
Chapter 4
Spatial Alignment

Abstract. The subject of this chapter is spatial alignment. In image fusion this is
defined as the process of geometrically aligning two or more images of the same
scene acquired at different times (multi-temporal fusion), or with different sensors
(multi-modal fusion), or from different viewpoints (multi-view fusion). It is a cru-
cial pre-processing operation in image fusion and its accuracy is a major factor in
determining the quality of the output image. In order to keep our discussion focused
we shall concentrate on the image registration of two input images, A and B, which
we define as finding the transformation T which “optimally” maps spatial locations
in the image B to the corresponding spatial locations in the image A.

4.1 Introduction

Let A and B denote two digital input images which we assume are derived from the
same scene. The images will naturally have limited fields of view which will most
likely be different. However, as the two images A and B are derived from the same
scene we expect a relation to exist between the spatial locations in A and the spatial
locations in B. If (u,v) denotes a pixel location in the reference image A and (x,y)
denotes a pixel location in the floating image B, then the transformation T represents
a mapping of every pixel location (x,y) in B into the corresponding location (u′,v′)
in A [1]:

(

u′
v′

)

= T

(

x
y

)

.

In general, the location (u′,v′) does not correspond to a pixel location in A. Let
B′ be the corresponding tranformed B image. The image B′ is only defined at the
points (u′,v′), where by definition, B′(u′,v′) = B(x,y). In order to convert B′(u′,v′)
into a digital image which is defined at the same pixel locations as A we apply an
interpolation/resampling operation to B′(u′,v′):

1 The reader should note the subtle difference between (x,y) and (u′,v′): (x,y) represents
a discrete pixel location in B while (u′,v′) represents the corresponding floating spatial
location in A. In general (u′,v′) does not correspond to a pixel location in A.
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˜B(u,v)≡ R
(

B′(u′,v′)
)

, (4.1)

where R is an appropriate resample/interpolation operator. In practice (4.1) is im-
plemented by using the inverse transformation T−1 which maps pixels in A to their
corresponding locations in B. The following example illustrates the concept of a
nearest neighbor resample/interpolation operator.

Example 4.1. Nearest neighbour resample/interpolation algorithm. The sim-
plest resample/interpolation algorithm is the nearest neighbor algorithm. Let
(u,v) denote a pixel location in A. Suppose the corresponding location in B
is (x′,y′) = T−1(u,v). In general (x′,y′) will not fall on a pixel location in B.
Let Pk = (xk,yk),k ∈ {0,1,2,3}, denote the four pixel locations in B which
surround the point (x′,y′) where P0 is the point nearest to (x′,y′) (Fig. 4.1),
then the nearest neighbor gray-level is ˜B(u,v), where

˜B(u,v)≡ R
(

B′(u′,v′)
)

= B(x0,y0) .

(u,v)
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Fig. 4.1 Shows nearest neighbor interpolation. (a) Shows the reference image A and its grid
lines as full-lines. A pixel location (u,v) is shown by a filled circle at the intersection of two
grid-lines. (b) Shows the floating image B and its grid lines as full lines. Also shown (by
dashed lines) are the inverse transformed grid lines of A. The filled circle shows the location
of the inverse transformed point (x′,y′) = T−1(u,v).

4.2 Pairwise Transformation

The (pairwise) transformation
(

u′
v′

)

= T

(

x
y

)

,
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Table 4.1 Spatial Transformations T : (u′,v′)T = T
(

(x,y)T
)

Name Formula

Translation u′ = x+a1,v′ = y+a2.
Similarity u′ = a1x+a2y+a3, v′ =−a2x+a1y+a4.
Affine u′ = a1x+a2y+a3, v′ = a4x+a5y+a6.
Perspective u′ = (a1x+a2y+a3)/(a7x+a8y+1),

v′ = (a4x+a5y+a6)/(a7x+a8y+1).
Polynomial u′ = ∑ai jxiy j , v′ =∑bi jxiy j.

is a mathematical relationship that maps a spatial location (x,y)T in one image to
a new location, (u′,v′)T , in another image. The choice of transformation is always
a compromise between a smooth distortion and a distortion which achieves a good
match. One way to ensure smoothness is to assume a low-order parametric form for
the transformation [8, 23] such as that given in Table 4.1. In most applications the
transformation T is chosen on the grounds of mathematical convenience. However,
sometimes, we may have information regarding the physical processes which govern
the formation of the pictures. In this case we may use physical arguments in order
to derive the transformation T .

In many applications, the images also undergo local deformations. In this case,
we cannot describe the alignment of two images using a single low-order trans-
formation. In this case we use a composite transformation T , which consists of a
low-order global transformation TG and a local transformation TL:

(

u′
v′

)

= T

(

x
y

)

= TG

(

x
y

)

+ TL

(

x
y

)

,

where the parameters of TL change with (x,y).
The thin-plate spline (TPS) is often used to model the composite transformation

T .

4.2.1 Thin-Plate Splines

Mathematically, the TPS model for the composite transformation T is:

u′ = a1 + a2x + a3y +
M

∑
m=1

αmr2
m lnr2

m ,

v′ = a4 + a5x + a6y +
M

∑
m=1

βmr2
m lnr2

m ,

where (xm,ym),m ∈ {1,2, . . . ,M}, is a set of known anchor points and r2
m = (x−

xm)2 + (y− ym)2 + d2. Apart from the parameter d, the transformation T has six
parameters, a1,a2, . . . ,a6, corresponding to the global affine transformation TG and
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2N parameters (αm,βm),m ∈ {1,2, . . . ,M}, corresponding to the local transforma-
tion TL, and which satisfy the following constraints:

M

∑
m=1

αm = 0 =
M

∑
m=1

βm ,

M

∑
m=1

xmαm = 0 =
M

∑
m=1

xmβm ,

N

∑
m=1

ymαm = 0 =
M

∑
m=1

ymβm .

The TPS coefficients can be calculated using a least square solution [12]:
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,

where r2
i j = (xi−u′j)2 +(y j− v′j)2 + d2 and U(r) = r2 lnr2. For further details con-

cerning the estimation of the TPS parameters see [22].The following example illus-
trates the use of a TPS to model the warping of a fingerprint.

Example 4.2. Fingerprint Warping Using a Thin-plate spline [18]. The per-
formance of a fingerprint matching system is affected by the nonlinear defor-
mations introduced in the fingerprint during image acquisition This nonlinear
deformation is represented using a global affine transformation TG and a lo-
cal transformation TL. We use a TPS function [22] to represent the composite
transformation:

u′ = a1 + a2x + a3y +
M

∑
m=1

αmr2
m lnr2

m ,

v′ = a4 + a5x + a6y +
M

∑
m=1

βmr2
m lnr2

m ,

where (xm,ym),m ∈ {1,2, . . . ,M}, is a set of known anchor points and r2
m =

(x− xm)2 +(y− ym)2 + d2.
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4.3 Hierarchical Registration

The simplest approach to register two images A and B and to calculate the trans-
formation T is to decompose T into numerous local affine registrations of small
sub-images. The idea is to reduce the complexity of the registration process using a
hierarchical strategy (see Fig. 4.2).

A
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B′=T(B)

(b)
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B′′
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˜B′′= T
TPS
′′ (B′′)

(e)

Fig. 4.2 Shows two stages in hierarchical registration process of the floating image B with
the reference image A. (a) Shows the reference image A. (b) Shows the input floating image
B and the transformed floating image B′ = T (B) after the first stage in global registration.
(c) Shows the reference image divided into 4 quadrants. (d) Shows the transformed image B′
divided into four quadrants and the transformed quadrants B′′k = T ′(B′k). (e) Shows the com-
posite image ˜B′′ = T ′′T PS(B

′′) formed by applying the TPS transformation to the transformed
quadrants B′′k ,k ∈ {1,2, . . . ,4}.
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In the hierarchical approach [1, 13] we progressively subdivide the input images
A and B into smaller sub-images which are separately registered by maximizing an
appropriate image similarity measure. We separately model each sub-image regis-
trations with an affine transformation. Then the final composite transformation T is
found by assimilating all the sub-image transformations using a TPS interpolation
algorithm.

The following example explains the basic steps in the hierarchical registration
scheme of Likar-Pernus [13].

Example 4.3. Likar-Pernus Hierarchical Registration Scheme [13]. In the
Likar-Pernus algorithm we progressively subdivide the two input images A
and B. We automatically register the sub-images, and then apply the thin-plate
splines interpolation between the centers of registered sub-images. The steps
for the first two hierarchical levels are:

1. Register B to the reference image A using an affine transformation T . Let
B′ = T (B) be the transformed image.

2. Separately partition the images A and B′ into four sub-images A1,A2,A3,A4

and B′1,B
′
2,B
′
3,B
′
4 of identical size. Each corresponding sub-image pair

(Ak,B′k) is independently registered by using an affine transformation T ′k .
Let B′′k = T ′k (B

′
k) be the corresponding transformed sub-image.

3. Assimilate the four transformed sub-images B′′1,B
′′
2 ,B
′′
3 ,B
′′
4 into a single

transformed image ˜B′′ as follows: The coordinates of the centers of the
four registered sub-images B′′1 ,B

′′
2 ,B
′′
3 ,B
′′
4 form four point pairs, which are

the inputs to the thin-plate splines algorithm. The result is a transformed
image ˜B′′ = T ′′T PS(B

′′).
4. Separately partition the registered images A and ˜B′′ into 16 sub-images

A1,A2, . . . ,A16 and ˜B′′1 , ˜B
′′
2, . . . ,

˜B′′16 of identical size. Each corresponding
sub-image pair (Ak, ˜B′′k ) is registered using an affine transformation T ′′k . Let
B′′′ be the corresponding transformed image.

5. Assimilate the 16 transformed sub-images B′′′1 ,B′′′2 , . . . ,B′′′16 into a single
transformed image ˜B′′′ as follows: The coordinates of the centers of the
16 registered sub-images (Ak,B′′′k ) form 16 point pairs, which are the in-
puts to the thin-plate splines algorithm. The result is a transformed image
˜B′′′ = T ′′′T PS(B

′′′).

Fig. 4.2 is a graphical description of the hierarchical procedure. Note: The regis-
tration of finer details is preceded by registration and smooth interpolation obtained
at a more global scale.

In principle, the hierarchical decomposition of the images A and B may be con-
tinued until the sub-images contain only one pixel. However, in practice, we stop
the decomposition process much earlier. The reasons for this are twofold: (1) The
algorithm is sensitive to the accuracy of the sub-image registrations: a misregistra-
tion at a given hierarchical level can propagate to the lower hierarchical levels. (2)
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The probability of a misregistration increases as we move to the lower hierarchical
levels. This is because, in general, the reliability of an image similarity measure
decreases with the size of the image patch (Chapt 14).

One way to prevent registration errors propagating down the hierarchy is to adap-
tively stop the hierarchical sub-division before the image patches become so small
they are effectively “structureless”. For this purpose we may use the following test:
An image patch (containing K pixels, (xk,yk),k ∈ {1,2, . . . ,K}, with gray-levels gk)
is said to be structureless if ρ > τ , where ρ is Moran’s autocorrelation coefficient
[1]:

ρ =
K∑h,k whk(gh− ḡ)(gk− ḡ)
σ ∑h,k whk∑h(gh− ḡ)2 ,

τ is a given threshold and whk = 1/
√

(xk− xh)2 +(yk− yh)2 is the inverse Euclidean
distance between (xk,yk) and (xh,yh).

4.4 Mosaic Image

Thus far we have considered the problem of registering a pair of images. In some
applications we are interested in building a single panoramic or “mosaic” image ˜I
from multiple images Ik,k ∈ {1,2, . . . ,K}. To do this we need to find functions Tk

which transform each input image Ik onto the image ˜I.
Building a mosaic image from a sequence of partial views is a powerful means

of obtaining a broader view of a scene than is available with a single view. Re-
search on automated mosaic construction is ongoing with a wide range of different
applications.

Example 4.4. Mosaic Fingerprint Image [9]. Fingerprint-based verification
systems have gained immense popularity due to the high level of uniqueness
attributed to fingerprints and the availability of compact solid-state fingerprint
sensors. However, the solid-state sensors sense only a limited portion of the
fingerprint pattern and this may limit the accuracy of the user verification.
To deal with this problem we may construct a mosaic fingerprint image from
multiple fingerprint impressions.

Example 4.5. Mosaic Image of the Retina [3, 4]. One area in which mosaic
images are particularly valuable is in the diagnosis and treatment of diseases
of the retina. A seamless mosaic image which is formed from multiple fundus
camera images aids in the diagnosis and provides a means for monitoring the
progression of different diseases. It may also be used as a spatial map of the
retina during surgical treatment.
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At first sight we may assume that the ability to spatially align a pair of images is
sufficient to solve the problem of forming a mosaic of the entire scene from multiple
partial views. Theoretically, if one image can be established as an “anchor image”
I0 on which to base the mosaic image ˜I, then the transformation of each remaining
image onto this anchor may be estimated using pairwise registration. The mosaic
image I∗ is then formed by “stitching” together the transformed images Tm(Im).
Unfortunately, in practice, this approach may not work for the following reasons:

Non-Overlap. Some images may not overlap with the anchor image at all. This
makes a direct computation of the transformation impossible. In other cases, im-
ages may have insufficient overlap with the anchor image to compute a stable
transformation. The straightforward solution is to compose transformations us-
ing an “intermediate” image. This is problematic, however, since repeated appli-
cation of the transformation will often magnify the registration error.

Inconsistent Tm. The transformations Tm may be mutually inconsistent. This may
happen even if all the image-to-anchor transformations have been accurately es-
timated. The reason for this is as follows: Although each image may individually
register accurately with the anchor image and the non-anchor images may regis-
ter accurately with each other, this does not ensure that the transformations onto
the anchor image are mutually consistent.

One approach to solving this problem is to constrain the transformations so that they
are all mutually consistent.

Example 4.6. Transformation Constraints in a Mosaic Image. Given a se-
quence of N images I1, I2, . . . , IN , we estimate N(N−1) pairwise transforma-
tions

(

u′
v′

)

= Ti j

(

x
y

)

,

where (u′,v′)T and (x,y)T denote, respectively, the coordinates of correspond-
ing points in Ii and I j. The Ti j must satisfy the following relationships:

Tik = Ti j ◦Tjk ,

Ti j = T−1
ji ,

where Ti j ◦ TjK denotes the application of Tjk followed by the application of
Ti j.

For an affine transformation, the transformation Ti j can be written in matrix

form as

(

u′
v′

)

= Ai j

(

x
y

)

+ Bi j. In this case, the above relationships become

Aik = Ai jA jk ,

Bik = Ai jB jk + Bi j .
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4.4.1 Stitching

In “stitching” together the transformed images Tm(Im) our aim is to produce a visu-
ally plausible mosaic image ˜I in which, I∗ is geometrically and photometrically as
similar as possible to the input images Tm(Im) and the seams between the stitched
images are invisible. The stitching algorithms which are commonly used nowadays
fall into two types:

Optimal Seam Algorithms. These algorithms search for a curve in the overlap
region on which the differences between the Tm(Im) are minimized. Then each
image is copied to the corresponding side of the seam.

Transition Smoothing Algorithms. These algorithms minimize seam artifacts
by smoothing the transition region (a small region which is spatially near to the
seam) [24].

The following example describes the transition smoothing, or feathering, of two
input images I1 and I2.

Example 4.7. Feathering [24]. In feathering, the mosaic image ˜I is a weighted
combination of the input images I1, I2, where the weighting coefficients vary
as a function of the distance from the seam. In general, feathering works
well as long as there is no significant misalignment. However, when the mis-
alignments are significant, the mosaic image displays artifacts such as double
edges. A modification of feathering which is less sensitive to misalignment
errors, is to stitch the derivatives of the input images instead of the images
themselves. Let ∂ I1/∂x, ∂ I1/∂y, ∂ I2/∂x and ∂ I2/∂y be the derivatives of the
input images. If Fx and Fy denote the derivative images formed by feathering
∂ I1/∂x and ∂ I2/∂x and ∂ I1/∂y and ∂ I2/∂y, then we choose the final mosaic
image ˜I to be the image whose derivatives ∂˜I/∂x and ∂˜I/∂y are closest to Fx

and Fy.

4.5 Image Similarity Measures

In order to be able to register two images, a measure has to be defined to numerically
quantify the goodness of fit between the images, namely the similarity measure.
The choice of the appropriate similarity measure is crucial for a successful image
registration procedure, so the decisive criterion is the type of images to be registered.
Therefore depending on the type of the modalities used to acquire the images, the
user can choose between several similarity measures (see Chapt. 14). In this chapter
we shall concentrate on the mutual information similarity measure. This has been
found to be the most successful especially when the input images are heterogeneous,
i. e. they were captured with different sensors or with different spectral bands or with
different spatial resolutions [7].
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4.6 Mutual Information

Given a reference image A and a spatially aligned and resampled image B [2], the
mutual information of A and B is defined as

MI(A,B) =
∫ ∫

pAB(a,b) log2
pAB(a,b)

pA(a)pB(b)
dxdy , (4.2)

where pA(a) is the probability a pixel (x,y) in A has a gray-level a, pB(b) is the
probability a pixel (x,y) in B has a gray-level b and pAB(a,b) is the joint probability
a pixel (x,y) in A has a gray-level a and the same pixel in B has a gray-level b.

4.6.1 Normalized Mutual Information

The integral in (4.2) is taken over the pixels which are common to both A and B.
As a result, MI(A,B) may vary if the number of pixels which are common to A
and B changes. In general the variations in MI(A,B) are small but they may lead to
inaccuracies in a spatial alignment algorithm. To avoid these inaccuracies, we often
use a normalized mutual information similarity measure in place of MI(A,B). Four
commonly used normalized MI measures are [10]:

NMI(A,B) =

⎧

⎪
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MI(A,B)
H(A)+ H(B)

MI(A,B)
min(H(A),H(B))

,

MI(A,B)
H(A,B)

,

MI(A,B)
√

H(A)H(B)
,

where

H(A) = −
∫ ∫

pA(a) log2 pA(a)dxdy ,

H(B) = −
∫ ∫

pB(b) log2 pB(b)dxdy ,

H(A,B) = −
∫ ∫

pAB(a,b) log2 pAB(a,b)dxdy ,

and the integration is performed over the overlap region of the images A and B.

2 Note: In this section B denotes the spatially aligned and re-sampled floating image.



4.6 Mutual Information 45

4.6.2 Calculation

The most common approach to calculate the mutual information MI(A,B) and the
normalized mutual information NMI(A,B) is to calculate the entropies H(A), H(B)
and H(A,B) using the marginal probabilities pA(a) and pB(b) and the joint proba-
bility pAB(a,b). Since, the marginal probabilities may be derived from pAB(a,b):

pA(a) =
∫

pAB(a,b)db , pB(b) =
∫

pAB(a,b)da ,

we need only consider the calculation of pAB(a,b).

4.6.3 Histogram

The most straightforward way to calculate the joint probability distribution pAB(a,b)
is to use a discrete histogram HAB as follows: We quantize the gray-levels in
A and B into P and Q bins respectively Then we approximate pAB(a,b) using
the two-dimensional histogram HAB = (hAB(1,1),hAB(1,2), . . . ,hAB(P,Q))T , where
hAB(p,q) is the number of pixels whose gray-levels in A fall in the pth bin and
whose gray-levels in B fall in the qth bin.

In this case, the formula for the mutual information, is

MI(A,B) = ∑
(p,q)

hAB(p,q) log2

(

hAB(p,q)
hA(p)hB(q)

)/

∑
(p,q)

hAB(p,q) ,

where

hA(p) = ∑
q

hAB(p,q) and hB(q) =∑
p

hAB(p,q) .

Although widely used, the histogram method suffers from several drawbacks: It
yields a discontinuous density estimate and there is no principled method for choos-
ing the size and placement of the bins. For example, if the bin width is too small,
the density estimate is noisy while if the bin width is too large the density estimate
is too smooth. Legg et al. [14] recommends using Sturges’ rule for the optimal bin
width:

w =
r

1 + log2(K)
,

where r is the range of gray-level values, K is the number of elements in the input
image. In this case the optimal number of bins is r/w.

A partial solution to these problems is to calculate pAB(a,b) using the method of
Parzen windows.

4.6.4 Parzen Windows

Instead of using discrete histogram bins to calculate the joint probability distribu-
tion pAB(a,b), we use continuous bins. This is known as kernel, or Parzen-window,
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density estimation [19, 20] and is a generalization of histogram binning. If A and
B each contain K pixels with gray-levels ak,bk,k ∈ {1,2, . . . ,K}, then the estimated
joint density pAB(a,b) is given by

pAB(a,b) =
1

K2σAσB

K

∑
k=1

K

∑
l=1

H

(

a−ak

σA

)

H

(

b−bl

σB

)

,

where H(x) denotes a kernel function which satisfies
∫

x H(x)dx = 1. In general a
density estimate p(x) is more sensitive to the choice of the bandwidth σ and less
sensitive to the choice of the kernel H(x). For this reason we often use a zero-mean
Gaussian function with standard deviation σ for the kernel H(x). Table 4.2 lists
several schemes which are commonly used to calculate the optimal bandwidth σ .

Table 4.2 Methods for Calculating Optimum One-Dimensional Bandwidth σ

Name Description

Rule-of-Thumb Suppose the input data (consisting of N measurements ai, i ∈
{1,2, . . . ,N}), is generated by a given parametric density function, e. g.
a Gaussian function. In this case σ = 1.06σ̂N−1/5, where σ̂ is the sam-
ple standard deviation. Robust versions of this bandwidth are available:
σ = 1.06min(σ̂ , Q̂/1.34)N−1/5 and σ = 1.06ŝN−1/5, where Q̂ is the sam-
ple interquartile distance and ŝ = med j|a j−mediai|.

Cross-Validation (CV) Use a CV procedure to directly minimize the MISE or the AMISE. CV
variants include least square, biased and smoothed CV [11].

Plug-in Minimize the AMISE using a second bandwidth known as the pilot band-
width Σ . In the solve-the-equation plug-in method we write L as a func-
tion of the kernel bandwidth σ [11].

MISE is the mean integrated square error and is defined as MISE(p, p̂σ ) =
∫
(

p(a)− p̂σ (a)
)2

da,
where p̂σ (a) is the kernel approximation to p(a). AMISE denotes the asymptotic MISE and
represents a large number approximation of the MISE.

4.6.5 Iso-intensity Lines

Iso-intensity lines [17] is a new scheme developed specifically for calculating the
joint probability density pAB(a,b). Suppose the gray-levels in A and B are quantized,
respectively, into P and Q bins. For each pixel location (m,n) we estimate the gray-
level values G1,G2,G3,G4 of its four neighbors which lie at a horizontal or vertical
distance of half a pixel from (m,n). We divide the square defined by these neighbors
into a pair of triangles (see Fig. 4.3). Within the triangle we suppose the gray-level
values vary linearly as follows:

A(m+ δx,n + δy) = aAx + bAy + cA ,

B(m+ δx,n + δy) = aBx + bBy + cB ,
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Fig. 4.3 Shows the pixel (m,n) with the gray-levels Gk,k ∈ {1,2,3,4}

where A(m+ δx,n + δy) and B(m+ δx,n + δy) denote, respectively, the gray-level
of a point (m + δx,n + δy) in the triangle and −0.5 ≤ δx,δy ≤ 0.5. To calculate
the joint distribution of the two images A and B we sequentially consider the PQ
different gray-level pairs denoted as (α,β ). For each pixel (m,n) we see whether
the pair of corresponding triangles contains a point (m + δx,n + δy) which has a
gray-level value α in A and β in B. Such a point (m+δx,n+δy) contributes a vote
to the entry (α,β ) in pAB(a,b).

4.7 Partial Volume Interpolation

The histogram, Parzen and iso-intensity line algorithms all assume the images A and
B are spatially aligned and if necessary image interpolation has been performed. The
partial volume interpolation (PVI) is an alternative technique which does not assume
spatial alignment or image interpolation [16]. It works as follows.

Suppose T represents a mapping of the pixel (x,y) in B into the corresponding
location (u′,v′) in A. In general (u′,v′) will not correspond to a pixel location in A.
Suppose Qk = (uk,vk),k ∈ {0,1,2,3}, are the four pixel locations in A which sur-
round (u′,v′). (Fig. 4.4). Then if A(uk,vk) has a quantized gray-level αk and B(x,y)
has a quantized gray-level β , then HAB(αk,β ) receives a fractional vote equal to

r−1
k /

3

∑
h=0

r−1
h ,

where rk =
√

(uk−u′)2 +(vk− v′)2.
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Fig. 4.4 Shows the four pixel locations Qk = (uk,vk),k ∈ {0,1, . . . ,3}, in A which
surround the transformed point (u′,v′). Also shown is the Euclidean distance r3 =
√

(u3−u′)2 +(v3−v′)2 from Q3 to (u′,v′).

4.8 Artifacts

The success of the mutual information algorithms image registration lie in their in-
herent simplicity. It makes few assumptions regarding the relationship that exists
between different images. It only assumes a statistical dependence. The idea is that
although different sensors may produce very different images, since they are imag-
ing the same underlying scene, there will exist some inherent mutual information
between the images. When the images (or image patches) are spatially aligned, then
the mutual information is maximal. To be an effective similarity measure, however,
we require the mutual information to fall monotonically to zero as we move away
from perfect alignment. In practice, the MI does not fall monotonically to zero.

These artifacts are due to inaccuracies in estimating the marginal densities pA(a)
and pB(b) and the joint density pAB(a,b). The artifacts are of two types:

Interpolation effects [21]. Initially, when the images are aligned the pixel loca-
tions of A and B coincide. Therefore no interpolation is needed when estimating
the joint intensity histogram. At the same time the dispersion of the histogram is
minimal when the images are registered and therefore the joint entropy is min-
imal. By translating the floating image B with an integer number of the pixel
dimension, the grid points of the two images will again be aligned avoiding the
need for interpolation, but the dispersion of the joint histogram is increasing due
to misregistration, reducing the MI accordingly. For all other translations, corre-
sponding to some fraction of pixel dimension, the pixel locations of the images
do not coincide anymore and therefore interpolation is required to estimate inten-
sity values between pixel locations of the reference image. As a consequence the
joint histogram is not only dispersed because of the image content and a possible
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misregistration, but it also contains an additional dispersion induced by the inter-
polation method. More dispersion implies a higher joint entropy value, which in
turn decreases the MI of the reference image between the pixel location. The MI
is found to vary as shown in Fig.4.5. An effective way to reduce the interpolation
effects is to use nearest neighbor interpolation with jittered sampling [21]. We
jitter the coordinates of each pixel which is to be interpolated by adding a nor-
mally distributed random offset (zero mean and standard deviation of one-half).

−2 −1 0 1 2
δ x

M
I

Fig. 4.5 Shows the typical interpolation artifacts as a function of the relative displacement
δx between the reference image and the floating image. Note: PVI interpolation curves are
often concave in shape.

Small size effects. Sometimes an image patches with a low structural content
may appear. This often occurs when we register the two images using a hierar-
chical matching algorithm. These structureless patches often lead to inconsistent
local registrations due to a low MI response. If two signals are independent then
their MI reaches its minimum possible value of zero. We might expect, therefore,
that by shifting a structureless sub-image around its initial position, the similarity
measure will have a small response. Surprisingly this is not true. The MI starts to
increase as soon as a structureless sub-image overlaps a region of higher struc-
tural content. One explanation for this phenomena is the following [1]: The num-
ber of samples required to obtain a consistent estimate of the marginal entropies
H(A) and H(B) is much less than the number of samples required to obtain a
consistent of the joint entropy H(A,B).
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4.9 Software

KDE, KDE2D. Automatic data-driven bandwidth selection functions. Available
from the matlab central depository. Author: Zdravko Botev [2].

MATLAB IMAGE PROCESSING TOOLBOX. Matlab image processing tool-
box. The toolbox contains m-files for performing image registration, re-sampling
and interpolation.

THIN PLATE SPLINES. Suite of matlab m-files for performing thin plate spline
interpolation. Available from matlab central depository. Author: Bing Jian.

4.10 Further Reading

The subject of image registration has been intensely investigated for many years. A
modern review of image warping is [8]. Specific references on the use of mutual in-
formation for image registration are [15, 16]. The calculation of mutual information
has been considered by many authors including [5, 6].

References

1. Andronache, A., von Siebenthal, M., Szekely, G., Cattin, P.: Non-rigid registration of
multi-modal images using both mutual information and cross-correlation. Med. Imag.
Anal. 12, 3–15 (2006)

2. Botev, Z.I.: A novel nonparametric density estimator. Technical Report. The University
of Queensland

3. Can, A., Stewart, C.V., Roysam, B., Tanenbaum, H.L.: A feature-based technique for
joint, linear estimation of higher-order image-to-mosaic transformations: mosaicing the
curved human retina. IEEE Trans Patt. Anal. Mach. Intell. 24, 412–419 (2002)

4. Can, A., Stewart, C.V., Roysam, B., Tanenbaum, H.L.: A feature-based, robust, hierar-
chical algorithm for registering pairs of images of the curved human retina. IEEE Trans.
Patt. Anal. Mach. Intell. 24, 347–364 (2002)

5. Darbellay, G.A.: An estimator for the mutual information based on a criterion for inde-
pendence. Comp. Stats. Data Anal. 32, 1–17 (1999)

6. Darbellay, G.A., Vajda, I.: Estimation of the information by an adaptive partitioning of
the observation space. IEEE Trans. Inf. Theory 45, 1315–1321 (1999)

7. Fransens, R., Strecha, C., van Gool, L.: Multimodal and multiband image registration
using mutual information. In: Proc. ESA-EUSC (2004)

8. Glasbey, C.A., Mardia, K.V.: A review of image warping methods. J. Appl. Stat. 25,
155–171 (1998)

9. Jain, A., Ross, A.: Fingerprint mosaicking. In: IEEE Int. Conf. ICASSP (2002)
10. Hossny, M., Nahavandi, S., Creighton, D.: Comments on Information measure for per-

formance of image fusion. Elect. Lett. 44, 1066–1067 (2008)
11. Jones, M.C., Marron, J.S., Sheather, S.J.: A brief survey of bandwidth selection for den-

sity estimation. J. Am. Stat. Assoc. 91, 401–407 (1996)
12. Likar, B., Pernus, F.: Registration of serial transverse sections of muscle fibers. Cytome-

try 37, 93–106 (1999)



References 51

13. Likar, B., Pernus, F.: A hierarchical approach to elastic registration based on mutual
information. Image Vis. Comp. 19, 33–44 (2001)

14. Legg, P.A., Rosin, P.L., Marshall, D., Morgan, J.E.: Improving accuracy and efficiency of
registration by mutual information using Sturges’ histogram rule. In: Proc. Med. Image
Understand. Anal., pp. 26–30 (2007)

15. Maes, F., Vandermeulen, D., Suetens, P.: Medical image registration using mutual infor-
mation. Proc. IEEE 91, 1699–1722 (2003)

16. Pluim, J.P.W., Maintz, J.B.A., Viergever, M.A.: Mutual information based registration of
medical images: a survey. IEEE Trans. Med. Imag. 22, 986–1004 (2003)

17. Rajwade, A., Banerjee, A., Rangarajan, A.: Probability density estimation using iso-
contours and isosurfaces: application to information theoretic image registration. IEEE
Trans. Patt. Anal. Mach. Intell. (2009)

18. Ross, A., Dass, S.C., Jain, A.K.: A deformable model for fingerprint matching. Patt.
Recogn. 38, 95–103 (2005)

19. Scott, D.W.: Multivariate Density Estimation. Wiley, Chichester (1992)
20. Silverman, B.: Density Estimation for Statistical Data Analysis. Chapman and Hall, Boca

Raton (1986)
21. Tsao, J.: Interpolation artifacts in multimodality image registration based on maximiza-

tion of mutual information. IEEE Trans. Med. Imag. 22, 854–864 (2003)
22. Zagorchev, L., Goshtasby, A.: A comparative study of transformation functions for non-

rigid image registration. IEEE Trans. Image Process. 15, 529–538 (2006)
23. Zitova, B., Flusser, J.: Image registration: A survey. Image Vis. Comput. 21, 977–1000

(2003)
24. Zomet, A., Levin, A., Peleg, S., Weiss, Y.: Seamless image stitching by minimizing false

edges. IEEE Trans. Image Process. 15, 969–977 (2006)


	Spatial Alignment
	Introduction
	Pairwise Transformation
	Thin-Plate Splines

	Hierarchical Registration 
	Mosaic Image
	Stitching

	Image Similarity Measures
	Mutual Information
	Normalized Mutual Information
	Calculation
	Histogram
	Parzen Windows
	Iso-intensity Lines

	Partial Volume Interpolation
	Artifacts
	Software
	Further Reading
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




