

Tools for High Performance Computing 2009

Matthias S. Müller � Michael M. Resch �

Alexander Schulz � Wolfgang E. Nagel
Editors

Tools for High Performance
Computing 2009

Proceedings of the 3rd International Workshop
on Parallel Tools for High Performance
Computing, September 2009, ZIH, Dresden

Editors

Michael M. Resch
Alexander Schulz

Höchstleistungsrechenzentrum
Stuttgart (HLRS)
Universität Stuttgart
Nobelstraße 19
70569 Stuttgart
Germany
resch@hlrs.de
schulz@hlrs.de

Matthias S. Müller
Wolfgang E. Nagel

Zentrum für Informationsdienste
und Hochleistungsrechnen (ZIH)
Technische Universität Dresden
01062 Dresden
Germany
matthias.mueller@tu-dresden.de
wolfgang.nagel@tu-dresden.de

Front cover figure: Implicit representation and adaptive mesh of the scala tympani in the chochlea
of a minipig.

ISBN 978-3-642-11260-7
DOI 10.1007/978-3-642-11261-4
Springer Heidelberg Dordrecht London New York

e-ISBN 978-3-642-11261-4

Library of Congress Control Number: 2010927589

Mathematics Subject Classification (2010): 68-06, 68Q85, 68Q60, 68N19, 68U99, 94A99, 68N99

© Springer-Verlag Berlin Heidelberg 2010
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations are
liable to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Cover design: WMXDesign GmbH, Heidelberg

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

mailto:resch@hlrs.de
mailto:schulz@hlrs.de
mailto:matthias.mueller@tu-dresden.de
mailto:wolfgang.nagel@tu-dresden.de
http://www.springer.com
http://www.springer.com/mycopy

Preface

Since its beginning, parallel computing has been a challenge, where new program-
ming paradigms, operating systems, libraries and applications had to be developed
to harvest the potential of multi-processor machines. The development of MPI and
OpenMP provided basic programming support and a range of tools were developed
to keep up with the hardware development.

Over the last years the landscape has changed. With the advent of multi-core
CPUs parallelism has reached a new level. Tools and applications have to change
both their pace of development and their scope. Now even the smallest comput-
ing devices are based on multi-core technology and require parallel programming.
On the high end, the dramatic increase of parallelism has accelerated the growth of
performance even well beyond Moore’s law. As a consequence there is an increas-
ing need for tools supporting the development of parallel applications. Constant
progress and research is required to achieve that goal.

Support for such development has to supplement the investments made for HPC
hardware. Since parallelism is a pervasive technology, development of parallel
methods, tools and applications can now easily be brought to a much wider mar-
ket. As a consequence, the Federal Ministry of Science in Germany has launched
a funding initiative for development of software in HPC. Other countries – specifi-
cally the US and Japan – have launched similar programs recently. Further activities
both at the national and at the European level will have to follow to turn this into a
both fruitful and sustainable research and development environment.

The Parallel Tools Workshop that took place in Dresden on Sep. 14/15, 2009
was the third in a series of workshops that started 2007 at the High Performance
Computing Center Stuttgart (HLRS). The goal of this series is to bring together
tool developers and users from science and industry in an interactive environment.
Participants from research and developers from science and industry were invited to
discuss the most recent development, risk and opportunities and to exchange their
ideas. The very interactive workshop attracted about 90 scientists from all over the
world. The focus was on presenting a wide range of technologies, but also on giving
hands-on sessions to demonstrate the strengths of each tool. The most interesting

v

vi Preface

contributions are presented in papers in this collection of ideas, that continues the
series of workshop proceedings for tools in high performance computing.

This year’s presentations have been in the fields of Integrated Development En-
vironments, Parallel Debugging and Performance Analysis tools from a wide range
of scientific and industrial tool developers. This includes tools from vendors such
as Allinea, Intel, Sun, and Totalview, as well as research institutions, including the
University of Oregon, University of Houston, Iowa State University, Munich Uni-
versity of Technology, Ludwig-Maxmimilians-Universität München, University of
Tennessee, University of Utah and the University of California. Contribution of re-
search and computer centers came from Research Center Juelich, Barcelona Super-
computing Center, Oak Ridge National Laboratory, Lawrence Livermoore National
Laboratory and the Center for Information Services and High Performance Com-
puting.

We would like to acknowledge the support of Blasius Czink, Shiqing Fan, José
Gracia and Christoph Niethammer.

Dresden, September 2009 Matthias Müller, Michael Resch
Alexander Schulz, Wolfgang Nagel

Contents

1 PERISCOPE: An Online-Based Distributed Performance Analysis
Tool . 1
Shajulin Benedict, Ventsislav Petkov, and Michael Gerndt
1.1 Introduction . 1
1.2 Related Work . 3
1.3 Periscope Design . 4

1.3.1 Periscope Architecture . 5
1.3.2 Agent’s Data Capture Mechanism . 6
1.3.3 Search Strategies . 7
1.3.4 User Interface . 9

1.4 Periscope Usage Model . 10
1.4.1 Preparing Analysis Run . 10
1.4.2 Starting an Analysis Run . 11

1.5 Distributed Performance Analysis . 11
1.5.1 Found Properties . 12
1.5.2 Scalability of the Analysis . 13

1.6 Conclusion and Outlook . 14
References . 15

2 Comprehensive Performance Tracking with Vampir 7 17
Holger Brunst, Daniel Hackenberg, Guido Juckeland, and
Heide Rohling
2.1 Introduction . 17
2.2 Overview . 18
2.3 Recent Developments in the Graphical User Interface 18

2.3.1 Custom Side by Side Chart Arrangement 18
2.3.2 Counter Data Timeline . 20
2.3.3 Performance Markers . 21
2.3.4 Clustering of Performance Data . 22

2.4 New Performance Data Sources . 24

vii

viii Contents

2.4.1 Accelerators . 24
2.4.2 Energy Consumption . 27

2.5 Summary and Outlook . 29
References . 29

3 Performance Analysis and Workload Characterization with IPM . . . 31
Karl Fürlinger, Nicholas J. Wright, and David Skinner
3.1 Introduction . 31
3.2 Overview . 32
3.3 Performance Analysis with IPM . 33
3.4 Example Scaling Study with IPM . 35
3.5 Related Work . 37
3.6 Conclusion and Outlook . 37
References . 37

4 Recent Developments in the Scalasca Toolset . 39
Markus Geimer, Felix Wolf, Brian J. N. Wylie, Daniel Becker,
David Böhme, Wolfgang Frings, Marc-André Hermanns, Bernd Mohr,
and Zoltán Szebenyi
4.1 Introduction . 40
4.2 Scalasca Overview . 41
4.3 Analysis of Hybrid MPI/OpenMP Codes . 41
4.4 Scalable Wait-State Analysis . 44

4.4.1 Scalability . 44
4.4.2 Improvement of Trace-Data I/O . 45
4.4.3 Analysis of MPI-2 Remote Memory Access Operations . 46
4.4.4 Delay Analysis . 46
4.4.5 Evaluation of Optimization Hypotheses 46
4.4.6 Configurable Source-Code Instrumentation 47

4.5 Analysis of Time-Dependent Behavior . 47
4.5.1 Observing Individual Iterations . 47
4.5.2 Space-Efficient Time-Series Call-Path Profiling 49

4.6 Outlook . 49
References . 50

5 MUST: A Scalable Approach to Runtime Error Detection in MPI
Programs . 53
Tobias Hilbrich, Martin Schulz, Bronis R. de Supinski, and Matthias S.
Müller
5.1 Introduction . 53
5.2 Experiences from Marmot and Umpire . 54

5.2.1 Marmot . 55
5.2.2 Umpire . 56

5.3 Introduction to MUST . 57
5.4 MUST Design . 59

5.4.1 Offloading of Checks . 59

Contents ix

5.4.2 Major Components . 60
5.4.3 Trace Communication System . 61

5.5 Initial Experiments . 62
5.6 Related Work . 65
5.7 Conclusions . 65
References . 66

6 HPC Profiling with the Sun Studio™ Performance Tools 67
Marty Itzkowitz and Yukon Maruyama
6.1 Introduction . 67

6.1.1 The Sun Studio Performance Tools 67
6.1.2 The Sun Studio Performance Tools Usage Model 68
6.1.3 The Sun Studio Performance Tools Features 68
6.1.4 Diagnosing Performance Problems 69

6.2 Single-Threaded Application Performance Issues 69
6.2.1 Algorithmic Inefficiency . 70
6.2.2 Memory Subsystem Performance Issues 73

6.3 Multi-threading Performance Issues . 76
6.3.1 Lock Contention . 76
6.3.2 False Sharing of Cache Lines . 79

6.4 OpenMP Performance Issues . 79
6.4.1 Excess Parallel Overhead . 80
6.4.2 Insufficient Parallelism . 81
6.4.3 Lock Contention . 81
6.4.4 Load Imbalance . 82

6.5 MPI Performance Issues . 84
6.5.1 Computation Issues in MPI Programs 84
6.5.2 Parallelization Issues in MPI Programs 85

6.6 Conclusions . 91
References . 92

7 Performance Tuning of x86 OpenMP Codes with MAQAO 95
Denis Barthou, Andres Charif Rubial, William Jalby, Souad Koliai, and
Cédric Valensi
7.1 Introduction . 95
7.2 Static Performance Evaluation . 96

7.2.1 Code Restructuring . 97
7.2.2 Performance Model . 99
7.2.3 Applying MAQAO to Real-World Applications 102

7.3 Memory Traces for OpenMP Codes . 105
7.3.1 Static Binary Instrumentation . 106
7.3.2 Memory Traces . 107
7.3.3 Using Traces for OpenMP Performance Issues 108

7.4 Related Work . 110
7.5 Conclusions and Future Work . 111
References . 112

x Contents

8 Scalable Parallel Debugging with g-Eclipse . 115
Thomas Köckerbauer, Christof Klausecker, and Dieter Kranzlmüller
8.1 Introduction . 115
8.2 Related Work . 116
8.3 Debugging Parallel Programs Using g-Eclipse 117
8.4 Reduction of the Trace Complexity . 118
8.5 Pattern Matching . 120
8.6 Summary and Conclusions . 122
References . 122

9 New Analysis Techniques in the CEPBA-Tools Environment 125
Jesus Labarta
9.1 Introduction . 126
9.2 The CEPBA-Tools Environment . 126
9.3 Spectral Analysis . 128
9.4 Clustering Techniques . 130

9.4.1 Clustering Algorithms . 130
9.4.2 Application of Clustering Techniques 131
9.4.3 Quantification of the Clustering Quality 133

9.5 Sampling and Mixed Instrumentation . 136
9.5.1 High Frequency Sampling . 136
9.5.2 Hybrid Instrumentation and Sampling 138

9.6 On-line Techniques . 139
9.7 Conclusion . 142
References . 142

10 The Importance of Run-Time Error Detection 145
Glenn R. Luecke, James Coyle, James Hoekstra, Marina Kraeva, Ying
Xu, Mi-Young Park, Elizabeth Kleiman, Olga Weiss, Andre Wehe, and
Melissa Yahya
10.1 Introduction . 145
10.2 Background . 147
10.3 Methodology . 147
10.4 Results . 149
10.5 Recommendations . 153
10.6 Conclusions . 153
References . 154

11 Collecting Performance Data with PAPI-C . 157
Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra
11.1 Introduction . 157
11.2 Extending PAPI to Multiple Measurement Components 159

11.2.1 Preset Events . 160
11.2.2 Native Events . 161
11.2.3 API Changes . 162
11.2.4 The CPU Component . 163

Contents xi

11.2.5 Accessing the CPU Hardware Counters 164
11.2.6 The ACPI and MX Components . 165
11.2.7 The LM-SENSORS Component . 166

11.3 Multi-core Performance Measurement . 167
11.3.1 Various Multi-core Designs . 169

11.4 Future Directions . 170
11.5 Conclusion . 171
References . 172

12 ISP Tool Update: Scalable MPI Verification . 175
Anh Vo, Sarvani Vakkalanka, and Ganesh Gopalakrishnan
12.1 Introduction . 175

12.1.1 Determining and Enforcing Relevant Schedules 176
12.2 ISP Overview . 177
12.3 GEM. 180
12.4 DMA - A Distributed MPI Analyzer . 181

12.4.1 Limitations of ISP . 181
12.4.2 DMA . 182

12.5 Conclusions . 183
References . 184

List of Contributors

Denis Barthou, 95
Daniel Becker, 39
Shajulin Benedict, 1
David Böhme, 39
Holger Brunst, 17

Andres Charif Rubial, 95
James Coyle, 145

Jack Dongarra, 157

Wolfgang Frings, 39
Karl Fürlinger, 31

Markus Geimer, 39
Michael Gerndt, 1
Ganesh Gopalakrishnan, 175

Daniel Hackenberg, 17
Marc-André Hermanns, 39
Tobias Hilbrich, 53
James Hoekstra, 145

Marty Itzkowitz, 67

Heike Jagode, 157
William Jalby, 95
Guido Juckeland, 17

Christof Klausecker, 115
Elizabeth Kleiman, 145
Thomas Köckerbauer, 115
Souad Koliai, 95
Marina Kraeva, 145
Dieter Kranzlmüller, 115

Jesus Labarta, 125
Glenn R. Luecke, 145

Yukon Maruyama, 67
Bernd Mohr, 39
Matthias S. Müller, 53

Mi-Young Park, 145
Ventsislav Petkov, 1

Heide Rohling, 17

Martin Schulz, 53
David Skinner, 31
Bronis R. de Supinski, 53
Zoltán Szebenyi, 39

Dan Terpstra, 157

Sarvani Vakkalanka, 175
Cédric Valensi, 95
Anh Vo, 175

xiii

xiv List of Contributors

Andre Wehe, 145
Olga Weiss, 145
Felix Wolf, 39
Nicholas J. Wright, 31
Brian J. N. Wylie, 39

Ying Xu, 145

Melissa Yahya, 145
Haihang You, 157

Chapter 1
PERISCOPE: An Online-Based Distributed
Performance Analysis Tool

Shajulin Benedict, Ventsislav Petkov, and Michael Gerndt

Abstract This paper presents PERISCOPE - an online distributed performance
analysis tool that searches for a wide range of performance bottlenecks in parallel
applications. It consists of a set of agents that capture and analyze application and
hardware-related properties in an autonomous fashion. The paper focuses on the
Periscope design, the different search methodologies, and the steps involved to do
an online performance analysis. A new graphical user-friendly interface based on
Eclipse is introduced. Through the use of this new easy-to-use graphical interface,
remote execution, selection of the type of analysis, and the inspection of the found
properties can be performed in an intuitive and easy way. In addition, a real-world
application, namely, the GENE code, a grand challenge problem of plasma physics
is analyzed using Periscope. The results are illustrated in terms of found properties
and scalability issues.

1.1 Introduction

Performance is one of the key concerns for the application developers and the com-
putational resource providers of the scientific community. The application develop-
ers endeavor writing efficient large-scale scientific codes that make optimal use of
supercomputers or any other computational resource. Very often, they fail owing to
the required knowledge about the architectures, memory hierarchy, and networks
connecting the processors. The factors which determine a program’s performance,
such as, memory usage, I/O, compilers, operating system and so forth, are complex,
inter-related, and frequently hidden from the programmer.

Performance analysis tools help users in writing efficient codes for current High
Performance Computing (HPC) machines. These tools can provide the user with

Shajulin Benedict, Ventsislav Petkov and Michael Gerndt
Technische Universität München
Fakultät für Informatik I10, Boltzmannstr. 3, 85748 Garching, Germany

M.S. Müller et al. (eds.), Tools for High Performance Computing 2009,
DOI 10.1007/978-3-642-11261-4 1, © Springer-Verlag Berlin Heidelberg 2010

1

http://dx.doi.org/10.1007/978-3-642-11261-4_1

2 Shajulin Benedict, Ventsislav Petkov, and Michael Gerndt

measurements of the program’s performance and locate various bottlenecks. Bottle-
necks are places in the execution path where execution time is lost due to inefficient
resource usage. Based on the identified bottlenecks, users can do modifications to
improve the application’s runtime behavior. Since measuring performance data and
storing those data for further analysis is often done in a not very scalable approach,
most tools are limited to experiments with a small number of processors.

The traditional way of conducting performance analysis and tuning for high
performance computing has been an off-line search approach requiring strong in-
volvement of the user. This search has a potential problem with large performance
datasets and long analysis times for large-scale scientific applications. It remains a
challenge for application developers to analyze the bottlenecks of their applications
when scaling to larger parallel machines. To investigate the runtime behavior of
large experiments, performance analysis has to be done online in a distributed fash-
ion, eliminating the need to transport huge amounts of performance data through
the parallel machine’s network and to store those data in files for further analysis.

An online-based performance analysis system using expert knowledge for iden-
tifying bottlenecks in the applications, in general, follows four steps for capturing
performance properties (Fig. 1.1). As shown, the application is instrumented based

Fig. 1.1: Cyclic representation of performance analysis

on the initial hypotheses of potential performance properties. During an experiment
executing the application on the parallel system, appropriate performance data are
collected. These data are then inspected to prove which of the hypotheses hold. In
the refinement step, the found properties might be refined to identify more specific
performance problems. All four steps are executed in a cyclic fashion until no more
precise properties can be found. This cyclic approach can of course be automated
and executed in an online fashion.

Although, there are numerous performance analysis tools on the market, they
face challenges in usabiliy, scalability, and single node performance analysis.
Periscope [5] is a distributed online performance analysis tool currently under de-

1 PERISCOPE: An Online-Based Distributed Performance Analysis Tool 3

velopment at Technische Universität München that addresses the above mentioned
challenges. It consists of a set of autonomous agents that search for performance
properties. Each agent is responsible for analyzing a subset of the application’s pro-
cesses and threads. The agents request measurements from the monitoring system,
retrieve the data, and use it to identify performance properties.

Periscope is currently extended within the German project ISAR (Integrated Sys-
tem and Application Analysis for Massively Parallel Computers in the Petascale
Range1) funded until 2011. The main goal of the ISAR project is the realization of
an integrated scalable system that can be used in production environments.

This paper gives a short overview of Periscope’s design. It also presents for the
first time the usage model of Periscope which is based on the recent work within
the ISAR project. It introduces the new graphical user interface which facilitates
the user’s interaction with Periscope. In addition, we give some results from a
large-scale run of a real-world application, namely, the Gyrokinetic Electromagnetic
Numerical Experimental code (GENE) from the Max Planck Institute for Plasma
Physics in Garching.

All the experiments were done on our Altix 4700 at Leibniz Rechenzentrum
(LRZ) in Garching. The Altix supercomputer consists of 19 NUMA-link4 intercon-
nected shared memory partitions with over 9600 Itanium 2 cores with an aggregated
peak performance of over 60 TFlops.

The paper is organized as follows: Section 1.2 introduces related work and Sec-
tion 1.3 describes the design of Periscope with an detailed overview of the analysis
agent’s data capturing mechanism. The usage model is presented in Section 1.4 and
the distributed performance analysis is illustrated in Section 1.5.

1.2 Related Work

Just as there are several different classes of parallel hardware and parallel program-
ming languages, so too are there several distinct types of performance analysis tools.
Each of them has a number of concreate realizations. The most notable ones are
Paradyn, TAU, Vampir, KOJAK, SCALASCA, and mpiP.

Paradyn [9, 10], developed during 1990s, automates performance analysis. The
toolkit uses a performance consultant that does dynamic instrumentation and searches
for bottlenecks based on summary information during the program’s execution. The
tool has the capability to scale to large numbers of processors.

TAU [12] does offline analysis of performance issues in the application based
on trace-based and profiling-based approaches. It provides a wide variety of graph-
ical and text-based displays. In addition, it provides the PerfExplorer which uses
statistical analysis to detect performance problems and allows to compare multiple
application runs.

1 http://www.in.tum.de/en/forschung/verbundprojekte/
clusteraktivitaeten/isar.html

http://www.in.tum.de/en/forschung/verbundprojekte/clusteraktivitaeten/isar.html
http://www.in.tum.de/en/forschung/verbundprojekte/clusteraktivitaeten/isar.html

4 Shajulin Benedict, Ventsislav Petkov, and Michael Gerndt

Vampir [1] provides a trace-based performance analysis framework that converts
performance data obtained from a program into different performance views and
supports navigation and zooming within these displays. It implements event analy-
sis algorithms and customizable displays which enable interactive rendering of the
collected monitoring data. Recently, Vampir’s scalability was extended via a paral-
lel analysis server. But still, huge trace files are generated and have to be manually
analyzed afterwards.

KOJAK [13] does trace-based analysis of parallel applications. It includes Ex-
pert, a component that automatically deduces performance properties from the trace
files and provides a user-interface for investigating the found types of properties, the
processes where a property occurs, as well as its function or OpenMP region.

SCALASCA [4] (SCalable performance Analysis of LArge SCale Applications)
is a scalable trace analysis tool based on KOJAK. It extended KOJAK’s approach for
automatically searching performance properties by exploiting both distributed mem-
ory and parallel processing capabilities. Instead of sequentially analyzing a single
global trace file, it uses a technique based on execution replay to gather performance
data for detecting formalized properties.

mpiP [7] tool is more oriented towards identifying performance problems for
MPI-based applications. It collects the performance data statistically. All informa-
tion is sampled locally and not exchanged between processes during runtime. The
results of the experiments are only merged after program termination as a post-
mortem approach.

Our approach advances the state of the art in the following aspects:

1. Performs a distributed search of properties.
2. The performance data are processed while the application runs.
3. Periscope knows and exploits the structure of the application. This information

is generated by source code instrumentation and is used by the analysis agents.
4. It does not use trace-based analysis and hence avoids large datasets.
5. It has a user-friendly interface that supports remote execution on large and dis-

tributed machines and inspection of the application’s performance properties.

1.3 Periscope Design

Periscope’s design provides mechanisms to search for performance properties in
a distributed fashion based on a master agent for management purposes, analy-
sis agents for finding problems on individual processors, and a few other agents
responsible for communication. It is devised such that the users can investigate
performance problems on large-scale runs delving into the single node especially
memory-related performance bottlenecks and MPI/OpenMP issues.

It can be used in interactive application runs as well as in batch runs. The anal-
ysis is executed in an iterative fashion, i.e., focusing on more specific and precise
properties in multiple executions of a program phase. The program phase is either
a special code region marked by the user or the whole code. While in the first case,

1 PERISCOPE: An Online-Based Distributed Performance Analysis Tool 5

the execution is suspended when the end of the phase region is reached and the pro-
cesses are released afterwards for a next execution, in the latter case the application
is automatically restarted for another execution of the phase.

In this section, we discuss Periscope’s architecture, the agent’s data capturing
mechanism, different types of search strategies and the Eclipse plugin [3] imple-
menting the user interface.

1.3.1 Periscope Architecture

The Periscope architecture consists of four major entities as shown in Fig. 1.2 that
can perform distributed and online-based performance analysis of any scientific ap-
plication.

Fig. 1.2: Periscope Architecture

1. The User-Interface is a convenient and feature-rich entity that displays the results
of the runtime analysis by directly mapping the detected properties to the source
code. This entity benefits Periscope users by providing many advanced features
like code indexing, refactoring, syntax highlighting, and so forth.

2. The Frontend starts the application and analysis agents based on the specifica-
tions provided by the user, namely, number of processes and threads and so on. It
is responsible for restarting the application whenever the agent network did not
complete the search before the application terminated.

3. The Analysis agent network consists of three different agents, namely, master
agent, communication agent and analysis agent. The master agent forwards com-
mands from the frontend to the analysis agents and receives the found perfor-
mance properties from the individual analysis agents and forwards them to the
frontend. The communication agents combine similar properties found in their

6 Shajulin Benedict, Ventsislav Petkov, and Michael Gerndt

sibling agents and forward only the combined properties. The analysis agents
are responsible for performing the automated search for performance properties.
During the search they access the monitor linked to the application processes via
the Monitoring Request Interface (MRI).

4. The MRI monitors provide an application control interface. They deal more with
hardware and software sensors to measure the performance data.

1.3.2 Agent’s Data Capture Mechanism

The agents play a vital role in the search for performance properties in the processes
or threads of the application. The agent design consists of two main parts, namely,
the agent and the monitor. The main components of the agents are the agent control,
the search strategy, and the experiment control. Figure 1.3 presents the agent design
and the sequence of operations involved in capturing performance data. In general,

Fig. 1.3: Sequence of operations performed by agents to capture performance data

any scientific application would have computational intensive iterations. The user
can mark those regions as user-region or phase-region, so that, it can be used to
perform a multistep search. In order to perform such search autonomously, agents
are involved in the following phases of the performance data capturing mechanism
in Periscope:

1. initialization phase
2. execution phase
3. data collection phase
4. evaluation phase

1 PERISCOPE: An Online-Based Distributed Performance Analysis Tool 7

During the initialization phase (1 to 3 in Fig. 1.3), the master agent starts the perfor-
mance analysis search which triggers the search strategy and initializes the candidate
set and triggers a new experiment. The master agent starts the performance analysis
via the Agent Control and Command (ACC) message CHECK. Before the message
is sent, the application is started and suspended in the initialization of the monitor-
ing library linked to the application. In addition, the analysis agent is instructed to
attach to the application via the monitor. The initial candidate set is determined by
a search strategy based on the set of properties found in the previous step. At the
beginning, the set of evaluated properties is empty.

The execution phase (4 to 8 in Fig. 1.3) of performance data capture mechanism
involves triggering a new experiment, checking for missing performance data, send-
ing MRI requests, releasing the application, and configuring the monitors. After the
candidate set is determined, the agent control starts a new experiment. The experi-
ment control accesses all the properties in the candidate set and checks whether the
required performance data for proving the property are available. If not, it config-
ures the monitor via new MRI measurement requests. The source code instrumenter
used for the insertion of monitoring library calls generates information about the
program’s regions (main routine, subroutines, loops, etc.) in the Standard Inter-
mediate Program Representation (SIR) format developed by the European Amer-
ican APART working group on automatic performance analysis tools. The requests,
such as, measure the number of cache misses in the parallel loop on line 52 in file
foo.f, are sent using sockets to the monitoring library. Once all the properties were
checked for missing performance data, the experiment is started. The MRI provides
an application control interface that allows the experiment control to release the
suspended application and to specify when the application is to be suspended again
to retrieve the performance data. During program execution, the monitoring library
checks whether the end of the current phase is reached and configures hardware and
software sensors for measuring the requested performance data.

In the data collection phase (9 to 11 in Fig. 1.3), a specific mechanism is used
to collect performance data. In this lieu, data are inserted into a summary table.
When the application is suspended again the experiment control is informed by the
MRI and it retrieves the measured performance data via the MRI into the internal
performance database.

Finally, during the evaluation phase (12 in Fig. 1.3), the candidate properties are
evaluated and the sequence of operations mentioned above are repeated. Evaluation
of the candidate performance properties is done by the experiment control and they
are inserted into the proven properties set. At the end of this search step, the control
is returned to the agent control and the cycle of the analysis steps is repeated.

1.3.3 Search Strategies

Currently, three search strategies are supported: one for analyzing the single-node
performance, another for investigating the MPI communication behavior and one

8 Shajulin Benedict, Ventsislav Petkov, and Michael Gerndt

combining both types. Characteristic for the first search strategy is that it is a multi-
step one while the MPI is a single-step operation.

1.3.3.1 Single-Node performance

There are two strategies for analyzing the code’s efficiency based on stall cycle
counters. They both use the PAPI library which provides a portable access to hard-
ware performance counters. These strategies give an insight into the pipeline exe-
cution and the usage of the cache memory. The first implemented search strategy is
the so called StallCycleAnalysis. It analyzes the defined phase region for stall cy-
cles and, depending on their number, it can either refine the property hierarchy or
stop the analysis. After detecting and proving all performance problems in the cur-
rent region this strategy continues with the nested code parts and function calls. The
newly created hypotheses are based on the detected properties in the parent regions
in order to reduce the measurement overhead.

The second available strategy is StallCycleAnalysisBreadthFirst. Its fundamen-
tal idea is quite similar to the previously discussed stall cycle analysis. The main
difference is that this one detects the bottlenecks for all regions in one step. It too
requires multiple executions of the phase region to gather all the performance data
since only a limited number of hardware counters is available.

1.3.3.2 MPI Communication Behavior

Improving the communication pattern and finding performance imbalance is a cru-
cial optimization step for MPI applications. In order to help the developer in tuning
his program, Periscope implements a MPI search strategy. It is able to detect dif-
ferent synchronization problems, such as, late sender and receiver. In contrast to
the other strategies, this one gathers all the necessary runtime information in only
one run of the phase region. The main reason for this is that the properties have no
special hierarchy, thus no further refinement is required.

1.3.3.3 Aggregated Strategy

In addition, a meta strategy called AllStrategy exists. It does neither define any ini-
tial hypotheses nor provide any refinement algorithms. Its purpose is to combine the
strategies for measuring both the single-node performance and the MPI behavior. In
the beginning the former group is activated. When the stall cycle analysis is com-
pleted, the MPI one is started. The result is a complex profile that gives a deeper
insight into the runtime performance of MPI programs.

1 PERISCOPE: An Online-Based Distributed Performance Analysis Tool 9

1.3.4 User Interface

Periscope provides a convenient GUI as shown in Fig. 1.4 aiming at enhancing the
analysis and post-processing of the found performance properties. It is developed
as a plug-in for Eclipse in order to integrate it with other available programming
tools such as the C/C++ Development Environment (CDT), Fortran IDE (Photran),
Remote System Explorer (RSE), etc. It currently consists of three interconnected
views that present the detected properties and also provide an overview of the in-
strumented code regions. Due to the textual character of the bottlenecks stored by

Fig. 1.4: Snapshot of the Periscope GUI

Periscope and their summarized form, a multi-functional table is used for their vi-
sualization. To organize the displayed data, so that, maximum knowledge can be
gathered out of it, the table provides the following features:

• Multiple criteria sorting algorithm
• Complex categorization utility
• Searching engine using regular expressions
• Filtering operations
• Direct navigation from the bottlenecks to their precise source location using the

default IDE editor for that source file type (e.g. CDT/Photran editor).

10 Shajulin Benedict, Ventsislav Petkov, and Michael Gerndt

An outline view for the instrumented code regions that were used in an experi-
ment is also available. Statistical clustering is another key feature of the plug-in that
enhances the scalability of the GUI and provides means of conducting peta-scale
performance analysis. It can effectively summarize the displayed information and
identify a runtime behavior possibly hidden in the large number of properties.

After every performance experiment of Periscope, the tool generates an XML-
based file with the detected properties. This file, together with source code of the
application and its SIR document, must be organized in a project for the Eclipse
IDE so that the GUI can access it and load it for analysis. Because of the integration
of the Eclipse File System (EFS) as a file management layer, the most appropriate
data storage location can be freely chosen. As a result, a remote project can be
created on a system where only SSH or FTP are available. Thus, there is no need
to keep local and remote files synchronized and so it greatly enhances the whole
tuning process of real-world applications.

1.4 Periscope Usage Model

This section explains the usage scenario of Periscope to find the performance bot-
tlenecks in scientific applications.

1.4.1 Preparing Analysis Run

In order to undergo an analysis run, the user has to configure Periscope by stating
the machine and the port number for the internal registry, analysis agents and appli-
cations. Optionally, the user can guide the search by stating the phase region via a
user region in the code. For example, in Fortran-based applications, the user-region
is marked as shown below:

!$MON USER REGION
...

!$MON END USER REGION

It is mandatory that the program has to be instrumented, compiled, and linked
with the required libraries (MRIlib and mpiProfilerlib). In the existing application’s
makefile, the compilation step generating the object files has to be modified such
that the compiler is replaced with the command psc instrument. The script will pre-
process the files, instrument them, and finally call the compiler for generating the
instrumented object files. In addition, the compiler has to be replaced in the link step
by psc instrument. Here, it will link also the monitoring library to the executable as
well as generate the SIR file with the program’s static information.

Instrumentation of subroutines, call sites, user regions, loop regions, OpenMP
parallel regions can be switched on/off using the keywords sub, call, user, loop,

1 PERISCOPE: An Online-Based Distributed Performance Analysis Tool 11

and par. This specification can be given for each source file individually via the
psc config file of Periscope.

1.4.2 Starting an Analysis Run

For starting an analysis run, the user has to start a registry service by specifying
its alloted port number. On the Altix, the following command is used to start the
registry:

regsrv.ia64 35000 &

The agents and the application processes register with it their location and the ports
they use. The Periscope Frontend starts the analysis agent hierarchy. It also runs the
application and optimizes the mapping of application processes and agents to pro-
cessors. The number of processes and threads are specified via ompnumthreads and
mpinumprocs arguments. It will first contact the registry and then start the applica-
tion. After all application processes registered with the registry, the agent hierarchy
starts, the analysis agents connect to the application processes and the search starts.
The following command is used for starting an analysis run on our Altix:

frontend.ia64 --apprun= ∼/psctest/GENE/gene
--mpinumprocs=1024 --strategy=
StallCycleAnalysis --debug=1

The apprun parameter specifies the command line to start the application. It will be
passed to the mpirun command. Specifying the number of MPI processes is done
using the command mpinumprocs. The argument strategy can be one of the fol-
lowing: MPI, StallCycleAnalysis, StallCycleAnalysisBreadthFirst, and AllStrategy.
The command debug is for setting the debug level. In addition, the OpenMP threads,
SIR filename, application port number, number of processors controlled by a single
analysis agent, number of highlevel agents and the timeout can be explicitly speci-
fied in the command line.

1.5 Distributed Performance Analysis

As an example for identifying performance bottlenecks with Periscope for a large-
scale scientific application, we demonstrate here the performance analysis of a Gy-
rokinetic Electromagnetic Numerical Experiment (GENE) code. The GENE code
[2, 8] is an iterative solver for a non-linear gyrokinetic equations in a 5-dimensional
phase space to identify the turbulence in magnetized fusion plasmas. It was devel-
oped in the Max Planck Institute for Plasma Physics in Garching. GENE has the
capability to run with a large number of processors, such as, 512 or 1024. It con-
sists of 47 source files with 16,258 lines. The code is written in Fortran 95 with
MPI-based parallelization.

12 Shajulin Benedict, Ventsislav Petkov, and Michael Gerndt

The experiments were carried out on the ALTIX at LRZ. In the test, the appli-
cation was executed in eight partitions with 134, 154, 24, 144, 50, 257, 143, 94
processors and one analysis agent in each partition. The GENE code was analyzed
on 1, 8, 16, 32, 64, 128, 256, 512 and 1024 processors based on its parallelization
needs.

The experimental results revealing the found properties in different code regions
of GENE, scalability issues that include single node performance, loading proper-
ties, organizing information, and clustering mechanisms are detailed in the follow-
ing subsections.

1.5.1 Found Properties

The main program, gene.f90 of 47 files is responsible to read the parameters, initial-
ize conditions and calculate the explicit time loops. The user-region indicating the
phase for the incremental analysis was marked covering the time step.

The properties found are summarized in Table 1.1. The column headings with
1, 2, 3, 4, and 5 represents the properties, respectively, IA64 pipeline stalls, Stalls
due to L1D TLB misses, Stalls due to pipeline flush, Stalls due to waiting for FP
registers, and Stalls due to waiting for integer registers. It can be seen that the code
suffers more from integer loads compared to floating point registers.

Table 1.1: Found properties in GENE code

Sl.No File Name Region Line Number Average Severity
1 2 3 4 5

User Region 149 38.3 6.85 11.1 4.14 17.65
1 gene.f90

Call Region 163 37.6 4.41 10.2 3.0 20.4

Subroutine 91 37.7 3.1 10.3 2.4 22.2
2 time scheme.f90 Loop Region 122 22.2 * 6.0 2.8 11.1

Call Region 129 12.4 * 7.7 * 13.2

Subroutine 37 18.5 * 11.9 * 19.3
3 field s kxky.f90

Call Region 65 17.7 * 9.6 * 19.6

Subroutine 34 18.3 * 11.5 * 19.8
3 aux fields.f90

Call Region 42 17.9 * 11.9 * 19.4

Subroutine 305 17.5 * 11.9 * 19.6
3 comm.f90

Call Region 312 17.1 * 1.1 * *

1 PERISCOPE: An Online-Based Distributed Performance Analysis Tool 13

1.5.2 Scalability of the Analysis

Several techniques were introduced in Periscope to support the analysis of large-
scale applications.

1.5.2.1 Loading Properties

While analyzing the GENE code with 1024 CPUs, Periscope detected plenty per-
formance properties of 14 different types which were distributed in 4 code regions.
In order to enhance the analysis an additional menu entry (see Fig. 1.5a) is provided
in the GUI to load only properties with high severity.

(a) Loading properties above a threshold (b) Instrumentation nesting

(c) Grouping and clustering the information

Fig. 1.5: Customizing the displayed information

14 Shajulin Benedict, Ventsislav Petkov, and Michael Gerndt

1.5.2.2 Organizing Information

Processing the large amount of properties from a large-scale execution might be
a challenging job for the application developers. In order to tackle this problem,
Periscope provides a way to group the collected data in different categories accord-
ing to the type and the location of the performance property as shown in Fig. 1.5c.
Furthermore, the displayed data can be filtered from the instrumentation outline
view to show only the entries of a selected code region. The view also exposes the
complete instrumentation nesting (see Fig. 1.5b).

1.5.2.3 Clustering Mechanism

The GUI for Periscope provides a basic multivariate statistical clustering support
that is based on a data-mining workbench called Weka. This feature is activated
from the context menu as shown in Fig. 1.5c. Currently, we used the SimpleKMeans
algorithm to group the detected performance bottlenecks based on their distribution
on the CPUs and their respective code regions. During the analysis of the GENE
code with 1024 processors, the algorithm generated a few clusters of similarly be-
having processors. It scaled down the amount of displayed information and so made
it easier to uncover runtime behavior that was previously hidden in the huge dataset.

1.5.2.4 Single Node Performance

The single node performance for large-scale run (Fig. 1.6) illustrates the efficiency
of the computation. For the run of GENE with 1024 processors, Periscope identified
that processor 112 had an unexpected peak of 13 severity points from its average for
IA64 pipeline stalls, and processor 868 had 19 severity points for stalls due to L1D
TLB misses. The figure shows that the processors 834 to 862 had comparatively
good performance due to less severity than other processors.

1.6 Conclusion and Outlook

Periscope is an online-based performance analysis tool for detecting performance
problems in large-scale scientific applications. The search is executed in an incre-
mental fashion by either exploiting the repetitive behavior of program phases or by
restarting the application several times. The GUI provides an excellent user-friendly
interface for the developers.

This article presented the agent design to find the wide range of bottlenecks,
Periscope’s GUI with excellent features, such as, remote execution, grouping large
datasets for scalability issues, and clustering of found properties. In addition, the
tool was demonstrated with the real-world large-scale scientific application, namely,

1 PERISCOPE: An Online-Based Distributed Performance Analysis Tool 15

Fig. 1.6: Single node performance of GENE when running in Altix for 1024 proces-
sors

GENE to find the single node performance on large-scale runs, its scalability issues
and the found properties. Since the analysis was carried out with the Periscope GUI,
the tool was found to be user-friendly and efficient for displaying the necessary
information.

While the largest test runs with Gene were executed for 1024 processes due to
the availability of test data for that size, we did other experiments with up to 4000
processors on the Altix. These experiments helped us in improving the scalability
of Periscope considerably.

Periscope is currently running on Itanium Altix, Power 6, and Linux X86-based
parallel machines. In the near future, we plan to port Periscope to BlueGene/P.

References

1. Andreas Knüpfer, Holger Brunst, Jens Doleschal, Matthias Jurenz, Matthias Lieber, Holger
Mickler, Matthias S. Müller and Wolfgang E. Nagel. The Vampir Performance Analysis Tool-
Set. In Proc. of the 2nd Int. Work. on Parallel Tools for HPC, HLRS, Stuttgart, pages 139-155,
Springer Publications, July 2008.

16 Shajulin Benedict, Ventsislav Petkov, and Michael Gerndt

2. Chen, Y. and Parker, S. E. A δ f particle method for gyrokinetic simulations with ki-
netic electrons and electromagnetic perturbations. In Comput. Phys. 189, 2 (Aug. 2003),
DOI: http://dx.doi.org/10.1016/S0021-9991(03)00228-6. pages 463-475,
2003.

3. Eric Clayberg and Dan Rubel. Eclipse Plug-ins. In Addison-Wesley Professional, ISBN 978-0-
321-55346-1 pages 107-135, 2008.

4. Markus Geimer, Felix Wolf, Brian J. N. Wylie, and Bernd Mohr. Scalable parallel trace-based
performance analysis. In Proc. of the 13th Eur. PVM/MPI Group Meeting on Recent Advances
in Parallel Virtual Machine and Message Passing Interface (EuroPVM/MPI 2006), pages 303–
312, Bonn, Germany, 2006.

5. M. Gerndt and K. Fürlinger. Specification and detection of performance problems with ASL.
Conc. and Computation: Prac. & Exp., 19(11):1451–1464, Aug 2007.

6. Michael Gerndt and Edmond Kereku. Search strategies for automatic performance analysis
tools. In Anne-Marie Kermarrec, Luc Boug, and Thierry Priol, editors, Euro-Par 2007, volume
4641 of LNCS, pages 129–138. Springer, 2007.

7. Jeffrey Vetter and Chris Chambreau. mpiP: Lightweight, Scalable MPI Profiling.
http://mpip.sourceforge.net, 2008.

8. F. Jenko. Massively parallel vlasov simulation of electromagnetic drift-wave turbulence. In
Comp. Phys. Comm. 125 2000.

9. B.P. Miller, M.D. Callaghan, J.M. Cargille, J.K. Hollingsworth, R.B. Irvin, K.L. Karavanic,
K. Kunchithapadam, and T. Newhall. The Paradyn parallel performance measurement tool.
IEEE Computer, Vol. 28, No. 11, pp. 37-46, 1995.

10. Philip C. Roth and Barton P. Miller. The distributed performance consultant and the sub-graph
folding algorithm: On-line automated performance diagnosis on thousands of processes. In
Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming (PPoPP’06), March 2006.

11. Shajulin Benedict, Matthias Brehm, Michael Gerndt, Carla Guillen, Wolfram Hesse and
Ventsislav Petkov. Automatic Performance Analysis of Large Scale Simulations. In PROPER
2009, (in press), Springer Publishers 2009.

12. Sameer S. Shende and Allen D. Malony. The TAU parallel performance system. International
Journal of High Performance Computing Applications, ACTS Collection Special Issue, 2005.

13. Felix Wolf and Bernd Mohr. Automatic performance analysis of hybrid MPI/OpenMP ap-
plications. In Proceedings of the 11th Euromicro Conference on Parallel, Distributed and
Network-Based Processing (PDP 2003), pages 13–22. IEEE Computer Society, February
2003.

http://dx.doi.org/10.1016/S0021-9991(03)00228-6
http://mpip.sourceforge.net

Chapter 2
Comprehensive Performance Tracking with
Vampir 7

Holger Brunst, Daniel Hackenberg, Guido Juckeland, and Heide Rohling

Abstract Vampir 7 is a performance visualization tool that provides a comprehen-
sive view on the runtime behavior of parallel programs. It is a new member of the
Vampir tool family. This new generation of performance visualizer combines state-
of-the-art parallel data processing techniques with an all-new graphical user inter-
face experience. This includes fast local and remote event data browsing, searching,
filtering, clustering, and summarization. The software is ported to Unix, Windows,
and Apple platforms. This article gives an overview of the novel techniques and
features of Vampir 7.

2.1 Introduction

Performance tracking is about understanding and improving the inner workings of
software for complex computer infrastructure. The presented software microscope
Vampir addresses the visualization of concurrent software processes at user defin-
able levels of detail. The main motivation for our activities is scientific curiosity, ef-
ficient usage of in-house compute resources, and satisfied customers at our compute
center. Certainly, we also support the common argumentation line that stresses the
strategic role of Supercomputing and HPC, complex system architectures, painful
programming techniques, and the resulting need for supportive tools. Then again,
it is probably best to discuss this subject with HPC center managers and parallel
application developers rather than tool developers like we are.

Holger Brunst, Daniel Hackenberg, Guido Juckeland, Heide Rohling
Centre for Information Services and High Performance Computing
Technische Universität Dresden
01062 Dresden, Germany
e-mail: {holger.brunst, daniel.hackenberg, guido.juckeland,
heide.rohling}@tu-dresden.de

M.S. Müller et al. (eds.), Tools for High Performance Computing 2009,
DOI 10.1007/978-3-642-11261-4 2, © Springer-Verlag Berlin Heidelberg 2010

17

mailto:holger.brunst@tu-dresden.de
mailto:daniel.hackenberg@tu-dresden.de
mailto:guido.juckeland@tu-dresden.de
mailto:heide.rohling@tu-dresden.de
http://dx.doi.org/10.1007/978-3-642-11261-4_2

18 Holger Brunst, Daniel Hackenberg, Guido Juckeland, and Heide Rohling

This article gives an overview of the new Vampir 7 performance data browser
and summarizes accomplishments of the Vampir team during the past two years,
focusing on the enhanced visualization of time-dependent behavior of accelerated
hybrid applications and new performance data sources like the energy consumption
of system components.

2.2 Overview

The Vampir 7 performance visualization tool combines modern event processing
techniques with a fully redesigned graphical user interface. It is portable and avail-
able for many HPC systems. Previously available only for Unix-based systems,
Vampir 7 is a complete re-design that is based on a 15 years-plus product history
[9].

Vampir provides an easy-to-use analysis framework (see Fig. 2.1), which enables
developers to quickly display sequential and parallel program behavior, at customiz-
able levels of detail. This helps developers to analyze their programs, find and iden-
tify performance problems, and supports them in producing optimized, more effi-
cient applications:

• It converts performance data obtained from a program into different performance
views.

• It supports navigation and zooming within these displays.
• It helps to identify inefficient parts of code.
• It leads to more efficient programs.

Vampir’s multi-document GUI offers support for common performance chart
types, including timeline and profile. Timeline charts allow studying, debugging,
and tuning of the control flow of a parallel application. Adaptive profile charts en-
able load balancing and subroutine optimization. The communication performance
can be analyzed for either individual communication partners or for an entire com-
munication network. In addition to performance tuning, the tool also helps to ana-
lyze consistency problems, including communication mismatches, deadlocks, race
conditions, and false sharing.

2.3 Recent Developments in the Graphical User Interface

2.3.1 Custom Side by Side Chart Arrangement

The value of individual performance charts can be increased by connecting and
correlating them with other charts. Vampir 7 supports a mode of operation, which
allows to display multiple time correlated charts side by side. Charts that display a

2 Comprehensive Performance Tracking with Vampir 7 19

Fig. 2.1: Vampir 7 framework overview. VampirTrace (left) records relevant actions
of a given parallel program. The resulting trace file is translated into graphical charts
with the Vampir GUI (top right). Extensive program runs on many cores can result
in potentially large trace data bundles (collection of files). They can be processed
with the VampirServer middle-ware (bottom right).

timed sequence of events such as the “Master Timeline” or the “Process Timeline”
are always aligned vertically. This alignment ensures that the temporal relationship
of events is preserved across chart boundaries.

The user can arrange the placement of the charts according to his preferences
by dragging them into the desired position. When the left mouse button is pressed
while the mouse pointer is located above a chart title, the layout engine highlights
potential positions (chart edges) with a red bar. As soon as the user releases the left
mouse button, the chart arrangement will be changed according to his intentions.
The entire procedure is depicted in Fig. 2.2.

The dynamic chart layout engine allows to increase or decrease the space that
is used by individual charts. Charts of particular interest may get more space in
order to render information in more detail. The main document window can host
an arbitrary number of charts. Charts can be added by clicking on the respective
“Charts” toolbar icon. With a few more clicks, charts can be combined to a custom
chart arrangement as depicted in Fig. 2.3. Customized layouts are stored per trace
data set in order to allow the easy continuation of interrupted analysis sessions and
presentations.

Every chart can be undocked or closed by clicking the dedicated icon in its upper
right corner as shown in Fig. 2.3. Undocking a chart detaches the chart from the
current arrangement and presents it in its own separate window.

20 Holger Brunst, Daniel Hackenberg, Guido Juckeland, and Heide Rohling

Fig. 2.2: Moving and arranging charts in Vampir 7. All available performance charts
can be dragged to arbitrary positions. The layout engine avoids chart overlapping.
Furthermore, all charts depict the same time interval, process, selection, and color
encoding. Automatic horizontal alignment is used across multiple timeline charts.

2.3.2 Counter Data Timeline

Counter data are collected over time. Typically events like floating point operations
or cache misses are counted. Counter values can be used to store not just hardware
performance counters but arbitrary sample values. There can be counters for dif-
ferent statistical information as well, for instance counting the number of function
calls or a value in an iterative approximation of the final result. Counters are defined
prior to the instrumentation of the application and can be individually assigned to
processes.

An example timeline chart with counter data is shown in Fig. 2.4. The chart
shows performance rates that were derived from the counter “floating point oper-
ations” for a given time interval. The graph shows the floating point rates of the
respective program phases. The measurements were carried out at a very high pre-
cision. Due to the limited display resolution, two individual graphs characterize the
performance over time. The red graph identifies the maximum performance rates
that were measured over time whereas the average performance rate is depicted in
grey below the upper graph. Optionally, a minimum graph (not depicted) can be
added to the chart showing the poorest achieved performance rates.

2 Comprehensive Performance Tracking with Vampir 7 21

Fig. 2.3: A custom chart arrangement in the main document window of Vampir.

Fig. 2.4: Counter Data Timeline. The graph shows the floating point rates of the
respective program phases. The maximum performance rates are represented by the
red graph whereas the average performance is depicted as a grey line below.

2.3.3 Performance Markers

A new feature in Vampir 7 is the visualization of custom performance markers.
Markers can be used to highlight arbitrary hot spots in trace files. They were de-

22 Holger Brunst, Daniel Hackenberg, Guido Juckeland, and Heide Rohling

signed to improve the integration with automized performance analysis tools like
Scalasca [2] or Periscope [11]. For critical points marker events can be set, which
consist of a timestamp, a textual description, and the process or process group.
Marker events have a specific type, e.g. “Error”, which is defined by the user. Mark-
ers are not interpreted by Vampir but displayed with all their properties in a display
called “Marker View” and drawn as little triangles in the timeline views. The marker
view provides a sorted list of all marker events. The process, time and description
of all events are shown as depicted in Fig. 2.5. They are sorted by their groups
and markers. Because of the tree structure the user easily can navigate through it.
Vampir supports “Error”, “Warning”, and “Hint” as groups. The rest is classified as
“Unknown”.

The triangles in the Master Timeline and Process Timeline are colored according
to the group they belong to. The changeable color for “Errors” is by default red and
for “Warnings” orange, to illustrate the severity. By clicking on a marker event in the
“Marker View” the corresponding events in the timelines are highlighted and vice
versa. In addition to this, it is possible to highlight all events of the same marker or
group.

Fig. 2.5: Performance markers highlight hot spots during the execution of a program.
Individual markers can be selected in a hierarchical list (right). Their occurrence in
time is depicted as colored triangles in the respective timeline views (left).

2.3.4 Clustering of Performance Data

Traditionally, performance profiles list the following information for Nf functions f
of a program: accumulated time, number of invocations, and average time. In case
of a parallel program, a separate profile is provided for each concurrent task τ (i. e.,
process or thread) of the overall Nτ tasks. The time parameter is typically available
as an inclusive (including the time spent in subroutines) or exclusive (excluding the
time spent in subroutines) value. Assuming a highly parallel code with Nτ > 1,000,
only a few monitored functions are sufficient to produce very complex results. The
situation becomes worse for more sophisticated profiling techniques like call graph

2 Comprehensive Performance Tracking with Vampir 7 23

Fig. 2.6: A clustered parallel profile of originally 128 concurrent tasks. Similar pro-
files are merged to 27 representatives showing average values. The profile legend on
the left shows a graphical task distribution vector ranging from 1 to 128. The num-
ber in front of each vector identifies the number of clustered profiles represented by
the respective bar.

or call path profiling [5, 7]. These approaches collect data depending on the call
site (or even the entire call path) of a function call resulting in many more measured
values per function. Multiplying the number of results per task by the overall number
of tasks quickly leads to a complexity that becomes unmanageable. The thorough
analysis of profile data from many highly parallel applications reveals that most
concurrent tasks in an application follow the same execution pattern. This is mainly
due to symmetric algorithms and data dependencies leading to global or partial task
synchronization. Resulting redundancies in profile data can be used to limit the data
visualization to representative tasks which reflect a certain class/pattern of behavior.
The idea is to cluster similar task profiles. Objects inside such a cluster are very
similar while objects in different clusters should be very different.

Henceforth, task profiles are represented by vectors x = (x1, . . . ,xNf) where xi

is the numerical result of an arbitrary experiment, e. g., the average duration of a
specific function f . To evaluate whether a set of profiles is similar enough to be
considered a cluster, a distance measure d(x,y) is needed between two profiles x and
y. Assuming a k-dimensional Euclidean space, the distance between two objects,
x = (x1,x2,,xNf) and y = (y1,y2,,yNf) may be defined using the Euclidean
distance:

d(x,y) = |x−y| =

√
√
√
√

Nf

∑
i=1

(xi − yi)2 (2.1)

24 Holger Brunst, Daniel Hackenberg, Guido Juckeland, and Heide Rohling

Given Nτ the number of profiles and Nk the number of clusters to create, one rea-
sonable approach among others (hierarchical, density-based, and grid-based) is to
use a partitioning approach. Based on an initial partitioning, an iterative relocation
technique attempts to improve the partitioning by moving objects from one group
to another. To achieve global optimality, partition based clustering requires the ex-
haustive enumeration of all of the possible partitions. A popular heuristic called the
k-means algorithm is used to obtain suboptimal results much faster. The k-means
algorithm produces a set of Nk clusters that minimizes the squared-error criterion.
The number of clusters is configurable by the user.

Figure 2.6 depicts a clustered function profile. The number of clusters has been
set to k = 27 which was the maximum number of bars that fitted in given chart
height. Each bar represents a class of similar profiles. Another major difference to
traditional profile bar charts is the representation of task identity and distribution.
Due to the nature of the clustered profiles, a simple numbering scheme is no longer
applicable to the profile bars. Therefore, each profile bar is now preceded by a task
distribution vector ranging from Task 1 to Task Nτ .

2.4 New Performance Data Sources

2.4.1 Accelerators

Multi-core technology ultimately found its way into main-stream processor families.
Today, the growing popularity of hardware accelerated computing even further in-
creases the complexity of the software development process. Especially the correct
and efficient usage of the increasingly complex memory hierarchy is mandatory to
obtain best application performance. With traditional profilers, the impact of code
tuning activities can often only be observed from a rather external point of view.
The exact identification and location of the culprit is often impossible and the real
reasons behind a performance deficiency remain obscure.

Accelerators have very specific hardware and software characteristics. Yet, they
do have the following common optimization challenges from a programmer’s per-
spective:

1. Memory utilization (Data transfers, global/host memory access)
2. Core/Unit utilization
3. Task/Thread synchronization

While there exist several major architectural differences, Table 2.1 identifies sev-
eral similarities between accelerators and traditional multi-core CPUs [6, 10]. We
introduce common terms like host processor, local memory, or synchronization for
common architectural features to simplify further discussions.

2 Comprehensive Performance Tracking with Vampir 7 25

Table 2.1: Comparison of accelerator features for the IBM Cell, the NVIDIA G200b
GPU and a general purpose multi-core CPU

Feature IBM Cell NVIDIA GPU Multi-core CPU
Host processor PPE CPU one core
Accelerator SPE GPU all cores
Local memory 256 KB local store 16 KB shared memory local cache (L1/L2)
Device memory – on graphics board shared Cache (L3)
Data transfer DMA transfers CUDA memcopy shared address space
Synchronization mailbox messages CUDA thread synchronization shared address space
Accel. program SPE program CUDA kernel threaded program

2.4.1.1 Monitoring

Despite the similarities with standard multi-core processors, acquisition, process-
ing, presentation, and interpretation of performance data is not an easy task in many
respects. Existing tools need to be extended to deal with the new hardware and
data complexity if a realistic assessment is intended. Our combined monitoring and
visualization approach makes the next step in tool evolution towards a highly im-
proved level of detail, precision, and completeness. Vampir’s performance moni-
tor [8] now also records specific events of two accelerator APIs, namely IBM’s Cell
and NVIDIA’s CUDA.

First of all, the thread creation on the respective cores needs to be detected and
propagated to the host processor which acts as a control unit and supervisor. This
includes the synchronization of the individual hardware timers across multiple pro-
cessors and their cores. During program execution, data transfers, remote access,
and user functions (kernels) are logged by customized wrapper libraries. Acceler-
ated program sequences are logged by customized accelerator monitors. The fact
that host processor and accelerator use disjoint memory regions is an additional
challenge. Thus, log entries that are generated on the accelerator have to be trans-
ferred to the host memory and merged into the context of the execution log of the
whole application.

The limited amount of local memory on Cell’s SPEs requires sophisticated tech-
niques such as double buffering and post-mortem log generation to keep program
perturbation low [3]. GPUs, on the other hand, do not offer logging interfaces for
local memory accesses. While they offer large amounts of device memory to cap-
ture time stamps for occurring events, the available performance critical events are
currently limited to start- and end times of CUDA kernels and non-coalesced device
memory accesses. This is due to the fact that more detailed performance hooks into
CUDA are not yet publicly available.

26 Holger Brunst, Daniel Hackenberg, Guido Juckeland, and Heide Rohling

Fig. 2.7: Matrix vector multiplication on Cell: no optimization (left), after memory
optimization (center), and after computational optimization (right)

2.4.1.2 Visualization

The program flow and performance graphics in this article were generated by the
new Vampir 7 GUI. For a better understanding, some aspects of the accelerator
architectures have to be explained with respect to the applied visualization. The
host process and its accelerated parts are individually assigned to horizontal bars
that change in color to reflect different program regions (e. g. function calls). An
important point is to correctly display the target of a data transfer.

Figure 2.7 shows a parallel sparse matrix-vector multiplication on Cell. Calcula-
tions (calc) and stalls due to DMA transfers (dma_wait) can be easily identified.
The unoptimized case (Fig. 2.7 left) even shows a phase where not a single acceler-
ator core accesses main memory. We applied two optimizations that overlap DMA
transfers with computation (double buffering) and improve the memory bandwidth
(128 Byte buffer alignment). The result in Fig. 2.7 (center) shows no dma_wait
phases anymore. Now, the program is obviously computationally bound. In a next
step, a computational optimization is likely to improve the overall performance.
We chose loop unrolling as it typically has a significant effect on SPE programs.
After this optimization the algorithm is memory bound again as indicated by the
numerous dma_wait phases in Fig. 2.7 (right). The visualization helps to quickly
understand that another computational optimization would have no effect. Further
improvements would require to optimize or minimize the memory access.

The second example is a parallel Particle-in-Cell (PIC) code [1] that was ported
to NVIDIA GPUs using the CUDA API. Figure 2.8 shows the interaction of three
GPUs and their corresponding host CPUs, which in turn also use MPI and pthreads
to communicate and distribute work.

Processes 1, 2 and 3 refer to the main program thread that transfers data between
the GPU and the main memory. It is dominated by CUDA MEMCPY SYNC calls be-
cause the main program waits for the execution of the GPU kernels when calling
a blocking operation such as CUDA MEMCPY SYNC. Threads 1:2, 2:3 and 3:2 are
responsible for visual data output of the GPU memory while threads 1:3, 2:2 and
3:3 are solely responsible for inter-node communication via MPI. The execution
state of the CUDA kernels is visualized by the green bars named CUDA[0] 1:1,
CUDA[0] 2:1 and CUDA[1] 3:1 where the number in brackets identifies the corre-
sponding node.

2 Comprehensive Performance Tracking with Vampir 7 27

Fig. 2.8: Event log visualization of a 1024×3072 cells Particle-in-Cell (PIC) simu-
lation run with three GPUs on two cluster nodes

The timeline display reveals that the execution of the CUDA kernels (and there-
fore the PIC computation on the GPUs) is barely interrupted by communication
calls and the computational load on the GPUs is well balanced as a result of our
performance optimization efforts.

2.4.2 Energy Consumption

The energy efficiency of computing resources is among the main challenges of pro-
cessor and system designers. With the advent of dynamic voltage and frequency
scaling (DVS/DFS), a system’s energy consumption may vary significantly during
application runs. In this context, important factors of an application’s runtime are:

• idle phases of (a subset of all) processes that cause DVS/DFS
• usage of on-chip resources like different cache levels or ALUs/FPUs
• usage of off-chip resources like main memory or I/O

Recent CPU designs even extent traditional DVS/DFS as they automatically over-
clock CPU cores with very high load (“Turbo Boost”) although this technique is
known to be disadvantageous in terms of energy efficiency.

In order to allow a detailed analysis of these effects, we extended the Vampir tool
set to include power measurement data into event logs and to visualize this data.
In order to keep additional requirements to the performance browser at a minimum,
we use standard Vampir event counters to store the power consumption information.

28 Holger Brunst, Daniel Hackenberg, Guido Juckeland, and Heide Rohling

Fig. 2.9: Energy consumption of a multi-core system during the execution of a mem-
ory bandwidth benchmark. From top to bottom: a) timeline chart of 8 threads ac-
cessing L1, L2, L3, and main memory, b) total bandwidth over time, and c) power
consumption of the system over time.

However, our performance monitor Vampir had to be extended in order to record
this data during application runs and include it in the event logs. A newly developed
infrastructure for external counters is in place to retrieve and store measurement data
from power meters and provide it upon request to Vampir’s application monitor.

We have tested our approach with several benchmark runs on a dual socket Intel
Xeon 5570 (Nehalem-EP, quadcore) node. We measured the power consumption of
this node using a ZES LMG 95 power meter with a 20 Hz sampling rate. In this
test we focus on evaluating the energy requirements when accessing different levels
of the memory subsystem namely the L1, L2, and L3 caches and the main memory.
The target application is therefore a set of sophisticated x86 64 memory benchmarks
that allows to access data in specific locations [4]. Figure 2.9 shows the visualization
of such an event log. It should be noted that the pthreads-parallel benchmark uses
all 8 cores to perform identical tasks. The four different memory levels are clearly
visible in the timeline view as well as in the two counter data timelines below. The
upper graph depicts the memory bandwidth that was achieved when accessing a
certain cache level or main memory. The second graph illustrates that the power
consumption of the system varies depending on which memory resources are used
by the application. Likewise, we can analyze the power consumption of larger MPI-
parallel systems.

2 Comprehensive Performance Tracking with Vampir 7 29

2.5 Summary and Outlook

This article describes the recent developments of the new Vampir 7 performance
analysis framework. It focuses on the new design of the graphical user interface,
which introduces many novelties relevant for performance browsers in general. Fur-
thermore, the tapping and processing of new performance data sources, namely
hardware accelerators and energy meters, has been described, which is likewise
relevant to the HPC community. In the near future, we expect to further improve
the support for GPU based accelerators through vendor performance APIs. Further-
more, an extended scripting interface based on DBUS [12] will be incorporated into
the performance visualizer. A customizable event search engine and the comparison
of successive trace runs are active research topics.

References

1. Birdsall, C.K., Langdon, A.B.: Plasma Physics via Computer Simulation (Series in Plasma
Physics). Taylor & Francis, 1 edn. (October 2004)

2. Geimer, M., Wolf, F., Wylie, B., Mohr, B.: Scalable parallel trace-based performance analysis.
Recent Advances in Parallel Virtual Machine and Message Passing Interface (2006)

3. Hackenberg, D., Brunst, H., Nagel, W.E.: Event tracing and visualization for Cell Broadband
Engine systems. In: Euro-Par (2008)

4. Hackenberg, D., Molka, D., Nagel, W.E.: Comparing cache architectures and coherency pro-
tocols on x86-64 multicore SMP systems. The 42nd Annual IEEE/ACM International Sym-
posium on Microarchitecture (October 2009)

5. Hall, R.J.: Call path profiling. In: Proc. Fourteenth International Conf. on Software Engineer-
ing. IEEE Computer Society (1992), ftp://ftp.research.att.com/dist/hall/
papers/cpprof/icse92.ps

6. IBM: Software Development Kit for Multicore Acceleration Version 3.0: Programmer’s Guide
(2007)

7. Malony, A.D., Shende, S., Morris, A.: Phase-based parallel performance profiling. In:
PARCO. pp. 203–210 (2005)

8. Müller, M.S., Knüpfer, A., Jurenz, M., Lieber, M., Brunst, H., Mix, H., Nagel, W.E.: Develop-
ing scalable applications with Vampir, VampirServer and VampirTrace. In: Parallel Comput-
ing: Architectures, Algorithms and Applications (2007)

9. Nagel, W.E., Arnold, A., Weber, M., Hoppe, H.C., Solchenbach, K.: VAMPIR: Visualization
and analysis of MPI resources. Supercomputer 12(1), 69–80 (1996), http://www.zam.
kfa-juelich.de/zam/docs/printable/ib/ib-95/ib-9528.ps

10. NVIDIA: CUDA Compute Unified Device Architecture - Programming Guide (2007)
11. Technical University of Munich: Periscope, http://www.lrr.in.tum.de/˜gerndt/

home/Research/PERISCOPE/Periscope.htm
12. William, T., Mix, H., Mohr, B., Voigtländer, F., Menzel, R.: Enhanced performance analysis of

multi-core applications with an integrated tool-chain. In: Parallel Computing 2009 (PARCO).
Lyon (2009), to be published

ftp://ftp.research.att.com/dist/hall/papers/cpprof/icse92.ps
ftp://ftp.research.att.com/dist/hall/papers/cpprof/icse92.ps
http://www.zam.kfa-juelich.de/zam/docs/printable/ib/ib-95/ib-9528.ps
http://www.zam.kfa-juelich.de/zam/docs/printable/ib/ib-95/ib-9528.ps
http://www.lrr.in.tum.de/~gerndt/home/Research/PERISCOPE/Periscope.htm
http://www.lrr.in.tum.de/~gerndt/home/Research/PERISCOPE/Periscope.htm

Chapter 3
Performance Analysis and Workload
Characterization with IPM

Karl Fürlinger, Nicholas J. Wright, and David Skinner

Abstract IPM is a profiling and workload characterization tool for MPI applica-
tions. IPM achieves its goal of minimizing the monitoring overhead by recording
performance data in a fixed-size hashtable resident in memory and by carefully opti-
mizing time-critical operations. At the same time, IPM offers very detailed and user-
centric performance metrics. IPM’s performance data is delivered as an XML file
that can subsequently be used to generate a detailed profiling report in HTML for-
mat, avoiding the need for custom GUI applications. Pairwise communication vol-
ume and communication topology between processes, communication time break-
down across ranks, MPI operation timings, and MPI message sizes (buffer lengths)
are some of IPM’s most widely used metrics. IPM is free and distributed under the
LGPL license.

3.1 Introduction

Performance analysis and workload characterization serve individual developers
and computing centers to understand the performance characteristics of applica-
tions. Some important goals of this process are the identification and elimination
of performance bottlenecks as well as the development of an understanding of how

Karl Fürlinger
Computer Science Division, EECS Department
University of California at Berkeley
Soda Hall 515
Berkeley, California 94720, USA
e-mail: fuerling@eecs.berkeley.edu

Nicholas J. Wright, David Skinner
NERSC Center
Lawrence Berkeley National Laboratory
Berkeley, California 94720, USA
e-mail: {deskinner,njwright}@lbl.gov

M.S. Müller et al. (eds.), Tools for High Performance Computing 2009,
DOI 10.1007/978-3-642-11261-4 3, © Springer-Verlag Berlin Heidelberg 2010

31

mailto:fuerling@eecs.berkeley.edu
mailto:deskinner@lbl.gov
mailto:njwright@lbl.gov
http://dx.doi.org/10.1007/978-3-642-11261-4_3

32 Karl Fürlinger, Nicholas J. Wright, and David Skinner

an application scales as the number of processing elements is increased. This paper
describes the Integrated Performance Monitor (IPM), an MPI profiling and work-
load characterization tool that has very low overhead yet is able to deliver important
user-centered metrics in detail.

The rest of this paper is organized as follows: In Sect. 3.2 we provide an overview
of IPM’s hashtable based monitoring approach. In Sect. 3.3 we describe how IPM
is used to monitor an application and which kinds of performance data are delivered
by IPM. In Sect. 3.4 we study the scalability of MILC (a quantum-chromodynamics
code) with IPM. We discuss related work in Sect. 3.5 and conclude with an outlook
on planned features and enhancements for IPM in Sect. 3.6.

3.2 Overview

We assume the following general model of an MPI application for the purpose of
performance monitoring: The application is composed of n processes, each iden-
tified by an integer in [0, . . . ,n − 1], its rank. A set of events Ei ⊆ E happen in
each process i. We do not further formally specify what the events are, but we
assume they occur at a certain time and have duration. Each event e has an asso-
ciated signature σ(e) ∈ S which captures the characteristics we are interested in.
σ : E �→ S is the signature function. Concretely we think of a signature σ(e) as a k-
tuple σ(e) = (σ 1(e),σ 2(e), . . . ,σ k(e)), where each σ j() is a signature component.
Useful components of signature functions are listed in Fig. 3.1.

Signature Typical Size
Component Function Data type (#bits)

Wallclock time time(e) floating point 32/64
Sequence number seq(e) integer 32
Type of MPI call call(e) integer 8
Message data size size(e) integer 32
Message data address address(e) integer 64
Message tag tag(e) integer 32
Own rank rank(e) integer 32
Partner rank partner(e) integer 32
Callsite ID csite(e) integer 16
Program region region(e) integer 8

Fig. 3.1: Components of an event signature function.

Our goal for performance observation is to get an event inventory of an appli-
cation (i.e., understand the events that happened and their characteristics) by asso-
ciating performance data (number of occurrences, statistics on the duration) with
event signatures. If the signature includes time(), we essentially have a model for
event tracing because the chronology of events can be reconstructed from the stored

3 Performance Analysis and Workload Characterization with IPM 33

signatures. If time() and seq() are not included in the signature, we have a model
for profiling.

IPM is a profiling tool and for efficiency reasons we would like to keep the signa-
ture space much smaller than the event space (|E|>> |S|). In this case, the signature
function will not be injective in general (many events can have the same signature)
and performance data can be envisioned as a table indexed by the signature, with a
number of columns for the statistics we are interested in. In IPM we implement this
indexing using a hashtable resident in memory. The hash keys are 64 or 128 bits
long and the timing statistics consume approximately 20 bytes per entry.

Upon program termination IPM writes a banner report and a log file in XML
format. The banner contains the most important data about the program run in ASCII
text and the log file provides the full information contained in the hashtable. In a
post-processing step the XML is parsed and a profiling report is generated in HTML
format. The contents of IPM’s banner information and the full profiling report are
discussed in the next section.

3.3 Performance Analysis with IPM

The most basic output IPM provides is a banner containing essential metrics which
is written immediately after program termination. An example banner is shown in
Fig. 3.2.

##IPM##
#
command : ./su3_rmd
host : nid03510 mpi_tasks : 1024 on 86 nodes
start : Fri Nov 27 14:40:15 2009 wallclock : 20.57 sec
stop : Fri Nov 27 14:40:35 2009 %comm : 55.69
mem [GB] : 108.98 gflop/sec : 496.92
#
: [total] <avg> min max
wallclock : 20961.67 20.47 20.42 20.57
MPI calls : 1567890443 1531143 1531143 1531154
MPI time : 11673.29 11.40 11.26 11.94
MPI [%] : 55.69 55.05 58.05
mem [GB] : 108.98 0.11 0.09 0.11
#
###

Fig. 3.2: The default banner provided by IPM upon program termination contains a
number of important high level metrics.

The banner provides general information about the executed job, such as the
start and stop date and time, the number of MPI processes used and the number of

34 Karl Fürlinger, Nicholas J. Wright, and David Skinner

different SMP nodes these processes where executing on. The next entries are the
wallclock duration of the job in seconds and the percentage of overall time spent in
MPI calls (%comm). If IPM has been installed on a system where these metrics can
be acquired it also provides the total memory used by the application (mem [GB])
and the achieved floating point rate (gflop/sec).

The lower part of the banner provides information about the distribution of key
metrics across the MPI ranks. For each of wallclock execution time, the time in MPI
calls, the number of MPI calls, the percentage of time in MPI and the DRAM mem-
ory used, this section provides the sum, average, minimum and maximum values.

A further section of the banner (not shown) is included if a full banner is re-
quested by setting the IPM BANNER environment variable to full. This sec-
tion provides a listing of the individual most time-consuming events stored in the
hashtable, and their distribution over the MPI ranks.

In addition to the text-based banner, IPM writes the full profiling data to an XML-
based log file. Parallel MPI file I/O is used at high concurrencies to speed up the
creation of this log file. A parser script is provided with IPM that reads the XML
log file and produces an HTML page of the full profiling report which also includes
charts and graphs to visualize the data.

Among others, the HTML profiling page contains these entries:

• The information contained in the text-based banner is reproduced in a table on
top of the profiling report.

• A pie chart (Fig. 3.3a) displays the breakdown of the total MPI time into the
various contributing MPI calls such as MPI Allreduce or MPI Wait.

• For each monitored hardware counter event, the minimum, maximum and aver-
age values are displayed as well as the location (rank) of where the minimum and
maximum values are achieved.

• A load balance line graph showing the consumed DRAM memory, floating point
rate, and wallclock time. The horizontal axis is the rank dimension and the graphs
are available both in sorted (by memory, flops, wallclock time), as well as un-
sorted (natural rank order) variant.

• A stacked load balance graph shows the breakdown of the MPI time into indi-
vidual MPI calls over the rank dimension. An example for this graph (sorted by
time) is shown in Fig. 3.3b. This type of display is especially useful to identify
and locate load imbalance situations.

• Cumulative distribution graphs as the one shown in Fig. 3.3c provide an under-
standing of the message size distribution of an application. The horizontal axis
is the buffer size n used in the operation and the vertical axis denotes how many
calls have had a buffer size smaller or equal to n.

• A similar cumulative distribution graph is also provided where the accumulation
is not performed over the number of calls but the time spent in the messaging
operation instead.

• A communication topology graph as shown in Fig. 3.3d. This graph shows the
amount of data exchanged between a pair of processes. The sending process is
depicted on the horizontal axis, the receiving process is shown on the vertical
axis.

3 Performance Analysis and Workload Characterization with IPM 35

(a) MPI pie chart. (b) Time in MPI routines by rank.

(c) Cumulative distribution graph of buffer sizes. (d) Communication topology graph.

Fig. 3.3: Some of the performance data displays provided by IPM.

3.4 Example Scaling Study with IPM

This section describes an example scalability study using IPM. The application stud-
ied is MILC [6], a code to compute properties of elementary particles subject to the
strong force as described by quantum chromodynamics (QCD). The computational
domain is a 4D space-time lattice. Most of the computational work is spent doing
a conjugate gradient inversion of the fermion Dirac operator. This entails repeated
calls to a kernel that multiplies a large sparse matrix by a vector. Communication
is mostly from point-to-point exchange of ghost-cell data on the 4D lattice. MILC
was run with the medium problem size from the NERSC SSP (Sustained System
Performance) benchmark set [8]. It performs 1375 conjugate gradient iterations on
a 324 lattice.

The scaling study was performed on the Kraken Cray XT5 supercomputer at
the National Institute for Computational Science (NICS) in Oakridge, Tennessee.
At the time of writing this article Kraken was a dual-socket, 6-core AMD Opteron
machine (12 cores total per node). Each processor is clocked at 2.6 GHz has 512

36 Karl Fürlinger, Nicholas J. Wright, and David Skinner

KB private second level cache, 6 MB shared L3 cache and each node has 12 GB of
main memory.

(a) Scaling of MILC. (b) Relative hardware counter scaling.

Fig. 3.4: MILC scaling study on Kraken.

We ran the program with 64, 128, 256, 512, 1024, and 2048 MPI processes and
the graph in Fig. 3.4a shows the summed wallclock time (leftmost bar) for each run.
Since this is a strong scaling study (the workload remains constant as the concur-
rency is increased), ideal scaling would be represented by constant summed wall-
clock times. For MILC, the summed wallclock execution time stays almost constant
at 23,000 seconds for 64, 128, 256 processes, then drops to about 19,000 seconds
for 512 and 1024, and then increases to about 30,000 seconds at 2048 processes.

Fig. 3.4a also shows the breakdown of the overall wallclock time into time spent
in MPI operations and “compute” time (i.e., wallclock - MPI time). This breakdown
sheds light on the nature of the wallclock scaling. Evidently the time in MPI (middle
bar) increases dramatically as we increase the concurrency, from 2,016 seconds at
64 processes to 21,000 seconds at 2048 processes, but this increase is masked by a
decrease in computation time (rightmost bar), most notably from 256 to 512 to 1024
MPI processes.

The most likely explanation for this super-linear speedup is the increased over-
all cache size at high concurrencies. At some point the data set will fit into the
caches and cause less cache misses and traffic on the memory subsystem, leading to
shorter execution times than could be expected from just the increase of the comput-
ing capacity alone. To test this hypothesis for MILC, we configured IPM to collect
hardware counter events using PAPI [9], [1]. We measured the total number of float-
ing point instructions (PAPI FP OPS) and the total number of level 2 cache misses
(PAPI L2 TCM). Figure 3.4b shows a chart of the relative scaling of the measured
counter values as we increase the number of MPI processes. All values are normal-
ized to the measured value at 64 processes. The number of floating point operations
stays constant, since the same amount of work is performed in each run but the
number of L2 cache misses decreases dramatically at 1024 and 2048 processes as
the data set starts to fit the L2 cache.

3 Performance Analysis and Workload Characterization with IPM 37

By analyzing some of the basic metrics provided by IPM we were able to un-
derstand the scaling of MILC to a first order by separating out the contributions of
messaging and computing. The next step would be to analyze the contribution of
individual MPI calls (collective and point-to-point) and to consider how the mes-
sage size distribution is changing and how the application might shift from being
bandwidth bound to being latency bound. Both goals can be achieved readily using
information provided in IPM’s HTML profiling report.

3.5 Related Work

There are a number of other performance analysis tools, both employing tracing and
profiling measurement techniques. Vampir [7], [2] is a trace collector and a trace
visualizer for MPI and OpenMP applications. TAU [5], [11] is an extensive toolset
for profiling and tracing of MPI/OpenMP applications and some other programming
models. Automated performance analysis is the focus of other recent tools such as
Periscope [3], [10] KOJAK [12], and Scalasca [4].

Compared to most of the aforementioned tools, IPM is focused more on giv-
ing the user a number of key metrics in a straightforward and easy way with low
overheads and it places less emphasis on a detailed drill down into the application
structure.

3.6 Conclusion and Outlook

We have introduce IPM, an Integrated Performance Monitoring framework with
very low overhead. IPM can be used to derive essential key metrics for applica-
tion characteristics such as percent of time spent in communication operations, im-
balances in program regions or MPI calls, and the communication topology in a
straightforward way.

For the path ahead, several improvements for IPM are under active investigation
and development. We plan to add threading support to IPM for monitoring OpenMP
and Pthreads applications. For file I/O a vertically integrated monitoring stack will
allow us to monitor file operations at several layers (from the user’s view to the un-
derlying networking fabric) and will enable us gain novel insight into the interaction
of storage, networking, and computation.

References

1. Shirley Browne, Jack Dongarra, N. Garner, G. Ho, and Philip J. Mucci. A portable program-
ming interface for performance evaluation on modern processors. Int. J. High Perform. Com-
put. Appl., 14(3):189–204, 2000.

38 Karl Fürlinger, Nicholas J. Wright, and David Skinner

2. Holger Brunst and Bernd Mohr. Performance analysis of large-scale OpenMP and hybrid
MPI/OpenMP applications with VampirNG. In Proceedings of the First International Work-
shop on OpenMP (IWOMP 2005), Eugene, Oregon, USA, May 2005.

3. Karl Fürlinger and Michael Gerndt. Periscope: Performance analysis on large-scale systems.
InSiDE – Innovatives Supercomputing in Deutschland (Featured Article), 3(2, Autumn):26–
29, 2005.

4. Markus Geimer, Felix Wolf, Brian J. N. Wylie, and Bernd Mohr. Scalable parallel trace-
based performance analysis. In Proceedings of the 13th European PVM/MPI Users’ Group
Meeting on Recent Advances in Parallel Virtual Machine and Message Passing Interface (Eu-
roPVM/MPI 2006), pages 303–312, Bonn, Germany, 2006.

5. Allen D. Malony and Sameer S. Shende. Performance technology for complex parallel and
distributed systems. pages 37–46, 2000.

6. MILC website, http://physics.indiana.edu/˜sg/milc.html.
7. Wolfgang E. Nagel, Alfred Arnold, Michael Weber, Hans-Christian Hoppe, and Karl Solchen-

bach. VAMPIR: Visualization and analysis of MPI resources. Supercomputer, 12(1):69–90,
1996.

8. Sustained system performance benchmarks at NERSC, http://www.nersc.gov/
projects/ssp.php.

9. PAPI web page: http://icl.cs.utk.edu/papi/.
10. Periscope project homepage http://wwwbode.cs.tum.edu/˜gerndt/home/

Research/PERISCOPE/Periscope.htm.
11. Sameer S. Shende and Allen D. Malony. The TAU parallel performance system. International

Journal of High Performance Computing Applications, ACTS Collection Special Issue, 2005.
12. Felix Wolf and Bernd Mohr. Automatic performance analysis of hybrid MPI/OpenMP applica-

tions. In Proceedings of the 11th Euromicro Conference on Parallel, Distributed and Network-
Based Processing (PDP 2003), pages 13–22. IEEE Computer Society, February 2003.

http://physics.indiana.edu/~sg/milc.html
http://www.nersc.gov/projects/ssp.php
http://www.nersc.gov/projects/ssp.php
http://icl.cs.utk.edu/papi/
http://wwwbode.cs.tum.edu/~gerndt/home/Research/PERISCOPE/Periscope.htm
http://wwwbode.cs.tum.edu/~gerndt/home/Research/PERISCOPE/Periscope.htm

Chapter 4
Recent Developments in the Scalasca Toolset

Markus Geimer, Felix Wolf, Brian J. N. Wylie,
Daniel Becker, David Böhme, Wolfgang Frings,
Marc-André Hermanns, Bernd Mohr, and Zoltán Szebenyi

Abstract The number of processor cores on modern supercomputers is increasing
from generation to generation, and as a consequence HPC applications are required
to harness much higher degrees of parallelism to satisfy their growing demand for
computing power. However, writing code that runs efficiently on large processor
configurations remains a significant challenge. The situation is exacerbated by the
rising number of cores imposing scalability demands not only on applications but
also on the software tools needed for their development.
To address this challenge, Jülich Supercomputing Centre creates software technolo-
gies aimed at improving the performance of applications running on leadership-
class systems. At the center of our activities lies the development of Scalasca, a
performance-analysis tool that has been specifically designed for large-scale sys-
tems and that allows the automatic identification of harmful wait states in appli-
cations running on hundreds of thousands of processors. In this article, we review
recent developments in the open-source Scalasca toolset, highlight research activ-
ities of the Scalasca team during the past two years and give an outlook on future
work.

Markus Geimer, Felix Wolf, Brian J. N. Wylie, David Böhme, Wolfgang Frings, Bernd Mohr,
Zoltán Szebenyi
Jülich Supercomputing Centre,
Forschungszentrum Jülich, 52425 Jülich, Germany
e-mail: {m.geimer,b.wylie,d.boehme,w.frings,b.mohr,
z.szebenyi}@fz-juelich.de

Felix Wolf, Daniel Becker, Marc-André Hermanns
German Research School for Simulation Sciences, 52062 Aachen, Germany
e-mail: {f.wolf,d.becker,m.a.hermanns}@grs-sim.de

Felix Wolf, David Böhme, Zoltán Szebenyi
RWTH Aachen University, 52056 Aachen, Germany

M.S. Müller et al. (eds.), Tools for High Performance Computing 2009,
DOI 10.1007/978-3-642-11261-4 4, © Springer-Verlag Berlin Heidelberg 2010

39

mailto:m.geimer@fz-juelich.de
mailto:b.wylie@fz-juelich.de
mailto:d.boehme@fz-juelich.de
mailto:w.frings@fz-juelich.de
mailto:b.mohr@fz-juelich.de
mailto:z.szebenyi@fz-juelich.de
mailto:f.wolf@grs-sim.de
mailto:d.becker@grs-sim.de
mailto:m.a.hermanns@grs-sim.de
http://dx.doi.org/10.1007/978-3-642-11261-4_4

40 M. Geimer et al.

4.1 Introduction

Supercomputing is a key technology pillar of modern science and engineering, in-
dispensable to solve critical problems of high complexity. The extension of the ES-
FRI road map to include a European supercomputer infrastructure in combination
with the creation of the PRACE consortium acknowledges that the requirements
of many critical applications can only be met by the most advanced custom-built
large-scale computer systems. However, as a prerequisite for their productive use,
the HPC community needs powerful and robust software development tools. These
would not only help improve the scalability characteristics of scientific codes and
thus expand their potential, but also allow domain scientists to concentrate on the
underlying models rather than to spend a major fraction of their time tuning their
application for a particular machine.

As the current trend in microprocessor development continues, this need will
become even stronger in the future. Facing increasing power dissipation and little
instruction-level parallelism left to exploit, computer architects are realizing further
performance gains by using larger numbers of moderately fast processor cores rather
than by increasing the speed of uni-processors. As a consequence, supercomputer
applications are being required to harness much higher degrees of parallelism in
order to satisfy their growing demand for computing power. With an exponentially
rising number of cores, the often substantial gap between peak performance and
the performance level actually sustained by production codes is expected to widen
even further. Finally, increased concurrency levels place higher scalability demands
not only on applications but also on parallel programming tools. When applied to
larger numbers of cores, familiar tools often cease to work in a satisfactory man-
ner (e.g., due to escalating memory requirements, failing renditions, or limited I/O
performance).

To overcome this challenge, Jülich Supercomputing Centre creates software tech-
nologies aimed at improving the performance of applications running on leadership-
class systems with hundreds of thousands of cores. At the center of our activities lies
the development of Scalasca [1, 2], an open-source performance-analysis tool that
has been specifically designed for large-scale systems, which allows the automatic
identification of harmful wait states in applications running on very large processor
configurations.

In this article, we give an overview of Scalasca and highlight research accom-
plishments of the Scalasca team during the past two years, focusing on the analysis
of hybrid applications, the detection of wait states, and the characterization of time-
dependent behavior. The latter two examples address the scalability of Scalasca re-
garding both the number of processes and the length of execution, respectively.

4 Recent Developments in the Scalasca Toolset 41

4.2 Scalasca Overview

Scalasca supports measurement and analysis of MPI applications written in C, C++
and Fortran on a wide range of current HPC platforms [3]. Hybrid codes making use
of basic OpenMP features in addition to message passing are also supported. Fig-
ure 4.1 shows the basic analysis workflow supported by Scalasca. Before any perfor-
mance data can be collected, the target application must be instrumented and linked
to the measurement library. When running the instrumented code on the parallel
machine, the user can choose between generating a summary analysis report (‘pro-
file’) with aggregate performance metrics for individual function call paths and/or
generating event traces recording individual runtime events from which a profile
or time-line visualization can later be produced. Summarization is particularly use-
ful to obtain an overview of the performance behavior and for local metrics such
as those derived from hardware counters. Since traces tend to rapidly become very
large [4], optimizing the instrumentation and measurement based on the summary
report is usually recommended. When tracing is enabled, each process generates a
trace file containing records for its process-local events. After program termination,
Scalasca loads the trace files into main memory and analyzes them in parallel using
as many processes as have been used for the target application itself. During the
analysis, Scalasca searches for wait states and related performance properties, clas-
sifies detected instances by category, and quantifies their significance. The result is a
wait-state report similar in structure to the summary report but enriched with higher-
level communication and synchronization inefficiency metrics. Both summary and
wait-state reports contain performance metrics for every measured function call path
and process/thread which can be interactively examined in the provided analysis re-
port explorer.

4.3 Analysis of Hybrid MPI/OpenMP Codes

Although message passing is still the predominant programming paradigm used
in HPC, increasingly applications leverage OpenMP to exploit more fine-grained
process-local parallelism, while communicating between processes using MPI. Sup-
port for such hybrid applications in the Scalasca 1.0 release consisted of serial trace
analysis of merged traces using the EXPERT analyzer from the KOJAK toolkit [5].
Extended runtime summarization and automatic parallel trace analysis support in-
corporated in Scalasca 1.2 provide similar analyses of hybrid OpenMP/MPI ap-
plications, within the same Scalasca instrumentation, measurement collection and
analysis, and presentation usage model [6].

The OPARI source-code preprocessor inserts instrumentation for OpenMP con-
structs and API calls, which deliver events to the OpenMP-aware measurement li-
brary. Call-path metrics are accumulated per OpenMP thread during measurement,
and collated into a complete summary report during finalization. Trace data is also
analyzed in parallel with an analyzer thread for each OpenMP thread, and subse-

42 M. Geimer et al.

Fig. 4.1: Schematic overview of the performance data flow in Scalasca. Grey rectan-
gles denote programs and white rectangles with the upper right corner turned down
denote files. Stacked symbols denote multiple instances of programs or files run-
ning or being processed in parallel. The GUI shows the distribution of performance
metrics (left pane) across the call tree (middle pane) and the process topology (right
pane).

quently collated into a similar pattern report. Event timestamp correction can also
be applied to the trace data of OpenMP thread teams when logical consistency
violations are encountered in MPI events due to unsynchronized clocks. Specific
OpenMP metrics are calculated and presented alongside serial and MPI metrics in
integrated analysis reports.

While the trace analysis currently remains restricted to fixed-size teams of
OpenMP threads, runtime summarization identifies threads that have not been used
during parallel regions. The associated time within the parallel region is distin-
guished as a Limited parallelism metric from the Idle threads time which includes
time outside OpenMP parallel regions when only the master thread executes. This

4 Recent Developments in the Scalasca Toolset 43

Fig. 4.2: Scalasca analysis report explorer display of a hybrid OpenMP/MPI NPB3.3
BT-MZ benchmark Class B execution on 32 Cray XT5 twin six-core compute nodes,
showing OpenMP Implicit Barrier Synchronization time for a parallel loop in the
compute rhs routine (from lines 62 to 72 of source file rhs.f) broken down by
thread. Higher metric values are shown darker and void thread locations in the topol-
ogy pane are displayed in gray or with dashes.

matches the typical usage of dedicated HPC resources which are allocated for the
duration of the parallel job, or threads which busy-wait occupying compute re-
sources in shared environments. The number of OpenMP threads included in the
measurement can be explicitly specified, defaulting to the number of threads for an
unqualified parallel region when measurement commences: a warning is provided if
subsequent omp_set_num_threads calls or num_threads clauses result in
additional threads not being included in the measurement experiment.

44 M. Geimer et al.

Figure 4.2 shows a Scalasca analysis report from a hybrid OpenMP/MPI NAS
NPB3.3 Block Triangular Multi-Zone (BT–MZ) benchmark [7] Class B execution
in a Cray XT5 partition consisting of 32 compute nodes, each with two six-core
Opteron processors. One MPI process was started on each of the compute nodes,
and OpenMP threads run within each SMP node. In an unsuccessful attempt at
load balancing by the application, more than 12 OpenMP threads were created
by the first 6 MPI ranks (shown at the top of the topological presentation in the
right pane), and 20 of the remaining ranks used fewer than 12 OpenMP threads.
While the 49 seconds of Limited parallelism time for the unused cores represent
only 2% of the allocated compute resources, half of the total time is wasted by Idle
threads while each process executes serially, including MPI operations done out-
side of parallel regions by the master thread of each process. Although the exclusive
Execution time in local computation is relatively well balanced on each OpenMP
thread, the over-subscription of the first 6 compute nodes manifests as excessive
Implicit Barrier Synchronization time at the end of parallel regions (as well as ad-
ditional OpenMP Thread Management overhead), and higher MPI Point-to-point
Communication time on the other processes is then a consequence of this. When
over-subscription of cores is avoided, benchmark execution time is reduced by one
third (with MPI time reduced by 52%, OMP time reduced by 20% and time for Idle
threads reduced by 55%).

4.4 Scalable Wait-State Analysis

In message-passing applications, processes often require access to data provided by
remote processes, making the progress of a receiving process dependent upon the
progress of a sending process. Collective synchronization is similar in that its com-
pletion requires each participating process to have reached a certain point. As a con-
sequence, a significant fraction of the communication and synchronization time can
often be attributed to wait states, for example, as a result of an unevenly distributed
workload. Especially when trying to scale applications to large process counts, such
wait states can present severe challenges to achieving good performance.

4.4.1 Scalability

After the target application has terminated and the trace data have been flushed to
disk, the trace analyzer is launched with one analysis process per (target) appli-
cation process and loads the entire trace data into its distributed memory address
space. Future versions of Scalasca may exploit persistent memory segments to pass
the trace data to the analysis stage without involving any file I/O. While traversing
the traces in parallel, the analyzer performs a replay of the application’s original
communication behavior [8]. During the replay, the analyzer identifies wait states

4 Recent Developments in the Scalasca Toolset 45

Fig. 4.3: Scalability of wait-state search for the ASCI benchmark application
SWEEP3D on the JUGENE Blue Gene/P. The graph charts wall-clock execution
times for the uninstrumented application and for the analyses of trace files gen-
erated by the instrumented version with varying numbers of processes. The time
needed for the trace analysis replay is shown as well as that for the entire parallel
analysis (including loading the traces and collating the analysis report). The black
dashed line shows the linear increase in total trace size in GBytes.

in communication operations by measuring temporal differences between local and
remote events after their timestamps have been exchanged using an operation of
similar type. Since trace processing capabilities (i.e., processors and memory) grow
proportionally with the number of application processes, we can achieve good scal-
ability at previously intractable scales. Recent scalability improvements allowed us
to perform trace analyses of execution measurements with up to 294,912 processes
(Figure 4.3).

4.4.2 Improvement of Trace-Data I/O

Parallel applications often store data in multiple task-local files, for example, to re-
member checkpoints, to circumvent memory limitations, or to record trace data in
the case of the Scalasca toolset. When operating at very large processor configura-
tions, such applications often experience scalability limitations when the simultane-
ous creation of thousands of files causes metadata-server contention or simply when
large file counts complicate file management or operations on those files destabilize

46 M. Geimer et al.

the file system. In this context, a generic parallel I/O library called SIONlib has been
developed which addresses this problem by transparently mapping a large number
of task-local files onto a small number of physical files via internal metadata han-
dling and block alignment to ensure high performance. While requiring only mini-
mal source code changes, SIONlib significantly reduces file creation overhead and
simplifies the resulting file handling, offering even the chance to achieve superior
read and write performance via optimized I/O operations [9]. For the Scalasca trace
collection and analysis of 294,912 processes shown in Figure 4.3, SIONlib was able
to reduce the time to create the experiment archive directory and trace files from 86
minutes (for individual files) down to 10 minutes (for one file for each of the 576
BG/P I/O nodes),

4.4.3 Analysis of MPI-2 Remote Memory Access Operations

In our earlier work, we already defined wait-state patterns for MPI-2 Remote Mem-
ory Access (RMA) communication and synchronization, although still based on
a serial trace-analysis scheme with limited scalability [10]. Taking advantage of
Scalasca’s scalable trace-analysis approach, we recently extended our parallel trace
analyzer to detect these wait states. Using the programming paradigm of the tar-
get application, RMA-related communication and synchronization inefficiencies are
now detected by exchanging data via RMA operations. In this way, we success-
fully performed analyses of RMA-based applications running with up to 8,192 pro-
cesses. [11]

4.4.4 Delay Analysis

In general, the temporal or spatial distance between cause and symptom of a perfor-
mance problem constitutes a major difficulty in deriving helpful conclusions from
performance data. So just knowing the locations of wait states in the program is
often insufficient to understand the reason for their occurrence. We are currently
extending our replay-based wait-state analysis in such a way that it attributes the
waiting times to their root causes. The root cause, which we call a delay, is an inter-
val during which a process performs some additional activity not performed by its
peers, for example as a result of insufficiently balancing the load. [12]

4.4.5 Evaluation of Optimization Hypotheses

Excess workload identified as root cause of wait states usually cannot simply be
removed. To achieve a better balance, optimization hypotheses drawn from a delay

4 Recent Developments in the Scalasca Toolset 47

analysis typically propose the redistribution of the excess load to other processes in-
stead. However, redistributing workloads in complex message-passing applications
can have intricate side-effects that may compromise the expected reduction of wait-
ing times. Given that balancing the load statically or even introducing a dynamic
load-balancing scheme constitute major code changes, they should ideally be per-
formed only if the prospective performance gain is likely to materialize. Our goal is
therefore to automatically predict the effects of redistributing a given delay without
altering the application itself and to determine the savings that can be realistically
hoped for. Since the effects of such changes are hard to quantify analytically, we
simulate these changes via a real-time replay of event traces after they have been
modified to reflect the redistributed load. [13, 14]

4.4.6 Configurable Source-Code Instrumentation

Proper instrumentation is an essential prerequisite for producing reliable perfor-
mance analysis results with the Scalasca toolset. We therefore extended our instru-
mentation capabilities to leverage the generic and configurable source-code instru-
mentation component we developed in collaboration with the University of Oregon
based on PDT and the TAU instrumentor. [15] This component provides flexible
instrumentation specification capabilities, reducing the need to filter performance
events at runtime and, thus, further reducing the measurement overhead.

4.5 Analysis of Time-Dependent Behavior

As scientific parallel applications simulate the temporal evolution of a system their
progress occurs via discrete points in time. Accordingly, the core of such an applica-
tion is typically a loop that advances the simulated time step by step. However, the
performance behavior may vary between individual iterations, for example, due to
periodically re-occurring extra activities [16] or when the state of the computation
adjusts to new conditions in so-called adaptive codes [17].

4.5.1 Observing Individual Iterations

To study the time-dependent behavior, Scalasca is being equipped with iteration in-
strumentation capabilities (corresponding to TAU dynamic timers [18]) that allow
the distinction of individual iterations both in runtime summaries and in event traces.
Moreover, to simplify the understanding of the resulting time-series data, we are im-
plementing several display tools including iteration graphs with minimum, median,

48 M. Geimer et al.

(a) Minimum (light green), median (dark blue),
and maximum (red) number of point-to-point
messages sent by a process.

(b) Messages sent by each process
(darkness according to magnitude).

(c) Late Sender waiting time of a process. (d) Particles held by each process.

Fig. 4.4: Gradual development of a performance problem over 1,300 timesteps of
the PEPC application execution on 1,024 processors of Blue Gene.

and maximum representation (Figure 4.4a) as well as value maps to cover the full
<process/thread, iteration> space for a given performance metric (Figure 4.4b).

Using prototype implementations of these new tools, we evaluated the perfor-
mance behavior of the SPEC MPI2007 benchmark suite on the IBM SP p690 clus-
ter JUMP, observing a large variety of complex temporal characteristics ranging
from gradual changes and sudden transitions of the base-line behavior to both pe-
riodically and irregularly occurring peaks, including noise that varies from mea-
surement to measurement [19]. Moreover, problems with several benchmarks that
limited their scalability (sometimes to only 128 processes) were identified, such as
distributing initialization data via broadcasts in 113.GemsFDTD and insufficiently
large data sets for several others. Even those codes that apparently scaled well con-
tained considerable quantities of waiting time, indicating possible opportunities for
performance and scalability improvement through more effective work distributions
or bindings of processes to processors.

4 Recent Developments in the Scalasca Toolset 49

Another real-world code with a substantially time-varying execution profile is
the PEPC [20] particle simulation code, developed at Jülich Supercomputing Centre
and the subject of an application liaison between the Scalasca and PEPC developer
teams. The MPI code employs a parallel tree algorithm to efficiently calculate the
forces the particles exert on each other and also includes a load-balancing mech-
anism that redistributes the computational load by shifting particles between pro-
cesses. However, our analysis [21] revealed a severe and gradually increasing com-
munication imbalance (Figure 4.4a). We found evidence that the imbalance was
caused by a small group of processes with time-dependent constituency that sent
large numbers of messages to all remaining processes (Figure 4.4b) in rank order,
introducing Late Sender waiting times at processes with higher ranks (Figure 4.4c).
Interestingly, the communication imbalance correlated very well with the number
of particles “owned” by a process (Figure 4.4d), suggesting that the load-balancing
scheme smoothes the computational load at the expense of communication dispar-
ities. Since the number of particles also influence the memory requirements of a
process, we further conclude that the current behavior of concentrating particles at
a small subset of processes may adversely affect scalability under different config-
urations. Work with the application developers to revise the load-balancing scheme
and improve the communication efficiency is in progress.

4.5.2 Space-Efficient Time-Series Call-Path Profiling

While call-path profiling is an established method of linking a performance prob-
lem to the context in which it occurs, generating call-path profiles separately for
thousands of iterations may exceed the available buffer space — especially when
the call tree is large and more than one metric is collected. We therefore developed
a runtime approach for the semantic compression of call-path profiles [22] based
on incremental clustering of a series of single-iteration profiles that scales in terms
of the number of iterations without sacrificing important performance details. Our
approach has low runtime overhead by using only a condensed version of the profile
data when calculating distances and accounts for process-dependent variations by
making all clustering decisions locally.

4.6 Outlook

Besides further scalability improvements in view of upcoming systems in the range
of several petaflops, we plan to extend Scalasca towards emerging programming
models such as partitioned global address space languages and general-purpose
GPU programming, which we expect to play a bigger role in the future. Moreover,
to offer enhanced functionality and combine development efforts, we will integrate

50 M. Geimer et al.

Scalasca closer with related tools including Periscope [23], TAU [24], and Vam-
pir [25].

Acknowledgement Financial support from the Helmholtz Association of German Research Cen-
ters through Grants VH-NG-118 and VH-VI-228 and the German Research Foundation through
Grant GSC 111 is gratefully acknowledged. This research was supported by allocations of ad-
vanced computing resources provided by the John von Neumann Institute for Computing and US
National Science Foundation for computations on the Jugene IBM Blue Gene/P at Jülich Super-
computing Centre and Kraken Cray XT5 at the US National Institute for Computational Sciences.

References

1. Jülich Supercomputing Centre: Scalasca. http://www.scalasca.org/.
2. Geimer, M., Wolf, F., Wylie, B.J.N., Ábrahám, E., Becker, D., Mohr, B.: The Scalasca per-

formance toolset architecture. Concurrency and Computation: Practice and Experience, Proc.
Workshop on Scalable Tools for High-End Computing (to appear) DOI: 10.1002/cpe.1556.

3. Wylie, B.J.N., Geimer, M., Wolf, F.: Performance measurement and analysis of large-scale
parallel applications on leadership computing systems. Scientific Programming 16(2-3) (2008)
167–181

4. Wolf, F., Freitag, F., Mohr, B., Moore, S., Wylie, B.J.N.: Large event traces in parallel perfor-
mance analysis. In: Proc. 8th Workshop on Parallel Systems and Algorithms (PASA, Frank-
furt/Main, Germany). Lecture Notes in Informatics, Gesellschaft für Informatik (March 2006)
264–273

5. Wolf, F., Mohr, B.: Automatic performance analysis of hybrid MPI/OpenMP applications. In:
Proc. 11th Euromicro Conf. on Parallel Distributed and Network based Processing (Genoa,
Italy), IEEE Computer Society (February 2003) 13–22

6. Wolf, F., Wylie, B.J.N., Ábrahám, E., Becker, D., Frings, W., Fürlinger, K., Geimer, M., Her-
manns, M.A., Mohr, B., Moore, S., Pfeifer, M., Szebenyi, Z.: Usage of the SCALASCA
toolset for scalable performance analysis of large-scale parallel applications. In: Proc. 2nd
HLRS Parallel Tools Workshop (Stuttgart, Germany), Springer (July 2008) 157–167 ISBN
978-3-540-68561-6.

7. Van der Wijngaart, R.F., Jin, H.: NAS Parallel Benchmarks, Multi-Zone versions. Technical
Report NAS-03-010, NASA Ames Research Center, Moffett Field, CA, USA (July 2003)

8. Geimer, M., Wolf, F., Wylie, B.J.N., Mohr, B.: A scalable tool architecture for diagnosing wait
states in massively-parallel applications. Parallel Computing 35(7) (2009) 375–388

9. Frings, W., Wolf, F., Petkov, V.: Scalable massively parallel I/O to task-local files. In: Proc.
21st ACM/IEEE SC Conf. (SC09, Portland, OR, USA). (November 2009)

10. Kühnal, A., Hermanns, M.A., Mohr, B., Wolf, F.: Specification of inefficiency patterns for
MPI-2 one-sided communication. In: Proc. 12th Euro-Par (Dresden, Germany). Volume 4128
of Lecture Notes in Computer Science, Springer (2006) 47–62

11. Hermanns, M.A., Geimer, M., Mohr, B., Wolf, F.: Scalable detection of MPI-2 remote mem-
ory access inefficiency patterns. In: Proc. 16th European PVM and MPI Conference (Eu-
roPVM/MPI, Espoo, Finland). Volume 5759 of Lecture Notes in Computer Science, Springer
(September 2009) 31–41

12. Böhme, D., Geimer, M., Hermanns, M.A., Wolf, F.: Identifying the root causes of wait states
in large-scale parallel applications. Technical Report AICES-2010-1, Aachen Institute for Ad-
vanced Study in Computational Engineering Science, RWTH Aachen University, Germany
(January 2010)

13. Hermanns, M.A., Geimer, M., Wolf, F., Wylie, B.J.N.: Verifying causality between distant per-
formance phenomena in large-scale MPI applications. In: Proc. 17th Euromicro Int’l Conf. on

http://www.scalasca.org/
http://dx.doi.org/10.1002/cpe.1556

4 Recent Developments in the Scalasca Toolset 51

Parallel, Distributed, and Network-Based Processing (PDP, Weimar, Germany), IEEE Com-
puter Society (February 2009) 78–84

14. Böhme, D., Hermanns, M.A., Geimer, M., Wolf, F.: Performance simulation of non-blocking
communication in message-passing applications. In: Proc. 2nd Workshop on Productivity and
Performance (PROPER 2009, Delft, The Netherlands). (August 2009) (to appear).

15. Geimer, M., Shende, S.S., Malony, A.D., Wolf, F.: A generic and configurable source-code
instrumentation component. In: Proc. 9th Int’l Conf. on Computational Science (ICCS, Baton
Rouge, LA, USA). Volume 5545 of Lecture Notes in Computer Science, Springer (May 2009)
696–705

16. Kerbyson, D.J., Barker, K.J., Davis, K.: Analysis of the weather research and forecasting
(WRF) model on large-scale systems. In: Proc. 12th Conference on Parallel Computing
(ParCo, Aachen/Jülich, Germany). Volume 15 of Advances in Parallel Computing, IOS Press
(September 2007) 89–98

17. Shende, S., Malony, A., Morris, A., Parker, S., de St. Germain, J.: Performance evaluation
of adaptive scientific applications using TAU. In: Parallel Computational Fluid Dynamics —
Theory and Applications. Elsevier (2006) 421–428

18. Malony, A.D., Shende, S.S., Morris, A.: Phase-based parallel performance profiling. In: Proc.
11th Conference on Parallel Computing (ParCo, Málaga, Spain). Volume 33 of NIC Series,
John von Neumann Institute for Computing (September 2005) 203–210

19. Szebenyi, Z., Wylie, B.J.N., Wolf, F.: SCALASCA parallel performance analyses of SPEC
MPI2007 applications. In: Proc. 1st SPEC Int’l Performance Evaluation Workshop (SIPEW,
Darmstadt, Germany). Volume 5119 of Lecture Notes in Computer Science, Springer (June
2008) 99–123

20. Gibbon, P., Frings, W., Dominiczak, S., Mohr, B.: Performance analysis and visualization of
the N-body tree code PEPC on massively parallel computers. In: Proc. 11th Conf. on Parallel
Computing (ParCo, Málaga, Spain). Volume 33 of NIC Series, John von Neumann Institute
for Computing (October 2005) 367–374

21. Szebenyi, Z., Wylie, B.J.N., Wolf, F.: Scalasca parallel performance analyses of PEPC. In:
Proc. 1st EuroPar Workshop on Productivity and Performance (PROPER 2008, Las Palmas de
Gran Canaria, Spain). Volume 5415 of Lecture Notes in Computer Science, Springer (August
2008) 305–314

22. Szebenyi, Z., Wolf, F., Wylie, B.J.N.: Space-efficient time-series call-path profiling of parallel
applications. In: Proc. 21st ACM/IEEE SC Conference (SC09, Portland, OR, USA). (Novem-
ber 2009)

23. Technical University of Munich: Periscope. http://www.lrr.in.tum.de/˜gerndt/
home/Research/PERISCOPE/Periscope.htm.

24. University of Oregon: TAU. http://www.cs.uoregon.edu/research/tau/.
25. Technische Universität Dresden: Vampir. http://www.vampir.eu/.

http://www.lrr.in.tum.de/~gerndt/home/Research/PERISCOPE/Periscope.htm
http://www.lrr.in.tum.de/~gerndt/home/Research/PERISCOPE/Periscope.htm
http://www.cs.uoregon.edu/research/tau/
http://www.vampir.eu/

Chapter 5
MUST: A Scalable Approach to Runtime Error
Detection in MPI Programs

Tobias Hilbrich, Martin Schulz, Bronis R. de Supinski, and Matthias S. Müller

Abstract The Message-Passing Interface (MPI) is large and complex. Therefore,
programming MPI is error prone. Several MPI runtime correctness tools address
classes of usage errors, such as deadlocks or non-portable constructs. To our knowl-
edge none of these tools scales to more than about 100 processes. However, some
of the current HPC systems use more than 100,000 cores and future systems are
expected to use far more. Since errors often depend on the task count used, we need
correctness tools that scale to the full system size. We present a novel framework for
scalable MPI correctness tools to address this need. Our fine-grained, module-based
approach supports rapid prototyping and allows correctness tools built upon it to
adapt to different architectures and use cases. The design uses PnMPI to instantiate
a tool from a set of individual modules. We present an overview of our design, along
with first performance results for a proof of concept implementation.

5.1 Introduction

The Message Passing Interface (MPI) [1, 2] is the de-facto standard for program-
ming HPC (High Performance Computing) applications. Even the first version of
this interface offers more than 100 different functions to provide various types of
data transfers. Thus MPI usage is error prone and debugging tools can greatly in-

Tobias Hilbrich
GWT-TUD GmbH, Chemnitzer Str. 48b, 01187 Dresden, Germany
e-mail: tobias.hilbrich@zih.tu-dresden.de

Martin Schulz, Bronis R. de Supinski
Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
e-mail: {schulzm,bronis}@llnl.gov

Matthias S. Müller
Center for Information Services and High Performance Computing (ZIH), Technische Universität
Dresden, D-01062 Dresden, Germany
e-mail: matthias.mueller@tu-dresden.de

M.S. Müller et al. (eds.), Tools for High Performance Computing 2009,
DOI 10.1007/978-3-642-11261-4 5, © Springer-Verlag Berlin Heidelberg 2010

53

mailto:tobias.hilbrich@zih.tu-dresden.de
mailto:schulzm@llnl.gov
mailto:bronis@llnl.gov
mailto:matthias.mueller@tu-dresden.de
http://dx.doi.org/10.1007/978-3-642-11261-4_5

54 Tobias Hilbrich, Martin Schulz, Bronis R. de Supinski, and Matthias S. Müller

crease MPI programmers’ productivity. Many types of errors can occur with MPI
usage including invalid arguments, errors in type matching, race conditions, dead-
locks and portability errors. Existing tools that detect some of these errors use one
the following three approaches: static source code analysis, model checking or run-
time error detection.

Runtime error detection is usually the most practical of these approaches for tool
users, since it can be deployed transparently and avoids the potentially exponential
analysis time of static analysis or model checking. However, these tools are gen-
erally limited to the detection of errors that occur in the executed control flow of
the application and, thus, may not identify all potential errors. Several runtime error
detection tools for MPI exist; however, our experience is that none of these tools
covers all types of MPI errors. Further, none is known to scale to more than about
100 processes. With current systems that utilize more than 100,000 cores it is be-
coming increasingly difficult to apply these tools, even to small test cases.

This paper presents MUST, a new approach to runtime error detection in MPI
applications. It draws upon our previous experience with the existing tools Mar-
mot [3] and Umpire [4] and is specifically designed to overcome the scalability
limitations of current runtime detection tools while facilitating the implementation
of additonal detection routines. MUST relies on a fine grain design in the form of
modules that are loaded into PnMPI [5]. The next section will present the experi-
ences and issues that we discovered during our development of Marmot and Umpire.
Section 5.3 presents the goals and general design ideas of MUST, while Section 5.4
covers several key design details of MUST. In Section 5.5 we present initial experi-
mental results with a proof of concept implementation of the MUST design. Finally,
Sections 5.6 and 5.7 present related work and our conclusions.

5.2 Experiences from Marmot and Umpire

This section presents insights into our two predecessor MPI correctness checking
tools: Marmot [3] and Umpire [4]. Marmot provides a wide range of local and
global checks and offers good usability and integration into several other tools. Um-
pire’s strength is a runtime deadlock detection algorithm that detects all actual dead-
locks in MPI-1.2 as well as some potential deadlocks on alternate execution paths.
While both tools have been very successful and have helped users debug their codes,
they both are first generation MPI checker tools and have inherent limitations, upon
which we focus in the following.

In particular, our analysis focuses on two things: first, the communication system
for MPI trace records; second, the separation of tool internal infrastructure and the
actual correctness checks. The communication system is necessary for checks (e.g.,
deadlock detection or type matching) that require global knowledge of MPI calls,
i.e., data from more than one process. Thus, such checks require a system to com-
municate records for MPI calls. The separation of tool internal infrastructure and
the actual correctness checks is important in order to enhance existing checks and to

5 MUST: A Scalable Approach to Runtime Error Detection in MPI Programs 55

add further correctness checks that are used for new features or new versions of the
MPI standard. We first analyze these aspects for Marmot and then cover Umpire.

5.2.1 Marmot

Fig. 5.1: Marmot trace communication design.

Marmot is an MPI runtime checker written in C++ that covers MPI-1.2 and parts
of MPI-2. Its communication system is sketched in Figure 5.1. Marmot’s MPI wrap-
pers intercept any MPI call issued by the application. Marmot then performs two
steps before executing the actual MPI call: first, it checks for correctness of the MPI
call locally; second, it sends a trace record for this MPI call to the “DebugServer”, a
global manager process. The application process continues its execution only after
it receives a ready-message from the DebugServer. As a result, it is guaranteed that
all non-local checks executed at the DebugServer, as well as all local, are finished
before the actual MPI call is issued. This synchronous checking ensures that all er-
rors are reported before they can actually occur, which removes the need to handle
potential application crashes. The DebugServer also executes a timeout based dead-
lock detection. While this approach can detect many deadlocks, it can lead to false
positives. Also, it is not possible to highlight the MPI calls that lead to a deadlock
with this strategy. Additionally, the DebugServer performs error logging in vari-
ous output formats and can send error reports via TCP socket communication to
arbitrary receivers. The main disadvantage of this synchronous or blocking com-
munication system is its high impact on application performance. In particular, the
runtime overhead increases significantly as the number of MPI processes increases
since the DebugServer is a centralized bottleneck. Also, the blocking communica-
tion with the DebugServer can lead to high latency even at small scales, which –
especially for latency bound applications – is a disadvantage.

56 Tobias Hilbrich, Martin Schulz, Bronis R. de Supinski, and Matthias S. Müller

The separation of tool internal infrastructure and the actual MPI correctness
checks is not well solved for Marmot. It uses one C++ class for each MPI call
and uses multiple abstract classes to build a hierarchy for all MPI calls. Checks
are implemented as methods of these classes and are called before the PMPI call
is issued. This has two disadvantages: First, checks for one MPI call are often dis-
tributed to multiple objects making it hard to determine which checks are used for
a certain MPI call. Second, our experience with Marmot shows that there is no rea-
sonable hierarchy for MPI calls that also builds a good hierarchy for all the differ-
ent types of checks. Thus, many checks in Marmot are either implemented in very
abstract classes or are implemented in multiple branches of the object hierarchy,
which leads to code redundancy. The implementation of the checks uses a multitude
of static variables that are stored in the more abstract classes of the hierarchy. These
variables represent state information for the MPI system leading to checks being
very tightly coupled with Marmot’s class hierarchy.

The development of Marmot occurred concurrently with multiple workshops on
parallel programming tools that included hands-on sessions. The experiences from
these workshops guided the development of Marmot. One of the commonly asked-
for features are integrations into widely accepted tools like debuggers, IDEs, or
performance tools. As a result, Marmot provides multiple usability enhancing tools
and integrations that help users in applying the tool. These efforts help new users to
apply the tool easily, which is an important factor for the success of Marmot.

5.2.2 Umpire

Fig. 5.2: Umpire trace communication design.

The MPI correctness checker Umpire is written in C and focuses on non-local
MPI checks. It executes both a centralized deadlock detection and type matching
at a central manager. Figure 5.2 sketches the trace transfer that is implemented in

5 MUST: A Scalable Approach to Runtime Error Detection in MPI Programs 57

Umpire. The first difference to Marmot is that Umpire spawns extra threads for
each MPI process. It spawns an “outfielder” thread for all processes. In addition,
it spawns a “manager” thread on one process (usually process 0). The outfielder
thread asynchronously transfers trace records to the centralized manager, which is
executed on the manager thread.

Similarly to Marmot, Umpire’s wrappers intercept any MPI call issued by the
application. However, Umpire minimizes immediate application perturbation. The
application thrad only builds a trace record for the MPI call, which it transfers to the
outfielder thread of that process through shared memory. Each outfielder thread ag-
gregates the trace records that it receives and sends them to the manger thread. This
send happens if the buffer limit is exceeded or when a timeout occurs. This commu-
nication is implemented with either MPI or shared memory depending on the sys-
tem architecture. Umpire’s communication system is designed to incur low runtime
overhead, which is achieved with the asynchronous transfer of trace records to the
central manager. Due to the asynchronous design, the central manager is no longer
a bottleneck. However, it still limits performance since it must analyze trace records
of all processes. Further, performance tests with Umpire show that the efficiency of
the asynchronous transfer depends highly on the interleaving of the communication
of the application and the MPI communication of the outfielder threads [6].

As with Marmot, the separation of internal infrastructure and correctness checks
is incomplete with Umpire. The checks that are executed at the centralized manager
are tightly coupled to a large structure that represents internal state as well as MPI
state. All checks are directly coupled to this structure. Also, some of the different
checks of the central manager are dependent on each other and need to use internal
data from each other. This applies to a smaller extent to local checks which tend
to need less state information. Umpire currently only implements a small number
of local checks. Additional local checks may be added by extending the wrapper
generation of Umpire, since checks can be issued in the wrappers or other generated
files.

5.3 Introduction to MUST

We present MUST (Marmot Umpire Support Tool), a new approach to runtime MPI
correctness checking. We designed MUST to overcome the limitations to scalability
and extensibility of Umpire and Marmot and their hard coded trace communication
with a centralized manager. Its design focuses on the following goals:

1. Correctness
2. Scalability
3. Usability
4. Portability

The correctness goal is the most important one and comes with two sub-goals: first,
the tool must not give false positives; second, the tool should detect all MPI related

58 Tobias Hilbrich, Martin Schulz, Bronis R. de Supinski, and Matthias S. Müller

errors that manifest themselves in an execution with MUST. We restrict this second
sub-goal to runs in which errors actually occur, as the detection of all potential
errors would likely incur an intolerable runtime overhead, which would limit the
applicability of the tool.

The second goal, scalability, is one of the main motivations for this new approach
to MPI checking. The tool must scale at least to small or medium sized test cases
on next generation HPC systems. With the current trend towards high numbers of
computing cores, this means at least a range of 1,000 to 10,000 processes. Our goal
is to offer a full set of correctness features for 1,000 processes at a runtime overhead
of less than 10%, and a restricted set of correctness features for 10,000 processes at
the same runtime overhead.

The further goals, usability and portability, are important to achieve a successful
tool that will find acceptance with both application programmers and HPC support
staff. A common problem with many HPC tools is that they require the application
developer to recompile and relink the application, which can be very time consum-
ing for larger applications. Therefore, we aim to avoid this requirement with MUST.
Further, tools must be adaptable to special HPC systems that impose restrictions
such as no support for threads.

We address both issues with PnMPI [5], an infrastructure for MPI tools. PnMPI
simplifies MPI tool usage by allowing tools to be added dynamically, removing the
need to recompile and offering flexibility in the choice and combination of PMPI-
based tools. Only the PnMPI core is linked to the application, instead of a certain
MPI tool. If the MPI tools are available as shared libraries, PnMPI supports the
application of any number of MPI tools simultaneously. Thus, at execution time, the
tool user can decide which tools he wants to apply to an application.

PnMPI achieves this flexibility by virtualizing the MPI Profiling interface. It con-
siders each MPI tool as a module and arranges these modules in stacks that specify
the order in which MPI calls are passed to the modules. These modules may also co-
operate with each other by offering services to or using services from other modules.
Further, special PnMPI modules allow more enhanced features like condition-based
branching in stacks. This infrastructure provides flexibility combined with advan-
tages to tool usability. As a result, we base the design of MUST on PnMPI and use
fine grained modules that can be composed to form an instance of MUST. With this
basic infrastructure, we can easily adapt the MUST tool to specialized scenarios
such as when only an individual correctness check is of interest.

A further important aspect of MUST is the notion that the overall tool will consist
of three layers. The bottom layer is provided by PnMPI and its modules that pro-
vide the basic infrastructure and composability of the tool. The actual correctness
checks form the upper layer of MUST. The remaining middle layer has to provide
service tasks like trace record generation and the communication of trace records to
processes and threads that are exclusively allocated to the tool, which are used to of-
fload correctness analyses. A further task is the management of these processes and
threads for error cases, startup and shutdown. This task is tool agnostic and needed
for many HPC tools. As a result, we want to provide this layer of functionality as

5 MUST: A Scalable Approach to Runtime Error Detection in MPI Programs 59

a decoupled set of modules that is also available to other tool developers. Thus, we
name this layer of functionality “Generic Tool Infrastructure” (GTI).

5.4 MUST Design

This section introduces some of the key design ideas of MUST. As discussed in the
last section, our design uses PnMPI for the underlying infrastructure along with a
set of fine grain modules that implement the MPI checks. A first important aspect of
the MUST design is the ability to execute correctness checks either in an application
process itself (in the critical path) or in extra processes or threads that are used
to offload these analyses (away from the critical path). This choice can provide
a low runtime overhead while supporting portability. The first part of this section
introduces the concepts that we use to achieve this goal. Afterwards we present
an overview of the overall components of the MUST design, and highlight their
tasks. A further aspect of the design is the communication of trace records. We
present an overview of how different types of modules combine to implement this
communication. These modules are part of the GTI layer and can be used by other
tools.

5.4.1 Offloading of Checks

Fig. 5.3: Example instantiation of places, checks, state trackers and a communica-
tion network.

The option to execute correctness checks on additional processes or threads is
one of MUST’s most important aspects. We refer to such a process or thread by the
term “place”. Marmot and Umpire both execute some checks on an extra place (the

60 Tobias Hilbrich, Martin Schulz, Bronis R. de Supinski, and Matthias S. Müller

manager thread for Umpire and the DebugServer process for Marmot). However,
both tools do not support the selection of the place of execution freely, as these
checks are explicitly aware of being executed at a certain place. Moving such a
check into the critical path, or a check being executed in the critical path to another
place is not easily possible in either Marmot or Umpire.

The main problem is that the execution of checks often requires background
information on the state of MPI. It is possible within the application process for a
synchronous tool to query such information with MPI calls, while it is not possible
on additional processes that do not have access to the MPI library. Similarly, if
the MPI process has proceeded beyond the MPI call, the relevant state may have
changed. Also, the required information often must be gathered and updated during
application execution. For example, determining which requests are currently active
requires the sequence of request initiations and completions. While much of the
work can be offloaded to MPI emulation, the gathering of the basic information
must take place in the application processes themselves.

MUST uses the concept of “state trackers” to solve this problem. All information
that a check requires but is not directly available from the arguments of the MPI
call that triggered this check, must be provided by state trackers. These trackers are
implemented as independent modules and may gather different types of data during
the application’s runtime and provide it to checks when needed. If multiple checks
require the same state tracker, a single instance of the state tracker can provide
this information. In order to support the placement of a check at any place, the
MUST system has to determine which state trackers are required on each place.
This strategy provides a transparent way to implement checks that can be offloaded
to places.

Figure 5.3 shows an example distribution of places, checks, state trackers and
a trace communication network. It uses four application processes and seven extra
places to offload checks. The checks are highlighted as little boxes in the top right
corner of the places or application processes. Each place or application process may
also need state trackers that are indicated by little boxes above the checks.

5.4.2 Major Components

Figure 5.4 shows the main components of MUST and parts of their overall inter-
action. The correctness checks and the tool infrastructure are provided as modules
from MUST, PnMPI, and the GTI (top row). We summarize a further set of com-
ponents in the top right of the figure as “descriptions”, which describe properties of
some of the modules and formalize what checks apply to the arguments of specific
MPI calls. They also characterize the dependencies of checks and state trackers.
A GUI (middle left) provides users with options to individualize MUST for their
needs, e.g., to specify the checks being used, to add extra processes/threads that
offload checks, or to define the layout of the trace communication network. A de-
fault configuration will usually by sufficient for smaller test cases, while large scale

5 MUST: A Scalable Approach to Runtime Error Detection in MPI Programs 61

Fig. 5.4: Major components in MUST; arcs denote input/output dependencies.

tests will need a specifically tailored configuration. The system builder component
uses the selected tool configuration, the list of available modules and the various
descriptions to create the configuration files for PnMPI and additional intermediate
modules, including specialized MPI wrappers to create and forward the necessary
trace records. An additional startup script may be provided to simplify the startup
of the application with MUST.

5.4.3 Trace Communication System

Fig. 5.5: Composition of places with communication strategies and communication
protocols.

62 Tobias Hilbrich, Martin Schulz, Bronis R. de Supinski, and Matthias S. Müller

An important aspect of MUST’s design is its encapsulation of how to transport
trace records from one process or thread to another. An efficient communication
of trace records primarily depends on two things: first, an efficient communication
medium that optimizes the use of the underlying system where possible; second,
an efficient strategy to use these communication media. Thus, we must use shared
memory when communicating on node or rely on InfiniBand instead of Ethernet if
both networks are available. It will usually be very inefficient to transfer tiny trace
records with single messages with a TCP/InfiniBand/MPI based communication.
Also, it will be more effective not to wait until the message has been received for
most media.

The GTI component of MUST solves this problem by combining two different
types of modules to implement a communication. The first type of module, a “com-
munication strategy”, decides when to send what information: it may send trace
records immediately or it may delay the transfer of trace records and aggregate them
into larger messages. The second type of module, a “communication protocol”, im-
plements the communication for a particular communication medium, e.g., TCP/IP,
InfiniBand, SHMEM, or MPI.

Figure 5.5 shows how we compose these modules on the sender and receiver side.
By selecting appropriate combinations of these two module types, we can provide
a flexible, adaptable and high performance communication of MPI communication
traces. One instantiation of MUST may use multiple combinations, e.g., a shared
memory communication protocol to transfer MPI trace records to an extra thread
and a TCP/IP communication protocol to transfer trace records from this thread to
a further place used to offload checks.

5.5 Initial Experiments

We developed a proof of concept implementation of a subset of the MUST design
in order to verify our ideas, as well as to perform first performance studies. The im-
plementation provides the features necessary to use extra places and transfer trace
records to them. One of our early questions is the feasibility of our runtime overhead
goals. The question at hand is, whether we can transfer the trace records from the ap-
plication processes to extra places without perturbing the application. We use initial
experiments with our proof of concept implementation to study this problem. We
use two different communication layouts and three different communication strate-
gies to study different communication approaches. Our tests intercept all MPI calls
and create a trace record for each. We send these trace records from the application
processes to extra places and measure the runtime overhead that results from this
extra communication. However, the receiver side only receives and unpacks these
trace records; no checks are executed. We use NPB3.3-MPI as target applications
and run our tests on a 1152 node AMD Opteron Linux cluster with a DDR Infini-
Band network. Each node has 8 cores on four sockets and 16 GB of main memory
that is shared between all cores.

5 MUST: A Scalable Approach to Runtime Error Detection in MPI Programs 63

As the communication protocol we use MPI itself, as it provides an easily avail-
able and highly optimized communication medium. It also offers a simple way to
allocate extra processes for MUST. We use PnMPI based virtualization to split an
allocated MPI COMM WORLD into multiple disjoint sets. The application uses one
of these sets as its MPI COMM WORLD, which is transparent to the application itself.
The remaining sets can be used for MUST. MPI based communication between all
of the sets is possible. We use two different communication layouts, which are “1-
to-1”, a best case layout where each application process has one extra process that
receives its trace records, and “all-to-1”, a centralized manager case where all appli-
cation processes send their trace records to one extra process. The first layout helps
to determine what runtime overhead to expect for a case where checks can be well
distributed and no centralized manager needs to receive records from all processes.
The second case captures the limits of a communication with a centralized manager,
as in Umpire and Marmot.

We use three different communication strategies to implement different commu-
nication schemes. These are:

Ssend: Sends one message for each trace record, waits for the completion of the
receive of each message before it continues execution.

Isend: Sends one message for each trace record, does not wait for the completion
of the receive of the message. With the MPI based communication protocol
this is implemented with an MPI Isend call.

Asend: Aggregates multiple trace records into one message, sends the message
when either the aggregate buffer is full (100KB) or a flush is issued. As
with Isend, the sender does not wait for the completion of the receive of the
message.

The Ssend strategy is very similar to the communication currently used in Marmot.
Besides its obvious performance disadvantage, it simplifies handling of application
crashes as it guarantees that trace records were sent out from the application before
a crash can occur. The Isend strategy is still simple to implement and should over-
come the performance problems of the Ssend strategy. The Asend strategy, which is
similar to Umpire’s communication strategy, is our most complex strategy, but of-
fers multiple optimizations that may provide a low runtime overhead. In particular,
we expect that this method will achieve higher bandwidth, due to the aggregation of
the trace records. However, its performance benefit will depend on a good interleav-
ing of the communication: we expect a high runtime penalty if the aggregated mes-
sages are sent while the application is in a communication phase. On the other hand,
sending the aggreagated messages while the application is in a computation phase
will incur close to no runtime overhead, particularly on systems with communica-
tion co-processors. Experiments with Umpire already highlighted the significance
of this timing behavior [6]. As a result, we instrument the NPB kernels to issue a
flush of the aggregated buffer when the application enters a computation phase. This
removes the need for an automatic detection of computation phases and represents
a close to best case scenario. For a final system, we will have to apply a heuristic to
guess when the application is entering a computation phase.

64 Tobias Hilbrich, Martin Schulz, Bronis R. de Supinski, and Matthias S. Müller

(a) Legend (b) bt (c) sp

(d) cg (e) ep (f) ft

(g) is (h) lu (i) mg

Fig. 5.6: Runtime overhead for different implementations of a trace transfer.

Figure 5.6 summarizes the performance results for NPB3.3-MPI with problem
size D when using the three different types of trace communication and both place
configurations. Subfigure 5.6a shows the legend for the different communication
layout and communication strategy combinations. The remaining figures show the
runtime overhead for 64 to 1024 processes for these combinations. The all-to-1 cases
fail to scale to 1024 processes for most of the kernels. Where the Ssend and Isend
versions of the all-to-1 communication even fail for 256 processes for most kernels,
the Asend strategy scales to up to 512 processes. Its main advantage is the reduction
in messages arriving at the centralized manager, which leads to a lower workload.
For the 1-to-1 cases, the Ssend strategy incurs a slowdown of up to 3 and hence
fails to meet our performance goals. However, its slowdown does not necessarily
increase with scale. Both the Isend and Asend strategies for the 1-to-1 cases incur a
low runtime overhead, even at scale. These strategies only fail to achieve the desired

5 MUST: A Scalable Approach to Runtime Error Detection in MPI Programs 65

less than 10% runtime overhead for the kernel mg. However, the problem size D of
NPB3.3-MPI is a challenging test case at 1024 processes, as the fraction of the total
execution time spent in MPI is very high at this scale. We expect better results for
most applications.

5.6 Related Work

Several other MPI message checkers exist beyond Marmot [3] and Umpire [4] in-
cluding MPI-Check [7] and ISP [8]. Both of these tools are not reported to scale
to more than a hundred processes. Especially the complex analysis of alternative
executions in ISP limits its scalability dramatically. We hope to combine our efforts
with the ones for ISP in future work, as both tools have the same basic needs.

The generic tool infrastructure component of MUST relates to a wide range of
infrastructure and scalability work. This includes PnMPI [5], as well as infrastucture
tools like MRNet [9], which we may use to implement several of the GTI compo-
nents. Also, existing HPC tools like VampirServer [10] and Scalasca [11], or debug-
gers like DDT [12] and Totalview [13] may implement well adapted communication
schemes that can be used for the GTI components. Further, these tools, as well as up-
coming tools may employ modules of the GTI to implement their communications
and may thus benefit from this component.

5.7 Conclusions

This paper presents a novel approach to create a runtime infrastructure for scalable
MPI correctness checking. As far as we know, existing approaches – like Marmot
and Umpire – lack the scalability needed for large HPC systems. Further, these
tools use static communication systems that are hard to adapt to different types
of systems. Also the implementation of new checks and the extension of existing
ones is hard for these tools, as their checks are tightly coupled to their internal data
structures and infrastructures. Our approach overcomes these problems by using
a fine-grained module-based design that uses PnMPI. We present an overview of
this design and highlight our most important concepts that allow the offloading of
checks to extra processes and threads. Further, we present a flexible communication
system that promises an efficient transfer of trace records between different pro-
cesses or threads. To demonstrate the feasibility of our design and to highlight the
performance capabilities of our communication system, we present a performance
study with a proof of concept implementation. This study shows that our ambitious
runtime overhead goals are feasible, even at scale. In particular we demonstrate full
MPI tracing for up to 1024 processes while transferring the trace records to extra
processes without perturbing the application.

66 Tobias Hilbrich, Martin Schulz, Bronis R. de Supinski, and Matthias S. Müller

References

1. Message Passing Interface Forum: MPI: A Message-Passing Interface Standard.
http://www.mpi-forum.org/docs/mpi-10.ps (1995)

2. Message Passing Interface Forum: MPI-2: Extensions to the Message-Passing Interface.
http://www.mpi-forum.org/docs/mpi-20.ps (1997)

3. Krammer, B., Bidmon, K., Müller, M.S., Resch, M.M.: MARMOT: An MPI Analysis and
Checking Tool. In Joubert, G.R., Nagel, W.E., Peters, F.J., Walter, W.V., eds.: PARCO. Vol-
ume 13 of Advances in Parallel Computing., Elsevier (2003) 493–500

4. Vetter, J.S., de Supinski, B.R.: Dynamic Software Testing of MPI Applications with Umpire.
Supercomputing, ACM/IEEE 2000 Conference (04-10 Nov. 2000) 51–51

5. Schulz, M., de Supinski, B.R.: PNMPI Tools: A Whole Lot Greater Than the Sum of Their
Parts. In: Supercomputing 2007 (SC’07). (2007)

6. Hilbrich, T., de Supinski, B.R., Schulz, M., Müller, M.S.: A Graph Based Approach for MPI
Deadlock Detection. In: ICS ’09: Proceedings of the 23rd international conference on Super-
computing, New York, NY, USA, ACM (2009) 296–305

7. Luecke, G.R., Zou, Y., Coyle, J., Hoekstra, J., Kraeva, M.: Deadlock Detection in MPI Pro-
grams. Concurrency and Computation: Practice and Experience 14(11) (2002) 911–932

8. Vakkalanka, S.S., Sharma, S., Gopalakrishnan, G., Kirby, R.M.: ISP: A Tool for Model Check-
ing MPI Programs. In: PPoPP ’08: Proceedings of the 13th ACM SIGPLAN Symposium on
Principles and practice of parallel programming, New York, NY, USA, ACM (2008) 285–286

9. Roth, P.C., Arnold, D.C., Miller, B.P.: MRNet: A Software-Based Multicast/Reduction Net-
work for Scalable Tools. In: SC ’03: Proceedings of the 2003 ACM/IEEE conference on Su-
percomputing, Washington, DC, USA, IEEE Computer Society (2003) 21

10. Brunst, H., Kranzlmüller, D., Nagel, W.E.: Tools for Scalable Parallel Program Analysis -
Vampir NG and DeWiz. The International Series in Engineering and Computer Science, Dis-
tributed and Parallel Systems 777 (2005) 92–102

11. Wolf, F., Wylie, B., Abraham, E., Becker, D., Frings, W., Fuerlinger, K., Geimer, M., Her-
manns, M., Mohr, B., Moore, S., Szebenyi, Z.: Usage of the SCALASCA Toolset for Scalable
Performance Analysis of Large-Scale Parallel Applications. In: Proceedings of the 2nd HLRS
Parallel Tools Workshop, Stuttgart, Germany (July 2008)

12. Edwards, D.J., Minsky, M.L.: Recent Improvements in DDT. Technical report, Alinea, Cam-
bridge, MA, USA (1963)

13. Totalview Technologies: Totalview - Parallel and Thread Debugger. http://www.
totalviewtech.com/products/totalview.html (July 2009)

http://www.mpi-forum.org/docs/mpi-10.ps
http://www.mpi-forum.org/docs/mpi-20.ps
http://www.totalviewtech.com/products/totalview.html
http://www.totalviewtech.com/products/totalview.html

Chapter 6
HPC Profiling with the Sun Studio™
Performance Tools

Marty Itzkowitz and Yukon Maruyama

Abstract In this paper, we describe how to use the Sun Studio Performance Tools
to understand the nature and causes of application performance problems. We first
explore CPU and memory performance problems for single-threaded applications,
giving some simple examples. Then, we discuss multi-threaded performance issues,
such as locking and false-sharing of cache lines, in each case showing how the tools
can help. We go on to describe OpenMP applications and the support for them in
the performance tools. Then we discuss MPI applications, and the techniques used
to profile them. Finally, we present our conclusions.

6.1 Introduction

High-performance computing (HPC) is all about performance. This paper describes
the various techniques implemented in the Sun Studio Performance Tools to pro-
file HPC applications. We first describe how users can recognize the symptoms of
performance problems. We then discuss problems common to single-threaded pro-
grams, and then go on to describe additional issues that manifest in multi-threaded
programs. We then describe the characteristics of two of the main HPC program-
ming models, OpenMP and MPI, and review the specific performance issues with
each, and show how the tools can help.

6.1.1 The Sun Studio Performance Tools

The Sun Studio Performance Tools are designed to collect performance data on
fully optimized and parallelized applications written in C, C++, Fortran, or Java,

Marty Itzkowitz, Yukon Maruyama
Sun Microsystems, 16 Network Circle, Menlo Park, CA 94025, USA
e-mail: {marty.itzkowitz,yukon.maruyama}@oracle.com

M.S. Müller et al. (eds.), Tools for High Performance Computing 2009,
DOI 10.1007/978-3-642-11261-4 6, © Springer-Verlag Berlin Heidelberg 2010

67

mailto:marty.itzkowitz@oracle.com
mailto:yukon.maruyama@oracle.com
http://dx.doi.org/10.1007/978-3-642-11261-4_6

68 Marty Itzkowitz and Yukon Maruyama

and any combination of these languages. Data is presented in the context of the
user’s programming model. With appropriate settings, measurements can be done at
production-scale, in terms of the numbers of threads and processes, the size of the
address-space, and length of run.

The tools support code compiled with the Sun Studio or GNU compilers. They
also work on code generated by other compilers, as long as those compilers produce
compatible standard ELF and DWARF symbolic information.

The tools run on the Solaris™ or Linux operating systems, on either SPARC®
or x86/x64 processors. The current version, Sun Studio 12 update 1, is available for
free download [1], and was used to record the screen-shots in this paper.

The objective in designing the tools was to minimize the number of mouse clicks
that it takes to reach the point at which the performance problem is shown.

6.1.2 The Sun Studio Performance Tools Usage Model

The usage model for the performance tools consists of three steps. First, the user
compiles the target code. No special compilation is needed, and full optimization
and parallelization can be used. It is recommended that the -g flag be used to get
symbolic and line-number information into the executable. (With the Sun Studio
compilers, the -g flag does not appreciably change the generated code.)

The second step is to collect the data. The simplest way to do so is to prepend
the collect command with its options to the command to run the application. The
result of running collect is an experiment which contains the measured performance
data. With appropriate options, the data collection process has minimum dilation
and distortion, typically about 5%, but significantly larger for tracing runs.

The third step in the user model is to examine the data. Both a command-line
program, er print, and a GUI interface, analyzer, can be used to examine the data.
(The “er” refers to “experiment record,” the original name for what is now called
an experiment.) Much of the complexity introduced into the execution model of the
code comes from optimizations and transformations performed by the compiler. The
Sun compilers insert significant compiler commentary into the compiled code. The
performance tools show the commentary, allowing users to understand exactly what
transformations were done.

6.1.3 The Sun Studio Performance Tools Features

The Sun Studio performance tools support data collection by statistical sampling of
callstacks, based on either clock-ticks or hardware-counter overflow events. They
also support data collection based on tracing synchronization API calls, memory
allocation and deallocation API calls, and MPI API calls.

6 HPC Profiling with the Sun Studio™ Performance Tools 69

They can show a list of functions, annotated by metrics, both exclusive (in the
function itself) or inclusive (in the function, and any that it calls). They also support
a caller-callee view, and annotated source or disassembly listings. They can show a
list of source lines or instructions, annotated with metrics, and a graphical timeline
showing profiling events as a function of time. Other views are specific to various
programming models or data collected and will be described below.

All of the data can be filtered in various ways to drill down into specific perfor-
mance problems in function, or source-lines, or calling context, as well as by thread
or CPU.

6.1.4 Diagnosing Performance Problems

The first step in understanding performance problems is determining whether or not
a problem exists. That understanding is best achieved with a repeatable example
(benchmark) that uses input data and problem size of a scale comparable to the pro-
duction runs for which the program is being tuned. From such runs, many techniques
can be used to determine if there is a problem.

Many problems have an intrinsic scale factor, N, and typical high-performance
computing codes are intended to run at the largest practical scale. Performing mea-
surements for different values of N can show whether the performance of the appli-
cation scales with N, or ln N, or N2 or even a higher power of N. If simple tests show
that there are scaling problems with the application, more detailed data, including
clock- and hardware-counter statistical profiling data and various kinds of tracing
data, can be collected to isolate and fix the problem.

The most important question to ask is “what can I change to improve the perfor-
mance of the application”? To answer that question, data is presented in the context
of the user model, showing what resources are being used by the application, and
where in the application they are being used. The data can also show how the exe-
cution got to that point in the program.

The next section of this paper describes various single-threaded application
performance issues; the following section explores additional issues presented by
multi-threaded applications. The fourth section discusses issues relating to the
OpenMP programming model, and the fifth section describes issues relating to MPI
programs. In the last section, we present our conclusions.

6.2 Single-Threaded Application Performance Issues

The main issues for single-threaded applications are CPU algorithmic inefficiency
and memory subsystem performance.

70 Marty Itzkowitz and Yukon Maruyama

Two techniques are used in the tools to explore these issues: clock-based profil-
ing, used on various UNIX systems for at least 25 years [2]; and hardware-counter
profiling first described in 1996 [3].

6.2.1 Algorithmic Inefficiency

The signature of algorithmic inefficiency is high resource consumption for parts of
the program that do not represent the actual computational core of the algorithm.
We will use two examples of low-hanging fruit to show how the tools can be used
to find such signatures.

The most straightforward way to look for algorithmic inefficiency is to use clock-
based statistical callstack sampling, the default experiment recorded with the Sun
Studio Performance tools. On the Solaris operating environment, clock profiling
collects metrics of User CPU Time, System CPU Time, Wait CPU Time, User Lock
Time, Data Page Fault Time, Text Page Fault Time, and Other Wait Time. On Linux,
only User CPU Time can be monitored. Such measurements show where the re-
sources are being consumed during execution, but do not tell you whether that is
bad or good. The user must decide whether the resource-consumption is necessary
for the computation, or if it can be optimized.

The example program used is very simple, with two operations, each coded in
an efficient way, and in an inefficient way. The two pairs of functions are named
good init/bad init, and good insert/bad insert. The first of these is an apparently
trivial botch which consists of doing a static initialization many times within a loop,
instead of once before the loop. Figure 6.1 shows the function list from a clock-
profiling experiment on the program.

The two functions highlighted are the two versions of initialization. Although
the Exclusive CPU Time (column 1) is about the same, the Inclusive CPU Time
(column 2) is very different, reflecting the time spent in static init routine. Figure
6.2 show the source for both of the initialization functions, clearly showing the high
inclusive CPU usage in the bad init version.

While this may seem too obvious for anyone ever to program, similar problems
may arise more subtly, especially if the programmer is using APIs written by others.

This example is based on a performance problem in a commercial paralleliza-
tion tool product developed by one of us (MI). The user interface of the product
presented a list of loops in a program, with an icon representing the parallelization
state of the loop. The application was written to a library that provided two APIs to
add icons to a table. One added an icon to a specific row, and was easy to code; the
second added a vector of icons to the table. When used on targets with relatively few
loops, no problem was seen, but when used on a target with more than 900 loops,
the interface took more than 20 minutes to show up. The root cause was that using
the simpler algorithm caused a recomputation of the table geometry with each icon
added, while the vector API only recomputed the geometry once. It took only 23
seconds to come up, a 60X improvement.

6 HPC Profiling with the Sun Studio™ Performance Tools 71

Fig. 6.1: Function List from the lowfruit.c program

Fig. 6.2: Source Display for good init and bad init

72 Marty Itzkowitz and Yukon Maruyama

The second example is a typical one where at small scale, no problem is manifest,
but at large scale performance drops dramatically. The example shows two different
ways to insert an element in an ordered list. Figure 6.3 shows the source of the
inefficient version, bad insert. It does a linear search to determine where to insert
the next element.

Fig. 6.3: Source Display for bad insert

Note the approximately 17 seconds spent on lines 111 and 112, which represents
the time spent determining where to insert the next element.

By contrast, Figure 6.4 shows the efficient version of the same problem, which
does a binary search to find the insertion point.

Note that less than 0.1 seconds is spent determining where to insert the next
element. The time to perform the actual insertion is approximately 16 seconds and
is the same in both versions.

The above examples show performance issues in the user source code. For some
problems, the issues arise in the compiler’s code-generation. In those cases, the
disassembly of the code, with per-instruction performance data, can be used to un-
derstand the behavior.

Clock profiling provides a good way to identify where the users should focus
their tuning efforts. Sometimes, the problem areas uncovered by clock profiling can
not be fully explained by algorithmic inefficiency; often, the user needs to also de-

6 HPC Profiling with the Sun Studio™ Performance Tools 73

Fig. 6.4: Source Display for good insert

termine how the program is using the underlying hardware, especially the memory
subsystem.

6.2.2 Memory Subsystem Performance Issues

In modern computer systems, access to memory is mediated by various components
in the memory subsystem. It contains hardware that maps virtual addresses to phys-
ical memory pages (a translation-lookaside-buffer, or TLB) and one or more levels
of cache, designed to minimize the latency of memory fetches. These elements of
the memory subsystem are not directly in the user-model of the computation. The
efforts of the hardware designers to minimize latency make it difficult to relate the
performance issues directly to the code in which they occur.

To help understand how a program interacts with the hardware, most modern
chips have counters to measure the performance of the CPU and other subsystems
in the machine. The counters can be used either by reading them directly, or by sta-
tistical profiling based on counter overflows. While the support for counters varies

74 Marty Itzkowitz and Yukon Maruyama

from chip to chip, most chips have counters that measure memory-related activity,
including TLB and cache misses. Some CPUs have counters that count not only
cache-miss events, but also measure the cost of accessing memory, for example, the
number of cycles stalled waiting for a cache-miss to be satisfied. Hardware coun-
ters can be used to present a detailed breakdown of CPU time waiting for various
components of the memory subsystem.

Operating-system support for hardware-counter profiling is included in Solaris
in libcpc.so. Linux systems require kernel support and a user API, such as per-
fctr [4], perfmon2 [5], or PCL [6], to enable hardware-counter profiling. The
Sun Studio Performance Tools currently support only the perfctr API on Linux
systems. Users can collect hardware-counter overflow profiles based on whatever
counters are available on the particular chip being utilized. Invoking the collect
command with no arguments will print a list of all the counters available on that
system.

As an example of the use of hardware-counter profiles, we constructed a simple
program, cachetest, that does an identical matrix-vector-multiply computation in
eight different ways. This code was originally intended to demonstrate the effects of
optimization, so the source code consists of four copies of the same source file (with
different function names), compiled with different optimization levels: no optimiza-
tion, -O optimization, -fast optimization, and auto-parallelization. One version of
the computation in each file is in row-column order and other is in column-row
order. The eight functions are named dgemv *, with a suffix indicating the opti-
mization level (g, opt, hi, or p) and the loop-order (either 1 or 2).

The data were recorded on a Solaris 10 system with an UltraSPARC® III-Cu
processor. That chip has a TLB and two levels of cache, a first-level cache called the
D-cache, and a second-level cache called the E-cache.

Two experiments were recorded, one collecting clock profiles and hardware-
counter profiles for cycles and combined D-cache & E-cache stall cycles, and the
second collecting E-cache stall cycles and I-cache stall cycles. The two experiments
are merged, and Figure 6.5 shows the function list, sorted alphabetically.

There are a number of points of interest in this data.
First note that no appreciable time is spent dealing with instruction-cache stalls

(column 5). The program is too small for I-cache performance to be an issue.
Next, note that for some functions, User CPU Time (column 1, based on clock-

profiling) and CPU Cycle Time (column 2, based on hardware counter profiling for
cycles) are different. Although one might naively expect them to be the same, they
are not. User CPU Time represents the time the operating system thinks the process
was running in user mode. CPU Cycle Time represents the time the chip thinks the
process was running in user mode. They differ in an important way: in processing a
TLB miss, the operating system does not change its notion of whether the process
is running in user-mode – to do so would significantly increase the overhead of pro-
cessing the miss. Thus the difference between these two metrics represents the time
lost due to TLB misses. (There are other events that can contribute to the difference,
but they are not relevant to this program.)

6 HPC Profiling with the Sun Studio™ Performance Tools 75

Fig. 6.5: Function List from cachetest

Optimization affects both the memory performance and the efficiency of the
actual generated code. From the numbers shown, the breakdown of time spent is
straightforward. For the slowest version, dgemv g1, a total CPU time of ~13.9 sec-
onds is broken down into ~5.6 seconds lost due to TLB misses, ~3.5 seconds lost
due to E-cache misses, ~0.7 seconds lost due to D-cache misses, and ~4.0 seconds
of real computation. The fastest version, dgemv opt2, shows little time lost due
to TLB misses, ~0.7 seconds lost due to E-cache misses, ~0.3 seconds lost due to
D-cache misses, and ~2.0 seconds of real computation.

Also note that at the lowest optimization levels, g and opt, the 1 versions are
significantly slower than 2 versions. The loop-orders stride through memory differ-
ently: one is relatively efficient in cache utilization, while the other one is not. This
difference disappears in the hi and p versions, because the compiler understands the
stride-order implications for cache performance, and at high optimization, it inter-
changes the order of the two loops, so that 1 versions use the same efficient order
as the 2 versions. The Sun Studio compilers insert commentary explaining the inter-
change into the object code, and the commentary is displayed with the source code
in the Analyzer.

Hardware counter profiling can also be used to understand other performance
aspects of machine behavior (branch misprediction, microcode assists, etc.). Tuning
at this level requires an intimate understanding of the CPU architecture, and we will
not discuss these issues further.

76 Marty Itzkowitz and Yukon Maruyama

6.2.2.1 Dataspace Profiling

An extension to hardware counter profiling called dataspace profiling has been im-
plemented [7] to better understand the data that is responsible for the cache misses.
The data collector attempts to backtrack from the interrupt PC to find the actual in-
struction causing the cache event. From that instruction and the registers at the time
of the interrupt, the collector can usually construct the virtual address being refer-
enced. It then asks the operating system for the corresponding physical address. The
Sun Studio compiler outputs information associating each load and store instruction
to the symbol table entries of the data being referenced. With these pieces of infor-
mation, the tools can show cache misses vs. the data structures and elements in the
program.

The Sun Studio Performance Tools can perform dataspace profiling on SPARC®/
Solaris systems, but not on other chips or operating systems. The reason is that on
SPARC® processors, we can backtrack in address space to find the causal instruc-
tion, but on x86/x64, that backtracking can not be done. With the advent of new
hardware and operating system mechanisms for instruction-sampling, precise in-
struction and virtual and physical data addresses may be directly captured on both
SPARC® and x86/x64 systems.

The work described in [7] was done on one of the SPEC CPU2000 benchmarks,
mcf. By using dataspace profiling, and presenting a display of time-lost due to
cache misses against the data structures in the program, and the fields within them,
sufficient insight was obtained to yield a 20% decrease in run time for this real
application.

6.3 Multi-threading Performance Issues

Multi-threaded applications have the same potential performance issues as single-
threaded applications with some additional issues relating the thread interactions
and competition for machine resources.

Two of the most important issues are lock contention and false-sharing of cache
lines. They are discussed in the next two subsections.

6.3.1 Lock Contention

To ensure consistency of shared data structures in an application, updates to the
structures must be done atomically. Atomicity is often implemented using locks—the
application must ensure that no thread alters a shared data structure without acquir-
ing a lock governing that structure. If the application has many threads trying to
update a structure, contention for the lock can lead to significant application slow-
down.

6 HPC Profiling with the Sun Studio™ Performance Tools 77

One of the most important factors in the choice of locking strategies is the scope
of a lock. Program safety is most easily guaranteed by using locks covering large
amounts of data; program efficiency, specifically the minimization of lock con-
tention, is most easily guaranteed by using locks covering relatively small amounts
of data.

The Sun Studio Performance tools support measurement of lock contention with
a technique called synchronization tracing. During data collection, the measure-
ment library interposes on the standard functions for managing mutex-locks, reader-
writer-locks, etc. By wrapping these calls, the collector can determine how much
time was spent waiting to acquire a lock, and report that as a metric. To min-
imize the volume of data collected, only those synchronization events that take
longer than some threshold are recorded. The threshold can be specified, or will
default to approximately five times the calibrated time to acquire an uncontended
lock.

Figure 6.6 shows the function list from a test program, mttest. The program
queues up a number of work blocks, and then spawns a number of threads. Each
thread fetches a work block from the queue, synchronizes with the other threads
based on a parameter set in the work block, and then does a computation. Two func-
tions, lock global and lock local, represent the same work done with two different
synchronization methods. As the names would imply, lock global uses a global
mutex so that the threads can only run one at a time, while lock local uses a mutex
that is local to the work block, and therefore does not have any contention. In this
example, the code was run with four work blocks and four threads.

Fig. 6.6: Function List from mttest

78 Marty Itzkowitz and Yukon Maruyama

The two functions, lock global and lock local each consume ~12 seconds of
CPU time, reflecting the fact that the processing of the work block is independent
of synchronization. However, lock global shows ~18 seconds spent waiting for the
lock, while lock local spends no time.

With the global lock, one thread immediately acquires the lock and does 3 sec-
onds of computation while the other three threads wait. After the first thread com-
pletes, a second thread acquires the lock and does 3 seconds of computation while
the two other threads wait. When the second completes, the third acquires the lock
and computes while the last thread waits. Finally, the last thread acquires the lock
and does its computation.

The total wait time is 3 X 3, plus 3 X 2, plus 3 X 1, adding up to the 18 sec-
onds shown as synchronization wait time. Each of the three threads that wait also
contributes one synchronization wait event to the count.

Figure 6.7 shows the source of lock global, with the synchronization wait on the
source line that calls the lock function.

Fig. 6.7: Source of lock global

In this example, it is clear that there is no need to have a global lock; in typical
programs, the appropriate scope of a lock is harder to determine. In more complex
cases, synchronization tracing is a valuable technique for determining which locks
should be targeted for optimization efforts.

6 HPC Profiling with the Sun Studio™ Performance Tools 79

6.3.2 False Sharing of Cache Lines

Thread interactions around memory caches are another important performance is-
sue in multi-threaded applications. Multiprocessors have hardware mechanisms to
ensure that memory modification by one CPU will invalidate copies of the corre-
sponding cache-line on other CPUs. When one thread updates the data, the cache
lines in the CPUs running the other threads will be evicted, and the next reference
will force a cache miss and memory access.

If the two threads are referring to the same data, the performance costs of the
repeated memory accesses are unavoidable. However, if the two threads are referring
to different data, but the data is on the same cache line, the repeated evictions and
memory fetches are not really needed, but the hardware can’t tell. That circumstance
is called “false sharing.”

With dataspace profiling, each memory-counter profiling event contains the vir-
tual and physical addresses being referenced. With knowledge of the cache mapping
algorithm, an event can be mapped to a cache line.

The performance tools have very powerful filtering mechanisms, and false shar-
ing can be detected using those mechanisms. In the mttest example, one of the
compute functions exhibits false sharing. Dataspace profile data shows that there
is only one hot cache line. By filtering to show only data referring to that cache
line, we can determine that it is referred to by four threads, each of which is us-
ing a different address within that line. The techniques have been described in de-
tail [8].

6.4 OpenMP Performance Issues

A key challenge for a user-friendly profiling tool is relating information gathered
from low-level machine instructions to the user’s source code which is written in
a high-level programming model like OpenMP. OpenMP programs have a simple
fork-join model that is governed by directives in the source code. In the user model,
when a parallel region is entered, additional worker threads are created, and, when
the computations inside the region are completed, the worker threads disappear.
OpenMP 3.0 introduces an additional model, tasking, whereby threads queue up
tasks to be performed and worker threads pick up and perform those tasks.

The underlying execution model for OpenMP is significantly more complex than
the user model. One of the challenges of any profiling tool is to figure out how to
represent the execution-model data back in the user model. Figure 6.8 shows the
user-model and execution-model callstacks when the program is executing within a
parallel region.

All four threads in this example are executing in the same parallel region, al-
though the leaf PC is shown on different lines in different threads. In the execution
model, the function foo calls into the OpenMP runtime which dispatches work to
the three slave threads as well as back to the master thread. The function called to

80 Marty Itzkowitz and Yukon Maruyama

Master Slave1 Slave2 Slave3
foo, line nn foo, line mm foo,line pp foo, line rr
main main main main
start start start start

(a) User-model Callstack

Master Slave1 Slave2 Slave3
foo-OMP, line nn
libmtsk
foo foo-OMP, line mm foo-OMP, line pp foo-OMP, line rr
main libmtsk libmtsk libmtsk
start lwp start lwp start lwp start

(b) Execution-model Callstack

Fig. 6.8: User-model and Execution-model Callstacks

do the work is shown as foo-OMP; it is a so-called outline function constructed by
the compiler, but not part of the user model. The line numbers refer to the original
source file.

The user-model callstacks are constructed by stripping the frames below the
OpenMP runtime in the execution-model in the master, stripping the frames above
the OpenMP runtime in the slaves and the master, and stitching the two pieces to-
gether to yield the user-model callstacks [9].

When profiling OpenMP applications, the collector records data representing the
OpenMP runtime’s notion of what the application is doing with every profiling tick.
In the current tools, two metrics are computed: OMP Work Time and OMP Wait
Time. OMP Work Time includes both serial and parallel CPU time. OMP Wait Time
includes overhead as measured in the runtime, and implicit or explicit wait. On the
Solaris operating system, OMP Wait Time accumulates whether specified as a busy-
wait, consuming CPU time, or as a sleep-wait, not consuming CPU time. On Linux,
it accumulates only with busy-wait.

There are four major issues in understanding the performance of OpenMP pro-
grams. They are excess parallel overhead, insufficient parallelism, lock contention
and synchronization, and load imbalance. They will be discussed in the next four
subsections.

6.4.1 Excess Parallel Overhead

Excess parallel overhead arises from applications which are parallelized, but where
the work to set up the parallelism is a significant fraction of the total work done
in parallel. It is difficult to directly measure: while the OpenMP Performance Mea-
surement API does report time spent in an overhead state, additional work is done in

6 HPC Profiling with the Sun Studio™ Performance Tools 81

the application to prepare for parallel execution, and that overhead is not detected.
(Future work is directed to a more accurate and explicit measurement.)

In the current version of the tools, a pseudo-function, <OMP-overhead>,
gets metrics attributed to it whenever the program has its leaf function inside the
OpenMP runtime. That function is shown as called from the particular parallel re-
gions or tasks responsible for the overhead, allowing the user to see how the program
got to that point.

6.4.2 Insufficient Parallelism

Too little parallelism is manifested by high CPU time spent in non-parallel code.
According to Amdahl’s law, the amount of serial work limits scalability of the ap-
plication, and thus should be minimized to extract the maximum performance and
scalability out of the machine.

In the OpenMP model, all programs start in what is called the “Implicit OpenMP
Parallel Region.” All serial code is executed in that region, despite its being called a
parallel region, while parallel code is executed in other parallel regions. By filtering
the performance data to show only data relating to the Implicit OpenMP Parallel
Region, direct measurement of serial execution is shown.

Figure 6.9 shows the Parallel Region Tab of an application, with the Implicit
OpenMP Parallel Region selected and used to set a filter.

Figure 6.10 shows the function list with the filter applied; it thus shows only the
serial portions of the computation.

The function named serial contains an expensive loop that is being executed in
serial mode, and represents an opportunity for improving parallelism.

The above example represents the simplest case of not having sufficient paral-
lelism in the code. There are many other cases where this might be a problem. For
example, a code may be parallelized using OpenMP sections, where the user has
specified 32 threads, but only coded 4 sections. In that case, 28 threads will be do-
ing nothing, despite the code being parallelized. The discrepancy will show up as a
load balance issue (see section 6.4.4). Another cause of insufficient parallelism may
be in queueing and processing tasks, a topic for future discussion.

6.4.3 Lock Contention

Lock contention causes one or more threads to wait for execution on a lock. It is
easily detected as high OMP Wait Time that shows up on the statement representing
the lock. It can occur either as an lock call, or as an OpenMP “critical” or “atomic”
directive or pragma.

Figure 6.11 shows a picture of source from a program that has a performance hit
representing contention for a critical region.

82 Marty Itzkowitz and Yukon Maruyama

Fig. 6.9: Parallel Region Tab and Filter

The lines with high metric values are highlighted, pointing out the contention.
Other scenarios will also show high OMP Wait Time in other pragmas.

6.4.4 Load Imbalance

Load imbalance also shows up as high OMP Wait Time. At the end of a parallel
region, synchronization creates an implicit barrier, and the time spent at the bar-
rier represents load imbalance: some threads are done, but none can proceed until
all threads reach the barrier. Time spent in that synchronization is attributed to the
artificial function <OMP-implicit barrier>.

6 HPC Profiling with the Sun Studio™ Performance Tools 83

Fig. 6.10: Function list, Filtered to Show only Serial Portions of the Code

Fig. 6.11: High OMP Wait Time in a Critical Section

84 Marty Itzkowitz and Yukon Maruyama

OpenMP programs can be run either with a sleep-wait or a spin-wait. OpenMP
Wait Time accumulates on Solaris in either form of wait, while CPU time accumu-
lates only for a spin-wait. (On Linux, where profiling is only for CPU time, OpenMP
Wait Time is also only accumulated for spin-waits.)

6.5 MPI Performance Issues

MPI programs run as a number of distinct processes, on the same or different nodes
of a cluster. Each process does part of the computation, and the processes commu-
nicate with each other by sending messages.

The challenge in parallelizing a job with MPI is to decide how the work will
be partitioned among the processes, and how much communication between the
processes is needed to coordinate the solution. To address these aspects of MPI
performance, data is needed on the overall application performance, as well as on
specific MPI calls.

Communication issues in MPI programs are explicitly addressed by tracing the
application’s calls to the MPI runtime API. The data is collected using the Vampir-
Trace [10] hooks, augmented with callstacks associated with each call. Callstacks
are directly captured, obviating the need for tracing all function entries and exits,
and resulting in lower data volume.

MPI tracing collects information about the messages that are being transmitted
and also generates metrics reflecting the MPI API usage: MPI Time, MPI Sends,
MPI Receives, MPI Bytes Sent and MPI Bytes Received. Those metrics are at-
tributed to the functions in the callstack of each event.

Unlike many other MPI performance tools, the Sun Studio Performance Tools
can collect statistical profiling data and MPI trace data simultaneously on all the
processes that comprise the MPI job. In addition, during clock-profiling on MPI
programs, state information about the MPI runtime is collected indicating whether
the MPI runtime is working or waiting. State data is translated into metrics for MPI
Work Time and MPI Wait Time. State data is available only with the Sun HPC Clus-
terTools™ 8.1 (or later) version of MPI, but trace and profile data can be captured
from other versions of MPI.

6.5.1 Computation Issues in MPI Programs

The computation portion of an MPI application may be single-threaded or multi-
threaded, either explicitly or using OpenMP. The Sun Studio Performance Tools
can analyze data from the MPI processes using any of the techniques described
in the previous sections for single- and multi-threaded profiles. The data is shown
aggregated over all processes, although filtering can be used to show any subset
of the processes. Computation costs are shown as User CPU Time (with clock-

6 HPC Profiling with the Sun Studio™ Performance Tools 85

profiling); computation costs directly attributable to the MPI communication are
shown as MPI Work time, a subset of User CPU Time. Time spent in MPI is shown
as MPI Time, which represents the wall-clock time, as opposed to the CPU Time,
spent within each MPI call.

The data is shown in the function list, Figure 6.12.

Fig. 6.12: MPI Function List

Functions, such as y solve cell , that have high User CPU Time but little or no
MPI Work Time or MPI Wait Time represent the actual computations that are done.
All of the techniques discussed earlier are relevant to understanding the performance
of the computational part of the application, and the tuning that would be done for
them is exactly analogous to what would be done for a non-MPI program.

6.5.2 Parallelization Issues in MPI Programs

While the performance issues in computation can be recognized using the tech-
niques described above, problems in partitioning and MPI communication can be
recognized by excessive time spent in MPI Functions. The causes of too much time
in MPI functions may include: load imbalance; excessive synchronization; compu-
tation granularity that is too fine; late posting of MPI requests; and limitations of the
MPI implementation and communication hardware.

Many MPI programs are iterative in nature, either iterating on a solution until
numerical stability is reached, or iterating over time steps in a simulation. Typically,

86 Marty Itzkowitz and Yukon Maruyama

each iteration in the computation consists of a data receive phase, a computation
phase, and a data send phase reporting the results of the computation.

6.5.2.1 Using the MPI Timeline to Visualize Job Behavior

The MPI Timeline gives a broad view of the application behavior, and can be used
to identify patterns of behavior and to isolate a region of interest.

The MPI Timeline, shown in Figure 6.13, initially covers the entire run of the
application, including initialization (MPI Init) and finalization (MPI Finalize).

Fig. 6.13: MPI Timeline, Full Scale

The Timeline shows the MPI processes vertically, with time displayed horizon-
tally. For each process, blocks indicating MPI calls and application code are shown.
Lines indicating messages are drawn between the sending call and the receiving call
for each message. In typical applications, the message volume is quite high, which
can lead to a picture that is obscured by the message lines. The user can adjust the
display to set a percentage of messages to be shown. Priority of display is given to
the most costly messages, that is, the messages that represent the largest amount of
time spent in sending and receiving them.

The user can zoom in to help recognize the pattern of execution. The same ex-
periment shown above, when zoomed in, shows a clear pattern (Figure 6.14). In this
case, three iterations are shown.

6 HPC Profiling with the Sun Studio™ Performance Tools 87

Fig. 6.14: MPI Timeline, zoomed in

The user can zoom in further, and will then see the names of the MPI functions
inside their blocks. At any point, the user can select specific MPI events to determine
the callstack of the process, and the duration of the call. The user can also select a
message to see the message size and the sending and receiving processes and their
callstacks.

A filter can be set based on any zoomed-in view of the data, allowing the user to
isolate patterns of communication. Typically, the user will set a filter from the MPI
Timeline to focus analysis on the steady-state heart of the computations.

6.5.2.2 Using MPI Charts to Understand Where Time Was Spent

The Analyzer’s initial MPI Chart shows in which MPI function the time is spent.
Figure 6.15 shows the time spent in each of the MPI calls, and in the Application
(which is the time spent between MPI calls).

In this example, we can see that approximately 75% of the total time is spent
in the application’s computation. The remaining 25% of time is spent in MPI calls,
with almost all of it spent in the function MPI Wait.

88 Marty Itzkowitz and Yukon Maruyama

Fig. 6.15: MPI Chart: Application Time vs. MPI Time

6.5.2.3 Using MPI Charts to Understand Message Traffic

The MPI Charts can be used to understand the patterns of communication between
processes. In Figure 6.16, we show a 2-dimensional plot, showing data volume in
bytes as a color in a grid of sending and receiving processes.

Fig. 6.16: MPI Chart: Bytes-Transmitted among Processes

This chart shows how much data is being passed between the processes. Charts
can also be used to explore other aspects of message traffic, including delivery times,
and send and receive functions.

6 HPC Profiling with the Sun Studio™ Performance Tools 89

6.5.2.4 Using MPI Charts to Understand Work Distribution

The previous techniques have been directed towards understanding the average be-
havior of the application. They do not indicate if, for example, some processes are
running slower than others, or if the behavior is consistent over time. The MPI
Charts provide a powerful way to explore these types of issues.

To investigate work distribution, the user can first set a filter to isolate the time
in Application, the pseudo-function that represents work done between MPI calls.
Then the user can display the amount of time spent in the Application state for each
process, as shown in Figure 6.17.

Fig. 6.17: MPI Chart: Time in Application vs. Process

In this example. processes 22 and 23 spend more time in computation than the
other processes. Fixing this imbalance may improve the overall performance of the
application.

With the filter still set, the user can look at the work distribution over time. Figure
6.18 is a 2-dimensional chart showing process number vertically, wall-clock entry
time horizontally, and coloring to represent the relative amount of Application work
being done.

The excess time spent in processes 22 and 23, which was visible in Figure 6.17,
is now seen to be consistent over the whole run. At the wall-clock times of approx-
imately 19 and 40 seconds into the run, there appears to be hiccups where all the
processes are getting less work done.

To investigate time-based anomalies like those shown in Figure 6.18, the user
can look at the distribution of Application work periods as a function of wall-clock
time, as shown in Figure 6.19.

90 Marty Itzkowitz and Yukon Maruyama

Fig. 6.18: MPI Chart: Time in Application Per-process as a Function of Wall-clock
Time

Fig. 6.19: MPI Chart: Time in Application vs. Wall-clock Time

Most work periods (time in Application) are less than 40 milliseconds in dura-
tion, but at ~19 seconds into the run, there is a data point showing a work period of
203 milliseconds. There is a second outlier representing the stutter at approximately
40 seconds into the run.

6 HPC Profiling with the Sun Studio™ Performance Tools 91

6.5.2.5 Using Filters to Isolate Behaviors of Interest

The MPI filters can be used to pick out behaviors of interest and determine which
events are responsible. For example, to focus on that anomalous data point in Figure
6.19, the user can zoom in and apply a filter to isolate the data of interest. Then,
the user can switch to the Timeline, zoom in on that event, and remove the filter to
show the context of the other processes around that event. Figure 6.20 shows the
anomalous event and context on the Timeline.

Fig. 6.20: MPI Timeline: Outlier Event Shown

In Figure 6.20, we can see that the long-duration Application event in process
5 impacted all the other processes: while process 5 is computing, all the other pro-
cesses are waiting. Further drilling down using the Timeline would allow the user
to see the source contexts of the anomaly and the surrounding events.

6.6 Conclusions

We have described the Sun Studio Performance Tools and the user model they sup-
port. We then discussed single-threaded applications, and the importance of both
algorithmic efficiency and memory subsystem behavior to the overall performance

92 Marty Itzkowitz and Yukon Maruyama

of the application. We described the techniques in the performance tools to measure
both of these.

We then explored the issues introduced by multi-threading, and gave examples
of locking issues, and memory- and cache-contention issues among threads.

We described support in the tools for the OpenMP programming model, and the
performance issues concerning OpenMP, including detection of too-little-parallelism,
excess-overhead, lock-contention, and load-balance. In each case we showed how
the tools can highlight the problems.

Finally, we explored the MPI programming model and the ways in which the
tools can measure MPI performance. We described some of the typical characteris-
tics of MPI jobs, and showed how the patterns of communication and computation
can be explored. We then showed how the tools can be used to isolate behaviors of
interest and to understand their causes.

Acknowledgements We would like to thank Oleg Mazurov, Eugene Loh, Brad Lewis, Nik
Molchanov, and Vladimir Mezentsev who did much of the work developing the tools. We would
also like to thank some of our users, in particular, Darryl Gove, Ruud van der Pas, Karsten
Guthridge, Miriam Blatt, and others too numerous to name.

References

1. Sun Studio Downloads, http://developers.sun.com/sunstudio/downloads/
index.jsp.

2. S.L.Graham, P.B. Kessler, and M.K.McKusick, An Execution Profiler for Modular Programs,
Software Practice and Experience, 13, 671-685, August, 1983.

3. Marco Zagha, Brond Larson, Steve Turner, and Marty Itzkowitz, Performance Analysis using
the MIPS R10000 Performance Counters, Proceedings of SuperComputing ’96, Pittsburgh,
PA, November, 1996.

4. Mikael Pettersson, Linux Performance-Monitoring Counters Driver, http://user.it.
uu.se/˜mikpe/linux/perfctr/ Computing Science Division, Uppsala University,
Sweden.

5. Stéphane Eranian, “Perfmon2: a standard performance monitoring interface for Linux”,
http://perfmon2.sourceforge.net/perfmon2-20080124.pdf, January
2008.

6. Ingo Molnar, Thomas Gleixner, “[ANNOUNCEMENT] Performance Counters for Linux”,
http://lkml.org/lkml/2008/12/4/401, December 2008.

7. Marty Itzkowitz, Brian J. N. Wiley, Christopher Aoki, and Nicolai Kosche, Memory Profil-
ing using Hardware Counter, Proceedings of SuperComputing ’03, Phoenix, AZ, November,
2003.

8. Marty Itzkowitz, Memory Subsystem Profiling with the Sun Studio Performance Analyzer,
http://cscads.rice.edu/workshops/summer09/slides/performance-
tools/DProfile.cscads.pdf.

9. Yuan Lin and Oleg Mazurov. Providing Observability for OpenMP 3.0 Applications, Proceed-
ings of the 5th International Workshop on OpenMP. Dresden (2009).

http://developers.sun.com/sunstudio/downloads/index.jsp
http://developers.sun.com/sunstudio/downloads/index.jsp
http://user.it.uu.se/~mikpe/linux/perfctr/
http://user.it.uu.se/~mikpe/linux/perfctr/
http://perfmon2.sourceforge.net/perfmon2-20080124.pdf
http://lkml.org/lkml/2008/12/4/401
http://cscads.rice.edu/workshops/summer09/slides/performance-tools/DProfile.cscads.pdf
http://cscads.rice.edu/workshops/summer09/slides/performance-tools/DProfile.cscads.pdf

6 HPC Profiling with the Sun Studio™ Performance Tools 93

10. The VampirTrace Project, http://www.tu-dresden.de/zih/vampirtrace, Tech-
nische Universität Dresden, Center for Information Services and High Performance Comput-
ing (ZIH), Dresden, Germany.

Sun, Sun Microsystems, the Sun logo, Solaris and Sun HPC ClusterTools are trademarks or
registered trademarks of Sun Microsystems, Inc. or its subsidiaries in the United States and other
countries. All SPARC trademarks are used under license and are trademarks or registered marks
of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks
are based upon an architecture developed by Sun Microsystems, Inc.

http://www.tu-dresden.de/zih/vampirtrace

Chapter 7
Performance Tuning of x86 OpenMP Codes with
MAQAO

Denis Barthou, Andres Charif Rubial, William Jalby, Souad Koliai, and Cédric
Valensi

Abstract Failing to find the best optimization sequence for a given application
code can lead to compiler generated codes with poor performances or inappropri-
ate code. It is necessary to analyze performances from the assembly generated code
to improve over the compilation process. This paper presents a tool for the perfor-
mance analysis of multithreaded codes (OpenMP programs support at the moment).
MAQAO relies on static performance evaluation to identify compiler optimizations
and assess performance of loops. It exploits static binary rewriting for reading and
instrumenting object files or executables. Static binary instrumentation allows the
insertion of probes at instruction level. Memory accesses can be captured to help
tune the code, but such traces require to be compressed. MAQAO can analyze the
results and provide hints for tuning the code. We show on some examples how this
can help users improve their OpenMP applications.

7.1 Introduction

Modern processors rely on many complex hardware mechanisms in order to reach
high levels of performance. In particular, the use of all levels of parallelism and
the appropriate use of the memory hierarchy to hide large memory latencies are
both required to obtain the full computing capacity of processors. This road to high
performance is paved with many complex compiler optimizations, using, according
to the code, prefetching mechanism, vectorization, loop transformations for better
cache usage or data layout restructuring. While many optimizing compilers are able
to perform all these transformations, they have a poor knowledge of the application

Denis Barthou
University of Bordeaux, LaBRI/INRIA, France

Andres Charif Rubial, William Jalby, Souad Koliai, Cédric Valensi
University of Versailles Saint-Quentin, LRC ITACA, France

M.S. Müller et al. (eds.), Tools for High Performance Computing 2009,
DOI 10.1007/978-3-642-11261-4 7, © Springer-Verlag Berlin Heidelberg 2010

95

http://dx.doi.org/10.1007/978-3-642-11261-4_7

96 Denis Barthou, Andres Charif Rubial, William Jalby, Souad Koliai, and Cédric Valensi

context and must be conservative in their transformations. Failing to find the best
optimization sequence for a given application code, this leads to compiler generated
codes with poor performance, or with inappropriate code.

The performance tuning process therefore implies to guide the compiler, through
pragmas, compilation flags, or source to source restructuring, to the generation of
better code. Many approaches to performance tuning have been proposed, getting
feedback from the application either by collecting execution traces through instru-
mentation (with Dyninst [4] or Pin [19] for single processors, with Scalasca [20] for
multi-node systems) or hardware counters values (such as Intel Vtune or PTU for
instance). Hardware counter-based techniques show how the architecture behaves
with the considered code and input set. However, it is difficult to make the connec-
tion between hardware event counts and source code, since both source code and
compiler optimizations have an impact on the resulting hardware events. Moreover,
there is no direct link between hardware counters and the quality of the compiler
generated code. To have feedback from the compilation process, it is necessary to
analyze performance from the assembly generated code.

In this paper, we describe how our MAQAO [6] tool (Modular Assembly Qual-
ity Analyzer and Optimizer) handles performance analysis and memory tracing for
OpenMP programs. Although in this paper, our target architecture is Core2, the tool
can be easily retargeted to other x86 architectures essentially by changing the per-
formance models used. Targeting other architectures requires more work (dealing
with different instruction sets) but the main principles can be adapted fairly easily:
an earlier version of MAQAO was targeting IA64 architectures which are very dif-
ferent from X86. This tool combines static analysis of compiler-generated assembly
code with the analysis of execution traces and binary instrumentation. Static perfor-
mance evaluation provides hints on how to improve the compilation process, and
assess the amount of performance that could be obtained through optimization. This
estimation is performed on the sequential codes executed by threads. Improving
unicore performance (both in sequential and parallel part of the codes) contributes
to improving global performance and efficiency of the code. Dynamic, thread-wise
traces, in particular compact memory traces, show how to improve interactions be-
tween threads, and detect false sharing situations, for instance. We show in partic-
ular how static performance evaluation is achieved on Core 2 architecture and how
compact memory traces can be used to help tune OpenMP code performance.

7.2 Static Performance Evaluation

MAQAO relies on static performance evaluation to identify compiler optimizations
(or lack of), patterns of codes that are not efficient, and assess performance of loops.
The performance model and its use for x86 architecture is described in this section.
We first recall how MAQAO analyzes and restructures codes.

7 Performance Tuning of x86 OpenMP Codes with MAQAO 97

Fig. 7.1: The MAQAO user interface

7.2.1 Code Restructuring

MAQAO exploits static binary rewriting for reading and instrumenting object files
or executables. Static binary rewriting refers to the post-link time manipulation of
binary executables. This approach has the advantage, compared to approaches re-
quiring compiler interaction (analysis of assembly code) or inclusion of libraries (for
heap monitoring for instance), to obviate the need of recompiling or relinking. The
API for reading and manipulating static binary files is defined by MADRAS [18],
a generic disassembler and instrumenter generator. MADRAS takes a grammar as-
sociating binary expressions to assembly instructions, similarly to yacc grammars,
and generates a corresponding disassembler, using a linear-sweep method (similar
to objdump). This disassembler for x86 is then used by MAQAO.

The disassembled binary code is restructured: call graphs and control flow
graphs, loops and dependence graphs on registers are built (Fig. 7.2). The call graph
construction uses labels found in the binary, if any. Both call and control flow graphs
are limited in the presence of indirect jumps and self-rewriting codes. So far, there
is no (partial) interpretation of the code in order to resolve indirect jumps and self-
rewriting of codes. While the first limitation may prevent MAQAO from finding
correct control flow, the later may lead to incorrect disassembling. Natural loops are
built using a fast algorithm [9].

There is a direct link between each assembly statement and a source code state-
ment provided the debugging information is present (usually given when compiling

98 Denis Barthou, Andres Charif Rubial, William Jalby, Souad Koliai, and Cédric Valensi

Fig. 7.2: Data dependency graph of a loop

with -g flag). This link allows the detection of some compiler optimizations, such
as multiple versioning, inlining and unrolling to some extent. Innermost assembly
loops are grouped by source line so that users can visualize the generated assembly
loops for a given source loop (Fig. 7.3).

Fig. 7.3: Project - Files - Functions - Loops Hierarchy and corresponding source

7 Performance Tuning of x86 OpenMP Codes with MAQAO 99

7.2.2 Performance Model

The performance model of MAQAO computes performance estimates based on the
assembly code. It evaluates the cycles required for executing innermost loops. The
reason for considering only the innermost loops is that they usually constitute the
most time consuming part of the code. The x86 architecture model we consider takes
into account the front-end pipeline (decoding, permanent register file allocation,
special microcoded instructions), the different ports for the execution units, and the
latencies of instructions. For memory instructions, several latencies are considered,
according to the location of the data in memory hierarchy. For other instructions,
latencies are tabulated, either coming from microbenchmarks or from Agner docu-
mentation [8]. Note that the evaluation only provides an optimistic bound, meaning
that the real code may execute in more cycles due to some extra latency not taken
into account by our model.

Among different metrics that MAQAO can produce, we focus on the following
five key metrics:

1. Vectorization Report Analysis: This report, shown in Fig. 7.5b, provides us
with individual (load, store, add, multiply) reports on vector instruction usage:
for example a vector ratio of 1 for multiply operations means that all of mul-
tiply operations have been vectorized by the compiler. This ratio is computed
taking into account only floating point operations and full length packed vector
operations. These metrics are essential to evaluate the quality of the vectorizing
capabilities of the compiler and possibly to palliate some of its deficiencies by
inserting appropriate pragmas.

2. Execution port usage: For each execution port (Fig. 7.4), MAQAO computes
an estimation of the number of cycles spent on each port. Our performance es-
timates takes into account the special case of instructions which are split into

Fig. 7.4: Core2 execution unit overview

100 Denis Barthou, Andres Charif Rubial, William Jalby, Souad Koliai, and Cédric Valensi

(a) MAQAO statistics (b) MAQAO reports

Fig. 7.5: MAQAO interface details.

different micro-operations to be executed on multiple ports [8]. When an instruc-
tion (or a micro operation) can be executed on different ports (a common example
is simple integer instructions which can be assigned indifferently to P0, P1 and
P5), the less saturated port is chosen. Figure 7.5a shows the report presented by
MAQAO Since all of the ports can operate in parallel, this metric is essential to
measure the amount of parallelism exploitable between the key functional units:
add, multiply, load and store units. This provides a first estimate of a best perfor-
mance case (assuming all operands are in L1) and also of the potential imbalance
between the port usage. For example, this allows to quickly detect whether a code
is memory bound and to get a first quantitative estimate of how much a code is
memory bound. The number of cycles spent on every port gives us an accurate
ranking on the potential bottlenecks of the code difference in cycles between first
order and second order bottlenecks).

3. Performance estimation in L1: Taking into account all of the limitations of
the pipeline front end and of the pipeline back end, MAQAO provides us with

7 Performance Tuning of x86 OpenMP Codes with MAQAO 101

an estimate of the cycles necessary to execute one loop iteration assuming all
operands are in L1. The limitations that we are taking into account are: instruc-
tion predecoding, instruction decoding, permanent register file allocation, special
microcoded instructions. As mentioned earlier, in most cases this bound is only
useful as a lower bound.

4. Performance estimations in L2/RAM: Relying on memory access patterns de-
tected at the assembly level and micro benchmarking results on the same memory
patterns, MAQAO computes an estimate for the execution time of a loop itera-
tion, assuming all operands are in a given level of the memory hierarchy (L2 or
RAM) and are accessed with stride 1. The memory patterns used for the pat-
tern matching have previously been determined by systematic hierarchical mi-
crobenchmarking: first simple “Load X” (resp. “Store Y”) kernels (performing
a single read stream through an array X, resp. a simple writing stream through
an array Y) are measured under various conditions (unrolling, instruction used,
etc ..). Then more complex patterns “Load X Store Y”, “Load X Load Y”, “Load
X Load Y Store Z”, etc ... are measured to quantify the interaction between Load
streams and Stores streams. We experimentally observed that beyond 4 array
streams, most of the performance measured could be deduced from simpler pat-
terns. Therefore this simple set of patterns is used for our performance prediction
[10]. The L2 estimate constitutes a reasonable performance objective while the
RAM estimate is a stride 1 worst case. The drawback of both of these estimates is
that they ignore the stride problem (which in RAM will be essential) and, second,
that they do not take into account the mixture of hits and misses which is typical
for real applications. However, it should be noted that micro benchmarking al-
ready accounts for some typical mixture of hits/miss resulting from spatial local-
ity usage. For stride 1 memory access, micro benchmarking does not distinguish
between primary misses (occurring for the first word access to a cache line) and
secondary misses/hits (occurring when subsequent words in the cache line are re-
quested), it provides an estimate of the average time for accessing a memory lo-
cation in a stride 1 access mode (array stored in contiguous memory). The stride
problem can be easily corrected when the memory tracing analysis is performed,
because for each load/store, the striding pattern will be then determined. Then a
revised more accurate L2/RAM estimate can be generated. Again incorporating
this extra information enables MAQAO to produce better performance estimates.

5. Performance projections for full vectorization: In cases where the code is par-
tially or not vectorized, MAQAO computes performance estimations assuming a
full vectorization. This is performed by replacing the scalar operations by their
vector counterparts and updating the timing estimate due to the use of these in-
structions. This is particularly useful to guide the optimization process and to
avoid useless efforts: for example, indirect access to arrays cannot be vectorized
due to the lack of vector scatter/gather instructions in the current SSE instruction
sets. However, in most loops, these indirect accesses are followed by floating
point operations (adds or multiplies) which could be vectorized. The MAQAO
performance projection gives us quickly an estimate of whether trying to vector-
ize these operations will pay off or not.

102 Denis Barthou, Andres Charif Rubial, William Jalby, Souad Koliai, and Cédric Valensi

7.2.3 Applying MAQAO to Real-World Applications

To illustrate the interest of these metrics, we performed a static analysis using
MAQAO on two high performance codes from the ParMA project [16]: RECOM-
AIOLOS from RECOM, and ITRLSOL from Dassault-Aviation. Two code frag-
ments are shown in Fig. 7.6. The Intel C and Fortran Compilers (ifort and icc v11.0)
are used to generate the assembly codes analysed by MAQAO. They are also used to
generate OpenMP parallel regions when appropriate and also all of the performance
measurements have been carried out using these compilers.

DO IDO=1,NREDD
INC = INDINR(IDO)
HANB = AM(INC,1)*PHI(INC+1) &
+ AM(INC,2)*PHI(INC-1) &
+ AM(INC,3)*PHI(INC+INPD) &
+ AM(INC,4)*PHI(INC-INPD) &
+ AM(INC,5)*PHI(INC+NIJ) &
+ AM(INC,6)*PHI(INC-NIJ) &
+ SU(INC)
DLTPHI = HANB/AM(INC,7)-PHI(INC)
PHI(INC) = PHI(INC) + DLTPHI
RESI = RESI + ABS(DLTPHI)
RSUM = RSUM + ABS(PHI(INC))

(a) RECOM-AIOLOS analyzed code fragment

DO cb=1,ncbt
igp = isg isg = icolb(icb+1) igt = isg - igp

c$OMP PARALLEL DO DEFAULT(NONE)
c$OMP SHARED(igt,igp,nnbar,vecy,vecx,ompu,ompl)
c$OMP PRIVATE(ig,e,i,j,k,l)

DO ig=1,igt
e = ig + igp
i = nnbar(e,1)
j = nnbar(e,2)

cDEC$ IVDEP
DO k=1,ndof

cDEC$ IVDEP
DO l=1,ndof

vecy(i,k) = vecy(i,k) + ompu(e,k,l)*vecx(j,l)
vecy(j,k) = vecy(j,k) + ompl(e,k,l)*vecx(i,l)

(b) ITRLSOL analyzed code fragment

Fig. 7.6: Two examples of codes. The IVDEP pragma tells the compiler to vectorize
the loops.

The different execution ports P0 to P5 in the Core2 architecture correspond to
(Fig. 7.4):

• P0-P1-P5: computation units port
• P2: memory read port
• P3-P4: memory write ports

7 Performance Tuning of x86 OpenMP Codes with MAQAO 103

Depending on the number of cycles spent in each port, this information allows to
detect if the code is memory bound (P2, P3-P4) or compute bound (P0-P1-P5).

The 3D-combustion modeling software RECOM-AIOLOS is a tailored applica-
tion for the mathematical modelling of industrial firing systems ranging from several
hundred kW to more than 1000 MW. In-depth validation using measurements from
industrial power plants, the extension of chemical reaction models and the rapid
development of computer technology have made RECOM-AIOLOS a well proven
and reliable tool for the prediction equations on a 10-15 million cells finite vol-
ume grid, leading to high computational demands. Originally being designed for
high-performance computing on parallel vector-computers and massively parallel
systems, the software has been ported to low-cost multi-core systems to expand the
hardware base [17].

The most time consuming subroutine in RECOM-AIOLOS is RBgauss, which
implements a red-black iterative solver. The choice of the red-black algorithm al-
lows for easy parallelization with, for example, OpenMP. The RBgauss subroutine
contains two loops (denoted Red and Black loop) with a communication between
them using MPI. The static analysis with MAQAO is performed on the Red loop as
both loops are the same. It gives the following values:

• Vectorization report: all the ratios of vectorization are equal to 0%. The compiler
has not vectorized the loop.

• Execution units usage (format is PORT NUMBER:CYCLES SPENT): P0:8 /
P1:10 / P2:19 / P3:1 / P4:1 / P5:4.

• L1 prediction: 19 cycles.
• L2 prediction: 28.77 cycles.
• RAM prediction: 70.66 cycles.
• Vectorization prediction (assuming data in L1): 7 cycles.

Thanks to the static analysis of MAQAO, we can notice that the code is memory
bound on Core 2, since it takes 19 cycles to execute all read instructions. This cor-
responds to the largest number of cycles on any given port.

The memory traces achieved using MAQAO allowed to detect that there are two
arrays (AM and PHI) in the code which are accessed with a stride 2 with some gaps
from time to time.

Moreover, the large number of reads and the stride 2 access imply that the code
is very sensitive to cache misses [12].

Since the major bottleneck for this routine is data access from RAM combined
with low spatial locality (stride 2 access), various optimizing transformations are
performed, but only the following has a significant impact on performance: reshap-
ing array AM for getting rid of the stride 2 access. More precisely, the array AM is
split into two distinct arrays still with indirect access but stride 1. This is equivalent
to reshaping an array of complex numbers by splitting it into arrays, one containing
the real part, the other one containing the imaginary part.

Thanks to this optimization, the cache misses are almost half what they used to
be (Fig. 7.7b). Single core performance has been improved by speedups between

104 Denis Barthou, Andres Charif Rubial, William Jalby, Souad Koliai, and Cédric Valensi

1.2 and 1.3 (Fig. 7.7a) thanks to this code transformation. Multicore performance
has been improved by speedups between 1.3 and 1.4 (Fig. 7.8).

Fig. 7.7: RBgauss code optimization on unicore.

Fig. 7.8: RBgauss speedups on multicore.

The ITRLSOL (ITeRative Linear SOLver) application provided by Dassault-
Aviation is the linear solver kernel of AeTHER, a larger Computational Fluid Dy-
namics (CFD) simulation code for the solution of Navier-Stokes equations, dis-
cretized on unstructured meshes. The most time-consuming subroutine in ITRLSOL
is EUFLUXm, which implements a sparse matrix-vector product. The EUFLUXm sub-
routine contains two groups of quadruply nested loops (2 identical quadruply nested
loops in each group). For the considered 4-level loop nest in this code, the report
provides the following information:

• Vectorization report: all the ratios of vetorization are equal to 0%. The compiler
has not vectorized any loop, despite the presence of pragmas.

7 Performance Tuning of x86 OpenMP Codes with MAQAO 105

• Execution units usage (format is PORT NUMBER:CYCLES SPENT): P0:3 /
P1:3 / P2:6 / P3:2 / P4:2 / P5:3

• L1 prediction: 6 cycles.
• L2 prediction: 9.08 cycles.
• RAM prediction: 37.04 cycles.
• Vectorization prediction (assuming data in L1): 3 cycles.

The static analysis with MAQAO shows that the code is dominated by memory
accesses. The memory traces achieved with MAQAO allow us to detect that the
inner most loops are accessing the arrays in the wrong dimension which leads to a
poor spatial locality [12].

To improve the spatial locality, a transformation is done by interchanging the
second loop on ig and the two innermost loops (the ig loop becomes the innermost
loop). All of the arrays are now accessed column-wise. This optimization improves
sequential performance by speedup of 2.5 (Fig. 7.9a, Fig. 7.9b).

In a multicore environment the same optimization is applied. It gives a speedup
of up to 2.5 (Fig. 7.10).

Thanks to the information collected from the static analysis with MAQAO, we
detect that both applications RECOM-AIOLOS and ITRLSOL are not vectorized
and memory bound. Using this information and applying MAQAO memory traces
and PTU [3] (for performance tuning) allows us to find the performance bottleneck
(stride 2 access for RECOM-AIOLOS and poor spatial locality for ITRLSOL) in
these codes.

Fig. 7.9: EUFLUXm code optimization on unicore.

7.3 Memory Traces for OpenMP Codes

Memory traces represent information of crucial importance for performance tuning
of multithreaded codes. Indeed, traces can help detect important inefficiencies (false
sharing) or opportunities for optimizations (setting thread affinity according to reuse
among threads). The major issue of memory traces is the amount of data they repre-

106 Denis Barthou, Andres Charif Rubial, William Jalby, Souad Koliai, and Cédric Valensi

Fig. 7.10: ITRLSOL speedups on multicore.

sent. We first describe how the tracing is achieved in MAQAO, which algorithm we
use to compress the traces and how they are used in order to tune performance.

7.3.1 Static Binary Instrumentation

The static binary instrumentation is achieved using MADRAS [18]. It allows in-
struction level instrumentation, inserting probes either provided by MAQAO (for
iteration counts) or user-defined ones in libraries.

Figure 7.11 shows how easy it is to use this API to build an instrumenter mod-
ule. The two for loops walk through all blocks and all instructions of the loop with

Fig. 7.11: MADRAS API available through MAQAO (LUA scripting interface)

7 Performance Tuning of x86 OpenMP Codes with MAQAO 107

id 1. For each load and store instruction, the mt store function is called from the
libmaqaotrace library which contains the implementation of the trace compres-
sion algorithm mentioned earlier taking into account multithreading. This function
builds a compact trace of memory accesses. MADRAS performs instrumentation
statically, through binary rewriting, allowing the instrumented program to be run
without additional overhead.

7.3.2 Memory Traces

Memory accesses can dramatically slow down the execution time of a program,
particularly when it is memory bound. Capturing the memory behavior of a pro-
gram can help tune the code, using prefetching or transforming the code for a better
reuse of data. However, tracing memory accesses (load, store, prefetch) by simply
dumping all address streams would lead to many Terabytes of data on real applica-
tions. The memory space for these traces is a major concern in every trace-profiling
application. We first detail the compression algorithm used in MAQAO and then
describe how this method has been adapted to MAQAO for tracing multithreaded
codes (OpenMP programs support at the moment).

Compression Algorithm

The compression is ensured by an on-the-fly incremental algorithm called loop
nested recognition and developed by Ketterlin and Clauss [11]. We recall in this
section the main steps of this method.

Their technique represents memory address streams as union of Z-polytopes
which are represented by (nested) loops. The idea of using loops to characterize an
accessed region has first been introduced by Elnozahy [7]. Simpler representations
have been proposed using triplets (starting addresses, stride, number of references)
and their extension to multidimensional triplets [13]. This is a natural approach since
the majority of time execution of a program is spent in loops, and memory accesses
are regular. Figure 7.12 shows the parallel between a typical example of program
loop and its representation.

Fig. 7.12: Source code loop and its corresponding nested loop representation

108 Denis Barthou, Andres Charif Rubial, William Jalby, Souad Koliai, and Cédric Valensi

The algorithm takes into account two types of access patterns:

• regular patterns obtained by regular or irregular accesses
• irregular patterns due to random accesses. There is no easy way to deal with this

kind of pattern. Existing approaches fall back on lossy algorithms.

Each memory stream is assigned an internal stack that stores either regular and
irregular patterns. Regular patterns are stored in the loop format described above.
Irregular patterns, which correspond to a sequence of numbers without any affinity,
are kept as it is. The stack size management is controlled by three factors:

• the maximum stack size (length)
• the maximum number of terms within the loop body representation (breadth)
• the number of elements to throw when the size limit is reached

The algorithm is lossless as long as the stack is large enough to store all memory
streams. On some huge programs it may be necessary to voluntarily limit the stack
in order to prevent consuming all the available memory. In this case the algorithm
is lossy.

Multithread and Performance Issues

We have adapted the previous method to a multicore execution context and extended
it by taking into account static analysis information. Adaptation to multicore exe-
cution boils down to reimplementing the original method as a thread-safe method.
Traces are saved for each memory access, for each thread independently.

Instrumenting a code for memory traces usually generates a large overhead, and
most methods (such as Metric[13]) use sampling in order to reduce this weight
on the execution time. Another approach is to use static analysis in order to infer
fragments of traces from the assembly code. Indeed, tracking down the induction
variable of inner loops makes it possible to capture the stride of memory streams.
The value may appear in the code as a numerical constant or as a parametric constant
(invariant in the loop). But in both cases we only need this value and the iteration
count to extract the loop representation (usually found in some register). Thus this
saves a large part of the overhead due to instrumentation.

Our design still suffers from a lack of information about temporal locality. This
could be alleviated by using a simplified cache simulator. Its integration in MAQAO
is left for future work.

7.3.3 Using Traces for OpenMP Performance Issues

Once trace collection is done, the results are analyzed (manually at the moment)
and some hints are provided to the user to help tune the code. We provide thereafter
a number of scenarii reflecting performance issues that can be detected using this
trace framework.

7 Performance Tuning of x86 OpenMP Codes with MAQAO 109

• Potential bank/load store queue conflicts: this type of conflicts can be easily de-
tected by comparing addresses accessed by ”neighbor” instructions. On Xeon
architecture a store on address A followed by a load on address B can generate
pipeline stalls if address A and B have the same low order 12 bits (same offset
within a page). The performance impact will depend upon the execution distance
(how many cycles apart) between the load and store instructions. Detection of
this intra-thread issue consists in finding successive load/store patterns accessing
different addresses sharing the same low order 12 bits.

• False Sharing: Two threads share some cache line, while they do not share any
data. However, performance is impacted due to cache coherency issues. Patterns
that lead to false sharing can be tracked down by comparing addresses read and
written by different threads (loads and stores). Coherence issues increase with
the number of cores and the memory access is not uniform (case of Intel archi-
tectures).

• Prefetch distance: Prefetch distances can be found or guessed based on the ac-
cessed regions of memory. The memory region found by our trace mechanism
helps the user to determine if prefetch causes potential false sharing issues, de-
pending on the prefetch distance.

• OpenMP work distribution scheme: Based on the memory pattern accesses, we
can recover OpenMP work distribution scheme (different static, dynamic and
guided modes) and evaluate which mode is the more appropriate for the applica-
tion;

• Reuse degree between loads: Multiple loads on the same, shared data give us
temporal locality hints. The user could, if possible, reorder some statements to
take advantage of cached data at some point;

• Strided accesses: Depending on the programming language, data is stored by col-
umn or by row in memory. One possible optimization is to assess which config-
uration is the most efficient. Moreover, structure of arrays or arrays of structures
are usual choices that impact performance, in particular due to vectorization.
Evaluation from traces of the opportunity to vectorize memory accesses is an
important task in the code tuning phase.

To illustrate one of these scenarii, consider the code shown in Fig. 7.12. This
code could match for instance to a matrix multiplication code. The i loop can be
parallelized with OpenMP, and different load balancing methods can be chosen,
among which STATIC and DYNAMIC methods. Tracing memory writes reveals
that with a STATIC load balancing method and 8 threads, there is no false sharing
occurring. For the DYNAMIC method, as shown in Fig. 7.13, some false sharing
occurs, resulting in increased memory latency due to cache coherency mechanism
(false sharing for write accesses).

110 Denis Barthou, Andres Charif Rubial, William Jalby, Souad Koliai, and Cédric Valensi

Thread 1
for i0 = 0 to 127

for i1 = 0 to 127
val 0x45255b0 + 1024*i0

Thread 2
for i0 = 0 to 127

for i1 = 0 to 127
val 0x45255b8 + 1024*i0

Thread 3
for i0 = 0 to 127

for i1 = 0 to 127
val 0x45255c0 + 1024*i0

Thread 4
for i0 = 0 to 127

for i1 = 0 to 127
val 0x45255d8 + 1024*i0

Thread 5
for i0 = 0 to 127

for i1 = 0 to 127
val 0x45255d0 + 1024*i0

Thread 6
for i0 = 0 to 127

for i1 = 0 to 127
val 0x45255a8 + 1024*i0

Thread 7
for i0 = 0 to 127
for i1 = 0 to 127

val 0x45255c8 + 1024*i0

Thread 8
for i0 = 0 to 127
for i1 = 0 to 127

val 0x45255a0 + 1024*i0

Fig. 7.13: Partial traces corresponding to memory writes in a DGEMM code, where
the i loop is parallelized with DYNAMIC load balancing strategy. This solution is
not efficient due to the false sharing between threads (for instance, threads 1 and 2
access the same cache line).

7.4 Related Work

There are few performance tools dealing with parallel (multithreaded) codes opti-
mization.

Intel VTune [5] relies on the Thread Profiler application to determine the number
of cores that are being used, show the distribution of work to threads but does not
take into account memory accesses.

Acumem [1] rely on cache related statistics to predict performance bottlenecks.
MAQAO uses (memory accesses) tracing rather than sampling in order to provide
the user with very accurate results and detect unusual behaviours.

HPCToolkit [2] also works at binary level for language independence, collects
and correlates multiple performance metric, computes derived metrics to aid anal-
ysis. However it uses profiling rather than adding code instrumentation. MAQAO
supports code instrumentation to enable users inserting probes and concentrate on
specific parts of an application.

PIN [19] and DynInst [4] are two tools allowing modification of an executable for
the purpose of instrumentation. Both perform dynamic instrumentation, operating
on the executable while it is loaded in memory and running.

PIN traces an executable during its execution (acting as a ”just-in-time” com-
piler) and monitors various parameters. It allows to transfer control flow to external
functions, effectively inserting calls to these functions, and to modify the memory,
all of this while the executable is being executed. It is also possible with PIN to
insert probes in the executable while it is loaded in memory but not yet running,
which actually redirects the execution flow to another function. This mode does not
work on multi-threaded applications and does not check the destinations of jump in-
structions. PIN is also able to perform some static analysis of a file (like identifying
functions arguments).

7 Performance Tuning of x86 OpenMP Codes with MAQAO 111

DynInst [4] allows dynamic updating of code, a process labeled runtime injec-
tion. It proceeds by directly updating a program in memory to insert jumps pointing
to the added sections of code which reside somewhere else in memory. A recent
update also allows DynInst to perform some binary rewriting.

Instrumentation by MADRAS is not accomplished at runtime by another thread,
as it is performed statically. The instrumented program can then be run without addi-
tional overhead but the calls to the instrumented functions. No special environment
is required.

The integration of the MADRAS library allowed us to introduce the memory
tracing feature.

Valgrind [14] is a dynamic binary instrumentation and analysis framework which
uses a simulated CPU to analyse programs (in particular on cache and memory
use) and offer instrumentation options. The simulated CPU causes an important
slowdown of the analysed program and requires more memory space.

METRIC [13] uses dynamic instrumentation to capture memory accesses and
scope changes.

PSnAP [15] also uses dynamic instrumentation to generate memory stream pro-
files on a per loop basis as MAQAO does.

Ketterlin & Clauss [11] propose a more sophisticated compression technique that
we are using in our memory tracing library.

To our best knowledge, there is no existing technique for memory tracing of
parallel (multithreaded) codes.

7.5 Conclusions and Future Work

MAQAO is a tool for performance tuning that relies on both static analysis of bi-
naries and on data collected through instrumentation. We have shown in this paper
how the performance model for x86 processors is designed inside MAQAO and how
memory tracing for OpenMP programs is achieved.

The static analysis is combined with the hint mechanisms of MAQAO, helping
the user to locate easily in the application source code the code fragments that ex-
hibit poor performance. Moreover, this analysis provides a rough estimate of the
possible performance gains that could be expected by an efficient vectorization.
The memory tracing method we propose relies on two mechanisms: a new binary
instrumentation framework, MADRAS, where each assembly instruction can be in-
strumented individually, and a compact memory trace representation [11], extended
for multithreaded programs. We have shown, through multiple scenarii, how the
multithreaded trace information can be used to detect performance issues specific to
multicore machines.

For future work, we plan to improve the trace representation in order to capture
partially some scheduling information (associating time stamps with memory ad-
dresses). In future versions, trace results will be analysed automatically. MAQAO
still needs the assembly code for building its analysis and will rely only on the data

112 Denis Barthou, Andres Charif Rubial, William Jalby, Souad Koliai, and Cédric Valensi

extracted from the disassembled binary in the next release (the disassembled bi-
nary from MADRAS being used in correlation with it to retrieve the instructions
addresses).

References

1. Acumum AB. Acumem SlowSpotter and Acumem ThreadSpotter, 2009. http://www.
acumem.com/content/view/133/182/.

2. L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-Crummey, and N. R. Tal-
lent. HPCToolkit: Tools for performance analysis of optimized parallel programs. Technical
Report TR08-06, Rice University, 2008.

3. A. Alexandrov, S. Bratanov, J. Fedorova, D. Levinthal, I. Lopatin, and D. Ryabtsev. Par-
allelization Made Easier with Intel Performance-Tuning Utility, 2007. http://www.
intel.com/technology/itj/2007/v11i4/.

4. B. Buck and J. K. Hollingsworth. An API for Runtime Code Patching. Intl. Journal of High
Performance Computing Applications, 14:317–329, 2000.

5. Intel Corporation. Intel VTune Performance Analyzer 9.1, 2009. http://software.
intel.com/en-us/intel-vtune/.

6. L. Djoudi, D. Barthou, P. Carribault, C. Lemuet, J-T. Acquaviva, and W. Jalby. Exploring Ap-
plication Performance: a New Tool For a Static/Dynamic Approach. In Los Alamos Computer
Science Institute Symp., Santa Fe, NM, October 2005.

7. E. N. Elnozahy. Address trace compression through loop detection and reduction. SIGMET-
RICS Perform. Eval. Rev., 27(1):214–215, 1999.

8. Agner F. Software optimization resources, 2009. http://www.agner.org/optimize/.
9. L. Georgiadis, R. F. Werneck, R. E. Tarjan, S. Triantafyllis, and D. I. August. Algorithms -

ESA, 3221:677–688, 2004.
10. W. Jalby, C. Lemuet, and X. Le Pasteur. A New Set of Microbenchmarks to Explore Memory

System Performance for Scientific Computing, 2004. International Journal of High Perfor-
mance Computing Applications.

11. A. Ketterlin and Ph. Clauss. Prediction and Trace Compression of Data Access trough Nested
Loop Recognition. In ACM/IEEE Int. Symp. on Code Optimization and Generation, 2008.

12. S. Koliai, S. Zuckerman, E. Oseret, M. Ivascot, T. Moseley, D. Quang, and W. Jalby. A Bal-
anced Approach to Application Performance Tuning. In Proc. of LCPC, LNCS, Delaware,
USA, October 2009. Springer.

13. J. Marathe, F. Mueller, T. Mohan, B. R. de Supinski, S. A. McKee, and A. Yoo. METRIC:
Tracking Down Inefficiencies in the Memory Hierarchy via Binary Rewriting. ACM/IEEE Int.
Symp. on Code Optimization and Generation, 0:289, 2003.

14. N. Nethercote and J. Seward. Valgrind: A Framework for Heavyweight Dynamic Binary In-
strumentation. 2007. Proceedings of ACM SIGPLAN 2007 Conference on Programming Lan-
guage Design and Implementation (PLDI 2007), San Diego, California, USA, June 2007.

15. C. Mills Olschanowsky, M. Tikir, L. Carrington, and A. Snavely. PSnAP: Accurate Synthetic
Address Streams Through Memory Profiles. In Int. Workshop on Languages and Compilers
for Parallel Computing, 2009.

16. ParMA ITEA2 Project: Parallel Programming for Multicore Architectures.
http://www.parma-itea2.org/.

17. B. Risio, A. Berreth, S. Zuckerman, S. Koliai, M. Ivascot, W. Jalby, B. Krammer, B. Mohr,
and T. William. How to Accelerate an Application: a Practical Case Study in Combustion
Modelling. In Proc. of ParCo, Lyon, France, 2009.

18. C. Valensi and D. Barthou. MADRAS: Multi-Architecture Disassembler and Reassembler,
2009. http://maqao.prism.uvsq.fr/wiki/wiki/MadrasDownload.

http://www.acumem.com/content/view/133/182/
http://www.acumem.com/content/view/133/182/
http://www.intel.com/technology/itj/2007/v11i4/
http://www.intel.com/technology/itj/2007/v11i4/
http://software.intel.com/en-us/intel-vtune/
http://software.intel.com/en-us/intel-vtune/
http://www.agner.org/optimize/
http://www.parma-itea2.org/
http://maqao.prism.uvsq.fr/wiki/wiki/MadrasDownload

7 Performance Tuning of x86 OpenMP Codes with MAQAO 113

19. S. Wallace and K. Hazelwood. SuperPin: Parallelizing Dynamic Instrumentation for Real-
Time Performance. In ACM/IEEE Int. Symp. on Code Optimization and Generation, pages
209–217, San Jose, CA, March 2007.

20. F. Wolf, B.J.N. Wylie, E. Ábrahám, D. Becker, W. Frings, K. Fürlinger, M. Geimer, M.-A. Her-
manns, B. Mohr, S. Moore, M. Pfeifer, and Z. Szebenyi. Usage of the SCALASCA Toolset for
Scalable Performance Analysis of Large-Scale Parallel Applications. In Proc. of the 2nd HLRS
Parallel Tools Workshop, pages 157–167, Stuttgart, Germany, July 2008. Springer. ISBN 978-
3-540-68561-6.

Chapter 8
Scalable Parallel Debugging with g-Eclipse

Thomas Köckerbauer, Christof Klausecker, and Dieter Kranzlmüller

Abstract Simulation software on today’s HPC systems needs to be scalable to a
large number of processes to make efficient use of such machines. Already at this
level and especially with the expected increasing scalability of upcoming machines,
the development and debugging of parallel programs becomes an increasingly dif-
ficult task. Consequently, sophisticated tools providing mechanisms for handling
large-scale parallel and distributed programs are needed. In this paper we show sev-
eral ways to improve the handling of large event traces using the Trace Viewer plug-
in of the g-Eclipse tool and we propose the use of a pattern matching technique to
simplify the debugging of large message passing parallel programs. With the pattern
matching approach, we enable an additional layer of abstraction, which supports the
user in understanding the program’s behaviour.

8.1 Introduction

Locating errors in defective programs is a time consuming and difficult process.
This is even more true for concurrent programs, due to additional error sources in-
troduced by their parallel nature. Simplified, we can identify the following three
reasons why debugging parallel applications differs from debugging sequential ap-
plications [5]:

• Increased complexity
• Amount of debugging data
• Additional anomalous effects (e.g. race conditions)

Thomas Köckerbauer, Christof Klausecker, Dieter Kranzlmüller
MNM-Team, Ludwig-Maximilans-Universität München (LMU)
Oettingenstraße 67, 80538 Munich, Germany
e-mail: koecker@nm.ifi.lmu.de

M.S. Müller et al. (eds.), Tools for High Performance Computing 2009,
DOI 10.1007/978-3-642-11261-4 8, © Springer-Verlag Berlin Heidelberg 2010

115

mailto:koecker@nm.ifi.lmu.de
http://dx.doi.org/10.1007/978-3-642-11261-4_8

116 Thomas Köckerbauer, Christof Klausecker, and Dieter Kranzlmüller

Due to the increased complexity of parallel and distributed programs it is hard
to find errors by relying only on textual debugging information. For this reason, so-
phisticated program analysis tools supporting the developer during the debugging
task by raising the level of abstraction from the textual representation of the source
code are necessary. Even though a variety of such tools is already available, it is still
questionable how well today’s tools deal with the increasing number of processors
in parallel systems, since the amount of debugging data is growing with them. In
this paper, we discuss a possible solution to this problem with the Trace Viewer, a
component of g-Eclipse, using several abstraction techniques. Furthermore, we pro-
vide some details about the included pattern matching technique, which identifies
pre-defined communication patterns in event traces.

In [1] we provide an overview of the parallel application debugging capabili-
ties of g-Eclipse [3]12. g-Eclipse is an integrated workbench framework allowing to
access the power of diverse computing infrastructures. It provides tools for Grids,
Clouds, and High Performance Computing covering user, operator, and developer
tasks. g-Eclipse is built on top of the Eclipse framework and continues as an Eclipse
Technology Project3 released under the Eclipse Public License (EPL). Currently
version 1.0 of g-Eclipse is available for download.

8.2 Related Work

Due to the complexity of parallel programs and the resulting need for tool support,
a broad spectrum of tools has been created, helping the developer to analyse and
debug such programs.

Besides tools that search for potential problems without the collection of trace
data, for example by performing run-time correctness checks like Marmot [4], also
tools based on recorded program traces are available. The traces can be used to
generate a communication graph enabling post-mortem program analysis.

One of those graph visualization tools is the Trace Viewer plug-in [1] which is
integrated into g-Eclipse. It is based on the experience gathered with ATEMPT [6]
and DeWiz [7] and can be seen as their evolutionary successor.

VAMPIR [11] is another well-known tool using trace data for parallel pro-
gram analysis. Its main focus is on performance optimisation of parallel programs,
whereas the Trace Viewer is targeted at supporting the debugging process. However,
the basic data used by VAMPIR and the g-Eclipse Trace Viewer is compatible, and
therefore the techniques could be used in both tools.

With the Trace Viewer, we pursue the approach of applying pattern matching
techniques on trace data to find relevant structures in communication graphs en-
abling to enhance the graphical representation by highlighting the found structures.

1 g-Eclipse has been partially supported under the European Union’s 6th Framework Programme
from 07/2006 until 12/2008, Contract Number IST-0343272.
2 http://www.geclipse.eu/
3 http://www.eclipse.org/geclipse/

http://www.geclipse.eu/
http://www.eclipse.org/geclipse/

8 Scalable Parallel Debugging with g-Eclipse 117

In related works, different aspects of using pattern matching to analyse message
passing programs have been employed.

Martino et al. proposed the use of static analysis in combination with solving
diophantine sets of inequalities to find patterns in parallel programs on source code
level [10]. This approach depends on the possibility to evaluate conditions influ-
encing sent messages without actually running the program. The communication
depending on information only present at run-time can not be analysed this way.

A different approach is to use suffix trees to find repeating communication events
in traces [12]. One of the issues of this approach is to determine which sequence of
repeating events to identify as the actual communication pattern, since the detected
instances are typically not well-known communication structures but concatenations
of them. While the technique is useful to find potential patterns in programs even if
the expected communication structure is unknown, it does not allow to identify the
kind of the detected patterns.

Ma et al. use pattern matching on graphs containing one node per process, and
edges between the nodes communicating during the program execution [9]. This
allows to identify communication patterns in programs not containing more than
one pattern, or in selected parts of a program execution. However, it does not allow
a distinction between different patterns with identical structure.

One of the many applications of pattern matching is the search for inefficient
communication structures, with the goal of replacing them with more efficient ones
and thereby improving the overall performance. This can be achieved by steering
source code transformation using the information gathered from analysing trace
data [13].

Another Eclipse project focused on providing tool support for parallel program
development and debugging is the Parallel Tools Platform4 (PTP). While PTP also
focuses on scalable debugging of parallel programs, it does not include tools to
analyse trace data, whereas we want to approach the debugging problem by using
scalable trace visualization.

8.3 Debugging Parallel Programs Using g-Eclipse

The HPC specific program development and debugging functionality of g-Eclipse
consists of three major components:

• Trace Viewer
• Remote Builder
• Remote Application Launchers

The central element is the Trace Viewer component, a tool allowing to visualize
and analyse the communication of parallel message passing programs. It has been

4 http://eclipse.org/ptp/

http://eclipse.org/ptp/

118 Thomas Köckerbauer, Christof Klausecker, and Dieter Kranzlmüller

designed to be extensible and with future use in mind, enabling to contribute func-
tionality via the Eclipse plug-in system. There are already several plug-ins available
making use of the provided extension points.

The two existing trace provider plug-ins allow to open pre-recorded event traces
in file formats from NOndeterministic Program Evaluator (NOPE) [8] and Open
Trace Format (OTF) [2]. The visualization plug-ins use the provided data and take
care of graphically presenting it. The provided core visualization plug-ins are based
on the event-graph model, and enable to depict events in a space-time diagram ac-
cording to their physical or logical timestamps. Additionally, a plug-in for display-
ing statistical data is available. The presentation of trace data can be altered by action
and marker plug-ins, allowing to perform actions on, and change the appearance of
certain parts of the event graph. Thereby, it is possible to highlight, hide, or re-order
selected events and processes in the graph of a parallel program.

Apart from the Trace Viewer, the provided program development and debugging
components include the Remote Builder, which allows to automatically build source
code projects residing in the local g-Eclipse workspace on a remote machine. This
enables the developer to compile applications for a remote environment without
installing additional libraries, even for different architectures and operating systems.

After compilation, the generated executables can be started using the Application
Launcher provided by g-Eclipse. The launcher enables to run and debug applications
remotely, and also supports debugging of parallel programs comprising multiple
processes.

To improve the debugging experience, the standard Eclipse debugging perspec-
tive was extended to ease the work of the developer when debugging parallel ap-
plications. This was achieved through integrating the Trace Viewer and establishing
the link between trace visualization and symbolic debugging by enabling visual
breakpointing, and by connecting graph and source code information [1].

Although program traces can easily occupy several hundred megabytes of stor-
age, it is no problem to display such traces using the Trace Viewer, since all data
is held in memory mapped files, mainly requiring virtual address space. However,
while graphs with a small number of processes, or little communication, can be anal-
ysed by manual inspection, the presentation of programs with extensive interaction
can get rather confusing, and it becomes hard for the developer to extract relevant
information manually.

Therefore, ways to preprocess traces by filtering unnecessary or redundant data,
and ways to identify important information in order to be highlighted in the event
graph need to be established.

8.4 Reduction of the Trace Complexity

Since large traces contain an overwhelming amount of data, the information pre-
sented to the developer has to be filtered. For this reason the Trace Viewer contains
several, manual and automatic, abstraction techniques which are integrated via the

8 Scalable Parallel Debugging with g-Eclipse 119

extension points provided. This allows to reduce the amount of displayed informa-
tion, hides irrelevant data or highlights events of interest by marking them in the
event graph.
The provided trace filtering and highlighting features include:

• Grouping of processes in the trace using various techniques. This can, for in-
stance, be useful to reduce the display of the trace by a dimension in the commu-
nication structure.

• Removal of all processes that are not involved in the communication with the
process(es) of interest. This allows to only focus on communication that is neigh-
bouring the processes in the communication structure (see Figure 8.1).

Fig. 8.1: Screenshot of a trace in which only the events of the selected process and
its partners are displayed.

• Detection and marking of potential race conditions caused by wildcard receives.
This enables to detect possible sources of non-determinism in parallel programs
and allows to more easily compare different program runs.

• Highlighting of messages as well as events by matching user specified criteria,
like for example the MPI routine, with event properties. Additionally, it is possi-
ble to unveil communication with different accepted and expected message sizes.

• Marking of patterns matched with a user defined set of pattern descriptions. This
feature allows the distinction of parts in the trace that are composed from well
known communication patterns from parts that do not follow those patterns.

120 Thomas Köckerbauer, Christof Klausecker, and Dieter Kranzlmüller

8.5 Pattern Matching5

Traces of typical programs often contain repeating communication which follows
certain patterns. To provide an insight into these communication structures, espe-
cially of large traces, different pattern matching techniques were developed.

In [13] an algorithm allowing to automatically extract repeating communication
patterns from MPI traces using suffix trees was introduced. This helps providing a
high-level understanding of the application’s communication behaviour and allows
to spot errors in communication, like an irregularity in the pattern.

Often it is the case that the expected communication structure in a program is
known by the developer, and it would be beneficial for the developer to check if
those patterns are appearing in an expected way.

The approach described here uses a set of patterns, defined by the developer and
stored in a pattern database, which should be contained in the event graph. The
pattern matching plug-in of the Trace Viewer allows to filter well known patterns,
which can be defined using a pattern description language. The found patterns are
marked in the trace to distinguish them from the rest of the events. Since the dis-
played graph in the Trace Viewer contains marked patterns which can be recognised
quickly it is easier to focus on communication that does not follow the well known,
expected patterns. The unmarked events may be the result of an error that interfered
with the communication in a way that it does not follow the patterns anymore.

Fig. 8.2: Steps of the pattern matching process.

The pattern detection in the proposed approach is done in several steps (see Fig-
ure 8.2):

1. The pattern descriptions, created by the developer, are parsed and abstract syntax
trees (AST) of the descriptions get built.

2. The ASTs of the descriptions get executed for the desired process count, thereby
producing a reference pattern matching the scale of the trace to search in.

3. These reference patterns are stored on disk, since they can be reused if there is
another search for this pattern in a trace with the same amount of processes. In
this case (provided that the pattern description was not changed in the meantime)
the steps 1 and 2 are skipped in the next search.

4. A hash-based search on the individual processes of the trace is done to find po-
tential matches on a per-process base. This search also considers variations of the
patterns, which can for example be caused by a reordering of the process IDs in
comparison to the reference pattern.

5 Section 5 on pattern matching is part of the PhD thesis of Thomas Köckerbauer

8 Scalable Parallel Debugging with g-Eclipse 121

5. The potential matches on the different processes are merged and get checked if
they form a described pattern.

Fig. 8.3: Screenshot of a trace without pattern marker. The send and receive events
are depicted in different colours.

Fig. 8.4: Screenshot of a trace with pattern marker. The tooltip shows the event type
and the identified pattern instance.

Figure 8.3 shows a trace with only a few processes and although it is easy to
see that there is some repeating pattern it already requires some time to find out
which pattern it contains. Figure 8.4 shows the same trace with the pattern marker
applied which highlights the found pattern instances. The tooltips of the events in
the pattern now additionally contain information about the found pattern. In the
example of Figure 8.4 it shows that the detected pattern is a ”mesh” pattern with the
dimension 2x4.

122 Thomas Köckerbauer, Christof Klausecker, and Dieter Kranzlmüller

8.6 Summary and Conclusions

In this paper we suggest an additional step to be inserted into our previously estab-
lished debugging approach. The resulting debugging approach can be divided into
the following 6 steps:

1. Record the trace data during an initial program run.
2. Apply abstraction mechanisms provided by the Trace Viewer to identify errors.
3. Set breakpoints on events in the event graph using the Trace Viewer.
4. Launch applications remotely with debuggers attached to the individual pro-

cesses using an Application Launcher.
5. Use Eclipse’s standard debugging features to debug the remotely running parallel

applications.
6. Rebuild the application on a remote host using the Remote Builder.

In this paper, we have shown how using event graph visualization instead of rely-
ing only on textual representation of information can benefit the debugging process.
We have introduced several abstraction mechanisms allowing to use the event graph
even for complex applications comprising a large number of processes and exten-
sive interaction. With the prospect of even more processing cores in future parallel
systems, debugging and analysis software tools need to be flexible, extensible, and
- first and foremost - scalable. Therefore, abstraction and automation techniques,
supporting the developer by preprocessing information are a basic necessity.

To improve the user experience for the Trace Viewer even more, and to make the
accessibility of large traces easier and more intuitive, other means of extracting and
highlighting relevant information will be explored to make most significant correla-
tions more obvious. Another step to achieve the objective of scalable trace analysis
will be the grouping of the patterns, to further reduce the amount of information
displayed on the screen to the most essential data. Additionally, ways to refine the
proposed pattern matching technique will be investigated.

Even though the main focus of the Trace Viewer is on debugging of message
passing programs we are also planning on extending it by integrating support for
performance analysis tools in order to make our tool even more versatile.

References

1. Christof Klausecker, Thomas Köckerbauer, Robert Preissl, and Dieter Kranzlmüller. Debug-
ging MPI programs on the grid using g-Eclipse. In Michael Resch, Rainer Keller, Valentin
Himmler, Bettina Krammer, and Alexander Schulz, editors, Tools for High Performance Com-
puting, Proceedings of the 2nd International Workshop on Parallel Tools for High Perfor-
mance Computing, pages 35–45, Stuttgart, July 2008. HLRS, Springer-Verlag.

2. Andreas Knüpfer, Ronny Brendel, Holger Brunst, Hartmut Mix, and Wolfgang E. Nagel. In-
troducing the open trace format (OTF). In ICCS 2006, volume 3992/2006 of Lecture Notes in
Computer Science, pages 526–533. Springer Berlin / Heidelberg, 2006.

8 Scalable Parallel Debugging with g-Eclipse 123

3. Harald Kornmayer, Mathias Stümpert, Markus Knauer, and Pawel Wolniewicz. g-Eclipse -
an integrated workbench tool for grid application users, grid operators and grid application
developers. In Cracow Grid Workshop ’06, Cracow, Poland, October 2006.

4. Bettina Krammer, Katrin Bidmon, Matthias S. Müller, and Michael M. Resch. MARMOT: An
MPI analysis and checking tool. In ParCo, pages 493–500, 2003.

5. Dieter Kranzlmüller. Event Graph Analysis for Debugging Massively Parallel Programs. PhD
thesis, Johannes Kepler University Linz, September 2000.

6. Dieter Kranzlmüller, Siegfried Grabner, and Jens Volkert. Event graph visualization for de-
bugging large applications. In SPDT ’96: Proceedings of the SIGMETRICS symposium on
Parallel and distributed tools, pages 108–117, New York, NY, USA, 1996. ACM.

7. Dieter Kranzlmüller, Michael Scarpa, and Jens Volkert. DeWiz - a modular tool architecture
for parallel program analysis. In Euro-Par, pages 74–80, 2003.

8. Dieter Kranzlmüller and Jens Volkert. NOPE: A nondeterministic program evaluator. In Par-
Num ’99: Proceedings of the 4th International ACPC Conference Including Special Tracks
on Parallel Numerics and Parallel Computing in Image Processing, Video Processing, and
Multimedia, pages 490–499, London, UK, 1999. Springer-Verlag.

9. Chao Ma, Yong Meng Teo, Verdi March, Naixue Xiong, Ioana Romelia Pop, Yan Xiang He,
and Simon See. An approach for matching communication patterns in parallel applications. In
IPDPS 2009, 2009.

10. Beniamino Di Martino, Antonino Mazzeo, Nicola Mazzocca, and Umberto Villano. Parallel
program analysis and restructuring by detection of point-to-point interaction patterns and their
transformation into collective communication constructs. Science of Computer Programming,
40(2-3):235–261, 2001.

11. Wolfgang E. Nagel, Alfred Arnold, Michael Weber, Hans-Christian Hoppe, and Karl Solchen-
bach. VAMPIR: Visualization and analysis of MPI resources. Supercomputer, 12(1):69–80,
Jan 1996.

12. Robert Preissl, Thomas Köckerbauer, Martin Schulz, Dieter Kranzlmüller, Bronis R. de Supin-
ski, and Daniel J. Quinlan. Detecting patterns in MPI communication traces. International
Conference on Parallel Processing, 0:230–237, 2008.

13. Robert Preissl, Martin Schulz, Dieter Kranzlmüller, Bronis R. de Supinski, and Daniel J.
Quinlan. Using MPI communication patterns to guide source code transformations. In Marian
Bubak, G. Dick van Albada, Jack Dongarra, and Peter M. A. Sloot, editors, ICCS (3), volume
5103 of Lecture Notes in Computer Science, pages 253–260. Springer, 2008.

Chapter 9
New Analysis Techniques in the CEPBA-Tools
Environment

Jesus Labarta

Abstract The CEPBA tools environment is a performance analysis environment
that initially focused on trace visualization and analysis. Current development ef-
forts try to go beyond the presentation of simple statistics by introducing more in-
telligence in the analysis of the raw data.
The paper presents an overview of three recent developments in this area. First,
we show how spectral analysis techniques can be used to isolate sufficiently small
regions of a trace that characterize the behavior of the whole run. Second, we de-
scribe how clustering analysis techniques can be used to identify temporal and spa-
tial structure in parallel programs, an essential component to ease the job of the
analyst, but also to automatically derive a broad range of both precise and focused
metrics from a single run of a program. Then we describe how sampling and trac-
ing data acquisition techniques can interoperate to generate with very low overhead
extremely precise metrics about the temporal behavior of a program.
The development rests upon the trace based CEPBA-Tools environment, using the
Paraver visualization capabilities to check the quality and usefulness of the tech-
niques. Once identified, they can be implemented on-line aiming at maximizing the
amount of information obtained from a run. We report the work being done on top
of MRNET in this direction.
We consider that by applying and combining these and other techniques from var-
ious data analysis and mining fields, performance analysis tools will be able to ef-
fectively address the huge challenge posed by future exascale systems.

Jesus Labarta
Barcelona Supercomputing Center and Technical University of Catalonia,
Jordi Girona 29, Barcelona, Spain,
e-mail: jesus.labarta@bsc.es

M.S. Müller et al. (eds.), Tools for High Performance Computing 2009,
DOI 10.1007/978-3-642-11261-4 9, © Springer-Verlag Berlin Heidelberg 2010

125

mailto:jesus.labarta@bsc.es
http://dx.doi.org/10.1007/978-3-642-11261-4_9

126 Jesus Labarta

9.1 Introduction

As larger and larger systems are being developed and applications run on them, the
issue of understanding how they behave and how efficiently our applications use the
available resources is more and more important.

Performance analysis tools rely on hooks injected into programs to capture rele-
vant events and derive the metrics that quantify and explain their behavior from the
acquired data. Traditionally the focus of performance analysis tools has been cen-
tered on the monitoring or data acquisition mechanisms. The algorithms used for
processing the raw data before presenting results to the analyst are typically very
simple. Profilers are the more widely used type of tools and they just present sim-
ple statistics like time in each routine, total count of invocations or the accumulated
instructions. By aggregating over the time and processor dimensions and focusing
on a limited set of predefined metrics, profilers reduce the amount of data that has
to be emitted and then presented to the user. This advantage comes at the expense
of loosing detail on the variability of system activity and results in a lot of relevant
information being discarded.

Intermediate approaches with different amounts of precomputed profile data have
been used but the question arises as to how raw data should be processed to maxi-
mize the relevant information obtained from it while minimizing the amount of data
emitted.

Other areas of science and engineering have developed elaborated techniques to
extract useful information out of the raw data. Signal and image processing and data
mining techniques are widely used in different fields with such purpose. We have
the perception that performance analysis lags far behind other areas in the actual use
of those techniques as well as the conviction that they could be successfully used in
our field.

In this paper we describe some of the usages of signal processing and data anal-
ysis techniques within the CEPBA-tools environment. Section 9.2 briefly describes
the environment used to develop and validate the approaches described in succes-
sive sections. Section 9.3 then focuses on the use of spectral analysis techniques,
section 9.4 on the use of clustering techniques and section 9.5 on the combined use
of instrumentation and sampling. Section 9.6 describes current work in integrating
the above described techniques in an automatic on-line analysis environment and
section 9.7 presents some views on future directions.

9.2 The CEPBA-Tools Environment

The development of the CEPBA-tools environment started in 1996 [5] with the ob-
jective to better understand the detailed interactions that could take place in a mul-
tiprogrammed message passing machine based on the Transputer chip. Three main
components constituted the environment: a set of tracing packages (now MPITrace)
for message passing programs, a simulator (Dimemas) for message passing ma-

9 New Analysis Techniques in the CEPBA-Tools Environment 127

chines also modeling the time sharing behavior within a node and a visualizer (Par-
aver) capable of displaying traces produced by the simulator. The traces capturing
the actual behavior of a run of the parallel program could also be directly generated
by the instrumentation package and visualized with Paraver. The usage of the tools
then evolved to support detailed analysis of single applications and prediction of the
impact of different architectural parameters in their performance.

Paraver is a flexible browser for traces that contain sequences of timestamped
records of three types: events, states and communication. The Paraver trace format
describes the structure of these records but their semantic is essentially undefined,
which gives the possibility to apply the tool in very different areas, areas far beyond
those initially targeted. This is certainly the case for the records that represent a
punctual event with two attributes (type and value) and for state records that repre-
sent an interval between start and end for which one attribute is given. The attributes
are integer values in which the tracing package can encode the information as de-
sired. Each record applies to one object in a hierarchical structure of three levels
which when instrumenting parallel programs are typically mapped to application,
process and thread. Communication records actually relate two such objects and
have two additional attributes.

The core of the Paraver engine [12] is called the semantic module. It provides
through its GUI a very flexible algebra to specify how functions of time can be
generated out of the records and the numerical values of their attributes. One such
function of time is generated for each object. The fact that internally Paraver consid-
ers the data it handles as functions of time leads naturally to some of the techniques
described through the paper. Finally, a simple but flexible rendering mechanism
translates the functions of time to colored timeline plots. Typically a palette of col-
ors is used to translate categorical valued functions of time such as identifier of the
MPI call, or user function. A gradient color map is used for continuous valued func-
tions, using light green for low values up to dark blue for large values. Areas where
the function value is above a specified range are highlighted in orange and if the
function value is zero, the background color is used. Non linear rendering is used to
expose information to the analyst in cases where many values map to a pixel. This
technique addresses the scalability issues faced when displaying traces with many
objects or representing long time intervals.

The analysis module implements a single mechanism to compute tables. A very
generic approach is used, able to not only report statistics but also histograms and
correlations between any of the functions generated by the semantic module.

Complex expressions can be defined in the semantic and analysis modules and
saved along with the display setup in configuration files for later reuse. The lack of
semantics in the trace format plus the flexibility of these two modules makes Paraver
an extremely powerful and versatile browser. It has been used to analyze MPI and
MPI+OpenMP programs but also operating system activity, multicore architectures,
or file system behavior. Other time series not having any relationship to parallel pro-
gramming such as stock sensor data or exchange rates could be analyzed in Paraver
without requiring any modification of its source code and without requiring convo-

128 Jesus Labarta

luted mappings of concepts in these areas to the concepts handled by visualizers too
specialized in just parallel program.

9.3 Spectral Analysis

Many applications tend to have an iterative structure, originating from the time step-
ping process they often simulate. The behavior of such iterations tends to be very
repetitive or at most slowly varying as the simulated system evolves. This means that
a few iterations are sufficient to describe the behavior of applications during long
intervals of time. Spectral analysis techniques can be used to determine the periodic
structure of a program. One of the applications of such analysis is to automatically
select the time interval to be traced such that at least one whole period is captured.

Other sources of repetitive behavior are the iterative nature of the numerical al-
gorithms, the need to process a large number of particles or elements, and so on.
These iterative patterns may be nested but for a global performance analysis pur-
pose we are mostly interested in the outermost levels. In [4] we showed how the
iterative behavior at different levels can be identified on traces from large runs of a
program. The main usage in that work addressed the possibility of reducing the size
of the traces required to still be able to do very detailed analyses.

The spectral analysis can be applied to signals representing the evolution with
time of some metric for the whole applications, such as average instantaneous in-
structions per cycle (IPC), or actual number of processes inside MPI calls. The paper
also revealed that it is not necessary to use signals representing a metric meaningful
from the performance point of view. In fact, the sum at each point in time of the du-
ration of the computation burst of all the processes is a signal with no real meaning
that captures pretty well the structure of an application. A computation burst is the
time interval between exit of an MPI call and entry to the next. During the whole
burst, a process contributes with its duration to the global function. While a process
is inside MPI no contribution is made to the global signal.

In the same study we also showed how other techniques such as mathematical
morphology can be used to clean-up signals. This non linear filtering technique was
applied to signals identifying regions where certain type of perturbations occurred
while obtaining the trace. One example of such a signal is the number of processes
flushing their trace buffer to disk. Although with sufficiently large buffers this will
not be very frequent, it will certainly perturb not only the process doing the flush but
also other processes communicating with it. Furthermore, it is frequent that different
processes flush their buffers at about the same time. By applying dilation and erosion
filters to such signal it is possible to separate regions in the influence area of the
perturbations from large regions without such perturbations.

Other technique to obtain general structural information of the trace is the
Wavelet transform. This can be used to automatically separate the non iterative
phases of an application such as initialization and termination from the core compu-
tation phase. The Wavelet transform produces information about the spatial local-

9 New Analysis Techniques in the CEPBA-Tools Environment 129

ization of energy at different frequencies. When applied to signals like the sum of
the useful duration described previously, initialization and termination phases tend
to have much lower energy at high frequencies. By applying again mathematical
morphology techniques to the high frequency outcome of the wavelet transform we
can identify regions of major program activity.

Fig. 9.1: Process of automatic period detection

The whole process is described in figure 9.1. The timeline on top represents the
duration of the computation bursts for each of the 128 processes of a run of the WRF
weather modeling code. Dark blue represents long computation bursts, light green
short computation bursts and black corresponds to time inside MPI. The two sig-
nals below represent when some process is flushing data to disk. At the scale shown
there is no appreciable difference between them, but the second one corresponds to
the outcome of the filtered signal with mathematical morphology. A look at a more
detailed scale shows that several flushes from different processes have actually been
merged into a single burst. The fourth view from top represents the high frequency

130 Jesus Labarta

components identified by the Wavelet transform when applied to the useful dura-
tion signal. The main computation area corresponds to the region with high values.
Combining this signal and the outcome of the flush analysis the tool identifies the
longest core computation region without perturbation and builds the useful duration
signal for that interval. Computing the FFT, squaring it and computing the inverse
we obtain the autocorrelation function shown at the bottom of the figure. Peaks in
this figure correspond to periodicities in the signal. In our case, the first local max-
ima different from the origin corresponds to the coarser periodicity. The tool can
then be used to cut a region of the trace of one or several periods (depending on a
requested maximum trace size).

This functionality was developed as a command line tool to process large traces
and is now being integrated both in the Paraver GUI and in the intelligent on-line
tracing packages as described in section 9.6.

9.4 Clustering Techniques

Clustering techniques have been used in the parallel performance analysis area
mostly with the aim of identifying groups of processes of differentiated characteris-
tics. The target has typically been to obtain a representative process for each group
and thus reduce the number of processes on which to carry out further analyses.

In [2] we aimed at using clustering techniques with the objective of identifying
internal structure at the level of computation bursts within the application. We try
to group computation bursts between MPI calls by their similarities in terms of du-
ration and hardware counter derived metrics. In the following sections we describe
the relevant data processing and clustering algorithms, usage examples clustering
and further work on automatic quantification of the quality of a clustering result.

9.4.1 Clustering Algorithms

Given our objective, the data to be clusterized corresponds to each of the computa-
tion bursts between MPI calls. For a typical trace there may be many thousands or
millions of records, each of them characterized as a point in an N dimensional space.
Possible dimensions include the duration of the region, the number of instructions,
cache misses or other captured hardware counters. The number of these dimensions
is limited by the number of hardware counters that can be simultaneously read, but
derived metrics between several hardware counters such as IPC on miss ratios can
also be used.

In order to keep the clustering algorithm in reasonable times and to focus the
efforts in relevant regions we filter out bursts that are either very short or have a
value of some of the counter below a threshold. The user can specify through an
xml file these different thresholds as well as the metrics to consider as dimensions

9 New Analysis Techniques in the CEPBA-Tools Environment 131

in the clustering algorithm, further data preprocessing transformations (ie. scaling,
principal components,. . .) or other parameters required by the algorithm.

Fig. 9.2: Scatter plot of clustered WRF bursts

We use DBSCAN, a density based algorithm, as we have observed that the as-
sumption made by k-means type of algorithms that data distribution is spherical in
nature does not hold with our data. Figure 9.2 shows an example projection of points
of a weather forecast run (WRF) on the Instruction and IPC dimensions. We can see
how some clusters do have a spherical shape with little variability in both dimen-
sions. Others show a negative correlation between instructions and IPC: the larger
the instruction count in the bursts the lower the IPC. The reverse situation may hold
on other cases. Clusters where the same number of instructions are executed with a
wide range of IPCs are also frequent.

9.4.2 Application of Clustering Techniques

The presentation of the scatter plots such as the one in figure 9.2 does provide a lot of
information to the analyst on the behavior of the different regions, but the doubt may
arise as to how do the identified clusters distribute over time. The tool can inject new
events into the original tracefile labeling each computation burst with its identified
cluster. In this way it is possible to visualize the space and time distribution of the
clusters. This conveys to the analyst complementary information to the scatter plots,
reflecting in detail the structure of the application behavior. Figure 9.3 shows the
cluster timeline corresponding to figure 9.2.

132 Jesus Labarta

Fig. 9.3: Clustered WRF timeline

Deriving precise metrics and models of the performance of the sequential com-
putation phases is another important use of the clustering techniques. Current pro-
cessors do have the ability to perform very detailed counts of their internal activity
and such information is made available through APIs, of which PAPI [10] is the
most widely used. For cost reasons and although the list of potential counts is quite
large, the actual number of counters that can be read at the same time is limited
and architecture dependent. Being able to read many counters would also introduce
significant overheads on the monitoring system. The result is that each data acqui-
sition captures only partial information and in order to obtain values for a large set
of counters, either several runs or sampling techniques have to be used. In these ap-
proaches, a lot of precision in the ability to correlate counts for individual regions
of code is lost.

The use of the clustering techniques we have proposed provides an alternative to
achieve higher precision still requiring only a single run of the program. The idea is
to shift over time or processes the set of counters acquired with the constraint that a
couple of them (typically cycles and instructions) be present in all sets. The acquisi-
tion does not even need to be synchronized across processes. The only requirement
would be that a sufficiently large run is made such that several acquisitions with
different hardware counter sets are made for the relevant computation bursts. If the
application does have an SPMD structure, different sets can be used on different
processors to reduced the required duration of the acquisition process. By clustering
all the points using the two common counters, each point is assigned to one cluster
and thus contributes its non common counters to the characterization of such clus-
ter. The derived metrics computed from counts of different instances of a cluster are
certainly approximations, but the accuracy is much higher than if the correlation is
made through a blind statistical sampling process or derived from two independent
runs.

An example use is show in figure 9.4. From a single run of the program, a very
large number of hardware counters are obtained for the major clusters in the pro-
gram. Those counters are fed into a cycles per instruction (CPI) stack model [11]

9 New Analysis Techniques in the CEPBA-Tools Environment 133

Fig. 9.4: CPI stack model derived from a single run

to obtain a fair quantitative description of which components in the architecture are
determining the sequential computation performance of each cluster.

9.4.3 Quantification of the Clustering Quality

Given that most programs do have an SPMD structure, cluster timelines like the one
shown above should display all processes as being in the same cluster at a given
point in time. Of course some skew in the time each process enters a cluster is pos-
sible. Also different instances of the same cluster may be of different length in dif-
ferent processors, but in general, vertical stripes would be expected. When blindly
applying the clustering algorithm it is nevertheless possible to obtain timelines like
the one shown in figure 9.5. There we see that some parts do show an SPMD struc-
ture while in other intervals different processors are in different clusters. This is
caused by real differences in the behavior of processors but the question is what
level of granularity we want the clustering algorithm to use when determining what
is similar and what different. A noisy plot with a lot of clusters, indicating that ev-
erything is different does not actually convey to the analyst useful information on
the structure of the application. A plot with just one cluster, where everything is
the same does not convey information either. The granularity used by the clustering

134 Jesus Labarta

algorithm is controlled by a parameter provided by the user. Although a wide range
of values of such parameters give in general useful results for the DBSCAN algo-
rithm, it is possible to tune it if coarser or finer detail is desired. Typically clustering
result with a handful of clusters (less than 10), representing more than 90% of the
total execution time and showing an SPMD structure could be considered as a good
result for a first analysis.

Fig. 9.5: Clustered timeline of WRF run on 16 processors

An interesting question is how the above criteria could be automatized. In [3]
we presented an approach to automatically detect the spmdiness of a clustering re-
sult. The idea builds on the similarity between a process seen as a sequence of
clusters and a sequence of aminoacids as handled in the life sciences area. In this
field, a lot of tools have been developed to check the alignment and similarities be-
tween sequences of such chains. Our approach is to leverage that technology and
use available Multiple Sequence Alignment (MSA) codes to properly align the dif-
ferent clusters executed by each process. In doing the transformation of the timeline
to a sequence of clusters, the actual duration of the different instances is dropped
and the focus shifts to their sequence, which in itself provides yet another way of
representing the internal structure of the computation.

Figure 9.6 shows this situation for a run on 16 processors of the NAS LU bench-
mark (class A). On top we see the timeline of cluster while the bottom figure shows
structure in terms of the aligned sequence of clusters as reported by the Kaling2
package. In this case we see that the time dimension has disappeared and each clus-
ter uses only one column, irrespective of whether it was large or small. An asterisk
on top of the image shows that the tool has been able to perfectly align that column.
Lack of the asterisk means that there is either some hole in that column or not all
the clusters are identical.

At the beginning of the timeline we observe several long clusters, with a quite
good SPMD structure although task 6 is in a different cluster when all other proces-
sors are in the green cluster. In the bottom view of the figure we can see that this
outlier causes the first non perfectly aligned column. Towards the end of the timeline

9 New Analysis Techniques in the CEPBA-Tools Environment 135

each process executes a series of yellow clusters. It is unclear in such view whether
all the processes have the same number of instances of the yellow cluster or not, and
they are certainly skewed in time. The bottom figure shows how the alignment of
those clusters is also quite good although some misaligned positions show up.

From the output of the alignment tool we can compute a metric specific to our
purposes that quantifies with a number between 0 and 1 the spmdiness of each indi-
vidual cluster as well as the global spmdiness of the clustering result. These metrics
tell the analyst how good or bad the clustering result is and will in our future work
be used as the quantification method to automatically search for a good granularity
for the clustering algorithm. It will be possible to separate sets of points for which
a coarse granularity results in good SPMD characterization from other sets where
detailed granularity can extract finer detail and still reflect a good SMPD structure.

Fig. 9.6: Timeline and alignment of clusters for a 16 processor run of the NAS LU
benchmark (class A)

136 Jesus Labarta

9.5 Sampling and Mixed Instrumentation

Statistical sampling is a technique used by profile tools as a way to obtain approx-
imate characterizations of a program without requiring to instrument neither the
source nor binary. Sampling uses a mechanism external to the application control
flow to fire a probe that from time to time captures information about the program
such as the line in the code being executed. From these counts, we estimate the
percentage of time spent in each of the lines by assuming it is proportional to such
counts. A periodic sampling every few milliseconds is often used. Besides the time
based approach, the firing of the probe can be based on the overflow of a hardware
counter such as cache misses or floating point operations. In this case, the count for
each line is expected to be proportional to the number of cache misses incurred or
floating point operations performed by that line.

As mentioned before, the evolution of a program activity can be seen as a signal
with spectral components corresponding to the speed of change in the activity of the
program. As well known in signal theory, a function can be perfectly characterized
by its samples if taken at sufficiently high frequency, in particular above the Nyquist
frequency of the signal. In our context, this means that if the sampling frequency is
sufficiently high compared to the rate of change in the application, we will be able
to get a good picture of the evolution of metrics such as mips, cache misses, or other
data captured during the sample.

Tools typically use either an instrumentation or a sampling approach, but typi-
cally not both at the same time. Even if they do, it is to obtain two types of infor-
mation (ie. counts and percentage of time) which are then not correlated, at least
as much as we consider it could be done. The following subsections show how the
MPITrace package in CEPBA-tools has been extended to handle both instrumenta-
tion and sampled probes and the analyses this enables.

9.5.1 High Frequency Sampling

Figure 9.7 shows different metrics obtained by sampling with a period of 1M cycles
(roughly 445 microseconds) a 16 processors run of the NAS BT benchmark. The
top view represents the main user functions and is derived from instrumentation in-
formation. The color scheme is as depicted in the top right corner of the figure. The
view can be used as time reference for those below and shows how they represent
about 1.5 iterations of the program. One iteration takes in the order of 345 ms, thus
the number of samples in it is around 760, a large enough number to capture a lot of
detail.

The four views on the bottom show the evolution over time of four metrics: mips,
load mix (percentage of load instructions with respect to total number of memory
access instructions), memory mix (with respect to total number of instructions) and
the ratio of L1 to L2 misses. The figure shows how routines x solve, y solve and
z solve have an initial phase with four steps of high mips, and low memory mix.

9 New Analysis Techniques in the CEPBA-Tools Environment 137

Fig. 9.7: Time evolution of metrics captured sampling at high frequency.Light green
correspond to a low value of the metric, dark blue to a high value and orange to even
higher values

It is interesting to see how routine x solve has a higher L1 to L2 ratio of misses.
Towards the end of each of these three routines, there is a phase where the memory
mix, and in particular loads increases a lot, resulting in a lower mips rate.

In the above example, both instrumentation and sampling information are ac-
quired by MPITrace, and they are visually correlated by the analyst. The instrumen-
tation information can provide precise data about the structure of a program such as
when a routine is entered and exited and how many instructions are executed in it.
The granularity is nevertheless limited to the actual duration of these routines in the
user code. The sampling information ensures a granularity (1M cycles in our exam-
ple) at which data is acquired, even if the program stays within a routine without

138 Jesus Labarta

calling MPI for a long time. The problem is that if the sampling period is larger than
the fine grain rate of change of the application it will not produce relevant informa-
tion. The alternative of reducing the sampling interval to increase the precision is
limited, as each sample implies a certain overhead to interrupt the process, capture
and store the required information. In order to maintain the total overhead bounded,
the sampling period should be a few orders of magnitude above the individual sam-
pling overhead.

9.5.2 Hybrid Instrumentation and Sampling

In this section we address the possibility of obtaining extremely precise information
without incurring the overhead of very high frequency sampling. In [1] we devel-
oped a method that allows such precise measurements for hardware counter derived
metrics under certain conditions in the application behavior, namely the ergodicity
(maintaining the same periodic behavior over time). The proposed approach pro-
ceeds in three steps.

Fig. 9.8: Cumulative instruction count since the beginning of the iteration after the
merging process. The left view includes all iteration instances. The right view show
the detail when outliers have been discarded.

First we transform the captured hardware counts, which by default correspond to
the value since the previous probe where the counters were read. This transforma-
tion is done by referring the counts at each sampled point to their nearest previous
instrumentation event. By this we mean that we associate with such events the ag-
gregated hardware count (instructions, cache misses,. . .) of all the previous probes
since the reference. The same aggregated value is computed for the instrumentation
event at the end of the region (iteration or routine). In this way we obtain for each in-
stances of a region a list of monotonically increasing hardware counts timestamped
with respect to the start of the region. The number of such points for one instance

9 New Analysis Techniques in the CEPBA-Tools Environment 139

may be just two (entry and exit) if no sample fell inside the region or a very large
number if the sampling period is much smaller than the duration of the region. In
any case, the precision of this data is limited by the sampling period.

The next step is to merge the different instances in order to increase the density
of points and thus the precision. If all instances took exactly the same amount of
time, just merging and sorting the different lists by the timestamp of the entries
would be enough. As this situation will never happen in a real system, we take one
instance as reference and scale the timestamps of the lists of all other instances
such that the duration of the region matches the reference. After scaling we apply
the merge process just described. If the variance in the duration of the different
instances is not high, this should result in a thin cloud of points around the actual
cumulative distribution of hardware counts since the start of the region. The upper
plot in figure 9.8 shows the result of this process for one iteration of one process in
the NAS BT benchmark class A run on 16 processes. We can see a certain amount of
variability. In order to reduce it, we try to identify region instances that are outliers
in terms of total duration and do not merge their points into the final list. The result is
shown at the bottom of figure 9.8, with significantly less variability. More restrictive
selection of outlyers would reduce variability but also the amount of points and thus
precision. Finally, the region can be analytically characterized by a polynomial fit of
the cloud of cumulative counts. We tried different fitting models but finally decided
for a Kringing method. The analytical expression can then be reported as output
of the analysis process. It can also be sampled at periodic intervals and synthetic
events injected in the trace. It is also interesting that derivatives can be computed,
thus reporting instantaneous rates such as mips or flops.

By using these hybrid sampling and instrumentation techniques, it is possible to
compare the instantaneous evolution of metrics reporting how well different parts
of the core architecture are being exercised. By correlating them we gain a deep
understanding of the behavior of a program. Figure 9.9 shows the normalized in-
stantaneous evolution (from top to bottom and left to right) of mips, store mix, L1
misses and load mix. We can clearly identify an initial phase where the mips rate is
high and has a high proportion of store instructions but very low L1 miss rate. After
that, four iterations of phases with a fair mips rate are separated by transitions with
low mips. Such low performance in the transitions is correlated to a high L1 miss
rate also caused by a high proportion of load instructions.

We have described the process to obtain the instantaneous evolution of metrics
derived from hardware counter reads. It is also possible to apply the folding process
to the call stack information captured by the samples to obtain a timeline of the code
line being executed along time. In this case it is not possible to perform an analytical
fit of the time function and variability between different iterations will introduce a
certain degree of inaccuracy (i.e. backwards control flow). The result is nevertheless
extremely useful as shown in figure 9.10. We can identify the four iterations of an
outer loop and see how the execution progresses through the code with some source
lines making longer contributions to the execution time than others.

140 Jesus Labarta

Fig. 9.9: Instantaneous evolution of different metrics for the copy faces routine in
the NAS BT benchmark

Fig. 9.10: Correlation between metrics and folded source line for two processes in a
16 processors run of the NAS BT becnhmark

9 New Analysis Techniques in the CEPBA-Tools Environment 141

9.6 On-line Techniques

The research activities described in the previous sections heavily used Paraver to
visualize traces and validate the results of the different techniques. The question then
arises whether those techniques can be applied on-line, to automatically summarize
the data captured by the monitoring system and minimize the size of files it generates
while maximizing the amount of information emitted.

In [7] we describe ongoing work integrating those techniques into our instru-
mentation packages and using MRNET [9] as a scalable infrastructure. Such on-line
integration does pose new challenges and the need to adapt the basic algorithms ac-
cordingly. Two of these extensions are described in [7] and will be summarized in
the next paragraphs. The first one addresses the issue of the overhead of the clus-
tering algorithm itself. The second one looks at the stability of the analysis. The
objective of this work is to directly identify the clusters, automatically generating
their scatter plot and clustered trace of size no larger than a user specified maximum.

The major problem that on-line clustering introduces is the duration of the anal-
ysis when a large number of points (typically above 50000) have to be clustered. In
order to obtain a faster characterization of the application we sample a subset of the
points, cluster them and then perform a nearest neighbor classification of all other
points. If the sample is sufficiently small and representative the process should re-
sult in a good characterization of the application with a significantly faster execution
time than the full clusterization of all the points. In the paper we evaluate different
approaches to obtain a representative sample. A good way to achieve the desired
characteristics of such sample is to keep all the points of some randomly selected
processes plus a random sample of the points of all other processes. A sample of a
size around 15% of the original set of points does result in very good characteriza-
tion of all the relevant computation bursts in the trace.

The second issue addressed in the paper looks at how to detect that an application
has entered a stable phase. By monitoring the raw data production rate of the appli-
cation, the on-line analysis estimates the duration of the interval that would result
in a trace of the size specified as target by the user. Such an interval is used by the
MRNET root process to drive the instrumentation package at each process to send
their captured information. The sampling process can take place in the intermediate
nodes in the MRNET tree. The clustering takes place in the root. By comparing two
successive clusterings the decision is made whether the application has reached a
stable state. If not, a new acquisition period is started. If a stable behavior is identi-
fied, the root tells the leaves to dump the trace for the last period. Classification can
take place in the leaves and the trace merging process could also be done through
the MRNET tree.

It is quite natural that all the techniques described in previous sections are re-
lated and complementary. This work started by looking at the on-line use of the
clustering techniques but it is clear that future work will further integrate the spec-
tral analysis techniques described in section 9.3 and the sampling based techniques
of section 9.5.

142 Jesus Labarta

Other work in the spirit of on-line analysis is the integration of the sampling
based techniques described in section 9.5 in the TAU [8] profile based environment.
Figure 9.9 used in section 9.5 actually contains some preliminar results of such
work.

9.7 Conclusion

This paper presents some attempts to leverage ideas and techniques from different
areas such as signal processing and data mining in the area of performance analysis
tools. It is based on the believe that a huge body of theory and experience has been
developed in other fields that has not yet been applied to enable very precise and
fine grained automatic analysis of application performance.

We have described the use of spectral analysis techniques and mathematical mor-
phology to identify how long should we trace an application to obtain full detail of
its behavior. Clustering has been applied to identify structure within an application
and obtain from a single run very complete and precise statistics of all hardware
counter metrics. The combined use of instrumentation and sampling has been used
to demonstrate that it is possible to obtain extremely precise information of the evo-
lution of instantaneous performance metrics such as mips without incurring over-
heads.

We do believe that these techniques will be further improved in the future but
their potential is huge. Used in combination with many other techniques this will
help evolve performance tools in the direction of minimizing the amount of data
emitted by on-line monitoring but providing much more information than what is
today’s practice.

Acknowledgements This chapter summarizes the views of the author, but is based on work by
many other people in the BSC tools team (specially Judit Gimenez, Harald Servat, Juan Gonzalez,
German Llort and Kevin Huck). The work is partially funded by the IBM, through the IBM-BSC
Mareincognito collaboration agreement, the USAF grant FA8655-09-1-3075 and the Spanish Min-
istry of Education under grant TIN2007-60625.

References

1. H. Servat, G. Llort, J. Gimenez, J. Labarta: Detailed performance analysis using coarse grain
sampling 2nd Workshop on Productivity and Performance. PROPER 2009.

2. J. Gonzalez, J. Gimenez and J. Labarta: Automatic Detection of Parallel Applications Compu-
tation Phases. Proceedings of the 23rd IEEE International Parallel and Distributed Processing
Symposium (IPDPS’09), (2009)

3. J. Gonzalez, J. Gimenez and J. Labarta: Automatic evaluation of the computation structure of
parallel applications. PDCAT 2009.

4. Casas, M.; Badia, R. M.; Labarta, J. Automatic Structure Extraction from MPI Applications
Tracefiles. Euro-Par 2007. 3–12

9 New Analysis Techniques in the CEPBA-Tools Environment 143

5. J. Labarta, S. Girona, V. Pillet, T. Cortes and L. Gregoris: DiP: A Parallel Program Develop-
ment Environment. Proc. of 2nd International EuroPar Conference (EuroPar 96) (1996)

6. W. E. Nagel, A. Arnold, M. Weber, H. C. Hoppe and K. Solchenbach: VAMPIR: Visualization
and Analysis of MPI Resources. Supercomputer, vol. 12, n. 1, 69–80, (1996).

7. G. Llort, J. Gonzalez, H. Servat, J. Gimenez and J. Labarta. On-line detection of large-scale
parallel application’s structure IPDPS 2010.

8. S. Shende and A. D. Malony: The TAU Parallel Performance System. International Journal of
High Performance Computing Applications, Volume 20 Number 2 Summer 2006. 287–311

9. P. C. Roth, D. C. Arnold, and B. P. Miller: MRNet: A Software-Based Multicast/Reduction
Network for Scalable Tools. SC2003, Phoenix, Arizona, November 2003

10. Browne, S., Dongarra, J., Garner, N., London, K., Mucci, P.: A Scalable Cross-Platform In-
frastructure for Application Performance Tuning Using Hardware Counters. Proceedings of
SuperComputing 2000 (SC’00), Dallas, TX, November 2000

11. A. Mericas et al.: CPI analysis on POWER5, Part 2: Introducing the CPI breakdown model.
https://www.ibm.com/developerworks/library/pa-cpipower2/

12. Labarta J., Gimenez J.: Performance Analysis: From Art to Science. In Parallel Processing for
Scientific Computing. M. Heroux and R. Raghavan and H.D. Simon Eds. SIAM. 2006. 9–32.

https://www.ibm.com/developerworks/library/pa-cpipower2/

Chapter 10
The Importance of Run-Time Error Detection

Glenn R. Luecke, James Coyle, James Hoekstra, Marina Kraeva, Ying Xu,
Mi-Young Park, Elizabeth Kleiman, Olga Weiss, Andre Wehe and Melissa Yahya

Abstract The ability of system software to detect and issue error messages that
help programmers quickly fix serial and parallel run-time errors is an important
productivity criterion for developing and maintaining application programs. Over
ten thousand run-time error tests and a run-time error detection (RTED) evaluation
tool has been developed for the automatic evaluation of run-time error detection
capabilities for serial errors and for parallel errors in MPI, OpenMP and UPC pro-
grams. Evaluation results, tests and the RTED evaluation tool are freely available at
http://rted.public.iastate.edu. Many compilers, tools and run-time
systems scored poorly on these tests. The authors make recommendations for pro-
viding better RTED in the future.

Key words: Run-time error detection, Fortran, C, CH, MPI, OpenMP, UPC

10.1 Introduction

Debugging serial and parallel programs can be very time consuming. The typical
debugging process is: (1) first compile and correct all compile-time errors, (2) next
run and correct the run-time errors issued by the run-time system and (3) then use
a debugger and/or print statements to find and correct the rest of the errors, i.e. the
errors not detected at run-time and logical errors. Compile-time errors can normally
be corrected quickly since compilers usually issue good error messages. Similarly,
usually run-time errors can be corrected quickly without a debugger and print state-
ments when the run-time system correctly diagnoses the error and issues a good
error message. However, correcting the other errors can be very time consuming. If
a run-time system does not issue a good error message, then one is forced to use
a debugger and/or print statements to find and correct the error. Notice that print

Glenn R. Luecke, James Coyle, James Hoekstra, Marina Kraeva
Iowa State University’s High Performance Computing Group, Iowa State University, Ames, Iowa
50011, USA, e-mail: {grl,jjc,hoekstra,kraeva}@iastate.edu

M.S. Müller et al. (eds.), Tools for High Performance Computing 2009,
DOI 10.1007/978-3-642-11261-4 10, © Springer-Verlag Berlin Heidelberg 2010

145

http://rted.public.iastate.edu
mailto:grl@iastate.edu
mailto:jjc@iastate.edu
mailto:hoekstra@iastate.edu
mailto:kraeva@iastate.edu
http://dx.doi.org/10.1007/978-3-642-11261-4_10

146 Glenn R. Luecke et al.

statements and debuggers only give values of variables and it is up to the person
debugging the program to know if these values are correct or not. Thus, high quality
run-time error detection with high quality run-time error messages is critical to pro-
viding a productive computing environment. In addition, high quality run-time error
detection would be especially valuable for petascale computing when conventional
parallel debuggers may not scale to hundreds of thousands of cores.

The productivity enhancement from having excellent run-time error detection
(RTED) depends on many factors; e.g., the type of error, the length and complexity
of the program, the experience and intelligence of the person trying to debug the
program as well as this person’s knowledge of the program. A few years ago, an
expert in parallel programming and professor of physics at Iowa State University
(ISU) spent nine months trying to find what was causing the physics code that he
wrote to abort after several days of execution. He then asked ISU’s HPC Group to
help find the error in his 6,000 line, Fortran-MPI application code. The code was run
using the MPI-CHECK tool [12]. The error was detected and a good error message
was issued. With this information, the professor was able to correct the error quickly.
This physics code is now running on machines all over the world and is being run
regularly with 30,000 processors. Without a run-time error detection tool, the error
might have never been found.

With funding from the US Department of Defense, from DARPA’s High Produc-
tivity Computing Initiative and from the Extreme Scale System Center at Oak Ridge
National Laboratory, extensive run-time error tests have been developed from 2003
through 2008 by Iowa State University’s High Performance Computing Group for
evaluating run-time error detection capabilities for

• serial errors in programs written in Fortran, C and C++ (2695 tests)
• parallel MPI errors in programs written in Fortran, C and C++ (1942 tests)
• parallel OpenMP errors in programs written in Fortran, C and C++ (3307 tests)
• parallel programs written in Unified Parallel C (2247 tests).

More than ten thousand run-time error tests have been written for this project.
A run-time error detection (RTED) evaluation tool has been developed for running
these tests and for automatically evaluating the run-time error messages generated
by assigning a score from 0 to 5 based on the usefulness of the message to help fix
the error quickly. The tool then automatically averages these scores over the differ-
ent error categories and reports the results. These tests and the RTED evaluation tool
provide an easy way to evaluate and compare run-time error detection capabilities
provided by different vendors and could be used as part of a computer procurement
process. In addition, vendors could use these tests, recommended error messages
and the RTED evaluation tool to evaluate and improve the run-time error detection
capabilities of their compilers, tools and run-time systems.

Current test results, tests, desired output files, and the RTED evaluation tool are
freely available at http://rted.public.iastate.edu. As new compilers,
tools and run-time systems become available, vendors are encouraged to send the re-
sults using the new system software to rted.project@iastate.edu so they
can be posted on this web site.

http://rted.public.iastate.edu
mailto:rted.project@iastate.edu

10 The Importance of Run-Time Error Detection 147

10.2 Background

There are many commercial and public domain software systems to detect and pro-
vide information to help programmers fix serial run-time errors. The survey in [1]
found that the commercial products, Insure++ and Purify performed by far the best
of all software systems evaluated. At the time of the study, Insure++ was considered
better than Purify but both products did an excellent job in detecting serial run-time
errors in C and C++ and provided excellent information for the quick fixing of the
errors. Unfortunately, neither Insure++ nor Purify find run-time errors for Fortran.
Sun’s HPC ClusterTools [2] contains the bcheck tool for finding serial run-time er-
rors in Fortran, C and C++ programs.

The Message Passing Interface, MPI, is the standard message passing library
used for writing parallel scientific programs for distributed memory parallel com-
puters [3, 4]. OpenMP is often used for writing parallel scientific programs for
shared memory parallel computers [5, 6]. Since most of today’s parallel computers
are a collection of shared memory compute nodes interconnected via a communica-
tion network, some application programs are written using both MPI and OpenMP
and some using only MPI. Unified Parallel C [7, 8] is an extension of C for par-
allel execution on shared or distributed memory parallel machines. Some scientific
applications are written entirely in UPC instead of MPI and/or OpenMP.

There are several tools to aid in the debugging of MPI programs. The Umpire tool
[9, 10] was initially developed by Jeffrey Vetter and Bronis de Supinski in 2000 at
Lawrence Livermore National Laboratory. The High Performance Computing Cen-
ter (HLRS) in Stuttgart and the Technische Universitaet Dresden (ZIH) in Germany
have developed the MARMOT tool [11] for finding MPI run-time errors in Fortran
and C programs. Iowa State University’s High Performance Computing Group has
developed MPI-CHECK for Fortran [12]. Intel’s message checker [13] is a tool that
has been developed to find MPI run-time errors in Fortran, C and C++ programs.
Intel has integrated message checker into their trace analyzer and collector 2.7 tools
within their Cluster Toolkit.

Intel’s thread checker [14] and Sun Microsystems’ thread analyzer [2] are tools
for debugging OpenMP run-time errors. The authors are not aware of any run-time
error detection tools for Unified Parallel C (UPC).

10.3 Methodology

This section summarizes the methodology used to develop the run-time error tests
and the software for the automatic running of tests and for the automatic evaluation
of the error messages. For each run-time error, test programs have been written to
determine if the error can be detected and a quality message generated (each test
program contains one and only one run-time error). Tests were written so that the
information needed to detect the error is not available at compile-time. For each test
a file with a recommended error message was created that contains the error name,

148 Glenn R. Luecke et al.

the line number and the file name where the error occurred along with any additional
information that would assist a programmer to find and correct the error.

The following are the run-time error categories used for the development of the
serial tests for Fortran, C and C++: array index out of bounds, uninitialized variables,
subprogram call errors, pointer errors, floating point errors, string errors, allocation
and deallocation errors, memory leaks, input and output errors, Fortran 95 specific
errors, Fortran array conformance errors and C99 specific errors.

The following are the run-time error categories used for the development of the
MPI tests for Fortran, C and C++: buffer out of bounds, buffer overlap, data type
errors, rank errors, other argument errors, wrong order of MPI calls, negative mes-
sage length, deadlocks, race conditions, implementation dependent errors (poten-
tial deadlocks, race conditions and noncontiguous dynamic allocation of message
buffers in C).

The run-time error categories used for the Fortran, C and C++ OpenMP tests are:
deadlocks, race conditions, environment and clause errors, wrong order of OpenMP
directives, uninitialized shared and private variables, wrong usage of OpenMP run-
time library routines and implementation dependent errors (i.e. behavior is either
undefined or said to be implementation dependent by the OpenMP API).

The run-time error categories used for UPC are: out-of-bounds shared memory
access using indices, out-of-bounds shared memory access using pointers, out-of-
bounds shared memory access in UPC functions, argument errors in UPC functions,
wrong order of UPC calls, uninitialized variables, deadlocks, race conditions, mem-
ory related errors, undefined UPC operations, warnings. The “warnings” category
includes tests where programmers should be warned of likely errors. For example, it
makes no sense to have the “nelems” argument in reduction functions be zero even
though the UPC specification allows this, so some tests have nelems = 0 and the
RTED evaluation tool checks whether good warning messages are produced.

The RTED evaluation tool mentioned in Section 1 is a collection of scripts for
the automatic running of tests, comparing actual messages with expected messages
and then assigning a score of 0, 1, 2, 3, 4 or 5 to the message generated for each test:

• A score of 5 is given for a detailed error message that allows for the quick fixing
of the error. For example, when there is an out-of-bounds access of the second di-
mension of array B, instead of issuing a message “out-of-bounds access in array
B in line 1735 of file prog.f90”, the message could mention that the problem oc-
curred in the second dimension of B, the accessed value was 17 and the allocated
range was from 1 to 16 and that B was allocated in line 923 of prog.f90.

• A score of 4 is given for error messages with more information than a score of 3
and less than 5. This is tailored for each test.

• A score of 3 is given for error messages with the correct error name, line number
and the name of the file where the error occurred.

• A score of 2 is given for error messages with the correct error name and line
number where error occurred but not the file name where the error occurred.

• A score of 1 is given for error messages with the correct error name.
• A score of 0 is given when the error was not detected.

10 The Importance of Run-Time Error Detection 149

Different compilers, tools and run-time systems may issue different messages
(with different error names) for the same run-time error. For example, the out-of-
bounds access is named as “array out-of-bounds error” on one system, “array index
error” on another system and “index out-of-bounds error” on a third system. The
RTED evaluation tool has a list of synonymous phrases for each error so that equiv-
alent error messages will be evaluated appropriately. Thus, for the RTED tool to
accurately evaluate an error message, the error name must be listed as one of the
RTED synonymous phrases. Error messages are evaluated as follows:

• For each test and score a scoring script was created.
• A synonym file of acceptable error names was created.
• Error messages are reduced to a canonical form for easy comparison with the

recommended error messages by first changing all text to lower case and then
replacing selected phrases with standard phrases. Blanks, hex addresses, and in-
tegers longer than three digits are removed to reduce false matches.

• Scoring scripts are applied to the canonical form of each error message for auto-
matic evaluation.

10.4 Results

This section contains the results of running all the tests using the software environ-
ments/machines that were available to us. Tests were run using all available compiler
run-time error detection options. For each compiler, we searched the man pages and
selected all debugging options for this evaluation. It would be helpful if compilers
had a general “–debug” option that would turn on all debugging options. Results on
the web site, http://rted.public.iastate.edu, present scores for each
category of run-time errors. Due to space limitations, we cannot present all of the
RTED results and only present average scores in most cases. Some vendors score
well in some error categories and poorly in others. When taking averages, this in-
formation may be hidden, so the reader is encouraged to view the complete results
posted on the web site.

There are 1552 serial execution Fortran tests, 716 serial execution C tests and
1143 serial execution C++ tests. (We ran the 716 C tests and 427 C++ specific tests
for our 1143 C++ tests.) Table 10.1 presents the average scores when running these
tests on different machines/software environments.

Notice that for the serial C and C++ tests, Insure++ is the only one that scored
well. The Cray X1 and the NAG Fortran compilers both scored well.

There are 744 MPI Fortran tests, 723 MPI C tests and 1198 MPI C++ tests. Ta-
ble 10.2 presents the average scores when running the MPI 2.0 tests on different
machines/software environments. The RTED web site contains the scores for both
MPI 1.1 and for MPI 2.0, but only the MPI 2.0 results are presented in this paper.
If an MPI implementation does not support the full MPI 2.0 standard, there is no
penalty when running the MPI 2.0 tests. This is because the RTED evaluation tool
only assigns a score to those tests that compile and link successfully and average

http://rted.public.iastate.edu

150 Glenn R. Luecke et al.

Table 10.1: Average serial execution results.

Compiler/tool Fortran C C++

Cray XT4 CNL, Pathscale compilers 0.62 0.08 0.06
Cray X2 CNL, Cray compilers 2.07 0.39 0.47
Cray X1 Unicos/mp, Cray compilers 2.49 0.47 0.53
Cray XT4 CNL, PGI compilers 1.37 0.43 0.28
IBM AIX, XLF/XLC compilers 1.51 0.12 0.10
RedHat Linux, NAGWare Fortran 95 2.36 NA NA
RedHat Linux, Intel compilers 1.34 0.00 0.00
RedHat Linux, Intel compilers with Insure++ NA 2.75 2.97
SUN Solaris, Sun compilers with bcheck 2.11 1.08 1.29
SUN Solaris, Sun compilers 1.79 0.00 0.00
GNU v4.1.2 compilers 1.19 0.08 0.06

scores are calculated on the reduced set of tests. Notice that MPI-CHECK and Mar-
mot scored better than the others. Intel’s trace analyzer was not able to identify the
line number where the error occurred so the best possible score for each test would
be 1.0.

Table 10.2: Average MPI 2.0 results.

Compiler/tool Fortran C C++

Cray X1 Unicos/mp, Cray compilers 0.64 0.75 0.82
Cray XT4 CNL, MPICH2, PGI compilers 0.24 0.32 0.31
IBM AIX, XLF/XLC compilers 0.40 0.46 0.43
RedHat Linux, OpenMPI, Pathscale 0.25 0.32 0.30
RedHat Linux, OpenMPI, Pathscale with MPI-CHECK 1.32 NA NA
RedHat Linux, OpenMPI, Pathscale with Marmot 1.27 1.35 0.83
RedHat Linux, MPICH-gm, Intel compilers 0.25 0.46 0.43
Suse, MPICH 1.2, Intel compilers with Trace Analyzer 0.47 0.50 0.48
SUN Solaris, MPICH2, Sun compilers 0.29 0.34 0.32

Since MPI is the most commonly used method of parallelization, table 10.3
presents the detailed MPI 2.0 results for Fortran and for selected compilers, MPI
Libraries and tools. Cray XT results are for the Cray XT4 system, using MPICH2
library and PGI Fortran compiler. Intel TA results were obtained on a Xeon cluster
running MPICH 1.2 using Intel compiler along with the Intel Trace Analyzer and
Collector tool. OpenMPI results are for an Opteron cluster, using OpenMPI library
and Pathscale Fortran compiler. The results in the last two columns were obtained
on the same Opteron cluster, using the MPI-CHECK and Marmot tools.

10 The Importance of Run-Time Error Detection 151

Table 10.3: MPI 2.0 Fortran results for each error category.

MPI Error Category Cray XT Intel TA OpenMPI MPI-CHECK Marmot

Buffer out of bounds 0.01 0.06 0.02 2.13 0.05
Buffer overlap 0.00 0.71 0.05 0.62 0.14
Datatype errors 0.10 0.40 0.20 1.80 0.20
Rank errors 0.54 0.76 0.08 2.81 1.87
Other argument errors 0.22 0.59 0.00 0.30 0.37
Wrong order of MPI calls 0.48 0.69 0.06 0.56 1.48
Negative message length 0.98 0.91 0.08 1.95 1.42
Deadlocks 0.02 0.17 0.00 1.79 2.69
Race conditions 0.00 0.06 0.00 0.09 1.07
Implementation dependent errors 0.04 0.31 0.00 3.18 3.39
AVERAGES 0.24 0.47 0.05 1.52 1.27

The following is one of the Fortran MPI tests that we wrote:

41 program F_C_1_3_1_2_e_M1
43 implicit none
44 include "mpif.h"
46 integer, parameter :: N=5 ! buffer size
48 integer :: arrayA(N), arrayB(N+1), sbuf(N+1)
55 call MPI_INIT(ierror)
56 call MPI_COMM_SIZE(mpi_comm_world, numprocs,

ierror)
57 call MPI_COMM_RANK(mpi_comm_world, myrank,

ierror)
65 if(cos(x) > 2.0) then
66 count = N
67 else
68 count = N+1
69 endif
70
71 do i=1,count
72 sbuf(i) = myrank + i
73 enddo
74
75 if(myrank.eq.1) then
76 call MPI_ALLREDUCE(sbuf, arrayA, count,

MPI_INTEGER, MPI_SUM, mpi_comm_world, ierror)
77 else
78 call MPI_ALLREDUCE(sbuf, arrayB, count,

MPI_INTEGER, MPI_SUM, mpi_comm_world, ierror)
79 endif
87 call MPI_FINALIZE(ierror)
91 end program F_C_1_3_1_2_e_M1

152 Glenn R. Luecke et al.

This program reads the value of x from a file so that its value is not known to the
program at compile time. For this example Pathscale with OpenMPI, Pathscale with
OpenMPI and Marmot, and Intel’s Trace Analyzer and Collector ail did not detect
the error and were given a score of zero. MPI-CHECK with the Pathscale compiler
and OpenMPI received a score of 4.0 for producing the following message:

File=/scratch/jjc/F C 1 3 1 2 e M1.f90, Line= 76, Argument= 2] arrayA,
message size exceeds the bounds of this array, please check the message size.

The recommended error message for this test is:
Buffer size exceeded. The value 6 of argument ‘count’ in ‘MPI ALLREDUCE’
called at line 76 in file ‘F C 1 3 1 2 e M1.f90’ on process 1 exceeds the
size of receive buffer ‘arrayA’. ‘arrayA’ is declared at line 48 in file
‘F C l 3 1 2 e M1.f90’ with size 5.

There are 2156 OpenMP Fortran tests, 1066 OpenMP C tests, and 1 151 OpenMP
C++ tests. (We ran the 1066 C tests and 85 C++ specific tests for our 1151 C++
tests.) There are few C++ specific tests since the OpenMP API has few items that
are C++ specific. Table 10.4 presents the average scores when running these tests
on different machines/software environments. Notice that Intel’s thread checker and
Sun’s thread analyzer both improved the score, but not by much.

Table 10.4: Average OpenMP results.

Compiler/tool Fortran C C++

Cray X1 Unicos(mp), Cray compilers 0.32 0.30 0.45
Cray X2 Unicos(mp), Cray compilers 0.23 0.25 0.40
Cray Unicos, PGI compilers 0.17 0.19 0.21
Cray Unicos, GNU compilers 0.20 0.19 0.27
Cray Unicos, Pathscale compilers 0.13 0.18 0.21
IBM AIX, XLF/XLC compilers 0.26 0.23 0.30
RedHat Linux, Pathscale compilers 0.13 0.19 0.24
RedHat Linux, Intel compilers 0.13 0.14 0.20
RedHat Linux, Intel compilers with thread checker 0.42 0.43 0.52
SUN Solaris, Sun compilers 0.02 0.02 0.03
SUN Solaris, Sun compilers with thread analyzer 0.40 0.39 0.40

Table 10.5 presents the scores when running the 2247 UPC tests using Cray’s,
Berkeley’s, HP’s and GNU’s UPC compilers. The section ”Undefined UPC Opera-
tions” contains all situations where the outcome of certain UPC statements is stated
as being undefined by the UPC specification. The UPC “warnings” category is de-
scribed in section 10.3. GNU’s and HP’s UPC do not support UPC IO so these tests
were skipped when using these compilers and scores calculated on the reduced set
of tests. In addition, GNU’s UPC does not support UPC collective utilities so these
tests were also skipped when using GNU’s UPC compiler and scores calculated on
the reduced set of tests. Notice that Cray’s UPC compiler scored better than all the
others in some categories.

10 The Importance of Run-Time Error Detection 153

Table 10.5: UPC results for each error category.

UPC Error Category Cray Berkeley HP GNU

Out-of-bounds shared memory access using indices 1.30 0.00 0.03 0.20
Out-of-bounds shared memory access using pointers 1.04 0.00 0.00 0.21
Out-of-bounds shared memory access in UPC calls 0.91 0.00 0.02 0.01
Argument errors in UPC functions 0.38 0.04 0.00 0.00
Wrong order of UPC calls 0.84 0.20 0.53 0.89
Uninitialized variables 0.08 0.02 0.57 0.25
Deadlocks 0.00 0.58 0.36 0.27
Race conditions 0.01 0.00 0.00 0.00
Memory related errors 0.18 0.00 0.16 0.37
Undefined UPC operations 0.19 0.21 0.15 0.41
Warnings (uninitialized shared variables) 0.27 0.00 0.00 0.00
AVERAGES 0.47 0.10 0.17 0.24

10.5 Recommendations

The ability to detect and issue high quality run-time error messages is critical for
programmer productivity and should be an integral part of providing a productive
environment for the development and maintenance of scientific applications. In this
section, we make recommendations on how this could be accomplished.

Ideally, each vendor should provide high-quality RTED. However, the results of
this study show that this is not the current situation and there are no signs that this
will change. Since JAVA’s language specification includes array bounds checking,
we thought that RTED could be part of the Fortran, C and C++ language speci-
fications as a first step towards providing high quality RTED. Vendors could then
use the RTED tests developed in the project when implementing RTED. This idea
was presented to the Fortran standards committee. After discussion the idea was
rejected. The idea has not been presented to the C and C++ standards committees.

Since high quality RTED is so important for the productivity of application
code developers, we now recommend the development of high quality RTED tools
that are freely available and support each commonly-used programming paradigm.
Funding for these tools must include not only their development but also ongo-
ing maintenance, periodic enhancement with better RTED techniques and with pro-
gramming paradigm advancements. The following lists the specific programming
paradigms we recommend RTED tools be developed for:

• Serial Fortran, C, C++
• MPI with Fortran, C and C++
• OpenMP with Fortran, C and C++
• UPC
• Co-Array Fortran

154 Glenn R. Luecke et al.

Since MPI programs are Fortran, C or C++ programs calling MPI functions, the
MPI tool should be used along with the serial tools for Fortran, C and C++. The
OpenMP tools could be developed from the serial Fortran, C and C++ tools.

Since NVIDIA is providing CUDA for programming for their GPU, we recom-
mend NVIDIA fund the development and maintenance of RTED tools for CUDA.

There are three new parallel languages that have been developed as part of
DARPA’s High Productivity Computing Initiative: Chapel developed by Cray,
Fortress developed by Sun Microsystems and Q10 developed by IBM. We recom-
mend that each of these vendors fund the development and maintenance of a high
quality RTED tool for their own language.

10.6 Conclusions

The ability of system software to detect errors at run-time and issue error messages
that help programmers quickly fix errors is an important productivity criterion for
developing and maintaining application programs. Over ten thousand run-time error
tests and a run-time error detection (RTED) evaluation tool have been developed
for the automatic evaluation of run-time error detection capabilities for serial errors
and for parallel errors in MPI, OpenMP and UPC programs. Each error message
issued by the run-time system is assigned a score from 0 to 5 based on the use-
fulness of the information in the message to help a programmer quickly fix the er-
ror. Average scores over error categories are automatically calculated and reported.
All tests and the RTED evaluation tool are freely available at the RTED web site
http://rted.public.iastate.edu. Many compilers, tools and run-time
systems have been evaluated with results posted on this same web site.

The technology for detecting and reporting many run-time errors is known, but
the results of running these tests show that many of the software environments evalu-
ated currently do a poor job detecting run-time errors with the following exceptions:

• For the serial tests, Insure++ scored well for C and C++ programs and the Cray
X1 and NAG compilers both scored well for Fortran.

• For the MPI tests, MPI-CHECK and Marmot scored better than the others.

It is hoped that these tests and recommended error messages will be used to
evaluate and improve the run-time error detection capabilities of compilers, tools
and run-time systems and that these tests will also be used by high performance
computing centers as part of their computer procurement process.

The authors recommend the development of high-quality, public domain RTED
tools to support the programming paradigms commonly used for scientific comput-
ing. Funding for these projects should include not only development but also main-
tenance, periodic enhancements with better RTED techniques and support future
programming paradigm enhancements.

http://rted.public.iastate.edu

10 The Importance of Run-Time Error Detection 155

Acknowledgements This work was funded by the US Department of Defense, DARPA’s High
Productivity Computing Initiative and by the Extreme Scale System Center at Oak Ridge National
Laboratory.

References

1. Luecke, G., Coyle, J., Hoekstra, J., Kraeva, M., Li, Y., Taborskaia, O., Wang, Y.: A Survey of
Systems for Detecting Serial Run-time Errors. Concurrency and Computation: Practice and
Experience, vol. 18, pp 1885–1907 (2006)

2. Sun Microsystem’s HPC ClusterTools, http://www.sun.com/software/
products/clustertools/

3. Snir, M., Otto, S. W., Huss-Lederman, S., Walker, D. W., Dongarra, J.: MPI - The Complete
Reference, The MIT Press (1998)

4. Message Passing Interface Forum, http://www.mpi-forum.org
5. The OpenMP API Specification, http://openmp.org
6. Chapman, B., Jost, G., Van der Pas, R.: Using OpenMP: Portable Shared Memory Parallel

Programming, The MIT Press (2008)
7. Unified Parallel C, http://upc.gwu.edu
8. El-Ghazawi, T., Carlson, W., Sterling, T., Yelick, K.: UPC Distributed Shared Memory Pro-

gramming, Wiley-Interscience (2005)
9. Vetter, J.S., De Supinski, B.R.: Dynamic software testing of MPI applications with Umpire,

In: Conference on High Performance Networking and Computing Article 51, Proceedings of
the 2000 ACM/IEEE conference on Supercomputing, Dallas, Texas, United States (2000)

10. Hilbrich, T., Supinski, B., Mueller, M., Schulz, M.: A Graph Based Approach for MPI Dead-
lock Detection, In: International Conference on Supercomputing, Yorktown Heights, NY,
USA, pp 296–305 (2009)

11. MARMOT, http://www.hlrs.de/organization/av/amt/research/marmot/
publications/

12. Luecke, G.R., Chen, H., Coyle, J., Hoekstra, J., Kraeva, Zou, Y.: MPI-CHECK: a Tool for
Checking Fortran 90 MPI Programs. Concurrency and Computation: Practice and Experience,
vol. 15, pp 93–100 (2003)

13. Intel Message Checker, http://www.intel.com/cd/software/products/
asmo-na/eng/227074.htm

14. Intel Thread Checker, http://software.intel.com/en-us/intel-thread-
checker/

http://www.sun.com/software/products/clustertools/
http://www.sun.com/software/products/clustertools/
http://www.mpi-forum.org
http://openmp.org
http://upc.gwu.edu
http://www.hlrs.de/organization/av/amt/research/marmot/publications/
http://www.hlrs.de/organization/av/amt/research/marmot/publications/
http://www.intel.com/cd/software/products/asmo-na/eng/227074.htm
http://www.intel.com/cd/software/products/asmo-na/eng/227074.htm
http://software.intel.com/en-us/intel-thread-checker/
http://software.intel.com/en-us/intel-thread-checker/

Chapter 11
Collecting Performance Data with PAPI-C

Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra

Abstract Modern high performance computer systems continue to increase in size
and complexity. Tools to measure application performance in these increasingly
complex environments must also increase the richness of their measurements to
provide insights into the increasingly intricate ways in which software and hardware
interact. PAPI (the Performance API) has provided consistent platform and operat-
ing system independent access to CPU hardware performance counters for nearly a
decade. Recent trends toward massively parallel multi-core systems with often het-
erogeneous architectures present new challenges for the measurement of hardware
performance information, which is now available not only on the CPU core itself,
but scattered across the chip and system. We discuss the evolution of PAPI into
Component PAPI, or PAPI-C, in which multiple sources of performance data can
be measured simultaneously via a common software interface. Several examples of
components and component data measurements are discussed. We explore the chal-
lenges to hardware performance measurement in existing multi-core architectures.
We conclude with an exploration of future directions for the PAPI interface.

11.1 Introduction

The use of hardware counters to measure and improve software performance has
become an accepted and integral method in the software development cycle [1].
Hardware counters, which are usually implemented as a small set of registers onto

Dan Terpstra, Heike Jagode, Jack Dongarra
The University of Tennessee, e-mail: {terpstra,jagode,dongarra}@eecs.utk.edu

Jack Dongarra
Oak Ridge National Laboratory

Haihang You
National Institute for Computational Sciences
e-mail: you@eecs.utk.edu

M.S. Müller et al. (eds.), Tools for High Performance Computing 2009,
DOI 10.1007/978-3-642-11261-4 11, © Springer-Verlag Berlin Heidelberg 2010

157

mailto:terpstra@eecs.utk.edu
mailto:jagode@eecs.utk.edu
mailto:dongarra@eecs.utk.edu
mailto:you@eecs.utk.edu
http://dx.doi.org/10.1007/978-3-642-11261-4_11

158 Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra

which can be mapped a larger set of performance related events, can provide ac-
curate and detailed information on a wide range of hardware performance metrics.
PAPI, the Performance Application Programming Interface, provides an easy to use,
common API to application and tool developers to supply them with the informa-
tion they may need to analyze, model and tune their software on a wide range of
different platforms.

In addition to the counters found on CPUs, a large amount of hardware monitor-
ing information is also available in other sub-sytems throughout modern computer
architectures. Many network switches and network interface cards (NICs) contain
counters that can monitor various events related to performance and reliability. Pos-
sible events include checksum errors, dropped packets, and packets sent and re-
ceived. Although the set of network events is necessarily somewhat dependent on
the underlying hardware, extending PAPI to the network monitoring domain can
provide a portable way to access native network events and allow correlation of net-
work events with other domains. Because communication in OS-bypass networks
such as Myrinet and Infiniband is handled asynchronously to the application, hard-
ware monitoring, in addition to being low overhead, may be the only way to obtain
some important data about communication performance.

As processor densities climb, the thermal properties and energy usage of high
performance systems are becoming increasingly important. Such systems contain
large numbers of densely packed processors which require a great deal of elec-
tricity. Power and thermal management issues are becoming critical to successful
resource utilization [2, 3]. Standardized interfaces for accessing the thermal sensors
are available, but may be difficult to use for runtime power-performance adaptation
[4]. Extending the PAPI interface to simultaneously monitor processor metrics and
thermal sensors can provide clues for correlating algorithmic activity with thermal
system responses thus help in developing appropriate workload distribution strate-
gies. We show the results of using the extended version of PAPI to simultaneously
monitor processor counters, ACPI thermal sensors, and Myrinet network counters
while running the FFTE and HPL HPC Challenge benchmarks [12] on an AMD
Opteron Linux cluster.

Modifying and extending a library with a broad user base such as PAPI requires
care to preserve simplicity and backward compatibility as much as possible while
providing clean and intuitive access to important new capabilities. We discuss modi-
fications to PAPI to provide support for the simultaneous measurement of data from
multiple counter domains.

With the advent of multi-core processors and the inexorable increase in core
counts per chip, interactions between cores and contention for shared resources
such as last level caches or memory bus bandwidth become increasingly important
sources of potential performance bottlenecks. Individual vendors have chosen dif-
ferent paths to provide access to hardware performance monitoring for these shared
resources, each with their own problems and issues. We explore some of these ap-
proaches and their implications for performance measurement, and provide an ex-
ample measurement of cache data on a real application in a multi-core environment
to illustrate these issues.

11 Collecting Performance Data with PAPI-C 159

11.2 Extending PAPI to Multiple Measurement Components

The PAPI library was originally developed to address the problem of accessing the
processor hardware counters found on a diverse collection of modern micropro-
cessors in a portable manner [1]. Other system components besides the processor,
such as heterogeneous processors (GPUs), memory interface chips, network inter-
face cards, and network switches, also have hardware that counts various events re-
lated to system reliability and performance. Furthermore, other system health mea-
surements, such as chip or board level temperature sensors, are available and useful
to monitor in a portable manner. Unlike on-processor counters, the off-processor
counters and sensors usually measure events in a system-wide rather than a pro-
cess or thread-specific context. However, when an application has exclusive use of
a machine partition, or runs in a single core of a multi-core node, it may be possi-
ble to interpret such events in the context of the application. Even with execution
on multiple cores on a single node it may be possible to deconvolve the tempera-
ture or power signatures of separate threads to develop a coarse picture of single
thread response. The current situation with off-processor counters is similar to the
situation that existed with on-processor counters before PAPI. A number of differ-
ent platform-specific interfaces exist, some of which are poorly documented or not
documented at all.

Several software design issues became apparent in extending the PAPI interface
for multiple measurement domains. The classic PAPI library consists of two inter-
nal layers: a large portable layer optimized for platform independence; and a smaller
hardware specific layer, containing platform dependent code. By compiling and stat-
ically linking the independent layer with the hardware specific layer, an instance of
the PAPI library could be produced for a specific operating system and hardware
architecture. At compile time the hardware specific layer provided common data
structure sizes and definitions to the independent layer, and at link time it satisfied
unresolved function references across the layers. Since there was a one-to-one rela-
tionship between the independent layer and the hardware specific layer, initializa-
tion and shutdown logic was straightforward, and control and query routines could
be directly implemented. In migrating to a multi-component model, this one-to-one
relationship was replaced with a one-to-many coupling between the independent, or
framework, layer and a collection of hardware specific components, requiring that
previous code dependencies and assumptions be carefully identified and modified
as necessary.

When linking multiple components into a common object library, each compo-
nent exposes a subset of the same functionality to the framework layer. To avoid
name-space collisions in the linker, the entry points of each component are mod-
ified to hide the function names, either by giving them names unique to the com-
ponent, or by declaring them as static inside the component code. Each component
contains an instance of a structure, or vector, with all the necessary information
about opaque structure sizes, component specific initializations and function point-
ers for each of the functions that had been previously statically linked across the
framework/component boundary. The only symbol that a component exposes to the

160 Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra

framework at link time is this uniquely named component vector. All accesses to the
component code occur through function pointers in this vector, and empty vector
pointers fail gracefully, allowing components to be implemented with only a subset
of the complete functionality. In this way, the framework can transparently manage
initialization of and access to multiple components by iterating across a list of all
available component structures. Our experiments have shown that the extra level of
indirection introduced by calls through a function pointer adds a small but generally
negligible additional overhead to the call time, even in time-critical routines such
as reading counter values. Timing tests were done on hardware including Intel Pen-
tium4, Core2, and Nehalem, AMD Opteron and IBM POWER6 architectures. Over
1M iterations of a loop including 10 calls to empty subroutines the average execu-
tion time difference between direct and indirect calls was in the range of 6.9% for
Nehalem to 46% for POWER6. In the context of real PAPI workloads on these same
machines, a start/stop operation was slowed by between 0.13% and 1.36%, while a
read of two counters was slowed by between 1.26% and 11.3%. Table 11.1 shows
these results in greater detail.

Table 11.1: Costs of PAPI calls

Pentium4 Core2 Nehalem Opteron POWER6

direct cycles/call 13.8 8.4 5.8 9.6 106.3
indirect cycles/call 17.8 10.3 6.2 11 155.2
% slowdown 29.00% 22.60% 6.90% 14.60% 46.00%
PAPI start/stop slowdown 0.66% 0.52% 0.13% 0.39% 1.36%
PAPI read 2 counters slowdown 9.76% 6.40% 2.47% 11.30% 1.26%

Countable events in PAPI are either preset events, defined uniformly across all
architectures, or native events, unique to a specific component. To date preset events
have only been defined for processor hardware counters, making all events on off-
processor components native events.

11.2.1 Preset Events

Preset events can be defined as a single event native to a given CPU, or can be
derived as a linear combination of native events, such as the sum or difference of
two such events. More complex derived combinations of events can be expressed in
reverse polish notation and computed at run-time by PAPI. The number of unique
terms in these expressions is limited by the number of counters in the hardware.
For many platforms the preset event definitions are provided in a comma separated
values file, papi_events.csv, which can be modified by developers to explore
novel or alternate definitions of preset events. Because not all preset events are im-
plemented on all platforms, a utility called papi_avail is provided to examine

11 Collecting Performance Data with PAPI-C 161

the list of preset events on the platform of interest. A portion of the output for an
Intel Nehalem (core i7) processor is shown below:
Available events and hardware information.

PAPI Version : 4.0.0.0
Vendor string and code : GenuineIntel (1)
Model string and code : Intel Core i7 (21)
CPU Revision : 5.000000
CPUID Info : Family: 6 Model: 26 Stepping: 5
CPU Megahertz : 2926.000000
CPU Clock Megahertz : 2926
Hdw Threads per core : 1
Cores per Socket : 4
NUMA Nodes : 2
CPU’s per Node : 4
Total CPU’s : 8
Number Hardware Counters : 7
Max Multiplex Counters : 32

The following correspond to fields in the PAPI_event_info_t structure.

Name Code Avail Deriv Description (Note)
PAPI_L1_DCM 0x80000000 No No Level 1 data cache misses
PAPI_L1_ICM 0x80000001 Yes No Level 1 instruction cache misses
PAPI_L2_DCM 0x80000002 Yes Yes Level 2 data cache misses
...
PAPI_FP_OPS 0x80000066 Yes Yes Floating point operations
PAPI_SP_OPS 0x80000067 Yes Yes Floating point operations;

optimized to count scaled single precision
vector operations

PAPI_DP_OPS 0x80000068 Yes Yes Floating point operations;
optimized to count scaled double precision
vector operations

PAPI_VEC_SP 0x80000069 Yes No Single precision vector/SIMD instructions
PAPI_VEC_DP 0x8000006a Yes No Double precision vector/SIMD instructions

Of 107 possible events, 34 are available, of which 8 are derived.

11.2.2 Native Events

PAPI components contains tables of native event information allowing native events
to be programmed in essentially the same way as a preset event. Each native event
may have a number of attributes, called unit masks, that can act as filters on exactly
what gets counted. These attributes can be appended to a native event name to tell
PAPI exactly what to count. An example of a native event name with unit masks
from the Intel Nehalem architecture is shown below:

L2_DATA_RQSTS:DEMAND_M_STATE:DEMAND_I_STATE

Attributes can be appended in any order and combination, and are separated by
colon characters. Some components such as LM-SENSORS may have hierarchi-
cally defined native events. An example of such a hierarchy is shown below:

LM_SENSORS.max1617-i2c-0-18.temp2.temp2_input

In this case, levels of the hierarchy are separated by period characters. Com-
plete listings of these and other native events can be obtained from a utility anal-

162 Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra

ogous to papi_avail, called papi_native_avail. A portion of the output
of papi_native_avail for Nehalem configured with multiple components is
shown below:

...

0x40000032 L1I_OPPORTUNISTIC_HITS | Opportunistic hits in streaming |

0x40000033 L2_DATA_RQSTS | All L2 data requests |

40000433 :ANY | All L2 data requests |
40000833 :DEMAND_E_STATE | L2 data demand loads in E state |
40001033 :DEMAND_I_STATE | L2 data demand loads in I state (misses) |
40002033 :DEMAND_M_STATE | L2 data demand loads in M state |
40004033 :DEMAND_MESI | L2 data demand requests |
40008033 :DEMAND_S_STATE | L2 data demand loads in S state |
40010033 :PREFETCH_E_STATE | L2 data prefetches in E state |
40020033 :PREFETCH_I_STATE | L2 data prefetches in the I state (misses) |
40040033 :PREFETCH_M_STATE | L2 data prefetches in M state |
40080033 :PREFETCH_MESI | All L2 data prefetches |
40100033 :PREFETCH_S_STATE | L2 data prefetches in the S state |

0x40000034 L2_HW_PREFETCH | Count L2 HW Prefetcher Activity |

40000434 :HIT | Count L2 HW prefetcher detector hits |
40000834 :ALLOC | Count L2 HW prefetcher allocations |
40001034 :DATA_TRIGGER | Count L2 HW data prefetcher triggered |
40002034 :CODE_TRIGGER | Count L2 HW code prefetcher triggered |
40004034 :DCA_TRIGGER | Count L2 HW DCA prefetcher triggered |
40008034 :KICK_START | Count L2 HW prefetcher kick started |

...

0x44000000 ACPI_STAT | kernel statistics |

0x44000001 ACPI_TEMP | ACPI temperature |

0x48000000 LO_RX_PACKETS | LO_RX_PACKETS |

0x48000001 LO_RX_ERRORS | LO_RX_ERRORS |

...

0x4c0000b3 LM_SENSORS.w83627hf-isa-0290.cpu0_vid.cpu0_vid
0x4c0000b4 LM_SENSORS.w83627hf-isa-0290.beep_enable.beep_enable |

Total events reported: 396

11.2.3 API Changes

An important consideration in extending a widely accepted interface such as PAPI
is to make extensions in such a way as to preserve the original interface as much
as possible for the sake of backward compatibility. Several entry points in the PAPI
user API were augmented to support multiple components, and several new entry
points were added to support new functionality.

By convention, an event to be counted is added to a collection of events in an
EventSet, and EventSets are started, stopped, and read to produce event count values.
Each EventSet in Component PAPI is bound to a specific component and can only
contain events associated with that component. Multiple EventSets can be active

11 Collecting Performance Data with PAPI-C 163

simultaneously, as long as only one EventSet per component is invoked. The binding
of EventSet and component can be done explicitly at the time it is created with a call
to the new API:

PAPI_assign_eventset_component() - assign a component index to an
existing but empty EventSet

Explicit binding allows a variety of attributes to be modified in an EventSet even
before events are added to it. To preserve backward compatibility for legacy appli-
cations, binding to a specific component can also happen automatically when the
first event is added to an EventSet.

Three entry points in the API allow access to settings within PAPI. These entry
points are shown below:

PAPI_num_hwctrs() - return the number of hardware counters for
the cpu

PAPI_get_opt() - query the option settings of the PAPI
library or a specific event set

PAPI_set_domain() - set the default execution domain for new
event sets

Component specific versions of these calls are:

PAPI_num_cmp_hwctrs() - return the number of hardware counters
for the cpu

PAPI_get_cmp_opt() - query the option settings of the PAPI
library or a specific event set

PAPI_set_cmp_domain() - set the default execution domain for
new event sets

These modified calls have been implemented with an additional parameter to al-
low specification of a given component within the call. Backward compatibility is
preserved by assuming that the original calls are always bound to the original cpu
component.

Finally two new calls were added to provide housekeeping functions. The first
simply reports the current number of components, and the second returns a structure
of information describing the component:

PAPI_num_components()

PAPI_get_component_info()

Neither of these calls are required. In this way legacy code instrumented with PAPI
calls compiles and runs with no modification needed.

Example components have been implemented in the initial release of PAPI for
ACPI temperature sensors, the Myrinet network counters, and the lm-sensors inter-
face. An implementation of an Infiniband network component is under investigation,
along with several other components for disk sub-systems such as Lustre.

11.2.4 The CPU Component

The CPU component is unique for several reasons. Historically it was the only com-
ponent that existed in earlier versions of PAPI. Within Component PAPI one and

164 Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra

only one CPU component must exist and occupy the first position in the array of
components. This simplifies default behavior for legacy applications. In addition to
providing access to the hardware counters on the main processor in the system, the
CPU component also provides the operating system specific interface for things like
interrupts and threading support, as well as high resolution time bases used by the
PAPI Framework layer. The necessity for a unique CPU component has been iden-
tified as a restriction from the perspective of implementations that may not need or
wish to monitor the CPU and also implementations that may contain heterogeneous
CPUs. This is an open research issue in Component PAPI and mechanisms are under
investigation to relax these restrictions.

11.2.5 Accessing the CPU Hardware Counters

CPU Hardware counter access is provided in a variety of ways on different systems.
When PAPI was first released almost 10 years ago, there was significant diversity in
the operating systems and hardware of the Top500 list. AIX, Solaris, UNICOS and
IRIX shared the list with a number of variants of Unix [8]. Linux systems made up
a mere 3.6 percent of the list. Most of these systems had vendor provided support
for counter access either built-in to the operating system, or available as a loadable
driver. The exception was Linux, which had no support for hardware counter access.
This is in sharp contrast to today [9], when nearly 90 percent of the systems run
Linux or Linux variants.

Several options were available to access counters on Linux systems. One of the
earliest was the perfctr patch [10] for x86 processors. Perfctr provided a low
latency memory-mapped interface to virtualized 64-bit counters on a per process
or per thread basis, ideal for PAPI’s “first person” counting and sampling inter-
face. With the introduction of Linux on the Itanium processor, the perfmon [5]
interface was built-in to the kernel. When it became apparent that perfctr would
not be accepted into the Linux kernel, perfmon was rewritten and generalized as
perfmon2 [11] to support a wide range of processors under Linux, including the
IBM POWER series in addition to x86 and IA64 architectures. After a continuing
effort over several years by the performance community to get perfmon2 accepted
into the Linux kernel, it too was rejected and supplanted by yet another abstraction
of the hardware counters, first called perf_counters in kernel 2.6.31 and then
perf_events [6] in kernel 2.6.32. The perf_events interface is young and
maturing rapidly. It has the overwhelming advantage of being built-in to the kernel,
requiring no patching on the part of system administrators. PAPI continues to sup-
port hardware counter access through perfctr wherever it is available. Perfmon
access is available through the 2.6.30 kernel. In addition, PAPI also supports the
perf_events interface.

11 Collecting Performance Data with PAPI-C 165

11.2.6 The ACPI and MX Components

The ACPI component enables the PAPI-C library to access the ACPI temperature
sensors, while the MX component allows monitoring of run-time characteristics
of the Myrinet network communications. To demonstrate simultaneous monitoring
of CPU metrics as well as temperature and data transfer, we collected data from
the HPC Challenge suite. This suite is a set of scalable, computationally intensive
benchmarks with different memory access patterns that examine the performance
of HPC architectures [12]. For our experiments, we chose two global kernel bench-
marks, High Performance Linpack (HPL) and FFT. The HPL kernel solves a linear
system of equations and the FFT kernel computes a double precision complex one-
dimensional discrete Fourier transform, which ensures two highly computationally
intense test cases. We instrumented both benchmarks to gather total floating-point
operations, temperature and packets sent and received through the Myrinet network.
With Component PAPI, we were able to easily instrument the program by simply
providing the desired event names in PAPI calls. We ran our experiments on a 65-
node AMD Opteron cluster. Both benchmarks ran on eight nodes. We instrumented
functions fft235 in FFT and pdgesvK2 in HPL, since profiling indicated that these
were the most computationally active routines, and gathered data for each iteration
that called these functions.

The measurements for the FFT benchmark on two of the nodes are shown in
Fig. 11.1. We can see the periodic nature of the computation and communication.
The measured data for the second case study - the HPL benchmark - is depicted in
Fig. 11.2 and shows a completely different computation and communication pattern.
In both test cases, we are able to observe a difference in the temperature between
the two nodes.

Fig. 11.1: FLOPS, temperature and communication monitoring using the CPU,
ACPI and MX component of PAPI-C for an FFT benchmark running on an AMD
Opteron cluster

166 Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra

Fig. 11.2: FLOPS, temperature and communication monitoring using the CPU,
ACPI and MX component of PAPI-C for an HPL benchmark running on an AMD
Opteron cluster

11.2.7 The LM-SENSORS Component

The LM-SENSORS component enables the PAPI-C library to access all computer
health monitoring sensors as exposed by the lm_sensors [13] library. The user
is able to closely monitor the system’s hardware health as an attempt to get more
performance out of environmental conditions of the hardware. What features are
available and what exactly can be monitored depends on the hardware setup.

We monitored three fan speeds as well as the CPU temperatures on a quad-core
Intel Nehalem (core i7) machine using the LM-SENSORS component of PAPI-C.
Multiple iterations of numeric operations are performed to heat up the compute
cores. In total, 128 threads have been created and distributed over 8 compute cores
and each of them executes the numeric code. The fan speeds as well as CPU tem-
peratures are monitored every 10 seconds. Figure 11.3(a) shows the collected speed
data of three fans while Fig. 11.3(b) depicts the temperature of the two quad-core
CPUs. From those graphs, it is evident that the rotational speed of the fans responds
to changes on the CPU temperature sensors. Note once more the difference in tem-
perature between the two CPUs. We have seen similar correlation between temper-
ature and workload before in section 11.2.6 on an Opteron architecture.

11 Collecting Performance Data with PAPI-C 167

Fig. 11.3: (a) Fan speed monitoring; (b) CPU temperature monitoring - both met-
rics have been investigated on an Intel Nehalem (core i7) machine using the LM-
SENSORS component of PAPI-C

11.3 Multi-core Performance Measurement

With the arrival of the multi-core era for modern Petascale computing, more dis-
cussions are turning to the future implications of multi-core processors. The main
focus in this section is the impact of shared resources of multi-core processors on the
CPU component of PAPI-C which is described in 11.2.4. With the help of an appli-
cation test case, we will discuss the difference between hardware performance data
collection for on-core versus off-core resources. The current approach of collecting
hardware performance counters shows serious limitations for off-core resources.
However, measurement of performance counter data from shared resources is cru-
cial in the analysis of scientific applications on multi-core processors due to the fact
that this is where resource contention occurs. The key is to minimize the contention
of shared resources such as caches, memory bandwidth, bus and other resources.

The multi-core transition in hardware design also reflects an impact on software
development which remains a big challenge. To illustrate issues associated with the
measurement of performance events for shared resources, we quantitatively evaluate
the performance of the memory sub-system on Jaguar, the fastest computer on the
November 2009 Top500 list [14]. The Jaguar system at Oak Ridge National Labora-
tory (ORNL) has evolved rapidly over the last several years. When the work reported
here was done, Jaguar was based on Cray XT4 hardware and utilized 7,832 quad-
core AMD Opteron processors with a clock frequency of 2.1 GHz and 8 GBytes of
memory (maintaining the per core memory at 2 GBytes). For more information on

168 Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra

the Jaguar system and the quad-core AMD Opteron processor, the reader is referred
to [15, 16].

The application test case is drawn from workload configurations that are expected
to scale to large number of cores and that are representative of Petascale problem
configurations. The massively parallel direct numerical simulation (DNS) solver
(S3D) - developed at Sandia National Laboratories - solves the full compressible
Navier-Stokes, total energy, species, and mass continuity equations coupled with
detailed chemistry [17, 18, 19]. The application was run in SMP (one core per node)
as well as VN mode (four cores per node) on Jaguar. Both test cases apply the same
core count. The total execution time for runs using the two different modes shows a
significant slowdown of 25% in VN mode (813 seconds) when compared to single-
core mode (613.4 seconds). The unified L3 cache is shared between all four cores.
We collected hardware performance events using the PAPI library that confirms our
findings. L3 cache requests are measured and computed using the following PAPI
native events:

L3 REQUESTS = READ REQUESTS TO L3 + L3 FILLS CAUSED BY L2 EVICTION

Note: In VNM all L3 cache measurements have been divided by 4 (4 cores per node)

Figure 11.4 (a) depicts the number of L3 cache misses and requests when using
four cores versus one core per node for the 13 most expensive functions of the S3D
application. It appears that the performance degradation in VN mode is due to the L3
cache behavior. In VN mode we see roughly twice as many L3 cache requests and
misses compared to SMP mode. It is not surprising that L3 cache misses increase
with VN mode since if every thread is operating on different data, then one thread
could easily evict the data for another thread if the sum of the four working threads
is greater than the size of the L3 cache. However, the increase in L3 requests is
rather questionable. The L3 cache serves as a victim cache for L2. In other words,
a datum evicted from L2 (the victim) is deposited in L3. If requested data is not in
L2 cache then the L3 cache is checked which results in an L3 request. While the L3
cache is shared between all four cores, the L2 cache remains private. Based on this
workflow, it is not clear why the number of L3 requests increases so dramatically
when using all four cores per node. As verification we measure the L2 cache misses
in SMP and VN mode and Fig. 11.4 (b) presents the comparison. It clearly shows
that the number of L2 cache misses does not increase when all four cores are used
compared to SMP mode. All the more, the question persists as to where the double
L3 cache requests come from when VN mode is used. It is important to note, the
policy on the Jaguar system defines that by default a task - independent of process or
thread - is not allowed to migrate to a CPU core within a socket or to any CPU core
on either socket [20]. For the S3D test case, we applied this default configuration
which pins a task to a specific CPU core.

11 Collecting Performance Data with PAPI-C 169

Fig. 11.4: (a) L3 cache misses and requests (mean); (b) L2 cache misses (mean)

11.3.1 Various Multi-core Designs

Recent investigations and discussions have suggested that the high L3 cache request
rate in S3D may be an artifact of the measurement process. Current Opteron hard-
ware is not designed for first-person counting of events involving shared resources
[21]. The L3 events in AMD Opteron quad-core processors are not monitored in
four independent sets of hardware performance registers but in a single set of reg-
isters not associated with a specific core (often referred to as ”shadow” registers).
Each core has four independent counter registers which are used for most perfor-
mance events. When an L3 event is programmed into one of these counters on one
of these cores, it gets copied by hardware to the shadow register. Thus, only the last
event to be programmed into any core is the one actually measured by all cores.
When several cores try to share a shadow register, the results are not clearly defined.
Performance counter measurement at the process or thread level relies on the as-
sumption that counter resources can be isolated to a single thread of execution. That
assumption is generally no longer true for resources shared between cores - like the
L3 cache in AMD quad-core processors.

This problem is not isolated just to AMD Opteron processors. Early Intel dual-
core processors addressed the issue of measuring shared resources by providing
SELF and BOTH modifiers on events involving shared caches or other resources.
This allowed each core to independently monitor the event stream for a shared re-
source and to either collect only counts for its activity or for all activities involving
that resource. However, with the introduction of the Nehalem (core i7) architec-
ture, Intel, too, moved measurement of chip level shared resources off the cores and
onto the chips. The Nehalem architecture includes eight “Uncore” counters [22] that
are shared among all the cores of the chip. There is presently no mechanism for a
given core to reserve counter resources from the Uncore. These events can be mon-
itored by the perfmon2 [5] patch, but only in system-wide counting mode. Thus
these counter measurements cannot be performed with a first-person measurement
paradigm such as PAPI’s, and cannot be intermixed with per process measurements
of other events. The built-in perf_events [6] module in the Linux kernel has no
support for Uncore counters as of the 2.6.32 kernel release.

170 Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra

A final example of the multi-core problem of measuring activities on shared re-
source is IBM’s Blue Gene series. Blue Gene/L is a dual-core processor and Blue
Gene/P is a quad-core processor. In both cases hardware counters are implemented
in the UPC, a Universal Performance Counter module that is completely external to
any core. In Blue Gene/P for example, the UPC contains 256 independent hardware
counters [23]. Events on each core can be measured independently, but the core
must be specified in the event identifier. This can create great difficulty for code that
in general does not know or care on which core it is running. Further, these counters
can only be programmed to measure events on either core 0 and 1, or core 2 and 3,
but not on a mixture of all four cores at once.

As the above examples illustrate, hardware vendors are searching for ways to
provide access to performance events on shared resources. There is presently no
standard mechanism that provides performance information in a way that is useful
for software tuning. New methods need to be developed to appropriately collect and
interpret hardware performance counter information collected from such multi-core
systems with interesting shared resources. PAPI research is underway to explore
these issues.

11.4 Future Directions

With the release of PAPI-C, the stage is set for a wide range of development di-
rections. Our major goals with the first release were stability and compatibility. As
with any research and development effort there are always open issues to be ex-
plored. Here are some of the issue under investigation with Component PAPI:

• Event Naming: PAPI presently expresses all events as 32-bit event codes. With
the richness of current events and attributes and modifiers, we find this too re-
strictive, and will be migrating to a model in which all events are referenced by
name.

• Data Types: PAPI supports returned data values expressed as unsigned 64-bit
integers. This is appropriate for counting events, but may not be as appropriate
for expressing other values. We are exploring ways to encode and specify other
64-bit data formats including: signed integer, IEEE double precision, fixed point,
and integer ratios.

• Dynamic Configurability: The current mechanism for adding new components
is workable, but not well suited to introducing new components between releases
of the PAPI Framework. Methods are needed for an automated discovery process
for components, both at build time and at execution time.

• Synchronization: Components can report values with widely different time
scales and remote measurements may exhibit significant skew and drift in time
from local measurements. Mechanisms need to be developed to accomodate
these artifacts.

11 Collecting Performance Data with PAPI-C 171

• Component Management: To encourage users and third parties to become com-
ponent contributors, efforts will be invested in documenting the component de-
velopment process and in managing 3rd party components.

At a recent brainstorming session by the PAPI developers, a number of future di-
rections for the PAPI project were identified. In a somewhat whimsical fashion, and
building on the idea of the PAPI-C name, several new letters for the PAPI ”alphabet
soup” were put forth:

• PAPI-M: Multi-core. The issue of how to measure shared resource performance
on a variety of multi-core architectures remains unresolved. This may require
more kernel development than PAPI development, but is an important issue that
should be addressed.

• PAPI-G: GPUs. GPGPUs and other heterogenous compute elements will be an
increasingly important part of our computing eco-system as we move from Peta-
scale to Exascale. They present radically different sorts of performance informa-
tion to the user and provide a challenging opportunity for performance presenta-
tion.

• PAPI-V: Virtual. With access to performance hardware now part of the Linux
kernel, it becomes possible to introduce this information into the hypervisors that
comprise virtual, or cloud, computing space. With support in the hypervisors, it
becomes possible to consider what it means to measure hardware performance in
the cloud.

• PAPI-N: Networks. As core counts rise exponentially on the march to Exa-
scale, communication becomes even more dominant over computation as a de-
terminant of execution time. PAPI-C components can be developed either in the
open source community or by vendors to monitor hardware characteristics of ei-
ther open network standards such as Infiniband or proprietary hardware such as
Cray’s SeaStar or Gemini network chips.

• PAPI-D: Disks. Several users of PAPI have suggested and begun work on the
development of PAPI Components to measure remote disk storage activities for
file systems like Lustre. Such information could prove useful in managing and
measuring the impact of storage operations on execution performance.

• PAPI-H: Health. System health measurements are often done out-of-band from
compute activities. PAPI-C components may be developed to run on system
nodes in parallel with jobs on compute nodes to assess the impact of applica-
tion activities on temperature or power consumption, or to warn of impending
resource failure and the need for remedial action.

11.5 Conclusion

For most of the past decade, PAPI has been the de-facto choice to provide the tool
designer and application engineer with a consistent interface for accessing hardware
performance counters on a wide range of computer architectures. PAPI has ridden

172 Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra

the evolutionary wave of processor development as clock rates, pipeline depth and
instruction level parallelism increased through the decade. That smooth evolution
has recently ended with the flattening of clock rates, the introduction of multi-core
architectures, the adoption of heterogeneous computing approaches and the need for
more careful monitoring of system health required for fault tolerance and resiliency
in the Petascale domain of hundreds of thousands of processors. We are now in a
period of punctuated equilibrium where the paradigms of the recent past are being
swept away by a tidal wave of changes at a number of levels.

The development of Component PAPI for the simultaneous monitoring of mul-
tiple measurement domains positions this library to remain as a central tool in the
acquisition of performance data across a spectrum of architectures and activities.
This extension has been done in such a way as to cause minimal disruption to the
current user base while providing flexible opportunities to gain new insights into
application and system performance.

Acknowledgements This research was sponsored in part by the Office of Mathematical, Infor-
mation, and Computational Sciences of the Office of Science (OoS), U.S. Department of Energy
(DoE), under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC. This work used re-
sources of the National Center for Computational Sciences at Oak Ridge National Laboratory,
which is supported by the Office of Science of the Department of Energy under Contract DE-AC05-
00OR22725. These resources were made available via the Performance Evaluation and Analysis
Consortium End Station, a Department of Energy INCITE project.

This work was also supported in part by the U.S. Department of Energy Office of Science under
contract DE-FC02-06ER25761, by the National Science Foundation, Software Development for
Cyberinfrastructure (SDCI) Grant No. NSF OCI-0722072 Subcontract No. 207401, and by the
Department of Defense, using resources at the Extreme Scale Systems Center.

References

1. Browne, S., Dongarra, J., Garner, N., Ho, G., Mucci, P.: A portable programming interface
for performance evaluation on modern processors. International Journal of High-Performance
Computing Applications, Vol. 14, No. 3, pp. 189-204 (2000)

2. Cameron, K.W., Ge, R., and Feng, X.: High-performance, power-aware distributed computing
for scientific applications. Computer, 38(11):40–47 (2005)

3. Feng, W.C.: The importance of being low power in high performance computing. CTWatch
Quarterly, 1(3), August (2005)

4. Freeh, V.W., Lowenthal, D.K., Pan, F., Kappiah, N.: Using multiple energy gears in MPI
programs on a power-scalable cluster. In Principles and Practices of Parallel Programming
(PPOPP), June (2005)

5. Perfmon2 Sourceforge Project Page: http://perfmon2.sourceforge.net
6. Molnar, I.: Performance Counters for Linux, v8. http://lwn.net/Articles/336542
7. Moore, S.: A Comparison of Counting and Sampling Modes of Using Performance Monitor-

ing Hardware. ICCS 2002, Amsterdam, April (2002)
8. Operating System share, November 1999: http://www.top500.org/charts/list/

14/os
9. Operating System share, November 2009: http://www.top500.org/charts/list/

34/os

http://perfmon2.sourceforge.net
http://lwn.net/Articles/336542
http://www.top500.org/charts/list/14/os
http://www.top500.org/charts/list/14/os
http://www.top500.org/charts/list/34/os
http://www.top500.org/charts/list/34/os

11 Collecting Performance Data with PAPI-C 173

10. Pettersson, M.: Linux x86 Performance-Monitoring Counters Driver.
http://www.csd.uu.se/˜mikpe/linux/perfctr

11. Jarp, S., Jurga, R., Nowak, A.: Perfmon2: A leap forward in Performance Monitoring. Journal
of Physics: Conference Series 119, 042017 (2008)

12. Luszczek, P., Dongarra, J., Koester, D., Rabenseifner, R., Lucas, B., Kepner, J., McCalpin, J.,
Bailey, D., Takahashi, D.: Introduction to the hpc challenge benchmark suite. Technical report,
March (2005)

13. Hardware Monitoring by lm sensors: http://www.lm-sensors.org/
14. Top500 list: http://www.top500.org
15. NCCS.gov computing resources documentation:

http://www.nccs.gov/computing-resources/jaguar
16. Software Optimization Guide for AMD Family 10h Processors, Pub. no. 40546 (2008)
17. Chen, J. H., Hawkes, E. R., et al.: Direct numerical simulation of ignition front propagation in

a constant volume with temperature inhomogeneities I. fundamental analysis and diagnostics.
Combustion and flame, 145, pp. 128-144 (2006)

18. Sankaran, R., Hawkes, E. R., et al.: Structure of a spatially developing turbulent lean methane-
air Bunsen flame. Proceedings of the combustion institute 31, pp. 1291-1298 (2007)

19. Hawkes, E. R., Sankaran, R., et al.: Scalar mixing in direct numerical simulations of tempo-
rally evolving nonpremixed plane jet flames with skeletal CO-H2 kinetics. Proceedings of the
combustion institute 31, pp. 1633-1640 (2007)

20. Cray XT Programming Environment User’s Guide (Version 2.2). S-2396-22, July (2009)
21. BIOS and Kernel Developer’s Guide (BKDG) for AMD Family 10h Processors (particularly

Section 3.12.). Vol. 31116 Rev 3.34, September (2009)
22. Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 3B: System Program-

ming Guide (Particularly Chapter 19.17.2 Performance Monitoring Facility in the Uncore).
Part 2 Order Number: 253669-031US, June (2009)

23. Walkup, B.: Blue Gene/P Universal Performance Counters. http://www.nccs.gov/
wp-content/training/2008 bluegene/BobWalkup BGP UPC.pdf

http://www.csd.uu.se/~mikpe/linux/perfctr
http://www.lm-sensors.org/
http://www.top500.org
http://www.nccs.gov/computing-resources/jaguar
http://www.nccs.gov/wp-content/training/2008_bluegene/BobWalkup_BGP_UPC.pdf
http://www.nccs.gov/wp-content/training/2008_bluegene/BobWalkup_BGP_UPC.pdf

Chapter 12
ISP Tool Update: Scalable MPI Verification

Anh Vo, Sarvani Vakkalanka, and Ganesh Gopalakrishnan

Abstract We provide a status update of ISP, our dynamic formal verifier for MPI
programs. ISP determines and explores all relevant schedules of an MPI program.
The highlights of this paper are (i) a recap of ISP’s features, and (ii) an overview of
work in progress, including a graphical explorer for message passing (GEM) and a
distributed MPI analyzer (DMA), an adaptation of ISP for the distributed setting.

12.1 Introduction

The Message Passing Interface (MPI) [6] library remains one of the most widely
used APIs for implementing distributed message passing programs. Its projected
usage in critical, future applications such as Petascale computing [5] makes it imper-
ative that MPI programs be free of programming logic bugs. This is a very challeng-
ing task considering the size and complexity of optimized MPI programs. In partic-
ular, performance optimizations often introduce many types of non-determinism in
the code. For example, the MPI_Recv(MPI_ANY_SOURCE, MPI_ANY_TAG)
call that can potentially match a message from any sender in the same commu-
nication group (we will later refer to this as a wildcard receive) is often used for
re-initiating more work on the first sender that finishes the previous item of work. A
more general version of this call is the MPI_Waitsome call that waits for a subset
of the previously issued communication requests to finish. These non-deterministic
constructs result in MPI program bugs that manifest intermittently – the bane of
debugging.

Traditional MPI debugging tools such as Marmot [8] insert delays during re-
peated testing under the same input to pertube the MPI runtime scheduling. Ex-
perience indicates that this technique is often unreliable [1]. In order to detect all
scheduling-related bugs, the framework under which MPI programs are debugged

Anh Vo, Sarvani Vakkalanka, Ganesh Gopalakrishnan
School of Computing, University of Utah, Salt Lake City, UT 84112, USA

M.S. Müller et al. (eds.), Tools for High Performance Computing 2009,
DOI 10.1007/978-3-642-11261-4 12, © Springer-Verlag Berlin Heidelberg 2010

175

http://dx.doi.org/10.1007/978-3-642-11261-4_12

176 Anh Vo, Sarvani Vakkalanka, and Ganesh Gopalakrishnan

needs to have the ability to determine and enforce all relevant schedules. These three
concepts are explained in § 12.1.1, including why only the relevant schedules must
be enforced. These concepts underlie ISP [11, 12, 13, 14], a unique dynamic veri-
fier for MPI programs. In the rest of this paper, we provide an updated status of ISP
matching the tool presentation in the workshop.

12.1.1 Determining and Enforcing Relevant Schedules

Determining Schedules: In an MPI program, the MPI calls are always issued in
program order, and the computational (C or Fortran) code is also executed in pro-
gram order. However, MPI calls may match out of program order [12]. Furthermore,
there are non-deterministic send/wild-card receive matches that cannot be discov-
ered unless these out of order matches are considered.

P0:Isend(to P1, &h0) ; Barrier; Wait(h0);
P1:Irecv(*, &h1) ; Barrier; Wait(h1);
P2: Barrier; Isend(to P1, &h2); Wait(h2);

Fig. 12.1: Illustration of Barrier Semantics and the POE Algorithm

Consider the example in Figure 12.1 where an MPI_Isend is issued by P0 and
another MPI_Isend is issued by P2, both directed at P1 which issues a wildcard
Irecv. There are Barrier calls intersperced in this code.

According to the MPI library semantics, no MPI process can issue an instruc-
tion past its barrier unless all other processes have issued their barrier calls; how-
ever these calls need not be matched when a Barrier is crossed. The following
execution is possible: (i) Isend(to P1, h0) is issued but not matched yet,
(ii) Irecv(*, h1) is issued but not matched, (iii) the processes issue and match
their barriers, (iv) Isend(to P1, h2) is issued but not matched, and (v) now
both sends and the receive are alive, and non-determinism arises.

However, notice that in any schedule where P0’s Isend and P1’s Irecv are
forced to match (i.e., issue order matchings), there is no non-determinism in this
program! ISP is the only dynamic formal verification tool into which the out of
order matching semantics of MPI is built in.
Enforcing Schedules: Once we determine that non-determinism is possible in Fig-
ure 12.1, we need to have a scheduling strategy to discover this non-determinism
and then to enforce it. ISP discovers non-determinism through a single idea (ba-
sically): delay any non-blocking non-deterministic receive if allowed by the MPI
semantics [12]!

12 ISP Tool Update: Scalable MPI Verification 177

In this example, the ISP scheduler collects the Irecv command but does not
issue it into the MPI runtime (effectively delaying it). This forces the execution to
proceed in such a manner that the non-deterministic matches are revealed.

Once revealed, ISP invokes its program replay mechanism. That is, ISP is de-
signed to remember the non-deterministic choices discovered and re-execute an
MPI program to cover this space of non-deterministic matches. During each re-
play, it dynamically rewrites the wildcard Irecv(*, &h1): first, it is turned
into a Irecv(from P0, &h1) and during the next replay, it is turned into
Irecv(from P2, &h1). This way, the ISP scheduler can “fire and forget” the
Irecv(from P0, &h1) and Isend(to P1, &h0), knowing that within the
MPI runtime, these instructions have no choice, but to match! Had the ISP scheduler
simply issued Irecv(*, &h1) (without determinizing it first), this receive could
have matched a send from yet another process, say P3 – not the intended one.
Why only the Relevant Schedules? If all possible schedules of an MPI program are
considered, a considerable degree of wasted testing happens. For example, nothing
is gained by permuting the order in which (i) the send/receive MPI calls are issued,
(ii) the order in which the Barrier’s are issued. For instance, a delay introducing
tool may simply explore all N! ways of issuing a Barrier call whereas ISP simply
issues the barriers in one canonical way (it issues them together).

Thus the key difference between an ad hoc testing tool and a formal dynamic
verifier such as ISP is that whereas the former tools get caught in an exponentially
growing amount of irrelevant schedules, ISP avoids many of these exponentials.
In practice, this makes all the difference between complete verification and ad hoc
testing with omissions. For example, in a recent series of dynamic verification runs
using ISP, ParMETIS [7] (a widely used hypergraph partitioner of over 14,000 lines
of MPI C code) was verified [2] for 32 processes on an ordinary laptop computer in
under 40 minutes, generating a message log file of 512 MB! This verification could
simply not be imagined if we permuted all 32-way barriers within this code, posted
all determinstic sends and receives in every order, etc.

12.2 ISP Overview

At a high level, ISP works by intercepting the MPI calls made by the target program
and making decisions on when to send these MPI calls to the MPI library. This is
accomplished by the two main components of ISP: the Interposition Layer and the
Scheduler. Figure 12.2 describes the general framework of ISP, showing the inter-
action between the ISP library (linked with the executable) and the ISP scheduler.
The Interposition Layer: The interception of MPI calls is accomplished by com-
piling the ISP interposition layer together with the target program source code. The
interposition layer makes use of the profiling mechanism PMPI. It provides its own
version of MPI_ f for each corresponding MPI function f . Within each of these

178 Anh Vo, Sarvani Vakkalanka, and Ganesh Gopalakrishnan

Fig. 12.2: Overview of ISP

MPI_ f , the profiler communicates with the scheduler using TCP sockets1 to send
information about the MPI call that the process wishes to make. It will then wait
for the scheduler to make a decision on whether to send the MPI call to the MPI
library or to postpone it until later. When permission to fire f is granted from the
scheduler, the corresponding MPI_ f will be issued to the MPI run-time. Since all
MPI libraries come with functions such as PMPI f for every MPI function f, this
approach provides a portable and light-weight instrumentation mechanism for MPI
programs being verified.
The ISP Scheduler: The scheduler is where our main scheduling algorithm, namely
POE (Partial Order avoiding Elusive interleavings) is carried out. The scheduler
meets the following objectives: G1: discovers the maximal set of sends that can
match a wildcard receive (viewed across all MPI-standard compliant MPI libraries);
G2: accurately models the semantics of the global operations (such as barriers) of
MPI. In MPI, not all MPI operations issued by a process complete in that order, and
a proper modeling of this out-of-order completion semantics is essential in order to
meet goals G1 and G2. For example, two MPI_Isend commands issued in succes-
sion by an MPI process P1 to the same target process (say P2) are forced to match in
order, whereas if these MPI_Isends are targeted to two different MPI processes,
then they may match contrary to the issue order. As another example, any operation
following an MPI_Barrier must complete only after the barrier has completed,
while an operation issued before the barrier may linger across the barrier, as already
illustrated using Figure 12.1.
Main Steps of the POE Algorithm: The POE algorithm works as follows. There
are two classes of statements to be executed: (i) those statements of the embedding
programming language (C, C++, and Fortran) that do not invoke MPI commands
and (ii) the MPI function calls. The embedding statements in an MPI process are
local in the sense that they have no interactions with those of another process. Hence,
under POE, they are executed in program order. When an MPI call f is encountered,
the scheduler records it in its state; however, it does not (necessarily) issue this call
into the MPI run-time. (Note: When we say that the scheduler issues/executes MPI
call f , we mean that the scheduler grants permission to the process to issue the
corresponding PMPI f call to the MPI run-time). This process continues until the

1 When running within a local machine, ISP uses unix sockets to reduce communication overhead.

12 ISP Tool Update: Scalable MPI Verification 179

scheduler arrives at a fence, where a fence is defined as an MPI operation that cannot
complete after any other MPI operation following it. The list of such fences include
MPI_Wait, MPI_Barrier, etc., and are formally defined in [11]. When all MPI
processes are at their individual fences, the full extent of all senders that can match
a wildcard receive becomes known, and dynamic rewriting can be performed with
respect to these senders. The collection of sends and matching receives can then be
issued. In the case where a receive does not have a matching send (or vice versa) and
there is no other MPI calls that can proceed, a deadlock is declared by the scheduler.

Fig. 12.3: ISP plugin in Eclipse

Completes-Before Ordering: The Completes-Before (CB) ordering accurately
captures when two MPI operations x and y issued from the same process in program
order are guaranteed to complete in that order. For example, if an MPI process P1 is-
sues an MPI_Isend that ships a large message to P2 and then issues MPI_Isend
that ships a small message to P3, it is possible for the second MPI_Isend to com-
plete first. A summary of the completes-before order of MPI is as follows: (i) Send
Order: Two Isends sending data to the same destination complete in issue order.
(ii) Receive Order: Two Irecvs receiving data from the same source complete in
issue order. (iii) Wildcard Receive Order: If a wildcard Irecv is followed by an-
other Irecv (wildcard or not), the issue order is respected by the completion order.

180 Anh Vo, Sarvani Vakkalanka, and Ganesh Gopalakrishnan

(iv) Wait Order: A Wait and another MPI operation following it complete in issue
order. For a formal description of the CB relation, please see [12].

12.3 GEM

GEM (Graphical Explorer for Message passing) is an Eclipse plugin which serves as
a graphical front-end for ISP. Given a collection of files to analyze using ISP, GEM
helps compile and links the files using the ISP library, and then invoke ISP’s sched-
uler on the executable creating the log file containing the post-verifcation results.
GEM then parses the log file and organizes its contents. It then attempts to associate
MPI calls with one another (e.g., sends need to be associated with their correspond-
ing receives). GEM also allows users to view the execution results according to
the program order or according to ISP’s internal execution order (modeled by the
Completes-Before-Ordering).

In addition to the usual Eclipse textual console view, GEM also provides an an-
alyzer view that serves three functions: (i) summarize verification results, (ii) link
to the completes-before viewer, (iii) allow the users to step through matching MPI
calls. Figure 12.3 shows a small MPI project opened in Eclipse under GEM while
Figure 12.4 depicts the analyzer view obtained by running a 10-process version of
ParMETIS through GEM.

Fig. 12.4: ISP plugin in Eclipse

12 ISP Tool Update: Scalable MPI Verification 181

For a more detail description of GEM, please see [2].

12.4 DMA - A Distributed MPI Analyzer

Up until now, ISP has been used to verify several large programs such as ParMETIS,
MADRE [10], MPI-Blast [3], and some of the SPECMPI2007 [4] benchmarks.
However, most of the experiments have been confined a small number of processes.
Fortunately, most MPI bugs will manifest themselves within these scale-down ex-
periments. Unfortunately, some MPI bugs can only be reproduced when the program
is run with a large number of processes. With Petascale computing coming to real-
ity and Exascale computing looming in the horizon, the need for a scalable tool that
can formally verify very large MPI programs is clear. § 12.4.1 will discuss several
technical limitations of ISP and we will propose our design of the new framework
in § 12.4.2.

12.4.1 Limitations of ISP

ISP was designed as a debugger that works best in a single machine setting. The
assumption is that most MPI bugs still manifest themselves even with a small num-
ber of processes. However, as mentioned before, there are bugs that will manifest
only at the extreme end of computing and it is unrealistic to expect the developers
to roll back to a desktop version of the program to debug. Since [13] was published,
many improvements were made to ISP to enhance the performance of the tool, both
in terms of scalibity and speed. However, there are key technical limitations of ISP
which prevent further significant scaling. We list the two most important issues here:
Centralized Scheduler: ISP employs a centralized scheduler which communicates
with the MPI processes through TCP sockets. Later versions of ISP can take ad-
vantage of Unix sockets when operating within a machine to eliminate the socket
communication overhead. For small to medium MPI programs, the verification can
complete within a reasonable amount of time in a desktop/workstation. However,
for large programs, the MPI processes will often need to be executed in a cluster en-
vironment (launching a couple hundred threads on a local machine can slow down
the verification tremendously, even on today’s powerful machines). While ISP can
operate in distributed mode, which means that the processes compiled with the inter-
position layer can be run distributedly in a cluster, the scheduler remains centralized
and becomes the bottleneck of the whole system. This is mainly due to amount of
sequential processing that has to be done by the scheduler, and also due to the mem-
ory limitation of a single machine. Despite being a stateless verifier (meaning that
it does not store all visited states), ISP still needs to store the information along
the current execution trace so that it can remember correctly which interleavings to

182 Anh Vo, Sarvani Vakkalanka, and Ganesh Gopalakrishnan

explore. When the number of MPI processes and MPI calls become large, even this
space grows inordinately.
Synchronous Communication: The ISP scheduler and the MPI processes operates
in a lock-step fashion, which means the MPI processes communicate in a handshake
fashion with the scheduler about each MPI call (except those that have purely local
semantics such as type creation, communicator grouping, etc.). Since ISP has to hold
back communication to build the completes-before edges properly, this handshake
mechanism is necessary. However, when the number of processes is large enough,
the scheduler has to cycle through each process to do handshaking, which means
several MPI processes will unnecessarily block to wait for the response from the
ISP scheduler.

12.4.2 DMA

In order to address the limitations of ISP, we have designed a new dynamic verifi-
cation framework called DMA. Since the implementation is still in its early phase,
this paper will only provide a brief overview of the framework.

12.4.2.1 PnMPI

DMA is designed to operate as a PNMPI [9] module. PNMPI extends the PMPI
profiling interface to support multiple PMPI-based tools (ISP is an example of a
PMPI-based tool). The advantages of using PNMPI are as follows:

• PNMPI allows the implementation of the DMA tool to be split up into multi-
ple layers, with each layer addressing orthogonal issues (interleaving generation
layer, resource leak tracking layer, deadlock detection layer, etc.).

• PNMPI also eliminates the need to recompile the MPI target code every time
changes are made to DMA

• Each layer or all of DMA layers can be turned off through a simple configuration
file, which enables the developers quickly to choose which aspect of the program
he wants to debug (or not debug at all)

• PNMPI has very low overhead. For more details on PNMPI overhead, please
see [9]

12.4.2.2 Going Distributed

With the lessons learned from developing ISP, DMA is designed as a distributed
tool. In DMA, each process will maintain its own trace and figure out the potential
matching that can occur for each nondeterministic MPI event that happens within
itself. To accomplish this, each process needs to construct its view of the world

12 ISP Tool Update: Scalable MPI Verification 183

through piggybacking (i.e., sending extra information in each MPI message), which
itself is implemented as a PNMPI module. Intuitively, the view helps the process
reason about the completes-before relationship that was described earlier. In the
case of ISP, the scheduler maintains the trace record of all the processes and thus
can construct the global view by itself. DMA maintains the trace record in each
process and eliminates the need for centralized processing.

After the program finishes, the information written out by each process can then
be processed offline by a Scheduler Generator which then generates the necessary
interleavings upon which the MPI processes will follow upon restarting. During all
these interleavings exploration, other DMA layers can also check the processes for
resource leaks, deadlocks, and local assertion violations.

12.4.2.3 Practical Considerations

DMA currently has two different implementations which serve different set of pro-
grams. The first implementation ignores the potential dependency between concur-
rent non-deterministic events, in which certain choices made by one event can af-
fect the number of choices for the other event. The second implementation takes
into account all the possible dependencies between concurrent events. Obviously,
the second implementation has a higher overhead than the first one. However, based
on our experiments with ISP, many programs do not exhibit dependency between
concurrent nondeterministic events.

In our experience, many large MPI programs tend to follow several programming
patterns, such as master-slave, work-stealing, nearest-neighbor, etc. Several of these
patterns employ heavy usage of wildcard receives, which results in an exponentially
large number of relevant interleavings to be explored. Yet, only a handful of these
interleavings represent meaningful code paths that have to be verified. The rest of
them can be declared safe once a representative of those interleavings is checked to
be safe. The analysis for this is complex and is part of future work for DMA

12.5 Conclusions

In this paper, we provided a status update of our dynamic verifier ISP matching
the tool presentation made at the 3rd Parallel Tools Workshop. We described the
graphical integration (fully explained in [2]) and a distributed version of ISP under
design.

Our future plans include a true in situ verification of large MPI programs made
possible by the distributed dynamic verification algorithm of the DMA tool. Our
plans also include an integration of the graphical capabilities of the tool presented
at [2] with DMA.

184 Anh Vo, Sarvani Vakkalanka, and Ganesh Gopalakrishnan

Acknowledgements The authors have a long list of Gauss group members as well as researchers
of the Lawrence Livermore National Laboratories (LLNL) as well as IBM to thank: of the Gauss
group members, we like to especially point out the work of Alan Humphrey and Chris Derrick of
Utah on the GEM tool, in collaboration with Beth Tibbitts and Greg Watson (IBM). We also thank
Bronis de Supinski, Martin Schulz, and Greg Bronevetsky of LLNL for joint work on DMA.

References

1. http://www.cs.utah.edu/formal verification/ISP Tests/.
2. http://www.cs.utah.edu/formal verification/ISP-Eclipse/.
3. http://www.mpiblast.org/.
4. http://www.spec.org/mpi.
5. A. Geist. Sustained Petascale: The next MPI challenge. Invited Talk at EuroPVM/MPI 2007.
6. W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable implementation

of the MPI message passing interface standard. Parallel Computing, 22(6):789–828, Sept.
1996.

7. G. Karypis. METIS and ParMETIS. http://glaros.dtc.umn.edu/gkhome/views/
metis.

8. B. Krammer, K. Bidmon, M. S. Müller, and M. M. Resch. Marmot: An MPI analysis and
checking tool. In Parallel Computing 2003, Sept. 2003.

9. M. Schulz and B. R. de Supinski. PNMPI tools: A whole lot greater than the sum of their parts.
In SC, page 30, 2007.

10. S. F. Siegel and A. R. Siegel. MADRE: The Memory-Aware Data Redistribution Engine.
EuroPVM/MPI 2008

11. S. Vakkalanka, G. Gopalakrishnan, and R. M. Kirby. Dynamic verification of MPI programs
with reductions in presence of split operations and relaxed orderings, CAV 2008.

12. S. Vakkalanka, A. Vo, G. Gopalakrishnan, and R. M. Kirby. Reduced execution semantics of
MPI: From theory to practice. In FM, pages 724–740, 2009.

13. A. Vo, S. Vakkalanka, M. DeLisi, G. Gopalakrishnan, R. M. Kirby, and R. Thakur. Formal
verification of practical MPI programs. In PPoPP, pages 261–269, 2009.

14. A. Vo, S. S. Vakkalanka, J. Williams, G. Gopalakrishnan, R. M. Kirby, and R. Thakur. Sound
and efficient dynamic verification of MPI programs with probe non-determinism. In Eu-
roPVM/MPI, pages 271–281, 2009.

http://www.cs.utah.edu/formal_verification/ISP_Tests/
http://www.cs.utah.edu/formal_verification/ISP-Eclipse/
http://www.mpiblast.org/
http://www.spec.org/mpi
http://glaros.dtc.umn.edu/gkhome/views/metis
http://glaros.dtc.umn.edu/gkhome/views/metis

	Preface
	Contents
	List of Contributors
	PERISCOPE: An Online-Based Distributed Performance Analysis Tool
	Introduction
	Related Work
	Periscope Design
	Periscope Architecture
	Agent's Data Capture Mechanism
	Search Strategies
	User Interface

	Periscope Usage Model
	Preparing Analysis Run
	Starting an Analysis Run

	Distributed Performance Analysis
	Found Properties
	Scalability of the Analysis

	Conclusion and Outlook
	References

	Comprehensive Performance Tracking with Vampir 7
	Introduction
	Overview
	Recent Developments in the Graphical User Interface
	Custom Side by Side Chart Arrangement
	Counter Data Timeline
	Performance Markers
	Clustering of Performance Data

	New Performance Data Sources
	Accelerators
	Energy Consumption

	Summary and Outlook
	References

	Performance Analysis and Workload Characterization with IPM
	Introduction
	Overview
	Performance Analysis with IPM
	Example Scaling Study with IPM
	Related Work
	Conclusion and Outlook
	References

	Recent Developments in the Scalasca Toolset
	Introduction
	Scalasca Overview
	Analysis of Hybrid MPI/OpenMP Codes
	Scalable Wait-State Analysis
	Scalability
	Improvement of Trace-Data I/O
	Analysis of MPI-2 Remote Memory Access Operations
	Delay Analysis
	Evaluation of Optimization Hypotheses
	Configurable Source-Code Instrumentation

	Analysis of Time-Dependent Behavior
	Observing Individual Iterations
	Space-Efficient Time-Series Call-Path Profiling

	Outlook
	References

	MUST: A Scalable Approach to Runtime Error Detection in MPI Programs
	Introduction
	Experiences from Marmot and Umpire
	Marmot
	Umpire

	Introduction to MUST
	MUST Design
	Offloading of Checks
	Major Components
	Trace Communication System

	Initial Experiments
	Related Work
	Conclusions
	References

	HPC Profiling with the Sun Studio™ Performance Tools
	Introduction
	The Sun Studio Performance Tools
	The Sun Studio Performance Tools Usage Model
	The Sun Studio Performance Tools Features
	Diagnosing Performance Problems

	Single-Threaded Application Performance Issues
	Algorithmic Inefficiency
	Memory Subsystem Performance Issues

	Multi-threading Performance Issues
	Lock Contention
	False Sharing of Cache Lines

	OpenMP Performance Issues
	Excess Parallel Overhead
	Insufficient Parallelism
	Lock Contention
	Load Imbalance

	MPI Performance Issues
	Computation Issues in MPI Programs
	Parallelization Issues in MPI Programs

	Conclusions
	References

	Performance Tuning of x86 OpenMP Codes with MAQAO
	Introduction
	Static Performance Evaluation
	Code Restructuring
	Performance Model
	Applying MAQAO to Real-World Applications

	Memory Traces for OpenMP Codes
	Static Binary Instrumentation
	Memory Traces
	Using Traces for OpenMP Performance Issues

	Related Work
	Conclusions and Future Work
	References

	Scalable Parallel Debugging with g-Eclipse
	Introduction
	Related Work
	Debugging Parallel Programs Using g-Eclipse
	Reduction of the Trace Complexity
	Pattern Matching
	Summary and Conclusions
	References

	New Analysis Techniques in the CEPBA-Tools Environment
	Introduction
	The CEPBA-Tools Environment
	Spectral Analysis
	Clustering Techniques
	Clustering Algorithms
	Application of Clustering Techniques
	Quantification of the Clustering Quality

	Sampling and Mixed Instrumentation
	High Frequency Sampling
	Hybrid Instrumentation and Sampling

	On-line Techniques
	Conclusion
	References

	The Importance of Run-Time Error Detection
	Introduction
	Background
	Methodology
	Results
	Recommendations
	Conclusions
	References

	Collecting Performance Data with PAPI-C
	Introduction
	Extending PAPI to Multiple Measurement Components
	Preset Events
	Native Events
	API Changes
	The CPU Component
	Accessing the CPU Hardware Counters
	The ACPI and MX Components
	The LM-SENSORS Component

	Multi-core Performance Measurement
	Various Multi-core Designs

	Future Directions
	Conclusion
	References

	ISP Tool Update: Scalable MPI Verification
	Introduction
	Determining and Enforcing Relevant Schedules

	ISP Overview
	GEM
	DMA - A Distributed MPI Analyzer
	Limitations of ISP
	DMA

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

