
Chapter 11
Collecting Performance Data with PAPI-C

Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra

Abstract Modern high performance computer systems continue to increase in size
and complexity. Tools to measure application performance in these increasingly
complex environments must also increase the richness of their measurements to
provide insights into the increasingly intricate ways in which software and hardware
interact. PAPI (the Performance API) has provided consistent platform and operat-
ing system independent access to CPU hardware performance counters for nearly a
decade. Recent trends toward massively parallel multi-core systems with often het-
erogeneous architectures present new challenges for the measurement of hardware
performance information, which is now available not only on the CPU core itself,
but scattered across the chip and system. We discuss the evolution of PAPI into
Component PAPI, or PAPI-C, in which multiple sources of performance data can
be measured simultaneously via a common software interface. Several examples of
components and component data measurements are discussed. We explore the chal-
lenges to hardware performance measurement in existing multi-core architectures.
We conclude with an exploration of future directions for the PAPI interface.

11.1 Introduction

The use of hardware counters to measure and improve software performance has
become an accepted and integral method in the software development cycle [1].
Hardware counters, which are usually implemented as a small set of registers onto

Dan Terpstra, Heike Jagode, Jack Dongarra
The University of Tennessee, e-mail: {terpstra,jagode,dongarra}@eecs.utk.edu

Jack Dongarra
Oak Ridge National Laboratory

Haihang You
National Institute for Computational Sciences
e-mail: you@eecs.utk.edu

M.S. Müller et al. (eds.), Tools for High Performance Computing 2009,
DOI 10.1007/978-3-642-11261-4 11, © Springer-Verlag Berlin Heidelberg 2010

157

mailto:terpstra@eecs.utk.edu
mailto:jagode@eecs.utk.edu
mailto:dongarra@eecs.utk.edu
mailto:you@eecs.utk.edu
http://dx.doi.org/10.1007/978-3-642-11261-4_11

158 Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra

which can be mapped a larger set of performance related events, can provide ac-
curate and detailed information on a wide range of hardware performance metrics.
PAPI, the Performance Application Programming Interface, provides an easy to use,
common API to application and tool developers to supply them with the informa-
tion they may need to analyze, model and tune their software on a wide range of
different platforms.

In addition to the counters found on CPUs, a large amount of hardware monitor-
ing information is also available in other sub-sytems throughout modern computer
architectures. Many network switches and network interface cards (NICs) contain
counters that can monitor various events related to performance and reliability. Pos-
sible events include checksum errors, dropped packets, and packets sent and re-
ceived. Although the set of network events is necessarily somewhat dependent on
the underlying hardware, extending PAPI to the network monitoring domain can
provide a portable way to access native network events and allow correlation of net-
work events with other domains. Because communication in OS-bypass networks
such as Myrinet and Infiniband is handled asynchronously to the application, hard-
ware monitoring, in addition to being low overhead, may be the only way to obtain
some important data about communication performance.

As processor densities climb, the thermal properties and energy usage of high
performance systems are becoming increasingly important. Such systems contain
large numbers of densely packed processors which require a great deal of elec-
tricity. Power and thermal management issues are becoming critical to successful
resource utilization [2, 3]. Standardized interfaces for accessing the thermal sensors
are available, but may be difficult to use for runtime power-performance adaptation
[4]. Extending the PAPI interface to simultaneously monitor processor metrics and
thermal sensors can provide clues for correlating algorithmic activity with thermal
system responses thus help in developing appropriate workload distribution strate-
gies. We show the results of using the extended version of PAPI to simultaneously
monitor processor counters, ACPI thermal sensors, and Myrinet network counters
while running the FFTE and HPL HPC Challenge benchmarks [12] on an AMD
Opteron Linux cluster.

Modifying and extending a library with a broad user base such as PAPI requires
care to preserve simplicity and backward compatibility as much as possible while
providing clean and intuitive access to important new capabilities. We discuss modi-
fications to PAPI to provide support for the simultaneous measurement of data from
multiple counter domains.

With the advent of multi-core processors and the inexorable increase in core
counts per chip, interactions between cores and contention for shared resources
such as last level caches or memory bus bandwidth become increasingly important
sources of potential performance bottlenecks. Individual vendors have chosen dif-
ferent paths to provide access to hardware performance monitoring for these shared
resources, each with their own problems and issues. We explore some of these ap-
proaches and their implications for performance measurement, and provide an ex-
ample measurement of cache data on a real application in a multi-core environment
to illustrate these issues.

11 Collecting Performance Data with PAPI-C 159

11.2 Extending PAPI to Multiple Measurement Components

The PAPI library was originally developed to address the problem of accessing the
processor hardware counters found on a diverse collection of modern micropro-
cessors in a portable manner [1]. Other system components besides the processor,
such as heterogeneous processors (GPUs), memory interface chips, network inter-
face cards, and network switches, also have hardware that counts various events re-
lated to system reliability and performance. Furthermore, other system health mea-
surements, such as chip or board level temperature sensors, are available and useful
to monitor in a portable manner. Unlike on-processor counters, the off-processor
counters and sensors usually measure events in a system-wide rather than a pro-
cess or thread-specific context. However, when an application has exclusive use of
a machine partition, or runs in a single core of a multi-core node, it may be possi-
ble to interpret such events in the context of the application. Even with execution
on multiple cores on a single node it may be possible to deconvolve the tempera-
ture or power signatures of separate threads to develop a coarse picture of single
thread response. The current situation with off-processor counters is similar to the
situation that existed with on-processor counters before PAPI. A number of differ-
ent platform-specific interfaces exist, some of which are poorly documented or not
documented at all.

Several software design issues became apparent in extending the PAPI interface
for multiple measurement domains. The classic PAPI library consists of two inter-
nal layers: a large portable layer optimized for platform independence; and a smaller
hardware specific layer, containing platform dependent code. By compiling and stat-
ically linking the independent layer with the hardware specific layer, an instance of
the PAPI library could be produced for a specific operating system and hardware
architecture. At compile time the hardware specific layer provided common data
structure sizes and definitions to the independent layer, and at link time it satisfied
unresolved function references across the layers. Since there was a one-to-one rela-
tionship between the independent layer and the hardware specific layer, initializa-
tion and shutdown logic was straightforward, and control and query routines could
be directly implemented. In migrating to a multi-component model, this one-to-one
relationship was replaced with a one-to-many coupling between the independent, or
framework, layer and a collection of hardware specific components, requiring that
previous code dependencies and assumptions be carefully identified and modified
as necessary.

When linking multiple components into a common object library, each compo-
nent exposes a subset of the same functionality to the framework layer. To avoid
name-space collisions in the linker, the entry points of each component are mod-
ified to hide the function names, either by giving them names unique to the com-
ponent, or by declaring them as static inside the component code. Each component
contains an instance of a structure, or vector, with all the necessary information
about opaque structure sizes, component specific initializations and function point-
ers for each of the functions that had been previously statically linked across the
framework/component boundary. The only symbol that a component exposes to the

160 Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra

framework at link time is this uniquely named component vector. All accesses to the
component code occur through function pointers in this vector, and empty vector
pointers fail gracefully, allowing components to be implemented with only a subset
of the complete functionality. In this way, the framework can transparently manage
initialization of and access to multiple components by iterating across a list of all
available component structures. Our experiments have shown that the extra level of
indirection introduced by calls through a function pointer adds a small but generally
negligible additional overhead to the call time, even in time-critical routines such
as reading counter values. Timing tests were done on hardware including Intel Pen-
tium4, Core2, and Nehalem, AMD Opteron and IBM POWER6 architectures. Over
1M iterations of a loop including 10 calls to empty subroutines the average execu-
tion time difference between direct and indirect calls was in the range of 6.9% for
Nehalem to 46% for POWER6. In the context of real PAPI workloads on these same
machines, a start/stop operation was slowed by between 0.13% and 1.36%, while a
read of two counters was slowed by between 1.26% and 11.3%. Table 11.1 shows
these results in greater detail.

Table 11.1: Costs of PAPI calls

Pentium4 Core2 Nehalem Opteron POWER6

direct cycles/call 13.8 8.4 5.8 9.6 106.3
indirect cycles/call 17.8 10.3 6.2 11 155.2
% slowdown 29.00% 22.60% 6.90% 14.60% 46.00%
PAPI start/stop slowdown 0.66% 0.52% 0.13% 0.39% 1.36%
PAPI read 2 counters slowdown 9.76% 6.40% 2.47% 11.30% 1.26%

Countable events in PAPI are either preset events, defined uniformly across all
architectures, or native events, unique to a specific component. To date preset events
have only been defined for processor hardware counters, making all events on off-
processor components native events.

11.2.1 Preset Events

Preset events can be defined as a single event native to a given CPU, or can be
derived as a linear combination of native events, such as the sum or difference of
two such events. More complex derived combinations of events can be expressed in
reverse polish notation and computed at run-time by PAPI. The number of unique
terms in these expressions is limited by the number of counters in the hardware.
For many platforms the preset event definitions are provided in a comma separated
values file, papi_events.csv, which can be modified by developers to explore
novel or alternate definitions of preset events. Because not all preset events are im-
plemented on all platforms, a utility called papi_avail is provided to examine

11 Collecting Performance Data with PAPI-C 161

the list of preset events on the platform of interest. A portion of the output for an
Intel Nehalem (core i7) processor is shown below:
Available events and hardware information.

PAPI Version : 4.0.0.0
Vendor string and code : GenuineIntel (1)
Model string and code : Intel Core i7 (21)
CPU Revision : 5.000000
CPUID Info : Family: 6 Model: 26 Stepping: 5
CPU Megahertz : 2926.000000
CPU Clock Megahertz : 2926
Hdw Threads per core : 1
Cores per Socket : 4
NUMA Nodes : 2
CPU’s per Node : 4
Total CPU’s : 8
Number Hardware Counters : 7
Max Multiplex Counters : 32

The following correspond to fields in the PAPI_event_info_t structure.

Name Code Avail Deriv Description (Note)
PAPI_L1_DCM 0x80000000 No No Level 1 data cache misses
PAPI_L1_ICM 0x80000001 Yes No Level 1 instruction cache misses
PAPI_L2_DCM 0x80000002 Yes Yes Level 2 data cache misses
...
PAPI_FP_OPS 0x80000066 Yes Yes Floating point operations
PAPI_SP_OPS 0x80000067 Yes Yes Floating point operations;

optimized to count scaled single precision
vector operations

PAPI_DP_OPS 0x80000068 Yes Yes Floating point operations;
optimized to count scaled double precision
vector operations

PAPI_VEC_SP 0x80000069 Yes No Single precision vector/SIMD instructions
PAPI_VEC_DP 0x8000006a Yes No Double precision vector/SIMD instructions

Of 107 possible events, 34 are available, of which 8 are derived.

11.2.2 Native Events

PAPI components contains tables of native event information allowing native events
to be programmed in essentially the same way as a preset event. Each native event
may have a number of attributes, called unit masks, that can act as filters on exactly
what gets counted. These attributes can be appended to a native event name to tell
PAPI exactly what to count. An example of a native event name with unit masks
from the Intel Nehalem architecture is shown below:

L2_DATA_RQSTS:DEMAND_M_STATE:DEMAND_I_STATE

Attributes can be appended in any order and combination, and are separated by
colon characters. Some components such as LM-SENSORS may have hierarchi-
cally defined native events. An example of such a hierarchy is shown below:

LM_SENSORS.max1617-i2c-0-18.temp2.temp2_input

In this case, levels of the hierarchy are separated by period characters. Com-
plete listings of these and other native events can be obtained from a utility anal-

162 Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra

ogous to papi_avail, called papi_native_avail. A portion of the output
of papi_native_avail for Nehalem configured with multiple components is
shown below:

...

0x40000032 L1I_OPPORTUNISTIC_HITS | Opportunistic hits in streaming |

0x40000033 L2_DATA_RQSTS | All L2 data requests |

40000433 :ANY | All L2 data requests |
40000833 :DEMAND_E_STATE | L2 data demand loads in E state |
40001033 :DEMAND_I_STATE | L2 data demand loads in I state (misses) |
40002033 :DEMAND_M_STATE | L2 data demand loads in M state |
40004033 :DEMAND_MESI | L2 data demand requests |
40008033 :DEMAND_S_STATE | L2 data demand loads in S state |
40010033 :PREFETCH_E_STATE | L2 data prefetches in E state |
40020033 :PREFETCH_I_STATE | L2 data prefetches in the I state (misses) |
40040033 :PREFETCH_M_STATE | L2 data prefetches in M state |
40080033 :PREFETCH_MESI | All L2 data prefetches |
40100033 :PREFETCH_S_STATE | L2 data prefetches in the S state |

0x40000034 L2_HW_PREFETCH | Count L2 HW Prefetcher Activity |

40000434 :HIT | Count L2 HW prefetcher detector hits |
40000834 :ALLOC | Count L2 HW prefetcher allocations |
40001034 :DATA_TRIGGER | Count L2 HW data prefetcher triggered |
40002034 :CODE_TRIGGER | Count L2 HW code prefetcher triggered |
40004034 :DCA_TRIGGER | Count L2 HW DCA prefetcher triggered |
40008034 :KICK_START | Count L2 HW prefetcher kick started |

...

0x44000000 ACPI_STAT | kernel statistics |

0x44000001 ACPI_TEMP | ACPI temperature |

0x48000000 LO_RX_PACKETS | LO_RX_PACKETS |

0x48000001 LO_RX_ERRORS | LO_RX_ERRORS |

...

0x4c0000b3 LM_SENSORS.w83627hf-isa-0290.cpu0_vid.cpu0_vid
0x4c0000b4 LM_SENSORS.w83627hf-isa-0290.beep_enable.beep_enable |

Total events reported: 396

11.2.3 API Changes

An important consideration in extending a widely accepted interface such as PAPI
is to make extensions in such a way as to preserve the original interface as much
as possible for the sake of backward compatibility. Several entry points in the PAPI
user API were augmented to support multiple components, and several new entry
points were added to support new functionality.

By convention, an event to be counted is added to a collection of events in an
EventSet, and EventSets are started, stopped, and read to produce event count values.
Each EventSet in Component PAPI is bound to a specific component and can only
contain events associated with that component. Multiple EventSets can be active

11 Collecting Performance Data with PAPI-C 163

simultaneously, as long as only one EventSet per component is invoked. The binding
of EventSet and component can be done explicitly at the time it is created with a call
to the new API:

PAPI_assign_eventset_component() - assign a component index to an
existing but empty EventSet

Explicit binding allows a variety of attributes to be modified in an EventSet even
before events are added to it. To preserve backward compatibility for legacy appli-
cations, binding to a specific component can also happen automatically when the
first event is added to an EventSet.

Three entry points in the API allow access to settings within PAPI. These entry
points are shown below:

PAPI_num_hwctrs() - return the number of hardware counters for
the cpu

PAPI_get_opt() - query the option settings of the PAPI
library or a specific event set

PAPI_set_domain() - set the default execution domain for new
event sets

Component specific versions of these calls are:

PAPI_num_cmp_hwctrs() - return the number of hardware counters
for the cpu

PAPI_get_cmp_opt() - query the option settings of the PAPI
library or a specific event set

PAPI_set_cmp_domain() - set the default execution domain for
new event sets

These modified calls have been implemented with an additional parameter to al-
low specification of a given component within the call. Backward compatibility is
preserved by assuming that the original calls are always bound to the original cpu
component.

Finally two new calls were added to provide housekeeping functions. The first
simply reports the current number of components, and the second returns a structure
of information describing the component:

PAPI_num_components()

PAPI_get_component_info()

Neither of these calls are required. In this way legacy code instrumented with PAPI
calls compiles and runs with no modification needed.

Example components have been implemented in the initial release of PAPI for
ACPI temperature sensors, the Myrinet network counters, and the lm-sensors inter-
face. An implementation of an Infiniband network component is under investigation,
along with several other components for disk sub-systems such as Lustre.

11.2.4 The CPU Component

The CPU component is unique for several reasons. Historically it was the only com-
ponent that existed in earlier versions of PAPI. Within Component PAPI one and

164 Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra

only one CPU component must exist and occupy the first position in the array of
components. This simplifies default behavior for legacy applications. In addition to
providing access to the hardware counters on the main processor in the system, the
CPU component also provides the operating system specific interface for things like
interrupts and threading support, as well as high resolution time bases used by the
PAPI Framework layer. The necessity for a unique CPU component has been iden-
tified as a restriction from the perspective of implementations that may not need or
wish to monitor the CPU and also implementations that may contain heterogeneous
CPUs. This is an open research issue in Component PAPI and mechanisms are under
investigation to relax these restrictions.

11.2.5 Accessing the CPU Hardware Counters

CPU Hardware counter access is provided in a variety of ways on different systems.
When PAPI was first released almost 10 years ago, there was significant diversity in
the operating systems and hardware of the Top500 list. AIX, Solaris, UNICOS and
IRIX shared the list with a number of variants of Unix [8]. Linux systems made up
a mere 3.6 percent of the list. Most of these systems had vendor provided support
for counter access either built-in to the operating system, or available as a loadable
driver. The exception was Linux, which had no support for hardware counter access.
This is in sharp contrast to today [9], when nearly 90 percent of the systems run
Linux or Linux variants.

Several options were available to access counters on Linux systems. One of the
earliest was the perfctr patch [10] for x86 processors. Perfctr provided a low
latency memory-mapped interface to virtualized 64-bit counters on a per process
or per thread basis, ideal for PAPI’s “first person” counting and sampling inter-
face. With the introduction of Linux on the Itanium processor, the perfmon [5]
interface was built-in to the kernel. When it became apparent that perfctr would
not be accepted into the Linux kernel, perfmon was rewritten and generalized as
perfmon2 [11] to support a wide range of processors under Linux, including the
IBM POWER series in addition to x86 and IA64 architectures. After a continuing
effort over several years by the performance community to get perfmon2 accepted
into the Linux kernel, it too was rejected and supplanted by yet another abstraction
of the hardware counters, first called perf_counters in kernel 2.6.31 and then
perf_events [6] in kernel 2.6.32. The perf_events interface is young and
maturing rapidly. It has the overwhelming advantage of being built-in to the kernel,
requiring no patching on the part of system administrators. PAPI continues to sup-
port hardware counter access through perfctr wherever it is available. Perfmon
access is available through the 2.6.30 kernel. In addition, PAPI also supports the
perf_events interface.

11 Collecting Performance Data with PAPI-C 165

11.2.6 The ACPI and MX Components

The ACPI component enables the PAPI-C library to access the ACPI temperature
sensors, while the MX component allows monitoring of run-time characteristics
of the Myrinet network communications. To demonstrate simultaneous monitoring
of CPU metrics as well as temperature and data transfer, we collected data from
the HPC Challenge suite. This suite is a set of scalable, computationally intensive
benchmarks with different memory access patterns that examine the performance
of HPC architectures [12]. For our experiments, we chose two global kernel bench-
marks, High Performance Linpack (HPL) and FFT. The HPL kernel solves a linear
system of equations and the FFT kernel computes a double precision complex one-
dimensional discrete Fourier transform, which ensures two highly computationally
intense test cases. We instrumented both benchmarks to gather total floating-point
operations, temperature and packets sent and received through the Myrinet network.
With Component PAPI, we were able to easily instrument the program by simply
providing the desired event names in PAPI calls. We ran our experiments on a 65-
node AMD Opteron cluster. Both benchmarks ran on eight nodes. We instrumented
functions fft235 in FFT and pdgesvK2 in HPL, since profiling indicated that these
were the most computationally active routines, and gathered data for each iteration
that called these functions.

The measurements for the FFT benchmark on two of the nodes are shown in
Fig. 11.1. We can see the periodic nature of the computation and communication.
The measured data for the second case study - the HPL benchmark - is depicted in
Fig. 11.2 and shows a completely different computation and communication pattern.
In both test cases, we are able to observe a difference in the temperature between
the two nodes.

Fig. 11.1: FLOPS, temperature and communication monitoring using the CPU,
ACPI and MX component of PAPI-C for an FFT benchmark running on an AMD
Opteron cluster

166 Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra

Fig. 11.2: FLOPS, temperature and communication monitoring using the CPU,
ACPI and MX component of PAPI-C for an HPL benchmark running on an AMD
Opteron cluster

11.2.7 The LM-SENSORS Component

The LM-SENSORS component enables the PAPI-C library to access all computer
health monitoring sensors as exposed by the lm_sensors [13] library. The user
is able to closely monitor the system’s hardware health as an attempt to get more
performance out of environmental conditions of the hardware. What features are
available and what exactly can be monitored depends on the hardware setup.

We monitored three fan speeds as well as the CPU temperatures on a quad-core
Intel Nehalem (core i7) machine using the LM-SENSORS component of PAPI-C.
Multiple iterations of numeric operations are performed to heat up the compute
cores. In total, 128 threads have been created and distributed over 8 compute cores
and each of them executes the numeric code. The fan speeds as well as CPU tem-
peratures are monitored every 10 seconds. Figure 11.3(a) shows the collected speed
data of three fans while Fig. 11.3(b) depicts the temperature of the two quad-core
CPUs. From those graphs, it is evident that the rotational speed of the fans responds
to changes on the CPU temperature sensors. Note once more the difference in tem-
perature between the two CPUs. We have seen similar correlation between temper-
ature and workload before in section 11.2.6 on an Opteron architecture.

11 Collecting Performance Data with PAPI-C 167

Fig. 11.3: (a) Fan speed monitoring; (b) CPU temperature monitoring - both met-
rics have been investigated on an Intel Nehalem (core i7) machine using the LM-
SENSORS component of PAPI-C

11.3 Multi-core Performance Measurement

With the arrival of the multi-core era for modern Petascale computing, more dis-
cussions are turning to the future implications of multi-core processors. The main
focus in this section is the impact of shared resources of multi-core processors on the
CPU component of PAPI-C which is described in 11.2.4. With the help of an appli-
cation test case, we will discuss the difference between hardware performance data
collection for on-core versus off-core resources. The current approach of collecting
hardware performance counters shows serious limitations for off-core resources.
However, measurement of performance counter data from shared resources is cru-
cial in the analysis of scientific applications on multi-core processors due to the fact
that this is where resource contention occurs. The key is to minimize the contention
of shared resources such as caches, memory bandwidth, bus and other resources.

The multi-core transition in hardware design also reflects an impact on software
development which remains a big challenge. To illustrate issues associated with the
measurement of performance events for shared resources, we quantitatively evaluate
the performance of the memory sub-system on Jaguar, the fastest computer on the
November 2009 Top500 list [14]. The Jaguar system at Oak Ridge National Labora-
tory (ORNL) has evolved rapidly over the last several years. When the work reported
here was done, Jaguar was based on Cray XT4 hardware and utilized 7,832 quad-
core AMD Opteron processors with a clock frequency of 2.1 GHz and 8 GBytes of
memory (maintaining the per core memory at 2 GBytes). For more information on

168 Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra

the Jaguar system and the quad-core AMD Opteron processor, the reader is referred
to [15, 16].

The application test case is drawn from workload configurations that are expected
to scale to large number of cores and that are representative of Petascale problem
configurations. The massively parallel direct numerical simulation (DNS) solver
(S3D) - developed at Sandia National Laboratories - solves the full compressible
Navier-Stokes, total energy, species, and mass continuity equations coupled with
detailed chemistry [17, 18, 19]. The application was run in SMP (one core per node)
as well as VN mode (four cores per node) on Jaguar. Both test cases apply the same
core count. The total execution time for runs using the two different modes shows a
significant slowdown of 25% in VN mode (813 seconds) when compared to single-
core mode (613.4 seconds). The unified L3 cache is shared between all four cores.
We collected hardware performance events using the PAPI library that confirms our
findings. L3 cache requests are measured and computed using the following PAPI
native events:

L3 REQUESTS = READ REQUESTS TO L3 + L3 FILLS CAUSED BY L2 EVICTION

Note: In VNM all L3 cache measurements have been divided by 4 (4 cores per node)

Figure 11.4 (a) depicts the number of L3 cache misses and requests when using
four cores versus one core per node for the 13 most expensive functions of the S3D
application. It appears that the performance degradation in VN mode is due to the L3
cache behavior. In VN mode we see roughly twice as many L3 cache requests and
misses compared to SMP mode. It is not surprising that L3 cache misses increase
with VN mode since if every thread is operating on different data, then one thread
could easily evict the data for another thread if the sum of the four working threads
is greater than the size of the L3 cache. However, the increase in L3 requests is
rather questionable. The L3 cache serves as a victim cache for L2. In other words,
a datum evicted from L2 (the victim) is deposited in L3. If requested data is not in
L2 cache then the L3 cache is checked which results in an L3 request. While the L3
cache is shared between all four cores, the L2 cache remains private. Based on this
workflow, it is not clear why the number of L3 requests increases so dramatically
when using all four cores per node. As verification we measure the L2 cache misses
in SMP and VN mode and Fig. 11.4 (b) presents the comparison. It clearly shows
that the number of L2 cache misses does not increase when all four cores are used
compared to SMP mode. All the more, the question persists as to where the double
L3 cache requests come from when VN mode is used. It is important to note, the
policy on the Jaguar system defines that by default a task - independent of process or
thread - is not allowed to migrate to a CPU core within a socket or to any CPU core
on either socket [20]. For the S3D test case, we applied this default configuration
which pins a task to a specific CPU core.

11 Collecting Performance Data with PAPI-C 169

Fig. 11.4: (a) L3 cache misses and requests (mean); (b) L2 cache misses (mean)

11.3.1 Various Multi-core Designs

Recent investigations and discussions have suggested that the high L3 cache request
rate in S3D may be an artifact of the measurement process. Current Opteron hard-
ware is not designed for first-person counting of events involving shared resources
[21]. The L3 events in AMD Opteron quad-core processors are not monitored in
four independent sets of hardware performance registers but in a single set of reg-
isters not associated with a specific core (often referred to as ”shadow” registers).
Each core has four independent counter registers which are used for most perfor-
mance events. When an L3 event is programmed into one of these counters on one
of these cores, it gets copied by hardware to the shadow register. Thus, only the last
event to be programmed into any core is the one actually measured by all cores.
When several cores try to share a shadow register, the results are not clearly defined.
Performance counter measurement at the process or thread level relies on the as-
sumption that counter resources can be isolated to a single thread of execution. That
assumption is generally no longer true for resources shared between cores - like the
L3 cache in AMD quad-core processors.

This problem is not isolated just to AMD Opteron processors. Early Intel dual-
core processors addressed the issue of measuring shared resources by providing
SELF and BOTH modifiers on events involving shared caches or other resources.
This allowed each core to independently monitor the event stream for a shared re-
source and to either collect only counts for its activity or for all activities involving
that resource. However, with the introduction of the Nehalem (core i7) architec-
ture, Intel, too, moved measurement of chip level shared resources off the cores and
onto the chips. The Nehalem architecture includes eight “Uncore” counters [22] that
are shared among all the cores of the chip. There is presently no mechanism for a
given core to reserve counter resources from the Uncore. These events can be mon-
itored by the perfmon2 [5] patch, but only in system-wide counting mode. Thus
these counter measurements cannot be performed with a first-person measurement
paradigm such as PAPI’s, and cannot be intermixed with per process measurements
of other events. The built-in perf_events [6] module in the Linux kernel has no
support for Uncore counters as of the 2.6.32 kernel release.

170 Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra

A final example of the multi-core problem of measuring activities on shared re-
source is IBM’s Blue Gene series. Blue Gene/L is a dual-core processor and Blue
Gene/P is a quad-core processor. In both cases hardware counters are implemented
in the UPC, a Universal Performance Counter module that is completely external to
any core. In Blue Gene/P for example, the UPC contains 256 independent hardware
counters [23]. Events on each core can be measured independently, but the core
must be specified in the event identifier. This can create great difficulty for code that
in general does not know or care on which core it is running. Further, these counters
can only be programmed to measure events on either core 0 and 1, or core 2 and 3,
but not on a mixture of all four cores at once.

As the above examples illustrate, hardware vendors are searching for ways to
provide access to performance events on shared resources. There is presently no
standard mechanism that provides performance information in a way that is useful
for software tuning. New methods need to be developed to appropriately collect and
interpret hardware performance counter information collected from such multi-core
systems with interesting shared resources. PAPI research is underway to explore
these issues.

11.4 Future Directions

With the release of PAPI-C, the stage is set for a wide range of development di-
rections. Our major goals with the first release were stability and compatibility. As
with any research and development effort there are always open issues to be ex-
plored. Here are some of the issue under investigation with Component PAPI:

• Event Naming: PAPI presently expresses all events as 32-bit event codes. With
the richness of current events and attributes and modifiers, we find this too re-
strictive, and will be migrating to a model in which all events are referenced by
name.

• Data Types: PAPI supports returned data values expressed as unsigned 64-bit
integers. This is appropriate for counting events, but may not be as appropriate
for expressing other values. We are exploring ways to encode and specify other
64-bit data formats including: signed integer, IEEE double precision, fixed point,
and integer ratios.

• Dynamic Configurability: The current mechanism for adding new components
is workable, but not well suited to introducing new components between releases
of the PAPI Framework. Methods are needed for an automated discovery process
for components, both at build time and at execution time.

• Synchronization: Components can report values with widely different time
scales and remote measurements may exhibit significant skew and drift in time
from local measurements. Mechanisms need to be developed to accomodate
these artifacts.

11 Collecting Performance Data with PAPI-C 171

• Component Management: To encourage users and third parties to become com-
ponent contributors, efforts will be invested in documenting the component de-
velopment process and in managing 3rd party components.

At a recent brainstorming session by the PAPI developers, a number of future di-
rections for the PAPI project were identified. In a somewhat whimsical fashion, and
building on the idea of the PAPI-C name, several new letters for the PAPI ”alphabet
soup” were put forth:

• PAPI-M: Multi-core. The issue of how to measure shared resource performance
on a variety of multi-core architectures remains unresolved. This may require
more kernel development than PAPI development, but is an important issue that
should be addressed.

• PAPI-G: GPUs. GPGPUs and other heterogenous compute elements will be an
increasingly important part of our computing eco-system as we move from Peta-
scale to Exascale. They present radically different sorts of performance informa-
tion to the user and provide a challenging opportunity for performance presenta-
tion.

• PAPI-V: Virtual. With access to performance hardware now part of the Linux
kernel, it becomes possible to introduce this information into the hypervisors that
comprise virtual, or cloud, computing space. With support in the hypervisors, it
becomes possible to consider what it means to measure hardware performance in
the cloud.

• PAPI-N: Networks. As core counts rise exponentially on the march to Exa-
scale, communication becomes even more dominant over computation as a de-
terminant of execution time. PAPI-C components can be developed either in the
open source community or by vendors to monitor hardware characteristics of ei-
ther open network standards such as Infiniband or proprietary hardware such as
Cray’s SeaStar or Gemini network chips.

• PAPI-D: Disks. Several users of PAPI have suggested and begun work on the
development of PAPI Components to measure remote disk storage activities for
file systems like Lustre. Such information could prove useful in managing and
measuring the impact of storage operations on execution performance.

• PAPI-H: Health. System health measurements are often done out-of-band from
compute activities. PAPI-C components may be developed to run on system
nodes in parallel with jobs on compute nodes to assess the impact of applica-
tion activities on temperature or power consumption, or to warn of impending
resource failure and the need for remedial action.

11.5 Conclusion

For most of the past decade, PAPI has been the de-facto choice to provide the tool
designer and application engineer with a consistent interface for accessing hardware
performance counters on a wide range of computer architectures. PAPI has ridden

172 Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra

the evolutionary wave of processor development as clock rates, pipeline depth and
instruction level parallelism increased through the decade. That smooth evolution
has recently ended with the flattening of clock rates, the introduction of multi-core
architectures, the adoption of heterogeneous computing approaches and the need for
more careful monitoring of system health required for fault tolerance and resiliency
in the Petascale domain of hundreds of thousands of processors. We are now in a
period of punctuated equilibrium where the paradigms of the recent past are being
swept away by a tidal wave of changes at a number of levels.

The development of Component PAPI for the simultaneous monitoring of mul-
tiple measurement domains positions this library to remain as a central tool in the
acquisition of performance data across a spectrum of architectures and activities.
This extension has been done in such a way as to cause minimal disruption to the
current user base while providing flexible opportunities to gain new insights into
application and system performance.

Acknowledgements This research was sponsored in part by the Office of Mathematical, Infor-
mation, and Computational Sciences of the Office of Science (OoS), U.S. Department of Energy
(DoE), under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC. This work used re-
sources of the National Center for Computational Sciences at Oak Ridge National Laboratory,
which is supported by the Office of Science of the Department of Energy under Contract DE-AC05-
00OR22725. These resources were made available via the Performance Evaluation and Analysis
Consortium End Station, a Department of Energy INCITE project.

This work was also supported in part by the U.S. Department of Energy Office of Science under
contract DE-FC02-06ER25761, by the National Science Foundation, Software Development for
Cyberinfrastructure (SDCI) Grant No. NSF OCI-0722072 Subcontract No. 207401, and by the
Department of Defense, using resources at the Extreme Scale Systems Center.

References

1. Browne, S., Dongarra, J., Garner, N., Ho, G., Mucci, P.: A portable programming interface
for performance evaluation on modern processors. International Journal of High-Performance
Computing Applications, Vol. 14, No. 3, pp. 189-204 (2000)

2. Cameron, K.W., Ge, R., and Feng, X.: High-performance, power-aware distributed computing
for scientific applications. Computer, 38(11):40–47 (2005)

3. Feng, W.C.: The importance of being low power in high performance computing. CTWatch
Quarterly, 1(3), August (2005)

4. Freeh, V.W., Lowenthal, D.K., Pan, F., Kappiah, N.: Using multiple energy gears in MPI
programs on a power-scalable cluster. In Principles and Practices of Parallel Programming
(PPOPP), June (2005)

5. Perfmon2 Sourceforge Project Page: http://perfmon2.sourceforge.net
6. Molnar, I.: Performance Counters for Linux, v8. http://lwn.net/Articles/336542
7. Moore, S.: A Comparison of Counting and Sampling Modes of Using Performance Monitor-

ing Hardware. ICCS 2002, Amsterdam, April (2002)
8. Operating System share, November 1999: http://www.top500.org/charts/list/

14/os
9. Operating System share, November 2009: http://www.top500.org/charts/list/

34/os

http://perfmon2.sourceforge.net
http://lwn.net/Articles/336542
http://www.top500.org/charts/list/14/os
http://www.top500.org/charts/list/14/os
http://www.top500.org/charts/list/34/os
http://www.top500.org/charts/list/34/os

11 Collecting Performance Data with PAPI-C 173

10. Pettersson, M.: Linux x86 Performance-Monitoring Counters Driver.
http://www.csd.uu.se/˜mikpe/linux/perfctr

11. Jarp, S., Jurga, R., Nowak, A.: Perfmon2: A leap forward in Performance Monitoring. Journal
of Physics: Conference Series 119, 042017 (2008)

12. Luszczek, P., Dongarra, J., Koester, D., Rabenseifner, R., Lucas, B., Kepner, J., McCalpin, J.,
Bailey, D., Takahashi, D.: Introduction to the hpc challenge benchmark suite. Technical report,
March (2005)

13. Hardware Monitoring by lm sensors: http://www.lm-sensors.org/
14. Top500 list: http://www.top500.org
15. NCCS.gov computing resources documentation:

http://www.nccs.gov/computing-resources/jaguar
16. Software Optimization Guide for AMD Family 10h Processors, Pub. no. 40546 (2008)
17. Chen, J. H., Hawkes, E. R., et al.: Direct numerical simulation of ignition front propagation in

a constant volume with temperature inhomogeneities I. fundamental analysis and diagnostics.
Combustion and flame, 145, pp. 128-144 (2006)

18. Sankaran, R., Hawkes, E. R., et al.: Structure of a spatially developing turbulent lean methane-
air Bunsen flame. Proceedings of the combustion institute 31, pp. 1291-1298 (2007)

19. Hawkes, E. R., Sankaran, R., et al.: Scalar mixing in direct numerical simulations of tempo-
rally evolving nonpremixed plane jet flames with skeletal CO-H2 kinetics. Proceedings of the
combustion institute 31, pp. 1633-1640 (2007)

20. Cray XT Programming Environment User’s Guide (Version 2.2). S-2396-22, July (2009)
21. BIOS and Kernel Developer’s Guide (BKDG) for AMD Family 10h Processors (particularly

Section 3.12.). Vol. 31116 Rev 3.34, September (2009)
22. Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 3B: System Program-

ming Guide (Particularly Chapter 19.17.2 Performance Monitoring Facility in the Uncore).
Part 2 Order Number: 253669-031US, June (2009)

23. Walkup, B.: Blue Gene/P Universal Performance Counters. http://www.nccs.gov/
wp-content/training/2008 bluegene/BobWalkup BGP UPC.pdf

http://www.csd.uu.se/~mikpe/linux/perfctr
http://www.lm-sensors.org/
http://www.top500.org
http://www.nccs.gov/computing-resources/jaguar
http://www.nccs.gov/wp-content/training/2008_bluegene/BobWalkup_BGP_UPC.pdf
http://www.nccs.gov/wp-content/training/2008_bluegene/BobWalkup_BGP_UPC.pdf

	Collecting Performance Data with PAPI-C
	Introduction
	Extending PAPI to Multiple Measurement Components
	Preset Events
	Native Events
	API Changes
	The CPU Component
	Accessing the CPU Hardware Counters
	The ACPI and MX Components
	The LM-SENSORS Component

	Multi-core Performance Measurement
	Various Multi-core Designs

	Future Directions
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

