
Chapter 1
PERISCOPE: An Online-Based Distributed
Performance Analysis Tool

Shajulin Benedict, Ventsislav Petkov, and Michael Gerndt

Abstract This paper presents PERISCOPE - an online distributed performance
analysis tool that searches for a wide range of performance bottlenecks in parallel
applications. It consists of a set of agents that capture and analyze application and
hardware-related properties in an autonomous fashion. The paper focuses on the
Periscope design, the different search methodologies, and the steps involved to do
an online performance analysis. A new graphical user-friendly interface based on
Eclipse is introduced. Through the use of this new easy-to-use graphical interface,
remote execution, selection of the type of analysis, and the inspection of the found
properties can be performed in an intuitive and easy way. In addition, a real-world
application, namely, the GENE code, a grand challenge problem of plasma physics
is analyzed using Periscope. The results are illustrated in terms of found properties
and scalability issues.

1.1 Introduction

Performance is one of the key concerns for the application developers and the com-
putational resource providers of the scientific community. The application develop-
ers endeavor writing efficient large-scale scientific codes that make optimal use of
supercomputers or any other computational resource. Very often, they fail owing to
the required knowledge about the architectures, memory hierarchy, and networks
connecting the processors. The factors which determine a program’s performance,
such as, memory usage, I/O, compilers, operating system and so forth, are complex,
inter-related, and frequently hidden from the programmer.

Performance analysis tools help users in writing efficient codes for current High
Performance Computing (HPC) machines. These tools can provide the user with

Shajulin Benedict, Ventsislav Petkov and Michael Gerndt
Technische Universität München
Fakultät für Informatik I10, Boltzmannstr. 3, 85748 Garching, Germany

M.S. Müller et al. (eds.), Tools for High Performance Computing 2009,
DOI 10.1007/978-3-642-11261-4 1, © Springer-Verlag Berlin Heidelberg 2010

1

http://dx.doi.org/10.1007/978-3-642-11261-4_1

2 Shajulin Benedict, Ventsislav Petkov, and Michael Gerndt

measurements of the program’s performance and locate various bottlenecks. Bottle-
necks are places in the execution path where execution time is lost due to inefficient
resource usage. Based on the identified bottlenecks, users can do modifications to
improve the application’s runtime behavior. Since measuring performance data and
storing those data for further analysis is often done in a not very scalable approach,
most tools are limited to experiments with a small number of processors.

The traditional way of conducting performance analysis and tuning for high
performance computing has been an off-line search approach requiring strong in-
volvement of the user. This search has a potential problem with large performance
datasets and long analysis times for large-scale scientific applications. It remains a
challenge for application developers to analyze the bottlenecks of their applications
when scaling to larger parallel machines. To investigate the runtime behavior of
large experiments, performance analysis has to be done online in a distributed fash-
ion, eliminating the need to transport huge amounts of performance data through
the parallel machine’s network and to store those data in files for further analysis.

An online-based performance analysis system using expert knowledge for iden-
tifying bottlenecks in the applications, in general, follows four steps for capturing
performance properties (Fig. 1.1). As shown, the application is instrumented based

Fig. 1.1: Cyclic representation of performance analysis

on the initial hypotheses of potential performance properties. During an experiment
executing the application on the parallel system, appropriate performance data are
collected. These data are then inspected to prove which of the hypotheses hold. In
the refinement step, the found properties might be refined to identify more specific
performance problems. All four steps are executed in a cyclic fashion until no more
precise properties can be found. This cyclic approach can of course be automated
and executed in an online fashion.

Although, there are numerous performance analysis tools on the market, they
face challenges in usabiliy, scalability, and single node performance analysis.
Periscope [5] is a distributed online performance analysis tool currently under de-

1 PERISCOPE: An Online-Based Distributed Performance Analysis Tool 3

velopment at Technische Universität München that addresses the above mentioned
challenges. It consists of a set of autonomous agents that search for performance
properties. Each agent is responsible for analyzing a subset of the application’s pro-
cesses and threads. The agents request measurements from the monitoring system,
retrieve the data, and use it to identify performance properties.

Periscope is currently extended within the German project ISAR (Integrated Sys-
tem and Application Analysis for Massively Parallel Computers in the Petascale
Range1) funded until 2011. The main goal of the ISAR project is the realization of
an integrated scalable system that can be used in production environments.

This paper gives a short overview of Periscope’s design. It also presents for the
first time the usage model of Periscope which is based on the recent work within
the ISAR project. It introduces the new graphical user interface which facilitates
the user’s interaction with Periscope. In addition, we give some results from a
large-scale run of a real-world application, namely, the Gyrokinetic Electromagnetic
Numerical Experimental code (GENE) from the Max Planck Institute for Plasma
Physics in Garching.

All the experiments were done on our Altix 4700 at Leibniz Rechenzentrum
(LRZ) in Garching. The Altix supercomputer consists of 19 NUMA-link4 intercon-
nected shared memory partitions with over 9600 Itanium 2 cores with an aggregated
peak performance of over 60 TFlops.

The paper is organized as follows: Section 1.2 introduces related work and Sec-
tion 1.3 describes the design of Periscope with an detailed overview of the analysis
agent’s data capturing mechanism. The usage model is presented in Section 1.4 and
the distributed performance analysis is illustrated in Section 1.5.

1.2 Related Work

Just as there are several different classes of parallel hardware and parallel program-
ming languages, so too are there several distinct types of performance analysis tools.
Each of them has a number of concreate realizations. The most notable ones are
Paradyn, TAU, Vampir, KOJAK, SCALASCA, and mpiP.

Paradyn [9, 10], developed during 1990s, automates performance analysis. The
toolkit uses a performance consultant that does dynamic instrumentation and searches
for bottlenecks based on summary information during the program’s execution. The
tool has the capability to scale to large numbers of processors.

TAU [12] does offline analysis of performance issues in the application based
on trace-based and profiling-based approaches. It provides a wide variety of graph-
ical and text-based displays. In addition, it provides the PerfExplorer which uses
statistical analysis to detect performance problems and allows to compare multiple
application runs.

1 http://www.in.tum.de/en/forschung/verbundprojekte/
clusteraktivitaeten/isar.html

http://www.in.tum.de/en/forschung/verbundprojekte/clusteraktivitaeten/isar.html
http://www.in.tum.de/en/forschung/verbundprojekte/clusteraktivitaeten/isar.html

4 Shajulin Benedict, Ventsislav Petkov, and Michael Gerndt

Vampir [1] provides a trace-based performance analysis framework that converts
performance data obtained from a program into different performance views and
supports navigation and zooming within these displays. It implements event analy-
sis algorithms and customizable displays which enable interactive rendering of the
collected monitoring data. Recently, Vampir’s scalability was extended via a paral-
lel analysis server. But still, huge trace files are generated and have to be manually
analyzed afterwards.

KOJAK [13] does trace-based analysis of parallel applications. It includes Ex-
pert, a component that automatically deduces performance properties from the trace
files and provides a user-interface for investigating the found types of properties, the
processes where a property occurs, as well as its function or OpenMP region.

SCALASCA [4] (SCalable performance Analysis of LArge SCale Applications)
is a scalable trace analysis tool based on KOJAK. It extended KOJAK’s approach for
automatically searching performance properties by exploiting both distributed mem-
ory and parallel processing capabilities. Instead of sequentially analyzing a single
global trace file, it uses a technique based on execution replay to gather performance
data for detecting formalized properties.

mpiP [7] tool is more oriented towards identifying performance problems for
MPI-based applications. It collects the performance data statistically. All informa-
tion is sampled locally and not exchanged between processes during runtime. The
results of the experiments are only merged after program termination as a post-
mortem approach.

Our approach advances the state of the art in the following aspects:

1. Performs a distributed search of properties.
2. The performance data are processed while the application runs.
3. Periscope knows and exploits the structure of the application. This information

is generated by source code instrumentation and is used by the analysis agents.
4. It does not use trace-based analysis and hence avoids large datasets.
5. It has a user-friendly interface that supports remote execution on large and dis-

tributed machines and inspection of the application’s performance properties.

1.3 Periscope Design

Periscope’s design provides mechanisms to search for performance properties in
a distributed fashion based on a master agent for management purposes, analy-
sis agents for finding problems on individual processors, and a few other agents
responsible for communication. It is devised such that the users can investigate
performance problems on large-scale runs delving into the single node especially
memory-related performance bottlenecks and MPI/OpenMP issues.

It can be used in interactive application runs as well as in batch runs. The anal-
ysis is executed in an iterative fashion, i.e., focusing on more specific and precise
properties in multiple executions of a program phase. The program phase is either
a special code region marked by the user or the whole code. While in the first case,

1 PERISCOPE: An Online-Based Distributed Performance Analysis Tool 5

the execution is suspended when the end of the phase region is reached and the pro-
cesses are released afterwards for a next execution, in the latter case the application
is automatically restarted for another execution of the phase.

In this section, we discuss Periscope’s architecture, the agent’s data capturing
mechanism, different types of search strategies and the Eclipse plugin [3] imple-
menting the user interface.

1.3.1 Periscope Architecture

The Periscope architecture consists of four major entities as shown in Fig. 1.2 that
can perform distributed and online-based performance analysis of any scientific ap-
plication.

Fig. 1.2: Periscope Architecture

1. The User-Interface is a convenient and feature-rich entity that displays the results
of the runtime analysis by directly mapping the detected properties to the source
code. This entity benefits Periscope users by providing many advanced features
like code indexing, refactoring, syntax highlighting, and so forth.

2. The Frontend starts the application and analysis agents based on the specifica-
tions provided by the user, namely, number of processes and threads and so on. It
is responsible for restarting the application whenever the agent network did not
complete the search before the application terminated.

3. The Analysis agent network consists of three different agents, namely, master
agent, communication agent and analysis agent. The master agent forwards com-
mands from the frontend to the analysis agents and receives the found perfor-
mance properties from the individual analysis agents and forwards them to the
frontend. The communication agents combine similar properties found in their

6 Shajulin Benedict, Ventsislav Petkov, and Michael Gerndt

sibling agents and forward only the combined properties. The analysis agents
are responsible for performing the automated search for performance properties.
During the search they access the monitor linked to the application processes via
the Monitoring Request Interface (MRI).

4. The MRI monitors provide an application control interface. They deal more with
hardware and software sensors to measure the performance data.

1.3.2 Agent’s Data Capture Mechanism

The agents play a vital role in the search for performance properties in the processes
or threads of the application. The agent design consists of two main parts, namely,
the agent and the monitor. The main components of the agents are the agent control,
the search strategy, and the experiment control. Figure 1.3 presents the agent design
and the sequence of operations involved in capturing performance data. In general,

Fig. 1.3: Sequence of operations performed by agents to capture performance data

any scientific application would have computational intensive iterations. The user
can mark those regions as user-region or phase-region, so that, it can be used to
perform a multistep search. In order to perform such search autonomously, agents
are involved in the following phases of the performance data capturing mechanism
in Periscope:

1. initialization phase
2. execution phase
3. data collection phase
4. evaluation phase

1 PERISCOPE: An Online-Based Distributed Performance Analysis Tool 7

During the initialization phase (1 to 3 in Fig. 1.3), the master agent starts the perfor-
mance analysis search which triggers the search strategy and initializes the candidate
set and triggers a new experiment. The master agent starts the performance analysis
via the Agent Control and Command (ACC) message CHECK. Before the message
is sent, the application is started and suspended in the initialization of the monitor-
ing library linked to the application. In addition, the analysis agent is instructed to
attach to the application via the monitor. The initial candidate set is determined by
a search strategy based on the set of properties found in the previous step. At the
beginning, the set of evaluated properties is empty.

The execution phase (4 to 8 in Fig. 1.3) of performance data capture mechanism
involves triggering a new experiment, checking for missing performance data, send-
ing MRI requests, releasing the application, and configuring the monitors. After the
candidate set is determined, the agent control starts a new experiment. The experi-
ment control accesses all the properties in the candidate set and checks whether the
required performance data for proving the property are available. If not, it config-
ures the monitor via new MRI measurement requests. The source code instrumenter
used for the insertion of monitoring library calls generates information about the
program’s regions (main routine, subroutines, loops, etc.) in the Standard Inter-
mediate Program Representation (SIR) format developed by the European Amer-
ican APART working group on automatic performance analysis tools. The requests,
such as, measure the number of cache misses in the parallel loop on line 52 in file
foo.f, are sent using sockets to the monitoring library. Once all the properties were
checked for missing performance data, the experiment is started. The MRI provides
an application control interface that allows the experiment control to release the
suspended application and to specify when the application is to be suspended again
to retrieve the performance data. During program execution, the monitoring library
checks whether the end of the current phase is reached and configures hardware and
software sensors for measuring the requested performance data.

In the data collection phase (9 to 11 in Fig. 1.3), a specific mechanism is used
to collect performance data. In this lieu, data are inserted into a summary table.
When the application is suspended again the experiment control is informed by the
MRI and it retrieves the measured performance data via the MRI into the internal
performance database.

Finally, during the evaluation phase (12 in Fig. 1.3), the candidate properties are
evaluated and the sequence of operations mentioned above are repeated. Evaluation
of the candidate performance properties is done by the experiment control and they
are inserted into the proven properties set. At the end of this search step, the control
is returned to the agent control and the cycle of the analysis steps is repeated.

1.3.3 Search Strategies

Currently, three search strategies are supported: one for analyzing the single-node
performance, another for investigating the MPI communication behavior and one

8 Shajulin Benedict, Ventsislav Petkov, and Michael Gerndt

combining both types. Characteristic for the first search strategy is that it is a multi-
step one while the MPI is a single-step operation.

1.3.3.1 Single-Node performance

There are two strategies for analyzing the code’s efficiency based on stall cycle
counters. They both use the PAPI library which provides a portable access to hard-
ware performance counters. These strategies give an insight into the pipeline exe-
cution and the usage of the cache memory. The first implemented search strategy is
the so called StallCycleAnalysis. It analyzes the defined phase region for stall cy-
cles and, depending on their number, it can either refine the property hierarchy or
stop the analysis. After detecting and proving all performance problems in the cur-
rent region this strategy continues with the nested code parts and function calls. The
newly created hypotheses are based on the detected properties in the parent regions
in order to reduce the measurement overhead.

The second available strategy is StallCycleAnalysisBreadthFirst. Its fundamen-
tal idea is quite similar to the previously discussed stall cycle analysis. The main
difference is that this one detects the bottlenecks for all regions in one step. It too
requires multiple executions of the phase region to gather all the performance data
since only a limited number of hardware counters is available.

1.3.3.2 MPI Communication Behavior

Improving the communication pattern and finding performance imbalance is a cru-
cial optimization step for MPI applications. In order to help the developer in tuning
his program, Periscope implements a MPI search strategy. It is able to detect dif-
ferent synchronization problems, such as, late sender and receiver. In contrast to
the other strategies, this one gathers all the necessary runtime information in only
one run of the phase region. The main reason for this is that the properties have no
special hierarchy, thus no further refinement is required.

1.3.3.3 Aggregated Strategy

In addition, a meta strategy called AllStrategy exists. It does neither define any ini-
tial hypotheses nor provide any refinement algorithms. Its purpose is to combine the
strategies for measuring both the single-node performance and the MPI behavior. In
the beginning the former group is activated. When the stall cycle analysis is com-
pleted, the MPI one is started. The result is a complex profile that gives a deeper
insight into the runtime performance of MPI programs.

1 PERISCOPE: An Online-Based Distributed Performance Analysis Tool 9

1.3.4 User Interface

Periscope provides a convenient GUI as shown in Fig. 1.4 aiming at enhancing the
analysis and post-processing of the found performance properties. It is developed
as a plug-in for Eclipse in order to integrate it with other available programming
tools such as the C/C++ Development Environment (CDT), Fortran IDE (Photran),
Remote System Explorer (RSE), etc. It currently consists of three interconnected
views that present the detected properties and also provide an overview of the in-
strumented code regions. Due to the textual character of the bottlenecks stored by

Fig. 1.4: Snapshot of the Periscope GUI

Periscope and their summarized form, a multi-functional table is used for their vi-
sualization. To organize the displayed data, so that, maximum knowledge can be
gathered out of it, the table provides the following features:

• Multiple criteria sorting algorithm
• Complex categorization utility
• Searching engine using regular expressions
• Filtering operations
• Direct navigation from the bottlenecks to their precise source location using the

default IDE editor for that source file type (e.g. CDT/Photran editor).

10 Shajulin Benedict, Ventsislav Petkov, and Michael Gerndt

An outline view for the instrumented code regions that were used in an experi-
ment is also available. Statistical clustering is another key feature of the plug-in that
enhances the scalability of the GUI and provides means of conducting peta-scale
performance analysis. It can effectively summarize the displayed information and
identify a runtime behavior possibly hidden in the large number of properties.

After every performance experiment of Periscope, the tool generates an XML-
based file with the detected properties. This file, together with source code of the
application and its SIR document, must be organized in a project for the Eclipse
IDE so that the GUI can access it and load it for analysis. Because of the integration
of the Eclipse File System (EFS) as a file management layer, the most appropriate
data storage location can be freely chosen. As a result, a remote project can be
created on a system where only SSH or FTP are available. Thus, there is no need
to keep local and remote files synchronized and so it greatly enhances the whole
tuning process of real-world applications.

1.4 Periscope Usage Model

This section explains the usage scenario of Periscope to find the performance bot-
tlenecks in scientific applications.

1.4.1 Preparing Analysis Run

In order to undergo an analysis run, the user has to configure Periscope by stating
the machine and the port number for the internal registry, analysis agents and appli-
cations. Optionally, the user can guide the search by stating the phase region via a
user region in the code. For example, in Fortran-based applications, the user-region
is marked as shown below:

!$MON USER REGION
...

!$MON END USER REGION

It is mandatory that the program has to be instrumented, compiled, and linked
with the required libraries (MRIlib and mpiProfilerlib). In the existing application’s
makefile, the compilation step generating the object files has to be modified such
that the compiler is replaced with the command psc instrument. The script will pre-
process the files, instrument them, and finally call the compiler for generating the
instrumented object files. In addition, the compiler has to be replaced in the link step
by psc instrument. Here, it will link also the monitoring library to the executable as
well as generate the SIR file with the program’s static information.

Instrumentation of subroutines, call sites, user regions, loop regions, OpenMP
parallel regions can be switched on/off using the keywords sub, call, user, loop,

1 PERISCOPE: An Online-Based Distributed Performance Analysis Tool 11

and par. This specification can be given for each source file individually via the
psc config file of Periscope.

1.4.2 Starting an Analysis Run

For starting an analysis run, the user has to start a registry service by specifying
its alloted port number. On the Altix, the following command is used to start the
registry:

regsrv.ia64 35000 &

The agents and the application processes register with it their location and the ports
they use. The Periscope Frontend starts the analysis agent hierarchy. It also runs the
application and optimizes the mapping of application processes and agents to pro-
cessors. The number of processes and threads are specified via ompnumthreads and
mpinumprocs arguments. It will first contact the registry and then start the applica-
tion. After all application processes registered with the registry, the agent hierarchy
starts, the analysis agents connect to the application processes and the search starts.
The following command is used for starting an analysis run on our Altix:

frontend.ia64 --apprun= ∼/psctest/GENE/gene
--mpinumprocs=1024 --strategy=
StallCycleAnalysis --debug=1

The apprun parameter specifies the command line to start the application. It will be
passed to the mpirun command. Specifying the number of MPI processes is done
using the command mpinumprocs. The argument strategy can be one of the fol-
lowing: MPI, StallCycleAnalysis, StallCycleAnalysisBreadthFirst, and AllStrategy.
The command debug is for setting the debug level. In addition, the OpenMP threads,
SIR filename, application port number, number of processors controlled by a single
analysis agent, number of highlevel agents and the timeout can be explicitly speci-
fied in the command line.

1.5 Distributed Performance Analysis

As an example for identifying performance bottlenecks with Periscope for a large-
scale scientific application, we demonstrate here the performance analysis of a Gy-
rokinetic Electromagnetic Numerical Experiment (GENE) code. The GENE code
[2, 8] is an iterative solver for a non-linear gyrokinetic equations in a 5-dimensional
phase space to identify the turbulence in magnetized fusion plasmas. It was devel-
oped in the Max Planck Institute for Plasma Physics in Garching. GENE has the
capability to run with a large number of processors, such as, 512 or 1024. It con-
sists of 47 source files with 16,258 lines. The code is written in Fortran 95 with
MPI-based parallelization.

12 Shajulin Benedict, Ventsislav Petkov, and Michael Gerndt

The experiments were carried out on the ALTIX at LRZ. In the test, the appli-
cation was executed in eight partitions with 134, 154, 24, 144, 50, 257, 143, 94
processors and one analysis agent in each partition. The GENE code was analyzed
on 1, 8, 16, 32, 64, 128, 256, 512 and 1024 processors based on its parallelization
needs.

The experimental results revealing the found properties in different code regions
of GENE, scalability issues that include single node performance, loading proper-
ties, organizing information, and clustering mechanisms are detailed in the follow-
ing subsections.

1.5.1 Found Properties

The main program, gene.f90 of 47 files is responsible to read the parameters, initial-
ize conditions and calculate the explicit time loops. The user-region indicating the
phase for the incremental analysis was marked covering the time step.

The properties found are summarized in Table 1.1. The column headings with
1, 2, 3, 4, and 5 represents the properties, respectively, IA64 pipeline stalls, Stalls
due to L1D TLB misses, Stalls due to pipeline flush, Stalls due to waiting for FP
registers, and Stalls due to waiting for integer registers. It can be seen that the code
suffers more from integer loads compared to floating point registers.

Table 1.1: Found properties in GENE code

Sl.No File Name Region Line Number Average Severity
1 2 3 4 5

User Region 149 38.3 6.85 11.1 4.14 17.65
1 gene.f90

Call Region 163 37.6 4.41 10.2 3.0 20.4

Subroutine 91 37.7 3.1 10.3 2.4 22.2
2 time scheme.f90 Loop Region 122 22.2 * 6.0 2.8 11.1

Call Region 129 12.4 * 7.7 * 13.2

Subroutine 37 18.5 * 11.9 * 19.3
3 field s kxky.f90

Call Region 65 17.7 * 9.6 * 19.6

Subroutine 34 18.3 * 11.5 * 19.8
3 aux fields.f90

Call Region 42 17.9 * 11.9 * 19.4

Subroutine 305 17.5 * 11.9 * 19.6
3 comm.f90

Call Region 312 17.1 * 1.1 * *

1 PERISCOPE: An Online-Based Distributed Performance Analysis Tool 13

1.5.2 Scalability of the Analysis

Several techniques were introduced in Periscope to support the analysis of large-
scale applications.

1.5.2.1 Loading Properties

While analyzing the GENE code with 1024 CPUs, Periscope detected plenty per-
formance properties of 14 different types which were distributed in 4 code regions.
In order to enhance the analysis an additional menu entry (see Fig. 1.5a) is provided
in the GUI to load only properties with high severity.

(a) Loading properties above a threshold (b) Instrumentation nesting

(c) Grouping and clustering the information

Fig. 1.5: Customizing the displayed information

14 Shajulin Benedict, Ventsislav Petkov, and Michael Gerndt

1.5.2.2 Organizing Information

Processing the large amount of properties from a large-scale execution might be
a challenging job for the application developers. In order to tackle this problem,
Periscope provides a way to group the collected data in different categories accord-
ing to the type and the location of the performance property as shown in Fig. 1.5c.
Furthermore, the displayed data can be filtered from the instrumentation outline
view to show only the entries of a selected code region. The view also exposes the
complete instrumentation nesting (see Fig. 1.5b).

1.5.2.3 Clustering Mechanism

The GUI for Periscope provides a basic multivariate statistical clustering support
that is based on a data-mining workbench called Weka. This feature is activated
from the context menu as shown in Fig. 1.5c. Currently, we used the SimpleKMeans
algorithm to group the detected performance bottlenecks based on their distribution
on the CPUs and their respective code regions. During the analysis of the GENE
code with 1024 processors, the algorithm generated a few clusters of similarly be-
having processors. It scaled down the amount of displayed information and so made
it easier to uncover runtime behavior that was previously hidden in the huge dataset.

1.5.2.4 Single Node Performance

The single node performance for large-scale run (Fig. 1.6) illustrates the efficiency
of the computation. For the run of GENE with 1024 processors, Periscope identified
that processor 112 had an unexpected peak of 13 severity points from its average for
IA64 pipeline stalls, and processor 868 had 19 severity points for stalls due to L1D
TLB misses. The figure shows that the processors 834 to 862 had comparatively
good performance due to less severity than other processors.

1.6 Conclusion and Outlook

Periscope is an online-based performance analysis tool for detecting performance
problems in large-scale scientific applications. The search is executed in an incre-
mental fashion by either exploiting the repetitive behavior of program phases or by
restarting the application several times. The GUI provides an excellent user-friendly
interface for the developers.

This article presented the agent design to find the wide range of bottlenecks,
Periscope’s GUI with excellent features, such as, remote execution, grouping large
datasets for scalability issues, and clustering of found properties. In addition, the
tool was demonstrated with the real-world large-scale scientific application, namely,

1 PERISCOPE: An Online-Based Distributed Performance Analysis Tool 15

Fig. 1.6: Single node performance of GENE when running in Altix for 1024 proces-
sors

GENE to find the single node performance on large-scale runs, its scalability issues
and the found properties. Since the analysis was carried out with the Periscope GUI,
the tool was found to be user-friendly and efficient for displaying the necessary
information.

While the largest test runs with Gene were executed for 1024 processes due to
the availability of test data for that size, we did other experiments with up to 4000
processors on the Altix. These experiments helped us in improving the scalability
of Periscope considerably.

Periscope is currently running on Itanium Altix, Power 6, and Linux X86-based
parallel machines. In the near future, we plan to port Periscope to BlueGene/P.

References

1. Andreas Knüpfer, Holger Brunst, Jens Doleschal, Matthias Jurenz, Matthias Lieber, Holger
Mickler, Matthias S. Müller and Wolfgang E. Nagel. The Vampir Performance Analysis Tool-
Set. In Proc. of the 2nd Int. Work. on Parallel Tools for HPC, HLRS, Stuttgart, pages 139-155,
Springer Publications, July 2008.

16 Shajulin Benedict, Ventsislav Petkov, and Michael Gerndt

2. Chen, Y. and Parker, S. E. A δ f particle method for gyrokinetic simulations with ki-
netic electrons and electromagnetic perturbations. In Comput. Phys. 189, 2 (Aug. 2003),
DOI: http://dx.doi.org/10.1016/S0021-9991(03)00228-6. pages 463-475,
2003.

3. Eric Clayberg and Dan Rubel. Eclipse Plug-ins. In Addison-Wesley Professional, ISBN 978-0-
321-55346-1 pages 107-135, 2008.

4. Markus Geimer, Felix Wolf, Brian J. N. Wylie, and Bernd Mohr. Scalable parallel trace-based
performance analysis. In Proc. of the 13th Eur. PVM/MPI Group Meeting on Recent Advances
in Parallel Virtual Machine and Message Passing Interface (EuroPVM/MPI 2006), pages 303–
312, Bonn, Germany, 2006.

5. M. Gerndt and K. Fürlinger. Specification and detection of performance problems with ASL.
Conc. and Computation: Prac. & Exp., 19(11):1451–1464, Aug 2007.

6. Michael Gerndt and Edmond Kereku. Search strategies for automatic performance analysis
tools. In Anne-Marie Kermarrec, Luc Boug, and Thierry Priol, editors, Euro-Par 2007, volume
4641 of LNCS, pages 129–138. Springer, 2007.

7. Jeffrey Vetter and Chris Chambreau. mpiP: Lightweight, Scalable MPI Profiling.
http://mpip.sourceforge.net, 2008.

8. F. Jenko. Massively parallel vlasov simulation of electromagnetic drift-wave turbulence. In
Comp. Phys. Comm. 125 2000.

9. B.P. Miller, M.D. Callaghan, J.M. Cargille, J.K. Hollingsworth, R.B. Irvin, K.L. Karavanic,
K. Kunchithapadam, and T. Newhall. The Paradyn parallel performance measurement tool.
IEEE Computer, Vol. 28, No. 11, pp. 37-46, 1995.

10. Philip C. Roth and Barton P. Miller. The distributed performance consultant and the sub-graph
folding algorithm: On-line automated performance diagnosis on thousands of processes. In
Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming (PPoPP’06), March 2006.

11. Shajulin Benedict, Matthias Brehm, Michael Gerndt, Carla Guillen, Wolfram Hesse and
Ventsislav Petkov. Automatic Performance Analysis of Large Scale Simulations. In PROPER
2009, (in press), Springer Publishers 2009.

12. Sameer S. Shende and Allen D. Malony. The TAU parallel performance system. International
Journal of High Performance Computing Applications, ACTS Collection Special Issue, 2005.

13. Felix Wolf and Bernd Mohr. Automatic performance analysis of hybrid MPI/OpenMP ap-
plications. In Proceedings of the 11th Euromicro Conference on Parallel, Distributed and
Network-Based Processing (PDP 2003), pages 13–22. IEEE Computer Society, February
2003.

http://dx.doi.org/10.1016/S0021-9991(03)00228-6
http://mpip.sourceforge.net

	PERISCOPE: An Online-Based Distributed Performance Analysis Tool
	Introduction
	Related Work
	Periscope Design
	Periscope Architecture
	Agent's Data Capture Mechanism
	Search Strategies
	User Interface

	Periscope Usage Model
	Preparing Analysis Run
	Starting an Analysis Run

	Distributed Performance Analysis
	Found Properties
	Scalability of the Analysis

	Conclusion and Outlook
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

