
Chapter 4
Recent Developments in the Scalasca Toolset

Markus Geimer, Felix Wolf, Brian J. N. Wylie,
Daniel Becker, David Böhme, Wolfgang Frings,
Marc-André Hermanns, Bernd Mohr, and Zoltán Szebenyi

Abstract The number of processor cores on modern supercomputers is increasing
from generation to generation, and as a consequence HPC applications are required
to harness much higher degrees of parallelism to satisfy their growing demand for
computing power. However, writing code that runs efficiently on large processor
configurations remains a significant challenge. The situation is exacerbated by the
rising number of cores imposing scalability demands not only on applications but
also on the software tools needed for their development.
To address this challenge, Jülich Supercomputing Centre creates software technolo-
gies aimed at improving the performance of applications running on leadership-
class systems. At the center of our activities lies the development of Scalasca, a
performance-analysis tool that has been specifically designed for large-scale sys-
tems and that allows the automatic identification of harmful wait states in appli-
cations running on hundreds of thousands of processors. In this article, we review
recent developments in the open-source Scalasca toolset, highlight research activ-
ities of the Scalasca team during the past two years and give an outlook on future
work.

Markus Geimer, Felix Wolf, Brian J. N. Wylie, David Böhme, Wolfgang Frings, Bernd Mohr,
Zoltán Szebenyi
Jülich Supercomputing Centre,
Forschungszentrum Jülich, 52425 Jülich, Germany
e-mail: {m.geimer,b.wylie,d.boehme,w.frings,b.mohr,
z.szebenyi}@fz-juelich.de

Felix Wolf, Daniel Becker, Marc-André Hermanns
German Research School for Simulation Sciences, 52062 Aachen, Germany
e-mail: {f.wolf,d.becker,m.a.hermanns}@grs-sim.de

Felix Wolf, David Böhme, Zoltán Szebenyi
RWTH Aachen University, 52056 Aachen, Germany

M.S. Müller et al. (eds.), Tools for High Performance Computing 2009,
DOI 10.1007/978-3-642-11261-4 4, © Springer-Verlag Berlin Heidelberg 2010

39

mailto:m.geimer@fz-juelich.de
mailto:b.wylie@fz-juelich.de
mailto:d.boehme@fz-juelich.de
mailto:w.frings@fz-juelich.de
mailto:b.mohr@fz-juelich.de
mailto:z.szebenyi@fz-juelich.de
mailto:f.wolf@grs-sim.de
mailto:d.becker@grs-sim.de
mailto:m.a.hermanns@grs-sim.de
http://dx.doi.org/10.1007/978-3-642-11261-4_4

40 M. Geimer et al.

4.1 Introduction

Supercomputing is a key technology pillar of modern science and engineering, in-
dispensable to solve critical problems of high complexity. The extension of the ES-
FRI road map to include a European supercomputer infrastructure in combination
with the creation of the PRACE consortium acknowledges that the requirements
of many critical applications can only be met by the most advanced custom-built
large-scale computer systems. However, as a prerequisite for their productive use,
the HPC community needs powerful and robust software development tools. These
would not only help improve the scalability characteristics of scientific codes and
thus expand their potential, but also allow domain scientists to concentrate on the
underlying models rather than to spend a major fraction of their time tuning their
application for a particular machine.

As the current trend in microprocessor development continues, this need will
become even stronger in the future. Facing increasing power dissipation and little
instruction-level parallelism left to exploit, computer architects are realizing further
performance gains by using larger numbers of moderately fast processor cores rather
than by increasing the speed of uni-processors. As a consequence, supercomputer
applications are being required to harness much higher degrees of parallelism in
order to satisfy their growing demand for computing power. With an exponentially
rising number of cores, the often substantial gap between peak performance and
the performance level actually sustained by production codes is expected to widen
even further. Finally, increased concurrency levels place higher scalability demands
not only on applications but also on parallel programming tools. When applied to
larger numbers of cores, familiar tools often cease to work in a satisfactory man-
ner (e.g., due to escalating memory requirements, failing renditions, or limited I/O
performance).

To overcome this challenge, Jülich Supercomputing Centre creates software tech-
nologies aimed at improving the performance of applications running on leadership-
class systems with hundreds of thousands of cores. At the center of our activities lies
the development of Scalasca [1, 2], an open-source performance-analysis tool that
has been specifically designed for large-scale systems, which allows the automatic
identification of harmful wait states in applications running on very large processor
configurations.

In this article, we give an overview of Scalasca and highlight research accom-
plishments of the Scalasca team during the past two years, focusing on the analysis
of hybrid applications, the detection of wait states, and the characterization of time-
dependent behavior. The latter two examples address the scalability of Scalasca re-
garding both the number of processes and the length of execution, respectively.

4 Recent Developments in the Scalasca Toolset 41

4.2 Scalasca Overview

Scalasca supports measurement and analysis of MPI applications written in C, C++
and Fortran on a wide range of current HPC platforms [3]. Hybrid codes making use
of basic OpenMP features in addition to message passing are also supported. Fig-
ure 4.1 shows the basic analysis workflow supported by Scalasca. Before any perfor-
mance data can be collected, the target application must be instrumented and linked
to the measurement library. When running the instrumented code on the parallel
machine, the user can choose between generating a summary analysis report (‘pro-
file’) with aggregate performance metrics for individual function call paths and/or
generating event traces recording individual runtime events from which a profile
or time-line visualization can later be produced. Summarization is particularly use-
ful to obtain an overview of the performance behavior and for local metrics such
as those derived from hardware counters. Since traces tend to rapidly become very
large [4], optimizing the instrumentation and measurement based on the summary
report is usually recommended. When tracing is enabled, each process generates a
trace file containing records for its process-local events. After program termination,
Scalasca loads the trace files into main memory and analyzes them in parallel using
as many processes as have been used for the target application itself. During the
analysis, Scalasca searches for wait states and related performance properties, clas-
sifies detected instances by category, and quantifies their significance. The result is a
wait-state report similar in structure to the summary report but enriched with higher-
level communication and synchronization inefficiency metrics. Both summary and
wait-state reports contain performance metrics for every measured function call path
and process/thread which can be interactively examined in the provided analysis re-
port explorer.

4.3 Analysis of Hybrid MPI/OpenMP Codes

Although message passing is still the predominant programming paradigm used
in HPC, increasingly applications leverage OpenMP to exploit more fine-grained
process-local parallelism, while communicating between processes using MPI. Sup-
port for such hybrid applications in the Scalasca 1.0 release consisted of serial trace
analysis of merged traces using the EXPERT analyzer from the KOJAK toolkit [5].
Extended runtime summarization and automatic parallel trace analysis support in-
corporated in Scalasca 1.2 provide similar analyses of hybrid OpenMP/MPI ap-
plications, within the same Scalasca instrumentation, measurement collection and
analysis, and presentation usage model [6].

The OPARI source-code preprocessor inserts instrumentation for OpenMP con-
structs and API calls, which deliver events to the OpenMP-aware measurement li-
brary. Call-path metrics are accumulated per OpenMP thread during measurement,
and collated into a complete summary report during finalization. Trace data is also
analyzed in parallel with an analyzer thread for each OpenMP thread, and subse-

42 M. Geimer et al.

Fig. 4.1: Schematic overview of the performance data flow in Scalasca. Grey rectan-
gles denote programs and white rectangles with the upper right corner turned down
denote files. Stacked symbols denote multiple instances of programs or files run-
ning or being processed in parallel. The GUI shows the distribution of performance
metrics (left pane) across the call tree (middle pane) and the process topology (right
pane).

quently collated into a similar pattern report. Event timestamp correction can also
be applied to the trace data of OpenMP thread teams when logical consistency
violations are encountered in MPI events due to unsynchronized clocks. Specific
OpenMP metrics are calculated and presented alongside serial and MPI metrics in
integrated analysis reports.

While the trace analysis currently remains restricted to fixed-size teams of
OpenMP threads, runtime summarization identifies threads that have not been used
during parallel regions. The associated time within the parallel region is distin-
guished as a Limited parallelism metric from the Idle threads time which includes
time outside OpenMP parallel regions when only the master thread executes. This

4 Recent Developments in the Scalasca Toolset 43

Fig. 4.2: Scalasca analysis report explorer display of a hybrid OpenMP/MPI NPB3.3
BT-MZ benchmark Class B execution on 32 Cray XT5 twin six-core compute nodes,
showing OpenMP Implicit Barrier Synchronization time for a parallel loop in the
compute rhs routine (from lines 62 to 72 of source file rhs.f) broken down by
thread. Higher metric values are shown darker and void thread locations in the topol-
ogy pane are displayed in gray or with dashes.

matches the typical usage of dedicated HPC resources which are allocated for the
duration of the parallel job, or threads which busy-wait occupying compute re-
sources in shared environments. The number of OpenMP threads included in the
measurement can be explicitly specified, defaulting to the number of threads for an
unqualified parallel region when measurement commences: a warning is provided if
subsequent omp_set_num_threads calls or num_threads clauses result in
additional threads not being included in the measurement experiment.

44 M. Geimer et al.

Figure 4.2 shows a Scalasca analysis report from a hybrid OpenMP/MPI NAS
NPB3.3 Block Triangular Multi-Zone (BT–MZ) benchmark [7] Class B execution
in a Cray XT5 partition consisting of 32 compute nodes, each with two six-core
Opteron processors. One MPI process was started on each of the compute nodes,
and OpenMP threads run within each SMP node. In an unsuccessful attempt at
load balancing by the application, more than 12 OpenMP threads were created
by the first 6 MPI ranks (shown at the top of the topological presentation in the
right pane), and 20 of the remaining ranks used fewer than 12 OpenMP threads.
While the 49 seconds of Limited parallelism time for the unused cores represent
only 2% of the allocated compute resources, half of the total time is wasted by Idle
threads while each process executes serially, including MPI operations done out-
side of parallel regions by the master thread of each process. Although the exclusive
Execution time in local computation is relatively well balanced on each OpenMP
thread, the over-subscription of the first 6 compute nodes manifests as excessive
Implicit Barrier Synchronization time at the end of parallel regions (as well as ad-
ditional OpenMP Thread Management overhead), and higher MPI Point-to-point
Communication time on the other processes is then a consequence of this. When
over-subscription of cores is avoided, benchmark execution time is reduced by one
third (with MPI time reduced by 52%, OMP time reduced by 20% and time for Idle
threads reduced by 55%).

4.4 Scalable Wait-State Analysis

In message-passing applications, processes often require access to data provided by
remote processes, making the progress of a receiving process dependent upon the
progress of a sending process. Collective synchronization is similar in that its com-
pletion requires each participating process to have reached a certain point. As a con-
sequence, a significant fraction of the communication and synchronization time can
often be attributed to wait states, for example, as a result of an unevenly distributed
workload. Especially when trying to scale applications to large process counts, such
wait states can present severe challenges to achieving good performance.

4.4.1 Scalability

After the target application has terminated and the trace data have been flushed to
disk, the trace analyzer is launched with one analysis process per (target) appli-
cation process and loads the entire trace data into its distributed memory address
space. Future versions of Scalasca may exploit persistent memory segments to pass
the trace data to the analysis stage without involving any file I/O. While traversing
the traces in parallel, the analyzer performs a replay of the application’s original
communication behavior [8]. During the replay, the analyzer identifies wait states

4 Recent Developments in the Scalasca Toolset 45

Fig. 4.3: Scalability of wait-state search for the ASCI benchmark application
SWEEP3D on the JUGENE Blue Gene/P. The graph charts wall-clock execution
times for the uninstrumented application and for the analyses of trace files gen-
erated by the instrumented version with varying numbers of processes. The time
needed for the trace analysis replay is shown as well as that for the entire parallel
analysis (including loading the traces and collating the analysis report). The black
dashed line shows the linear increase in total trace size in GBytes.

in communication operations by measuring temporal differences between local and
remote events after their timestamps have been exchanged using an operation of
similar type. Since trace processing capabilities (i.e., processors and memory) grow
proportionally with the number of application processes, we can achieve good scal-
ability at previously intractable scales. Recent scalability improvements allowed us
to perform trace analyses of execution measurements with up to 294,912 processes
(Figure 4.3).

4.4.2 Improvement of Trace-Data I/O

Parallel applications often store data in multiple task-local files, for example, to re-
member checkpoints, to circumvent memory limitations, or to record trace data in
the case of the Scalasca toolset. When operating at very large processor configura-
tions, such applications often experience scalability limitations when the simultane-
ous creation of thousands of files causes metadata-server contention or simply when
large file counts complicate file management or operations on those files destabilize

46 M. Geimer et al.

the file system. In this context, a generic parallel I/O library called SIONlib has been
developed which addresses this problem by transparently mapping a large number
of task-local files onto a small number of physical files via internal metadata han-
dling and block alignment to ensure high performance. While requiring only mini-
mal source code changes, SIONlib significantly reduces file creation overhead and
simplifies the resulting file handling, offering even the chance to achieve superior
read and write performance via optimized I/O operations [9]. For the Scalasca trace
collection and analysis of 294,912 processes shown in Figure 4.3, SIONlib was able
to reduce the time to create the experiment archive directory and trace files from 86
minutes (for individual files) down to 10 minutes (for one file for each of the 576
BG/P I/O nodes),

4.4.3 Analysis of MPI-2 Remote Memory Access Operations

In our earlier work, we already defined wait-state patterns for MPI-2 Remote Mem-
ory Access (RMA) communication and synchronization, although still based on
a serial trace-analysis scheme with limited scalability [10]. Taking advantage of
Scalasca’s scalable trace-analysis approach, we recently extended our parallel trace
analyzer to detect these wait states. Using the programming paradigm of the tar-
get application, RMA-related communication and synchronization inefficiencies are
now detected by exchanging data via RMA operations. In this way, we success-
fully performed analyses of RMA-based applications running with up to 8,192 pro-
cesses. [11]

4.4.4 Delay Analysis

In general, the temporal or spatial distance between cause and symptom of a perfor-
mance problem constitutes a major difficulty in deriving helpful conclusions from
performance data. So just knowing the locations of wait states in the program is
often insufficient to understand the reason for their occurrence. We are currently
extending our replay-based wait-state analysis in such a way that it attributes the
waiting times to their root causes. The root cause, which we call a delay, is an inter-
val during which a process performs some additional activity not performed by its
peers, for example as a result of insufficiently balancing the load. [12]

4.4.5 Evaluation of Optimization Hypotheses

Excess workload identified as root cause of wait states usually cannot simply be
removed. To achieve a better balance, optimization hypotheses drawn from a delay

4 Recent Developments in the Scalasca Toolset 47

analysis typically propose the redistribution of the excess load to other processes in-
stead. However, redistributing workloads in complex message-passing applications
can have intricate side-effects that may compromise the expected reduction of wait-
ing times. Given that balancing the load statically or even introducing a dynamic
load-balancing scheme constitute major code changes, they should ideally be per-
formed only if the prospective performance gain is likely to materialize. Our goal is
therefore to automatically predict the effects of redistributing a given delay without
altering the application itself and to determine the savings that can be realistically
hoped for. Since the effects of such changes are hard to quantify analytically, we
simulate these changes via a real-time replay of event traces after they have been
modified to reflect the redistributed load. [13, 14]

4.4.6 Configurable Source-Code Instrumentation

Proper instrumentation is an essential prerequisite for producing reliable perfor-
mance analysis results with the Scalasca toolset. We therefore extended our instru-
mentation capabilities to leverage the generic and configurable source-code instru-
mentation component we developed in collaboration with the University of Oregon
based on PDT and the TAU instrumentor. [15] This component provides flexible
instrumentation specification capabilities, reducing the need to filter performance
events at runtime and, thus, further reducing the measurement overhead.

4.5 Analysis of Time-Dependent Behavior

As scientific parallel applications simulate the temporal evolution of a system their
progress occurs via discrete points in time. Accordingly, the core of such an applica-
tion is typically a loop that advances the simulated time step by step. However, the
performance behavior may vary between individual iterations, for example, due to
periodically re-occurring extra activities [16] or when the state of the computation
adjusts to new conditions in so-called adaptive codes [17].

4.5.1 Observing Individual Iterations

To study the time-dependent behavior, Scalasca is being equipped with iteration in-
strumentation capabilities (corresponding to TAU dynamic timers [18]) that allow
the distinction of individual iterations both in runtime summaries and in event traces.
Moreover, to simplify the understanding of the resulting time-series data, we are im-
plementing several display tools including iteration graphs with minimum, median,

48 M. Geimer et al.

(a) Minimum (light green), median (dark blue),
and maximum (red) number of point-to-point
messages sent by a process.

(b) Messages sent by each process
(darkness according to magnitude).

(c) Late Sender waiting time of a process. (d) Particles held by each process.

Fig. 4.4: Gradual development of a performance problem over 1,300 timesteps of
the PEPC application execution on 1,024 processors of Blue Gene.

and maximum representation (Figure 4.4a) as well as value maps to cover the full
<process/thread, iteration> space for a given performance metric (Figure 4.4b).

Using prototype implementations of these new tools, we evaluated the perfor-
mance behavior of the SPEC MPI2007 benchmark suite on the IBM SP p690 clus-
ter JUMP, observing a large variety of complex temporal characteristics ranging
from gradual changes and sudden transitions of the base-line behavior to both pe-
riodically and irregularly occurring peaks, including noise that varies from mea-
surement to measurement [19]. Moreover, problems with several benchmarks that
limited their scalability (sometimes to only 128 processes) were identified, such as
distributing initialization data via broadcasts in 113.GemsFDTD and insufficiently
large data sets for several others. Even those codes that apparently scaled well con-
tained considerable quantities of waiting time, indicating possible opportunities for
performance and scalability improvement through more effective work distributions
or bindings of processes to processors.

4 Recent Developments in the Scalasca Toolset 49

Another real-world code with a substantially time-varying execution profile is
the PEPC [20] particle simulation code, developed at Jülich Supercomputing Centre
and the subject of an application liaison between the Scalasca and PEPC developer
teams. The MPI code employs a parallel tree algorithm to efficiently calculate the
forces the particles exert on each other and also includes a load-balancing mech-
anism that redistributes the computational load by shifting particles between pro-
cesses. However, our analysis [21] revealed a severe and gradually increasing com-
munication imbalance (Figure 4.4a). We found evidence that the imbalance was
caused by a small group of processes with time-dependent constituency that sent
large numbers of messages to all remaining processes (Figure 4.4b) in rank order,
introducing Late Sender waiting times at processes with higher ranks (Figure 4.4c).
Interestingly, the communication imbalance correlated very well with the number
of particles “owned” by a process (Figure 4.4d), suggesting that the load-balancing
scheme smoothes the computational load at the expense of communication dispar-
ities. Since the number of particles also influence the memory requirements of a
process, we further conclude that the current behavior of concentrating particles at
a small subset of processes may adversely affect scalability under different config-
urations. Work with the application developers to revise the load-balancing scheme
and improve the communication efficiency is in progress.

4.5.2 Space-Efficient Time-Series Call-Path Profiling

While call-path profiling is an established method of linking a performance prob-
lem to the context in which it occurs, generating call-path profiles separately for
thousands of iterations may exceed the available buffer space — especially when
the call tree is large and more than one metric is collected. We therefore developed
a runtime approach for the semantic compression of call-path profiles [22] based
on incremental clustering of a series of single-iteration profiles that scales in terms
of the number of iterations without sacrificing important performance details. Our
approach has low runtime overhead by using only a condensed version of the profile
data when calculating distances and accounts for process-dependent variations by
making all clustering decisions locally.

4.6 Outlook

Besides further scalability improvements in view of upcoming systems in the range
of several petaflops, we plan to extend Scalasca towards emerging programming
models such as partitioned global address space languages and general-purpose
GPU programming, which we expect to play a bigger role in the future. Moreover,
to offer enhanced functionality and combine development efforts, we will integrate

50 M. Geimer et al.

Scalasca closer with related tools including Periscope [23], TAU [24], and Vam-
pir [25].

Acknowledgement Financial support from the Helmholtz Association of German Research Cen-
ters through Grants VH-NG-118 and VH-VI-228 and the German Research Foundation through
Grant GSC 111 is gratefully acknowledged. This research was supported by allocations of ad-
vanced computing resources provided by the John von Neumann Institute for Computing and US
National Science Foundation for computations on the Jugene IBM Blue Gene/P at Jülich Super-
computing Centre and Kraken Cray XT5 at the US National Institute for Computational Sciences.

References

1. Jülich Supercomputing Centre: Scalasca. http://www.scalasca.org/.
2. Geimer, M., Wolf, F., Wylie, B.J.N., Ábrahám, E., Becker, D., Mohr, B.: The Scalasca per-

formance toolset architecture. Concurrency and Computation: Practice and Experience, Proc.
Workshop on Scalable Tools for High-End Computing (to appear) DOI: 10.1002/cpe.1556.

3. Wylie, B.J.N., Geimer, M., Wolf, F.: Performance measurement and analysis of large-scale
parallel applications on leadership computing systems. Scientific Programming 16(2-3) (2008)
167–181

4. Wolf, F., Freitag, F., Mohr, B., Moore, S., Wylie, B.J.N.: Large event traces in parallel perfor-
mance analysis. In: Proc. 8th Workshop on Parallel Systems and Algorithms (PASA, Frank-
furt/Main, Germany). Lecture Notes in Informatics, Gesellschaft für Informatik (March 2006)
264–273

5. Wolf, F., Mohr, B.: Automatic performance analysis of hybrid MPI/OpenMP applications. In:
Proc. 11th Euromicro Conf. on Parallel Distributed and Network based Processing (Genoa,
Italy), IEEE Computer Society (February 2003) 13–22

6. Wolf, F., Wylie, B.J.N., Ábrahám, E., Becker, D., Frings, W., Fürlinger, K., Geimer, M., Her-
manns, M.A., Mohr, B., Moore, S., Pfeifer, M., Szebenyi, Z.: Usage of the SCALASCA
toolset for scalable performance analysis of large-scale parallel applications. In: Proc. 2nd
HLRS Parallel Tools Workshop (Stuttgart, Germany), Springer (July 2008) 157–167 ISBN
978-3-540-68561-6.

7. Van der Wijngaart, R.F., Jin, H.: NAS Parallel Benchmarks, Multi-Zone versions. Technical
Report NAS-03-010, NASA Ames Research Center, Moffett Field, CA, USA (July 2003)

8. Geimer, M., Wolf, F., Wylie, B.J.N., Mohr, B.: A scalable tool architecture for diagnosing wait
states in massively-parallel applications. Parallel Computing 35(7) (2009) 375–388

9. Frings, W., Wolf, F., Petkov, V.: Scalable massively parallel I/O to task-local files. In: Proc.
21st ACM/IEEE SC Conf. (SC09, Portland, OR, USA). (November 2009)

10. Kühnal, A., Hermanns, M.A., Mohr, B., Wolf, F.: Specification of inefficiency patterns for
MPI-2 one-sided communication. In: Proc. 12th Euro-Par (Dresden, Germany). Volume 4128
of Lecture Notes in Computer Science, Springer (2006) 47–62

11. Hermanns, M.A., Geimer, M., Mohr, B., Wolf, F.: Scalable detection of MPI-2 remote mem-
ory access inefficiency patterns. In: Proc. 16th European PVM and MPI Conference (Eu-
roPVM/MPI, Espoo, Finland). Volume 5759 of Lecture Notes in Computer Science, Springer
(September 2009) 31–41

12. Böhme, D., Geimer, M., Hermanns, M.A., Wolf, F.: Identifying the root causes of wait states
in large-scale parallel applications. Technical Report AICES-2010-1, Aachen Institute for Ad-
vanced Study in Computational Engineering Science, RWTH Aachen University, Germany
(January 2010)

13. Hermanns, M.A., Geimer, M., Wolf, F., Wylie, B.J.N.: Verifying causality between distant per-
formance phenomena in large-scale MPI applications. In: Proc. 17th Euromicro Int’l Conf. on

http://www.scalasca.org/
http://dx.doi.org/10.1002/cpe.1556

4 Recent Developments in the Scalasca Toolset 51

Parallel, Distributed, and Network-Based Processing (PDP, Weimar, Germany), IEEE Com-
puter Society (February 2009) 78–84

14. Böhme, D., Hermanns, M.A., Geimer, M., Wolf, F.: Performance simulation of non-blocking
communication in message-passing applications. In: Proc. 2nd Workshop on Productivity and
Performance (PROPER 2009, Delft, The Netherlands). (August 2009) (to appear).

15. Geimer, M., Shende, S.S., Malony, A.D., Wolf, F.: A generic and configurable source-code
instrumentation component. In: Proc. 9th Int’l Conf. on Computational Science (ICCS, Baton
Rouge, LA, USA). Volume 5545 of Lecture Notes in Computer Science, Springer (May 2009)
696–705

16. Kerbyson, D.J., Barker, K.J., Davis, K.: Analysis of the weather research and forecasting
(WRF) model on large-scale systems. In: Proc. 12th Conference on Parallel Computing
(ParCo, Aachen/Jülich, Germany). Volume 15 of Advances in Parallel Computing, IOS Press
(September 2007) 89–98

17. Shende, S., Malony, A., Morris, A., Parker, S., de St. Germain, J.: Performance evaluation
of adaptive scientific applications using TAU. In: Parallel Computational Fluid Dynamics —
Theory and Applications. Elsevier (2006) 421–428

18. Malony, A.D., Shende, S.S., Morris, A.: Phase-based parallel performance profiling. In: Proc.
11th Conference on Parallel Computing (ParCo, Málaga, Spain). Volume 33 of NIC Series,
John von Neumann Institute for Computing (September 2005) 203–210

19. Szebenyi, Z., Wylie, B.J.N., Wolf, F.: SCALASCA parallel performance analyses of SPEC
MPI2007 applications. In: Proc. 1st SPEC Int’l Performance Evaluation Workshop (SIPEW,
Darmstadt, Germany). Volume 5119 of Lecture Notes in Computer Science, Springer (June
2008) 99–123

20. Gibbon, P., Frings, W., Dominiczak, S., Mohr, B.: Performance analysis and visualization of
the N-body tree code PEPC on massively parallel computers. In: Proc. 11th Conf. on Parallel
Computing (ParCo, Málaga, Spain). Volume 33 of NIC Series, John von Neumann Institute
for Computing (October 2005) 367–374

21. Szebenyi, Z., Wylie, B.J.N., Wolf, F.: Scalasca parallel performance analyses of PEPC. In:
Proc. 1st EuroPar Workshop on Productivity and Performance (PROPER 2008, Las Palmas de
Gran Canaria, Spain). Volume 5415 of Lecture Notes in Computer Science, Springer (August
2008) 305–314

22. Szebenyi, Z., Wolf, F., Wylie, B.J.N.: Space-efficient time-series call-path profiling of parallel
applications. In: Proc. 21st ACM/IEEE SC Conference (SC09, Portland, OR, USA). (Novem-
ber 2009)

23. Technical University of Munich: Periscope. http://www.lrr.in.tum.de/˜gerndt/
home/Research/PERISCOPE/Periscope.htm.

24. University of Oregon: TAU. http://www.cs.uoregon.edu/research/tau/.
25. Technische Universität Dresden: Vampir. http://www.vampir.eu/.

http://www.lrr.in.tum.de/~gerndt/home/Research/PERISCOPE/Periscope.htm
http://www.lrr.in.tum.de/~gerndt/home/Research/PERISCOPE/Periscope.htm
http://www.cs.uoregon.edu/research/tau/
http://www.vampir.eu/

	Recent Developments in the Scalasca Toolset
	Introduction
	Scalasca Overview
	Analysis of Hybrid MPI/OpenMP Codes
	Scalable Wait-State Analysis
	Scalability
	Improvement of Trace-Data I/O
	Analysis of MPI-2 Remote Memory Access Operations
	Delay Analysis
	Evaluation of Optimization Hypotheses
	Configurable Source-Code Instrumentation

	Analysis of Time-Dependent Behavior
	Observing Individual Iterations
	Space-Efficient Time-Series Call-Path Profiling

	Outlook
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

