Chapter 3
Credibilistic Portfolio Selection

Credibilistic portfolio selection deals with fuzzy portfolio selection by means
of credibility theory. Fuzzy portfolio selection problem was researched from
1990s. Early researchers employed possibility as the basic measure of the
occurrence of a fuzzy event and most of them devoted themselves to extend-
ing Markowitz’s mean-variance selection idea. However, possibility measure
is not self-dual. By using possibility, when the investors know the possibility
level of a portfolio reaching a target return, they cannot know the possibility
level of the opposite event, i.e., the event of this portfolio not being able to
achieve the target return! This will confuse and worry the decision maker.
Therefore, Huang proposed that we should use the self-dual credibility as the
basic measure of the occurrence of a fuzzy event and study the fuzzy port-
folio selection problems. To provide an instinct and observable information
about loss amount and to accurately evaluate the loss degree, Huang [38] pro-
posed that we should evaluate each likely loss level and the loss occurrence
chance instead of just focusing on the average information of loss. Looking
at loss from a panoramic perspective, Huang provided a general definition
of risk, i.e., the risk curve, and proposed a mean-risk model based on this
new definition. In addition, Huang proposed a spectrum of simplified versions
of the risk and proposed a system of credibilistic portfolio selection models
[41] including mean-risk model [38], G-return-risk model [27], credibility min-
imization model, mean-variance model [33], mean-semivariance model [37],
and entropy optimization model [39].

This chapter will first introduce some necessary knowledge about credibil-
ity theory. The reason for adopting credibility measure rather than possibil-
ity measure is given. Then we will introduce the definitions of risk and the
credibilistic portfolio selection models. Crisp equivalents of the fuzzy mod-
els in some special cases will also be presented. After that, we will provide
a general solution algorithm for solving the credibilistic portfolio selection
models.
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3.1 Fundamentals of Credibility Theory

In reality, besides randomness, there are many fuzzy phenomena. For exam-
ple, a “beautiful” girl in many situation is not a very clear concept. In order
to describe fuzziness, the concept of fuzzy set was first proposed by Zadeh
[95] in 1965 via membership function. Furthermore, to measure a fuzzy event,
Zadeh [96] proposed possibility measure. Although possibility is a widely used
measure, it is not self-dual. However, for a measure, self-duality property is
extremely important. In order to define a self-dual measure, Liu and Liu [55]
proposed credibility measure. An axiomatic credibility theory was founded
by Liu [68] in 2004 and refined by Liu [60] in 2007. Credibility theory has
been fairly well applied in many application areas.

Credibility and Credibility Space

Definition 3.1 (Liu [60]). Let © be a nonempty set, and P(O) the power
set of O, i.e., the largest o-algebra over ©. Each element in P(O) is called
an event. The set function Cr is called a credibility measure if

(Aziom 1) (Normality) Cr{O} = 1;

(Aziom 2) (Monotonicity) Cr{A} < Cr{B} whenever A C B;

(Aziom 8) (Self-duality) Cr{A} + Cr{A°} =1 for any event A.

(Aziom 4) (Mazimality) Cr{U;A;} = sup, Cr{4;} for any events {A;} with
sup; Cr{4;} < 0.5.

The value of Cr{A} indicates the level that the event A will occur.

For example, let © = {61, 02}. There are only four events: (), {61}, {62}, O.
Define Cr{(} = 0,Cr{61} = 0.4, Cr{62} = 0.6, and Cr{©} = 1. Then the set
function Cr is a credibility measure because it satisfies the four axioms.

Let © be a nonempty set, P the power set of @, and Cr the credibility
measure. From Axioms 1 and 3 we know Cr{()} = 0. From Axiom 2 we know
0 < Cr{A} <1 for any A € P because ) C A C O. That is, the credibility
value of a fuzzy event is in the interval [0, 1].

Definition 3.2 (Liu [60]). Let © be a nonempty set, P(O) the power set of
O, and Cr a credibility measure. Then the triplet (©,P(O0),Cr) is called a
credibility space.

Fuzzy Variable

Definition 3.3. A fuzzy variable is defined as a function from a credibility
space (©,P(0),Cr) to the set of real numbers.

Remark 3.1. Since P(O) is the power set of © (i.e., the collection of all the
subsets of @), and a fuzzy variable ¢ is a function on a credibility space, for
any set B of real numbers, the set
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{¢e B} ={0€0O(0) € B}

is always an element in P. That is, the fuzzy variable is a measurable function
and {£ € B} is an event.

Definition 3.4. Let & and & be two fuzzy variables defined on the credibility
space (O, P, Cr). We say & = & if £&1(0) = £(0) for almost all 6 € O.

Membership Function and Credibility Inversion Theorem

The membership function was first introduced by Zadeh [95] in 1965. In the
credibility theory, membership function was defined via credibility.

Definition 3.5 (Liu [60]). Let £ be a fuzzy variable defined on the credi-
bility space (©,P(O),Cr). Then its membership function is derived from the
credibility measure by

p(t) = (2Cr{{=t})Al, teR

If we have got the membership function of a fuzzy variable £ first, how can we
know the credibility degree of a fuzzy event? The following inversion theorem
gives the answer.

Theorem 3.1 (Credibility Inversion Theorem, Liu and Liu [55]). Let & be
a fuzzy variable with membership function p. Then for any set A of real
numbers, we have

Cr{¢ e A} = ; (fgg w(t) +1 — sup u(t)) . (3.1)

teAe

Proof: If Cr{¢ € A} < 0.5, we know from Axiom 2 that Cr{{ =t} < 0.5 for
each t € A. According to Axiom 4 we have

Cr{g € 4} =, (sup(2Cr{€ = 1} A 1) =, sup u(t). (3.2)

2

Since the credibility measure is self-dual, we have Cr{¢ € A°} > 0.5, and

sup Cr{¢ =t} > 0.5. Therefore
teAc

sup u(t) = sup(2Cr{€ =t} A1) =1. (3.3)
teAe teAe

It follows from (B2]) and (B3] that I holds.



64 3 Credibilistic Portfolio Selection

If Cr{¢ € A} > 0.5, we have Cr{¢ € A°} < 0.5 because the credibility
measure is self-dual. From the result of the first case we have

Cr{€eA}=1-Cr{ce A =1— ; (sup u(t)+1— supu(t))

teAc teA

1
= (sup p(t) +1 — sup u(t)) :
2 teA te Ac

The theorem is proven.

Example 3.1. Let £ be a fuzzy variable with membership function p. Then
it follows from Theorem [B] that the following equations hold:

1
Orfg =t} =, (ult) + 1 —supu(y)), VeR (3.4)
2 y7#t
1
Crle <ty =y (swpuln) +1-supu( ). e (9
2 y<t y>t
1
Cr{{ >t} = (sup n(y) +1 —sup u(y)) , VteR. (3.6)
2 y>t y<t
Especially, if p is a continuous function, we have
Cr{é =t} — “;t), Wt e R. (3.7)

Remark 3.2. A fuzzy variable has a unique membership function, but a
membership function may produce multiple fuzzy variables. For example, let
O = {61,02} and p(01) = p(f2) = 1. It can be easily proven that (©,P, Cr)
is a credibility space. Define

0, ifo=6 1, ifo=6,
9 - 9 =
&1.0) { 1, if0=6s, £2(0) { 0, if0=0,.

We can see that though the fuzzy variables & and £ have the same mem-
bership function, i.e., u(t) = 1 on t = 0 or 1, they are two different fuzzy
variables in the sense of Definition B4l Since one membership function may
produce multiple fuzzy variables, we can not define fuzzy variable via mem-
bership function. An axiomatic system is needed to define a fuzzy variable
and discuss the properties concerning the fuzzy variable to ensure precision
and consistency of the researches. That explains why the membership func-
tion is defined via credibility in credibility theory. However, for application
purposes, we only need to construct the membership function of a fuzzy
variable and then use the credibility inversion theorem to derive the credi-
bility and use credibility theory to help solve the application problems. The
mathematical requirement for the membership function is simple. It has been
proven [58] that a function u :— [0, 1] is a membership function if and only if
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sup u(t) = 1. For construction method of membership functions, readers can
refer to Triantaphyllou and Mann [90], Chen and Otto [§], Kumar and Ganesh
[47], Hong and Chen [26], and Medaglia, Fang, Nuttle and Wilson [70].

Remark 3.3. Membership function indicates the degree that the fuzzy vari-
able ¢ takes some prescribed values. If ¢ is an impossible point, the mem-
bership degree pu(t) = 0; and if ¢ is the most possible point that the fuzzy
variable £ takes, the membership degree p(t) = 1. However, the inverse state-
ment is not true. It is the credibility degree rather than membership degree
that gives the occurrence chance of the prescribed values. From credibility
inversion theorem we know that the credibility degree of a prescribed value
depends not only on its membership degree but also on the membership de-
gree of its complementary set.

Why Adopt Credibility?

Possibility measure is an early proposed measure to measure a fuzzy event.
Let £ be a fuzzy variable with membership function p. Then Pos{A} =
sup{u(£(0))|0 € A} for any fuzzy event A € P. Though possibility mea-
sure is an important measure and is widely used in fuzzy set theory, it is not
self-dual. Yet, self-duality property is absolutely needed in both theory and
application research. Without self-duality, confusion will appear. Let us see
below what will happen if we adopt possibility to measure the occurrence
chance of a fuzzy event.

Example 3.2. A fuzzy variable is called a triangular fuzzy variable if it has
a triangular membership function (see Fig. B

u(t)

o0 T2 T3

Fig. 3.1 Triangular membership function.

t—’l"l

, if 1 S t S T2
ro — 711
_ t—
) = B it <t<iry
o —T3
0, otherwise.

We denote it by £ = (r1,72,73) with 1 <19 < r3.
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Question 1: Suppose a traveler is going to visit a city. The expenditure is
predicted to be a triangular fuzzy variable £ = (200, 300, 400) dollars (see Fig.
[B2)). To ensure that the traveler will have enough money in his traveling, at
least how much money should he bring with him?

(1)

10 ...............................................................

0 200 300 400

Fig. 3.2 Triangular expenditure £ = (200, 300, 400).

Judging from common sense, we will say that the traveler should bring 400
dollars with him so that he will have enough money for traveling. However,
when using possibility measure, we find

min {t|Pos{£ <t} = 1} = 300,

which tells us that the traveler just needs to bring with him 300 dollars to
ensure that he will have enough money for traveling. This result obviously is
contradictory to our judgement and common sense.

Question 2: Suppose we now have a portfolio whose return can be described
by a triangular fuzzy variable £ = (0,1.5,3) (see Fig. B3]). Then which event
will be more likely to happen, the event of portfolio return not less than 1.5
or the event of portfolio return less than 1.57

p(t)

10 ........................... ;

0.0 1.5 3.0 t

Fig. 3.3 Triangular portfolio return £ = (0, 1.5, 3).
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By using possibility measure, we can calculate that Pos{¢ > 1.5} = 1,
which seems to imply that the portfolio return not less than the value 1.5 will
surely happen. However, by using possibility measure, we can also calculate
that Pos{¢ < 1.5} = 1, which seems to imply that the portfolio return less
than the value 1.5 will also surely happen. Is not it strange that two opposite
events will both surely happen at the same time? The law of contradiction
tells us that a proposition cannot be both true and false at the same time,
and the law of excluded middle says that a proposition should be either true
or false. It is obviously that the judgement made based on possibility is in
contradiction with both the law of contradiction and the law of excluded
middle.

Now, let us use credibility measure to calculate a fuzzy event. It follows
from credibility inversion theorem that for a triangular fuzzy variable £ =
(r1,re,73) (Fig. B, we have

1, rs <t
-2 t
AR <<
Cr{¢ <t} = 2§T3 y r2) (3.8)
-
<t<
2(7"2 _ 7"1)’ T1 r2
0, otherwise.

Then, for a triangular expenditure £ = (200, 300,400), we have
min {¢[Cr{¢ < ¢} =1} = 400,

which means that the traveler should bring with him 400 dollars to ensure
that he will have enough money for traveling. The result is consistent with
our judgement and common sense.

For a triangular portfolio return & = (0,1.5,3), according to Equation
B3), we have Cr{¢ > 1.5} = 0.5, which means that there is only half
the chance that the portfolio return will not be less than 1.5. According
to Equation B8], we know Cr{¢ < 1.5} = 0.5, which means that there
is only half the chance that the portfolio return will be less than 1.5. It
is seen that the result is consistent with our judgement and the confusion
disappears.

Some Special Fuzzy Variables

Example 3.3. A fuzzy variable is called a trapezoidal fuzzy variable if it has
a trapezoidal membership function (see Fig. BA)



68 3 Credibilistic Portfolio Selection

t—r
Lo <t<n
To —T1
].7 if 2 S t § T3
pu(t) = ¢
— T4 .
) if r3 S t S T4
r3 — T4
0, otherwise.

We denote it by £ = (r1,72,73,74) With 1 <73 < r3 < ry4.

p(t)

o0 T2 3 T4

Fig. 3.4 Trapezoidal membership function.

According to credibility inversion theorem, if r4 < ¢, we have
1
Cr{¢ <t} = 2(1—%1—0):1.

If r3 <t <ry, then

1 ry —t rqg —2rg+t
C <t}t= (1+1- = .
r{f - } 2( + T4 —7’3) 2(7"4 —7"3)

If ro <t <rs, then
1 1
Cr{ﬁﬁt}:2(1+l—1):2.

If i <t <rg, then

1 t—Tl t—’l“l

Cr{¢ <t} = +1—1):2(T2_T1).

2(7“2—’/“1
If t < rq, then
1
Cr{¢ <t} = 2(0—%1—1):0.
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That is,
].7 if T4 <t
-2 t
ML <t <y
2(7’4 — 7"3)
1
Cr{¢ <t} = o ifro <t<wrs (3.9)
t— 71
ifry <t <
2(7“2—7“1)’ Hor=t=T
0, otherwise.

Example 3.4. A fuzzy variable £ is called a normal fuzzy variable if it has
a normal membership function

mlt—el\\ "
t)=2(1+ , teR, > 0.
#le) ( exp( V6o )) ’

We denote it by & ~ N (e, o). It can be calculated that
ple+o)=ple—0)=04324, and ple+20)=ple—20)=0.1428.

Two normal membership functions with same o but different e’s are drawn
in Fig. Bl and two normal membership functions with same e but different
o’s are drawn in Fig.

1(t)
1

7

0 €1 €2

t

Fig. 3.5 Normal membership functions with same o but different e’s.

0

Fig. 3.6 Normal membership functions with same e but different o’s.
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Example 3.5. A fuzzy variable £ is called an equipossible fuzzy variable on
[a, b] if it has the following membership function (see Fig. BT

1, if al S t S a9
pu(t) =
0, otherwise.
We denote it by £ = (a, b).
pi(t)
1
a0 b t

Fig. 3.7 Membership function of an equipossible fuzzy variable.

Credibility Distribution

Definition 3.6 (Liu [50]). The credibility distribution @ : ® — [0,1] of a
fuzzy variable £ is defined by

P(t) = Cr{¢ < t}. (3.10)

Example 3.6. Let £ be a fuzzy variable with credibility distribution @. Then
for any number k > 0, the credibility distribution of k€ is

() :@(2). (3.11)

Theorem 3.2. Let £ be a fuzzy variable with membership function p. Then
the credibility distribution of € is

&(t) = ; (sup w(z) +1—sup u(z)) , VteR. (3.12)

z<t z>t

Independence

Definition 3.7 (Liu and Gao [61)]). The fuzzy variables &1,&2,- -+, &, are
said to be independent if for any sets By, Bo,---, B, of R, we have

Cr Q{& € B}| = min Cr{g € B}, (3.13)
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Theorem 3.3 (Liu [60]). The fuzzy variables &1,&a,- -+, &, are independent
if and only if

Cr{ Ul{& €Bi}} = max Or{g; € By). (3.14)
Proof: Since credibility measure is self-dual, the fuzzy variables &1,&3, -+, &,

are independent if and only if
Cr{ Uté € Bi}} =1- Cr{ ({& € Bic}}
i=1 i=1
=1- o Cr{¢ € Bi} = Jnax Cr{¢& € B;}.
Thus, the theorem is proven.

Fuzzy Arithmetic

Definition 3.8 (Liu [60]). Let " — R be a function, and &1,&2,-+,&n
fuzzy variables defined on the credibility space (0;,P(6;),Cr;),i =1,2,--- n,
respectively. Then & = f(&1,&2, -+, @) is a fuzzy variable defined as

§60) = F(64(0),2(0), -+ ,£(0))

for any 0 € 6.
Theorem 3.4 (Extension Principle of Zadeh). Let &1,&a,- -+, &, be indepen-
dent fuzzy variables with membership functions i, po, -« -, tn, respectively,

and R — R a continuous function. Then the membership function p of
&= f(&,&, -+, &) is derived from the membership functions pi, pa, -+, fn
for any t € R by
p(t) = sup min p; (¢ 3.15
( ) t=Ff(t1,ta, o tn) LSISN ( ) ( )

which is consistent with the expression

wu(t) = sup { min 1;(t;) ’ t= f(ty,ta,- - ,tn)} . (3.16)
ti,to, it €R 1sign
Here we set u(t) = 0 if there are not real numbers ti,ta, -+, t, such that

t:f(t17t27”'atn)-

Let us now give some examples to show the operations on fuzzy variables.

Example 3.7. Let £ be a fuzzy variable with membership function v. Then
the membership function p of £ 4+ 2 is

ult) = (o)t =t +2}
=v(t —2).
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That is, the membership value that the fuzzy variable £ 4+ 2 achieves value
t € R is the membership value that the fuzzy variable £ achieves value ¢ — 2.

Example 3.8. Let & be a fuzzy variable with membership function p;, and
&y another fuzzy variable with membership function po. Then the membership
function p of & - &5 is

p(t) = sup {pi(tr) A pa(te)|t = t1 - ta}.
t1,l20€R

Example 3.9. Let & be a fuzzy variable with membership function p;, and
&5 another fuzzy variable with membership function po. Then the membership
function p of & + & is

p(t) = sup {pi(tr) A pa(te)|t =t1 +ta}
ti,t2€ER

= sup {p1(t1) A pa(t —t1)}.
t1€R

Example 3.10. Let & = (a1, a2, a3, aq) and & = (b1, ba, bs, by) be two trape-
zoidal fuzzy variables with membership functions py and pe respectively.
Then the membership function p of & + & is

p(t) = sup {p(ts) Apa(te)|t =t +ta2}

ti,t2€R
t— (a1 +b1) .
, ifa+06; <t<as+5b
(az +b2) — (a1 + b1) e 2
1, ifag +by <t <asz+bs
B t— (ag + bg) .
, ifas+b3<t<as+5b
(a3 + b3) — (as + ba) s LT
0, otherwise,

which shows that the sum of two trapezoidal fuzzy variables &1 = (a1, a2, as, as)
and & = (b1, be, b3, by) is also a trapezoidal fuzzy variable, and & + & =
(a1 + b1, a2 + b2, as + bz, as + by).

Similarly, according to Theorem[3.4] we can calculate that the membership
function p of the product of a trapezoidal fuzzy variable £ = (a1, as,as, as)
and a scalar number w is

Poe(t) = sup{pe(t1)|t = wt1}
which produces that

(way,was,was,wayq), fw>0
w-€&=

(way, was, was,way), if w < 0.

That is, the product of a scalar number w and a trapezoidal fuzzy variable
& = (a1,a9,as,a4) is also a trapezoidal fuzzy variable.
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Note that the triangular fuzzy variable & = (r1,7r2,74) is in fact a special
trapezoidal fuzzy variable & = (r1,79,13,74) When ro = r3. Therefore, we can
easily get that the sum of two triangular fuzzy variables & = (a1, a2, a3) and
& = (b1, ba, b3) is also a triangular fuzzy variable, and & + & = (a1 +b1, a2+
ba, ag + b3. The product of a scalar number w and a triangular fuzzy variable
¢ = (a1,a9,as) is also a triangular fuzzy variable, and

¢ (waq,was,was), ifw>0
w-&=
(wag, was,way), if w <O0.

Example 3.11. Let & ~ N(e1,01) and & ~ N (ez, 02) be two normal fuzzy
variables. It can be proven that for any real numbers wy and ws, the fuzzy vari-
able w1&1 + wo&s is also a normal fuzzy variable whose membership function is

7|t — (wier + waez)| -1
u(t):2(1+exp< , teR.
V6(|wi|oy + |waloz)

Example 3.12. Let & = (a1,a2) and & = (b1,b2) be two equipossible
fuzzy variables. It can be proven that the fuzzy variable & + & is also an
equipossible fuzzy variable, and

&+ & = (a1 + by, az + ba).

Their product & - &> is also an equipossible fuzzy variable, and

51-£2=< min

Yz, max yz) .
a1<y<az,b1 <z<by a1<y<az,b1<z<b2
Example 3.13. Let &1,&5, -+, &, be independent fuzzy variables with mem-

bership functions pi1, p2, - + -, fin, respectively, and R — R be a function. Then
for any set B of real numbers, the credibility Cr{f(¢t1,t2,--,t,) € B} is

1
sup min p;(¢;) +1— sup min u;(t;) | -
2 (f(tl,tz,---,tn)eBKK" Y ftr toty)eBelSisn

Expected Value

Expected value operator calculates the average value of a fuzzy variable.

Definition 3.9. (Liu and Liu [55]) Let € be a fuzzy variable. Then the ex-
pected value of € is defined by

Ble] = /O " e > e - /_ " Crfe < )t (3.17)

provided that at least one of the two integrals is finite.
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Example 3.14. Let £ = (11, 72, 73) be the triangular fuzzy variable. We know
from the credibility inversion theorem that

1, T3 S t
-2 t
raT AR , re<t<rs
Cr{f¢<tp=q 2rs—72)
-
) rp St <o
2(7’2 —7’1)
0, otherwise,
and
0, r3 <t
r3 —t
9 ) ro <t <3
Cr{¢ >t} = (r3 —72)
2’/“2 — 7 — <t<rp
) T1 2
2(7"2 —7"1)
1, otherwise.

Thus, if 0 < r; < 7y < 13, we have Cr{{ < ¢} =0 when ¢t < 0. Then

" " 2rg —ry — 1t "org—t
El¢] = 1dt + / dt + / at
4 </0 o 2(re—r1) vy 2(rs —r2)

—+o00 0 1
+/ Odt) —/ 0dt = 4(T1+2r2+7“3)-
T3

— 00

If r1 <0 < rg, then

T227’2—7"1—t /7‘3 Tg—t /+oo )

El¢] = dt + dt + 0dt

g (/0 2(rg — 1) ro 2(rs —72) -
T1 0
t—’l“l 1
- 0dt dt | = 2 .
</_OO 4—/T1 s — 1) ) 4(r1+ ro +173)
If r1 <ry <0< r3, then

El¢] = (/0 Q(ZE:jQ)dt—k/T:OOOdt) _ (/T;Odt+

2 t—1r 07’3—2T2+t ) 1
dt+/ dt )| =  (r1 + 2ry +13).
/7‘1 2(’/“2 — 7“1) ro 2(’/“3 — 7“2) 4( ! 2 3)



3.1 Fundamentals of Credibility Theory 75

Ifry <ry <rg <0, then

+oo 1 T2 t— r
E[¢] = 0dt — / 0dt + / dt
g /0 ( o r 2(re —11)

3 pg — Qrg 4t 0 1
+/ rs et dt+/ 1dt) = (ry +2ra +73).
T2 Q(TS _TQ) T3 4

Therefore, the expected value of the triangular fuzzy variable £ = (1,72, 73)
is always

El¢] = 1(7“1 + 27y +13). (3.18)

Example 3.15. The expected value of a trapezoidal fuzzy variable
5 - (7’17’”2,7"3,7"4) is

Ble) = J(r1 + 72475+ ra).

Example 3.16. The expected value of a normal fuzzy variable £ ~ N (e, o) is

Bl =e.

Example 3.17. The expected value of an equipossible fuzzy variable £ =
(ry,72) is
ElE] = (r2 +11)/2.

Theorem 3.5 (Liu and Liu [57]) Let & and & be independent fuzzy vari-
ables with finite expected values. Then for any numbers a1 and as, we have

Ela1& + a282] = a1 E[61] + a2 E[&). (3.19)

Variance

Definition 3.10 (Liu and Liu [53]) Let & be a fuzzy variable with finite
expected value e. Then the variance of £ is defined by

Vgl = E[(€ - e)?].

Example 3.18. Let £ be an equipossible fuzzy variable (a,b). Remember
that E[{] = e = (a+)/2. Then for any positive number ¢, we have
1/2, if t<(b—a)?/4

Cr{<5—e>2>t}={ 0. i 1> (- a2/

Thus the variance is

+oo (bfa)2/4 B 5
vig= [ ore-orzna= [0 =000
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Example 3.19. Let £ = (r1,72,73) be a triangular fuzzy variable. Then its

variance is 330% 4 21028 g
o’ +21a”f + 11aB” —

where a = max{ro—ri,r3—7r2} and § = min{ro—ry, r3—r2}. Especially, when
& = (r1,r2,73) is a symmetric triangular fuzzy variable, i.e., 73 —ro = ro — 11,
its variance is

V[ﬁ] = (7"3 — 7"1)2/24.

Example 3.20. Let & = (r1,72,73,74) be a symmetric trapezoidal fuzzy
variable, i.e., 74 — rg = ro — r1. Then its variance is

VIE] = ((ra —71)% + (ra — 1) (r3 — 1) + (13 — 12)%) /24.

Example 3.21. Let £ ~ N (e,0) be a normal fuzzy variable. Then its vari-
ance is
vig = o

Theorem 3.6 (Liu [58]) Let a and b be real numbers and & a fuzzy variable
whose variance exists. Then

V]aé +b) = a*V[¢]. (3.20)

Example 3.22. Let & ~ N(e1,01) and & ~ N ez, 02) be two normal fuzzy
variables, and a; and as any real numbers. Then

Ela1&1 + a2és] = areq + azes  and

Viar& + az&s] = (lar]or + |az|o2)?.

Semivariance

Definition 3.11 (Huang [37]) Let € be a fuzzy variable with finite expected
value e. Then the semivariance of € is defined by

SVIEl = Ell(€ — )71,

where £ —e, ifE<e
{ (3.21)

(€—e) = |
0, if &€ > e.

Example 3.23. Let £ = (a, b, ¢) be a triangular fuzzy variable with b — a >
¢ —b. Then the semivariance of ¢ is

_(e+a)e?—a®) € —da®  aele—a)
SVIE = 2b0—a)  3(b—a) b—ua

where e = (a + 2b+ ¢)/4.
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Example 3.24. Let £ = (a, b, ¢) be a triangular fuzzy variable with b — a <
¢ —b. Then the semivariance of &, i.e., SV[¢] is

3eb+ ab — 3ae 4+ a® — 2b% 3 — 4b3 + 3ce? — 6be? + 9b%e + 3¢b? — Gebe
+
6 6(c—0)
where e = (a + 2b+ ¢)/4.

Theorem 3.7 (Huang [37]) Let & be a fuzzy variable, SV[E] and V[E] the
semivariance and variance of &, respectively. Then 0 < SV[¢] < V¢].

Proof: Let e be the expected value of a fuzzy variable £. The nonnegativity
of variance and semivariance is clear. For any real number ¢, we have

{0 (€O) —e)* 2t} D {0 [(£(0) —e)7]? = 1},
which implies that
Cr{¢—e? 2t} 2 Cr{[(€—e) [P 21}, Wt

because credibility is monotonous.
It follows from the definition of variance and semivariance that

+oo +oo
Vig= [ orle-epzaarz [ orllie- e 2 = svig)
0 0
Theorem 3.8 (Huang [57]) Let & be a fuzzy variable with symmetric mem-

bership function. Then SV[{] = V[¢].

Proof: Let € be a fuzzy variable with symmetric membership function about
its expected value e. From the definition of variance, we have

+oo
VIl =El€ -0 = [ Cr{(e- P z tpat
0
Since the membership function of £ is symmetric about e, we have
Cr{¢ —e)’ 2t} =Cr{[(—e) P 21}, Wt

Therefore,

V= [ orle-er 2= [ orflie-e) P 2 0= sviel

0

Remark 3.4. Theorem tells us that when a membership function of
portfolio return is symmetrical, the variance value and the semivariance value
of the fuzzy portfolio return will be the same. However, when a membership
function of a fuzzy portfolio return is asymmetrical, Theorem 37 tells us that
the variance value and the semivariance value of the fuzzy portfolio return
will be different.
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B-Value

Definition 3.12 (Liu [56]) Let & be a fuzzy variable, and 3 € (0,1]. Then

Esup(B) = sup {T | Cr{{>r}> ﬂ} (3.22)
18 called the B-value of &.

Example 3.25. Let £ = [a,b] be an equipossible fuzzy variable. Then its
B-value is
b, ifp <05

Sup(8) = { a, if 8> 0.5.

Example 3.26. Let £ = (r1,72,73) be a triangular fuzzy variable. Then its
[-value is

Qﬂ’l“g + (1 - 2ﬂ)7‘37 if ﬂ S 0.5

Esup(B) = { (28 = 1)ry + (2 — 26)ry, if 3> 0.5.

Example 3.27. Let £ = (r1,72,73,74) be a trapeziodal fuzzy variable. Then
its B-value is
28rs + (1 — 28)r4, if 6<0.5

gsup(ﬂ) = { (Qﬂ _ 1)’/“1 + (2 — 2[3)7"27 if 2> 0.5.

Example 3.28. Let £ ~ N(e,0) be a normal fuzzy variable. Then its (-

value is
Véo B

gsup(ﬂ) =€ — - ln]_—ﬁ.

Theorem 3.9 (Liu [58]). Let &up(B) be the B-value of the fuzzy variable €.
Then &sup(B) is a decreasing and left-continuous function of (3.

Theorem 3.10. Let &, (8) be the S-value of the fuzzy variable . Then if
A >0, we have (A)sup(B) = Asup (5)-

Theorem 3.11 (Li and Liu [{9]). Let & and n be two independent fuzzy
variables. Then for any € (0, 1], we have

(& + Msup(B) = &sup(B) + Nsup () (3.23)

Proof: According to monotonicity property of credibility measure, for any
€ > 0, we have

Cr{§ +n= gSllp(ﬂ) + 77sup(ﬁ) - 6}
> Cr{{€ > €up(8) — /210 {1 = naup(9) — €/2} .
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Since ¢ and 7 are independent fuzzy variables, according to Definition 3.7
we have

Cr{€ + 1 > &up(B) + Msup(B) — €}

> Cr{{§ > gsup(ﬂ) —€¢/2}N{n=> WSIIp(ﬂ) - 6/2}}
= Cr{{ > gsup(ﬂ) —¢/2} ACr{n > nsup(ﬂ) —€¢/2} >

which implies that

(5 + n)sup(ﬂ) > gsup(ﬂ) + nsup(ﬂ) — €. (3.24)

According to monotonicity property of credibility measure, for any e > 0, we

have
Cr{§ +n= gSllp(ﬂ) + 77sup(ﬂ) + 6}
< Cr{{€ > Gup(B) +€/2} U {n > nup(8) + /23 }.

Since £ and 7 are independent fuzzy variables, according to Theorem B3] we

have
Cr{§ +n > gsup ﬂ) + nSllp<ﬂ) + 6}

(
< Cr{{€ > Gupl(8) + /2 U{n > moup(8) + /23 }
= Cr{€ > &up(B) +€/2}V Cr{n = nsup(B) +€/2} < B
which implies that

(€ +Msup(B) < &sup(B) + Msup(B) + €. (3.25)
It follows from (324]) and ([B29) that
Esup (B) + Nsup(B) + € = (€ + N)sup(B) = &sup(B) + Nsup(B) — €.
Letting € — 0, we have

(€ +Msup(B) = Esup(B) + Msup (5)-

Entropy

Fuzzy entropy is a measure of fuzzy uncertainty. It measures the difficulty
degree of predicting the specific value that a fuzzy variable will take.

Definition 3.13 (Li and Liu [51)). Let € be a fuzzy variable with continuous
membership function. Then its entropy is defined by

i) = /_  s(Cr{e = )t (3.26)

where S(y) = —ylny — (1 —y) In(1 — y).
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Since for any fuzzy variable £ with continuous membership function pu, we

have Cr{¢ =r} = uir) for each r € R. Thus, the entropy can be expressed by

He] = —/_Z (“(2’”) In “(QT) + (1 - “(QT)) In (1 - “;”)) dr.  (3.27)

Example 3.29. Let £ be a triangular fuzzy variable £ = (r1,72,73). Then
its entropy is H[¢] = (r3 —r1)/2.

Example 3.30. Let ¢ be a trapezoidal fuzzy variable { = (r1,r2,73,74).
Then its entropy is H[¢] = (ra —r1)/2 + (In2 — 0.5)(rs — r2).

Example 3.31. Let £ ~ N (e, o) be a normal fuzzy variable. Then its entropy
is H[¢] = V670 /3.

Remark 3.5. Let £ be a fuzzy variable with continuous membership function
and taking continuous values in the interval [a,b]. Then we can find that
H[¢] < (b—a) In2 and that the equality holds if and only if £ is an equipossible
fuzzy variable in the interval [a,b]. Since a fuzzy variable with maximum
entropy distributes most dispersively and it will be most difficult to predict
whether this fuzzy variable will take the specific value, for the safety reason
of decision making, if the investors can only give the interval that a security
return may lie in and nothing else, they can use the equipossible fuzzy variable
to describe this security return.

Remark 3.6. Let £ be a fuzzy variable with a continuous membership func-
tion and having finite expected value e and variance value 2. It has been
proven [50] that H[¢] < v/670/3 and that the equality holds if ¢ is a normal
fuzzy variable with expected value e and variance o2. Since a fuzzy variable
with maximum entropy distributes most dispersively and it will be most dif-
ficult to predict whether this fuzzy variable will take the specific value, for
the safety reason of decision making, if the investors can predict only the
expected value and variance value of a security return and nothing else, for
the safety reason of decision making, they can use the normal fuzzy variable
to describe the security return.

3.2 Mean-Risk Model

In reality, some people do not like taking plane because when the plane
crashes, it is almost sure that people in the plane will lose their lives though
the chance of crashing event is very low. This phenomenon implies that when
judging if an event is risky or not, people will consider both the occurrence
chance and the severity level of the bad event. This is also true in portfolio
investment. To give an instinct information about each likely loss and the
corresponding occurrence chance of the loss for portfolio investment with
fuzzy returns, Huang [38] defined the concept of risk curve.
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3.2.1 Risk Curve

Definition 3.14 (Huang [38]) Let & denote the fuzzy return of a portfolio,
and ry the risk-free interest rate. Then the curve

R(r)=Cr{ry —&{>r}, Vr>0 (3.28)
1s called the risk curve of the portfolio, and r the loss severity indicator.

It is easy to see that ry — £ is the deviation of the portfolio return from the
risk-free interest rate when ry — & > 0. Then the value 7y — { can easily
be understood as a loss. Since the portfolio return is variable, the loss value
ry — & may be any non-negative values which can be expressed by

rg—=&2>r, r>0.

Please note that r is not one specific number but any non-negative numbers,
so ry — & > r describes all the likely losses of the portfolio, and the curve
R(r) gives corresponding occurrence credibility levels of all these losses.

Example 3.32. Let £(a1,a1,a3) denote a triangular fuzzy portfolio return.
Then risk curve of ¢ is as follows,

1, ifrp—as>r>0
—9 _
3 az+ 7y T, ifry—ax>r>ry—as
R(r) = Cr{rj—¢ > r} = 2(as — az)
Tf_al_r, ifrp—a1>r>ry—a
2(&2 —Cll)
0, otherwise.
(3.29)
R(r)
..................................................................................................... 1.0
. i r

re—az 0 ry—az rr—ax

Fig. 3.8 Risk curve of a portfolio with triangular fuzzy return.
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0.5

. ; ; .
T —aq ()rf—agrf—ag ry—ap

Fig. 3.9 Risk curve of a portfolio with trapezoidal fuzzy return.

Example 3.33. Let (a1, a2, as,aq) denote a trapezoidal fuzzy portfolio re-
turn. Then risk curve of £ is as follows,

1, ifrp—as>r>0
ay—2az+rp—1 .
ifrp—az3>r>rr—a
2(&4—&3) ’ f 3 =f 4
R(r)=Cr{r;—§{(>r} = 0.5, ifrg—as>r>ry—as
TF—ap—7T .
ifrp—ar>r>rr—a
2(&2—&1)’ ! ! = 2
0, otherwise.

(3.30)

Example 3.34. Let £ ~ N (e,0) denote a normal fuzzy portfolio return.
Then risk curve of ¢ is as follows,

R(T)zCr{rf—fzr}:(1+exp<7r(e_\/gj;+T)>>1, r>0. (3.31)

Example 3.35. Let £ = (a,b) denote an equipossible fuzzy portfolio return.
Then risk curve of ¢ is as follows,

1, ifr<r;—0>
R(r)=Cr{ry—¢>r} = 05, ifry—=b<r<ry—a (3.32)

0, otherwise.
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0.5

0 rf'fe

Fig. 3.10 Risk curve of a portfolio with normal fuzzy return.

05 ...... :

0 a b

Fig. 3.11 Risk curve of a portfolio with equipossible fuzzy return.

3.2.2 Confidence Curve and Safe Portfolio

To determine a level of a risk, according to Definition[3.14], three inputs should
be given. First input is the value r, the loss severity level. Second input is the
occurrence chance of the loss event, i.e., Cr{ry — & > r}. Third input is the
investors’ subjective judgement to the above two inputs. Different investors
have different judgements. Given any value r, an investor should be able to
give his/her maximal tolerance towards the occurrence chance of the loss
being equal to or greater than r by answering what-if questions in Table 2.5
In fuzzy portfolio selection, occurrence chance of a fuzzy event is measured
by credibility value. We call the curve the confidence curve «(r) that gives
the investor’s maximal tolerance towards the occurrence chances of all the
potential losses. Though different investors have different confidence curves,
the common trend of the curve is that the severer the loss, the lower the
tolerance of occurrence chance of the loss. The general trend of the confidence
curve is given in Fig[3T2l Three examples of confidence curve are presented
in Subsection 2222 in Chapter 2.
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1.0

a(r)

severity of loss

Fig. 3.12 General trend of a confidence curve: The higher the loss value, the lower
the tolerance of the occurrence chance of the loss.

It is easy to understand that a portfolio is safe if its risk curve is totally
below the investor’s confidence curve. A portfolio is regarded to be risky if
any part of its risk curve is above the investor’s confidence curve (see Fig.
[BI2). The mathematical expression of a safe portfolio is as follows:

Let & be the fuzzy return of a portfolio A, and a(r) the investor’s confidence
curve. We say A is a safe portfolio if

R(r)=Cr{(ry =& >r} <a(r), Vr>0,

where 7 is the risk-free interest rate.

3.2.3 Mean-Risk Model

Let x; denote the investment proportions in securities ¢, and &; the i-th secu-
rity returns which are fuzzy. According to Definition B4l the risk curve of
a portfolio (z1, 2, -+, xy) is

R(x1, 29, -, xn;1r) = Cr{ry — (&1x1 + &zo+ - + &nan) > 1}

Let a(r) be an investor’s confidence curve. The philosophy of mean-risk model
is to pursue maximum expected return among the safe portfolios whose risk
curves are below the investor’s confidence curve. To express it in mathemat-
ical way, we have the model as follows:
max E[§111 + &xg + - + £
subject to:
R(x1, o, ,xn;1) < afr), Vr >0 (3.33)
1+ a2+ -+, =1
x>0, i=1,2,---.n.
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The constraint R(x1,z2, -+, xn;7) < a(r) requires that the credibility
value of each likely loss of a selected portfolio must be lower than the in-
vestor’s tolerance level. The constraint z; > 0 implies that short sales are not
allowed in the investment.

3.2.4 Crisp Equivalent

One way of solving the mean-risk model is to convert the expected value
and risk curve of the portfolio into their crisp equivalents and use traditional
methods to solve the mean-risk model. Luckily, for independent fuzzy security
returns, we have the transformation theorem as follows:

Theorem 3.12 Let &1,&s,- -+, &, be independent fuzzy variables with contin-
wous credibility distributions @1, Ps, - -, Dy, respectively. If

lim &;(t) =0, tlim &;(t)=1, for i=1,2,---,n,

t——o0

and &7 (a), D5 (@), - -+, &, (a) are unique for each o € (0,1), then for any
€ (0,1), we have

T Ha)=d ) + Py (@) + -+ D, (o), O<a<1 (3.34)
where ¥ is the distribution function of fuzzy variable £ = & + & + -+ &q.

Proof: According to monotonicity property of credibility measure, for any
given « € (0,1), we have

Cr{zn:& < Zn:gpi—l(a)} > Cr {ﬁ (fz < qsi—l(a)>} .

Since &1,&2, -+, &, are independent fuzzy variables, according to Equation

BI3), we have

Cr{ZSiSZ@i } { igqsil(a))}

= 1r<1121£1 Cr{fZ <P } rgn_ =q.

On the other hand, for any number € > 0, we have
< “lig)—eb < <o a)= €
Cr{;fZ 7;@2 (@) e} Cr{gj1 (@ <& (o) n)}

because credibility measure is monotonous. Since &1,&o, - -+, &, are indepen-
dent fuzzy variables, according to Equation (3I4]), we have
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ofSessaro-dea{leno-))

€
:maxCr{flgd3 (o) — }< max a = a.
1<i<n n 1<i<n

It follows from the continuity of credibility distributions that
C{a+e+ +&6 <P () +0 (@) + -+ (o)} =a
which implies that
v a) = Dy () + By () + o+ 0, @),
The theorem is proven.

Theorem 3.13. Let @; denote the credibility distributions of the i-th fuzzy
security return rates £;,1 = 1,2, - -+, n, respectively. Then the mean-risk model
(Z33) can be transformed into the following linear model:

max 1 E[&] + 22 B[] + - - + 2o E[&]

subject to:
xlgbl_l(a(rD N Mpz_l(a(r)) bt ! (a(r)) > Vr>0
rr+aet-ta,=1
z; >0, 1=1,2,---,n

(3.35)

Proof: It follows from linearity property of expected value that the objective
function of Model [B33]) can be transformed into the objective function of

Model Z35).
It follows from Theorem that the risk curve in Model (B33) can be
transformed into the following linear form

R Y (x1, 20, an;r) = 207" (a(r)) + 9Py (a(r)) +o o, ®t (a(r)).

It follows from monotonicity of credibility measure that

a2 (a(r)) + 29y ! (a(r)) +o o, d, (a(r)) >rp—r.

Example 3.36. Suppose the return rates of the i-th securities are all tri-
angular fuzzy variables §; = (a;, b;,¢;),1 = 1,2, -, n, respectively. Then the
fuzzy mean-risk model can be transformed into the following form:
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n
max Z(aixi + 2b;x; + ¢ixy)
i=1
subject to:

(2a(r)—1>i0iml (2—2a )bez>rf—r1fa()>0.5
bez ( —1>Zazx12rf—r1fa()§0.5

x1+x2+ o, =1

x; >0, 1=1,2,--- n.
(3.36)
Since all security return rates are triangular fuzzy variables, the portfolio
return rate is still a triangular fuzzy variable, i.e.,

n n n n
§= E &xy = g a;x;, g bix;, E cizi | .
=1 i1 =1 =1

Thus, we can get Model ([3.30) easily.

Example 3.37. Suppose the return rates of the i-th securities are all normal
fuzzy variables & ~ N(e;,0;),i = 1,2, n, respectively. Then the fuzzy
mean-risk model can be transformed into the following form:

maxejry + exx2 + -+ e,y

subject to:

Z <€i B V6o, In 1 —a(r)> zi>rp—r >0 (3.37)

T a(r)

T+ T2+t =1

z; >0, 1=1,2,--- n.

Since all security return rates are normal fuzzy variables, the portfolio
return rate is still a normal fuzzy variable, i.e.,

n n n
522 &ivy = § emyg oz | -
=1 =1 =1

Thus, we can get Model [B37) easily.

Example 3.38. Suppose the return rates of the i-th securities are normal
fuzzy variables & ~ N(e;,0;),i = 1,2,---,m, and the return rates of the
j-th securities are triangular fuzzy variables &; = (a;,bj,¢;j),j =m+1,m +
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2,-++,n, respectively. Then the fuzzy mean-risk model can be transformed
into the following form:

m n 1
maxz e;r; + 4 Z 4(aixi + 2b;x; + cixi)
=1 i=m-+1
subject to:
' Z (ei _ \/WU In a(i;ﬂ) T + (Qa(r) — 1) | Z i+
i=m-+1 i=m-+1
(2 — 2a(r)) Z bixz; >ry—r, if a(r) > 0.5
1=m-+1
Z <€i B V6o In OZ(T)> i + 2a(r) Z bixi—
, ™ a(r) ,
=1 1=m-+1
(2(1(7“) — 1) Z a;z; >ry—r if a(r) <0.5
i=m-+1
T+ w A+t x, =1
z; >0, 1=1,2,---,n.

(3.38)

3.2.5 An Example

Suppose an investor wants to choose an optimal portfolio from ten securities
of which five security return rates are normal fuzzy variables and the rest five
the triangular fuzzy variables. The prediction of the return rates of the ten
securities is given in Table Bl Suppose the monthly risk-free interest rate is
0.01, and the investor gives his/her confidence curve as follows:

—2.757 +0.43, 0 <7 <0.12,
a(r) =< —05r+0.16, 012<r <03,
0.0, r>0.3.

According to the mean-risk selection idea, we build the model as follows:

max E[§1x1 + &xo + - + &10710]

subject to:
R(w1, 29, ,w1057) < alr), ¥r >0 (3.39)
T+ T+ wp =1
2, >0, i=1,2,--,10
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Table 3.1 Fuzzy Return Rates of 10 Securities

Security ¢ & ~ Nei,o;) Security ¢ & = (a,bi,¢;)
1 N(0.034, 0.12) 6 (—0.06,0.020,0.15)
2 N(0.033, 0.10) 7 (—0.10,0.030, 0.20)
3 N(0.039, 0.12) 8 (—0.12,0.032,0.2)
4 N(0.028, 0.08) 9 (—0.20,0.04, 0.28)
5 N(0.025, 0.08) 10 (—0.16,0.03, 0.30)
where R(x1, 22, -, 210;7) is the risk curve of the portfolio defined as

R(z1, 22, -, x10;7) = Cr{0.01 — (& 21 + Sex2 + - -+ + &10T10) > 7}

According to Model ([33]), we can change Model (8:39)) into the following
linear programming model. Please note that a(r) < 0.5 in the example.

10
1
maxz e;ix; + Z (a;x; + 2bjz; + cix;)
=1 =6
subject to:
5 10
7 ]- -
Z ( \/60 OZ(T)> i + 2a(r) Zbi-Ti_
P a(r) — (3.40)
10
(2a(r) - 1) Zai:vi >0.01 -7
i=6
T+ a2+t ax0=1
2 >0, i=1,2,---,10.

Though theoretically, when solving the mean-risk model, r should be any
nonnegative numbers, in reality,  can be limited to a certain interval by ana-
lyzing the problem. In the example, since the confidence curve is a horizontal
line when r > 0.3 and the risk curve is a decreasing function of r, risk curve
will be below the confidence curve if R(zy,x2, -, 210;7) < a(r) holds for
any r € [0,0.3]. Since risk curve is a continuous function of r, it is enough
for us to check if the points on the risk curve are all lower than the points
on the confidence curve for (r = 0, = 0.43), (r = 0.02,« = 0.375), (r =
0.04,« = 0.32), (r = 0.06,a« = 0.265),---,(r = 0.3, = 0.01). That is, we
just need to solve Model [B4I]) given below. By using “Solver” in “Excel”,
we get the optimal portfolio shown in Table The maximum expected
return is 0.042. As shown in Fig. B3] risk curve of the optimal portfolio is
totally below the investor’s confidence curve. Given any loss value r, the loss
occurrence credibility is not greater than the investor’s tolerable credibility.
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Table 3.2 Allocation of Money to Ten Securities

Security 1 1 2 3 4 5
Allocation of money  0.00%  0.00 % 0.00%  0.00%  0.00%
Security ¢ 6 7 8 9 10

Allocation of money — 0.00% 7857 %  0.00%  0.00%  21.43%

Or given any occurrence credibility «(r), the loss level is not greater than
the investor’s tolerable loss level.

10

1
maxz e;x; + Z (a;x; + 2bjz; + cix;)
=1 =6
subject to:
5 10
\/601 1 —0.43
; ( 0.43 T; + 2 X 043; bix;—
10
(2 % 0.43 — 1) 3 i > 0.01
1=6
5 10
V6o; . 1—0.375
;- 1 i +2x0.375) bizi—
;<e - n 0.375 xr, +2 X ;x
10
(2 % 0.375 — 1) 3 aia; > 0.01 - 0.02
1=6
5 10 (3.41)
V6o, . 1-0.32
; (ei - In 039 )Tt 2 x 0.32;@@—
10
(2 % 0.32 — 1) 3 i > 0.01 - 0.04
1=6
5 10
\/601 1-0.01
Z ( In 001 ) Ft 2 x 0.0IZbixi—
=1 1=6
(2 % 0.01 — 1) Zam >0.01-0.3
1=6
T +x9+ - -+x10=1
z; >0, i=1,2---,10.
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0.43

0 0.12 0.3

Fig. 3.13 Risk curve R(r) and confidence curve a(r) of Model (339]).

3.3 (B-Return-Risk Model

3.3.1 [B-Return-Risk Model

In the mean-risk model, loss is instinct. However, target return is not instinct
enough because it is represented by the expected value. Sometimes the in-
vestors would like to directly pursue a specific target return rather than an
average value. Since the optimal target return may not be obtained in some
bad situations, it is natural that people would accept the inability to reach
the objective to some extent. However, at a given confidence level which is
considered as the safety margin, the objective must be achieved. Based on
this idea, Huang [27] proposed the S-return optimization model pursuing the
maximal target return at the credibility not less than a predetermined safety
level. Replacing expected value by a specific S-return, we get the [-return-
risk Model. To understand the (-return-risk selection idea, let us give the
definition of B-return and see an example first.

Definition 3.15 Let x; be the investment proportions in the i-th securities,
1=1,2,---.n, & the returns of the i-th securities and (8 the preset confidence
level. The B-return is defined as

max{f | Cr{&1x1 + &za + - + &un > f} > 0} (3.42)

which means the maximal investment return the investor can obtain at con-
fidence level (5.

Example 3.39. Suppose we have three securities & = (—0.01,0.05,0.1), & =
(—0.01,0.06,0.08) and &3 = (—0.02,0.08,0.12). There are four money alloca-
tion plans. In plan 1, the investor allocates all the money to security 1. In
plan 2, the investor allocates all the money to security 2. In plan 3, the in-
vestor allocates all the money to security 3. In plan 4, the investor allocates
20% of the money to security 1 and 80% of the money to security 2. The in-
vestor sets the confidence level at 8 = 0.9. It can be calculated that for plans
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Table 3.3 Four Money Allocation Plans

Security ¢ 1 2 3 90%-Return
Money Allocation (plan 1)  100% 0% 0% 0.2%
Money Allocation (plan 2) 0% 100% 0% 0.4%
Money Allocation (plan 3) 0% 0% 100% 0%
Money Allocation (plan 4)  20% 80% 0% 0.36%

1, 2, 3 and 4, the 0.9-return values are 0.2%, 0.4%, 0%, 0.36%, respectively.
The result is shown in Table It can be seen that different money allo-
cation will result in different 0.9-returns. The investor’s objective is to find
an optimal portfolio which can bring the investor a maximum specific return
at a given confidence level, i.e., a maximum [-return. However, a portfolio
with maximum g-return may be a risky portfolio. Therefore, before pursuing
maximum [S-return, the investor has to make sure that the selected portfolio
is a safe portfolio. That is to say, the risk curve of the portfolio is first re-
quired to be totally below the investor’s confidence curve. Then, among the
safe portfolios, S-return should be maximized. The mathematical expression
of the (-return-risk selection idea is as follows:

max f
subject to:
Cr{&iwi +ama+ -+ &pzn > f} > B
R(z1,x2, ,Tpn;1) < afr),Vr >0 (3.43)
1+ a2+ -+, =1
x>0, i=1,2,---,n
where R(z1, 2, -, xyn;7) is the risk curve of the portfolio, a(r) the investor’s

confidence curve, and f the [-return.

3.3.2 Crisp Equivalent

When security returns are independent fuzzy variables, we can change the
B-return-risk model into its equivalent and solve the model in traditional
ways.

Theorem 3.14 Let ®; denote the credibility distributions of the i-th fuzzy
security return rates &,1 = 1,2,---,n, respectively. Then the B-return-risk
model (373) can be transformed into the following linear model:
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max £1§1(8) + #282(68) + -+ - + 2n&n(6)

subject to:
ot (a(r)) + 29y ! (a(r)) + 2, P (a(r)) >rp—r,Vr>0
1 +r2+ -+, =1
.TJZZO, i=1,2,---,n

(3.44)
where & () is the f-return value of the i-th security.

Proof: The objective function follows directly from Theorem BTT], and the
constraint follows from Theorem [B.12] and monotonicity property of credibil-
ity measure.

Example 3.40. When all the security returns are regarded to be triangular
fuzzy variables &; = (a;, b;, ¢;), the B-return-risk model ([343]) becomes

max(28 — 1) Zazxz +2(1-p Zb T
=1
subject to:

(2a(r)—1)i0imi+ (2—2a )mel >ry—r, if a(r) > 0.5

i=1

bel—( —1>Zazx22rf—r if a(r) <0.5

=1
r1+re+--Fx, =1

z; >0, 1=1,2--- n.
(3.45)

Please note that the objective function is (25 — 1 Z a;x; +2(1— Z b;x;

because the confidence level 8 should be high enough to be greater than 0.5.

Example 3.41. When all the security returns are regarded to be normal
fuzzy variables & ~ N (e;, 0;), the B-return-risk model ([B.43]) becomes

maX;eixi— - lnl_ﬁ;mxi

subject to:

” 60, 1— 3.46
Z(ei—\/aln Oé(r)):ri>rf—r7 Vr >0 ( )
, ™ a(r)

T+ T2+t =1
CEiZO, i:1727"'7n
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V6. B
The objective functi E P — In
e objective function is €;T - -5

dence level G should be hlgh enough to be greater than 0.5.

Z o;x; because the confi-

Example 3.42. Suppose the return rates of the i-th securities are normal
fuzzy variables & ~ N(e;,04),i = 1,2,--+,m, and the return rates of the
Jj-th securities are triangular fuzzy variables &; = (a;,b5,¢j),j =m+1,m +
2, -+, n, respectively. Then the fuzzy G-return-risk model can be transformed
into the following form:

maxf: €;; — \7/76 In 1 f ioiﬂfrF
i=1

> @8-awi +2(1-8 Z bz

i=m-+1 i=m-+1
subject to:

m1 (61‘ _ \/iai In 1 ;(igﬂ> T + (2&(7“) — 1) z": i+

i=m-+1

%

(2—2a ) Z bix; >rp—r, if a(r) > 0.5

i=m-+1
n

3 ( \/6% ol ;5@) zi+2a(r) ) biwi—

1=1 1=m-+1

(2@( ) Z a;z; > rg—r, if a(r) <0.5

1=m-+1
1+ a2+ +a, =1

(3.47)
Since the sum weighted normal fuzzy variable 1s still a normal fuzzy vari-

able, Z&mi is a normal fuzzy variable (ZerMZUzml) Since the

i=1
sum weighted triangular fuzzy variable is stlll a trlangular fuzzy variable,

n
Z &x; is a triangular fuzzy variable( Z a;x;, Z bix;, Z cia:i).

i=m-+1 i=m-+1 i=m-+1 i=m-+1
Since the confidence level 3 should be high enough to be greater than 0.5,

we can get Model (B41) from Models (3:45) and (B46]) directly.

3.3.3 An Example

Suppose an investor wants to choose an optimal portfolio from ten securities
whose return rates are given in Table Bl in Subsection The monthly
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risk-free interest rate is still 0.01, and the investor gives his/her confidence
curve is the same as follows:

—2.757 +0.43, 0 <7 <0.12,
a(r) =< —05r+0.16, 0.12<r<0.3,
0.0, r>0.3.

Suppose this time, the investor wants to pursue a maximum return value
at confidence 0.95 among the safe portfolios. According to the S-return-risk
selection idea, we build the model as follows:

max f
subject to:
Cr{€iz1 + Lomo + -+ + &1ow10 > f} > 0.95 (3.48)
R(z1, 22, ,210;7) < afr),Vr >0
1+ a2+ +x10=1
>0, i=1,2---,10

where R(z1, 22, -+, 210;7) is the risk curve of the portfolio defined as
R(x1,x2,- -+, x10;7) = Cr{0.01 — ({121 + &oxo + - -+ + &10710) > 7}

According to Model 347), we can change Model (8:48)) into the following
linear programming form. Note that «(r) < 0.5 in the example.

5 V6 5 10 10
maXZeixi - Zoixi In 19—1—0.92%:& —|—0.1Zbimi
i=1 i=1 i=6 i=6

subject to:

VB 100 e
(ez ™ 1 a(r) > it2 ()gbz i (3.49)

i=1

10
(Za(r) — 1) Zaixi >ry—r
i=6

T1+x2+ =1

>0, i=1,2---,10.

Since the investor’s confidence curve is a horizontal line when r > 0.3 and
risk curve of the portfolio is a decreasing function of r, when checking if risk
curve of the portfolio is totally below the investor’s confidence curve, it is
enough to check if the points on the risk curve are all lower than the points
on the confidence curve for (r = 0,a = 0.43), (r = 0.02,a = 0.375), (r =
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Table 3.4 Allocation of Money to Ten Securities

Security 1 1 2 3 4 5
Allocation of money  0.00%  0.00 %  0.00%  0.00%  0.00%
Security 4 6 7 8 9 10

Allocation of money 60% 40 % 0.00%  0.00%  0.00%

0.43

0 0.12 0.3

Fig. 3.14 Risk curve R(r) and confidence curve a(r) of Model (349]).

0.04,a = 0.32), (r = 0.06,c« = 0.265),---,(r = 0.3, = 0.01). By using
“Solver” in “Excel”, we get the optimal portfolio shown in Table 34l The
maximum return the investor can obtain at credibility 0.95 is -0.066. As shown
in Fig. B4 risk curve of the optimal portfolio is totally below the investor’s
confidence curve. Given every loss value r, the loss occurrence credibility is
not greater than the investor’s tolerable credibility. Or given every occurrence

Table 3.5 Optimal Portfolios Produced by Different Selection Criteria

Optimal Portfolio  Mean-Risk Criterion  g-Return-Risk Criterion

& 0.00% 0.00%
& 0.00 % 0.00%
&3 0.00% 0.00%
&y 0.00% 86.02%
& 0.00 % 13.98%
& 0.00 % 0.00%
&y 78.57% 0.00%
& 0.00% 0.00%
& 0.00 % 0.00%
€10 21.43 % 0.00%
Expected Return 4.2% 3.55%

0.95-Return -9.9% —6.6%
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credibility a(r), the loss level is not greater than the investor’s tolerable loss
level.

Remark 3.7. We put the results of examples of mean-risk model in subsec-
tion and S-return-risk model in this subsection together in Table
It is seen that even when risk-free interest rate, the alternative individual
securities and the investor’s confidence curve are same, adopting different
selection criteria produces different results.

3.4 Credibility Minimization Model

3.4.1 Credibility Minimization Model

When investors are sensitive to only one disastrous low return level, risk
curve will degenerate to the credibility of a portfolio return below the specific
disaster level, which is proposed to be an alternative definition of risk by
Huang [27] in fuzzy portfolio selection. If the investors adopt this definition
of risk, they will select the portfolio with minimum occurrence credibility of
the specific disastrous return level. Let &; be the i-th security returns and x;
the investment proportions, ¢ = 1,2, ---,n, respectively. Taking investment
return into account, the investors should select the portfolio whose expected
return is not less than a preset expected value and in the meantime whose
occurrence credibility of the sensitive bad event is minimum. The selection
idea of minimizing the occurrence credibility of the sensitive bad event is
expressed as follows:

min Cr {&121 4+ Sxo + -+ + Epay < d}

subject to:
El&im +&xo+ -+ &un] > a (3.50)
Ti+ @+ o, =1
z; >0, i=12---n

where d is the concerned disastrous low return level and a the preset minimum
expected return that the investors can accept.
Let us recall the definition of risk curve. The curve

R(x1,x9, -, xn;1r) = Cr{ry — (&1x1 + Soxo + -+ - + &) > 71,1 >0

is called the risk curve of the portfolio, where 7 is the risk-free interest rate.
Let r degenerate to one specific number r(, then the risk curve becomes

R(x1, 22, ,2p;70) = Cr{ry — (121 + &@2 + -+ + &uwp) > 10}
= Cr{&a + &ra+ -+ &y <15 — 10}
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which is just the risk definition of occurrence credibility of a sensitive low
return event. It is clear that ry — ro = d.

If the investors pre-give a confidence level «, what will be the maximum
potential loss for the given confidence level? We can use Value-at-Risk-in-
Fuzziness (VaRF) to answer the question.

Definition 3.16 Let £ denote a fuzzy return of a portfolio, and ry the risk-
free interest rate. Then Value-at-Risk-in-Fuzziness (VaRF) is defined as

VaRF(a) = sup{7|Cr{ry —§ > 7} <1—a}. (3.51)

where « is the preset confidence level.

For example, if VaRF(95%) = 8%, it means that there is only a 5% credibility
that the portfolio return rate will drop more than 8% below the risk-free
interest rate. It is easy to see that VaRF is in fact an inverse version of the
risk definition of the credibility of a portfolio return below a specific disaster
level.

If the investors adopt VaRF as the investment risk, they will select the
portfolio with minimum VaRF value. Taking investment return into account,
the investors should select the portfolio whose expected return is not less
than a preset level and in the meantime whose VaRF value is the minimum.
The selection idea of minimizing VaRF can be expressed by the following
model:

min 7

subject to:
Cr{ry— (o1 +&aa+ -+ &an) 27 < 1—a
Elgix1 +&ro+ -+ &pan] > a
T F+xtta, =1

z; >0, i=12---n

(3.52)

where a is the pre-set tolerable minimum expected return, « the pre-
determined confidence level, and 7 the VaRF defined as

VaRF(a) = sup{7|Cr{r; — (&1z1 + {axa + - - + &) > 71 < 1 — af.

It is seen that the VaRF minimization model ([352) can be regarded as an-
other version of credibility minimization model (350).

Mathematically, Model [B:52]) is a minmax model because it is equivalent
to
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min maxf7
T1,T2, ", Tn T
subject to:
Criry — (&1 +&po+ -+ &) >T<1—a
Eléiz1 +&aa+ -+ &nan] > a
1+ a2+ -+, =1

2 >0, i=1,2--.n

(3.53)

where max 7 is the VaRF.

3.4.2 Crisp Equivalent

In some special cases, we can convert the credibility minimization model
BXE0) into its crisp equivalent.

Example 3.43. When people invest, the credibility of portfolio return equal
to or lower than a sensitive disaster level d should always be required to be
less than 0.5. Thus, when security returns are regarded to be all triangu-
lar fuzzy variables & = (a4, b;, ¢;), the credibility minimization model (B50)
becomes

min (d - Zn: aixi> / <z": bix; — Zn: Clil‘i)
i=1 i=1 i=1

subject to:

;awi <d< ;bzxz (3.54)

Z(aixi + 2biw; 4 ;i) > 4a
i=1
T4 T 4w, =1

>0, i=1,2--.,n

n n
Please note that the constraint Z air; <d< Z b;x; is added because the
i=1 i=1
credibility of portfolio return equal to or lower than the concerned disaster
level d should be less than 0.5.

Example 3.44. When security returns are regarded to be all normal fuzzy
variables & ~ N (e;, 0;), the credibility minimization model (Z50) becomes
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n n
max (Z e;T; — d> /Zoimi
i=1 i=1
subject to:
d<eixy + ey + -+ epy (3.55)
€121 +€2$2+"'+en$n Za
T1+x2+ -+ xy =1
z; >0, 1=1,2,---,n.

Model ([B35H) can easily be obtained because the sum of weighted normal
fuzzy variables is still a normal fuzzy variable. Please note that to minimize
the credibility value

(1 + exp (W(éeimi - d)/\/6iaixi>> h

we just need to maximize

(;eimi — d)/;oixi.

A constraint d < e1x1 + esxo + - + e,2, 1s added because the chance of
portfolio return equal to or less than the concerned disaster level d should be
less than 0.5.

Theorem 3.15 Let @; denote the credibility distributions of the i-th fuzzy
security return rates &,1 = 1,2,---,n, respectively. Then the VaRF mini-
mization model (Z53) can be transformed into the following linear model:

minry — 2197 (1 —a) — 220, (1 — @) + -+ — 2,0, (1 — @)
subject to:
1 E[6] + 22E[&] + - + 2 E[én] > a (3.56)

Tzt o, =1
z; >0, 1=1,2,---,n.

Proof: It follows directly from Theorem [3.12] and the monotonicity property
of credibility measure.

Example 3.45. Suppose the return rates of the i-th securities are normal
fuzzy variables & ~ N(e;,04),i = 1,2,--+,m, and the return rates of the
j-th securities are triangular fuzzy variables &; = (a;,bj,¢;),j = m+1,m +
2,- -+, n, respectively. Since confidence level @ > 0.5 and 1—a < 0.5, the VaRF
minimization model [B52]) can be transformed into the following form:
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U V60, o
i - E i 1 i
min ry (e . nl—a T

i=1

2(1 — «) i bix; + (1 — 2a> i a;x;

i=m+1 i=m+1

subject to: (3.57)

m n 1
i iTi + 20y + ciy) >
;6$+ Z 4(ax—|— ;i +cixi) > a

i=m-+1
T+ a2+ tap =1

x; >0, 1=1,2,--- n.

3.4.3 An Example

Suppose an investor wants to choose an optimal portfolio from ten securities
of which five security return rates are normal fuzzy variables and the rest five
the triangular fuzzy variables. The prediction of the return rates of the ten
securities is given in Table The risk-free interest rate is assumed to be
0.01. Suppose the minimum expected return the investor can accept is 0.03,
and the investor wants to minimize the specific potential loss at confidence
level 0.95. Then according to the VaRF minimization selection idea , we build
the model as follows:

min 7
subject to:
Cr{0.01 — (&1z1 + oxo + - -+ + &ioz10) > 7 < 0.05
E[& a1 + &axa + -+ - + &10710) > 0.03
1+ T2+ -+ w10=1
2 >0, i=1,2,---,10.

(3.58)

According to model [3E1), we change the model (B5]) into the following
form:

™

5 V60 10
min0.01 =Y " fe;— " In19 | a; — > (0.1b; + 0.9a;1;)

i=1 =6
subject to:
5 10
1 (3.59)
2ot 2l )

T+ a2+t x0=1

z; >0, i=1,2,---,10.
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Table 3.6 Fuzzy Return Rates of Ten Securities

Security 4 & ~ Nlei,04) Security 4 & = (a;, bi, i)
1 N(0.033, 0.44) 6 (—0.008,0.026,0.06)
2 N(0.032, 0.40) 7 (—0.02,0.030,0.08)
3 N(0.039, 0.45) 8 (—0.01,0.032,0.08)
4 N(0.031, 0.39) 9 (—0.05,0.04,0.10)
5 N(0.025, 0.32) 10 (—0.03,0.03,0.09)

Table 3.7 Allocation of Money to Ten Securities

Security 1 1 2 3 4 5
Allocation of money  0.00%  0.00%  0.00%  0.00% 0.00%
Security 1 6 7 8 9 10

Allocation of money  46.67%  0.00%  53.33%  0.00%  0.00%

Using “Solver” in “Excel”, we obtain the optimal portfolio shown in
Table B The minimum objective value is 0.015, which means that if the
investor invests 46.67% of his/her money in security 6 and 53.33% in security
8, the expected return will not be lower than 0.03, and in the meantime there
is only a 5% credibility that the portfolio return rate will drop more than
1.5% below the risk-free interest rate.

3.5 Mean-Variance Model
3.5.1 Mean-Variance Model

Risk curve takes a panoramic view of the whole likely loss events. Sometimes
people wish to use average information to evaluate the risk. As a counterpart
of Markowitz’s mean-variance model, Huang [33] proposed credibilistic mean-
variance model for portfolio selection with fuzzy returns.

Let & represent the fuzzy returns of the i-th securities and z; the in-
vestment proportions in the i-th securities, i = 1,2, -, n, respectively. The
philosophy of the mean-variance model is to pursue the maximum expected
return with the variance not greater than the preset level. Let v be the maxi-
mum variance level the investors can tolerate. The credibilistic mean-variance
selection model is expressed as follows:

max E[r1§1 + z2éa + - + 2n&n]

subject to:
Vizi& +zobo + 4+ 2,60] < (3.60)
Ttz o, =1
z; >0, 1=1,2,---,n
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where E denotes the expected value operator, and V' the variance operator
of the fuzzy variables. The constraint V[x1&; + z2&a+ -+ -+ 2n&n] < v ensures
that the optimal portfolio will be selected only from the portfolios whose
average square deviations from the expected return are not greater than the
tolerable level.

Sometimes, the investors may preset a level of expected return. Then the
philosophy of mean-variance model becomes to minimize variance value of
the portfolio with the expected value of the portfolio not less than this preset
expected return level. Thus the credibilistic mean-variance model is expressed
in the following way:

min V{z1& + x2&o + - - - + ,.65]

subject to:
Elz1& + xoéa+ -+ xpén] > A (3.61)
1+ a2+ -+, =1
z; >0, 1=1,2,---.n

where A\ represents the minimum expected return the investors feel satisfac-
tory. The constraint E[x1&; +x282 + - - -+ xp&n] > A ensures that the optimal
portfolio is selected only among those satisfactory portfolios, i.e., the portfo-
lios whose expected return will not be less than the preset expected return
level.

From Models B60) and B61), we can see that if we change the preset
variance value or expected value, we will get different optimal solution. A
portfolio is efficient if it is impossible to obtain higher expected return with
no greater variance value, or it is impossible to obtain less variance value with
no less expected return. All efficient portfolios make up the efficient frontier.
An efficient portfolio is in fact an solution of the following optimization model
with two objectives:

max E[x1& + x282 + - - + 2080

min V]z1& + 228 + -+ + 2,.84]

subject to: (3.62)
x1txet+-tx, =1

z; >0, 1=1,2--- n.

Different investors will find different optimal portfolios from the efficient fron-
tier according to their own preferences to risk aversion, i.e., tradeoff of vari-
ance and expected return.
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3.5.2 Crisp Equivalent

According to the properties of triangular fuzzy variable, trapezoidal fuzzy
variable and normal fuzzy variable, we give the crisp equivalents of credibilis-
tic mean-variance model in some special cases.

When all the security returns are described by symmetrical triangular
fuzzy variables &; = (a;, b;, ¢;), the mean-variance model ([B.60]) becomes

n n n
max E a;r; + 2 E bix; + E CiT;
i=1 i=1 i=1

subje(?t to:

i CiT; — i a;T; \/247
i=1 i=1

3371—1—332—1—-?-—&—:5”:1

(3.63)

IN

r; >0, i=1,2--- n.

When all the security returns are described by symmetrical trapezoidal
fuzzy variables &; = (a;, b;, ¢;, d;), the mean-variance model (3.60) becomes

n n n n
maxz a;x; + Z bixi + Z Cx; + Z d;x;
=1 =1 =1 =1

subject to:

(;dimi — ;aixi) + (;Ci.ri — ;bi-ﬂ) (3.64)
+(Z dixi — Z aimi> ( ZCi$i - Z bixi) S 24’)/
i=1 i=1 i=1 i=1

1+ a2+t =1
z; >0, 1=1,2,---,n.

When all the security returns are described by normal fuzzy variables
& ~ Nei, 0;), the mean-variance model ([B:60) becomes
maxeiri + exTa + - + eply
subject to:
o171 + 02T2 + -+ 0Ty < (/Y (3.65)
1 tae+ -ty =1
x>0, i=1,2,---,n.
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3.5.3 An Example

Suppose an investor wants to select his/her portfolio from the ten securities
whose returns are given in Table B8l If the investor adopts the mean-variance
selection idea, and set the minimum expected return at 0.07. Then accord-
ing to the credibilistic mean-variance model, the investor should select the
portfolio according to the following model:
min V[¢121 + oz + -+ - + 10710
subject to:
El& 21 + &xo + -+ - + Eoz10] > 0.07 (3.66)
r1+ax2+ - +x0=1
x; >0, +1=1,2,---,10.

According to the properties of triangular fuzzy variable, we change Model
([B564)) into the following crisp form:

10 10
min E Cixi — E a;x;
i=1 i=1

sub jegt to:

10 (3.67)
Z(aimi + 2b;x; + Ci-Ti) >0.28

i=1

T +w2+ -+ w10 =1

2; >0, i=1,2---10.

Table 3.8 Fuzzy Return Rates of Ten Securities

Security ¢ & = (as,bi,¢) Security ¢ & = (as,bi,¢;)

1 (-0.08, 0.02, 0.12) 6 (—0.09,0.06,0.15)
2 (-0.1, 0.04, 0.14) 7 (—0.16,0.09,0.25)
3 (-0.12, 0.05, 0.17) 8 (—0.18,0.06,0.24)
4 (-0.11, 0.06, 0.17) 9 (—0.15,0.08,0.23)
5 (-0.12, 0.06, 0.18) 10 (—0.22,0.1,0.32)

Table 3.9 Allocation of Money to Ten Securities

Security ¢ 1 2 3 4 5
Allocation of money  0.00% 0.00 % 0.00%  0.00%  0.00%
Security ¢ 6 7 8 9 10

Allocation of money  0.00 %  66.67 %  0.00%  0.00%  33.33%



106 3 Credibilistic Portfolio Selection

By using “Solver” in “Excel”, in order to minimize the variance with the
expected return not less than 0.07, the investor should allocate his/her money
according to Table The objective value of Model [B67) is 0.433, which
means the minimum variance is 0.433%/24 = 0.0086.

3.5.4 Mean-Semivariance Model

When the membership functions of the security returns are asymmetrical,
variance becomes a deficient measure of risk because when eliminating vari-
ance both lower and higher deviations from the expected value are eliminated,
yet higher deviations are what we want. Empirical evidences [3| [12] [16], [36]
show that there do exist cases that security returns are not symmetrically
distributed. Therefore, Huang [37] defined semivariance of fuzzy variable that
only measures the lower deviation from the expected value and proposed cred-
ibilistic mean-semivariance model in which semivariance replaces variance as
the measure of risk.

Let x; be the investment proportions in securities ¢, and &; the i-th fuzzy
security returns, i = 1,2, - - -, n, respectively. Similar to mean-variance model,
the philosophy of the mean-semivariance model is to maximize the expected
return at the given level of risk. Substituting variance with semivariance, we
have the credibilistic mean-semivariance model as follows:

max E[r1&1 + x26o + - -+ + 2,65]

subject to:
SV[r1&y + w262 + -+ 2nbn] < v (3.68)
1+ 224+, =1
z; >0, 1=1,2,---,n

where v denotes the maximum semivariance level the investors can tolerate, 2
the expected value operator, and SV the semivariance of the fuzzy variables.

Sometimes the investors may preset a minimum acceptable expected return
level, then the mean-semivariance model is expressed as follows:

min SV[I‘1£1 4+ x2bo + -+ -Tngn}
subject to:
Elr1& +x2€o + -+ 2nén] = A
ritrettr, =1
z; >0, 1=1,2,---,n

where A denotes the minimum expected return that the investors can accept.

From Theorem we know that when the membership functions of the
security returns are symmetrical, optimal portfolio can be obtained no matter
whether we take the variance or the semivariance as the measurement of risk.
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However, when membership functions of security returns are asymmetrical,
Theorem [B7] indicates that taking semivariance or variance as the measure-
ment of risk will yield different results. So semivariance can be regarded as
an improvement of variance as the measure of risk because semivariance is
free from the reliance on symmetrical security returns.

3.6 Entropy Optimization Model

Given a fuzzy portfolio return, investors will usually regard the portfolio to
be risky if it is difficult to predict the specific value that the portfolio return
may take. Fuzzy entropy measures the difficulty degree of the prediction.
When a portfolio return distributes dispersively, the entropy of the return
is great, which implies that the return contains much uncertainty and the
prediction is difficult; when the portfolio return distributes concentratively,
the entropy of the return is small, which implies that the return contains
little uncertainty and the prediction is easy. In addition, entropy can well
reflect the dispersive degree of the portfolio return no matter if the member-
ship function of the portfolio return is symmetrical or not. Therefore, Huang
[39] suggested entropy being another alternative measure of risk and pro-
posed entropy optimization model in which the philosophy is to pursue the
maximum expected return among the portfolios whose return distribution is
concentrative enough to the required level.

Let &; denote the i-th fuzzy security returns, x; the investment proportions,
1=1,2,---,n, respectively, and « the preset entropy level. The mean-entropy
model is as follows:

max E[z1& + x2éa + - -+ + 20,80]

subject to:
Hlz1&1 + zolo + -+ 2pbn) < (3.69)
Tt ae A+t a, =1
>0, i=1,2--,n

where F is the expected value operator and H the entropy. The constraint
Hlz1& + 2282 + - -+ + &) < v means that the optimal portfolio must be
selected from the portfolios whose returns are concentrative enough to be less
than a preset tolerable level. Compared with the mean-variance model (3:60),
entropy is more general than variance as a measure of risk because entropy
is free from reliance on symmetrical distribution of the security returns, i.e.,
entropy remains an effective measure of risk when the membership functions
of the security returns are asymmetrical. However, when security returns
are symmetrical triangular fuzzy variables or the normally distributed fuzzy
variables, the optimal solution of the mean-entropy model ([B69) is also the
optimal solution of of the mean-variance model (3.60) and vice versa because
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in these two special cases, entropies can be expressed by the product of some
constant and the corresponding variances.

3.7 Hybrid Intelligent Algorithm

We have given the crisp equivalents of the fuzzy portfolio selection models in
some special cases so that we can find the optimal portfolios by traditional
methods. However, in many cases it is difficult to convert the fuzzy selection
models into their equivalents. To produce a general solution algorithm, we
integrate fuzzy simulation and genetic algorithm (GA) to produce the hybrid
intelligent algorithm. In our algorithm, generally speaking, fuzzy simulation
is used to calculate the objective and constraint values, and GA is employed
to find the optimal solution. A scheme of the algorithm (Fig. BI0) is given
as follows:

Initialization

Calculate constraint values

for feasibility checking.

a

Fuzzy sumulation

A J

Initial feasible pop_size

chromosomes are available.

Calculate objec-

tive values.
Selection d Fuzzy simulation

\ 4

Calculate constraint

h 4 values for feasibility

Crossover & | checking.
<
<

. Fuzzy sumulation
Mutation

The new generation of

Chromosomes is available.

¥

Taking the best chromosome as the solution.

Fig. 3.15 Hybrid intelligent algorithm.
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3.7.1 Fuzzy Simulation

Fuzzy simulation has been studied by many scholars. In particular, Liu [56]
introduced in detail the technique based on the concept of credibility. Here,
we will introduce the simulation procedure for calculating the objective and
constraint values appeared in our optimization models, i.e., the expected
value, the variance value, the semivariance value, the (-return value, the
credibility value, and the entropy value of the fuzzy portfolio return.

Let & be fuzzy returns with membership functions pu;, and x; the invest-

ment proportions, i = 1,2, - -, n, respectively, where n is the number of secu-
rities. For convenience, let € = (£1,&2,--+,&,), and @ = (21,22, -+, Zy). Let
w=(p1, p2, -+, tn), and denote the membership function vector of €. Since

the variance value and the semivariance value is a kind of expected value,
we can know the simulation procedure for them if we know the simulation
procedure for calculating the expected value. In addition, if we know how to
calculate Cr{f(x,&) > r}, we can know how to calculate Cr{f(x,&) < r}
because Cr{f(xz, &) < r} = Cr{—f(z,&) > —r} = Cr{f (x,€) > r }. Thus,
we in fact only need to calculate the values of the following four types of
uncertain functions:

Uy : z—Cr{f(z,€& >r},

Up:  x— E[f(z, )],

Us: @ — max{f|Cr{f(z,€) > f} > B},
Up: @ — H[f(x,§)].

Simulation for Credibility Value

According to Theorem [3:4] and the credibility inversion theorem, we know
that

Cr{f(@.€) = 1} = ;( swp Lty o) | £0.6) > 1

T1,T2, Ty €N 1<i<n

Y1—  sup {min i) | fl, €) <r}>.

T1,x, -z R (1SIS0

Thus we j times randomly generate real numbers wu;; such that g, (u;;) >

et =1,2,---,n,j =1,2,---, N respectively, where ¢ is a sufficiently small
number, and N is a sufficiently large number. Let w; = (u1j,u2j, -, Unj),
and M(’LL]‘) ulj(ulj) N ugj(UQj) Ao A unj(unj). Then the credibility

Cr{f(x,&) > r} can be obtained approximately by the following formula

L= ; ( max {u(u;) | f(2.6) 27} +1- X {u(uy) | f(x.€&) < r}) 7

1<G<N

where N is a sufficiently large number.
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The fuzzy simulation process for computing Cr{f(z,£) > r} is summa-
rized as follows:

Step 1. Let j=1.

Step 2. Randomly generate real numbers wu;; such that p;(ui;) > €,i =
1,2,---,n,j5=1,2,---, N respectively, where ¢ is a sufficiently small num-
ber, and NN is a sufficiently large number.

Step 3. Set u; = (U]j,UQj, .- ',un]‘), and ,U,(’U,j) = ﬂlj(ulj) A ,LLQJ‘(UQJ‘) AN
A ﬂnj(unj)'

Step 4. j < j+ 1. Turn back to Step 2 if j < N, where N is a sufficiently
large number. Otherwise, turn to Step 5.

Step 5. Return L.

Simulation for Expected Value

According to the definition of expected value of fuzzy variable, we have

+o0 0
Elf(.£)] = / Cr{f(.€) > t}dt — / Cr{f(,€) < t}dt.

Thus we design the procedure as follows:

Step 1. Set £ =0.

Step 2. Randomly generate real numbers w;;, such that p;(u;;) > €,i =
1,2,---,n,j7=1,2,---, N respectively, where ¢ is a sufficiently small num-
ber, and N is a sufficiently large number. Denote w; = (w1, ugj, -, Unj)-

Step 3. Set a = f(xz,u1) A f(z,uz) A -+ A flz,un), b = f(z,u1) V
flx,u2) V-V f(z,un).

Step 4. Randomly generate ¢ from [a, b].

Step 5. If ¢t >0, then £ «— E + Cr{f(z,&) > t}.

Step 6. Ift <0, then F — FE — Cr{f(x,&) < t}.

Step 7. Repeat the fourth to sixth steps for N times, where N is a suffi-
ciently large number.

Step 8. E[f(x,€)]=aV0+bA0+E-(b—a)/N.

Simulation for g-Return

In order to compute the uncertain function Us, we randomly generate real
numbers u;; such that p;(u;;) >¢e,i=1,2,---,n,j=1,2,---, N respectively,
where ¢ is a sufficiently small number, and N is a sufficiently large number.

Denote w; = (u1j, uzj, - -, Uyj). For any real numbers r, we set
D)= (max {min ()l wg) > 1)+
)=y | max { min g (u)|f(2ug) =

1- 1%%XN{121£nui(uj)|f(m,uj) < r}) .



3.7 Hybrid Intelligent Algorithm 111

Since D(r) is a monotonous function of r, we may employ a bisection search
to find the maximal value r such that D(r) > 3. This value is an estimation
of Us, i.e., the B-return value. The fuzzy simulation process for computing
Us is summarized as follows:

Step 1. Randomly generate real numbers u;; such that p;(u;;) > €,i=1,2,
coeym,j = 1,2,--- ) N, respectively, where ¢ is a sufficiently small positive
number, and NV a sufficiently large number. Denote w; = (u1j, ugj, - -, Unj)-

Step 2. Find the maximal value r such that D(r) > (3 by the bisection
search.

Step 3. Return r.

Simulation for Entropy Value

According to the entropy definition, we know that
+oo

Hlf(,&) = [ S(Cr{f(a.€) =t
where S(y) = —ylny — (1 — y) In(1 — y).

Thus we design the fuzzy simulation procedure for calculating the entropy
H[f(x,&)] as follows:

Step 1. Set H = 0.

Step 2. Randomly generate real numbers u;; such that p;(u;;) > €,i=1,2,
coeym,j = 1,2,--- ) N, respectively, where ¢ is a sufficiently small positive
number, and NV a sufficiently large number. Denote w; = (uij, u2j, - - -, Unj).

Step 3. Set a = mi j db= i)
ep et a 12;1%1Nf($a uj), an 12%35\[]0(% u;j)

Step 4. Randomly generate ¢ from [a, b].

Step 5. H«— H— (ylny+ (1 —y)In(1 —y)), where y = Cr{f(z, &) = t}.

Step 6. Repeat the fourth and fifth steps for N times, where N is a suffi-
ciently large number.

Step 7. H[f(x,€)]=H-(b—a)/N.

Example 3.46. Let & be a triangular fuzzy security return (—0.1,0.1,0.3),
and & the normal fuzzy security return A'(0.1,0.1). Portfolio A is composed of
40% of &1 and the rest 60% of &. A run of the simulation with 4000 cycles shows
that the credibility value of the portfolio return not greater than 0 is 0.2490, i.e.,

Cr{0.4¢; + 0.6 < 0} = 0.2490.

The simulation procedures are as follows:

Step 1. Let j = 1.

Step 2. Randomly generate real numbers a from (—0.1,0.3) and b from
(—0.4,0.6) (we generate b from (—0.4,0.6) because p(t) ~ 0 when t < e — 5o,
and p(t) =~ 0 when ¢t > e + 50, where e is the expected value and o the
positive square root of variance of the normal fuzzy variable).
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1 5_
Step 3. Calculate p(a) = Oa1++00 . if @ < 0.1, and p(a) = 0033_ Oal i

a> 0.1, and p(b) =2 (1 + exp (Wb_ 0'1|)>

V6 x 0.1
Step 4. Set v; = p(a) A p(b).
Step 5. j «— j 4+ 1. Turn back to Step 2 if j < 4000. Otherwise, turn to
Step 6.
Step 6. Return

1
L:2 (1r<na<x {z/j ‘04a+06b<0}—|—1— max {1/] ’04a+06b>0}>

Example 3.47. For the above mentioned portfolio A, assume the investors
set the confidence level 3 = 0.9. A run of the simulation with 3000 cycles
shows that the 0.9-return value of the portfolio is -0.0591, i.e.,

£(0.9) = sup{ f|Cr{0.4¢; + 0.6¢&, > f} > 0.9} = —0.0591.

The simulation procedures are as follows:

Step 1. Randomly generate real numbers a; from (—0.1,0.3) and b; from
(—0.4,0.6) for j =1,2,---,3000.

Step 2. Calculate p(a;) = Oa1++00 1 if a; < 0.1, and p(a;) = 0(.):'53__0?1 if
b; —0.1

a; > 0.1, and p(b; <1+e (W 0. ))
V6 x 0.1

Step 3. Set v; = a])/\u (b))

Step 4. Let

1
D(r)= <11<1;a<x {v | 0.4a +0.6b < r}+1— max {1/] | 0.4a + 0.6b > r})
Find the maximal value r such that D(r) > 0.9 by the bisection search.
Step 5. Return r.

Example 3.48. Let & be a triangular fuzzy security return (—0.2,0,0.4),
and & the normal fuzzy security return N'(0.1,0.1). Portfolio A is composed
of 40% of &1 and the rest 60% of &. A run of the simulation with 8000 cycles
shows that the semivariance value of the portfolio, i.e.,

V[0.4¢; + 0.6&5] = 0.0432.

The simulation procedures are as follows:

Step 1. Randomly 8000 times generate real numbers a; from (—0.2,0.4) and
b; from (—0.4,0.6),: =1,2,---,8000.

Step 2. If 0.4a; + 0.6b; — 0.08 < 0 (the expected value of Portfolio A is 0.08),
set r; = (0.4a; + 0.6b; — 0.08)%; otherwise, set r; = 0.
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Step 3. Set a=ry Arg A+~ Arggoo and b =11 Vra V-V rgogo.

Step 4. Set V = 0.

Step 5. Randomly generate ¢ from [a, b].

Step 6. If t > 0, then V « V + Cr{(0.4& + 0.6&2 — 0.08)% > t}; if t < 0,
then V «— V +0.

Step 7. Repeat the fifth to sixth steps 8000 times.

Step 6. V[0.4& +0.652] =aVO+bA0+V - (b—a)/8000.

Example 3.49. For the above mentioned portfolio A, a run of the simulation
with 8000 cycles shows that the variance value of the portfolio, i.e.,

V[0.4¢; + 0.6&5] = —0.0710.

3.7.2 Hybrid Intelligent Algorithm

When the objective and constraint values have been calculated by fuzzy simu-
lation, simulation results are integrated into the GA introduced in Subsection
263 to produce a hybrid intelligent algorithm. After selection, crossover and
mutation, the new population is ready for its next evaluation. The hybrid
intelligent algorithm will continue until a given number of cyclic repetitions
of the above steps is met. We summarize the algorithm as follows:

Step 1. [Initialize pop size chromosomes.

Step 2. Calculate the objective values for all chromosomes by fuzzy
simulation.

Step 3. Give the rank order of the chromosomes according to the objective
values, and compute the values of the rank-based evaluation function of
the chromosomes.

Step 4. Compute the fitness of each chromosome according to the rank-
based-evaluation function.

Step 5. Select the chromosomes by spinning the roulette wheel.

Step 6. Update the chromosomes by crossover and mutation operations.

Step 7. Repeat the second to the sixth steps for a given number of
cycles.

Step 8. Take the best chromosome as the solution of portfolio selection.

3.7.3 Numerical Example

Suppose an investor adopts credibility minimization selection idea and wants
to choose an optimal portfolio from ten securities of which five security re-
turn rates are normal fuzzy variables and the rest five the triangular fuzzy
variables. The prediction of the return rates of the ten securities is given in
Table Suppose the minimum expected return the investor can accept
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is 0.031, and the investor wants to minimize the occurrence credibility of
portfolio return below a disaster level -0.08. According to the credibility min-
imization selection idea introduced in Subsection [3.4.1] we build the model as
follows:
min Cr{&121 + &axe + -+ + &ox10 < —0.08}
subject to:
E&iz1 4+ &ao+ -+ - + 10x10] > 0.031 (3.70)
T ta2+ g =1
x; >0, i=1,2,---,10.

The constraint E[&x1 + a2 + - - + E10210] can be calculated via

10
Zela@l + Z (a;x; + 2bjw; + c;x;).
i=1 1=6

The objective (i.e., credibility value) is calculated by fuzzy simulation. Then
the simulation result is integrated into the GA introduced in Subsection 2.6.3]
to produce the hybrid intelligent algorithm. A run of the algorithm with 10000
generations shows that in order to minimize the credibility of portfolio return
not greater than -0.08 with the constraint that the expected return of the
portfolio should not be less than 0.031, the investor should allocate his/her
money according to Table .11l The minimum credibility level of portfolio

Table 3.10 Fuzzy Return Rates of Ten Securities

Security i & ~ Nei, o) Security i & = (ag, bi,ci)
1 N(0.033, 0.12) 6 (—0.08,0.026,0.09)
2 N(0.032, 0.11) 7 (—0.09,0.030,0.10)
3 N(0.033, 0.14) 8 (—0.15,0.032,0.16)
4 N(O 031, 0.11) 9 (—0.12,0.04,0.10)
5 N(0.025, 0.07) 10 (—0.12,0.05,0.12)

Table 3.11 Allocation of Money to Ten Securities

Security ¢ 1 2 3 4 5
Allocation of money  0.00%  85.90%  0.00%  0.00%  0.00%
Security ¢ 6 7 8 9 10

Allocation of money — 0.00%  0.00 %  0.00%  0.00%  14.10%
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return not greater than -0.08 is 0.1805. The hybrid intelligent algorithm is
summarized below.

Hybrid Intelligent Algorithm:

Step 1. Determine representation structure of solutions by chromosomes.
In the example, the genes ¢1, ¢a, - - -, ¢19 in a chromosome C' = (¢1,¢2, -+, ¢p)
are restricted in the interval [0,1]. A solution & = (x1,22,---,%10) IS
matched with a chromosome in the following way,

T = “ =12
C1+ 2+ +Cio
which ensures that 21 + x2 + - -+ 4+ 2190 = 1 always holds.

Step 2. Set parameters P, = 0.3, P,, = 0.2, pop size = 30 in the GA.

Step 3. Generate the chromosomes C = (c1, ¢z, -, c10) from [0, 1]1°.

Step 4. Calculate the expected return for each chromosome according to

the formula
5 10

1
; e;x; + 26 4(aixi + 2b;x; + Ci-Ti)~

Then check the feasibility of the chromosome as follows:
5 10

If ;ei-Ti + ; i(aixi + 2b;x; + cixi) > 0.031
return 1;

return 0;

in which 1 means feasible, and 0 non-feasible.

Step 5. Repeat the third and fourth steps until feasible pop size numbers
of chromosomes are produced.

Step 6. Calculate the objective values (i.e., credibility values) via fuzzy
simulation and give the rank order of the chromosomes according to the
objective values to make the better chromosomes take the smaller ordinal
numbers.

Step 7. Compute the values of the rank-based evaluation function for all
the chromosomes.

Step 8. Calculate the fitness of each chromosome according to the rank-
based-evaluation function.

Step 9. Select the chromosomes by spinning the roulette wheel.

Step 10. Update the chromosomes by crossover and mutation operations.

Step 11. Repeat the sixth to tenth steps for 10000 cycles.

Step 12. Take the best chromosome as the solution of the portfolio selec-
tion problem.
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