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New Analysis Techniques in the CEPBA-Tools
Environment
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Abstract The CEPBA tools environment is a performance analysis environment
that initially focused on trace visualization and analysis. Current development ef-
forts try to go beyond the presentation of simple statistics by introducing more in-
telligence in the analysis of the raw data.
The paper presents an overview of three recent developments in this area. First,
we show how spectral analysis techniques can be used to isolate sufficiently small
regions of a trace that characterize the behavior of the whole run. Second, we de-
scribe how clustering analysis techniques can be used to identify temporal and spa-
tial structure in parallel programs, an essential component to ease the job of the
analyst, but also to automatically derive a broad range of both precise and focused
metrics from a single run of a program. Then we describe how sampling and trac-
ing data acquisition techniques can interoperate to generate with very low overhead
extremely precise metrics about the temporal behavior of a program.
The development rests upon the trace based CEPBA-Tools environment, using the
Paraver visualization capabilities to check the quality and usefulness of the tech-
niques. Once identified, they can be implemented on-line aiming at maximizing the
amount of information obtained from a run. We report the work being done on top
of MRNET in this direction.
We consider that by applying and combining these and other techniques from var-
ious data analysis and mining fields, performance analysis tools will be able to ef-
fectively address the huge challenge posed by future exascale systems.
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9.1 Introduction

As larger and larger systems are being developed and applications run on them, the
issue of understanding how they behave and how efficiently our applications use the
available resources is more and more important.

Performance analysis tools rely on hooks injected into programs to capture rele-
vant events and derive the metrics that quantify and explain their behavior from the
acquired data. Traditionally the focus of performance analysis tools has been cen-
tered on the monitoring or data acquisition mechanisms. The algorithms used for
processing the raw data before presenting results to the analyst are typically very
simple. Profilers are the more widely used type of tools and they just present sim-
ple statistics like time in each routine, total count of invocations or the accumulated
instructions. By aggregating over the time and processor dimensions and focusing
on a limited set of predefined metrics, profilers reduce the amount of data that has
to be emitted and then presented to the user. This advantage comes at the expense
of loosing detail on the variability of system activity and results in a lot of relevant
information being discarded.

Intermediate approaches with different amounts of precomputed profile data have
been used but the question arises as to how raw data should be processed to maxi-
mize the relevant information obtained from it while minimizing the amount of data
emitted.

Other areas of science and engineering have developed elaborated techniques to
extract useful information out of the raw data. Signal and image processing and data
mining techniques are widely used in different fields with such purpose. We have
the perception that performance analysis lags far behind other areas in the actual use
of those techniques as well as the conviction that they could be successfully used in
our field.

In this paper we describe some of the usages of signal processing and data anal-
ysis techniques within the CEPBA-tools environment. Section 9.2 briefly describes
the environment used to develop and validate the approaches described in succes-
sive sections. Section 9.3 then focuses on the use of spectral analysis techniques,
section 9.4 on the use of clustering techniques and section 9.5 on the combined use
of instrumentation and sampling. Section 9.6 describes current work in integrating
the above described techniques in an automatic on-line analysis environment and
section 9.7 presents some views on future directions.

9.2 The CEPBA-Tools Environment

The development of the CEPBA-tools environment started in 1996 [5] with the ob-
jective to better understand the detailed interactions that could take place in a mul-
tiprogrammed message passing machine based on the Transputer chip. Three main
components constituted the environment: a set of tracing packages (now MPITrace)
for message passing programs, a simulator (Dimemas) for message passing ma-
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chines also modeling the time sharing behavior within a node and a visualizer (Par-
aver) capable of displaying traces produced by the simulator. The traces capturing
the actual behavior of a run of the parallel program could also be directly generated
by the instrumentation package and visualized with Paraver. The usage of the tools
then evolved to support detailed analysis of single applications and prediction of the
impact of different architectural parameters in their performance.

Paraver is a flexible browser for traces that contain sequences of timestamped
records of three types: events, states and communication. The Paraver trace format
describes the structure of these records but their semantic is essentially undefined,
which gives the possibility to apply the tool in very different areas, areas far beyond
those initially targeted. This is certainly the case for the records that represent a
punctual event with two attributes (type and value) and for state records that repre-
sent an interval between start and end for which one attribute is given. The attributes
are integer values in which the tracing package can encode the information as de-
sired. Each record applies to one object in a hierarchical structure of three levels
which when instrumenting parallel programs are typically mapped to application,
process and thread. Communication records actually relate two such objects and
have two additional attributes.

The core of the Paraver engine [12] is called the semantic module. It provides
through its GUI a very flexible algebra to specify how functions of time can be
generated out of the records and the numerical values of their attributes. One such
function of time is generated for each object. The fact that internally Paraver consid-
ers the data it handles as functions of time leads naturally to some of the techniques
described through the paper. Finally, a simple but flexible rendering mechanism
translates the functions of time to colored timeline plots. Typically a palette of col-
ors is used to translate categorical valued functions of time such as identifier of the
MPI call, or user function. A gradient color map is used for continuous valued func-
tions, using light green for low values up to dark blue for large values. Areas where
the function value is above a specified range are highlighted in orange and if the
function value is zero, the background color is used. Non linear rendering is used to
expose information to the analyst in cases where many values map to a pixel. This
technique addresses the scalability issues faced when displaying traces with many
objects or representing long time intervals.

The analysis module implements a single mechanism to compute tables. A very
generic approach is used, able to not only report statistics but also histograms and
correlations between any of the functions generated by the semantic module.

Complex expressions can be defined in the semantic and analysis modules and
saved along with the display setup in configuration files for later reuse. The lack of
semantics in the trace format plus the flexibility of these two modules makes Paraver
an extremely powerful and versatile browser. It has been used to analyze MPI and
MPI+OpenMP programs but also operating system activity, multicore architectures,
or file system behavior. Other time series not having any relationship to parallel pro-
gramming such as stock sensor data or exchange rates could be analyzed in Paraver
without requiring any modification of its source code and without requiring convo-
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luted mappings of concepts in these areas to the concepts handled by visualizers too
specialized in just parallel program.

9.3 Spectral Analysis

Many applications tend to have an iterative structure, originating from the time step-
ping process they often simulate. The behavior of such iterations tends to be very
repetitive or at most slowly varying as the simulated system evolves. This means that
a few iterations are sufficient to describe the behavior of applications during long
intervals of time. Spectral analysis techniques can be used to determine the periodic
structure of a program. One of the applications of such analysis is to automatically
select the time interval to be traced such that at least one whole period is captured.

Other sources of repetitive behavior are the iterative nature of the numerical al-
gorithms, the need to process a large number of particles or elements, and so on.
These iterative patterns may be nested but for a global performance analysis pur-
pose we are mostly interested in the outermost levels. In [4] we showed how the
iterative behavior at different levels can be identified on traces from large runs of a
program. The main usage in that work addressed the possibility of reducing the size
of the traces required to still be able to do very detailed analyses.

The spectral analysis can be applied to signals representing the evolution with
time of some metric for the whole applications, such as average instantaneous in-
structions per cycle (IPC), or actual number of processes inside MPI calls. The paper
also revealed that it is not necessary to use signals representing a metric meaningful
from the performance point of view. In fact, the sum at each point in time of the du-
ration of the computation burst of all the processes is a signal with no real meaning
that captures pretty well the structure of an application. A computation burst is the
time interval between exit of an MPI call and entry to the next. During the whole
burst, a process contributes with its duration to the global function. While a process
is inside MPI no contribution is made to the global signal.

In the same study we also showed how other techniques such as mathematical
morphology can be used to clean-up signals. This non linear filtering technique was
applied to signals identifying regions where certain type of perturbations occurred
while obtaining the trace. One example of such a signal is the number of processes
flushing their trace buffer to disk. Although with sufficiently large buffers this will
not be very frequent, it will certainly perturb not only the process doing the flush but
also other processes communicating with it. Furthermore, it is frequent that different
processes flush their buffers at about the same time. By applying dilation and erosion
filters to such signal it is possible to separate regions in the influence area of the
perturbations from large regions without such perturbations.

Other technique to obtain general structural information of the trace is the
Wavelet transform. This can be used to automatically separate the non iterative
phases of an application such as initialization and termination from the core compu-
tation phase. The Wavelet transform produces information about the spatial local-
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ization of energy at different frequencies. When applied to signals like the sum of
the useful duration described previously, initialization and termination phases tend
to have much lower energy at high frequencies. By applying again mathematical
morphology techniques to the high frequency outcome of the wavelet transform we
can identify regions of major program activity.

Fig. 9.1: Process of automatic period detection

The whole process is described in figure 9.1. The timeline on top represents the
duration of the computation bursts for each of the 128 processes of a run of the WRF
weather modeling code. Dark blue represents long computation bursts, light green
short computation bursts and black corresponds to time inside MPI. The two sig-
nals below represent when some process is flushing data to disk. At the scale shown
there is no appreciable difference between them, but the second one corresponds to
the outcome of the filtered signal with mathematical morphology. A look at a more
detailed scale shows that several flushes from different processes have actually been
merged into a single burst. The fourth view from top represents the high frequency
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components identified by the Wavelet transform when applied to the useful dura-
tion signal. The main computation area corresponds to the region with high values.
Combining this signal and the outcome of the flush analysis the tool identifies the
longest core computation region without perturbation and builds the useful duration
signal for that interval. Computing the FFT, squaring it and computing the inverse
we obtain the autocorrelation function shown at the bottom of the figure. Peaks in
this figure correspond to periodicities in the signal. In our case, the first local max-
ima different from the origin corresponds to the coarser periodicity. The tool can
then be used to cut a region of the trace of one or several periods (depending on a
requested maximum trace size).

This functionality was developed as a command line tool to process large traces
and is now being integrated both in the Paraver GUI and in the intelligent on-line
tracing packages as described in section 9.6.

9.4 Clustering Techniques

Clustering techniques have been used in the parallel performance analysis area
mostly with the aim of identifying groups of processes of differentiated characteris-
tics. The target has typically been to obtain a representative process for each group
and thus reduce the number of processes on which to carry out further analyses.

In [2] we aimed at using clustering techniques with the objective of identifying
internal structure at the level of computation bursts within the application. We try
to group computation bursts between MPI calls by their similarities in terms of du-
ration and hardware counter derived metrics. In the following sections we describe
the relevant data processing and clustering algorithms, usage examples clustering
and further work on automatic quantification of the quality of a clustering result.

9.4.1 Clustering Algorithms

Given our objective, the data to be clusterized corresponds to each of the computa-
tion bursts between MPI calls. For a typical trace there may be many thousands or
millions of records, each of them characterized as a point in an N dimensional space.
Possible dimensions include the duration of the region, the number of instructions,
cache misses or other captured hardware counters. The number of these dimensions
is limited by the number of hardware counters that can be simultaneously read, but
derived metrics between several hardware counters such as IPC on miss ratios can
also be used.

In order to keep the clustering algorithm in reasonable times and to focus the
efforts in relevant regions we filter out bursts that are either very short or have a
value of some of the counter below a threshold. The user can specify through an
xml file these different thresholds as well as the metrics to consider as dimensions
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in the clustering algorithm, further data preprocessing transformations (ie. scaling,
principal components,. . . ) or other parameters required by the algorithm.

Fig. 9.2: Scatter plot of clustered WRF bursts

We use DBSCAN, a density based algorithm, as we have observed that the as-
sumption made by k-means type of algorithms that data distribution is spherical in
nature does not hold with our data. Figure 9.2 shows an example projection of points
of a weather forecast run (WRF) on the Instruction and IPC dimensions. We can see
how some clusters do have a spherical shape with little variability in both dimen-
sions. Others show a negative correlation between instructions and IPC: the larger
the instruction count in the bursts the lower the IPC. The reverse situation may hold
on other cases. Clusters where the same number of instructions are executed with a
wide range of IPCs are also frequent.

9.4.2 Application of Clustering Techniques

The presentation of the scatter plots such as the one in figure 9.2 does provide a lot of
information to the analyst on the behavior of the different regions, but the doubt may
arise as to how do the identified clusters distribute over time. The tool can inject new
events into the original tracefile labeling each computation burst with its identified
cluster. In this way it is possible to visualize the space and time distribution of the
clusters. This conveys to the analyst complementary information to the scatter plots,
reflecting in detail the structure of the application behavior. Figure 9.3 shows the
cluster timeline corresponding to figure 9.2.
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Fig. 9.3: Clustered WRF timeline

Deriving precise metrics and models of the performance of the sequential com-
putation phases is another important use of the clustering techniques. Current pro-
cessors do have the ability to perform very detailed counts of their internal activity
and such information is made available through APIs, of which PAPI [10] is the
most widely used. For cost reasons and although the list of potential counts is quite
large, the actual number of counters that can be read at the same time is limited
and architecture dependent. Being able to read many counters would also introduce
significant overheads on the monitoring system. The result is that each data acqui-
sition captures only partial information and in order to obtain values for a large set
of counters, either several runs or sampling techniques have to be used. In these ap-
proaches, a lot of precision in the ability to correlate counts for individual regions
of code is lost.

The use of the clustering techniques we have proposed provides an alternative to
achieve higher precision still requiring only a single run of the program. The idea is
to shift over time or processes the set of counters acquired with the constraint that a
couple of them (typically cycles and instructions) be present in all sets. The acquisi-
tion does not even need to be synchronized across processes. The only requirement
would be that a sufficiently large run is made such that several acquisitions with
different hardware counter sets are made for the relevant computation bursts. If the
application does have an SPMD structure, different sets can be used on different
processors to reduced the required duration of the acquisition process. By clustering
all the points using the two common counters, each point is assigned to one cluster
and thus contributes its non common counters to the characterization of such clus-
ter. The derived metrics computed from counts of different instances of a cluster are
certainly approximations, but the accuracy is much higher than if the correlation is
made through a blind statistical sampling process or derived from two independent
runs.

An example use is show in figure 9.4. From a single run of the program, a very
large number of hardware counters are obtained for the major clusters in the pro-
gram. Those counters are fed into a cycles per instruction (CPI) stack model [11]
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Fig. 9.4: CPI stack model derived from a single run

to obtain a fair quantitative description of which components in the architecture are
determining the sequential computation performance of each cluster.

9.4.3 Quantification of the Clustering Quality

Given that most programs do have an SPMD structure, cluster timelines like the one
shown above should display all processes as being in the same cluster at a given
point in time. Of course some skew in the time each process enters a cluster is pos-
sible. Also different instances of the same cluster may be of different length in dif-
ferent processors, but in general, vertical stripes would be expected. When blindly
applying the clustering algorithm it is nevertheless possible to obtain timelines like
the one shown in figure 9.5. There we see that some parts do show an SPMD struc-
ture while in other intervals different processors are in different clusters. This is
caused by real differences in the behavior of processors but the question is what
level of granularity we want the clustering algorithm to use when determining what
is similar and what different. A noisy plot with a lot of clusters, indicating that ev-
erything is different does not actually convey to the analyst useful information on
the structure of the application. A plot with just one cluster, where everything is
the same does not convey information either. The granularity used by the clustering
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algorithm is controlled by a parameter provided by the user. Although a wide range
of values of such parameters give in general useful results for the DBSCAN algo-
rithm, it is possible to tune it if coarser or finer detail is desired. Typically clustering
result with a handful of clusters (less than 10), representing more than 90% of the
total execution time and showing an SPMD structure could be considered as a good
result for a first analysis.

Fig. 9.5: Clustered timeline of WRF run on 16 processors

An interesting question is how the above criteria could be automatized. In [3]
we presented an approach to automatically detect the spmdiness of a clustering re-
sult. The idea builds on the similarity between a process seen as a sequence of
clusters and a sequence of aminoacids as handled in the life sciences area. In this
field, a lot of tools have been developed to check the alignment and similarities be-
tween sequences of such chains. Our approach is to leverage that technology and
use available Multiple Sequence Alignment (MSA) codes to properly align the dif-
ferent clusters executed by each process. In doing the transformation of the timeline
to a sequence of clusters, the actual duration of the different instances is dropped
and the focus shifts to their sequence, which in itself provides yet another way of
representing the internal structure of the computation.

Figure 9.6 shows this situation for a run on 16 processors of the NAS LU bench-
mark (class A). On top we see the timeline of cluster while the bottom figure shows
structure in terms of the aligned sequence of clusters as reported by the Kaling2
package. In this case we see that the time dimension has disappeared and each clus-
ter uses only one column, irrespective of whether it was large or small. An asterisk
on top of the image shows that the tool has been able to perfectly align that column.
Lack of the asterisk means that there is either some hole in that column or not all
the clusters are identical.

At the beginning of the timeline we observe several long clusters, with a quite
good SPMD structure although task 6 is in a different cluster when all other proces-
sors are in the green cluster. In the bottom view of the figure we can see that this
outlier causes the first non perfectly aligned column. Towards the end of the timeline



9 New Analysis Techniques in the CEPBA-Tools Environment 135

each process executes a series of yellow clusters. It is unclear in such view whether
all the processes have the same number of instances of the yellow cluster or not, and
they are certainly skewed in time. The bottom figure shows how the alignment of
those clusters is also quite good although some misaligned positions show up.

From the output of the alignment tool we can compute a metric specific to our
purposes that quantifies with a number between 0 and 1 the spmdiness of each indi-
vidual cluster as well as the global spmdiness of the clustering result. These metrics
tell the analyst how good or bad the clustering result is and will in our future work
be used as the quantification method to automatically search for a good granularity
for the clustering algorithm. It will be possible to separate sets of points for which
a coarse granularity results in good SPMD characterization from other sets where
detailed granularity can extract finer detail and still reflect a good SMPD structure.

Fig. 9.6: Timeline and alignment of clusters for a 16 processor run of the NAS LU
benchmark (class A)
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9.5 Sampling and Mixed Instrumentation

Statistical sampling is a technique used by profile tools as a way to obtain approx-
imate characterizations of a program without requiring to instrument neither the
source nor binary. Sampling uses a mechanism external to the application control
flow to fire a probe that from time to time captures information about the program
such as the line in the code being executed. From these counts, we estimate the
percentage of time spent in each of the lines by assuming it is proportional to such
counts. A periodic sampling every few milliseconds is often used. Besides the time
based approach, the firing of the probe can be based on the overflow of a hardware
counter such as cache misses or floating point operations. In this case, the count for
each line is expected to be proportional to the number of cache misses incurred or
floating point operations performed by that line.

As mentioned before, the evolution of a program activity can be seen as a signal
with spectral components corresponding to the speed of change in the activity of the
program. As well known in signal theory, a function can be perfectly characterized
by its samples if taken at sufficiently high frequency, in particular above the Nyquist
frequency of the signal. In our context, this means that if the sampling frequency is
sufficiently high compared to the rate of change in the application, we will be able
to get a good picture of the evolution of metrics such as mips, cache misses, or other
data captured during the sample.

Tools typically use either an instrumentation or a sampling approach, but typi-
cally not both at the same time. Even if they do, it is to obtain two types of infor-
mation (ie. counts and percentage of time) which are then not correlated, at least
as much as we consider it could be done. The following subsections show how the
MPITrace package in CEPBA-tools has been extended to handle both instrumenta-
tion and sampled probes and the analyses this enables.

9.5.1 High Frequency Sampling

Figure 9.7 shows different metrics obtained by sampling with a period of 1M cycles
(roughly 445 microseconds) a 16 processors run of the NAS BT benchmark. The
top view represents the main user functions and is derived from instrumentation in-
formation. The color scheme is as depicted in the top right corner of the figure. The
view can be used as time reference for those below and shows how they represent
about 1.5 iterations of the program. One iteration takes in the order of 345 ms, thus
the number of samples in it is around 760, a large enough number to capture a lot of
detail.

The four views on the bottom show the evolution over time of four metrics: mips,
load mix (percentage of load instructions with respect to total number of memory
access instructions), memory mix (with respect to total number of instructions) and
the ratio of L1 to L2 misses. The figure shows how routines x solve, y solve and
z solve have an initial phase with four steps of high mips, and low memory mix.
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Fig. 9.7: Time evolution of metrics captured sampling at high frequency.Light green
correspond to a low value of the metric, dark blue to a high value and orange to even
higher values

It is interesting to see how routine x solve has a higher L1 to L2 ratio of misses.
Towards the end of each of these three routines, there is a phase where the memory
mix, and in particular loads increases a lot, resulting in a lower mips rate.

In the above example, both instrumentation and sampling information are ac-
quired by MPITrace, and they are visually correlated by the analyst. The instrumen-
tation information can provide precise data about the structure of a program such as
when a routine is entered and exited and how many instructions are executed in it.
The granularity is nevertheless limited to the actual duration of these routines in the
user code. The sampling information ensures a granularity (1M cycles in our exam-
ple) at which data is acquired, even if the program stays within a routine without
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calling MPI for a long time. The problem is that if the sampling period is larger than
the fine grain rate of change of the application it will not produce relevant informa-
tion. The alternative of reducing the sampling interval to increase the precision is
limited, as each sample implies a certain overhead to interrupt the process, capture
and store the required information. In order to maintain the total overhead bounded,
the sampling period should be a few orders of magnitude above the individual sam-
pling overhead.

9.5.2 Hybrid Instrumentation and Sampling

In this section we address the possibility of obtaining extremely precise information
without incurring the overhead of very high frequency sampling. In [1] we devel-
oped a method that allows such precise measurements for hardware counter derived
metrics under certain conditions in the application behavior, namely the ergodicity
(maintaining the same periodic behavior over time). The proposed approach pro-
ceeds in three steps.

Fig. 9.8: Cumulative instruction count since the beginning of the iteration after the
merging process. The left view includes all iteration instances. The right view show
the detail when outliers have been discarded.

First we transform the captured hardware counts, which by default correspond to
the value since the previous probe where the counters were read. This transforma-
tion is done by referring the counts at each sampled point to their nearest previous
instrumentation event. By this we mean that we associate with such events the ag-
gregated hardware count (instructions, cache misses,. . . ) of all the previous probes
since the reference. The same aggregated value is computed for the instrumentation
event at the end of the region (iteration or routine). In this way we obtain for each in-
stances of a region a list of monotonically increasing hardware counts timestamped
with respect to the start of the region. The number of such points for one instance
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may be just two (entry and exit) if no sample fell inside the region or a very large
number if the sampling period is much smaller than the duration of the region. In
any case, the precision of this data is limited by the sampling period.

The next step is to merge the different instances in order to increase the density
of points and thus the precision. If all instances took exactly the same amount of
time, just merging and sorting the different lists by the timestamp of the entries
would be enough. As this situation will never happen in a real system, we take one
instance as reference and scale the timestamps of the lists of all other instances
such that the duration of the region matches the reference. After scaling we apply
the merge process just described. If the variance in the duration of the different
instances is not high, this should result in a thin cloud of points around the actual
cumulative distribution of hardware counts since the start of the region. The upper
plot in figure 9.8 shows the result of this process for one iteration of one process in
the NAS BT benchmark class A run on 16 processes. We can see a certain amount of
variability. In order to reduce it, we try to identify region instances that are outliers
in terms of total duration and do not merge their points into the final list. The result is
shown at the bottom of figure 9.8, with significantly less variability. More restrictive
selection of outlyers would reduce variability but also the amount of points and thus
precision. Finally, the region can be analytically characterized by a polynomial fit of
the cloud of cumulative counts. We tried different fitting models but finally decided
for a Kringing method. The analytical expression can then be reported as output
of the analysis process. It can also be sampled at periodic intervals and synthetic
events injected in the trace. It is also interesting that derivatives can be computed,
thus reporting instantaneous rates such as mips or flops.

By using these hybrid sampling and instrumentation techniques, it is possible to
compare the instantaneous evolution of metrics reporting how well different parts
of the core architecture are being exercised. By correlating them we gain a deep
understanding of the behavior of a program. Figure 9.9 shows the normalized in-
stantaneous evolution (from top to bottom and left to right) of mips, store mix, L1
misses and load mix. We can clearly identify an initial phase where the mips rate is
high and has a high proportion of store instructions but very low L1 miss rate. After
that, four iterations of phases with a fair mips rate are separated by transitions with
low mips. Such low performance in the transitions is correlated to a high L1 miss
rate also caused by a high proportion of load instructions.

We have described the process to obtain the instantaneous evolution of metrics
derived from hardware counter reads. It is also possible to apply the folding process
to the call stack information captured by the samples to obtain a timeline of the code
line being executed along time. In this case it is not possible to perform an analytical
fit of the time function and variability between different iterations will introduce a
certain degree of inaccuracy (i.e. backwards control flow). The result is nevertheless
extremely useful as shown in figure 9.10. We can identify the four iterations of an
outer loop and see how the execution progresses through the code with some source
lines making longer contributions to the execution time than others.
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Fig. 9.9: Instantaneous evolution of different metrics for the copy faces routine in
the NAS BT benchmark

Fig. 9.10: Correlation between metrics and folded source line for two processes in a
16 processors run of the NAS BT becnhmark
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9.6 On-line Techniques

The research activities described in the previous sections heavily used Paraver to
visualize traces and validate the results of the different techniques. The question then
arises whether those techniques can be applied on-line, to automatically summarize
the data captured by the monitoring system and minimize the size of files it generates
while maximizing the amount of information emitted.

In [7] we describe ongoing work integrating those techniques into our instru-
mentation packages and using MRNET [9] as a scalable infrastructure. Such on-line
integration does pose new challenges and the need to adapt the basic algorithms ac-
cordingly. Two of these extensions are described in [7] and will be summarized in
the next paragraphs. The first one addresses the issue of the overhead of the clus-
tering algorithm itself. The second one looks at the stability of the analysis. The
objective of this work is to directly identify the clusters, automatically generating
their scatter plot and clustered trace of size no larger than a user specified maximum.

The major problem that on-line clustering introduces is the duration of the anal-
ysis when a large number of points (typically above 50000) have to be clustered. In
order to obtain a faster characterization of the application we sample a subset of the
points, cluster them and then perform a nearest neighbor classification of all other
points. If the sample is sufficiently small and representative the process should re-
sult in a good characterization of the application with a significantly faster execution
time than the full clusterization of all the points. In the paper we evaluate different
approaches to obtain a representative sample. A good way to achieve the desired
characteristics of such sample is to keep all the points of some randomly selected
processes plus a random sample of the points of all other processes. A sample of a
size around 15% of the original set of points does result in very good characteriza-
tion of all the relevant computation bursts in the trace.

The second issue addressed in the paper looks at how to detect that an application
has entered a stable phase. By monitoring the raw data production rate of the appli-
cation, the on-line analysis estimates the duration of the interval that would result
in a trace of the size specified as target by the user. Such an interval is used by the
MRNET root process to drive the instrumentation package at each process to send
their captured information. The sampling process can take place in the intermediate
nodes in the MRNET tree. The clustering takes place in the root. By comparing two
successive clusterings the decision is made whether the application has reached a
stable state. If not, a new acquisition period is started. If a stable behavior is identi-
fied, the root tells the leaves to dump the trace for the last period. Classification can
take place in the leaves and the trace merging process could also be done through
the MRNET tree.

It is quite natural that all the techniques described in previous sections are re-
lated and complementary. This work started by looking at the on-line use of the
clustering techniques but it is clear that future work will further integrate the spec-
tral analysis techniques described in section 9.3 and the sampling based techniques
of section 9.5.
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Other work in the spirit of on-line analysis is the integration of the sampling
based techniques described in section 9.5 in the TAU [8] profile based environment.
Figure 9.9 used in section 9.5 actually contains some preliminar results of such
work.

9.7 Conclusion

This paper presents some attempts to leverage ideas and techniques from different
areas such as signal processing and data mining in the area of performance analysis
tools. It is based on the believe that a huge body of theory and experience has been
developed in other fields that has not yet been applied to enable very precise and
fine grained automatic analysis of application performance.

We have described the use of spectral analysis techniques and mathematical mor-
phology to identify how long should we trace an application to obtain full detail of
its behavior. Clustering has been applied to identify structure within an application
and obtain from a single run very complete and precise statistics of all hardware
counter metrics. The combined use of instrumentation and sampling has been used
to demonstrate that it is possible to obtain extremely precise information of the evo-
lution of instantaneous performance metrics such as mips without incurring over-
heads.

We do believe that these techniques will be further improved in the future but
their potential is huge. Used in combination with many other techniques this will
help evolve performance tools in the direction of minimizing the amount of data
emitted by on-line monitoring but providing much more information than what is
today’s practice.

Acknowledgements This chapter summarizes the views of the author, but is based on work by
many other people in the BSC tools team (specially Judit Gimenez, Harald Servat, Juan Gonzalez,
German Llort and Kevin Huck). The work is partially funded by the IBM, through the IBM-BSC
Mareincognito collaboration agreement, the USAF grant FA8655-09-1-3075 and the Spanish Min-
istry of Education under grant TIN2007-60625.

References

1. H. Servat, G. Llort, J. Gimenez, J. Labarta: Detailed performance analysis using coarse grain
sampling 2nd Workshop on Productivity and Performance. PROPER 2009.

2. J. Gonzalez, J. Gimenez and J. Labarta: Automatic Detection of Parallel Applications Compu-
tation Phases. Proceedings of the 23rd IEEE International Parallel and Distributed Processing
Symposium (IPDPS’09), (2009)

3. J. Gonzalez, J. Gimenez and J. Labarta: Automatic evaluation of the computation structure of
parallel applications. PDCAT 2009.

4. Casas, M.; Badia, R. M.; Labarta, J. Automatic Structure Extraction from MPI Applications
Tracefiles. Euro-Par 2007. 3–12



9 New Analysis Techniques in the CEPBA-Tools Environment 143

5. J. Labarta, S. Girona, V. Pillet, T. Cortes and L. Gregoris: DiP: A Parallel Program Develop-
ment Environment. Proc. of 2nd International EuroPar Conference (EuroPar 96) (1996)

6. W. E. Nagel, A. Arnold, M. Weber, H. C. Hoppe and K. Solchenbach: VAMPIR: Visualization
and Analysis of MPI Resources. Supercomputer, vol. 12, n. 1, 69–80, (1996).

7. G. Llort, J. Gonzalez, H. Servat, J. Gimenez and J. Labarta. On-line detection of large-scale
parallel application’s structure IPDPS 2010.

8. S. Shende and A. D. Malony: The TAU Parallel Performance System. International Journal of
High Performance Computing Applications, Volume 20 Number 2 Summer 2006. 287–311

9. P. C. Roth, D. C. Arnold, and B. P. Miller: MRNet: A Software-Based Multicast/Reduction
Network for Scalable Tools. SC2003, Phoenix, Arizona, November 2003

10. Browne, S., Dongarra, J., Garner, N., London, K., Mucci, P.: A Scalable Cross-Platform In-
frastructure for Application Performance Tuning Using Hardware Counters. Proceedings of
SuperComputing 2000 (SC’00), Dallas, TX, November 2000

11. A. Mericas et al.: CPI analysis on POWER5, Part 2: Introducing the CPI breakdown model.
https://www.ibm.com/developerworks/library/pa-cpipower2/

12. Labarta J., Gimenez J.: Performance Analysis: From Art to Science. In Parallel Processing for
Scientific Computing. M. Heroux and R. Raghavan and H.D. Simon Eds. SIAM. 2006. 9–32.

https://www.ibm.com/developerworks/library/pa-cpipower2/

	New Analysis Techniques in the CEPBA-Tools Environment
	Introduction
	The CEPBA-Tools Environment
	Spectral Analysis
	Clustering Techniques
	Clustering Algorithms
	Application of Clustering Techniques
	Quantification of the Clustering Quality

	Sampling and Mixed Instrumentation
	High Frequency Sampling
	Hybrid Instrumentation and Sampling

	On-line Techniques
	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


