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MUST: A Scalable Approach to Runtime Error
Detection in MPI Programs
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Abstract The Message-Passing Interface (MPI) is large and complex. Therefore,
programming MPI is error prone. Several MPI runtime correctness tools address
classes of usage errors, such as deadlocks or non-portable constructs. To our knowl-
edge none of these tools scales to more than about 100 processes. However, some
of the current HPC systems use more than 100,000 cores and future systems are
expected to use far more. Since errors often depend on the task count used, we need
correctness tools that scale to the full system size. We present a novel framework for
scalable MPI correctness tools to address this need. Our fine-grained, module-based
approach supports rapid prototyping and allows correctness tools built upon it to
adapt to different architectures and use cases. The design uses PnMPI to instantiate
a tool from a set of individual modules. We present an overview of our design, along
with first performance results for a proof of concept implementation.

5.1 Introduction

The Message Passing Interface (MPI) [1, 2] is the de-facto standard for program-
ming HPC (High Performance Computing) applications. Even the first version of
this interface offers more than 100 different functions to provide various types of
data transfers. Thus MPI usage is error prone and debugging tools can greatly in-
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crease MPI programmers’ productivity. Many types of errors can occur with MPI
usage including invalid arguments, errors in type matching, race conditions, dead-
locks and portability errors. Existing tools that detect some of these errors use one
the following three approaches: static source code analysis, model checking or run-
time error detection.

Runtime error detection is usually the most practical of these approaches for tool
users, since it can be deployed transparently and avoids the potentially exponential
analysis time of static analysis or model checking. However, these tools are gen-
erally limited to the detection of errors that occur in the executed control flow of
the application and, thus, may not identify all potential errors. Several runtime error
detection tools for MPI exist; however, our experience is that none of these tools
covers all types of MPI errors. Further, none is known to scale to more than about
100 processes. With current systems that utilize more than 100,000 cores it is be-
coming increasingly difficult to apply these tools, even to small test cases.

This paper presents MUST, a new approach to runtime error detection in MPI
applications. It draws upon our previous experience with the existing tools Mar-
mot [3] and Umpire [4] and is specifically designed to overcome the scalability
limitations of current runtime detection tools while facilitating the implementation
of additonal detection routines. MUST relies on a fine grain design in the form of
modules that are loaded into PnMPI [5]. The next section will present the experi-
ences and issues that we discovered during our development of Marmot and Umpire.
Section 5.3 presents the goals and general design ideas of MUST, while Section 5.4
covers several key design details of MUST. In Section 5.5 we present initial experi-
mental results with a proof of concept implementation of the MUST design. Finally,
Sections 5.6 and 5.7 present related work and our conclusions.

5.2 Experiences from Marmot and Umpire

This section presents insights into our two predecessor MPI correctness checking
tools: Marmot [3] and Umpire [4]. Marmot provides a wide range of local and
global checks and offers good usability and integration into several other tools. Um-
pire’s strength is a runtime deadlock detection algorithm that detects all actual dead-
locks in MPI-1.2 as well as some potential deadlocks on alternate execution paths.
While both tools have been very successful and have helped users debug their codes,
they both are first generation MPI checker tools and have inherent limitations, upon
which we focus in the following.

In particular, our analysis focuses on two things: first, the communication system
for MPI trace records; second, the separation of tool internal infrastructure and the
actual correctness checks. The communication system is necessary for checks (e.g.,
deadlock detection or type matching) that require global knowledge of MPI calls,
i.e., data from more than one process. Thus, such checks require a system to com-
municate records for MPI calls. The separation of tool internal infrastructure and
the actual correctness checks is important in order to enhance existing checks and to
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add further correctness checks that are used for new features or new versions of the
MPI standard. We first analyze these aspects for Marmot and then cover Umpire.

5.2.1 Marmot

Fig. 5.1: Marmot trace communication design.

Marmot is an MPI runtime checker written in C++ that covers MPI-1.2 and parts
of MPI-2. Its communication system is sketched in Figure 5.1. Marmot’s MPI wrap-
pers intercept any MPI call issued by the application. Marmot then performs two
steps before executing the actual MPI call: first, it checks for correctness of the MPI
call locally; second, it sends a trace record for this MPI call to the “DebugServer”, a
global manager process. The application process continues its execution only after
it receives a ready-message from the DebugServer. As a result, it is guaranteed that
all non-local checks executed at the DebugServer, as well as all local, are finished
before the actual MPI call is issued. This synchronous checking ensures that all er-
rors are reported before they can actually occur, which removes the need to handle
potential application crashes. The DebugServer also executes a timeout based dead-
lock detection. While this approach can detect many deadlocks, it can lead to false
positives. Also, it is not possible to highlight the MPI calls that lead to a deadlock
with this strategy. Additionally, the DebugServer performs error logging in vari-
ous output formats and can send error reports via TCP socket communication to
arbitrary receivers. The main disadvantage of this synchronous or blocking com-
munication system is its high impact on application performance. In particular, the
runtime overhead increases significantly as the number of MPI processes increases
since the DebugServer is a centralized bottleneck. Also, the blocking communica-
tion with the DebugServer can lead to high latency even at small scales, which –
especially for latency bound applications – is a disadvantage.
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The separation of tool internal infrastructure and the actual MPI correctness
checks is not well solved for Marmot. It uses one C++ class for each MPI call
and uses multiple abstract classes to build a hierarchy for all MPI calls. Checks
are implemented as methods of these classes and are called before the PMPI call
is issued. This has two disadvantages: First, checks for one MPI call are often dis-
tributed to multiple objects making it hard to determine which checks are used for
a certain MPI call. Second, our experience with Marmot shows that there is no rea-
sonable hierarchy for MPI calls that also builds a good hierarchy for all the differ-
ent types of checks. Thus, many checks in Marmot are either implemented in very
abstract classes or are implemented in multiple branches of the object hierarchy,
which leads to code redundancy. The implementation of the checks uses a multitude
of static variables that are stored in the more abstract classes of the hierarchy. These
variables represent state information for the MPI system leading to checks being
very tightly coupled with Marmot’s class hierarchy.

The development of Marmot occurred concurrently with multiple workshops on
parallel programming tools that included hands-on sessions. The experiences from
these workshops guided the development of Marmot. One of the commonly asked-
for features are integrations into widely accepted tools like debuggers, IDEs, or
performance tools. As a result, Marmot provides multiple usability enhancing tools
and integrations that help users in applying the tool. These efforts help new users to
apply the tool easily, which is an important factor for the success of Marmot.

5.2.2 Umpire

Fig. 5.2: Umpire trace communication design.

The MPI correctness checker Umpire is written in C and focuses on non-local
MPI checks. It executes both a centralized deadlock detection and type matching
at a central manager. Figure 5.2 sketches the trace transfer that is implemented in
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Umpire. The first difference to Marmot is that Umpire spawns extra threads for
each MPI process. It spawns an “outfielder” thread for all processes. In addition,
it spawns a “manager” thread on one process (usually process 0). The outfielder
thread asynchronously transfers trace records to the centralized manager, which is
executed on the manager thread.

Similarly to Marmot, Umpire’s wrappers intercept any MPI call issued by the
application. However, Umpire minimizes immediate application perturbation. The
application thrad only builds a trace record for the MPI call, which it transfers to the
outfielder thread of that process through shared memory. Each outfielder thread ag-
gregates the trace records that it receives and sends them to the manger thread. This
send happens if the buffer limit is exceeded or when a timeout occurs. This commu-
nication is implemented with either MPI or shared memory depending on the sys-
tem architecture. Umpire’s communication system is designed to incur low runtime
overhead, which is achieved with the asynchronous transfer of trace records to the
central manager. Due to the asynchronous design, the central manager is no longer
a bottleneck. However, it still limits performance since it must analyze trace records
of all processes. Further, performance tests with Umpire show that the efficiency of
the asynchronous transfer depends highly on the interleaving of the communication
of the application and the MPI communication of the outfielder threads [6].

As with Marmot, the separation of internal infrastructure and correctness checks
is incomplete with Umpire. The checks that are executed at the centralized manager
are tightly coupled to a large structure that represents internal state as well as MPI
state. All checks are directly coupled to this structure. Also, some of the different
checks of the central manager are dependent on each other and need to use internal
data from each other. This applies to a smaller extent to local checks which tend
to need less state information. Umpire currently only implements a small number
of local checks. Additional local checks may be added by extending the wrapper
generation of Umpire, since checks can be issued in the wrappers or other generated
files.

5.3 Introduction to MUST

We present MUST (Marmot Umpire Support Tool), a new approach to runtime MPI
correctness checking. We designed MUST to overcome the limitations to scalability
and extensibility of Umpire and Marmot and their hard coded trace communication
with a centralized manager. Its design focuses on the following goals:

1. Correctness
2. Scalability
3. Usability
4. Portability

The correctness goal is the most important one and comes with two sub-goals: first,
the tool must not give false positives; second, the tool should detect all MPI related
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errors that manifest themselves in an execution with MUST. We restrict this second
sub-goal to runs in which errors actually occur, as the detection of all potential
errors would likely incur an intolerable runtime overhead, which would limit the
applicability of the tool.

The second goal, scalability, is one of the main motivations for this new approach
to MPI checking. The tool must scale at least to small or medium sized test cases
on next generation HPC systems. With the current trend towards high numbers of
computing cores, this means at least a range of 1,000 to 10,000 processes. Our goal
is to offer a full set of correctness features for 1,000 processes at a runtime overhead
of less than 10%, and a restricted set of correctness features for 10,000 processes at
the same runtime overhead.

The further goals, usability and portability, are important to achieve a successful
tool that will find acceptance with both application programmers and HPC support
staff. A common problem with many HPC tools is that they require the application
developer to recompile and relink the application, which can be very time consum-
ing for larger applications. Therefore, we aim to avoid this requirement with MUST.
Further, tools must be adaptable to special HPC systems that impose restrictions
such as no support for threads.

We address both issues with PnMPI [5], an infrastructure for MPI tools. PnMPI
simplifies MPI tool usage by allowing tools to be added dynamically, removing the
need to recompile and offering flexibility in the choice and combination of PMPI-
based tools. Only the PnMPI core is linked to the application, instead of a certain
MPI tool. If the MPI tools are available as shared libraries, PnMPI supports the
application of any number of MPI tools simultaneously. Thus, at execution time, the
tool user can decide which tools he wants to apply to an application.

PnMPI achieves this flexibility by virtualizing the MPI Profiling interface. It con-
siders each MPI tool as a module and arranges these modules in stacks that specify
the order in which MPI calls are passed to the modules. These modules may also co-
operate with each other by offering services to or using services from other modules.
Further, special PnMPI modules allow more enhanced features like condition-based
branching in stacks. This infrastructure provides flexibility combined with advan-
tages to tool usability. As a result, we base the design of MUST on PnMPI and use
fine grained modules that can be composed to form an instance of MUST. With this
basic infrastructure, we can easily adapt the MUST tool to specialized scenarios
such as when only an individual correctness check is of interest.

A further important aspect of MUST is the notion that the overall tool will consist
of three layers. The bottom layer is provided by PnMPI and its modules that pro-
vide the basic infrastructure and composability of the tool. The actual correctness
checks form the upper layer of MUST. The remaining middle layer has to provide
service tasks like trace record generation and the communication of trace records to
processes and threads that are exclusively allocated to the tool, which are used to of-
fload correctness analyses. A further task is the management of these processes and
threads for error cases, startup and shutdown. This task is tool agnostic and needed
for many HPC tools. As a result, we want to provide this layer of functionality as
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a decoupled set of modules that is also available to other tool developers. Thus, we
name this layer of functionality “Generic Tool Infrastructure” (GTI).

5.4 MUST Design

This section introduces some of the key design ideas of MUST. As discussed in the
last section, our design uses PnMPI for the underlying infrastructure along with a
set of fine grain modules that implement the MPI checks. A first important aspect of
the MUST design is the ability to execute correctness checks either in an application
process itself (in the critical path) or in extra processes or threads that are used
to offload these analyses (away from the critical path). This choice can provide
a low runtime overhead while supporting portability. The first part of this section
introduces the concepts that we use to achieve this goal. Afterwards we present
an overview of the overall components of the MUST design, and highlight their
tasks. A further aspect of the design is the communication of trace records. We
present an overview of how different types of modules combine to implement this
communication. These modules are part of the GTI layer and can be used by other
tools.

5.4.1 Offloading of Checks

Fig. 5.3: Example instantiation of places, checks, state trackers and a communica-
tion network.

The option to execute correctness checks on additional processes or threads is
one of MUST’s most important aspects. We refer to such a process or thread by the
term “place”. Marmot and Umpire both execute some checks on an extra place (the



60 Tobias Hilbrich, Martin Schulz, Bronis R. de Supinski, and Matthias S. Müller

manager thread for Umpire and the DebugServer process for Marmot). However,
both tools do not support the selection of the place of execution freely, as these
checks are explicitly aware of being executed at a certain place. Moving such a
check into the critical path, or a check being executed in the critical path to another
place is not easily possible in either Marmot or Umpire.

The main problem is that the execution of checks often requires background
information on the state of MPI. It is possible within the application process for a
synchronous tool to query such information with MPI calls, while it is not possible
on additional processes that do not have access to the MPI library. Similarly, if
the MPI process has proceeded beyond the MPI call, the relevant state may have
changed. Also, the required information often must be gathered and updated during
application execution. For example, determining which requests are currently active
requires the sequence of request initiations and completions. While much of the
work can be offloaded to MPI emulation, the gathering of the basic information
must take place in the application processes themselves.

MUST uses the concept of “state trackers” to solve this problem. All information
that a check requires but is not directly available from the arguments of the MPI
call that triggered this check, must be provided by state trackers. These trackers are
implemented as independent modules and may gather different types of data during
the application’s runtime and provide it to checks when needed. If multiple checks
require the same state tracker, a single instance of the state tracker can provide
this information. In order to support the placement of a check at any place, the
MUST system has to determine which state trackers are required on each place.
This strategy provides a transparent way to implement checks that can be offloaded
to places.

Figure 5.3 shows an example distribution of places, checks, state trackers and
a trace communication network. It uses four application processes and seven extra
places to offload checks. The checks are highlighted as little boxes in the top right
corner of the places or application processes. Each place or application process may
also need state trackers that are indicated by little boxes above the checks.

5.4.2 Major Components

Figure 5.4 shows the main components of MUST and parts of their overall inter-
action. The correctness checks and the tool infrastructure are provided as modules
from MUST, PnMPI, and the GTI (top row). We summarize a further set of com-
ponents in the top right of the figure as “descriptions”, which describe properties of
some of the modules and formalize what checks apply to the arguments of specific
MPI calls. They also characterize the dependencies of checks and state trackers.
A GUI (middle left) provides users with options to individualize MUST for their
needs, e.g., to specify the checks being used, to add extra processes/threads that
offload checks, or to define the layout of the trace communication network. A de-
fault configuration will usually by sufficient for smaller test cases, while large scale
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Fig. 5.4: Major components in MUST; arcs denote input/output dependencies.

tests will need a specifically tailored configuration. The system builder component
uses the selected tool configuration, the list of available modules and the various
descriptions to create the configuration files for PnMPI and additional intermediate
modules, including specialized MPI wrappers to create and forward the necessary
trace records. An additional startup script may be provided to simplify the startup
of the application with MUST.

5.4.3 Trace Communication System

Fig. 5.5: Composition of places with communication strategies and communication
protocols.
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An important aspect of MUST’s design is its encapsulation of how to transport
trace records from one process or thread to another. An efficient communication
of trace records primarily depends on two things: first, an efficient communication
medium that optimizes the use of the underlying system where possible; second,
an efficient strategy to use these communication media. Thus, we must use shared
memory when communicating on node or rely on InfiniBand instead of Ethernet if
both networks are available. It will usually be very inefficient to transfer tiny trace
records with single messages with a TCP/InfiniBand/MPI based communication.
Also, it will be more effective not to wait until the message has been received for
most media.

The GTI component of MUST solves this problem by combining two different
types of modules to implement a communication. The first type of module, a “com-
munication strategy”, decides when to send what information: it may send trace
records immediately or it may delay the transfer of trace records and aggregate them
into larger messages. The second type of module, a “communication protocol”, im-
plements the communication for a particular communication medium, e.g., TCP/IP,
InfiniBand, SHMEM, or MPI.

Figure 5.5 shows how we compose these modules on the sender and receiver side.
By selecting appropriate combinations of these two module types, we can provide
a flexible, adaptable and high performance communication of MPI communication
traces. One instantiation of MUST may use multiple combinations, e.g., a shared
memory communication protocol to transfer MPI trace records to an extra thread
and a TCP/IP communication protocol to transfer trace records from this thread to
a further place used to offload checks.

5.5 Initial Experiments

We developed a proof of concept implementation of a subset of the MUST design
in order to verify our ideas, as well as to perform first performance studies. The im-
plementation provides the features necessary to use extra places and transfer trace
records to them. One of our early questions is the feasibility of our runtime overhead
goals. The question at hand is, whether we can transfer the trace records from the ap-
plication processes to extra places without perturbing the application. We use initial
experiments with our proof of concept implementation to study this problem. We
use two different communication layouts and three different communication strate-
gies to study different communication approaches. Our tests intercept all MPI calls
and create a trace record for each. We send these trace records from the application
processes to extra places and measure the runtime overhead that results from this
extra communication. However, the receiver side only receives and unpacks these
trace records; no checks are executed. We use NPB3.3-MPI as target applications
and run our tests on a 1152 node AMD Opteron Linux cluster with a DDR Infini-
Band network. Each node has 8 cores on four sockets and 16 GB of main memory
that is shared between all cores.
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As the communication protocol we use MPI itself, as it provides an easily avail-
able and highly optimized communication medium. It also offers a simple way to
allocate extra processes for MUST. We use PnMPI based virtualization to split an
allocated MPI COMM WORLD into multiple disjoint sets. The application uses one
of these sets as its MPI COMM WORLD, which is transparent to the application itself.
The remaining sets can be used for MUST. MPI based communication between all
of the sets is possible. We use two different communication layouts, which are “1-
to-1”, a best case layout where each application process has one extra process that
receives its trace records, and “all-to-1”, a centralized manager case where all appli-
cation processes send their trace records to one extra process. The first layout helps
to determine what runtime overhead to expect for a case where checks can be well
distributed and no centralized manager needs to receive records from all processes.
The second case captures the limits of a communication with a centralized manager,
as in Umpire and Marmot.

We use three different communication strategies to implement different commu-
nication schemes. These are:

Ssend: Sends one message for each trace record, waits for the completion of the
receive of each message before it continues execution.

Isend: Sends one message for each trace record, does not wait for the completion
of the receive of the message. With the MPI based communication protocol
this is implemented with an MPI Isend call.

Asend: Aggregates multiple trace records into one message, sends the message
when either the aggregate buffer is full (100KB) or a flush is issued. As
with Isend, the sender does not wait for the completion of the receive of the
message.

The Ssend strategy is very similar to the communication currently used in Marmot.
Besides its obvious performance disadvantage, it simplifies handling of application
crashes as it guarantees that trace records were sent out from the application before
a crash can occur. The Isend strategy is still simple to implement and should over-
come the performance problems of the Ssend strategy. The Asend strategy, which is
similar to Umpire’s communication strategy, is our most complex strategy, but of-
fers multiple optimizations that may provide a low runtime overhead. In particular,
we expect that this method will achieve higher bandwidth, due to the aggregation of
the trace records. However, its performance benefit will depend on a good interleav-
ing of the communication: we expect a high runtime penalty if the aggregated mes-
sages are sent while the application is in a communication phase. On the other hand,
sending the aggreagated messages while the application is in a computation phase
will incur close to no runtime overhead, particularly on systems with communica-
tion co-processors. Experiments with Umpire already highlighted the significance
of this timing behavior [6]. As a result, we instrument the NPB kernels to issue a
flush of the aggregated buffer when the application enters a computation phase. This
removes the need for an automatic detection of computation phases and represents
a close to best case scenario. For a final system, we will have to apply a heuristic to
guess when the application is entering a computation phase.
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Fig. 5.6: Runtime overhead for different implementations of a trace transfer.

Figure 5.6 summarizes the performance results for NPB3.3-MPI with problem
size D when using the three different types of trace communication and both place
configurations. Subfigure 5.6a shows the legend for the different communication
layout and communication strategy combinations. The remaining figures show the
runtime overhead for 64 to 1024 processes for these combinations. The all-to-1 cases
fail to scale to 1024 processes for most of the kernels. Where the Ssend and Isend
versions of the all-to-1 communication even fail for 256 processes for most kernels,
the Asend strategy scales to up to 512 processes. Its main advantage is the reduction
in messages arriving at the centralized manager, which leads to a lower workload.
For the 1-to-1 cases, the Ssend strategy incurs a slowdown of up to 3 and hence
fails to meet our performance goals. However, its slowdown does not necessarily
increase with scale. Both the Isend and Asend strategies for the 1-to-1 cases incur a
low runtime overhead, even at scale. These strategies only fail to achieve the desired
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less than 10% runtime overhead for the kernel mg. However, the problem size D of
NPB3.3-MPI is a challenging test case at 1024 processes, as the fraction of the total
execution time spent in MPI is very high at this scale. We expect better results for
most applications.

5.6 Related Work

Several other MPI message checkers exist beyond Marmot [3] and Umpire [4] in-
cluding MPI-Check [7] and ISP [8]. Both of these tools are not reported to scale
to more than a hundred processes. Especially the complex analysis of alternative
executions in ISP limits its scalability dramatically. We hope to combine our efforts
with the ones for ISP in future work, as both tools have the same basic needs.

The generic tool infrastructure component of MUST relates to a wide range of
infrastructure and scalability work. This includes PnMPI [5], as well as infrastucture
tools like MRNet [9], which we may use to implement several of the GTI compo-
nents. Also, existing HPC tools like VampirServer [10] and Scalasca [11], or debug-
gers like DDT [12] and Totalview [13] may implement well adapted communication
schemes that can be used for the GTI components. Further, these tools, as well as up-
coming tools may employ modules of the GTI to implement their communications
and may thus benefit from this component.

5.7 Conclusions

This paper presents a novel approach to create a runtime infrastructure for scalable
MPI correctness checking. As far as we know, existing approaches – like Marmot
and Umpire – lack the scalability needed for large HPC systems. Further, these
tools use static communication systems that are hard to adapt to different types
of systems. Also the implementation of new checks and the extension of existing
ones is hard for these tools, as their checks are tightly coupled to their internal data
structures and infrastructures. Our approach overcomes these problems by using
a fine-grained module-based design that uses PnMPI. We present an overview of
this design and highlight our most important concepts that allow the offloading of
checks to extra processes and threads. Further, we present a flexible communication
system that promises an efficient transfer of trace records between different pro-
cesses or threads. To demonstrate the feasibility of our design and to highlight the
performance capabilities of our communication system, we present a performance
study with a proof of concept implementation. This study shows that our ambitious
runtime overhead goals are feasible, even at scale. In particular we demonstrate full
MPI tracing for up to 1024 processes while transferring the trace records to extra
processes without perturbing the application.
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