
Using SAT-Solvers to Compute Inference-Proof

Database Instances

Cornelia Tadros and Lena Wiese

Technische Universität Dortmund, 44221 Dortmund, Germany
{tadros,wiese}@ls6.cs.uni-dortmund.de

http://ls6-www.cs.tu-dortmund.de/issi/

Abstract. An inference-proof database instance is a published, secure
view of an input instance containing secret information with respect to a
security policy and a user profile. In this paper, we show how the problem
of generating an inference-proof database instance can be represented by
the partial maximum satisfiability problem. We present a prototypical
implementation that relies on highly efficient SAT-solving technology
and study its performance in a number of test cases.

1 Introduction and System Settings

Controlled Query Evaluation (CQE) is a framework for inference control in log-
ical database systems. In [3] a preprocessing procedure (which we call preCQE
here) is described that accepts propositional input (an input instance, a confiden-
tiality policy, an availability policy and a user profile). It outputs an “inference-
proof” solution instance; this output instance is secure in the sense that it can
be published to provide answers to any user queries without enabling the user to
deduce any confidential information – and without the need to maintain a history
of previous user queries. As secondary and tertiary goals, the output instance is
meant to preserve maximum availability (of entries in the availability policy) as
well as minimize the amount of modifications (“distortions”) with respect to the
input instance. The aims of this article are twofold:

1. We show that precomputing an inference-proof, availability-preserving, and
distortion-minimal database instance can be reduced to a weighted partial
MAXSAT (W-PMSAT) problem with three weights.

2. We present and evaluate a prototypical implementation where highly efficient
third-party SAT solving tools can be plugged in – instead of implementing
the algorithm (as theoretically exposed in [3]) directly.

Our preprocessing approach stands orthogonal to history-based inference control
mechanisms in logical databases (as for example in [2,11]) that compute the
(possibly distorted) answers at runtime. Yet, it is akin to the use of cover stories
(see [8,5]) in multilevel secure databases while adding the bonuses of availability
preservation and distortion minimization.

We now describe components (visualized in Figure 1) and settings of the CQE
system that are assumed in this article. The system is based on a propositional

J. Garcia-Alfaro et al. (Eds.): DPM 2009 and SETOP 2009, LNCS 5939, pp. 65–77, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

66 C. Tadros and L. Wiese

Fig. 1. Concept of the algorithm

language with an infinite number of propositional variables (the propositional
“alphabet”P). For our running example, P is the vocabulary for a medical record
with diseases and medications:

P = {cancer, aids, flu, cough, . . . , medA, medB, medC, . . . }

Propositional formulas are built from P with the connectives ∧, ∨ and ¬. A
propositional variable is also called a “positive literal”; a propositional variable
preceded by a negation sign is called a “negative literal”.

Data Model. The input database instance db is a finite set of propositional
variables (where each variable represents a tuple in the database); hence db ⊂ P .
It represents a complete interpretation Idb for all variables in P : a variable
A ∈ db is interpreted as true, otherwise it is interpreted as false. In our example,
db = {cancer, aids, medA, medB} comprises the set of all true propositions, while
all other variables (from P \ db) are false. The input instance is maintained by
the database administrator dbadm .

Interaction Model. A user is assumed to interact with a database instance via
an evaluation function eval∗; it takes a query formula and a database instance
as inputs and returns the query formula or its negation depending on which of
the two formulas is true in the instance:

eval∗(Φ)(db) =
{

Φ if Idb |= Φ (with |= being the model operator)
¬Φ else

Eg., eval∗(flu)(db) = ¬flu and eval∗(medB ∧ medA)(db) = medB∧ medA.

Confidentiality Model. The confidentiality policy pot sec is a finite set of for-
mulas. An entry of pot sec is a “potential secret”: the user must not know that
a potential secret is true in db, but he may assume that it is false. The confi-
dentiality policy is declared by the security administrator secadm , for example
as pot sec = {cancer, aids}: the user may not know the fact cancer (or aids),

Using SAT-Solvers to Compute Inference-Proof Database Instances 67

but he may learn ¬cancer (and ¬aids). As a rational, sophisticated person, the
user is assumed to know the policy specification pot sec. The only protection
mechanism analyzed in this article is modification of some db-entries; hence a
solution instance may contain the entry flu. This is called “uniform lying” in
the CQE context.

Availability Model. The availability policy avail is a finite set of formulas. It
specifies important information, that should at best not be distorted by the lying
mechanism. That is, whenever it is possible to distort information not contained
in avail (while still protecting the secrets), we prefer this distortion to a distortion
affecting avail entries. The availability policy is also declared by the security
administrator secadm , for example as avail = {medA∧ medB, medB} stating that
the information whether both medA and medB or medB alone are prescribed should
not be distorted (due to side effects or mutual reactions with substances that
must be considered). Beyond this explicit goal to preserve availability, there is a
tertiary goal to distort as few database entries as possible.

User Model. The user profile prior is a finite set of formulas containing a
specification of the knowledge the user had prior to interacting with the CQE
system. The user profile is declared by the user administrator useradm; eg.,
the user knows that a patient taking medicine A is ill with Aids or Cancer,
and a patient taking medicine B is ill with Cancer or Flu: prior = {¬medA ∨
cancer∨ aids,¬medB∨ cancer∨ flu}. He is able to use full implication on his
knowledge and the database answers to deduce other facts from them. Hence,
the user knowledge and the database answer must never be inconsistent as from
inconsistent knowledge the user can deduce any facts (including the secrets):
from a contradiction, anything follows by logical implication. Beyond the mere
representation of the user knowledge in the user profile, the user is assumed to be
aware of the system settings (that is, complete database, known policy, lying).

Execution Model. The preCQE procedure takes db, pot sec, avail and prior
as inputs and outputs a complete instance db ′. The output instance db ′ has the
property that it is consistent with the a priori knowledge prior and that no
truthful answer to any user query enables the user to infer a potential secret
from pot sec. More formally, in the case of a complete db′ and lying, we define
“inference-proofness” of db ′ as follows:

Definition 1 (Inference-proofness). Acomplete database instance db ′ is called
inference-proof (with respect to prior and pot sec) iff

1. Idb′ |= prior
2. Idb′ �|= Ψ for every Ψ ∈ pot sec

A user (modeled by prior) can pose any query sequence Q = 〈Φ1, Φ2, . . . 〉
and retrieve truthful responses A = 〈eval∗(Φ1)(db ′), eval∗(Φ2)(db ′), . . . 〉 from
an inference-proof instance without being able to deduce a secret. Eg., neither
db ′

1 = {medB, flu} nor db ′
2 = ∅ disclose any of the secrets aids and cancer but

they obey prior – hence both are inference-proof.

68 C. Tadros and L. Wiese

In [3] it is shown that with these system settings, the problem of finding an
inference-proof instance db ′ amounts to finding a model (a satisfying interpreta-
tion) Idb′

for a constraint set C. This set C consists of the user profile and the
negations of the potential secrets (a condition for consistency of C – and hence
existence of a db ′– is identified in [3]):

Definition 2 (Constraint set). For a set prior and a set pot sec, the con-
straint set is

C := prior ∪Neg(pot sec) where Neg(pot sec) := {¬Ψ | Ψ ∈ pot sec}
Hence, in our example the constraint set C is:

C := {¬medA ∨ cancer∨ aids,¬medB ∨ cancer∨ flu,¬cancer,¬aids}
and it holds that Idb′

1 |= C as well as Idb′
2 |= C.

To meet the availability requirements and thus retain as much correct in-
formation in db ′ as possible, we define two distance measures: the first one to
measure how many avail entries are affected by distortion and the second one
to measure how many db entries are affected by distortion:

Definition 3 (Availability preservation/distortion minimization). The
availability distance (for inference-proof db′) is defined as

avail dist(db ′) := ||{Θ ∈ avail | eval∗(Θ)(db ′) �= eval∗(Θ)(db)}||
An inference-proof db ′ is availability-preserving iff there is no db ′′ such that
avail dist(db ′) > avail dist(db ′′).

The distortion distance (for inf.-proof and availability-preserving db′) is

db dist(db ′) := ||{A ∈ P | eval∗(A)(db ′) �= eval∗(A)(db)}||
An inference-proof and availability-preserving db′ is distortion-minimal iff there
is no db′′ such that db dist(db ′) > db dist(db ′′).

We first of all minimize avail dist and among the avail dist -minimal solutions
search for one that minimizes db dist . Yet, due to the model requirement,
inference-proofness and hence confidentiality of the secrets is our main goal and
the two distances are availability optimization functions. In our example, we
see that db ′

1 preserves availability better than db ′
2: while in the input instance

db both entries of avail are true, in db ′
1 the first entry is false but the second

is true, such that avail dist(db ′
1) = 1; in db ′

2 both entries are false, such that
avail dist(db ′

2) = 2. Hence, db′1 is our unique optimal solution (and distortion
minimality has no effect).

A crucial point for the efficiency of the preCQE algorithm is that only a
finite subset of the infinite P of “decision variables” that are contained in prior ,
pot sec or avail have to be considered when searching for an inference-proof,
availability-preserving and distortion-minimal solution:

Definition 4 (Decision variables). The decision variables are

Pdecision := {A ∈ P | A occurs in prior , pot sec or avail}
In our example, Pdecision = {cancer, aids, flu, medA, medB}.

Using SAT-Solvers to Compute Inference-Proof Database Instances 69

2 Encoding as SAT Problem

preCQE for propositional logic can be represented (by a transformation of the
input constraints) as a variant of an optimization problem for the satisfiability
(SAT) problem; in this case (as opposed to the Branch and Bound approach in
[3]) the availability and distortion distances need not be maintained explicitly
but are encoded into “weights”. However, SAT solving normally refers to input
formulas in conjunctive normal form (CNF) such that all preCQE input formulas
have to be converted into an equivalent set of “clauses” (a clause is a disjunction
of literals).

In the following we present the representation of the preCQE problem as a
weighted partial MAXSAT (W-PMSAT) optimization problem. Here it is cru-
cial to see the input as a set of clauses. Each clause has an associated non-
negative integer as a weight. We use three weights: the highest one to account
for inference-proofness (and hence confidentiality-preservation) for the so called
“hard constraints”, an intermediate one to account for availability preservation,
and the lowest weight 1 for distortion minimization. The W-PMSAT optimiza-
tion function is to maximize the sum of weights of satisfied clauses in an inter-
pretation (or, equivalently, minimize the sum of weights of unsatisfied clauses).
Hard constraints necessarily have to be satisfied; that is why the optimization is
partial: the W-PMSAT solver only has to maximize the summed weight of the
remaining satisfied “soft constraints”. Our three weights are computed such that
if all clauses with a lower weight are satisfied at the cost of not satisfying a clause
with a higher weight, the summed total weight is lower and hence the solution is
worse: this nicely encodes the fact that inference-proofness is our main, availabil-
ity preservation our secondary, and distortion minimization our tertiary goal.

2.1 Clauses and Weights

The preCQE inputs db, avail and the constraint set C (see Def. 2) are trans-
formed into three sets of clauses: one set C1 of soft constraints containing all
clauses with lowest weight 1, a second set C2 of (“auxiliary”) soft constraints
with an intermediate weight and a third set C3 of hard constraints with high-
est weight. At first, all decision variables are transformed to soft constraints
according to their evaluation in db. That is:

C1 := eval∗(Pdecision)(db) :=
⋃

A∈Pdecision

eval∗(A)(db)

is the set of soft constraints that all have weight 1; in our example, C1 =
{cancer, aids,¬flu, medA, medB} (recall that eval∗(flu)(db) = ¬flu).

Second, an intermediate weight has to be determined when considering the
formulas in avail . Recall that the semantics of the availability policy is that only
a maximal number but possibly not all of the formulas in eval∗(avail)(db) can be
satisfied in the solution instance db ′ (we use eval∗(avail)(db) as an abbreviation
for

⋃
Φ∈avail eval

∗(Φ)(db)). This optimization requirement leads to the problem

70 C. Tadros and L. Wiese

of loss of structural information when transforming formulas in eval∗(avail)(db)
into CNF: If we take a formula Θ from eval∗(avail)(db) and determine its CNF
representation cnf (Θ) (in order to be processable by a W-PMSAT solver), all the
clauses of cnf (Θ) have to be treated as “belonging together”when counting their
weight. We can achieve this with the help of auxiliary propositional variables
denoted SΘ. The second set C2 of auxiliary soft constraints consists exactly of
the auxiliary variables: for each SΘ, we add a clause SΘ with weight card(C1) +
1 to C2. In our example, the second set of auxiliary constraints with weight
card(C1) + 1 = 6 is C2 = {SmedA∧medB, SmedB}.

Next, for a formula Θ in eval∗(avail)(db), cnf (Θ) is transformed as:

1. To each clause c of cnf (Θ) conjoin ¬SΘ which gives us c ∨ ¬SΘ

2. Add these augmented clauses to the constraint set C3

Finally, for each constraint formula Φ ∈ C, add the clauses of cnf (Φ) to C3. All
the clauses in the constraint set C3 have as weight the sum of the weights of all
the constraints at lower levels plus 1: card(C2) · (card(C1) + 1) + card(C1) + 1.

In our example, the set of hard constraints with weight card(C2) · (card(C1)+
1) + card(C1) + 1 = 18 is:

C3 := {¬medA∨ cancer∨ aids,¬medB ∨ cancer∨ flu,¬cancer,¬aids,
medA∨ ¬SmedA∧medB, medB ∨ ¬SmedA∧medB, medB ∨ ¬SmedB}

2.2 Solution Instance

We can show that a solution of this W-PMSAT input represents an inference-
proof, availability-preserving and distortion-minimal propositional solution in-
stance for the preCQE input.

Proposition 1. Let I∗ be a solution of the W-PMSAT input, specified in
Section 2.1, and db′ the solution instance as obtained by

db′ := {A | A ∈ db, A �∈ Pdecision} ∪ {A | A ∈ Pdecision with I∗ |= A}.

Then db′ is inference-proof, availability-preserving and distortion-minimal in the
sense of Definition 1 and Definition 3.

We sketch the proof in the following: All hard constraints in C3 must be sat-
isfied in I∗, in particular the constraint set C from Definition 2 and thus db′

is inference-proof. As for availability preservation, assume that d̃b is an
inference-proof instance with better availability distance than db′. The inter-
pretation I d̃b over P can be extended to an interpretation Ĩ over the variables
P∪{SΘ | Θ ∈ avail} by setting SΘ to true whenever eval∗(Θ)(d̃b) = eval∗(Θ)(db)
and to false otherwise. (By the choice of the values of all SΘ and the inference-
proofness of d̃b all hard constraints C3 are satisfied in Ĩ.) The total weight of all
satisfied soft constraints C1 ∪ C2 given Ĩ is greater than the sum of weights of
all satisfied clauses SΘ ∈ C2, which amounts to

Using SAT-Solvers to Compute Inference-Proof Database Instances 71

(card(avail) − avail dist(d̃b)) · (card(Pdecision) + 1)
≥ (card(avail) − (avail dist(db′) − 1)) · (card(Pdecision) + 1)
> (card(avail) − avail dist(db′)) · (card(Pdecision) + 1) + card(Pdecision)

As we can achieve at most that SΘ is satisfied iff cnf (Θ) is satisfied, the value
(card(avail)−avail dist(db′))·(card(Pdecision)+1) is an upper bound to the sum
of weights of all satisfied clauses in C2 given I∗. Further, card(Pdecision) is an
upper bound to the sum of weights of all satisfied clauses in C1 given I∗. Hence,
following the inequalities above, Ĩ is more optimal then I∗, which is a contra-
diction to the optimality of I∗. Lastly, the sum of weights of unsatisfied clauses
from C1 is equal to db dist , hence the instance db′ is distortion-minimal. �

3 A preCQE Implementation for Propositional Logic

In recent years, propositional SAT solving has seen a huge improvement in per-
formance. Several highly efficient implementations take part in the yearly SAT
competition (in conjunction with the SAT conference). As part of the SAT com-
petition there also is a “MAXSAT evaluation” [6,1] that includes competition
categories for W-PMSAT problems. Those SAT solvers often employ a Branch
and Bound strategy for propositional input (similar to the one described in [3])
and beyond that implement highly efficient heuristics to speed up the search.
While the SAT competition is already quite established, the MAXSAT evalua-
tion has been organized just for the fourth time in 2009. This shows that the
interest in efficient solving strategies for this optimization problem has come up
very recently.

We wanted to apply this highly efficient W-PMSAT technology to our problem
and benefit from up-to-date solver implementations instead of implementing our
approach in [3] by hand; we developed a program that translates propositional
preCQE input formulas into a W-PMSAT instance. In particular, the program
offers the following functionality:

1. It offers a graphical interface for the specification of the input (db, pot sec,
avail and prior) and the presentation of the solution db ′.

2. It transforms the specified input into a W-PMSAT instance by converting
the input into CNF, creating the auxiliary constraints and computing the
weights.

3. It transforms this input into the input format of the selected solver.
4. It calls the selected solver on this instance (in W-PMSAT encoding).
5. It measures the runtime of the whole computation as well as the runtime for

the solver alone.
6. It transforms the solver output into the solution instance db′.

As the input format we chose the TPTP format for first-order formulas (see [10])
as we plan to extend our work to relational databases. It is a standard format
for Automated Theorem Proving and is much more convenient to use than the
propositional SAT solver input formats (e.g. DIMACS; see the rules of [1]): while

72 C. Tadros and L. Wiese

with DIMACS variables are encoded by numbers, TPTP variables can be any
user-defined strings. This is a great advantage because our administrators spec-
ify their input in TPTP. The SAT solvers we chose are all able to process the
DIMACS format such that the preCQE input is converted into this format by
calling the external TPTP conversion library; the mapping from TPTP variables
to propositional DIMACS variables is recorded on this occasion. In a separate
step, preCQE creates the necessary auxiliary constraints. Afterward, preCQE
calculates the weights of the W-PMSAT clauses and sets the weight for each
clause as described above. With this step, the CQE input has been fully trans-
formed into a W-PMSAT instance. On this instance, an external W-PMSAT
solver is run to find an optimal solution; the runtime of the solver is internally
recorded. preCQE uses the mapping information between TPTP formulas and
DIMACS variables to translate the SAT solver solution into a preCQE output
instance db ′.

Our program has been tested with three W-PMSAT solvers:

– MiniMaxSAT (see [7])
– MAX-DPLL (as part of the SAT solver Toolbar; see [9])
– SAT4J (http://www.sat4j.org/)

MiniMaxSAT was run on a Linux system while we executed Toolbar on a Solaris
platform. SAT4J is written purely in Java. With our system settings, Mini-
MaxSAT showed the best runtime performance; hence the test runs described in
the upcoming section were all done with MiniMaxSAT.

3.1 Test Cases

To test our prototype we made an effort to simulate problems specific to databases.
Tests were run with differently sized inputs and for every input size we tested
10 random permutations to avoid a bias caused by the input order. The runtime
graphs below show the average runtime taken from all 10 instances per size as
well as the deviation of the individual running times (in seconds for better read-
ability); the runtime tables detail the number of decision variables and clauses
for each input size as well as the running times in milliseconds (msec). The
number of decision variables and clauses are decisive values when comparing the
performance.

The first tests are a generalization of our running example: We identified 24
combinations of medicines and diseases (the “patient types”) that are consistent
with the a priori knowledge prior and hence permitted in db. They are listed
in Table 1. We used the abbreviations N1 to N24 to denote 24 different patient
names. Then we (in the role of the dbadm) entered a propositional input instance
db that contains each patient type exactly once; that is, if the db contains the
entry1 ‘n1_aids’, it means that patient N1 suffers from Aids. Note that there
are 66 propositional variables in the propositional db. Next, the potential secrets

1 Actually, the exact TPTP syntax is fof(r0,axiom,‘n1_aids’).; we only state the
relevant part here.

Using SAT-Solvers to Compute Inference-Proof Database Instances 73

Table 1. Permissible patient types in db

n1_aids n2_cancer n3_flu n4_aids,
n4_cancer

n5_aids,
n5_flu

n6_cancer,
n6_flu

n7_aids,
n7_cancer,
n7_flu

n8_medA,
n8_aids

n9_medA,
n9_cancer

n10_medA,
n10_aids,
n10_cancer

n11_medA,
n11_aids,
n11_flu

n12_medA,
n12_cancer,
n12_flu

n13_medA,
n13_aids,
n13_cancer,
n13_flu

n14_medB,
n14_cancer

n15_medB,
n15_flu

n16_medB,
n16_aids,
n16_cancer

n17_medB,
n17_aids,
n17_flu

n18_medB,
n18_cancer,
n18_flu

n19_medB,
n19_aids,
n19_cancer,
n19_flu

n20_medA,
n20_medB,
n20_cancer

n21_medA,
n21_medB,
n21_aids,
n21_cancer

n22_medA,
n22_medB,
n22_aids,
n22_flu

n23_medA,
n23_medB,
n23_cancer,
n23_flu

n24_medA,
n24_medB,
n24_aids,
n24_cancer,
n24_flu

and the a priori knowledge are entered (in the roles of secadm and useradm)
in TPTP syntax for each of the 24 patient names as propositional formulas.
For N1 the set prior contains2 ‘n1_medA’=>(‘n1_aids’|‘n1_cancer’) and
‘n1_medB’=>(‘n1_cancer’|‘n1_flu’) and the set pot sec contains ‘n1_aids’
as well as ‘n1_cancer’. These entries are entered for all 24 patients; that is, we
have 48 entries in prior , and 48 entries in pot sec, too. In the first test, we did
not use an explicit availability policy; that is, avail = ∅. As mentioned previ-
ously, all input is permuted at random to make tests independent of the order
of input.

As for the weights, they are calculated for this example as follows: all the
24 · 5 = 120 decision variables are transformed into soft constraints receiving
the weight 1. As there is no availability policy, there is no need for auxiliary
constraints. All constraint formulas in C receive the weight 121. For this simplest
input, a solution was found in milliseconds.

Obviously, we are interested in more meaningful results for databases with
much more entries. The general idea for the expansion of our tests was to uni-
formly repeat the 24 patient types and test up to what number of repetitions a
moderate runtime performance can be achieved. So, our first step was to repeat
each patient type 10 times (each repetition with a new name) such that we have
a db with 660 entries, prior with 480 entries and pot sec with 480 entries; for 10
repetitions there are hence 24 · 5 · 10 = 1200 decision variables. We ran tests up
to 150 repetitions with 9900 db entries, 7200 prior and pot sec entries each and
18000 decision variables. Figure 2 shows the results; what can be seen is that a
huge amount of time is needed for the creation of the DIMACS input – this in-
cludes the creation of Neg(pot sec) and the auxiliary constraints, the calculation
and assignment of weights as well as the TPTP conversion, – whereas the Mini-
MaxSAT solver appears quite unimpressed by the increased size of the input. We

2 Full TPTP syntax is fof(r0,axiom,‘n1_medA’=>(‘n1_aids’|‘n1_cancer’)). and
fof(r1,axiom,‘n1_medB’=>(‘n1_cancer’|‘n1_flu’)).

74 C. Tadros and L. Wiese

total runtime (msec) solver runtime dec. clauses
rep. min max avg. min max avg. vars. soft hard

1 1832 2175 1930 178 208 184 120 120 96
25 10981 12246 11974 2214 3206 3092 3000 3000 2400
50 29333 32149 31304 4412 6360 6135 6000 6000 4800
75 58530 62026 60459 6503 9439 8991 9000 9000 7200

100 93275 101551 95792 8803 9001 8902 12000 12000 9600
125 139835 150095 142843 11000 11472 11171 15000 15000 12000
150 197389 206099 202067 13231 18253 16429 18000 18000 16800

0

50

100

150

200

250

0 20 40 60 80 100 120 140 160

se
co

n
d
s

repetitions per patient type

deviation
total runtime

deviation
solver runtime

Fig. 2. Performance of preCQE for 24 patient types

made two more test runs with different patient types without availability pol-
icy: a thorough analysis of the patient types reveals that there are four patient
types with multiple optimal solutions. We separated them from the remaining
20 patient types with unique solution and tested the two sets separately. The
existence of multiple optima slowed down the SAT solver only slightly.

After these promising results, we introduced an explicit availability policy;
that is, we supplied a set avail with two entries for each patient type: avail =
{n1 medA, n1 medB, n2 medA, n2 medB, . . . }. In the preCQE implementation, they
are first of all evaluated according to db (that is, eval∗(avail)(db) is computed).
As described in Section 2.1, the resulting formulas are transformed into hard
constraints and auxiliary constraints with auxiliary propositional variables. In
the simplest case with one repetition per patient type we thus have 120 decision
variables with lowest weight 1. As there are 48 formulas in avail , we have 48
auxiliary constraints with weight 121. Finally there are 48 + 48 + 48 = 144 hard
constraints with weight (48 · 121) + 120 + 1 = 5929. That is, when satisfying all
hard constraints, the solution has a weight of at least 853776. We experienced
problems with these high weight values, because after 55 repetitions of patient
types, we faced an integer overflow: the computed solution had a negative weight.
To avoid this, we then examined the performance of a reduced set of patient

Using SAT-Solvers to Compute Inference-Proof Database Instances 75

types. We removed the patient types with medA-entries, such that the first prior
constraint will never be violated. We kept 13 patient types: N1, N2, N3, N4, N5,
N6, N7, N14, N15, N16, N17, N18, N19 and their corresponding entries in db,
prior , pot sec and avail . The results can be found in Figure 3. We were able
to repeat these 13 patient types much more often (up to 10150 db entries) than
the full 24 patient type set; that is, only the search with the full set led to the
integer overflow, while for the reduced set this was not the case. In comparison
to tests without availability policy, runtimes increased only little (comparing the
results for similar amounts of decision variables).

Lastly, we made a test with the full set of 24 patient types but we changed
the potential secrets into a conjunctive format:

pot sec = {n1 aids ∧ n1 cancer, n2 aids ∧ n2 cancer, . . . }

This means that for every patient it is allowed to know if the patient has either
aids or cancer but it is not allowed to know that a patient has both aids and

total runtime (msec) solver runtime dec. clauses
rep. min max avg. min max avg. vars. low aux. hard

1 1744 2102 1841 142 162 146 65 65 26 78
25 8068 8308 8166 2051 2118 2077 1625 1625 650 1950
50 19028 20650 19423 4009 4121 4076 3250 3250 1300 3900
75 35061 37300 35706 5981 6266 6132 4875 4875 1950 5850

100 54295 63201 57153 5712 8375 8002 6500 6500 2600 7800
150 107971 117968 113187 8695 12533 12017 9750 9750 3900 11700
200 187700 195847 190946 11601 16924 16131 13000 13000 5200 15600
250 277757 296878 289068 15119 21247 20257 16250 16250 6500 19500
300 397551 425732 407416 18031 26073 24910 19500 19500 7800 23400
350 537890 562223 548090 22343 31778 30152 22750 22750 9100 27300

0

100

200

300

400

500

600

0 50 100 150 200 250 300 350

se
co

n
d
s

repetitions per patient type

deviation
total runtime

deviation
solver runtime

Fig. 3. Performance of preCQE without medA-entries

76 C. Tadros and L. Wiese

total runtime (msec) solver runtime dec. clauses
rep. min max avg. min max avg. vars. low aux. hard

1 1941 2934 2182 225 337 264 120 120 48 120
25 18283 23445 20439 4630 6530 5362 3000 3000 1200 3000
50 50486 58167 52449 9651 12052 9966 6000 6000 2400 6000
75 101453 105935 103266 15904 16270 16115 9000 9000 3600 9000

100 164611 175434 170920 18185 23374 22623 12000 12000 4800 12000
125 252737 276016 260537 28020 32737 31255 15000 15000 6000 15000
150 351488 380984 367471 32437 40160 39087 18000 18000 7200 18000

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100 120 140 160

se
co

n
d
s

repetitions per patient type

deviation
total runtime

deviation
solver runtime

Fig. 4. Performance of preCQE with conjunctive secrets

cancer at the same time. This offers a greater set of possible solutions and the
SAT solver is forced to make more decision steps. Yet, as the amount of formulas
in pot sec is half of what it was before – only one entry per patient – the number
of hard clauses is reduced: for one repetition we have 120 low level constraints,
48 auxiliary constraints and 48 + 48 + 24 = 120 hard constraints. The results
(for up to 9900 db entries) are detailed in Figure 4. Again, there is only a slight
increase in runtime (compared with respect to the number of decision variables).

The above stated “medical record” tests contained independent subproblems
in the sense that for each patient a satisfaction of the constraints could be
reached without affecting the entries of other patients. Hence, as a second class
of test cases we took a set of “cascading constraints”where the search for a solu-
tion requires several splitting and backtracking steps because the clauses share
variables and thus are interconnected. Moreover these cascading constraints
lead to test formulas with increasing length. We perceived this to be a lot
more challenging task for the SAT solvers. The simplest test input with 9
decision variables was db = {c1, c2, c3}, pot sec = {c3}, and lastly prior =
{c3<=>((~v3_1|~v3_2|~v3_3)& c2), c2<=>((~v2_1|~v2_2|~v2_3)& c1)}.
Without going into detail, the modification of v-variables is always suboptimal
but the solver still searches on them. When comparing the runtime for 18000

Using SAT-Solvers to Compute Inference-Proof Database Instances 77

decision variables, the runtime for the cascading constraints was only 2 minutes
slower than for the medical records. Hence, the overall performance was still
favorable.

4 Conclusion

We showed that (and how) in the CQE setting for a complete database with a
confidentiality policy of potential secrets and lying as the protection mechanism,
the problem of finding an inference-proof, availability-preserving and distortion-
minimal database instance can be represented as a W-PMSAT problem. The
presented prototype makes use of current SAT solver technology. Two classes of
test cases showed that the preprocessing approach is feasible for a large number
of database entries. Ongoing work at our department includes a prototypical
implementation for relational database systems whose theoretical foundation
is described in [4]. A major open question is whether after an update of the
database instance or the policy parts of a previous solution can be reused for
example with an incremental SAT solver.

References

1. Argelich, J., Li, C.M., Manyà, F., Planes, J.: MaxSAT evaluation,
http://www.maxsat.udl.cat/

2. Biskup, J., Bonatti, P.A.: Controlled query evaluation with open queries for a decid-
able relational submodel. Annals of Mathematics and Artificial Intelligence 50(1-2),
39–77 (2007)

3. Biskup, J., Wiese, L.: Preprocessing for controlled query evaluation with availability
policy. Journal of Computer Security 16(4), 477–494 (2008)

4. Biskup, J., Wiese, L.: Combining consistency and confidentiality requirements in
first-order databases. In: Samarati, P., Yung, M., Martinelli, F., Ardagna, C.A.
(eds.): ISC 2009. LNCS, vol. 5735, pp. 121–134. Springer, Heidelberg (2009)

5. Cuppens, F., Gabillon, A.: Cover story management. Data & Knowledge Engineer-
ing 37(2), 177–201 (2001)

6. Heras, F., Larrosa, J., de Givry, S., Schiex, T.: 2006 and 2007 Max-SAT Eval-
uations: Contributed Instances. Journal on Satisfiability, Boolean Modeling and
Computation 4(1), 239–250 (2008)

7. Heras, F., Larrosa, J., Oliveras, A.: MiniMaxSAT: An efficient Weighted Max-SAT
Solver. Journal of Artificial Intelligence Research 31, 1–32 (2008)

8. Jukic, N., Nestorov, S., Vrbsky, S.V., Parrish, A.S.: Enhancing database access
control by facilitating non-key related cover stories. Journal of Database Manage-
ment 16(3), 1–20 (2005)

9. Larrosa, J., Heras, F., de Givry, S.: A logical approach to efficient Max-SAT solving.
Artificial Intelligence 172(2-3), 204–233 (2008)

10. Sutcliffe, G.: TPTP, TSTP, CASC, etc. In: Diekert, V., Volkov, M.V., Voronkov,
A. (eds.) CSR 2007. LNCS, vol. 4649, pp. 6–22. Springer, Heidelberg (2007)

11. Toland, T.S., Farkas, C., Eastman, C.M.: Dynamic disclosure monitor (D2Mon): An
improved query processing solution. In: Jonker, W., Petković, M. (eds.) SDM 2005.
LNCS, vol. 3674, pp. 124–142. Springer, Heidelberg (2005)

http://www.maxsat.udl.cat/

	Using SAT-Solvers to Compute Inference-Proof Database Instances
	Introduction and System Settings
	Encoding as SAT Problem
	Clauses and Weights
	Solution Instance

	A preCQE Implementation for Propositional Logic
	Test Cases

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

