
Chapter 7
Performance Tuning of x86 OpenMP Codes with
MAQAO

Denis Barthou, Andres Charif Rubial, William Jalby, Souad Koliai, and Cédric
Valensi

Abstract Failing to find the best optimization sequence for a given application
code can lead to compiler generated codes with poor performances or inappropri-
ate code. It is necessary to analyze performances from the assembly generated code
to improve over the compilation process. This paper presents a tool for the perfor-
mance analysis of multithreaded codes (OpenMP programs support at the moment).
MAQAO relies on static performance evaluation to identify compiler optimizations
and assess performance of loops. It exploits static binary rewriting for reading and
instrumenting object files or executables. Static binary instrumentation allows the
insertion of probes at instruction level. Memory accesses can be captured to help
tune the code, but such traces require to be compressed. MAQAO can analyze the
results and provide hints for tuning the code. We show on some examples how this
can help users improve their OpenMP applications.

7.1 Introduction

Modern processors rely on many complex hardware mechanisms in order to reach
high levels of performance. In particular, the use of all levels of parallelism and
the appropriate use of the memory hierarchy to hide large memory latencies are
both required to obtain the full computing capacity of processors. This road to high
performance is paved with many complex compiler optimizations, using, according
to the code, prefetching mechanism, vectorization, loop transformations for better
cache usage or data layout restructuring. While many optimizing compilers are able
to perform all these transformations, they have a poor knowledge of the application

Denis Barthou
University of Bordeaux, LaBRI/INRIA, France

Andres Charif Rubial, William Jalby, Souad Koliai, Cédric Valensi
University of Versailles Saint-Quentin, LRC ITACA, France

M.S. Müller et al. (eds.), Tools for High Performance Computing 2009,
DOI 10.1007/978-3-642-11261-4 7, © Springer-Verlag Berlin Heidelberg 2010

95

http://dx.doi.org/10.1007/978-3-642-11261-4_7

96 Denis Barthou, Andres Charif Rubial, William Jalby, Souad Koliai, and Cédric Valensi

context and must be conservative in their transformations. Failing to find the best
optimization sequence for a given application code, this leads to compiler generated
codes with poor performance, or with inappropriate code.

The performance tuning process therefore implies to guide the compiler, through
pragmas, compilation flags, or source to source restructuring, to the generation of
better code. Many approaches to performance tuning have been proposed, getting
feedback from the application either by collecting execution traces through instru-
mentation (with Dyninst [4] or Pin [19] for single processors, with Scalasca [20] for
multi-node systems) or hardware counters values (such as Intel Vtune or PTU for
instance). Hardware counter-based techniques show how the architecture behaves
with the considered code and input set. However, it is difficult to make the connec-
tion between hardware event counts and source code, since both source code and
compiler optimizations have an impact on the resulting hardware events. Moreover,
there is no direct link between hardware counters and the quality of the compiler
generated code. To have feedback from the compilation process, it is necessary to
analyze performance from the assembly generated code.

In this paper, we describe how our MAQAO [6] tool (Modular Assembly Qual-
ity Analyzer and Optimizer) handles performance analysis and memory tracing for
OpenMP programs. Although in this paper, our target architecture is Core2, the tool
can be easily retargeted to other x86 architectures essentially by changing the per-
formance models used. Targeting other architectures requires more work (dealing
with different instruction sets) but the main principles can be adapted fairly easily:
an earlier version of MAQAO was targeting IA64 architectures which are very dif-
ferent from X86. This tool combines static analysis of compiler-generated assembly
code with the analysis of execution traces and binary instrumentation. Static perfor-
mance evaluation provides hints on how to improve the compilation process, and
assess the amount of performance that could be obtained through optimization. This
estimation is performed on the sequential codes executed by threads. Improving
unicore performance (both in sequential and parallel part of the codes) contributes
to improving global performance and efficiency of the code. Dynamic, thread-wise
traces, in particular compact memory traces, show how to improve interactions be-
tween threads, and detect false sharing situations, for instance. We show in partic-
ular how static performance evaluation is achieved on Core 2 architecture and how
compact memory traces can be used to help tune OpenMP code performance.

7.2 Static Performance Evaluation

MAQAO relies on static performance evaluation to identify compiler optimizations
(or lack of), patterns of codes that are not efficient, and assess performance of loops.
The performance model and its use for x86 architecture is described in this section.
We first recall how MAQAO analyzes and restructures codes.

7 Performance Tuning of x86 OpenMP Codes with MAQAO 97

Fig. 7.1: The MAQAO user interface

7.2.1 Code Restructuring

MAQAO exploits static binary rewriting for reading and instrumenting object files
or executables. Static binary rewriting refers to the post-link time manipulation of
binary executables. This approach has the advantage, compared to approaches re-
quiring compiler interaction (analysis of assembly code) or inclusion of libraries (for
heap monitoring for instance), to obviate the need of recompiling or relinking. The
API for reading and manipulating static binary files is defined by MADRAS [18],
a generic disassembler and instrumenter generator. MADRAS takes a grammar as-
sociating binary expressions to assembly instructions, similarly to yacc grammars,
and generates a corresponding disassembler, using a linear-sweep method (similar
to objdump). This disassembler for x86 is then used by MAQAO.

The disassembled binary code is restructured: call graphs and control flow
graphs, loops and dependence graphs on registers are built (Fig. 7.2). The call graph
construction uses labels found in the binary, if any. Both call and control flow graphs
are limited in the presence of indirect jumps and self-rewriting codes. So far, there
is no (partial) interpretation of the code in order to resolve indirect jumps and self-
rewriting of codes. While the first limitation may prevent MAQAO from finding
correct control flow, the later may lead to incorrect disassembling. Natural loops are
built using a fast algorithm [9].

There is a direct link between each assembly statement and a source code state-
ment provided the debugging information is present (usually given when compiling

98 Denis Barthou, Andres Charif Rubial, William Jalby, Souad Koliai, and Cédric Valensi

Fig. 7.2: Data dependency graph of a loop

with -g flag). This link allows the detection of some compiler optimizations, such
as multiple versioning, inlining and unrolling to some extent. Innermost assembly
loops are grouped by source line so that users can visualize the generated assembly
loops for a given source loop (Fig. 7.3).

Fig. 7.3: Project - Files - Functions - Loops Hierarchy and corresponding source

7 Performance Tuning of x86 OpenMP Codes with MAQAO 99

7.2.2 Performance Model

The performance model of MAQAO computes performance estimates based on the
assembly code. It evaluates the cycles required for executing innermost loops. The
reason for considering only the innermost loops is that they usually constitute the
most time consuming part of the code. The x86 architecture model we consider takes
into account the front-end pipeline (decoding, permanent register file allocation,
special microcoded instructions), the different ports for the execution units, and the
latencies of instructions. For memory instructions, several latencies are considered,
according to the location of the data in memory hierarchy. For other instructions,
latencies are tabulated, either coming from microbenchmarks or from Agner docu-
mentation [8]. Note that the evaluation only provides an optimistic bound, meaning
that the real code may execute in more cycles due to some extra latency not taken
into account by our model.

Among different metrics that MAQAO can produce, we focus on the following
five key metrics:

1. Vectorization Report Analysis: This report, shown in Fig. 7.5b, provides us
with individual (load, store, add, multiply) reports on vector instruction usage:
for example a vector ratio of 1 for multiply operations means that all of mul-
tiply operations have been vectorized by the compiler. This ratio is computed
taking into account only floating point operations and full length packed vector
operations. These metrics are essential to evaluate the quality of the vectorizing
capabilities of the compiler and possibly to palliate some of its deficiencies by
inserting appropriate pragmas.

2. Execution port usage: For each execution port (Fig. 7.4), MAQAO computes
an estimation of the number of cycles spent on each port. Our performance es-
timates takes into account the special case of instructions which are split into

Fig. 7.4: Core2 execution unit overview

100 Denis Barthou, Andres Charif Rubial, William Jalby, Souad Koliai, and Cédric Valensi

(a) MAQAO statistics (b) MAQAO reports

Fig. 7.5: MAQAO interface details.

different micro-operations to be executed on multiple ports [8]. When an instruc-
tion (or a micro operation) can be executed on different ports (a common example
is simple integer instructions which can be assigned indifferently to P0, P1 and
P5), the less saturated port is chosen. Figure 7.5a shows the report presented by
MAQAO Since all of the ports can operate in parallel, this metric is essential to
measure the amount of parallelism exploitable between the key functional units:
add, multiply, load and store units. This provides a first estimate of a best perfor-
mance case (assuming all operands are in L1) and also of the potential imbalance
between the port usage. For example, this allows to quickly detect whether a code
is memory bound and to get a first quantitative estimate of how much a code is
memory bound. The number of cycles spent on every port gives us an accurate
ranking on the potential bottlenecks of the code difference in cycles between first
order and second order bottlenecks).

3. Performance estimation in L1: Taking into account all of the limitations of
the pipeline front end and of the pipeline back end, MAQAO provides us with

7 Performance Tuning of x86 OpenMP Codes with MAQAO 101

an estimate of the cycles necessary to execute one loop iteration assuming all
operands are in L1. The limitations that we are taking into account are: instruc-
tion predecoding, instruction decoding, permanent register file allocation, special
microcoded instructions. As mentioned earlier, in most cases this bound is only
useful as a lower bound.

4. Performance estimations in L2/RAM: Relying on memory access patterns de-
tected at the assembly level and micro benchmarking results on the same memory
patterns, MAQAO computes an estimate for the execution time of a loop itera-
tion, assuming all operands are in a given level of the memory hierarchy (L2 or
RAM) and are accessed with stride 1. The memory patterns used for the pat-
tern matching have previously been determined by systematic hierarchical mi-
crobenchmarking: first simple “Load X” (resp. “Store Y”) kernels (performing
a single read stream through an array X, resp. a simple writing stream through
an array Y) are measured under various conditions (unrolling, instruction used,
etc ..). Then more complex patterns “Load X Store Y”, “Load X Load Y”, “Load
X Load Y Store Z”, etc ... are measured to quantify the interaction between Load
streams and Stores streams. We experimentally observed that beyond 4 array
streams, most of the performance measured could be deduced from simpler pat-
terns. Therefore this simple set of patterns is used for our performance prediction
[10]. The L2 estimate constitutes a reasonable performance objective while the
RAM estimate is a stride 1 worst case. The drawback of both of these estimates is
that they ignore the stride problem (which in RAM will be essential) and, second,
that they do not take into account the mixture of hits and misses which is typical
for real applications. However, it should be noted that micro benchmarking al-
ready accounts for some typical mixture of hits/miss resulting from spatial local-
ity usage. For stride 1 memory access, micro benchmarking does not distinguish
between primary misses (occurring for the first word access to a cache line) and
secondary misses/hits (occurring when subsequent words in the cache line are re-
quested), it provides an estimate of the average time for accessing a memory lo-
cation in a stride 1 access mode (array stored in contiguous memory). The stride
problem can be easily corrected when the memory tracing analysis is performed,
because for each load/store, the striding pattern will be then determined. Then a
revised more accurate L2/RAM estimate can be generated. Again incorporating
this extra information enables MAQAO to produce better performance estimates.

5. Performance projections for full vectorization: In cases where the code is par-
tially or not vectorized, MAQAO computes performance estimations assuming a
full vectorization. This is performed by replacing the scalar operations by their
vector counterparts and updating the timing estimate due to the use of these in-
structions. This is particularly useful to guide the optimization process and to
avoid useless efforts: for example, indirect access to arrays cannot be vectorized
due to the lack of vector scatter/gather instructions in the current SSE instruction
sets. However, in most loops, these indirect accesses are followed by floating
point operations (adds or multiplies) which could be vectorized. The MAQAO
performance projection gives us quickly an estimate of whether trying to vector-
ize these operations will pay off or not.

102 Denis Barthou, Andres Charif Rubial, William Jalby, Souad Koliai, and Cédric Valensi

7.2.3 Applying MAQAO to Real-World Applications

To illustrate the interest of these metrics, we performed a static analysis using
MAQAO on two high performance codes from the ParMA project [16]: RECOM-
AIOLOS from RECOM, and ITRLSOL from Dassault-Aviation. Two code frag-
ments are shown in Fig. 7.6. The Intel C and Fortran Compilers (ifort and icc v11.0)
are used to generate the assembly codes analysed by MAQAO. They are also used to
generate OpenMP parallel regions when appropriate and also all of the performance
measurements have been carried out using these compilers.

DO IDO=1,NREDD
INC = INDINR(IDO)
HANB = AM(INC,1)*PHI(INC+1) &
+ AM(INC,2)*PHI(INC-1) &
+ AM(INC,3)*PHI(INC+INPD) &
+ AM(INC,4)*PHI(INC-INPD) &
+ AM(INC,5)*PHI(INC+NIJ) &
+ AM(INC,6)*PHI(INC-NIJ) &
+ SU(INC)
DLTPHI = HANB/AM(INC,7)-PHI(INC)
PHI(INC) = PHI(INC) + DLTPHI
RESI = RESI + ABS(DLTPHI)
RSUM = RSUM + ABS(PHI(INC))

(a) RECOM-AIOLOS analyzed code fragment

DO cb=1,ncbt
igp = isg isg = icolb(icb+1) igt = isg - igp

c$OMP PARALLEL DO DEFAULT(NONE)
c$OMP SHARED(igt,igp,nnbar,vecy,vecx,ompu,ompl)
c$OMP PRIVATE(ig,e,i,j,k,l)

DO ig=1,igt
e = ig + igp
i = nnbar(e,1)
j = nnbar(e,2)

cDEC$ IVDEP
DO k=1,ndof

cDEC$ IVDEP
DO l=1,ndof

vecy(i,k) = vecy(i,k) + ompu(e,k,l)*vecx(j,l)
vecy(j,k) = vecy(j,k) + ompl(e,k,l)*vecx(i,l)

(b) ITRLSOL analyzed code fragment

Fig. 7.6: Two examples of codes. The IVDEP pragma tells the compiler to vectorize
the loops.

The different execution ports P0 to P5 in the Core2 architecture correspond to
(Fig. 7.4):

• P0-P1-P5: computation units port
• P2: memory read port
• P3-P4: memory write ports

7 Performance Tuning of x86 OpenMP Codes with MAQAO 103

Depending on the number of cycles spent in each port, this information allows to
detect if the code is memory bound (P2, P3-P4) or compute bound (P0-P1-P5).

The 3D-combustion modeling software RECOM-AIOLOS is a tailored applica-
tion for the mathematical modelling of industrial firing systems ranging from several
hundred kW to more than 1000 MW. In-depth validation using measurements from
industrial power plants, the extension of chemical reaction models and the rapid
development of computer technology have made RECOM-AIOLOS a well proven
and reliable tool for the prediction equations on a 10-15 million cells finite vol-
ume grid, leading to high computational demands. Originally being designed for
high-performance computing on parallel vector-computers and massively parallel
systems, the software has been ported to low-cost multi-core systems to expand the
hardware base [17].

The most time consuming subroutine in RECOM-AIOLOS is RBgauss, which
implements a red-black iterative solver. The choice of the red-black algorithm al-
lows for easy parallelization with, for example, OpenMP. The RBgauss subroutine
contains two loops (denoted Red and Black loop) with a communication between
them using MPI. The static analysis with MAQAO is performed on the Red loop as
both loops are the same. It gives the following values:

• Vectorization report: all the ratios of vectorization are equal to 0%. The compiler
has not vectorized the loop.

• Execution units usage (format is PORT NUMBER:CYCLES SPENT): P0:8 /
P1:10 / P2:19 / P3:1 / P4:1 / P5:4.

• L1 prediction: 19 cycles.
• L2 prediction: 28.77 cycles.
• RAM prediction: 70.66 cycles.
• Vectorization prediction (assuming data in L1): 7 cycles.

Thanks to the static analysis of MAQAO, we can notice that the code is memory
bound on Core 2, since it takes 19 cycles to execute all read instructions. This cor-
responds to the largest number of cycles on any given port.

The memory traces achieved using MAQAO allowed to detect that there are two
arrays (AM and PHI) in the code which are accessed with a stride 2 with some gaps
from time to time.

Moreover, the large number of reads and the stride 2 access imply that the code
is very sensitive to cache misses [12].

Since the major bottleneck for this routine is data access from RAM combined
with low spatial locality (stride 2 access), various optimizing transformations are
performed, but only the following has a significant impact on performance: reshap-
ing array AM for getting rid of the stride 2 access. More precisely, the array AM is
split into two distinct arrays still with indirect access but stride 1. This is equivalent
to reshaping an array of complex numbers by splitting it into arrays, one containing
the real part, the other one containing the imaginary part.

Thanks to this optimization, the cache misses are almost half what they used to
be (Fig. 7.7b). Single core performance has been improved by speedups between

104 Denis Barthou, Andres Charif Rubial, William Jalby, Souad Koliai, and Cédric Valensi

1.2 and 1.3 (Fig. 7.7a) thanks to this code transformation. Multicore performance
has been improved by speedups between 1.3 and 1.4 (Fig. 7.8).

Fig. 7.7: RBgauss code optimization on unicore.

Fig. 7.8: RBgauss speedups on multicore.

The ITRLSOL (ITeRative Linear SOLver) application provided by Dassault-
Aviation is the linear solver kernel of AeTHER, a larger Computational Fluid Dy-
namics (CFD) simulation code for the solution of Navier-Stokes equations, dis-
cretized on unstructured meshes. The most time-consuming subroutine in ITRLSOL
is EUFLUXm, which implements a sparse matrix-vector product. The EUFLUXm sub-
routine contains two groups of quadruply nested loops (2 identical quadruply nested
loops in each group). For the considered 4-level loop nest in this code, the report
provides the following information:

• Vectorization report: all the ratios of vetorization are equal to 0%. The compiler
has not vectorized any loop, despite the presence of pragmas.

7 Performance Tuning of x86 OpenMP Codes with MAQAO 105

• Execution units usage (format is PORT NUMBER:CYCLES SPENT): P0:3 /
P1:3 / P2:6 / P3:2 / P4:2 / P5:3

• L1 prediction: 6 cycles.
• L2 prediction: 9.08 cycles.
• RAM prediction: 37.04 cycles.
• Vectorization prediction (assuming data in L1): 3 cycles.

The static analysis with MAQAO shows that the code is dominated by memory
accesses. The memory traces achieved with MAQAO allow us to detect that the
inner most loops are accessing the arrays in the wrong dimension which leads to a
poor spatial locality [12].

To improve the spatial locality, a transformation is done by interchanging the
second loop on ig and the two innermost loops (the ig loop becomes the innermost
loop). All of the arrays are now accessed column-wise. This optimization improves
sequential performance by speedup of 2.5 (Fig. 7.9a, Fig. 7.9b).

In a multicore environment the same optimization is applied. It gives a speedup
of up to 2.5 (Fig. 7.10).

Thanks to the information collected from the static analysis with MAQAO, we
detect that both applications RECOM-AIOLOS and ITRLSOL are not vectorized
and memory bound. Using this information and applying MAQAO memory traces
and PTU [3] (for performance tuning) allows us to find the performance bottleneck
(stride 2 access for RECOM-AIOLOS and poor spatial locality for ITRLSOL) in
these codes.

Fig. 7.9: EUFLUXm code optimization on unicore.

7.3 Memory Traces for OpenMP Codes

Memory traces represent information of crucial importance for performance tuning
of multithreaded codes. Indeed, traces can help detect important inefficiencies (false
sharing) or opportunities for optimizations (setting thread affinity according to reuse
among threads). The major issue of memory traces is the amount of data they repre-

106 Denis Barthou, Andres Charif Rubial, William Jalby, Souad Koliai, and Cédric Valensi

Fig. 7.10: ITRLSOL speedups on multicore.

sent. We first describe how the tracing is achieved in MAQAO, which algorithm we
use to compress the traces and how they are used in order to tune performance.

7.3.1 Static Binary Instrumentation

The static binary instrumentation is achieved using MADRAS [18]. It allows in-
struction level instrumentation, inserting probes either provided by MAQAO (for
iteration counts) or user-defined ones in libraries.

Figure 7.11 shows how easy it is to use this API to build an instrumenter mod-
ule. The two for loops walk through all blocks and all instructions of the loop with

Fig. 7.11: MADRAS API available through MAQAO (LUA scripting interface)

7 Performance Tuning of x86 OpenMP Codes with MAQAO 107

id 1. For each load and store instruction, the mt store function is called from the
libmaqaotrace library which contains the implementation of the trace compres-
sion algorithm mentioned earlier taking into account multithreading. This function
builds a compact trace of memory accesses. MADRAS performs instrumentation
statically, through binary rewriting, allowing the instrumented program to be run
without additional overhead.

7.3.2 Memory Traces

Memory accesses can dramatically slow down the execution time of a program,
particularly when it is memory bound. Capturing the memory behavior of a pro-
gram can help tune the code, using prefetching or transforming the code for a better
reuse of data. However, tracing memory accesses (load, store, prefetch) by simply
dumping all address streams would lead to many Terabytes of data on real applica-
tions. The memory space for these traces is a major concern in every trace-profiling
application. We first detail the compression algorithm used in MAQAO and then
describe how this method has been adapted to MAQAO for tracing multithreaded
codes (OpenMP programs support at the moment).

Compression Algorithm

The compression is ensured by an on-the-fly incremental algorithm called loop
nested recognition and developed by Ketterlin and Clauss [11]. We recall in this
section the main steps of this method.

Their technique represents memory address streams as union of Z-polytopes
which are represented by (nested) loops. The idea of using loops to characterize an
accessed region has first been introduced by Elnozahy [7]. Simpler representations
have been proposed using triplets (starting addresses, stride, number of references)
and their extension to multidimensional triplets [13]. This is a natural approach since
the majority of time execution of a program is spent in loops, and memory accesses
are regular. Figure 7.12 shows the parallel between a typical example of program
loop and its representation.

Fig. 7.12: Source code loop and its corresponding nested loop representation

108 Denis Barthou, Andres Charif Rubial, William Jalby, Souad Koliai, and Cédric Valensi

The algorithm takes into account two types of access patterns:

• regular patterns obtained by regular or irregular accesses
• irregular patterns due to random accesses. There is no easy way to deal with this

kind of pattern. Existing approaches fall back on lossy algorithms.

Each memory stream is assigned an internal stack that stores either regular and
irregular patterns. Regular patterns are stored in the loop format described above.
Irregular patterns, which correspond to a sequence of numbers without any affinity,
are kept as it is. The stack size management is controlled by three factors:

• the maximum stack size (length)
• the maximum number of terms within the loop body representation (breadth)
• the number of elements to throw when the size limit is reached

The algorithm is lossless as long as the stack is large enough to store all memory
streams. On some huge programs it may be necessary to voluntarily limit the stack
in order to prevent consuming all the available memory. In this case the algorithm
is lossy.

Multithread and Performance Issues

We have adapted the previous method to a multicore execution context and extended
it by taking into account static analysis information. Adaptation to multicore exe-
cution boils down to reimplementing the original method as a thread-safe method.
Traces are saved for each memory access, for each thread independently.

Instrumenting a code for memory traces usually generates a large overhead, and
most methods (such as Metric[13]) use sampling in order to reduce this weight
on the execution time. Another approach is to use static analysis in order to infer
fragments of traces from the assembly code. Indeed, tracking down the induction
variable of inner loops makes it possible to capture the stride of memory streams.
The value may appear in the code as a numerical constant or as a parametric constant
(invariant in the loop). But in both cases we only need this value and the iteration
count to extract the loop representation (usually found in some register). Thus this
saves a large part of the overhead due to instrumentation.

Our design still suffers from a lack of information about temporal locality. This
could be alleviated by using a simplified cache simulator. Its integration in MAQAO
is left for future work.

7.3.3 Using Traces for OpenMP Performance Issues

Once trace collection is done, the results are analyzed (manually at the moment)
and some hints are provided to the user to help tune the code. We provide thereafter
a number of scenarii reflecting performance issues that can be detected using this
trace framework.

7 Performance Tuning of x86 OpenMP Codes with MAQAO 109

• Potential bank/load store queue conflicts: this type of conflicts can be easily de-
tected by comparing addresses accessed by ”neighbor” instructions. On Xeon
architecture a store on address A followed by a load on address B can generate
pipeline stalls if address A and B have the same low order 12 bits (same offset
within a page). The performance impact will depend upon the execution distance
(how many cycles apart) between the load and store instructions. Detection of
this intra-thread issue consists in finding successive load/store patterns accessing
different addresses sharing the same low order 12 bits.

• False Sharing: Two threads share some cache line, while they do not share any
data. However, performance is impacted due to cache coherency issues. Patterns
that lead to false sharing can be tracked down by comparing addresses read and
written by different threads (loads and stores). Coherence issues increase with
the number of cores and the memory access is not uniform (case of Intel archi-
tectures).

• Prefetch distance: Prefetch distances can be found or guessed based on the ac-
cessed regions of memory. The memory region found by our trace mechanism
helps the user to determine if prefetch causes potential false sharing issues, de-
pending on the prefetch distance.

• OpenMP work distribution scheme: Based on the memory pattern accesses, we
can recover OpenMP work distribution scheme (different static, dynamic and
guided modes) and evaluate which mode is the more appropriate for the applica-
tion;

• Reuse degree between loads: Multiple loads on the same, shared data give us
temporal locality hints. The user could, if possible, reorder some statements to
take advantage of cached data at some point;

• Strided accesses: Depending on the programming language, data is stored by col-
umn or by row in memory. One possible optimization is to assess which config-
uration is the most efficient. Moreover, structure of arrays or arrays of structures
are usual choices that impact performance, in particular due to vectorization.
Evaluation from traces of the opportunity to vectorize memory accesses is an
important task in the code tuning phase.

To illustrate one of these scenarii, consider the code shown in Fig. 7.12. This
code could match for instance to a matrix multiplication code. The i loop can be
parallelized with OpenMP, and different load balancing methods can be chosen,
among which STATIC and DYNAMIC methods. Tracing memory writes reveals
that with a STATIC load balancing method and 8 threads, there is no false sharing
occurring. For the DYNAMIC method, as shown in Fig. 7.13, some false sharing
occurs, resulting in increased memory latency due to cache coherency mechanism
(false sharing for write accesses).

110 Denis Barthou, Andres Charif Rubial, William Jalby, Souad Koliai, and Cédric Valensi

Thread 1
for i0 = 0 to 127

for i1 = 0 to 127
val 0x45255b0 + 1024*i0

Thread 2
for i0 = 0 to 127

for i1 = 0 to 127
val 0x45255b8 + 1024*i0

Thread 3
for i0 = 0 to 127

for i1 = 0 to 127
val 0x45255c0 + 1024*i0

Thread 4
for i0 = 0 to 127

for i1 = 0 to 127
val 0x45255d8 + 1024*i0

Thread 5
for i0 = 0 to 127

for i1 = 0 to 127
val 0x45255d0 + 1024*i0

Thread 6
for i0 = 0 to 127

for i1 = 0 to 127
val 0x45255a8 + 1024*i0

Thread 7
for i0 = 0 to 127
for i1 = 0 to 127

val 0x45255c8 + 1024*i0

Thread 8
for i0 = 0 to 127
for i1 = 0 to 127

val 0x45255a0 + 1024*i0

Fig. 7.13: Partial traces corresponding to memory writes in a DGEMM code, where
the i loop is parallelized with DYNAMIC load balancing strategy. This solution is
not efficient due to the false sharing between threads (for instance, threads 1 and 2
access the same cache line).

7.4 Related Work

There are few performance tools dealing with parallel (multithreaded) codes opti-
mization.

Intel VTune [5] relies on the Thread Profiler application to determine the number
of cores that are being used, show the distribution of work to threads but does not
take into account memory accesses.

Acumem [1] rely on cache related statistics to predict performance bottlenecks.
MAQAO uses (memory accesses) tracing rather than sampling in order to provide
the user with very accurate results and detect unusual behaviours.

HPCToolkit [2] also works at binary level for language independence, collects
and correlates multiple performance metric, computes derived metrics to aid anal-
ysis. However it uses profiling rather than adding code instrumentation. MAQAO
supports code instrumentation to enable users inserting probes and concentrate on
specific parts of an application.

PIN [19] and DynInst [4] are two tools allowing modification of an executable for
the purpose of instrumentation. Both perform dynamic instrumentation, operating
on the executable while it is loaded in memory and running.

PIN traces an executable during its execution (acting as a ”just-in-time” com-
piler) and monitors various parameters. It allows to transfer control flow to external
functions, effectively inserting calls to these functions, and to modify the memory,
all of this while the executable is being executed. It is also possible with PIN to
insert probes in the executable while it is loaded in memory but not yet running,
which actually redirects the execution flow to another function. This mode does not
work on multi-threaded applications and does not check the destinations of jump in-
structions. PIN is also able to perform some static analysis of a file (like identifying
functions arguments).

7 Performance Tuning of x86 OpenMP Codes with MAQAO 111

DynInst [4] allows dynamic updating of code, a process labeled runtime injec-
tion. It proceeds by directly updating a program in memory to insert jumps pointing
to the added sections of code which reside somewhere else in memory. A recent
update also allows DynInst to perform some binary rewriting.

Instrumentation by MADRAS is not accomplished at runtime by another thread,
as it is performed statically. The instrumented program can then be run without addi-
tional overhead but the calls to the instrumented functions. No special environment
is required.

The integration of the MADRAS library allowed us to introduce the memory
tracing feature.

Valgrind [14] is a dynamic binary instrumentation and analysis framework which
uses a simulated CPU to analyse programs (in particular on cache and memory
use) and offer instrumentation options. The simulated CPU causes an important
slowdown of the analysed program and requires more memory space.

METRIC [13] uses dynamic instrumentation to capture memory accesses and
scope changes.

PSnAP [15] also uses dynamic instrumentation to generate memory stream pro-
files on a per loop basis as MAQAO does.

Ketterlin & Clauss [11] propose a more sophisticated compression technique that
we are using in our memory tracing library.

To our best knowledge, there is no existing technique for memory tracing of
parallel (multithreaded) codes.

7.5 Conclusions and Future Work

MAQAO is a tool for performance tuning that relies on both static analysis of bi-
naries and on data collected through instrumentation. We have shown in this paper
how the performance model for x86 processors is designed inside MAQAO and how
memory tracing for OpenMP programs is achieved.

The static analysis is combined with the hint mechanisms of MAQAO, helping
the user to locate easily in the application source code the code fragments that ex-
hibit poor performance. Moreover, this analysis provides a rough estimate of the
possible performance gains that could be expected by an efficient vectorization.
The memory tracing method we propose relies on two mechanisms: a new binary
instrumentation framework, MADRAS, where each assembly instruction can be in-
strumented individually, and a compact memory trace representation [11], extended
for multithreaded programs. We have shown, through multiple scenarii, how the
multithreaded trace information can be used to detect performance issues specific to
multicore machines.

For future work, we plan to improve the trace representation in order to capture
partially some scheduling information (associating time stamps with memory ad-
dresses). In future versions, trace results will be analysed automatically. MAQAO
still needs the assembly code for building its analysis and will rely only on the data

112 Denis Barthou, Andres Charif Rubial, William Jalby, Souad Koliai, and Cédric Valensi

extracted from the disassembled binary in the next release (the disassembled bi-
nary from MADRAS being used in correlation with it to retrieve the instructions
addresses).

References

1. Acumum AB. Acumem SlowSpotter and Acumem ThreadSpotter, 2009. http://www.
acumem.com/content/view/133/182/.

2. L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-Crummey, and N. R. Tal-
lent. HPCToolkit: Tools for performance analysis of optimized parallel programs. Technical
Report TR08-06, Rice University, 2008.

3. A. Alexandrov, S. Bratanov, J. Fedorova, D. Levinthal, I. Lopatin, and D. Ryabtsev. Par-
allelization Made Easier with Intel Performance-Tuning Utility, 2007. http://www.
intel.com/technology/itj/2007/v11i4/.

4. B. Buck and J. K. Hollingsworth. An API for Runtime Code Patching. Intl. Journal of High
Performance Computing Applications, 14:317–329, 2000.

5. Intel Corporation. Intel VTune Performance Analyzer 9.1, 2009. http://software.
intel.com/en-us/intel-vtune/.

6. L. Djoudi, D. Barthou, P. Carribault, C. Lemuet, J-T. Acquaviva, and W. Jalby. Exploring Ap-
plication Performance: a New Tool For a Static/Dynamic Approach. In Los Alamos Computer
Science Institute Symp., Santa Fe, NM, October 2005.

7. E. N. Elnozahy. Address trace compression through loop detection and reduction. SIGMET-
RICS Perform. Eval. Rev., 27(1):214–215, 1999.

8. Agner F. Software optimization resources, 2009. http://www.agner.org/optimize/.
9. L. Georgiadis, R. F. Werneck, R. E. Tarjan, S. Triantafyllis, and D. I. August. Algorithms -

ESA, 3221:677–688, 2004.
10. W. Jalby, C. Lemuet, and X. Le Pasteur. A New Set of Microbenchmarks to Explore Memory

System Performance for Scientific Computing, 2004. International Journal of High Perfor-
mance Computing Applications.

11. A. Ketterlin and Ph. Clauss. Prediction and Trace Compression of Data Access trough Nested
Loop Recognition. In ACM/IEEE Int. Symp. on Code Optimization and Generation, 2008.

12. S. Koliai, S. Zuckerman, E. Oseret, M. Ivascot, T. Moseley, D. Quang, and W. Jalby. A Bal-
anced Approach to Application Performance Tuning. In Proc. of LCPC, LNCS, Delaware,
USA, October 2009. Springer.

13. J. Marathe, F. Mueller, T. Mohan, B. R. de Supinski, S. A. McKee, and A. Yoo. METRIC:
Tracking Down Inefficiencies in the Memory Hierarchy via Binary Rewriting. ACM/IEEE Int.
Symp. on Code Optimization and Generation, 0:289, 2003.

14. N. Nethercote and J. Seward. Valgrind: A Framework for Heavyweight Dynamic Binary In-
strumentation. 2007. Proceedings of ACM SIGPLAN 2007 Conference on Programming Lan-
guage Design and Implementation (PLDI 2007), San Diego, California, USA, June 2007.

15. C. Mills Olschanowsky, M. Tikir, L. Carrington, and A. Snavely. PSnAP: Accurate Synthetic
Address Streams Through Memory Profiles. In Int. Workshop on Languages and Compilers
for Parallel Computing, 2009.

16. ParMA ITEA2 Project: Parallel Programming for Multicore Architectures.
http://www.parma-itea2.org/.

17. B. Risio, A. Berreth, S. Zuckerman, S. Koliai, M. Ivascot, W. Jalby, B. Krammer, B. Mohr,
and T. William. How to Accelerate an Application: a Practical Case Study in Combustion
Modelling. In Proc. of ParCo, Lyon, France, 2009.

18. C. Valensi and D. Barthou. MADRAS: Multi-Architecture Disassembler and Reassembler,
2009. http://maqao.prism.uvsq.fr/wiki/wiki/MadrasDownload.

http://www.acumem.com/content/view/133/182/
http://www.acumem.com/content/view/133/182/
http://www.intel.com/technology/itj/2007/v11i4/
http://www.intel.com/technology/itj/2007/v11i4/
http://software.intel.com/en-us/intel-vtune/
http://software.intel.com/en-us/intel-vtune/
http://www.agner.org/optimize/
http://www.parma-itea2.org/
http://maqao.prism.uvsq.fr/wiki/wiki/MadrasDownload

7 Performance Tuning of x86 OpenMP Codes with MAQAO 113

19. S. Wallace and K. Hazelwood. SuperPin: Parallelizing Dynamic Instrumentation for Real-
Time Performance. In ACM/IEEE Int. Symp. on Code Optimization and Generation, pages
209–217, San Jose, CA, March 2007.

20. F. Wolf, B.J.N. Wylie, E. Ábrahám, D. Becker, W. Frings, K. Fürlinger, M. Geimer, M.-A. Her-
manns, B. Mohr, S. Moore, M. Pfeifer, and Z. Szebenyi. Usage of the SCALASCA Toolset for
Scalable Performance Analysis of Large-Scale Parallel Applications. In Proc. of the 2nd HLRS
Parallel Tools Workshop, pages 157–167, Stuttgart, Germany, July 2008. Springer. ISBN 978-
3-540-68561-6.

	Performance Tuning of x86 OpenMP Codes with MAQAO
	Introduction
	Static Performance Evaluation
	Code Restructuring
	Performance Model
	Applying MAQAO to Real-World Applications

	Memory Traces for OpenMP Codes
	Static Binary Instrumentation
	Memory Traces
	Using Traces for OpenMP Performance Issues

	Related Work
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

