension (if (t1, . . . , tn) ∈ RFC(R) and tn = sl1 for
some l1l2 → r ∈ R with non-empty l1 and l2 then (t1l2, . . . , tnl2, sr) ∈ RFC(R)).
E.g., the loop in Example 1 is a right forward closure. By Theorem 9 from [12],
R admits a loop if and only if there is a loop in RFC(R). Furthermore, ifR admits
a loop of length n then a loop of length at most n exists in RFC(R).

The set of left forward closures LFC(R) is defined symmetrically via left ex-
tension. By symmetry, either way we characterize loops of minimal length, but
minimal length loops in RFC(R) and in LFC(R) can have quite different widths,
where the width of a reduction is the size of the starting string. As a consequence,
we will search for loops both in RFC(R) and in LFC(R).

4 Formalizing Loops

In the next two sections we assume some familiarity with Isabelle [20]. All lemmas
and theorems within these sections have formally been proved in IsaFoR. Next
we sketch how we formalized loops (for full rewriting). Figure 1 lists the most
important function definitions and types. (Here we deviate from the syntax of
IsaFoR, to increase readability, e.g., the application of a substitution would be t·σ
rather than tσ.) A binary relation is a set of pairs. A loop is a triple consisting of
a list of terms, a context, and a substitution. For a given relation A, an element
a is strongly normalizing (SN_elt) if there is no infinite sequence s such that
s0 = a while for all i we have (si, si+1) ∈ A. Strong normalization of a relationA
(SN) holds if all elements of the domain are strongly normalizing with respect
to A. To guarantee that our definition of SN is suitable we proved an easy lemma
stating equivalence to the built-in Isabelle notion of well-foundedness (wf), i.e.,
SN(A) = wf(A−1). The rewrite relation →R induced by a TRS R is a binary
relation on terms closed under contexts and substitutions. The function rsteps

Finding and Certifying Loops 761

����� ’a brel = "(’a × ’a)set"

����� (’f,’v)loop = "(’f,’v)term list × (’f,’v)ctxt × (’f,’v)sub"

����	���
	 SN_elt ����

"SN_elt A a ≡ ¬(∃s. s0 = a ∧ (∀i. (si,si+1) ∈ A))"

����	���
	 SN ���� "SN(A) ≡ ∀a. SN_elt A a"

��	 rsteps :: "(’f,’v)term list ⇒ (’f,’v)term brel ⇒ bool"

���� "rsteps [t] R = True"

| "rsteps (s#t#ts) R = (s →R t ∧ rsteps (t#ts) R)"

��	 is_loop :: "(’f,’v)loop ⇒ (’f,’v)term brel ⇒ bool" ����

"is_loop (t#ts,C,σ) R = rsteps (t#ts@[C[tσ]]) R"

��	 ith :: "(’f,’v)loop ⇒ nat ⇒ (’f,’v)term" ����

"ith(t#ts,C,σ)i = (if i < length(t#ts)

then (t#ts)!i
else C[(ith(t#ts,C,σ)i−length(t#ts))σ])"

Fig. 1. Basic definitions

checks for a list of terms if between two consecutive terms there is a rewrite
step. Then the predicate is_loop is defined based on rsteps. The function ith
returns for a loop ([t1, . . . , tn], C, σ) and any i > 0 the i-th term in the sequence:

t1 →R · · · →R tn →R C[t1σ]→R · · · →R C[tnσ] →R C[C[t1σ]σ] →R · · ·

Using ith an infinite sequence s can be constructed, contradicting SN_elt. In
IsaFoR, the main task was to prove the following lemma (which amounts to
proving that rewriting is closed under contexts and substitutions).

Lemma 2. If is_loop � R then for all i we have ith(�)i →R ith(�)i+1. �	

We obtain the main theorem for the abstract formalization:

Theorem 3. If is_loop � R then →R is not terminating.

Proof. From is_loop � R we get an infinite sequence s by defining si = ith(�)i.
By Lemma 2 the sequence s satisfies ∀i. si →R si+1. Hence, for the first
term t of the loop � we obtain ¬SN_elt →R t and thus by definition of
SN, ¬SN(→R). �	

5 Certifying Loops

This section aims at certification, i.e., an automatic check if a suspected loop
indeed is a loop. For this task we use the code-generation [16] facilities of Isabelle
which allow to generate verified code. We provide an implementation of the
predicate is_loop from Section 4 by the check-function check_loop that tests
if a list of terms, a context, and a substitution form a loop. First we state the
main theorem for certifying loops:
Theorem 4. If check_loop � R then →set(R) is not terminating. �	

762 H. Zankl et al.

����� (’f,’v)rule = "(’f,’v)term × (’f,’v)term"

����� (’f,’v)trsL = "(’f,’v)rule list"

��	 rewrites ����

"rewrites (s,t) C σ (l,r) R = (s = C[lσ] ∧ t = C[rσ] ∧ (l,r) mem R)"

��	 rewrites_to

���� "rewrites_to [(s,C,σ,rule)] t R = rewrites (s,t) C σ rule R"

| "rewrites_to ((s,C,σ,rule)#(t,C’,σ’,rule’)#xs) u R = (

rewrites (s,t) C σ rule R ∧
rewrites_to ((t,C’,σ’,rule’)#xs) u R)"

��	 check_loop_d

���� "check_loop_d [] _ _ _ = False"

| "check_loop_d xs C σ R = rewrites_to xs C[(fst(hd xs))σ] R"

Fig. 2. Checking a loop with all details provided

This resembles Theorem 3, but on a constructive (executable) level. HereR is cho-
senas a list andset transformsa list into a set.The reason is that for lists executable
code can be generated but for sets not. Before considering check_loopwe focus on
a simpler task, namely check_loop_dwhere more details of the loop are supplied.
In the lemma below, the list xs contains the full information for every rewrite step
s →R t, i.e., the context C, the substitution σ, and the rewrite rule l → r such
that s = C[lσ] →R C[rσ] = t (cf. Figure 2 for the definition of check_loop_d
and the functions it relies on). Using check_loop_d no further information must
be computed and certification of a candidate loop is already possible:

Lemma 3. If check_loop_d xs C σ R then →set(R) is not terminating.

Proof. The abstract formalization can be linked to the concrete implementation:
If rewrites_to xs t R then rsteps (map fst xs@[t]) (set(R)). By unfolding
the definitions of check_loop_d and is_loop, and using Theorem 3, the proof
concludes. �	
The main drawback of the function check_loop_d is that it requires all informa-
tion about the rewrite steps. To the best of our knowledge not a single termination
prover provides all these details. To make the certification of loops more appealing
and user-friendly we turn our focus on the function check_loop again. Here for
every rewrite step s →R t the context C, the substitution σ, and the rewrite rule
l → r such that s = C[lσ] and t = C[rσ] are computed internally.

A function get s tR computes Some(C, σ, (l, r)) if there is a rewrite step from s
to t involving C, σ, and l → r ∈ R. Hence get has to test for all rules l → r ∈ R
if for any context C in s there is a substitution σ satisfying s = C[lσ] and t =
C[rσ].3 To find this substitution we had to implement matching. With the help
of get a function get_list returns the necessary information for a sequence of
rewrite steps and get_loop computes all details for a looping reduction. Finally
the function check_loop just calls check_loop_d on the output of get_loop.
3 If s →{l→r} t and s = C[lσ] then t = C[rσ] holds for free by our definition of TRS.

To handle systems that violate the variable condition we demand both conditions.

Finding and Certifying Loops 763

6 Experiments

The first part of this section evaluates the power of our approaches to find loops
for SRSs. The second part focuses on certifying loops for SRSs and TRSs.

In our tests we considered the 1391 TRSs and 732 SRSs from the Termination
Problems Data Base version 5.0 (TPDB). All tests have been performed on
a server equipped with eight dual-core AMD Opteron R© processors 885 running
at a clock rate of 2.6 GHz and on 64 GB of main memory at a time limit of 60 s.

Finding Loops: We integrated the encoding from Section 3 into TTT2 [19] which
was configured such that propositional formulas were solved by MiniSat [9] after
a satisfiability-preserving transformation to CNF [23]. (Using the SMT solver
Yices [8] as back-end produced slightly worse results.)

The implementation of the encoding differs from the presentation in Section 3
for reasons of readability. Our experiments showed that nontermination proving
power can be slightly (i.e., a gain of about 10%) extended by addressing the
following issues. Mutual exclusion of the Ma

ij variables can be expressed more
concisely. After fixing an order on the variables, the property that at most one of
the variables x1, . . . , xn can be satisfied, is expressed by xi → ¬xi+1 ∧ · · · ∧ ¬xn

for all 1 � i < n. Due to mutual exclusion of the Ma
ij variables, all bi-implications

occurring in subformulas of loopm,n
P,R can safely be replaced by implications. The

encoding contains the requirement ei+1 + ‖l‖ = ei + ‖r‖ where “=” could be
weakened to “�”. (This corresponds to cutting parts of the substitution.) How-
ever, due to the increased search space the more restrictive version performs
better. To reduce the search space, fixing pi < min{3 + i ∗ max

l→r∈R
{‖l‖, ‖r‖}, n}

applies rewrite rules close to the root in the first few rows.
Before applying the loop-finder, TTT2 uses termination methods like matrix

interpretations [10] and bounds [18] to preprocess DP problems. Sometimes
these methods suffice to prove termination and often they simplify DP prob-
lems. Heuristics for encoding loops try matrices of different dimensions ranging
from 10× 10 up to 25× 25. Most successful proofs only take a few seconds.

As an alternative, an enumeration of looping forward closures (cf. Section 3) is
implemented in KnockedForLoops (KFL), a tool developed by the third author.
It is based on a simple brute force, breadth first search strategy. To overcome the
problem with excessive memory consumption, we employ bounds on the width of
forward closures, i.e., bounds on the number of extension steps. By a concurrent
search both in RFC(R) and in LFC(R) with different width bounds, many long
loops with small width can be exhibited. As a simple combinatorial optimization,
we disregard reductions with a rewrite step to the left of the previous step in
case these steps do not overlap (since those two steps would commute).

We compare our implementations with three powerful nontermination ana-
lyzers, namely the 2007 version of Matchbox [25] specialized to nontermination
(enumerations of forward closures, reversing, transport systems), nonloop [21],
and the 2008 edition of NTI [22]. Earlier versions of Matchbox and NTI par-
ticipated in the Standard SRS category of the 2007 competition and nonloop
did so in 2008. These tools were (apart from TTT2) the most powerful ones for

764 H. Zankl et al.

Table 1. Finding and certifying loops

732 SRSs 1391 TRSs
tool KFL /CeTA Matchbox nonloop NTI TTT2 /CeTA TTT2 /CeTA
no 158 / 158 149 93 67 97 / 97 203 / 203

time 34853/ 6 35441 37855 39508 23039/ 3 25898/ 3
time (avg.) 2.45 /0.03 3.10 5.73 5.78 11.61/0.02 0.19 /0.01

nontermination in this division. The left part of Table 14 presents a compari-
son of the provers where the row labeled no shows the number of successfully
found/certified nontermination proofs, time refers to the accumulated total time
used by the tool in seconds and time (avg.) displays the average time needed
for successfully finding/certifying a nontermination proof. The columns labeled
CeTA are explained in the next subsection. We note that the algorithm underlying
NTI performs much better for terms than for strings (cf. [22]) and that the main
aim of nonloop is establishing nonlooping nontermination. In our experiments
KFL subsumes Matchbox, NTI, and TTT2. Only nonloop can disprove nine systems
terminating which KFL misses. We anticipate that these systems are nonlooping
nonterminating. Most remarkably, KFL finds a loop of length 80 and width 21
for the system Gebhardt/10 from TPDB, the termination status of which has
been—at least to the authors’ knowledge—open for several years.

Certifying Loops: Our contribution amounts to approximately 500 lines of
Isabelle code that were added to IsaFoR (theory Loop). This includes the abstract
formalization of loops and both approaches for certifying loops (the detailed
one using check_loop_d and the user-friendly one based on check_loop). The
key concept for certification presented here, is the code-generation mechanism
of Isabelle (currently we export verified Haskell code). Thus the whole certifier
consists of a bunch of automatically generated sources and a main file that
just calls the check function on a given problem and proof. This paper refers to
version 1.01 of CeTA the input format of which can be found at its website.5 When
calling CeTA, two arguments have to be supplied, namely the input problem and
the proof attempt. The tool then tests if the specified proof attempt corresponds
to a loop and terminates with exit code 0 in case of success and exit code 1 if
the input could not be proved to be a loop.

Considering Table 1 again (this time only the columns CeTA) separate empirical
data for certifying loops for 732 SRSs and 1391 TRSs is given.6 For the columns
labeled XXX/CeTA the tool XXX was used to find loops which CeTA then had to
certify. The row labeled no indicates the number of successfully certified systems
and time shows the accumulated time in seconds for certifying loops. The certifier
was just called for the successfully found loops but still this number demonstrates
4 Experiments are available from http://cl-informatik.uibk.ac.at/ttt2/loops/
5
http://cl-informatik.uibk.ac.at/software/ceta/

6 For completeness we mention how TTT2 finds loops for TRSs: Apart from the ap-
proach proposed in [22] two trivial methods are employed (test for fresh variables
on right-hand sides and test if a rule is self-embedding).

http://cl-informatik.uibk.ac.at/ttt2/loops/
http://cl-informatik.uibk.ac.at/software/ceta/

Finding and Certifying Loops 765

that the overhead for certification is negligible. This is remarkable, since the
certifier has to compute for every two consecutive terms s and t in the loop a
context C, a substitution σ, and a rewrite rule l → r ∈ R such that indeed
s = C[lσ] →R C[rσ] = t. We conjecture that CeTA’s efficiency is mainly due to
code generation. (For a comparison in run time with other certifiers see [24].)
CeTA could certify all 158 (97) SRSs and 203 TRSs nonterminating for which
KFL (TTT2) and TTT2 provided a nontermination proof, respectively.

7 Conclusion and Future Work

This paper presents two methods for finding loops in SRSs. Since the encoding
from Section 3 takes parameters for the length of looping sequences and the
maximal size of strings occurring within the reduction it is especially suitable
to find short(est) loops. This eases the task of debugging since the reason for
nontermination is concisely represented. Our experiments revealed that detect-
ing loops by enumerating forward closures is powerful. In the second part we
formalized strong normalization in the theorem prover Isabelle and sketched how
our contribution allows to generate verified code capable of certifying loops. The
thereby generated check-function was incorporated into CeTA. Since CeTA is freely
available our contribution allows any termination tool to certify its loop output.

Both contributions may be further investigated. One question concerning Sec-
tion 3 is whether the encoding can be lifted from strings to terms. Concerning
the formalization of loops one could try to incorporate the approach from [21]
and also formalize nonlooping nontermination. It has to be clarified if from the
output provided by nonloop the i-th term in a nonterminating sequence can be
extracted easily. This issue will then make the task either easy or undoable.

Acknowledgments. We would like to thank René Thiemann for exploring the
code-generation facilities of Isabelle and Johannes Waldmann for helpful com-
ments and providing a version of Matchbox’07 specialized to nontermination.

References

1. Arts, T., Giesl, J.: Termination of Term Rewriting Using Dependency Pairs.
TCS 236(1-2), 133–178 (2000)

2. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

3. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development;
Coq’Art: The Calculus of Inductive Constructions. In: Texts in Theoretical Com-
puter Science. An EATCS Series (2004)

4. Blanqui, F., Delobel, W., Coupet-Grimal, S., Hinderer, S., Koprowski, A.: CoLoR,
a Coq Library on Rewriting and Termination. In: WST, pp. 69–73 (2006)

5. Clarke, A., Biere, A., Raimi, R., Zhu, Y.: Bounded Model Checking Using Satisfi-
ability Solving. FMSD 19(1), 7–34 (2001)

6. Contejean, E., Courtieu, P., Forest, J., Pons, O., Urbain, X.: Certification of Au-
tomated Termination Proofs. In: Konev, B., Wolter, F. (eds.) FroCos 2007. LNCS
(LNAI), vol. 4720, pp. 148–162. Springer, Heidelberg (2007)

766 H. Zankl et al.

7. Cook, S.: The Complexity of Theorem-Proving Procedures. In: STOC, pp. 151–158
(1971)

8. Dutertre, B., de Moura, L.: A Fast Linear-Arithmetic Solver for DPLL(T). In: Ball,
T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006)

9. Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

10. Endrullis, J., Waldmann, J., Zantema, H.: Matrix Interpretations for Proving Ter-
mination of Term Rewriting. JAR 40(2-3), 195–220 (2008)

11. Geser, A., Hofbauer, D., Waldmann, J.: Termination Proofs for String Rewriting
Systems via Inverse Match-Bounds. JAR 34(4), 365–385 (2005)

12. Geser, A., Zantema, H.: Non-Looping String Rewriting. TIA 33(3), 279–302 (1999)
13. Giesl, J., Thiemann, R., Schneider-Kamp, P.: The Dependency Pair Frame-

work: Combining Techniques for Automated Termination Proofs. In: Baader, F.,
Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 301–331. Springer,
Heidelberg (2005)

14. Giesl, J., Thiemann, R., Schneider-Kamp, P.: Proving and Disproving Termination
of Higher-Order Functions. In: Gramlich, B. (ed.) FroCos 2005. LNCS (LNAI),
vol. 3717, pp. 216–231. Springer, Heidelberg (2005)

15. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and Improving
Dependency Pairs. JAR 37(3), 155–203 (2006)

16. Haftmann, F.: Code Generation from Specifications in Higher Order Logic. PhD
Thesis, Technische Universität München (2009)

17. Hirokawa, N., Middeldorp, A.: Automating the Dependency Pair Method.
I&C 199(1-2), 172–199 (2005)

18. Korp, M., Middeldorp, A.: Match-Bounds Revisited. I&C (2009),
doi:10.1016/j.ic.2009.02.010

19. Korp, M., Sternagel, C., Zankl, H., Middeldorp, A.: Tyrolean Termination Tool 2.
In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 295–304. Springer, Heidelberg
(2009)

20. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer,
Heidelberg (2002)

21. Oppelt, M.: Automatische Erkennung von Ableitungsmustern in nichtterminieren-
den Wortersetzungssystemen. Master’s Thesis, HTWK Leipzig, FH (2008)

22. Payet, É.: Loop Detection in Term Rewriting Using the Eliminating Unfoldings.
TCS 403(2-3), 307–327 (2008)

23. Plaisted, D., Greenbaum, S.: A Structure-Preserving Clause Form Translation.
JSC 2(3), 293–304 (1986)

24. Thiemann, R., Sternagel, C.: Certification of Termination Proofs Using CeTA. In:
Berghofer, S., et al. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 452–468. Springer,
Heidelberg (2009)

25. Waldmann, J.: Matchbox:ATool for Match-Bounded StringRewriting. In: vanOost-
rom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 85–94. Springer, Heidelberg (2004)

26. Waldmann, J.: Compressed Loops, Draft (2007),
http://dfa.imn.htwk-leipzig.de/matchbox/methods/loop.pdf

27. Zankl, H.: Lazy Termination Analysis. PhD Thesis, University of Innsbruck (2009)
28. Zantema, H.: Termination of String Rewriting Proved Automatically. JAR 34(2),

105–139 (2005)
29. Zantema, H.: Termination. In: TeReSe (ed.) Term Rewriting Systems. Cambridge

Tracts in Theoretical Computer Science, vol. 55, pp. 181–259. Cambridge Univer-
sity Press, Cambridge (2003)

http://dfa.imn.htwk-leipzig.de/matchbox/methods/loop.pdf

Vertex Ranking with Capacity

Ruben van der Zwaan�

Department of Quantitative Economics, Maastricht University
P.O. Box 616, 6200 MD Maastricht, The Netherlands

r.vanderzwaan@maastrichtuniversity.nl

Abstract. Vertex ranking has many practical applications, ranging from
VLSI layout and sparse matrix factorization to parallel query processing
and assembly of modular products.

Much research has been done on vertex ranking and related problems,
polynomial time algorithms are known for a wide variety of graph classes
as well as NP-hardness has been shown for other graph classes. In this
paper we propose an extension to vertex ranking. Vertex ranking has
many applications in computing a parallel schedule, but there is the
assumption that the amount of parallel capacity is unbounded. Many
applications do have restricted capacity, such as the number of processors
or machines. Therefore we introduce vertex ranking with capacity.

In this paper we show that vertex ranking and vertex ranking with
capacity do not have a polynomial sized kernel, unless all coNP-complete
problems have distillation algorithms. Having to deal with the NP-
hardness of both problems, we give, to our knowledge, the first O∗(2n)
time exact algorithm for vertex ranking and use this for devising an
O∗(2.5875n) time algorithm for vertex ranking with capacity. We also
show that we can transform vertex rankings to vertex rankings with ca-
pacity, and use this for a polynomial time algorithm that transforms an
f(n)-approximate vertex ranking to a vertex ranking with capacity of at
most f(n) + 1 times the optimum size. Lastly, give an log(c) additive
approximation for vertex ranking with capacity when restricted to trees
and extend this to graphs of bounded treewidth.

1 Introduction

Vertex ranking has many practical applications, especially in the area of par-
allelization. Applications include VLSI layout [16], sparse matrix factoriza-
tion [6,21], parallel query processing [11] and searching in partial orders [10].
Also, it can be applied to scheduling problems of assembly steps in manufactur-
ing problems [4] and assembly of modular products [16,17,24,25]. Vertex ranking
is equivalent to the minimum height elimination tree problem [4] and also known
as ordered coloring [19] and separation game [22].

For a simple, undirected and connected graph G = (V, E), a vertex ranking
is a function ϕ : V → N such that for any pair of vertices a and b for which

� The research was partly done while the author was at Utrecht University.

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 767–778, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

768 R. van der Zwaan

ϕ(a) equals ϕ(b), on every path connecting a and b there is a vertex z with
ϕ(z) > ϕ(a). The size of the ranking ϕ(G) is equal to the highest rank of all
vertices. The ranking number χr(G) is the minimum size over all rankings of G.

Most applications described use vertex ranking to compute a parallel schedule.
The parallel capacity is the amount of resources that can be used simultaneously.
When using vertex ranking to model a problem, there is the assumption that the
parallel capacity is very large, at least as large as the number of vertices. How-
ever, in many applications, such as multi-processor computing, parallel resources
are restricted. Therefore we propose an extension of vertex ranking: vertex rank-
ing with capacity. This variant allows a more natural and realistic representation
of problems like parallel query processing and scheduling problems.

For a simple and undirected graph G = (V, E) and a capacity c ∈ N, a capacity
vertex ranking is a vertex ranking such that no more than c vertices can be
assigned the same rank. The size of the ranking ϕ(G) is equal to the highest
rank of all vertices. The capacity ranking number χc

r(G) is the minimum size
over all rankings of G with capacity c.

Vertex ranking is the same as vertex ranking with capacity when the capacity
is equal or larger than the number of vertices. From this it follows that vertex
ranking with capacity is NP-complete when restricted to bipartite graphs or
chordal graphs [4,12].

Kernelization is an useful technique in the design of fixed-parameter tractable
algorithms. Fixed-parameter tractable is abbreviated as FPT. Having a kernel
it is easy to develop a FPT algorithm, and polynomial sized kernels in general
yield more efficient FPT algorithms and might serve as a preprocessing step
in applications. Kernelization is a method to transform any given instance for
a problem in polynomial time to an equivalent instance, with size and parameter
bounded by a function in the parameter.

Our results. There are several ways to deal with the hardness of vertex ranking
with capacity. We design in Section 4 an O∗(2.5875n) time and O∗(2n) space
algorithm. This algorithm is based on a dynamic programming algorithm for
vertex ranking, which we will show before. This is the first exact algorithm for
vertex ranking as far as we know. We also show that there is an exact O∗(9n)
time algorithm with only polynomial space to solve the vertex ranking problem.

There are quite a few graph classes for which vertex ranking can be solved
in polynomial time [1,8,9,14,15,16,20,24]. To build upon this work, we detail
a transformation in Section 5 from an input vertex ranking to a vertex ranking
with capacity. This transformation is a f(n) + 1-approximation, if the input
vertex ranking is f(n)-approximate where f(n) is any function with parameter n.

We prove in Section 6 that there is an log(c) additive approximation for vertex
ranking with capacity when restricted to trees. Further, this is generalized to
graphs of bounded treewidth.

Related work. There are many polynomial time algorithms for vertex ranking
for restricted graph classes such as interval graphs [1,8], permutation graphs [8],
trees [16,24], d-trapezoid graphs, circular-arc graphs [9], star like graphs [14],

Vertex Ranking with Capacity 769

block graphs [15] and asteroidal-triple free graphs [20]. There is an O(log2 n)-
approximation algorithm for general graphs [6].

Vertex ranking is NP-complete for chordal graphs [12], bipartite and co-
bipartite graphs [4]. Vertex Ranking is fixed parameter tractable [4], but note
that this proof uses the graph minor theorem and is non-constructive. The proof
does not state how to find all forbidden minors, and it might not be possible to
obtain all forbidden minors [13]. Added to this problem, the hidden constants
of the minor test algorithm are very large [2].

Vertex ranking is polynomial time solvable on graphs of bounded
treewidth [18]. Unfortunately, the polynomials are very large. For example, for
graphs of bounded treewidth 2, we can determine the vertex ranking number
in O(n20) time and for bounded treewidth 3 this increases sharply to O(n40)
time. There are other generalizations of vertex ranking, c-vertex ranking [18,26]
and weighted vertex ranking [12].

2 Preliminaries

Let N be the set of natural numbers greater or equal to 1. We only consider
simple, undirected graphs G = (V, E). Let d(v) be the degree of vertex v. We
denote with n and m the number of vertices and edges, respectively. Let |ϕ| be
the size of a ranking ϕ.

The subgraph of G = (V, E) induced by S ⊆ V is denoted by G[S]. An
induced subgraph G[S] is a connected component if G[S] is connected, and
G[S∪v] is disconnected for any v ∈ V \S. Let P (V, s) denote the set of connected
components in G[V \ {s}]. A component independent set is a set with at most
one vertex from each connected component in a graph. We denote all component
independent sets in a graph G with I(G). A contracted subgraph G{S} of G is
the graph obtained by contracting any edge that does not have both endpoints
in S, until all edges have both endpoints in S.

Definition 1. A tree decomposition of G is a pair (X, T), where T is a tree
and X is a family of bags. The bags Xi are identified with the nodes of the tree.
Every bag Xi contains a subset of V such that:

(1) For each vertex v ∈ V, ∃Xi ∈ X with v ∈ Xi.
(2) For each edge {u, v} ∈ E, ∃Xi ∈ X with u ∈ Xi and v ∈ Xi.
(3) For each vertex v ∈ V , the collection of bags containing v forms a connected

subtree of T .

The width w(X, T) of a tree decomposition (X, T) of G is equal to the size of
its largest bag minus one. The treewidth tw(G) of G is then the minimum width
over all tree decompositions of G.

3 Kernelization

Kernelization is a technique for designing FPT algorithms, especially polynomial
sized kernels are of interest for practical algorithms. In some sense kernelization

770 R. van der Zwaan

is a formalized way of preprocessing with guarantees. No constructive FPT algo-
rithm for vertex ranking is known yet. We observe that vertex ranking and vertex
ranking with capacity do not have a kernel of size polynomial in the number of
ranks, unless all coNP-complete problems have distillation algorithms [5].

Observation. Vertex ranking and vertex ranking with capacity do not have
a polynomial sized kernel, unless all coNP-complete problems have distillation
algorithms.

Proof. From [5, Lemma 7] we note that the complement of vertex ranking is
compositional. In combination with the fact that a problem has a polynomial
sized kernel if and only if its complement has a polynomial sized kernel, we
conclude that vertex ranking has no polynomial sized kernel, unless all coNP-
complete problems have distillation algorithms. Vertex ranking with capacity is
a generalization of vertex ranking, so this result extends to vertex ranking with
capacity. �	

Although the existence of distillation algorithms for all coNP-complete problems
is not (yet) related to any more well known complexity conjecture like P=NP,
it gives some insight in the difficulty of the problem. Finding a polynomial sized
kernel for vertex ranking now implies complexity theoretical consequences, and
not only the existence of a more practical algorithm.

4 Exact Ranking of Graphs

In this section we give, to our knowledge, the first exact algorithm for vertex
ranking. Our algorithm runs in O(2n2n) time and and requires O(n2n) space.
We use this algorithm to construct an O(n22.5874n) time and O(n2n) space
algorithm to solve vertex ranking with capacity exactly. Also, an O∗(9n) time
algorithm with polynomial space is presented.

We start with giving a recursive formula for the vertex ranking number for a
given graph G.

Theorem 1. Let G = (V, E) be an undirected connected graph:

χr(G) =

{
1 if |G| = 1
mins∈V maxS∈P (V,s) χr(G[S]) + 1 otherwise

(1)

Proof. In every connected graph G and for every ranking ϕ of G, there is exactly
one vertex with the highest rank. Since we try every possible vertex to have the
highest rank in every connected subgraph, we try the optimal choice. Connected
components are independent because there are no paths between vertices in
different connected components. If a graph has several connected components,
we can safely recurse on each component. �	

Vertex Ranking with Capacity 771

Next, we turn the formula given in Theorem 1 into an algorithm. This algorithm
serves as a basis for the algorithm for vertex ranking with capacity.

Theorem 2. There is an O(n22n) time and O(n2n) space algorithm for com-
puting the optimal vertex ranking of a graph G = (V, E) with n vertices.

Proof. We use dynamic programming to solve the equation in Theorem 1. For
every subset S ⊆ V we store an entry with χr(S) as value in a table, that
is computed from the bottom-up. For every subgraph S ⊆ V , χr(S) can be
calculated using only the vertex ranking number of connected subgraphs S′ ⊂ S.
If for all subsets that are smaller than S the vertex ranking number is stored in
the table, we can compute χr(S) in O(n2) time. For every vertex s ∈ S we find
all connected components P (V, s). This clearly takes O(n2) time for all s ∈ S.
Looking up an entry in our table can be done in O(n) time. For all vertices t ∈ V
we can make an entry in the table χr(t) = 1. There are at most 2n connected
subsets, and the algorithm will therefore take O(n22n) time. The table has at
most 2n entries, and every entry takes at most O(n) space, so the algorithm uses
O(n2n) space. �	

Unfortunately, although vertex ranking with capacity is similar to vertex rank-
ing, vertex ranking with capacity has less desirable properties than vertex rank-
ing has. Vertex ranking with capacity also has the property that at most one
vertex has the highest rank in each connected subgraph. But in contrast to ver-
tex ranking, we cannot recurse on connected components. Separate connected
components still influence each other, since only a certain amount of vertices can
be assigned the same rank.

For every subgraph there is one vertex of the highest rank in each connected
component, and at most c vertices of any rank. Therefore, we can formulate the
vertex ranking number with capacity as follows in Theorem 3. In Theorem 3
I(G) is the set containing all component independent sets of G, i.e. all sets of
vertices such that there is at most one vertex of each connected component of G
in this set.

Theorem 3. Let G = (V, E) be an undirected graph:

χc
r(G) =

{
1 if |V | = 1
1 + min(|I|≤c)∈I(G) χc

r((G[V − I]) otherwise
(2)

Proof. In every connected graph there is one vertex with the highest rank. Since
we try every possible vertex as highest rank in every connected subgraph, we
try the optimal one. Unlike Vertex Ranking, connected components are not in-
dependent. We cannot recurse on connected components.

We try all component independent sets of at most cardinality c in every sub-
graph. No vertices in the same connected component (induced by removing all
higher ranking vertices) are assigned the same rank, and at most c vertices are
assigned the same rank. �	

772 R. van der Zwaan

Theorem 4. There is an algorithm for a graph G = (V, E) to calculate χc
r(G)

in O(n22.5874n) time and O(n2n) space.

Proof. We use the same dynamic programming approach as in Theorem 1. Note
that in I(G) we can ignore components of size one or two. If for any I ∈ I(G),
|I| < c then we can deterministically pick vertices from components of size two
or one if there are no components of size two in G. Let C be all connected
components in G larger than two.

We can bound I(V) with:

I(V) ≤
(
|C|
c

) ∏
Ci∈C

|Ci|. (3)

There are some extra bounds we will use later, |C| ≤ |V |
3 and

∑
Ci∈C |Ci| ≤ |V |.

This allows us to bound the product of all component sizes:∏
Ci∈C

|Ci| ≤ 3|V |/3. (4)

We now bound I(V):

I(V) ≤
(
|V |/3

c

)
3|V |/3 ≤

|V |/3∑
c=1

(
|V |/3

c

)
3c = 4|V |/3, (5)

and

T (n) ≤
n∑

i=3

(
n

i

)
4i/3 = (3

√
4 + 1)n ≤ 2.5875n. (6)

Deterministically picking vertices from components of size one and two takes at
most O(n2) time. For each set of c vertices we pick, it takes O(n2) time to find
the new connected components. From this follows that our algorithm runs in
O(n22.5875n) time. There are at most 2n subgraphs, and every subgraph takes
at most n space. �	

The previous algorithms used exponential time and space. Because space is phys-
ically restricted by the machine the computation runs on but time is not, we
present an exponential time but polynomial space algorithm. We show that ver-
tex ranking and vertex ranking with capacity can both be solved exactly with
polynomial space and O∗(9n) time. Although the base of the exponent is quite
high, this is vastly better than a naive O(nn) time branch algorithm by trying
all different ranks for each vertex.

Theorem 5. For a given graph G = (V, E) there is an algorithm that calcu-
lates χr(G) or χc

r(G) in O∗(9n) time and polynomial space.

Proof. A ranking of a graph G with k ranks can also be described as a sequence
of independent sets I1...Ik, where Ij is the set with all vertices of rank j for all

Vertex Ranking with Capacity 773

j ≤ k. For a graph G there are 3n ways to split up the graph in three parts Im, S1

and S2 such that S1 =
⋃

i<k Ii, S1 =
⋃

j>k Ij , |S1| < n
2 , |S2| < n

2 and I, is an
independent set in G{Im ∪ S2}.

Vertices in S1 will be ranked with ranks strictly smaller than any vertex in Im

and S2. All vertices in S2 will be ranked with strictly higher ranks than any
vertex in Im. All vertices in Ik will be ranked with the same rank, since Im is
an independent set in G{Im ∪ S2} there are no paths between vertices in Im

through vertices of lower rank. Since we recurse on G{S2} we know that if there
is an path from two vertices in S2 through smaller ranks in Im or S1, there is an
edge in G{S2}.

For a graph G = (V, E) and Im an independent set in G{Im∪S2} the following
equation holds:

χr(G) = min
(S1,Ik,S2)=V

χr(G[S1]) + χr(G{S2}) + 1. (7)

To compute χr(G) for a graph G our algorithm works as follows, enumerate all
different partitions of V in set S1, Im and S2 such that Im is an independent set
in G{Im ∪S2}. We can compute in polynomial time in n if Im is an independent
set in G{Im ∪ S2} by checking if no vertex in Im has a neighbor also from Im

in G{Im ∪ S2}. Recurse on G[S1] and G{S2}.
Let T (n) denote the time needed to calculate χr(G) for a graph on n vertices

and let p(n) be the polynomial in n needed at each step. The recursion depth
of the algorithm is at most %log n&, because the number of vertices is at least
halved every recursive call.

T (n) ≤ 3n · 2 · T
(n

2

)
+ 3n · p (n) ≤ 2 ·

log n+1∏
i=0

3
n

2i +
log n+1∑

j=0

3
n

2j · p
(n

2j

)
(8)

2 ·
log n+1∏

i=0

3
n
2i = 2 · 3

∑ log n
i=0

n
2i ≤ 2 · 9n,

log n+1∑
j=0

3
n

2j · p
(n

2j

)
≤ 2 · 3n · p(n) (9)

T (n) ≤ 2 · 9n + 2 · 3n · p(n) (10)

The recursion depth of the algorithm is O(log n) and at most polynomial space
is required for all graphs at any recursion depth. Therefore, the algorithm uses
polynomial space. Our algorithm uses O∗(9n) time and polynomial space.

This algorithm can be easily extended to solve vertex ranking with capacity
using the same running time and space. We just have to restrict the size of Ik,
such that |Ik| ≤ c, where c is the capacity. �	

5 Approximation by Transformation

In this section we describe a transformation from a vertex ranking to a vertex
ranking with capacity. The resulting vertex ranking with capacity of the trans-
formation is at most f(n)+1 times the optimal capacity vertex ranking number
if the input vertex ranking was a f(n)-approximation.

774 R. van der Zwaan

Lemma 1. For any graph G = (V, E) and an f(n)-approximate vertex rank-
ing ϕ of G and any c ∈ N, we give an algorithm that approximates χc

r(G) within
a factor f(n) + 1.

Proof. Consider any graph G and an f(n)-approximate ranking ϕ and the rank-
ing ρ with capacity that we are constructing. We replace each rank r in ϕ by
%ar/c& ranks in ρ, where ar is the amount of vertices with rank r and c is the
capacity.

The total number of ranks in ρ is equal to
∑

r∈ϕ

⌈
ar

c

⌉
≤
∑

r∈ϕ
ar

c +1 = n
c +|ϕ|.

In combination with n
c ≤ χc

r, χr(G) ≤ χc
r and |ϕ| ≤ f(n) · χr(G), it follows that

|ρ| ≤ f(n) · χr(G) + n
c ≤ (f(n) + 1) · χc

r. �	

Using this transformation there exists a 2-approximation for the capacity rank-
ing number restricted to graphs for which a polynomial time algorithm is known,
such as trees and interval graphs. Further, there is an O(log2 n)-approximation
for general graphs by combining this transformation and the approximation al-
gorithm by Bodlaender et al. [6].

6 Trees

It is interesting to see how vertex ranking with capacity works when restricted to
trees. The analogues problem without capacity can be solved in linear time [24].
Simply transforming a ranking without capacity to one with capacity is not easy,
as shown in Figure 1. This example shows that there might be a large difference
in strategy to assign ranks to vertices between vertex ranking and vertex ranking
with capacity.

First we prove that finding a ranking with capacity is easy if the graph consists
of small connected components, secondly that every tree has a balanced vertex
separator. This separator can easily be found in O(n) time.

The following lemma is folklore.

Lemma 2. Every tree T = (V, E) has a balanced separator vertex x such that
T [V \ {x}] consists of connected components that are all smaller than %n/2&.

1

1

1

2 3 1 2

1
1

1

1

1
1

3

3

3

4213

1
1

1

2

2
2

Fig. 1. An example where the optimal vertex ranking (right) differs significantly from
the vertex ranking with capacity equal to four (left). In each case, one of the gray
vertices has to be assigned the highest rank or the vertex ranking and vertex ranking
with capacity are not minimum rankings.

Vertex Ranking with Capacity 775

Proof. Suppose such a vertex does not exist, but that y is the vertex of which
the removal results in multiple components such that the largest is as small as
possible. We denote the largest connected component in T [V \ {y}] as C, and
the rest as R. y has one adjacent vertex x in C. The removal of x would result
in C \ {x} and connected component R ∪ {y}. |C| > %n/2& and |R| < %n/2&
so |R ∪ {y}| ≤ %n/2& and if C \ {x} consists of one connected component, it is
one smaller than C. This is contradicting that the removal of y results in the
smallest largest connected component. �	

Lemma 3. For every graph G = (V, E) that consists of connected components
that are all smaller than %n/c&, χc

r(G) = %n/c&.

Proof. Consider a graph G = (V, E) that consists of connected components
smaller than %n/c&. There must be at least c connected components for this to
be true. Repeat the following procedure until the graph is empty: rank a vertex
from each of the largest c connected components with the highest rank. Remove
those vertices from the graph. The ranking is correct because every vertex in
each connected component is assigned different ranks, and at most %n/c& ranks
are used. %n/c& ≤ χc

r(G) and we have a ranking using %n/c& ranks, so we can
conclude that χc

r(G) = %n/c&. �	

Before we give an approximation algorithm and an algorithm for vertex ranking
with capacity for any capacity, we show that χ2

r(T) is easy to find and is just
dependent on the number of vertices in T .

Lemma 4. Given a connected tree T = (V, E) on n vertices, then χ2
r(T) =

%n−1
2 &+ 1.

Proof. For any tree T = (V, E) take the balanced separator vertex x, and assign
it the highest rank. Since every connected component after the removal of x is
smaller than %n

2 & we apply Lemma 3. %n−1
2 &+ 1 ≤ χc

r(G) for connected graphs,
and we have found a ranking using %n−1

2 & + 1 ranks. There is only one vertex
with the highest rank, and the remaining n − 1 vertices require at least %n−1

c &
different ranks, so χ2

r(T) ≥ %n
c & + 1. We conclude that χ2

r(G) = %n−1
2 & + 1 for

every connected tree T = (V, E). �	

For capacities at least three it is not as easy as the case with capacity equal to
two. However, we can also use the balanced vertex separators to find approxi-
mations.

Theorem 6. For vertex ranking with capacity restricted to trees there is an
log c-additive approximation algorithm that runs in O(n log c) time.

Proof. Consider a tree G = (V, E) and we want to find a vertex ranking with c-
capacity. We now recursively find balanced vertex separators until all connected
components are smaller than %n/c&. This takes at most log c steps of taking the
balanced vertex separator in each connected component. In each step no more
than c balanced vertex separators are removed, and at step i rank the vertices

776 R. van der Zwaan

removed at that step with %n/c&+ log c− i. In the situation that all connected
components are smaller than %n

c & we can apply Lemma 3. The connected compo-
nents can be ranked with %n

c & ranks. The balanced vertex separators are ranked
with log c ranks. %n/c& ≤ χr

r(G) < %n/c&+ log c.
Finding this approximation can be implemented in O(n log c) time. Finding

balanced vertex separators in each connected component costs at most O(n)
time at each step, and there are at most log c steps. �	

Now we extend our approximation algorithm for trees to graphs of bounded
treewidth. We assume that we are given a tree decomposition. For methods
to find tree decompositions we refer to the overviews on treewidth by Hans
Bodlaender [2,3].

Theorem 7. Given a graph G and tree decomposition (X, T) of G with
w(X, T) ≤ k, there is an ((k + 1) · (1 + c log c

n))-approximation algorithm than
runs in O(n2) time.

Proof. Given a graph G = (V, E) and a tree decomposition (X, T) with
w(X, T) ≤ k, we can use Theorem 6 to find a ranking ϕ of T such that
|ϕ| ≤ log c + %n

c &. Every node i ∈ T corresponds to a bag Xi = {x1, ..., xl} ∈ X .
Let o(Xi, v) be the index of v in bag Xi. The size of every bag Xi is at most k+1.
Now we construct ranking γ for G. Basically we expand every ranking in T to k+1
ranks in γ. The rank of a vertex v ∈ V is γ(v) = maxXi�v(k+1)(ϕ(i)−1)+o(v).
Ranking γ is correct because all vertices in every bag have different ranks and
for all two vertices of the same rank, they are separated by a bag of higher rank
in which all vertices have higher rank.

We use at most k + 1 ranks per bag, so we used at most k + 1 · (log c + %n
c &)

ranks. We can now prove our approximation ratio, we know that %n
c & ≤ χc

r(G),
therefore %n

c & ≤ χc
r(G) ≤ %n

c & · ((k + 1) · (1 + c log c
n)).

Obtaining ϕ from the tree decomposition takes at most O(n log c) time. For
every vertex v we need to look at most O(n) bags to determine γ(v) therefore
constructing γ from ϕ takes at most O(n2). �	

Observe that when c is bounded by a constant our algorithm is an O(k)-
approximation when n is sufficiently large.

7 Conclusions

We presented a new generalization of vertex ranking, a natural and practical
generalization. Aside from introducing vertex ranking with capacity, we gave
the first exact algorithm for vertex ranking of general graphs. For small graphs
these algorithms seem more practical than even the O(n40) time algorithm for
graphs of bounded treewidth 3. The transformation from vertex ranking to vertex
ranking with capacity provides a way to use the extensive work on vertex ranking.
For trees we gave a log c additive approximation algorithm, and generalized this
to an approximation algorithm for graphs of bounded treewidth.

Vertex Ranking with Capacity 777

Vertex ranking with capacity is fixed parameter tractable with the the capac-
ity and amount of ranks as parameters, since n ≤ ck, where c is the capacity and
k the amount of ranks. Perhaps it is more useful to ask if the following variation
is fixed parameter tractable. Given a graph G = (V, E) and integer k, can G be
ranked with

⌈
n
c

⌉
+ k ranks such that any rank is assigned to at most c vertices?

Is vertex ranking with capacity NP-complete when the capacity is bounded by
a constant? Is vertex ranking with capacity NP-complete when restricted to
trees?

We gave a O∗(2n) time algorithm for vertex ranking of general graphs, is
there a O∗(cn) time algorithm where 1 < c < 2? Another interesting question
is if there is a faster exact algorithm than O∗(9n) time with polynomial space.
Lastly, we will mention the problem of finding an efficient FPT algorithm for
vertex ranking. Basing this algorithm on current treewidth algorithms for vertex
ranking or invoking Courcelle’s theorem [7] seem to yield algorithms that have
prohibitively large constants.

Recently, Makino et al. [23] introduced minimum ranking spanning trees. Min-
imum ranking spanning trees are spanning trees of which the edge or vertex
ranking is minimal over all spanning trees of a graph. The result on vertex rank-
ing with 2-capacity on trees implies that if we want to find a minimum vertex
ranking spanning tree with 2-capacity, any spanning tree is such a tree. This
could be useful for practical applications where the parallel capacity is limited
to two. Is this an exception, or are there more vertex ranking problems that
become ’easy’ with a capacity constraint?

Acknowledgments. I thank Hans Bodlaender and Jesper Nederlof for the nu-
merous discussions on the topic of vertex ranking. In particular, I am grateful
to André Berger for proof reading and many suggestions for the presentation
of this paper. Suggestions and comments of the reviewers greatly improved the
quality of this paper. The original idea of vertex ranking with capacity is due to
Hans Bodlaender.

References

1. Aspvall, B., Heggernes, P.: Finding Minimum Height Elimination Trees for Interval
Graphs in Polynomial Time. BIT 34, 484–509 (1994)

2. Bodlaender, H.L.: A Tourist Quide through Treewidth. Acta Cybernetica 11, 1–23
(1993)

3. Bodlaender, H.L.: Discovering Treewidth. In: Vojtáš, P., Bieliková, M., Charron-
Bost, B., Sýkora, O. (eds.) SOFSEM 2005. LNCS, vol. 3381, pp. 1–16. Springer,
Heidelberg (2005)

4. Bodlaender, H.L., Deogun, J.S., Jansen, K., Kloks, T., Kratsch, D., Müller, H.,
Tuza, Z.: Rankings of Graphs. SIAM Journal on Discrete Mathematics 11, 168–
181 (1998)

5. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems with-
out polynomial kernels (Extended abstract). In: Aceto, L., Damg̊ard, I., Goldberg,
L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part
I. LNCS, vol. 5125, pp. 563–574. Springer, Heidelberg (2008)

778 R. van der Zwaan

6. Bodlaender, H.L., Gilbert, J.R., Hafsteinsson, H., Kloks, T.: Approximating
Treewidth, Pathwidth, Frontsize, and Minimum Elimination Tree Height. Jour-
nal of Algorithms 18, 238–255 (1995)

7. Courcelle, B.: Graph Rewriting: An Algebraic and Logic Approach. In: van
Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, pp. 194–242. El-
sevier, Amsterdam (1990)

8. Deogun, J.S., Kloks, T., Kratsch, D., Müller, H.: On Vertex Ranking for Permuta-
tions and Other Graphs. Discrete Applied Mathematics 98, 39–63 (1993)

9. Deogun, J.S., Kloks, T., Kratsch, D., Müller, H.: On the Vertex Ranking Problem
for Trapezoid, Circular-Arc and Other Graphs. Discrete Applied Mathematics 98,
39–63 (1999)

10. Dereniowski, D.: Edge Ranking and Searching in Partial Orders. Discrete Applied
Mathematics 156(13), 2493–2500 (2008)

11. Dereniowski, D., Kubale, M.: Efficient Parallel Query Processing by Graph Rank-
ing. Fundamenta Informaticae 69(3), 273–285 (2006)

12. Dereniowski, D., Nadolski, A.: Vertex Rankings of Chordal Graphs and Weighted
Trees. Information Processing Letters 98, 96–100 (2006)

13. Friedman, H., Robertson, N., Seymour, P.D.: The Metamathematics of the Graph
Minor Theorem. Contemporary Mathematics 65, 229–261 (1987)

14. Hsieh, S.: On Vertex Ranking of a Starlike Graph. Information Processing Let-
ters 82(5), 131–135 (2002)

15. Hung, R.-W.: Optimal Vertex Ranking of Block Graphs. Information and Compu-
tation 206(11), 1288–1302 (2008)

16. Iyer, A.V., Ratliff, H.D., Vijayan, G.: Optimal Node Ranking of Trees. Information
Processing Letters 28(12), 225–229 (1988)

17. Iyer, A.V., Ratliff, H.D., Vijayan, G.: Parallel Assembly of Modular Products an
Analysis. Information Processing Letters 28(5), 225–229 (1988)

18. Kashem, M.A., Zhou, X., Nishizeki, T.: Algorithms for Generalized Vertex-
Rankings of Partial k-Trees. Theoretical Computer Science 240, 407–427 (2000)

19. Katchalski, M., McCuaig, W., Seager, S.: Ordered Colourings. Discrete Mathemat-
ics 142(1-3), 141–154 (1995)

20. Kloks, T., Müller, H., Wong, C.K.: Vertex Ranking of Asteroid Triple-Free Graphs.
Information Processing Letters 68, 201–206 (1998)

21. Liu, J.W.H.: The Role of Elimination Trees in Sparse Factorization. SIAM Journal
on Matrix Analysis and Applications 11(1), 134–172 (1990)

22. Llewellyn, D.C., Tovey, C., Trick, M.: Local Optimization on Graphs. Discrete
Appl. Math. 23(2), 157–178 (1989)

23. Makino, K., Uno, Y., Ibaraki, T.: Minimum Edge Ranking Spanning Trees. In:
Kuty�lowski, M., Wierzbicki, T., Pacholski, L. (eds.) MFCS 1999. LNCS, vol. 1672,
pp. 398–409. Springer, Heidelberg (1999)

24. Schäffer, A.A.: Optimal Node Ranking of Trees in Linear Time. Information Pro-
cessing Letters 33(2), 91–96 (1989)

25. de la Torre, P., Greenlaw, R., Schäffer, A.A.: Optimal Edge Ranking of Trees in
Polynomial Time. Algorithmica 13, 592–618 (1995)

26. Zhou, X., Nagai, N., Nishizeki, T.: Generalized Vertex-Rankings of Trees. Infor-
mation Processing Letters 56(6), 321–328 (1995)

Author Index

Abdulla, Parosh Aziz 1
Aceto, Luca 141
Ambroziewicz, Albert 697
Antoniadis, Antonios 153

Babenko, Maxim A. 165
Bächle, Sebastian 29
Bednárek, David 176
Bieliková, Mária 721
Bille, Philip 188
Bodlaender, Hans L. 212
Bollig, Beate 224
Botterweck, Goetz 528
Bry, François 235, 247

Capobianco, Silvio 259
Chatti, Hatem 271
Comas, Marc 212
Courtieu, Pierre 283
Crochemore, Maxime 296
Cybula, Piotr 308

de Boer, Frank S. 200
Dechev, Damian 639
de Rougemont, Michel 685
Diks, Krzysztof 321
Duris, David 334

Ebrahimpour, Reza 612
Eckhardt, Alan 346
Even, Guy 358

Faro, Simone 370
Fearnley, John 382
Fernau, Henning 672
Finkel, Alain 394
Fulara, J ↪edrzej 407

Gagie, Travis 419
Ganian, Robert 428
Gbedo, Gladys 283
Ĝırba, Tudor 77
Gnecco, Giorgio 440
Gørtz, Inge Li 188
Gourvès, Laurent 271

Grabe, Immo 200
Grigore, Radu 528
Grigoriev, Alexander 452, 465

Härder, Theo 29
Harel, David 477
Harutyunyan, Hovhannes 489
Hliněný, Petr 428
Hofbauer, Dieter 755
Hyyrö, Heikki 515

Iliopoulos, Costas S. 296
Inenaga, Shunsuke 515
Ingolfsdottir, Anna 141

Jakubczyk, Krzysztof 407
Janota, Mikoláš 528
Jurdziński, Marcin 382

Kajsa, Peter 540
Kalnina, Elina 697
Kalnins, Audris 697
Kamali, Shahin 489
Kamiński, Marcin 503
Kolesnichenko, Ignat I. 165
Kontaki, Maria 47
Kotowski, Jakub 235
Kubica, Marcin 296
Kugler, Hillel 477
Kuželka, Ondřej 132

Lenzen, Christoph 61
Lin, Huimin 552
Lingas, Andrzej 153
Liu, Jia 552
Liu, Jun 564
Locher, Thomas 61
Lonati, Violetta 576
Loon, Joyce van 465

Majtás, L’ubomı́r 540
Manolopoulos, Yannis 47
Mansour, Yishay 71
Maoz, Shahar 477
Marchal, Bert 452

780 Author Index

Markert, Florian 112
Marques-Silva, Joao 528
Mathis, Christian 29
Mchedlidze, Tamara 588
Medina, Moti 358
Mesbah, Ali 16
Michel, Patrick 600
Middeldorp, Aart 755
Monnot, Jérôme 271
Mousavi, MohammadReza 141
Moussavi, Seyed Zeinolabedin 612

Narisawa, Kazuyuki 515
Navarro, Gonzalo 419
Nekrich, Yakov 419
Nierstrasz, Oscar 77

Oster, Sebastian 112
Otto, Friedrich 627

Papadopoulos, Apostolos N. 47
Pappalardo, Elisa 370
Paulusma, Daniël 503
Pirkelbauer, Peter 639
Pirklbauer, Guenter 651
Ṕı̌se, Michal 731
Poetzsch-Heffter, Arnd 600
Pons, Olivier 283
Pradella, Matteo 576

Radoszewski, Jakub 663
Raggett, Dave 96
Raible, Daniel 672
Razenshteyn, Ilya P. 165
Reniers, Michel A. 141
Roantree, Mark 564
Rytter, Wojciech 296, 663

Sangnier, Arnaud 394
Sanguineti, Marcello 440

Savani, Rahul 382
Schmidt, Karsten 29
Schreiber, Guus 108
Schürr, Andy 112
Segall, Itai 477
Sommer, Philipp 61
Śmia�lek, Micha�l 697
Stanczyk, Piotr 321
Sternagel, Christian 755
Straszak, Tomasz 697
Stroustrup, Bjarne 639
Subieta, Kazimierz 308
Symvonis, Antonios 588
Szeider, Stefan 503

Thilikos, Dimitrios M. 503

Uetz, Marc 465
Usotskaya, Natalya 452

van der Zwaan, Ruben 767
van Deursen, Arie 16
Vaneková, Veronika 709
van ’t Hof, Pim 503
Vieilleribière, Adrien 685
Vojtáš, Peter 346, 709
Vojtek, Peter 721
Vraný, Jan 731

Waleń, Tomasz 296
Wattenhofer, Roger 61
Weiand, Klara 247
Weiner, Andreas M. 29
Wolter, Katharina 697

Zakrzewska, Danuta 743
Zankl, Harald 755
Zarei, Kambiz 612
Železný, Filip 132

	5901
	Preface
	Organization
	Table of Contents
	Forcing Monotonicity in ParameterizedVerification: From Multisets to Words
	Introduction
	Parameterized Systems
	Counter Abstraction
	Petri Nets
	Counter Abstraction
	Safety Properties
	Ordering
	Monotonicity
	Computing Predecessors
	Backward Reachability Analysis
	Sufficient Conditions

	Monotonic Abstraction
	Petri Nets with Inhibitor Arcs
	Counter Abstraction
	Forcing Monotonicity

	Linear Topologies
	Simple Example
	Abstraction
	Monotonic Abstraction
	Computing Predecessors
	Backward Reachability Algorithm

	References

	Research Issues in the Automated Testing of Ajax Applications
	Introduction
	Defining Ajax
	State of the Art in Ajax Testing
	Current Testing Approaches
	Automatic Testing of Ajax
	Crawling Ajax
	Invariant-Based Testing
	Test-Case Generation
	Security Testing

	Open Research Questions
	Invariants in Practice
	Combinatorial Testing
	State Space Reduction
	Regression Testing
	Path Seeding

	Concluding Remarks
	References

	Essential Performance Drivers in Native XML DBMSs
	Motivation
	Hierarchical DBMS Architecture
	Node Labeling
	Storing and Indexing Documents
	Storage Formats
	Indexing Options

	Path Processing Operators
	Query Planning and Optimization
	Query Evaluation Performance
	XML Locking
	Locking Concepts of taDOM
	The taDOM Protocol Family
	Enhancing Multi-user Performance

	Conclusions
	References

	Continuous Processing of Preference Queries in Data Streams
	Introduction
	Skyline Queries
	cnN
	LookOut
	Lazy and Eager
	Filter and Sampling
	CoSMuQ

	Top-k Queries
	TMA and SMA
	Distributed Top-k
	Compact Set-Based Algorithms
	Det and Sam

	Top-k Dominating Queries
	Conclusions and Future Work
	References

	Clock Synchronization: Open Problems in Theory and Practice
	Introduction
	Related Work
	Model: Worst Case vs. Reality
	Dynamic Networks
	Fault-Tolerance
	Energy Efficiency vs. Accuracy
	New Applications
	References

	Regret Minimization and Job Scheduling
	Regret Minimization
	Regret Minimization and Job Scheduling
	Model and Results
	Other Extensions of the Regret Minimization Model
	References

	Lessons in Software Evolution Learned by Listening to Smalltalk
	Introduction
	What Can We Learn from Smalltalk?
	Simple, Read-Aloud Syntax
	Everything Happens by Sending Messages to Objects
	Everything Is There, All the Time
	Lessons in Software Evolution

	Less Is More
	Reify Everything
	You Can Change a Running System
	The Future of Change
	Conclusion
	References

	The Web of Things: Extending the Web into the Real World
	Introduction
	Challenges
	Web Run-Time
	Device Coordination
	Virtual Objects as Proxies for Things
	Composition and Coordination
	Distributed Processing
	Cloud of Things

	Context Awareness
	Authoring Frameworks
	The Cameleon Reference Framework
	Mashups and Pluggable Authoring Tools

	Privacy and Trust
	Call a Friend or Ask the Audience

	Concluding Remarks
	Further Reading
	Moore's Law
	The March of Microcontrollers
	The Internet of Things
	Semapedia – Hyperlink Your World!
	Privacy and Trust
	Web Widgets
	Context Awareness
	Model-Based UI Design
	Assistive Technology and Designing for Accessibility

	Web Science: The Digital-Heritage Case
	What Is Web Science?
	Engineering of Digital-Heritage Collections
	Communication in Digital Heritage
	Social and Economic Issues in Digital Heritage
	Outlook
	References

	Model-Driven Software Product Line Testing: An Integrated Approach
	Introduction
	Model-Driven Software Product Line Testing
	Related Work
	Outline

	Fundamentals
	Running Example
	Feature Models
	Black-Box Testing / CTM
	Ptolemy II Implementation

	The Integrated FMT Approach
	Comparison and Synthesis of FM and CT Language Constructs
	The FMT Modeling Language

	Application of the FMT Approach
	FMT Preparation Phase
	FMT Test Case Definition Phase
	Product Instance Selection and Test Execution Phase

	Conclusion and Future Work
	References

	Taming the Complexity of Inductive Logic Programming
	Introduction
	Two Battlefronts of ILP Complexity
	Front One: Clause Search
	Front Two: Subsumption
	Conclusions and Ongoing Work
	References

	A Rule Format for Unit Elements
	Introduction
	Preliminaries
	Rule Format
	Applications and Extensions
	Applications of the Basic Rule Format
	Predicates

	Conclusions
	References

	Approximability of Edge Matching Puzzles
	Introduction
	Outline

	Preliminaries
	The Reduction and Its Analysis
	Constructing the EMP Instance
	Informal Description
	Some Useful Lemmas
	The Reduction Preserves Approximability
	APX-Completeness
	Approximation Lower Bound

	The Corresponding Minimisation Problem
	Absolute Error
	Approximation Ratio

	References

	A Linear Time Algorithm for Finding Three Edge-Disjoint Paths in Eulerian Networks
	Introduction
	The Algorithm
	Preliminaries
	Checking for Feasibility
	Reduction to a Critical Instance
	Dealing with a Critical Instance

	References

	R-Programs: A Framework for Distributing XML Structural Joins across Function Calls
	Introduction
	Preliminaries
	Distributed Twig-Join Algorithm
	R-Programs
	Dependency Closure and Acyclicity
	Semantics of R-Programs
	Evaluation of R-Programs
	Translation from XQuery to R-Programs

	Conclusion and Related Work
	References

	Fast Arc-Annotated Subsequence Matching in Linear Space
	Introduction
	Preliminaries and Notation
	The Dynamic Programming Recurrence
	The Algorithm
	Squeezing into Linear Space
	References

	Automated Deadlock Detection in Synchronized Reentrant Multithreaded Call-Graphs
	Introduction
	Synchronized Multithreaded Programs
	Syntax
	Operational Semantics

	Thread Automata
	CFL-Reachability
	Soundness and Completeness of CFL-Reachability
	Conclusion
	References

	A Kernel for Convex Recoloring of Weighted Forests
	Introduction
	Convex Recoloring Problem
	Definitions
	Kernelization Rules and Analysis
	Pieces of a Color
	Irrelevant Colors
	Removing k-Strings and Counting Them

	Conclusions
	References

	Symbolic OBDD-Based Reachability Analysis Needs Exponential Space
	Introduction
	Motivation
	Results and Organization of the Paper

	Preliminaries
	Ordered Binary Decision Diagrams
	Graph Representations by OBDDs

	OBDD-Based Reachability Analysis Needs Exponential Space
	Concluding Remarks
	References

	A Social Vision of Knowledge Representation and Reasoning
	Introduction
	Motivation
	Conceptual Model
	A Social Approach to Knowledge Representation – Emergent Semantics
	A Social Approach to Automated Reasoning
	Shared Understanding
	Rule Scope
	Computing Shared Understanding
	Explanation

	Conclusion
	References

	Flavors of KWQL, a Keyword Query Language for a Semantic Wiki
	Introduction
	Conceptual Model
	Requirements for a Wiki Query Language
	KWQL Query Examples
	Outlook
	Related Work and Conclusion
	Related Work
	Conclusion

	References

	On Pattern Density and Sliding Block Code Behavior for the Besicovitch and Weyl Pseudo-distances
	Introduction
	Background
	The Besicovitch and Weyl Distances
	Patterns in Besicovitch and Weyl Spaces
	Sliding Block Codes in Besicovitch and Weyl Spaces
	Conclusions
	References

	On a Labeled Vehicle Routing Problem
	Introduction
	Definitions, Notations and Some Properties
	Polynomial Cases
	Hardness Results
	When f(E0)=1
	lvrp(3) with Frequency 2

	Inapproximation Results
	A Simple Approximation
	Conclusion
	References

	Improved Matrix Interpretation
	Introduction
	Preliminaries
	Term Rewriting Systems
	Orderings by Interpretation
	Matrix Interpretation

	Generalized Matrix Interpretation
	The Ordering
	The Interpretation
	Proving Termination

	ProofSearch
	Manna and Ness Criterion
	Lexicographic Composition Criterion
	Dependency Pairs Criterion
	Comparison with Previous Notions of Matrix Interpretation

	Examples
	Results
	Conclusion and Future Work
	References

	Efficient Algorithms for Two Extensions of LPF Table: The Power of Suffix Arrays
	Introduction
	Preliminaries
	The Technique of Alternating Search
	Computation of the LPrF Table
	Longest Previous Non-overlapping Factor
	Applications to Text Compression
	References

	Query Optimization through Cached Queries for Object-Oriented Query Language SBQL
	Introduction
	Overview of the Stack-Based Approach (SBA)
	Optimization Using Cached Queries
	Update of Cached Results
	Experimental Results
	Conclusions and Future Work
	References

	Perfect Matching for Biconnected Cubic Graphsin O(n log2 n) Time
	Frink's Algorithm
	New Algorithm
	Case 1: G' Is Unconnected
	Case 2: G' Is Connected

	Further Improvements
	References

	Destructive Rule-Based Properties and First-Order Logic
	Introduction
	Preliminaries
	General Case
	NP-Complete Properties
	Polynomial Time Fragments
	Concluding Remarks
	References

	Learning User Preferences for 2CP-Regression for a Recommender System
	Introduction
	Related Work
	Two Step Monotone User Model
	Notation
	Aggregation Function Learning

	Local Preferences Learning
	Linear Regression
	Quadratic Regression
	Peak – A Method for Finding Triangular Fuzzy Functions
	2CP-Regression

	Experiments
	Experiment Settings
	Experiment Results

	Conclusions
	Future Work

	References

	Parallel Randomized Load Balancing: A Lower Bound for a More General Model
	Introduction
	Preliminaries
	The Model for Parallel Randomized Load Balancing Algorithms
	The Access Graph
	The Witness Tree
	Previous Lower Bounds and Gaps in Their Application

	The Lower Bound
	The Adversary
	Propagation of Information in Rounds
	The Probability Space
	The Lower Bound Proof

	Discussion
	References

	Ant-CSP: An Ant Colony Optimization Algorithm for the Closest String Problem
	Introduction
	A Simulated Annealing Algorithm for the CSP Problem
	A Genetic Algorithm for the CSP Problem
	Ant Colony Optimization
	The Ant-CSP Algorithm

	Experimental Results
	Conclusions
	References

	Linear Complementarity Algorithms for Infinite Games
	Introduction
	Preliminaries
	Lemke's Algorithm for Discounted Games
	The Cottle-Dantzig Algorithm for Discounted Games
	Exponential Lower Bounds
	Future Work
	References

	Mixing Coverability and Reachability to Analyze VASS with One Zero-Test
	Introduction
	VASS with One Zero-Test and Reversal-Bounded Property
	Useful Notions
	Counter Machines
	VASS with One Zero-Test

	Computing Coverability
	Coverability Graph of a VASS
	Minimal Covering Set

	Decidability Results for VASS with One Zero-Test
	Counting the Number of Alternations in a VASS
	Mixing the Coverability Graph and Reachability Analysis
	Reversal-Boundedness
	Boundedness and Termination

	Conclusion
	References

	Practically Applicable Formal Methods
	Introduction
	JML
	Formal Methods

	The $CodeStatistics$ Tool
	Source Code Representation
	XML and XPath
	$CodeStatistics$ in Eclipse

	Experiment
	Bad Loops Found
	Verification

	Summary
	Future Work
	References

	Fast and Compact Prefix Codes
	Introduction
	Related Work
	Additive Increase in Expected Codeword Length
	Multiplicative Increase in Expected Codeword Length
	References

	New Results on the Complexity of Oriented Colouring on Restricted Digraph Classes
	Preliminaries
	Introduction
	Definitions

	The Algorithms
	Digraphs of K-Width 1
	Digraphs of DAG-Depth 2

	Hardness Proofs
	Acyclic Digraphs
	Digraphs of DAG-Depth 3 and K-Width 1

	Conclusions
	References

	Smooth Optimal Decision Strategies for Static Team Optimization Problems and Their Approximations
	Introduction
	Problem Formulation
	Existence and Uniqueness of Smooth Optimal Strategies
	Approximation Methods and Algorithms
	Estimates of the Accuracy of Suboptimal Solutions by Nonlinear Approximation Schemes
	Application of Quasi-Monte Carlo Methods
	Algorithms for Suboptimal Solutions

	Network Team Optimization
	References

	Algorithms for the Minimum Edge Cover of H-Subgraphs of a Graph
	Introduction
	Preliminaries and Definitions
	Dynamic Program for G with Bounded \triangle(G), tw(G)
	Dynamic Program for Clique H and Bounded tw(G)
	Baker's Approximation Scheme for Planar Graphs
	Generalization to Finite Sets of Patterns
	References

	On the Complexity of the Highway Pricing Problem
	Introduction
	Related Work
	Motivation and Results

	Complexity of the Highway Problem with Inhomogeneous Valuations
	O(log \alpha)-Approximation Algorithm
	General Bundle Pricing
	Conclusions
	References

	Accelerating Smart Play-Out�
	Introduction
	Preliminaries
	An Example
	Play-Out

	Accelerating Smart Play-Out
	The Example
	Activation Closure
	Early Evaluation
	Unreachable Elimination
	Repeating Steps 1-3
	Construct Elimination
	Superstep Reconstruction
	Complexity

	Experimental Results
	Related and Future Work
	References

	Optimum Broadcasting in Complete Weighted-Vertex Graphs
	Introduction
	Weighted Broadcasting in Complete Graphs
	An Algorithm for Finding Optimum Schemes
	Conclusion
	References
	Appendix

	On Contracting Graphs to Fixed Pattern Graphs
	Introduction
	The H-Contractibility Problem
	NP-Complete Cases with a Dominating Vertex
	Polynomial Cases With Four Dominating Vertices

	The (H,v)-Contractibility Problem
	Conclusions and Open Problems
	References

	Dynamic Edit Distance Table under a General Weighted Cost Function
	Introduction
	Preliminaries
	The Kim-Park Algorithm
	Solution for the Unit Cost Function
	Exponential Lower Bound for a General Cost Function

	A Simple Algorithm for a General Cost Function
	Experiments
	Random Data
	Corpora Data

	References

	How to Complete an Interactive Configuration Process?
	Introduction
	Background and Motivation
	Configuration Process
	Completing a Configuration Process and the Shopping Principle

	Propositional Configuration
	Propositional Configuration Process
	Completing a Propositional Configuration Process
	Deselecting Safely
	Dispensable Variables and Non-monotonic Reasoning
	Experimental Results

	Beyond Boolean Constraints
	Related Work
	Summary
	References

	Design Patterns Instantiation Based on Semantics and Model Transformations
	Introduction
	Problem Outline
	Improvement Proposal
	Realization
	Design Pattern Instances Creation in Action
	Tool Under the Hood
	Implementation

	Evaluation
	Related Work
	Conclusion
	References

	A Complete Symbolic Bisimulation for Full Applied Pi Calculus
	Introduction
	Applied Pi-Calculus
	Syntax
	Semantics
	Intermediate Representation

	Constraints
	Symbolic Semantics
	Conclusion
	References

	OTwig: An Optimised Twig Pattern Matching Approach for XML Databases
	Introduction
	Motivation and Contribution

	Related Work
	Background
	Data Model and Notations
	Logical Encoding Scheme

	Twig Pattern Matching
	TwigList Algorithm
	OTwig Algorithm
	OTwig Algorithm by Example

	Experimental Evaluation
	Performance

	Conclusions
	References

	Picture Recognizability with Automata Based onWang Tiles
	Introduction
	Preliminaries
	Tiling Systems
	Wang Systems
	Diagonal- and Snake-Deterministic Tiling Systems

	Two-Dimensional Scanning Strategies
	Wang Automata
	Determinism in Wang Automata
	Conclusion and Open Problems
	References

	Unilateral Orientation of Mixed Graphs
	Introduction
	Basic Definitions
	Problem Definition and Related Work

	Recognition of Unilaterally Orientable Mixed Graphs
	Preliminaries
	A Characterization for Unilaterally Orientable Mixed Graphs
	The Algorithm

	Recognition of Unilateral Forcing Sets
	Conclusion
	References

	Maintaining XML Data Integrity in Programs An Abstract Datatype Approach
	Introduction
	XML Data as Abstract Datatype
	Paths and Documents
	Schema Language
	Syntax
	Semantics
	Embedding Rules
	Specification Errors

	Procedures
	Syntax
	Semantics

	Conclusion
	References

	Improving Classification Performance with Focus on the Complex Areas
	Introduction
	Classifier Combining Schemes
	Proposed Method
	Confusion Matrix
	Decision Templates
	Decision Template Scheme

	Experimental Results
	Conclusion
	References

	CD-Systems of Restarting Automata Governed by Explicit Enable and Disable Conditions
	Introduction
	Definitions
	A New Mode of Operation
	Locally Deterministic CD-R-Systems versus Locally Deterministic CD-RR-Systems
	Concluding Remarks
	References

	Source Code Rejuvenation Is Not Refactoring
	Introduction
	What Is Source Code Rejuvenation?
	Applications

	Case Studies
	Initializer Lists
	Partial Order of Templated Functions in a Generic Function Family

	Refactoring
	Source Code Rejuvenation and Refactoring

	Tool Support for Source Code Rejuvenation
	Conclusion
	References

	Empirical Evaluation of Strategies to Detect Logical Change Dependencies
	Introduction
	Study Approach
	Strategies
	Transaction-Based Strategy
	Comment-Based Strategy
	Change-ID-Based Strategy
	Change-Hierarchy-Based Strategy

	Results and Discussion
	Distribution of Dependencies
	Unique and Overlapping Dependency Results
	Ratio of Check-ins with Change-ID and Change-ID-Based Dependencies

	Related Work
	Summary
	References

	Efficient Testing of Equivalence of Words in a Free Idempotent Semigroup
	Introduction
	An Abstract Algorithm and Factor Automata
	Interval Automata: More Efficient Automata
	Testing Equivalence of States in $G(w)$
	Final Remarks
	References

	An Amortized Search Tree Analysis for k-Leaf Spanning Tree
	Introduction
	Our Framework: Parameterized Complexity
	Our Contributions
	Terminology
	Overall Strategy
	Parameterized Measure and Conquer

	Reduction Rules and Observations
	Reduction Rules
	Observations

	The Algorithm
	Correctness
	Run Time Analysis

	Conclusions and Exact Exponential Time Analysis
	References

	Approximate Structural Consistency
	Introduction
	Preliminaries
	Approximate Membership
	Word Case
	Tree Case

	Approximate Structural Consistency
	Words
	Trees

	Conclusion
	References

	Comprehensive System for Systematic Case-Driven Software Reuse
	Introduction
	Motivation
	Related Work

	Scenarios for Case-Driven Software Reuse
	Writing Semantically Rich Requirements
	Generating and Mapping Design from Requirements
	Reusing Software Cases
	Conclusion and Evaluation Results
	References

	Comparison of Scoring and Order Approach in Description Logic $EL(D)$
	Introduction
	Description Logic s-$EL(D)$ with Scoring Concepts and Aggregation
	Description Logic o-$EL(D)$ with Concept Instance Ordering
	Relationship between Scoring and Order Approach
	Related Work
	Conclusion
	References

	Homophily of Neighborhood in Graph Relational Classifier
	Introduction
	Neighborhood in Simple Relational Classifier
	Measuring Homophily
	Experimental Evaluation
	Related Work
	Conclusion and Further Work
	References

	Multilanguage Debugger Architecture
	Introduction
	Background
	Compiler and Execution Runtime
	Multilanguage Applications
	Debuggers

	Solution
	Architecture
	Debugger Adapter
	Debugger Service
	Stacking Debugger Adapters

	Related Work
	Conclusion and Future Work
	References

	Student Groups Modeling by Integrating Cluster Representation and Association Rules Mining
	Introduction
	Related Work
	Student Groups’ Modeling
	Overview of the Method
	Student Models
	Group Models

	Experiment Results and Discussion
	Concluding Remarks
	References

	Finding and Certifying Loops
	Introduction
	Preliminaries
	Finding Loops
	Formalizing Loops
	CertifyingLoops
	Experiments
	Conclusion and Future Work
	References

	Vertex Ranking with Capacity
	Introduction
	Preliminaries
	Kernelization
	Exact Ranking of Graphs
	Approximation by Transformation
	Trees
	Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

