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Preface

The most salient feature of security returns is uncertainty. The purpose of
the book is to provide systematically a quantitative method for analyzing
return and risk of a portfolio investment in different kinds of uncertainty and
present the ways for striking a balance between investment return and risk
such that an optimal portfolio can be obtained.

In classical portfolio theory, security returns were assumed to be random
variables, and probability theory was the main mathematical tool for han-
dling uncertainty in the past. However, the world is complex and uncertainty
is varied. Randomness is not the only type of uncertainty in reality, especially
when human factors are included. Security market, one of the most complex
markets in the world, contains almost all kinds of uncertainty. The security re-
turns are sensitive to various factors including economic, social, political and
very importantly, people’s psychological factors. Therefore, other than strict
probability method, scholars have proposed some other approaches including
imprecise probability, possibility, and interval set methods, etc., to deal with
uncertainty in portfolio selection since 1990’s. In this book, we want to add to
the tools existing in science some new and unorthodox approaches for analyz-
ing uncertainty of portfolio returns. When security returns are fuzzy, we use
credibility which has self-duality property as the basic measure and employ
credibility theory to help make selection decision such that the decision result
will be consistent with the laws of contradiction and excluded middle. Being
aware that one tool is not enough for solving complex practical problems, we
further employ uncertain measure and uncertainty theory to help select an
optimal portfolio when security returns behave neither randomly nor fuzzily.

One core of portfolio selection is to find a quantitative risk definition of
a portfolio investment. Another interesting feature of the book is that it
introduces a new risk definition, i.e., risk curve, besides already known risk
definitions of variance, semivariance, and probability of a disastrous loss level.
Risk curve describes each likely loss level and the corresponding occurrence
chance of each loss. So it is instinct and safe for investors to use risk curve to
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control their risk. Furthermore, the book provides the extensions of the risk
definitions to other types of uncertainty other than randomness.

This book consists of 5 chapters. Chapter 1 introduces general principles
upon which portfolio selection problem is analyzed. Chapter 2 provides a
variety of models with numerous application examples for portfolio selection
with random returns. Risk curve is introduced and models based on risk curve
are provided in this chapter. For better understanding of the selection ideas
in random environment, fundamentals of probability theory are reviewed at
the beginning of Chapter 2. Chapter 3 starts with an introduction of fun-
damentals of credibility theory concerning fuzzy portfolio selection and then
introduces a spectrum of credibilistic portfolio selection models including
mean-risk model, β-return-risk model, credibility minimization model, mean-
variance model, mean-semivariance model, and entropy optimization model.
Crisp equivalents of the credibilistic models are given when security returns
are triangular fuzzy variables, trapezoidal fuzzy variables, normal fuzzy vari-
ables and equipossible fuzzy variables. A hybrid intelligent algorithm is also
presented for solution of the credibilistic models in general cases. Chapter 4
first offers necessary knowledge about uncertainty theory which will be used
in portfolio selection with neither random nor fuzzy uncertain returns. Then a
series of uncertain selection models are provided and the crisp equivalents are
presented. Chapter 5 offers extensions of the basic portfolio selection models
such that the optimal portfolio can be dispersed enough to a required extent.

The book provides a systematic, self-contained, and up-to-date portfolio
analysis method. With numerous examples and necessary remarks, it is quite
readable. The book is interesting because it introduces some new quantitative
risk definitions and adds to the existing tools and techniques some additional
apparatus for investment optimization which will be powerful in many specific
cases. It is suitable for researchers and students who are interested in the fields
of portfolio selection as well as capital budgeting, investment optimization,
and risk analysis, etc.

I would like to thank my parents, colleagues, friends and family members
who encouraged and helped me to finish this work. I would also like to thank
my graduate students Qiming Pan, Wenying Shen and Wenjing Gao who
made a number of corrections. This work was supported by National Natural
Science Foundation of China Grant No. 70871011 and New Century Excellent
Talents in University. I owe thanks to their financial support. Finally, I express
my deep gratitude to Professor Janusz Kacprzyk for his valuable comments
and suggestions on the book and his generosity to allow me to publish the
book in his series.

October 2009 Xiaoxia Huang
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Chapter 1
What Is Portfolio Analysis

A portfolio is a combination of a number of securities. Portfolio analysis is
a quantitative method for selecting an optimal portfolio that can strike a
balance between maximizing the return and minimizing the risk in various
uncertain environments. To select the optimal portfolio, we must first answer
the questions “what is return of a portfolio” and “what is risk of the port-
folio”. If we could only use the natural language like “the likely gain of the
portfolio” to describe return and “the likely loss of the portfolio” to describe
risk, we would not be able to quantify return and risk of the portfolio. Then it
would be impossible to compare the return level and risk level of portfolios,
let alone find the maximum return and minimum risk. To use measurable
terms to define return and risk, we should start with input data, i.e., the
individual security returns.

1.1 Security Return

Individual security returns are the basic information for the investors. Every
decision is made based on this information. The security return is expressed
by the rate of return which is defined as

Receipt-Expenditurn
Expenditure

.

Without considering transaction cost, tax factors and stock split, the rate of
return can also be defined as

Ending price of a security-Beginning price+Cash dividend
Beginning price

.

For example, the return of a security in 2007 is

(Closing price, 2007)-(Closing price, 2006)+(Dividend, 2007)
(Closing price, 2006)

.

X. Huang: Portfolio Analysis: From Probab. to Credibilistic, STUDFUZZ 250, pp. 1–9.
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2 1 What Is Portfolio Analysis

Similarly, the return of a security in February, 2007 is

(Closing price, Feb. 2007)-(Closing price, Jan. 2007)+(Dividend, Feb. 2007)
(Closing price, Jan. 2007)

.

The most salient feature of the security return is uncertainty. Sometimes
it is high, and sometimes it is low. Sometimes it is positive, and sometimes
it may be negative. Therefore, we can not use a deterministic number to
describe it. It is reasonable that a variable should be used for description.

Random variable is the earliest employed variable to describe the security
return and is still widely used nowadays. When investors say that the return
of Security A will be 0.08 with probability 25%, 0.10 with probability 50%
and 0.12 with probability 25%, they are using random variable to describe the
security return. Like playing dice, the investors believe that three outcomes,
i.e., the return being 0.08, being 0.10 and being 0.12, will appear randomly
and that the occurrence chances will be 25%, 50% and 25%, respectively.

By using random variable, an assumption should be satisfied that the his-
torical data of a security return are able to reflect the future return of the
security. However, this assumption cannot always be met. It is usually agreed
that when evaluating a security return, the investors should consider three
types of factors, i.e., general economic factor, industry factor and the com-
pany factor [81]. General economic factor refers to those policies and events
that influence the macro-economic growth. It includes the fiscal policy, mon-
etary policy, inflation, international monetary devaluation, political events in
the country, etc. Industry factor refers to those measures that influence an
industry to prosper or suffer in the long run or during the expected near-term
economic environment. Examples include import or export quotas or taxes,
excess supply or shortage of a resource, or government-imposed regulations
on an industry, etc. Company factor refers to the past performances and fu-
ture prospect of the company whose security is listed on the security market.
None of these factors influence the security return randomly. They affect the
security return through people’s psychology. Uncertainty of the security re-
turn remains even when all the factors are known. In addition, the security
market is usually very sensitive. Other non-economic factors like the success
of an invention, an accident or even a hard-to-verify message may influence
the security return. In short, human factor contributes to uncertainty of the
security return. Thus, in some situations, the investors may not think that
the past data of the security return can well reflect the future return of the
security. They may like to use experts’ knowledge and their own experience to
evaluate the future return of the security. The prediction is usually expressed
in the fuzzy form like “The rate of return of security A is around 0.12”. Like
when we guess a man’s age, we say he is “about 30” instead of “probably
30”. The evaluation of the security return contains much subjectivity and is
of fuzziness rather than randomness. In this situation, fuzzy variable can be
employed to reflect the fuzziness of the security return.
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So far, we believe that security returns may behave randomly or fuzzily.
But in fact, there are cases that the security returns behave neither randomly
nor fuzzily. Superficially, it seems that random security returns contain ob-
jective uncertainty while fuzzy security returns reflect subjective vagueness.
More deeply we will find that it is the measure which evaluates the occur-
rence chance of an event that differs the different kinds of security returns
essentially. For example, suppose a security return is likely to be about 0.1.
The occurrence chance of the security return between 0.1 and 0.2 is 30%,
and the occurrence chance of the security return between 0.2 and 0.3 is 20%
(see Fig. 1.1). Then what do you think the occurrence chance of the security
return between 0.1 and 0.3 to be? If you think the occurrence chance will be
50%, you in fact are believing that the security return can be described by
random variable; if you think the occurrence chance will be 30%, you in fact
are believing that the security return should be described by fuzzy variable.
However, if you think the occurrence chance should not be as big as 50%,
nor should it be as small as 30%, instead, it should be a number between
30% and 50%, then you in fact are believing that the security return can be
described by another kind of variable, i.e., uncertain variable.
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Fig. 1.1 Security return may behave neither randomly nor fuzzily.

For the definitions and the useful knowledge of random variable, fuzzy
variable, uncertain variable and the applications of them in portfolio selection,
we will introduce in later chapters.

1.2 Portfolio Return

Suppose we have n numbers of alternative securities. Let ξi denote the i-
th security returns and xi the investment proportions in the i-th securities,
i = 1, 2, · · · , n, respectively. Then a portfolio return is the sum of

x1ξ1 + x2ξ2 + · · · + xnξn.

If the security returns ξi are deterministic, we can tell the returns of any
portfolios exactly.

For example, suppose there are 3 securities and their returns are ξ1 =
0.1, ξ2 = 0.12, and ξ3 = 0.15, respectively. If we have one portfolio A in which
we invest 25% of our money in Security 1, 35% of our money in Security 2,
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and 40% of our money in Security 3, then the portfolio return is very exact
and is calculated as

25% × 0.1 + 35% × 0.12 + 40% × 0.15 = 0.127.

However, as discussed in Section 1.1, the security returns ξi may be of
random, fuzzy, or uncertain characteristic rather than deterministic. Then
the portfolio return

x1ξ1 + x2ξ2 + · · · + xnξn

is quite variable. It is hard to tell exactly what value the portfolio return will
be.

For example, assume we have one portfolio A, and believe that the past
returns of the portfolio can well reflect its future return. The monthly return
of Portfolio A is obtained and listed in Table 1.1. Still, we cannot tell clearly
what level the future return of the portfolio will be because the future return
of the portfolio will vary from -0.20 to 0.20. To tell clearly the portfolio return,
we need to find a deterministic number that can characterize and represent
the variable portfolio return.

Table 1.1 Return of Portfolio A

Month Returns
1 0.10
2 0.11
3 0.20
4 -0.05
5 0.16
6 0.12
7 -0.10
8 0.15
9 -0.03
10 -0.20
11 0.16
12 0.10

Expected value 0.06

Expected return is the deterministic number that was first proposed by
Markowitz [66] to characterize and represent the variable portfolio return.
Expected return gives the average information about the variable portfolio
return. According to Markowitz, the monthly return of Portfolio A can be
represented by the average value

0.10 + 0.11 + 0.20 − 0.05 + · · · + 0.10
12

= 0.06.
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Another deterministic number that is used to represent the variable port-
folio return is called the β-return. If the security returns are all regarded to
be random, the β-return of the portfolio is the maximum return that one can
obtain at the probability not less than the preset confidence level β. That is,
the β-return of the portfolio, denoted by ξ(β), is defined by

ξ(β) = sup{f̄ | Pr{x1ξ1 + x2ξ2 + · · · + xnξn ≥ f̄} ≥ β},

where β ∈ [0, 1] is the preset confidence level. For portfolio A in Table 1.1,
if we set the confidence level β = 0.8, then the 0.8-return of Portfolio A is
-0.05 because -0.05 is the maximum return that Portfolio A can reach at
the probability not less than 0.80. In fact, the β-return is the percentile in
probability theory. Since it is more consistent in portfolio analysis, we use
the term β-return, which will also be used in fuzzy portfolio selection and in
uncertain portfolio selection with security returns behaving neither randomly
nor fuzzily.

Table 1.2 Return of Portfolio B

Month Returns
1 0.12
2 0.15
3 0.16
4 -0.12
5 0.20
6 0.10
7 0.13
8 -0.04
9 0.08
10 -0.18
11 0.10
12 -0.05

Expected value 0.054

With the deterministic numbers that represent the variable portfolio re-
turns, we are able to compare the return levels of any two portfolios. For
example, we have another portfolio B whose monthly returns are listed in
Table 1.2. We believe that the past returns of portfolio B can also well reflect
its future return. Then, if we use expected return as the representative value
of portfolios A and B, the return of portfolio A is bigger than the return
of portfolio B because the expected return of portfolio A is 0.06 while the
expected return of portfolio B is 0.054. If we use the 0.8-return as the rep-
resentative value of the two portfolios, the returns of portfolios A and B are
regarded to be the same because the 0.8-return of portfolios A and B are
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both 0.05. However, the return of portfolio A is bigger than the return of
portfolio B if we use the 0.90-return as the representative value of the two
portfolios because the 0.9-return of portfolio A is -0.10 while the 0.9-return
of portfolio B is -0.12. It is seen that using different representative values will
lead to different judgement results.

1.3 What Is Risk

Though every one talks about risk of investment, the measurable definition
of risk was not given until 1952. In 1952, Markowitz [66] proposed that the
variance of a variable portfolio return can be regarded as the investment
risk. Variance is the average squared deviation from the expected value. The
measure of risk assumes that the greater deviation from the expected return,
the more likely the investors cannot obtain the expected return.

For example, for the above-mentioned Portfolio A in Table 1.1, its variance
is:

0.0016 + 0.0025 + 0.0196 + · · · + 0.0016
12

= 0.014.

That is, the risk level of Portfolio A is 0.014 (see Table 1.3).

Table 1.3 Computation of Variance

Month Returns Deviations from expected return Squared deviations
1 0.10 0.04 0.0016
2 0.11 0.05 0.0025
3 0.20 0.14 0.0196
4 -0.05 -0.11 0.0121
5 0.16 0.10 0.01
6 0.12 0.06 0.0036
7 -0.10 -0.16 0.0256
8 0.15 0.09 0.0081
9 -0.03 -0.09 0.0081
10 -0.20 -0.26 0.0676
11 0.16 0.10 0.01
12 0.10 0.04 0.0016

Average 0.06 0.00 0.014

Though variance is a popular definition of risk, it just provides a com-
prehensive information about deviation level from the expected return. Loss
is not observable. Variance does not give investors any instinct information
about loss. However, in reality, people usually concern the instinct loss. Fur-
thermore, it is a common phenomenon that when people make their risk-
taking or risk-avoiding decision, they are actually weighing two factors. One
is the severity level of the likely loss and the other is the occurrence chance
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of the loss event. For example, some people do not like taking plane because
though the probability of crashing (likely loss event) is very low, the severity
level (loss of life) is too great to accept. This is also true in the case of invest-
ment. When evaluating if a portfolio is safe enough, some investors would
evaluate the occurrence chances of all the likely losses and the severity levels
of these likely losses. Therefore, Huang [34, 36, 38] proposed another quanti-
tative definition of risk called risk curve to describe each likely loss level and
the occurrence chance of the likely loss event.

To understand risk curve, let us first understand what the likely losses are.
Or say how should we describe the likely losses mathematically. Suppose we
have n numbers of alternative securities. We denote ξi the i-th security re-
turns and xi the investment proportions in the i-th securities, i = 1, 2, · · · , n,
respectively. Assume rf is the risk-free interest rate. Then when

rf − (x1ξ1 + x2ξ2 + · · · + xnξn) ≥ 0,

it means that the portfolio return x1ξ1+x2ξ2+· · ·+xnξn is lower than the risk-
free interest rate rf , and the difference is rf −(x1ξ1+x2ξ2+ · · ·+xnξn) value.
This value can certainly be understood as a loss. For example, suppose the
risk-free interest rate is 0. If the portfolio return is −0.05, then the investor’s
loss is 0− (−0.05) = 0.05. If the portfolio return is −0.12, then the investor’s
loss is 0 − (−0.12) = 0.12. Of course, the risk-free interest rate is usually
higher than zero. If the risk-free interest rate is 0.02, then even when the
portfolio return is 0.01, the investor will still think he or she has experienced
a loss of 0.02−0.01 = 0.01. Since the portfolio return is variable, the formula

rf − (x1ξ1 + x2ξ2 + · · · + xnξn) ≥ r, ∀r ≥ 0

describes all the likely losses. Therefore, the risk curve of the portfolio return
(x1ξ1 + x2ξ2 + · · · + xnξn) is defined as follows:

R(x1, x2, · · · , xn; r) = π{rf − (x1ξ1 + x2ξ2 + · · · + xnξn) ≥ r}, ∀r ≥ 0,

where R(x1, x2, · · · , xn; r) is the risk curve, and π the measure that gauges
the occurrence chance of the loss event {rf − (x1ξ1 +x2ξ2 + · · ·+xnξn) ≥ r}.
The general trend of the risk curve is illustrated in Fig. 1.2.

For example, if the portfolio return is believed to be random, then the risk
curve of the portfolio is expressed as follows:

R(x1, x2, · · · , xn; r) = Pr{rf − (x1ξ1 + x2ξ2 + · · · + xnξn) ≥ r}, ∀r ≥ 0.

According to the definition of risk curve, a portfolio is safer than another
portfolio if its risk curve is lower than the risk curve of another portfolio. Fig.
1.3 gives two risk curves of hypothetical portfolios B and C. Since the risk
curve of portfolio B, i.e., RB(r), is below the risk curve of portfolio C, i.e.,
RC(r), portfolio B is safer than portfolio C.
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Fig. 1.2 General trend of a risk curve. The greater the r value, the less the R(r)
value.
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Fig. 1.3 Risk curves of two portfolios B and C.

Sometimes, the investors may only be sensitive to one preset disastrous loss
level instead of all the likely loss levels. Then they will regard the occurrence
chance of the specific loss level as the risk. That is, for portfolio (x1ξ1+x2ξ2+
· · · + xnξn), if the investors set the disastrous loss level at r0, then the risk
now is defined as

π{rf − (x1ξ1 + x2ξ2 + · · · + xnξn) ≥ r0}

where rf is the risk-free interest rate, and π the measure that gauges the
occurrence chance of the loss event {rf − (x1ξ1 + x2ξ2 + · · · + xnξn) ≥ r0}.

For example, if the portfolio return is believed to be random, the risk of
the portfolio now is

Pr{rf − (x1ξ1 + x2ξ2 + · · · + xnξn) ≥ r0}.

For the above mentioned Portfolio A in Table 1.1, if the risk-free interest rate
is 0.01, and the investors set the specific disastrous loss level at r0 = 0.1, then
the risk level of Portfolio A is 1/6.

With the mathematical definitions of risk, we are able to compare the
riskiness degrees of any two portfolios.
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1.4 Portfolio Analysis and IRR Graph

Portfolios can be analyzed and judged to be “good” or “bad” when the deter-
ministic representative numbers of the portfolio returns and the quantitative
definitions of portfolio risks have been given. The IRR Graph in Fig. 1.4 gives
three basic aspects for portfolio analysis. The first aspect is Information. We
need to know the underlying security returns first. Are they random, fuzzy, or
uncertain variables? The second aspect is what we use as the representative
number of portfolio Return. Do we use expected return or β-return as the
representative of the portfolio return? The third aspect is concerned with the
definition of Risk. Which do we regard as the investment risk, risk curve,
variance, or occurrence chance of a specific loss level? Different people have
different choices, and different choices produce different results. However, any
portfolio selection decision is made in the coordinate system of Information,
Return and Risk. For example, the plane “I=Stochastic” represents that the
portfolio return is believed to be random variable. The plane “R=Expected
Return” means that the expected return is used to represent the portfolio
return. And the plane “R=Risk Curve” implies that risk curve of the port-
folio is regarded to be the investment risk. The point “(I,R,R)=(Stochastic,
Expected Return, Risk Curve)” represents that the decision is made when
portfolio return is random and the investors use expected return as the rep-
resentative of the portfolio return and regard risk curve as the portfolio risk.
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Chapter 2
Probabilistic Portfolio Selection

Probabilistic portfolio selection handles portfolio selection problem with ran-
dom returns by means of probability theory. It was researched earliest and
began to get rapid development since Markowitz in 1952. Before Markowitz,
there were no measurable terms for risk. Mean-variance model, proposed by
Markowitz [66], opened the door for mathematical analysis of portfolio se-
lection problem. Mean-semivariance model, also proposed by Markowitz [67],
served as an improvement of mean-variance selection model. As an alternative
definition of risk, Roy [83] proposed probability of a preset loss level as risk,
and the selection idea of minimizing the probability of a specific loss level
came to be known. The nowadays popular VaR is in fact another version of
Roy’s risk definition. Recently, Huang [36] defined risk curve and proposed a
mean-risk selection idea.

This chapter will start with review of some fundamentals of probability
theory concerning probabilistic portfolio selection. Since the main concepts
and results of probability theory are well-known, the credit references are not
provided. Then the chapter will focus on a spectrum of portfolio selection
models from different perspectives on risk and return. After that, a hybrid
intelligent algorithm is documented as a general solution algorithm for the
probabilistic portfolio selection model problems.

2.1 Fundamentals of Probability Theory

Random uncertainty is a basic type of uncertainty. It is usually observed in
reality, especially in dice games. Probability theory originated from Pascal
and Fermat’s discussion on the calculations of probabilities in dice games
in their famous correspondences in 1654. Later, probability theory was de-
veloped not only limited to dice games but also to all the other random
phenomena. However, the rapid development of the theory did not begin un-
til Kolmogorov presented the axiomatic foundation for probability theory in
his famous book Foundations of the Theory of Probability in 1933. Nowadays,

X. Huang: Portfolio Analysis: From Probab. to Credibilistic, STUDFUZZ 250, pp. 11–60.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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probability theory has been widely applied in various fields including portfo-
lio selection. In this subchapter, our emphasis is mainly on random variable,
probability, probability distribution, probability density function, expected
value, variance, semivariance, critical values and entropy.

Probability and Random Variable

Definition 2.1. Let Ω be a nonempty set of all outcomes of a random ex-
periment. A nonempty collection of subsets of Ω, denoted by �, is called a
σ-algebra if it has the following three properties: (i) Ω ∈ �; (ii) If A ∈ �,
then Ac ∈ �; (iii) If An ∈ � and An is a countable sequence, then ∪nAn ∈ �.
Each element in � is called an event. The set function Pr is called a proba-
bility measure if
(Axiom 1) (Normality) Pr{Ω} = 1;
(Axiom 2) (Nonnegativity) Pr{A} ≥ 0 for any A ∈ �;
(Axiom 3) (Countable Additivity) Pr {⋃∞

i=1 Ai} =
∑∞

i=1 Pr{Ai} for every
countable sequence of mutually disjoint events {Ai}∞i=1.

The value of Pr{A} indicates the probability value that the event A will
occur.

Theorem 2.1. Let Ω be a nonempty set, � a σ-algebra over Ω, and Pr a
probability measure. Then we have
(i) Pr{∅} = 0;
(ii) 0 ≤ Pr{A} ≤ 1 for any A ∈ �;
(iii) Pr is incresing, i.e., Pr{A} ≤ Pr{B} whenever A ⊂ B;
(iv) Pr is self-dual, i.e., Pr{A} + Pr{Ac} = 1 for any A ∈ �.

Definition 2.2. Let Ω be a nonempty set, � a σ-algebra of subsets of Ω, and
Pr a probability measure. Then the triplet (Ω,�, Pr) is called a probability
space.

Definition 2.3. A random variable is a measurable function from a proba-
bility space (Ω,�, Pr) to the set of real numbers.

Remark 2.1. Let Ω be a nonempty set, and� a σ-algebra overΩ. Then (Ω,�)
is called a measurable space, and the sets in � are called measurable sets.

Remark 2.2. The smallest σ-algebra containing all open intervals of the
set of n-dimensional real numbers 
n is called a Borel algebra of 
n. Any
element in the Borel algebra is called a Borel set. It is easy to see that any
Borel sets are measurable sets.

Remark 2.3. A function f from (Ω,�) to the set of real numbers is said to
be measurable if for any Borel set B of real numbers, we have

f−1(B) = {ω ∈ Ω|f(ω) ∈ B} ∈ �.
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Remark 2.4. Since a random variable ξ is a measurable function, for any
Borel set B of real numbers, the set

{ξ ∈ B} = {ω ∈ Ω|ξ(ω) ∈ B} ∈ �,

which means that {ξ ∈ B} is an event. In practice, we usually express the
event {ξ ∈ B} by {ξ ≤ t} or {ξ ≥ t} where t is a real number. For example,
let ξ represent a random portfolio return. Then the event that the portfolio
return is not less than 0.10 can be expressed by {ξ ≥ 0.10}.

Example 2.1. Take (Ω,�, Pr) to be {ω1, ω2, ω3, ω4, ω5, ω6} with Pr{ω1} =
Pr{ω2} = Pr{ω3} = Pr{ω4} = Pr{ω5} = Pr{ω6} = 1/6. Then the function

ξ(ω) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if ω = ω1

2, if ω = ω2

3, if ω = ω3

4, if ω = ω4

5, if ω = ω5

6, if ω = ω6

is a random variable. In reality, this random variable is usually used to de-
scribe the likely results of playing dice with six facets. From the remark 2.4,
it can be seen that the event {ωi}, i = 1, 2, 3, 4, 5, 6, can also be represented
by {ξ = i}, i = 1, 2, 3, 4, 5, 6. In fact, in practice, the event that the facet
with i numbers of dot will appear is usually represented by {ξ = i}. It is
easy to see that the probability that the event {ξ = i} will occur is 1/6, i.e.,
Pr{ξ = i} = 1/6.

Example 2.2. Take Ω = [0, 1] and � the Borel-algebra, with Pr the lebesgue
measure (the measure π on the Borel algebra of real numbers such that
π{(a, b]} = b−a for∀(a, b] is called the Lebesgue measure). Then the function
ξ : Ω → [a, b], i.e.,

ξ(ω) = a + (b − a) · ω, ω ∈ Ω = [0, 1]

is the random variable with equi-probability distribution. It can be calculated
that

Pr{ξ(ω) ≤ t} =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if t ≤ a

t − a

b − a
, if a ≤ t ≤ b

1, if t ≥ b.
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As observed in the above two examples, as a practitioner, we are not
interested in the specific nature of the sample space Ω nor the specific function
which defines the random variable ξ. Instead, we are interested in the values of
probabilities of the events that the random variable takes some real values, for
example, Pr{ω ∈ Ω|ξ(ω) ≤ t}, or simply Pr{ξ ≤ t}. In probabilistic portfolio
selection, we are also only interested in the probabilities that the portfolio
return takes certain values.

Definition 2.4. Let ξ1 and ξ2 be random variables on the probability space
(Ω,�, Pr). We say ξ1 = ξ2 if ξ1(ω) = ξ2(ω) for almost all ω ∈ Ω.

Probability Distribution and Probability Density Function

Definition 2.5. The probability distribution Φ: 
 → [0, 1] of a random vari-
able ξ is defined by

Φ(t) = Pr
{
ω ∈ Ω

∣
∣ ξ(ω) ≤ t

}
. (2.1)

That is, Φ(t) is the probability that the random variable ξ takes a value less
than or equal to t.

Definition 2.6. The probability density function φ: 
 → [0, +∞) of a ran-
dom variable ξ is a function such that

Φ(t) =
∫ t

−∞
φ(y)dy (2.2)

holds for all t ∈ 
, where Φ is the probability distribution of the random
variable ξ.

Remark 2.5. Generally speaking, two random variables ξ1 
= ξ2 even when ξ1

and ξ2 have the same probability distributions. For example, take (Ω,�, Pr)
to be {ω1, ω2} with Pr{ω1} = Pr{ω2} = 0.5. Define two random variables as
follows:

ξ1(ω) =

{ −1, if ω = ω1

1, if ω = ω2,
ξ2(ω) =

{
1, if ω = ω1

−1, if ω = ω2.

We can find that ξ1 and ξ2 have the same probability distribution, i.e.,

Φ(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if t < −1

0.5, if − 1 ≤ t < 1

1, if t ≥ 1.

However, it is clear that ξ1 
= ξ2 in the sense of Definition 2.4.
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Remark 2.6. Since one probability distribution may be connected to several
different random variables, random variable cannot be defined via probability
distribution in the research of mathematical theory. However, in application,
to study a random phenomenon, it is enough to begin with probability distri-
bution or probability density function of a random variable. In probabilistic
portfolio selection, we start with probability distributions or probability den-
sity functions of portfolio returns.

Expected Value

Definition 2.7. Let ξ be a random variable. Then the expected value of ξ is
defined by

E[ξ] =
∫ +∞

0

Pr{ξ ≥ t}dt −
∫ 0

−∞
Pr{ξ ≤ t}dt (2.3)

provided that at least one of the two integrals is finite.

Theorem 2.2. Let ξ be a random variable whose probability density function
φ exists. If the Lebesgue integral

∫ +∞

−∞
tφ(t)dt

is finite, then we have

E[ξ] =
∫ +∞

−∞
tφ(t)dt. (2.4)

Expected value measures central tendency. It tells us where the center of
the distribution of a random variable is located.

Theorem 2.3. Let ξ and η be random variables with finite expected values.
For any numbers a and b, we have E[aξ + bη] = aE[ξ] + bE[η].

That is, the expected value operator has the linearity property.

Variance and Semivariance

Variance is the average of the squared deviations from the expected value.

Definition 2.8. Let ξ be a random variable with finite expected value e. Then
the variance of ξ is defined by V [ξ] = E[(ξ−e)2], and

√
V [ξ] is called standard

deviation.

Definition 2.9. Let ξ be a random variable with finite expected value e. Then
the semivariance of ξ is defined by SV [ξ] = E[[(ξ − e)−]2] where

(ξ − e)− =

{
ξ − e, if ξ ≤ e

0, if ξ > e.
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The semivariance of a random variable measures only the negative devi-
ations of the distribution from the expected value. A small value of semi-
variance indicates that the mean squared negative deviations of the random
variable from its expected value is small; and a large value of semivariance
indicates that the mean squared negative deviations of the random variable
from its expected value is large.

Three Special Types of Random Variable

Uniform Random Variable: A random variable ξ is called a uniform ran-
dom variable if its probability density function is defined by

φ(t) =

⎧
⎨

⎩

1
b − a

, if a ≤ t ≤ b

0, otherwise,
(2.5)

where a and b are given real numbers with a < b. We denote the variable by
ξ ∼ U(a, b).
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Fig. 2.1 Density function and probability distribution of ξ ∼ U(a, b).

Example 2.3. Let ξ be a uniform random variable on the interval [a, b].
Then its expected value is E[ξ] = (a + b)/2 and variance is V = (b − a)2/12.

From Equation (2.2), it is easy to see that for any two sets A1 = (a1, b1) ⊆
[a, b] and A2 = (a2, b2) ⊆ [a, b], their probabilities are the same if b1 − a1 =
b2 − a2. That is, Pr{A1} = Pr{A2} if b1 − a1 = b2 − a2.

In probabilistic portfolio selection, if we have no idea at all about the
return of an initial public offering, but can only guess the lowest and highest
values that the security return can reach, according to Laplace principle, the
probabilities that the security return lies in the intervals with the same length
should take the same values. Thus, we can use the uniform random variable
to describe this security return.

Theorem 2.4. Let ξ be a uniform random variable ξ ∼ U(a, b) and λ a real
number. Then we have
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λ · ξ ∼
{ U(λa, λb), if λ > 0

U(λb, λa), if λ < 0.
(2.6)

That is, the product of a uniform random variable and a scalar number is
also a uniform random variable.

Theorem 2.5. Let ξ1 and ξ2 be two uniform random variables ξ1 ∼ U(a1, b1)
and ξ2 ∼ U(a2, b2). Then we have

ξ1 + ξ2 ∼ U(a1 + a2, b1 + b2). (2.7)

That is, the sum of two uniform random variables is also a uniform random
variable. Thus, a weighted sum of uniform random variables is also a uniform
random variable.

Example 2.4. Assume ξ1 and ξ2 are uniform random variables ξ1 ∼ U(a1, b1)
and ξ2 ∼ U(a2, b2) and λ1 and λ2 real numbers. Then we have

λ1 · ξ1 + λ2 · ξ2 ∼

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

U(λ1a1 + λ2a2, λ1b1 + λ2b2), if λ1 > 0, λ2 > 0

U(λ1b1 + λ2b2, λ1a1 + λ2a2), if λ1 < 0, λ2 < 0

U(λ1b1 + λ2a2, λ1a1 + λ2b2), if λ1 < 0, λ2 > 0

U(λ1a1 + λ2b2, λ1b1 + λ2a2), if λ1 > 0, λ2 < 0.

Normal Random Variable: A random variable ξ is called a normal random
variable if its probability density function is defined as:

φ(t) =
1

σ
√

2π
exp

[

− (t − μ)2

2σ2

]

, σ > 0, t ∈ 
, (2.8)

where μ is a real number. We denote the variable by ξ ∼ N (μ, σ2). The
probability density function and probability distribution function of a normal
random variable are drawn in Fig. 2.2.
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Fig. 2.2 Density function and probability distribution of ξ ∼ N (μ, σ2).
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Example 2.5. Let ξ be a normal random variable ξ ∼ N (μ, σ2). Then its
expected value is E[ξ] = μ and variance is V [ξ] = σ2.

The probability density functions of normal random variables with differ-
ent values of expected value μ and standard deviation σ are shown in Figs.
2.3 and 2.4.
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Fig. 2.3 Density functions of two normal random variables with the same μ but
different σ’s.
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Fig. 2.4 Density functions of two normal random variables with the same σ but
different μ’s.

Theorem 2.6. Let ξ be a normal random variable N (μ, σ2) and λ a real
number. Then we have

λ · ξ ∼ N (λμ, λ2σ2) (2.9)

That is, the product of a normal random variable and a scalar number is also
a normal random variable.

Theorem 2.7. Let ξ1 and ξ2 be two normal random variables ξ1 ∼ N (μ1, σ
2
1)

and ξ2 ∼ N (μ2, σ
2
2). Then we have

ξ1 + ξ2 ∼ N (μ1 + μ2, σ
2
1 + σ2

2). (2.10)

That is, the sum of two normal random variables is also a normal random
variable. Thus a weighted sum of normal random variables is also a normal
random variable.
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Example 2.6. Assume ξ1 and ξ2 are normal random variables ξ1 ∼ N (μ1, σ
2
1)

and ξ2 ∼ N (μ2, σ
2
2) and λ1 and λ2 real numbers. Then we have

λ1 · ξ1 + λ2 · ξ2 ∼ N (λ1μ1 + λ2μ2, λ
2
1σ

2
1 + λ2

2σ
2
2).

Probabilistic portfolio theory, for the most part, assumes that security re-
turns are normally distributed, or even if individual security returns are not
exactly normal, the large portfolio return will resemble a normal distribution
quite closely. Some observations supported the assumption. For example, Ta-
ble 2.1 summarizes the research results of one-year investments in randomly
selected portfolios from NYSE stocks by Fisher and Lorie [18]. The table
shows that the returns of 32-stock portfolio began to resemble the normal
distribution, and the return distribution of 128-stock portfolio is virtually
identical to the hypothetical normally distributed portfolio.

Table 2.1 Frequency Distribution of Rates of Return from a One-Year Investment
in Randomly Selected Portfolios from NYSE-Listed Stocks

N=1 N=1 N=8 N=8
Statistic Observed Normal Observed Normal

5th percentile -14.4 -39.2 8.1 4.6
20th percentile -0.5 6.3 16.3 16.1
50th percentile 19.6 28.2 26.4 28.2
70th percentile 38.7 49.7 33.8 35.7
95th percentile 96.3 95.6 54.3 51.8

Minimum -71.1 NA -12.4 NA
Maximum 442.6 NA 136.7 NA

Mean 28.2 28.2 28.2 28.2
Standard Deviation 41.0 41.0 14.4 14.4

Skewness 255.4 0.0 88.7 0.0
Sample size 1,227 – 131,072 –

N=32 N=32 N=128 N=128
Statistic Observed Normal Observed Normal

5th percentile 17.4 16.7 22.7 22.6
20th percentile 22.2 22.3 25.3 25.3
50th percentile 27.8 28.2 28.1 28.2
70th percentile 31.6 32.9 30.0 30.0
95th percentile 40.9 39.9 34.1 33.8

Minimum 6.5 NA 16.4 NA
Maximum 73.7 NA 43.1 NA

Mean 28.2 28.2 28.2 28.2
Standard Deviation 7.1 7.1 3.4 3.4

Skewness 44.5 0.0 17.7 0.0
Sample size 32,768 – 16,384 –
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Lognormal Random Variable: A random variable ξ is called a lognormal
random variable if ln(ξ) is a normal random variable with expected value μ
and standard deviation σ. Equivalently,

ξ = exp(η)

where η is a normal random variable with expected value μ and standard
deviation σ. We denote the lognormal random variable by ξ ∼ ln N (μ, σ2).
Its probability density function is given by:

φ(t) =
1

tσ
√

2π
exp

[

− (ln t − μ)2

2σ2

]

, σ > 0, t > 0. (2.11)

Note that the random variable ln ξ follows a normal distribution, but the
random variable ξ follows a lognormal distribution. The difference of the
normal probability density function from the lognormal probability density
function is not only the replacement of t by ln(t) but also an additional t
factor in t(2π)1/2σ. The shape of the probability density functions of the
lognormal random variables ξ ∼ ln N (μ, σ2) with different values of μ and σ
are given in Figs. 2.5 and 2.6.
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Fig. 2.5 Density functions of two lognormal random variables with the same μ but
different σ’s.
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Since the security prices cannot be negative, there are theoretical objec-
tions to the assumption that individual security returns are normally dis-
tributed. Some people argue that the normal distribution cannot be truly
representative of the security rates of return because it allows for any out-
come, including the whole range of negative prices. Rates of return lower
than -100% are theoretically impossible because they imply the possibility of
negative security prices. To overcome the shortcoming of normal distribution
assumption, an alternative assumption is that the continuously compounded
annual rate of return is normally distributed. Let η represent the continu-
ously compounded annual rate of return and ξ the effective annual rate of
return. Then ξ = exp(η) − 1. Since the smallest likely value for ξ is -1, this
assumption rules out the likely outcome of negative security price. We can
see that the distribution of ξ is lognormal. The famous Black-Scholes Option
Pricing Formula is derived based on the lognormal distribution assumption.

However, when the holding period t is short, the approximation of the log-
normal random variable ξ(t) = exp(ηt) − 1 by the normal random variable
ηt is quite accurate. In other words, when the holding period is short, the
normal distribution provides a good approximation to the lognormal distri-
bution. Thus, for example, if the variance of the compounded annual rate of
return is 0.12, then for all practical purposes, the variance of the one month
return rate is

σ2(monthly) =
0.12
12

= 0.01.

Example 2.7. Let ξ be a lognormal random variable ξ ∼ ln N (μ, σ2). Then
its expected value is E[ξ] = eμ+σ2/2 and variance is V [ξ] = (eσ2 − 1) · e2μ+σ2

.

Example 2.8. Let ξi ∼ ln N (μi, σ
2
i ), i = 1, 2, · · · , n, respectively, be inde-

pendent lognormal random variables, and η =
n∏

i=1

ξi. Then η is a lognormal

random variable as well:

η ∼ ln N (
n∑

i=1

μi,

n∑

i=1

σ2
i ).

β-Value

Definition 2.10. Let ξ be a random variable, and β ∈ (0, 1]. Then

ξsup(β) = sup
{
r
∣
∣ Pr {ξ ≥ r} ≥ β

}
(2.12)

is called the β-value of ξ.

If ξ represents a portfolio return, then the β-value of ξ means the maximum
return the investors can get at least β of time (see Figs. 2.7 and 2.8). It is
also called percentile in probability theory. In portfolio selection, we call it
β-return because it is more meaningful for investors and more consistent for
portfolio analysis.
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Fig. 2.7 Density function and β-value.
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Fig. 2.8 Probability distribution and β-value.

Example 2.9. Let ξ be a normal random variable N (0, 1). Then ξsup(0.80) =
−0.84 because Pr{ξ ≥ −0.84} = 0.80.

Theorem 2.8. Let ξsup(β) be the β- value of the random variable ξ. Then
ξsup(β) is a decreasing function of β.

Entropy

Entropy was first defined by Shannon [85] as a measure of uncertainty. It mea-
sures the degree of difficulty of predicting the specified value that a random
variable will take.

Entropy of Discrete Random Variables

Definition 2.11. A random variable is said to be discrete if there exists a
countable sequence {t1, t2, · · ·} such that

Pr{ξ 
= t1, ξ 
= t2, · · ·} = 0.

Definition 2.12. Let ξ be a discrete random variable taking values ti with
probability pi, i = 1, 2, 3, · · · , respectively. Then its entropy is defined by

H [ξ] = −
∞∑

i=1

pi ln pi. (2.13)
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Please note that the entropy relies only on the number of values and their prob-
abilities and does not rely on the actual values that the random variable takes.

2.2 Mean-Risk Model

Consider one case. In the case, people may lose 1 dollar at probability 99%
and lose 1,000,000 dollars at probability 1%. Will they think the event is
risky? Some people may say no because they can tolerate 1,000,000 dollars
loss at a very low occurrence probability value of 1% while other people may
say yes because to them the loss of 1,000,000 dollars is too great to tolerate
even at the low occurrence probability value of 1%. The phenomenon implies
that when the investors make their risk-taking or risk-avoiding decision, they
are actually weighing two factors. One is severity level of a loss and the other
the occurrence chance of the loss. To reflect the attitude towards risk, Huang
[36] defined risk curve and proposed the mean-risk model.

2.2.1 Risk Curve

Usually, when an investment return is -0.1, people will instinctively feel that
they suffer a loss of 0.1.This in fact implies that people set their breakevenpoint
at 0 and they experience a difference, i.e., 0 − (−0.1), of the investment return
from the point. In portfolio investment, since the portfolio return is variable
and may be -0.05, -0.11, · · ·, etc., people’ loss may be 0.05, 0.11, · · ·, etc. When
the portfolio return is 0.1, people will feel they gain and now the difference, i.e.,
0 − 0.1, of the portfolio return from the breakeven point is a negative number.
Thus, it is clear that if ξ represents the variable portfolio return, then 0 − ξ
describes all the likely losses when 0 − ξ ≥ 0. Of course, the investors can
set their breakeven point higher than 0. In financial investment, people have
a choice to invest their money in risk-free asset and gain a return rate as high
as the risk-free interest rate with certainty. Thus, the risk-free interest rate,
denoted by rf , is chosen as the breakevenpoint in portfolio analysis in our book.
Then, if the risk-free interest rate is 0.015, the investors will still suffer a loss of
0.015−0.01 = 0.005 even when the portfolio return is 0.01. Taking into account
all the likely losses of a portfolio and the corresponding occurrence chances of
these losses, we define the risk curve as follows:

Definition 2.13. (Huang [36]) Let ξ denote a random return of a portfolio,
and rf the risk-free interest rate. Then the curve

R(r) = Pr{rf − ξ ≥ r}, ∀r ≥ 0 (2.14)

is called the risk curve of the portfolio, and r the loss severity indicator.

In the definition, the set {rf −ξ ≥ r} describes the event that the loss is equal
to or greater than the value r. The greater the value r, the severer the loss
rf −ξ is. The curve R(r) is the probability of the loss equal to or greater than
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the value r. Note that r is a nonnegative value rather than a fixed number.
Then R(r) = Pr{rf − ξ ≥ r} is a curve which gives all the probabilities of all
the likely losses.

Example 2.10. Let ξ be the random return of a portfolio with normal
distribution, i.e., ξ ∼ N (μ, σ2). Then the risk curve of ξ is expressed as
follows:

R(r) = Pr{(rf − ξ) ≥ r} =
1

σ
√

2π

∫ rf−r

−∞
exp

[

− (t − μ)2

2σ2

]

dt, r ≥ 0.

The curve is shown in Fig. 2.9.
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Fig. 2.9 Risk curve of a portfolio with normally distributed return.

Example 2.11. Let ξ be the random return of a portfolio with uniform
distribution, i.e., ξ ∼ U(a, b). Then the risk curve of ξ is as follows:

R(r) = Pr{(rf − ξ) ≥ r} =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if r < rf − b

rf − a − r

b − a
, if rf − b ≤ r ≤ rf − a

0, if r > rf − a.

The curve is shown in Fig. 2.10.
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Fig. 2.10 Risk curve of a portfolio with uniformly distributed return.
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Example 2.12. Risk curves of Securities Baosteel, CITIC, and their
combination

According to the data published by Shanghai Stock Market, we calculate
the monthly returns of Securities Baosteel (600019) and CITIC (600030) and
list the returns in Table 2.2. The monthly return is calculated by

(Closing price, this month)-(Closing price, last month)
(Closing price, last month)

where the closing price of each month is the adjusted price having considered
stock split and dividend during the month. For example, the adjusted closing
price of Baosteel in January 2006 is RMB 3.71, and the adjusted closing price
of Baosteel in December 2005 is RMB 3.74. Then the return rate of Baosteel
in January 2006 is (3.71-3.74)/3.74=-0.01.

Table 2.2 Returns and Losses of Baosteel and CITIC

Month Bao. Return Bao. Loss CITIC Return CITIC Loss
1/2006 -0.01 0.013 0.35 -
2/2006 0.06 - -0.09 0.093
3/2006 -0.03 0.033 0.19 -
4/2006 0.00 0.003 0.55 -
5/2006 0.13 - 0.29 -
6/2006 -0.02 0.023 0.04 -
7/2006 -0.07 0.073 -0.15 0.153
8/2006 0.02 - 0.04 -
9/2006 0.00 0.003 0.08 -
10/2006 0.18 - -0.02 0.023
11/2006 0.40 - 0.27 -
12/2006 0.27 - 0.46 -
1/2007 0.13 - 0.28 -
2/2007 -0.03 0.033 0.06 -
3/2007 0.05 - 0.16 -
4/2007 0.13 - 0.37 -
5/2007 0.10 - -0.08 0.083
6/2007 -0.08 0.083 -0.02 0.023
7/2007 0.23 - 0.24 -
8/2007 0.37 - 0.36 -
9/2007 -0.02 0.023 0.09 -
10/2007 0.02 - 0.10 -
11/2007 -0.22 0.223 -0.21 0.213
12/2007 0.20 - 0.06 -
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Table 2.3 Loss Frequencies of Baosteel and CITIC

Loss Indicator r Baosteel (Loss ≥ r) CITIC (Loss ≥ r)
Relative Frequency Relative Frequency

0.00 10/24 6/24
0.01 8/24 6/24
0.02 7/24 6/24
0.03 5/24 4/24
0.04 3/24 4/24
0.05 3/24 4/24
0.06 3/24 4/24
0.07 3/24 4/24
0.08 2/24 4/24
0.09 1/24 3/24
0.10 1/24 2/24
0.11 1/24 2/24
0.12 1/24 2/24
0.13 1/24 2/24
0.14 1/24 2/24
0.15 1/24 2/24
0.16 1/24 1/24
0.17 1/24 1/24
0.18 1/24 1/24
0.19 1/24 1/24
0.20 1/24 1/24
0.21 1/24 1/24
0.22 1/24 0

Table 2.4 Loss Frequencies of Portfolio BC

Loss Level Relative Frq. Loss Level Relative Frq.
(r) (Loss ≥ r) (r) (Loss ≥ r)
0.00 4/24 0.11 1/24
0.01 4/24 0.12 1/24
0.02 3/24 0.13 1/24
0.03 3/24 0.14 1/24
0.04 3/24 0.15 1/24
0.05 3/24 0.16 1/24
0.06 2/24 0.17 1/24
0.07 2/24 0.18 1/24
0.08 2/24 0.19 1/24
0.09 2/24 0.20 1/24
0.10 2/24 0.21 1/24
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Fig. 2.11 Risk curves of securities Baosteel (the 1st one), CITIC (the 2nd one),
and the portfolio BC (the 3rd one).

Suppose the monthly risk-free interest rate is rf = 0.003. Then the loss
of Baosteel in January 2006 is 0.003-(-0.01)=0.013. The losses of Baosteel
and CITIC from January 2006 to December 2007 are given in Table 2.2.
According to the data in Table 2.2, given different values of r, the relative
frequencies of the loss equal to or greater than r are obtained in Table 2.3.
The risk curves of securities Baosteel (the first one) and CITIC (the second
one) are drawn in Fig. 2.11.

If we invest half the money in security Baosteel and half in security CITIC,
then we have a portfolio. Let us call it Portfolio BC. The relative frequencies
of the loss of the portfolio equal to or greater than the value r are given in
Table 2.4. The risk curve of Portfolio BC is drawn in Fig. 2.11 (the third
one). It is seen that the risk curve of the portfolio tends to be lower than the
risk curves of the individual securities.

2.2.2 Confidence Curve and Safe Portfolio

Since all investors know that they may lose as well as gain in investment,
they will have a maximum tolerance towards occurrence chance of each likely
loss level. We call it confidence curve α(r) that gives the investors’ maximal
tolerance towards the occurrence chance of each likely loss level. Different
investors have different tolerable occurrence chance levels even towards the
same loss level. However, given any loss level r, an investor should be able to
give his or her maximal tolerable chance of the loss equal to or greater than r
by answering “what-if” questions. For example, if r=0, what is your maximum
tolerable chance level of the loss equal to or greater than 0? If r = 0.01, what is
your maximum tolerable chance level of the loss equal to or greater than 0.01?
If r = 0.02, what is your maximum tolerable chance level of the loss equal
to or greater than 0.02? · · · By answering all the “what-if” questions, the
investor is able to give his or her maximum tolerable chances of all the likely
losses (see What-If Questionnaire in Table 2.5). In probabilistic portfolio
selection, occurrence chance of a random event is measured by probability
measure. Though different investors’ confidence curves may be in different
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Table 2.5 What-If Questionnaire

Question Answer
If r = 0.0, what is your maximum tolerable chance

of the loss equal to or greater than 0? 1
If r = 0.01, what is your maximum tolerable chance

of the loss equal to or greater than 0.01? 0.9
If r = 0.02, what is your maximum tolerable chance

of the loss equal to or greater than 0.02? 0.9
If r = 0.03, what is your maximum tolerable chance

of the loss equal to or greater than 0.03? 0.9
If r = 0.04, what is your maximum tolerable chance

of the loss equal to or greater than 0.04? 0.8
If r = 0.05, what is your maximum tolerable chance

of the loss equal to or greater than 0.05? 0.8
· · · · · ·

If r = 0.98, what is your maximum tolerable chance
of the loss equal to or greater than 0.04? 0.01

If r = 0.99, what is your maximum tolerable chance
of the loss equal to or greater than 0.05? 0.01

If r = 1.0, what is your maximum tolerable chance
of the loss equal to or greater than 0.7? 0.0

shapes, the general trend of the curves is the same. That is, when r is low,
investors can tolerate a comparatively high occurrence probability of the loss
equal to or greater than r; however, when r is high, investors can tolerate
only a low occurrence probability of the loss equal to or greater than this r
value. Three examples of confidence curve are given below.

Example 2.13. A confidence curve can be expressed by a linear line as
follows:

α(r) = a − b · r

where a and b are positive real numbers. Fig. 2.12 gives the confidence curve
of α(r) = 0.6 − 1.2r.
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Fig. 2.12 Confidence curve of Example 2.13.
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Example 2.14. A confidence curve can be expressed by a broken line as
follows:

α(r) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−b1 · r + a1, 0 ≤ r ≤ r1,

−b2 · r + a2, r1 ≤ r ≤ r2,

· · ·
−bn · r + an, r ≥ rn−1

where −bi · r + ai = −bi+1 · r + ai+1, for r = ri, i = 1, 2, · · · , n − 1. Fig. 2.13
gives the confidence curve of

α(r) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−2.25r + 0.6, 0 ≤ r ≤ 0.2,

−0.5r + 0.25, 0.2 ≤ r ≤ 0.4,

0.05, r ≥ 0.4.
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Fig. 2.13 Confidence curve of Example 2.14.

Example 2.15. Confidence curve can be expressed by a power function as
follows:

α(r) =
a

(r + 1)k
, r ≥ 0

where a is a real number and k a positive integer number. Fig. 2.14 gives the

confidence curve of α(r) =
0.6

(r + 1)4
, r ≥ 0.

.......................................................................................................................................................................................................................................................................................................................... ...............

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

................

...............

.........................................................................................................................................................................................................................................................................................................................................

0
r

0.6

α(r)

Fig. 2.14 Confidence curve of Example 2.15.
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With risk curve and confidence curve, we are now able to judge if a portfolio
is safe or not. It is obvious that the area below the confidence curve α(r) is
the low risk area, and the area above the confidence curve α(r) the high risk
area which the investor should try to avoid getting in. Thus, a portfolio is
safe if its risk curve is totally below the confidence curve; a portfolio is risky
if any part of its risk curve is above the confidence curve (see Fig. 2.15). The
ranking criterion for riskiness of portfolios can be expressed mathematically
as follows:

Let ξ be the random return of a portfolio, and α(r) the investor’s confidence
curve. We say the portfolio is safe if

R(r) = Pr{(rf − ξ) ≥ r} ≤ α(r), ∀r ≥ 0,

where rf is the risk-free interest rate.
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Fig. 2.15 Confidence curve and investment risk. A portfolio is safe if its risk curve
is totally below the confidence curve; a portfolio is risky if any part of its risk curve
is above the confidence curve.

2.2.3 Mean-Risk Model

When investing, the investors will usually first ask that the investment be
safe enough. Then they will try to pursue the maximum return. The idea
of mean-risk model is to regard expected return of a portfolio as the repre-
sentative of investment return and risk curve the investment risk. Then the
optimal portfolio should be the portfolio whose risk curve is totally below the
confidence curve and in the meantime whose expected return is the maximal.
Let ξi denote the random return of the i-th securities and xi the investment
proportions in the i-the securities, i = 1, 2, · · · , n, respectively. According to
Equation (2.14), the risk curve of the portfolio is

R(x1, x2, · · · , xn; r) = Pr {rf − (ξ1x1 + ξ2x2 + · · · + ξnxn) ≥ r} . (2.15)

Suppose the investors’ confidence curve is α(r). The mean-risk selection idea
is expressed mathematically as follows:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

maxE[ξ1x1 + ξ2x2 + · · · + ξnxn]

subject to:

R(x1, x2, · · · , xn; r) ≤ α(r), ∀r ≥ 0

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n

(2.16)

where E is the expected value operator and R(x1, x2, · · · , xn; r) the risk curve
defined by formula (2.15). The constraint R(x1, x2, · · · , xn; r) ≤ α(r), ∀r ≥ 0
means that the probability values of all the likely losses should all be lower
than the investors’ tolerance levels. This constraint ensures that the optimal
portfolio will be selected only among the safe portfolios. The constraint xi ≥ 0
implies that short sales are not allowed in the investment.

2.2.4 Application Example

To illustrate how to use the mean-risk model, let us select the portfolio
from six alternative securities listed in Shanghai Stock Market. The secu-
rities are Hundsun Electronics with security code 600570, Tianjin Quanye
with security code 600821, Wanwei Updated High-Tech with security code
600063, Sany Heavy Industry with security code 600031, Baosteel with se-
curity code 600019, and Tianchuang Property with security code 600791.
Based on their adjusted closing prices having considered stock split and cash
dividend each month from December 2005 to December 2007, monthly re-
turns of the six securities from January 2006 to December 2007 are obtained
and shown in Table 2.6. Suppose the investors give their confidence curve as
follows:

α(r) =

⎧
⎪⎪⎨

⎪⎪⎩

−1.25r + 0.25, when 0 ≤ r ≤ 0.12

−0.5r + 0.16, when 0.12 ≤ r ≤ 0.3

0.01, when r ≥ 0.3.

Suppose the monthly risk-free interest rate rf = 0.003. According to the
mean-risk selection idea, we have the following model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

maxE[ξ1x1 + ξ2x2 + ξ3x3 + ξ4x4 + ξ5x5 + ξ6x6]

subject to:

R(x1, x2, · · · , x6; r) ≤ α(r), ∀r ≥ 0

x1 + x2 + x3 + x4 + x5 + x6 = 1

x1, x2, x3, x4, x5, x6 ≥ 0

(2.17)
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where ξ1, ξ2, ξ3, ξ4, ξ5, ξ6 represent the random monthly returns of securities
Hundsun (600570), Tianjin (600821), Wanwei (600063), Sany (600031), Baos-
teel (600019), and Tianchuang (600791), respectively, and

R(x1, x2, · · · , x6; r) = Pr{0.003 − (x1ξ1 + x2ξ2 + · · · + x6ξ6) ≥ r}.

When solving Model (2.17), in order to check if the risk curve of a portfolio
is below the investors’ confidence curve, theoretically, we need to calculate
the probability values of

Pr{0.003 − (x1ξ1 + x2ξ2 + · · · + x6ξ6) ≥ r}
for any r ≥ 0. However, since the risk curve is a continuous and decreas-
ing function of the parameter r, in reality, we just need to calculate some
probability values for finite r values in an certain interval by analyzing the
confidence curve. In this example, the confidence curve is a horizontal line
when r ≥ 0.3. Since the risk curve is a decreasing function of r, risk curve
will be below the confidence curve if R(x1, x2, · · · , x6; r) ≤ α(r) holds for any

Table 2.6 Monthly Returns of Six Securities in Shanghai Stock Market

Month 600570 600821 600063 600031 600019 600791
01/2006 0.1137 0.0743 0.0650 -0.0288 -0.0080 0.0778
02/2006 -0.0616 0.0727 0.0727 -0.0608 0.0647 -0.2272
03/2006 -0.0413 0.1516 -0.0244 0.1910 -0.0329 0.0467
04/2006 0.0705 0.1625 -0.2000 0.1897 0.0026 -0.0105
05/2006 0.5082 0.2867 0.1875 0.2790 0.1279 0.1459
06/2006 -0.1830 -0.0674 0.0994 0.3116 -0.0185 0.1944
07/2006 -0.1098 0.2871 0.0745 -0.1950 -0.0708 -0.0252
08/2006 0.1833 -0.4041 -0.0074 0.0938 0.0228 0.0915
09/2006 -0.0042 -0.0445 0.0274 0.2865 0.0025 0.0528
10/2006 0.1188 -0.0740 -0.0777 0.1653 0.1757 -0.1176
11/2006 -0.0126 -0.0325 -0.0342 0.1186 0.4021 0.1059
12/2006 0.1882 0.0122 0.4986 0.5168 0.2658 0.0408
01/2007 0.4170 0.2931 0.6418 0.1179 0.1281 0.1363
02/2007 0.0715 0.3084 0.0598 -0.0421 -0.0305 0.1139
03/2007 0.3463 0.3429 0.1797 0.1789 0.0456 0.4603
04/2007 0.1065 0.3763 0.7050 -0.2355 0.1286 0.2774
05/2007 -0.0648 -0.0473 -0.0836 0.1474 0.1048 0.0339
06/2007 -0.2343 -0.3529 0.3543 0.2463 -0.0849 -0.3712
07/2007 0.2814 0.3292 -0.0808 0.0305 0.2264 0.4440
08/2007 0.7710 0.5283 -0.0255 0.1455 0.3706 0.3005
09/2007 0.0704 0.0231 0.2963 -0.0222 -0.0162 0.4072
10/2007 -0.1126 -0.2406 -0.2678 0.2517 0.0176 -0.2360
11/2007 -0.1728 -0.1847 -0.2329 -0.3124 -0.2156 -0.2694
12/2007 0.2515 0.3057 0.3248 0.2981 0.2011 0.1580
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r ∈ [0, 0.3]. Since risk curve is a continuous function of r, it is enough for us
to set r = 0, r = 0.02, r = 0.04, r = 0.06, · · · , r = 0.3 and check if the points
on the risk curve are all lower than the points on the confidence curve. That
is, we just need to solve the following model

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

maxE[ξ1x1 + ξ2x2 + ξ3x3 + ξ4x4 + ξ5x5 + ξ6x6]

subject to:

Pr{0.003 − (x1ξ1 + x2ξ2 + · · · + x6ξ6) ≥ 0} ≤ 0.25

Pr{0.003 − (x1ξ1 + x2ξ2 + · · · + x6ξ6) ≥ 0.02} ≤ 0.225

Pr{0.003 − (x1ξ1 + x2ξ2 + · · · + x6ξ6) ≥ 0.04} ≤ 0.2

· · ·
Pr{0.003 − (x1ξ1 + x2ξ2 + · · · + x6ξ6) ≥ 0.12} ≤ 0.10

Pr{0.003 − (x1ξ1 + x2ξ2 + · · · + x6ξ6) ≥ 0.14} ≤ 0.09

· · ·
Pr{0.003 − (x1ξ1 + x2ξ2 + · · · + x6ξ6) ≥ 0.3} ≤ 0.01

x1 + x2 + x3 + x4 + x5 + x6 = 1

x1, x2, x3, x4, x5, x6 ≥ 0.

(2.18)

Since the probabilistic portfolio theory, for the most part, assumes that se-
curity returns are normally distributed, we assume in the example that the
portfolio returns are normal random variables. Thus, to solve Model (2.18), the
expected value and variance value of the portfolio return, i.e., E[ξ1x1 + ξ2x2 +
ξ3x3 + ξ4x4 + ξ5x5 + ξ6x6] and V [ξ1x1 + ξ2x2 + ξ3x3 + ξ4x4 + ξ5x5 + ξ6x6],
are first calculated according to the data provided in Table 2.6 (the calcu-
lation of expected value and variance value will be illustrated in the later
section 2.5.2). Then, click “Insert” in the menu of Microsoft Excel and choose
the command “Function”. From the command “Function”, choose the function
“NORMDIST”. By using “NORMDIST”, given a r value, the probability value
Pr {ξ1x1 + ξ2x2 + · · · + ξ6x6 ≤ 0.003 − r} can be obtained. A run of “Solver”
in the menu “Tool” of Microsoft Excel shows that in order to obtain the max-
imum expected return from the safe portfolios whose risk curves are totally
below the confidence curve, the investors should assign their money according
to Table 2.7. The maximum expected return is 0.1099.

The confidence curve α(r) and the risk curve R(r) of the selected
portfolio are drawn in Fig. 2.16. With the risk curve, each likely loss and the

Table 2.7 Allocation of Money to Six Securities

600570 600821 600063 600031 600019 600791
5.47% 0.00 % 21.03% 73.5% 0.00% 0.00%
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Fig. 2.16 Risk curve R(r) and confidence curve α(r) of Model (2.17).

corresponding occurrence probability is observable. For example, at probabil-
ity 18%, the maximal loss level is 0.04; and at probability 3%, the maximal
loss level is 0.20. It can be seen that the risk curve of the selected portfolio
is totally below the confidence curve. Given any loss value r, the loss occur-
rence probability is less than the investors’ tolerable probability. Or given any
occurrence probability α(r), the loss level is less than the investors’ tolerance.

2.3 β-Return-Risk Model

2.3.1 β-Return-Risk Model

In the mean-risk model, expected return is used as the representative value
of variable return. However, expected return provides only an average infor-
mation rather than a specific return. Sometimes the investors like to pursue
a specific target return instead of an average information. Since each investor
knows that a portfolio return is variable, he/she must have some tolerance
to inability to obtain the target return. However, at a preset probability
level, the target return should be reached. To reflect this idea, we replace
the expected return in the mean-risk model by the β-return and give the
β-return-risk model as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max f̄

subject to:

Pr
{
ξ1x1 + ξ2x2 + · · · + ξnxn ≥ f̄

} ≥ β

R(x1, x2, · · · , xn; r) ≤ α(r), ∀r ≥ 0

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n

(2.19)

where β is the pre-set confidence level, and f̄ the β-return defined as

β-return = sup{f̄
∣
∣ Pr

{
ξ1x1 + ξ2x2 + · · · + ξnxn ≥ f̄

} ≥ β}
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which means the maximal investment return the investors can obtain at con-
fidence level β.

Since portfolio return is quite variable, investors may obtain a high return
level as well as a low return level. In Model (2.19), investors in fact divide all
the likely portfolio returns into two groups. One group includes all the likely
“bad returns” which are lower than the risk-free interest rate rf level. For
returns in this group, the investors are cautious to each likely “bad return”
and require that the occurrence probability of each “bad return” should be
within the investors’ tolerance level. Another group includes all the likely
“good returns” which are expected to be higher than the risk-free interest
rate rf level. For returns in this group, the investors are sensitive to a specific
target return which is expected to occur at a preset high confidence level.
They want to pursue the maximum target return at the probability not less
than the preset high confidence level.

Mathematically, the β-return-risk model is a maxmax model because it
can also be expressed as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
x1,x2,···,xn

max
f̄

f̄

subject to:

Pr
{
ξ1x1 + ξ2x2 + · · · + ξnxn ≥ f̄

} ≥ β

R(x1, x2, · · · , xn; r) ≤ α(r), ∀r ≥ 0

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n,

(2.20)

in which max
f̄

f̄ is the β-return.

2.3.2 Application Example

Again, we select an optimal portfolio from the six securities whose monthly
returns are given in Table 2.6. The risk-free interest rate is still supposed to
be rf = 0.003, and the investors’ confidence curve is still

α(r) =

⎧
⎪⎪⎨

⎪⎪⎩

−1.25r + 0.25, when 0 ≤ r ≤ 0.12

−0.5r + 0.16, when 0.12 ≤ r ≤ 0.3

0.01, when r ≥ 0.3.

This time, the investors want to pursue the maximum specific return at
probability not less than 70% from the safe portfolios. According to β-return-
risk selection idea, we have the following model:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max f̄

subject to:

Pr{ξ1x1 + ξ2x2 + ξ3x3 + ξ4x4 + ξ5x5 + ξ6x6 ≥ f̄} ≥ 0.7

R(x1, x2, · · · , x6; r) ≤ α(r), ∀r ≥ 0

x1 + x2 + x3 + x4 + x5 + x6 = 1

x1, x2, x3, x4, x5, x6 ≥ 0

(2.21)

where ξ1, ξ2, ξ3, ξ4, ξ5, ξ6 represent the random monthly returns of securities
Hundsun(600570), Tianjin(600821), Wanwei(600019), Sany(600031), Baos-
teel(600063), and Tianchuang(600791), respectively, and R(x1, x2, · · · , x6; r)
the risk curve defined as

Pr{0.003 − (ξ1x1 + ξ2x2 + ξ3x3 + ξ4x4 + ξ5x5 + ξ6x6) ≥ r}.

By running “Solver” in “Excel”, in order to obtain the maximum 0.7-return
among the safe portfolios, the investors should allocate their money according
to Table 2.8. The maximum return which can be obtained at probability 70%
is 0.0341. The risk curve R(r) and the confidence curve α(r) are drawn in
Fig. 2.17

Table 2.8 Allocation of Money to Six Securities

600570 600821 600063 600031 600019 600791
5.58% 19.93 % 18.68% 53.33% 2.48% 0.00%
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Fig. 2.17 Risk curve R(r) and confidence curve α(r) of Model (2.21).

Remark 2.7. It is seen from application examples of mean-risk and β-
return-risk models that even when risk-free interest rate, the alternative in-
dividual securities and the investors’ confidence curve are same, adopting
different selection criteria produces different results. The optimal portfolio
and the corresponding expected return and the β-return values are shown in
Table 2.9.
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Table 2.9 Optimal Portfolios Produced by Different Selection Criteria

Optimal Portfolio Mean-Risk Criterion β-Return-Risk Criterion
ξ1(600570) 5.47 % 5.58%
ξ2(600821) 0.00 % 19.93%
ξ3(600063) 21.03% 18.68%
ξ4(600031) 73.50 % 53.33%
ξ5(600019) 0.00 % 2.48%
ξ6(600791) 0.00 % 0.00%

Expected Return 10.99% 10.44%
0.7-Return 2.68% 3.41%

2.4 Probability Minimization Model

2.4.1 Probability Minimization Model

In his safety first principle, Roy [83] proposed an alternative definition of risk
to be the probability of the portfolio return below a sensitive disaster level.
If the investors adopt this definition of risk, then the portfolio is optimal
if the occurrence probability of portfolio return equal to or less than the
disaster level is minimized. Let ξi be the i-th security returns and xi the
investment proportions, i = 1, 2, · · · , n, respectively. The idea is expressed
mathematically by probability minimization model as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min Pr {ξ1x1 + ξ2x2 + · · · + ξnxn ≤ d}
subject to:

x1 + x2 + · · · + xn = 1
xi ≥ 0, i = 1, 2, · · · , n

(2.22)

where d is the concerned disaster level.
Let us recall the definition of risk curve. The curve

R(x1, x2, · · · , xn; r) = Pr{rf − (ξ1x1 + ξ2x2 + · · · + ξnxn) ≥ r}, ∀r ≥ 0

is called the risk curve of the portfolio, where rf is the risk-free interest rate.
If r degenerates to one specific number r0, then the risk curve becomes

R(x1, x2, · · · , xn; r0) = Pr{rf − (ξ1x1 + ξ2x2 + · · · + ξnxn) ≥ r0}
= Pr{ξ1x1 + ξ2x2 + · · · + ξnxn ≤ rf − r0}

which is just the one what Roy proposed. It is clear that rf − r0 = d.
If the investors pre-give a small probability value, then selection idea of

Model (2.22) can also be expressed by the following model:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

max d̄

subject to:
Pr

{
ξ1x1 + ξ2x2 + · · · + ξnxn ≤ d̄

} ≤ α

x1 + x2 + · · · + xn = 1
xi ≥ 0, i = 1, 2, · · · , n

(2.23)

where α is the pre-set small probability value and d̄ the maximum low return
at the preset small probability level defined as

max
{
d̄
∣
∣ Pr

{
ξ1x1 + ξ2x2 + · · · + ξnxn ≤ d̄

} ≤ α
}

.

Since probability measure is self-dual, the formula

Pr
{
ξ1x1 + ξ2x2 + · · · + ξnxn ≤ d̄

} ≤ α

is equivalent to

Pr
{
ξ1x1 + ξ2x2 + · · · + ξnxn ≥ d̄

} ≥ 1 − α,

which means that at the (high) probability value 1 − α, the portfolio return
will be equal to or greater than this low return level d̄. Or in other words, at
the (high) probability value 1 − α, the portfolio loss will be equal to or less
than rf − d̄ or e − d̄ where e is the expected return of the portfolio. It is seen
that rf − d̄ or e − d̄ are different versions of Value-at-Risk (VaR).

For example, assume rf = 0.003. If we set α = 5% and get d̄ = −0.03,
this means that at probability 95%, the portfolio return will be equal to
or greater than −0.03 and the portfolio loss will be equal to or less than
0.003 − (−0.03) = 0.033.

2.4.2 Application Example

Suppose the investors want to select the portfolio from the six securities
whose monthly returns are given in Table 2.6. This time, the investors
adopt the probability minimization criterion and set the disastrous return
level at 0.022. Then the optimal portfolio is obtained via the following
model:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min Pr{ξ1x1 + ξ2x2 + ξ3x3 + ξ4x4 + ξ5x5 + ξ6x6 ≤ 0.022}
subject to:

x1 + x2 + x3 + x4 + x5 + x6 = 1
xi ≥ 0, i = 1, 2, · · · , 6.

(2.24)

Based on the traditional assumption that the portfolio return is normally
distributed, we use “NORMDIST” in “Function” in “Insert” in the menu of
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Table 2.10 Allocation of Money to Six Securities

600570 600821 600063 600031 600019 600791
2.09% 20.21% 17.55% 49.34% 10.81% 0.00%

Microsoft Excel to calculate the objective function. Then, a run of the com-
mand “Solver” in “Tool” in Microsoft Excel shows that in order to minimize
the probability of the portfolio return not greater than 0.022, the investors
should allocate their money according to Table 2.10. The corresponding prob-
ability is 26.87%.

If the investors preset a probability 95%, and want to minimize the loss at
this confidence, then according to the selection idea given in Model (2.23),
we build the model as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

max d̄

subject to:
Pr

{
ξ1x1 + ξ2x2 + · · · + ξ6x6 ≤ d̄

} ≤ 5%

x1 + x2 + · · · + xn = 1
xi ≥ 0, i = 1, 2, · · · , 6.

(2.25)

A run of the “Solver” in “Excel” shows that the maximal d̄ = −0.1043, and
the investors should allocate their money according to Table 2.11. In other
words, at probability 95%, the maximal loss will be 0.003 − (−0.1043) =
0.1073.

Table 2.11 Allocation of Money to Six Securities

600570 600821 600063 600031 600019 600791
0.00% 14.5% 13.73% 36.34% 29.72% 5.72%

2.5 Mean-Variance Model

The mean-variance model was first proposed by Markowitz [66]. The model
opens the door for mathematical analysis on portfolios and serves as the
foundation of modern finance theory. Till today, extensions and computation
of the mean-variance model still remain a hot research topic.

2.5.1 Mean-Variance Model

According to Markowitz [66, 67], the return of a portfolio was represented
by the mean and the risk was quantified by the variance. Then the investors
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should strike a balance between maximizing the return and minimizing the
risk. In the case of maximizing the return at a given specific level of risk, the
standard formulation of Markowitz model is as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

maxE[x1ξ1 + x2ξ2 + · · · + xnξn]
subject to:

V [x1ξ1 + x2ξ2 + · · · + xnξn] ≤ γ

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n

(2.26)

where E denotes the expected value operator, V the variance operator, xi

the investment proportions in securities i, ξi the random returns of the i-th
securities, i = 1, 2, · · · , n, respectively, and γ is the maximum variance level
the investors can tolerate.

In the case of minimizing the risk for a given level of return, the formulation
is as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min V [x1ξ1 + x2ξ2 + · · · + xnξn]
subject to:

E[x1ξ1 + x2ξ2 + · · · + xnξn] ≥ α

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n

(2.27)

where α represents the minimum expected return the investors can accept.
According to Markowitz, a portfolio is efficient if it is impossible to obtain

higher expected return with no greater variance value, or it is impossible to
obtain less variance value with no less expected return. All efficient portfolios
make up the efficient frontier. An efficient portfolio is in fact a solution of the
following optimization model with two objectives:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

maxE[x1ξ1 + x2ξ2 + · · · + xnξn]
min V [x1ξ1 + x2ξ2 + · · · + xnξn]
subject to:

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n.

(2.28)

Different investors will find different optimal portfolios from the efficient fron-
tier according to their preferences to risk aversion, i.e., tradeoff of variance
and expected return. The investors can pick their own portfolio from the
efficient frontier according to their own utility function which evaluates the
risk-return-tradeoff.
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2.5.2 Application Example

Before illustrating how to use the mean-variance model, let us first show how
to calculate the expected value and variance value of the portfolio return.

Expected Return of a Portfolio

According to the law of large number, we can use average value of N samples
of portfolio returns to approximate the expected return of the portfolio. Let
ξi represent the random returns of the i-th securities, rij the j-th sample
returns of the i-th securities, and xi the investment proportions in the i-th
securities, i = 1, 2, · · · , n, j = 1, 2, · · · , N, respectively. Then we have

E[x1ξ1 + x2ξ2 + · · · + xnξn] =
N∑

j=1

(x1r1j + x2r2j + · · · + xnrnj)/N.

For example, consider a case in which we have a portfolio BSW containing
20% Baosteel (600019), 20% Sany Heavy Industry (600031), and the rest 60%
of Wanwei Updated High-Tech (600063). For convenience, we just use one
year’s data to illustrate the calculation of the monthly expected return of the
portfolio. We denote the three security returns by ξ1, ξ2 and ξ3, respectively,
and use r1j , r2j , r3j , j = 1, 2, · · · , 12, to represent the j-th monthly returns
of ξ1, ξ2 and ξ3, respectively. The expected return of the portfolio BSW is
calculated as follows (also see Table 2.12):

E[0.20ξ1 + 0.20ξ2 + 0.60ξ3]

=
12∑

j=1

(0.2r1j + 0.2r2j + 0.6r3j)/12

= 0.1216.

If we use “Excel”, we can use the function “SUMPRODUCT” to easily get
the 12 numbers of sample portfolio returns, i.e.,

Rj = 0.2r1j + 0.2r2j + 0.6r3j , j = 1, 2, · · · , 12.

Then use the function “AVERAGE” to calculate the mean of the 12 numbers
of sample portfolio returns Rj . We illustrate it in Table 2.12.

Variance Value of a Portfolio Return

Variance value can be obtained according to the definition of it, i.e.,

V [x1ξ1 + x2ξ2 + · · · + xnξn]

= E[(x1ξ1 + x2ξ2 + · · · + xnξn − E[x1ξ1 + x2ξ2 + · · · + xnξn])2].
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Table 2.12 Computation of Expected Return and Variance of Portfolio BSW

Month j r1j r2j r3j 0.2r1j + 0.2r2j + 0.6r3j

(use SUMPRODUCT)
01/2007 0.1281 0.1179 0.6418 0.4343
02/2007 -0.0305 -0.0421 0.0598 0.0214
03/2007 0.0456 0.1789 0.1797 0.1527
04/2007 0.1286 -0.2355 0.7050 0.4016
05/2007 0.1048 0.1474 -0.0836 0.0003
06/2007 -0.0849 0.2463 0.3543 0.2449
07/2007 0.2264 0.0305 -0.0808 0.0029
08/2007 0.3706 0.1455 -0.0255 0.0880
09/2007 -0.0162 -0.0222 0.2963 0.1701
10/2007 0.0176 0.2517 -0.2678 -0.1068
11/2007 -0.2156 -0.3124 -0.2329 -0.2453
12/2007 0.2011 0.2981 0.3248 0.2947
Mean (use AVERAGE) 0.1216

Variance (use VAR) 0.0410

Thus the variance value of portfolio BSW is obtained as follows (also see
Table 2.12):

V [x1ξ1 + x2ξ2 + x3ξ3]

= E[(0.2ξ1 + 0.2ξ2 + 0.6ξ3 − E[0.2ξ1 + 0.2ξ2 + 0.6ξ3])2]

=
12∑

j=1

(
0.2r1j + 0.2r2j + 0.6r3j − 0.1215

)2

= 0.0376.

In Excel, we can also simply use the function “VAR” to get the variance
value of twelve numbers of the sample portfolio returns Rj = 0.2r1j +0.2r2j +
0.6r3j , j = 1, 2, · · · , 12. The calculation of variance is shown in Table 2.12. We
notice that the variance value in Table 2.12 is somewhat different from the
variance value obtained via the definition of variance. This is because the
sample number is small in our case.

In some literature, variance value of a portfolio return is usually calculated
via variance values of individual securities and the covariance values between
two different individual security returns. That is, in portfolio BSW case,
variance value is obtained via the formula

V [x1ξ1 + x2ξ2 + x3ξ3]

= x2
1V [ξ1] + x2

2V [ξ2] + x2
3V [ξ3]

+2x1x2Cov(ξ1, ξ2) + 2x1x3Cov(ξ1, ξ3) + 2x2x3Cov(ξ2, ξ3)
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where Cov is the covariance between two different random variables. We can
see that using definition of variance to calculate the variance value is a much
easier way, and can avoid much unnecessary computation work.

Examples of Mean-Variance Model

Suppose the investors want to select the portfolio from the securities Hundsun
Electronics (600570), Tianjin Quanye (600821), Wanwei Updated High-Tech
(600063), Sany Heavy Industry (600031), Baosteel (600019), and Tianchuang
Property (600791). The monthly returns of the six securities are given in Ta-
ble 2.6. Assume that the investors adopt the mean-variance selection principle
and want to pursue the maximum expected return with the maximum toler-
able variance at 0.015. Then the mean-variance selection model can be built
as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

maxE[x1ξ1 + x2ξ2 + x3ξ3 + x4ξ4 + x5ξ5 + x6ξ6]

subject to:

V [x1ξ1 + x2ξ2 + x3ξ3 + x4ξ4 + x5ξ5 + x6ξ6] ≤ 0.015

x1 + x2 + x3 + x4 + x5 + x6 = 1

x1, x2, x3, x4, x5, x6 ≥ 0

(2.29)

where ξ1, ξ2, ξ3, ξ4, ξ5, ξ6 represent the random returns of securities Hund-
sun (600570), Tianjin (600821), Wanwei (600063), Sany (600031), Baosteel
(600019) and Tianchuang (600791), respectively, and E and V denote the
expected value operator and variance operator, respectively.

We use the command “Solver” in menu “Tool” in Microsoft Excel to solve
Model (2.29). When calculating the expected value and variance value of
the portfolio, we use the method introduced above. The difference is that
in the above introduction, the investment proportion in three securities are
determinant, while when computing the expected value and variance value
of the portfolio in Model (2.29), the decision variables x1, x2, · · · , x6 replace
the determinant proportions. A run of the command “Solver” in “Tool” in
Microsoft Excel shows that in order to obtain the maximum expected return
with variance not greater than 0.015, the investors should assign their money
according to Table 2.13. The maximum expected value is 0.097.

Table 2.13 Allocation of Money to Six Securities

600570 600821 600063 600031 600019 600791
0.00% 16.47% 14.87% 40.35% 24.22% 4.09%
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If the investors want to minimize the variance value with the investment
return not less than 0.10, then the mean-variance model is built as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

min V [x1ξ1 + x2ξ2 + x3ξ3 + x4ξ4 + x5ξ5 + x6ξ6]

subject to:

E[x1ξ1 + x2ξ2 + x3ξ3 + x4ξ4 + x5ξ5 + x6ξ6] ≥ 0.10

x1 + x2 + x3 + x4 + x5 + x6 = 1

x1, x2, x3, x4, x5, x6 ≥ 0.

(2.30)

We again use the command “Solver” in menu “Tool” in Microsoft Excel
to solve Model (2.30). A run of the command “Solver” shows that in order to
minimize the variance value with the expected return not less than 0.10, the
investors should assign their money according to Table 2.14. The minimum
variance value is 0.016.

Table 2.14 Allocation of Money to Six Securities

600570 600821 600063 600031 600019 600791
0.00% 19.82% 16.80% 47.15% 14.88% 1.35%

By changing the preset variance value in Model (2.29) or changing the
preset expected return in Model (2.30), the efficient frontier of the alternative
portfolios is obtained and drawn in Fig. 2.18.
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Fig. 2.18 Efficient frontier for alternative portfolios in the mean-variance applica-
tion example.

2.5.3 Mean-Semivariance Model

When probability distributions of security returns are asymmetric, variance
becomes a deficient measure of investment risk because the selected portfolio
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based on variance may have a potential danger to sacrifice too much expected
return in eliminating both low and high return extremes. For example, sup-
pose we have a security whose expected return is high but whose variance of
return is also very high because the security has very great positive deviations
from the expected return. In Model (2.26) in page 40, since the constraint
is that the variance value of the portfolio return must not be higher than
the preset level, then it is very likely that this security with high expected
return and high positive deviations will be deleted, yet this security is what
we like. In Model (2.27) in page 40, since the objective is that the variance of
the portfolio return should be minimized, then it is very likely that this se-
curity with high variance will be deleted though positive deviation and high
expected return are what we welcome. To overcome the limitation of the
mean-variance models, semivariance [67] was proposed to replace variance
as the measure of risk. Semivariance separates undesirable downside fluctua-
tions of security returns from the desirable upside fluctuations and only pays
attention to returns falling below the expected return. Therefore, it matches
investors’ notion about risk and gains popularity among investors. Then , in
case when the investors can give a tolerable level of risk, they should max-
imize the expected return at the given level of semivariance. Thus, we have
the mean-semivariance model as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

max E[x1ξ1 + x2ξ2 + · · · + xnξn]

subject to:

SV [x1ξ1 + x2ξ2 + · · · + xnξn] ≤ γ

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n

(2.31)

where γ denotes the maximum semivariance level the investors can tolerate,
E the expected value operator, and SV the semivariance of the random
variables.

When the investors preset an expected return level that they feel satisfac-
tory and want to minimize the risk at this given level of expected return, the
optimization model becomes:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

min SV [x1ξ1 + x2ξ2 + · · · + xnξn]

subject to:

E[x1ξ1 + x2ξ2 + · · · + xnξn] ≥ α

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n

(2.32)

where α denotes the minimum expected investment return that the investors
can accept.
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Similarly, as in mean-variance model, a portfolio is efficient if it is impossi-
ble to obtain higher expected return with no greater semivariance value, or it
is impossible to obtain less semivariance value with no less expected return.
The efficient portfolio is in fact the solution of the following optimization
model with two objectives:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

max E[x1ξ1 + x2ξ2 + · · · + xnξn]

min SV [x1ξ1 + x2ξ2 + · · · + xnξn]

subject to:
x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n.

(2.33)

Many scholars have developed computation algorithms for the mean-semi-
variance model, for example, the numerical algorithm by Mao [65], a viable
computational scheme for generating mean-semivariance efficient portfolios
by Hogan and Warren [23], a semi-linear model algorithm to approximate
the mean-semivariance model by Ang [2], a simple approximation method for
semivariance by Choobineh and Branting [9], and the critical line algorithm
to compute mean-semivariance efficient sets by Markowitz [68].

2.6 Hybrid Intelligent Algorithm

Sometimes it is difficult to use traditional methods to solve the portfolio selec-
tion problems. For example, in the application example of mean-risk model in
Section 2.2.4, if some security returns are normally distributed and the other
security returns are lognormally distributed, then it is hard to use Excel to
solve the problem. Therefore, we introduce a hybrid intelligent algorithm as
the general solution algorithm for probabilistic portfolio selection problems.
Generally speaking, we employ stochastic simulation to calculate the objec-
tive and constraint values first. Then we embed the simulation results into the
genetic algorithm and use the genetic algorithm to find the optimal solution.
In order to employ stochastic simulation, we need to know how to generate
random numbers.

2.6.1 Random Number Generation

Random number generation is the first step in stochastic simulation. The
methods of random number generation have already been discussed and doc-
umented in many books such as in Fishman [19], Law and Kelton [48], Bratley
et al. [6], and so on. Since we mainly use random variables with uniform dis-
tribution, normal distribution, and lognormal distribution, respectively, we
summarize here the computer methods for generating random numbers from
the three types of distributions. We omit the explanation why the methods
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can produce the random numbers from the required distributions because it
is out of our focus and is of independent interest. For detailed expositions
on random number generation, the interested readers can refer to the books
mentioned above.

Uniform Distribution
Recall that a random variable ξ, denoted by U(a, b), has a uniform distribu-
tion if its probability density function is defined by

f(t) =

⎧
⎨

⎩

1
b − a

, if a ≤ t ≤ b

0, otherwise.

Generation of uniformly distributed random numbers is the basis of generat-
ing other types of random numbers. It is made by a deterministic sequence
called pseudorandom numbers on a digital computer. The deterministic se-
quence is regarded to be random numbers because the numbers generated by
the sequence are stochastically independent and uniformly distributed. The
C library for any types of computers has provided the subfunction of gener-
ating pseudorandom numbers. This subfunction, which is defined as

� include 〈 stdlib.h 〉
int rand(void),

produces a peseudorandom integer between 0 and RAND MAX, where
RAND MAX is defined as 215 − 1 in stdlib.h. Thus a uniformly distributed
random number in the interval [a, b] can be obtained by the following steps:

Step 1. u = rand( ).
Step 2. u ← u/RAND MAX.
Step 3. Return a + u(b − a).

Normal Distribution
Recall that a random variable ξ, denoted by N (μ, σ2), is normally distributed
if it has the following probability density distribution

f(t) =
1

σ
√

2π
exp

[

− (t − μ)2

2σ2

]

, σ > 0, t ∈ 
,

where μ and σ2 are the expected value and variance of the variable, respec-
tively. It can be produced via the following steps:

Step 1. Generate μ1 and μ2 from U(0, 1).
Step 2. y = [−2 ln(μ1)]

1
2 sin(2πμ2).

Step 3. Return μ + σy.

Lognormal Distribution
Recall that if t is from N (μ, σ2), then the variable y = exp[t] is lognormally
distributed with the probability density distribution
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f(y) =
1

yσ
√

2π
exp

[

− (ln y − μ)2

2σ2

]

, σ > 0, y > 0.

It is denoted by lnN (μ, σ2), and can be produced via the following steps:

Step 1. Generate t from N (μ, σ2).
Step 2. Return exp[t].

2.6.2 Stochastic Simulations

Since the variance value and the semivariance value are a kind of expected
value, essentially, we need to calculate the values of three types of uncertain
functions in probabilistic portfolio selection models. For expression conve-
nience, let investment proportions x = (x1, x2, · · · , xn) and random security
returns ξ = (ξ1, ξ2, · · · , ξn). The three types of uncertain functions are as
follows:

Expected Value: E [xξ] ,

Probability Value: Pr{xξ ≤ r},

β-Return: max{f̄ | Pr{xξ ≥ f̄} ≥ β}.

Simulation for Expected Value E [xξ]

In order to compute Expected Value, we N times generate the random vector
aj = (aj1, aj2, · · · , ajn) from the corresponding probability distributions of
random variables ξ1, ξ2, · · · , ξn, respectively, where j represents the number
of generation times of the random vector. It follows from the strong law of
large numbers that

N∑

j=1

xaj

N
−→ E [xξ] , almost surely (2.34)

as N → ∞. Therefore, the expected value E [xξ] can be calculated approx-

imately by
1
N

N∑

j=1

xjaj as long as the number N is big enough. Therefore,

the simulation procedures are designed as follows:

Step 1. Set e = 0.
Step 2. Generate the random vector a = (a1, a2, · · · , an) from the corre-
sponding probability distributions of random variables ξ1, ξ2, · · · , ξn,
respectively.
Step 3. e ← e + xa.
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Step 4. Repeat the second and third steps N times where N is a sufficiently
large integer number.
Step 5. E [xξ] = e/N .

Simulation for Probability value Pr{xξ ≤ r} :

To compute the probability value Pr{xξ ≤ r}, we generate the random vec-
tor aj = (aj1, aj2, · · · , ajn) from the corresponding probability distributions
of random variables ξ1, ξ2, · · · , ξn, respectively, where j = 1, 2, 3, · · · , repre-
sent the generation times of the random vector. Equivalently, this means we
generate ωj from Ω according to the corresponding probability measure Pr
and produce ξ(ωj) for j = 1, 2, 3, · · · , times. Let N ′ represent the number of
occasions that the product value of x and ξ(ωj) not greater than the value
r, i.e., xξ(ωj) ≤ r, happens. Let us define

f(x, ξ(ωj)) =

{
1, if xξ(ωj) ≤ r,

0, otherwise.

Then E[f(x, ξ(ωj))] = Pr{xξ(ωj) ≤ r} for all j’s, and for j = 1, 2, · · · , N ,

we have N ′ =
N∑

j=1

f(x, ξ(ωj)). According to the strong law of large numbers,

we have

N ′

N
=

N∑

j=1

f(x, ξ(ωj))

N
−→ E [f(x, ξ)] = Pr{xξ ≤ r}, almost surely

as N → ∞. Therefore, the probability value Pr{xξ ≤ r} can be calculated
approximately by N

′
/N as long as the number N is big enough. The simu-

lation procedures are designed as follows:

Step 1. Set N
′
= 0.

Step 2. Generate the random vector a = (a1, a2, · · · , an) from the corre-
sponding probability distributions of random variables ξ1, ξ2, · · · , ξn,
respectively.
Step 3. N

′ ← N
′
+ 1 if xa ≤ r.

Step 4. Repeat the second and third steps N times where N is a sufficiently
large integer number.
Step 5. Pr{xξ ≤ r} = N ′/N .

Simulation for β-Return value max{f̄ | Pr{xξ ≥ f̄} ≥ β} :

When ξ is a continuous random vector, the β-return, i.e., the maximum f̄ ,
is achieved at the equality case

Pr{xξ ≥ f̄} = β.
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In order to compute the β-Return value, we generate the random vector
aj = (aj1, aj2, · · · , ajn) from the corresponding probability distributions of
random variables ξ1, ξ2, · · · , ξn, respectively, where j = 1, 2, 3, · · · , represent
the generation times of the random vector. Equivalently, this means we gen-
erate ωj from Ω according to the corresponding probability measure Pr and
produce ξ(ωj) for j = 1, 2, 3, · · · , times. Let us define

f(x, ξ(ωj)) =

{
1, if xξ(ωj) ≥ f

0, otherwise.

Then we have E[f(x, ξ(ωj))] = β for all j’s. For j = 1, 2, · · · , N, according
to the strong law of large numbers, we have

N∑

j=1

f(x, ξ(ωj))

N
−→ E[f(x, ξ)] = β, almost surely

as N → ∞. Since the sum
∑N

j=1 f(x, ξ(ωj)) is just the number of ξ(ωj) satis-
fying xξ(ωj)) ≥ f for j = 1, 2, · · · , N , then f is just the N ′th largest element
in the sequence {xξ(ω1), xξ(ω2), · · · , xξ(ωN )}, where N ′ is the integer part
of βN . Therefore, the simulation procedures are designed as follows:

Step 1. Generate N times the random vector aj = (aj1, aj2, · · · , ajn), j =
1, 2, · · · , N, from the corresponding probability distributions of random vari-
ables ξ1, ξ2, · · · , ξn, respectively, where N is a sufficiently big integer number.
Step 2. Set fj = xaj for j = 1, 2, · · · , N .
Step 3. Set N

′
as the integer part of βN .

Step 4. Return the N
′
-th largest element in {f1, f2, · · · , fN} as the approx-

imation of the β-return value.

Example 2.16. Suppose we have a portfolio A which is composed half of
the normally distributed security return ξ1 ∼ N (0.1, 0.04) and half of the
uniformly distributed security return ξ2 ∼ U(−0.5, 1.2). A run of the sim-
ulation with 8000 cycles shows that the probability of the portfolio return
not greater than 0.03 is 0.2736, i.e., Pr{0.5ξ1 + 0.5ξ2 ≤ 0.03} = 0.2736. The
simulation procedures are as follows:

Step 1. Set N
′
= 0.

Step 2. Generate randomnumbers a from the normaldistribution N (0.1, 0.04)
and b from the uniform distribution U(−0.5, 1.2).
Step 3. N

′ ← N
′
+ 1 if 0.5a + 0.5b <= 0.03.

Step 4. Repeat the second and third steps 8000 times.
Step 5. Pr{0.5ξ1 + 0.5ξ2 <= 0.03} = N ′/8000.
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Example 2.17. Suppose we have another portfolio B which is composed of
40% of security 1 and 60% of security 2. The return of security 1 is regarded
to be a normal random variable ξ1 ∼ N (0.1, 0.01), and the return of security 2
is believed to be a lognormal random variable ξ2 ∼ ln N (0.15, 0.02)−1. A run
of the simulation with 8000 cycles shows that the probability of the portfolio
return not greater than 0.05 is 0.1976, i.e., Pr{0.4ξ1+0.6ξ2 ≤ 0.05} = 0.1976.
The simulation procedures are as follows:

Step 1. Set N
′
= 0.

Step 2. Generate randomnumbers a from the normaldistribution N (0.1, 0.01)
and b from the lognormal distribution lnN (0.15, 0.02). Then let b ← b − 1.
Step 3. N

′ ← N
′
+ 1 if 0.4a + 0.6b <= 0.05.

Step 4. Repeat the second and third steps 8000 times.
Step 5. Pr{0.4ξ1 + 0.6ξ2 <= 0.05} = N ′/8000.

Example 2.18. For the above mentioned portfolio B, if we set the confi-
dence level β = 0.8, a run of the simulation with 6000 cycles shows that the
0.8-return f̄ = 0.0497. The simulation procedures are as follows:

Step 1. Generate randomnumbers a from the normaldistribution N (0.1, 0.01)
and b from the lognormal distribution lnN (0.15, 0.02). Then let b ← b − 1.
Step 2. Set fj = 0.4a + 0.6b for j = 1, 2, · · · , 6000.
Step 3. Set N

′
= 0.8 × 6000 = 4800.

Step 4. Return the 4800-th largest element in {f1, f2, · · · , f6000} as the ap-
proximation of the 0.8-return value.

Example 2.19. To calculate the variance value of the return of the above
mentioned portfolio B, we need to know the expected return of the portfolio
first. According to the result of Example 2.7 in page 21, the expected return of
security 2 is exp(0.15+0.02/2)−1 = exp(0.16)−1 = 0.1735. From the linearity
property of expected value (see Theorem 2.3 in page 15), the expected return
of the portfolio is 0.4 × 0.1 + 0.6 × 0.1735 = 0.1441. A run of the simulation
with 8000 cycles shows that

V [0.4ξ1 + 0.6ξ2] = 0.0115.

The simulation procedures for calculating variance value are as follows:

Step 1. Set e = 0.
Step 2. Generate randomnumbers a from the normaldistribution N (0.1, 0.01)
and b from the lognormal distribution lnN (0.15, 0.01). Then let b ← b − 1.
Step 3. e ← e + (0.4a + 0.6b − 0.1441)2.
Step 4. Repeat the second and third steps 8000 times.
Step 5. V [0.4ξ1 + 0.6ξ2] = e/8000.
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Example 2.20. For the above mentioned portfolio B, a run of the simulation
with 8000 cycles shows that

SV [0.4ξ1 + 0.6ξ2] = 0.0054.

The simulation procedures for calculating the semivariance value are as
follows:

Step 1. Set e = 0.
Step 2.Generate random numbers a from the normaldistribution N (0.1, 0.01)
and b from the lognormal distribution lnN (0.15, 0.02). Then let b ← b − 1.
Step 3. Let e ← e + (0.4a + 0.6b − 0.1441)2 if 0.4a + 0.6b − 0.1441 <= 0.
Step 4. Repeat the second and third steps 8000 times.
Step 5. SV [0.4ξ1 + 0.6ξ2] = e/8000.

2.6.3 Genetic Algorithm

Genetic algorithms (GAs) were first proposed by Holland [24]. They are a
stochastic search method that finds the optimal solution based on the nat-
ural mechanism of “survival of the fittest”. GAs have successfully solved
many complex industrial optimization problems that are difficult to solve by
traditional methods since its introduction. By group searching and group ex-
changing, GAs are quite robust and can avoid getting stuck at a local optimal
solution. In addition, GAs do not require the specific mathematical analysis
of optimization problems, which makes GAs an easy-to-use method for the
users who are not necessarily good at mathematics.

In GAs, there is an important term chromosome which is a genetic repre-
sentation of a solution to the problem. The chromosome is not necessarily the
solution itself. It can be a coding of a solution but must be able to be decoded
to the solution. The predetermined integer numbers of the chromosomes form
a population. This predetermined integer number is called population size or
pop size for brief. GAs have five basic components in general [71]: first, the
chromosomes; second, the way to create an initial population of chromo-
somes; third, an evaluation function rating chromosomes in terms of fitness;
fourth, crossover and mutation operators that alter the genetic composition
of chromosomes during reproduction; fifth, values of parameters of GAs.

GAs begin with a pop size number of randomly generated feasible chro-
mosomes, the generation process of which is called initialization. Then the
fitness of each chromosome is evaluated by the evaluation function. Based
on the fitness of each chromosome, a new population will be formed by a
selection process using a mechanism which is fitness proportional. That is,
in the selection process the likelihood of the old chromosome being selected
to enter into the new population is proportional to its fitness. Next, the new
population of chromosomes undergoes crossover and mutation operations to
produce the offspring. Crossover creates new chromosomes by combining the
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parts from two chromosomes, and mutation creates new chromosomes by
making changes in a single chromosome. After crossover and mutation, the
population enters a new generation, and the new rounds of selection, crossover
and mutation will continue until the algorithm converges to the best chromo-
some or a given number of cycles is met. We take the best chromosome and
decode it into the solution which is regarded to be the optimal solution of
the optimization problem. Let B(i) represent a population of chromosomes
for generation i, and C(i) the offspring produced in the generation i. The
general procedures of the GAs are as follows:

General Procedures: Genetic Algorithms
begin

i ← 0;
initialize B(i);
evaluate B(i);
while (termination condition not satisfied) do
begin

crossover and mutate B(i) to produce C(i);
evaluate C(i);
select B(i + 1) from B(i) and C(i);
i ← i + 1;

end
end

Instead of giving a detailed survey on GAs, we will introduce here an
effective GA as the general solution method for finding the optimal solutions
of the complex probabilistic portfolio selection problems.

Representation Structure: Since the solution of xi are required to be
0 ≤ xi ≤ 1, for i = 1, 2, · · · , n, the solution x = (x1, x2, · · · , xn) is represented
by the chromosome C = (c1, c2, · · · , cn), where the genes c1, c2, · · · , cn are
restricted in the interval [0, 1]. Since it is required that x1 +x2 + · · ·+xn = 1,
a solution is matched with a chromosome in the following way,

xi =
ci

c1 + c2 + · · · + cn
, i = 1, 2, · · · , n (2.35)

which ensures that x1 + x2 + · · · + xn = 1 always holds.

Initialization: In this procedure, we randomly produce chromosomes from
the interval [0, 1] and check their feasibility by stochastic simulation. Repeat
this action until feasible pop size chromosomes are produced. The details are
as follows:

Randomly generate a chromosome which is composed of n numbers of
genes, i.e., randomly generate points (c1, c2, · · · , cn) from the hypercube
[0, 1]n. Calculate the constraint values and check the feasibility of the chromo-
some. If it is difficult to calculate the constraint values in traditional ways, use



54 2 Probabilistic Portfolio Selection

stochastic simulation to calculate them. If the chromosome passes the con-
straints, it is a feasible chromosome. Otherwise, randomly generate points
(c1, c2, · · · , cn) from the hypercube [0, 1]n again until a feasible chromosome
is available. Continue this action until feasible pop size chromosomes are
produced.

For example, if we use the genetic algorithm to solve the mean-variance
model (2.30) in Section 2.5.2 in page 44, we need to randomly generate points
(c1, c2, · · · , cn) from the hypercube [0, 1]n. Then calculate the expected value
of the chromosome C = (c1, c2, · · · , cn) (in this example, we can calculate the
expected value without simulation). After that, check the feasibility of the
chromosome C = (c1, c2, · · · , cn) as follows:

If E[x1ξ1 + x2ξ2 + x3ξ3 + x4ξ4 + x5ξ5 + x6ξ6] < 0.1 return 0;
return 1;

in which 1 means feasible, and 0 non-feasible.

Evaluation Function: Evaluation function, denoted by Eval(C), is to as-
sign a probability of reproduction to each chromosome C such that its like-
lihood of being selected to produce offspring is proportional to its fitness.

There are several kinds of evaluation functions. Rank-based evaluation
function is one of the most popular ones and is adopted in the algorithm.
In the rank based method, the pop size chromosomes are rearranged ac-
cording to their objective values to make better chromosomes take smaller
ordinal numbers. That is, after rearrangement, among pop size chromosomes
C1, C2, · · · , Cpop size, C1 is the best chromosome, and Cpop size the worst one.
When calculating the objective value for each chromosome, use stochastic
simulation method if it is difficult to calculate the objective value in tra-
ditional ways. For example, in the mean-variance model (2.30) in Section
2.5.2 in page 44, we first calculate the objective values, i.e., variance values
V [x1ξ1 + x2ξ2 + · · · + x6ξ6] for all the chromosomes (in this example we can
calculate the variance value according to the definition of variance directly
without using simulation). Then, for any two chromosomes, the one with
lower variance value is the better one and is assigned the smaller ordinal
number. The chromosome with the lowest variance value is assigned order
one, and the chromosome with the highest variance value is assigned order
pop size.

Now given a parameter a ∈ (0, 1) in the genetic system, the rank-based
evaluation function used in the algorithm is defined as follows,

Eval(Ci) = a(1 − a)i−1, i = 1, 2, · · · , pop size. (2.36)

Note that i = 1 means the best individual, and i = pop size means the worst
one.

Selection Process: The selection of chromosomes is done by spinning the
roulette wheel such that the better chromosomes will have more chance to
produce offsprings. The selection process is as follows:
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First, Compute the cumulative probability pi for each chromosome Ci,

p0 = 0, pi =
i∑

k=1

Eval(Ck), k = 1, · · · , pop size.

Here, if we want, we can divide all pk’s, k = 1, 2, · · · , pop size, by ppop size

such that ppop size = 1. Then, randomly generate a real number m from the
interval (0, ppop size], and the probability of the number m falling in (pk−1, pk]
is the probability that the k-th chromosome will be selected. The probability
is proportional to the fitness of the chromosome. However, if we do not divide
all pk’s, k = 1, 2, · · · , pop size, by ppop size, no influence is exerted on the
genetic process.

Second, randomly generate a real number b from (0, ppop size].
Third, Select the i-th chromosome Ci(1 ≤ i ≤ pop size) if pi−1 < b ≤ pi.
Fourth, Repeat the second to third steps pop size times, and pop size

chromosomes are selected.

Crossover Operation: A parameter Pc of a genetic system as the probabil-
ity of crossover should be predetermined first. The parents for crossover op-
eration are selected by doing the following process repeatedly pop size times:
randomly generate a real number d from the interval [0, 1]; if d < Pc, we take
the chromosomes Ci as parents, denoting them by C′

1, C
′
2, C

′
3, · · ·, and divid-

ing them into the following pairs: (C′
1, C

′
2), (C

′
3, C

′
4), (C

′
5, C

′
6), · · ·. Crossover

operation on each pair is illustrated through the crossover operation on the
pair (C′

1, C
′
2). First, we generate a random number e from the open interval

(0, 1). Then we produce two new chromosomes X and Y through crossover
operator by X = e · C′

1 + (1 − e) · C′
2, Y = (1 − e) · C′

1 + e · C′
2. If X and Y

are checked to be feasible, we take them as children and replace their parents
with them; otherwise, we keep the feasible one if it exists, and then redo
the crossover operator by regenerating a random number e until two feasible
children are obtained or a given number of cycles is finished. In this case, we
only replace the parents with the feasible children.

Mutation Operation: A parameter Pm of a genetic system as the prob-
ability of mutation should be predetermined first. In a similar manner as
crossover operation, we repeat the following process pop size times to select
parents for mutation: randomly generate a real number h from the interval
[0, 1]; if h < Pm, we take the chromosomes Ci as parents for mutation.

Mutation operation on each selected parent is illustrated through the mu-
tation operation on the parent denoted by C = (c1, c2, · · · , cn). Randomly
choose a mutation direction D in 
n. Let M be an appropriately large pos-
itive number. If C + M · D is feasible, we take the new chromosome as the
child. Otherwise, we set M as a random number between 0 and M until
the new chromosome is feasible. If a feasible solution can not be found in a
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predetermined number of iterations, we set M = 0. Anyway, we replace the
parent C with its child X = C + M · D.

2.6.4 Hybrid Intelligent Algorithm

After selection, crossover and mutation, the new population is ready for its
next evaluation. The hybrid intelligent algorithm will continue until a given
number of cyclic repetitions of the above steps is met. We summarize the
algorithm as follows:

Step 1. Initialize feasible pop size chromosomes, in which stochastic sim-
ulation is used to constraint checking if it is necessary.

Step 2. Calculate the objective values for all chromosomes. Use stochastic
simulation if it is necessary.

Step 3. Give the rank order of the chromosomes according to the objec-
tive values to make better chromosomes take smaller ordinal numbers,
and compute the values of the rank-based evaluation function for all the
chromosomes.

Step 4. Compute the fitness of each chromosome according to the rank-
based-evaluation function.

Step 5. Select the chromosomes by spinning the roulette wheel.
Step 6. Update the chromosomes by crossover and mutation operations, in

which stochastic simulation is used to constraint checking if it is necessary.
Step 7. Repeat the second to the sixth steps for a given number of cycles.
Step 8. Take the best chromosome as the solution of the portfolio selection

problem.

2.6.5 Application Example

In the following example, the parameters in the GA are as follows: the pop-
ulation size is 30, the parameter a in the rank-based-evaluation function is
0.05, the probability of mutation is 0.2 and the probability of crossover is 0.3.
GAs are very robust in these parameter settings.

Example 2.21. Suppose the investors adopt mean-risk selection idea and
want to select portfolio from eight securities. Among them, six security re-
turns are believed to be normally distributed random variables. The rest two
securities are newly listed securities. The investors are not sure what kinds
of variable the two security returns are but believe that their returns fall in a
certain interval. Therefore, they use uniformly distributed random variables
to describe them. The eight security returns are given in Table 2.15. Since
the portfolio return containing these eight securities is neither a normal ran-
dom variable nor a uniform random variable, it is difficult to use “Excel” to
solve the mean-risk selection problem. In this case, we can use the preceding
introduced hybrid intelligent algorithm to find the optimal portfolio.
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Table 2.15 Random Returns of Eight Securities

Security i Random Return ξi Security i Random Return ξi

1 N (0.1042, 0.0567) 5 N (0.1093, 0.0582)
2 N (0.0878, 0.0590) 6 N (0.1064, 0.0648)
3 N (0.0754, 0.0112) 7 U(−0.4, 0.6)
4 N (0.0809, 0.0211) 8 U(−0.35, 0.53)

Suppose the risk-free interest rate rf = 0.003, and the investors’ confidence
curve is

α(r) =

⎧
⎪⎪⎨

⎪⎪⎩

−1.5r + 0.28, when 0 ≤ r ≤ 0.12

−0.5r + 0.16, when 0.12 ≤ r ≤ 0.3

0.01, when r ≥ 0.3.

Then the mean-risk selection model is as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

max E[ξ1x1 + ξ2x2 + ξ3x3 + ξ4x4 + ξ5x5 + ξ6x6 + ξ7x7 + ξ8x8]

subject to:

R(x1, x2, · · · , x8; r) ≤ α(r), ∀r ≥ 0

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 = 1

x1, x2, x3, x4, x5, x6, x7, x8 ≥ 0
(2.37)

where

R(x1, x2, · · · , x8; r) = Pr {0.003 − (ξ1x1 + ξ2x2 + · · · + ξ7x7 + ξ8x8) ≥ r} .

Since the confidence curve is a horizontal line when r ≥ 0.3, and the risk
curve is a decreasing function of r, we just need to check if the risk curve of
the portfolio is below the investors’ confidence curve for r ∈ [0, 0.3]. As an
approximation, we set r = 0, r = 0.01, r = 0.02, r = 0.03, · · · , r = 0.3. That
is, to find the optimal portfolio, we solve the following model

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

maxE[ξ1x1 + ξ2x2 + · · · + ξ8x8]

subject to:

Pr {0.003 − (ξ1x1 + ξ2x2 + · · · + ξ8x8) ≥ 0} ≤ 0.28

Pr{0.003 − (ξ1x1 + ξ2x2 + · · · + ξ8x8) ≥ 0.01} ≤ 0.265

Pr {0.003 − (ξ1x1 + ξ2x2 + · · · + ξ8x8) ≥ 0.02} ≤ 25

· · ·
Pr{0.003 − (ξ1x1 + ξ2x2 + · · · + ξ8x8) ≥ 0.3} ≤ 0.01

x1 + x2 + · · · + x8 = 1

x1, x2, · · · , x8 ≥ 0.

(2.38)



58 2 Probabilistic Portfolio Selection

.................................................................................................................................................................................................................................................................................. ...............

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

.......................

...............

............................................................................................................................................................................................................................................................................................

..................................................................................................................................................................................................................................................................

0
r

0.28

α(r)

R(r)

Fig. 2.19 Risk curve R(r) and confidence curve α(r) of Example 2.21.

For ri = 0.01i, i = 0, 1, 2, · · · , 30, to check if

Pr {0.003 − (ξ1x1 + ξ2x2 + · · · + ξ8x8) ≥ ri} ≤ α(ri),

first, generate random numbers from normal and uniform distributions of the
corresponding security returns and use stochastic simulation to calculate the
probability value of

Pr {0.003 − (ξ1x1 + ξ2x2 + · · · + ξ8x8) ≥ ri} , ri = 0.01i, i = 0, 1, 2, · · · , 30.

Next, integrate the simulation results into the GA to produce the hybrid
intelligent algorithm. A run of the algorithm (3,000 cycles in simulation,
4,000 generations in the GA) shows that the investors should allocate their
money according to Table 2.16. The maximum expected value is 10.83%. The
risk curve and confidence curve are drawn in Fig. 2.19. It can be seen that
the risk curve of the portfolio is below the investors’ confidence curve. The
hybrid intelligent algorithm is summarized as follows:

Table 2.16 Allocation of Money to Eight Securities (%)

x1 x2 x3 x4 x5 x6 x7 x8

3.09 0.00 0.00 0.00 68.19 28.72 0.00 0.00

Hybrid Intelligent Algorithm

Step 1. Determine representation structure of solutions by chromosomes.
Since the solution of xi are required to be 0 ≤ xi ≤ 1, for i = 1, 2, · · · , n,
the solution x = (x1, x2, · · · , xn) is represented by the chromosome C =
(c1, c2, · · · , cn), where the genes c1, c2, · · · , cn are restricted in the interval
[0, 1]. Since it is required that x1 +x2 + · · ·+xn = 1, a solution is matched
with a chromosome in the following way,

xi =
ci

c1 + c2 + · · · + cn
, i = 1, 2, · · · , n

which ensures that x1 + x2 + · · · + xn = 1 always holds.
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Step 2. Set parameters Pc = 0.3, Pm = 0.2, pop size = 30 in the GA.
Step 3. Generate the chromosomes C = (c1, c2, · · · , c8) from [0, 1]8.
Step 4. Use stochastic simulation to calculate the point values on the risk

curve of the portfolio for each chromosome. The simulation procedures for
calculating Pr {0.003 − (ξ1x1 + ξ2x2 + · · · + ξ8x8) ≥ ri} , ri = 0.01i, i =
0, 1, · · · , 30, are similar to Example 2.16 in page 50. Then check the feasi-
bility of the chromosome as follows:
If Pr {0.003 − (ξ1x1 + ξ2x2 + · · · + ξ8x8) ≥ 0} ≤ 0.28
Pr{0.003 − (ξ1x1 + ξ2x2 + · · · + ξ8x8) ≥ 0.01} ≤ 0.265
Pr {0.003 − (ξ1x1 + ξ2x2 + · · · + ξ8x8) ≥ 0.02} ≤ 0.25
· · ·
Pr {0.003 − (ξ1x1 + ξ2x2 + · · · + ξ8x8) ≥ 0.3} ≤ 0.01
return 1;
return 0;
in which 1 means feasible, and 0 non-feasible.

Step 5. Repeat the third and fourth steps until feasible pop size numbers
of chromosomes are produced.

Step 6. Calculate the objective values and give the rank order of the chro-
mosomes according to the objective values to make better chromosomes
take smaller ordinal numbers.

Step 7. Compute the values of the rank-based evaluation function for all
the chromosomes.

Step 8. Calculate the fitness of each chromosome according to the rank-
based-evaluation function.

Step 9. Select the chromosomes by spinning the roulette wheel.
Step 10. Update the chromosomes by crossover and mutation operations.
Step 11. Repeat the sixth to the tenth steps for 4000 cycles.
Step 12. Take the best chromosome as the solution of the portfolio selec-

tion problem.

2.7 Remarks

This chapter has introduced four basic types of portfolio selection models.
They are mean-risk model, β-return-risk model, probability minimization
model, mean-variance model and its improvement mean-semivariance model.
Different models reflect the different decision attitudes of the investors and
the selection of the models depends on the investors’ preference and their
information processing ability. Generally speaking, the investors who adopt
risk curve are the most cautious investors. They evaluate each likely loss event
and compare it with their own tolerance ability. Therefore, the decision mak-
ing based on risk curve is the safest. In addition, risk curve provides instinct
loss levels. With mean-risk model, the investors require a maximum aver-
age return; with β-return-risk model, the investors want a maximum specific
target return value.
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Probability minimization model can be regarded as a degeneration version
of the mean-risk or β-return-risk model because in the model, the investors
only concern and deal with one sensitive loss event instead of all the likely loss
events. Without needing to find out the investors’ confidence curve and prob-
ability values for big enough numbers of loss events, information processing
work is much less. With probability minimization model, the investors may
lose far more than the specific loss amount, but they won’t do so very often.

Mean-variance model, on the other hand, uses average information to eval-
uate risk. Using mean-variance model, the investors do not need to know the
probability distribution of the portfolio return. With the expected returns
and variance values of individual security returns, the investors can easily
obtain the expected value and variance value of any portfolios. However, us-
ing mean-variance model, the investors have to tell their tolerable maximum
variance level or minimum expected value or give their utility function. In ad-
dition, when using mean-variance model, the investors have to make sure that
the portfolio return is symmetrically distributed, while using other models,
the symmetry requirement is not a necessity.



Chapter 3
Credibilistic Portfolio Selection

Credibilistic portfolio selection deals with fuzzy portfolio selection by means
of credibility theory. Fuzzy portfolio selection problem was researched from
1990s. Early researchers employed possibility as the basic measure of the
occurrence of a fuzzy event and most of them devoted themselves to extend-
ing Markowitz’s mean-variance selection idea. However, possibility measure
is not self-dual. By using possibility, when the investors know the possibility
level of a portfolio reaching a target return, they cannot know the possibility
level of the opposite event, i.e., the event of this portfolio not being able to
achieve the target return! This will confuse and worry the decision maker.
Therefore, Huang proposed that we should use the self-dual credibility as the
basic measure of the occurrence of a fuzzy event and study the fuzzy port-
folio selection problems. To provide an instinct and observable information
about loss amount and to accurately evaluate the loss degree, Huang [38] pro-
posed that we should evaluate each likely loss level and the loss occurrence
chance instead of just focusing on the average information of loss. Looking
at loss from a panoramic perspective, Huang provided a general definition
of risk, i.e., the risk curve, and proposed a mean-risk model based on this
new definition. In addition, Huang proposed a spectrum of simplified versions
of the risk and proposed a system of credibilistic portfolio selection models
[41] including mean-risk model [38], β-return-risk model [27], credibility min-
imization model, mean-variance model [33], mean-semivariance model [37],
and entropy optimization model [39].

This chapter will first introduce some necessary knowledge about credibil-
ity theory. The reason for adopting credibility measure rather than possibil-
ity measure is given. Then we will introduce the definitions of risk and the
credibilistic portfolio selection models. Crisp equivalents of the fuzzy mod-
els in some special cases will also be presented. After that, we will provide
a general solution algorithm for solving the credibilistic portfolio selection
models.

X. Huang: Portfolio Analysis: From Probab. to Credibilistic, STUDFUZZ 250, pp. 61–115.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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3.1 Fundamentals of Credibility Theory

In reality, besides randomness, there are many fuzzy phenomena. For exam-
ple, a “beautiful” girl in many situation is not a very clear concept. In order
to describe fuzziness, the concept of fuzzy set was first proposed by Zadeh
[95] in 1965 via membership function. Furthermore, to measure a fuzzy event,
Zadeh [96] proposed possibility measure. Although possibility is a widely used
measure, it is not self-dual. However, for a measure, self-duality property is
extremely important. In order to define a self-dual measure, Liu and Liu [55]
proposed credibility measure. An axiomatic credibility theory was founded
by Liu [58] in 2004 and refined by Liu [60] in 2007. Credibility theory has
been fairly well applied in many application areas.

Credibility and Credibility Space

Definition 3.1 (Liu [60]). Let Θ be a nonempty set, and �(Θ) the power
set of Θ, i.e., the largest σ-algebra over Θ. Each element in �(Θ) is called
an event. The set function Cr is called a credibility measure if
(Axiom 1) (Normality) Cr{Θ} = 1;
(Axiom 2) (Monotonicity) Cr{A} ≤ Cr{B} whenever A ⊂ B;
(Axiom 3) (Self-duality) Cr{A} + Cr{Ac} = 1 for any event A.
(Axiom 4) (Maximality) Cr{∪iAi} = supi Cr{Ai} for any events {Ai} with
supi Cr{Ai} < 0.5.

The value of Cr{A} indicates the level that the event A will occur.
For example, let Θ = {θ1, θ2}. There are only four events: ∅, {θ1}, {θ2}, Θ.

Define Cr{∅} = 0, Cr{θ1} = 0.4, Cr{θ2} = 0.6, and Cr{Θ} = 1. Then the set
function Cr is a credibility measure because it satisfies the four axioms.

Let Θ be a nonempty set, � the power set of Θ, and Cr the credibility
measure. From Axioms 1 and 3 we know Cr{∅} = 0. From Axiom 2 we know
0 ≤ Cr{A} ≤ 1 for any A ∈ � because ∅ ⊂ A ⊂ Θ. That is, the credibility
value of a fuzzy event is in the interval [0, 1].

Definition 3.2 (Liu [60]). Let Θ be a nonempty set, �(Θ) the power set of
Θ, and Cr a credibility measure. Then the triplet (Θ,�(Θ), Cr) is called a
credibility space.

Fuzzy Variable

Definition 3.3. A fuzzy variable is defined as a function from a credibility
space (Θ,�(Θ), Cr) to the set of real numbers.

Remark 3.1. Since �(Θ) is the power set of Θ (i.e., the collection of all the
subsets of Θ), and a fuzzy variable ξ is a function on a credibility space, for
any set B of real numbers, the set



3.1 Fundamentals of Credibility Theory 63

{ξ ∈ B} = {θ ∈ Θ|ξ(θ) ∈ B}

is always an element in �. That is, the fuzzy variable is a measurable function
and {ξ ∈ B} is an event.

Definition 3.4. Let ξ1 and ξ2 be two fuzzy variables defined on the credibility
space (Θ,�, Cr). We say ξ1 = ξ2 if ξ1(θ) = ξ2(θ) for almost all θ ∈ Θ.

Membership Function and Credibility Inversion Theorem

The membership function was first introduced by Zadeh [95] in 1965. In the
credibility theory, membership function was defined via credibility.

Definition 3.5 (Liu [60]). Let ξ be a fuzzy variable defined on the credi-
bility space (Θ,�(Θ), Cr). Then its membership function is derived from the
credibility measure by

μ(t) = (2Cr{ξ = t}) ∧ 1, t ∈ 
.

If we have got the membership function of a fuzzy variable ξ first, how can we
know the credibility degree of a fuzzy event? The following inversion theorem
gives the answer.

Theorem 3.1 (Credibility Inversion Theorem, Liu and Liu [55]). Let ξ be
a fuzzy variable with membership function μ. Then for any set A of real
numbers, we have

Cr{ξ ∈ A} =
1
2

(

sup
t∈A

μ(t) + 1 − sup
t∈Ac

μ(t)
)

. (3.1)

Proof: If Cr{ξ ∈ A} ≤ 0.5, we know from Axiom 2 that Cr{ξ = t} ≤ 0.5 for
each t ∈ A. According to Axiom 4 we have

Cr{ξ ∈ A} =
1
2
(sup
t∈A

(2Cr{ξ = t} ∧ 1)) =
1
2

sup
t∈A

μ(t). (3.2)

Since the credibility measure is self-dual, we have Cr{ξ ∈ Ac} ≥ 0.5, and
sup
t∈Ac

Cr{ξ = t} ≥ 0.5. Therefore

sup
t∈Ac

μ(t) = sup
t∈Ac

(2Cr{ξ = t} ∧ 1) = 1. (3.3)

It follows from (3.2) and (3.3) that (3.1) holds.
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If Cr{ξ ∈ A} ≥ 0.5, we have Cr{ξ ∈ Ac} ≤ 0.5 because the credibility
measure is self-dual. From the result of the first case we have

Cr{ξ ∈ A} = 1 − Cr{ξ ∈ Ac} = 1 − 1
2

(

sup
t∈Ac

μ(t) + 1 − sup
t∈A

μ(t)
)

=
1
2

(

sup
t∈A

μ(t) + 1 − sup
t∈Ac

μ(t)
)

.

The theorem is proven.

Example 3.1. Let ξ be a fuzzy variable with membership function μ. Then
it follows from Theorem 3.1 that the following equations hold:

Cr{ξ = t} =
1
2

(
μ(t) + 1 − sup

y �=t
μ(y)

)
, ∀t ∈ 
; (3.4)

Cr{ξ ≤ t} =
1
2

(

sup
y≤t

μ(y) + 1 − sup
y>t

μ(y)
)

, ∀t ∈ 
; (3.5)

Cr{ξ ≥ t} =
1
2

(

sup
y≥t

μ(y) + 1 − sup
y<t

μ(y)
)

, ∀t ∈ 
. (3.6)

Especially, if μ is a continuous function, we have

Cr{ξ = t} =
μ(t)
2

, ∀t ∈ 
. (3.7)

Remark 3.2. A fuzzy variable has a unique membership function, but a
membership function may produce multiple fuzzy variables. For example, let
Θ = {θ1, θ2} and μ(θ1) = μ(θ2) = 1. It can be easily proven that (Θ,�, Cr)
is a credibility space. Define

ξ1(θ) =

{
0, if θ = θ1

1, if θ = θ2,
ξ2(θ) =

{
1, if θ = θ1

0, if θ = θ2.

We can see that though the fuzzy variables ξ1 and ξ2 have the same mem-
bership function, i.e., μ(t) ≡ 1 on t = 0 or 1, they are two different fuzzy
variables in the sense of Definition 3.4. Since one membership function may
produce multiple fuzzy variables, we can not define fuzzy variable via mem-
bership function. An axiomatic system is needed to define a fuzzy variable
and discuss the properties concerning the fuzzy variable to ensure precision
and consistency of the researches. That explains why the membership func-
tion is defined via credibility in credibility theory. However, for application
purposes, we only need to construct the membership function of a fuzzy
variable and then use the credibility inversion theorem to derive the credi-
bility and use credibility theory to help solve the application problems. The
mathematical requirement for the membership function is simple. It has been
proven [58] that a function μ :→ [0, 1] is a membership function if and only if
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sup μ(t) = 1. For construction method of membership functions, readers can
refer to Triantaphyllou and Mann [90], Chen and Otto [8], Kumar and Ganesh
[47], Hong and Chen [26], and Medaglia, Fang, Nuttle and Wilson [70].

Remark 3.3. Membership function indicates the degree that the fuzzy vari-
able ξ takes some prescribed values. If t is an impossible point, the mem-
bership degree μ(t) = 0; and if t is the most possible point that the fuzzy
variable ξ takes, the membership degree μ(t) = 1. However, the inverse state-
ment is not true. It is the credibility degree rather than membership degree
that gives the occurrence chance of the prescribed values. From credibility
inversion theorem we know that the credibility degree of a prescribed value
depends not only on its membership degree but also on the membership de-
gree of its complementary set.

Why Adopt Credibility?

Possibility measure is an early proposed measure to measure a fuzzy event.
Let ξ be a fuzzy variable with membership function μ. Then Pos{A} =
sup{μ(ξ(θ))|θ ∈ A} for any fuzzy event A ∈ �. Though possibility mea-
sure is an important measure and is widely used in fuzzy set theory, it is not
self-dual. Yet, self-duality property is absolutely needed in both theory and
application research. Without self-duality, confusion will appear. Let us see
below what will happen if we adopt possibility to measure the occurrence
chance of a fuzzy event.

Example 3.2. A fuzzy variable is called a triangular fuzzy variable if it has
a triangular membership function (see Fig. 3.1)
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Fig. 3.1 Triangular membership function.

μ(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

t − r1

r2 − r1
, if r1 ≤ t ≤ r2

t − r3

r2 − r3
, if r2 ≤ t ≤ r3

0, otherwise.

We denote it by ξ = (r1, r2, r3) with r1 < r2 < r3.
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Question 1: Suppose a traveler is going to visit a city. The expenditure is
predicted to be a triangular fuzzy variable ξ = (200, 300, 400) dollars (see Fig.
3.2). To ensure that the traveler will have enough money in his traveling, at
least how much money should he bring with him?
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Fig. 3.2 Triangular expenditure ξ = (200, 300, 400).

Judging from common sense, we will say that the traveler should bring 400
dollars with him so that he will have enough money for traveling. However,
when using possibility measure, we find

min
{
t|Pos{ξ ≤ t} = 1

}
= 300,

which tells us that the traveler just needs to bring with him 300 dollars to
ensure that he will have enough money for traveling. This result obviously is
contradictory to our judgement and common sense.

Question 2: Suppose we now have a portfolio whose return can be described
by a triangular fuzzy variable ξ = (0, 1.5, 3) (see Fig. 3.3). Then which event
will be more likely to happen, the event of portfolio return not less than 1.5
or the event of portfolio return less than 1.5?
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Fig. 3.3 Triangular portfolio return ξ = (0, 1.5, 3).
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By using possibility measure, we can calculate that Pos{ξ ≥ 1.5} = 1,
which seems to imply that the portfolio return not less than the value 1.5 will
surely happen. However, by using possibility measure, we can also calculate
that Pos{ξ < 1.5} = 1, which seems to imply that the portfolio return less
than the value 1.5 will also surely happen. Is not it strange that two opposite
events will both surely happen at the same time? The law of contradiction
tells us that a proposition cannot be both true and false at the same time,
and the law of excluded middle says that a proposition should be either true
or false. It is obviously that the judgement made based on possibility is in
contradiction with both the law of contradiction and the law of excluded
middle.

Now, let us use credibility measure to calculate a fuzzy event. It follows
from credibility inversion theorem that for a triangular fuzzy variable ξ =
(r1, r2, r3) (Fig. 3.1), we have

Cr{ξ ≤ t} =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1, r3 ≤ t

r3 − 2r2 + t

2(r3 − r2)
, r2 ≤ t ≤ r3

t − r1

2(r2 − r1)
, r1 ≤ t ≤ r2

0, otherwise.

(3.8)

Then, for a triangular expenditure ξ = (200, 300, 400), we have

min
{
t|Cr{ξ ≤ t} = 1

}
= 400,

which means that the traveler should bring with him 400 dollars to ensure
that he will have enough money for traveling. The result is consistent with
our judgement and common sense.

For a triangular portfolio return ξ = (0, 1.5, 3), according to Equation
(3.8), we have Cr{ξ ≥ 1.5} = 0.5, which means that there is only half
the chance that the portfolio return will not be less than 1.5. According
to Equation (3.8), we know Cr{ξ < 1.5} = 0.5, which means that there
is only half the chance that the portfolio return will be less than 1.5. It
is seen that the result is consistent with our judgement and the confusion
disappears.

Some Special Fuzzy Variables

Example 3.3. A fuzzy variable is called a trapezoidal fuzzy variable if it has
a trapezoidal membership function (see Fig. 3.4)
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μ(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

t − r1

r2 − r1
, if r1 ≤ t ≤ r2

1, if r2 ≤ t ≤ r3

t − r4

r3 − r4
, if r3 ≤ t ≤ r4

0, otherwise.

We denote it by ξ = (r1, r2, r3, r4) with r1 < r2 < r3 < r4.
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Fig. 3.4 Trapezoidal membership function.

According to credibility inversion theorem, if r4 ≤ t, we have

Cr{ξ ≤ t} =
1
2
(1 + 1 − 0) = 1.

If r3 ≤ t ≤ r4, then

Cr{ξ ≤ t} =
1
2
(1 + 1 − r4 − t

r4 − r3
) =

r4 − 2r3 + t

2(r4 − r3)
.

If r2 ≤ t ≤ r3, then

Cr{ξ ≤ t} =
1
2
(1 + 1 − 1) =

1
2
.

If r1 ≤ t ≤ r2, then

Cr{ξ ≤ t} =
1
2
(

t − r1

r2 − r1
+ 1 − 1) =

t − r1

2(r2 − r1)
.

If t < r1, then

Cr{ξ ≤ t} =
1
2
(0 + 1 − 1) = 0.
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That is,

Cr{ξ ≤ t} =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if r4 ≤ t

r4 − 2r3 + t

2(r4 − r3)
, if r3 ≤ t ≤ r4

1
2
, if r2 ≤ t ≤ r3

t − r1

2(r2 − r1)
, if x1 ≤ t ≤ r2

0, otherwise.

(3.9)

Example 3.4. A fuzzy variable ξ is called a normal fuzzy variable if it has
a normal membership function

μ(t) = 2
(

1 + exp
(

π|t − e|√
6σ

))−1

, t ∈ R, σ > 0.

We denote it by ξ ∼ N (e, σ). It can be calculated that

μ(e + σ) = μ(e − σ) = 0.4324, and μ(e + 2σ) = μ(e − 2σ) = 0.1428.

Two normal membership functions with same σ but different e’s are drawn
in Fig. 3.5, and two normal membership functions with same e but different
σ’s are drawn in Fig. 3.6.



........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

...................

...............

t

1

μ(t)

e1 e20
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

............................................

...................................................
.........................

....................
................

.............
.............
...........
...........
...........
..........
..........
..........
..........
.........
..........
..........
..........
.........
..........
..............................................................................................................................................................................................................................................................................................................................................

.........................
....................

................
.............
.............
...........
...........
...........
..........
..........
..........
..........
.........
..........
..........
..........
.........
..........
...........................................................................................................................................................................................................................................................................................

Fig. 3.5 Normal membership functions with same σ but different e’s.
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Fig. 3.6 Normal membership functions with same e but different σ’s.
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Example 3.5. A fuzzy variable ξ is called an equipossible fuzzy variable on
[a, b] if it has the following membership function (see Fig. 3.7)

μ(t) =

{
1, if a1 ≤ t ≤ a2

0, otherwise.

We denote it by ξ = (a, b).

........................................................................................................................................................................................................................................................................ .......................
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
....................
...............

...............................................................................................................................................

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

t

μ(t)

0

1

a b

Fig. 3.7 Membership function of an equipossible fuzzy variable.

Credibility Distribution

Definition 3.6 (Liu [56]). The credibility distribution Φ : 
 → [0, 1] of a
fuzzy variable ξ is defined by

Φ(t) = Cr{ξ ≤ t}. (3.10)

Example 3.6. Let ξ be a fuzzy variable with credibility distribution Φ. Then
for any number k > 0, the credibility distribution of kξ is

Ψ(t) = Φ

(
t

k

)

. (3.11)

Theorem 3.2. Let ξ be a fuzzy variable with membership function μ. Then
the credibility distribution of ξ is

Φ(t) =
1
2

(

sup
z≤t

μ(z) + 1 − sup
z>t

μ(z)
)

, ∀t ∈ 
. (3.12)

Independence

Definition 3.7 (Liu and Gao [61]). The fuzzy variables ξ1, ξ2, · · · , ξn are
said to be independent if for any sets B1, B2, · · · , Bn of 
, we have

Cr
{ n⋂

i=1

{ξi ∈ Bi}
}

= min
1≤i≤n

Cr{ξi ∈ Bi}. (3.13)
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Theorem 3.3 (Liu [60]). The fuzzy variables ξ1, ξ2, · · · , ξn are independent
if and only if

Cr
{ n⋃

i=1

{ξi ∈ Bi}
}

= max
1≤i≤n

Cr{ξi ∈ Bi}. (3.14)

Proof: Since credibility measure is self-dual, the fuzzy variables ξ1, ξ2, · · · , ξn

are independent if and only if

Cr
{ n⋃

i=1

{ξi ∈ Bi}
}

= 1 − Cr
{ n⋂

i=1

{ξi ∈ Bc
i }

}

= 1 − min
1≤i≤n

Cr{ξi ∈ Bc
i } = max

1≤i≤n
Cr{ξi ∈ Bi}.

Thus, the theorem is proven.

Fuzzy Arithmetic

Definition 3.8 (Liu [60]). Let 
n → 
 be a function, and ξ1, ξ2, · · · , ξn

fuzzy variables defined on the credibility space (Θi,�(Θi), Cri), i = 1, 2, · · · , n,
respectively. Then ξ = f(ξ1, ξ2, · · · , xn) is a fuzzy variable defined as

ξ(θ) = f
(
ξ1(θ), ξ2(θ2), · · · , ξn(θ)

)

for any θ ∈ Θ.

Theorem 3.4 (Extension Principle of Zadeh). Let ξ1, ξ2, · · · , ξn be indepen-
dent fuzzy variables with membership functions μ1, μ2, · · · , μn, respectively,
and 
n → 
 a continuous function. Then the membership function μ of
ξ = f(ξ1, ξ2, · · · , ξn) is derived from the membership functions μ1, μ2, · · · , μn

for any t ∈ 
 by
μ(t) = sup

t=f(t1,t2,···,tn)

min
1≤i≤n

μi(ti) (3.15)

which is consistent with the expression

μ(t) = sup
t1,t2,···,tn∈	

{

min
1≤i≤n

μi(ti)
∣
∣ t = f(t1, t2, · · · , tn)

}

. (3.16)

Here we set μ(t) = 0 if there are not real numbers t1, t2, · · · , tn such that
t = f(t1, t2, · · · , tn).

Let us now give some examples to show the operations on fuzzy variables.

Example 3.7. Let ξ be a fuzzy variable with membership function ν. Then
the membership function μ of ξ + 2 is

μ(t) = {ν(t1)|t = t1 + 2}
= ν(t − 2).
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That is, the membership value that the fuzzy variable ξ + 2 achieves value
t ∈ 
 is the membership value that the fuzzy variable ξ achieves value t − 2.

Example 3.8. Let ξ1 be a fuzzy variable with membership function μ1, and
ξ2 another fuzzy variable with membership function μ2. Then the membership
function μ of ξ1 · ξ2 is

μ(t) = sup
t1,t2∈R

{μ1(t1) ∧ μ2(t2)|t = t1 · t2}.

Example 3.9. Let ξ1 be a fuzzy variable with membership function μ1, and
ξ2 another fuzzy variable with membership function μ2. Then the membership
function μ of ξ1 + ξ2 is

μ(t) = sup
t1,t2∈R

{μ1(t1) ∧ μ2(t2)|t = t1 + t2}
= sup

t1∈R
{μ1(t1) ∧ μ2(t − t1)}.

Example 3.10. Let ξ1 = (a1, a2, a3, a4) and ξ2 = (b1, b2, b3, b4) be two trape-
zoidal fuzzy variables with membership functions μ1 and μ2 respectively.
Then the membership function μ of ξ1 + ξ2 is

μ(t) = sup
t1,t2∈R

{μ1(t1) ∧ μ2(t2)|t = t1 + t2}

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

t − (a1 + b1)
(a2 + b2) − (a1 + b1)

, if a1 + b1 ≤ t ≤ a2 + b2

1, if a2 + b2 ≤ t ≤ a3 + b3

t − (a4 + b4)
(a3 + b3) − (a4 + b4)

, if a3 + b3 ≤ t ≤ a4 + b4

0, otherwise,

which shows that the sum of two trapezoidal fuzzy variables ξ1 = (a1, a2, a3, a4)
and ξ2 = (b1, b2, b3, b4) is also a trapezoidal fuzzy variable, and ξ1 + ξ2 =
(a1 + b1, a2 + b2, a3 + b3, a4 + b4).

Similarly, according to Theorem 3.4, we can calculate that the membership
function μ of the product of a trapezoidal fuzzy variable ξ = (a1, a2, a3, a4)
and a scalar number ω is

μωξ(t) = sup{μξ(t1)|t = ωt1}
which produces that

ω · ξ =

{
(ωa1, ωa2, ωa3, ωa4), if ω ≥ 0

(ωa4, ωa3, ωa2, ωa1), if ω < 0.

That is, the product of a scalar number ω and a trapezoidal fuzzy variable
ξ = (a1, a2, a3, a4) is also a trapezoidal fuzzy variable.
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Note that the triangular fuzzy variable ξ = (r1, r2, r4) is in fact a special
trapezoidal fuzzy variable ξ = (r1, r2, r3, r4) when r2 = r3. Therefore, we can
easily get that the sum of two triangular fuzzy variables ξ1 = (a1, a2, a3) and
ξ2 = (b1, b2, b3) is also a triangular fuzzy variable, and ξ1 +ξ2 = (a1 +b1, a2 +
b2, a3 + b3. The product of a scalar number ω and a triangular fuzzy variable
ξ = (a1, a2, a3) is also a triangular fuzzy variable, and

ω · ξ =

{
(ωa1, ωa2, ωa3), if ω ≥ 0

(ωa3, ωa2, ωa1), if ω < 0.

Example 3.11. Let ξ1 ∼ N (e1, σ1) and ξ2 ∼ N (e2, σ2) be two normal fuzzy
variables. It can be proven that for any real numbers ω1 and ω2, the fuzzy vari-
able ω1ξ1 + ω2ξ2 is also a normal fuzzy variable whose membership function is

μ(t) = 2
(

1 + exp
(

π|t − (ω1e1 + ω2e2)|√
6(|ω1|σ1 + |ω2|σ2)

))−1

, t ∈ R.

Example 3.12. Let ξ1 = (a1, a2) and ξ2 = (b1, b2) be two equipossible
fuzzy variables. It can be proven that the fuzzy variable ξ1 + ξ2 is also an
equipossible fuzzy variable, and

ξ1 + ξ2 = (a1 + b1, a2 + b2).

Their product ξ1 · ξ2 is also an equipossible fuzzy variable, and

ξ1 · ξ2 =
(

min
a1≤y≤a2,b1≤z≤b2

yz, max
a1≤y≤a2,b1≤z≤b2

yz

)

.

Example 3.13. Let ξ1, ξ2, · · · , ξn be independent fuzzy variables with mem-
bership functions μ1, μ2, · · · , μn, respectively, and 
n → 
 be a function. Then
for any set B of real numbers, the credibility Cr{f(t1, t2, · · · , tn) ∈ B} is

1
2

(

sup
f(t1,t2,···,tn)∈B

min
1≤i≤n

μi(ti) + 1 − sup
f(t1,t2,···,tn)∈Bc

min
1≤i≤n

μi(ti)

)

.

Expected Value

Expected value operator calculates the average value of a fuzzy variable.

Definition 3.9. (Liu and Liu [55]) Let ξ be a fuzzy variable. Then the ex-
pected value of ξ is defined by

E[ξ] =
∫ +∞

0

Cr{ξ ≥ t}dt −
∫ 0

−∞
Cr{ξ ≤ t}dt (3.17)

provided that at least one of the two integrals is finite.
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Example 3.14. Let ξ = (r1, r2, r3) be the triangular fuzzy variable. We know
from the credibility inversion theorem that

Cr{ξ ≤ t} =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1, r3 ≤ t

r3 − 2r2 + t

2(r3 − r2)
, r2 ≤ t ≤ r3

t − r1

2(r2 − r1)
, r1 ≤ t ≤ r2

0, otherwise,

and

Cr{ξ ≥ t} =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, r3 ≤ t

r3 − t

2(r3 − r2)
, r2 ≤ t ≤ r3

2r2 − r1 − t

2(r2 − r1)
, r1 ≤ t ≤ r2

1, otherwise.

Thus, if 0 ≤ r1 < r2 < r3, we have Cr{ξ ≤ t} ≡ 0 when t < 0. Then

E[ξ] =
(∫ r1

0

1dt +
∫ r2

r1

2r2 − r1 − t

2(r2 − r1)
dt +

∫ r3

r2

r3 − t

2(r3 − r2)
dt

+
∫ +∞

r3

0dt

)

−
∫ 0

−∞
0dt =

1
4
(r1 + 2r2 + r3).

If r1 < 0 ≤ r2, then

E[ξ] =
(∫ r2

0

2r2 − r1 − t

2(r2 − r1)
dt +

∫ r3

r2

r3 − t

2(r3 − r2)
dt +

∫ +∞

r3

0dt

)

−
(∫ r1

−∞
0dt +

∫ 0

r1

t − r1

2(r2 − r1)
dt

)

=
1
4
(r1 + 2r2 + r3).

If r1 < r2 < 0 < r3, then

E[ξ] =
(∫ r3

0

r3 − t

2(r3 − r2)
dt +

∫ +∞

r3

0dt

)

−
(∫ r1

−∞
0dt+

∫ r2

r1

t − r1

2(r2 − r1)
dt +

∫ 0

r2

r3 − 2r2 + t

2(r3 − r2)
dt

)

=
1
4
(r1 + 2r2 + r3).
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If r1 < r2 < r3 ≤ 0, then

E[ξ] =
∫ +∞

0

0dt −
(∫ r1

−∞
0dt +

∫ r2

r1

t − r1

2(r2 − r1)
dt

+
∫ r3

r2

r3 − 2r2 + t

2(r3 − r2)
dt +

∫ 0

r3

1dt

)

=
1
4
(r1 + 2r2 + r3).

Therefore, the expected value of the triangular fuzzy variable ξ = (r1, r2, r3)
is always

E[ξ] =
1
4
(r1 + 2r2 + r3). (3.18)

Example 3.15. The expected value of a trapezoidal fuzzy variable
ξ = (r1, r2, r3, r4) is

E[ξ] =
1
4
(r1 + r2 + r3 + r4).

Example 3.16. The expected value of a normal fuzzy variable ξ ∼ N (e, σ) is

E[ξ] = e.

Example 3.17. The expected value of an equipossible fuzzy variable ξ =
(r1, r2) is

E[ξ] = (r2 + r1)/2.

Theorem 3.5 (Liu and Liu [57]) Let ξ1 and ξ2 be independent fuzzy vari-
ables with finite expected values. Then for any numbers a1 and a2, we have

E[a1ξ1 + a2ξ2] = a1E[ξ1] + a2E[ξ2]. (3.19)

Variance

Definition 3.10 (Liu and Liu [55]) Let ξ be a fuzzy variable with finite
expected value e. Then the variance of ξ is defined by

V [ξ] = E[(ξ − e)2].

Example 3.18. Let ξ be an equipossible fuzzy variable (a, b). Remember
that E[ξ] = e = (a + b)/2. Then for any positive number t, we have

Cr{(ξ − e)2 ≥ t} =

{
1/2, if t ≤ (b − a)2/4
0, if t > (b − a)2/4.

Thus the variance is

V [ξ] =
∫ +∞

0

Cr{(ξ − e)2 ≥ t}dt =
∫ (b−a)2/4

0

1
2
dt =

(b − a)2

8
.
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Example 3.19. Let ξ = (r1, r2, r3) be a triangular fuzzy variable. Then its
variance is

V [ξ] =
33α3 + 21α2β + 11αβ2 − β3

384α
,

where α = max{r2−r1, r3−r2} and β = min{r2−r1, r3−r2}. Especially, when
ξ = (r1, r2, r3) is a symmetric triangular fuzzy variable, i.e., r3 −r2 = r2 −r1,
its variance is

V [ξ] = (r3 − r1)2/24.

Example 3.20. Let ξ = (r1, r2, r3, r4) be a symmetric trapezoidal fuzzy
variable, i.e., r4 − r3 = r2 − r1. Then its variance is

V [ξ] = ((r4 − r1)2 + (r4 − r1)(r3 − r2) + (r3 − r2)2)/24.

Example 3.21. Let ξ ∼ N (e, σ) be a normal fuzzy variable. Then its vari-
ance is

V [ξ] = σ2.

Theorem 3.6 (Liu [58]) Let a and b be real numbers and ξ a fuzzy variable
whose variance exists. Then

V [aξ + b] = a2V [ξ]. (3.20)

Example 3.22. Let ξ1 ∼ N (e1, σ1) and ξ2 ∼ N (e2, σ2) be two normal fuzzy
variables, and a1 and a2 any real numbers. Then

E[a1ξ1 + a2ξ2] = a1e1 + a2e2 and

V [a1ξ1 + a2ξ2] = (|a1|σ1 + |a2|σ2)2.

Semivariance

Definition 3.11 (Huang [37]) Let ξ be a fuzzy variable with finite expected
value e. Then the semivariance of ξ is defined by

SV [ξ] = E[[(ξ − e)−]2],

where
(ξ − e)− =

{
ξ − e, if ξ ≤ e

0, if ξ > e.
(3.21)

Example 3.23. Let ξ = (a, b, c) be a triangular fuzzy variable with b − a >
c − b. Then the semivariance of ξ is

SV [ξ] =
(e + a)(e2 − a2)

2(b − a)
− e3 − a3

3(b − a)
− ae(e − a)

b − a

where e = (a + 2b + c)/4.
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Example 3.24. Let ξ = (a, b, c) be a triangular fuzzy variable with b − a <
c − b. Then the semivariance of ξ, i.e., SV [ξ] is

3eb + ab − 3ae + a2 − 2b2

6
+

e3 − 4b3 + 3ce2 − 6be2 + 9b2e + 3cb2 − 6cbe

6(c − b)

where e = (a + 2b + c)/4.

Theorem 3.7 (Huang [37]) Let ξ be a fuzzy variable, SV [ξ] and V [ξ] the
semivariance and variance of ξ, respectively. Then 0 ≤ SV [ξ] ≤ V [ξ].

Proof: Let e be the expected value of a fuzzy variable ξ. The nonnegativity
of variance and semivariance is clear. For any real number t, we have

{θ
∣
∣ (ξ(θ) − e)2 ≥ t} ⊃ {θ

∣
∣ [(ξ(θ) − e)−]2 ≥ t},

which implies that

Cr{(ξ − e)2 ≥ t} ≥ Cr{[(ξ − e)−]2 ≥ t}, ∀t

because credibility is monotonous.
It follows from the definition of variance and semivariance that

V [ξ] =
∫ +∞

0

Cr{(ξ − e)2 ≥ t}dt ≥
∫ +∞

0

Cr{[(ξ − e)−]2 ≥ t}dt = SV [ξ].

Theorem 3.8 (Huang [37]) Let ξ be a fuzzy variable with symmetric mem-
bership function. Then SV [ξ] = V [ξ].

Proof: Let ξ be a fuzzy variable with symmetric membership function about
its expected value e. From the definition of variance, we have

V [ξ] = E[(ξ − e)2] =
∫ +∞

0

Cr{(ξ − e)2 ≥ t}dt.

Since the membership function of ξ is symmetric about e, we have

Cr{(ξ − e)2 ≥ t} = Cr{[(ξ − e)−]2 ≥ t}, ∀t.

Therefore,

V [ξ] =
∫ +∞

0

Cr{(ξ − e)2 ≥ t}dt =
∫ +∞

0

Cr{[(ξ − e)−]2 ≥ t}dt = SV [ξ].

Remark 3.4. Theorem 3.8 tells us that when a membership function of
portfolio return is symmetrical, the variance value and the semivariance value
of the fuzzy portfolio return will be the same. However, when a membership
function of a fuzzy portfolio return is asymmetrical, Theorem 3.7 tells us that
the variance value and the semivariance value of the fuzzy portfolio return
will be different.
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β-Value

Definition 3.12 (Liu [56]) Let ξ be a fuzzy variable, and β ∈ (0, 1]. Then

ξsup(β) = sup
{
r
∣
∣ Cr {ξ ≥ r} ≥ β

}
(3.22)

is called the β-value of ξ.

Example 3.25. Let ξ = [a, b] be an equipossible fuzzy variable. Then its
β-value is

ξsup(β) =

{
b, if β ≤ 0.5
a, if β > 0.5.

Example 3.26. Let ξ = (r1, r2, r3) be a triangular fuzzy variable. Then its
β-value is

ξsup(β) =

{
2βr2 + (1 − 2β)r3, if β ≤ 0.5
(2β − 1)r1 + (2 − 2β)r2, if β > 0.5.

Example 3.27. Let ξ = (r1, r2, r3, r4) be a trapeziodal fuzzy variable. Then
its β-value is

ξsup(β) =

{
2βr3 + (1 − 2β)r4, if β ≤ 0.5
(2β − 1)r1 + (2 − 2β)r2, if β > 0.5.

Example 3.28. Let ξ ∼ N (e, σ) be a normal fuzzy variable. Then its β-
value is

ξsup(β) = e −
√

6σ
π

ln
β

1 − β
.

Theorem 3.9 (Liu [58]). Let ξsup(β) be the β-value of the fuzzy variable ξ.
Then ξsup(β) is a decreasing and left-continuous function of β.

Theorem 3.10. Let ξsup(β) be the β-value of the fuzzy variable ξ. Then if
λ ≥ 0, we have (λξ)sup(β) = λξsup(β).

Theorem 3.11 (Li and Liu [49]). Let ξ and η be two independent fuzzy
variables. Then for any β ∈ (0, 1], we have

(ξ + η)sup(β) = ξsup(β) + ηsup(β) (3.23)

Proof: According to monotonicity property of credibility measure, for any
ε > 0, we have

Cr{ξ + η ≥ ξsup(β) + ηsup(β) − ε}
≥ Cr

{
{ξ ≥ ξsup(β) − ε/2} ∩ {η ≥ ηsup(β) − ε/2}

}
.
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Since ξ and η are independent fuzzy variables, according to Definition 3.7,
we have

Cr{ξ + η ≥ ξsup(β) + ηsup(β) − ε}
≥ Cr

{
{ξ ≥ ξsup(β) − ε/2} ∩ {η ≥ ηsup(β) − ε/2}

}

= Cr{ξ ≥ ξsup(β) − ε/2} ∧ Cr{η ≥ ηsup(β) − ε/2} ≥ β

which implies that

(ξ + η)sup(β) ≥ ξsup(β) + ηsup(β) − ε. (3.24)

According to monotonicity property of credibility measure, for any ε > 0, we
have

Cr{ξ + η ≥ ξsup(β) + ηsup(β) + ε}
≤ Cr

{
{ξ ≥ ξsup(β) + ε/2} ∪ {η ≥ ηsup(β) + ε/2}

}
.

Since ξ and η are independent fuzzy variables, according to Theorem 3.3, we
have

Cr{ξ + η ≥ ξsup(β) + ηsup(β) + ε}
≤ Cr

{
{ξ ≥ ξsup(β) + ε/2} ∪ {η ≥ ηsup(β) + ε/2}

}

= Cr{ξ ≥ ξsup(β) + ε/2} ∨ Cr{η ≥ ηsup(β) + ε/2} < β

which implies that

(ξ + η)sup(β) ≤ ξsup(β) + ηsup(β) + ε. (3.25)

It follows from (3.24) and (3.25) that

ξsup(β) + ηsup(β) + ε ≥ (ξ + η)sup(β) ≥ ξsup(β) + ηsup(β) − ε.

Letting ε → 0, we have

(ξ + η)sup(β) = ξsup(β) + ηsup(β).

Entropy

Fuzzy entropy is a measure of fuzzy uncertainty. It measures the difficulty
degree of predicting the specific value that a fuzzy variable will take.

Definition 3.13 (Li and Liu [51]). Let ξ be a fuzzy variable with continuous
membership function. Then its entropy is defined by

H [ξ] =
∫ ∞

−∞
S(Cr{ξ = t})dt (3.26)

where S(y) = −y ln y − (1 − y) ln(1 − y).



80 3 Credibilistic Portfolio Selection

Since for any fuzzy variable ξ with continuous membership function μ, we

have Cr{ξ = r} =
μ(r)

2
for each r ∈ R. Thus, the entropy can be expressed by

H [ξ] = −
∫ ∞

−∞

(
μ(r)

2
ln

μ(r)
2

+
(

1 − μ(r)
2

)

ln
(

1 − μ(r)
2

))

dr. (3.27)

Example 3.29. Let ξ be a triangular fuzzy variable ξ = (r1, r2, r3). Then
its entropy is H [ξ] = (r3 − r1)/2.

Example 3.30. Let ξ be a trapezoidal fuzzy variable ξ = (r1, r2, r3, r4).
Then its entropy is H [ξ] = (r4 − r1)/2 + (ln 2 − 0.5)(r3 − r2).

Example 3.31. Let ξ ∼ N (e, σ) be a normal fuzzy variable. Then its entropy
is H [ξ] =

√
6πσ/3.

Remark 3.5. Let ξ be a fuzzy variable with continuous membership function
and taking continuous values in the interval [a, b]. Then we can find that
H [ξ] ≤ (b−a) ln2 and that the equality holds if and only if ξ is an equipossible
fuzzy variable in the interval [a, b]. Since a fuzzy variable with maximum
entropy distributes most dispersively and it will be most difficult to predict
whether this fuzzy variable will take the specific value, for the safety reason
of decision making, if the investors can only give the interval that a security
return may lie in and nothing else, they can use the equipossible fuzzy variable
to describe this security return.

Remark 3.6. Let ξ be a fuzzy variable with a continuous membership func-
tion and having finite expected value e and variance value σ2. It has been
proven [50] that H [ξ] ≤ √

6πσ/3 and that the equality holds if ξ is a normal
fuzzy variable with expected value e and variance σ2. Since a fuzzy variable
with maximum entropy distributes most dispersively and it will be most dif-
ficult to predict whether this fuzzy variable will take the specific value, for
the safety reason of decision making, if the investors can predict only the
expected value and variance value of a security return and nothing else, for
the safety reason of decision making, they can use the normal fuzzy variable
to describe the security return.

3.2 Mean-Risk Model

In reality, some people do not like taking plane because when the plane
crashes, it is almost sure that people in the plane will lose their lives though
the chance of crashing event is very low. This phenomenon implies that when
judging if an event is risky or not, people will consider both the occurrence
chance and the severity level of the bad event. This is also true in portfolio
investment. To give an instinct information about each likely loss and the
corresponding occurrence chance of the loss for portfolio investment with
fuzzy returns, Huang [38] defined the concept of risk curve.
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3.2.1 Risk Curve

Definition 3.14 (Huang [38]) Let ξ denote the fuzzy return of a portfolio,
and rf the risk-free interest rate. Then the curve

R(r) = Cr{rf − ξ ≥ r}, ∀r ≥ 0 (3.28)

is called the risk curve of the portfolio, and r the loss severity indicator.

It is easy to see that rf − ξ is the deviation of the portfolio return from the
risk-free interest rate when rf − ξ ≥ 0. Then the value rf − ξ can easily
be understood as a loss. Since the portfolio return is variable, the loss value
rf − ξ may be any non-negative values which can be expressed by

rf − ξ ≥ r, r ≥ 0.

Please note that r is not one specific number but any non-negative numbers,
so rf − ξ ≥ r describes all the likely losses of the portfolio, and the curve
R(r) gives corresponding occurrence credibility levels of all these losses.

Example 3.32. Let ξ(a1, a1, a3) denote a triangular fuzzy portfolio return.
Then risk curve of ξ is as follows,

R(r) = Cr{rf−ξ ≥ r} =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1, if rf − a3 > r ≥ 0

a3 − 2a2 + rf − r

2(a3 − a2)
, if rf − a2 > r ≥ rf − a3

rf − a1 − r

2(a2 − a1)
, if rf − a1 > r ≥ rf − a2

0, otherwise.
(3.29)
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Fig. 3.8 Risk curve of a portfolio with triangular fuzzy return.



82 3 Credibilistic Portfolio Selection


........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
.......................
...............

............................................................................................................................................................................................................................................................................................................................................................................................................... ........

........

........

0

1.0

r

R(r)

rf − a4 rf − a3 rf − a1

0.5

rf − a2

......................................................................................................

........

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

Fig. 3.9 Risk curve of a portfolio with trapezoidal fuzzy return.

Example 3.33. Let ξ(a1, a2, a3, a4) denote a trapezoidal fuzzy portfolio re-
turn. Then risk curve of ξ is as follows,

R(r) = Cr{rf−ξ ≥ r} =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if rf − a4 > r ≥ 0

a4 − 2a3 + rf − r

2(a4 − a3)
, if rf − a3 > r ≥ rf − a4

0.5, if rf − a2 > r ≥ rf − a3

rf − a1 − r

2(a2 − a1)
, if rf − a1 > r ≥ rf − a2

0, otherwise.
(3.30)

Example 3.34. Let ξ ∼ N (e, σ) denote a normal fuzzy portfolio return.
Then risk curve of ξ is as follows,

R(r) = Cr{rf − ξ ≥ r} =
(

1 + exp
(

π(e − rf + r)√
6σ

))−1

, r ≥ 0. (3.31)

Example 3.35. Let ξ = (a, b) denote an equipossible fuzzy portfolio return.
Then risk curve of ξ is as follows,

R(r) = Cr{rf − ξ ≥ r} =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if r ≤ rf − b

0.5, if rf − b ≤ r ≤ rf − a

0, otherwise.

(3.32)



3.2 Mean-Risk Model 83

............................................................................................................................................................................................................................................................................................................................................................................................................................................ .......................
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
................
...............

..................................................................................................................................................................................................................................................................................................................................................................................................................

........................................................................

..

..

..

..

..

..

..

..

..

..

........................

0

1.0

r

R(r)

0.5

rf − e

Fig. 3.10 Risk curve of a portfolio with normal fuzzy return.

..................................................................................................................................................................................................................................................................................................................................................................... .......................
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
................
...............

...........................................................................................................

..................................................

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..........

0

1.0

r

R(r)

0.5

a b

Fig. 3.11 Risk curve of a portfolio with equipossible fuzzy return.

3.2.2 Confidence Curve and Safe Portfolio

To determine a level of a risk, according to Definition 3.14, three inputs should
be given. First input is the value r, the loss severity level. Second input is the
occurrence chance of the loss event, i.e., Cr{rf − ξ ≥ r}. Third input is the
investors’ subjective judgement to the above two inputs. Different investors
have different judgements. Given any value r, an investor should be able to
give his/her maximal tolerance towards the occurrence chance of the loss
being equal to or greater than r by answering what-if questions in Table 2.5.
In fuzzy portfolio selection, occurrence chance of a fuzzy event is measured
by credibility value. We call the curve the confidence curve α(r) that gives
the investor’s maximal tolerance towards the occurrence chances of all the
potential losses. Though different investors have different confidence curves,
the common trend of the curve is that the severer the loss, the lower the
tolerance of occurrence chance of the loss. The general trend of the confidence
curve is given in Fig.3.12. Three examples of confidence curve are presented
in Subsection 2.2.2 in Chapter 2.
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Fig. 3.12 General trend of a confidence curve: The higher the loss value, the lower
the tolerance of the occurrence chance of the loss.

It is easy to understand that a portfolio is safe if its risk curve is totally
below the investor’s confidence curve. A portfolio is regarded to be risky if
any part of its risk curve is above the investor’s confidence curve (see Fig.
3.12). The mathematical expression of a safe portfolio is as follows:

Let ξ be the fuzzy return of a portfolio A, and α(r) the investor’s confidence
curve. We say A is a safe portfolio if

R(r) = Cr{(rf − ξ) ≥ r} ≤ α(r), ∀r ≥ 0,

where rf is the risk-free interest rate.

3.2.3 Mean-Risk Model

Let xi denote the investment proportions in securities i, and ξi the i-th secu-
rity returns which are fuzzy. According to Definition 3.14, the risk curve of
a portfolio (x1, x2, · · · , xn) is

R(x1, x2, · · · , xn; r) = Cr {rf − (ξ1x1 + ξ2x2 + · · · + ξnxn) ≥ r} .

Let α(r) be an investor’s confidence curve. The philosophy of mean-risk model
is to pursue maximum expected return among the safe portfolios whose risk
curves are below the investor’s confidence curve. To express it in mathemat-
ical way, we have the model as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

maxE[ξ1x1 + ξ2x2 + · · · + ξnxn]

subject to:

R(x1, x2, · · · , xn; r) ≤ α(r), ∀r ≥ 0

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n.

(3.33)
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The constraint R(x1, x2, · · · , xn; r) ≤ α(r) requires that the credibility
value of each likely loss of a selected portfolio must be lower than the in-
vestor’s tolerance level. The constraint xi ≥ 0 implies that short sales are not
allowed in the investment.

3.2.4 Crisp Equivalent

One way of solving the mean-risk model is to convert the expected value
and risk curve of the portfolio into their crisp equivalents and use traditional
methods to solve the mean-risk model. Luckily, for independent fuzzy security
returns, we have the transformation theorem as follows:

Theorem 3.12 Let ξ1, ξ2, · · · , ξn be independent fuzzy variables with contin-
uous credibility distributions Φ1, Φ2, · · · , Φn, respectively. If

lim
t→−∞Φi(t) = 0, lim

t→∞Φi(t) = 1, for i = 1, 2, · · · , n,

and Φ−1
1 (α), Φ−1

2 (α), · · · , Φ−1
n (α) are unique for each α ∈ (0, 1), then for any

α ∈ (0, 1), we have

Ψ−1(α) = Φ−1
1 (α) + Φ−1

2 (α) + · · · + Φ−1
n (α), 0 < α < 1 (3.34)

where Ψ is the distribution function of fuzzy variable ξ = ξ1 + ξ2 + · · · + ξn.

Proof: According to monotonicity property of credibility measure, for any
given α ∈ (0, 1), we have

Cr

{
n∑

i=1

ξi ≤
n∑

i=1

Φ−1
i (α)

}

≥ Cr

{
n⋂

i=1

(
ξi ≤ Φ−1

i (α)
)
}

.

Since ξ1, ξ2, · · · , ξn are independent fuzzy variables, according to Equation
(3.13), we have

Cr

{
n∑

i=1

ξi ≤
n∑

i=1

Φ−1
i (α)

}

≥ Cr

{
n⋂

i=1

(
ξi ≤ Φ−1

i (α)
)
}

= min
1≤i≤n

Cr
{
ξi ≤ Φ−1

i (α)
}

= min
1≤i≤n

α = α.

On the other hand, for any number ε > 0, we have

Cr

{
n∑

i=1

ξi ≤
n∑

i=1

Φ−1
i (α) − ε

}

≤ Cr

{
n⋃

i=1

(
ξi ≤ Φ−1

i (α) − ε

n

)
}

because credibility measure is monotonous. Since ξ1, ξ2, · · · , ξn are indepen-
dent fuzzy variables, according to Equation (3.14), we have
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Cr

{
n∑

i=1

ξi ≤
n∑

i=1

Φ−1
i (α) − ε

}

≤ Cr

{
n⋃

i=1

(
ξi ≤ Φ−1

i (α) − ε

n

)
}

= max
1≤i≤n

Cr
{

ξi ≤ Φ−1
i (α) − ε

n

}
< max

1≤i≤n
α = α.

It follows from the continuity of credibility distributions that

Cr{ξ1 + ξ2 + · · · + ξn ≤ Φ−1
1 (α) + Φ−1

2 (α) + · · · + Φ−1
n (α)} = α

which implies that

Ψ−1(α) = Φ−1
1 (α) + Φ−1

2 (α) + · · · + Φ−1
n (α).

The theorem is proven.

Theorem 3.13. Let Φi denote the credibility distributions of the i-th fuzzy
security return rates ξi, i = 1, 2, · · · , n, respectively. Then the mean-risk model
(3.33) can be transformed into the following linear model:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

maxx1E[ξ1] + x2E[ξ2] + · · · + xnE[ξn]

subject to:

x1Φ
−1
1

(
α(r)

)
+ x2Φ

−1
2

(
α(r)

)
+ · · · + xnΦ−1

n

(
α(r)

)
≥ rf − r, ∀r ≥ 0

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n.
(3.35)

Proof: It follows from linearity property of expected value that the objective
function of Model (3.33) can be transformed into the objective function of
Model (3.35).

It follows from Theorem 3.12 that the risk curve in Model (3.33) can be
transformed into the following linear form

R−1(x1, x2, · · · , xn; r) = x1Φ
−1
1

(
α(r)

)
+ x2Φ

−1
2

(
α(r)

)
+ · · · + xnΦ−1

n

(
α(r)

)
.

It follows from monotonicity of credibility measure that

x1Φ
−1
1

(
α(r)

)
+ x2Φ

−1
2

(
α(r)

)
+ · · · + xnΦ−1

n

(
α(r)

)
≥ rf − r.

Example 3.36. Suppose the return rates of the i-th securities are all tri-
angular fuzzy variables ξi = (ai, bi, ci), i = 1, 2, · · · , n, respectively. Then the
fuzzy mean-risk model can be transformed into the following form:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
n∑

i=1

(aixi + 2bixi + cixi)

subject to:
(
2α(r) − 1

) n∑

i=1

cixi +
(
2 − 2α(r)

) n∑

i=1

bixi ≥ rf − r, if α(r) > 0.5

2α(r)
n∑

i=1

bixi −
(
2α(r) − 1

) n∑

i=1

aixi ≥ rf − r, if α(r) ≤ 0.5

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n.
(3.36)

Since all security return rates are triangular fuzzy variables, the portfolio
return rate is still a triangular fuzzy variable, i.e.,

ξ =
n∑

i=1

ξixi =

(
n∑

i=1

aixi,
n∑

i=1

bixi,
n∑

i=1

cixi

)

.

Thus, we can get Model (3.36) easily.

Example 3.37. Suppose the return rates of the i-th securities are all normal
fuzzy variables ξi ∼ N (ei, σi), i = 1, 2, · · · , n, respectively. Then the fuzzy
mean-risk model can be transformed into the following form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max e1x1 + e2x2 + · · · + enxn

subject to:

n∑

i=1

(

ei −
√

6σi

π
ln

1 − α(r)
α(r)

)

xi ≥ rf − r, ∀r ≥ 0

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n.

(3.37)

Since all security return rates are normal fuzzy variables, the portfolio
return rate is still a normal fuzzy variable, i.e.,

ξ =
n∑

i=1

ξixi =

(
n∑

i=1

eixi,

n∑

i=1

σixi

)

.

Thus, we can get Model (3.37) easily.

Example 3.38. Suppose the return rates of the i-th securities are normal
fuzzy variables ξi ∼ N (ei, σi), i = 1, 2, · · · , m, and the return rates of the
j-th securities are triangular fuzzy variables ξj = (aj , bj, cj), j = m + 1, m +
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2, · · · , n, respectively. Then the fuzzy mean-risk model can be transformed
into the following form:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
m∑

i=1

eixi +
n∑

i=m+1

1
4
(aixi + 2bixi + cixi)

subject to:

m∑

i=m+1

(

ei −
√

6σi

π
ln

1 − α(r)
α(r)

)

xi +
(
2α(r) − 1

) n∑

i=m+1

cixi+

(
2 − 2α(r)

) n∑

i=m+1

bixi ≥ rf − r, if α(r) > 0.5

m∑

i=1

(

ei −
√

6σi

π
ln

1 − α(r)
α(r)

)

xi + 2α(r)
n∑

i=m+1

bixi−
(
2α(r) − 1

) n∑

i=m+1

aixi ≥ rf − r, if α(r) ≤ 0.5

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n.
(3.38)

3.2.5 An Example

Suppose an investor wants to choose an optimal portfolio from ten securities
of which five security return rates are normal fuzzy variables and the rest five
the triangular fuzzy variables. The prediction of the return rates of the ten
securities is given in Table 3.1. Suppose the monthly risk-free interest rate is
0.01, and the investor gives his/her confidence curve as follows:

α(r) =

⎧
⎪⎪⎨

⎪⎪⎩

−2.75r + 0.43, 0 ≤ r ≤ 0.12,

−0.5r + 0.16, 0.12 ≤ r ≤ 0.3,

0.01, r ≥ 0.3.

According to the mean-risk selection idea, we build the model as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

max E[ξ1x1 + ξ2x2 + · · · + ξ10x10]

subject to:

R(x1, x2, · · · , x10; r) ≤ α(r), ∀r ≥ 0

x1 + x2 + · · · + x10 = 1

xi ≥ 0, i = 1, 2, · · · , 10

(3.39)
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Table 3.1 Fuzzy Return Rates of 10 Securities

Security i ξi ∼ N (ei, σi) Security i ξi = (ai, bi, ci)
1 N (0.034, 0.12) 6 (−0.06, 0.020, 0.15)
2 N (0.033, 0.10) 7 (−0.10, 0.030, 0.20)
3 N (0.039, 0.12) 8 (−0.12, 0.032, 0.2)
4 N (0.028, 0.08) 9 (−0.20, 0.04, 0.28)
5 N (0.025, 0.08) 10 (−0.16, 0.03, 0.30)

where R(x1, x2, · · · , x10; r) is the risk curve of the portfolio defined as

R(x1, x2, · · · , x10; r) = Cr{0.01 − (ξ1x1 + ξ2x2 + · · · + ξ10x10) ≥ r}.

According to Model (3.38), we can change Model (3.39) into the following
linear programming model. Please note that α(r) < 0.5 in the example.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
5∑

i=1

eixi +
10∑

i=6

1
4
(aixi + 2bixi + cixi)

subject to:

5∑

i=1

(

ei −
√

6σi

π
ln

1 − α(r)
α(r)

)

xi + 2α(r)
10∑

i=6

bixi−

(
2α(r) − 1

) 10∑

i=6

aixi ≥ 0.01 − r

x1 + x2 + · · · + x10 = 1

xi ≥ 0, i = 1, 2, · · · , 10.

(3.40)

Though theoretically, when solving the mean-risk model, r should be any
nonnegative numbers, in reality, r can be limited to a certain interval by ana-
lyzing the problem. In the example, since the confidence curve is a horizontal
line when r ≥ 0.3 and the risk curve is a decreasing function of r, risk curve
will be below the confidence curve if R(x1, x2, · · · , x10; r) ≤ α(r) holds for
any r ∈ [0, 0.3]. Since risk curve is a continuous function of r, it is enough
for us to check if the points on the risk curve are all lower than the points
on the confidence curve for (r = 0, α = 0.43), (r = 0.02, α = 0.375), (r =
0.04, α = 0.32), (r = 0.06, α = 0.265), · · · , (r = 0.3, α = 0.01). That is, we
just need to solve Model (3.41) given below. By using “Solver” in “Excel”,
we get the optimal portfolio shown in Table 3.2. The maximum expected
return is 0.042. As shown in Fig. 3.13, risk curve of the optimal portfolio is
totally below the investor’s confidence curve. Given any loss value r, the loss
occurrence credibility is not greater than the investor’s tolerable credibility.
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Table 3.2 Allocation of Money to Ten Securities

Security i 1 2 3 4 5
Allocation of money 0.00% 0.00 % 0.00% 0.00% 0.00%

Security i 6 7 8 9 10
Allocation of money 0.00% 78.57 % 0.00 % 0.00% 21.43%

Or given any occurrence credibility α(r), the loss level is not greater than
the investor’s tolerable loss level.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
5∑

i=1

eixi +
10∑

i=6

1
4
(aixi + 2bixi + cixi)

subject to:

5∑

i=1

(

ei −
√

6σi

π
ln

1 − 0.43
0.43

)

xi + 2 × 0.43
10∑

i=6

bixi−

(
2 × 0.43 − 1

) 10∑

i=6

aixi ≥ 0.01

5∑

i=1

(

ei −
√

6σi

π
ln

1 − 0.375
0.375

)

xi + 2 × 0.375
10∑

i=6

bixi−

(
2 × 0.375 − 1

) 10∑

i=6

aixi ≥ 0.01 − 0.02

5∑

i=1

(

ei −
√

6σi

π
ln

1 − 0.32
0.32

)

xi + 2 × 0.32
10∑

i=6

bixi−

(
2 × 0.32 − 1

) 10∑

i=6

aixi ≥ 0.01 − 0.04

· · ·
5∑

i=1

(

ei −
√

6σi

π
ln

1 − 0.01
0.01

)

xi + 2 × 0.01
10∑

i=6

bixi−

(
2 × 0.01 − 1

) 10∑

i=6

aixi ≥ 0.01 − 0.3

x1 + x2 + · · · + x10 = 1

xi ≥ 0, i = 1, 2, · · · , 10.

(3.41)
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Fig. 3.13 Risk curve R(r) and confidence curve α(r) of Model (3.39).

3.3 β-Return-Risk Model

3.3.1 β-Return-Risk Model

In the mean-risk model, loss is instinct. However, target return is not instinct
enough because it is represented by the expected value. Sometimes the in-
vestors would like to directly pursue a specific target return rather than an
average value. Since the optimal target return may not be obtained in some
bad situations, it is natural that people would accept the inability to reach
the objective to some extent. However, at a given confidence level which is
considered as the safety margin, the objective must be achieved. Based on
this idea, Huang [27] proposed the β-return optimization model pursuing the
maximal target return at the credibility not less than a predetermined safety
level. Replacing expected value by a specific β-return, we get the β-return-
risk Model. To understand the β-return-risk selection idea, let us give the
definition of β-return and see an example first.

Definition 3.15 Let xi be the investment proportions in the i-th securities,
i = 1, 2, · · · , n, ξi the returns of the i-th securities and β the preset confidence
level. The β-return is defined as

max{f̄
∣
∣ Cr

{
ξ1x1 + ξ2x2 + · · · + ξnxn ≥ f̄

} ≥ β} (3.42)

which means the maximal investment return the investor can obtain at con-
fidence level β.

Example 3.39. Suppose we have three securities ξ1 = (−0.01, 0.05, 0.1), ξ2 =
(−0.01, 0.06, 0.08) and ξ3 = (−0.02, 0.08, 0.12). There are four money alloca-
tion plans. In plan 1, the investor allocates all the money to security 1. In
plan 2, the investor allocates all the money to security 2. In plan 3, the in-
vestor allocates all the money to security 3. In plan 4, the investor allocates
20% of the money to security 1 and 80% of the money to security 2. The in-
vestor sets the confidence level at β = 0.9. It can be calculated that for plans
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Table 3.3 Four Money Allocation Plans

Security i 1 2 3 90%-Return
Money Allocation (plan 1) 100% 0% 0% 0.2%
Money Allocation (plan 2) 0% 100% 0% 0.4%
Money Allocation (plan 3) 0% 0% 100% 0%
Money Allocation (plan 4) 20% 80% 0% 0.36%

1, 2, 3 and 4, the 0.9-return values are 0.2%, 0.4%, 0%, 0.36%, respectively.
The result is shown in Table 3.3. It can be seen that different money allo-
cation will result in different 0.9-returns. The investor’s objective is to find
an optimal portfolio which can bring the investor a maximum specific return
at a given confidence level, i.e., a maximum β-return. However, a portfolio
with maximum β-return may be a risky portfolio. Therefore, before pursuing
maximum β-return, the investor has to make sure that the selected portfolio
is a safe portfolio. That is to say, the risk curve of the portfolio is first re-
quired to be totally below the investor’s confidence curve. Then, among the
safe portfolios, β-return should be maximized. The mathematical expression
of the β-return-risk selection idea is as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max f̄

subject to:

Cr
{
ξ1x1 + ξ2x2 + · · · + ξnxn ≥ f̄

} ≥ β

R(x1, x2, · · · , xn; r) ≤ α(r), ∀r ≥ 0

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n

(3.43)

where R(x1, x2, · · · , xn; r) is the risk curve of the portfolio, α(r) the investor’s
confidence curve, and f̄ the β-return.

3.3.2 Crisp Equivalent

When security returns are independent fuzzy variables, we can change the
β-return-risk model into its equivalent and solve the model in traditional
ways.

Theorem 3.14 Let Φi denote the credibility distributions of the i-th fuzzy
security return rates ξi, i = 1, 2, · · · , n, respectively. Then the β-return-risk
model (3.43) can be transformed into the following linear model:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

maxx1ξ1(β) + x2ξ2(β) + · · · + xnξn(β)

subject to:

x1Φ
−1
1

(
α(r)

)
+ x2Φ

−1
2

(
α(r)

)
+ · · · + xnΦ−1

n

(
α(r)

)
≥ rf − r, ∀r ≥ 0

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n
(3.44)

where ξi(β) is the β-return value of the i-th security.

Proof: The objective function follows directly from Theorem 3.11, and the
constraint follows from Theorem 3.12 and monotonicity property of credibil-
ity measure.

Example 3.40. When all the security returns are regarded to be triangular
fuzzy variables ξi = (ai, bi, ci), the β-return-risk model (3.43) becomes
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max(2β − 1)
n∑

i=1

aixi + 2(1 − β)
n∑

i=1

bixi

subject to:

(
2α(r) − 1

) n∑

i=1

cixi +
(
2 − 2α(r)

) n∑

i=1

bixi ≥ rf − r, if α(r) > 0.5

2α(r)
n∑

i=1

bixi −
(
2α(r) − 1

) n∑

i=1

aixi ≥ rf − r, if α(r) ≤ 0.5

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n.
(3.45)

Please note that the objective function is (2β − 1)
n∑

i=1

aixi + 2(1 −β)
n∑

i=1

bixi

because the confidence level β should be high enough to be greater than 0.5.

Example 3.41. When all the security returns are regarded to be normal
fuzzy variables ξi ∼ N (ei, σi), the β-return-risk model (3.43) becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
n∑

i=1

eixi −
√

6
π

ln
β

1 − β

n∑

i=1

σixi

subject to:
n∑

i=1

(

ei −
√

6σi

π
ln

1 − α(r)
α(r)

)

xi ≥ rf − r, ∀r ≥ 0

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n.

(3.46)
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The objective function is
n∑

i=1

eixi −
√

6
π

ln
β

1 − β

n∑

i=1

σixi because the confi-

dence level β should be high enough to be greater than 0.5.

Example 3.42. Suppose the return rates of the i-th securities are normal
fuzzy variables ξi ∼ N (ei, σi), i = 1, 2, · · · , m, and the return rates of the
j-th securities are triangular fuzzy variables ξj = (aj , bj, cj), j = m + 1, m +
2, · · · , n, respectively. Then the fuzzy β-return-risk model can be transformed
into the following form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
m∑

i=1

eixi −
√

6
π

ln
β

1 − β

m∑

i=1

σixi+

n∑

i=m+1

(2β − 1)aixi + 2(1 − β)
n∑

i=m+1

bixi

subject to:

m∑

i=1

(

ei −
√

6σi

π
ln

1 − α(r)
α(r)

)

xi +
(
2α(r) − 1

) n∑

i=m+1

cixi+

(
2 − 2α(r)

) n∑

i=m+1

bixi ≥ rf − r, if α(r) > 0.5

m∑

i=1

(

ei −
√

6σi

π
ln

1 − α(r)
α(r)

)

xi + 2α(r)
n∑

i=m+1

bixi−
(
2α(r) − 1

) n∑

i=m+1

aixi ≥ rf − r, if α(r) ≤ 0.5

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n.
(3.47)

Since the sum weighted normal fuzzy variable is still a normal fuzzy vari-

able,
m∑

i=1

ξixi is a normal fuzzy variable N
( m∑

i=1

eixi,

m∑

i=1

σixi

)
. Since the

sum weighted triangular fuzzy variable is still a triangular fuzzy variable,
n∑

i=m+1

ξixi is a triangular fuzzy variable
( n∑

i=m+1

aixi,

n∑

i=m+1

bixi,

n∑

i=m+1

cixi

)
.

Since the confidence level β should be high enough to be greater than 0.5,
we can get Model (3.47) from Models (3.45) and (3.46) directly.

3.3.3 An Example

Suppose an investor wants to choose an optimal portfolio from ten securities
whose return rates are given in Table 3.1 in Subsection 3.2.5. The monthly
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risk-free interest rate is still 0.01, and the investor gives his/her confidence
curve is the same as follows:

α(r) =

⎧
⎪⎪⎨

⎪⎪⎩

−2.75r + 0.43, 0 ≤ r ≤ 0.12,

−0.5r + 0.16, 0.12 ≤ r ≤ 0.3,

0.01, r ≥ 0.3.

Suppose this time, the investor wants to pursue a maximum return value
at confidence 0.95 among the safe portfolios. According to the β-return-risk
selection idea, we build the model as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max f̄

subject to:

Cr{ξ1x1 + ξ2x2 + · · · + ξ10x10 ≥ f̄} ≥ 0.95

R(x1, x2, · · · , x10; r) ≤ α(r), ∀r ≥ 0

x1 + x2 + · · · + x10 = 1

xi ≥ 0, i = 1, 2, · · · , 10

(3.48)

where R(x1, x2, · · · , x10; r) is the risk curve of the portfolio defined as

R(x1, x2, · · · , x10; r) = Cr{0.01 − (ξ1x1 + ξ2x2 + · · · + ξ10x10) ≥ r}.

According to Model (3.47), we can change Model (3.48) into the following
linear programming form. Note that α(r) < 0.5 in the example.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
5∑

i=1

eixi −
√

6
π

5∑

i=1

σixi ln 19 + 0.9
10∑

i=6

aixi + 0.1
10∑

i=6

bixi

subject to:

5∑

i=1

(

ei −
√

6σi

π
ln

1 − α(r)
α(r)

)

xi + 2α(r)
10∑

i=6

bixi−

(
2α(r) − 1

) 10∑

i=6

aixi ≥ rf − r

x1 + x2 + · · · + x10 = 1

xi ≥ 0, i = 1, 2, · · · , 10.

(3.49)

Since the investor’s confidence curve is a horizontal line when r ≥ 0.3 and
risk curve of the portfolio is a decreasing function of r, when checking if risk
curve of the portfolio is totally below the investor’s confidence curve, it is
enough to check if the points on the risk curve are all lower than the points
on the confidence curve for (r = 0, α = 0.43), (r = 0.02, α = 0.375), (r =
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Table 3.4 Allocation of Money to Ten Securities

Security i 1 2 3 4 5
Allocation of money 0.00% 0.00 % 0.00% 0.00% 0.00%

Security i 6 7 8 9 10
Allocation of money 60% 40 % 0.00% 0.00% 0.00%
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Fig. 3.14 Risk curve R(r) and confidence curve α(r) of Model (3.49).

0.04, α = 0.32), (r = 0.06, α = 0.265), · · · , (r = 0.3, α = 0.01). By using
“Solver” in “Excel”, we get the optimal portfolio shown in Table 3.4. The
maximum return the investor can obtain at credibility 0.95 is -0.066. As shown
in Fig. 3.14, risk curve of the optimal portfolio is totally below the investor’s
confidence curve. Given every loss value r, the loss occurrence credibility is
not greater than the investor’s tolerable credibility. Or given every occurrence

Table 3.5 Optimal Portfolios Produced by Different Selection Criteria

Optimal Portfolio Mean-Risk Criterion β-Return-Risk Criterion
ξ1 0.00% 0.00%
ξ2 0.00 % 0.00%
ξ3 0.00% 0.00%
ξ4 0.00% 86.02%
ξ5 0.00 % 13.98%
ξ6 0.00 % 0.00%
ξ7 78.57% 0.00%
ξ8 0.00% 0.00%
ξ9 0.00 % 0.00%
ξ10 21.43 % 0.00%

Expected Return 4.2% 3.55%
0.95-Return −9.9% −6.6%
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credibility α(r), the loss level is not greater than the investor’s tolerable loss
level.

Remark 3.7. We put the results of examples of mean-risk model in subsec-
tion 3.2.5 and β-return-risk model in this subsection together in Table 3.5.
It is seen that even when risk-free interest rate, the alternative individual
securities and the investor’s confidence curve are same, adopting different
selection criteria produces different results.

3.4 Credibility Minimization Model

3.4.1 Credibility Minimization Model

When investors are sensitive to only one disastrous low return level, risk
curve will degenerate to the credibility of a portfolio return below the specific
disaster level, which is proposed to be an alternative definition of risk by
Huang [27] in fuzzy portfolio selection. If the investors adopt this definition
of risk, they will select the portfolio with minimum occurrence credibility of
the specific disastrous return level. Let ξi be the i-th security returns and xi

the investment proportions, i = 1, 2, · · · , n, respectively. Taking investment
return into account, the investors should select the portfolio whose expected
return is not less than a preset expected value and in the meantime whose
occurrence credibility of the sensitive bad event is minimum. The selection
idea of minimizing the occurrence credibility of the sensitive bad event is
expressed as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

min Cr {ξ1x1 + ξ2x2 + · · · + ξnxn ≤ d}
subject to:

E[ξ1x1 + ξ2x2 + · · · + ξnxn] ≥ a

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n

(3.50)

where d is the concerned disastrous low return level and a the preset minimum
expected return that the investors can accept.

Let us recall the definition of risk curve. The curve

R(x1, x2, · · · , xn; r) = Cr{rf − (ξ1x1 + ξ2x2 + · · · + ξnxn) ≥ r}, ∀r ≥ 0

is called the risk curve of the portfolio, where rf is the risk-free interest rate.
Let r degenerate to one specific number r0, then the risk curve becomes

R(x1, x2, · · · , xn; r0) = Cr{rf − (ξ1x1 + ξ2x2 + · · · + ξnxn) ≥ r0}
= Cr{ξ1x1 + ξ2x2 + · · · + ξnxn ≤ rf − r0}



98 3 Credibilistic Portfolio Selection

which is just the risk definition of occurrence credibility of a sensitive low
return event. It is clear that rf − r0 = d.

If the investors pre-give a confidence level α, what will be the maximum
potential loss for the given confidence level? We can use Value-at-Risk-in-
Fuzziness (VaRF) to answer the question.

Definition 3.16 Let ξ denote a fuzzy return of a portfolio, and rf the risk-
free interest rate. Then Value-at-Risk-in-Fuzziness (VaRF) is defined as

VaRF(α) = sup{r̄|Cr{rf − ξ ≥ r̄} ≤ 1 − α}. (3.51)

where α is the preset confidence level.

For example, if VaRF(95%) = 8%, it means that there is only a 5% credibility
that the portfolio return rate will drop more than 8% below the risk-free
interest rate. It is easy to see that VaRF is in fact an inverse version of the
risk definition of the credibility of a portfolio return below a specific disaster
level.

If the investors adopt VaRF as the investment risk, they will select the
portfolio with minimum VaRF value. Taking investment return into account,
the investors should select the portfolio whose expected return is not less
than a preset level and in the meantime whose VaRF value is the minimum.
The selection idea of minimizing VaRF can be expressed by the following
model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min r̄

subject to:

Cr {rf − (ξ1x1 + ξ2x2 + · · · + ξnxn) ≥ r̄} ≤ 1 − α

E[ξ1x1 + ξ2x2 + · · · + ξnxn] ≥ a

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n

(3.52)

where a is the pre-set tolerable minimum expected return, α the pre-
determined confidence level, and r̄ the VaRF defined as

VaRF(α) = sup{r̄|Cr{rf − (ξ1x1 + ξ2x2 + · · · + ξnxn) ≥ r̄} ≤ 1 − α}.

It is seen that the VaRF minimization model (3.52) can be regarded as an-
other version of credibility minimization model (3.50).

Mathematically, Model (3.52) is a minmax model because it is equivalent
to
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
x1,x2,···,xn

max
r̄

r̄

subject to:

Cr {rf − (ξ1x1 + ξ2x2 + · · · + ξnxn) ≥ r̄} ≤ 1 − α

E[ξ1x1 + ξ2x2 + · · · + ξnxn] ≥ a

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n

(3.53)

where max r̄ is the VaRF.

3.4.2 Crisp Equivalent

In some special cases, we can convert the credibility minimization model
(3.50) into its crisp equivalent.

Example 3.43. When people invest, the credibility of portfolio return equal
to or lower than a sensitive disaster level d should always be required to be
less than 0.5. Thus, when security returns are regarded to be all triangu-
lar fuzzy variables ξi = (ai, bi, ci), the credibility minimization model (3.50)
becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min

(

d −
n∑

i=1

aixi

)
/

(
n∑

i=1

bixi −
n∑

i=1

aixi

)

subject to:
n∑

i=1

aixi ≤ d ≤
n∑

i=1

bixi

n∑

i=1

(aixi + 2bixi + cixi) ≥ 4a

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n.

(3.54)

Please note that the constraint
n∑

i=1

aixi ≤ d ≤
n∑

i=1

bixi is added because the

credibility of portfolio return equal to or lower than the concerned disaster
level d should be less than 0.5.

Example 3.44. When security returns are regarded to be all normal fuzzy
variables ξi ∼ N (ei, σi), the credibility minimization model (3.50) becomes
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max

(
n∑

i=1

eixi − d

)
/ n∑

i=1

σixi

subject to:

d ≤ e1x1 + e2x2 + · · · + enxn

e1x1 + e2x2 + · · · + enxn ≥ a

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n.

(3.55)

Model (3.55) can easily be obtained because the sum of weighted normal
fuzzy variables is still a normal fuzzy variable. Please note that to minimize
the credibility value

(

1 + exp

(

π
( n∑

i=1

eixi − d
)/√

6
n∑

i=1

σixi

))−1

we just need to maximize

( n∑

i=1

eixi − d
)/ n∑

i=1

σixi.

A constraint d ≤ e1x1 + e2x2 + · · · + enxn is added because the chance of
portfolio return equal to or less than the concerned disaster level d should be
less than 0.5.

Theorem 3.15 Let Φi denote the credibility distributions of the i-th fuzzy
security return rates ξi, i = 1, 2, · · · , n, respectively. Then the VaRF mini-
mization model (3.52) can be transformed into the following linear model:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

min rf − x1Φ
−1
1 (1 − α) − x2Φ

−1
2 (1 − α) + · · · − xnΦ−1

n (1 − α)

subject to:

x1E[ξ1] + x2E[ξ2] + · · · + xnE[ξn] ≥ a

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n.

(3.56)

Proof: It follows directly from Theorem 3.12 and the monotonicity property
of credibility measure.

Example 3.45. Suppose the return rates of the i-th securities are normal
fuzzy variables ξi ∼ N (ei, σi), i = 1, 2, · · · , m, and the return rates of the
j-th securities are triangular fuzzy variables ξj = (aj , bj, cj), j = m + 1, m +
2, · · · , n, respectively. Since confidence level α > 0.5 and 1−α < 0.5, the VaRF
minimization model (3.52) can be transformed into the following form:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min rf −
m∑

i=1

(

ei −
√

6σi

π
ln

α

1 − α

)

xi−

2(1 − α)
n∑

i=m+1

bixi +
(
1 − 2α

) n∑

i=m+1

aixi

subject to:

m∑

i=1

eixi +
n∑

i=m+1

1
4
(aixi + 2bixi + cixi) ≥ a

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n.

(3.57)

3.4.3 An Example

Suppose an investor wants to choose an optimal portfolio from ten securities
of which five security return rates are normal fuzzy variables and the rest five
the triangular fuzzy variables. The prediction of the return rates of the ten
securities is given in Table 3.6. The risk-free interest rate is assumed to be
0.01. Suppose the minimum expected return the investor can accept is 0.03,
and the investor wants to minimize the specific potential loss at confidence
level 0.95. Then according to the VaRF minimization selection idea , we build
the model as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min r̄

subject to:

Cr{0.01 − (ξ1x1 + ξ2x2 + · · · + ξ10x10) ≥ r̄} ≤ 0.05

E[ξ1x1 + ξ2x2 + · · · + ξ10x10] ≥ 0.03

x1 + x2 + · · · + x10 = 1

xi ≥ 0, i = 1, 2, · · · , 10.

(3.58)

According to model (3.57), we change the model (3.58) into the following
form:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min 0.01 −
5∑

i=1

(

ei −
√

6σi

π
ln 19

)

xi −
10∑

i=6

(0.1bixi + 0.9aixi)

subject to:
5∑

i=1

eixi +
10∑

i=6

1
4
(aixi + 2bixi + cixi) ≥ 0.03

x1 + x2 + · · · + x10 = 1

xi ≥ 0, i = 1, 2, · · · , 10.

(3.59)
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Table 3.6 Fuzzy Return Rates of Ten Securities

Security i ξi ∼ N (ei, σi) Security i ξi = (ai, bi, ci)
1 N (0.033, 0.44) 6 (−0.008, 0.026, 0.06)
2 N (0.032, 0.40) 7 (−0.02, 0.030, 0.08)
3 N (0.039, 0.45) 8 (−0.01, 0.032, 0.08)
4 N (0.031, 0.39) 9 (−0.05, 0.04, 0.10)
5 N (0.025, 0.32) 10 (−0.03, 0.03, 0.09)

Table 3.7 Allocation of Money to Ten Securities

Security i 1 2 3 4 5
Allocation of money 0.00% 0.00 % 0.00% 0.00% 0.00%

Security i 6 7 8 9 10
Allocation of money 46.67% 0.00% 53.33% 0.00% 0.00%

Using “Solver” in “Excel”, we obtain the optimal portfolio shown in
Table 3.7. The minimum objective value is 0.015, which means that if the
investor invests 46.67% of his/her money in security 6 and 53.33% in security
8, the expected return will not be lower than 0.03, and in the meantime there
is only a 5% credibility that the portfolio return rate will drop more than
1.5% below the risk-free interest rate.

3.5 Mean-Variance Model

3.5.1 Mean-Variance Model

Risk curve takes a panoramic view of the whole likely loss events. Sometimes
people wish to use average information to evaluate the risk. As a counterpart
of Markowitz’s mean-variance model, Huang [33] proposed credibilistic mean-
variance model for portfolio selection with fuzzy returns.

Let ξi represent the fuzzy returns of the i-th securities and xi the in-
vestment proportions in the i-th securities, i = 1, 2, · · · , n, respectively. The
philosophy of the mean-variance model is to pursue the maximum expected
return with the variance not greater than the preset level. Let γ be the maxi-
mum variance level the investors can tolerate. The credibilistic mean-variance
selection model is expressed as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

maxE[x1ξ1 + x2ξ2 + · · · + xnξn]

subject to:

V [x1ξ1 + x2ξ2 + · · · + xnξn] ≤ γ

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n

(3.60)
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where E denotes the expected value operator, and V the variance operator
of the fuzzy variables. The constraint V [x1ξ1 +x2ξ2 + · · ·+xnξn] ≤ γ ensures
that the optimal portfolio will be selected only from the portfolios whose
average square deviations from the expected return are not greater than the
tolerable level.

Sometimes, the investors may preset a level of expected return. Then the
philosophy of mean-variance model becomes to minimize variance value of
the portfolio with the expected value of the portfolio not less than this preset
expected return level. Thus the credibilistic mean-variance model is expressed
in the following way:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

min V [x1ξ1 + x2ξ2 + · · · + xnξn]

subject to:

E[x1ξ1 + x2ξ2 + · · · + xnξn] ≥ λ

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n

(3.61)

where λ represents the minimum expected return the investors feel satisfac-
tory. The constraint E[x1ξ1 +x2ξ2 + · · ·+xnξn] ≥ λ ensures that the optimal
portfolio is selected only among those satisfactory portfolios, i.e., the portfo-
lios whose expected return will not be less than the preset expected return
level.

From Models (3.60) and (3.61), we can see that if we change the preset
variance value or expected value, we will get different optimal solution. A
portfolio is efficient if it is impossible to obtain higher expected return with
no greater variance value, or it is impossible to obtain less variance value with
no less expected return. All efficient portfolios make up the efficient frontier.
An efficient portfolio is in fact an solution of the following optimization model
with two objectives:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

maxE[x1ξ1 + x2ξ2 + · · · + xnξn]

min V [x1ξ1 + x2ξ2 + · · · + xnξn]

subject to:

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n.

(3.62)

Different investors will find different optimal portfolios from the efficient fron-
tier according to their own preferences to risk aversion, i.e., tradeoff of vari-
ance and expected return.
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3.5.2 Crisp Equivalent

According to the properties of triangular fuzzy variable, trapezoidal fuzzy
variable and normal fuzzy variable, we give the crisp equivalents of credibilis-
tic mean-variance model in some special cases.

When all the security returns are described by symmetrical triangular
fuzzy variables ξi = (ai, bi, ci), the mean-variance model (3.60) becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
n∑

i=1

aixi + 2
n∑

i=1

bixi +
n∑

i=1

cixi

subject to:

n∑

i=1

cixi −
n∑

i=1

aixi ≤
√

24γ

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n.

(3.63)

When all the security returns are described by symmetrical trapezoidal
fuzzy variables ξi = (ai, bi, ci, di), the mean-variance model (3.60) becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
n∑

i=1

aixi +
n∑

i=1

bixi +
n∑

i=1

cixi +
n∑

i=1

dixi

subject to:
( n∑

i=1

dixi −
n∑

i=1

aixi

)2

+
( n∑

i=1

cixi −
n∑

i=1

bixi

)2

+
( n∑

i=1

dixi −
n∑

i=1

aixi

)( n∑

i=1

cixi −
n∑

i=1

bixi

)
≤ 24γ

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n.

(3.64)

When all the security returns are described by normal fuzzy variables
ξi ∼ N (ei, σi), the mean-variance model (3.60) becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

max e1x1 + e2x2 + · · · + enxn

subject to:

σ1x1 + σ2x2 + · · · + σnxn ≤ √
γ

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n.

(3.65)
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3.5.3 An Example

Suppose an investor wants to select his/her portfolio from the ten securities
whose returns are given in Table 3.8. If the investor adopts the mean-variance
selection idea, and set the minimum expected return at 0.07. Then accord-
ing to the credibilistic mean-variance model, the investor should select the
portfolio according to the following model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

min V [ξ1x1 + ξ2x2 + · · · + ξ10x10]

subject to:

E[ξ1x1 + ξ2x2 + · · · + ξ10x10] ≥ 0.07

x1 + x2 + · · · + x10 = 1

xi ≥ 0, i = 1, 2, · · · , 10.

(3.66)

According to the properties of triangular fuzzy variable, we change Model
(3.66) into the following crisp form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
10∑

i=1

cixi −
10∑

i=1

aixi

subject to:
10∑

i=1

(aixi + 2bixi + cixi) ≥ 0.28

x1 + x2 + · · · + x10 = 1

xi ≥ 0, i = 1, 2, · · · , 10.

(3.67)

Table 3.8 Fuzzy Return Rates of Ten Securities

Security i ξi = (ai, bi, ci) Security i ξi = (ai, bi, ci)
1 (-0.08, 0.02, 0.12) 6 (−0.09, 0.06, 0.15)
2 (-0.1, 0.04, 0.14) 7 (−0.16, 0.09, 0.25)
3 (-0.12, 0.05, 0.17) 8 (−0.18, 0.06, 0.24)
4 (-0.11, 0.06, 0.17) 9 (−0.15, 0.08, 0.23)
5 (-0.12, 0.06, 0.18) 10 (−0.22, 0.1, 0.32)

Table 3.9 Allocation of Money to Ten Securities

Security i 1 2 3 4 5
Allocation of money 0.00% 0.00 % 0.00% 0.00% 0.00%

Security i 6 7 8 9 10
Allocation of money 0.00 % 66.67 % 0.00 % 0.00% 33.33%
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By using “Solver” in “Excel”, in order to minimize the variance with the
expected return not less than 0.07, the investor should allocate his/her money
according to Table 3.9. The objective value of Model (3.67) is 0.433, which
means the minimum variance is 0.4332/24 = 0.0086.

3.5.4 Mean-Semivariance Model

When the membership functions of the security returns are asymmetrical,
variance becomes a deficient measure of risk because when eliminating vari-
ance both lower and higher deviations from the expected value are eliminated,
yet higher deviations are what we want. Empirical evidences [3, 12, 16, 86]
show that there do exist cases that security returns are not symmetrically
distributed. Therefore, Huang [37] defined semivariance of fuzzy variable that
only measures the lower deviation from the expected value and proposed cred-
ibilistic mean-semivariance model in which semivariance replaces variance as
the measure of risk.

Let xi be the investment proportions in securities i, and ξi the i-th fuzzy
security returns, i = 1, 2, · · · , n, respectively. Similar to mean-variance model,
the philosophy of the mean-semivariance model is to maximize the expected
return at the given level of risk. Substituting variance with semivariance, we
have the credibilistic mean-semivariance model as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

max E[x1ξ1 + x2ξ2 + · · · + xnξn]
subject to:

SV [x1ξ1 + x2ξ2 + · · · + xnξn] ≤ γ

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n

(3.68)

where γ denotes the maximum semivariance level the investors can tolerate, E
the expected value operator, and SV the semivariance of the fuzzy variables.

Sometimes the investors may preset a minimum acceptable expected return
level, then the mean-semivariance model is expressed as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min SV [x1ξ1 + x2ξ2 + · · · + xnξn]
subject to:

E[x1ξ1 + x2ξ2 + · · · + xnξn] ≥ λ

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n
where λ denotes the minimum expected return that the investors can accept.

From Theorem 3.8 we know that when the membership functions of the
security returns are symmetrical, optimal portfolio can be obtained no matter
whether we take the variance or the semivariance as the measurement of risk.
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However, when membership functions of security returns are asymmetrical,
Theorem 3.7 indicates that taking semivariance or variance as the measure-
ment of risk will yield different results. So semivariance can be regarded as
an improvement of variance as the measure of risk because semivariance is
free from the reliance on symmetrical security returns.

3.6 Entropy Optimization Model

Given a fuzzy portfolio return, investors will usually regard the portfolio to
be risky if it is difficult to predict the specific value that the portfolio return
may take. Fuzzy entropy measures the difficulty degree of the prediction.
When a portfolio return distributes dispersively, the entropy of the return
is great, which implies that the return contains much uncertainty and the
prediction is difficult; when the portfolio return distributes concentratively,
the entropy of the return is small, which implies that the return contains
little uncertainty and the prediction is easy. In addition, entropy can well
reflect the dispersive degree of the portfolio return no matter if the member-
ship function of the portfolio return is symmetrical or not. Therefore, Huang
[39] suggested entropy being another alternative measure of risk and pro-
posed entropy optimization model in which the philosophy is to pursue the
maximum expected return among the portfolios whose return distribution is
concentrative enough to the required level.

Let ξi denote the i-th fuzzy security returns, xi the investment proportions,
i = 1, 2, · · · , n, respectively, and γ the preset entropy level. The mean-entropy
model is as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

maxE[x1ξ1 + x2ξ2 + · · · + xnξn]

subject to:

H [x1ξ1 + x2ξ2 + · · · + xnξn] ≤ γ

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n

(3.69)

where E is the expected value operator and H the entropy. The constraint
H [x1ξ1 + x2ξ2 + · · · + xnξn] ≤ γ means that the optimal portfolio must be
selected from the portfolios whose returns are concentrative enough to be less
than a preset tolerable level. Compared with the mean-variance model (3.60),
entropy is more general than variance as a measure of risk because entropy
is free from reliance on symmetrical distribution of the security returns, i.e.,
entropy remains an effective measure of risk when the membership functions
of the security returns are asymmetrical. However, when security returns
are symmetrical triangular fuzzy variables or the normally distributed fuzzy
variables, the optimal solution of the mean-entropy model (3.69) is also the
optimal solution of of the mean-variance model (3.60) and vice versa because
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in these two special cases, entropies can be expressed by the product of some
constant and the corresponding variances.

3.7 Hybrid Intelligent Algorithm

We have given the crisp equivalents of the fuzzy portfolio selection models in
some special cases so that we can find the optimal portfolios by traditional
methods. However, in many cases it is difficult to convert the fuzzy selection
models into their equivalents. To produce a general solution algorithm, we
integrate fuzzy simulation and genetic algorithm (GA) to produce the hybrid
intelligent algorithm. In our algorithm, generally speaking, fuzzy simulation
is used to calculate the objective and constraint values, and GA is employed
to find the optimal solution. A scheme of the algorithm (Fig. 3.15) is given
as follows:

Fig. 3.15 Hybrid intelligent algorithm.
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3.7.1 Fuzzy Simulation

Fuzzy simulation has been studied by many scholars. In particular, Liu [56]
introduced in detail the technique based on the concept of credibility. Here,
we will introduce the simulation procedure for calculating the objective and
constraint values appeared in our optimization models, i.e., the expected
value, the variance value, the semivariance value, the β-return value, the
credibility value, and the entropy value of the fuzzy portfolio return.

Let ξi be fuzzy returns with membership functions μi, and xi the invest-
ment proportions, i = 1, 2, · · · , n, respectively, where n is the number of secu-
rities. For convenience, let ξ = (ξ1, ξ2, · · · , ξn), and x = (x1, x2, · · · , xn). Let
μ = (μ1, μ2, · · · , μn), and denote the membership function vector of ξ. Since
the variance value and the semivariance value is a kind of expected value,
we can know the simulation procedure for them if we know the simulation
procedure for calculating the expected value. In addition, if we know how to
calculate Cr{f(x, ξ) ≥ r}, we can know how to calculate Cr{f(x, ξ) ≤ r}
because Cr{f(x, ξ) ≤ r} = Cr{−f(x, ξ) ≥ −r} = Cr{f

′
(x, ξ) ≥ r

′}. Thus,
we in fact only need to calculate the values of the following four types of
uncertain functions:

U1 : x → Cr{f(x, ξ) ≥ r},

U2 : x → E [f(x, ξ)] ,

U3 : x → max{f̄ |Cr{f(x, ξ) ≥ f̄} ≥ β},

U4 : x → H [f(x, ξ)].

Simulation for Credibility Value

According to Theorem 3.4 and the credibility inversion theorem, we know
that

Cr {f(x, ξ) ≥ r} =
1
2

(

sup
x1,x2,···,xn∈	

{

min
1≤i≤n

μi(xi)
∣
∣ f(x, ξ) ≥ r

}

+1 − sup
x1,x2,···,xn∈	

{

min
1≤i≤n

μi(xi)
∣
∣ f(x, ξ) < r

})

.

Thus we j times randomly generate real numbers uij such that μi(uij) ≥
ε, i = 1, 2, · · · , n, j = 1, 2, · · · , N respectively, where ε is a sufficiently small
number, and N is a sufficiently large number. Let uj = (u1j , u2j, · · · , unj),
and μ(uj) = μ1j(u1j) ∧ μ2j(u2j) ∧ · · · ∧ μnj(unj). Then the credibility
Cr {f(x, ξ) ≥ r} can be obtained approximately by the following formula

L =
1
2

(

max
1≤j≤N

{
μ(uj)

∣
∣ f(x, ξ) ≥ r

}
+ 1 − max

1≤j≤N

{
μ(uj)

∣
∣ f(x, ξ) < r

}
)

,

where N is a sufficiently large number.
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The fuzzy simulation process for computing Cr {f(x, ξ) ≥ r} is summa-
rized as follows:

Step 1. Let j = 1.
Step 2. Randomly generate real numbers uij such that μi(uij) ≥ ε, i =

1, 2, · · · , n, j = 1, 2, · · · , N respectively, where ε is a sufficiently small num-
ber, and N is a sufficiently large number.

Step 3. Set uj = (u1j , u2j, · · · , unj), and μ(uj) = μ1j(u1j) ∧ μ2j(u2j) ∧
· · · ∧ μnj(unj).

Step 4. j ← j + 1. Turn back to Step 2 if j ≤ N , where N is a sufficiently
large number. Otherwise, turn to Step 5.

Step 5. Return L.

Simulation for Expected Value

According to the definition of expected value of fuzzy variable, we have

E[f(x, ξ)] =
∫ +∞

0

Cr{f(x, ξ) ≥ t}dt −
∫ 0

−∞
Cr{f(x, ξ) ≤ t}dt.

Thus we design the procedure as follows:

Step 1. Set E = 0.
Step 2. Randomly generate real numbers uik such that μi(uij) ≥ ε, i =

1, 2, · · · , n, j = 1, 2, · · · , N respectively, where ε is a sufficiently small num-
ber, and N is a sufficiently large number. Denote uj = (u1j , u2j , · · · , unj).

Step 3. Set a = f(x, u1) ∧ f(x, u2) ∧ · · · ∧ f(x, uN ), b = f(x, u1) ∨
f(x, u2) ∨ · · · ∨ f(x, uN ).

Step 4. Randomly generate t from [a, b].
Step 5. If t ≥ 0, then E ← E + Cr{f(x, ξ) ≥ t}.
Step 6. If t < 0, then E ← E − Cr{f(x, ξ) ≤ t}.
Step 7. Repeat the fourth to sixth steps for N times, where N is a suffi-

ciently large number.
Step 8. E [f(x, ξ)] = a ∨ 0 + b ∧ 0 + E · (b − a)/N .

Simulation for β-Return

In order to compute the uncertain function U3, we randomly generate real
numbers uij such that μi(uij) ≥ ε, i = 1, 2, · · · , n, j = 1, 2, · · · , N respectively,
where ε is a sufficiently small number, and N is a sufficiently large number.
Denote uj = (u1j , u2j, · · · , unj). For any real numbers r, we set

D(r) =
1
2

(

max
1≤j≤N

{ min
1≤i≤n

μi(uj)|f(x, uj) ≥ r}+

1 − max
1≤j≤N

{ min
1≤i≤n

μi(uj)|f(x, uj) < r}
)

.
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Since D(r) is a monotonous function of r, we may employ a bisection search
to find the maximal value r such that D(r) ≥ β. This value is an estimation
of U3, i.e., the β-return value. The fuzzy simulation process for computing
U3 is summarized as follows:

Step 1. Randomly generate real numbers uij such that μi(uij) ≥ ε, i=1, 2,
· · · , n, j = 1, 2, · · · , N, respectively, where ε is a sufficiently small positive
number, and N a sufficiently large number. Denote uj = (u1j , u2j, · · · , unj).

Step 2. Find the maximal value r such that D(r) ≥ β by the bisection
search.

Step 3. Return r.

Simulation for Entropy Value

According to the entropy definition, we know that

H [f(x, ξ)] =
∫ +∞

−∞
S(Cr{f(x, ξ) = t})dt

where S(y) = −y ln y − (1 − y) ln(1 − y).
Thus we design the fuzzy simulation procedure for calculating the entropy

H [f(x, ξ)] as follows:

Step 1. Set H = 0.
Step 2. Randomly generate real numbers uij such that μi(uij) ≥ ε, i = 1, 2,

· · · , n, j = 1, 2, · · · , N, respectively, where ε is a sufficiently small positive
number, and N a sufficiently large number. Denote uj = (u1j , u2j, · · · , unj).

Step 3. Set a = min
1≤j≤N

f(x, uj), and b = max
1≤j≤N

f(x, uj).

Step 4. Randomly generate t from [a, b].
Step 5. H ← H − (y ln y + (1 − y) ln(1 − y)), where y = Cr{f(x, ξ) = t}.
Step 6. Repeat the fourth and fifth steps for N times, where N is a suffi-

ciently large number.
Step 7. H [f(x, ξ)] = H · (b − a)/N .

Example 3.46. Let ξ1 be a triangular fuzzy security return (−0.1, 0.1, 0.3),
and ξ2 the normal fuzzy security return N (0.1, 0.1). Portfolio A is composed of
40% of ξ1 and the rest 60% of ξ2. A run of the simulation with 4000 cycles shows
that the credibility value of the portfolio return not greater than 0 is 0.2490, i.e.,

Cr{0.4ξ1 + 0.6ξ2 ≤ 0} = 0.2490.

The simulation procedures are as follows:

Step 1. Let j = 1.
Step 2. Randomly generate real numbers a from (−0.1, 0.3) and b from
(−0.4, 0.6) (we generate b from (−0.4, 0.6) because μ(t) ≈ 0 when t < e− 5σ,
and μ(t) ≈ 0 when t > e + 5σ, where e is the expected value and σ the
positive square root of variance of the normal fuzzy variable).
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Step 3. Calculate μ(a) =
a + 0.1

0.1 + 0.1
if a ≤ 0.1, and μ(a) =

0.3 − a

0.3 − 0.1
if

a > 0.1, and μ(b) = 2
(

1 + exp
(

π|b − 0.1|√
6 × 0.1

))−1

.

Step 4. Set νj = μ(a) ∧ μ(b).
Step 5. j ← j + 1. Turn back to Step 2 if j ≤ 4000. Otherwise, turn to
Step 6.
Step 6. Return

L =
1
2

(

max
1≤j≤N

{
νj

∣
∣ 0.4a + 0.6b ≤ 0

}
+ 1 − max

1≤j≤N

{
νj

∣
∣ 0.4a + 0.6b > 0

}
)

.

Example 3.47. For the above mentioned portfolio A, assume the investors
set the confidence level β = 0.9. A run of the simulation with 3000 cycles
shows that the 0.9-return value of the portfolio is -0.0591, i.e.,

ξ(0.9) = sup{f̄ |Cr{0.4ξ1 + 0.6ξ2 ≥ f̄} ≥ 0.9} = −0.0591.

The simulation procedures are as follows:

Step 1. Randomly generate real numbers aj from (−0.1, 0.3) and bj from
(−0.4, 0.6) for j = 1, 2, · · · , 3000.

Step 2. Calculate μ(aj) =
a + 0.1

0.1 + 0.1
if aj ≤ 0.1, and μ(aj) =

0.3 − a

0.3 − 0.1
if

aj > 0.1, and μ(bj) = 2
(

1 + exp
(

π|bj − 0.1|√
6 × 0.1

))−1

.

Step 3. Set νj = μ(aj) ∧ μ(bj).
Step 4. Let

D(r)=
1
2

(

max
1≤j≤N

{
νj

∣
∣ 0.4a + 0.6b ≤ r

}
+ 1− max

1≤j≤N

{
νj

∣
∣ 0.4a + 0.6b > r

}
)

.

Find the maximal value r such that D(r) ≥ 0.9 by the bisection search.
Step 5. Return r.

Example 3.48. Let ξ1 be a triangular fuzzy security return (−0.2, 0, 0.4),
and ξ2 the normal fuzzy security return N (0.1, 0.1). Portfolio A is composed
of 40% of ξ1 and the rest 60% of ξ2. A run of the simulation with 8000 cycles
shows that the semivariance value of the portfolio, i.e.,

SV [0.4ξ1 + 0.6ξ2] = 0.0432.

The simulation procedures are as follows:

Step 1. Randomly 8000 times generate real numbers ai from (−0.2, 0.4) and
bi from (−0.4, 0.6), i = 1, 2, · · · , 8000.
Step 2. If 0.4ai +0.6bi −0.08 ≤ 0 (the expected value of Portfolio A is 0.08),
set ri = (0.4ai + 0.6bi − 0.08)2; otherwise, set ri = 0.
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Step 3. Set a = r1 ∧ r2 ∧ · · · ∧ r8000 and b = r1 ∨ r2 ∨ · · · ∨ r8000.
Step 4. Set V = 0.
Step 5. Randomly generate t from [a, b].
Step 6. If t ≥ 0, then V ← V + Cr{(0.4ξ1 + 0.6ξ2 − 0.08)2 ≥ t}; if t < 0,
then V ← V + 0.
Step 7. Repeat the fifth to sixth steps 8000 times.
Step 6. V [0.4ξ1 + 0.6ξ2] = a ∨ 0 + b ∧ 0 + V · (b − a)/8000.

Example 3.49. For the above mentioned portfolio A, a run of the simulation
with 8000 cycles shows that the variance value of the portfolio, i.e.,

V [0.4ξ1 + 0.6ξ2] = −0.0710.

3.7.2 Hybrid Intelligent Algorithm

When the objective and constraint values have been calculated by fuzzy simu-
lation, simulation results are integrated into the GA introduced in Subsection
2.6.3 to produce a hybrid intelligent algorithm. After selection, crossover and
mutation, the new population is ready for its next evaluation. The hybrid
intelligent algorithm will continue until a given number of cyclic repetitions
of the above steps is met. We summarize the algorithm as follows:

Step 1. Initialize pop size chromosomes.
Step 2. Calculate the objective values for all chromosomes by fuzzy

simulation.
Step 3. Give the rank order of the chromosomes according to the objective

values, and compute the values of the rank-based evaluation function of
the chromosomes.

Step 4. Compute the fitness of each chromosome according to the rank-
based-evaluation function.

Step 5. Select the chromosomes by spinning the roulette wheel.
Step 6. Update the chromosomes by crossover and mutation operations.
Step 7. Repeat the second to the sixth steps for a given number of

cycles.
Step 8. Take the best chromosome as the solution of portfolio selection.

3.7.3 Numerical Example

Suppose an investor adopts credibility minimization selection idea and wants
to choose an optimal portfolio from ten securities of which five security re-
turn rates are normal fuzzy variables and the rest five the triangular fuzzy
variables. The prediction of the return rates of the ten securities is given in
Table 3.10. Suppose the minimum expected return the investor can accept
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is 0.031, and the investor wants to minimize the occurrence credibility of
portfolio return below a disaster level -0.08. According to the credibility min-
imization selection idea introduced in Subsection 3.4.1, we build the model as
follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

min Cr{ξ1x1 + ξ2x2 + · · · + ξ10x10 ≤ −0.08}
subject to:

E[ξ1x1 + ξ2x2 + · · · + ξ10x10] ≥ 0.031

x1 + x2 + · · · + x10 = 1

xi ≥ 0, i = 1, 2, · · · , 10.

(3.70)

The constraint E[ξ1x1 + ξ2x2 + · · · + ξ10x10] can be calculated via

5∑

i=1

eixi +
10∑

i=6

1
4
(aixi + 2bixi + cixi).

The objective (i.e., credibility value) is calculated by fuzzy simulation. Then
the simulation result is integrated into the GA introduced in Subsection 2.6.3
to produce the hybrid intelligent algorithm. A run of the algorithm with 10000
generations shows that in order to minimize the credibility of portfolio return
not greater than -0.08 with the constraint that the expected return of the
portfolio should not be less than 0.031, the investor should allocate his/her
money according to Table 3.11. The minimum credibility level of portfolio

Table 3.10 Fuzzy Return Rates of Ten Securities

Security i ξi ∼ N (ei, σi) Security i ξi = (ai, bi, ci)
1 N (0.033, 0.12) 6 (−0.08, 0.026, 0.09)
2 N (0.032, 0.11) 7 (−0.09, 0.030, 0.10)
3 N (0.033, 0.14) 8 (−0.15, 0.032, 0.16)
4 N (0.031, 0.11) 9 (−0.12, 0.04, 0.10)
5 N (0.025, 0.07) 10 (−0.12, 0.05, 0.12)

Table 3.11 Allocation of Money to Ten Securities

Security i 1 2 3 4 5
Allocation of money 0.00% 85.90% 0.00% 0.00% 0.00%

Security i 6 7 8 9 10
Allocation of money 0.00% 0.00 % 0.00% 0.00% 14.10%
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return not greater than -0.08 is 0.1805. The hybrid intelligent algorithm is
summarized below.

Hybrid Intelligent Algorithm:

Step 1. Determine representation structure of solutions by chromosomes.
In the example, the genes c1, c2, · · · , c10 in a chromosome C = (c1, c2, · · · , cn)
are restricted in the interval [0, 1]. A solution x = (x1, x2, · · · , x10) is
matched with a chromosome in the following way,

xi =
ci

c1 + c2 + · · · + c10
, i = 1, 2, · · · , n

which ensures that x1 + x2 + · · · + x10 = 1 always holds.
Step 2. Set parameters Pc = 0.3, Pm = 0.2, pop size = 30 in the GA.
Step 3. Generate the chromosomes C = (c1, c2, · · · , c10) from [0, 1]10.
Step 4. Calculate the expected return for each chromosome according to

the formula
5∑

i=1

eixi +
10∑

i=6

1
4
(aixi + 2bixi + cixi).

Then check the feasibility of the chromosome as follows:

If
5∑

i=1

eixi +
10∑

i=6

1
4
(aixi + 2bixi + cixi) ≥ 0.031

return 1;
return 0;
in which 1 means feasible, and 0 non-feasible.

Step 5. Repeat the third and fourth steps until feasible pop size numbers
of chromosomes are produced.

Step 6. Calculate the objective values (i.e., credibility values) via fuzzy
simulation and give the rank order of the chromosomes according to the
objective values to make the better chromosomes take the smaller ordinal
numbers.

Step 7. Compute the values of the rank-based evaluation function for all
the chromosomes.

Step 8. Calculate the fitness of each chromosome according to the rank-
based-evaluation function.

Step 9. Select the chromosomes by spinning the roulette wheel.
Step 10. Update the chromosomes by crossover and mutation operations.
Step 11. Repeat the sixth to tenth steps for 10000 cycles.
Step 12. Take the best chromosome as the solution of the portfolio selec-

tion problem.



Chapter 4
Uncertain Portfolio Selection

Though randomness and fuzziness are two basic types of uncertain phenom-
ena, uncertainty in real life is varied. Sometimes, uncertainty behaves neither
randomly nor fuzzily. For example, the occurrence chance of a security price
falling in the interval of [100, 110] is 30%, and the occurrence chance of the
security price in the interval of [110, 120] is 20%. Then what is the occurrence
chance of the security price in the interval of [100, 120]? A survey shows that
some people believe that the occurrence chance should be in somewhere that
is not less than 30% but not greater than 50%. In this case, the security price
is neither random nor fuzzy. Uncertainty theory which is founded by Liu [60]
in 2007 provides a new tool to handle this type of uncertainty. Uncertain
portfolio selection, a new topic introduced by Huang [42], deals with portfo-
lio selection by means of uncertainty theory when portfolio return is neither
random nor fuzzy.

This chapter will first introduce some fundamentals about uncertainty the-
ory concerning uncertain portfolio selection. Then based on different defini-
tions of risk, we will introduce a spectrum of uncertain portfolio selection
models. Methods for solving the models will also be provided.

4.1 Fundamentals of Uncertainty Theory

Uncertainty theory is a branch of mathematics based on normality, mono-
tonicity, self-duality, countable subadditivity, and product measure axioms
for studying the uncertain phenomenon which is neither random nor fuzzy.
Uncertain measure which is the core of the uncertainty theory is used to
measure the truth value of an uncertain event.

Uncertain Measure and Uncertainty Space

Definition 4.1. (Liu [60]) Let Γ be a nonempty set, and � a σ-algebra over
Γ . Each element Λ ∈ � is called an event. To each event Λ a number �{Λ}
indicates the level that Λ will occur. The set function � is called an uncertain
measure if it satisfies the following four axioms

X. Huang: Portfolio Analysis: From Probab. to Credibilistic, STUDFUZZ 250, pp. 117–156.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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(Axiom 1) (Normality) �{Γ} = 1.
(Axiom 2) (Monotonicity) �{Λ1} ≤�{Λ1} whenever Λ1 ⊂ Λ2.
(Axiom 3) (Self-Duality) �{Λ} +�{Λc} = 1.
(Axiom 4) (Countable Subadditivity) For every countable sequence of events
{Λi}, we have

�

{ ∞⋃

i=1

Λi

}

≤
∞∑

i=1

�{Λi}.

The triplet (Γ,�,�) is called an uncertainty space.

Remark 4.1. Self-duality is consistent with the law of contradiction and the
law of excluded middle. In Question 2 in page 66 in Chapter 3, we have shown
that without self-duality, a measure would be rather strange because the judge-
mentmade based on the measurewithout self-dualityproperty wouldbe in con-
tradiction with the law of contradiction and the law of excluded middle.

Remark 4.2. A measure would be rather strange if it has no subadditivity
property. For example [64], assume we have a universal set consisting of three
elements. Let us define a set function that takes value 0 for each singleton
and value 1 for each set with at least two elements. Then such a set function
satisfies axioms 1, 2 and 3 but does not satisfy subadditivity. It is seen that
pathology would occur if we used such a kind of set function as a measure.

Remark 4.3. A measure would be rather strange if countable subadditivity
axiom were replaced by finite subadditivity axiom. For example [64], assume
we have a universal set consisting of all real numbers. Let us define a set
function that takes value 0 if the set is bounded, 0.5 if both the set and
complement are unbounded, and 1 if the complement of the set is bounded.
Then such a set function satisfies axioms 1, 2, 3 and finite subadditivity
instead of countable subadditivity. It is seen that pathology would occur if
we used such a kind of set function as a measure.

Remark 4.4. Let Γ be a nonempty set, � a σ-algebra over Γ , and � an
uncertain measure. From Axioms 1 and 3 we know �{∅} = 0. From axiom
2 we know 0 ≤ �{Λ} ≤ 1 for any Λ ∈ � because ∅ ⊂ Λ ⊂ Γ. That is, the
value of an uncertain measure of an uncertain event is in the interval [0, 1].

Product Measure Axiom

Product uncertain measure and Product Measure Axiom was defined by Liu
[63] in 2009.

Axiom 5. (Product Measure Axiom, Liu [63]) Let (Γk,�k,�k) be uncer-
tainty spaces for k = 1, 2, · · · , n. Write

Γ = Γ1 × Γ2 × · · · × Γn, � = �1 × �2 × · · · × �n.
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Then the product uncertain measure on Γ is

�{Λ} =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup
Λ1×Λ2×···×Λn⊂Λ

min
1≤k≤n

�k{Λk},

if sup
Λ1×Λ2×···×Λn⊂Λ

min
1≤k≤n

�k{Λk} > 0.5

1 − sup
Λ1×Λ2×···×Λn⊂Λc

min
1≤k≤n

�k{Λk},

if sup
Λ1×Λ2×···×Λn⊂Λc

min
1≤k≤n

�k{Λk} > 0.5

0.5, otherwise

(4.1)

for each Λ ∈ �.

Theorem 4.1. (Peng [75]) The product uncertain measure defined by Equa-
tion (4.1) is an uncertain measure.

Uncertain Variable

Definition 4.2. (Liu [60]) An uncertain variable is defined as a measurable
function from an uncertainty space (Γ,�,�) to the set of real numbers.

Remark 4.5. Since an uncertain variable ξ is a measurable function, for any
Borel set B of real numbers, the set

{ξ ∈ B} = {γ ∈ Γ |ξ(γ) ∈ B} ∈ �,

which means that {ξ ∈ B} is an event. In practice, we usually express the
event {ξ ∈ B} by {ξ ≤ t} or {ξ ≥ t} where t is a real number. For example, let
ξ represent an uncertain portfolio return. Then the event that the portfolio
return is not less than 0.10 can be expressed by {ξ ≥ 0.10}.

As a practitioner, we are not interested in the specific nature of the sam-
ple space Γ nor the specific function which defines the uncertain variable ξ.
Instead, we are interested in the values of the uncertain measure of the un-
certain variable taking some real values, for example, �{γ ∈ Γ |ξ(γ) ≤ t}, or
simply �{ξ ≤ t}. In uncertain portfolio selection, we are also only interested
in the values of the uncertain measure that the portfolio return takes certain
values.

Definition 4.3. Let ξ1 and ξ2 be uncertain variables defined on the uncer-
tainty space (Γ,�,�). We say ξ1 = ξ2 if ξ1(γ) = ξ2(γ) for almost all γ ∈ Γ.
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Uncertainty Distribution

Definition 4.4. (Liu [60]) The uncertainty distribution Φ : 
 → [0, 1] of an
uncertain variable ξ is defined by

Φ(t) = �{ξ ≤ t}. (4.2)

Remark 4.6. An uncertain variable has a unique uncertainty distribution
function, but an uncertainty distribution function may produce multiple un-
certain variables. For example, let Γ = {γ1, γ2} and �{γ1} = �{γ2} = 0.5.
Then (Γ,�,�) is an uncertainty space. Define two uncertain variables

ξ1(γ) =

{
−1, if γ = γ1

1, if γ = γ2,
ξ2(γ) =

{
1, if γ = γ1

−1, if γ = γ2.

We can find that ξ1 and ξ2 have the same uncertainty distribution, i.e.,

Φ(t) =

⎧
⎪⎨

⎪⎩

0, if t < −1
0.5, if − 1 ≤ t < 1
1, if t ≥ 1.

However, it is clear that ξ1 and ξ2 are not the same uncertain variable in
the sense of Definition 4.3. Since one uncertainty distribution function may
produce multiple uncertain variables, we can not define an uncertain variable
via distribution function. An axiomatic system is needed to define an uncer-
tain variable and to discuss the properties concerning the uncertain variable
such that the discussion is precise and consistent. However, in application, it
is enough for us to start with uncertainty distributions to study the behavior
of the uncertain variables and make our decisions.

Example 4.1. Let ξ be an uncertain variable with uncertainty distribution
Φ. Then for any number k > 0, the uncertainty distribution of kξ

Ψ(t) = Φ

(
t

k

)

and Ψ−1(α) = kΦ−1(α). (4.3)

Theorem 4.2. (Peng and Iwamura [77], Sufficient and Necessary Condition
for Uncertainty Distribution) A function Φ : 
 → [0, 1] is an uncertainty
distribution if and only if it is an increasing function except Φ(t) ≡ 0 and
Φ(t) ≡ 1.

Two Special Uncertain Variables

Definition 4.5. An uncertain variable ξ is called a linear uncertain variable
if it has a linear uncertainty distribution function
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Φ(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if t ≤ a

t − a

b − a
, if a ≤ t ≤ b

1, otherwise.

We denote it by ξ = �(a, b) where a and b are real numbers and a < b.
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Fig. 4.1 Uncertainty distribution of a linear uncertain variable.
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Fig. 4.2 Uncertainty distribution of a normal uncertain variable.

Definition 4.6. An uncertain variable ξ is called a normal uncertain variable
if it has a normal uncertainty distribution function

Φ(t) =
(

1 + exp
(

π(e − t)√
3σ

))−1

, t ∈ R, σ > 0.

We denoted it by ξ ∼ N (e, σ).

Independence

Definition 4.7. (Liu [63]) The uncertain variables ξ1, ξ2, · · · , ξn are said to
be independent if
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�

{ n⋂

i=1

{ξi ∈ Bi}
}

= min
1≤i≤n

�{ξi ∈ Bi} (4.4)

for any Borel sets B1, B2, · · · , Bn of real numbers.

Theorem 4.3. (Liu [64]) The uncertain variables ξ1, ξ2, · · · , ξn are indepen-
dent if and only if

�

{ n⋃

i=1

{ξi ∈ Bi}
}

= max
1≤i≤n

�{ξi ∈ Bi}. (4.5)

Proof: Since the uncertain measure is self-dual, the uncertain variables
ξ1, ξ2, · · · , ξn are independent if and only if

�

{ n⋃

i=1

{ξi ∈ Bi}
}

= 1 −�
{ n⋂

i=1

{ξi ∈ Bc
i }

}

= 1 − min
1≤i≤n

�{ξi ∈ Bc
i } = max

1≤i≤n
�{ξi ∈ Bi}.

Thus, the theorem is proven.

Operational Law

Theorem 4.4. (Liu [63]) Let ξ1, ξ2, · · · , ξn be independent uncertain vari-
ables, and f : 
n → 
 a measurable function. Then ξ = f(ξ1, ξ2, · · · , ξn) is
an uncertain variable such that

�{ξ ∈ B} =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup
f(B1,B2,···,Bn)⊂B

min
1≤k≤n

�{ξk ∈ Bk},

if sup
f(B1,B2,···,Bn)⊂B

min
1≤k≤n

�{ξk ∈ Bk} > 0.5

1 − sup
f(B1,B2,···,Bn)⊂Bc

min
1≤k≤n

�{ξk ∈ Bk},

if sup
f(B1,B2,···,Bn)⊂Bc

min
1≤k≤n

�{ξk ∈ Bk} > 0.5

0.5, otherwise
(4.6)

where B1, B2, · · · , Bn, B are Borel sets of real numbers, and f(B1, B2, · · · , Bn) ⊂
B means f(t1, t2, · · · , tn) ⊂ B for any t1 ∈ B1, t2 ∈ B2, · · · , tn ∈ Bn.

Proof: The theorem can be proven directly from the product measure axiom.

Theorem 4.5. (Liu [64]) Let ξ be an uncertain variable with uncertainty dis-
tribution Φ, and let f be a strictly increasing function. Then the uncertainty
distribution of f(ξ) can be obtained via
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Ψ(t) = Φ(f−1(t)) (4.7)

which can also be expressed by

Ψ−1(α) = f
(
Φ−1(α)

)
, 0 < α < 1. (4.8)

Proof: For any real numbers t, since f is a strictly increasing function, we have

f((−∞, f−1(t)]) = (−∞, t].
According to the operational law, we have

Ψ(t) = �{f(ξ) ∈ (−∞, t]} = �{ξ ∈ (−∞, f−1(t)]} = Φ(f−1(t)).

Theorem 4.6. (Peng [76]) Let ξ1, ξ2, · · · , ξn be independent uncertain vari-
ables with continuous uncertainty distributions Φ1, Φ2, · · · , Φn, respectively,
and Ψ the uncertainty distribution of the sum ξ1 + ξ2 + · · · + ξn. If Φ−1

1 (α),
Φ−1

2 (α), · · · , Φ−1
n (α) are unique for each α ∈ (0, 1), we have

Ψ−1(α) = Φ−1
1 (α) + Φ−1

2 (α) + · · · + Φ−1
n (α), 0 < α < 1. (4.9)

Proof: According to monotonicity property of uncertain measure, for any
given α ∈ (0, 1), we have

�

{
n∑

i=1

ξi ≤
n∑

i=1

Φ−1
i (α)

}

≥�
{

n⋂

i=1

(
ξi ≤ Φ−1

i (α)
)
}

.

Since ξ1, ξ2, · · · , ξn are independent uncertain variables, according to Equa-
tion (4.4), we have

�

{
n∑

i=1

ξi ≤
n∑

i=1

Φ−1
i (α)

}

≥ �
{

n⋂

i=1

(
ξi ≤ Φ−1

i (α)
)
}

= min
1≤i≤n

�{ξi ≤ Φ−1
i (α)} = min

1≤i≤n
α = α.

On the other hand, for any number ε > 0, we have

�

{
n∑

i=1

ξi ≤
n∑

i=1

Φ−1
i (α) − ε

}

≤ �
{

n⋃

i=1

(
ξi ≤ Φ−1

i (α) − ε

n

)
}

because uncertain measure is monotonous. Since ξ1, ξ2, · · · , ξn are indepen-
dent uncertain variables, according to Equation (4.5), we have

�

{
n∑

i=1

ξi ≤
n∑

i=1

Φ−1
i (α) − ε

}

≤ �
{

n⋃

i=1

(
ξi ≤ Φ−1

i (α) − ε

n

)
}

= max
1≤i≤n

�

{
ξi ≤ Φ−1

i (α) − ε

n

}
< max

1≤i≤n
α = α.
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It follows from the continuity of uncertainty distributions that

�{ξ1 + ξ2 + · · · + ξn ≤ Φ−1
1 (α) + Φ−1

2 (α) + · · · + Φ−1
n (α)} = α

which implies that

Ψ−1(α) = Φ−1
1 (α) + Φ−1

2 (α) + · · · + Φ−1
n (α).

Equation (4.9) is proven.

9999 Method A. Let ξi be uncertain variables with uncertainty distributions
Φi, and ki any positive numbers, i = 1, 2, · · · , n, respectively. Let Ψi repre-
sent the uncertainty distributions of kiξi, i = 1, 2, · · · , n, respectively. Then
according to Theorems 4.5, we have

Ψ−1
i (α) = kiΦ

−1
i (α).

Let Ψ represent the uncertainty distribution of k1ξ1 +k2ξ2 + · · ·+knξn. Then
according to Theorem 4.6, we have

Ψ−1(α) =
n∑

i=1

Ψ−1
i (α) =

n∑

i=1

kiΦ
−1
i (α).

That is, the uncertainty distribution Ψ of k1ξ1 + k2ξ2 + · · · + knξn can be
represented on a computer as follows:

αi 0.0001 0.0002 0.0003 · · · 0.9999
Φ−1

1 (αi) t1/1 t1/2 t1/3 · · · t1/9999

Φ−1
2 (αi) t2/1 t2/2 t2/3 · · · t2/9999

Φ−1
3 (αi) t3/1 t3/2 t3/3 · · · t3/9999

· · · · · · · · · · · · · · · · · ·
Φ−1

n (αi) tn/1 tn/2 tn/3 · · · tn/9999

Ψ−1(αi)
n∑

i=1

kiti/1

n∑

i=1

kiti/2

n∑

i=1

kiti/3 · · ·
n∑

i=1

kiti/9999

(4.10)

Remark 4.7. According to the precision requirement of the researcher, 9999
Method can also be a 99 Method or 999999 Method. For example, if the
precision is required to be higher, the above introduced 9999 Method becomes
999999 Method, and the uncertainty distribution of k1ξ1 + k2ξ2 + · · · + knξn

can be obtained as follows:

αi 0.000001 0.000002 0.000003 · · · 0.999999

Ψ−1(αi)
n∑

i=1

kiti/1

n∑

i=1

kiti/2

n∑

i=1

kiti/3 · · ·
n∑

i=1

kiti/999999
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Theorem 4.7. Let ξ1 and ξ2 be two independent linear uncertain variables
�(a1, b1) and �(a2, b2), respectively. Then the sum ξ1 + ξ2 is also a linear
uncertain variable, and

�(a1, b1) + �(a2, b2) = �(a1 + a2, b1 + b2). (4.11)

The product of a linear uncertain variable �(a, b) and a scalar number k > 0
is also a linear uncertain variable, and

k · �(a, b) = �(ka, kb). (4.12)

Proof: Suppose that Φ1 and Φ2 are uncertainty distributions of linear un-
certain variables ξ1 and ξ2, respectively. Then we have

Φ−1
1 (α) = (1 − α)a1 + αb1,

Φ−1
2 (α) = (1 − α)a2 + αb2.

According to Theorem 4.6, the uncertainty distribution Ψ of ξ1 + ξ2 can be
expressed by

Ψ−1(α) = Φ−1
1 (α) + Φ−1

2 (α) = (1 − α)(a1 + a2) + α(b1 + b2),

which implies that the sum of linear uncertain variable is also a linear uncer-
tain variable and

�(a1, b1) + �(a2, b2) = �(a1 + a2, b1 + b2).

Equation (4.11) is proven.
For a linear uncertain variable �(a, b), according to Theorem 4.5, when

k > 0, the uncertainty distribution Ψ of kξ is

Ψ(t) = Φ
( t

k

)
=

t/k − a

b − a
=

t − ka

k(b − a)
.

Thus, Equation (4.12) is proven.

Theorem 4.8. Let ξ1 and ξ2 be two independent normal uncertain variables
N (e1, σ1) and N (e2, σ2), respectively. Then the sum ξ1 + ξ2 is also a normal
uncertain variable, and

N (e1, σ1) + N (e2, σ2) = N (e1 + e2, σ1 + σ2). (4.13)

The product of a normal uncertain variable N (e, σ) and a scalar number k
is also a normal uncertain variable, and

k · N (e, σ) = N (ke, |k|σ). (4.14)
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Proof: Suppose that Φ1 and Φ2 are uncertainty distributions of normal un-
certain variables ξ1 and ξ2, respectively. Then we have

Φ−1
1 (α) = e1 +

√
3σ1

π
ln

α

1 − α
,

Φ−1
2 (α) = e2 +

√
3σ2

π
ln

α

1 − α
.

According to Theorem 4.6, the uncertainty distribution Ψ of ξ1 + ξ2 can be
expressed by

Ψ−1(α) = Φ−1
1 (α) + Φ−1

2 (α) = (e1 + e2) +
√

3(σ1 + σ2)
π

ln
α

1 − α
,

which implies that the sum of normal uncertain variable is also a normal
uncertain variable, and Equation (4.13) holds.

For a normal uncertain variable N (e, σ), according to Theorem 4.6, when
k > 0, the uncertainty distribution Ψ of kξ is

Ψ(t) = Φ
( t

k

)
=

(

1 + exp
(

π(e − t/k)√
3σ

))−1

=
(

1 + exp
(

π(ke − t)√
3kσ

))−1

.

Thus, Equation (4.14) holds.

Expected Value

Definition 4.8. (Liu [60]) Let ξ be an uncertain variable. Then the expected
value of ξ is defined by

E[ξ] =
∫ +∞

0

�{ξ ≥ t}dt −
∫ 0

−∞
�{ξ ≤ t}dt (4.15)

provided that at least one of the two integrals is finite.

Example 4.2. Let ξ be a linear uncertain variable �(a, b). Then its uncer-
tainty distribution is

Φ(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if t ≤ a

t − a

b − a
, if a ≤ t ≤ b

1, otherwise.

Thus, if a ≥ 0, its expected value is

E[ξ] =

(∫ a

0

1dt +
∫ b

a

(

1 − t − a

b − a

)

dt +
∫ +∞

b

0dt

)

−
∫ 0

−∞
0dt =

a + b

2
.
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If b ≤ 0, the expected value of ξ is

E[ξ] =
∫ +∞

0

0dt −
(∫ a

−∞
0dt +

∫ b

a

t − a

b − a
dt +

∫ 0

b

1dt

)

=
a + b

2
.

If a < 0 < b, the expected value of ξ is

E[ξ] =
∫ b

0

(

1 − t − a

b − a

)

dt −
∫ 0

a

t − a

b − a
dt =

a + b

2
.

Therefore, we know that the expected value of ξ is always

E[ξ] =
a + b

2
.

Example 4.3. Let ξ be a normal uncertain variable N (e, σ). Then its ex-
pected value is

E[ξ] = e.

Theorem 4.9. (Liu [64]) Let ξ be an uncertain variable whose uncertainty
distribution is Φ. If its expected value exists, then

E[ξ] =
∫ 1

0

Φ−1(α)dα. (4.16)

Proof: According to the definitions of expected value and uncertainty dis-
tribution, we have

E[ξ] =
∫ +∞

0

�{ξ ≥ t}dt −
∫ 0

−∞
�{ξ ≤ t}dt

=
∫ +∞

0

(1 − Φ(t))dt −
∫ 0

−∞
Φ(t)dt

=
∫ 1

Φ(0)

Φ−1(α)dα +
∫ Φ(0)

0

Φ−1(α)dα =
∫ 1

0

Φ−1(α)dα.

Please also see Fig. 4.3.
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Fig. 4.3 Expected value via integral.
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9999 Method B. Suppose Φ is the uncertainty distribution of an uncertain
variable ξ. Then ξ can be represented on a computer by

αi 0.0001 0.0002 0.0003 · · · 0.9999
Φ−1(αi) t1 t2 t3 · · · t9999

(4.17)

According to Theorem 4.9, the expected value of ξ can be approximately cal-
culated by

E[ξ] =
t1 + t2 + · · · + t9999

9999
.

Remark 4.8. According to the precision requirement of the researcher, 9999
Method can also be a 99 Method or 999999 Method. For example, suppose
Φ is the uncertainty distribution of an uncertain variable ξ. If the precision
is required to be higher, then ξ can be represented on the computer by

αi 0.000001 0.000002 0.000003 · · · 0.999999
Φ−1(αi) t1 t2 t3 · · · t999999

The expected value of ξ then can be approximately calculated via 999999
Method B as follows:

E[ξ] =
t1 + t2 + · · · + t999999

999999
.

Example 4.4. Suppose Φi is the uncertainty distribution of the uncertain
variable ξi, and xi a nonnegative number, i = 1, 2, · · · , n, respectively. Then
n∑

i=1

xiξi can be represented on a computer by

αi 0.0001 0.0002 0.0003 · · · 0.9999
Φ−1

i (αi) ti/1 ti/2 ti/3 · · · ti/9999

Ψ−1
i (αi)

n∑

i=1

xiti/1

n∑

i=1

xiti/2 ti/3 · · ·
n∑

i=1

xiti/9999

The expected value of
n∑

i=1

xiξi can be approximately calculated via 9999

Method B as follows:

E[ξ] =

n∑

i=1

x1ti/1 +
n∑

i=1

x2ti/2 + · · · +
n∑

i=1

xntn/9999

9999
.

Example 4.5. Suppose Φ is the uncertainty distribution of an uncertain
variable ξ, and f a strictly increasing function. Then the expected value of
f(ξ) with uncertainty distribution Ψ can be approximately calculated via
9999 Method as follows:
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E[f(ξ)] =
f(t1) + f(t2) + · · · + f(t9999)

9999
.

Theorem 4.10. (Liu [64]) Let ξ1 and ξ2 be two independent uncertain vari-
ables with finite expected values. Then for any numbers a1 and a2, we have

E[a1ξ1 + a2ξ2] = a1E[ξ1] + a2E[ξ2]. (4.18)

Variance

Definition 4.9. (Liu [60]) Let ξ be an uncertain variable with finite expected
value e. Then the variance of ξ is defined by

V [ξ] = E[(ξ − e)2]. (4.19)

Let ξ be an uncertain variable with uncertainty distribution Φ. Then

V [ξ] =
∫ +∞

0

�{(ξ − e)2} ≥ tdt

=
∫ +∞

0

�{(ξ ≥ e +
√

t) ∪ (ξ ≤ e − √
t)}dt

≤
∫ +∞

0

(�{ξ ≥ e +
√

t} +�{ξ ≤ e − √
t})dt

=
∫ +∞

0

(1 − Φ(e +
√

t) + Φ(e − √
t))dt

=
∫ +∞

e

2(t − e)(1 − Φ(t) + Φ(2e − t))dt.

In this case, it is always assumed that the variance is

V [ξ] = 2
∫ +∞

e

(t − e)(1 − Φ(t) + Φ(2e − t))dt. (4.20)

Example 4.6. Suppose ξ is a linear uncertain variable (�(a, b). Then its
variance is

V [ξ] = 2
∫ b

(a+b)/2

(

t − a + b

2

)(

1 − t − a

b − a
+

b − t

b − a

)

dt =
(b − a)2

12
.

Example 4.7. Suppose ξ is a normal uncertain variable N (e, σ). Then its
variance is

V [ξ] = σ2.



130 4 Uncertain Portfolio Selection

β-Value

Definition 4.10. (Liu [60]) Let ξ be an uncertain variable, and β ∈ (0, 1].
Then

ξsup(β) = sup
{
r
∣
∣� {ξ ≥ r} ≥ β

}
(4.21)

is called the β-value to ξ.

Let ξ be an uncertain variable with continuous uncertainty distribution Φ
such that

lim
t→−∞Φ(t) = 0, lim

t→∞ Φ(t) = 1.

Then its β-value is
ξsup(β) = Φ−1(1 − β)

provided that Φ−1(β) is unique for each β ∈ (0, 1] (see Fig. 4.4).
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Fig. 4.4 β-Value.

Example 4.8. Let ξ be a linear uncertain variable �(a, b). Then its β-value
is

ξsup(β) = aβ + b(1 − β).

Example 4.9. Let ξ be a normal uncertain variable N (e, σ). Then its β-
value is

ξsup(β) = e −
√

3σ
π

ln
β

1 − β
.

Theorem 4.11. Let ξsup(β) be the β-value of an uncertain variable ξ. Then
ξsup(β) is a decreasing and left-continuous function of β.

Proof: Let β1 and β2 be two numbers with 0 < β1 < β2 ≤ 1. Then for any
number t < ξsup(β2), we have

�{ξ ≥ t} ≥ β2 > β1.

Therefore, we obtain ξsup(β1) ≥ ξsup(β2) by the definition of β-value. That
is, the β-value ξsup(β) is a decreasing function of β.
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Now, we prove the left-continuity of ξsup(β) with respect to β. Let {βi} be
an arbitrary sequence of positive numbers such that βi ↑ β. Then {ξsup(βi)}
is a decreasing sequence. If the limitation is equal to ξsup(β), then the left-
continuity is proven. Otherwise, there exists a number z∗ such that

lim
i→∞

ξsup(βi) > z∗ > ξsup(β).

Thus �{ξ ≥ z∗} ≥ βi for each i. Letting i → ∞, we get M{ξ ≥ z∗} ≥ β.
Therefore, z∗ ≤ ξsup(β). A contradiction proves the left-continuity of ξsup(β)
with respect to β.

Theorem 4.12. Let ξsup(β) be the β-value of an uncertain variable ξ. Then
if λ ≥ 0, we have

(λξ)sup(β) = λξsup(β).

Proof: If λ = 0, the theorem holds obviously. If λ > 0, we have

(λξ)sup(β) = sup{r|�{λξ ≥ r} ≥ β}
= λ sup{r/λ|�{ξ ≥ r/λ} ≥ β}
= λξsup(β).

Theorem 4.13. Let ξ and η be two independent uncertain variables. Then
for any β ∈ (0, 1], we have

(ξ + η)sup(β) = ξsup(β) + ηsup(β). (4.22)

Proof: According to monotonicity property of uncertain measure, for any
ε > 0, we have

�{ξ + η ≥ ξsup(β) + ηsup(β) − ε}
≥�

{
{ξ ≥ ξsup(β) − ε/2} ∩ {η ≥ ηsup(β) − ε/2}

}
.

Since ξ and η are independent uncertain variables, according to Equation
(4.4), we have

�{ξ + η ≥ ξsup(β) + ηsup(β) − ε}
≥�

{
{ξ ≥ ξsup(β) − ε/2} ∩ {η ≥ ηsup(β) − ε/2}

}

=�{ξ ≥ ξsup(β) − ε/2} ∧�{η ≥ ηsup(β) − ε/2} ≥ β

which implies that

(ξ + η)sup(β) ≥ ξsup(β) + ηsup(β) − ε. (4.23)
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According to monotonicity property of uncertain measure, for any ε > 0, we
have

�{ξ + η ≥ ξsup(β) + ηsup(β) + ε}
≤�

{
{ξ ≥ ξsup(β) + ε/2} ∪ {η ≥ ηsup(β) + ε/2}

}
.

Since ξ and η are independent uncertain variables, according to Equation
(4.5), we have

�{ξ + η ≥ ξsup(β) + ηsup(β) + ε}
≤ �

{
{ξ ≥ ξsup(β) + ε/2} ∩ {η ≥ ηsup(β) + ε/2}

}

= �{ξ ≥ ξsup(β) + ε/2} ∨ Cr{η ≥ ηsup(β) + ε/2} < β

which implies that

(ξ + η)sup(β) ≤ ξsup(β) + ηsup(β) + ε. (4.24)

It follows from (4.23) and (4.24) that

ξsup(β) + ηsup(β) + ε ≥ (ξ + η)sup(β) ≥ ξsup(β) + ηsup(β) − ε.

Letting ε → 0, we have

(ξ + η)sup(β) = ξsup(β) + ηsup(β).

4.2 Mean-Risk Model

Following the idea of risk curve in probabilistic and credibilistic portfolio
selection, Huang [42] proposed a concept of risk curve to give an instinct
information about each likely loss and the corresponding occurrence chance
of the loss for portfolio selection problem in which the security returns are
believed to be uncertain variables.

4.2.1 Risk Curve

Definition 4.11. (Huang [42]) Let ξ denote an uncertain return of a port-
folio, and rf the risk-free interest rate. Then the curve

R(r) = �{rf − ξ ≥ r}, ∀r ≥ 0 (4.25)

is called the risk curve of the portfolio, and r the loss severity indicator.

It is clear that rf − ξ is the value that the portfolio return is lower than
the risk-free interest rate when rf − ξ ≥ 0. This value rf − ξ can certainly
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be understood as a loss. Since the portfolio return is variable, the loss level
rf − ξ may be any non-negative values which can be expressed by

rf − ξ ≥ r, r ≥ 0.

Since r is not one specific number but any non-negative numbers, the risk
curve R(r) describes all the likely losses of the portfolio and the corresponding
occurrence chances of all these losses.

According to the monotonicity axiom of the uncertain measure, the risk
curve R(r) is a decreasing function of the real numbers r. That is, when the
loss becomes bigger, the occurrence chance of the loss will become smaller.

Equivalently, the risk curve can also be expressed in the form

R−1(α) = rf − Φ−1(α), ∀α ∈ (0, 1) (4.26)

where Φ is the uncertainty distribution of ξ.
With Formulation (4.26), given a confidence level, the investors are able

to know how much they will lose at this occurrence chance level.

Example 4.10. If a portfolio return is a linear uncertain variable ξ ∼ L(a, b),
the risk curve of the portfolio is as follows (also see Fig. 4.5):

R(r) = �{(rf − ξ) ≥ r} =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if r < rf − b

rf − a − r

b − a
, if rf − b ≤ r ≤ rf − a

0, if r > rf − a.
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Fig. 4.5 Risk curve of a portfolio with linear uncertain return.

Example 4.11. If a portfolio return is a normal uncertain variable ξ ∼
N (e, σ). Then the risk curve of the portfolio is as follows (also see Fig. 4.6):

R(r) = �{rf − ξ ≥ r} =
(

1 + exp
(

π(e − rf + r)√
3σ

))−1

, ∀r ≥ 0.
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Fig. 4.6 Risk curve of a portfolio with normal uncertain return.

4.2.2 Confidence Curve and Safe Portfolio

Since all investors know that they may lose as well as gain in investment,
they will have a maximum tolerance towards occurrence chance of each likely
loss level. We call the curve confidence curve α(r) that gives the investors’
maximal tolerance towards the occurrence chance of each likely loss level. An
investor can give his/her confidence curve by answering what-if questions in
Table 2.5. In uncertain portfolio selection, occurrence chance of an uncertain
event is measured by uncertain measure. Though different investors have dif-
ferent confidence curve, the common trend of the curve is that the severer the
loss, the lower the loss occurrence chance the investors can tolerate. That is,
the higher the r value, the lower the uncertain measure value. Three examples
of confidence curve are given in Subsection 2.2.2.

It is clear that a portfolio is safe if its risk curve is totally below the
investor’s confidence curve. A portfolio is risky if any part of its risk curve
is above the investor’s confidence curve. The mathematical expression for a
safe portfolio is as follows:

Let ξ be the uncertain return of portfolio A, and α(r) the investor’s con-
fidence curve. We say A is a safe portfolio if

R(r) = �{(rf − ξ) ≥ r} ≤ α(r), ∀r ≥ 0,

where rf is the risk-free interest rate.

4.2.3 Mean-Risk Model

The philosophy of mean-risk model is to pursue maximum expected re-
turn among the safe portfolios whose risk curves are below the investor’s
confidence curve. Let xi denote the investment proportions in securities
i, i = 1, 2, · · · , n, respectively, and ξi the i-th security returns which are un-
certain variables. According to the risk definition (4.25), the risk curve of a
portfolio (x1, x2, · · · , xn) is

R(x1, x2, · · · , xn; r) =� {rf − (ξ1x1 + ξ2x2 + · · · + ξnxn) ≥ r} . (4.27)
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Let α(r) be an investor’s confidence curve. The mean-risk model for portfolio
selection with uncertain returns is expressed as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

maxE[ξ1x1 + ξ2x2 + · · · + ξnxn]

subject to:

R(x1, x2, · · · , xn; r) ≤ α(r), ∀r ≥ 0

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n

(4.28)

where E is the expected value operator, R(x1, x2, · · · , xn; r) the risk curve
defined by Equation (4.27), and α(r) the investor’s confidence curve. The
constraint

R(x1, x2, · · · , xn; r) ≤ α(r), ∀r ≥ 0

means for any given loss level r, the occurrence chance of the loss is not
greater than the investor’s tolerable occurrence chance level, which ensures
that the optimal portfolio is selected among the safe portfolios (see Fig. 4.7).
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Fig. 4.7 Safe portfolio: A portfolio is safe if R(r) ≤ α(r) for any r ≥ 0.

According to Formula (4.26), the mean-risk model (4.28) can also be ex-
pressed in the following way:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

max E[ξ1x1 + ξ2x2 + · · · + ξnxn]

subject to:

R−1(x1, x2, · · · , xn; r)(α(r)) ≤ r, ∀α(r) ≥ 0

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n

(4.29)

where
R−1(x1, x2, · · · , xn; r)(α(r)) = rf − Ψ(α(r))
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in which Ψ is the uncertainty distribution of the uncertain variable ξ1x1 +
ξ2x2 + · · · + ξnxn. The constraint

R−1(x1, x2, · · · , xn; r)(α(r)) ≤ r, ∀α(r) ≥ 0

means that given any confidence level, the loss level occurring at the confi-
dence level is not greater than the investor’s tolerable level, which ensures
that the optimal portfolio is selected among the safe portfolios (see Fig. 4.8).
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Fig. 4.8 Safe portfolio: A portfolio is safe if R−1(α(r)) ≤ r for any confidence
α(r) ≥ 0.

4.2.4 Crisp Equivalent

Theorem 4.14. Let Φi denote the uncertainty distributions of the i-th se-
curity return rates ξi, i = 1, 2, · · · , n, respectively. Then the mean-risk model
(4.28) can be transformed into the following linear model:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

maxx1E[ξ1] + x2E[ξ2] + · · · + xnE[ξn]

subject to:

x1Φ
−1
1

(
α(r)

)
+ x2Φ

−1
2

(
α(r)

)
+ · · · + xnΦ−1

n

(
α(r)

)
≥ rf − r, ∀r ≥ 0

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n.
(4.30)

The objective can be obtained by the linearity property of the expected value
of the uncertain variables, and the constraint can be proven directly from
Theorem 4.6 and the monotonicity property of the uncertain measure.

Example 4.12. Suppose the return rates of the i-th securities are all nor-
mal uncertain variables ξi ∼ N (ei, σi), i = 1, 2, · · · , n, respectively. Then the
mean-risk model can be transformed into the following form:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max e1x1 + e2x2 + · · · + enxn

subject to:

n∑

i=1

(

ei −
√

3σi

π
ln

1 − α(r)
α(r)

)

xi ≥ rf − r, ∀r ≥ 0

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n.

(4.31)

Example 4.13. Suppose the return rates of the i-th securities are all linear
uncertain variables ξi = �(ai, bi), i = 1, 2, · · · , n, respectively. Then the mean-
risk model can be transformed into the following form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
n∑

i=1

1
2
(bi + ai)xi

subject to:

n∑

i=1

α(r)bixi +
n∑

i=1

(
1 − α(r)

)
aixi ≥ rf − r, r ≥ 0

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n.

(4.32)

Example 4.14. Suppose the return rates of the i-th securities are normal
uncertain variables ξi ∼ N (ei, σi), i = 1, 2, · · · , m, and the return rates of the
j-th securities are all linear uncertain variables ξj = �(aj , bj), j = m+1, m+
2, · · · , n, respectively. Then the mean-risk model can be transformed into the
following form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
m∑

i=1

eixi +
n∑

i=m+1

1
2
(bi + ai)xi

subject to:

m∑

i=1

(

ei −
√

3σi

π
ln

1 − α(r)
α(r)

)

xi +
n∑

i=m+1

α(r)bixi

+
n∑

i=m+1

(
1 − α(r)

)
aixi ≥ rf − r, r ≥ 0

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n.

(4.33)
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4.2.5 Examples

Example 4.15. Suppose an investor chooses from 10 securities for his/her
investment. Assume that the monthly return rates of the ten securities are all
normal uncertain variables denoted by ξi, i = 1, 2, · · · , 10, respectively. The
prediction of the return rates of the ten securities is given in Table 4.1.

Table 4.1 Uncertain Return Rates of 10 Securities

Security i Return Rate ξi Security i Return Rate ξi

1 N (0.027, 0.14) 6 N (0.028, 0.15)
2 N (0.033, 0.12) 7 N (0.030, 0.12)
3 N (0.032, 0.16) 8 N (0.032, 0.18)
4 N (0.044, 0.16) 9 N (0.025, 0.10)
5 N (0.031, 0.15) 10 N (0.028, 0.11)

Suppose the monthly risk-free interest rate is 0.01, and the investor gives
his/her confidence curve as follows:

α(r) =

⎧
⎪⎪⎨

⎪⎪⎩

−2.75r + 0.43, 0 ≤ r ≤ 0.12,

−0.5r + 0.16, 0.12 ≤ r ≤ 0.3,

0.01, r ≥ 0.3.

According to the mean-risk selection idea, we build the model as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

max E[ξ1x1 + ξ2x2 + · · · + ξ10x10]

subject to:

R(x1, x2, · · · , x10; r) ≤ α(r), ∀r ≥ 0

x1 + x2 + · · · + x10 = 1

xi ≥ 0, i = 1, 2, · · · , 10

(4.34)

where R(x1, x2, · · · , x10; r) is the risk curve of the portfolio and

R(x1, x2, · · · , x10; r) =� {0.01 − (ξ1x1 + ξ2x2 + · · · + ξ10x10) ≥ r} .

It follows from Model (4.31) that Model (4.34) can be transformed into
the following form:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
10∑

i=1

eixi

subject to:

10∑

i=1

(

ei −
√

3σi

π
ln

1 − α(r)
α(r)

)

xi ≥ 0.01 − r, r ≥ 0

x1 + x2 + · · · + x10 = 1

xi ≥ 0, i = 1, 2, · · · , 10.

(4.35)

Model (4.35) is a linear programming model which can be solved by the
simplex method. Though theoretically, r should be any non-negative num-
bers, in reality, we just need to check it in a certain interval by analyzing the
problem and the confidence curve. In the example, the confidence curve is a
horizontal line when r ≥ 0.3. Since the risk curve is a decreasing function of
r, risk curve will be below the confidence curve if R(x1, x2, · · · , x10; r) ≤ α(r)
holds for any r ∈ [0, 0.3]. Since risk curve is a continuous function of r, it
is enough for us to check if the points on the risk curve are all lower than
the points on the confidence curve for (r = 0, α = 0.43), (r = 0.03, α =
0.3475) (r = 0.06, α = 0.265) · · · , (r = 0.3, α = 0.01). That is, we just need to
solve Model (4.36) given below.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
10∑

i=1

eixi

subject to:
10∑

i=1

(

ei −
√

3σi

π
ln

1 − 0.43
0.43

)

xi ≥ 0.01

10∑

i=1

(

ei −
√

3σi

π
ln

1 − 0.3475
0.3475

)

xi ≥ −0.02

10∑

i=1

(

ei −
√

3σi

π
ln

1 − 0.265
0.265

)

xi ≥ −0.05

· · ·
10∑

i=1

(

ei −
√

3σi

π
ln

1 − 0.01
0.01

)

xi ≥ −0.31

x1 + x2 + · · · + x10 = 1

xi ≥ 0, i = 1, 2, · · · , 10.

(4.36)

The result shows that to gain the maximal expected return among the safe
portfolios, the investor should allocate his/her money according to Table 4.2.



140 4 Uncertain Portfolio Selection

Table 4.2 Allocation of Money to Ten Securities

Security i 1 2 3 4 5
Allocation of money 0.00% 85.41% 0.00% 0.00% 0.00%

Security i 6 7 8 9 10
Allocation of money 0.00% 0.00% 0.00% 14.59% 0.00%
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Fig. 4.9 Risk curve R(r) and confidence curve α(r) of Model (4.34).

The maximal expected return rate is 0.032. It can be seen from Fig. 4.9
that the risk cure of the selected portfolio R(x1, x2, · · · , x10; r) is under the
investor’s confidence curve α(r). Given a loss level r = r0, the occurrence
chance of the loss R(r0) is below the investor’s tolerable occurrence chance
level α(r0); or given a confidence level α = α0, the loss level R−1(α0) is less
than the investor’s tolerable loss level α−1(α0).

Example 4.16. Suppose now the investor chooses an optimal portfolio from
another ten securities of which seven security return rates are normal uncer-
tain variables and the rest three the linear uncertain variables. The prediction
of the return rates of the 10 securities is given in Table 4.3. The investor’s
confidence curve and the risk-free interest rate are the same as the above
mentioned example. Then the optimal portfolio can be selected according to
the following model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
7∑

i=1

eixi +
10∑

i=8

bi + ai

2
xi

subject to:
7∑

i=1

(

ei −
√

3σi

π
ln

1 − α(r)
α(r)

)

xi +
10∑

i=8

α(r)bixi

+
10∑

i=8

(
1 − α(r)

)
aixi ≥ 0.01 − r, r ≥ 0

x1 + x2 + · · · + x10 = 1

xi ≥ 0, i = 1, 2, · · · , 10.

(4.37)



4.3 β-Return-Risk Model 141

Table 4.3 Uncertain Return Rates of 10 Securities

Security i Return Rate ξi Security i Return Rate ξi

1 N (0.033, 0.19) 6 N (0.026, 0.06)
2 N (0.032, 0.16) 7 N (0.030, 0.08)
3 N (0.039, 0.20) 8 �(−0.1, 0.16)
4 N (0.031, 0.15) 9 �(−0.15, 0.22)
5 N (0.025, 0.10) 10 �(−0.2, 0.3)

Table 4.4 Allocation of Money to Ten Securities

Security i 1 2 3 4 5
Allocation of money 0.00% 0.00% 0.00% 0.00% 0.00%

Security i 6 7 8 9 10
Allocation of money 38.72% 0.00% 0.00% 0.00% 61.28%
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Fig. 4.10 Risk curve R(r) and confidence curve α(r) of Model (4.37).

By running “Solver” in “Excel”, we get the result that to gain the maximal
expected return among the safe portfolios, the investor should allocate his/her
money according to Table 4.4. The maximal expected return rate is 0.0407.
It can be seen from Fig. 4.10 that the risk cure of the selected portfolio
R(x1, x2, · · · , x10; r) is under the investor’s confidence curve α(r).

4.3 β-Return-Risk Model

4.3.1 β-Return-Risk Model

Risk curve provides instinct information about likely losses and the corre-
sponding occurrence chance levels. To provide an instinct information about
return, β-Return is proposed.
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Definition 4.12. Let xi be the investment proportions in the i-th securities,
i = 1, 2, · · · , n, respectively, ξi the uncertain returns of the i-th securities and
β the preset confidence level. The β-return is defined as

max{f̄
∣
∣�

{
ξ1x1 + ξ2x2 + · · · + ξnxn ≥ f̄

} ≥ β} (4.38)

which means the maximal investment return the investor can obtain at con-
fidence level β.

When the investors want to pursue an instinct and a specific maximum return
rather than an expectedvalue, they can ask that the risk curveof the portfoliobe
totally below the confidence curve, and in the meantime pursue the maximum
return they can obtain at a high enough occurrence chance level β. To express
the idea mathematically, we have the β-return-risk model as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max f̄

subject to:

�
{
ξ1x1 + ξ2x2 + · · · + ξnxn ≥ f̄

} ≥ β

R(x1, x2, · · · , xn; r) ≤ α(r), ∀r ≥ 0

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n

(4.39)

where R(x1, x2, · · · , xn; r) is the risk curve of the portfolio, α(r) the investors’
confidence curve, and f̄ the β-return defined by Formula (4.38).

4.3.2 Crisp Equivalent

When security returns are independent uncertain variables, we can change
the β-return-risk model into its equivalent and solve the model in traditional
ways.

Theorem 4.15. Let Φi denote the uncertainty distributions of the i-th secu-
rity return rates ξi, i = 1, 2, · · · , n, respectively. Then the β-return-risk model
(4.39) can be transformed into the following linear model:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

maxx1ξ1(β) + +x2ξ2(β) + · · · + xnξn(β)

subject to:

x1Φ
−1
1

(
α(r)

)
+ x2Φ

−1
2

(
α(r)

)
+ · · · + xnΦ−1

n

(
α(r)

)
≥ rf − r, ∀r ≥ 0

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n
(4.40)
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where ξi(β) is the β-return of the i-th security which is defined by

max{f̄i

∣
∣�

{
ξi ≥ f̄i

} ≥ β}

The objective function can be obtained directly from Theorem 4.13.

Example 4.17. Suppose the return rates of the i-th securities are all normal
uncertain variables ξi ∼ N (ei, σi), i = 1, 2, · · · , n, respectively. Then the β-
return-risk model can be transformed into the following form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
n∑

i=1

eixi −
√

3
π

ln
β

1 − β

n∑

i=1

σixi

subject to:

n∑

i=1

(

ei −
√

3σi

π
ln

1 − α(r)
α(r)

)

xi ≥ rf − r, ∀r ≥ 0

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n.

(4.41)

Since the weighted sum of normal uncertain variables is still a normal uncer-
tain variable, the objective function of Model (4.41) can be easily obtained
from Theorem 4.15.

Example 4.18. Suppose the return rates of the i-th securities are all linear
uncertain variables ξi = �(ai, bi), i = 1, 2, · · · , n, respectively. Then the β-
return-risk model can be transformed into the following form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
n∑

i=1

βaixi + (1 − β)
n∑

i=1

bixi

subject to:
n∑

i=1

α(r)bixi +
n∑

i=1

(
1 − α(r)

)
aixi ≥ rf − r, r ≥ 0

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n.

(4.42)

Since the weighted sum of linear uncertain variables is still a linear uncertain
variable, the objective function of Model (4.42) can be easily obtained from
Theorem 4.15.

Example 4.19. Suppose the return rates of the i-th securities are normal
uncertain variables ξi ∼ N (ei, σi), i = 1, 2, · · · , m, and the return rates of the
j-th securities are all linear uncertain variables ξj = �(aj , bj), j = m+1, m+
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2, · · · , n, respectively. Then the β-return-risk model can be transformed into
the following form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
m∑

i=1

eixi −
√

3
π

ln
β

1 − β

m∑

i=1

σixi + β

n∑

i=1

aixi + (1 − β)
n∑

i=1

bixi

subject to:

m∑

i=1

(

ei −
√

3σi

π
ln

1 − α(r)
α(r)

)

xi +
n∑

i=m+1

α(r)bixi

+
(
1 − α(r)

)
aixi ≥ rf − r, r ≥ 0

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n.
(4.43)

4.3.3 An Example

Example 4.20. Recall the 10 securities whose returns are given in Table
4.1 in subsection 4.2.5. The risk-free return rate is 0.01, and the investor’s
confidence curve is

α(r) =

⎧
⎪⎪⎨

⎪⎪⎩

−2.75r + 0.43, 0 ≤ r ≤ 0.12,

−0.5r + 0.16, 0.12 ≤ r ≤ 0.3,

0.01, r ≥ 0.3.

Suppose this time the investor wants to pursue a maximum specific return
at confidence 80% from the safe portfolios. Then he/she should select the
portfolio based on the following model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

max ξ1(0.80)x1 + ξ2(0.80)x2 + · · · + ξ10(0.80)x10

subject to:

R(x1, x2, · · · , x10; r) ≤ α(r), ∀r ≥ 0

x1 + x2 + · · · + x10 = 1

xi ≥ 0, i = 1, 2, · · · , 10

(4.44)

where ξi(0.80) is the 0.80-return of the i-th security which is defined as

ξi(0.80) = sup{f̄i|�{ξi ≥ f̄i} ≥ 0.80},

and R(x1, x2, · · · , x10; r) the risk curve of the portfolio defined as

R(x1, x2, · · · , x10; r) =� {0.01 − (ξ1x1 + ξ2x2 + · · · + ξ10x10) ≥ r} .
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Table 4.5 Allocation of Money to Ten Securities

Security i 1 2 3 4 5
Allocation of money 0.00% 11.02% 0.00% 0.00% 0.00%

Security i 6 7 8 9 10
Allocation of money 0.00% 0.00% 0.00% 88.98% 0.00%

It follows from Model (4.41) that Model (4.44) can be transformed into
the following form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
10∑

i=1

eixi −
√

3
π

ln 4
10∑

i=1

σixi

subject to:
10∑

i=1

(

ei −
√

3σi

π
ln

1 − α(r)
α(r)

)

xi ≥ 0.01 − r, r ≥ 0

x1 + x2 + · · · + x10 = 1

xi ≥ 0, i = 1, 2, · · · , 10.

(4.45)

By running “Solver” in “Excel” we get the result that to gain the maximal
0.8-return among the safe portfolios, the investor should allocate his/her
money according to Table 4.5. The maximal 0.8-return rate is -0.052 which
means that the investor will gain no less than -0.052 (or say lose no more than
0.052 below zero) at confidence 0.8. It can be seen from Fig. 4.11 that the
risk cure of the selected portfolio R(x1, x2, · · · , x10; r) is under the investor’s
confidence curve α(r).
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Fig. 4.11 Risk curve R(r) and confidence curve α(r) of Model (4.44).

Remark 4.9. We put the results of examples of mean-risk model in subsec-
tion 4.2.5 and β-return-risk model in this subsection together in Table 4.6.
It is seen that even when risk-free interest rate, the alternative individual
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Table 4.6 Optimal Portfolios Produced by Different Selection Criteria

Optimal Portfolio Mean-Risk Criterion β-Return-Risk Criterion
ξ1 0.00% 0.00%
ξ2 85.41% 11.02%
ξ3 0.00% 0.00%
ξ4 0.00% 0.00%
ξ5 0.00 % 0.00%
ξ6 0.00 % 0.00%
ξ7 0.00% 0.00%
ξ8 0.00% 0.00%
ξ9 14.59% 88.98%
ξ10 0.00% 0.00%

Expected Return 3.2% 2.6%
0.8-Return −11% −5.2%

securities and the investor’s confidence curve are same, adopting different
selection criteria produces different results.

4.4 Chance Minimization Model

4.4.1 Chance Minimization Model

Risk curve provides a panoramic view of all the likely losses of an investment.
The investors who adopt the risk curve as the investment risk are the most
cautious investors. They evaluate every likely loss case and compare it with
their own tolerance ability. Therefore, the decision making based on mean-
risk or β-return-risk model is the safest. However, to use mean-risk or β-
return-risk model, the investors need to provide their confidence curve and
find out occurrence chances of big enough numbers of loss cases. Sometimes,
the investors want a simpler way to judge riskiness of an investment and
to select an optimal portfolio. They may only be sensitive to one very low
return event (or say one large loss event). Then the occurrence chance of the
concerned low return event can be used as an alternative definition of risk.
The investors can require that the expected return of the portfolio should not
be less than a tolerable level, and in the meantime minimize the occurrence
chance of the concerned low return level. That is, the investors can select the
portfolio based on the following chance minimization model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

min� {ξ1x1 + ξ2x2 + · · · + ξnxn ≤ d}
subject to:

E[ξ1x1 + ξ2x2 + · · · + ξnxn] ≥ a

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n

(4.46)
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where d is the concerned low return level and a the preset minimum expected
return that the investors can accept.

Let us recall the definition of risk curve. The curve

R(x1, x2, · · · , xn; r) = �{rf − (ξ1x1 + ξ2x2 + · · · + ξnxn) ≥ r}, ∀r ≥ 0

is called the risk curve of the portfolio, where rf is the risk-free interest rate.
If r degenerates to one specific number r0, then the risk curve becomes

R(x1, x2, · · · , xn; r0) = �{rf − (ξ1x1 + ξ2x2 + · · · + ξnxn) ≥ r0}
=�{ξ1x1 + ξ2x2 + · · · + ξnxn ≤ rf − r0}

which is just the risk definition of occurrence chance of a sensitive low return
event (or say sensitive high loss event). It is clear that rf − r0 = d.

If the investors pre-give a confidence level α, then their objective should
be to minimize the maximum loss that is likely to occur at this confidence
level. We call the maximum loss that is likely to occur at a preset confidence
level the value-at-risk-in-uncertainty.

Definition 4.13. Let ξ denote an uncertain return of a portfolio, and rf the
risk-free interest rate. Then Value-at-Risk-in-Uncertainty (VaRU) is defined as

VaRU(γ) = sup{r̄|�{rf − ξ ≥ r̄} ≤ 1 − γ}. (4.47)

where γ is the pre-determined confidence level.

For example, if VaRU(99%) = 2%, it means that there is only a 1% occurrence
chance that the portfolio return rate will drop more than 2% below the risk-
free return rate. It is easy to see that VaRU is in fact an inverse version of the
risk definition of the chance of a portfolio return below a specific disastrous
low return level.

If the investors adopt VaRU as the investment risk, then they will ask the
expected return of the portfolio not be less than a preset expected value, and
in the meantime minimize the VaRU value. The chance minimization model
becomes VaRU minimization model as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min r̄

subject to:

� {rf − (ξ1x1 + ξ2x2 + · · · + ξnxn) ≥ r̄} ≤ 1 − γ

E[ξ1x1 + ξ2x2 + · · · + ξnxn] ≥ a

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n

(4.48)

where a is the pre-set tolerable minimum expected return, γ the pre-
determined confidence level, and r̄ the VaRU defined as

sup{r̄|�{rf − (ξ1x1 + ξ2x2 + · · · + ξnxn) ≥ r̄} ≤ 1 − γ}.
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It is seen that the VaRU minimization model (4.48) can be regarded as an-
other version of chance minimization model (4.46).

Mathematically, Model (4.48) is a minmax model because it is equivalent
to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
x1,x2,···,xn

max
r̄

r̄

subject to:

� {rf − (ξ1x1 + ξ2x2 + · · · + ξnxn) ≥ r̄} ≤ 1 − γ

E[ξ1x1 + ξ2x2 + · · · + ξnxn] ≥ a

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n

(4.49)

where max r̄ is the VaRU value.

4.4.2 Crisp Equivalent

In some special cases, we can convert the chance minimization model into its
crisp equivalent.

Example 4.21. When people invest, the chance of portfolio return equal
to or lower than a sensitive disastrous low return level d should always be
required to be less than 0.5. Thus, when security returns are regarded to be
all normal uncertain variables ξi ∼ N (ei, σi), Model (4.46) becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
( n∑

i=1

eixi − d
)/ n∑

i=1

σixi

subject to:

d ≤ e1x1 + e2x2 + · · · + enxn

e1x1 + e2x2 + · · · + enxn ≥ a

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n.

(4.50)

Model (4.50) can easily be obtained because the sum of weighted normal
uncertain variables is still a normal uncertain variable. Please note that to
minimize the chance

(

1 + exp

(

π
( n∑

i=1

eixi − d
)/√

3
n∑

i=1

σixi

))−1
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we just need to maximize

( n∑

i=1

eixi − d
)/ n∑

i=1

σixi.

A constraint d ≤ e1x1 + e2x2 + · · · + enxn is added because the chance of
portfolio return equal to or less than the concerned disaster level d should be
less than 0.5.

Example 4.22. When security returns are all linear uncertain variables,
Model (4.46) becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
(
d −

n∑

i=1

aixi

)/ n∑

i=1

(bi − ai)xi

subject to:
n∑

i=1

(ai + bi)xi ≥ 2a

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n.

(4.51)

Theorem 4.16. Let Φi denote the uncertainty distributions of the i-th secu-
rity return rates ξi, i = 1, 2, · · · , n, respectively. Then the VaRU minimization
model can be transformed into the following linear model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

min rf − x1Φ
−1
1 (1 − γ) − x2Φ

−1
2 (1 − γ) + · · · − xnΦ−1

n (1 − γ)

subject to:

x1E[ξ1] + x2E[ξ2] + · · · + xnE[ξn] ≥ a

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n.

(4.52)

Proof: The objective function can be obtained directly from Theorem 4.6
and the monotonicity property of the uncertain measure, and the constraint
can be obtained from the linearity property of expected value of the uncertain
measure.

Example 4.23. Suppose the return rates of the i-th securities are normal
uncertain variables ξi ∼ N (ei, σi), i = 1, 2, · · · , m, and the return rates of the
j-th securities are linear uncertain variables ξj = �(aj , bj), j = m + 1, m +
2, · · · , n, respectively. Since the confidence level γ > 0.5 and 1 − γ < 0.5,
Model (4.48) can be transformed into the following form:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min rf −
m∑

i=1

(

ei −
√

3σi

π
ln

γ

1 − γ

)

xi−

γ

n∑

i=m+1

aixi − (1 − γ)
n∑

i=m+1

bixi

subject to:

m∑

i=1

eixi +
n∑

i=m+1

1
2
(bixi + aixi) ≥ a

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n.

(4.53)

4.4.3 An Example

Suppose an investor wants to choose an optimal portfolio from ten securities
whose returns are believed to be normal uncertain variables. The prediction
of the return rates of the ten securities is given in Table 4.7. The risk-free
interest rate is 0.01. Suppose the minimum expected return the investor can
accept is 0.03, and the investor wants to minimize potential loss at confidence
level 0.95. Then according to the VaRU minimization selection idea , we build
the model as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min r̄

subject to:

�{0.01 − (ξ1x1 + ξ2x2 + · · · + ξ10x10) ≥ r̄} ≤ 0.05

E[ξ1x1 + ξ2x2 + · · · + ξ10x10] ≥ 0.03

x1 + x2 + · · · + x10 = 1

xi ≥ 0, i = 1, 2, · · · , 10.

(4.54)

Table 4.7 Normal Uncertain Return Rates of 10 Securities

Security i ξi ∼ N (ei, σi) Security i ξi ∼ N (ei, σi)
1 N (0.033, 0.06) 6 N (0.035, 0.043)
2 N (0.03, 0.065) 7 N (0.032, 0.08)
3 N (0.034, 0.067) 8 N (0.036, 0.062)
4 N (0.04, 0.08) 9 N (0.026, 0.045)
5 N (0.031, 0.061) 10 N (0.028, 0.032)
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Table 4.8 Allocation of Money to Ten Securities

Security i 1 2 3 4 5
Allocation of money 0.00% 0.00 % 0.00 % 0.00% 0.00%

Security i 6 7 8 9 10
Allocation of money 28.57% 0.00 % 0.00% 0.00% 71.43%

According to Model (4.52), we change Model (4.54) into the following form:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min 0.01 −
10∑

i=1

(

ei −
√

3σi

π
ln

0.95
1 − 0.95

)

xi

subject to:
10∑

i=1

eixi ≥ 0.03

x1 + x2 + · · · + x10 = 1

xi ≥ 0, i = 1, 2, · · · , 10.

(4.55)

Using “Solver” in “Excel”, we obtain the optimal portfolio shown in Ta-
ble 4.8. The objective is 0.037. That is, at chance 5%, the portfolio return
rate will drop at most 0.037 below the risk-free interest rate.

4.5 Mean-Variance Model

4.5.1 Mean-Variance Model

As a counter part of probabilistic mean-variance model and credibilistic
mean-variance model, we provide here the mean-variance model for portfolio
selection with uncertain returns.

Let ξi represent the uncertain returns of the i-th securities and xi the in-
vestment proportions in the i-th securities i = 1, 2, · · · , n, respectively. Sup-
pose the uncertainty distributions of security returns are all symmetrical.
When expected return is used to represent the investment return and vari-
ance as the investment risk, the optimal portfolio should be the one whose
variance is not greater than the preset level and in the meantime whose ex-
pected return is the maximal; or the optimal portfolio should be the one
whose expected return is not less than the preset level and in the meantime
whose variance is the minimal. Let γ be the preset variance level the investors
can tolerate. Then the mean-variance selection model is expressed as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

maxE[x1ξ1 + x2ξ2 + · · · + xnξn]

subject to:

V [x1ξ1 + x2ξ2 + · · · + xnξn] ≤ γ

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n

(4.56)
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where E denotes the expected value operator, and V the variance operator
of the uncertain variables.

When the investors pre-give a minimum expected return that they can
tolerate, the mean-variance model becomes:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

min V [x1ξ1 + x2ξ2 + · · · + xnξn]

subject to:

E[x1ξ1 + x2ξ2 + · · · + xnξn] ≥ λ

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n

(4.57)

where λ represents the minimum expected return the investors feel
satisfactory.

It can be seen from Models (4.56) and (4.57) that if we change the preset
variance value or expected value, we will get different optimal solution. A
portfolio is efficient if it is impossible to obtain higher expected return with
no greater variance value, or it is impossible to obtain less variance value with
no less expected return. All efficient portfolios make up the efficient frontier.
An efficient portfolio is in fact a solution of the following optimization model
with two objectives:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

maxE[x1ξ1 + x2ξ2 + · · · + xnξn]

min V [x1ξ1 + x2ξ2 + · · · + xnξn]

subject to:

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n.

(4.58)

Different investors will find different optimal portfolios from the efficient fron-
tier according to their own preferences to risk aversion, i.e., tradeoff of vari-
ance and expected return.

4.5.2 Crisp Equivalent

According to the properties of normal uncertain variable and linear uncertain
variable, the crisp equivalents of uncertain mean-variance model in the special
cases are given when all the security returns are normal uncertain variables
or when all the security returns are linear uncertain variables.

When all the security returns are normal uncertain variables ξi ∼ N (ei, σi),
the uncertainty distributions of portfolio returns are symmetrical. Since the
weighted sum of normal uncertain variables is still a normal uncertain vari-
able, Model (4.56) becomes
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⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

max e1x1 + e2x2 + · · · + enxn

subject to:

σ1x1 + σ2x2 + · · · + σnxn ≤ γ

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n.

(4.59)

And Model (4.57) becomes
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

min σ1x1 + σ2x2 + · · · + σnxn

subject to:

e1x1 + e2x2 + · · · + enxn ≥ λ

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n.

(4.60)

When all the security returns are linear uncertain variables �(ai, bi),
the uncertainty distributions of portfolio returns are symmetrical. Since the
weighted sum of linear uncertain variables is still a linear uncertain variable,
Model (4.56) becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

max(a1 + b1)x1 + (a2 + b2)x2 + · · · + (an + bn)xn

subject to:

(b1 − a1)x1 + (b2 − a2)x2 + · · · + (bn − an)xn ≤ √
12γ

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n.

(4.61)

And Model (4.57) becomes
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

min(b1 − a1)x1 + (b2 − a2)x2 + · · · + (bn − an)xn

subject to:

(a1 + b1)x1 + (a2 + b2)x2 + · · · + (an + bn)xn ≥ 2λ

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n.

(4.62)

4.5.3 A Solution Algorithm

When security returns are different types of uncertain variables with sym-
metrical uncertainty distributions, we can use 9999 Method to calculate the
expected and variance values of portfolio returns and then use traditional
method or integrate the calculation results into the GA to find the optimal
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portfolio. Calculation of expected value has been introduced in 9999 Method
B. Here, we introduce the way for calculating variance via 9999 method.

Calculation of Variance
Let ξi represent the i-th security returns with symmetrical uncertainty distri-
butions Φi, and xi the investment proportions in securities i, i = 1, 2, · · · , n,
respectively. According to the definition of variance of uncertain variable and

Equation (4.20), the variance of the portfolio return
n∑

i=1

ξixi can be calculated

via

V
[ n∑

i=1

ξixi

]
= 2

∫ +∞

e

(r − e)(1 − Ψ(r) + Ψ(2e − r))dr

where Ψ is the uncertainty distribution of the uncertain portfolio return
n∑

i=1

ξixi, and e the expected value of the portfolio return.

Recall the 9999 Method A in page 124. Let Φi represent the uncertainty
distributions of the i-th securities, i = 1, 2, · · · , n, respectively. The uncer-

tainty distribution Ψ of the portfolio return
n∑

i=1

ξixi can be represented on a

computer as follows:

αj 0.0001 0.0002 · · · 0.0001j · · · 0.9999
Φ−1

1 (αj) t1/1 t1/2 · · · t1/j · · · t1/9999

Φ−1
2 (αj) t2/1 t2/2 · · · t2/j · · · t2/9999

· · · · · · · · · · · · · · · · · · · · ·
Φ−1

n (αj) tn/1 tn/2 · · · tn/j · · · tn/9999

Ψ−1(αj)
n∑

i=1

xiti/1

n∑

i=1

xiti/2 · · ·
n∑

i=1

xiti/j · · ·
n∑

i=1

xiti/9999

(4.63)
Since the security returns are all symmetrical,

n∑

i=1

xiti/j = e when j = 5000. (4.64)

Thus,

V
[ n∑

i=1

ξixi

]
= 2

∫ +∞

e

(r − e)(1 − Ψ(r) + Ψ(2e − r))dr

= 4
9999∑

j=5000

(rj − e)(1 − 0.0001j)(rj − rj−1)
(4.65)

where rj =
n∑

i=1

xiti/j .
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Genetic Algorithm
When the expected and variance values of portfolio returns have been calcu-
lated by Equations (4.64) and (4.65), respectively, we can either use tradi-
tional ways to find the optimal solution or integrate the calculation results
into GA to find the optimal portfolio. Below is the summary of GA for finding
the optimal solution of the mean-variance model (4.56). The optimal solution
of Model (4.57) can be obtained in the similar way.

Step 1. Initialize pop size chromosomes. Use Equation (4.65) to calculate
the variance and check the constraint.

Step 2. Calculate the objective values for all chromosomes.
Step 3. Give the rank order of the chromosomes according to the objective

values, and compute the values of the rank-based evaluation function of
the chromosomes.

Step 4. Compute the fitness of each chromosome according to the rank-
based-evaluation function.

Step 5. Select the chromosomes by spinning the roulette wheel.
Step 6. Update the chromosomes by crossover and mutation operations.

Use Equation (4.65) to calculate the variance when checking the constraint.
Step 7. Repeat the second to the sixth steps for a given number of cycles.
Step 8. Take the best chromosome as the solution of portfolio selection.

4.5.4 An Example

Suppose an investor wants to select his/her portfolio from the ten securities
whose return rates are given in Table 4.9. If the investor adopts the mean-
variance selection idea, and sets the minimum expected return at 0.07. Then

Table 4.9 Uncertain Return Rates of 10 Securities

Security i ξi = �(ai, bi) Security i ξi ∼ N (ei, σi)
1 �(−0.1, 0.2) 6 N (0.06, 0.1)
2 �(−0.12, 0.26) 7 N (0.09, 0.14)
3 �(−0.2, 0.38) 8 N (0.05, 0.08)
4 �(−0.11, 0.23) 9 N (0.08, 0.12)
5 �(−0.08, 0.18) 10 N (0.1, 0.18)

Table 4.10 Allocation of Money to Ten Securities

Security i 1 2 3 4 5
Allocation of money 0.00% 0.00 % 0.00% 0.00% 0.00%

Security i 6 7 8 9 10
Allocation of money 0.00% 33.33 % 66.67% % 0.00%
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according to the mean-variance model, the investor should select the portfolio
according to the following model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

min V [ξ1x1 + ξ2x2 + · · · + ξ10x10]

subject to:

E[ξ1x1 + ξ2x2 + · · · + ξ10x10] ≥ 0.07

x1 + x2 + · · · + x10 = 1

xi ≥ 0, i = 1, 2, · · · , 10.

(4.66)

According to the properties of linear uncertain variable and normal uncer-
tain variable, we change Model (4.66) into the following crisp form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min V [ξ1x1 + ξ2x2 + · · · + ξ10x10]

subject to:

0.05x1 + 0.07x2 + 0.09x3 + 0.06x4 + 0.05x5+

0.06x6 + 0.09x7 + 0.05x8 + 0.08x9 + 0.1x10 ≥ 0.07

x1 + x2 + · · · + x10 = 1

xi ≥ 0, i = 1, 2, · · · , 10.

(4.67)

We use 999999 Method to calculate the variance values of portfolios and in-
tegrate the calculation results into the GA. A run of the GA (Pm = 0.2, Pc =
0.3, pop size = 30, a = 0.05) with 10000 generations shows that to minimize
variance at the constraint that the expected return should not be lower than
0.07, the investor should allocate his/her money according to Table 4.10. The
minimum variance value is 0.0114.



Chapter 5
Model Varieties

There is a widely accepted rule that diversification is an efficient way for
reducing likely loss of an investment. The idea is reflected in a famous saying
that “one should not put all the eggs into one basket”. In portfolio selection,
this means the investors should not allocate all their money to just a few se-
curities. Placing all the money in only a few companies could lead to financial
disaster. One example of this is the nearly 80 percent decline in the Nasdaq
market index with many high-tech companies from March 2000 to October
2002.

Diversification works because it is rare that all the securities will perform
poorly simultaneously, nor is it common that all the securities will perform
same poorly at the same time. In fact, there is an unstated worry hidden
in the diversification rule. This worry is that people have to make decision
based on their prediction of security returns, but their prediction may be
wrong sometimes, or some contingency may change the security returns. If
that is the case, however, it is rare that prediction about all security returns
is wrong. Thus, a diversified investment would lose less than a concentrative
investment.

In the area of probabilistic portfolio selection, it has been found that op-
timal mean-variance portfolio is often extremely concentrated on a few se-
curities [43]. Thus, Kapur and Kesavan [44], Kapur [45], Fang, Rajasekera
and Tsao [17], Jana, Roy and Mazumder [43] suggested the diversified mean-
variance models. Similarly, the optimal portfolio produced by other types of
selection criteria such as the mean-risk model, β-return-risk model and prob-
ability minimization model may also be quite concentrative on a few securi-
ties. The similar concentrative optimal portfolio is also found in credibilitic
portfolio selection and uncertain portfolio selection. Thus, for conservative
investors, diversification versions of portfolio models for various selection cri-
teria are needed.

We must point out that diversification proposed in this chapter does not
have the same sense as the diversification implied in the former chapters. In
the former chapters, securities are diversified in the sense of lowering the risk

X. Huang: Portfolio Analysis: From Probab. to Credibilistic, STUDFUZZ 250, pp. 157–172.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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curve, reducing the chance value of a concerned low return event, or reducing
the variance value of a portfolio. Diversification in this chapter is just a
compromise solution to people’s dilemma that they have to make decision
based on their prediction of security returns and in the meantime they dare
not totally believe their prediction.

5.1 Entropy and Diversification

Shannon entropy was usually applied to measure the uncertain degree of a
portfolio return, see [78, 79, 72]. But it can also be used to measure the
diversification degree of an investment. To understand it, let us recall the
definition of the entropy first.

Let η be a discrete random variable taking values ai at probabilities pi, i =
1, 2, · · · , n, respectively. Then its entropy is defined by [85]

H [η] = −
n∑

i=1

pi ln pi.

The entropy measures how equal the probabilities p1, p2, · · · , pn are among
themselves. The greater value the entropy, the closer the random variable is
to the equi-probable random variable, or the vice versa. The entropy value
will reach its minimum of 0 if and only if there exists an index k such that
pk = 1, and will reach its maximum of ln n if and only if pi ≡ 1/n for all
i = 1, 2, · · · , n.

Notice that in portfolio selection problem, the uniform degree of the invest-
ment proportions is also a token of diversification degree of the investment.
The more uniform the investment proportions in the securities are, the more
dispersed the investment is. Furthermore, the investment proportions in se-
curities i, denoted by xi, meet the same requirement for probabilities pi, i.e.,

xi ≥ 0 and
n∑

i=1

xi = 1, i = 1, 2, · · · , n. Thus, we replace the probabilities in

Shannon entropy by investment proportions and make use of the properties
of entropy to reflect the diversification degree of a portfolio. For clarity, this
entropy is called the proportion entropy.

Definition 5.1 (Pan, Huang [73]) Let xi denote the investment proportions
in the i-th securities, i = 1, 2, · · · , n, respectively. Then the proportion entropy
is

H = −
n∑

i=1

xi ln xi. (5.1)

For example, for the portfolios containing three alternative securities A, B,
and C, the proportion entropy values are given in Table 5.1. For portfolio 1, its
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proportion entropy is 0 and the investment proportion of security C reaches
the maximum value x3 = 1, which implies that only security C is allocated
the money and the other two securities are allocated nothing. In this case the
investment is extremely concentrative. For portfolio 2, its proportion entropy
becomes bigger than the proportion entropy of portfolio 1 and the investment
proportions of securities B and C are greater than zero, which implies that
two securities B and C are allocated some money. The investment in portfolio
2 is more dispersed than in portfolio 1. For portfolios 3 to 6, the proportion
entropy values become bigger and bigger and the investment proportions of
all the three securities possess positive numbers, which implies that all the
securities are allocated some money. The investments are more dispersed
than portfolios 1 or 2. The portfolio becomes dispersed when the proportion
entropy value becomes big.

Table 5.1 Proportion Entropy and Diversification

Portfolio Proportion Proportion Proportion Proportion
in A (x1) in B (x2) in C (x3) Entropy

1 0.0 0.0 1.0 0.000
2 0.0 0.1 0.9 0.325
3 0.1 0.1 0.8 0.639
4 0.1 0.2 0.7 0.802
5 0.2 0.3 0.5 1.030
6 0.33 0.33 0.34 1.099

From the properties of shannon entropy, it is easy to get that

(1) When the proportion entropy value is 0, the portfolio will be extremely
concentrative. The portfolio contains only one security.

(2) When the proportion entropy value reaches its maximum value of ln n,
the portfolio will be most dispersed. The portfolio contains all the securities,
and the money is allocated evenly to all the securities.

(3) The greater value the proportion entropy takes, the more dispersed
the portfolio is. Thus, the investors can choose the entropy value from the
interval (0, ln n) according to their own requirement for diversification.

Note that the proportion entropy itself does not use any information what-
ever about the uncertainty of the security returns. Therefore, the proportion
entropy is not a risk measure all by itself. It has to be combined with a
chosen measure of risk such that it can serve as a complementary means
to reduce risk. In addition, it is not suggested that the more dispersed
the portfolio, the better the portfolio. The investors should choose the en-
tropy value from the interval (0, ln n) according to their own requirement for
diversification.
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5.2 Mean-Risk Diversification Models

Probabilistic Mean-Risk Diversification Model

If the investors adopt risk curve as the risk measure and accept mean-risk
selection criterion and preset a diversification degree β, then in the situation
where security returns are random variables, the mean-risk diversification
model is as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

maxE[ξ1x1 + ξ2x2 + · · · + ξnxn]

subject to:

R(x1, x2, · · · , xn; r) ≤ α(r), ∀r ≥ 0

−x1 ln x1 − x2 ln x2 − · · · − xn ln xn ≥ β

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n,

(5.2)

where ξi denote the random returns of the i-th securities, xi the investment
proportions in the i-th securities, E the expected value operator of random
variables, α(r) the investors’ confidence curve, R(x1, x2, · · · , xn; r) the risk
curve of the random portfolio (x1, x2, · · · , xn) defined as

R(x1, x2, · · · , xn; r) = Pr {rf − (ξ1x1 + ξ2x2 + · · · + ξnxn) ≥ r}

in which rf is the risk-free interest rate. In the mean-risk diversification model
(5.2), the investors do not only require that the risk curve should be below
the confidence curve but also require that the portfolio be dispersed enough.
The investors now are more conservative than the investors who adopt the
probabilistic mean-risk model (2.16).

Credibilistic Mean-Risk Diversification Model

In the case when security returns are fuzzy numbers, the mean-risk diversifi-
cation model is as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

maxE[ξ1x1 + ξ2x2 + · · · + ξnxn]

subject to:

R(x1, x2, · · · , xn; r) ≤ α(r), ∀r ≥ 0

−x1 ln x1 − x2 ln x2 − · · · − xn ln xn ≥ β

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n,

(5.3)
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where ξi denote the fuzzy returns of the i-th securities, E the expected value
operator of the fuzzy variables, R(x1, x2, · · · , xn; r) the risk curve of the fuzzy
portfolio (x1, x2, · · · , xn) defined as

R(x1, x2, · · · , xn; r) = Cr {rf − (ξ1x1 + ξ2x2 + · · · + ξnxn) ≥ r}

in which rf is the risk-free interest rate.

Uncertain Mean-Risk Diversification Model

In the case when security returns are uncertain variables, the mean-risk di-
versification model is:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

maxE[ξ1x1 + ξ2x2 + · · · + ξnxn]

subject to:

R(x1, x2, · · · , xn; r) ≤ α(r), ∀r ≥ 0

−x1 ln x1 − x2 ln x2 − · · · − xn ln xn ≥ β

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n,

(5.4)

where ξi denote the uncertain returns of the i-th securities, E the expected
value operator of the uncertain variables, R(x1, x2, · · · , xn; r) the risk curve
of the uncertain portfolio (x1, x2, · · · , xn) defined as

R(x1, x2, · · · , xn; r) = � {rf − (ξ1x1 + ξ2x2 + · · · + ξnxn) ≥ r}

in which rf is the risk-free interest rate.

Application Examples

Example of Probabilistic Mean-Risk Diversification Model

see also Section 2.2.4
Recall the former mentioned six alternative securities Hundsun (600570),

Tianjin (600821), Wanwei (600063), Sany (600031), Baosteel (600019), and
Tianchuang (600791) whose monthly returns are given in Section 2.2.4 in
Table 2.6. Suppose the investors would like to select the portfolio from them
and they adopt mean-risk diversification selection criterion. The monthly
risk-free interest rate is still rf = 0.003, and the investors’ confidence curve
is the same as follows:

α(r) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−1.25r + 0.25, when 0 ≤ r ≤ 0.12

−0.5r + 0.16, when 0.12 ≤ r ≤ 0.3

0.01, when r ≥ 0.3.
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If the investors now ask that the proportion entropy value should not be less
than 1.2, then their mean-risk diversification selection model is as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

maxE[ξ1x1 + ξ2x2 + ξ3x3 + ξ4x4 + ξ5x5 + ξ6x6]

subject to:

R(x1, x2, · · · , x6; r) ≤ α(r), ∀r ≥ 0

−x1 ln x1 − x2 ln x2 − · · · − x6 ln x6 ≥ 1.2

x1 + x2 + x3 + x4 + x5 + x6 = 1

x1, x2, x3, x4, x5, x6 ≥ 0

(5.5)

where ξ1, ξ2, ξ3, ξ4, ξ5, ξ6 represent the random monthly returns of securities
Hundsun (600570), Tianjin (600821), Wanwei(600063), Sany(600031), Baos-
teel(600019), and Tianchuang(600791), respectively, and

R(x1, x2, · · · , x6; r) = Pr {0.003 − (ξ1x1 + ξ2x2 + · · · + ξ6x6) ≥ r} .

A run of “Solver” in the menu “Tool” of Microsoft Excel shows that when
the diversification constraint is added, the investors should assign their money
according to Table 5.2. The expected return now is 0.1074. As shown in
Fig. 5.1, the risk curve R(r) of the dispersed model is totally below the
investors’ confidence curve α(r).

Table 5.2 Allocation of Money to Six Securities

600570 600821 600063 600031 600019 600791
20.68% 2.87% 26.69% 48.39% 0.65% 0.72%

............................................................................................................................................................................................................................................................................................................ ...............

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

................

...............

r

0.25

0

α(r)

R(r)

..............................................................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................................................................

Fig. 5.1 Risk curve R(r) and confidence curve α(r) of Model (5.5).

Compared with the optimal portfolio in Table 2.7 produced by probabilis-
tic mean-risk model (2.17) in Subsection 2.2.4, the optimal portfolio now is
much more dispersed. In Table 2.7 (also see the first row in Table 5.3), the
portfolio includes only three securities without entropy constraint, while in
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Table 5.2, the portfolio includes all the six securities. In the mean-risk di-
versification model, the risk curve and the proportion entropy are tied up
to measure the risk of the portfolio. Only the portfolios whose risk curves
are below the confidence curve and in the meantime whose diversification
degrees are equal to or greater than the preset level are regarded to be
safe. By comparison, we see that the expected value 0.1074 of the dispersed
portfolio is a little lower than the expected value 0.1099 produced from the
mean-risk model, which reflects the relationship between risk and return, i.e.,
the lower the risk, the lower the return; the higher the risk, the higher the
return.

Table 5.3 Portfolios within Different Diversification Constraints

600570 600821 600063 600031 600019 600791 entr. obj.
5.47% 0.00% 21.03% 73.5% 0.00% 0.00% 0.0 0.1099
9.1% 0.07% 17.06% 73.76% 0.00% 0.00% 0.75 0.1098

16.18% 0.81% 23.87% 58.96% 0.09% 0.1% 1.0 0.1087
20.68% 2.87% 26.69% 48.39% 0.65% 0.72% 1.2 0.1074
22.76% 7.92% 26.07% 35.84% 3.59% 3.81% 1.5 0.1039

For further comparison, we did more experiments with different proportion
entropy values in the constraint. The results are given in Table 5.3. When
the proportion entropy becomes bigger, the selected portfolio becomes more
diversified, but in the meantime, the expected return becomes smaller.

Example of Credibilistic Mean-Risk Diversification Model

see also Section 3.2.5
Recall the application example of credibilistic mean-risk model for fuzzy

portfolio selection in Subsection 3.2.5. Suppose the investors would like to
select the portfolio from the securities given in Table 3.1 in Subsection
3.2.5. This time they adopt mean-risk diversification selection criterion. The
monthly risk-free interest rate is still rf = 0.01, and the investors’ confidence
curve is the same as follows:

α(r) =

⎧
⎪⎪⎨

⎪⎪⎩

−2.75r + 0.43, 0 ≤ r ≤ 0.12,

−0.5r + 0.16, 0.12 ≤ r ≤ 0.3,

0.01, r ≥ 0.3.

If the investors now ask that the proportion entropy value should not
be less than 1.3, then their mean-risk diversification selection model is as
follows:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

maxE[ξ1x1 + ξ2x2 + ξ3x3 + ξ4x4 + ξ5x5 + ξ10x10]

subject to:

R(x1, x2, · · · , x10; r) ≤ α(r), ∀r ≥ 0

−x1 ln x1 − x2 ln x2 − · · · − xn ln x10 ≥ 1.3

x1 + x2 + x3 + x4 + x5 + x10 = 1

x1, x2, x3, x4, x5, x10 ≥ 0

(5.6)

where

R(x1, x2, · · · , x10; r) = Cr {0.01 − (ξ1x1 + ξ2x2 + · · · + ξ10x10) ≥ r} .

A run of “Solver” in the menu “Tool” of Microsoft Excel shows that when
the diversification constraint is added, the investors should assign their money
according to Table 5.4. The expected return now is 0.0417. As shown in Fig.
5.4, the risk curve R(r) is totally below the confidence curve α(r).

Table 5.4 Allocation of Money to Ten Securities

Security i 1 2 3 4 5
Allocation of money 0.16% 0.89 % 24.94% 0.09% 0.00%

Security i 6 7 8 9 10
Allocation of money 0.39% 46.11 % 3.91 % 1.25% 22.26%

Compared with the optimal portfolio in Table 3.2 produced by credibilistic
mean-risk model (3.39), the optimal portfolio now is much more dispersed.
In Table 3.2 (also see the first row in Table 5.5), the portfolio includes only
two securities without entropy constraint, while in Table 5.4, the portfolio
includes eight securities. We also find that the expected value 0.0417 of the
dispersed portfolio is a little lower than the expected value 0.0421 of the
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Fig. 5.2 Risk curve R(r) and confidence curve α(r) of Model (5.6).
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portfolio produced by the mean-risk model, which reflects the relationship
between risk and return, i.e., the lower the risk, the lower the return; the
higher the risk, the higher the return.

For further comparison, we did more experiments with different proportion
entropy values in the constraint. The results are given in Table 5.5. When
the proportion entropy becomes bigger, the selected portfolio becomes more
diversified, but in the meantime, the expected return becomes smaller.

Table 5.5 Portfolios within Different Diversification Constraints

Security Proportion Proportion Proportion Proportion
1 0.00% 0.00% 0.16% 2.99%
2 0.00% 0.00% 0.89% 6.87%
3 0.00% 8.57% 24.94% 18.14%
4 0.00% 0.00% 0.09% 3.76%
5 0.00% 0.00% 0.00% 1.27%
6 0.00% 0.00% 0.39% 6.87%
7 78.57% 69.16% 46.11% 29.73%
8 0.00% 0.00% 3.91% 12.66%
9 0.00% 0.00% 1.25% 5.52%
10 21.43% 22.27% 22.26% 12.19%

Entropy 0 0.8 1.3 2.0
Objective 4.21% 4.21% 4.17% 3.87%

Example of Uncertain Mean-Risk Diversification Model

see also Section 4.2.5
Recall the application example of uncertain mean-risk model in Subsec-

tion 4.2.5. Suppose the investors would like to select the portfolio from the
ten securities given in Table 4.3 in Subsection 4.2.5. This time they adopt
mean-risk diversification selection criterion. The monthly risk-free interest
rate is still rf = 0.01, and the investors’ confidence curve is the same as
follows:

α(r) =

⎧
⎪⎪⎨

⎪⎪⎩

−2.75r + 0.43, 0 ≤ r ≤ 0.12,

−0.5r + 0.16, 0.12 ≤ r ≤ 0.3,

0.01, r ≥ 0.3.

If the investors now ask that the proportion entropy value should not
be less than 0.8, then their mean-risk diversification selection model is as
follows:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

maxE[ξ1x1 + ξ2x2 + ξ3x3 + ξ4x4 + ξ5x5 + ξ10x10]

subject to:

R(x1, x2, · · · , x10; r) ≤ α(r), ∀r ≥ 0

−x1 ln x1 − x2 ln x2 − · · · − xn ln x10 ≥ 0.8

x1 + x2 + x3 + x4 + x5 + x10 = 1

x1, x2, x3, x4, x5, x10 ≥ 0

(5.7)

where

R(x1, x2, · · · , x10; r) =� {0.01 − (ξ1x1 + ξ2x2 + · · · + ξ10x10) ≥ r} .

A run of “Solver” in the menu “Tool” of Microsoft Excel shows that when
the diversification constraint is added, the investors should assign their money
according to Table 5.6. The expected return now is 0.041. As shown in Fig.
5.6, the risk curve R(r) is totally below the confidence curve α(r).

Table 5.6 Allocation of Money to Ten Securities

Security i 1 2 3 4 5
Allocation of money 0.00% 0.00 % 0.00% 0.00% 0.00%

Security i 6 7 8 9 10
Allocation of money 35.56% 3.91 % 0.02 % 0.00% 60.51%
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Fig. 5.3 Risk curve R(r) and confidence curve α(r) of Model (5.7).

Compared with the optimal portfolio in Table 4.4 produced by uncertain
mean-risk model (4.37), the optimal portfolio now is much more dispersed.
In Table 4.4 (also see the first row in Table 5.7), the portfolio includes only
two securities without entropy constraint, while in Table 5.6, the portfolio
includes four securities. We also find that the expected value 0.04068 of the
dispersed portfolio is a little lower than the expected value 0.0407 of the
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portfolio produced from the mean-risk model, which reflects the relationship
between risk and return, i.e., the lower the risk, the lower the return; the
higher the risk, the higher the return.

For further comparison, we did more experiments with different proportion
entropy values in the constraint. The results are given in Table 5.7. When
the proportion entropy becomes bigger, the selected portfolio becomes more
diversified, but in the meantime, the expected return becomes smaller.

Table 5.7 Portfolios within Different Diversification Constraints

Security Proportion Proportion Proportion Proportion
1 0.00% 0.00% 0.12% 1.94%
2 0.00% 0.00% 0.43% 3.30%
3 0.00% 0.00% 0.37% 3.39%
4 0.00% 0.00% 0.55% 3.62%
5 0.00% 0.00% 1.39% 5.00%
6 38.72% 35.56% 14.63% 13.69%
7 0.00% 3.91% 15.69% 14.79%
8 0.00% 0.02% 11.58% 13.00%
9 0.00% 0.00% 7.02% 11.16%
10 61.28% 60.51% 48.21% 30.11%

Entropy 0 0.8 1.2 2.0
Objective 4.07% 4.07% 3.94% 3.62%

5.3 β-Return-Risk Diversification Models

Probabilistic β-Return-Risk Diversification Model

If the investors adopt risk curve as the risk measure and accept β-return-risk
selection criterion and preset a diversification degree β, then in the situation
where security returns are random variables, the β-return-risk diversification
model is as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max f̄

subject to:

Pr{ξ1x1 + ξ2x2 + · · · + ξnxn ≥ f̄}
R(x1, x2, · · · , xn; r) ≤ α(r), ∀r ≥ 0

−x1 ln x1 − x2 ln x2 − · · · − xn ln xn ≥ β

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n,

(5.8)
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where ξi denote the random returns of the i-th securities, xi the invest-
ment proportions in the i-th securities, α(r) the investors’ confidence curve,
R(x1, x2, · · · , xn; r) the risk curve of the random portfolio (x1, x2, · · · , xn)
defined as

Pr{rf − (ξ1x1 + ξ2x2 + · · · + ξnxn) ≥ r},

and f̄ the β-return defined as

max{f̄
∣
∣ Pr

{
ξ1x1 + ξ2x2 + · · · + ξnxn ≥ f̄

} ≥ β}.

In the β-return-risk diversification model (5.8), the investors do not only re-
quire that the risk curve should be totally below the confidence curve but also
require that the portfolio be dispersed enough. The investors now are more
conservative than the investors who adopt the β-return-risk model (2.19).

Credibilistic β-Return-Risk Diversification Model

If the investors adopt risk curve as the risk measure and accept β-return-risk
selection criterion and preset a diversification degree β, then in the situation
where security returns are fuzzy numbers, the β-return-risk diversification
model is as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max f̄

subject to:

Cr{ξ1x1 + ξ2x2 + · · · + ξnxn ≥ f̄}
R(x1, x2, · · · , xn; r) ≤ α(r), ∀r ≥ 0

−x1 ln x1 − x2 ln x2 − · · · − xn ln xn ≥ β

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n,

(5.9)

where ξi denote the fuzzy returns of the i-th securities, R(x1, x2, · · · , xn; r)
the risk curve of the fuzzy portfolio (x1, x2, · · · , xn) defined as

Cr{rf − (ξ1x1 + ξ2x2 + · · · + ξnxn) ≥ r},

and f̄ the β-return defined as

max{f̄
∣
∣ Cr

{
ξ1x1 + ξ2x2 + · · · + ξnxn ≥ f̄

} ≥ β}.

In the β-return-risk diversification model (5.9), the investors do not only
require that the risk curve should be below the confidence curve but also
require that the portfolio be dispersed enough. The investors now are more
conservative than the investors who adopt the β-return-risk model (3.43).
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Uncertain β-Return-Risk Diversification Model

In the case when security returns are uncertain variables, the β-return-risk
diversification model is:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max f̄

subject to:

�{ξ1x1 + ξ2x2 + · · · + ξnxn ≥ f̄}
R(x1, x2, · · · , xn; r) ≤ α(r), ∀r ≥ 0

−x1 ln x1 − x2 ln x2 − · · · − xn ln xn ≥ β

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n,

(5.10)

where ξi denote the uncertain returns of the i-th securities, R(x1, x2, · · · , xn; r)
the risk curve of the uncertain portfolio (x1, x2, · · · , xn) defined as

�{rr − (ξ1x1 + ξ2x2 + · · · + ξnxn) ≥ r},

and f̄ the β-return defined as

max{f̄
∣
∣�

{
ξ1x1 + ξ2x2 + · · · + ξnxn ≥ f̄

} ≥ β}.

5.4 Chance Minimization Diversification Models

Probability Minimization Diversification Mode

When security returns are regarded to be random variables, if the investors
regard the occurrence probability of a preset loss level as the risk and adopt
probability minimization selection criterion, the probability minimization di-
versification model is as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

min Pr {ξ1x1 + ξ2x2 + · · · + ξnxn ≤ d}
subject to:

−x1 ln x1 − x2 ln x2 − · · · − xn ln xn ≥ β

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n

(5.11)

where ξi denote the random returns of the i-th securities, xi the investment
proportions in the i-th securities, d the concerned disastrous return level and
β the preset proportion entropy value.

If the investors take investment return into account, the probability mini-
mization diversification model can be expressed as follows:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min Pr {ξ1x1 + ξ2x2 + · · · + ξnxn ≤ d}
subject to:

E[ξ1x1 + ξ2x2 + · · · + ξnxn] ≥ a

−x1 ln x1 − x2 ln x2 − · · · − xn ln xn ≥ β

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n

(5.12)

where E is the expected value operator of random variables and a the mini-
mum expected return the investors can accept.

Credibility Minimization Diversification Mode

In fuzzy portfolio selection, when the investors regard the occurrence cred-
ibility of a preset loss level as the risk and adopt credibility minimization
selection criterion, the credibility minimization diversification model is as
follows: ⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min Cr {ξ1x1 + ξ2x2 + · · · + ξnxn ≤ d}
subject to:

E[ξ1x1 + ξ2x2 + · · · + ξnxn] ≥ a

−x1 ln x1 − x2 ln x2 − · · · − xn ln xn ≥ β

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n

(5.13)

where where ξi denote the fuzzy returns of the i-th securities, and E the
expected value operator of the fuzzy variables.

Chance Minimization Diversification Mode

When security returns are regarded to be uncertain variables, if the investors
regard the occurrence chance of a preset loss level as the risk and adopt
chance minimization selection criterion, the chance minimization diversifica-
tion model is as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min� {ξ1x1 + ξ2x2 + · · · + ξnxn ≤ d}
subject to:

E[ξ1x1 + ξ2x2 + · · · + ξnxn] ≥ a

−x1 ln x1 − x2 ln x2 − · · · − xn ln xn ≥ β

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n

(5.14)
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where ξi denote the uncertain returns of the i-th securities, and E the ex-
pected value operator of the uncertain variables.

5.5 Mean-Variance Diversification Models

Probabilistic Mean-Variance Diversification Model

If the investors adopt variance as risk measure and accept mean-variance
selection criterion, but add diversification requirement to the investment,
when security returns are regarded to be random variables, the selection
model becomes the mean-variance diversification model as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min V [x1ξ1 + x2ξ2 + · · · + xnξn]

subject to:

E[x1ξ1 + x2ξ2 + · · · + xnξn] ≥ α

−x1 ln x1 − x2 ln x2 − · · · − xn ln xn ≥ β

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n

(5.15)

where ξi denote the random returns of the i-th securities, xi the investment
proportions in the i-th securities, E and V the expected value operator and
variance of random variables, respectively, α the minimum expected return
the investor can accept and β the preset minimum entropy value.

Credibilistic Mean-Variance Diversification Model

When security returns are regarded to be fuzzy numbers, the crdibilistic
mean-variance diversification model is as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min V [x1ξ1 + x2ξ2 + · · · + xnξn]

subject to:

E[x1ξ1 + x2ξ2 + · · · + xnξn] ≥ α

−x1 ln x1 − x2 ln x2 − · · · − xn ln xn ≥ β

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n

(5.16)

where ξi denote the fuzzy returns of the i-th securities, and E and V the
expected value operator and variance of fuzzy variables, respectively.
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Uncertain Mean-Variance Diversification Model

When security returns are regarded to be uncertain numbers, the uncertain
mean-variance diversification model is as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min V [x1ξ1 + x2ξ2 + · · · + xnξn]

subject to:
E[x1ξ1 + x2ξ2 + · · · + xnξn] ≥ α

−x1 ln x1 − x2 ln x2 − · · · − xn ln xn ≥ β

x1 + x2 + · · · + xn = 1

xi ≥ 0, i = 1, 2, · · · , n

(5.17)

where ξi denote the uncertain returns of the i-th securities, and E and V the
expected value operator and variance of uncertain variables, respectively.
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List of Frequently Used Symbols

x investment proportion, decision variable
ξ random, fuzzy, uncertain security return

μ, ν membership functions
μ, e expected values

σ, variance value
φ probability density function

Φ, Ψ probability, uncertainty distributions
∅ empty set

Pr probability measure
(Ω,�, Pr) probability space

Cr credibility measure
(Θ,�(Θ), Cr) credibility space

� uncertain measure
(Γ,�,�) uncertainty space

E expected value operator
V variance value operator

SV semivariance value operator
H entropy operator

α, β confidence levels
α(r) confidence curve
R(r) risk curve

f̄ β-return value
VaRF Value-at-Risk-in-Fuzziness
VaRU Value-at-Risk-in-Uncertainty


 set of real numbers
∨ maximum operator
∧ minimum operator

Eval evaluation function in genetic algorithms
GA genetic algorithm

c gene
C chromosome

Err error function in neural networks



Index

β-value of
random variable, 21
fuzzy variable, 78
uncertain variable, 130

β-return of
random portfolio, 34
fuzzy portfolio, 91
uncertain portfolio, 142

β-return-risk model of
probabilistic portfolio selection, 34
credibilistic portfolio selection, 91
uncertain portfolio selection, 141

Borel algebra, 12
Borel set, 12
confidence curve, 27, 83, 134
credibility measure, 62
credibility space, 62
credibility inversion theorem, 63
credibility minimization model, 97
entropy of

discrete random variable, 22
continuous fuzzy variable, 79

entropy optimization model, 107
equipossible fuzzy variable, 70
expected value of

random variable, 15
fuzzy variable, 73
uncertain variable, 126

extension principle of Zadeh, 71
fuzzy simulation, 109
fuzzy variable, 62
genetic algorithm, 52
hybrid intelligent algorithm, 56, 108
independence of

fuzzy variable, 70
uncertain variable, 121

linear uncertain variable, 120
lognormal random variable, 20
membership function, 63
mean-risk model of

probabilistic portfolio selection, 30
credibilistic portfolio, 84
uncertain portfolio, 84

mean-semivariance model of
probabilistic portfolio selection, 45
credibilistic portfolio selection, 106

mean-variance model of
probabilistic portfolio selection, 40
credibilistic portfolio selection, 102
uncertain portfolio selection, 151

measurable function, 12
measurable set, 12
9999 Method A, 124
9999 Method B, 128
normal random variable, 17
normal fuzzy variable, 69
normal uncertain variable, 121
portfolio analysis, 1
probability density function, 14
probability distribution, 14
probability measure, 12
probability space, 12
random number generation, 46
random variable, 12
rate of return, 1
risk curve of

random portfolio return, 23
fuzzy portfolio return, 81
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uncertain portfolio return, 132
semivariance of

random variable, 15
fuzzy variable, 76

σ-algebra, 12
stochastic simulation, 48
trapezoidal fuzzy variable, 67
triangular fuzzy variable, 65
uncertain measure, 117
uncertainty space, 118

uncertain variable, 119
uncertainty distribution, 120
uniform random variable, 16
variance value of

random variable, 15
fuzzy variable, 75
uncertain variable, 129

value-at-risk-in-fuzziness (VaRF), 98
value-at-risk-in-uncertainty (VaRU),
147
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