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Preface

The purpose of this book is to provide a practical introduction to the theo-
ries, techniques and applications of image fusion. The present work has been
designed as a textbook for a one-semester final-year undergraduate, or first-
year graduate, course in image fusion. It should also be useful to practising
engineers who wish to learn the concepts of image fusion and apply them to
practical applications. In addition, the book may also be used as a supple-
mentary text for a graduate course on topics in advanced image processing.

The book complements the author’s previous work on multi-sensor data
fusion[1] by concentrating exclusively on the theories, techniques and appli-
cations of image fusion. The book is intended to be self-contained in so far
as the subject of image fusion is concerned, although some prior exposure
to the field of computer vision and image processing may be helpful to the
reader.

Apart from two preliminary chapters, the book is divided into three parts.
Part I deals with the conceptual theories and ideas which underlie image
fusion. Here we emphasize the concept of a common representational frame-
work and include detailed discussions on image registration, radiometric cal-
ibration and semantic equalization. Part II deals with a wide range of tech-
niques and algorithms which are in common use in image fusion. Among the
topics considered are: sub-space transformations, multi-resolution analysis,
wavelets, ensemble learning, bagging, boosting, color spaces, image thresh-
olding, Markov random fields, image similarity measures and the expectation-
maximization algorithm. Together Parts I and II provide the reader with an
integrated and comprehensive overview of image fusion. Part III deals with
applications. In it we examine several real-life image fusion applications. The
aim is to illustrate how the theories and techniques of image fusion are used
in practical situations.

1 Multi-Sensor Data Fusion: An Introduction by H.B. Mitchell. Published by Springer-
Verlag (2007)



VIII Preface

As with any other branch of engineering, image fusion is a pragmatic ac-
tivity which is driven by practicalities. It is therefore important that the
reader is able to experiment with the different techniques presented in the
book. For this purpose software written in Matlab is particularly convenient.
We have therefore included examples of matlab code in the book and also
give details of third-party matlab code which may be downloaded from the
world wide web. Teachers and students will find additional resources on the
author’s website: http://www.ee.bgu.ac.il/�harveym.

The book is based on seminars and lectures on image fusion which have
been given over the past few years. In particular, the structure and content
of the book is based on a graduate course in image fusion which the author
has taught at Ben-Gurion University of the Negev. For the opportunity of
teaching this course I am particularly indebted to Prof. Mayer Aladjem and to
Prof. Dan Sadot. I am also indebted to my wife and children for the support
and patience they have shown me while the book was being written.

June 2008
Mazkaret Batya H.B. Mitchell
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Chapter 1
Introduction

Abstract. The subject of this book is image fusion which we define as the process
of combining multiple input images into a single composite image. Our aim is to
create from the collection of input images a single output image which contains a
better description of the scene than the one provided by any of the individual in-
put images. The output image should therefore be more useful for human visual
perception or for machine perception. The basic problem of image fusion is one of
determining the best procedure for combining the multiple input images. The view
adopted in this book is that combining multiple images with a priori information
is best handled within a statistical framework. In particular we shall restrict our-
selves to classical and robust statistical approaches, Bayesian methods, sub-space
and wavelet techniques.

1.1 Synergy

The principal motivation for image fusion is to improve the quality of the infor-
mation contained in the output image in a process known as synergy. A study of
existing image fusion techniques and applications shows that image fusion can pro-
vide us with an output image with an improved quality. In this case, the benefits of
image fusion include:

1. Extended range of operation.
2. Extended spatial and temporal coverage.
3. Reduced uncertainty.
4. Increased reliability.
5. Robust system performance.
6. Compact representation of information.

Traditionally, the input images are captured by the same camera at different times
or are captured by different cameras at the same time. However, in the definition of
image fusion we shall also include the case when the input images are derived from
the same “base” image but which have undergone different processing algorithms.
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The following examples illustrate the image fusion synergy process. The first
example deals with input images which are captured by the same camera at different
times. The next example deals with input images captured by different cameras at
the same time, while the third example deals with input images which are derived
from the same base image and which are processed differently.

Example 1.1. Multiple Camera Surveillance Systems [9]. The increasing de-
mand for security by society has led to a growing need for surveillance ac-
tivities in many environments. For example, the surveillance of a wide-area
urban site may be provided by periodically scanning the area with a single
narrow field-of-view camera. The temporal coverage is, however, limited by
the time required for the camera to execute one scan. By using multiple cam-
eras we reduce the mean time between scans and thereby increase the temporal
coverage.

Example 1.2. Multispectral Bilateral Video Fusion [2]. A significant problem
in night vision imagery is that while an infra-red (IR) image provides a bright
and relatively low-noise view of a dark environment, it can be difficult to in-
terpret due to inconsistences with the corresponding visible-spectrum image.
In bilateral fusion we enhance a visible video input using information from
a spatially and temporally registered IR video input. Our goal is to create a
video that appears as if it was imaged only in the visible spectrum and under
more ideal exposure conditions than actually existed.

Example 1.3. Color Image Segmentation [11]. A significant problem in com-
puter vision is the reliable segmentation a base image into meaningful labeled
segments. In ensemble image segmentation we generate an ensemble of color
input images by transforming the base image in different ways. Each input im-
age is separately segmented using a simple segmentation algorithm. By fusing
the multiple segmented images we are able to substantially improve both the
accuracy and the reliability of the segmentation process.

1.2 Image Fusion Process

Fig. 1.1 shows the principal processes in a generic image fusion processing chain
for the case when the output is a single fused image ˜I. The principal processes in
the chain are:
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Fig. 1.1 Shows the generic image fusion processing chain. It consists of four principal
blocks: (1) Multiple Input Images. Multiple images of the external scene are captured by
multiple sensors. (2) Common Representational Format. The input images are transformed
into a common representational format. This involves several processes including: spatial and
temporal alignment, semantic equivalence, radiometric calibration, feature extraction and de-
cision labeling. (3) Fusion. The multiple images in the common representational format are
fused together. The fusion process may be classified into three classes: pixel fusion, feature
fusion and decision fusion. (4) Display. The fused output is processed for display.

Multiple Input Images. The external environment is captured by one or more
image sensors or cameras. Each camera generates one or more input images.

Common Representational Format. The input images are transformed so they
“speak a common language”. This involves several processing including: spatial,
temporal, semantic and radiometric alignment, feature extraction and decision
labeling.

Fusion. After conversion into a common representational format the spatially,
temporally, semantically and radiometrically aligned images, feature maps or de-
cision maps are fused together in the fusion block. The output is a fused image ˜I,
feature map ˜F or decision map ˜D.

Display. The fused image, feature map or decision map is processed for display.
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1.3 Common Representational Block

The principal function in the common representational format block are:

Spatial Alignment. The input images are spatially aligned into the same geo-
metric base. Without a common geometric base any information derived from a
given input image cannot be associated with other spatial information. The accu-
rate spatial alignment of the input images is therefore a necessary condition for
image fusion. Note. After spatial alignment the input images are re-sampled and
if necessary the gray-levels of the input images are interpolated.

Temporal Alignment. The spatially aligned input images are temporally aligned
to a common time. This step is only required if the input images are changing or
evolving in time. In this case the accurate temporal alignment of the input images
is a necessary condition for image fusion.

Feature Extraction. Characteristic features are extracted from the spatially and
temporally aligned input images. The output is one or more feature maps for each
input image [1].

Decision labeling. Pixels in each spatially and temporally aligned input image
or feature map are labeled according to a given criteria. The output is a set of
decision maps.

Semantic Equivalence. In order for the input images, feature maps or decision
maps to be fused together they must refer to the same object or phenomena. The
process of causally linking the different inputs to a common object or phenomena
is known as semantic equivalence.

Radiometric Calibration. The spatially, temporally and semantically aligned in-
put images and feature maps are converted to a common measurement scale. This
process is known as radiometric calibration.

When the input is a set of K multiple image sequences Ik(t),t ∈ [T1,T2],k ∈
{1,2, . . . ,K}, the output is a fused image sequence ˜I(t),t ∈ [T1,T2], feature map
sequence ˜F(t) or decision map sequence ˜D(t). In this case we replace the spatial
alignment and temporal alignment blocks in Fig. 1.1 with a single spatial-temporal
alignment block which performs both functions simultaneously.

Figs. 1.2–1.4 shows the adaption of the generic processing chain to Ex 1.1–1.3.

1.4 Image Fusion Block

In the image fusion block we fuse together the information contained in the multiple
input images after conversion into a common representational format. The common
representational format may take the form of an image I, a feature map F or a
decision map D. Very often we shall not differentiate between I, F and D and in this
case we shall refer to all three as an “image”.

We find it convenient to further divide the fusion algorithms into arithmetic, sub-
space and multi-scale techniques [5].

1 A feature is any distinguishing property or attribute of an image. Examples of features
used in image fusion are: edges, lines, patterns and color.
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Fig. 1.2 Shows the image processing chain for the multiple camera surveillance system dis-
cussed in Ex. 1.1

E−O
Sequence

Feature
Extraction

Radiometric
Calibration

Pixel
Fusion

IR
Sequence

Spatio−Temporal
Alignment

Radiometric
Calibration

Display

Fig. 1.3 Shows the image processing chain for the multispectral bilateral video fusion system
discussed in Ex. 1.2
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Fig. 1.4 Shows the image processing chain for the color image segmentation system dis-
cussed in Ex. 1.3

Pixel Operations. These operations include simple arithmetic operators such as
addition, subtraction, division and multiplication as well as minimum, maximum,
median and rank. It also includes more complicated operators which are defined
by a function or algorithm, such as the expectation-maximization algorithm and
Markov random field.

Sub-Space Methods. The sub-space methods are a collection of statistical tech-
niques which remove the correlation which exists between the input images
Ik,k ∈ {1,2, . . . ,K}. Important sub-space techniques are: principal component
analysis (PCA), independent component analysis (ICA), non-negative matrix
factorization (NMF), canonical correlation analysis (CCA) and linear discrim-
inant analysis (LDA).

Multi-Scale Methods. The multi-scale fusion methods are a collection of tech-
niques in which we transform each input image I(k) into a multi-scale represen-

tation:
(

y(k)
0 ,y(k)

1 , . . . ,y(k)
L

)

.

1.5 Image Fusion Algorithms

For environments which are essentially static and in which the output is a sin-
gle image ˜I we often impose the following requirements [15] on the image fusion
algorithms:

Pattern conservation. The fusion process should preserve all relevant informa-
tion on the input imagery in the composite image.

Artifact free. The fusion scheme should not introduce any artifacts or inconsis-
tencies which would distract the human observer or subsequent image processing
stages.
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Invariance. The fusion scheme should be shift and rotational invariant, i.e. the
fusion result should not depend on the location or orientation of an object in the
input imagery.

For environments which are evolving in time the input is a set of input sequences
Ik(t),t ∈ [T1,T2],k ∈ {1,2, . . . ,K} and the output is a fused image sequence ˜I(t).
In this case, we often impose the following additional requirements on the image
fusion algorithms:

Temporal stability. The fused output should be temporally stable, that is, gray-
level changes in ˜I(t), should be present in at least one of the input sequences
Ik(t).

Temporal consistency. Gray level changes which occur in the input sequences
Ik(t) must be present in the fused sequence ˜I(t).

1.6 Organization

Apart from two preliminary chapters, the book is divided into three parts:

Part I: Theories. This consists of Chapts. 3-7 and deals with the conceptual the-
ories and ideas which underlie image fusion. Here we emphasize the concept of a
common representational framework and include detailed discussions on image
registration, radiometric calibration and semantic equalization.

Part II: Techniques. This consists of Chapts. 8-18 and deals with a wide range
of techniques and algorithms which are in common use in image fusion. Among
the topics considered are: sub-space transformations, multi-resolution analysis,
ensemble learning, bagging, boosting, color spaces, Markov random fields, im-
age similarity measures and the expectation-maximization algorithm. Together
Parts I and II provide the reader with an integrated and comprehensive overview
of image fusion.

Part III: Applications. This consists of Chapts. 19-22 and deals with applica-
tions. In it we examine several real-life image fusion applications. The aim is to
illustrate how the theories and techniques of image fusion are used in practical
situations.

1.7 Software

The following matlab routines and toolboxes are of general utility and are widely
used in image fusion.

IMAGE FUSION TOOLKIT. Image fusion toolbox. Author: Eduardo Fernandez
Canga.

MATIFUS. Matlab toolbox for image fusion. Authors: P. M. de Zeeuw, G. Piella
and H. J. A. M. Heijmans [14].

MATLAB IMAGE PROCESSING TOOLBOX. Matalb image processing tool-
box.

MATLAB WAVELET TOOLBOX. Matlab wavelet toolbox.
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1.8 Further Reading

General overviews on multi-sensor image fusion are [1, 3, 4, 5, 6, 7, 8, 10, 12]. For
an extended discussion regarding the issues involved in defining multi-sensor image
fusion and related terms, see [13, 16].
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Chapter 2
Image Sensors

Abstract. The subject of this chapter is the image sensor or camera. This is a special
device which interacts directly with the environment and is ultimately the source of
all the input data in an image fusion system [3]. The image sensor may be any device
which is capable of perceiving a physical property, or environmental attribute, such
as heat, light, sound, pressure, magnetism or motion. However, to be useful, the
sensor must map the value of the property or attribute to a quantitative measurement
in a consistent and predictable manner. To make our discussion more concrete we
shall limit ourselves to digital image sensors or cameras.

2.1 Digital Camera

A digital camera records the time-and space-varying light intensity information re-
flected and emitted from objects in a three-dimensional physical scene. The cam-
era consists of two parts: (1) An optical system whose purpose is to form a two-
dimensional image of the electromagnetic radiation emitted and reflected from ob-
jects in the three-dimensional scene. (2) A recording system whose purpose is to
measure and record the characteristics of the radiation incident at the focal plane.
Furthermore, the incident electromagnetic radiation typically consists of a range of
wavelengths, so the incident energy may be measured in one or more spectral wave-
length ranges or bands.

2.2 Optical System

The optical system typically consists of a series of lenses which serve to focus
the illumination on a two-dimensional surface, called the focal plane, where the
characteristics of the incident radiation may be recorded. Though the image for-
mation properties of the optical system are typically complicated by the presence
of various distortions or aberrations, it is useful to model it using an idealized
geometric model which projects from locations in the three-dimensional world
R(t) = (X(t),Y (t),Z(t))T to two-dimensional locations r(t) = (x(t),y(t))T in the
focal plane.
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The most commonly used models of the image projection characteristics are the
perspective projection and the simpler orthographic projection.

2.2.1 Perspective Projection

Perspective projection models the geometric projection characteristics of an ideal-
ized pinhole camera as shown in Fig. 2.1. If we assume the origin of the 3D scene

Z

x,X
y,Y

R=(X,Y,Z)T

r=(x,y)T

CoP

s=(x′,y′)T

Fig. 2.1 Shows a point R = (X ,Y,Z)T in three-dimensional space and its perspective projec-
tion onto the focal plane at r = (x,y)T and its orthographic projection on to the focal plane at
s = (x′,y′).

and the 2D image plane coincide, then the perspective projection of R = (X ,Y,Z) is
r = (x,y), where x = f X/( f −Z), y = fY/( f −Z) and f is the focal length, which
is the distance along the optical axis from the image plane to the center of projection
(CoP).

2.2.2 Orthographic Projection

Orthographic projection assumes a parallel projection of the 3D scene onto the im-
age plane as shown in Fig. 2.1. If we assume the origin of the 3D scene and the 2D
image plane coincide, then the orthographic projection of R = (X ,Y,Z) is s = (x′,y′),
where x′ = X and y′ = Y .

2.3 Recording Systems

In a digital camera the time-varying focal plane image is recorded using a fo-
cal plane of light-sensitive elements or pixels. The spectral response of the sensor
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elements is determined by the material characteristics. Color reproduction is typi-
cally achieved with the use of a color filter array (CFA) which ensures that individual
pixels measure the wavelengths in a specified spectral band.

2.3.1 Noise

The recorded image intensity information is always affected by noise in the detec-
tion and recording system. In imaging systems utilizing focal plane sensor arrays,
the electronic properties of these devices are a source of noise. In situations of ex-
tremely low illumination, or in certain medical imaging applications, the number of
incident photons is so small that a Poisson model for the photon count is necessary.
This results in what is referred to as photon counting noise. Other sources of noise
include quantization, speckle and atmospheric effects.

Example 2.1. Noise Models [1]. Noise estimation is an important task in many
image fusion applications. It is common practice to model the noise in an
image as either additive or multiplicative. The corresponding noise models
are:

I(i, j) =
{

I0(i, j)+ n(i, j) additive ,
I0n(i, j) multiplicative ,

where I0(i, j) is the gray-level at pixel (i, j) in the noise-free image and I(i, j)
is the gray-level at pixel (i, j) in the noisy image.

2.4 Sampling

The electromagnetic radiation incident at the focal plane is a function of four contin-
uous variables: two spatial variables x and y, a temporal variable t, and wavelength
λ . At the focal plane the incident radiation is sampled[1] in three domains:

Spatial sampling. The spatial variation of light intensity is recorded at a finite set
of locations. In the focal plane arrays the sampling density is determined by the
number of discrete locations or pixels where photons are collected.

1 In real systems, sampling the focal plane radiation involves integration of the value of
the function in a neighborhood surrounding the sampling location. For spatial sampling,
this implies integration of the function over the spatial variable(s). In a CCD focal plane
array sensor for example, each pixel accumulates the charge generated by photons which
strike the light-sensitive area of the pixel. For functions of time, the integration is over
the temporal variable. Integration over wavelength is usually a side effect of the fact that
sensing devices and materials respond to photons in a range of wavelengths rather than at
discrete wavelengths.
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Temporal sampling. The variation of the image as a function of time is recorded.
This is achieved by sampling the focal plane image at regularly spaced time in-
stants.

Wavelength sampling. The radiation incident at the focal plane is recorded in
different wavelength bands. For visual images we use three wavelength bands
which correspond to the human visual system’s perception of the colors red,
green and blue.

2.4.1 Quantization

In a digital camera the continuous-valued intensity f (x,y) is quantized to values
drawn from a finite set of L reconstruction levels l:

Q( f (x,y)) = l . (2.1)

Since the set of reconstruction levels is finite, the reconstruction levels may be put in
correspondence with the natural numbers l ∈ {0,1, . . . ,L−1}. This makes the rep-
resentation amenable to finite word-length representation and processing by digital
computer [2].

2.4.2 Bayer

For color images in which we have three spectral bands corresponding to R, G and
B, we often use reduced spatial sampling rates. One example is the Bayer color filter
array (CFA) in which the R, G and B bands are sub-sampled and formed into a single
Bayer image as shown in Fig. 2.2

R R R R

RRRR

G

G G G

G G

G

G

G

GG

G G G

BBB

B BB

Fig. 2.2 Shows the arrangement of the R, G and B filters in the Bayer color filter array

2 For 8-bit gray-scale input image, the reconstruction levels are {0,1, . . . ,255}. For a 24-bit
RGB image, the reconstruction levels of each color plane are {0,1, . . . ,255}.
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Example 2.2. CCD Cameras [6]. A typical CCD camera imaging process is
shown in Fig. 2.3. Under normal weather conditions the camera irradiance,
i. e. the energy incident on the CCD is proportional to the attenuated scene
radiance. The lens system transmits this camera irradiance unevenly because
of several factors which are collectively known as vignetting. The light energy
transmitted through the lens system is then converted to electrons in the CCD
array. In color CCD cameras, a color filter array (CFA) is often used in the
sensor. To obtain a full-resolution color image, we perform some form of in-
terpolation on the CFA image. This operation is followed by white balancing,
a process that attempts to generate output images that are consistent with hu-
man perception of color under different illumination conditions. If we model
the white balancing as a separate transformation on each channel involving
a scaling of values and an offset. Then the output of the CCD unit is often
modeled as

y = aE + Ns + Nc + b .

where E is the ideal CCD unit response, a is a combined scaling factor that
incorporates the scale due to white balancing and the exposure time Δ t, Ns and
Nc are shot and thermal noise.

To account for the non-linear transfer function relating the input voltage in
the display monitor to the display brightness, γ correction is usually applied
to the sensed image value. Including other noise effects such as quantization
error, amplifier noise, D/A and A/D noise, as an additional noise term Nq with
a constant variance, we have the expression for the observed image measure-
ments:

z = f (aE + Ns + Nc + b)+ Nq .

Scene
Atmos.
atten.

CCD/
Bayer

Interpolate

N
s
,N

c

White
Balance

Digital
Image A/D

N
q

Vignetting

Fig. 2.3 Shows a typical CCD camera imaging pipeline
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2.5 Spatial vs. Spectral Resolution

The demand for high resolution images is increasing all the time. The high-resolution
images provide the viewer with more details which are often critical. The simplest
way to obtain a high-resolution image is to reduce the pixel size and thereby increase
the number of pixels per unit area. However, since a reduction of pixel size causes
a decrease in the amount of light, shot noise is generated that severely degrades the
image quality. As a result many imaging systems have been designed that allow for
some level of aliasing during image aquisition.

2.5.1 Spatial Resolution

The spatial resolution of an analog imaging system is characterized by the point
spread function (PSF) of the whole observing system. This includes not only the
optics and the detector system but also atmospheric conditions and the illumination
of the scene. In digital image sensors, the analog images produced by the optical
system are spatially sampled by the detector. If the images are oversampled with
a frequency higher than the Nyquist frequency, then the resolution properties are
preserved. However, in practice, most digital image sensors undersample the ana-
log signal. As a consequence the resulting resolution is determined by the spatial
sampling frequency and the PSF. In satellite-based cameras, the resolution is fixed
mainly by the sampling frequency and is thus directly related to the area in ground
that represents a pixel in the detector [5].

The following example illustrates a simple method for estimating the relative
spatial resolution between two input images.

Example 2.3. Estimating the Relative Resolution Between Two Input Images
[4]. Let A and B denote two input images of the same area, where A has the
low spatial resolution and B has the high spatial resolution. We estimate the
relative resolution between A and B as follows.

1. Spatially align and crop the low-resolution image A so it is the same size as
the high-resolution image, B.

2. Normalize the grey levels of A and B by histogram matching the two im-
ages.

3. Create a series of decreasing resolution images B1,B2, . . . ,BL. For this pur-
pose, [4] recommends using a non-separable a trous wavelet decomposition
scheme:

B1 = M1⊗B , B2 = M2⊗B1 , . . . BL = ML⊗BL−1 .

where Ml+1 ⊗ Bl denotes the convolution of Bl with a mask Ml+1 (see
Chapt. 8). Often we use dyadic masks. In this case, the input image B has
double the resolution of B1, the image B1 has double the resolution of B2,
and so on.
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4. Measure the correlation ρl between A and Bl, l ∈ {1,2, . . . ,L}.
5. Let l∗ = argmaxl(ρl) denote the image B∗ with the maximum correlation

coefficient.
6. From this point of maximum correlation compute the relative resolution

between the two input images A and B (Fig. 2.4).

1 2 3 4 5 6

1

Decomposition Level, l

ρ

Fig. 2.4 Shows a typical correlation curve as a function of the wavelet decomposition level l

2.5.2 Spectral Resolution

Spectral resolution is the width within the electromagnetic spectrum that can be
sensed by a band in a sensor. As the spectral bandwidth becomes narrower, so the
spectral resolution becomes higher. The spectral resolution is determined by the
spectral response function of the sensor element which is defined as the probability
that a photon at a given frequency is detected by the sensor. Fig. 2.5 shows a typical
spectral response function of the IKONOS sensor.

In fusing together different images of different modalities, it is important to take
into account the spectral response function of each image.

Example 2.4. Pan Sharpening. Physical constraints mean that remote sensing
images are usually of two distinct types: high spatial resolution panchromatic im-
ages and low spatial resolution multi-spectral images. By means of image fusion
(pan-sharpening methods) we try to recover the image obtained by an ideal sensor
which has the same spectral sensitivity of the multi-spectral sensor and the same
spatial resolution of the panchromatic sensor. In order to do this the latest pan-
sharpening algorithms take into account the spectral response of the two sensors
(see Sect. 19.6).
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Fig. 2.5 Shows the spectral response function for IKONOS sensor. The full lines show the
blue, green, red and near infra-red spectral responses. The dashed line shows the panchro-
matic spectral response.

We now derive an important relationship between the spectral response functions
φA(ν) and φB(ν) of two sensors A and B. Let a be the detection of a photon by
sensor A and b be the detection of a photon by sensor B. Then the probability of
these events are, respectively,

P(a) =
∫

φA(ν)dν and P(b) =
∫

φB(ν)dν .

Given a photon is detected by one sensor, then the probability it is detected by the
second sensor is

P(b|a) =
∫

min(φA(ν),φB(ν))dν
P(a)

,

P(a|b) =
∫

min(φB(ν),φA(ν))dν
P(b)

.

If nA and nB are, respectively, the number of photons detected by the two sensors,
then the number of photons simultaneously detected by both sensors is

nAB = P(a|b)nB = P(b|a)nA .

Combining these equations we can predict the number of photons that one sensor
should detect given the number of photons detected by the other sensor:
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n̂A =
P(a|b)
P(b|a)

nB =
∫

φA(ν)dν
∫

φB(ν)dν
nB ,

n̂B =
P(b|a)
P(a|b)

nA =
∫

φB(ν)dν
∫

φA(ν)dν
nA . (2.2)

2.6 Further Reading

A general reference on the use of image sensors in image fusion is [3]. CCD image
sensors are discussed in [6]. A detailed description of image formation for thermal
image sensor is given in [2].
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Chapter 3
Common Representational Format

Abstract. The subject of this chapter is the common representational format. Con-
version of all sensor observations to a common format is a basic requirement for
image fusion. The reason for this is that only after conversion to a common format
are the input images compatible, i. e. the input images “speak a common language”
and image fusion may be performed. In this chapter we shall consider the principal
theories and techniques which underlie the concept of a common representational
format.

3.1 Introduction

Conversion of all input images to a common representational format is a basic re-
quirement for image fusion. The reason for this is that only after conversion to a
common format are the input images compatible and fusion may take place.

The following example illustrates the concept of a common representational for-
mat in brain research.

Example 3.1. A Standardized Brain Atlas: A Common Representational For-
mat for Brain Research [14]. In order to compare different brains and,
to facilitate comparisons on a voxel-by-voxel basis, we use a standardized
anatomically-based coordinate system or brain atlas. The idea is that, in the
new coordinate system, all brains have the same orientation and size. The
transformation to this coordinate system also gives us the means to enhance
weak, or noisy, signals by averaging the transformed images. The standardized
brain atlas allows us to catalogue the anatomical, metabolic, electrophysiolog-
ical, and chemical architecture of different brains into the same coordinate
systems.

The process of converting the input images into a common representational format
involves many different processes. As listed in Chapt. 1, the principal processes are:
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Spatial Alignment. Transformation of the local spatial positions (x,y) to a com-
mon coordinate system. The process is often performed using a statistical match-
ing technique and is considered in Chapt. 4.

Temporal Alignment. Transformation of the local times t to a common time axis.
The process is often performed using a dynamic time warping algorithm. In many
image fusion applications, the spatial and temporal algnments are performed si-
multaneously in a joint spatial-temporal alignment algorithm.

Feature Extraction. Transformation of the input images into corresponding fea-
ture maps. The process is performed by extracting characteristic features from the
input images. Different feature extraction processes are considered in Chapts. 8,
9, 12, 13 and 16.

Decision labeling. Transformation of the input image into a corresponding de-
cision, or label, map. The process is performed by applying decision operators
on the input images or on the feature maps. The process of decision labeling is
considered in Chapts. 9, 12, 16 and 17.

Semantic Equivalence. Transformation of the input images so the pixel values
all refer to the same object or phenomena. This is considered in Chapt. 5.

Radiometric Calibration. Transformation of the input images so the pixel values
are all measured on a common scale. The process is considered in Chapt. 6.

In many image fusion applications, the construction of a common coordinate system
is the primary fusion algorithm. The following example illustrates the construction
of a common representational format for an environment which is essentially static
and in which the sensors are all of the same type. In this case, temporal alignment,
semantic equivalence and radiometric calibration are not required and the construc-
tion of a common representational format reduces to the construction of a common
spatial coordinate system.

Example 3.2. A Distributed Surveillance System [15]. The demand for surveil-
lance activities for safety and security purposes has received particular at-
tention for remote sensing in transportation applications (such as airports,
maritine environments, railways, motorways) and in public places (such as
banks, supermarkets, department stores and parking lots). Such systems typ-
ically consist of a number of video-based television cameras located in mul-
tiple locations. Consider a sequence of M narrow field-of-view “spot” images
Im,m ∈ {1,2, . . . ,M}, taken of a wide surveillance area.

We establish a common coordinate system by building a panoramic or
“mosaic” image I∗ from the sequence of images Im (Fig. 3.1). For each image
Im, we find a geometric transformation Tm which maps the local “camera-
centered” coordinate system of Im to the common “object-centered” coordi-
nate system of I∗. We then form the mosaic image I∗ by “stitching” or “com-
positing” together the transformed images Tm(Im). In this case, the aim of
a stitching algorithm is to produce a visually plausible mosaic image I∗ in
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I
1
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I
3

Fig. 3.1 Shows the surveillance of a wide-area site with a sequence of “spot” images I1, I2 and
I3. Each spot image Im is transformed to a common coordinate system using a transformation
Tm. The union of three three images define the mosaic image I∗. The stitching algorithm is
used in those regions where two, or more, transformed images Tm(Im) overlap.

which, geometrically and photometrically, I∗ is as similar as possible to the
input images Tm(Im) and the seams between the stitched images are invisible.

3.2 Geographical Information System

An important example of a common representational format is a Geographical In-
formation System. In a Geographic Information System (GIS) we combine multiple
images of the earth obtained from many different sensors and maps, including de-
mographic and infrastructure maps, into a common coordinate system.

3.3 Choosing a Common Representational Format

The common representational format plays a crucial role in image fusion. In fact the
choice of common representational format will often govern the fusion algorithm
which is used and its performance. In the sections which follow we consider some
of the issues involved in choosing an appropriate common representational format.

3.3.1 Human Fusion

In some applications image fusion is performed by a human observer. In this case,
the common representational format is chosen as an aid to the human observer.
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Example 3.3. Myocardial Imaging [3]. Polar maps, or “bull’s-eye” images, are
a standard way of displaying myocardial functions and are well established in
clinical settings. Fig. 3.2 shows the polar image representation of a left ven-
tricle. The polar maps are constructed by combining images from multiple
planes so that information about the entire myocardium can be displayed in
a single image. Polar maps can be compared to a three-dimensional cone-
shaped heart activity image projected onto a single plane. Each image plane
forms a ring in the polar map. Although the rings may be divided into an
arbitrary number of sectors, in practice, a clinician uses four (anterior, lat-
eral, inferior and septal) or six (anterior, anterior-lateral, inferior-lateral, infe-
rior, inferior-septal and anterior-septal) sectors for his visual interpretation of
the image.

IV

III

II

I

(a) (b)

Fig. 3.2 Shows a polar image of a left ventricle. (a) Shows the the left ventricle divided into
four slices: I (Basal), II (Mid-Basal), III (Mid-Apical) and IV (Apical). (b) Shows a given
slice divided into 8 sectors.

3.3.2 Sparseness

In some applications only a small number of image pixels are transformed into the
common representational format. The result is a sparse representation. The follow-
ing example illustrates the conversion of an input image into a sparse representation
which is scale and rotation invariant and is invariant across a wide range of distor-
tions and changes in illumination.
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Example 3.4. Scale Invariant Feature Transform (SIFT) [9, 12]. SIFT key-
points (see Chapt. 13) are invariant to image scale and rotation and provide
robust matching across a substantial range of affine distortion changes in three-
dimensional viewpoint, occlusion, noise and changes in illumination. In addi-
tion, the features are highly distinctive in the sense that a single feature can be
reliably matched with only a few other SIFT key-points. The SIFT common
representational format is a vector containing L = 128 components:

s = (s(1),s(2), . . . ,s(128))T .

It is computed by partitioning the image region surrounding each key-point
into a 4×4 grid of sub-regions, and computing an 8-bin orientation histogram
in each subregion. The 128-component vector is then formed by concatenating
the 16 orientation histograms.

3.3.3 Object Recognition

In object recognition applications we require a common representational format
which is invariant to translation, rotation and scaling and is insensitive to variations
due to articulation, occlusion and noise (Fig. 3.3). The following example illustrates
shape-context. This is a common representational format which is used for compar-
ing two-dimensional shapes and contours.

Example 3.5. Shape Context [4]. Let C denote a closed contour in a given
input image. Its shape context Sc is defined as follows. Let zi = (xi,yi), i ∈
{1,2, . . . ,M}, denote a set of M sample points on the contour C (Fig. 3.4).
Then Sc = (S1,S2, . . . ,SM), where Si is a two-dimensional histogram which de-
scribes the distribution of the distances and orientations of the points z j, j �= i,
relative to zi.

Let ri j and θi j denote the distance and orientation of the point z j relative to
zi. To define θi j we require an axis. Two rotationally invariant axes which are
commonly used for this purpose are:

(1) The tangent of the contour at zi,
(2) The line which joins the center of mass of the contour and the point zi.

In Fig. 3.4 we show the first option, i. e. we measure the angles θi j relative to
the tangent of the contour at zi.

We divide the (r,θ ) space into L vertical columnsΘl, l ∈ {1,2, . . . ,L}, and
K horizontal rows Rk,k∈ {1,2, . . . ,K}. If h(k, l) is the number of points z j, j �=
i, for which ri j lies in the kth row and θi j lies in the lth column, then
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(a) (b)

(c) (d)

Fig. 3.3 (a) Shows the original image. (b) Shows the rotation and scaling of the original
image.(c) Shows the articulation of the original image.(d) Shows the occlusion of the original
image.

Si =

⎛

⎜

⎜

⎜

⎝

h(1,1) h(1,2) . . . h(1,K)
h(2,1) h(2,2) . . . h(2,K)

...
...

. . .
...

h(K,1) h(K,2) . . . h(K,L)

⎞

⎟

⎟

⎟

⎠

.

The shape context Sc = (S1,S2, . . . ,SM) is invariant to translation and rotation.
To a good approximation it is also invariant to occlusion and to noise. Al-
though Sc is not scale invariant it may be made scale invariant by dividing the
distances ri j through with the mean distance r̄, where

r̄ =
1

M(M−1)

M

∑
i=1

M

∑
j=1, j �=i

ri j .

Although widely used for comparing two-dimensional shapes and contours (see Ex.
5.6) it is less successful when comparing articulated objects. In this case we may
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use a modified shape context common representational representation known as the
inner distance [8].

Example 3.6. Inner Distance [8]. Suppose the object shown in Fig. 3.4 is in
fact an articulated object consisting of two parts A and B which are hinged
together at X . Then the inner distance is defined as follows: For any two points
zi and z j the inner distance is equal to the shape context except we replace ri j

with Ri j, where Ri j is the length of the shortest jointed line which joins zi and
z j and which lies within the given contour. To a good approximation the inner
distance is invariant as we change the angle between A and B.

r
ij

θ
ij

R
ij

z
j

z
iA

B

X
α

Fig. 3.4 Shows a closed contour defined by M points zi, i∈ {1,2, . . . ,M}. The line joining the
points zi and z j has a Euclidean length ri j and it makes an angle θi j with the tangent at zi. We
use the distance ri j and the angle θi j to define the shape context of the contour C. We obtain
the inner distance by replacing ri j with Ri j, the length of the shortest jointed line which joins
zi and z j and which lies inside the closed contour.

3.3.4 Uncertainty

In choosing an appropriate common representational format we must take into ac-
count how the measurement uncertainty will propagate in a given format. The fol-
lowing example illustrates these concerns.

Example 3.7. Object Recognition Based on Photometric Color Invariants [5].
A simple and effective scheme for three-dimensional object recognition is



28 3 Common Representational Format

to represent and match images on the basis of color histograms. For effective
object recognition we should use a color space which is invariant to changes
in viewing direction, object orientation and illumination.

In Table 3.1 we list several color spaces which are commonly used for this
purpose (see Chapt. 16). We observe that measurement uncertainty is propa-
gated differently in each space: the normalized rg space is unstable around
R = G = B = 0 (σr,σg → ∞) and hue H is unstable around R = G = B
(σH → ∞) while the opponent color space o1,o2 is relatively stable at all RGB
values [6].

Table 3.1 Photometric Invariant Color Space

Color Space Definition Uncertainty

Normalized rg r = R/S, g = G/S σr =
√

R2(σ 2
B +σ 2

G)+(G+B)2σ 2
R/S.

σg =
√

G2(σ 2
B +σ 2

R)+(R+B)2σ 2
G/S.

Opponent o1o2 o1 = (R−G)/2,
o2 = (2B−R−G)/4

σ1 =
√

σ 2
G +σ 2

R/2, σ2 =
√

4σ 2
B +σ 2

G +σ 2
R/4.

Hue H tan(H) =
√

3(G−B)/
(2R−G−B)

σ 2
H = 3(σ 2

G(−2BR+1)+σ 2
B(G2−2GR)/Δ +σ 2

R(1
+(G2−2GB)/Δ)+R2σ 2

Bσ 2
G)/4.

S = (R+G+B), Δ = R2 +B2 +G2−GR−B(G+R)2 .

3.4 Textures

The local binary pattern (LBP) operator [2, 10] is an efficient method for represent-
ing image textures. The operator takes a local neighborhood around each pixel and
thresholds the pixels in the neighborhood according to the value of the center pixel.
The resulting binary valued image patch forms a normalized local texture descrip-
tor of the image A. For a 3×3 neighborhood centered on the pixel (m,n), the LBP
operator is defined as

LBP(m,n) =
7

∑
k=0

s(A(m,n),A(ik, jk))2(k−1) ,

where (ik, jk) are the coordinates of the kth pixel in the 3×3 neighborhood of (m,n)
and

s(A(m,n),A(ik, jk)) =
{

1 if A(ik, jk) > A(m,n) ,
0 otherwise .
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The LBP encoding process is illustrated in Fig. 3.5.

98 85 32

7094

27 4487

43

(a)

1 1 0

−1

0 01

0

(b)

Fig. 3.5 Shows a local binary pattern operator. (a) Shows the gray-levels in a 3× 3 neigh-
borhood in the image A. (b) Shows the thresholded values. Starting from the top left-hand
corner and moving in a clockwise direction, the LBP for the 3× 3 local neighborhood is
LBP=∑7

k=0 s(A(m,n),A(ik, jk))2(k−1) = 1×20 +1×21 +0×22 +0×23 +0×24 +0×25 +
1×26 +1×27 = 195.

An important extension of the LBP is the uniform LBP.

Example 3.8. Uniform Local Binary Pattern [11]. A LBP is “uniform” if it
contains at most one 0−1 and one 1−0 transition when viewed as a circular
string. For example, the LBP code in Fig. 3.5 is uniform. In a 3× 3 window,
only 58 of the 28 = 256 patterns are uniform.

3.5 Multi-scale Representation

In some applications a multi-scale representation of the input image I is required.
A wavelet decomposition (see Chapt. 8) is often used for this purpose. Another
example is the SIFT key-points (Chapt. 13) which are defined as local extrema in
the following multi-scale representation of I:

{D(m,n|σ1),D(m,n|σ2), . . . ,D(m,n|σL)} ,

where D(m,n|σl) is the difference-of-Gaussian (DoG) representation of I at a scale
σl:

D(m,n|σl) = I(m,n)⊗G(σl)− I(m,n)⊗G(σl+1) ,

and I(m,n)⊗G(σl) is the convolution of I(m,n) with the two-dimensional zero-
mean Gaussian G(σl).
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3.6 Sub-space Methods

In many image fusion applications an important consideration is to keep the com-
putational load and/or the storage requirements low. This may be achieved by using
a low-dimensional common representational format. One way of producing such
a format is to apply a dimension-reducing, or sub-space, technique to the input
images.

Table 3.2 lists some of the principal sub-space techniques which are commonly
used for this purpose.

Table 3.2 Sub-space Techniques

Technique Description

Principal Component
Analysis (PCA)

Linear transformation chosen so the projected components
have maximum variance.

Linear Discriminant
Analysis (LDA)

Linear transformation for K ≥ 2 classes. Transformation is
chosen so the projected components for each class are maxi-
mally separated from the projected components of the other
classes.

Independent Component
Analysis (ICA)

Linear transformation chosen so the projected components
have maximized independence.

Non-Negative Matrix
Factorization (NMF)

Finds factors with non-negative elements.

Canonical Correlation
Analysis (CCA)

For K = 2 finds the two transformations, one for each class,
in which the projected components of the two classes are
maximally correlated.

The following example illustrates the classic dimension reducing method of prin-
cipal component analysis (PCA).

Example 3.9. Principal Component Analysis (PCA) [7]. The aim of principal
component analysis (PCA) is to find a L-dimensional linear projection that
best represents the input data in a least squares sense. Let the input data be K
M×N input images Ak,k ∈ {1,2, . . . ,K}. In classical PCA we first write each
Ak as a column vector ak:

ak = (ak(1),ak(2), . . . ,ak(MN))T .

Then we use a set of orthonormal axes ul, l ∈ {1,2, . . . ,L}, to obtain a L-
dimensional representation of ak:

ãk = UT (ak− ā) ,
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where

U = (u1,u2, . . . ,uL) ,

ul = (ul(1),ul(2), . . . ,ul(MN))T ,

ãk = (ãk(1), ãk(2), . . . , ãk(L))T .

Mathematically, the orthornormal axes ul, l ∈ {1,2, . . . ,L}, are given by the
L dominant eigenvectors of the sample covariance matrix S:

Sul = λlul ,

where

S =
1
K

K

∑
k=1

(ak− ā)(ak− ā)T ,

ā =
1
K

K

∑
k=1

ak .

3.7 Multiple Training Sets

A recent development in image fusion is ensemble learning (see Chapt. 10) in
which we employ an ensemble, or collection, of multiple decision maps Dk,k ∈
{1,2, . . . ,K}, where each function Dk is learnt on its own training set Tk. Given
a common (base) training set T ∗ we may generate an ensemble of training sets,
Tk,k ∈ {1,2, . . . ,K}, which share the same common representational format by sim-
ply sub-sampling T ∗.

Example 3.10. Bootstrapping. Given a base training set T ∗ of N measurements
T ∗m ,m ∈ {1,2, . . . ,M}, we create a set of K bootstrapped training sets Tk,k ∈
{1,2, . . . ,K}: Each bootstrapped training set Tk consists of M measurements
which are selected by randomly sampling T ∗ with replacement. The following
matlab code can be used to create a bootstrapped training set Tk.

for m = 1 : M
index = f loor(rand(1,1)∗ (M−1)+ 1)
Tk(m) = T ∗(index)

end
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Table 3.3 Methods for Ensemble Sampling a Base Training Set T ∗

Method Description

Sub-sampling Partition the base training set T ∗ into K disjoint slices (similar to that used in
cross-validation). Each classifier Sk is trained on a training set Tk, where Tk is
the base training set T ∗ less the examples in the k slice.

Bootstrapping Perturb T ∗ by randomly sampling T ∗ with replacement. The sampling is made
with a uniform probability random selection procedure. The entire procedure
is repeated K times to create K different, although overlapping, training sets
Tk. Each Tk contains N samples. On average each perturbed training set will
have 63.2% of the samples in T ∗, the rest being duplicates.

Boosting We use the classification results obtained with the kth classifier, Ck , to learn
Tk+1. The classifier Ck is itself learnt on Tk. The training set Tk+1 is created by
re-sampling T ∗ such that samples which are misclassified by Sk have a higher
chance of being chosen than samples which were correctly classified by Ck .

Class Switching Perturb T ∗ by randomly swapping a small percentage of class labels. The
procedure is repeated K times to create K training sets Tk,k ∈ {1,2, . . . ,K}.

In Table 3.3 we list some methods for ensemble sampling the training set T ∗.
Sometimes we require each training set Tk to have its own common representa-

tional format. This is a case of multiple common representational formats. Given
a common (base) training set T ∗, we may generate an ensemble of training sets
Tk,k ∈ {1,2, . . . ,K}, where each Tk has a different common representational format,
by applying a sub-space technique to T ∗ and then sub-sampling (with, or without,
replacement) the result. For further details see Chapts. 10 and 11.

3.8 Software

The following matlab toolboxes are of general utility in creating a common repre-
sentational format.

LIBRA. A matlab toolbox for classical and robust statistics. Authors: Sabine Ver-
boven and Mia Hubert [16].

LBP, GETMAPPING. Two matlab m-files for the local binary pattern operator.
Author: T. Ahonen [1].

MATLAB IMAGE PROCESSING, STATISTICAL AND WAVELET TOOLBOXS.
Matlab toolboxes.

STPRTOOL. A statistical pattern recognition toolbox. Authors: Vojtech Franc
and Vaclav Hlovac.

3.9 Further Reading

The local binary pattern (LBP) operator has been intensely investigated by the Ma-
chine Vision Group at the University of Oulu. Two important references on the
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subject are: [1, 11]. A modern reference which provides many pointers to the liter-
ature on the subject of invariant color spaces is [17]. For references on sub-space
methods (see Chapt. 9). For object recognition we require a method for extracting
two-dimensional shape enclosing contours. A modern reference on this subject is
[13].
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Chapter 4
Spatial Alignment

Abstract. The subject of this chapter is spatial alignment. In image fusion this is
defined as the process of geometrically aligning two or more images of the same
scene acquired at different times (multi-temporal fusion), or with different sensors
(multi-modal fusion), or from different viewpoints (multi-view fusion). It is a cru-
cial pre-processing operation in image fusion and its accuracy is a major factor in
determining the quality of the output image. In order to keep our discussion focused
we shall concentrate on the image registration of two input images, A and B, which
we define as finding the transformation T which “optimally” maps spatial locations
in the image B to the corresponding spatial locations in the image A.

4.1 Introduction

Let A and B denote two digital input images which we assume are derived from the
same scene. The images will naturally have limited fields of view which will most
likely be different. However, as the two images A and B are derived from the same
scene we expect a relation to exist between the spatial locations in A and the spatial
locations in B. If (u,v) denotes a pixel location in the reference image A and (x,y)
denotes a pixel location in the floating image B, then the transformation T represents
a mapping of every pixel location (x,y) in B into the corresponding location (u′,v′)
in A [1]:

(

u′
v′

)

= T

(

x
y

)

.

In general, the location (u′,v′) does not correspond to a pixel location in A. Let
B′ be the corresponding tranformed B image. The image B′ is only defined at the
points (u′,v′), where by definition, B′(u′,v′) = B(x,y). In order to convert B′(u′,v′)
into a digital image which is defined at the same pixel locations as A we apply an
interpolation/resampling operation to B′(u′,v′):

1 The reader should note the subtle difference between (x,y) and (u′,v′): (x,y) represents
a discrete pixel location in B while (u′,v′) represents the corresponding floating spatial
location in A. In general (u′,v′) does not correspond to a pixel location in A.
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˜B(u,v)≡ R
(

B′(u′,v′)
)

, (4.1)

where R is an appropriate resample/interpolation operator. In practice (4.1) is im-
plemented by using the inverse transformation T−1 which maps pixels in A to their
corresponding locations in B. The following example illustrates the concept of a
nearest neighbor resample/interpolation operator.

Example 4.1. Nearest neighbour resample/interpolation algorithm. The sim-
plest resample/interpolation algorithm is the nearest neighbor algorithm. Let
(u,v) denote a pixel location in A. Suppose the corresponding location in B
is (x′,y′) = T−1(u,v). In general (x′,y′) will not fall on a pixel location in B.
Let Pk = (xk,yk),k ∈ {0,1,2,3}, denote the four pixel locations in B which
surround the point (x′,y′) where P0 is the point nearest to (x′,y′) (Fig. 4.1),
then the nearest neighbor gray-level is ˜B(u,v), where

˜B(u,v)≡ R
(

B′(u′,v′)
)

= B(x0,y0) .

(u,v)

(a)

P
0

P
3

P
2

P
1

(b)

Fig. 4.1 Shows nearest neighbor interpolation. (a) Shows the reference image A and its grid
lines as full-lines. A pixel location (u,v) is shown by a filled circle at the intersection of two
grid-lines. (b) Shows the floating image B and its grid lines as full lines. Also shown (by
dashed lines) are the inverse transformed grid lines of A. The filled circle shows the location
of the inverse transformed point (x′,y′) = T−1(u,v).

4.2 Pairwise Transformation

The (pairwise) transformation
(

u′
v′

)

= T

(

x
y

)

,
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Table 4.1 Spatial Transformations T : (u′,v′)T = T
(

(x,y)T
)

Name Formula

Translation u′ = x+a1,v′ = y+a2.
Similarity u′ = a1x+a2y+a3, v′ =−a2x+a1y+a4.
Affine u′ = a1x+a2y+a3, v′ = a4x+a5y+a6.
Perspective u′ = (a1x+a2y+a3)/(a7x+a8y+1),

v′ = (a4x+a5y+a6)/(a7x+a8y+1).
Polynomial u′ = ∑ai jxiy j , v′ =∑bi jxiy j.

is a mathematical relationship that maps a spatial location (x,y)T in one image to
a new location, (u′,v′)T , in another image. The choice of transformation is always
a compromise between a smooth distortion and a distortion which achieves a good
match. One way to ensure smoothness is to assume a low-order parametric form for
the transformation [8, 23] such as that given in Table 4.1. In most applications the
transformation T is chosen on the grounds of mathematical convenience. However,
sometimes, we may have information regarding the physical processes which govern
the formation of the pictures. In this case we may use physical arguments in order
to derive the transformation T .

In many applications, the images also undergo local deformations. In this case,
we cannot describe the alignment of two images using a single low-order trans-
formation. In this case we use a composite transformation T , which consists of a
low-order global transformation TG and a local transformation TL:

(

u′
v′

)

= T

(

x
y

)

= TG

(

x
y

)

+ TL

(

x
y

)

,

where the parameters of TL change with (x,y).
The thin-plate spline (TPS) is often used to model the composite transformation

T .

4.2.1 Thin-Plate Splines

Mathematically, the TPS model for the composite transformation T is:

u′ = a1 + a2x + a3y +
M

∑
m=1

αmr2
m lnr2

m ,

v′ = a4 + a5x + a6y +
M

∑
m=1

βmr2
m lnr2

m ,

where (xm,ym),m ∈ {1,2, . . . ,M}, is a set of known anchor points and r2
m = (x−

xm)2 + (y− ym)2 + d2. Apart from the parameter d, the transformation T has six
parameters, a1,a2, . . . ,a6, corresponding to the global affine transformation TG and
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2N parameters (αm,βm),m ∈ {1,2, . . . ,M}, corresponding to the local transforma-
tion TL, and which satisfy the following constraints:

M

∑
m=1

αm = 0 =
M

∑
m=1

βm ,

M

∑
m=1

xmαm = 0 =
M

∑
m=1

xmβm ,

N

∑
m=1

ymαm = 0 =
M

∑
m=1

ymβm .

The TPS coefficients can be calculated using a least square solution [12]:
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,

where r2
i j = (xi−u′j)2 +(y j− v′j)2 + d2 and U(r) = r2 lnr2. For further details con-

cerning the estimation of the TPS parameters see [22].The following example illus-
trates the use of a TPS to model the warping of a fingerprint.

Example 4.2. Fingerprint Warping Using a Thin-plate spline [18]. The per-
formance of a fingerprint matching system is affected by the nonlinear defor-
mations introduced in the fingerprint during image acquisition This nonlinear
deformation is represented using a global affine transformation TG and a lo-
cal transformation TL. We use a TPS function [22] to represent the composite
transformation:

u′ = a1 + a2x + a3y +
M

∑
m=1

αmr2
m lnr2

m ,

v′ = a4 + a5x + a6y +
M

∑
m=1

βmr2
m lnr2

m ,

where (xm,ym),m ∈ {1,2, . . . ,M}, is a set of known anchor points and r2
m =

(x− xm)2 +(y− ym)2 + d2.



4.3 Hierarchical Registration 39

4.3 Hierarchical Registration

The simplest approach to register two images A and B and to calculate the trans-
formation T is to decompose T into numerous local affine registrations of small
sub-images. The idea is to reduce the complexity of the registration process using a
hierarchical strategy (see Fig. 4.2).

A

(a)

B
B′=T(B)

(b)

A
1

(c)

B′
1

B′′
1
=T

1
′ (B′

1
)

(d)

˜B′′= T
TPS
′′ (B′′)

(e)

Fig. 4.2 Shows two stages in hierarchical registration process of the floating image B with
the reference image A. (a) Shows the reference image A. (b) Shows the input floating image
B and the transformed floating image B′ = T (B) after the first stage in global registration.
(c) Shows the reference image divided into 4 quadrants. (d) Shows the transformed image B′
divided into four quadrants and the transformed quadrants B′′k = T ′(B′k). (e) Shows the com-
posite image ˜B′′ = T ′′T PS(B

′′) formed by applying the TPS transformation to the transformed
quadrants B′′k ,k ∈ {1,2, . . . ,4}.



40 4 Spatial Alignment

In the hierarchical approach [1, 13] we progressively subdivide the input images
A and B into smaller sub-images which are separately registered by maximizing an
appropriate image similarity measure. We separately model each sub-image regis-
trations with an affine transformation. Then the final composite transformation T is
found by assimilating all the sub-image transformations using a TPS interpolation
algorithm.

The following example explains the basic steps in the hierarchical registration
scheme of Likar-Pernus [13].

Example 4.3. Likar-Pernus Hierarchical Registration Scheme [13]. In the
Likar-Pernus algorithm we progressively subdivide the two input images A
and B. We automatically register the sub-images, and then apply the thin-plate
splines interpolation between the centers of registered sub-images. The steps
for the first two hierarchical levels are:

1. Register B to the reference image A using an affine transformation T . Let
B′ = T (B) be the transformed image.

2. Separately partition the images A and B′ into four sub-images A1,A2,A3,A4

and B′1,B
′
2,B
′
3,B
′
4 of identical size. Each corresponding sub-image pair

(Ak,B′k) is independently registered by using an affine transformation T ′k .
Let B′′k = T ′k (B

′
k) be the corresponding transformed sub-image.

3. Assimilate the four transformed sub-images B′′1,B
′′
2 ,B
′′
3 ,B
′′
4 into a single

transformed image ˜B′′ as follows: The coordinates of the centers of the
four registered sub-images B′′1 ,B

′′
2 ,B
′′
3 ,B
′′
4 form four point pairs, which are

the inputs to the thin-plate splines algorithm. The result is a transformed
image ˜B′′ = T ′′T PS(B

′′).
4. Separately partition the registered images A and ˜B′′ into 16 sub-images

A1,A2, . . . ,A16 and ˜B′′1 , ˜B
′′
2, . . . ,

˜B′′16 of identical size. Each corresponding
sub-image pair (Ak, ˜B′′k ) is registered using an affine transformation T ′′k . Let
B′′′ be the corresponding transformed image.

5. Assimilate the 16 transformed sub-images B′′′1 ,B′′′2 , . . . ,B′′′16 into a single
transformed image ˜B′′′ as follows: The coordinates of the centers of the
16 registered sub-images (Ak,B′′′k ) form 16 point pairs, which are the in-
puts to the thin-plate splines algorithm. The result is a transformed image
˜B′′′ = T ′′′T PS(B

′′′).

Fig. 4.2 is a graphical description of the hierarchical procedure. Note: The regis-
tration of finer details is preceded by registration and smooth interpolation obtained
at a more global scale.

In principle, the hierarchical decomposition of the images A and B may be con-
tinued until the sub-images contain only one pixel. However, in practice, we stop
the decomposition process much earlier. The reasons for this are twofold: (1) The
algorithm is sensitive to the accuracy of the sub-image registrations: a misregistra-
tion at a given hierarchical level can propagate to the lower hierarchical levels. (2)
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The probability of a misregistration increases as we move to the lower hierarchical
levels. This is because, in general, the reliability of an image similarity measure
decreases with the size of the image patch (Chapt 14).

One way to prevent registration errors propagating down the hierarchy is to adap-
tively stop the hierarchical sub-division before the image patches become so small
they are effectively “structureless”. For this purpose we may use the following test:
An image patch (containing K pixels, (xk,yk),k ∈ {1,2, . . . ,K}, with gray-levels gk)
is said to be structureless if ρ > τ , where ρ is Moran’s autocorrelation coefficient
[1]:

ρ =
K∑h,k whk(gh− ḡ)(gk− ḡ)
σ ∑h,k whk∑h(gh− ḡ)2 ,

τ is a given threshold and whk = 1/
√

(xk− xh)2 +(yk− yh)2 is the inverse Euclidean
distance between (xk,yk) and (xh,yh).

4.4 Mosaic Image

Thus far we have considered the problem of registering a pair of images. In some
applications we are interested in building a single panoramic or “mosaic” image ˜I
from multiple images Ik,k ∈ {1,2, . . . ,K}. To do this we need to find functions Tk

which transform each input image Ik onto the image ˜I.
Building a mosaic image from a sequence of partial views is a powerful means

of obtaining a broader view of a scene than is available with a single view. Re-
search on automated mosaic construction is ongoing with a wide range of different
applications.

Example 4.4. Mosaic Fingerprint Image [9]. Fingerprint-based verification
systems have gained immense popularity due to the high level of uniqueness
attributed to fingerprints and the availability of compact solid-state fingerprint
sensors. However, the solid-state sensors sense only a limited portion of the
fingerprint pattern and this may limit the accuracy of the user verification.
To deal with this problem we may construct a mosaic fingerprint image from
multiple fingerprint impressions.

Example 4.5. Mosaic Image of the Retina [3, 4]. One area in which mosaic
images are particularly valuable is in the diagnosis and treatment of diseases
of the retina. A seamless mosaic image which is formed from multiple fundus
camera images aids in the diagnosis and provides a means for monitoring the
progression of different diseases. It may also be used as a spatial map of the
retina during surgical treatment.
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At first sight we may assume that the ability to spatially align a pair of images is
sufficient to solve the problem of forming a mosaic of the entire scene from multiple
partial views. Theoretically, if one image can be established as an “anchor image”
I0 on which to base the mosaic image ˜I, then the transformation of each remaining
image onto this anchor may be estimated using pairwise registration. The mosaic
image I∗ is then formed by “stitching” together the transformed images Tm(Im).
Unfortunately, in practice, this approach may not work for the following reasons:

Non-Overlap. Some images may not overlap with the anchor image at all. This
makes a direct computation of the transformation impossible. In other cases, im-
ages may have insufficient overlap with the anchor image to compute a stable
transformation. The straightforward solution is to compose transformations us-
ing an “intermediate” image. This is problematic, however, since repeated appli-
cation of the transformation will often magnify the registration error.

Inconsistent Tm. The transformations Tm may be mutually inconsistent. This may
happen even if all the image-to-anchor transformations have been accurately es-
timated. The reason for this is as follows: Although each image may individually
register accurately with the anchor image and the non-anchor images may regis-
ter accurately with each other, this does not ensure that the transformations onto
the anchor image are mutually consistent.

One approach to solving this problem is to constrain the transformations so that they
are all mutually consistent.

Example 4.6. Transformation Constraints in a Mosaic Image. Given a se-
quence of N images I1, I2, . . . , IN , we estimate N(N−1) pairwise transforma-
tions

(

u′
v′

)

= Ti j

(

x
y

)

,

where (u′,v′)T and (x,y)T denote, respectively, the coordinates of correspond-
ing points in Ii and I j. The Ti j must satisfy the following relationships:

Tik = Ti j ◦Tjk ,

Ti j = T−1
ji ,

where Ti j ◦ TjK denotes the application of Tjk followed by the application of
Ti j.

For an affine transformation, the transformation Ti j can be written in matrix

form as

(

u′
v′

)

= Ai j

(

x
y

)

+ Bi j. In this case, the above relationships become

Aik = Ai jA jk ,

Bik = Ai jB jk + Bi j .
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4.4.1 Stitching

In “stitching” together the transformed images Tm(Im) our aim is to produce a visu-
ally plausible mosaic image ˜I in which, I∗ is geometrically and photometrically as
similar as possible to the input images Tm(Im) and the seams between the stitched
images are invisible. The stitching algorithms which are commonly used nowadays
fall into two types:

Optimal Seam Algorithms. These algorithms search for a curve in the overlap
region on which the differences between the Tm(Im) are minimized. Then each
image is copied to the corresponding side of the seam.

Transition Smoothing Algorithms. These algorithms minimize seam artifacts
by smoothing the transition region (a small region which is spatially near to the
seam) [24].

The following example describes the transition smoothing, or feathering, of two
input images I1 and I2.

Example 4.7. Feathering [24]. In feathering, the mosaic image ˜I is a weighted
combination of the input images I1, I2, where the weighting coefficients vary
as a function of the distance from the seam. In general, feathering works
well as long as there is no significant misalignment. However, when the mis-
alignments are significant, the mosaic image displays artifacts such as double
edges. A modification of feathering which is less sensitive to misalignment
errors, is to stitch the derivatives of the input images instead of the images
themselves. Let ∂ I1/∂x, ∂ I1/∂y, ∂ I2/∂x and ∂ I2/∂y be the derivatives of the
input images. If Fx and Fy denote the derivative images formed by feathering
∂ I1/∂x and ∂ I2/∂x and ∂ I1/∂y and ∂ I2/∂y, then we choose the final mosaic
image ˜I to be the image whose derivatives ∂˜I/∂x and ∂˜I/∂y are closest to Fx

and Fy.

4.5 Image Similarity Measures

In order to be able to register two images, a measure has to be defined to numerically
quantify the goodness of fit between the images, namely the similarity measure.
The choice of the appropriate similarity measure is crucial for a successful image
registration procedure, so the decisive criterion is the type of images to be registered.
Therefore depending on the type of the modalities used to acquire the images, the
user can choose between several similarity measures (see Chapt. 14). In this chapter
we shall concentrate on the mutual information similarity measure. This has been
found to be the most successful especially when the input images are heterogeneous,
i. e. they were captured with different sensors or with different spectral bands or with
different spatial resolutions [7].
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4.6 Mutual Information

Given a reference image A and a spatially aligned and resampled image B [2], the
mutual information of A and B is defined as

MI(A,B) =
∫ ∫

pAB(a,b) log2
pAB(a,b)

pA(a)pB(b)
dxdy , (4.2)

where pA(a) is the probability a pixel (x,y) in A has a gray-level a, pB(b) is the
probability a pixel (x,y) in B has a gray-level b and pAB(a,b) is the joint probability
a pixel (x,y) in A has a gray-level a and the same pixel in B has a gray-level b.

4.6.1 Normalized Mutual Information

The integral in (4.2) is taken over the pixels which are common to both A and B.
As a result, MI(A,B) may vary if the number of pixels which are common to A
and B changes. In general the variations in MI(A,B) are small but they may lead to
inaccuracies in a spatial alignment algorithm. To avoid these inaccuracies, we often
use a normalized mutual information similarity measure in place of MI(A,B). Four
commonly used normalized MI measures are [10]:

NMI(A,B) =

⎧

⎪
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MI(A,B)
H(A)+ H(B)

MI(A,B)
min(H(A),H(B))

,

MI(A,B)
H(A,B)

,

MI(A,B)
√

H(A)H(B)
,

where

H(A) = −
∫ ∫

pA(a) log2 pA(a)dxdy ,

H(B) = −
∫ ∫

pB(b) log2 pB(b)dxdy ,

H(A,B) = −
∫ ∫

pAB(a,b) log2 pAB(a,b)dxdy ,

and the integration is performed over the overlap region of the images A and B.

2 Note: In this section B denotes the spatially aligned and re-sampled floating image.
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4.6.2 Calculation

The most common approach to calculate the mutual information MI(A,B) and the
normalized mutual information NMI(A,B) is to calculate the entropies H(A), H(B)
and H(A,B) using the marginal probabilities pA(a) and pB(b) and the joint proba-
bility pAB(a,b). Since, the marginal probabilities may be derived from pAB(a,b):

pA(a) =
∫

pAB(a,b)db , pB(b) =
∫

pAB(a,b)da ,

we need only consider the calculation of pAB(a,b).

4.6.3 Histogram

The most straightforward way to calculate the joint probability distribution pAB(a,b)
is to use a discrete histogram HAB as follows: We quantize the gray-levels in
A and B into P and Q bins respectively Then we approximate pAB(a,b) using
the two-dimensional histogram HAB = (hAB(1,1),hAB(1,2), . . . ,hAB(P,Q))T , where
hAB(p,q) is the number of pixels whose gray-levels in A fall in the pth bin and
whose gray-levels in B fall in the qth bin.

In this case, the formula for the mutual information, is

MI(A,B) = ∑
(p,q)

hAB(p,q) log2

(

hAB(p,q)
hA(p)hB(q)

)/

∑
(p,q)

hAB(p,q) ,

where

hA(p) = ∑
q

hAB(p,q) and hB(q) =∑
p

hAB(p,q) .

Although widely used, the histogram method suffers from several drawbacks: It
yields a discontinuous density estimate and there is no principled method for choos-
ing the size and placement of the bins. For example, if the bin width is too small,
the density estimate is noisy while if the bin width is too large the density estimate
is too smooth. Legg et al. [14] recommends using Sturges’ rule for the optimal bin
width:

w =
r

1 + log2(K)
,

where r is the range of gray-level values, K is the number of elements in the input
image. In this case the optimal number of bins is r/w.

A partial solution to these problems is to calculate pAB(a,b) using the method of
Parzen windows.

4.6.4 Parzen Windows

Instead of using discrete histogram bins to calculate the joint probability distribu-
tion pAB(a,b), we use continuous bins. This is known as kernel, or Parzen-window,
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density estimation [19, 20] and is a generalization of histogram binning. If A and
B each contain K pixels with gray-levels ak,bk,k ∈ {1,2, . . . ,K}, then the estimated
joint density pAB(a,b) is given by

pAB(a,b) =
1

K2σAσB

K

∑
k=1

K

∑
l=1

H

(

a−ak

σA

)

H

(

b−bl

σB

)

,

where H(x) denotes a kernel function which satisfies
∫

x H(x)dx = 1. In general a
density estimate p(x) is more sensitive to the choice of the bandwidth σ and less
sensitive to the choice of the kernel H(x). For this reason we often use a zero-mean
Gaussian function with standard deviation σ for the kernel H(x). Table 4.2 lists
several schemes which are commonly used to calculate the optimal bandwidth σ .

Table 4.2 Methods for Calculating Optimum One-Dimensional Bandwidth σ

Name Description

Rule-of-Thumb Suppose the input data (consisting of N measurements ai, i ∈
{1,2, . . . ,N}), is generated by a given parametric density function, e. g.
a Gaussian function. In this case σ = 1.06σ̂N−1/5, where σ̂ is the sam-
ple standard deviation. Robust versions of this bandwidth are available:
σ = 1.06min(σ̂ , Q̂/1.34)N−1/5 and σ = 1.06ŝN−1/5, where Q̂ is the sam-
ple interquartile distance and ŝ = med j|a j−mediai|.

Cross-Validation (CV) Use a CV procedure to directly minimize the MISE or the AMISE. CV
variants include least square, biased and smoothed CV [11].

Plug-in Minimize the AMISE using a second bandwidth known as the pilot band-
width Σ . In the solve-the-equation plug-in method we write L as a func-
tion of the kernel bandwidth σ [11].

MISE is the mean integrated square error and is defined as MISE(p, p̂σ ) =
∫
(

p(a)− p̂σ (a)
)2

da,
where p̂σ (a) is the kernel approximation to p(a). AMISE denotes the asymptotic MISE and
represents a large number approximation of the MISE.

4.6.5 Iso-intensity Lines

Iso-intensity lines [17] is a new scheme developed specifically for calculating the
joint probability density pAB(a,b). Suppose the gray-levels in A and B are quantized,
respectively, into P and Q bins. For each pixel location (m,n) we estimate the gray-
level values G1,G2,G3,G4 of its four neighbors which lie at a horizontal or vertical
distance of half a pixel from (m,n). We divide the square defined by these neighbors
into a pair of triangles (see Fig. 4.3). Within the triangle we suppose the gray-level
values vary linearly as follows:

A(m+ δx,n + δy) = aAx + bAy + cA ,

B(m+ δx,n + δy) = aBx + bBy + cB ,
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(m,n)

G
4

G
1

G
3

G
2

Fig. 4.3 Shows the pixel (m,n) with the gray-levels Gk,k ∈ {1,2,3,4}

where A(m+ δx,n + δy) and B(m+ δx,n + δy) denote, respectively, the gray-level
of a point (m + δx,n + δy) in the triangle and −0.5 ≤ δx,δy ≤ 0.5. To calculate
the joint distribution of the two images A and B we sequentially consider the PQ
different gray-level pairs denoted as (α,β ). For each pixel (m,n) we see whether
the pair of corresponding triangles contains a point (m + δx,n + δy) which has a
gray-level value α in A and β in B. Such a point (m+δx,n+δy) contributes a vote
to the entry (α,β ) in pAB(a,b).

4.7 Partial Volume Interpolation

The histogram, Parzen and iso-intensity line algorithms all assume the images A and
B are spatially aligned and if necessary image interpolation has been performed. The
partial volume interpolation (PVI) is an alternative technique which does not assume
spatial alignment or image interpolation [16]. It works as follows.

Suppose T represents a mapping of the pixel (x,y) in B into the corresponding
location (u′,v′) in A. In general (u′,v′) will not correspond to a pixel location in A.
Suppose Qk = (uk,vk),k ∈ {0,1,2,3}, are the four pixel locations in A which sur-
round (u′,v′). (Fig. 4.4). Then if A(uk,vk) has a quantized gray-level αk and B(x,y)
has a quantized gray-level β , then HAB(αk,β ) receives a fractional vote equal to

r−1
k /

3

∑
h=0

r−1
h ,

where rk =
√

(uk−u′)2 +(vk− v′)2.
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Fig. 4.4 Shows the four pixel locations Qk = (uk,vk),k ∈ {0,1, . . . ,3}, in A which
surround the transformed point (u′,v′). Also shown is the Euclidean distance r3 =
√

(u3−u′)2 +(v3−v′)2 from Q3 to (u′,v′).

4.8 Artifacts

The success of the mutual information algorithms image registration lie in their in-
herent simplicity. It makes few assumptions regarding the relationship that exists
between different images. It only assumes a statistical dependence. The idea is that
although different sensors may produce very different images, since they are imag-
ing the same underlying scene, there will exist some inherent mutual information
between the images. When the images (or image patches) are spatially aligned, then
the mutual information is maximal. To be an effective similarity measure, however,
we require the mutual information to fall monotonically to zero as we move away
from perfect alignment. In practice, the MI does not fall monotonically to zero.

These artifacts are due to inaccuracies in estimating the marginal densities pA(a)
and pB(b) and the joint density pAB(a,b). The artifacts are of two types:

Interpolation effects [21]. Initially, when the images are aligned the pixel loca-
tions of A and B coincide. Therefore no interpolation is needed when estimating
the joint intensity histogram. At the same time the dispersion of the histogram is
minimal when the images are registered and therefore the joint entropy is min-
imal. By translating the floating image B with an integer number of the pixel
dimension, the grid points of the two images will again be aligned avoiding the
need for interpolation, but the dispersion of the joint histogram is increasing due
to misregistration, reducing the MI accordingly. For all other translations, corre-
sponding to some fraction of pixel dimension, the pixel locations of the images
do not coincide anymore and therefore interpolation is required to estimate inten-
sity values between pixel locations of the reference image. As a consequence the
joint histogram is not only dispersed because of the image content and a possible
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misregistration, but it also contains an additional dispersion induced by the inter-
polation method. More dispersion implies a higher joint entropy value, which in
turn decreases the MI of the reference image between the pixel location. The MI
is found to vary as shown in Fig.4.5. An effective way to reduce the interpolation
effects is to use nearest neighbor interpolation with jittered sampling [21]. We
jitter the coordinates of each pixel which is to be interpolated by adding a nor-
mally distributed random offset (zero mean and standard deviation of one-half).

−2 −1 0 1 2
δ x

M
I

Fig. 4.5 Shows the typical interpolation artifacts as a function of the relative displacement
δx between the reference image and the floating image. Note: PVI interpolation curves are
often concave in shape.

Small size effects. Sometimes an image patches with a low structural content
may appear. This often occurs when we register the two images using a hierar-
chical matching algorithm. These structureless patches often lead to inconsistent
local registrations due to a low MI response. If two signals are independent then
their MI reaches its minimum possible value of zero. We might expect, therefore,
that by shifting a structureless sub-image around its initial position, the similarity
measure will have a small response. Surprisingly this is not true. The MI starts to
increase as soon as a structureless sub-image overlaps a region of higher struc-
tural content. One explanation for this phenomena is the following [1]: The num-
ber of samples required to obtain a consistent estimate of the marginal entropies
H(A) and H(B) is much less than the number of samples required to obtain a
consistent of the joint entropy H(A,B).
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4.9 Software

KDE, KDE2D. Automatic data-driven bandwidth selection functions. Available
from the matlab central depository. Author: Zdravko Botev [2].

MATLAB IMAGE PROCESSING TOOLBOX. Matlab image processing tool-
box. The toolbox contains m-files for performing image registration, re-sampling
and interpolation.

THIN PLATE SPLINES. Suite of matlab m-files for performing thin plate spline
interpolation. Available from matlab central depository. Author: Bing Jian.

4.10 Further Reading

The subject of image registration has been intensely investigated for many years. A
modern review of image warping is [8]. Specific references on the use of mutual in-
formation for image registration are [15, 16]. The calculation of mutual information
has been considered by many authors including [5, 6].
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Chapter 5
Semantic Equivalence

Abstract. The subject of this chapter is semantic equalization. This is the conversion
of input data which does not refer to the same object or phenomena to a common
object or phenomena. Different inputs can only be fused together if they refer to
the same object or phenomena. In the case of image fusion we normally assume
this to be the case if the images are captured by the same or similar type of camera.
However, in the case of feature map fusion, the feature maps rarely refer to the same
object or phenomena. In this case, fusion can only take place if the features maps
are semantically equivalent. This is also true in the case of decision map fusion. In
this chapter we shall therefore concentrate on the semantic equivalence of feature
maps and decision maps.

5.1 Introduction

In order to carry out image fusion, feature map fusion or decision label fusion,
we must first ensure the input data which is to be fused together is semantically
equivalent. Two items are are said to be semantically equivalent if (1) they refer
to the same object or phenomena or (2) they do not refer to the same object or
phenomena but are causally linked to a common object or phenomena.

Although in principle the issue of semantic equivalence affects image fusion, fea-
ture map fusion and decision label fusion, in practice we generally assume the input
images in image fusion applications are semantically equivalent. This is especially
true if the input images are captured by the same type of camera. However, feature
maps and to a less extent, decision labels are rarely semantically equivalent and fu-
sion cannot take place without conversion to a common object or phenomena. This
process is known as semantic equalization and forms the subject of this chapter.

The following two examples illustrate the concept of semantic equivalence of
two feature maps A and B.
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Example 5.1. Multiple Edge Maps. Consider an input image on which we sep-
arately apply a Sobel edge detector and a Canny edge detector. The two detec-
tors work on different principles but both measure the presence, or absence,
of an edge in the input image. The corresponding two feature maps, Fsobel and
Fcanny, are therefore semantically equivalent. In fact, if Fsobel and Fcanny use the
same radiometric scale, then we may fuse them together without any further
processing.

Example 5.2. Target Detection. Consider an input image on which we wish
to test for the presence, or otherwise, of a target. We apply an edge operator
and a blob operator to the input image. The two detectors work on different
principles and both measure very different characteristics of the image. In this
case, the corresponding feature maps, Fedge and Fblob, do not refer to the same
object or phenomena and are not, therefore, semantically equivalent.

However, according to the theory of target detection, both Fedge and Fblob

are causally linked to the presence, or absence, of a target. In this case, we may
semantically align the two feature by converting Fedge(x,y) and Fblob(x,y) into
evidence that a target is present at (x,y). If we use the same evidence scale for
both Fedge and Fblob, then radiometric calibration is not required and we may
fuse Fedge and Fblob together without any further processing.

5.2 Probabilistic Scale

In Ex. 5.2 the feature map values Fedge(x,y) and Fblob(x,y) are made semantically
equivalent by converting them into evidence that a target is present at (x,y). In gen-
eral, if we measure the evidence using a probabilistic scale, then mathematically
we may represent the conversion of a feature map F(x,y) into a probabilistic map
p(x,y) as follows

p(x,y) = S (F(x,y)|α,β , . . . ,γ) ,

where S denotes a a parametric transfer function with parametes α,β , . . . ,γ [3].
The parameters α,β , . . . ,γ are unknown but may be learnt off-line as follows.

Let T = (T1,T2, . . . ,TM)T denote a training set of M samples Tm,m ∈ {1,2, . . . ,M}.
We suppose that each training sample Tm is characterized by a feature value Fm and
an indicator function δm, where

δm =
{

1 if a target is associated with Tm ,
0 otherwise .
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Let α∗,β ∗, . . . ,γ∗ denote the optimal (maximum likelihood) estimate of the param-
eters α,β , . . . ,γ . Then α∗,β ∗, . . . ,γ∗ are learnt by maximizing the likelihood of Fm.
Mathematically, we have

(α∗,β ∗, . . . ,γ∗) = arg max
α ,β ,...,γ

(

M

∑
m=1

δm lnS(Fm|α,β , . . . ,γ)

+ (1− δm) ln(1−S(Fm|α,β , . . . ,γ))
)

.

(5.1)

Note: Eqn. (5.1) is equivalent to minimizing the sum of the square errors:

(α∗,β ∗, . . . ,γ∗) = arg min
α ,β ,...,γ

M

∑
m=1

(S(Fm|α,β , . . . ,γ)− δm)2.

5.2.1 Plat Calibration

In Platt calibration [9] we assume the transfer function S(F|α,β , . . . ,γ) has a simple
sigmoid shape with two parameters α and β :

S(F|α,β ) =
1

1 + exp(α(β −F))
.

In this case [7, 8, 9], the optimal (maximum likelihood) parameter estimates α∗ and
β ∗ are given by

(α∗,β ∗) = argmax
α ,β

(

M

∑
m=1

δm lnS(Fm|α,β )+ (1− δm) ln(1−S(Fm|α,β ))
)

.

This optimization procedure is liable to overfit if the number of pixels with δm = 0
or with δm = 1 is too low. We may, however, mitigate the effects of over-fitting by
replacing δm by a modified function δ ′m in the above minimization procedure, where

δ ′m =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
M + 2−Δ if δm = 0 ,

1 +Δ
2 +Δ

if δm = 1 ,

and

Δ =
M

∑
m=1

δm .

The following example describes the use of Platt calibration to semantically align
several feature maps.

Example 5.3. Multi-Feature Infra-Red Target Detection in an Input Image
[13]. We consider the detection of a small target in an infra-red input image I.
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At each pixel (m,n) in I we test for the presence of a target by extracting the
following local features:

1. Maximum Gray Level.
2. Contrast Mean Difference.
3. Average Gradient.
4. Gray-level Variation.
5. Entropy.

The five Fk clearly do not measure the same phenomena. However, according
to the theory of target detection in an infra-red image, they are all causally
linked to the presence of a target. Platt calibration is used to make the Fk(m,n)
semantically equivalent by converting each Fk(m,n) into the probability, or
likelihood, that a target is present at (m,n).

5.2.2 Histogram Calibration

In histogram calibration the feature space is divided into K non-overlapping bins
[tk−1,tk),k ∈ {1,2, . . . ,K}. In each bin, the transfer function is a flat plateau of con-
stant height. In this case, the transfer function is given by:

S(F|α,β , . . . ,γ) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

α if t0 ≤ F < t1 ,
β if t1 ≤ F < t2 ,
...
γ if tK−1 ≤ F < tK ,

and the optimal (maximum likelihood) estimates of the parameters α,β , . . . ,γ are:

α∗ =
H1

M1
β ∗ =

H2

M2
. . . γ∗ =

HK

MK
,

where Mk is the number of training samples which fall in the kth bin and Hk is the
number of training samples which fall in the kth bin and which have δm = 1.

5.2.3 Isotonic Calibration

In isotonic calibration [15] the feature space is divided into M bins, one for each
feature value Fm. In each bin the transfer function is a flat plateau of constant height.
No restriction is placed on the heights of the plateaus except they are isotonic, i. e.
the heights of the plateaus are either monotonically increasing or monotonically
decreasing.
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Mathematically, the isotonic transfer function is given by

S(F|α,β , . . . ,γ) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

α if t0 ≤ F < t1 ,
β if t1 ≤ F < t2 ,
...
γ if tM−1 ≤ F < tM ,

where α ≤ β ≤ . . . ≤ γ (monotonically increasing function) or α ≥ β ≥ . . . ≥ γ
(monotonically decreasing function), t0 =−∞, tM =∞, and tm = (Fm−1 +Fm)/2,m∈
{1,2, . . . ,M−1}.

The optimal (maximum likelihood) estimates of the parameters α,β , . . . ,γ are
found by minimizing the sum of the errors in (5.1) assuming a monotonically vary-
ing transfer function F . A simple algorithm for doing this is the pooled-average
value (PAV) algorithm [15].

Example 5.4. Platt, Histogram and Isotonic Calibration. In Table 5.1 we list
a sequence of M = 15 training samples Tm,m ∈ {1,2, . . . ,M}, with feature
values Fm and indicator functions δm. The corresponding Platt, histogram and
isotonic calibration curves are shown in Fig. 5.1

Table 5.1 Isotonic Calibration

Tm 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Fm 0.02 0.10 0.18 0.20 0.27 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.70 0.80 0.90
δm 0 1 0 0 1 0 1 1 0 1 1 1 0 1 1

5.3 Decision Labels

In decision fusion the decision maps Dk are obtained by performing a decision pro-
cedure on all pixels (x,y) in an input image Ik or in a feature map Fk(x,y). For each
pixel (x,y), Dk(x,y) is a label l which may be any identifying name or symbol.
We often find it convenient to associate each label l with an integer chosen from
l ∈ {1,2, . . . ,L}. Let A and B be two decision maps with labels m,m ∈ {1,2, . . . ,M},
and n,n ∈ {1,2, . . . ,N}. Then, one way of making A and B semantically equiva-
lent is to find which labels m in A are associated with labels n in B and vice versa.
A convenient way of defining the associations is through an assignment matrix λ ,
where

λ (m,n) =
{

1 if labels m and n are associated with each other ,
0 otherwise.
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Fig. 5.1 Shows the Platt (continuous full curve), histogram (discontinuous dashed curve)
and isotonic (discontinuous full curve) calibration curves obtained for the data listed in
Table 5.1.

5.3.1 Assignment Matrix

If C(m,n) denotes the cost of matching a label m with n, then the optimal assignment
matrix ˜λ is defined as the assignment matrix with the minimum overall cost:

˜λ = argmin∑
m,n

C(m,n)λ (m,n) , (5.2)

We often assume one-to-one associations between the labels m in A and the labels n
in B. In this case we solve (5.2) subject to the following constraints:

M

∑
m=1

λ (m,n) ≤ 1 ,
N

∑
n=1
λ (m,n)≤ 1 .

Fast algorithms for finding the optimal assignment matrix ˜λ are available. Among
them is the Hungarian algorithm [6] which is widely used in many applications. Tra-
ditionally the assignment algorithms are used when M = N and we require that all
labels in A are matched to a corresponding label in B and vice versa. The algorithms
may, however, be used when M �= N, or when we wish to make the assignment ro-
bust against outliers by finding the best K,K ≤ min(M,N), associations [1]. In this
case we use an enlarged cost matrix Ce:

Ce(m,n) =
{

C(m,n) if m ∈ {1,2, . . . ,M},n ∈ {1,2, . . . ,N} ,
P otherwise ,

1 This case is used as a guard against outliers.
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where P is the cost, or penalty, of not associating a label in A with any label in B or
of not associating a label in B with any label in A.

In some applications it may not be possible to define a penalty P. In this case, we
use the following (sub-optimal) algorithm to find the sub-optimal label permutation
(see Sect. 7.7.3):

Example 5.5. Simple Iterative Assignment Algorithm. Given a cost matrix
C(m,n),m ∈ {1,2, . . . ,M},n ∈ {1,2, . . . ,N}, we find the best K one-to-one
associations, where K ≤min(M,N), as follows:

1. Find the association pair (m1,n1) with the smallest cost.
2. Find the association pair (m2,n2) with the second smallest cost, where

m2 �= m1 and n2 �= n1.
3. Find the association pair (m3,n3) with the third smallest cost, where m3 �=
{m1,m2} and n3 �= {n1,n2}.

4. Continue this process until we have K pairs:
(m1,n1),(m2,n2), . . . ,(mK ,nK).

In some applications we may impose additional constraints on (5.2). For example,
when we compare two two-dimensional shapes or contours (Ex. 3.5) we may require
the order of the points to be preserved [11].

In many applications, solving the assignment, or label correspondence, problem
is the fusion algorithm itself. This is illustrated in the following example.

Example 5.6. Handwritten Character Recognition [1]. Shape matching is a
powerful method for automatic handwritten character recognition. In this tech-
nique we match the contour of an unknown character with the contour of a
known character. Suppose the two contours are labeled, respectively, as A and
B, where A is sampled at M points zA

m and B is sampled at N points zB
n . For

each pair of points (m,n) we let

C(m,n) = d(Sm,Sn) ,

where Sm and Sn are, respectively, the shape contexts (see Ex. 3.5) of the points
zA

m and zB
n and d(Sm,Sn) is an appropriate distance measure. If ˜λ denotes the

optimal one-to-one assignment matrix, then we may use

˜C = ∑
(m,n)

C(m,n)˜λ (m,n) ,

as a similarity measure: the smaller ˜C the more likely A and B are the same
character.
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In some applications, it may not be feasible, or even possible, to define an optimal
assignment matrix ˜λ . In this case, we may make the decision maps semantically
equivalent by converting them into co-associative matrices [4, 5].

5.3.2 Co-association Matrix

Given a decision map D(m,n),m ∈ {1,2, . . . ,M},n ∈ {1,2, . . . ,N}, let zi = (mi,ni),
i ∈ {1,2, . . . ,MN}. Then we define the co-association matrix [4, 5] as

A(i, j) =
{

1 if D(mi,ni) = D(m j,n j) ,
0 otherwise .

We may interpret the co-association matrix as the evidence provided by D for the
unknown true decision map.

The following example illustrates the formation of an average co-association ma-
trix A from three co-association matrices A1,A2 and A3.

Example 5.7. Co-association Matrix [14]. Given a one-dimensional image

I = (I1, I2, . . . , I7)T ,

we segment it using three different cluster algorithms. The results are three
decision maps:

D1 = ( 1 1 2 2 2 3 3)T , D2 = ( 3 3 2 2 3 3 1)T ,

D3 = ( 2 3 2 2 1 1 1)T .

The corresponding co-association matrices are:

A1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 0 0 0 0 0
1 1 0 0 0 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0
0 0 0 0 0 1 1
0 0 0 0 0 1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, A2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 0 0 1 1 0
1 1 0 0 1 1 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
1 1 0 0 1 1 0
1 1 0 0 1 1 0
0 0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

A3 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 1 1 0 0 0
0 1 0 0 0 0 0
1 0 1 1 0 0 0
1 0 1 1 0 0 0
0 0 0 0 1 1 1
0 0 0 0 1 1 1
0 0 0 0 1 1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.
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The mean co-association matrix is

Ā =
1
K

K

∑
k=1

Ak =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 2
3

1
3

1
3

1
3

1
3 0

2
3 1 0 0 1

3
1
3 0

1
3 0 1 1 1

3 0 0
1
3 0 1 1 1

3 0 0
1
3

1
3

1
3

1
3 1 2

3
1
3

1
3

1
3 0 0 2

3 1 2
3

0 0 0 0 1
3

2
3 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

which may, in turn, be regarded as a co-association matrix whose elements
vary continuously between 0 and 1. The closer Ā(i, j) is to 1, the more the
original decision maps put the elements Ii and I j into the same cluster and the
stronger the bond between the elements Ii and I j, and vice versa.

5.4 Software

CLUSTERPACK. A matlab toolbox for cluster ensemble algorithms. Authors: A.
Strehl and J. Ghosh [12].

GPAV. A matlab toolbox for isotonic regression. Authors: Oleg Burdakov, Anders
Grimvall and Oleg Sysoev [2].

HUNGARIAN ALGORITHM FOR LINEAR ASSIGNMENT PROBLEM. A mat-
lab routine for solving the linear assignment problem. Available from matlab
central depository. Author: Yi Cao.

STPRTOOL. A statistical pattern recognition toolbox. Authors: Vojtech Franc
and Vaclav Hlovac. The toolbox contains a file mlsigmoid.m which performs
Platt calibration.

5.5 Further Reading

The calibration techniques discussed in Sect. 5.2 are not robust against outliers. For
the modifications required when outliers are present see [10].
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Chapter 6
Radiometric Calibration

Abstract. The subject of this chapter is radiometric calibration. This is the conver-
sion of the input image values to a common radiometric scale. The transformation
to such a scale is of critical importance in image fusion. Without a common radio-
metric base it is not possible to fuse images which were acquired at different illumi-
nations, or under different atmospheric conditions or captured by different sensors.
Radiometric calibration is used in both image fusion and in feature map fusion. For
the sake of concreteness, we shall concentrate on the radiometric calibration of two
input images A and B.

6.1 Introduction

The transformation to a common radiometric base is known as radiometric cali-
bration, or normalization, which may in turn be divided into two types: absolute
and relative. The absolute radiometric correction converts the digital counts of a
pixel in the input image to radiance values. The absolute radiometric correction
tends to be more accurate than the relative correction, but it needs sensor param-
eters, atmospheric refraction parameters and other data that are difficult to obtain.
The difficulty in obtaining the above accurate atmospheric and sensor parameters
makes relative radiometric normalization an attractive alternative. In relative radio-
metric normalization we designate one image as a reference image and adjust the
radiometric properties of the second, or floating, image to match the reference im-
age. The normalized image should therefore appear to have been acquired under the
same conditions as the reference image.

Example 6.1. Intensity Standardization in MR Images [12]. Brain MR im-
ages present significant variations across patients and scanners. Consequently,
training a classifier on a set of images and subsequently using it for brain seg-
mentation may yield poor results. Significantly better segmentation is obtained
if the image intensities are standardized beforehand.
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6.2 Histogram Matching

In this section we consider the radiometric calibration technique known as histogram
matching. This is one of the simplest and effective unsupervised radiometric align-
ment techniques. It uses the equalization of the histogram of the image B to the
histogram of the reference image A. The method is a statistical method and does not
require the accurate spatial alignment of the two images. It is therefore useful for
calibrating images of the same scene which are acquired on different dates or with
different illumination or atmospheric effects.

The goal of histogram equalization is to transform the image B in such a way
that its pdf matches the pdf of the reference image A. Suppose b denotes a given
pixel feature whose probability density function (pdf) and cumulative distribution
function (cdf) are, respectively, pB(b) and cB(b), where cB(b) =

∫ b
−∞ pB(b)db. We

seek a function a = F(b) which maps pB(b) into the corresponding reference pdf,
pA(a). This is obtained by equating cB(b) and cA(a), where cA(a) =

∫ a
−∞ pA(a)da:

cB(b) = cA(a) = cA(F(b)) ,

or

a = F(b) = c−1
A (cB(b)) ,

where c−1
A denotes the inverse of cA

[1].
If the pixel gray-levels in B are distinct, then histogram matching B to A is

straightforward as the following example shows.

Example 6.2. Histogram Matching. Let A and B be two discrete images. Each
image has M pixels. Let H = (H1,H2, . . . ,HL) be the histogram of A where Hl

is the number of pixels in A with gray-level Gl . Let B∗ denote the image B after
histogram matching. If the pixel gray-levels in B are all distinct, then each
pixel has a unique rank rm associated with it. Then the histogram matching
procedure is as follows.

R2 = 0
for l = 1 : L

R1 = R2 + 1; R2 = R1 + Hl;
for m = 1 : M
if (R1 ≤ rm ≤ R2); B∗m = Gl; end

end
end

1 c−1 is defined as follows: If y = c(x), then c−1(y) = x.
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6.2.1 Exact Histogram Specification

In many cases the number of pixels in an image, or an image patch, is much larger
than the number of gray-levels. In this case, in order to obtain an exact histogram
matching we require a method for ordering all the pixels which have the same
gray-level. Traditionally, we order the pixels randomly. A better alternative is the
following [2]. Separately convolve the image B with K small convolution masks
Mk,k ∈ {1,2, . . . ,K}. Colute et al. [2] recommends the following six masks:

M1 =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

, M2 =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0
0 0 1 0 0
0 1 1 1 0
0 0 1 0 0
0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

, M3 =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0
0 1 1 1 0
0 1 1 1 0
0 1 1 1 0
0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

,

M4 =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 1 0 0
0 1 1 1 0
1 1 1 1 1
0 1 1 1 0
0 0 1 0 0

⎞

⎟

⎟

⎟

⎟

⎠

, M5 =

⎛

⎜

⎜

⎜

⎜

⎝

0 1 1 1 0
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
0 1 1 1 0

⎞

⎟

⎟

⎟

⎟

⎠

, M6 =

⎛

⎜

⎜

⎜

⎜

⎝

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

⎞

⎟

⎟

⎟

⎟

⎠

.

Let Bk(x,y),k ∈ {1,2, . . . ,K}, denote the K outputs at the pixel (x,y), where by
definition, B1(x,y) = B(x,y). We then order the pixels using the Bk(x,y) as follows:

Example 6.3. Exact Histogram Specification [2].

for k = 1 : K
If no ties exist, stop.
Otherwise attempt to resolve ties using Bk.

end
If ties still exist resolve them randomly.

Once we have uniquely ordered the pixels according to b, i. e. each pixel has a
unique integer rank r(x,y) associated with it, we may then implement an exact his-
togram match as described in Ex. 6.2. Note. On the basis of r we may define a new
image B′, where

B′(x,y) = B(x,y)+αr(x,y) ,

and α is a very small number [2]. By definition, the pixel gray-levels B′(x,y) are
unique but are still very close to the original gray-levels B(x,y).

2 If Δ denotes the smallest distance between adjacent gray-levels, then α should be less than
Δ/N, where N is the number of pixels in the image.
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Fig. 6.1 illustrates histogram equalization [3] using the exact histogram algorithm.

(a) (b)

(c) (d)

Fig. 6.1 (a) Shows an input image I with a full range of gray-levels. (b) Shows the result I5
of histogram equalizing I to 5 levels. (c) Shows the result I′4 of histogram equalizing I5 to 4
levels using the traditional algorithm in which ties are randomly broken. (d) Shows the result
I′′4 of histogram equalizing I5 into 4 levels in which ties are broken using the exact histogram
matching technique. We clearly see the improvement in image quality between I′4 and I′′4 .

6.3 Midway Image Equalization

Midway image equalization [3, 4] is defined as any method which warps two input
histograms pA(a) and pB(b) to a common “intermediate” histogram pZ , such that
pZ(z) retains as much as possible of the shapes of pA(a) and pB(b). Mathematically,

3 Histogram equalization is defined as a transformation of the gray-levels of an input image
such that all gray-levels are equally populated.



6.3 Midway Image Equalization 67

[4] defines midway image equalization as follows: Given the two cumulative proba-
bility distributions cA(a) and cB(b) we define the intermediate distribution pZ(z) as
the distribution whose inverse cumulative distance c−1

Z (z) is:

c−1
Z (z) =

c−1
A (z)+ c−1

B (z)
2

.

Suppose we warp pA(a) by matching it to pZ(z). Let cZ(z) =
∫ z

0 pZ(z)dz denote the
cumulative distribution of pZ(z), then the warped distribution is p′A(a′), where

p′A(a′) = pA(a) ,

a′ = c−1
Z (cA(a)) .

Similarly we warp pB(b) by matching it to pZ(z). The corresponding warped distri-
bution is p′B(b′), where

p′B(b′) = pZ(b) ,

b′ = c−1
Z (cB(b)) .

The midway image equalization procedure may be implemented in an efficient man-
ner using a dynamic programming technique [3]. However, when the images are of
the same size and pixel gray-levels in each image are unique (i. e. no two pixels have
the same gray-level) [4] we may implement a midway image equalization scheme as
explained in the following example.

Example 6.4. Simple Midway Image Equalization. Given two M×N input im-
ages A and B in which all pixels have a unique gray-level, let a(i) and b(i)
denote, respectively, the ith smallest gray-level in A and B. Then the corre-
sponding midway gray-level is ci, where

ci = (a(i) + b(i))/2 .

Pseudo-code for calculating the midway equalized images A′ and B′ is:

[As, invrA] = sort(A(:)); [ junk,rA] = sort(invrA);
[Bs, invrB] = sort(B(:)); [ junk,rB] = sort(invrB);
C = (As+ Bs)/2;
for i = 1 : M ∗N

h = rA(i);A′(i) = C(h);k = rB(i);B′(i) = C(k);
end
A′ = reshape(A′,M,N);B′ = reshape(B′,M,N);

4 If the pixels in the images are not unique then we may use the exact histogram specification
scheme (Sect. 6.2.1) to create images whose gray-levels are unique.
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6.4 Matching Second-Order Statistics

A simple version of histogram matching is to match the second-order statistics of
the input images. Given two input images A and B of the same scene, we map the
gray-levels of B so that the mean and standard deviation of B matches that of A.
Let μA and μB denote the mean gray-level of A and B and let σA and σB denote the
standard deviation of A and B. If ˜B(m,n) denotes the gray-level of B after scaling,
then

˜B(m,n) = (B(m,n)− μB)
σA

σB
+ μA .

Although very simple, matching second-order statistics is still widely used in re-
mote sensing applications. In fact, in some applications [7], it may be preferred over
histogram matching. For example, in merging infra-red and visible light images, Li
and Wang [7] found it is preferable to perform radiometric calibration by matching
the second-order statistics of the two images.

6.5 Ranking

Ranking is a robust method for radiometric normalization which like histogram
matching does not require any training data. The following example illustrates the
concept of ranking in remote sensing.

Example 6.5. Remote Sensing [8]. Remotely sensed data are increasingly used
for mapping and monitoring the physical environment. One of the advantages
of monitoring with remotely sensed data is that temporal sequences can ac-
curately indicate environmental changes, assuming that the input data is ra-
diometrically consistent for all scenes. Factors contributing to the potential
inconsistency in measured radiance include changes in surface condition, illu-
mination geometry, sensor calibration, observation geometry and atmospheric
condition. By using a radiometric normalization technique, we may however,
correct for data inconsistencies resulting from many different effects. Image
normalization is carried out in one step by converting image values to ordinal
ranks. Ordinal ranking allows us to assign each pixel a new value based on its
reflectance value, relative to all other pixels. When image pairs are converted
to ordinal ranks the global characteristics of the distributions of pixel values
are matched.

Pixel ranking does not require atmospheric details, sensor information, or
selection of subjective pseudo-invariant features, and therefore allows images
to be simply and efficiently normalized and processed for changes with min-
imal a priori knowledge. In general, for small pictures, pixel ranking is an
effective image normalization technique. It is less effective on very large dig-
ital images because in this case we obtain many tied ranks, although the exact
ordering technique discussed in Sect. 6.2.1 may help.
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6.6 Thresholding

In image thresholding we convert an input image I into a binary labeled image B
using a threshold gray-level t:

B(x,y) =
{

1 if I(x,y)≥ t ,
0 otherwise .

(6.1)

The primary purpose of a thresholding algorithm is to segment the input image into
background regions and foreground regions or objects of interest. However, image
thresholding is sometimes also used as a simple method for radiometric normaliza-
tion. The following algorithm describes the Otsu thresholding algorithm.

Example 6.6. Otsu thresholding algorithm [9]. Given an input picture I, let
g(x,y) denote the gray-level at pixel (x,y). Then pixel gray-levels are divided
into two groups: foreground pixels whose gray-levels are less than, or equal to,
a threshold t and background pixels whose gray-levels are greater than t. The
optimum threshold is found by maximizing the separation between the two
groups. Let μF(t), σF(t) and μB(t), σB(t) denote, respectively, the mean gray-
level and standard deviation of the foreground and background pixels (defined
with a threshold t), then the optimum threshold is given by

tOPT = argmax
t

(

P(t)(1−P(t))(μF(t)− μB(t))2

P(t)σ2
F(t)+ (1−P(t))σ2

B(t)

)

,

where P(t) is the relative number of pixels with gray-level less than, or equal
to, t.

In some applications the conversion of the pixel gray-levels I(x,y) in the input
image into binary gray-levels B(x,y) using (6.1) is too coarse. In these cases, we
may use a fuzzy thresholding algorithm which generates a fuzzy gray-level image
˜B, where ˜B(x,y) ∈ [0,1].

Fig. 6.2 shows the result of thresholding an input image.
The following example illustrates the use of local thresholding for radiometric

calibration.

Example 6.7. Local Binary Pattern for Radiometric Calibration [5, 6]. Ref.
[5, 6] describes the use of the local binary pattern (LBP) operator as an ef-
ficient method for radiometric calibration of face images in an uncontrolled
environment. The LBP operator (see Sect. 3.4) works as follows. It takes a
local neighborhood around each pixel and thresholds the pixels in the neigh-
borhood according to the value of the center pixel. The weighted sum of the
thresholded pixels is a label which may be regarded as a radiometrically cal-
ibrated pixel value (see Fig. 3.5). For a 3× 3 neighborhood centered on the
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(a) (b)

Fig. 6.2 (a) Shows an input image I. (b) Shows the binary image after thresholding I with
the Otsu algorithm.

pixel (m,n), the LBP operator is defined as

LBP(m,n) =
7

∑
k=0

s(A(m,n),A(ik, jk))2(k−1) ,

where (ik, jk) are the coordinates of the kth pixel in the 3×3 neighborhood of
(m,n) and

s(A(m,n),A(ik, jk)) =
{

1 if A(ik, jk) > A(m,n) ,
0 otherwise .

Note: The operator may be extended to circular neighborhoods by bilinearly
interpolating the pixel values [6].

6.7 Segmentation

In image segmentation we convert an input image into a multiple label image. Al-
though segmentation is primarily a diagnostic tool in which the input image is de-
composed into contiguous regions, we may also use it as a method for radiometric
normalization. The following example illustrates a simple K-means cluster algo-
rithm which may be used for image segmentation.

Example 6.8. K-means cluster algorithm. Given an input image I with pixel
gray-levels gm,m ∈ {1,2, . . . ,M}. Let G1,G2, . . . ,GK denote K cluster cen-
ters or cluster gray-levels. Each pixel gray-level gm is associated with a given
cluster:
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δmk =
{

1 if gm is associated with Gk ,
0 otherwise .

Then the K-means algorithm attempts to find the set of cluster centers Gk,k ∈
{1,2, . . . ,K}, such that the total error is a minimum:

(G1,G2, . . . ,GK) = argmin
Gk

M

∑
m=1

K

∑
k=1

δmkC(gm,Gk) ,

where C is an appropriate cost function. A common cost function is C(x,y)
= |x− y|.

The K-means algorithm works in an iterative manner as follows: In each
iteration we calculate the assignment matrix δmk using the cluster centers Gk

calculated in the previous iteration. The cluster centers are then recalculated
using the new assignment matrix. The process for T iterations is:

for t = 1 : T
for m = 1 : M

δ (t)
mk =

{

1 if |gm−G(t−1)
k |= minl |gm−G(t−1)

l |;
0 otherwise;

end
for k = 1 : K

G(t)
k = ∑M

m=1 δ
(t)
mk gm/∑M

m=1 δ
(t)
mk;

end
end

Fig. 6.3 illustrates the segmentation of an input image using the K-means cluster
algorithm. Although very simple the K-means cluster algorithm is widely used as a
method of image segmentation. Recently with the development of ensemble learn-
ing, the K-means algorithm is found to be capable of giving state-of-the-art segmen-
tation (see Chapt. 16).

Note: Although image segmentation is an effective method for radiometric cali-
bration, the segmented images may still require semantic equalization (see Sect. 5.3).

6.8 Feature Map Normalization

Although in many cases, feature map normalization requires the maps to be brought
into semantic equivalence, there are cases when the feature maps measure the same
object, or phenomena, and semantic equivalence is not required. In this case, the
feature maps may be normalized using any of the techniques discussed previously.
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(a) (b)

Fig. 6.3 (a) Shows an input image I. (b) Show the segmentation of I using the K-means
algorithm with K = 6.

Example 6.9. Multiple Edge Maps. We consider an input image on which we
apply a Sobel and a Canny edge detectors. The two detectors work on differ-
ent principles but both measure the presence, or otherwise, of an edge in the
input image. The two feature maps, Fsobel and Fcanny, are clearly semantically
equivalent. They may therefore be fused together if the feature maps Fsobel and
Fcanny are radiometrically aligned to the same scale. If we use a simple linear
radiometric scale, the corresponding calibrated maps are:

λsobel(x,y) =
Fsobel(x,y)−Fmin

sobel

Fmax
sobel−Fmin

sobel

,

λcanny(x,y) =
Fcanny(x,y)−Fmin

canny

Fmax
canny−Fmin

canny
,

where Fmin
sobel = min(x,y) Fsobel(x,y), Fmax

sobel = max(x,y) Fsobel(x,y), Fmin
canny =

min(x,y) Fcanny(x,y) and Fmax
canny = max(x,y) Fcanny(x,y).

6.9 Probabilistic Scale

In Ex. 5.2 we described making two feature maps semantically equivalent by con-
verting them into probabilistic, or likelihood, maps. This transformation may also
be used for radiometric calibration.

6.10 Software

GPAV. A matlab toolbox for isotonic regression. Authors: Oleg Burdakov, Anders
Grimvall and Oleg Sysoev [1].
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LIBRA. A toolbox for performing classical and robust statistics. The toolbox con-
tains m-files on various robust normalization techniques. Authors: Sabine Ver-
boven and Mia Hubert [11].

MATLAB STATISTICAL TOOLBOX. Matlab statistical toolbox. The toolbox
contains m-files for performing various radiometric calibration procedures.

STPRTOOL. A statistical pattern recognition toolbox. Authors: Vojtech Franc
and Vaclav Hlovac. The toolbox contains a file mlsigmoid.m which performs
Platt calibration.

6.11 Further Reading

In this chapter we have given a brief overview of some relative calibration meth-
ods which have general applicability. However, for specific applications, specialized
normalization techniques may be available. For example, [10] contains a compari-
son of different radiometric calibration algorithms for face verification.
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Chapter 7
Pixel Fusion

Abstract. The subject of this chapter is image fusion techniques which rely on
simple pixel-by-pixel operations. The techniques include the basic arithmetic opera-
tions, logic operations and probabilistic operations as well as slightly more compli-
cated mathematical operations. The image values include pixel gray-levels, feature
map values and decision map labels. Although more sophisticated techniques are
available, the simple pixel operations are still widely used in many image fusion
applications.

7.1 Introduction

In this chapter we consider fusion techniques which rely on simple pixel operations
on the input image values. We assume the input images are spatially and tempo-
rally aligned, semantically equivalent and radiometrically calibrated. We start with
the image fusion of K input images I1, I2, . . . , IK using a simple arithmetic addition
operator.

7.2 Addition

Addition which is probably the simplest fusion operation. It works by estimating the
average intensity value of the input images Ik,k ∈ {1,2, . . . ,K}, on a pixel-by-pixel
basis. If ˜I(m,n) denotes the fused image at the pixel (m,n), then

˜I(m,n) =
1
K

K

∑
k=1

Ik(m,n) . (7.1)

Although extremely simple, (7.1) is widely used if the input images are of the same
modality.
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The technique assumes semantic alignment and requires very accurate spatial
and radiometric alignment. The technique has the advantage of suppressing any
noise which is present in the input images. The following example illustrates how
the pixel addition technique reduces image noise in a video sequence.

Example 7.1. Video Noise Averaging [3]. We consider an efficient method for
video denoising. Although we can apply static image denoising methods to
the case of image sequences we can do much better by including temporal
information (inter-frame methods). This temporal information is crucial since
our perception is very sensitive to temporal distortions like edge displacement:
the disregard of temporal information may lead to inconsistencies in the result.

The input to the denoising algorithm is a video sequence of M×N images
Ik,k ∈ {1,2, . . .}. We partition each image Ik into a disjoint set of horizontal

lines L(i)
k . For each line L(i)

k we consider the family of lines which are close to

L(i)
k in the same image and in the neighouring images. We warp each of these

lines so they match with L(i)
k . Let φ(L( j)

l ) denote the warped version of the line

L( j)
l onto the line L(i)

k . We then obtain a denoised version of L(i)
k by performing

an average of the lines φ(L( j)
l ).

The pixel average technique has the disadvantage that it tends to suppress salient
image features producing a low contrast image with a “washed-out” appearance.
This effect can be alleviated, to some extent, by using a linear weighted average of
the input images:

˜I(m,n) =
K

∑
k=1

wkIk(m,n)
/ K

∑
k=1

wk , (7.2)

where wk are pre-selected scalars which are chosen so that each input image con-
tributes an “optimal” amount towards the fused image. For instance, when fusing
thermal and electro-optical sensors we may assign larger weights to the warmer or
the cooler pixels of the thermal image or we may assign larger weights to those pix-
els whose intensities are much different from its neighbors. In some applications we
estimate the weights wk using the expectation-maximization (EM) algorithm (see
Ex. 7.2).

Instead of pre-selecting the weights wk we may allow the weights to vary auto-
matically according to the amount of information contained in Ik. One method of
defining the weights wk is to use the method of principal component analysis (PCA)
(Sect. 9.2).

However, notwithstanding how the weights are chosen, pixel averaging will tend
to reduce the contrast of an object if in one image the object appears with a certain
contrast and in another image the object appears with the opposite contrast.
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7.2.1 Robust Averaging

Instead of using the arithmetic mean we may use robust equivalents which are robust
against outliers. Two such operators are the median operator and the trimmed mean
operator:

Median operator
˜I(x,y) = medk (Ik(x,y)) .

Trimmed mean operator

˜I(x,y) =
1

K−2α

K−α
∑

k=α+1

I(k)(x,y) ,

where I(k)(x,y) = Il(x,y) if Il(x,y) is the lth largest gray-level at (x,y) and α is a
small constant. We often set α = 
K/20�.

7.3 Subtraction

Subtraction is the complement to addition and is used as a simple fusion operator in
change detection algorithms. These algorithms apply the subtraction operator pixel-
by-pixel to generate a signed difference image D:

D(x,y) = I1(x,y)− I2(x,y) ,

where I1 and I2 are two input images which have been carefully aligned. The differ-
ence image is then thresholded to create a change map B(x,y), where

B(x,y) =
{

1 if |D(x,y)|> t ,
0 otherwise .

The threshold t may be constant over the image D or it may vary from pixel to pixel.
The following example illustrates the Bayesian approach to change detection

Example 7.2. Unsupervised Change Detection [2, 4]. Given a difference im-
age we write it as a one-dimensional vector D = (D(1),D(2), . . . ,D(M))T . We
assume the probability density of the difference values, P(D), can be modeled
as a mixture of K = 2 components: one component corresponding to the class
c1 of “change” pixels and the other component corresponding to the class c2

of “no-change” pixels:
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P(|D) = P(c1)p(D|c1)+ P(c2)p(D|c2) ,

=
K

∑
k=1

Wk p(ck|D) ,

where Wk = P(ck) is the a priori probability of the class ck,k ∈ {1,2}.
The standard approach for finding the a posteriori probability p(ck|D(m))
is the expectation-maximization (EM) algorithm. We assume the likelihood
p(D(m)|ck) is Gaussian:

p(D(m)|ck) =
1

σk
√

2π
exp−1

2

(

D(m)− μk

σk

)2

,

where μk and σk are, respectively, the mean and standard deviation of the
kth Gaussian distribution. Then the EM algorithm iteratively updates the a
posteriori probability distribution p(D(m)|ck) that D(m) was generated by the
kth mixture component, the a priori class probabilities Wk, and the Gaussian
parameters μk and σk. Each iteration t consists of two steps:

E-step. Update the a posteriori probability p(D(m)|ck):

p(t+1)(ck|D(m)) = W (t)
k p(D(m)|μ (t)

k ,σ (t)
k )

/ K

∑
h=1

W (t)
h p(D(m)|μ (t)

h ,σ (t)
h ) .

M-step. Update the maximum likelihood estimates of the parameters

W (t)
k ,μ (t)

k and σ (t)
k for each component k,k ∈ {1,2, . . . ,K}:

W (t+1)
k =

1
M

M

∑
m=1

p(t+1)(ck|D(m)) ,

μ (t+1)
k = ∑M

m=1 p(t+1)(ck|D(m))D(m)
∑M

m=1 p(t+1)(ck|D(m))
,

(σ2
k )(t+1) =

∑M
m=1 p(t+1)(ck|D(m))

(

D(m)− μ (t+1)
k

)2

∑M
m=1 p(t+1)(ck|D(m))

.

After several iterations the a posteriori probabilities p(t)(ck|D(m)) and the

parameters W (t)
k , μ (t)

k and σ (t)
k converge to their final values. The D(m) are

then assigned to the class ck with maximum a posteriori probability:

copt = argmax
k

P(ck|D(m)) ,

= argmax
k

(P(ck)p(D(m)|ck)) .
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We may generalize the above procedure by assuming generalized Gaussian likeli-
hoods [2].

Example 7.3. Mixture of Generalized Gaussian Distributions [2]. Ref. [2] sug-
gests that a better model for the likelihood p(D(m)|ck) is a generalized Gaus-
sian distribution:

p(D(m)|μk,σk,αk) =
λ1(αk)
σk

exp

(

−λ2(αk)
∣

∣

∣

∣

D(m)− μk

σk

∣

∣

∣

∣

αk
)

,

where

λ1(αk) =
αkΓ (3/αk)1/2

2Γ (1/αk)3/2
,

λ2(αk) =
(

Γ (3/αk)
Γ (1/αk

)αk/2

.

The advantage of using the generalized Gaussian distribution is that by
changing αk we may change the shape of p(D(m)|μk,σk,αk). For example,
p(D(m)|μk,σk,αk) assumes, respectively, the form of an impulsive, Lapla-
cian, Gaussian and uniform distribution as αk adopts the values 0,1,2 and ∞.

The EM algorithm [6] for the generalized Gaussian model is the same as
the standard EM algorithm given above apart from an addition to the M-step,
where we update the shape parameter αk. In order to update αk we first update
the kurtosis of the distribution:

κ (t+1)
k =

∑M
m=1 p(t)(ck|D(m))

(

D(m)− μ (t+1)
k

)4

(

σ (t+1)
k

)4∑M
m=1 p(t)

(

ck|D(m)
)

−3 ,

and then calculate α(t+1)
k using the following relationship:

κ (t+1)
k =

Γ
(

5/α(t+1)
k

)

Γ
(

1/α(t+1)
k

)

Γ
(

3/α(t+1)
k

)2 −3 .

Apart from the EM algorithm, Chapt 12 contains a review of many formulas and
algorithms used to threshold D.

The difference image is sensitive to noise and variations in illuminations. In gen-
eral, therefore, difference images are only used if the input images were captured
with the same sensor under similar conditions, i. e. the photometric transformation
between corresponding pixel gray-levels values should be close to identity.

In the next two sections we consider the multiplication and division operators.
In general, these operations are much less widely used than the addition and the
subtraction operations.
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7.4 Multiplication

Multiplication and division are not widely used as image fusion operators. However
one important image fusion application where multiplication is used is Brovey pan-
sharpening.

Example 7.4. Brovey Pan Sharpening [11]. The Brovey transform is a simple
method for combining multi-spectral image with a panchromatic image. The
technique is limited to three spectral bands which we identify with the R, G
and B channels. The transform is defined as follows

⎛

⎝

Rbrovey

Gbrovey

Bbrovey

⎞

⎠=

⎛

⎝

R
G
B

⎞

⎠+(P− I)

⎛

⎝

R/P
G/P
B/P

⎞

⎠ ,

where I = (R + G+ B)/3 and P denotes the panchromatic image.

7.5 Division

The following example illustrates shadow detection by computing a ratio map R.

Example 7.5. Shadow Detection in Color Aerial Images [5, 10]. Shadow de-
tection algorithms are very important in many image fusion algorithms. Gen-
erally these algorithms work by selecting a region which is darker than its
neighboring regions but has similar chromatic properties. For RGB color aerial
images we may detect shadows as follows. We transform the RGB input color
image into a intensity-hue-saturation (IHS) color space (16.1–16.3). Then at
each pixel (m,n) we form a ratio map Re(m,n) by comparing the hue of the
pixel to the intensity of the pixel. The value Re(m,n) measures the likelihood
of the pixel (m,n) being in shadow.

In [5] the ratio map is defined as follows (assuming 24-bit RGB input pic-
ture):

Re(m,n) = round

(

He(m,n)
Ie(m,n)+ 1

)

,

where

Ie(m,n) =
R(m,n)+ G(m,n)+ B(m,n)

3
,

He(m,n) =
255(tan−1(H(m,n)+π)

2π
.
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A shadow map is then formed by thresholding Re:

Se(m,n) =
{

1 if Re(m,n) > T ,
0 otherwise ,

where Se(m,n) = 1 denotes a shadow pixel at (m,n).

7.6 Feature Map Fusion

In feature map fusion we fuse together the feature maps Fk,k ∈ {1,2, . . . ,K}. The
following example illustrates the fusion of multiple feature maps which are seman-
tically equivalent. The fusion operator used is a simple arithmetic average operator
applied separately to each pixel.

Example 7.6. Fusion of Multiple Edge Maps. Given an input image I we per-
form edge extraction using several edge operators e. g. Sobel, Canny and zero-
crossing. The operators all measure the same phenomena (“presence of an
edge”) and are therefore semantically equivalent. The feature maps still re-
quire radiometric calibration onto a common scale. If Fsobel(m,n), Fcanny(m,n)
and Fzero(m,n) denote the feature maps after calibration, then we may fuse the
maps together using a simple arithmetic mean operator:

˜F(m,n) =
1
3
(Fsobel(m,n)+ Fcanny(m,n)+ Fzero(m,n)) .

The following example illustrates the fusion of multiple feature maps which do not
measure the same phenomena but which have been made semantically equivalent
by transforming them into probabilistic, or likelihood, maps.

Example 7.7. Multi-Feature Infra-red Target Detection in an Input Image [12].
We continue with Ex 5.3. We consider the detection of a small target in an
infra-red input image I. At each pixel (m,n) in I we test for the presence
of a target by extracting K features Fk,k ∈ {1,2, . . . ,K}. The features do not
measure the same phenomena. However, according to the theory of infra-red
target detection, they are all related to the presence of an infra-red target. We
make the Fk semantically equivalent by transforming Fk(m,n) into a proba-
bility pk(m,n) which measures the probability, or likelihood, of an infra-red
target being present at (m,n). Let p̃(m,n) be the fused probability, or likeli-
hood, that an infra-red target is present at (m,n). Then, methods for fusing the
pk(m,n) include:
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Mean

p̃(m,n) =
1
K

K

∑
k=1

pk(m,n) .

Product

p̃(m,n) =
K

∏
k=1

pk(m,n) .

Minimum
p̃(m,n) = min

k
pk(m,n) .

Median
p̃(m,n) = median(pk(m,n)) .

Maximum
p̃(m,n) = max

k
pk(m,n) .

Another method for feature map fusion is rank fusion. The following example illus-
trates rank fusion for face recognition.

Example 7.8. Face Recognition Using Rank Fusion [7]. Given an input im-
age I we extract several different features Fk,k ∈ {1,2, . . . ,K}. Note: In this
example, the features Fk refer to the entire image I and not just to a pixel
(x,y).

We make the Fk semantically equivalent by transforming each Fk into a
multiple set of L likelihoods pk(l), l ∈ {1,2, . . . ,L}, where pk(l) is the proba-
bility that the feature Fk belongs to the lth individual (i. e. belongs to class l).
If the pk(l) are reliable we may fuse them together using any of the operators
discussed in Ex. 7.7. However, in many cases we can only rely on the rank of
pk(l) and not on the actual value of pk(l). In this case we transfer each pk(l)
into a rank rk(l), where

rk(l) = r if pk(l) is rth largest likelihood .

The optimum classification of the input image I is then

l∗ = argmin
l

(

r̃(l)
)

= argmin
l

(

K

∑
k=1

rk(l)
)

, (7.3)

where r̃ denotes the sum of the ranks for class l:

r̃(l) =
K

∑
k=1

rk(l) .
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A simple numerical example illustrating the technique is as follows: We have
three features: face matching (F1), ear matching (F2) and signal matching (F3).
The ranks obtained for each feature are:

r1(1) = 3, r1(2) = 1, r1(3) = 4, r1(4) = 2 ,

r2(1) = 2, r2(2) = 1, r2(3) = 4, r2(4) = 5 ,

r3(1) = 1, r3(2) = 2, r3(3) = 3, r3(4) = 4 .

The fused ranks are:

r̃1 = 6, r̃(2) = 4, r̃(3) = 11, r̃(4) = 11 .

The optimal classification is l∗ = argminl(r̃(l)) = argmin(6,4,11,11) = 2.

7.7 Decision Fusion

In decision fusion we fuse together a set of decision images, or label maps, Dk,k ∈
{1,2, . . . ,K}. The Dk are themselves obtained by performing a decision procedure
on all pixels (m,n) in the input image Ik. For each pixel (m,n), Dk(m,n) is a label l
which may be any identifying name or symbol. We shall find it convenient to asso-
ciate each label l with an integer chosen from l ∈ {1,2, . . . ,L}. It should, however,
be emphasized, that in general different labels have different meaning and this must
be taken into account when the Dk are fused together.

We shall start by considering the case when the Dk,k ∈ {1,2, . . . ,K}, are semanti-
cally equivalent, i. e. a label l in Dh has the same semantic interpretation as the label
l in Dk,h �= k. Then in Sects. 7.7.3 and 7.7.4 we consider the more complicated case,
when the Dk are no longer semantically equivalent.

The simplest way of fusing Dk which are semantically equivalent is to fuse the
Dk using the majority-vote rule:

˜D(m,n) = l if
K

∑
k=1

δ (Dk(m,n), l)≥ 1
2

,

or the weighted majority-vote rule:

˜D(m,n) = l if
K

∑
k=1

wkδ (Dk(m,n), l)≥
K

∑
k=1

wk/2 , (7.4)

where

δ (a,b) =
{

1 if a = b ,
0 otherwise .



84 7 Pixel Fusion

In some applications the weights in (7.4) may be obtained from the Dk themselves
(see e. g. Ex. 10.7). In other cases we may obtain the weights using the expectation-
maximization (EM) algorithm (see Ex. 7.2 and Chapt. 21).

The majority-vote and weighted majority-vote rules are widely used for decision
fusion. They are simple to implement and robust against noise and outliers (see
Fig. 7.1).

(a) (b)

(c) (d)

Fig. 7.1 (a) Shows a decision map D1 in which the structures are contiguous. (b) and (c)
Show decision maps D2 and D3. These are the same as D1 and with additive noise. (d) Shows
the decision map ˜D obtained by majority-vote fusion of D1, D2 and D3. In this case, the fused
map maintains the contiguous nature of the original input maps.

The majority-vote and the weighted majority-vote rules do not, however, take into
account pixel-to-pixel correlations. In some cases this may lead to a fragmentation
of structures which are contiguous in the input images (see Fig. 7.2). To prevent the
fragmentation we must include the effect of pixel-to-pixel correlations. One way
of doing this is to use a Markov random field which is discussed in Chapt. 17.
Alternatively, if the fragmentation arises because the Dk are not perfectly aligned,
then we may use the shape-based averaging algorithm.
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(a) (b)

(c) (d)

Fig. 7.2 (a) Shows a decision map D1 in which the structures are contiguous. (b) and (c)
Show decision maps D2 and D3. These are the same as D1 but are slightly displaced up and
down, left and right. (d) Shows the decision map ˜D obtained by majority-vote fusion of D1,
D2 and D3. In this case, the fused map does not maintain the contiguous nature of the input
maps.

7.7.1 Shape-Based Averaging

Shape-based averaging [8] was introduced specifically to address the above frag-
mentation problem. The basis of the algorithm is the signed distance transform
which assigns to each pixel in the decision map its signed distance from the near-
est “feature” pixel. If we regard any pixel with a label l as a feature pixel, then
we may decompose a decision map Dk(m,n) into L signed distance transforms
sk(m,n|l), l ∈ {1,2, . . . ,L}. Let dk(m,n|l) be the smallest Euclidean distance from
(m,n) to a pixel with a label l and let dk(m,n|˜l) be the smallest Euclidean distance
from (m,n) to a pixel with a label not equal to l, then the signed distance map
sk(m,n|l) is defined as:

sk(m,n|l) = dk(m,n|l)−dk(m,n|˜l) . (7.5)

According to (7.5) sk(m,n|l)is negative if the pixel (m,n) lies inside the structure
with label l, is positive if (m,n)lies outside the structure and is zero if, and only
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if, (m,n) lies on the perimeter of the structure (see Ex. 7.9). For each label l, l ∈
{1,2, . . . ,L}, we calculate a mean signed distance map, s̄(m,n|l), by averaging the
sk(m,n|l) over all k:

s̄(m,n|l) =
1
K

K

∑
k=1

sk(m,n|l) .

The value of the fused decision map ˜D(m,n) (Fig. 7.3) is then defined as the label l
which has the minimum s̄(m,n|l) value:

˜D(m,n) = argmin
l

s̄(m,n|l) .

Fig. 7.3 Shows the decision map ˜D which is obtained by shape-based averaging the decision
maps D1, D2 and D3 which appear in Fig. 7.2(a)-(c). Observe how shape-based averaging
helps to preserve the contiguous nature of the input images (cf. Fig. 7.2(d)).

Example 7.9. Signed Distance Transform. Consider the following one-
dimensional image D wth three labels A, B and C:

D = ( A A B C C C B C B A )T .

The corresponding distance transforms d(i|l = C), d(i|˜l = C) are:

d(i|l = C) = ( 3 2 1 0 0 0 1 0 1 2 )T ,

d(i|˜l = C) = ( 0 0 0 1 2 1 0 1 0 0 )T ,
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and the signed distance transform s(i|l = C) = d(i|l = C)−d(i|˜l = C) is

s(i|l = C) = ( 3 2 1 −1 −2 −1 1 −1 1 2 )T .

7.7.2 Similarity

Decision maps are often fused together by measuring their similarity. This is often
used in pattern recognition problems. Given two decision maps D1 and D2, we de-
clare D1 and D2 to represent the same visual scene or object if the similarity measure
S(D1,D2) is greater than some threshold T .

Example 7.10. Face Recognition Using a Local Binary Pattern [1]. A direct
method for performing face recognition is to compare a given test image B
with a collection of training images Ak,k ∈ {1,2, . . . ,K}, which belong to K
different individuals. In order to measure the similarity S(B,Ak) we must en-
sure that the test image B and the training images Ak,k ∈ {1,2, . . . ,K}, are
radiometrically calibrated. One way of doing this is to use the local binary
pattern (LBP) operator (Sect. 3.4) to convert B into a decision map DB and Ak

into a decision map Dk.

7.7.3 Label Permutation

We now consider decision fusion when the Dk,k ∈ {1,2, . . . ,K}, are not semanti-
cally equivalent. In many cases we may assume that, to a good approximation, there
is an unknown one-to-one correspondence between the labels in the different Dk. In
other words we assume that each label p in Dk corresponds to a single label q in Dh

and vice versa. In this case, we may simply solve the label correspondence problem
by permuting the labels p, p ∈ {1,2, . . . ,Lk}, in Dk until the overall similarity

K

∑
k=1

K

∑
h=1

S(πk(Dk),πh(Dh)) ,

is a maximum, where πk(Dk) denotes a permutation of the labels in Dk (see Ex. 5.5).
A convenient similarity measure for this purpose is the normalized mutual infor-

mation NMI [9]:

NMI(Dk,Dh) =
Lk

∑
p=1

Lh

∑
q=1

˜Mp,q log
˜Mp,q

˜Mp˜Nq

/

√

√

√

√

Lk

∑
p=1

˜Mp log( ˜Mp)
Lh

∑
q=1

˜Nq log(˜Nq)
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where ˜Mp is the relative number of pixels in Dk with a label p, p ∈ {1,2, . . . ,Lk}, ˜Nq

is the relative number of pixels in Dh with a label q,q ∈ {1,2, . . . ,Lh}, and Mp,q is
the relative number of pixels which jointly have a label p in Dk and have a label q
in Dq

[1 ]. If ˜πk denotes the optimal permutation for Dk, then:

(˜π1, ˜π2, . . . , ˜πK) = arg max
π1,π2,...,πK

K

∑
k=1

K

∑
h=1

NMI(πk(Dk),πh(Dh)) . (7.6)

Eq. (7.6) represents a difficult combinatorial optimization problem. However, greedy
search techniques, including simulated annealing and genetic algorithm, may give
an approximate solution in an acceptable time. Given the (approximate) optimal
permutation ˜πk,k ∈ {1,2, . . . ,K}, we may find ˜D by applying the majority-vote rule
to ˜πk(Dk):

˜D(m,n) = l if
K

∑
k=1

δ (˜πk(Dk(m,n)), l)≥ K
2

,

where

δ (a,b) =
{

1 if a = b ,
0 otherwise .

7.7.4 Co-associative Matrix

In this section we consider the fusion of K decision maps Dk when we do not, or
cannot, solve the label correspondence problem: We suppose the Dk are of size M×
N and are spatially aligned. We transform the Dk into a common representational
format by converting them into co-associative matrices Ak,k ∈ {1,2, . . . ,K}:

Ak(i, j) =
{

1 if Dk(mi,ni) = Dk(m j,n j) ,
0 otherwise .

Let ˜A denote the result of fusing the Ak together. Then we define ˜D as the decision
map which corresponds to ˜A. This is illustrated in the next example.

Example 7.11. Mean Co-Association Matrix. The arithmetic mean is the sim-
plest method for fusing co-association matrices:

˜A(i, j) =
1
K

K

∑
k=1

Ak(i, j) .

1 The relative number of pixels is a probability. Thus ˜Mp = Mp/M and ∑p
˜Mp = 1, where

Mp is the number of pixels in Dk with a label p and M is the total number of pixels in Dk.
Similarly, ˜Nq = Nq/M and ˜Mp,q = Mp,q/M.
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Given ˜A we now search for a decision map ˜D whose co-association matrix
closely approximates ˜A. To do this we use spectral cluster algorithms. These
algorithms use greedy search techniques and require an estimate of the number
of clusters ˜L. A simple estimate of ˜L [13] is:

˜L = min
L

(

L

∑
i=1

ṽi > α
MN

∑
i=1

ṽi
)

,

where ṽi is the ith largest eigenvalue of ˜A and α is some fraction close to one.
A reasonable value for α is α = 0.8.

In Chapt. 20 we describe another method for fusing the Dk,k ∈ {1,2, . . . ,K}, which
does not require solving the label correspondence problem and which does not use
the co-association matrix.

7.8 Software

CLUSTERPACK. A matlab toolbox for spectral clustering. Authors: A. Strehl
and J. Ghosh [9].

SPECTRAL CLUSTERING TOOLBOX. A matlab toolbox for spectral cluster-
ing. Authors: Deepak Verma and M. Meila. The toolbox may be used to cluster
the mean co-associative matrix.
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Part II
Techniques



Chapter 8
Multi-resolution Analysis

Abstract. The subject of this chapter is multi-resolution analysis for images. We
shall concentrate on the discrete wavelet transform (DWT) which provide a frame-
work for the multi-resolution analysis of an input image by decomposing an input
image into a sequence of wavelet planes and a residual image. We start by giving
a brief review of multi-resolution analysis. We then move on to the DWT and its
use in image fusion. To make our discussion more concrete we shall concentrate on
two applications which rely on the DWT: (1) Fusion of an electro-optical image and
an infra-red image. (2) Pan-sharpening in which we fuse a high spatial resolution
panchromatic image with a low spatial resolution multi-spectral image.

8.1 Introduction

In multi-resolution analysis (MRA) we decompose an input image I into sequence
of images Il, l ∈{1,2, . . . ,L}, each of which captures the information present in I at a
given scale and orientation. Graphically, we may picture the Il arranged in a pyramid
(Fig. 8.1). At the bottom of the pyramid is the image I0 which is identical to the input
image I. At each successive level l the image Il is recursively constructed by low-
pass filtering and sub-sampling the image Il−1. Given the approximation images Il

we create a sequence of detail images by interpolation of the approximation image
Il and subtraction of the outcome from its predecessor Il−1.

By choosing appropriate low-pass filters we are able to select the change in reso-
lution between the images Il . In this chapter we shall assume dyadic MRA in which
Il has double the resolution of Il+1.

Formally we define MRA as the mapping

(y1,y2, . . . ,yL, IL) = MRA(I) , (8.1)
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I
0
 (M × N)

I
L
 (M/2L × N/2L)

I
1
 (M/2 × N/2)

Fig. 8.1 Shows the pyramid representation of the multi-resolution analysis of an input image
I. At the base of the pyramid is the M ×N input image I. As we move up the pyramid,
successive approximation images have an increasing coarser spatial resolution. At the lth
level, the approximation image measures M/2l ×N/2l .

where yl is the detail image at level l and IL is the approximation at the coarsest
resolution level L. The input image I may be recovered by applying the inverse
MRA transformation:

I = MRA−1(y1,y2, . . . ,yL, IL) . (8.2)

8.2 Discrete Wavelet Transform

A special case of MRA is the discrete wavelet transform (DWT) decomposition
in which the filters are specially designed so that successive layers of the pyramid
only include details which are not already available at the preceeding levels. The
DWT uses a cascade of special low-pass and high-pass filters and a sub-sampling
operation.

We consider the decomposition of a one-dimensional signal x. The process of
applying the DWT to x can be represented as a bank of filters, as in Fig. 8.2. At
each level of decomposition, the signal xl is split into a high-frequency component
yl+1 and low-frequency component xl+1. The low-frequency component xl+1 is then
further decomposed until the desired resolution is reached.

Mathematically, the DWT decomposition of a one-dimensional signal xl at level
l is:

yl+1 = ↓ (xl⊗H) ,

xl+1 = ↓ (xl⊗L) ,
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H

HL

L ↓

↓↓

↓

I
2

I y
1

y
2

Fig. 8.2 Shows a two-level one-dimensional discrete wavelet transform. Input is a one-
dimensional signal I. L and H denote, respectively, the low and high pass filters. ↓ denotes
the operation of down-sampling by a factor of two. yl and Il are, respectively, the detail and
approximate signals at the lth decomposition level.

where ↓ (xl⊗H) and ↓ (xl ⊗L) denote, respectively, the convolution of xl with the
high-pass and low-pass filters H and L followed by sub-sampling the result by a
factor of two.

The above procedure can be easily extended to a two-dimensional image as fol-
lows: Given a M×N input image I we generate two (M/2)×N images, IL and IH ,
by separately filtering and down-sampling the rows in I using a low-pass filter L
and a high-pass filter H. We repeat the process by filtering and down-sampling the
columns in IL and IH using the filters L and H. The output is four (M/2)× (N/2)
images ILL, ILH , IHL and IHH , where ILL is a low-frequency approximation of I, and
ILH , IHL and IHH are high-frequency detail images which represent horizontal (H),
vertical (V) and diagonal (D) structures in I (Fig. 8.3).

I
HH
I
HH

I
LH

I
HL

I
LL
′

I
HL
′

I
LH
′

I
HH
′

Fig. 8.3 Shows a M×N input image I decomposed into three (M/2)× (N/2) detail images
ILH , IHL and IHH and one (M/2)× (N/2) approximation image ILL. The image ILL is further
decomposed into three (M/4)× (N/4) detail images I′LH , I′HL and I′HH and one (M/4)×
(N/4) approximation image I′LL .
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The corresponding DWT has relatively poor directional selectivity since it has
only three characteristic directions: horizontal (0o), vertical (90o) and diagonal
(45o). In some image fusion applications we require a transform with better direc-
tional selectivity. In this case, a convenient choice is the dual-tree complex wavelet
transform (CWT) which has six characteristic directions: 15o,45o,75o,105o,135o

and 165o (see Ex. 13.1).
An important drawback to using the DWT in image fusion is the lack of shift

invariance. This means that small shifts in the input images create unpredictable
changes in the energy distribution of the detail image pixels. This in turn may lead
to large distortions in the output. As a result, it is now common practice to use
the dual-tree CWT (which is very nearly shift-invariant) or the undecimated DWT
(which is exactly shift-invariant) [3, 6] for image fusion applications.

8.3 Undecimated Discrete Wavelet Transform (UDWT)

The undecimated discrete wavelet transform (UDWT) works by suppressing the
down-sampling step in the DWT. Instead it up-samples the low-pass and high-pass
filters by inserting zeros between the filter coefficients. Algorithms in which the
filters are up-sampled are called a trous filters which means “with holes”. Because
there is no sub-sampling, the corresponding UDWT a trous detail images yl, l ∈
{1,2, . . . ,L}, and the approximation images Il all have the same number of pixels as
the input image I (see Fig. 8.4).

The following example illustrates a non-separable a trous decomposition, where
for each level l, there is a single low-frequency approximation image Il and a single
high-frequency detail image yl .

Example 8.1. Non-separable a Trous Decomposition. The non-separable a
trous UDWT decomposition works as follows. Given an input image I, we
construct a sequence of approximate images I1, I2, . . . , IL, by performing suc-
cessive convolutions with a set of low-frequency masks M1,M2 . . . ,ML. Math-
ematically, the approximation images are given by

I1 = M1⊗ I ,

I2 = M2⊗ I1 ,

...

IL = ML⊗ IL−1 .

where Ml+1⊗ Il denotes the convolution of Il with Ml+1 and the mask Ml+1 is
derived from Ml by doubling its size and inserting zeros between the original
values. Thus, if M1 is the following 5×5 mask:
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I
0
 (M × N)

I
1
 (M × N)

I
L
 (M × N)

Fig. 8.4 Shows the parallelpiped representation of the UDWT decomposition of an input
image I. At the base of the parallelpiped is the M×N input image I. As we move up the
parallelpiped, successive approximation images have an increasing coarser spatial resolution.
At all levels of the parallelpiped, the approximation images measure M×N.

M1 =
1

256

⎛

⎜

⎜

⎜

⎜

⎝

1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1

⎞

⎟

⎟

⎟

⎟

⎠

, (8.3)

then M2 is the following 9×9 mask

M2 =
1

256

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 0 4 0 6 0 4 0 1
0 0 0 0 0 0 0 0 0
4 0 16 0 24 0 16 0 4
...
1 0 4 0 6 0 4 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

The wavelet detail images yl , l ∈ {1,2, . . . ,L}, are defined as the differences
between two consecutive approximations Il−1 and Il:

yl = Il−1− Il ,

and the reconstruction formula for the input image I is
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I =
L

∑
l=1

yl + Ir .

Fig. 8.5 shows the decomposition of an input image I into L detail images
yl , l ∈ {1,2, . . . ,L}, and L approximation images Il .

The basic filter M1 (8.3) and the corresponding derived masks
M2,M3, . . . ,ML are widely used in the a trous algorithm. They are special
masks which generate a non-directional (i. e. isotropic) dyadic decomposition
of the input image I.

The a trous decomposition is widely used for feature extraction. The following two
examples illustrate a trous edge detection and a trous spot detection.

Example 8.2. A Trous Wavelet Decomposition Applied to Image Edge Detec-
tion [15]. The a trous UDWT wavelet decomposition may be used directly to
detect edges in an input image [15]. Given an input image I we perform a L
wavelet decomposition. The wavelet images yl contain high-frequency infor-
mation and little low-frequency information. In this case, we may use the sum
∑ |yl| as a simple but effective edge detector. In [15] the authors recommend
using L = 3 detail images for this purpose (see Fig. 10.2).

Example 8.3. A Trous Wavelet Decomposition Applied to Image Spot Detec-
tion [11]. The a trous UDWT wavelet decomposition may be used directly
to detect bright spots in a biological image I. Spots are small compared to
I but are relatively large when analyzed locally. They are characterized by
a small number of pixels with large gray-levels which are correlated across
many wavelet levels. In this case, we may use the product |∏L

l=1 yl | as a sim-
ple, but effective, spot detector.

8.4 Wavelet Fusion

The basic idea of wavelet fusion is as follows: Given a set of input images I(k) we

decompose them into L detail images y(k)
1 ,y(k)

2 , . . . ,y(k)
L and a single residual (ap-

proximation) image I(k)
L :

(y(1)
k ,y(k)

2 , . . . ,y(k)
L , I(k)

L ) = UDWT (I) .

Then at each decomposition level l we construct a composite detail image ỹl by

fusing the detail images y(k)
l ,k ∈ {1,2, . . . ,K}. At the coarsest resolution L we also

construct a composite residual (approximation) image ˜IL. In mathematical terms,
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(a)

(b) (c)

(d) (e)

Fig. 8.5 (a) Shows an input image I. (b) and (d) Show the first and second approximation
images I1 and I2. (c) and (e) Show the corresponding first and second detail images y1 and y2.

ỹl = fl(y
(1)
l ,y(2)

l , . . . ,y(K)
l ) , (8.4)

˜IL = g(I(1)
L , I(2)

L , . . . , I(K)
L ) , (8.5)

where fl and g are appropriate fusion operators.
Given the composite detail images ỹl, l ∈ {1,2, . . . ,L}, and the composite resid-

ual (approximation) image ˜IL, we obtain the fused image I by applying the inverse
UDWT transformation to (ỹ1, ỹ2, . . . , ỹL,˜IL):
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˜I = UDWT−1(ỹ1, ỹ2, . . . , ỹL,˜IL) .

This scheme [4, 8] was used to fuse together an electro-optical image and an infra-
red image with the same spatial resolution. The main steps in the UDWT scheme of
[4, 8] are given in the following example.

Example 8.4. Electro-Optical and Infra-Red Image Fusion [4, 8]. The main
steps in the UDWT scheme for electro-optical and infra-red image fusion [4, 8]
are:

1. Decompose the input images I(EO) and I(IR), into a multi-resolution format
using a separable undecimated wavelet transform. We use only one decom-
position level, i. e.

(y(EO)
1 , I(EO)

1 ) = UDWT (I(EO)) ,

(y(IR)
1 , I(IR)

1 ) = UDWT (I(IR)) ,

where y(k)
1 = (H(k)

1 ,V (k)
1 ,D(k)

1 ) and H, V and D denote the horizontal, verti-
cal and diagonal detail information.

2. Optimally fuse the residual (approximation) images I(EO)
1 and I(IR)

1 :

˜I1 = g(I(EO)
1 , I(IR)

1 ) ,

where we use the expectation-maximization (EM) algorithm for the fusion

operator g: The residual images I(EO)
1 and I(IR)

1 are modeled using a Gaus-
sian mixture model (GMM) whose parameters are optimized using the EM
algorithm (see Sect. 8.5).

3. Fuse the detail images y(EO)
1 and y(IR)

1 using a simple maximum rule. For
the pixel (i, j) the maximum rule is:

˜H1(i, j) = argmax(|H(EO)
1 (i, j)|, |H(IR)

1 (i, j)|) ,

˜V1(i, j) = argmax(|V (EO)
1 (i, j)|, |V (IR)

1 (i, j)|) ,

˜D1(i, j) = argmax(|D(EO)
1 (i, j)|, |D(IR)

1 (i, j)|) .

4. Perform the inverse undecimated DWT to obtain the fused image ˜I:

˜I = UDWT−1( ˜H1, ˜V1, ˜D1,˜I1) .
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8.5 Expectation-Maximization Algorithm

The EM algorithm is a general method for finding the maximum-likelihood esti-
mates of an underlying distribution from a given data set in which the data is in-
complete. In the context of fusing K images I(k),k ∈ {1,2, . . . ,K}, we suppose the
I(k) are derived from an unknown image F . The fact that F is unknown implies that
the data is incomplete. For example, in Ex. 8.4, I(1) is the residual (approximation)

image I(EO)
1 and I(2) is the residual (approximation) image I(IR)

1 .
A commonly used model for I(k) is:

I(k)(i, j) = α(k)(i, j)F(i, j)+β (k)(i, j)+ ε(k)(i, j) , (8.6)

where α(k)(i, j) ∈ {−1,0,1}, is the sensor selectivity factor, β (k)(i, j) is the local
bias of I(k) and ε(k)(i, j) is the random noise at (i, j). The sensor selectivity factor is
used when the images do not have the same modality. In this case,

α(k)(i, j) =

⎧

⎨

⎩

1 if kth sensor “sees” a given scene ,
0 if kth sensor cannot “see” a given scene ,
−1 if kth sensor “sees” a given scene with reversed polarity .

In the EM algorithm, we model the local noise ε(k)(i, j) as a mixture of M Gaussian
probability density functions:

p(ε(k)(i, j)) =
M

∑
m=1

λ (k)
m (i, j)√

2πσ (k)
m (i, j)

exp−1
2

(

ε(k)(i, j)

σ (k)
m (i, j)

)2

. (8.7)

To a first approximation, the sensor selectivity α(k)(i, j), the bias β (k)(i, j) and the

pdf parameters λ (k)
m (i, j) and σ (k)

m (i, j) are constant over a local neighborhood cen-
tered at (i, j). In this case, we may drop the pixel coordinates (i, j) and write instead

α(k), β (k), λ (k)
m and σ (k)

m .

Assuming initial values forα(k), β (k), λ (k)
m and σ (k)

m we calculate the best estimate
for F . Then, using this estimate of F we calculate the maximum likelihood values

for α(k), β (k), λ (k)
m and σ (k)

m . The iterative procedure is continued until values for

α(k), β (k), λ (k)
m , σ (k)

m and F converge. For more details regarding the EM algorithm
see Ex. 7.2 and Ex. 7.3 and [4, 8].

8.6 Multi-modal Wavelet Fusion

Burt and Kolczynsk [5] describe a general framework for multi-modal wavelet fu-
sion (Fig. 8.6) which combines two different fusion models: selection and aver-
age. The overall fusion rule is determined by two measures: a local match measure
ρl(i, j) which determines which of the two models (selection or average) is to be em-

ployed and a local saliency measure σ (k)
l (i, j) which determines which detail image
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UDWT

UDWT

I
A

I
B

Match Weights Fusion

Salience

Salience

UDWT−1

Fig. 8.6 Shows the Burt-Kolczynsk fusion model for a general framework for two input
images I1 and I2

will be used (selection mode) or which detail image will be assigned a large weight
(weighted average mode). Mathematically, the composite detail image at level l, ỹl ,
is given by:

ỹl(i, j) =∑
k

Ωk(i, j)y(k)
l (i, j) ,

where the weights Ωk(i, j) vary with the pixel location (i, j) and are a function

of the local saliency measures σ (k)
l (i, j),k ∈ {1,2, . . . ,K}, and the local matching

coefficients ρ (h,k)
l (i, j),h,k ∈ {1,2, . . . ,K},h �= k.

Let ỹ(k)
l (i, j|w),w ∈ {1,2, . . . ,W}, denote W pixel values y(k)

l (i′, j′) which are in
the local neighborhood of (i, j) (Fig. 8.7). Then

σ (k)
l (i, j) =

√

1
W

W

∑
w=1
|ỹ(k)

l (i, j|w)− μ (k)
l (i, j)|2 ,

ρ (h,k)
l (i, j) =

1
W

W

∑
w=1

(ỹ(h)
l (i, j|w)− μ (h)

l (i, j))(ỹ(k)
l (i, j|w)− μ (k)

l (i, j)) ,

where

μ (k)
l (i, j) =

1
W

W

∑
w=1

ỹ(k)
l (i, j|w) .
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ỹ
l
k(i,j|1) ỹ

l
k(i,j|2) ỹ

l
k(i,j|3)

ỹ
l
k(i,j|8) (i,j) ỹ

l
k(i,j|4)

ỹ
l
k(i,j|7) ỹ

l
k(i,j|6) ỹ

l
k(i,j|5)

Fig. 8.7 Shows the pixel values ỹ(k)
l (i, j|w) which are in a 3×3 neighborhood of (i, j), where

ỹ(k)
l (i, j|1) = y(k)

l (i−1, j−1), ỹ(k)
l (i, j|2) = y(k)

l (i−1, j), . . . , ỹ(k)
l (i, j|8) = y(k)

l (i, j−1)

For K = 2 inputs, the formulas for Ωk(i, j) are:

Ωk(i, j) =
{

Ωmax if σ (k)
l (i, j) = argmaxh(σ

(h)
l (i, j)) ,

Ωmin otherwise

where

Ωmin =
{

1
2(1− (1−ρl)/(1−T)) if ρl(i, j) > T ,
0 otherwise

Ωmax =
{

1
2(1 +(1−ρl)/(1−T)) if ρl(i, j) > T ,
1 otherwise

and T = 3
4 is a threshold.

For the composite residual (approximation) image ˜IL we may use the EM algo-
rithm (Sect. 8.5). Alternatively, if the input images are of the same modality, we
may use a simple arithmetic average operator:

˜IL =
1
2
(I(1)

L + I(2)
L ) .

Example 8.5. Generalized Gaussian Distribution [1]. Although very effective,
the saliency and match formulas used by Burt and Kolczynsk assume the lo-
cal distribution of the detail images are Gaussian. Experiments show that,

in general, the y(k)
l (i, j) have heavier tails than a Gaussian distribution [2]

and consequently, they are better described by a generalized Gaussian (GG)
distribution:

p(y) =
c1(α)
σ

exp−c2(α)(|y− μ |/σ)α ,
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where μ ,σ and α are the mean, standard deviation and shape parameters of
the GG distribution.

In this case, significantly higher quality fusion may be obtained if we use
new saliency and match measures specifically designed for the generalized
Gaussian distribution [2].

8.7 Pan-Sharpening

In this section we consider the application of wavelet fusion to pan-sharpening.
Pan-sharpening attempts to create a high spatial resolution multi-spectral image by
combining a high resolution panchromatic image and a low resolution multi-spectral
image. To make our discussion more concrete we shall assume the multi-spectral
image has only three spectral planes corresponding to the colors R, G and B and the
ratio of the spatial resolution of the multi-spectral image to panchromatic image is
1 : 4.

Pan-sharpening by means of the wavelet transform is based on the fact that the
images Il, l ∈ {0,1, . . . ,L}, are successive versions of the original image at increas-
ing scales. Thus the first detail planes of the high-resolution panchromatic image
contain spatial information which is not present in the multi-spectral image.

Example 8.6. Wavelet Additive Pan-sharpening [9, 10, 12]. In wavelet addi-
tive pan-sharpening we incorporate the high-resolution information directly
into the intensity component of the multi-spectral image. Assuming a spatial
resolution ratio of 1 : 4, the steps in the algorithm are:

1. Spatially align the panchromatic and multi-spectral images and resample
the multi-spectral image to make its pixel size equal to that of the panchro-
matic image.

2. Transform the multi-spectral image (RGB) into a (Iv1v2) image. This is a
linear version of the intensity-hue-saturation transform (see Sect. 16.2.5):

⎛

⎝

I
v1

v2

⎞

⎠ =

⎛

⎜

⎝

1
3

1
3

1
3

−
√

2
6 −

√
2

6
2
√

2
6

1√
2
− 1√

2
0

⎞

⎟

⎠

⎛

⎝

R
G
B

⎞

⎠ .

3. Histogram-match the panchromatic image to the intensity image I. Let P
denote the histogram-matched panchromatic image.

4. Decompose P into L detail images y(P)
l and a residual (approximation) im-

age PL:

(y(P)
1 ,y(P)

2 , . . . ,y(P)
L ,PL) = UDWT (P) .

5. Add the first two detail images of the panchromatic decomposition to the I
component as follows:
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˜I = I + y(P)
1 + y(P)

2 . (8.8)

6. Transform (˜Iv1v2) back to the RGB color space (see Sect. 16.2.5):

⎛

⎝

˜R
˜G
˜B

⎞

⎠=

⎛

⎜

⎝

1 − 1√
2
− 1√

2
1 − 1√

2
− 1√

2
1
√

2 0

⎞

⎟

⎠

⎛

⎝

˜I
v1

v2

⎞

⎠ .

In substitute pan-sharpening we replace the first two detail images of the I
component with the corresponding panchromatic detail images. Mathemati-
cally, we replace (8.8) with (8.9):

˜I = I2 + y(P)
1 + y(P)

2 , (8.9)

where
(y(I)

1 ,y(I)
2 , . . . ,y(I)

L , IL) = UDWT (I) .

8.8 Software

MATIFUS. A matlab toolbox for image fusion. Authors: P. M. de Zeeuw, G.
Piella and H. J. A. M. Heijmans [14].

TOOLBOX-WAVELET. A matlab toolbox for wavelets including pyramid, a
trous and curvelet decompositions. Author: Gabriel Peyre. Available from matlab
central depository.

8.9 Further Reading

Refs. [7] and [13] review the use of wavelets in image fusion. A modern review and
comparison of different wavelet fusion algorithms is [3].

References

1. Achim, A.M., Canagarajah, C.N., Bull, D.R.: Complex wavelet domain image fusion
based on fractional lower order moments. In: Proc. 7th IEEE Int. Conf. Inform. Fusion
(2005)

2. Achim, A.M., Loza, A., Bull, D.R., Canagarajah, C.N.: Statistical modelling for wavelet-
domain image fusion. In: Stathaki, T. (ed.) Image Fusion: Algorithms and Applications.
Academic Press, London (2008)

3. Amolins, K., Zhang, Y., Dare, P.: Wavelet based image fusion techniques - an introduc-
tion, review and comparison. ISPRS J. Photogramm. Remote Sens. 62, 249–263 (2007)

4. Blum, R.S., Yang, J.: Image fusion using the expectation-maximization algorithm and a
Gaussian mixture model. In: Foresti, G.L., Regazzoni, C.S., Varshney, P.K. (eds.) Ad-
vanced video-based surveillance systems. Kluwer, Dordrecht (2003)



106 8 Multi-resolution Analysis

5. Burt, P.J., Kolczynski, R.J.: Enhanced image capture through fusion. In: Proc. 4th Int.
Conf. Comp. Vis. (1993)

6. Chibani, Y., Houacine, A.: Redundant versus orthogonal wavelet decomposition for mul-
tisensor image fusion. Patt. Recogn. 36, 879–887 (2003)

7. Fenoy, G.P.: Adaptive wavelets and their applications to image fusion and compression.
PhD thesis, University of Amsterdam (2003)

8. Liu, G., Jing, Z., Sun, S.: Image fusion based on an expectation maximization algorithm.
Opt. Engn. 44, 077001-1–077001-11 (2005)

9. Nunez, J., Otazu, X., Fors, O., Prades, A., Pala, V., Arbiol, R.: Multi-resolution-based im-
age fusion with additive wavelet decomposition. IEEE Trans. Geosci. Remote Sens. 37,
1204–1211 (1999)

10. Nunez, J., Otazu, X., Fors, O., Prades, A., Pala, V., Arbiol, R.: Image fusion with additive
multiresolution wavelet decomposition. Applications to SPOT+Landsat images. J. Opt.
Soc. Am. 16, 467–474 (1999)

11. Olivo-Marin, J.-C.: Extraction of spots in biological images using multiscale products.
Patt. Recogn. 35, 1989–1996 (2002)

12. Otazu, X., Gonzlez-Audicane, M., Fors, O., Nunez, J.: Introduction of sensor spectral
response into image fusion methods. Application to wavelet-based methods. IEEE Trans.
Geosci. Remote Sens. 43, 2376–2385 (2005)

13. Pajares, G., de la Cruz, J.M.: A wavelet-based image fusion tutoral. Pattern Recogn. 37,
1855–1872 (2004)

14. Piella, G.: A general framework for multiresolution image fusion: from pixels to regions.
Inf. Fusion 9, 259–280 (2003)

15. Zhang, X., Li, D.: A Trous Wavelet Decomposition Applied to Image Edge Detection.
Geographic Inform. Sci. 7, 119–123 (2001)



Chapter 9
Image Sub-space Techniques

Abstract. The subject of this chapter is image sub-space techniques. These tech-
niques are a special class of image transformations whose effect is project the input
image into a lower dimensional space or sub-space. We shall concentrate on sta-
tistical sub-space methods which rely on a covariance matrix which is constructed
from the input images. The techniques considered in this chapter include: princi-
pal component analysis (PCA), non-negative matrix factorization (NMF), canonical
correlation analysis (CCA) and linear discriminant analysis (LDA).

9.1 Introduction

The basic idea of a subspace transformation is to project a high-dimensional input
image into a lower dimensional space. Consider a M×N input image A. The image
can be considered as a one-dimensional vector a of dimension MN, or equivalently,
a point in a MN dimensional space. However, most natural images occupy only a
small part of this space. In this case we should be able to find a low-dimensional
sub-space in which a given natural image resides.

The main reasons for using a low dimensionality sub-space are:

Visualization. A reduction to a low-dimensional sub-space helps in understand-
ing the intrinsic structure of the input data.

Generalization. A low-dimensional representation allows for better
generalization.

Computational. In general manipulating low-dimensional data is both faster and
requires less memory than the corresponding manipulations of high-dimensional
data.

Model. The low-dimensional representation may be used as a model in its own
right.

The following example describes the use of sub-space techniques in forming a low-
dimensional space for face images.
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Example 9.1. Face Space [14]. An ensemble of M×N face images maps to
a collection of points in this MN-dimensional space. Images of faces, being
similar in overall configuration, will not be randomly distributed in this space
and thus can be described by a relatively low-dimensional “face space”.

Mathematically a linear sub-space transformation works as follows. Given a column
vector a of dimension MN, we may transform it into a column vector ã of reduced
length L as follows:

ã = W T (a−φ) ,

where W = (w1,w2, . . . ,wd) is a MN × d matrix which represents a set of d or-
thonormal basis functions wi, i ∈ {1,2, . . . ,d}, φ is a MN × 1 column vector and
L≤MN.

Given ã we may recover an approximation of a by applying the inverse transfor-
mation as follows:

â = W ã+φ .

The following example describes the use of sub-space methods in face recognition.

Example 9.2. Sub-space Face Recognition. Sub-space methods are among the
most successful approaches used in face recognition.. These methods project
the input face into a low-dimensional sub-space where recognition is per-
formed. Many different sub-space face recognitions algorithms have been pro-
posed. They differ mostly in the kind of projection/decomposition method
which is used and in the similarity matching criteria employed.

Depending on the required properties of the sub-space we obtain different sub-space
representations. Among the different sub-space representations which are regularly
used in image fusion are:

Principal component analysis (PCA). PCA is an unsupervised dimension re-
duction technique in which we seek an orthonormal basis function W = (w1,w2,
. . . ,wd) with d << MN, such that each individual image can be adequately repre-
sented as a linear combination of this basis. This requires that the error obtained
when the input vector a is reconstructed from its low dimensional representation
ã is minimal. We achieve this goal as follows. Given a training set of K input
vectors ak,k ∈ {1,2, . . . ,K}, we seek directions which have the largest variances
in the MN dimensional input space. The sub-space is reduced to a low dimen-
sion d by discarding those directions along which training vectors have a small
variance.

Independent component analysis (ICA). ICA is an unsupervised dimension re-
duction technique which, contrary to PCA, not only finds uncorrelated compo-
nents but it finds a linear transformation A such that the projections are as sta-
tistically independent as possible. ICA can be regarded as an extension of PCA,
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where the projections of the input data into the sub-space are not only uncorre-
lated but are also independent.

Canonical correlation analysis (CCA). CCA is an unsupervised dimension re-
duction technique which is used when there are two input vectors a and b. We
seek a pair of directions such that the correlation between the projection of a
along one direction and the projection of b along the second direction is a max-
imum. CCA is thus suitable for example for the estimation of orientation, where
one set of observations consists of observed images, while the observations in
the second set of object orientations from which the corresponding images were
acquired.

Non-negative factorization (NMF). NMF is an unsupervised dimension reduc-
tion technique which is similar to PCA except the solution is constrained to have
non-negative elements. Due to this non-negativity constraint, NMF tends to de-
compose the input images into parts leading to a part-based representation.

Linear discriminant analysis (LDA). LDA is a supervised dimension reduction
technique in which we simultaneously maximize the distance between the pro-
jected class means and minimize the distances within classes.

Nearest neighbor discriminant analysis (NNDA). NNDA is a supervised
dimension reduction technique in which we optimize the performance of a near-
est neighbor classifier.

Kernel methods. All of the above dimension reduction techniques are linear.
However, they may be made non-linear by employing the “kernel” trick: We use
a non-linear mapping, or kernel, to map the input images into a high-dimensional
feature space. We then perform one of the above linear dimension reduction tech-
niques on the high-dimensional non-linear feature points. This procedure is math-
ematically equivalent to the applying a non-linear dimension reduction technique
in the original input image space.

We shall start with PCA which is the probably the best known linear sub-space
transformation.

9.2 Principal Component Analysis (PCA)

Principal component analysis (PCA) [9] seeks an orthonormal basis function W =
(w1,w2, . . . ,wd) with d << MN, such that each individual image can be adequately
represented as a linear combination of this basis. Thus in face recognition, we seek
the orthonormal vectors wd which best account for the distribution of face images
within the entire image space. These vectors define a sub-space of face images
which we call “face space”. Each of the vectors is of length MN, describes an M×N
image and is a linear combination of the original face images. Because these vectors
are the eigenvectors of the covariance matrix corresponding to the original face im-
ages, and because, after rearranging back into a rectangular image they are face-like
in appearance, they are often referred to as “eigenfaces”.

The orthonormal vectors wi, i∈ {1,2, . . . ,d}, are found using a set of training im-
ages as follows: Let Ak,k ∈ {1,2, . . . ,K}, define a training set of face images each of
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size M×N. We suppose the images Ak are all spatially aligned and radiometrically
calibrated [1]. We rearrange the pixels in Ak into a column vector ak, where

ak = (ak(1)ak(2) . . .ak(MN))T .

Then, the orthonormal vectors wi, i ∈ {1,2, . . .}, are defined as the eigenvectors of
the covariance matrix C, where

C =
1
K

K

∑
k=1

(ak−φ)(ak−φ)T ,

φ =
1
K

K

∑
k=1

ak ,

and

Cwi = λiwi . (9.1)

Since the column vectors ak are of length MN, then C is a MN×MN matrix. In prac-
tice MN is so huge that eigenvector decomposition is computationally impossible.
An alternative way to calculate the eigenvectors is as follows. Let

X =
(

(a1−φ),(a2−φ), . . . ,(aK−φ)
)

.

If vi is the ith eigenvector of the matrix XT X :

XT Xvi = λivi ,

then pre-multiplying both sides of the equation with X , we obtain

XXT Xvi = CDvi = λiXvi .

This means that if vi is an eigenvector of the K×K matrix XT X , then wi = Xvi is
an eigenvector of the MN×MN covariance matrix C = XXT . This is known as the
Turk-Pentland algorithm.

The eigenvectors wi are often called eigenfaces and are shown as M×N images
in Fig. 9.1. Being the columns of a unitary matrix, the eigenfaces are orthogonal
and efficiently span the space of a variation in the face images. Generally we se-
lect a small subset of d << MN eigenfaces to define a low dimensional face-space
that yields highest recognition performance on unseen examples of faces. For good
recognition performance the required number of eigenfaces d is typically chosen to
be of the order of 6 to 10.

1 The spatial alignment and radiometric calibration of the input images is critical for face
recognition. Often the spatial alignment algorithm relies on an eye localization and the ra-
diometric calibration algorithm is based on histogram equalization. For an eye localization
algorithm which is robust to variations in illumination, see [28].
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(a) (b)

(c) (d)

Fig. 9.1 (a)-(d) Shows the first four eigenimages generated from a training set of face images

Example 9.3. PCA face recognition [25]. In face recognition we wish to iden-
tify a given test image B. Off-line we select a set of K training images Ak

which belong to several individuals. After spatial alignment and radiometric
calibration we use (9.1) to generate a set of d eigenvectors wi, i∈ {1,2, . . . ,d}.
If we write B as a column vector b, then we calculate feature vectors ˜b and
ãk,k ∈ {1,2, . . . ,K}:

˜b = W T (b−φ) ,

ãk = W T (ak−φ) .

We then use a nearest neighbor classifier to assign the test image B to a
given individual. Let D(˜b, ãk) be an appropriate distance measure between
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˜b and ãk. Then we classify the test image as belonging to the k∗th individual,
where

k∗ = argmin
k

D(˜b, ãk) ,

9.2.1 PCA Variants

Some variants of the PCA which are in common use are:

Standardized PCA. In (9.1) we perform PCA using the covariance matrix C. In
the context of remote sensing applications we often use the correlation matrix ρ
in place of C. This is found by dividing each element in the covariance matrix
Ci j by its standard deviation σi j:

ρi j = Ci j/σi j ,

This procedure is known as standardized PCA [23] and is often found [5] to yield
higher signal-to-noise ratios in comparison with the conventional PCA.

Robust PCA. The conventional PCA is prone to the presence of outliers. This
is because of how the covariance matrix C is calculated. For robust covariance
matrix calculation see [8, 26] who have developed a robust PCA algorithm.

Class PCA. In class PCA [16, 17] we perform PCA separately on each class. If
there are L classes, then the class PCA generates an ensemble of L sub-spaces.

9.2.2 Whitening

In many applications we equalize the dynamic range of the eigenvectors ui by di-
viding the ui through by

√
λi. Mathematically, we define the corresponding trans-

formation as:

Λ−1/2 =

⎛

⎜

⎜
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⎜
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.

The combination of PCA and the above normalization is referred to as whitening.
Consider a M×N test image B. Let b denote the equivalent MN×1 column vector.
Then the corresponding whitened vector is
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˜bW = λ−1/2
˜b =Λ−1/2UT (b−φ) ,

where U = (u1,u2, . . . ,uL). After whitening, the covariance matrix becomes an iden-
tity matrix which means ˜bW is invariant to additional orthonormal transformations.
After whitening we may rotate ˜bW for maximum discriminant power [12].

9.2.3 Two-Dimensional PCA

By rearranging the pixels in Ak into a column vector ak we have destroyed any row-
to-row relationships that may exist between the pixel gray-levels. In an effort to
overcome this drawback a two-dimensional PCA (2D-PCA) algorithm was invented
[4, 6, 29]. This operates directly on the input images Ak,k ∈ {1,2, . . . ,K}, without
first converting them into column vectors ak. The algorithm works as follows: First
we normalize each image by subtracting the average faceΨ :

Xk = Ak−Ψ .

Then we define an N×N image covariance matrix G as

G =
1
K

K

∑
k=1

XT
k Xk .

Let wi, i ∈ {1,2, . . . ,d}, define the set of N-dimensional eigenvectors of G corre-
sponding to the d largest eigenvalues:

Gwi = λiwi . (9.2)

Then the corresponding low-dimensional, M× d, representation of the M×N test
image, (B−Ψ), is

˜B = (B−ψ)W ,

where
W = (w1,w2, . . . ,wd) .

The 2D-PCA transformation, as defined in (9.2), operates on the rows of the input
image. Variants of the 2D-PCA algorithm include a “column” and a “diagonal” 2D-
PCA transformation [35].

Example 9.4. DiaPCA [35]. Diagonal 2D-PCA is a variant of the 2D-PCA.
Given a M×N input image B we may create a diagonal image D by shifting the
rows of B to the right as shown in Fig. 9.2. The image D is then decomposed
using the 2D-PCA algorithm.
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Fig. 9.2 (a) Shows a 4×5 image B. (b) Shows the corresponding diagonal image D formed
by shifting rows of B to the right.

9.3 PCA Fusion

Most of the information in the input images Ak,k ∈ {1,2, . . . ,K}, is present in the
first eigenvector w1. The first eigenvector w1 (also known as the first principal com-
ponent image) may therefore be regarded as the optimal fusion of the Ak into a
single image. In general the fused image will be of less quality than any of the orig-
inals because we are only selecting the highest eigenvalue and therefore some of the
structural patterns in the original images are lost. In order for PCA to be used ef-
fectively there needs to be a strong correlation between the original image data and
the fused image data. An important PCA fusion technique is PCA pan-sharpening.
Pan-sharpening is concerned with fusing a panchromatic image with a high spatial-
resolution with a multi-spectral image with a low spatial resolution (see Chapt. 19).

In the traditional PCA pan-sharpening algorithm, we replace the first principal
component image with the panchromatic image. The reason for this choice of com-
ponent is that, by definition, the first principal component has the largest variance
and therefore contains the most information. Before the first principal component is
replaced by the panchromatic image, the panchromatic image is histogram matched
(Sect. 6.2) to the first principal component image. The remaining principal compo-
nents (eigenvectors) are considered to have band-specific information and are left
unaltered. The inverse PCA is performed on the modified PAN image and the prin-
cipal components to obtain a high-resolution pan-sharpened image.

An improved PCA pan-sharpened image may be obtained by optimally choosing
which principal component to replace. In [24] we replace the principal component
which has the highest correlation with the panchromatic image. The complete pan-
sharpened procedure is as follows:

Example 9.5. Modified PCA Pan-Sharpening [24].

1. Perform PCA on the multi-spectral image.
2. Calculate the cross-correlation between the principal components and the

panchromatic image.
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3. Select the principal component having the highest absolute value of the
correlation coefficient.

4. Inverse the panchromatic image before performing histogram matching if
the cross-correlation coefficient is negative.

5. Perform histogram matching of the selected principal component and the
panchromatic image

6. Use the histogram matched panchromatic image in the PCA based method
for substitution or injection of the high spatial detail

9.4 Non-negative Matrix Factorization (NMF)

Mathematically, non-negative matrix factorization (NMF) [2, 7] is similar to PCA.
Given the training images Ak,k ∈ {1,2, . . . ,K}, we write them as MN× 1 column
vectors ak. Let

X = (a1,a2, . . . ,aK) ,

Then, in NMF we approximate X by the multiplication of two matrices W and H:

X ≈WH , (9.3)

where W is a non-negative MN × r mixing matrix and H is a non-negative r×K
encoding matrix. The parameter r determines the accuracy of the approximation in
(9.3).

Example 9.6. NMF Face Recognition [7]. Given a training set of K spatially
aligned and radiometrically calibrated images Ak,k ∈ {1,2, . . . ,K}, we calcu-
late a NMF mixing matrix W and a NMF encoding matrix H using (9.3). The
NMF representation of each training image Ak is

ãk = W−1ak .

Given a test image B, we write it as a column vector b. Then its NMF repre-
sentation is

˜b = W−1b .

We classify B as belonging to the k∗th individual, where

k∗ = argmin
k

(

D(˜b, ãk)
)

,

and D(˜b, ãk) is an appropriate distance similarity measure.

Traditionally the matrices W and H are found by minimizing the square distance
||X −WH||2. Recently [22] have described a NMF algorithm in which we find W



116 9 Image Sub-space Techniques

and H by simultaneously minimizing the earth movers’s distance (EMD) (see Sect.
14.2.3) between X and WH:

(WEMD,HEMD) = arg min
(W,H)

(

EMD(X ,WH)
)

.

For pattern recognition applications, the new NMF has proved to be much more
robust against errors in spatial alignment and radiometric calibration.

9.5 Linear Discriminant Analysis (LDA)

Linear discriminant analysis (LDA) finds a set of projection vectors which best
discriminant between the different classes which are represented in the input data.
Given a set of K input images Ak,k ∈ {1,2, . . . ,K}, or column vectors ak, we sup-
pose each ak belongs to a class l, l ∈ {1,2, . . . ,L}, where

yk = l if ak belongs to class l .

The LDA computes a linear transformation W = (w1,w2, . . . ,wL−1) which maps the
ak to an (L−1)-dimensional space:

ãk = Wak ,

in which the classes are maximally separated. Mathematically, W is defined as fol-
lows: Let SB and SW denote, respectively, the between-class and the within-class
scatter matrices:

SB =
L

∑
l=1

pl(μl− μ)(μl− μ)T =
L−1

∑
l=1

L

∑
k=l+1

pl pk(μl− μk)(μl− μk)T ,

SW =
L

∑
l=1

plSl ,

μ =
L

∑
l=1

plμ l ,

where Sl is the scatter matrix for column vectors which belong to the lth class and
μ l and pl are, respectively, the mean vector and the a priori probability of the sam-
ples in the lth class [2]. Then LDA minimizes the ratio of the determinant of the
transformed scatter matrices ˜SB to ˜SW :

W = argmax
W

|˜SB|
|˜SW |

= argmax
W

|W T SBW |
|W T SWW | . (9.4)

2 Maximum likelihood estimate of pl is the number of training saples which belong to class
l divided by the total number of training samples.
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Eq. (9.4) is known as the Fisher criterion. If SW is a full rank matrix, then the solution
of (9.4) is W = (w1,w2, . . . ,wL−1), where wl is the eigenvector of S−1

W SB with the
lth largest eigenvalue:

(S−1
W SB)wl = λlwl . (9.5)

However, if the number of input images, K, is small compared to their dimension-
ality [3], SW becomes singular and we cannot use (9.5) to find the transformation
W .

9.5.1 Fisherface

A common approach to finding the transformation W when SW is singular is to
simply project the input images Ak into a sufficiently low-dimensional space using
PCA. In the reduced PCA space SW is no longer singular and we may calculate the
LDA transformation using (9.5). The technique is known as Fisherface [1]. Mathe-
matically, the transformation is given by:

Wf isher f ace = WPCAWLDA .

Alternative methods [34] which avoid the singularity in SW include:

Total Scatter Matrix. We replace the within-class scatter matrix SW in (9.4) by
the total scatter matrix ST = SW +SB. In this case the transformation matrix WT =
(w1,w2, . . . ,wL−1) , where

(S−1
T SB)wl = (SW + SB)−1SBwl = λlwl .

When SW is non-singular the transformation matrix WT is identical to the trans-
formation W obtained using (9.4). When SW is singular the modified criterion
reaches the maximum value for any transformation W in the null space of SW .
The transformation W cannot guarantee the class separability, since |W T SBW | is
maximum for all W .

Null LDA. We work only in the null space of SW . In this space, the transformation
matrix WNLDA is defined as the transformation which maximizes |W T SBW | [3].

Direct LDA. We work only in the space which lies outside the null space of SB.
In this space the transformation WDLDA is defined as the transformation which
optimizes the Fisher criterion (9.4) [18, 31].

All of these methods, including Fisherface are, however, sub-optimal because they
discard important discriminative information. The loss of discriminative informa-
tion may, however, be reduced by using an ensemble of LDA transformations (see
Chapt. 10).

3 In all practical cases the number of input images, K, is much smaller than the size of the
input images, M×N.



118 9 Image Sub-space Techniques

Example 9.7. Random Sampling LDA [27]. We apply PCA to a training set
of K column vectors ak,k ∈ {1,2, . . . ,K}. The eigenvectors with zero eigen-
values are removed and we retain the remaining (K − 1) eigenvectors U =
(u1,u2, . . . ,uK−1). We use the following technique (see Sect. 10.3.1) to gen-
erate R random sub-spaces. Each sub-space is spanned by α +β dimensions.
The first α dimensions are fixed as the α largest eigenvectors in U . The re-
maining β dimensions are randomly selected from the other (K−1−α) eigen-
vectors in U . For each random sub-space we construct an LDA classifier. Thus
altogether we have an ensemble of K LDA classifiers.

By combining the classifiers (see Chapt. 10) we able to construct a pow-
erful classifier that covers the entire feature space without losing discriminant
information.

9.5.2 Median LDA

The LDA is based on non-robust estimates of population parameters. This means
the LDA is sensitive to outliers. If outliers are thought to be present, the population
parameters should be calculated using robust techniques. The following is a simple
robust LDA algorithm.

In the median LDA [30] we replace the mean vectors μk by the corresponding
median vectors mk. The corresponding between-class and within-class scatter ma-
trices are:

SB =
K

∑
k=1

pk(mk−m)(mk−m)T ,

SW =
L

∑
l=1

plSl ,

m =
L

∑
l=1

ml ,

where Sl is a robust scatter matrix calculated for column vectors ak which belong to
the lth class. In calculating a robust estimate for Sl we use the median vector ml in
place of the arithmetic mean vector μ l . In addition [30] recommends weighing ak

according to their distance from ml .

9.5.3 Re-weighting LDA

The LDA transformation matrix W is invariant to any scale variation of the vectors
wl . If wl is a solution of (9.5), then αlwl is also a solution. Although all eigenvectors
αlwl are optimum with regard to the Fisher criterion, they may not be optimal for
classification purposes.
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Given the transformation W = (w1,w2, . . . ,wL−1)T , we may learn a new trans-
formation matrix

Wreweight = (α1w1,α2w2, . . . ,αL−1wL−1) ,

where the weights αl , l ∈ {1,2, . . . ,L−1}, are learnt for optimal classification [13].

9.5.4 Two-Dimensional LDA

Following the development of the 2D-PCA algorithm, a two-dimensional version of
the LDA algorithm was developed. The 2D-LDA algorithm [4, 11] operates directly
on the input images Ak,k ∈ {1,2, . . . ,K}, without first converting them into column
vectors ak. The algorithm works by formally defining between-class and within-
class image scatter matrices:

GB =
L

∑
l=1

pl(Āk− Ā)(Āk− Ā)T and GW =
L

∑
l=1

plGl ,

where Gl is the image scatter matrix for the images Ak which belong to the lth class,
and

Ā(m,n) =
1
K

K

∑
k=1

Ak(m,n) .

Let wi, i ∈ {1,2, . . . ,d}, define the set of M-dimensional eigenvectors of G−1
W GB

corresponding to the d largest eigenvalues:

G−1
W GBwi = λiwi . (9.6)

Then the corresponding d×N projection of a M×N test image B is

˜B = W T B .

where W = (w1,w2, . . . ,wd).
The 2D-LDA algorithm as defined in (9.6) operates on the columns of the input

image. Variants of the 2D-LDA algorithm include a “row” 2D-LDA transformation
[19].

The following example illustrates how the 2D-PCA and 2D-LDA techniques may
be combined in a joint (2D)2PCALDA classifier.

Example 9.8. (2D)2PCALDA Classifier [19]. A novel method for image fea-
ture extraction is to simultaneously apply the 2D-PCA transformation W2DPCA

(9.2) and the 2D-LDA transformation W2DLDA (9.6) on a M×N test image B.
The result is a d×d feature matrix F :

F = W T
2DLDA(B−Ψ)W2DPCA . (9.7)
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The matrix F contains both the discriminant information of B extracted by
the column-based 2D-LDA algorithm and the descriptive information of B
extracted by the row-based 2D-PCA algorithm.

The feature matrix F may be used in a nearest neighbor classifier as fol-
lows. During training, each training image Ak,k ∈ {1,2, . . . ,K}, is projected
onto both W2DPCA and W2DLDA simultaneously to obtain the respective feature
matrix Fk. Let B be a given test image. We use (9.7) to find the corresponding
feature matrix F . We then classify B using a nearest neighbor classifier:

y = yk if d(F,Fk) = min
h

(d(F,Fh)) ,

where yk is the class label of Ak and D(F,Fh) is an appropriate distance mea-
sure (see Chapt. 14) defined between F and Fh.

9.6 Nearest Neighbor Discriminant Analysis (NNDA)

The LDA guarantees the optimum discriminative transformation when the class dis-
tributions are unimodal and are separated by the scatter of the class matrices. How-
ever, if the class distributions are multi-modal and share the same mean, the LDA
fails to find the optimal discriminative transformation. The nearest neighbor dis-
criminant analysis (NNDA) technique [20] was developed to help overcome these
drawbacks.

In NNDA we find a linear transformation matrix W which optimizes the per-
formance of a nearest neighbor classifier. Given a set of K M×N images Ak,k ∈
{1,2, . . . ,K}, or column vectors ak, we suppose each ak belongs to a class l, l ∈
{1,2, . . . ,L}, where

ak = (ak(1),ak(2), . . . ,ak(MN))T ,

and

yk = l if ak belongs to class l .

Then NNDA finds a set of projection vectors, W = (w1,w2, . . . ,wMN), which max-
imizes the difference between the transformed scatter matrices, ˜CB and ˜CW :

W = argmax
W
|˜CB− ˜CW |= argmax

W
|W T (CB−CW )W | , (9.8)

where

CB =
K

∑
k=1

(ak−xk)(ak−xk)T and CW =
K

∑
k=1

(ak−yk)(ak−yk)T ,
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and xk is defined as the column vector which is nearest to ak and belongs to the same
class as ak and yk is defined as the column vector which is nearest to ak and which
does not belong to the same class as ak.

9.6.1 K-Nearest Neighbor Discriminant Analysis

The NNDA transformation matrix W as defined in (9.8) optimizes the performance
of a nearest neighbor classifier. We may generalize (9.8) to the case of L nearest
neighbors by simply redefining xk and yk as follows: xk is now defined as the column
vector which is the (L/2)th nearest neighbor of ak and belongs to the same class as
ak and yk is now defined as the column vector which is the (L/2 + 1)th nearest
neighbor of ak and does not belong to the same class as ak.

9.6.2 Two-Dimensional NNDA

Ref. [21] describes a two-dimensional version of the NNDA algorithm (2D-NNDA).
This works directly on the input images Ak,k∈{1,2, . . . ,K}, without first converting
them into column vectors ak. The development of the 2D-NNDA algorithm parallels
that of the NNDA algorithm. Thus the 2D-NNDA algorithm uses images XK and Yk

instead of column vectors xk and yk. The images Xk and Yk are defined as follows:
Xk is the input image which is closest to Ak (using an appropriate distance measure)
and belongs to the same class as Ak and Yk is the input image which is closest to Ak

but does not belong to the same class as Ak.

9.7 Canonical Correlation Analysis (CCA)

Canonical correlation analysis (CCA) is a powerful method for comparing two
multi-spectral images A and B when the images do not have the same num-
ber of spectral bands. In what follows we shall assume A has K spectral bands:
A = (A1,A2, . . . ,AK) and B has L spectral bands: B = (B1,B2, . . . ,BL).

Canonical correlation analysis works as follows. We transform the multi-spectral
images A and B into two scalar images ˜A and ˜B by making linear combinations of
their spectral bands. Mathematically,

˜A(x,y) =
K

∑
k=1

αkAk(x,y) and ˜B(x,y) =
L

∑
l=1

βlBl(x,y) .

The vectors α = (α1,α2, . . . ,αK) and β = (β1,β2, . . . ,βL) are chosen so that the
correlation ρ(˜A, ˜B) between ˜A and ˜B is maximized, where

ρ(˜A, ˜B) =
αT SABβ

√

αT SAαβ T SBβ
.
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The idea is that we find the maximum difference between the multi-spectral images
A and B after removing correlations between them as much as possible. Mathemat-
ically, α and β are found by solving the following coupled generalized eigenvector
equations:

SABS−1βSBA = ρ2SAα ,

SBAS−1αSAB = ρ2SBβ ,

where SA and SB are the covariance matrices of the two images and ΣAB = ΣT
BA is

the inter-image covariance matrix. Solutions of of the eigenvector equations gen-
erate new spectral images u = (u1,u2, . . . ,uK)T and v = (v1,v2, . . . ,vL)T where the
components uk,vk are known as canonical variates.

9.8 Software

CCA. A matlab routine for canonical correlation analysis. Author: Magnus Borga.
EIGENFACES FOR EXPRESSION DETECTION. A matlab toolbox for classi-

fying different human expressions using PCA. Available from Matalb central
directory. Author: Iftekhar Tanveer.

LIBRA. A matlab toolbox for classical and robust statistics [26]. The toolbox
contains classical and robust implementations of several sub-space techniques.
Authors: Sabine Verboven and Mia Hubert.

ROBCOEFF. A matlab toolbox for robust estimation of PCA, LDA and CCA.
Authors: Daniel Skocaj, Ales Leonardis and Sanja Fidler.

STATISTICAL LEARNING TOOLBOX. A matlab statistical learning toolbox.
the toolbox includes algorithms for several sub-space techniques. Author: Dahua
Lin.

TOOLBOX-DIMREDUC. A matlab toolbox for dimensionality reduction meth-
ods. The toolbox includes algorithms for many sub-space techniques. Author:
Gabriel Peyre.

9.9 Further Reading

Recently, 2D versions of the PCA, NMF, LDA, NNDA and CCA transformations
have been developed [7, 10, 15, 32]. In general, however, the performance of the
2D techniques is not significantly different from that of the traditional 1D tech-
niques [11]. A major problem with sub-space methods generally is their sensitivity
to alignment. For a review of this see [33].
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Chapter 10
Ensemble Learning

Abstract. The subject of this chapter is image fusion using the methods of ensem-
ble learning. Ensemble learning is a method for constructing accurate predictors
or classifiers from an ensemble of weak predictors or classifiers. In the context of
image fusion, we use the term ensemble learning to denote the fusion of K input
images Ik,k ∈ {1,2, . . . ,K}, where the Ik are all derived from the same base im-
age I∗. The Ik themselves highlight different features in I∗. The theory of ensemble
learning suggests that by fusing together the Ik we may obtain a fused image with a
substantially improved quality. In the first part of the chapter we consider methods
for constructing Ik. In the second part we consider methods for fusing the Ik.

10.1 Ensemble Learning Methods

Ensemble learning is a method for constructing accurate predictors or classifiers
from an ensemble of weak predictors or classifiers. Let ˜E denote the expected clas-
sification error of an ensemble of classifiers. Then the theory of ensemble learning
[7] suggests that

˜E = Ē− D̄ ,

where Ē and D̄ are, respectively, the average classification error and diversity of the
individual classifiers. This equation discloses that as the accuracy and diversity of
an classifiers grows so the performance of an ensemble classifier will also grows.

The following examples illustrate ensemble learning in two different image fu-
sion applications.

Example 10.1. Ensemble Thresholding. In many image processing appli-
cations we use a thresholding algorithm to delineate the background from
objects of interest or foreground. Unfortunately, in practice, the effectiveness
of a given thresholding algorithm is often strongly dependent on the char-
acteristics of the base image I∗. This is illustrated in Fig. 10.1 which shows
the results obtained by thresholding three different base images I∗ using two



126 10 Ensemble Learning

different thresholding algorithms. The theory of ensemble learning suggests
that by combining several thresholded images Bk we may obtain a thresholded
image ˜B which is less sensitive to the characteristics of the base image I∗.

Example 10.2. Combination of Multiple Edge Operators [3]. Although a large
number of diverse edge detection techniques can be found in many image pro-
cessing publications, there is no single detection method that performs well in
every possible image context. Information that could be missed by one detec-
tor may be captured by another. Ref. [3] describes a framework for combining
multiple edge detection operators in order to yield improved results for edge
detection in an image. The so called receiver operating characteristics (ROC)
analysis is employed to form an optimum edge map ˜F that matches the out-
comes of a preselected set of edge detectors.

10.2 Diversity Measures

In selecting an ensemble of classifiers we require classifiers which are both accu-
rate and diverse. To estimate the diversity of an ensemble of classifiers we use an
appropriate diversity measure. Some common pairwise diversity measures are listed
in Table 10.1 [9]. Given an ensemble of K classifiers, the predicted mean ensemble
error is

˜E = (
K

∏
k=1

Ek)1/L( ∏
h,k,h �=k

(1−dhk)
)1/(L(L−1))

,

where Ek is the mean error rate for the kth classifier and dhk is the pairwise diversity
measure for classifiers h and k [6].

Table 10.1 Pairwise Diversity Measures

Name Description

Yule statistic Q Q = (ad−bc)/(ad +bc), where a, b, c and d are, respectively,
the number of objects that are correctly classified by classifiers
S1 and S2; are correctly classified by S1 and incorrectly classi-
fied by S2; are incorrectly classified by S1 and correctly classi-
fied by S2; are incorrectly classified by S1 and S2.

Correlation coefficient ρ ρ = (ad−bc)/
√

(a+b)(c+d)(a+ c)(b+d).
Disagreement Measure D D = (b+ c)/N,where N is the number of training objects.
Double Fault Measure DF DF = d/N.
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(a) (b)

(c) (d)

(e) (f)

Fig. 10.1 Shows the result of thresholding three images. (a), (c) and (e) Shows the binary
image obtained with the Otsu thresholding algorithm. (b), (d) and (f) Shows the binary im-
age obtained with the entropy thresholding algorithm. The results show that both algorithms
perform reasonably well on “tissue”, while the entropy thresholding algorithm fails on “cam-
eraman” and the Otsu thresholding algorithm fails on “autumn”.
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10.3 Multiple Image Transformations Ik

The simplest method to generate the images Ik,k ∈ {1,2, . . . ,K}, is to apply K dif-
ferent transformations to the base image I∗. In order for ensemble learning to be
effective, the images Ik should be independent and should highlight different char-
acteristics in I∗. Fig. 10.2 shows the effect of applying three different types of image
transformations to a base image I∗.

In Table 10.2 we list some of the common image transformations which may be
used for this purpose.

(a) (b)

(c) (d)

Fig. 10.2 (a) Shows a base image I∗. (b) Shows the feature map Fsobel obtained by applying
Sobel edge detector to I∗. (c) Shows the feature map Fprewitt obtained by a applying the
Prewitt edge detector to I∗. (d) Shows the feature map Fzhang obtained by applying the Zhang-
Li wavelet edge detection scheme (see Ex. 8.2) to I∗.
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Table 10.2 Image Transformation Techniques

Name Description

Linear transfor-
mation

Transformation in which the important information tends to be contained
in the low-frequency coefficients. Examples include: discrete cosine trans-
form, discrete sine transform, and discrete Fourier transform.

Edge operator Operator which estimates the strength of an edge at all pixels in the image.
Examples include: Sobel, Canny, Laplacian-of-Gaussian operator [17].

Directional Filters Filters which act along specific directions in the image. Examples include
Radon and Gabor filters.

Statistical trans-
formation

Change the statistical properties of the image by operating on the image
histogram. Examples include histogram matching algorithms.

Multi-scale
transformations

Transformation in which the image is decomposed at different scales. Exam-
ples include: Laplace and Gaussian pyramid and discrete wavelet transform.

10.3.1 Multiple Subspace Transformations

Subspace transformations are a class of image transforms whose effect is to project
I∗ into a lower-dimensional space or sub-space. Each projection constitutes a dif-
ferent input image Ik. Further details on the different sub-space transformations is
given in Chapt. 9.

One way of generating these sub-spaces is as follows: We perform PCA anal-
ysis on a set of K training images. Given the K non-zero eigenvectors uk,k ∈
{1,2, . . . ,K}, we select α eigenvectors which correspond to the α largest eigenval-
ues and randomly select β eigenvectors which correspond to the remaining non-zero
eigenvalues. The random sub-space is constructed from the α+β eigenvectors.

10.3.2 Multiple Random Convolutions

Random convolutions are a class of image transformations which work by convolv-
ing the base image I∗ with a randomly generated mask M [10]. In [10] the size of
the masks are fixed at 3×3 and the mask values are randomly chosen in the range
[−2.5,2.5]. Fig. 10.3 shows the effect of convolving a base image I∗ with three
random convolutions.

M1 =

⎛

⎝

1.125 −0.035 −0.109
−0.672 0.978 −1.204

0.267 0.655 0.804

⎞

⎠ , M2 =

⎛

⎝

−0.138 1.055 −0.236
0.289 0.596 1.089
0.730 −0.809 1.042

⎞

⎠ ,

M3 =

⎛

⎝

−0.224 −0.368 −0.903
0.984 0.783 −0.743
−1.105 −1.225 −0.753

⎞

⎠ .
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(a) (b)

(c) (d)

Fig. 10.3 (a) Shows a base image I∗. (b), (c) and (d) Show the result of convolving I∗ with
the random convolutions M1,M2 and M3.

10.3.3 Multiple Normalizations

Multiple normalizations are used for handwritten character recognition [8]. An in-
put character image is transformed into an ensemble of normalized images using
different normalization methods. If R1 and R2 are, respectively, the input and output
aspect ratios of character image (i. e. the width-to-height ratio), then some common
linear normalization methods are:

Fixed aspect ratio
R2 = 1

Preserved aspect ratio
R2 = R1

Square root of aspect ratio
R2 =

√
R1
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Cubic root of aspect ratio
R2 = R1/3

1

Square root of sine of aspect ratio

R2 =
√

sin(πR1/2)

By using different normalizations we obtain an ensemble of normalized images Ik.

10.3.4 Multiple Color Spaces

Color space transformations are a class of image transformations whose effect is
to transform the base image I∗ into a different color space. Recent research has re-
vealed that different color spaces display different discriminating power for pattern
recognition. Multiple color spaces is therefore an important method for generating
an ensemble of different images Ik. Each color space generates a different input
image Ik.

Example 10.3. Fusion of color spaces for ear authentication [12]. The human
ear is an important biometric characteristic for the following reasons:

1. The ear structure is rich and full of features.
2. The ear is stable. It changes little with age and facial expression.
3. The ear is relatively easy to capture.
4. The ear is relatively large and thus easily captured at a distance.

The image of the ear is resized to a fixed size using nearest neighbor inter-
polation. The input images are in RGB color space. We transform this image
into 12 different color spaces (see Chapt. 16). Features are then extracted from
each of the 13 color spaces. Finally the test ear is authenticated using a nearest
neighbor classifier (see Ex. 9.3).

Further details on the different color spaces which are available and their corre-
sponding transformations is given in Chapt. 16.

10.3.5 Multiple Thresholds

Image thresholding algorithms are a class of image transformations whose effect is
to transform the base image I∗ into a set of binary images Ik. Thresholding algo-
rithms may therefore be regarded as classification algorithms in their own right and
the images Ik are decision, or label, maps. The thresholding algorithms themselves
may be divided into two classes: global algorithms and local algorithms. The global
algorithms generate a binary decision map Bk as follows:
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Bk(x,y) =
{

1 if I∗(x,y) > tk ,
0 otherwise ,

where I∗(x,y) is the gray-level of the base image at the pixel position (x,y) and tk is
the global threshold value.

Further details on the different global and local thresholding algorithms which
are available is given in Chapt. 12. In general we create an ensemble of thresholding
algorithms by choosing algorithms which are based on different physical principles.
In this case, we are reasonably sure to obtain a diverse ensemble of K binary images
Ik,k ∈ {1,2, . . . ,K}.

10.3.6 Multiple Segmentations

Image segmentation algorithms are a class of image transformations in which we
transform the base image I∗ into a set of multi-label images Ik. By choosing seg-
mentation algorithms which are based on different physical principles, we ensure
that we obtain a diverse ensemble of K multi-label images Ik,k ∈ {1,2, . . . ,K}.

The following example describes a mean shift image segmentation algorithm due
to Wang and Suter [19].

Example 10.4. Mean Shift Image Segmentation Algorithm [19]. Let I denote
an 8-bit input image with a histogram H = (H0,H1, . . . ,H255)T , where Hi, i ∈
{0,1, . . . ,255}, is the number of pixels in I with a gray-level equal to i. Let
Pm and Vm denote, respectively, the mth peak and the mth valley in H, where
V0 = 0, VM = 255 and V0 ≤ P1 < V1 ≤ ·· · ≤ PM ≤ VM. We use the following
iterative process to find the peaks Pm and the valleys Vm.

1. Initialize m = 1.
2. Apply the mean shift peak method to obtain the peak location Pm:

a. Pm = Vm−1 + 1.
b. Calculate mean shift vector s

s =
Pm+W

∑
i=Pm−W

iHi/
Pm+W

∑
i=Pm−W

Hi .

c. Pm← Pm +α(s−Pm), where 0 < α < 1.
d. Repeat steps (2b)-(2c) until no significant change in s

3. Apply the mean shift valley method to obtain the valley Vm:
a. Vm = Pm + 1.
b. Calculate mean shift vector s

s =
Vm+W

∑
i=Vm−W

iHi/
Vm+W

∑
i=Vm−W

Hi .
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c. Vm←Vm−α(s−Vm), where 0 < α < 1.
d. Repeat steps (3b)-(3c) until no significant change in s

4. Increment m←m+ 1.
5. Repeat steps (2) and (3) until Pm or Vm is equal to, or larger than, 255.
6. Eliminate non-significant peaks. Choose significant valleys as the mini-

mum of the valleys between two consecutive significant peaks.
7. Use the significant valleys to generate a segmented image D with M labels,

where
D(x,y) = m if Vm−1 ≤ I(x,y) < Vm

10.4 Re-sampling Methods

Re-sampling methods are a class of special methods which allow for the system-
atic generation of a virtually unlimited number of Ik in a natural way. Re-sampling
methods are considered in detail in chapter 11.

10.5 Image Fusion

Until now we have considered the creation of an ensemble of K images Ik, feature
maps Fk or decision maps Dk from a single base image I∗. In this case, the Ik, Fk and
Dk are, by definition, spatially and temporally aligned. We shall further assume the
Ik, Fk and Dk are semantically equivalent and radiometrically calibrated.

If we restrict ourselves to the pixel-based fusion operators, then for images Ik and
feature maps Fk, the most common pixel fusion operators are:

Arithmetic Mean

˜I(x,y) =
1
K

K

∑
k=1

Ik(x,y) .

Trimmed Mean

˜I(x,y) =
1

K−2α

K−α
∑

k=α+1

I(k)(x,y) ,

where I(l)(x,y) is the lth largest gray-level at the pixel (x,y) and α is a small
integer. Often we let α ≈ 
K/20�.

For decision maps Dk, we cannot use these operators. Instead, we often use a
majority-vote or a weighted majority-vote rule:

Majority-Vote

˜D(x,y) = l if
K

∑
k=1

δ (Dk(x,y), l) ≥ K/2 , (10.1)
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where

δ (a,b) =
{

1 if a = b ,
0 otherwise .

Weighted Majority-Vote

˜D(x,y) = l if
K

∑
k=1

wkδ (Dk(x,y), l) ≥
K

∑
k=1

wk/2 ,

where each Dk has a weight wk associated with it.
Additional image fusion methods are considered in Chapts. 7 17 and 21.
In the following example we describe a multi-purpose ensemble-based image

classifier [14].

Example 10.5. Multi-Purpose Ensemble Classifier [14]. WND-CHARM is a
multi-purpose supervised ensemble classifier. Let (Im,ym),m ∈ {1,2, . . . ,M},
represent a training set of image/classification pairs, where Im denotes the mth
training image and ym denotes the corresponding classification. For each im-
age Im we extract an ensemble of K = 1025 feature maps Fk,m, where Fk,m

is obtained by applying a feature operator F̂k to Im. The feature operators
F̂k,k ∈ {1,2, . . . ,K} are divided into four categories:

Polynomial Decompositions. In polynomial decomposition, a polynomial
is generated that approximates the image to some fidelity and the coeffi-
cients of the polynomial is used as descriptors of the image content.

Textures. Texture features report on the inter-pixel variation in intensity for
several directions and resolutions.

High Contrast features. High contrast features, such as edges and objects,
comprise statistics about object number, spatial distribution, size and shape.

Pixel Statistics. Pixel statistics are based on the distribution of pixel inten-
sities within the image and includes histograms and moments.

Due to the high dimensionality of the F̂k, some of the F̂k are expected to rep-
resent noise. WND-CHARM therefore includes an automatic feature selection
algorithm. For this purpose we give each operator F̂k a weight Wk:

Wk =
L

L−1
σ2

B

σ2
W

,

where σ2
B is the variance of the class means for feature F̂k and σW is the vari-

ance of feature F̂k among all the training images averaged over all classes l.
Mathematically Wk is the Fisher, or LDA, score for Fk (see Chapt. 9). In WND-
CHARM 45% of the strongest features are retained which are then used in a
nearest neighbour classifier.
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The following example illustrates the use of ensemble learning in biometric face
recognition.

Example 10.6. Biometric face recognition [5]. Given an input image I∗ we
create an ensemble of K images Ik,k ∈ {1,2, . . . ,K}, by applying K trans-
formations to I∗. In [5] the transformations include histogram equalization
(Sect. 6.2.1) and edge detection. The images Ik are then transformed into fea-
ture maps Fk by applying a low-dimensional principal component analysis
(PCA) transform (Sect. 9.2). Experimental results showed that a significant
improvement in facial recognition performance may be obtained when we use
an ensemble of images Ik.

We now consider three applications of ensemble fusion.

10.6 Ensemble Thresholding

The effectiveness of a thresholding algorithm is strongly dependent on the input
image characteristics. Experimentally we find that for one input image, a given
thresholding algorithm may appear the best, while it may fail completely for an-
other image. This makes it difficult to choose the most appropriate algorithm to
binarize a given image. One way of solving this problem is to binarize the input im-
age using M different thresholding algorithms and then fusing the resulting binary
images together. In this way we exploit the pecularities of the different thresholding
algorithms to obtain a more robust final thresholded image. In general, for a given
input image, this approach will not outperform the best single thresholding algo-
rithm. However we obtain accuracies which are comparable to those obtained with
the best single thresholding algorithm independent of the image statistical character-
istics. Given a base image I∗ with pixel gray levels I∗(x,y), and K global thresholds
tk,k ∈ {1,2, . . . ,K}, we may generate K binary images Bk, where

Bk(x,y) =
{

1 I∗(x,y)≥ tk ,
0 otherwise .

Two classical fusion strategies which we may use to fuse together the binary images
Bk are, respectively, the majority-vote rule and the weighted majority-vote rule. Us-
ing the majority-vote fusion rule we obtain a binary image ˜B whose gray-levels are

˜B(x,y) =
{

1 if ∑K
k=1 Bk(x,y)≥ K/2 ,

0 otherwise .

Using the weighted majority-vote fusion rule we obtain the binary image

˜B(x,y) =
{

1 if ∑K
k=1 wkBk(x,y)≥ ∑K

k=1 wk/2 ,
0 otherwise ,

(10.2)

where each image Bk has a weight wk associated with it (Fig. 10.4).
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(a) (b)

(c) (d)

(e) (f)

Fig. 10.4 (a) Shows the base image I∗. (b)-(f) Shows binary images Bk,k ∈ {1,2, . . . ,K},
obtained using K = 5 different thresholding algorithms.
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(g) (h)

Fig. 10.4 cont’d. (g) Shows the binary image ˜B obtained by fusing the Bk together using a
majority-vote rule operator. (h) Shows the binary image ˜B obtained by fusing the Bk together
using the weighted majority-vote rule operator (10.2).

Example 10.7. Adaptive Weights [11]. Traditionally, the weights wk in (10.2)
are determined according to the relative performance of each thresholding al-
gorithm. This, however, involves the availability of training data with associ-
ated ground-truth. An alternative procedure which does not require any train-
ing data is to choose the weights wk according to how close the kth threshold,
tk, is to the mean threshold t̄ = ∑k tk/K. Mathematically, we let

wk = exp(−α|tk− t̄|) . (10.3)

where α is a real positive constant which controls the steepness of the weight
function. The idea is that the smaller the absolute difference between tk and
t̄, the higher the degree of confidence in the classification. Using the same
reasoning, we may allow the wk to vary on a pixel-by-pixel basis. This we do
by choosing the weights according to how close the pixel gray-level I∗(x,y) is
to the kth threshold tk. Mathematically, we let

wk(x,y) = 1− exp(−β |tk− I∗(x,y)|) ,

where β is a real positive constant which controls the steepness of the weight
function. The idea is that the larger the difference between the pixel gray-level
and the threshold value, the higher the degree of confidence in the classifica-
tion. For 8-bit deep input images, [11] recommends α = 0.1 = β .

10.7 Ensemble Spatial Sampling

In ensemble spatial sampling [4] we create a local image thresholding algorithm from
a global thresholding algorithm (see Chapt. 12) as follows:. Given an M×N input
image I∗ we randomly choose the top-left coordinates (m′,n′) and the bottom-right
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coordinates (m′′,n′′) of a window W . We then threshold the pixels in W using a given
global thresholding algorithm. We repeat the entire process K times.

Suppose for the kth iteration, the top-left and bottom-right coordinates are
(m′k,n

′
k) and (m′′l ,n

′′
k ). The threshold for this window is tk. The corresponding 3-

level thresholded image is:

Bk(m,n) =

⎧

⎨

⎩

1 if I∗(m,n) > t(k), m′l ≤ m≤ m′′k and n′′k ≤ n≤ n′′k ,
−1 if I∗(m,n)≤ tk, m′k ≤ m≤ m′′k and n′k ≤ n≤ n′′k ,
0 otherwise .

Finally we obtain a fused binary image ˜B by determining the sign of ∑K
k=1 Bk(m,n):

˜B(m,n) =
{

1 if ∑K
k=1 Bk(m,n) > 0 ,

0 otherwise .

Fig. 10.5 shows the action of the local thresholding algorithm.

(a) (b)

(c) (d)

Fig. 10.5 (a) Shows the base image I∗. (b) Shows the global binary image obtained using
the Otsu thresholding algorithm. (c) Shows an example of a local 3-level thresholded image
Bk. (d) Shows the binary image ˜B obtained by fusing K local 3-level thresholded images
Bk,k ∈ {1,2, . . . ,K}.
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10.8 Ensemble Atlas Based Segmentation

Atlas-based image segmentation is widely used in medical image applications. The
basic idea is explained in the following example.

Example 10.8. Atlas-Based Segmentation [16]. In atlas-based segmentation
we have a single training image I∗ which we regard as a “gold-standard”.
From I∗ we create the corresponding segmented image D∗. For this purpose
we may use any segmentation algorithm to create D∗ although it is most com-
mon to use a carefully constructed manual segmentation. Given a test image I
we spatially align I to I∗. If T is the corresponding spatial transformation:

I = T (I∗) ,

then we suppose the corresponding segmented image is: D = T (D∗).

In ensemble atlas-based segmentation we generalize this procedure in two different
ways:

Multiple Transformations. We suppose we have several different spatial align-
ment algorithms. Each algorithm gives a different transform Tm,m∈ {1,2, . . . ,M}.
By this means we create M segmented images Dm,m ∈ {1,2, . . . ,M}, where

Dm = Tm(D∗) .

Let ˜D denote the segmented image obtained by fusing the Dm using majority-
vote, shape-based average or other appropriate fusion operator f . Mathemati-
cally, we have

˜D = f (D1,D2, . . . ,DM) .

Multiple Training Images. We suppose we have several training images I∗m,m ∈
{1,2, . . .}, each with its own “gold-standard” segmentation D∗m to generate a dif-
ferent spatial transformations Tm for each training image I∗m,m ∈ {1,2 . . . ,M}:

I = Tm(I∗m) .

In this case, we use the same spatial alignment algorithm to obtain M spatial
transformations Tm,m ∈ {1,2, . . . ,M}, one for each I∗m. By applying Tm to D∗m,
we obtain M segmented images Dm = Tm(D∗m). As before we may fuse the Dm

together using an appropriate fusion operator f :

˜D = f (D1,D2, . . . ,DM) .
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10.9 Ensemble Nearest Neighbor Classification

In this section we consider the ensemble nearest neighbor classifier. A nearest neigh-
bor (NN) classifier is defined as follows: Given an unknown object or pattern we
classify it by choosing the class of the nearest example in a training set as measured
by a given similarity measure.

Given an input image I we may classify it as follows: We create a representative
feature vector f:

f = ( f1, f2, . . . , fr)T .

Off-line a small number of these vectors, which we denote as Gi, i ∈ {1,2, . . .}, have
been classified into a set of L classes cl , l ∈ {1,2, . . . ,L}. Then, we compare each
r-dimensional vector f with Gi, i ∈ {1,2, . . .}. Let G∗ denote the Gi which is closest
(i. e. most similar) to f, then we classify the image I as belonging to the class l∗,
where l∗ is the class label of G∗. Despite its simplicity, the NN classifier gives a
competitive performance with more modern classification techniques.

A simple extension of the NN classifier is to choose the most common class
among the K-nearest neighbors. If S(x,y|l) is the number of K nearest neighbors
which belong to the lth class, then the K-NN classifier gives the pixel (x,y) the class
label l∗, where

l∗ = argmax
l

(S(x,y|l)) .

Recently Bay [1] described an ensemble nearest neighbor classifier with improved
classification performance.

The ensemble NN classifier is constructed as follows. Given the test image I we
create M feature maps Fm(x,y),m ∈ {1,2, . . . ,M}. This we do by using M trans-
formations, normalizations, directions, color spaces, thresholding or segmentation
algorithms. Alternatively, we may simply randomly select s (s < r) components
from F(x,y). For each Fm we create a decision map Dm(x,y) using a nearest neigh-
bor classifier (see Ex. 9.3). Finally, we fuse the Dm together using the majority-vote
rule.

Example 10.9. K-nearest neighbor (K-NN) ensemble classifier [2]. Tradition-
ally we use the majority-vote rule to combine the decision maps Dm,m ∈
{1,2, . . . ,M}. However, for the K-NN classifier we may, instead, combine the
maps Sm(x,y|l) [2], where Sm(x,y|l) is the number of K nearest samples Gi

which belong to the lth class. In this case, the Domeniconci-Yan (DY) fused
decision map is

˜DDY (x,y) = argmax
l

(

M

∑
m=1

Sm(x,y|1),
M

∑
m=1

Sm(x,y|2), . . . ,
M

∑
m=1

Sm(x,y|L)
)

.

The following is a simple numerical example in which we compare the
majority-vote rule and the DY combination rule. Let M = 3, L = 2 and K = 5.
Suppose for a given pixel (x,y) we have:
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S1(x,y|1) =
2
5

and S1(x,y|2) =
3
5

,

S2(x,y|1) =
2
5

and S2(x,y|2) =
3
5

,

S3(x,y|1) =
4
5

and S4(x,y|2) =
1
5

.

The individual decision maps Dm(x,y) are

D1(x,y) = 2 , D2(x,y) = 2 and D3(x,y) = 1 .

The corresponding majority-vote and DY fused decision maps are:

˜Dma j(x,y) = argmax
l

(

M

∑
m=1

Dm(x,y)
)

= 2 ,

˜DDY (x,y) = argmax
l

(

M

∑
m=1

Sm(x,y|l),
M

∑
m=1

Sm(x,y|2), . . . ,
M

∑
m=1

Sm(x,y|L)
)

= 1 .

10.10 Further Reading

A modern book devoted to ensemble methods is [13]. For a recent survey of ensem-
ble methods see [18]. For survey of real-world applications using ensemble learning
see [15]. For an additional application using ensemble learning see Sects. 16.3.

10.11 Software

STPRTOOL. A statistical pattern recognition toolbox. Authors: Vojtech Franc
and Vaclav Hlovac.
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Chapter 11
Re-sampling Methods

Abstract. The subject of this chapter are the re-sampling methods which are a spe-
cial set of ensemble learning techniques. In the context of image fusion the re-
sampling methods create an ensemble of input images Ik,k ∈ {1,2, . . . ,K}, from
a single base image I∗. In this chapter we shall concentrate on two important re-
sampling methods: bootstrapping and boosting.

11.1 Introduction

In the context of image fusion, we use the term ensemble learning to denote the
fusion of K input images Ik,k ∈ {1,2, . . . ,K}, where the Ik are all derived from the
same base image I∗. In the previous chapter we constructed the Ik by applying differ-
ent signal processing algorithms to I∗. These algorithms include image transforma-
tions, normalizations, feature extraction, thresholding and segmentation algorithms.
In this chapter we consider a different (re-sampling) approach in which we apply
an ensemble of K (fixed) classifiers Ck,k ∈ {1,2, . . . ,K} to I∗. In the re-sampling
method the Ck are obtained by training the parameters of a parametric classifier S on
re-sampled training data T ∗. If Dk denotes the decision map obtained by applying
Ck to I∗, then we fuse the Dk,k ∈ {1,2, . . . ,K}, together to obtain a fused decision
map ˜D. In general, ˜D is more accurate than any one of the Dk.

The strength of the re-sampling method is that it allows for a systematic genera-
tion of a virtually unlimited number of classifiers Ck and the corresponding decision
maps Dk in a natural way.

We start with bootstrapping, which is perhaps the most widely used re-sampling
method.

11.2 Bootstrapping

Bootstrapping is a basic re-sampling technique in which we generate which an en-
semble of K fixed classifiers Ck,k∈ {1,2, . . . ,K}, given a base training data base T ∗.
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Given T ∗ we generate K bootstrapped training sets Tk,k ∈ {1,2, . . . ,K}, by sampling
T ∗ with replacement (see Ex. 3.10). Then, given a parametric classifier S we cre-
ate an ensemble of fixed classifiers Ck,k ∈ {1,2, . . . ,K}, by separately training S on
each training set Tk

[1]. If we apply Ck to the test image I∗ we obtain a decision map
Dk. Finally, we obtain a fused decision map ˜D by fusing the Dk together:

˜D = f (D1,D2, . . . ,DK) ,

where f is an appropriate fusion operator.
In many cases we use the majority vote rule to fuse the Dk. In this case the com-

bination of bootstrapping and majority vote rule is known as “bagging”. In general
bagging is useful when the Ck are weak. By this we mean that the performance of
the classifier is slightly better than random but is unstable: changes in the training
data cause significant changes in the fixed classifier.

We illustrate the concept of bagging on two different applications. The first ap-
plication illustrates the traditional use of bagging a supervised classifier. The second
application illustrates a recent development in which we use bagging in an unsuper-
vised classifier or clustering algorithm.

11.3 Face Recognition with Bagging

We consider face recognition in an unconstrained environment where the appear-
ance of a given face may vary due to changes in lighting, pose and facial expression
[5]. In many face recognition applications, only a small number of training samples
for each subject are available. These samples are not able to capture all the facial
appearance variations. By bootstrapping the training set T ∗ we generate several sub-
sets Tk,k ∈ {1,2, . . . ,K}, of samples from the original training dataset. Each subset
Tk is then used to train a classifier Ck.

Given a test face we classify it using the classifiers Ck,k ∈ {1,2, . . . ,K}. If Dk is
the decision obtained with the classifier Ck, then we obtain a fused decision ˜D by
fusing the Dk together using the majority-vote rule. Blu and Jain [5] found the use
of bootstrapping made a substantial improvement in the face recognition accuracy:
increasing from 81% to 88.7%.

11.4 Bagged Nearest Neighbor Classifier

The nearest neighbor (NN) classifier (see Sect. 10.9) is simple but very effective
classifier which is widely used in many real-world classification systems. It is not,
however, a weak classifier, and consequently (conventional) bagging will not im-
prove its performance. However, by creating bootstrapped training sets which are

1 A parametric classifier is a classifier which has free parameters in it. Optimal values for
these parameters are found by training the classifier on a training set. Once the parameter
values are specified we have a fixed classifier.
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smaller in size than the original training set, we “weaken” the NN classifier which
can now be bagged.

Example 11.1. Bagged Nearest Neighbor Classifier [3]. Given a base training
set T ∗ containing M images ym,m ∈ {1,2, . . . ,M}, we create a set of K boot-
strapped training sets Tk,k ∈ {1,2, . . . ,K}, where each training set Tk contains
N images which are selected by randomly sampling T ∗ with replacement and
N ≈ 0.7M.

Given a test image I we classify it using the NN classifier on each boot-
strapped training set Tk,k ∈ {1,2, . . . ,K}. Suppose the NN classification ob-
tained with the kth training set is a decision label l:

Dk = l ,

then the bagged NN classification of I is

˜D = l if
K

∑
k=1

δ (Dk, l) >
K
2

,

where

δ (a,b) =
{

1 if a = b ,
0 otherwise .

11.5 Bagged K-means Clustering

Traditionally, re-sampling methods are used in supervised learning applications in
order to improve classification accuracy. Recently re-sampling methods have been
used to improve unsupervised clustering algorithms.

In this context we use bagging to generate and aggegrate multiple clusterings
and to assess the confidence of cluster assignments for individual observations. The
motivation is to reduce the variability in the partitioning results via averaging.

Given an input base image I∗ we may segment it into a L label decision image
D∗ using a K-means clustering algorithm (see Ex. 6.8). Let G1,G2, . . . ,GK denote
L cluster centers or cluster gray-levels. Then each pixel gray-level gm ≡ I∗(m) is
assigned to a given cluster:

δml =
{

1 if gm is assigned to Gl ,
0 otherwise .

We then use the assignment matrix δml to create the decision image D∗:

D∗(m) = l if δml = 1 .
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The K-means algorithm attempts to find the set of cluster centers Gl, l ∈{1,2, . . . ,L},
such that the total error is a minimum:

(G1,G2, . . . ,GL) = argmin
Gk

M

∑
m=1

L

∑
k=1

δmk|gm−Gk| ,

using the following iterative procedure. In each iteration we calculate the assign-
ment matrix δml using the cluster centers Gl calculated in the previous iteration.
The cluster centers are then re-calculated using the new assignment matrix. The
entire process for T iterations is:

for t = 1 : T
for m = 1 : M

δ (t)
mk =

{

1 if |gm−G(t−1)
l |= minh |gm−G(t−1)

h |
0 otherwise

end
for l = 1 : L

G(t)
l = ∑M

m=1 δ
(t)
ml gm/∑M

m=1 δ
(t)
ml

end
end

Dudoit and Fridlyand [1] show how we may improve the performance of the cluster
algorithm by bagging.

Example 11.2. Bagged K-means Clustering Algorithm [1]. The steps in the
bagged K-means clustering algorithm are:

1. Transform the base image I∗ into a column vector I∗(m),m ∈ {1,2, . . . ,M}
2. Form K bootstrapped column vectors I(k)(m),k ∈ {1,2, . . . ,K},m ∈
{1,2, . . . ,M} by sampling I∗ with replacement.

3. Train the K-means cluster algorithm on each bootstrapped column vector

I(k), i. e. learn L cluster centers G(k)
l , l ∈ {1,2, . . . ,L}.

4. For each k, permute the labels l so that G(k)
1 < G(k)

2 < .. . < G(k)
L . This en-

sures the semantic equivalence of the labels l (see Ex. 5.5 ).

5. For each set of cluster centers G(k)
l ,k ∈ {1,2, . . . ,K}, classify the pixels in

I∗:
D(k)(m) = argmin

l
(|I∗(m)−G(k)

l |) .

6. For each pixel m,m ∈ {1,2, . . . ,M}, form a bagged decision ˜D(m) using a
majority-vote rule:
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˜D(m) = l if ∑K
k=1 δ (D(k)(m), l))≥ K

2 ,

where

δ (a,b) =
{

1 if a = b ,
0 otherwise .

11.6 Boosting

Boosting is closely related to bagging except the training sets Tk,k ∈ {1,2, . . . ,K},
are no longer independent, instead they are created sequentially. If Ck denotes the
classifier which is trained on Tk, then Tk+1 is created in accordance with the classi-
fication accuracy obtained with Ck.

Adaboosting is probably the most successful boosting algorithm. It creates an en-
semble of fixed classifiersCk,k∈{1,2, . . . ,K}, as follows. Let T∗(i), i∈{1,2, . . . ,N},
denote the individual samples in T∗. At the kth iteration, each sample T∗(i) is assigned
a weight wk(i). Together, the training samples T∗(i) and the weights wk(i) constitute a
weighted training set Tk. At the kth iteration we create a fixed classifier Ck by training
a parametric classifier S on the weighted training set Tk. For the next iteration (k+1)
we update wk(i), i ∈ {1,2, . . . ,N}, by increasing the weight of wk(i) if Ck incorrectly
classifies T ∗(i) and decreasing the weight of wk(i) if Ck correctly classifies T ∗(i).

The following is the pseudo-code for the two-class adaboost algorithm:

Example 11.3. Adaboost Algorithm

Initialize w0(i) = 1/N, i ∈ {1,2, . . . ,N}
For k = 0 : K

Generate Ck by training S on a weighted
training set Tk

Find samples T ∗(i) which are misclassified by Ck:

δk(i) =
{

1 if Ck misclassifies T ∗(i)
0 otherwise.

Calculate EK and βk:
Ek = ∑N

i=1δk(i)wk(i), βk = Ek/(1−Ek)
Update the weight vector:

wk+1(i) = wk(i)(δk(i)+ (1− δk(i))βk)
Normalize wk+1: wk+1(i) = wk+1(i)/∑N

i=1 wk+1(i)
end

Given the classifiers Ck,k ∈ {1,2, . . . ,K}, we classify a test sample as follows:
Let Dk be the classification of the test sample obtained with the classifier Ck. Then
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we fuse the Dk using a weighted majority-vote rule, where the weight given to each
classifier Ck is proportional to its accuracy on the weighted training set used to train
Ck. The final classification of the test sample is ˜D:

˜D = l if
K

∑
k=1

log(1/βk)δ (Dk, l)≥ 1
2

K

∑
k=1

log(1/βk) .

where

δ (a,b) =
{

1 if a = b ,
0 otherwise .

Adaboost is widely used in classification applications. Since its introduction in 1997
[2] it has established itself as a high-performance general purpose classifier. How-
ever, in noisy situations, such as those with label noise, the adaboost algorithm may
perform poorly. In this case we may use the ave2boost algorithm. This is a modified
version of adaboost specifically designed for noisy situations. In ave2boost we reg-
ulate how the weight vector wk is updated and we modify the weighted-vote rule.
For the sake of completeness we give the pseudo-code for ave2boost:

Example 11.4. Ave2boost Algorithm [8].

Initialize w0(i) = 1/N, i ∈ {1,2, . . . ,N}
For k = 0 : K

Generate Ck by training S on weighted
training set Tk

Find samples T ∗(i) which are misclassified by Ck:

δk(i) =
{

1 if Ck misclassifies T ∗(i)
0 otherwise.

Calculate Ek,βk and γk:
Ek = ∑N

i=1δk(i)wk(i), βk = Ek/(1−Ek), γk = 2(1−Ek)k+1
2Ekk+1

Update the weight vector:
wk+1(i) = wk(i)(δk(i)+ (1− δk(i))βk)

Calculate regularization factors:
vk+1(i) = wk+1(i)/∑N

i=1 wk+1(i)
Normalize wk+1: wk+1(i) = (kwk+1(i)+ vk+1(i))/(k + 1)

end
Classify test sample with each Ck:

Dk = l if Ck identifies test sample as belonging
to the lth class

Final classification of test sample is:
˜D = l if ∑K

k=1 log(1/(βkγk))δ (Dk, l) ≥ 1
2 ∑

K
k=1 log(1/(βkγk))

where δ (Dk, l) = 1 if Dk = l, otherwise δ (Dk, l) = 0.
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11.7 Viola-Jones Algorithm

The conventional adaboost algorithm uses only one parametric classifier S. Viola
and Jones (VJ) [10] remove this restriction and use instead M parametric classi-
fiers Sm,m ∈ {1,2, . . . ,M}. In each iteration k,k ∈ {1,2, . . . ,K}, we select one fixed
classifier Ck as follows:

1. Generate M fixed classifiers ck,m,m∈ {1,2, . . . ,M}, by training Sm,m∈ {1,2, . . . ,
M}, on the weighted training set Tk.

2. Select the fixed classifier with the smallest weighted error:

Ck = ck,m if m = argmin
m

N

∑
i=1
δk,m(i)wk(i) ,

where

δk,m(i) =
{

1 if ck,m misclassifies T ∗(i) ,
0 otherwise .

11.8 Boosted Object Detection

The VJ algorithm was originally developed for real-time object detection. In this
application the number of parametric classifiers Sm,m ∈ {1,2, . . . ,M}, is very large.
For example, in typical application concerning face detection in an input image, M≈
180000 and special attention must therefore be paid to generating and efficiently
training the Sm.

The boosted object detection algorithm works as follows. We create N training
samples T ∗(i), i∈{1,2, . . . ,N}, by dividing several training images into overlapping
blocks of size L×L. Each block Bi constitutes a training sample T ∗(i), where

y(i) =
{

1 if Bi contains an object ,
0 otherwise .

In each iteration k of the algorithm, we probe the blocks Bi, i ∈ {1,2, . . . ,N}, with a
L×L ternary mask φm (Fig. 11.1) and compare the result to a threshold θ :

dk,m(i) =
{

1 if p∑(x,y) φm(x,y)B(x,y)≥ pθ ,
0 otherwise .

where p is a polarity variable (p=−1 or +1) which determines if the (∑(x,y) φk,m(x,y)
×B(x,y)) should be greater, or smaller, than θ . We fix the polarity variable p and the
threshold θ by minimizing the weighted error:

ek,m =
N

∑
i=1

wk(i)|dk,m(i)− y(i)| .
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(a) (b) (c)

(d) (e)

(f) (g)

Fig. 11.1 (a)-(e) Show five basic masks which contain only −1 and +1 values. (f) Shows
a ternary mask φm obtained by placing the first basic mask in a block of zeros. (g) Show a
ternary mask φl obtained by scaling the first basic mask and placing it in a block of zeros. In
the figure, white, black, and gray stand, respectively, for values of +1, −1 and 0.
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The following example is the pseudo-code for the Viola-Jones algorithm.

Example 11.5. Viola-Jones Object Detection Algorithm [6, 10].

1. Extract the features fm(i) = ∑(x,y) φm(x,y)Bi(x,y),m ∈ {1,2, . . . ,M}, for
each training block B(i), i ∈ {1,2, . . . ,N}.

2. Initialize the weight w1(i) for each training block i:

w1(i) =
{

1/(2Ntrue) if B(i) contains an object ,
1/(2Nf alse) if B(i) does not contain an object ,

where Ntrue is the number of training blocks which contain an object and
Nf alse is the number of training blocks which do not contain an object.

3. For k = 1 : K perform the following:
a. Normalize the weights wk(i):

wk+1(i) = wk(i)/
N

∑
i=1

wk+1(i) .

b. For each features fm create a fixed classifier ck,m by training Sm on the
weighted error:

ek,m =
N

∑
i=1

wk(i)|dk,m(i)− y(i)| ,

c. Feature selection. Choose the fixed classifier Ck with the lowest
weighted error Ek:

Ck = ck,m

Ek = ek,m

}

if m = argmin
n

(ek,n) ,

d. Update the weights wk(i):

wk+1(i) = wk(i)β
(1−Δk(i))
k .

where βk = Ek/(1−Ek) and

Δk(i) =
{

1 if Ck incorrectly classifies B(i) ,
0 otherwise .

4. For a test block B we separately classify it using the fixed classifiers Ck,k ∈
{1,2, . . . ,K}. If Dk,k ∈ {1,2, . . . ,K}, are the corresponding decisions, then
we combine the Dk to obtain a fused decision ˜D:

˜D =
{

1 if ∑K
k=1αkDk ≥ ∑K

k=1αk/2 ,
0 otherwise ,

where αk = log(1/βk).
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For real-time processing, the parametric classifiers Sm are constructed by scaling a
basic binary mask (containing only the values −1 and +1) and placing it anywhere
in a L×L background of zeros. This method of construction facilitates real-time pro-
cessing by using method of integral images which we now explain in the following
example.

Example 11.6. Integral Image. Given an L×L image block B with pixel gray-
levels B(x,y),x,y ∈ {1,2, . . . ,L}, we pre-compute the following sum:

IΣ (x,y) =
x

∑
u=1

y

∑
v=1

B(u,v) .

Then the feature value f (B) =∑(x,y) B(x,y)φ(x,y), corresponding to the mask
φ shown in Fig. 11.2 may be efficiently calculated in four operations:

f (B) = IΣ (x2,y2)− IΣ(x1,y1)− (IΣ(x4,y4)− IΣ(x3,y3)) .

(x
1
,y

1
)

(x
2
,y

2
)

(x
4
,y

4
)

(x
3
,y

3
)

Fig. 11.2 Shows a ternary mask φ obtained by placing a binary mask in a block of zeros. In
the figure white, black and gray stand, respectively, for values of +1, −1 and 0. The top left-
hand corner and bottom right-hand corner of the +1 block are (x1,y1) and (x2,y2). Similarly,
the top left-hand corner and bottom right-hand corner of the −1 block (x3,y3) and (x4,y4).

11.9 Software

STPRTOOL. A statistical pattern recognition toolbox. Authors: Vojtech Franc
and Vaclav Hlovac.
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11.10 Further Reading

A modern book devoted to ensemble methods is [7]. Ref. [4] is a detailed report on
implementation of the Viola-Jones algorithm for real-time object detection. For a
recent extension of the Viola-Jones algorithm for object detection see [9]
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Chapter 12
Image Thresholding

Abstract. The subject of this chapter is image thresholding in which we transform
an input image, A, into a binary image B, where the pixel gray-levels in B are re-
stricted to {0,1}. If am is the gray level of the mth pixel in A, then the corresponding
value in B is

bm =
{

1 if am ≥ tm ,
0 otherwise ,

where tm is the threshold value for the mth pixel. The thresholds tm,m∈ {1,2, . . . ,M},
may all be equal to a global threshold tG or they may vary locally (i. e. from pixel to
pixel). In this chapter we shall concentrate on unsupervised thresholding methods.
These are thresholding algorithms in which we only use information contained in the
current input image to calculate tm and tG.

12.1 Global Thresholding

Let A denote a given input image, where am denotes the gray-level of the mth pixel.
Then the pixels in the image are divided into two groups: “low” intensity pixels
whose gray-levels are less than, or equal to, a threshold t and “high” intensity pixels
whose gray-levels are greater than t. We follow [12] and categorize the thresholding
methods into five groups as follows:

Histogram-based Methods. These methods analyze the shape and features of the
image histogram.

Cluster-based Methods. These methods cluster the pixel gray-levels into two
parts as background and foreground pixels.

Entropy-based Methods. The methods use the entropy of the histogram or cross-
entropy between input image and the thresholded image to find an optimal
threshold.
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Object Attribute-based methods. The methods use a measure of similarity be-
tween the gray-level and the binarized images.

Spatial-based Methods. The methods use a higher-order probability distribution
to model the correlation between pixels.

In some applications we find it useful to modify the input image before thresholding.
The following example describes one such application involving the estimation of
raindrop sizes.

Example 12.1. Histogram Modification [13]. Rainfall estimates often require
an estimate of the distribution of raindrop sizes. Unfortunately image irreg-
ularities mean the size estimates are often noisy and inaccurate. In [13] the
image irregularities are reduced by applying the following iterative histogram
modification algorithm to the raindrop images.

The algorithm iteratively sharpens the peaks of the input image histogram
by considering the number of pixels Hi having a particular gray-level i and
comparing it with H̄i:

H̄i =
1

2R

(

i−1

∑
k=i−R

Hi +
i+R

∑
k=i+1

Hi

)

,

where H̄i is the average number of pixels in the neighboring R bins on either
side of i. Whenever Hi > H̄i, we shift 
xHl� pixels from the lth bin to the
neighboring bin nearest to the ith bin, where

x =
Hi− H̄i

Hi
.

12.2 Statistical Algorithms

Many of the global thresholding algorithms are statistical in nature. In this case, the
threshold t is found by analyzing the image histogram H = (H0,H1, . . . ,HK−1)T ,
or equivalently, the probability distribution p = (p0, p2, . . . , pK−1)T , where Hk is
the number of pixels in the input image whose gray levels are equal to k [1] and
pk = Hk/∑K−1

l=0 Hl .
Fig. 12.1 shows binary images Bk,k ∈ {1,2, . . . ,K}, obtained by thresholding an

input image I using K different global thresholding algorithms.

1 For an 8-bit deep input image the gray-levels are 0,1, . . . ,255, i. e. K = 256.
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(a) (b)

(c) (d)

(e) (f)

Fig. 12.1 (a) Shows an input image I. (b)-(e) Shows the binary image obtained by threshold-
ing I using the Otsu, Kittler-Illingsworth, Kapur and Tsai thresholding algorithms. (f) Shows
the binary image obtained by thresholding I using a maximum likelihood algorithm in which
we assume a mixture of two Gaussian distributions [1].
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12.2.1 Ridler-Calvard

Ridler and Calvard [10] describe an iterative heuristic thresholding technique. The
initial threshold, t, is set equal to the mean pixel gray-level μ̄:

μ̄ =
K

∑
k=0

kHk/
K

∑
k=0

Hk .

Thereafter, the threshold value tk for the kth iteration is given by:

tk =
μ0(tk)+ μ1(tk)

2
,

where μ0(tk) and μ1(tk) are, respectively, the mean gray-levels of the pixels which
lie below and above the threshold tk.

12.2.2 Otsu

According to Otsu [9] we select a threshold t which minimizes the within-group
variance σ2

W (t) of the pixels. Mathematically, σ2
W (t) is defined as follows:

σ2
W (t) = P0(t)σ2

0 (t)+ P1(t)σ2
1 (t) ,

where P0(t) and P1(t) are, respectively, the proportion of pixel gray-levels which lie
below, and above, the threshold t and σ2

0 (t) and σ2
1 (t) are, respectively, the variance

of the pixel gray-levels which lie below, and above, the threshold t. The optimum
threshold may be found by an exhaustive search. In Ex. 6.6 we illustrate the action
of the Otsu algorithm to segment an input image into areas of background and areas
of foreground.

For an efficient method of implementating the Otsu algorithm see [4].

12.2.3 Kittler-Illingworth

According to Kittler and Illingworth [7] we select a threshold t which minimizes a
criterion J(t), where

J(t) = 1 + 2(P0(t) lnσ0(t)+ P1 lnσ1(t))−2(P0(t) lnP0(t)+ P1(t) ln P1(t)) .

where P0(t) and P1(t) are, respectively, the proportion of pixel gray-levels which
lie below and above the threshold t. If the below threshold and the above thresh-
old pixels each follow a Gaussian distribution, then the criterion J(t) represents the
average pixel classification error rate. As the threshold t is varied, the parameters
P0(t),P1(t),σ2

0 (t) and σ2
1 (t) change. The problem of minimum error threshold se-

lection is reduced to computing J(t) for all t, and finding its minimum value.
Note. Even if the assumption of a bimodal normal distribution is valid , the model

parameters are biased estimates of the true values, as the tails of the overlapping
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distributions are truncated. Thus, the correctness of the estimated threshold relies
on this overlap being small. However, the most challenging images are those where
the histograms do not have two well separated modes [3].

12.2.4 Kapur

According to Kapur [6] we select a threshold t which maximizes the sum of the
entropies of pixel gray-levels which lie below the threshold t and which lie above
the threshold t. Mathematically, the sum of the entropies is

ψ(t) = ln(P0(t)P1(t))+
Ht

P0(t)
+

HG−Ht

P1(t)
,

where

Ht = −
t

∑
k=0

pk ln pk ,

HG = −
K−1

∑
k=0

pk ln pk .

The discrete value of t which maximizes ψ(t) is the threshold value which maxi-
mizes the information between object and background.

12.2.5 Tsai

According to Tsai [14] we select a threshold t such that the binary image has the
same first three moments as the input image, where the ith moment of the image I is

mi =
K−1

∑
k=0

ki pk ,

and, by definition, m0 = 1.

Example 12.2. Change Detection in Remotely Sensed Imagery [8]. The most
common methodology to carry out an unsupervised change detection in re-
motely sensed imagery is to compare two spatially aligned multitemporal re-
mote sensing images I1(m,n) and I2(m,n) taken at two different dates over
the same geographical area. The result of the comparison is a binary image
B(m,n) where

B(m,n) =
{

1 if the pixel (m,n) is classified as “changed” ,
0 otherwise .

(12.1)
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One way of generating B is to threshold the difference image D = |I1− I2| us-
ing one of the above global thresholding algorithms. A more powerful method
is to match the local gray-level distributions in the two images: For each pixel
(m,n) we establish a window W of size (2L+1)×(2L+1) centered on (m,n).
Let H1 and H2 denote, respectively, the local distributions, or histograms, of
the pixel gray-levels I1(i, j) and I2(i, j),(i, j) ∈W . We then compare H1 and
H2 using an appropriate similarity measure (see Chapt. 14). We often use the
mutual information MI(H1,H2) or the Kullback-Leibler distance KL(H1,H2)
for this purpose.

For a method of combining multiple thresholded images using an unsupervised
weighted majority vote rule see Ex. 10.7.

12.3 Local Thresholding

In general local thresholding algorithms work by moving a sliding window over
the input image. In each window we calculate a threshold t using one of the above
global thresholding algorithms. Then t is applied to the center pixel of the window.

However this approach suffers from the drawback that there is no principled
method for choosing the local window size. A recent alternative method is the fol-
lowing “ensemble-learning” algorithm (see Sect. 10.7) which may be used to con-
vert the global thresholding algorithms into local algorithms.

Given an input image I we randomly select K image patches from I. The size and
location of the image patches is random and the patches may overlap. Thus a given
pixel (m,n) may be present in L image patches, where 0≤ L≤K. We threshold each
image patch using a global thresholding algorithm. Then for each pixel (m,n) we
calculate the number of times it has a label of one. If the number of times is greater
than, or equal to, L/2, then we set B(m,n) equal to one, otherwise B(x,y) = 0.

12.4 Software

HISTHRESH. HistThresh is a matlab toolbox for global image thresholding. Au-
thor is Antti Niemisto.

12.5 Further Reading

Recently the expectation-maximization (EM) algorithm has been used for image
thresholding assuming the foreground and background pixels follow a given distri-
bution. In [1] the foreground and background pixels are assumed to follow a general-
ized Gaussian distribution. A comprehensive survey of image thresholding methods
is [12]. A survey of entropy and relative entropy thresholding methods is [2]. Two
earlier reviews are: [5] and [11].
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Chapter 13
Image Key Points

Abstract. The subject of this chapter is image key points which we define as a dis-
tinctive point in an input image which is invariant to rotation, scale and distortion.
In practice, the key points are not perfectly invariant but they are a good approxima-
tion. To make our discussion more concrete we shall concentrate on two key point
algorithms: SIFT and SURF and their use in spatial alignment.

13.1 Scale-Invariant Feature Transform

The scale-invariant feature transform [5] (SIFT) algorithm provides a robust method
for extracting distinctive features from an input image I which are invariant to ro-
tation, scale and distortion. These points (known as “key-points”) are found by de-
tecting local extrema in a multi-scale representation of I:

{D(m,n|σ1),D(m,n|σ2), . . . ,D(m,n|σK)} , (13.1)

where D(m,n|σk) is the difference-of-Gaussian (DoG) representation of I at a scale
σk:

D(m,n|σk) = I(m,n)⊗G(σk)− I(m,n)⊗G(σk+1) ,

and I(m,n)⊗G(σk) denotes the convolution of I(m,n) with the two-dimensional
zero-mean Gaussian G(σk) and σk+1 = 21/3σk. The parameter K is specified by the
user and is based on the maximum width in pixels.

The local extrema in (13.1) are defined as points (m,n|σk) for which D(m,n|σk)
is greater than its 26 neighbors. This includes eight immediate neighbors from
the D(p,q|σk) and nine neighbors from D(p,q|σk+1) and nine neighbors from
D(p,q|σk−1). This is followed by accurate interpolation of scale space using the
Taylor series expansion upto a second degree of D(m,n|σk) in the neighborhood of
(m,n) and σk.

Stability of the extrema is further ensured by rejecting key-points with low con-
trast and key points localized along edges. For a descriptor of the key-point, an
orientation histogram is computed of the area surrounding the key-point. Gradient
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magnitude and the weight of a Gaussian window originating at the key-point add to
the value of each sample point within the considered region.

Mathematically the SIFT operator is computed by partitioning the image region
surrounding each detection key point into a 4×4 grid of subregions, and computing
an orientation histogram of 8 bins in each sub-region (Fig. 13.1).

Fig. 13.1 Shows the formation of the SIFT descriptor for a key-point located at (m,n). In the
figure we show the 4×4 sub-regions with their orientation vectors.

The grid is square, with the x-axis oriented along the key-point gradient direc-
tion and the width of the grid being approximately 12 times the detected scale of
the key-point. Within each subregion, the gradient orientation of each pixel is en-
tered into the orientation histogram, with weighted vote proportional to the gradient
magnitude. A normalized 128 component vector is formed by concatenating the 16
region containers.

13.1.1 Hyperspectral Images

The SIFT operator has been extended to color images [1, 3] and hyperspectral im-
ages [6] as follows. Given a hyperspectral image

I(m,n|l), l ∈ {1,2, . . . ,L} ,

with L bands, we separately perform the DoG operation on each band [6]:

D(m,n|l) = I(m,n|l)⊗G(σk)− I(m,n|l)⊗G(σk+1) ,

and then combine the Dl(m,n|l) using a non-linear function f :
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˜D(m,n) = f (D(m,n|1),D(m,n|2), . . . ,D(m,n|L)) .

The function ˜D(m,n) is then processed in the same way as D(m,n) is processed
in the conventional SIFT operator. In hyperspectral images the number of bands L
may be one or two hundred. In this case, we may reduce the computational load by
reducing the number of bands by applying a PCA operator [6].

For the non-linear function f we may use several different alternatives. Two sim-
ple functions are:

˜D(m,n) =

⎧

⎨

⎩

∑L
l=1 |D(m,n|l)|/L ,

∑L
l=1 wl |D(m,n|l)|/∑L

l=1 wl ,

where

wl =
{

1 if D(m,n|l) > median(D(m,n|1),D(m,n|2), . . . ,D(m,n|L)) ,
0 otherwise .

13.2 Speeded-Up Robust Feature

The speeded-up robust feature (SURF) [2] algorithm is a variation of the SIFT al-
gorithm. Its major difference includes using a Hessian matrix:

H(x,y) =
(

Ixx(x,y|σ) Ixy(x,y|σ)
Ixy(x,y|σ) Iyy(x,y|σ)

)

,

as an interest point detector, where Ixx(x,y|σ) is the convolution of the Gaussian
second-order derivative ∂ 2G(σ)/∂x2 with the input image at (x,y) and similarly
for Ixy(x,y|σ) and Iyy(x,y|σ). SURF uses integral images (see Ex. 11.6) to calculate
H(x,y). This makes SURF much faster than SIFT but with comparable performance.

13.3 Complex Wavelet Transform

The dual-tree complex wavelet transform (see Chapt. 8) provides us with a radically
different type of key-point detector [4].

Example 13.1. Dual-Tree Complex Wavelet Transform for Key-Point Detec-
tion [4]. The dual-tree CWT decomposition of an M×N input image I re-
sults in a decimated dyadic decomposition into L levels, where each level
l is a complex image of size M/2l ×N/2l . Thus at each (decimated) loca-

tion (i, j) in level l, we have a set of six complex coefficients: y(m)
l (i, j) ≡

ρ (m)
l eiθm ,m ∈ {1,2, . . . ,6}, corresponding to the M = 6 orientations θm =
{15o,45o,75o,105o,135o,165o}. We may define a key-point energy measure
El(i, j) as
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El(i, j) = α l(
M

∏
m=1

ρ (m)
l

)β
,

where α and β are two parameters whose recommended values are: α = 1
and β = 0.25. We then use the El(i, j) values as indicating the presence, or
otherwise, of a key-point at level l and decimated location (i, j).

13.4 Software

SIFT. Matlab routine for SIFT operator. Author: Andrea Vedaldi.
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Chapter 14
Image Similarity Measures

Abstract. The subject of this chapter is image similarity measures. These measure
provide a quantitative measure of the degree of match between two images, or im-
age patches, A and B. Image similarity measures play an important role in many
image fusion algorithms and applications including retrieval, classification, change
detection, quality evaluation and registration. For the sake of concreteness we shall
concentrate on intensity based similarity measures.

14.1 Introduction

Comparing two input images, or image patches, is a fundamental operation in many
image fusion algorithms [21, 25, 26]. A meaningful image similarity measure [1] has
two components: (1) A transformation T . This extracts the characteristics of an input
image and represents it as multi-dimensional feature vector. (2) A distance measure
D. This quantifies the similarity between the two images, where D is defined in the
multi-dimensional feature space.

Mathematically, we represent a similarity measure between two images A and B
as

S(A,B) = D(T (A),T (B)) .

The following example illustrates the use of a similarity measure in a content-based
image retrieval (CBIR) system.

Example 14.1. A CBIR System [7, 13]. A CBIR system aims to recover images
from an image repository or database, according to the user’s interest. In the
CBIR system each image in the database is represented as a multi-dimensional

1 We use the term “similarity measure” as a general term which includes both similarity
measures (which reach their maximum value when A = B) and dissimilarity, or distance,
measures (which reach their minimum value when A = B). Apart from mutual information
MI all the measures discussed in this chapter are dissimilarity measures.
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feature vector which is extracted from a series of low-level descriptors, such
as a color histogram, a co-occurrence matrix, morphological features, wavelet-
based descriptors or Zernike moments. The subjective similarity between two
pictures is quantified in terms of a distance measure which is defined on the
corresponding multi-dimensional feature space. Common distance measures
are: the Minkowski distance, the Manhattan distance, the Euclidean distance
and the Hausdorff distance.

A similarity measure S(A,B), or a distance D(T (A),T (B)), is metric when it obeys
the following:

1. S(A,B)≥ 0 or D(T (A),T (B))≥ 0 ,
2. S(A,B) = 0 or D(T (A),T (B)) = 0 if, and only if, A = B ,
3. S(A,B) = S(B,A) or D(T (A),T (B)) = D(T (B),T (A)) ,
4. S(A,C)≤ S(A,B)+ S(B,C) or

D(T (A),T (C))≤ D(T (A),T (B))+ D(T (B),T (C)) .

Many studies on image similarity [21] suggest that practical and psychologically
valid measures of similarity often obey the first three conditions but do not obey the
fourth condition (known as the triangle inequality) and are therefore non-metric.

In designing the similarity measure we choose the transformation T according to
what image characteristics are important to the user. The following example illus-
trates these concerns for a stereo matching algorithm.

Example 14.2. Stereo matching Algorithm [11]. In a stereo matching, or dis-
parity, algorithm we compare two images A and B which are two views of the
same scene taken from slightly different viewing angles. The image similarity
measures S(A,B) should therefore be insensitive to changes due to specular
reflections, occlusions, depth discontinuities and projective distortions [5, 11].
At the same time, S(A,B) should be sensitive to any other changes in A and B.

It is should be clear that there is no universal similarity measure which can be used
in all applications. In selecting a suitable similarity measure we find it useful to
broadly divide them into two groups:

Global Measure. These measures return a single similarity value which describes
the overall similarity of the two input images. The global measures may be fur-
ther divided into measures which require the input images to be spatially regis-
tered and those which do not require the input images to be spatially registered.

Local Measures. These measures return a similarity image or map which de-
scribes the local similarity of the two input images. By definition the local simi-
larity measures require the input images to be spatially registered.
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Although useful, the above division of the similarity measures into two classes
should not be regarded as absolute. In many cases, we may convert a global similar-
ity measure into a local similarity measure and vice versa. The following example
illustrates a case of the former.

Example 14.3. Global to Local Similarity Measures. The mean square error
(mse) is a simple global similarity measure. Given two M×N spatially regis-
tered input images A and B, the global mse measure is defined as follows:

mseG =
M

∑
m=1

N

∑
n=1

(A(m,n)−B(m,n))2 /MN .

Clearly we may apply the mse measure to individual pixels. In this case we
obtain a local mse map mseL(m,n) which is defined as follows:

mseL(m,n) = (A(m,n)−B(m,n))2 .

More generally, we may calculate the mse over a local window. Let W (m,n)
define a L×L window centered at (m,n), where we assume L is an odd number
(Fig. 14.1). Then we may designate the gray-levels of the pixels in A which
lie in W (m,n) as ˜A(p,q|m,n), p,q ∈ {1,2, . . . ,L}, where

˜A(p,q|m,n) = A(m+ p−1−
L/2�,n+q−1−
L/2�) .

Similarly, ˜B(p,q|m,n), p,q ∈ {1,2, . . . ,L} designates the gray-levels of the
pixels in B which lie in W (m,n). In this case, we define a local windowed
mse map, mseW (m,n), as follows:

mseW (m,n) =
L

∑
p=1

N

∑
q=1

(

˜A(p,q|m,n)− ˜B(p,q|m,n)
)2

/L2 ,

=
m+
L/2�
∑

p=m−
L/2�

n+
L/2�
∑

q=n−
L/2�
(A(p,q)−B(p,q))2 /L2 .

Example 14.4. Local to Global Similarity Measures. Given two spatially reg-
istered M×N binary images A and B, a local similarity algorithm returns a
local similarity measure SL(m,n) for each pixel (m,n),m ∈ {1,2, . . . ,M},n ∈
{1,2, . . . ,N}. We may obtain a global similarity measure by aggregating the
SL(m,n) values, e. g. by finding the global maximum of the SL(m,n) values:

SG = max
(m,n)

(SL(m,n)) .
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Fig. 14.1 Shows an input image with gray-levels A(m,n),m,n ∈ {1,2, . . . ,5}. Centered
at (3,4) we have a 3 × 3 window W (3,4). The gray-levels in W (3,4) are ˜A(3,3) =
{A(2,3),A(2,4),A(2,5),A(3,3),A(3,4),A(3,5),A(4,3),A(4,4),A(4,5)}.

We start our discussion with the global similarity measures which do not require
image registration.

14.2 Global Similarity Measures without Spatial Alignment

In this section we consider global similarity measures which do not require spa-
tial alignment. These are similarity measures which compare the probability dis-
tributions or gray-level histograms of the two images. In general these similarity
measures are robust against changes in illumination. However, because they do not
require spatial alignment, their discrimination power is low.

14.2.1 Probabilistic Similarity Measures

The probabilistic similarity measures are global measures which do not require the
input images to be spatially registered. By converting the input images to probability
distributions, they are robust against changes in illumination and are widely used
when the images have been captured under widely varying illumination and viewing
conditions or by different sensor types.

Let A and B denote the two input images. We convert the pixel gray-levels a ∈
A and b ∈ B to a common gray scale x (see Chapt. 6). Let p(x) and q(x) denote
the probability of a transformed gray-level x appearing in A and B, then several
commonly used probabilistic similarity measures are:
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Chernoff

SC = − log
∫

x
pα(x)q1−α(x)dx , 0 < α < 1 .

Bhattacharyya

SB = − log
∫

x

√

p(x)q(x)dx .

Jeffrey’s-Matusita

SJM =
√

∫

x

(
√

p(x)−
√

q(x)
)2

dx .

Kullback-Leibler

SKL =
∫

x
p(x) log

p(x)
q(x)

dx .

If the images A and B are spatially registered then we may use the sliding window
procedure to generate local probabilistic similarity maps. Let W (m,n) define a lo-
cal L× L window centered at (m,n). If ˜A and ˜B designate the gray-levels of the
pixels in A and B which lie in W (m,n) (cf. Ex. 14.3) and p̃(x) and q̃(x) designate
the corresponding transformed local (window) probability densities, then the local
probabilistic similarity maps are

˜SC(m,n) =
∫

x
p̃α(x)q̃1−α(x)dx ,

˜SB(m,n) =
∫

x

√

p̃(x)q̃(x)dx ,

˜SJM(m,n) =

√

∫

x

(

√

p̃(x)−
√

q̃(x)
)2

dx ,

˜SKL(m,n) =
∫

p̃(x) log
p̃(x)
q̃(x)

dx ,

Note The typical window size used in the local probability similarity measures is
20× 20. This is needed to ensure we have sufficient pixels to accurately calculate
the local probability densities p̃(x) and q̃(x).

Example 14.5. Color Image Segmentation [17]. The goal of image segmenta-
tion is to decompose the input image into a set of meaningful or spatially co-
herent regions sharing similar attributes. The algorithm is often a crucial step
in many video and computer vision applications such as object localization or
recognition. A simple image segmentation is the K-means cluster algorithm in
which we divide the pixels into K clusters. Given a input image I in a given
color space, we may characterize each pixel (x,y) in I by its local histogram
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˜H(x,y):
˜H(x,y) = ( ˜H1, ˜H2, . . . , ˜HM)T ,

where ˜Hm is the number of pixels in the local window W (x,y) whose color
values fall in the mth bin. We then apply the K-means algorithm as follows.
Initially we define K cluster centers by randomly selecting K histograms. Let
C1,C2, . . . ,CK denote the K cluster centers or histograms. Each pixel (x,y) is
associated with a given cluster

δk(x,y) =
{

1 if (x,y) is associated with Ck ,
0 otherwise .

Then the K-means algorithm attempts to find the set of cluster centers Ck,k ∈
{1,2, . . . ,K}, such that the overall error

E = ∑
(x,y)

K

∑
k=1

δk(x,y)D
(

˜H(x,y),Ck

)

,

is a minimum, where D( ˜H(x,y),Ck) is an appropriate distance (similarity)
measure between ˜H(x,y) and Ck. Mignotte [17] recommends using the Bhat-
tacharyya distance.

14.2.2 χ2 Distance Measure

If we represent the transformed distributions p(x) and q(x) as discrete distributions
pk and qk, then we may use the χ2 distance as a dissimilarity measure.

Let A and B denote two input images with gray-levels a∈A and b∈B. We convert
the gray-levels a ∈ A and b ∈ B to a discrete common scale x by defining K pairs
of corresponding bins [a′k,a

′′
k ) and [b′k,b

′′
k ). Then the χ2 distance between gray-level

distributions of A and B is

χ2 =
K

∑
k=1

(mk−nk)
2

mk + nk
, (14.1)

where mk is the number of gray-levels a ∈ A which fall in the interval [a′k,a
′′
k ) and

nk is the number of gray-levels b ∈ B which fall in the interval [b′k,b
′′
k ).

Example 14.6. Face Recognition With Local Binary Patterns [1]. Ref. [1] de-
scribes an efficient image representation based on the local binary pattern
(LBP) texture features (see Sect. 3.4). Given a training set of K facial im-
ages A(k),k ∈ {1,2, . . . ,K}, we divide each image Ak into R regions. Note: We
assume the training images are spatially aligned.
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For each pixel (m,n) in A(k) we extract its local binary pattern LBP(m,n)
which is a label l, l ∈ {1,2, . . . ,L}. Then for each region r,r ∈ {1,2, . . . ,R}, we
construct a histogram (vector)

H(k)
r = (H(k)

r (1),H(k)
r (2), . . . ,H(k)

r (L))T ,

where H(k)
r (l) is the number of pixels in the rth region of Ak which have a LBP

label equal to l. Each training image A(k) is thus represented by R histograms

H(k)
r ,r ∈ {1,2, . . . ,R}. Given a test image B we spatially align it to the train-

ing images and carry out the above process. Let hr,r ∈ {1,2, . . . ,R}, denote
the corresponding histograms (vectors). Then we identify the test image B as
belonging to the k∗th individual if

k∗ = argmin
k

( R

∑
r=1

χ2(hr,H
(k)
r )

)

,

where

χ2(hr,H
(k)
r ) =

L

∑
l=1

(hr(l)−H(k)
r (l))2

hr(l)−H(k)
r (l)

.

The method showed high performance on difficult face recognition experi-
ments.

The original χ2 distance as defined in (14.1) defined between histograms HA =
(m1,m2, . . . ,mK) and HB = (n1,n2, . . . ,nK) and not between the discrete probability
distributions pk and qk. However, (14.1) may be easily converted to a probability
distance measure by replacing mk and nk by pk = mk/M and qk = nk/N, where
M = ∑K

k=1 mk and N = ∑K
k=1 nk.

Example 14.7. Probability Binning [19]. In probability binning we use vari-
able width bins such that each bin contains the same relative number of obser-
vations of A. If pk = mk/M and nk = qk/N denote, respectively, the relative
number of observations of A and B in the kth bin, where M = ∑K

k=1 mk and
N = ∑N

k=1 nk, then m1 = m2 = . . . = mK and the probability binning χ2 test is

χ2
PB =

K

∑
k=1

|pk−qk|2
pk + qk

.

Given χ2
PB we can define a normalized scale for it as follows. Let

T (χ2
PB) = max

(

0,
χ2

PB− μ
σ

)

,
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then T (χ2
PB) represents the difference between the probability distributions

of A and B as the number of standard deviations above μ , where μ =
K/min(M,N) is the minimum difference between F and G for which a confi-
dent decision of histogram difference can be made and σ =

√
K/min(M,N)

is an appropriate standard deviation for χ2
PB. Recently, Baggerly [3] has pro-

posed a more accurate scale as follows:

T (χ2
PB) =

2MN
M+N χ

2
PB− (K−1)

√

2(K−1)
.

As in (14.1) we may define a local χ2 measure:

˜χ2(x,y) =
K

∑
k=1

(m̃k(x,y)− ñk(x,y))
2

m̃k(x,y)+ ñk(x,y)
,

where m̃k(x,y), ñk(x,y) denote, respectively, the number of pixels in ˜A, ˜B which have
a gray-level which falls in the kth histogram bin.

14.2.3 Cross-Bin Distance Measures

The global similarity measures considered until now (SC, SB, SJM , SKL and χ2),
all suppose the gray-levels a and b are measured on a common gray-scale. These
similarity measures are therefore sensitive to any errors involved in defining the
common gray-scale.

A discrete similarity measure which is less sensitive to any errors involved in
defining a common gray-scale is the Earth Mover’s distance (EMD) [20, 23]: Let
mk and nk be the number of pixels in A,B which fall, respectively, in the kth his-
togram bin. Then the Earth Mover’s distance between m = (m1,m2, . . . ,mK)T and
n = (n1,n2, . . . ,nK)T , is defined as

dEMD(m,n) = min
αh,k

K

∑
h=1

K

∑
k=1

c(h,k) ,

subject to

αi j ≥ 0 ,

∑
k

αhk = mh ,

∑
h

αhk = nk ,

where c(h,k) is an appropriate cost function. The earth mover’s distance may be
understood as an optimization technique which finds the minimum transportation
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cost. In this case, c(h,k) is the cost of moving a unit mass from the hth bin to the
kth bin and αhk is the number of mass units carried from h to k.

Example 14.8. Mallow’s Distance [12]. If we use normalized distributions p =
(p1, p2, . . . , pK)T , where pk = mk/M and q = (q1,q2, . . . ,qK)T , where Qk =
nk/N, then the EMD becomes the Mallow’s distance [12]. If the histograms
are one-dimensional and we use the following cost function c(i, j) = |i− j|/K,
then

dmallow(p,q) = dEMD(p,q) =
1
K

K

∑
k=1

|Pk−Qk| ,

where

Pk =
k

∑
h=1

pk and Qk =
k

∑
h=1

qh .

The circular EMD [18] is a variant of the EMD which is used when one of the
variables is circular in nature e.g. an angle.

Example 14.9. Circular Earth Mover’s Distance [18]. If p and q are one-
dimensional and c(h,k) = |h− k|/K, then the corresponding circular EMD
is:

dCEMD = min
h∈{1,2,...,K}

(

1
K

K

∑
k=1

|˜Phk− ˜Qhk|
)

,

where

˜Phk =
{

∑k
i=h pi if k ≥ h ,

∑K
i=h pi +∑k

i=1 pi if k < h ,

˜Qhk =
{

∑k
i=h qi if k≥ h ,

∑K
i=h qi +∑k

i=1 qi if k < h ,

An important consideration in the χ2 and other histogram distance measures is the
optimal selection of the histogram bins. This is an important issue: If the bin width
is too narrow then the histogram is very noisy while if the bin width is too wide
then the histogram is too smooth. In both cases, the discrimination power of the
distance measure will be adversely affected. Recently [6] have described a simple
semi-empirical formula for estimating the optimal number of bins in a regular his-
togram. We assume the pixel gray-levels are defined in the interval [0,1]. If there are
N pixels, then the optimal number of bins is k∗:
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k∗ = argmax
k

(

L(k)−R(k)
)

,

where

L(k) =
k

∑
l=1

H(l) log2

(

kH(l)
N

)

,

R(k) = k−1 +(log2 k)2.5 .

We now consider global similarity measures which require spatial alignment of the
two input images A and B.

14.3 Global Similarity Measures with Spatial Alignment

In this section we consider the family of global similarity measures which require
spatial alignment of the two input images. These similarity measures tend to return
values change monotonically with increasing spatial misalignment. For this rea-
son, these similarity measures are often used for spatial alignment algorithms (see
Chapt. 4). We start with the mean square error (mse) and the mean absolute error
(mae) which are probably the simplest measures [2].

14.3.1 Mean Square Error and Mean Absolute Error

The mean square error (mse) and the mean absolute error (mae) are defined as fol-
lows:

mse =∑
k

(ak−bk)2/K ,

mae =∑
k

|ak−bk|/K ,

where ak and bk are, respectively, the gray-levels of the kth pixel in A and B.
The mse and mae should be used when the input images have been captured

with the same sensor under similar conditions, i. e. the photometric transformation
between corresponding pixel gray-levels should be close to the identity transforma-
tion. Both measures are sensitive to outliers although the mae is less sensitive (more
robust). In this case, we may robustify the mse and the mae by replacing the sum-
mations in the above equations by an α-trimmed summation:

2 The mse and mae increase with increasing misalignment. The correlation coefficient and
mutual information decrease with increasing misalignment.
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mseα =
1

K−2α

K−α
∑

k=α+1

d2
(k) ,

maeα =
1

K−2α

K−α
∑

k=α+1

|d(k)| .

where d(k) = dl if dl = |al−bl| is the kth largest absolute difference and α is a small
number. We often set α equal to 
K/20�.

14.3.2 Cross-Correlation Coefficient

The cross-correlation coefficient is defined as follows:

ρ = ∑k akbk
√

∑k a2
k∑k b2

k

. (14.2)

Sometimes we use a zero-mean cross correlation coefficient. This is defined as

ρZ = ∑k(ak− Ā)(bk− B̄)
√

∑k(ak− Ā)2∑k(bk− B̄)2
,

where Ā and B̄ are, respectively, the mean gray-levels of A and B.
The cross-correlation coefficients are more robust to changes of illumination than

the mse and mae. The cross-correlation coefficient should be used when the images
are captured by the same sensor and any changes in illumination may be approxi-
mated with a linear transformation. Many changes in illumination are not however
linear. In this case we must use mutual information and other ordinal similarity
measures.

The cross-correlation coefficients may be easily made robust against outliers [2].
For example, a robust version of (14.2) is

S′CC = ∑k ρkakbk
√

∑k ρA
k a2

k∑k ρB
k b2

k

.

where

ρA
k =

{

ak if ak < 1.345σA ,
1.345σAsgn(ak) otherwise ,

ρB
k =

{

bk if bk < 1.345σB ,
1.345σBsgn(bk) otherwise ,

ρk =
√

ρA
k ρ

B
k ,

and σA,σB are the standard deviations of the ak and bk values.
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14.3.3 Mutual Information

The mutual information [3] between two input images A and B is defined as follows:

MI(A,B) =
∫ ∫

pAB(a,b) log2
pAB(a,b)

pA(a)pB(b)
dxdy ,

where pA(a) is the probability a pixel (x,y) in A has a gray-level a, pB(b) is the
probability a pixel (x,y) in B has a gray-level b and pAB(a,b) is the probability a
pixel (x,y) in A has a gray-level a and the same pixel in B has a gray-level b.

In multi-modal applications no direct relationship between the input image inten-
sities can be assumed. In this case, similarity measures which rely on the probabilis-
tic relation and the distribution of the intensities in the input images is used. If the
input images have been captured by different sensors or by different spectral bands,
then the mutual information between two images A and B is used. Further details on
MI and how it is calculated is given in Sect. 4.6.

14.3.4 Ordinal Global Similarity Measures

Ordinal global similarity measures are based on order statistics. They do not use
the pixel gray-levels in A and B, but use instead the ordered gray-levels. In general,
these measure are insensitive to changes in illumination if the order of the gray-
levels is preserved. They are often used in applications involving change detection
or in applications where the images have been captured with two different sensors.

Two classical ordinal dissimilarity measures are the Spearman ρ measure and
Kendall’s τ measure [10]. If A,B each contain K pixels with gray-levels ak,bk,k ∈
{1,2, . . . ,K}, then these dissimilarity measures are defined, respectively, as

ρ = 1− ∑
K
k=1 |rA(k)− rB(k)|2

6K(K−1)
, (14.3)

τ =
K

∑
k=1

K

∑
l=1

sgn(ak−al)sgn(bk−bl)
K(K−1)

, (14.4)

where rA(k) and rB(k) denote, respectively, the rank of the kth pixel in A and B [4]

and

sgn(u) =

⎧

⎨

⎩

−1 if u < 0 ,
0 if u = 0 ,
1 if u > 0 .

Note: The definitions given in (14.3) and (14.4) assume no ties. For corrections nec-
essary if ties are present see e. g. [11]. Two additional ordinal dissimilarity measures
are the Kemeny-Snell dKS [15] and the Bhat-Nayar [5] dBN distance measures.

3 Mutual information is a similarity measure which reaches its maximum value when A = B
4 The ranks rA(k) and rB(k) are defined as follows. Suppose A and B each contain K pixels

with gray-levels ak,bk . Then rA(k) = l if ak is the lth largest gray-level in A and rB(k) = l
if bk is the lth largest gray-level in B.
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The Kemeny-Snell distance dKS compares the relative ranking of each ordered
pair of locations in one image with its relative ranking in the other image. Smaller
values of dKS indicate more agreement between the images.

Suppose A and B both contain K pixels with gray-levels ak,k ∈ {1,2, . . . ,K}, and
bk. Mathematically, dKS is defined as follows:

dKS(A,B) =
K

∑
k=1

K

∑
l=1

|φkl−ψkl | ,

where

φkl =

⎧

⎨

⎩

1 if ak > al ,
1
2 if ak = al ,
0 otherwise ,

and ψkl =

⎧

⎨

⎩

1 if bk > bl ,
1
2 if bk = bl ,
0 otherwise .

A normalized form of dKS is

d̂KS =
dKS

d̄KS
,

where d̄KS is the value of dKS if the pixel gray-levels occurring in A and B were
randomly distributed among the pixel locations in the two images.

Example 14.10. Kemeny-Snell Distance [15]. Given two one-dimensional im-
age patches

A = (24,12,14,7,50)T and B = (30,14,13,40,4)T .

The corresponding φkl and ψkl maps are

φkl =

⎛

⎜

⎜

⎜

⎜

⎝

0.5 1 1 1 0
0 0.5 0 1 0
0 1 0.5 1 0
0 0 0 0.5 0
1 1 1 1 0.5

⎞

⎟

⎟

⎟

⎟

⎠

and ψkl =

⎛

⎜

⎜

⎜

⎜

⎝

0.5 1 1 0 1
0 0.5 1 0 1
0 0 0.5 0 1
1 1 1 0.5 1
0 0 0 0 0.5

⎞

⎟

⎟

⎟

⎟

⎠

,

and the Kemeny-Snell distance is

dKS =
5

∑
k=1

5

∑
l=1

|ψkl−φkl|= 16 .

The Kemeny-Snell distance measure has proven efficient and useful for content-
based image retrieval applications (cf. Ex. 14.1).
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14.4 Local Similarity Measures

In this section we consider the family of local similarity measures. By definition,
these measures require the spatial alignment of the two input images A and B. In
Ex 14.3 we explained how we may convert a global similarity measure to a local
similarity measure. We may use the sliding window procedure to generate local
mse, mae, correlation coefficient, mutual information and dKS similarity measures.
In general the windows required for these similarity measures should be at least
20×20.

We now consider the Bhat-Nayer distance measure which is, by definition, a local
ordinal similarity measure. It therefore does not require such a large window size:
windows of 3×3 to 13×13 are common.

14.4.1 Bhat-Nayar Distance Measure

Let W (m,n) denote a L×L window centered at the pixel (m,n). If ˜A and ˜B denote,
respectively, the image pixels which lie in W (m,n) in images A and B. Then the
Bhat-Nayar (BN) distance measure computes the similarity of the two windows ˜A
and ˜B by comparing the rank permutations of their pixel gray-levels as follows.

Given the two windows ˜Aand ˜B, we rewrite them as image vectors ã= (ã(1), ã(2),
. . . , ã(K))T and ˜b = (˜b(1),˜b(2), . . . ,˜b(K))T , where K = L2. The corresponding rank
vectors are:

r̃A = (r̃A(1), r̃A(2), . . . , r̃A(K))T and r̃B = (r̃B(1), r̃B(2), . . . , r̃B(K))T .

Let k = r̃−1
A (h) if h = r̃A(k). Then we may define a composite rank vector s̃ as:

s̃ = (s̃(1), s̃(2), . . . , s̃(K))T ,

where
s̃(k) = r̃B(h) = r̃B

(

r̃−1
A (k)

)

.

Informally, s̃ is the ranking of B with respect to the ranks of A.
The BN distance measure is then

λBN = 1−2
maxk(dk)

K/2� ,

where

dk = k−
k

∑
h=1

J(s̃(h),k) ,

J(a,b) =
{

1 if a≤ b ,
0 otherwise .
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A modified BN distance measure due to Scherer, Werth and Pinz (SWP) [22] is

λSWP = 1−
(

maxk(dk)

K/2� + ∑k dk


K2/4�
)

.

The following example illustrates the calculation of the BN and the modified BN
distance measures.

Example 14.11. Bhat-Nayar Distance Measure [5, 22]. Given two one-
dimensional input images

A = (10,20,30,50,40,70,60,90,80)T ,

B = (90,60,70,50,40,80,10,30,20)T ,

the corresponding rank vectors are

rA = (1,2,3,5,4,7,6,9,8)T , rB = (9,6,7,5,4,8,1,3,2)T .

The composition permutation vector s̃ is

s̃ = (9,6,7,4,5,1,8,2,3)T ,

and the corresponding distance vector is

d = (1,2,3,3,3,2,2,1,0)T .

The BN and the modified BN distance measures are:

λBN = 1−2
maxk(dk)

K/2� = 1−2×3/4 =−0.5 ,

λSWP = 1−
(

maxk(dk)

K/2� + ∑k dk


K2/4�
)

= 1− (3/4 + 17/20)=−0.60 .

The following matlab code may be used to calculate λBN and λSWP.

Example 14.12. Matlab Code for λBN and λSWP. Let A and B be two input vec-
tors containing M gray-levels Ak,k ∈ {1,2, . . . ,K}, and Bk,k ∈ {1,2, . . . ,K}.

[ junk, invrA] = sort(A) ; [ junk,rA] = sort(invrA);
[ junk, invrB] = sort(B) ; [ junk,rB] = sort(invrB);
s = rB(invrA);
S = ones(K,1)∗ s(:)′;
G = (1 : K)′ ∗ ones(1,K);
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d = (1 : K)′ − sum(tril(S < G),2);
λBN = 1−2 ∗max(d)/ f loor(K/2);
λSW P = 1− (max(d)/ f loor(K/2)+∑(d)/ f loor(K2/4));

14.4.2 Mittal-Ramesh Ordinal Measure

Although the ordinal similarity measures are robust to monotonic changes in inten-
sity, they are not very robust to Gaussian noise. Even a small amount of Gaussian
noise can completely change the rankings between pixels that are not far from each
other in gray-level. Such a drawback occurs because the ordinal similarity measure
do not take into account the pixel gray-levels at all. In the Mittal-Ramesh ordinal
measure we take into account the pixel gray-levels. The similarity measure has a
very good performance but is computationally very expensive.

14.5 Binary Image Similarity Measure

Special similarity measures are used for binary images. Given two binary images A
and B we may define a local distance measure [4] as follows: Let dA and dB be the
corresponding distance transform images [8]:

dA(m,n) = min
(u,v)

˜A(u,v)
√

(m−u)2 +(n− v)2 ,

dB(m,n) = min
(u,v)

˜B(u,v)
√

(m−u)2 +(n− v)2 ,

where

˜A(u,v) =
{

1 if A(u,v) = 1 ,
∞ otherwise ,

and ˜B(u,v) =
{

1 if B(u,v) = 1 ,
∞ otherwise .

Then, the local distance measure is defined as:

L(m,n) = |A(m,n)−B(m,n)|max(dA(m,n),dB(m,n)) .

The following example illustrates the calculation of the local distance measure

Example 14.13. Local distance map. Given two binary images

A =

⎛

⎝

0 1 1
1 0 0
1 0 0

⎞

⎠ and B =

⎛

⎝

1 1 0
0 1 1
1 0 1

⎞

⎠ ,
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the corresponding distance transforms are

dA =

⎛

⎝

1 0 0
0 1 1
0 1 0

⎞

⎠ and dB =

⎛

⎝

0 0 1
1 1
√

2
0 1
√

5

⎞

⎠ .

and the local similarity measure distance map is

L =

⎛

⎝

1 0 1
1 0
√

2
0 0
√

5

⎞

⎠ . (14.5)

We now describe how we may convert the local binary distance measure map
L(m,n) into global Hausdorff measures.

14.5.1 Hausdorff Metric

The Hausdorff distance [9] between two M×N binary images A and B is defined as

H(A,B) = max
(m,n)

(L(m,n)) , (14.6)

where L(m,n) is the local distance measure defined in (14.5). According to (14.6),
H(A,B) is the maximum distance from a point in one image to the nearest point
in the second image. It is therefore very sensitive to noise and for this reason we
often use robust variants of the Hausdorff distance where we replace the maximum
operator in (14.6) by robust alternatives. Some examples are:

Partial Hausdorff distance

Hk(A,B) = L(k) ,

where L(k) = L(m,n) if L(m,n) is the kth largest local distance value.

Mean Hausdorff distance

HAVE(A,B) = ∑
(m,n)

L(m,n)/(MN) .

Median Hausdorff distance

HMED(A,B) = med(m,n) (L(m,n)) .

The following example illustrates the calculation of the original Hausdorff distance
and its variants for the two binary images A and B.
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Example 14.14. Hausdorff distances. Given two binary images

A =

⎛

⎝

0 1 1
1 0 0
1 0 0

⎞

⎠ and B =

⎛

⎝

1 1 0
0 1 1
1 0 1

⎞

⎠ ,

the corresponding local distance map L(m,n) (see Ex. 14.13) is

L =

⎛

⎝

1 0 1
1 0
√

2
0 0
√

5

⎞

⎠ .

The original, partial, mean and median Hausdorff distance measures are, re-
spectively, H(A,B) =

√
5, Hk(A,B) =

√
2, HAVE(A,B) = (3 +

√
2+
√

5)/9≈
0.75, and HMED(A,B) = 1, where Hk(A,B) was calculated assuming k = 8.

14.6 Software

END-L1. A fast matlab routine for the earth movers distance assuming an L1

metric. Authors: Haibin Ling and Kazunori Okada [14].
COMP STATS TOOLBOX. A computational statistics toolbox. Authors Wendy

Martinez and Angel Martinez [16].

14.7 Further Reading

In this chapter we have concentrated on similarity measures which are fixed in the
sense that they are not learnt from training data. Recently the training of such mea-
sures has received increasing interest. A comprehensive survey of the subject is
given in [24].
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Chapter 15
Vignetting, White Balancing and Automatic
Gain Control Effects

Abstract. The subject of this chapter is a collection of miscellaneous effects which
affect the brightness and color perception in a input image or in a input video. For
the sake of concreteness, we shall concentrate on three important effects: Vignetting,
automatic gain control and white balance. Vignetting we define as a position-
dependent loss of brightness in an input image. This loss of brightness manifests
itself as a gradual fading-out of an image at points near the image periphery. White
balancing we define as as the adjustment of an input image to recover its true col-
oration. Automatic gain control effects refers to the temporal variation of the camera
settings as a result of automatic gain control mechanism.

15.1 Introduction

The brightness and color perception of an input image or an input video sequence
are affected by a multitude of different effects. In this chapter we shall concen-
trate on three effects which directly impact on many image fusion applications:
vignetting, automatic gain control (AGC) effects and white balance. We define vi-
gnetting as a position-dependent loss of brightness in an input image. This loss of
brightness manifests itself as a gradual fading-out of an image at points near the
image periphery. We define white balancing we define as the adjustment of an in-
put image to recover its true coloration. We define automatic gain control effects as
the temporal variation of the camera settings as a result of automatic gain control
mechanism.

In many applications, it is assumed that the observed image intensity value I(x,y)
at a point (x,y) in the image plane directly reflects the scene radiance of the corre-
sponding point (X ,Y,Z) in the three-dimensional scene. However, this assumption
may not hold due to vignetting and changes in the camera exposure and AGC.
The result is that there are often significant color inconsistencies between input
images.
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15.2 Vignetting

In general, the amount of light (radiance) hitting the image plane in an image sensor
varies spatially. This causes a fade-out, or reduction in image intensity as we move
towards the image periphery. The spatial variation in image intensity is known as
vignetting and is due to several factors, including:

Aperture Effect. This refers to the blocking of part of the incident light rays by
the aperture in the image sensor. The effect of vignetting increases as the effective
size of the aperture increases and vice versa.

Cosine-Fourth Law. This refers to the relationship between the radiance (L) and
the irradiance (E) [1] which is derived using a simple thin lens camera model.

E =
LπR2 cos4α

4d2 . (15.1)

Eq. (15.1) shows that the irradiance is proportional to the radiance but it decreases
as cosine-fourth of the angle α that a ray makes with the optical axis. In the
equation, R is the radius of the lens and d denotes the distance between the lens
and the image plane.

Pupil Aberration. This refers to the nonlinear refraction of the light rays which
results in a significantly nonuniform light distribution across the aperture of the
image sensor.

We model the vignetting effects as

E(r) = V (r)L(R) .

15.2.1 Vignetting Correction

In general vignetting correction begins by setting up a uniform white illumination
source with a known input intensity level over a reference object with low specular
reflection. The camera is pointed toward the reference surface and intensity response
at each pixel position is recorded. Subsequently a correction factor at each pixel
position is calculated with the following form:

ILUT (x,y) = max
(u,v)

(IREF(u,v))/IREF(x,y) ,

where IREF(x,y) is the gray-level intensity value at (x,y) and ILUT (x,y) is the cor-
responding correction factor which is stored in a look-up table (LUT). Thereafter

1 Irradiance describes the power of the light energy that falls on a unit area of an objects
surface. The corresponding photometric quantity is illumination. Pixel gray-levels are thus
quantized estimates of the image irradiance. Radiance is the power of light that is emitted
from a unit surface area into some spherical angle. The corresponding photometric quantity
is called brightness.
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an image captured with the same camera is vignetting corrected [10] by multiply-
ing pixel values of the image with the corresponding correction factors stored in the
LUT:

IVIG(x,y) = I(x,y)ILUT (x,y) .

15.3 Radiometric Response Function

Cameras can only capture a limited dynamic range of a scene. Most cameras there-
fore compress the dynamic range of the scene. In doing this they introduce a non-
linearity between the recorded image intensity I(r) and the image irradiance E(r)
(Fig. 15.1).

Vignetting Effect
E(r)=V(r)L(R)

Radiometric
Response

CCD
SensorsLight source

L(R)

Image I(r)=f(kE(r))

Fig. 15.1 Shows the formation of an image I(r) with vignetting and radiometric response
function effects

We often model the nonlinear relationship as

I(r) = f (kE(r)) ,

where k is the exposure value with which the image was captured. In general, the
dynamic range of a scene exceeds that of the camera and as a consequence most
cameras use an automatic gain control (AGC) to automatically adjust k so as to
optimally capture the dynamic range of interest [2].

15.3.1 Automatic Gain Control

Most cameras have an automatic gain control which automatically adjusts the
camera settings and camera gain k. As a consequence the same point in a three-
dimensional world may appear with significantly different gray-levels in different
images or video frames. Such inconsistencies are usually not negligible, even an
inconsistency of 1% is noticeable in an 8-bit image as demonstrated in Fig. 15.2
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Fig. 15.2 Illustrates the sensitivity of the human vision to radiometric mismatch. Consecu-
tive image parts were biased by 3% with respect to each other. Even such a small mismatch
creates clear visual artifacts [4].

Example 15.1. Rapid Gain Change in Thermal Imagery [8, 9]. Suppose we
have pairs of corresponding pixels observed from two images I1 and I2 taken at
different exposure settings (due to the AGC). We fit a parametric model to the
observed correspondences to yield a “comparametric” function [7] that relates
pixel intensities before and after a change in exposure. In thermal imagery we
often model the radiometric response function with an affine transformation
[8]:

f (q) = α+βqγ ,

where α,η and γ are sensor-specific constants. For an affine transformation,
γ = 1. The comparametric function relating f (q) to f (kq) is then a straight
line

f (k(q)) = k f (q)+α(1− k) .

whose parameters k and α are easily found.

We describe a simple mathematical model for the AGC effect. We assume the spatial
inhomogeneities introduced by the optical system have been corrected (Sect. 15.2).
Then the gray-level of the pixel (x,y) is I(x,y), where



15.4 White Balancing 191

I(x,y) = f (kL(r)) ,

where L(x,y) is the image irradiance for the pixel (x,y), k is the exposure value with
which the image was captured.

If we have two spatially aligned images of the same scene taken with different
exposures k1 and k2, then we obtain the following relationship between the gray-
levels I2(x,y) and I1(x,y):

I2(x,y) = T (I1(x,y)) ,

where T is known as the brightness transfer function. In many applications we as-
sume T is a monotonically increasing function which passes through the origin. If
the number of outliers is less than 5% then we may simply approximate T with a
least square solution. However, when the number of outliers exceeds 5%, a robust
solution is required [2].

15.4 White Balancing

The coloration on an input image often appears different depending on the illumina-
tion under which the image is taken. Different light sources have different spectral
characteristics and thus require an adjustment of the captured image for the scene
illuminant to recover its true coloration. White balancing aims to adjust the image
automatically by finding some “white-like” areas in the image to set the parameters
for balancing the colors in the remaining part of the image.

Let I be an unbalanced M×N RGB color image whose pixel components are:

I(x,y) = (R(x,y),G(x,y),B(x,y))T .

Then white balancing aims to adjust the coloration of I to produce a balanced im-
age IBAL with pixel values IBAL(x,y) = (RBAL(x,y),GBAL(x,y),BBAL(x,y))T . Since
the wavelength of the G color band is close to the peak of the human luminence
frequency response, we may leave the input G band unchanged, i. .e

GBAL(x,y) = G(x,y) .

In the traditional gray-world white-balancing algorithm [3], we generate the
RBAL(x,y) and BBAL(x,y) as follows:

RBAL(x,y) = ᾱR(x,y) and BBAL(x,y) = β̄B(x,y) .

The terms ᾱ and β̄ are global gains which are defined as follows:

ᾱ =
Ḡ
R̄

= ∑k G(xk,yk)
∑k R(xk,yk

and β̄ =
Ḡ
B̄

= ∑k G(xk,yk)
∑k B(xk,yk

,
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where the summation is taken over all white-like pixels in the image. Often it is dif-
ficult, or not possible, to identify the white-like pixels. In this case, we may instead
use all the pixels in the input image.

In an adaptive white balancing algorithm [5, 6] we allow, ᾱ and β̄ to vary from
pixel-to-pixel. Let α(x,y) and β (x,y), be the adaptive gains, then

α(x,y) =
R(x,y)+ γ)(Ḡ+ γ)2

G(x,y)+ γ)(R̄+ γ)2 and β (x,y) =
B(x,y)+ γ)(Ḡ+ γ)2

G(x,y)+ γ)(B̄+ γ)2 .

The corresponding corrected pixel values are:

RBAL(x,y) = −γ+α(x,y)(R(x,y)+ γ) ,

GBAL(x,y) = G(x,y) ,

BBAL(x,y) = −γ+β (x,y)(R(x,y)+ γ) ,

where γ is a constant which is adjusted for optimum results. For a 24-bit input image,
good results are obtained with γ ∈ [50,250] [5, 6].

15.5 Ensemble White Balancing

The techniques of ensemble learning may be usefully employed in white bal-
ancing [1]. Instead of using one white balancing algorithm we use K different

algorithms. Suppose R(k)
BAL(x,y),G

(k)
BAL(x,y) and B(k)

BAL(x,y) are the corrected col-
ors obtained from the kth algorithm. Then, for each pixel (x,y), we fuse the

R(k)
BAL(x,y),G

(k)
BAL(x,y),B(k)

BAL(x,y) values together using an operator f :

˜RBAL(x,y) = f (R(1)
BAL(x,y),R(2)

BAL(x,y), . . . ,R
(K)
BAL(x,y)) ,

˜GBAL(x,y) = f (G(1)
BAL(x,y),G(2)

BAL(x,y), . . . ,G(K)
BAL(x,y)) ,

˜BBAL(x,y) = f (B(1)
BAL(x,y),B(2)

BAL(x,y), . . . ,B
(K)
BAL(x,y)) .

Experiments reported in [1] show that, in general, the balanced fused values
˜RBAL(x,y), ˜GBAL(x,y) and ˜BBAL(x,y) represent a significant improvement over the

individual R(k)
BAL(x,y), G(k)

BAL(x,y) and B(k)
BAL(x,y) values.
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Chapter 16
Color Image Spaces

Abstract. The subject of this chapter is color image spaces. In the chapter we pro-
vide a brief summary of the different color spaces.

16.1 Introduction

A color space is a means by which color can be specified, created and visualized. In
many applications the choice of color space is critical. The reason is that in one color
space we may emphasize specific characteristics in an input image which would not
be easily identified in a different color space. This is illustrated in the following
example.

Example 16.1. Foreground and Shadow Detection in Traffic Monitoring [7].
Segmenting foreground objects is an important step in vehicle tracking and
traffic surveillance. Ref [7] is a comparative study of different color spaces
for the detection of foreground objects and their shadows in image sequences.
The comparative true detection and false detection are listed in Table 16.1.

Table 16.1 Comparative True and False Detection Probabilities

Color Space Probability of True Detection Probability of False Detection

RGB 97.3% 0.7%
HSV 88.1% 5.8%
YCrCb 97.7% 0.4%
XYZ 96.7% 0.3%
rgb 91.5% 0.4%
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Many different color spaces have been proposed in the literature. The commonly
used color spaces may be divided into four families [11]:

Primary Systems. The primary color spaces are based on the trichronomatic the-
ory and assume it is possible to match any color by mixing appropriate amounts
of the three primary colors. Primary color spaces include RGB, XYZ and rgb.
See Fig. 16.1.

G

B

R

blue

green

red

white

black

yellow

cyan

Fig. 16.1 Shows the RGB color space. Several colors are shown mapped into their location
in the RGB color space.

Luminance-Chrominance Systems. The luminance-chrominance color spaces
use one component to represent the luminance and two components to represent
the chrominance. The luminance-chrominance spaces include YC1C2, AC1C2,
L∗u∗v∗ and L∗a∗b∗.

Perceptual Systems. The perceptual spaces try to quantify the subjective human
color perception by means of the intensity, hue and saturation. The perceptual
color spaces include IHS, HSV, HLS and IHLS.

Statistical Independent Component Systems. The statistical independent com-
ponent color spaces use statistical methods to generate components which are
minimally correlated. The statistical independent component spaces include
I1I2I3 and H1H2H3.
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16.2 Perceptual Color Models

The basic process behind the perceptual color model and the transformation from an
RGB coordinate system to a hue, saturation and brightness coordinate system is as
follows. For 24-bit deep input image (RGB), we define the achromatic axis in RGB
space as the line joining (0,0,0) and (255,255,255) and the chromatic plane as a
plane which is perpendicular to the achromatic axis and intersects it at the origin.
We then choose a function L(C) which calculates the brightness or intensity of the
color C = (R,G,B). The projection of L(C) onto the chromatic plane defines the hue
and saturation of C, where the hue corresponds to the angular coordinate around the
achromatic axis and the saturation corresponds to a distance from the achromatic
axis. Note: The hue corresponds to an angular coordinate and is therefore measured
in radians or degrees. Fig. 16.2 illustrates the construction of a perceptual color
model.

black

I

S

H

white
red

blue magenta

green yellow

Fig. 16.2 Shows the perceptual color spaces. It has a cone shape where the central axis
represents the intensity. Along this axis are all grey colors, with black at the pointed end of
the cone and white at its base. The greater the distance along this axis the higher the intensity.

16.2.1 IHS

For image analysis, the most widely used perceptual color model is the IHS model.
In the classical IHS model, the brightness, saturation and hue expression are:
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LIHS =
1
3
(R + G+ B) , (16.1)

SIHS = 1− 3min(R,G,B)
R + G+ B

, (16.2)

HIHS = cos−1
(

R− 1
2 (G+ B)

√

(R−G)(R−G)+ (R−B)(G−B)

)

. (16.3)

Sometimes the following algorithm is used to calculate the hue. It contains fewer

multiplications and avoids the square root operation:

Example 16.2. Fast Hue Calculation.

if R = G = B then
HIHS = undefined

else
if R≥ B and G≥ B then

HIHS =
π
3

+ tan−1

(
√

3(G−B)
G+ R−2B

)

else if G > R then

HIHS = π+ tan−1

(
√

3(B−G)
B + G−2R

)

else

HIHS =
5π
3

+ tan−1

(
√

3
R + B−2G

)

end
end

There are also many simpler approximate formulas for calculating the IHS transfor-
mation. Two widely used approximate transformations are HSV and HLS. However
[3, 4] has suggested a better approximate model is the improved HLS (IHLS) trans-
formation.

16.2.2 HSV

The brightness function used in the HSV model is

LHSV = max(R,G,B) ,
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and the corresponding HSV saturation and hue expressions are:

SHSV =

⎧

⎨

⎩

Cmax−Cmin

Cmax
if Cmax �= 0 ,

0 otherwise ,

HHSV =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

undefined if SHSV = 0 ,

(

π(G−B)/3
Cmax−Cmin

+ 2π
)

mod(2π) if R = Cmax ,

2π/3 +
π(B−R)/3
Cmax−Cmin

if G = Cmax ,

4π/3 +
π(R−G)/3
Cmax−Cmin

if B = Cmax ,

where Cmax = max(R,G,B) and Cmin = min(R,G,B).

16.2.3 HLS

The brightness function used in the HLS model is

LHLS =
Cmax +Cmin

2
,

and the corresponding HLS model saturation and hue expressions are:

SHLS =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 if Cmax = Cmin ,

Cmax−Cmin

Cmax +Cmin
if LHLS ≤ 0.5 ,

Cmax−Cmin

2− (Cmax +Cmin)
if LHLS > 0.5 ,

HHLS =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

undefined if SHSV = 0 ,

(

π(G−B)/3
Cmax−Cmin

+ 2π
)

mod(2π) if R = Cmax ,

2π/3deg+
π(B−R)/3
Cmax−Cmin

if G = Cmax ,

4π/3 +
π(R−G)/3
Cmax−Cmin

if B = Cmax ,
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16.2.4 IHLS

The brightness function used in the improved HLS or IHLS model [3, 4] is

LIHLS = 0.2126R + 0.7152G+0.0722B ,

and the corresponding IHLS model saturation and hue expressions are:

SIHLS = Cmax−Cmin ,

HIHLS =
{

2π−HHSI if B > G ,
HHSI otherwise ,

Apart from the above (direct) transformations, there are also indirect IHS transfor-
mations.

16.2.5 Indirect IHS Transformation

An indirect IHS transformation consists of linear transformation followed by a non-
linear transformation. The following is a common indirect IHS transformation:

Linear Transformation

⎛

⎝

I
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⎞
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⎜

⎝
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⎞

⎠ .

Non-linear Transformation

H = tan−1(v2/v1) ,

S =
√

v2
1 + v2

2 .

The following example illustrates the merging of infrared and RGB color images
using a contrast enhanced fusion method based on the linear Iv1v2 transformation.

Example 16.3. Merging Infrared and RGB Color Images [8]. Ref. [8] de-
scribes the contrast enhanced fusion of a color (RGB) electro-optical image
EO and an infra-red image IR. The principal steps in the algorithm are as
follows:

1. Transform the EO image into Iv1v2 space.
2. Match the infrared grayscale image IR to the electro-optical intensity image

I using second-order statistics (Sect. 6.4) [8]. Let ˜IR denote the transformed
IR image.

3. Fuse ˜IR and I using any pixel-by-pixel fusion operator (Chapt. 7). Let ˜I
denote the fused intensity image.
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4. Obtain the enhanced color image, (˜R ˜G˜B), by performing the inverse Iv1v2

transformation:

⎛

⎝
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˜G
˜B

⎞
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6
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1 2√
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⎝

˜I
v1

v2

⎞

⎠ .

16.2.6 Circular Statistics

In perceptual color spaces, standard statistical formula may be used to calculate
statistical descriptions of the brightness and saturation values. However the hue is an
angular value and so circular statistical formula must be used to calculate statistical
descriptors of its values. The following example illustrates the concept of circular
statistics.

Example 16.4. Circular Statistics. Given N hue values Hi, i∈ {1,2, . . . ,N}, we
may calculate a chrominance vector

C =
(

A
N

,
B
N

)T

,

where

A =
N

∑
i=1

cosHi and B =
N

∑
i=1

sinHi .

The spread of the Hi values around C is

V = 1− R
N

,

where
R =

√

A2 + B2 .

In analyzing color images we find it advantageous to use saturation weighted
hue statistics. In this case, the corresponding equations are:

CS =
(

AS

N
,

BS

N

)T

,

where

AS =
N

∑
i=1

Si cosHi and BS =
N

∑
i=1

Si sinHi .
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The spread of the Hi values around CS is

VS = 1− RS

N
,

where

RS =
√

A2
S + B2

S .

The following example illustrates K-means clustering of the hue space.

Example 16.5. K-means clustering in Hue Space. [12]. In clustering pixels in
hue space we require a distance between two hues, i. e. a distance between
two angles, φ and θ . The simplest distance between two angles is one based
on the above circular statistics formulae:

dcircular(θ ,φ) = 1− 1
2

√

A2 + B2 ,

where

A = cosθ + cosφ and B = sinθ + sinφ .

However, dcircular(θ ,φ) is non-linear and distorts the spatial relationships be-
tween the patterns. For this reason we recommend using the following linear
distance [12]:

d(θ ,φ) = min(|θ −φ |,2π−|θ −φ |) .

16.3 Multiple Color Spaces

In Ex. 16.1, we showed how the choice of a color space may emphasize specific
characteristics in the input image which would not be easily identified in a different
color space. We now consider the use of multiple color spaces. We start with a skin
classifier (binary classification) which uses an ensemble of multiple color spaces.

Example 16.6. Skin classifier [1]. Detection of skin regions in color images is
a preliminary step in many applications such as image and video classification
and retrieval. Many different methods have been developed for discriminating
between skin and non-skin pixels. In this example we consider the fusion of
several skin classifiers which work by expressly defining the boundaries of the
skin cluster in a given color space.

Among the skin classifiers are:
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Hseih et al. [5]. Uses the IHS color space. The skin pixels satisfy at least
one of the following rules: (1) I > I1, S1 ≤ S ≤ S2 and 0 < H ≤ H1, (2)
I > I1, S1 ≤ S ≤ S2 and H2 ≤ H ≤ 360deg, (3) I > I1, S3 ≤ S ≤ S4 and
H3 ≤ H ≤ (H2 − 1). For 24-bit color pictures [1] recommends I1 = 84,
S1 = 26, S2 = 92, S3 = 82, S4 = 67, H1 = 13 deg, H2 = 337 deg, H3 = 310
deg.

Kovac et al. [6]. Uses the RGB space. For uniform daylight illumination the
skin pixels satisfy all of the following rules: (1) R > R1, G > G1, B > B1, (2)
max(R,G,B)−min(R,G,B) < Δ , (3) |R−G|> L, R > G, R > B. For flash-
light illumination the rules are: (1) R > R2, G > G2, B > B2, (2) |R−G|≤ L,
B < R, B < G. For 24-bit color pictures [1] recommends R1 = 111, G1 = 77,
B1 = 33, Δ = 47, L = 29, R2 = 191, G2 = 251, B2 = 196.

Tsekeridou and Pitas [10]. Uses the HSV color space. The skin pixels sat-
isfy all of the following rules: (1) V ≥V1, (2) S1 < S < S2, (3) 0≤ H ≤ H1

or H2 ≤ H < 360deg. For 24-bit color pictures [1] recommends V1 = 52,
S1 = 0.25, S3 = 0.64, H1 = 35 deg, H2 = 349 deg.

Gomez and Morales [2]. Uses the rgb color space. This is defined as fol-
lows: r = R/(R+G+B), g = G/(R+G+B), b = B/(R+G+B). The skin
pixels satisfy all of the following rules: (1) r/g > k1, (2) rb/(r +g+b)2 >
k2 and (3) rg/(r + g + b)2 > k3. For 24-bit color pictures [1] recommends
k1 = 1.148, k2 = 0.054, k3 = 0.128.

Each of the above classifiers generates a binary map Bk(x,y), where

Bk(x,y) =
{

1 if kth classifier declares pixel (x,y) a skin pixel ,
0 otherwise .

The individual pixel classifications may then be combined using the majority
vote operator:

˜B(x,y) =
{

1 if ∑k Bk(x,y)≥ K/2 ,
0 otherwise .

16.4 Software

COLOR SPACE CONVERTER. Matlab m-file for color space conversion. Avail-
able from Matlab central directory. Author: Pascal Getreuer.

16.5 Further Reading

Ref. [9] discusses the issues involved in selecting different color spaces for image
feature detection.
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Chapter 17
Markov Random Fields

Abstract. The subject of this chapter is the Markov Random Field (MRF) and its
use in image fusion. A Markov random field is a probabilistic model defined by
local conditional probabilities. Markov random field (MRF) theory thus provides a
convenient and consistent way for modeling context dependent entities such as im-
age pixels and correlated features. Contextual models are one way to model prior
information and MRF theory can be applied to model a prior probability of con-
textual dependent patterns. Maximum a posteriori (MAP) probability is one of the
most popular criteria for optimality and widely applied for MRF modeling.

17.1 Markov Random Fields

A guiding insight underlying most of the work on the Markov random field (MRF)
[4, 5] in image processing is that the information contained in the local physical
structure of images is sufficient to obtain a good global image representation. This
notion is captured by means of a local conditional probability distribution. Here the
image intensity at a particular location depends only on a neighborhood of pixels.
The conditional distribution is called an MRF.

The probability distributions generated by MRF’s have a local neighborhood
structure S. Two neighborhood systems commonly used by MRF’s are depicted in
Fig. 17.1. We associate an image G with a random process G whose elements are
G(m,n), where (m,n) refers to a pixel location in the input image. The local condi-
tional distribution can be written as follows:

p
(

G(m,n)| ˜G(m,n)
)

,

where G(m,n) denotes the gray level of the pixel (m,n) and ˜G(m,n) denotes the
gray-levels of the pixels in the neighborhood S centered on the pixel (m,n) (Fig.
17.1). Although theoretically there is no restriction on the size of S, we usually
choose a local neighborhood in keeping with the spirit of the MRF.
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(m,n)

(a)

(m,n)

(b)

Fig. 17.1 (a) Shows a first-order local neighborhood structure S1. There are four pixels in S1
which are shown shaded. (b) Shows a second-order local neigborhood structure S2. There are
eight pixels in S2 which are shown shaded.

Example 17.1. First-Order Gauss-Markov Model. Consider the pixel (m,n) in
the input image G. The first-order neighborhood of (m,n) is the collection
(m,n + 1), (m,n− 1), (m + 1,n) and (m− 1,n) and the corresponding condi-
tional density takes the form

p
(

G(m,n)| ˜G(m,n)
)∼ exp−(G(m,n)− Ḡ(m,n)

)2
,

where

Ḡ(m,n) = (G(m,n + 1)+ G(m,n−1)+G(m−1,n)+G(m+1,n))/4 .

To make our discussion more concrete we shall concentrate on fusion of the K binary
images using a Markov random field (MRF) model. The description closely follows
that given in [2, 3] . Let Ak,k ∈ {1,2, . . . ,K}, denote a set of K binary images which
have been generated by thresholding a gray-level image G with K different thresh-
olding algorithms. Suppose B∗ denotes the optimal binary image formed by fusing
the Ak using the maximum a posteriori (MAP) decision criteria:

B∗ = argmax
B

(

p(B|A1,A2, . . . ,AK)
)

. (17.1)

Although the solution in (17.1) is optimal, it is computational intractable for any
reasonable sized image. By adopting the MRF approach we may, however, signifi-
cantly reduce the computational complexity by exchanging the global optimization
in (17.1) to a collection of local optimizations. Mathematically, the maximization in
(17.1) is equivalent to the minimization of a sum of local energy functions Umn:
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max
(

P(B|A1,A2, . . . ,Ak)
)

= min

(

1
Z

exp− ∑
(m,n)

Umn

)

,

where Z is a normalizing constant and Umn is a local energy function. Let ˜B(m,n)
and ˜AK(m,n) denote the set of labels of the pixels of the image B and the in-
put images AK ,k ∈ {1,2, . . . ,K}, respectively, in a predefined neighborhood cen-
tered at (m,n). Mathematically Umn is a function of the labels B(m,n), ˜B(m,n) and
˜Ak(m,n),k ∈ {1,2, . . . ,K}:

Umn = U(B, ˜B, ˜A1, ˜A2, . . . , ˜AK |m,n) .

For simplicity, we often assume the local energy function Umn can be decomposed
into two contributions:

Spatial Energy U ′(B, ˜B|m,n). This is a spatial energy function which measures
the spatial correlation between the label of the pixel (m,n) and the labels of its
neighbors in the image B.

Inter-image Energy U ′′(B, ˜Ak|m,n). This is an inter-image energy function which
measures the relationship between the image B and each of the input images Ak.

If we assume the spatial and inter-image contributions are separable and additive,
then we may rewrite the local energy Umn as:

Umn = β ′U ′(B, ˜B|m,n)+
K

∑
k=1

β ′′k U ′′(B, ˜Ak|m,n) ,

where β ′ and β ′k represent the relative contributions of the spatial and inter-image
information to Umn.

17.2 Energy Function

For a given neighborhood S, we define the spatial energy function U ′(B, ˜B|m,n) as
the number of times that B(p,q) is equal to B(m,n). For a second-order neighbor-
hood,

U ′(B, ˜B|m,n) =−
m+1

∑
p=m−1

n+1

∑
q=n−1

δ (B(m,n),B(p,q)) , (17.2)

where

δ (a,b) =
{

1 if a = b ,
0 otherwise .

In a similar manner, we define the inter-image energy function U ′′(B, ˜Ak|m,n) as the
number of times that Ak(p,q) = B(m,n). For a second-order neighborhood,

U ′′(B, ˜Ak|m,n) =−
m+1

∑
p=m−1

n+1

∑
q=n−1

δ (B(m,n),Ak(p,q)) . (17.3)
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In (17.3) we assumed all decisions (represented by Ak(m,n)) are equally likely.
However, in practice, our confidence that Ak(m,n) is correct should be less if the
gray-level G(m,n) is close to the threshold tk and should be more if G(m,n) is far
from the threshold. We introduce these considerations into (17.3) by allowing each
contribution δ (B(m,n),Ak(p,q)) to have a different weight wk(p,q):

U ′′(B, ˜Ak|m,n) =−
m+1

∑
p=m−1

n+1

∑
q=n−1

wk(p,q)δ (B(m,n),Ak(p,q)) ,

where we use a simple weight function

wk(p,q) = 1− exp(−γ|G(p,q)− tk|) , (17.4)

and γ is a real positive constant controlling the steepness of the weight function.
The use of the weight function wk(p,q) as defined in (17.4) aims at controlling,

during the fusion process, the effect of unreliable decisions at the pixel level that
can be incurred by the thresholding algorithms. The possible misleading effects of
the latter are further controlled at a global image level through the inter-image pa-
rameters βk,k ∈ {1,2, . . . ,K}, which are computed as follows:

β ′′k = exp(−γ|t̄− tk|) ,

where t̄ is the average thresholding value:

t̄ =
1
K

K

∑
k=1

tk .

Accordingly with this global weighting mechanism, a threshold value that is statis-
tically incompatible with those of the ensemble.

17.3 Algorithm

The MRF solution is performed iteratively. The three stages in the MRF algorithm
are:

Initialization. At initialization we find B by minimizing for each pixel (m,n) the
local energy function Umn without the spatial energy terms, i. e. setting β ′ = 0

Umn =
K

∑
k=1

β ′′k U ′′(B, ˜Ak|m,n) .

Iteration. Update B by minimizing for each pixel (m,n) the local energy function
Umn as defined in (17.1).

Stop Criterion. Repeat the iterative step until the maximum number of iterations
is reached or until the number of different labels in B computed over the last two
iterations becomes very small.



References 209

For 8-bit deep input pictures, Melgani [2, 3] recommends: (1) β ′ = 1. The results
were not found to be very sensitive to this parameter. (2) γ = 0.1. This generates a
confidence of 0.90 for a difference value of around 25 between the threshold value
and the pixel gray-level.

17.4 Further Reading

Li [1] has written an excellent introduction to the use of MRF’s in image analysis.
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Chapter 18
Image Quality

Abstract. The subject of the present chapter is the objective assessment of the image
quality of the output image in image fusion. A brief review of the different quality
measures is given.

18.1 Introduction

Objective image quality assessment plays an important role in many image fusion
applications. The two main uses of an objective image quality measure are:

1. To obtain a quantitative estimate of the quality of the fused image. A good image
quality metric should be consistent, accurate, and monotonic in predicting the
quality of an image. In general we prefer a quality measure which correlates
with perceived quality.

2. To be used in a benchmark algorithm to compare the relative performances of
different image fusion algorithms.

In general image quality measures work by exploiting the pixel difference between
images, the correlation between images, and changes in the histogram. We shall start
by discussing quality measures which rely on a reference image R.

18.2 Reference-Based Quality Measures

The simplest approach to assessing the quality of a fused image F is to compare it
with a known reference image R. For this purpose any of the similarity measures
discussed in Chapt. 14 may be used. However, of these measures, in practice only
the mse, mae, correlation coefficient and mutual information measures are used:

Mean square error. The mean square error (mse) between F and R is defined as:

mse(F,R) =
1

MN

M

∑
m=1

N

∑
n=1

(

F(m,n)−R(m,n)
)2

,
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where F(m,n) and R(m,n) are, respectively, the gray-level of the pixel (m,n) in
F and R.

Mean absolute error. The mean absolute error (mae) between F and R is defined
as:

mae(F,R) =
1

MN

M

∑
m=1

N

∑
n=1

∣

∣R(m,n)−F(m,n)
∣

∣

2
.

Mutual Information. The mutual information (MI) between F and R is defined
as:

MI(F,R) =
∫

p(R,F) log
p(R,F)

p(R)p(F)
,

where p(R) and p(F) are the probabilty distribution of the gray-levels in R and
F , and p(R,F) is the joint probability distribution of the gray-levels of R and F
(see Sect. 4.6).

Correlation coefficient. The correlation coefficient ρ between F and R is defined
as:

ρ(F,R) =
∑m,n F(m,n)R(m,n)

∑m,n F(m,n)2 +∑m,n R(m,n)2 . (18.1)

Additional reference quality measures which are sometimes used include:

Wang and Bovik. The Wang and Bovik quality measure QWB [6] between F and
R uses a structural similarity measure as a performance measure of the fusion
algorithm. The structural similarity measure is composed of three terms: the cor-
relation coefficient between F and R, the luminence distance between F and R
and the contrast difference between F and R. It is defined as follows:

QWB(F,R) =
σFR

σFσR

2F̄R̄
F̄2 + R̄2

2σFσR

σ2
Fσ2

R

,

where σF , F̄ and σR, R̄ are, respectively, the standard deviation and mean of F
and R and σ2

FR is the covariance of F and R.
Difference of Entropy. The difference in entropy (DE) between F and R is de-

fined as:

DE(F,R) = |
L−1

∑
l=0

pF(l) log2 pF(l)−
L−1

∑
l=0

pR(l) log2 pR(l)| , (18.2)

18.3 Non-reference Based Quality Measures

In many image fusion applications we do not have a reference image R with which
to compare the fused image F . In this case, we use a non-reference quality measure.
The most common non-reference quality measures are:

Xydeas and Petrovic. The Xydeas and Petrovic (QXP) [8] quality measure uses
the amount of edge information which is “transferred” from the input images Ik to
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the fused image F as a performance measuee of the fusion algorithm. It is defined
as follows. Let Sk(m,n), θk(m,n) and ˜S(m,n), ˜θ (m,n) denote, respectively, the
strength and orientation of the response obtained when a given edge operator is
applied to an input image Ik,k ∈ {1,2, . . . ,K}, and to the fused image F . Then

QXP(F, I1, I2, . . . , IK) =
K

∑
k=1
∑

(m,n)
wk(m,n) ˜QXP(m,n)

/ K

∑
k=1
∑

(m,n)
wk(m,n) ,

where

˜QXP(m,n) = f (Gk(m,n),Φk(m,n)) ,

Gk(m,n) = max(Sk(m,n)/˜S(m,n), ˜S(m,n)/Sk(m,n)) ,

Φk(m,n) = 1−2|θk(m,n)− ˜θ(m,n)|/π .

The function f combines the local edge strength Gk(m,n) and the local orienta-
tion Φk(m,n)into a single value. The weights wk(m,n) are defined as a function
of the edge strength at (m,n).

Qu, Zhang and Yan (QZY). The Qu, Zhang and Yan quality measure QQZY [5]
uses the mean mutual information between the input images Ik,k ∈ {1,2, . . . ,K},
and F as a performance measure of the fusion algorithm. It is defined as follows:

QQZY (F, I1, I2, . . . , IK) =
1
K

K

∑
k=1

MI(F, Ik) ,

where MI(F, Ik) is the mutual information between F and Ik.
Hossny, Nahavandi and Creighton. The Hossny, Nahavandi and Creighton

quality measure QHNC [4] is defined as

QHNC(F, I1, I2, . . . , IK) =
1
K

K

∑
k=1

MI(Ik,F)
H(Ik)+ H(F)

,

where H(I) is the entropy of the image I.

We may also use the Wang-Bovik quality measure as a non-reference quality mea-
sure:

Wang and Bovik. The Wang and Bovik non-reference quality measure Q′W B is
defined as:

Q′W B(F, I1, I2, . . . , IK) =
1
K

K

∑
k=1

QW B(F, Ik) .

In addition there are many variants of above quality measures. The following exam-
ple illustrates one of them.
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Example 18.1. The Local Yang et al. Quality Measure QY ZW L [9]. Ref. [9] de-
fines a local Wang-Bovik quality measure by creating a window W (x,y) at
each pixel (x,y) in the input images. Let ˜F(x,y) and ˜Ik(x,y) denote, respec-
tively, the pixel gray-levels in F and Ik which lie in the window W (x,y). Then
we define the local Wang-Bovik quality measure between F and Ik as:

˜QW B(F, Ik|x,y)≡ QW B(˜F(x,y),˜Ik(x,y)) .

By summing ˜QW B(F, Ik|x,y) we obtain an overall quality measure:

QY ZW L(F, I1, I2, . . . , IK) =
1
K

K

∑
k=1

λk(x,y) ˜QW B(F, Ik|x,y) ,

where λk(x,y) is an adaptive weight and λk(x,y)≥ 0, ∑K
k=1λk(x,y) = 1.

18.4 Analysis

In choosing an appropriate quality measure it is important to consider its perfor-
mance for the task in hand. For example, the quality measures used in fusing multi-
focus images [1] are not necessarily the same as those qualities measures used
in electro-optical and infra-red fusion [3]. Nevertheless, general purpose quality
measures are available which may be used if no special-purpose quality is avail-
able. Among the general-purpose quality measures are theWang-Bovik measures
QW B, Q′W B and QY ZW L. Experiments show that in general, QW B, Q′WB and QY ZW L,
are in reasonable agreement with quality measures suggested by human observers.
Another family of general-purpose quality measures which are widely used are mea-
sures based on information theory: MI, QQZY and QHNC [2]. Note: Recent experi-
ments [4] suggest that QQZY may be biased towards high entropy input images. To
correct for this bias the recommendation is to use QHNC instead of QQZY .

18.5 Software

SSIM-INDEX. The Wang-Bovik similarity index [6]. Author: Zhou Wang.

18.6 Further Reading

A modern review of image quality measures is [7]. For detailed analytical study of
the mutual information quality measures see [2].
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Applications



Chapter 19
Pan-sharpening

Abstract. The subject of this chapter is pan-sharpening. Present-day remote sensors
produce multi-spectral images with low spatial resolution and panchromatic images
with high spatial resolution. Pan-sharpening is an image fusion application in which
we we generate a multi-spectral image with high spatial resolution by fusing to-
gether the multi-spectral and panchromatic images.

19.1 Introduction

In remote sensing space-borne imagery there is a trade-off between spatial and spec-
tral resolution. This is due to a combination of a set of observational constraints
imposed by the aquisition system, detector specifications and satellite motion. Earth
observation satellites provide multi-spectral and panchromatic data having differ-
ent spatial, spectral, temporal and radiometric resolutions. Pan-sharpening [1] is a
powerful solution providing a single image which can have all the complementary
information from both the multi-spectral and panchromatic images.

Example 19.1. EOS. Earth observation satellites provide multi-spectral and
panchromatic data having different spatial, spectral, temporal, and radiometric
resolutions. The need for a single image, which can have all the complemen-
tary information from both the multi-spectral and panchromatic images, has
increased. A multi-spectral image with high spatial resolution may provide
feature enhancement, increased classification accuracy, and help in change
detection. The designing of a sensor to provide both high spatial and spec-
tral resolutions is limited by the tradeoff between spectral resolution, spatial
resolution, and signal-to-noise ratio. Hence, there is an increased use of image
processing techniques to combine the available high spectral resolution multi-
spectral image and high spatial resolution panchromatic image to produce a
synthetic image that has both high spatial and spectral resolutions. These im-
age processing techniques are known as pan-sharpening.
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In pan-sharpening we fuse together low-resolution multi-spectral images with a
high resolution panchromatic image to give high-resolution multi-spectral images.
Fig. 19.1 shows a three bands of a multispectral LANDSAT image (resolution 30
m) and the corresponding pan-sharpened bands (resolution 15 m). For easier com-
parison, we show the corresponding gray-scale images in Fig. 19.2. In this chapter
we shall concentrate on the component-substitution techniques.

19.2 IHS Pan-sharpening

The most widely-used component-substitution pan-sharpening technique is based
on the intensity-hue-saturation (IHS) transformation. This is, however, only used
when the multi-spectral image has exactly three bands corresponding to the colors R,
G and B. In the IHS transformation, the intensity I represents the total amount of the
light in the image. An intensity image often has the appearance of a panchromatic
image. This characteristic is utilized in the pan-sharpening technique. The main
steps in the technique are the following:

1. Register the low-resolution multi-spectral image to the size as the high resolution
panochromatic image in order to be superimposed. The re-sampling is usually
performed using bi-cubic interpolation.

2. Transform the R, G and B bands of the multi-spectral image into the I, v1 and v2

components (see Sect. 16.2.5).
3. Modify the high resolution panchromatic image to take into account the spectral

differences with respect to the multi-spectral image, the different atmospheric
and illumination conditions etc. We usually do this by histogram matching the
panchromatic image to the intensity component of the IHS representation (see
Sect. 6.2). Let P denote the histogram-matched panchromatic image.

4. Replace the intensity component I by the panochromatic image P and perform
the inverse transformation to obtain the pan-sharpened RGB image.

Mathematically, the IHS pan-sharpening technique is as follows. If (RGB) denote
the interpolated high spatial-resolution multi-spectral image, then the corresponding
(Iv1v2) image is given by

⎛

⎝

I
v1

v2

⎞
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⎠ . (19.1)

and the pan-sharpened image is:
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⎠ , (19.2)

where P is the histogram-matched panchromatic image.
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(a) (b)

(c) (d)

(e) (f)

Fig. 19.1 Shows three-bands of a multi-spectral LANDSAT 7 image and the corresponding
pan-sharpened bands. (a), (c) and (e) Show three bands of the multi-spectral image. (b), (d)
and (f) Show the corresponding three bands of the pan-sharpened image. The images were
created by John Childs. They are copyright of www.terrainmap.com.
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(a) (b)

Fig. 19.2 Shows the gray-scale images corresponding to Fig. 19.1. (a) Shows the gray-scale
image corresponding to the original multi-spectral LANDSAT images (resolution 30 m). (b)
Shows the gray-scale image corresponding to the pan-sharpened multi-spectral image (res-
olution 15 m.). The original LANDSAT and pan-sharpened images were created by John
Childs. They are copyright of www.terrainmap.com.

Implementing the pan-sharpening algorithm using (19.1-19.2) requires several
multiplicative and additive operations. The entire process may, however, be per-
formed with a much lower computational cost, by performing (19.1) and (19.2) in
one step:
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v2

⎞

⎠=

⎛

⎝

R + δ
G+ δ
B + δ

⎞

⎠ , (19.3)

where δ = P− I.

19.3 Spectral Distortion

The main drawback with the IHS pan-sharpening technique is the spectral distortion
which may affect the pan-sharpened image. The primary reason for the spectral
distortion appears to be the large difference between P and I. In this case, we may
reduce the spectral distortion by finding a high spatial resolution image ˜I which
simultaneously minimizes the differences |˜I−P|2 and |˜I− I|2. Mathematically, ˜I is
given by

˜I = argmin(|˜I−P|2 + |˜I− I|2) . (19.4)

Eq. (19.4) indicates that the spatial resolution of the pan-sharpened image is higher
than the resolution of the original multi-spectral image whenever, for each pixel, ˜I
is closer to P. At the same time, the spectral distortion of the sharpened image is
higher because the difference between ˜I and P is larger. By the same reasoning, the
term |˜I− I| indicates that the spectral distortion of the pan-sharpened image fusion
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is lower whenever, for each pixel, ˜I is closer to I. At the same time, the spatial
resolution of the sharpened image is lower than that of the sharpened image obtained
with the traditional IHS method. We see, that depending on ˜I, we may establish a
trade-off between the spatial and spectral resolution of the pan-sharpened image.
This is the basis of the pan-sharpening algorithm developed by Choi [2].

19.3.1 Pan-sharpening Algorithm of Choi

Eq. (19.4) forms the basis of the pan-sharpening algorithm of Choi [2]. We consider
two special cases:

˜I = P. In this case the absolute difference |˜I− I| is maximal. As a consequence,
the spectral distortion is maximal and the spatial resolution is high.

˜I = I. In this case the absolute difference |˜I− I| is zero. As a consequence, the
spectral distortion is minimal (zero) and the spatial resolution is low.

Choi uses a parametric solution ˜I(t) which is linear between the two limiting cases:

˜I = P− P− I
t

, (19.5)

where t is a parameter and the limiting cases are recovered when t = ∞ and t = 1.
Eqn. (19.5) implies that as t increases from 1 to∞, both the spatial resolution and the
spectral distortion of ˜I will increase. In the Choi algorithm, we balance the spatial
resolution with the spectral resolution using the parameter t, which is called the
trade-off parameter. The pan-sharpened image of Choi is:

⎛
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˜B
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⎠ =
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B +(P− I)(1−1/t)

⎞

⎠ , (19.6)

where δ = ˜I− I = (P− I)(1−1/t).
The Choi method is fast and easy to implement. Moreover, according to the pur-

pose of each application, different user-specified tradeoff parameters can be used
for user-specified multi-spectral images.

To evaluate the spectral distortion in (19.6) we compare (˜R ˜G˜B) with the multi-
spectral image (RGB) after conversion into the IHS color space using (16.1-16.3):

˜I =
1
3
(˜R + ˜G+ ˜B) = I + δ ,

˜H = cos−1
(

˜R− (˜G+ ˜B)/2
√

(˜R− ˜G)2 +(˜R− ˜B)( ˜G− ˜B)

)

= H ,

˜S = 1− 3min(˜R, ˜G, ˜B)
˜R+ ˜G+ ˜B

=
IS
˜I

.
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These equations demonstrate that while the hue of the pan-sharpened image is un-
changed, the saturation is changed such that the product of the saturation and the
intensity remains constant.

19.3.2 Pan-sharpening Algorithm of Tu et al.

Tu et al. [6] modified the pan-sharpening algorithm of Choi by multiplying the right-
hand side of (19.6) by P/˜I. The pan-sharpening algorithm of Tu et al. is thus identi-
cal to Choi apart from a simple energy normalization procedure. The corresponding
Tu pan-sharpened image is:
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⎞

⎠ . (19.7)

To assess the spectral distortion of (19.7) we follow the same approach as before
and obtain:

˜I =
P
˜I
(I +˜I− I) = P ,

˜H = H ,

˜S = S .

These equations demonstrate that the hue and saturation of the pan-sharpened image
of Tue et al. are unchanged.

19.4 IKONOS

When IHS pan-sharpened methods are used with IKONOS imagery, there is a sig-
nificant color distortion, due primarily to the range of wavelengths in an IKONOS
panochromatic image. Unlike the panochromatic images of SPOT and IRS sensors,
IKONOS panochromatic images (as shown Fig. 2.5) have an extensive range of
wavelengths-from visible to near-infrared (NIR). This difference obviously induces
the color distortion problem in IHS fusion as a result of the mismatches; that is, the
P and I are spectrally dissimilar. In particular, the grey values of P in the green veg-
etated regions are far larger than the grey values of I because the areas covered by
vegetation are characterized by a relatively high reflectance of NIR and panochro-
matic bands as well as a low reflectance in the R, G and B bands. To minimize the
radiance differences between I and panchromatic P, we may include the NIR band
in the definition of the I component. A simple method for doing this is:



19.5 Wavelets 225

I =
R +αG+βB + NIR

3
, (19.8)

where 0≤ α ≤ 1 and 0≤ β ≤ 1 are two parameters and α+β = 1.
IHS pan-sharpening is then extended from three color image (RGB) to the four

band image (RGB)+ NIR:
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, (19.9)

where δ = P− I.
Without loss of generality the pan-sharpening algorithm of Choi and Tu et al. may

be directly extended to (19.9). For example, the corresponding Tu et al. equations
are:
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19.5 Wavelets

The basis of the IHS pan-sharpening technique is that the IHS transformation sepa-
rates the spectral and spatial information of the multi-spectral RGB image. In prac-
tice the separation of the spectral and spatial information is not complete: The H
and S components include some spatial information and the I component includes
some spectral information. As a result IHS pan-sharpened images often differ signif-
icantly from what the multi-spectral image would have if it had been collected at the
resolution of the panchromatic image. One way to reduce the distortion is to retain
the I component while adding spatial details of the panchromatic image which are
missing from the multi-spectral image. This is the central idea of the IHS-wavelet
algorithm.

The detail information of the PAN image that corresponds to structures of fea-
tures with a size between the spatial resolution of the PAN image and that of the
MS one is extracted using the multi-resolution wavelet decomposition in an undec-
imated way.

Multi-resolution analysis allows us to decompose images into a sequence of
wavelet detail planes which correspond to structures of a given size.

The idea of wavelet-IHS pan-sharpening is instead of replacing the I component
with the panchromatic image we simply add spatial details of the panchromatic im-
age which are missing from the I component. The wavelet decomposition provides
us with a simple way of doing this.
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The main steps in the method (assuming a spatial resolution ratio of 1 : 4) [4, 5]
are as follows (see also Ex. 8.6):

1. Spatially align the multi-spectral image and the panchromatic image. Then re-
sample the multi-spectral image to make its pixel size equal to that of the
panchromatic image.

2. Apply the IHS transform to the multi-spectral image and obtain the correspond-
ing intensity, hue and saturation components I, H and S.

3. Generate a new panchromatic image P whose histogram matches that of the I
image.

4. Decompose P using the undecimated wavelet decomposition. We obtain two

wavelet detail images y(P)
1 and y(P)

2 and an approximation (residual) image P2.

Repeat for I. We obtain two wavelet detail images y(I)
1 and y(I)

2 and an approxi-

mation (residual) image I2. By definition, the detail images y(P)
1 and y(P)

2 pick up
structural details which are not present I.

5. Calculate the difference δ = ˜I− I =∑k y(P)
k −∑k y(I)

k , where ∑k y(P)
k = y(P)

1 + y(P)
2

and ∑k y(I)
k = y(I)

1 + y(I)
2 .

6. Insert the spatial information of the panchromatic image into the multi-spectral
image through the inverse IHS transform.

Mathematically,
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The new saturation value for the image fused by the method of Gonzlez-Audcana
et al. then becomes

˜S = 1− 3min(R + δ ,G+ δ ,B + δ )
R + G+ B + 3δ

, (19.10)

where δ = ˜I− I and
˜S
S

=
1
˜I

=
1

1 + δ
. (19.11)

19.6 Sensor Spectral Response

If we calibrate the panchromatic image P and the three color images R, G, B in
the multi-spectral image, then we may introduce the spectral response φ(ν) of the
sensors into (19.3) as follows [3, 7]: We calibrate P, R, G and B in terms of the
corresponding number of photons. Thus
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P = nP , R = nR , G = nG and B = nB .

In this case, the number of photons corresponding to the intensity component I is
nI:

nI = (nR + nG + nB)/3 .

Let Î = n̂I denote the estimated intensity of the multi-spectral image if it works at
the spatial resolution of the panchromatic sensor. Then the proposed pan-sharpened
image [3] is:

⎛
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ñB

⎞

⎠=

⎛

⎝

nR + δnR/n̂I
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where δ = n̂I−nI and according to (2.2):

n̂I =
n̂R + n̂G + n̂B

3
,

=
nP

3

(

∫

φR(ν)dν +
∫

φG(ν)dν+
∫

φB(ν)dν
)/

∫

φP(ν)dν .
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Chapter 20
Ensemble Color Image Segmentation

Abstract. The subject of this chapter is ensemble color image segmentation. This is
an image fusion application in which combine several simple image segmentation
algorithms to obtain a state-of-the-art image segmentation algorithm. The goal of
image segmentation is to decompose the input image into a set of meaningful or
spatially coherent regions sharing similar attributes. The algorithm is often a crucial
step in many video and computer vision applications such as object localization
or recognition. A simple image segmentation is the K-means cluster algorithm in
which we divide the pixels into K clusters.

20.1 Introduction

The goal of image segmentation is to decompose the input image into a set of mean-
ingful or spatially coherent regions sharing similar attributes. The algorithm is often
a crucial step in many video and computer vision applications such as object local-
ization or recognition.

Present-day state-of-the-art segmentation algorithms obtain a high performance
by becoming more and more complex. In this chapter we describe a different ap-
proach in which a high quality segmentation is obtained by fusing together a large
ensemble of simple image segmentation algorithms [1].

The new algorithm works as follows:

Ensemble. Given an input image I∗ we create an ensemble of K images Ik,k ∈
{1,2, . . . ,K}, by transforming I∗ into K different color spaces.

K-means Segmentation. Each image Ik is segmented into a L label decision im-
age Dk using the K-means cluster algorithm, although any simple segmentation
algorithm may be used instead.

K-means Fusion. Form a high quality segmented image ˜D by fusing together the
Dk,k ∈ {1,2, . . . ,K}:

˜D = f (D1,D2, . . . ,DK) ,
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where f is an appropriate fusion operator. In [1] the K-means cluster algorithm
is also used as the fusion operator.

We now consider in more detail each of these steps.

20.2 Image Ensemble

Given an input image I∗ in RGB space we create a ensemble of K images Ik,k ∈
{1,2, . . . ,K}, by transforming I∗ into K different color spaces Sk. Each color space
emphasizes a different property. The color spaces used by Mignotte are:

RGB. This tri-chromatic space is non-linear with regard to visual perception.
HSV. This space decouples the chromatic information from shading effects.
YIQ. This space takes into account the human color charcateristics.
XYZ. This is a pscho-visually linear space.
LAB. This space approximates the human vision system. Its L component closely

matches the human perception of lightness.
LUV. This a Euclidean space which yields a perceptually uniform spacing of

color.

20.3 K-Means Segmentation

We segment each image Ik using the K-means cluster algorithm (see Ex. 6.8). In the
conventional K-means we assign each pixel m,m ∈ {1,2, . . . ,M}, to a given cluster

C(k)
l :

δ (k)
l (m) =

{

1 if c(k)
m is assigned to C(k)

l ,
0 otherwise .

where c(k)
m is the representation of the mth pixel in Ik, i. e. in the color space Sk. The

assignments δ (k)
l (m) define the corresponding segmented image Dk:

Dk(m) = l if δ (k)
l (m) = 1 .

The K-means algorithm attempts to find the set of cluster centers Cl such that the
overall error

E(k) =∑
m

L

∑
l=1

δ (k)
l (m)d(cm,C(k)

l )

is a minimum, where d(c(k)
m ,C(k)

l ) is an appropriate distance (similarity) measure

between c(k)
m and C(k)

l .
The cluster centers are found in an iterative procedure. In each iteration we calcu-

late the assignment δ (k)
l (m) using the cluster centers C(k)

l calculated in the previous
iteration. The cluster centers are then recalculated using the new assignment:
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for m = 1 : M

δ (k)
h (m) =

{

1 if d(c(k)
m ,C(k)

h ) = minl d(c(k)
m ,C(k)

l )
0 otherwise;

end
for l = 1 : L

c(k)
m = ∑M

m=1 δ
(k)
l (m)c(k)

m /∑M
m=1 δ

(k)
l (m);

end

For an image I(k) in RGB space, the color components (rm,gm,bm) for each pixel
m,m ∈ {1,2, . . . ,M}, are all measured on the same linear scale. In this case, an
appropriate similarity (distance) measure is the Euclidean distance:

d(c(k)
m ,C(k)

l ) =
√

(r(k)
m −R(k)

l )2 +(g(k)
m −G(k)

l )2 +(b(k)
m −B(k)

l )2 .

However, the Euclidean distance is not appropriate for the other color spaces, HSV,
YIQ, XYZ, LAB and LUV, where the color components (hm,sm,vm), (ym, im,qm),
(xm,ym,zm), (lm,am,bm) and (lm,um,vm) are not measured on the same linear scale.

At first sight it may be though very difficult to find a universal similarity
(distance) measure. However, Mignotte [1] shows we may define such a similarity
measure by converting the color components of each pixel into a local probability
distribution.

Let p(k)
m be the local distribution of the pixel values in a window centered on the

mth pixel in I(k). If P̄(k)
l denotes the average distribution of pixel values which are

assigned to the l cluster,

P̄(k)
l =

M

∑
m=1

δ (k)
l (m)p(k)

m /
M

∑
m=1

δ (k)
l (m) ,

then Mignotte defines d(c(k)
m ,C(k)

l ) as

d(c(k)
m ,C(k)

l ) = S(p(k)
m , P̄(k)

l ) ,

where S is the Bhattacharyya similarity (distance) measure.

Given the Mignotte distance measure d(c(k)
m ,C(k)

l ), we may cluster the pixels us-
ing the K-means cluster algorithm.

20.4 K-Means Fusion Operator

Mignotte also uses the K-means cluster algorithm as a fusion operator as fol-

lows. Given the segmented images D(k),k ∈ {1,2, . . . ,K}, let q(k)
m denote the local
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distribution of segmentation labels in a window centered on the mth pixel in D(k).

We now concatenate the distributions q(k)
m :

q̃m ≡ (q(1)
m ,q(2)

m , . . . ,q(K)
m ) .

The concatenated distributions q̃m may then be clustered into LQ clusters using the

K-means algorithm in the same way we clustered the p(k)
m . The result is an assign-

ment matrix:
˜δl(m) =

{

1 if q̃m is assigned to ˜Cl ,
0 otherwise .

The assignment matrix ˜δl(m) then defines the fused segmentation image ˜D:

˜D(m) = l if ˜δl(m) = 1 .

Reference

1. Mignotte, M.: Segmentation by fusion of histogram-based K-means clusters in different
color spaces. IEEE Trans. Image Process. 17, 780–787 (2008)



Chapter 21
STAPLE: Simultaneous Truth and Performance
Level Estimation

Abstract. The subject of this chapter is the STAPLE (Simultaneous Truth and Per-
formance Level Estimation) algorithm. This is a method for fusing together several
segmented images and is based on the expectation-maximization (EM) algorithm.

21.1 Introduction

Segmentation by non-rigid registration to an atlas image is an established method
for labeling biomedical images [1]. However, in general, the choice of atlas image
is important in determining the quality of the segmentation. As a result, multiple at-
lases are often used which may improve the segmentation accuracy over approaches
that use a single individual atlas or even an average atlas (see Sect. 10.8). These algo-
rithms often combine the multiple segmentations by a majority-vote rule. However,
[2, 3] have shown that much better results may be produced by using the STAPLE
(Simultaneous Truth and Performance Level Estimation) procedure . The STAPLE
procedure uses the expectation-maximization (EM) algorithm to iteratively estimate
the quality of the individual segmentations. The final segmentation is then computed
with these individual segmentation qualities taken into account by weighting the de-
cisions made by a reliable segmentation algorithm higher than ones made by a less
reliable algorithm.

21.2 Expectation-Maximization Algorithm

The expectation-maximization (EM) is a powerful iterative technique suited for cal-
culating the maximum likelihood estimate in problems where the observation can be
viewed as incomplete data. The maximum-likelihood estimate of a random variable
x, denoted as x̂, based on the incomplete observed data y, is defined as

x̂ = argmax
x

(log p(y|x)) ,

where log p(y|x) is the log likelihood of y given x.
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Central to the EM algorithm is the introduction of an auxiliary random variable
W with log likelihood log p(W |x). The data W is referred to as the complete data
because it is more informative than y. The complete data W is not observed directly,
but indirectly through y via the relationship y = f (W ), where f is a many-to-one
mapping function. Those unobserved variables are referred to as hidden data and
denoted by H. The EM algorithm calculates an estimate for x, x̂, through an iterative
procedure in which the next iteration’s estimate of x is chosen to maximize the
expectation of log p(W |x) given the incomplete data y and the current iteration’s
estimate of x. For a review of the EM algorithm when we use a mixture of Gaussians
for the likelihood see Sect. 7.3.

21.3 STAPLE

Given a medical input image I, our task is to estimate its ground truth segmen-
tation vector T . Writing I as a one-dimensional vector with M pixels I(m),m ∈
{1,2, . . . ,M}, then

T (m) =
{

1 if a given structure exists at mth pixel ,
0 otherwise .

Suppose we have segmented I using K different experts and/or algorithms. Let
Bk,k ∈ {1,2, . . . ,K}, denote the corresponding segmentation vectors. Then our aim
is to create a vector ˜B by combining the individual Bk such that ˜B is a good approx-
imation to the (unknown) ground truth segmentation vector T .

We have already considered this problem in Chapts. 7 and 12. Here we show how
we may use the expectation-maximization (EM) algorithm to form ˜Bk.

Different experts and/or segmentation algorithms will have different segmenta-
tion qualities. We represent the quality of each expert, or segmentation, algorithm
with a 2×2 matrix λk, where λk(r,s) is the conditional probability that the true clas-
sification of the mth pixel is T (m) = r,m ∈ {1,2, . . . ,M}, while the kth expert, or
algorithm, predicts Bk(m) = s. The diagonal entries (λk(r,s) represent the likelihood
of correct classification. The sum ∑r λk(r,r) is referred to as the sensitivity of the
kth algorithm:

sensitivity = λk(0,0)+λk(1,1) .

The off-diagonal entries (λk(r,s),r �= s) represent the likelihood of incorrect classi-
fication of the kth expert. The sum ∑r �=s λk(r,s) is referred to as the specificity of the
kth algorithm:

specificity = λk(1,0)+λk(0,1) .

In the STAPLE algorithm we generate ˜B and estimate the matrices λk,
k ∈ {1,2, . . . ,K}, using an iterative EM algorithm. In the E-step of the algorithm we
estimate the a posteriori probability of the ground true segmentation T . Then in the
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M-step we estimate the matrices λk,k ∈ {1,2, . . . ,K}, by maximizing the likelihood
of the ground truth segmentation which we estimated in the preceding E-step.

Mathematically, the E and M-steps are as follows:

E-step. Let λ (t)
k ,k ∈ {1,2, . . . ,K}, denote the current estimate of the qualities of

the individual binary images Bk,k ∈ {1,2, . . . ,K}. Then, the a posteriori proba-
bility that the ground true segmentation T (m) = r is

p(t)(T (m) = r|B1(m),B2(m), . . . ,BK(m),λ (t)
1 ,λ (t)

2 , . . . ,λ (t)
K ) ,

which for simplicity we write as p(T (m) = r|{Bk(m)},{λ (t)
k }). To calculate the

a posteriori probability we decompose it as follows:

p(t)(T (m) = r|{Bk(m)},{λ (t)
k })

=
α p(t)(T (m) = r|{λ (t)

k }
)

α p(t)
(

T (m) = r|{λ (t)
k }

)

+β p(t)
(

T (m) �= r|{λ (t)
k }

)

,

where

α = p(t)(B1(m) = r,B2(m) = r, . . . ,BK(m) = r|T (m) = r,λ (t)
1 ,λ (t)

2 , . . . ,λ (t)
K

)

,

β = p(t)(B1(m) �= r,B2(m) �= r, . . . ,BK(m) �= r|T (m) �= r,λ (t)
1 ,λ (t)

2 , . . . ,λ (t)
K

)

,

Assuming the experts and/or segmentation experts are independent, then the ex-
pressions for α and β become

α = ∏
k:Bk(m)=r

p(t)(Bk(m) = r|T (m) = r
)

× ∏
k:Bk(m) �=r

(

1− p(t)(Bk(m) = r|T (m) = r)
)

,

β = ∏
k:Bk(m) �=r

p(t)(Bk(m) �= r|T (m) �= r
)

× ∏
k:Bk(m)=r

(

1− p(t)(Bk(m) �= r|T (m) �= r)
)

.

We estimate the a priori probabilities P(T (m) = r|{λ (t)
k }), which are, in fact,

independent of {λ (t)
k } as follows:

P(T (m) = r|{λ (t)
k })≡ P(T (m) = r) =

1
KM∑k ∑m

δ (Bk,r) ,

where

δ (a,b) =
{

1 if a = b ,
0 otherwise .
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M-step. We update the parameters λ (t)
k ,k ∈ {1,2, . . . ,K}, by maximizing the like-

lihood of the current ground truth estimate determined in the E-step. Given the

previous ground truth estimates p(t)
(

T (m) = r|Bk(m),λ (t)
k

)

, the new estimates
for the expert parameters are:

λ (t+1)
k (r,r) =

∑m:Bk(m)=r p(t)(T (m) = r|{Bk(m)},{λ (t)
k }

)

∑m p(t)
(

T (m) = r|{Bk(m)},{λ (t)
k }

)

,

λ (t+1)
k (r,s) =

∑m:Bk(m) �=r

(

1− p(t)(T (m) = r|{Bk(m)},{λ (t)
k })

)

∑m

(

1− p(t)(T (m) = r|{Bk(m)},{λ (t)
k })

)

,

where s �= r. After several iterations the a posteriori probabilities p(t)(T (m) =
r|{Bk(m)},{λ (t)

k }) and the parameters λ (t)
k ,k ∈ {1,2, . . . ,K}, converge to their fi-

nal values. The ˜B(m) are then assigned to the class with the maximum a posteriori
probability:

˜B(m) =
{

1 if p(T (m) = 1|{Bk},{λk})≥ 0.5 ,
0 otherwise .

.
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Chapter 22
Biometric Technologies

Abstract. In this chapter we provide a brief overview of biometric technology and
in particular, multi-modal biometric technology.

22.1 Introduction

We define biometric technology to be the automated use of physiological, or behav-
ioral, characteristics to determine, or verify, an individual’s identity. We shall follow
common practice and use the word biometric to refer to any human physiological,
or behavioral, characteristic which possesses the following properties:

Universal. Every person should have the biometric characteristic.
Unique. No two people should be exactly the same in terms of the biometric

characteristic.
Permanent. The characteristic should be invariant with time.
Collectable. The characteristic can be measured quantitatively.
Reliable. The characteristic must be safe and operate at a satisfactory perfor-

mance level.
Acceptable. The characteristic should be non-invasive and socially tolerable.
Non-circumventable. The system should be robust against impostors.

Biometric characteristics include visual images and other human phenomena such
as speech, gait, odour and DNA.

Example 22.1. Biometric Recognition Systems [4]. A typical use of biometric
recognition systems is in access control. In this case, we have a person claim-
ing an identity and provides a biometric sample to support this claim. The
biometric recognition system acting as an authentication system then classi-
fies the person as either a true claimant or as an imposter.

In fact biometric recognition systems can be used in three distinct ways [4].
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Closed set identity. Classifying a given biometric sample as belonging to
one of K persons, where K is the number of known persons.

Open set identity. Assigning a given biometric sample to one of K + 1
classes, where the first K classes represent the K persons in the closed set
identity and class K + 1 represents an “unknown” or “previously unseen”
person.

Authentication. Assign a given sample into one of two classes: either the
sample belongs to a specific person or it does not.

22.2 Multi-modal Biometrics

Although there has been a significant improvement in the performance of single-
sensor biometric systems, real-life environments still pose significant difficulties on
biometric-based recognition systems.

Example 22.2. Unconstrained Iris Recognition [7, 9]. Iris recognition authen-
ticates and recognizes persons using the unique iris pattern. When the iris
image is taken in a controlled environment, the accuracy of the system is very
high. However in uncontrolled environments the performance of the system
degrades considerably due to noise factors such as eyelids, eyelashes and re-
flection.

To increase overall reliability, the contemporary biometric systems often employ
multiple physiological, or behavioral, traits. This approach is called multi-modal
biometrics.

The most often multi-biometric data, employed in the biometric systems, include
iris and retina of the eye, fingerprint, geometry and palmprint of the hand, and also
face and ears. We often combine complimentary biometric sensors. For example,
face geometry is a highly dynamic but rich topological structure (smile, lip, brow,
and eye movements). Combining facial images with more static biometric such as
fingerprint, is an example of the concept of multi-biometrics.

The multi-modal human recognition is deployed in physical access security sys-
tems and other areas such as banking systems [11].

22.2.1 Fingerprints

Fingerprint is, perhaps, the oldest type of biometrics and today the fingerprint reader
is the most developed type of biometric sensors.
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22.2.2 Signatures

Current interest in signature analysis is motivated by the development of improved
devices for human-computer interaction which enable input of handwriting and sig-
natures.

22.2.3 Faces

Face recognition systems detect patterns, shapes, and shadows in the face, perform
feature extraction and recognition of facial identity. Today, the most popular ap-
proach is based on principal component analysis (see Chapt. 9).

However many face recognition systems are confused when identifying the same
person smiling, aged, with various accessories (moustache, glasses), and/or in badly
lit conditions. For a comprehensive review of the current approaches to face recog-
nition see [12].

22.2.4 Iris and Retina

Iris recognition systems scan the surface of the iris to compare patterns. The iris
biometrics [2] is considered to be the most reliable one. Retina recognition systems
scan the surface of the retina and compare nerve patterns, blood vessels and such
features [5].

22.2.5 Gait Biometrics

Gait recognition is defined as the identification of a person through the pattern pro-
duced by walking [3]. A unique advantage of using gait as a biometric is that it
offers the potential for recognition at a distance or at low resolution, when other
biometrics might not be perceivable. However, this must be balanced with the large
within-subject variation exhibited by a gait biometric [3].

22.2.6 Other Biometrics

A variety of biometrics such as ear geometry [6], odour, electrocardiogram and
keystroke dynamics [11].

22.3 Multi-biometrics

Apart from multi-modal systems, multi-biometrics include multi-sensor, multi-
algorithm, multi-instance and multi-sample systems [10, 11].
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22.3.1 Multi-sensor System

Multi-sensor systems employ multiple sensors to capture a single biometric trait.
The following example illustrates multi-sensor face recognition which is performed
by fusing thermal infra-red and visible light face images together.

Example 22.3. Face Recognition by Fusing Thermal Infrared and Visible
Imaqery [1]. Thermal infrared (IR) imagery offers a promising alternative to
visible, or electro-optical (EO), imagery for face recognition due to its rela-
tive insensitivity to changes in illumination. However thermal IR is opaque to
glass. This means part of the face may be occluded if the person is wearing
eyeglasses.

The IR and EO images are fused together in the wavelet domain (Chapt. 8).
In [1] a genetic algorithm is used to find the optimum strategy to combine the
information from the two spectra (cf. Ex. 8.4). The objective is to compute a
fused image which captures the most salient features from the inputs.

Face recognition is then performed using a conventional principal compo-
nent analysis of the fused image. The results showed a significant improve-
ment in recognition.

22.3.2 Multi-algorithm System

Multi-algorithm systems use multiple feature extraction and/or matching algorithms
on the same biometric data. The idea underlying a multi-algorithm system is that
different features and/or matching algorithm emphasize different aspects of the test
object. Their combination may therefore give an improved biometric performance.
The following example illustrates a multi-algorithm face recognition system which
is performed by fusing PCA (principal component analysis) and LDA (linear dis-
criminant analysis) algorithms.

Example 22.4. Decision-level Fusion of PCA and LDA-based Face Recogni-
tion Algorithms [8]. Face recognition is often performed using principal com-
ponent analysis (PCA) (Sect. 9.2) or linear discriminant analysis (LDA) (Sect
9.5). In [8] face recognition is performed by fusing together the outputs of a
PCA and a LDA face recognition algorithm.

Let x denote a given test image written as a one-dimensional vector. We
project x onto the PCA and LDA sub-spaces. Let u and v be the corresponding
projected vectors. If Uk and Vk are, respectively, the kth training pattern in
the PCA and LDA sub-spaces, then we compute the corresponding Euclidean
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distances dPCA
k = ‖u−Uk‖ and dLDA

k = ‖v−Vk‖. The Euclidean distance are
normalized and are then combined together to a given fused distance ˜Dk:

˜Dk =
DPCA

k + DLDA
k

2
.

where

DPCA
k =

dPCA
k −minl(d

(PCA
l )

maxl(dPCA
l )−minl(dPCA

l )
,

DLDA
k =

dLDA
k −minl(d

(LDA
l )

maxl(dLDA
l )−minl(dLDA

l )
.

The fused distances ˜Dk are then used in a nearest neighbor classifier instead of
dPCA

k or dLDA
k . The results obtained with ˜Dk show a significant improvement in

performance.

22.3.3 Multi-instance System

Multi-instance systems use multiple instances of the same biometric. For example,
we may use the fingerprints from the left and right index fingers, or irises from the
left and right eye, to verify an individual.

22.3.4 Multi-sample System

Multi-sample systems use multiple samples of the same biometric trait obtained
with the same sensor. For example a fingerprint system equipped with a small size
sensor may acquire multiple dab prints of an individual’s finger in order to obtain a
complete fingerprint image.

22.4 Epilogue

The aim of the book has been to provide a practical introduction to the theories,
techniques and applications of image fusion. In Part I we considered the conceptual
theories and ideas which underlie image fusion and in Part II we considered some of
the techniques and algorithms which are used in image fusion. In Part III we consid-
ered four real-life applications of image fusion. Apart from these four applications,
numerous examples of image fusion are given in Parts I and II. The reader is now
encouraged to review these examples.
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IKONOS images, 224
principal component analysis, 114
spectral distortion, 222

PAV
see Pooled-average value, 56

PCA
see Principal component analysis,

109
Platt calibration

semantic equivalence, 55
Pooled-average value 56
Principal component analysis 109

2D-PCA, 113

face recognition, 112
image fusion, 114
pan-sharpening, 114
Turk-Pentland trick, 110
whitening, 112

PVI
see Partial volume interpolation, 47

Radiometric calibration 63
features maps, 71
histogram matching, 64
histogram specification, 65
image segmentation, 70
local binary pattern, 69
matching second-order statistics, 68
midway image equalization, 66
thresholding, 69

Re-sampling methods
adaboost, 147
ave2boost, 148
bagging, 144
boosting, 147
bootstrapping, 143
ensemble learning, 143

Segmentation
see Image segmentation, 132

Semantic equivalence
assignment matrix, 57
co-association matrix, 60
definition, 53
histogram calibration, 56
isotonic calibration, 56
permuting decision labels, 87
Platt calibration, 55
probabilistic scale, 54

Shadow detection 80
Shape-based averaging 84
Shape context

common representational format, 25
SIFT

see Key-point, 25, 163
Similarity measures 167

χ2, 172
Bhat-Nayar, 180
binary, 182
cross-bin, 174
cross-correlation coefficient, 177
earth mover’s distance, 174



Index 247

global, 168
Hausdorff, 183
histogram bin selection, 175
Kemeny-Snell, 179
Kendall’s τ , 178
local, 168
Mallow’s distance, 175
mean absolute error, 176
mean square error, 176
metric, 168
Mittal-Ramesh, 182
mutual information, 178
order statistics, 178
probabilistic, 170
probability binning, 173
Spearman’s ρ, 178

Skin classifier 202
Spatial alignment 35

artifacts, 48
hierarchical registration, 39
image transformations, 37
interpolation, 36
Moran’s autocorrelation coefficient,

41
mosaic image, 41
multiple image constraints, 42
mutual information, 43
pairwise transformation, 36
stitching, 43
thin-plate splines, 37

Spectral resolution 15

Spot detection
discrete wavelet transform, 98

STAPLE algorithm 233, 234
Stitching 43

feathering, 43
Sturges’ rule

histogram bin calculation, 45
Sub-space

face space, 107
see CCA, ICA, LDA, NNDA, PCA,

107
SURF

see Key-point, 165
Surveillance systems 22

Texture
local binary pattern, 28

Thresholding
ensemble thresholding, 135
fuzzy, 69
radiometric calibration, 69

Vignetting 187
causes, 188
correction, 188

Viola-Jones
object detection, 151

White balance 187
adaptive algorithm, 192
ensemble learning, 192

Whitening 112
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