
Chapter 4
Topological Map Extraction with Semantic
Information

4.1 Introduction

In the previous chapter we saw how a robot can classify its pose in an indoor en-
vironment into a semantic class. The different semantic classes represented typical
divisions of the environment such as corridors, rooms or doorways. This chapter
will show how a robot can extract a topological map from the environment using
the previous semantic labeling.

Topological maps have been quite popular in the robotics community because
they are believed to be cognitively more adequate, since they can be stored more
compactly than geometric maps, and can also be communicated more easily to users
of a mobile robot. Many researchers have considered the problem of building topo-
logical maps of the environment from the data gathered with a mobile robot. How-
ever, few techniques exist that permit semantic information to be added to these
maps.

In this chapter, we consider the problem of learning topological maps with se-
mantic information from occupancy grid maps that were obtained with a mobile
robot in an indoor environment using range data. The approach is based on the
assumption that indoor environments, like the one depicted in Fig. 4.1(a), can be
typically decomposed into areas with different functionalities such as rooms, cor-
ridors and doorways, and that these areas build the vertices of a topological graph.
The connections of the vertices are given by the neighborhood of the regions in the
occupancy map. For example, a doorway is typically connected to two rooms, two
corridors, or to a room and a corridor. Figure 4.1(b) depicts a possible topological
representation for the map in Fig. 4.1(a)

Throughout this chapter we assume that the robot is given a map of the envi-
ronment in the form of an occupancy grid. The main idea is to decide about the
semantic label of each free cell using local and neighboring information. By local
information we mean the set of geometrical features the robot obtains from a laser
observation at a concrete location (cf. Chap. 3). By neighboring information we
refer to the semantic information from the neighboring locations.

Ó.M. Mozos: Semantic Labeling of Places with Mobile Robots, STAR 61, pp. 35–56.
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Fig. 4.1 (a) Geometric map of a typical indoor environment with rooms, doorways, and a
corridor, depicted in colors/gray levels. (b) Corresponding semantic-topological map.

Two different methods are presented which use both local and neighboring infor-
mation for the final classification. The first approach determines the semantic class
of each unoccupied cell of a grid map. This is achieved by simulating a range scan of
the robot given it is located in that particular cell, and then classifying this scan into
one of the semantic classes. Examples for typical simulated range scans obtained
in an office environment were shown in Chap. 3 (cf. Fig. 3.2). The classification
is then done using a sequence of classifiers learned with the AdaBoost algorithm
arranged in a probabilistic decision list in a similar way as introduced in Sect. 3.3.
However, in this chapter we present some modifications in the learning and classifi-
cation process which permit the use of probability values for the different classifica-
tions. Finally, to remove noise and clutter from the resulting classifications, we apply
an approach denoted as probabilistic relaxation labeling. This method corrects the
classification at each location taking into account the semantic class of neighboring
positions.

The second method for the classification is based on associative Markov networks
(AMNs). In this case, the semantic classification at one position inside the map is
done using simultaneously the local information and the relation between semantic
labels from neighboring positions. We apply a variant of AMNs called instance-
based associative Markov networks (iAMNs). This concrete approach combines
AMNs with nearest-neighbor techniques.

Experimental results shown in this chapter illustrate that these methods can deter-
mine the semantic-topological map of an environment with high recognition rates.
We also present results that illustrate that this approach can even construct a topo-
logical map of an environment from which no training data was available. Finally,
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we extend the set of simple features used in Chap. 3 with new ones. As the experi-
mental results illustrate, the newly created set provide better classification results.

The rest of the chapter is organized as follows. In the next section we introduce
the application of the generalized AdaBoost for the concrete task of place recogni-
tion. A probabilistic version of a decision list is presented in Sect. 4.3. The extended
set of geometric features is described in Sect. 4.4. The probabilistic relaxation ap-
proach is presented in Sect. 4.5. Instance-based associative Markov networks are
introduced in Sect. 4.6. Section 4.7 describes the method used to extract seman-
tic regions and to create the final topological map. In Sect. 4.8, experimental re-
sults are presented. We discuss related work in Sect. 4.9. Finally, we conclude in
Sect. 4.10.

4.2 Generalized AdaBoost

In this chapter we use the variant of the AdaBoost algorithm known as generalized
AdaBoost [19]. As introduced in Sect. 2.2.2, this version has several advantages
over the original AdaBoost algorithm. In addition, its output can be easily converted
into a confidence value.

The input to the generalized AdaBoost is also composed of a set of labeled train-
ing examples (xn,yn),n = 1, . . . ,N. However, the label for the examples is in this
case yn = +1 when xn is positive, and yn = −1 when xn is negative. Similar to the
original AdaBoost, during the different iterations t = 1, . . . ,T the algorithm selects
a weak classifier with small error in the weighted training examples. The weight
distribution Dt is changed on each iteration to give more importance to the most
difficult examples. The final strong classifier is composed of a weighted majority
sum of the selected weak hypotheses.

Following the approach presented in Sect. 3.2, each weak classifier is based on
single-valued features f j and has the form

h j(x) =
{

+1 if p j f j(x) < p jθ j

−1 otherwise .
(4.1)

Equation (4.1) differs from (3.1) in the output for a negative classification, which in
this case is −1. The final generalized AdaBoost algorithm modified for the concrete
task of place labeling is given in Fig. 4.2.

Using the generalized version of the AdaBoost algorithm shown in Fig. 4.2, and
following the method suggested in [5], we can additionally compute a confidence
value C+ ∈ [0,1] for a positive binary classification of a new example as

C+ = P(y = +1 | x) =
eF(x)

e−F(x) + eF(x) , (4.2)

where F(x) is the output of the algorithm according to Fig. 4.2. If the example is
classified as negative, the positive confidence value can be calculated as
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• Input:

– Set of N labeled examples (x1,y1), . . . ,(xN ,yN)
with yn = +1 if the example xn is positive,
and yn = −1 if the example xn is negative

– Integer T specifying the number of iterations

• Initialize weights D1(n) = 1
2l for positive examples, and D1(n) = 1

2m for nega-
tive examples, where l is the number of positive examples and m the number of
negative ones.

• For t = 1, . . . ,T

1. Normalize the weights Dt(n)

Dt(n) =
Dt(n)

∑N
i=1 Dt(i)

.

2. For each feature f j train a weak classifier h j using the distribution Dt .
3. For each classifier h j calculate

r j =
N

∑
n=1

Dt(n)ynh j(xn) ,

where h j(xn) ∈ [−1,+1].
4. Choose the classifier h j that maximizes |r j| and set (ht ,rt) = (h j,r j).
5. Update the weights

Dt+1(n) = Dt(n)exp(−αt ynht(xn)) ,

where αt = 1
2 log( 1+rt

1−rt
).

• The final strong classifier is given by

H(x) = sign (F(x)) ,

where

F(x) =
T

∑
t=1

αtht(x) .

Fig. 4.2 The generalized version of the AdaBoost algorithm for place labeling using laser-
based features.

C+ = P(y = +1 | x) = 1 −C− , (4.3)

with

C− = P(y = −1 | x) =
e−F(x)

e−F(x) + eF(x) . (4.4)
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Fig. 4.3 A decision list classifier for K classes using binary classifiers. The output of each
binary classifier p(k) contains the probability that the classified example belongs to the k-th
class.

4.3 Probabilistic Decision List

Extending the ideas introduced in Sect. 3.3, we use a probabilistic decision list
to create a classifier for multiple classes. Each element of such a list represents
one binary classifier which determines if an example belongs to one specific class.
In addition, each binary classifier outputs a confidence value C+

k for a positive
classification of its class k. Figure 4.3 illustrates the structure of a probabilistic
decision list.

In this decision list, each test example is fed into the first binary classifier, which
outputs a confidence value C+ for a positive classification. The example is also
passed to the next binary classifier, but with a negative confidence value 1 −C+.
This process is repeated until the last element in the list. The complete output of the
decision list is represented by a histogram P. In this histogram, the bin p(k) stores
the probability that the classified location belongs to the k-th class according to the
sequence of classifiers in the decision list. Let C+

k refer to the positive confidence
value of the k-th binary classifier in our decision list. Then, the probability that the
example to be classified belongs to the k-th class is given by the bin p(k) of the
histogram P computed as

p(k) = C+
k

k−1

∏
j=1

(1 −C+
j ), (4.5)

whereas for the confidence value C+
K of the last bin holds C+

K = 1 according to the
structure of the decision list in Fig. 4.3. An example of a histogram for six classes
is illustrated in Fig. 4.4.

To select the order of the different binary classifiers we try all possible combi-
nations and choose the one with best classification rates. Each binary classifier is
trained in a one-against-all fashion, selecting one class as positive examples and the
rest of the classes as negative examples. This is similar to the approach introduced
in Sect. 3.3.
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Fig. 4.4 An example of a classification output for the decision list of Fig. 4.3 using six classes.

4.4 New Geometrical Features from Sensor Range Data

As explained in Chap. 3, in order to classify each free cell in the occupancy grid map
we simulate a range scan in its position ray-casting in the map. The simulated scans
correspond to a robot equipped with a 360o degree field of view laser sensor. Each
simulated laser observation then consists of 360 beams. Each training example for
the AdaBoost algorithm consists of the features extracted from the laser observation,
together with its classification. Moreover, we assume that the classification of the
training examples is given in advance. The single-valued features used in the Ada-
Boost algorithm are geometrical features used for shape analysis [7, 9, 13, 15, 18].
The features are selected to be rotationally invariant to make the classification of
a pose dependent only on the (x,y)-position of the robot and not on its orientation.
A feature f is defined as a function that takes as argument one observation z ∈ Z
and returns a real value: f (Z) → R, with Z being the set of all observations. In this
chapter we apply an extended set of the features introduced in Sect. 3.4. The follow-
ing list extends the original set A, which contains features calculated from the raw
beams of z:

11. Average of the relation between the length of two consecutive beams.
12. Standard deviation of the relation between the length of two consecutive beams.
13. Average of normalized beam length.
14. Standard deviation of normalized beam length.
15. Number of relative gaps.
16. Kurtosis.

The set B, which corresponds to the geometrical features extracted from the
polygonal approximation Pol(z) of the observation z, is also extended with the fol-
lowing new features:

14. The circularity of Pol(z).
15. The normalized circularity of Pol(z).
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16. The average normalized distance between the centroid and the shape boundary
of Pol(z).

17. The standard deviation of the normalized distance between the centroid and the
shape boundary of Pol(z).

In the experimental section we will see that these additional features improve the
robustness of the resulting classifier. The complete lists of features, together with
their mathematical definition can be found in Appx. A and Appx. B.

4.5 Probabilistic Relaxation Labeling

The first approach that we use in this chapter to extract topological maps determines
the semantic class of each unoccupied cell of the grid. This is achieved by simu-
lating a range scan of the robot given it is located at that particular cell, and then
labeling this scan into one of the semantic classes using a probabilistic decision list
as presented in Sect. 4.3. This process results in an occupancy map with a seman-
tic label for each free cell. However, the final maps usually contain some errors in
the classification. To smooth the final classification of each cell, we apply the prob-
abilistic relaxation labeling method introduced in [16]. This method changes (or
maintains) the label of a cell according to the labels of its neighborhood.

The probabilistic relaxation labeling problem is defined as follows. Let G =
(V,E) be a graph consisting of nodes V = {v1, . . . ,vN} and edges E ⊆ V × V. Let
furthermore Y = {y1, . . . ,yK} be a set of labels. We assume that every node vi stores
a probability distribution about its label. This distribution is represented by a his-
togram Pi. Each bin pi(k) of that histogram stores the probability that the node vi

has the label k. Thus, ∑K
k=1 pi(k) = 1. For each node vi, Ne(vi) ⊂ V denotes its

neighborhood, which consists of the nodes v j �= vi that are connected to vi. Each
neighborhood relation is represented by two values. Whereas the first one describes
the compatibility between the labels of two nodes, the second one represents the
influence between the two nodes. The term R = {ri j(k,k′) | v j ∈ Ne(vi)} defines
the compatibility coefficients between the label k of node vi and the label k′ of v j.
Additionally, we define O = {oi j | v j ∈ Ne(vi)} as the set of weights indicating the
influence of node v j on node vi.

Given an initial estimation for the probability distribution over labels P(0)
i for the

node vi, the probabilistic relaxation method iteratively computes estimates P(r)
i , r =

1,2, . . . , based on the initial probabilities p(0)
i (k), the compatibility coefficients R,

and the weights O, in the form

p(r+1)
i (k) =

p(r)
i (k)

[
1 + q(r)

i (k)
]

∑K
k′=1 p(r)

i (k′)
[
1 + q(r)

i (k′)
] , (4.6)

where
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q(r)
i (k) =

N

∑
j=1

oi j

[
K

∑
k′=1

ri j(k,k′)p(r)
j (k′)

]

. (4.7)

Note that the compatibility coefficients ri j(k,k′) ∈ [−1,1] do not need to be sym-
metric. A value ri j(k,k′) close to −1 indicates that label k′ is unlikely at node v j

when label k occurs at node vi, whereas values close to +1 indicate the opposite. A
value of exactly −1 indicates that the relation is not possible, and a value of exactly
+1 means that the relation always occurs.

Probabilistic relaxation provides a framework for smoothing but does not specify
how the compatibility coefficients are computed. In this work, we apply the coeffi-
cients as defined in [26] as

ri j(k,k′) =

⎧
⎨

⎩

1
1−pi(k)

(
1 − pi(k)

pi j(k|k′)

)
if pi(k) < pi j(k | k′)

pi j(k|k′)
pi(k)

− 1 otherwise ,
(4.8)

where pi j(k | k′) is the conditional probability that node vi has label k given that node
v j ∈ Ne(vi) has label k′. Each of the values pi(k) and pi j(k | k′) are pre-calculated
only once and remain the same during the iterations of the relaxation process. The
coefficients R remain the same as well.

Now we describe how to apply this method for the spatial smoothing of the clas-
sifications obtained by our classifier. To learn a topological map, we assume a given
two-dimensional occupancy grid map in which each cell m(x,y) stores the probability
that the cell is occupied. We furthermore consider the 8-connected graph induced
by such a grid. Let vi = v(x,y) be a node corresponding to a cell m(x,y) from the map.
We then define a neighborhood Ne(v(x,y)) using the 8-connected cells to v(x,y) as
described in [7].

For the initial probabilities p(0)
(x,y)(k), we use the output P of the probabilistic

decision list as described in Sect. 4.3. This output is represented by a histogram
in which each bin p(k) indicates the probability that the pose belongs to class k.
Furthermore, our set of labels Y is composed by four labels

Y = {corridor, room,doorway,wall} .

For each node v(x,y) in the free space of the occupancy grid map, we calculate
the expected laser scan by ray-casting in the map. We then classify the observation
and obtain a probability distribution z over all the possible places according to (4.5).
The classification output P for each pose (x,y) is used to initialize the probability

distribution P(0)
(x,y) of node v(x,y). For the nodes lying in the free space, the probability

p(0)
(x,y)(wall) of being a wall is initialized with 0. Accordingly, the nodes correspond-

ing to occupied cells in the map are initialized with p(0)
(x,y)(wall) = 1.
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Each of the weights oi j ∈ O is initialized with the value 1
8 , indicating that the

eight neighbors v j of node vi are equally important. The compatibility coefficients
are calculated using (4.8). The values pi(k) and pi j(k | k′) are obtained from statistics
in the given occupancy grid map corresponding to previously labeled training data.

4.6 Instance-Based Associative Markov Networks1

The second approach for topological map extraction presented in this chapter is
based on associative Markov networks (AMNs). In particular, we use the instance-
based associative Markov networks (iAMNs) introduced in [25]. The idea behind
iAMNs is to combine the advantage of instance-based nearest-neighbor (NN) classi-
fication with the AMN approach to obtain a collective classifier that is not restricted
to the linear separability requirement.

4.6.1 Associative Markov Networks

An associative Markov network is an undirected graphical model in which no as-
sumption is made about the direction of the causality between nodes in the graph.
We restrict ourselves to the case of discrete variables, that is, each variable yi ∈ Y
corresponds to a set of K possible labels yi ∈ {1, . . . ,K}. Thus, we define a Markov
random field as an undirected graph G = (V,E) where the set of nodes V repre-
sents discrete variables, and the edges E refer to the relations between them [22].
An AMN can be divided into a subset of cliques Q, where each clique q ∈ Q is
associated with a subset Yq ∈ Y. The nodes in a clique Yq form a fully connected
subgraph.

Each clique q is accompanied by a potential φc(yq) which associates a non-
negative value to the variable assignment yq. We work with pairwise associative
Markov networks [22], where all of the cliques involved are either a single node, or a
pair of nodes (1-clique or 2-clique). In a pairwise AMN with edges E = {(i j) | i < j},
the nodes and edges are associated with potentials φi(yi) and φi j(yi,y j) respectively.

In an AMN, each node yi can be assigned a feature vector xi ∈ R
L, which de-

scribes the properties of the object represented by that node. Similarly, a feature
vector xi j ∈ R

L′
can be assigned to each edge (i j) ∈ E. The feature vector xi j in-

dicates the properties that describe the relation between the objects represented by
the nodes yi and y j. The node potentials are functions of the node feature vectors
xi, similarly the edge potentials are functions of the edge feature vectors xi j. The
resulting network defines the distribution

logPw(y|x) =
N

∑
i=1

K

∑
k=1

(wk
n · xi)yk

i + ∑
e=(i j)∈E

K

∑
k,k′=1

(wk,k′
e · xi j)yk

i yk′
j − logZw(x) , (4.9)

1 The work presented in this section originated from a collaboration with Rudolph Triebel.
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where N is the total number of nodes in the graph, and Zw(x) is a partition function
that depends on the parameters w and features x, but not on the labels y.

The main task in an associative Markov network consists of finding the assign-
ment y ∈ Y that maximizes logw P(y|x). This is actually a maximum a posteriori
(MAP) assignment that can be formulated as a linear program [22].

4.6.2 Feature Vector Transformation

The main drawback of the AMN classifier, which is based on the log-linear model, is
that it separates the classes linearly. This assumes that the features are separable by
hyper-planes, which is not justified in all applications. This restriction does not hold
for instance-based classifiers such as the nearest-neighbor, in which a query data
point p̃ is assigned to the label that corresponds to the training data point p whose
features x are closest to the features x̃ of p̃. In the learning step, the NN classifier
simply stores the training data set and does not compute a reduced set of training
parameters.

To combine the advantage of instance-based NN classification with the AMN
approach, we convert the feature vector x̃ of length L pertaining to query point p̃
using the transform τ : R

L → R
K given by

τ(x̃) = (t1 = d(x̃, x̂1), . . . ,tK = d(x̃, x̂K)) , (4.10)

where K is the number of classes, and x̂k denotes the training example with label k
closest to x̃. In addition, the function d(·, ·) calculates the distance in feature space.
Using this transformation the resulting features are more easily separable by hyper-
planes. An example is given in Fig. 4.5. Here, the top image depicts the training and
test data for a two class problem, in which the length of the feature vector x = (x1,x2)
is two. The classification of the test data (triangles) is shown as lines connecting
each training example with the closest example in the ground truth (squares). This
nearest neighbor classification results in very few errors. However, it seems dif-
ficult to separate the test data into the two classes to which they pertain using a
hyperplane (a line in this case). The bottom image of Fig. 4.5 shows the training
examples in the transformed space using the transformation given by τ(x̃) = (t1, t2),
with t1 = d(x̃, x̂1), and t2 = d(x̃, x̂2). The linear separability is improved in the
transformed space.

Additionally, the M nearest neighbors can be used in the transform function. For
this, we compute the M nearest distances to each of the classes k = 1, . . . ,K. The
final transformation τM : R

L → R
K·M is given by

τM(x̃) = (d(x̃, x̂1
1), . . . ,d(x̃, x̂M

1 ), . . . ,d(x̃, x̂1
K), . . . ,d(x̃, x̂M

K )) . (4.11)

The resulting model, first introduced in [25], is called instance-based associative
Markov network (iAMN).
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Fig. 4.5 Example of the feature transform τ for a two-class problem with two features.
(a) Training and test data in the original feature space. The classification of the test data
(triangles) is shown as lines connecting each training example with the closest example in
the ground truth (squares). (b) The transformation τ is applied to the test data (triangles).
The transformed examples are more easily separable.
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4.6.3 Feature Selection

One of the problems when classifying points represented by range data consists
of selecting the size of the feature vectors. As we showed in the experiments of
Chapter 3, the number of possible features that can be used to represent each data
point is usually very large and can easily be in the order of hundreds. This problem
is known as the curse of dimensionality. There are at least two reasons to try to
reduce the size of the feature vector. The most obvious one is the computational
complexity, which in our case, is also the most critical, since we have to learn and
infer in networks with thousands of nodes. Another reason is that although some
features may carry a good classification when treated separately, maybe there is a
little gain when combined together if they are very correlated [23]. The goal is thus
to reduce the size of the feature vectors when used with the iAMN and, at the same
time, to try to maintain their class discriminatory information.

The reduction on the numbers of features used for the classification of places is
somehow implicit in the AdaBoost classifiers, since the final number of weak clas-
sifiers T can be determined, and each selected weak classifier represents a feature
(cf. Sect 4.2). The problem is that the same feature can appear multiple times with
different thresholds and different priorities, which makes it difficult to decide which
are the best original features.

In this section we follow an alternative approach for selecting features. We apply
a scalar feature selection procedure which uses a class separability criterion and in-
corporates correlation information. The selection is independent of the classification
algorithm that will use the features (iAMN in our case). These kinds of methods are
also denoted as filters. A filter relies on general characteristics of the data to evaluate
and select feature subsets without involving any classification algorithm [8].

As separability criterion S, we use the Fisher’s discrimination ratio (FDR) ex-
tended to the multi-class case [23]. For a scalar feature f and K classes {y1, . . . ,yK},
S( f ) can be defined as

S( f ) = FDR f =
K

∑
i=1

K

∑
j �=i

(μi − μ j)2

σi + σ j
, (4.12)

where the μi and σi refer respectively to the mean and variance of the class i. Ad-
ditionally, the cross-correlation coefficient between any two features f and f ′ given
N training examples is defined as

ρ f f ′ = ∑N
t=1 fn f ′

n√
∑N

n=1 f 2
n ∑N

n=1 f ′2
n

, (4.13)

where fn denotes the value of the feature f in the training example n. Finally, the
selection of the best L∗ ⊂ L features involves the steps shown in Fig. 4.6.

After the scalar feature selection, the learning and inference steps on the instance-
based associative Markov network are carried out. Further details on the inference
process can be found in [25].
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• Select the first feature f1 as

f1 = argmax
f

S( f ).

• Select the second feature f2 as

f2 = argmax
f �= f1

{
w1S( f )−w2|ρ f1 f |

}
,

where w1 and w2 are weighting factors.

• Select fl∗ , l∗ = 3, . . . ,L∗, such that

fl∗ = argmax
f �= fr

{

w1S( f )− w2

l∗ −1

l∗

∑
r=1

|ρ fr f |
}

, r = 1,2, . . . , l∗ −1

Fig. 4.6 Feature selection algorithm according to [23].

4.7 Region Extraction and Topological Mapping

After applying any of the previous two approaches, we obtain an occupancy grid
map in which each free cell contains a distribution over the set of its possible la-
bels. From this map we extract complete regions that correspond to places in the
environment.

We define a region on a adjacency graph G as a set of 8-connected nodes with the
same class y. For each label y ∈ {corridor, room,doorway}, regions are extracted
from the adjacency graph using an algorithm for extracting connected regions [17].
Each extracted region is assigned a different identifier. The connections between re-
gions are extracted using a similar algorithm [7]. Finally, a new topological graph
G = (V,E) is constructed in which each node vi ∈ V represents a region and each
edge ei ∈ E represents a connection. Additionally, we add to each node vi informa-
tion about the properties of the region which represents: area, centroid, and major
and minor axes of the ellipse approximation of the region. The major and minor
axes are vectors which represent the elongation of the region and its orientation.
The topological graph together with the region properties form the final topolog-
ical map. We finally apply a heuristic region correction to the topological map to
increase the classification rate as follows:

1. We mark each region corresponding to a room or a corridor whose size does not
exceed a given threshold of 1 m2 compared to the training set as a classification
error, and assign it the label of one of its connected regions.

2. We mark each region previously labeled as doorway, and whose size does not
exceed a given threshold of 0.1 m2 or that is connected to only one region as a
false classification. Then we assign these marked regions the label of one of their
connected regions.
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The different thresholds used in the heuristics are obtained from statistics in the
training set.

4.8 Experimental Results

The approaches described above have been implemented and tested using occu-
pancy maps obtained from real environments. The laser range data used for the
training and classification steps were simulated using the Carnegie Mellon Robot
Navigation Toolkit (CARMEN) [2, 14]. The goal of the experiments is to demon-
strate that we can construct a semantic-topological map of typical indoor environ-
ments using only laser range data. We first apply our method using probabilistic
relaxation. Additionally, we analyze whether this method can be used to create a
topological map of an environment for which no training data were available. Fur-
thermore, we analyze the improvement of the AdaBoost-based decision list classifier
using the new set of features. Finally we present one experiment in which iAMNs
are used to train and classify an indoor environment.

4.8.1 Results Using Relaxation Labeling

The first experiment was performed using data obtained in the office environment of
building 79 at the University of Freiburg. This environment contains rooms, door-
ways and a corridor, which has a length of approximately 22 meters. For the sake of
clarity we give the result of the obtained classification by separating the environment
into two parts. The left half of the environment contains the poses used as training
examples, and the right half of the environment was used for test classification and
for the topological map creation as shown in Fig 4.7(a).

We first applied a probabilistic decision list (cf. Sec. 4.3) to classify the free cells
in the occupancy grid map. The list was formed by the best combination of binary
classifiers, which in this case was corridor-room. This sequence correctly classified
97.27% of the test examples. The classification is depicted as colors/gray levels in
Fig. 4.7(b).

After the sequential classification, the probabilistic relaxation method explained
in Sect. 4.5 was applied for 50 iterations. This method generates more compact re-
gions and eliminates noise. The result is illustrated in the Fig. 4.7(c). Finally, the
topological map is created using the connections between regions. As can be seen
in Fig. 4.7(c), some regions detected as doorways (marked with circles) do not cor-
respond to real doorways. After applying the heuristics described in Sect. 4.7 on the
corresponding topological map, these false doorways are eliminated. Furthermore,
the two left rooms situated above the corridor are detected as only one region. That
is due to the fact that the doorway in between was not completely detected. Thus,
the two rooms remain connected and are classified as only one region. The final
topological map, depicted in Fig. 4.7(d), has a final classification rate of 98.95% in
the free cells.
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(a) Training map (left half) and test map (right half)

(b) Sequential classification (c) Incorrect regions

Door 1

Corridor

Room 4

Door 2 Door 3

Room 2Room 1

Door 4 Door 5 Door 6

Room 3 Room 5

(d) Resulting topological map

DoorwayRoomCorridor

Fig. 4.7 (a) Training and test map of building 79 at the University of Freiburg. (b) Result of
applying the decision list with a classification rate of 97.27%. (c) Result of applying relax-
ation and the detection of incorrect labeled regions (white circles). (d) Final topological map
with the corresponding regions.
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(a) Training map (left half) and test map (right half)

(b) Sequential classification (c) Incorrect regions

Door 4Door 3

Room 4 Room 5

Corridor

Door 2Door 1

Room 2Room 1

Door 6

Room 3

Door 5

(d) Resulting topological map

DoorwayRoomCorridor

Fig. 4.8 (a) Training and test map of the building 52 at the University of Freiburg. (b) Result
of applying the decision list with a classification rate of 97%. (c) Result of applying relaxation
and the detection of incorrect labeled regions (white circles). (d) Final topological map with
the corresponding regions.
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In a second experiment we created a topological map of the right part of the
office environment of building 52 at the University of Freiburg. The complete oc-
cupancy grid map of this environment is shown in Fig. 4.8(a). The length of the
corridor in this environment is approximately 20 meters. After applying the deci-
sion list classifier room-corridor, the classification of the test set was 97%. As in the
previous experiment, we applied the relaxation process for 50 iterations as well as
the heuristics for region correction of Sect. 4.7. The final result gives a classification
rate of 98.66% in the free cells. The different steps of the process are illustrated
as colors/gray levels in Fig. 4.8. Opposite to the previous experiment, the doorway
between the two right-most rooms under the corridor is correctly detected, as can
be shown in Fig. 4.8(c). Therefore, the rooms are labeled as two different regions in
the final topological map as shown in Fig. 4.8(d).

4.8.2 Application to New Indoor Environments

This experiment is designed to analyze whether our approach based on boosting and
relaxation labeling can be used to create a topological map of a new environment
from which no training data were available. To carry out the experiment we trained
a decision list classifier using the training examples of the maps shown in Fig. 4.7(a)
and Fig. 4.8(a) at different scales. In this way, we obtained a classifier with a bet-
ter generalization. The resulting classifier was then evaluated on scans simulated in
the map denoted as SDR site B in the Radish repository [10]. This map represents
an empty building in Virginia, USA. The corridor is approximately 26 meters long.
The whole process for obtaining the topological map is depicted in Fig. 4.9. We use
the sequence corridor-doorway which gives a first classification of 92.36%. As can
be seen in Fig. 4.9(c), rooms number 11 and 30 are originally part of the corridor,
and thus falsely classified. Moreover, the corridor is detected as only one region,
although humans potentially would prefer to separate it into six different corridors:
four horizontal and two vertical. Doorways are very difficult to detect with the se-
quential classifier. The majority of poses detected as doorways disappear after the
relaxation process because they are very sparse. The main reason for the problem of
doorway detection is that the training maps have different sizes and resolutions, and
not all features are scale invariant. In the final topological map, 96.94% of the data
points are correctly classified.

4.8.3 Results with Instance-Based Associative Markov Networks

In this experiment we applied our classification approach using iAMNs to the in-
door environment corresponding to building 79 at the University of Freiburg. For
efficiency reasons we used a grid resolution of 20 cm, which lead us to a graph
containing 8088 nodes. Smaller resolutions result in much bigger networks, which
are difficult to treat. As in the first experiment, the map was divided into two parts,
the left one used for learning, and the right one used for classification purposes as
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(a) SDR site B map (b) Map after relaxation and region correc-
tion

R 7 R 8 R 9 R 10 R 11 R 12 R 13 R 14 R 15 R 16

R 29

R 36

R 38

CORRIDOR

R 6R 1 R 2 R 5R 4R 3

R 39 R 40 R 42 R 43 R 44 R 45R 41

CORRIDOR

CORRIDOR

CORRIDOR

R 21 R 22 R 23 R 24 R 25R 17 R 18 R 19 R 20

R 31 R 32 R 33 R 34 R 35R 26 R 27 R 28
R 30

R 37

R 46

(c) Final topological map

DoorwayRoomCorridor

Fig. 4.9 (a) Original map of the building. (b) Resulting classification after the relaxation
an region correction. (c) Final topological map with semantic information. The regions are
omitted in each node. The rooms are numbered left to right and top to bottom with respect the
map in (a). For the sake of clarity, the corridor-node is drawn maintaining part of its original
structure.

shown in Fig. 4.10. For each cell we calculate 203 geometrical features. This num-
ber was reduced to 30 applying the feature selection of Sect. 4.6.3. Figure 4.10(b)
shows the resulting classification with a success rate of 97.6%, which is similar
to the classification obtained using relaxation labeling. We can also see in the re-
sults that some doorways are lost in the final classification. The reason for this
could be the low resolution of the map (20 cm) in comparison with the original
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(a) Training map

(b) Classification

DoorwayRoomCorridor

Fig. 4.10 (a) Training map of building 79 at the University of Freiburg. (b) Resulting classi-
fication using an iAMN with 30 selected features.

resolution (5 cm). However, maintaining the original resolution would lead us to a
huge Markov network almost impractical to use.

4.8.4 Comparison of Feature Sets

In this final experiment, we compare the new extended feature set described in
Sect. 4.4 with the one proposed Sect. 3.4. For this purpose, we trained an AdaBoost-
based decision list for each of the feature sets using the training set shown in
Fig. 4.7(a). The different sequential classifiers were then applied to the test set de-
picted in Fig. 4.7(b). The obtained classification results are shown in Table 4.1.
As can be seen, the new extended feature-set provides better results in all of the
experiments. This result indicates that the feature set has a major influence in the
final classification. However, the advantage of AdaBoost is that we can keep adding
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Table 4.1 Classification results of the new improved feature set compared to the one in Sec-
tion 3.4.

Decision List Feature set of Sect. 4.4 [%] Feature set of Sect. 3.4 [%]
corridor-room 97.27 93.16
room-corridor 97.26 93.31

room-door 96.94 93.94
corridor-door 87.73 80.10
door-corridor 87.21 80.10

door-room 86.60 80.49

features to the set without worrying about the curse of dimensionality, since the
boosting process will select only the necessary features.

4.9 Related Work

Different algorithms for extracting topological maps in indoor environments have
been proposed in the past. For example, Kuipers and Byun [12] extract distinc-
tive points in the map, which are defined as the local maximum of some measure.
These points are used as nodes in a topological map. In their work, Kortenkamp and
Weymouth [11] fuse vision and ultrasound information to determine topologically
relevant places. Additionally, Shatkey and Kaelbling [20] apply a based learning
approach based on hidden Markov models to learn topological maps in which the
nodes represent points in the plane. Critical points are also found by Thrun [24], in
this case using Voronoi diagrams. These critical points minimize the clearance lo-
cally, and are then used as nodes in a topological map. Also Beeson et al. [1] detect
topological places with an extension of the Voronoi graph. Furthermore, Choset [3]
encodes metric and topological information in a generalized Voronoi graph to solve
the SLAM problem. The distinctive places extracted with the previous methods do
not represent concrete spaces such as rooms or corridors although they can have
some relation to them. In comparison, the technique described in this chapter applies
a supervised learning method to identify complete regions in the map like corridors,
rooms or doorways that have a direct relation with a human understanding of the
environment.

Mathematical morphology is used in the work by Fabrizi and Saffiotti [4]. This
method uses a disc as structuring element for the dilation and erosion operations.
This approach extracts large open spaces from the map, but is quite sensitive to
irregularities in the map.

Other works use vision sensors to distinguish places in an indoor environment.
Tapus and Siegwart [21] use fingerprints extracted from images to create topolog-
ical maps. In their work, Zivkovic et al. [27] create a higher level conceptual map
with visual landmarks and geometric constraints. These approaches used features
extracted from images that are quite specific to the environment in which the robot
is located, which makes it difficult to generalize with new environments. In contrast
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to these works, the methods presented in this chapter have better generalization,
since they used the geometrical properties of the different places.

In a recent work, Friedman et al. [6] use Voronoi Random Fields for extracting
the topologies of occupancy grid maps. This work also uses simple features that are
selected using boosting as characteristics for the nodes in a Markov random field.
The approach is similar to the one in Sect. 4.6. However, in [6], only the points lying
in the Voronoi diagram are used in the MRF, whereas we used all free locations in
the map.

For related work about semantic place classification we refer the reader to
Sect. 3.7.

4.10 Conclusion

In this chapter, we presented several approaches to create topological maps from
indoor environments. The first one uses AdaBoost to learn a strong classifier for
categorizing places into semantic classes such as rooms, doorways, and corridors.
A probabilistic relaxation process is applied to the resulting classifications to reduce
classification errors. The second approach is based on iAMNs together with scalar
feature selection. After applying any of the previous methods the different regions
and their connections are extracted. Each region corresponds to a place in the map
such a corridor, room, or doorway.

Both methods has been implemented and evaluated on various maps from real-
world environments. Experiments demonstrate that they are well-suited to creating
topological maps from indoor environments, even without training the classifier for
each environment.
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