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Preface

LION 3, the Third International Conference on Learning and Intelligent Opti-
mizatioN, was held during January 14–18 in Trento, Italy. The LION series of
conferences provides a platform for researchers who are interested in the inter-
section of efficient optimization techniques and learning. It is aimed at exploring
the boundaries and uncharted territories between machine learning, artificial
intelligence, mathematical programming and algorithms for hard optimization
problems.

The considerable interest in the topics covered by LION was reflected by the
overwhelming number of 86 submissions, which almost doubled the 48 submis-
sions received for LION’s second edition in December 2007. As in the first two
editions, the submissions to LION 3 could be in three formats: (a) original novel
and unpublished work for publication in the post-conference proceedings, (b)
extended abstracts of work-in-progress or a position statement, and (c) recently
submitted or published journal articles for oral presentations. The 86 submis-
sions received include 72, ten, and four articles for categories (a), (b), and (c),
respectively.

The articles for the post-conference proceedings were carefully selected after
a rigorous refereeing process. Finally, 16 papers were accepted for publication in
this proceedings volume (one of these being an extended version of an extended
abstract), which gives an acceptance rate of about 20%. In addition, three of
the papers presented at the Machine Learning and Intelligent Optimization in
Bioinformatics (MALIOB) 2009 workshop are included in the post-conference
proceedings; the MALIOB 2009 workshop was organized by Andrea Passerini of
the University of Trento, Italy, as a LION 3 satellite workshop.

Apart from the oral presentations at LION 3, a number of promising contri-
butions, which were published in electronic online proceedings, were presented
during two poster sessions. The conference program was further enriched by four
tutorials by leading researchers. The topics covered were constraint programming
(Jean-Charles Regin, ILOG, France), algorithms for tackling the SAT problem
(Youssef Hamadi, Microsoft Research Cambridge, UK), metaheuristics with a
focus on simple metaheuristic strategies (Olivier Martin, Université Paris-Sud,
France), and probabilistic reasoning techniques for combinatorial problem solv-
ing (Lukas Kroc, Ashish Sabharwal, and Bart Selman, Cornell University, USA).
The poster sessions and the additional tutorials helped to make LION 3 a very
lively meeting.

The Technical Program Committee Chair would like to acknowledge gratefully
the contributions of multiple persons, in particular, the authors for submitting
their work to LION 3 and the Program Committee and additional referees for
their dedicated work to ensure a high-quality conference program. This confer-
ence was very successful also because of the numerous contributions of a number
of people involved in its organization. Special thanks goes to Roberto Battiti,
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the Steering Committee and Local Organization Chair, who is also the main
person behind the establishment of the LION conference series, to Bart Selman,
the General Conference Chair, Andrea Passerini, for organizing the MALIOB
workshop, Youssef Hamadi, the Tutorial Chair, for putting together an inspiring
tutorial program, and Franco Mascia, the Web Chair, who was very helpful in
all technical details arising before, during, and after the refereeing process. In
addition, thanks also to Mauro Brunato, Elisa Cilia, Paolo Campigotto, Michela
Dallachiesa, Cristina Di Risio, and Marco Cattani, members of the LION re-
search group, for their help in the practical organization of the event.

Finally, we would like to thank the sponsors for their contribution to the con-
ference: the Associazione Italiana per l’Intelligenza Artificiale, IEEE Computa-
tional Intelligence Society, and Microsoft Research for their technical
co-sponsorship as well as the industrial sponsors, Eurotech Group S.P.A. and
EnginSoft S.P.A.

September 2009 Thomas Stützle
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Marco Dorigo Université Libre de Bruxelles (ULB), Belgium
Michel Gendreau Université de Montréal, Canada
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Kate Smith-Miles Deakin University, Australia
Christine Solnon Université Lyon 1, France
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Evolutionary Dynamics of Extremal Optimization

Stefan Boettcher

Physics Department, Emory University, Atlanta, USA
stb@physics.emory.edu

Abstract. Dynamic features of the recently introduced extremal opti-
mization heuristic are analyzed. Numerical studies of this evolutionary
search heuristic show that it performs optimally at a transition between
a jammed and an diffusive state. Using a simple, annealed model, some
of the key features of extremal optimization are explained. In particular,
it is verified that the dynamics of local search possesses a generic criti-
cal point under the variation of its sole parameter, separating phases of
too greedy (non-ergodic, jammed) and too random (ergodic, diffusive)
exploration. Analytic comparison with other local search methods, such
as a fixed temperature Metropolis algorithm, within this model suggests
that the existence of the critical point is the essential distinction leading
to the optimal performance of the extremal optimization heuristic.

1 Introduction

We have introduced a new heuristic, Extremal Optimization (EO), in Refs. [1,2]
and demonstrated its efficiency on a variety of combinatorial [3,4,5,6] and physi-
cal optimization problems [2,7,8]. Comparative studies with simulated annealing
[1,3,9] and other Metropolis based heuristics [10,11,12,13,14] have established
EO as a successful alternative for the study of NP-hard problems and its use
has spread throughout the sciences. EO has found a large number of applica-
tions by other researchers, e. g. for polymer confirmation studies [15,16], pattern
recognition [17,18,19], signal filtering [20,21], transport problems [22], molecu-
lar dynamics simulations [23], artificial intelligence [24,25,26], modeling of social
networks [27,28,29], and 3d−spin glasses [10,30]. Also, extensions [31,32,33,34]
and rigorous performance guarantees [35,36] have been established. Ref. [37]
provides a thorough description of EO and comparisons with other heuristics.

Here, we will apply EO to a spin glass model on a 3-regular random graph
to elucidate some of its dynamic features as an evolutionary algorithm. These
properties prove quite generic, leaving local search with EO virtually free of
tunable parameters. We discuss the theoretical underpinning of its behavior,
which is reminiscent of Kauffman’s suggestion [38] that evolution progresses
most rapidly near the “edge of chaos,” in this case characterized by a critical
transition between a diffusive and a jammed phase.

T. Stützle (Ed.): LION 3, LNCS 5851, pp. 1–14, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



2 S. Boettcher

2 Spin Glass Ground States with Extremal Optimization

Disordered spin systems on sparse random graphs have been investigated as
mean-field models of spin glasses or combinatorial optimization problems [39],
since variables are long-range connected yet have a small number of neighbors.
Particularly simple are α-regular random graphs, where each vertex possesses a
fixed number α of bonds to randomly selected other vertices. One can assign a
spin variable xi ∈ {−1, +1} to each vertex, and random couplings Ji,j , either
Gaussian or ±1, to existing bonds between neighboring vertices i and j, leading
to competing constraints and “frustration” [40]. We want to minimize the energy
of the system, which is the difference between violated bonds and satisfied bonds,

H = −
∑

{bonds}
Ji,jxixj . (1)

EO performs a local search [6] on an existing configuration of n variables by
changing preferentially those of poor local arrangement. For example, in case
of the spin glass model in Eq. (1), λi = xi

∑
j Ji,jxj assesses the local “fitness”

of variable xi, where H = −
∑

i λi represents the overall energy (or cost) to be
minimized. EO simply ranks variables,

λΠ(1) ≤ λΠ(2) ≤ . . . ≤ λΠ(n), (2)

where Π(k) = i is the index for the kth-ranked variable xi. Basic EO always
selects the (extremal) lowest rank, k = 1, for an update. Instead, τ -EO selects
the kth-ranked variable according to a scale-free probability distribution

P (k) ∝ k−τ . (3)

The selected variable is updated unconditionally, and its fitness and that of its
neighboring variables are reevaluated. This update is repeated as long as desired,
where the unconditional update ensures significant fluctuations with sufficient
incentive to return to near-optimal solutions due to selection against variables
with poor fitness, for the right choice of τ . Clearly, for finite τ , EO never “freezes”
into a single configuration; it is able to return an extensive list of the best of the
configurations visited (or simply their cost) instead [5].

For τ = 0, this “τ -EO” algorithm is simply a random walk through config-
uration space. Conversely, for τ → ∞, the process approaches a deterministic
local search, only updating the lowest-ranked variable, and is likely to reach a
dead end. However, for finite values of τ the choice of a scale-free distribution
for P (k) in Eq. (3) ensures that no rank gets excluded from further evolution,
while maintaining a clear bias against variables with bad fitness. As Sec. 3 will
demonstrate, fixing τ − 1 ∼ 1/ ln(n) provides a simple, parameter-free strategy,
activating avalanches of adaptation [1,2].

3 EO Dynamics
Understanding the Dynamics of EO has proven a useful endeavor [41,14]. Such
insights have lead to the implementation of τ -EO described in Sec. 2. Treating
τ -EO as an evolutionary process allows us to elucidate its capabilities and to
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make further refinements. Using simulations, we have analyzed the dynamic
pattern of the τ -EO heuristic. As described in Sec. 2, we have implemented τ -
EO for the spin glass with Gaussian bonds on a set of instances of 3-regular
graphs of sizes n = 256, 512, and 1024, and run each instance for Trun = 20n3

update steps. As a function of τ , we measured the ensemble average of the lowest-
found energy density 〈e〉 = 〈H〉/n, the first-return time distribution R (Δt) of
update activity to any specific spin, and auto-correlations C(t) between two
configurations separated by a time t in a single run. In Fig. 1, we show the plot of
〈e〉, which confirms the picture found numerically [2,4] and theoretically [41] for
τ−EO. The transition at τ = 1 we will investigate further below and theoretically
in Sec. 5. The worsening behavior for large τ has been shown theoretically in
Ref. [41] to originate with the fact that in any finite-time application, Trun < ∞,
τ−EO becomes less likely to escape local minima for increasing τ and n. The
combination of the purely diffusive search below τ = 1 and the “jammed” state
for large τ leads to the conclusion that the optimal value is approximated by
τ−1 ∼ 1/ ln(n) for n →∞, consistent with Fig. 1 and experiments in Refs. [4,2].

In Fig. 2 we show the first-return probability for select values of τ . It shows
that τ -EO is a fractal renewal process for all τ > 1, and for τ < 1 it is a Poisson
process: when variables are drawn according to their “rank” k with probability
P (k) in Eq. (2), one gets for the first-return time distribution

R(Δt) ∼ −P (k)3

P ′(k)
∼ Δt

1
τ −2. (4)

Neglecting correlations between variables, the number of updates of a variable of
rank k is #(k) = TrunP (k). Then, the typical life-time is Δt(k) ∼ Trun/#(k) =
1/P (k), which via R(Δt)dΔt = P (k)dk immediately gives Eq. (4). The numerical

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
τ

-1.1

-1.0

-0.9

-0.8

<
e
>

n=  256
n=  512
n=1024

Fig. 1. Plot of the average lowest energy density found with τ−EO over a fixed testbed
of 3-regular graph instances of size n for varying τ . For n→∞, the results are near-
optimal only in a narrowing range of τ just above τ =1. Below τ =1 results dramatically
worsen, hinting at the phase transition in the search dynamics obtained in Sec. 5.
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Fig. 2. Plot of the first-return time distribution R (Δt) for τ -EO for various τ and
n = 256. Poissonian behavior for τ < 1 develops into a power-law regime limited by a
cut-off for τ > 1. The power-law scaling closely follows Eq. (4) (dashed lines). Inset:
Data collapse (except for τ ≤ 1) of autocorrelations C(t) according to the stretched-
exponential fit given in the text. From top to bottom, τ = 0.5, 0.7, . . . , 3.5.

results in Fig. 2 fit the prediction in Eq. (4) well. Note that the average life-time,
and hence the memory preserved by each variable, diverges for all τ(> 1), limited
only by Trun, a size-dependent cut-off, and is widest for τ → 1+, where τ -EO
performs optimal. This finding affirms the subtle relation between searching
configuration space widely while preserving the memory of good solutions.

Interestingly, the auto-correlations between configurations shown in the inset
of Fig. 2 appear to decay with a stretched -exponential tail, C(t) ∼ exp{−Bτ

√
t}

fitted with Bτ ≈ 1.6 exp{−2.4τ}, for all τ > 1, characteristic of a super-cooled
liquid [40] just above the glass transition temperature Tg(> 0 in this model).
While we have not been able to derive that result, it suggests that τ -EO, driven
far from equilibrium, never “freezes” into a glassy (T < Tg) state, yet accesses
T = 0 properties efficiently. Such correlations typically decay with an agoniz-
ingly anemic power-law [40] for a thermal search of a complex (Tg > 0) energy
landscape, entailing poor exploration and slow convergence.

4 Annealed Optimization Model

As described in Ref. [41], we can abstract certain combinatorial optimization
problems into a simple, analytically tractable annealed optimization model
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(AOM). To motivate AOM, we imagine a generic optimization problem, e. g.
the spin glass in Sec. 2, as consisting of a number of variables 1 ≤ i ≤ n, each
of which contributes an amount −λi to the overall cost per variable (or energy
density),

ε = − 1
n

n∑
i=1

λi. (5)

The “fitness” of each variable is λi ≤ 0, where larger values are better and
λi = 0 is optimal. The (optimal) ground state of the system is ε = 0. In a
realistic problem, variables are constrained such that not all of them can be
simultaneously of optimal fitness. In AOM, those correlations are neglected.

We will consider that each variable i is in one of α+1 different fitness states λi,
where αi = α is fixed as a constant here. (For example, α = 2d on a d-dimensional
hyper-cubic lattice or α = 3 in Sec. 3.) We can specify occupation numbers na,
0 ≤ a ≤ α, for each state a, and define occupation densities ρa = na/n (a =
0, . . . , α). Hence, any local search procedure with single-variable updates, say,
can be cast simply as a set of evolution equations,

ρ̇b =
α∑

a=0

Tb,aQa. (6)

Here, Qa is the probability that a variable in state a gets updated; any local
search process (based on updating a finite number of variables) defines a unique
set of Q, as we will see below. The matrix Tb,a specifies the net transition to
state b given that a variable in state a is updated. This matrix allows us to
design arbitrary, albeit annealed, optimization problems for AOM. Both, T and
Q, generally depend on the density vector ρ(t) as well as on t explicitly.

We want to consider the different fitness states equally spaced, as in the spin
glass example above, where variables in state a contribute aΔE to the energy to
the system. Here ΔE > 0 is an arbitrary energy scale. The optimization problem
is defined by minimizing the “energy” density

ε =
α∑

a=0

aρa ≥ 0. (7)

Conservation of probability and of variables implies the constraints
α∑

a=0

ρa(t) = 1,

α∑
a=0

ρ̇a = 0,

α∑
a=0

Qa = 1,

α∑
a=0

Ta,b = 0 (0 ≤ b ≤ α). (8)

While AOM eliminates most of the relevant properties of a truly hard optimiza-
tion problem, such as quenched randomness and frustration [40], two funda-
mental features of the evolution equations in Eq. (6) remain appealing: (1) The
behavior for a large number of variables can be abstracted into a simple set of
equations, describing their dynamics with merely a few unknowns, ρ, and (2)
the separation of update preference, Q, and update process, T, lends itself to
an analytical comparison between different heuristics, as we will show in Sec. 5.
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5 Evolution Equations for Local Search Heuristics

The AOM developed above is quite generic for a class of combinatorial optimiza-
tion problems. It was designed in particular to analyze EO [41], which we will
review next. Then we will present the update preferences Q through which each
local search heuristic enters into AOM. We also specify the update preferences
Q for Metropolis-based local searches, akin to simulated annealing.

5.1 Extremal Optimization Algorithm

EO is simply implemented in AOM: For a given configuration {xi}n
i=1, assign to

each variable xi a “fitness” λi = 0,−1, . . . ,−α (e. g. λi = −{#violated bonds}
in the spin glass), so that Eq. (5) is satisfied. Each variable falls into one of
only α + 1 possible states. Say, currently there are nα variables with the worst
fitness, λ = −α, nα−1 with λ = −(α − 1), and so on up to n0 variables with
the best fitness λ = 0 with n =

∑α
b=0 nb. Select an integer k, 1 ≤ k ≤ n, from

some distribution, preferably with a bias towards lower values of k. Determine
0 ≤ a ≤ α such that

∑α
b=a+1 nb < k ≤

∑α
b=a nb. Note that lower values of

k would select a “pool” na with larger value of a, containing variables of lower
fitness. Finally, select one of the na variables in state a with equal chance and
update it unconditionally. As in Eq. (3), we prescribe a bias for selecting variables
of poor fitness on a slowly varying (power-law) scale over the ranking 1 ≤ k ≤ n
of the variables by their fitnesses λi,

Pτ (k) =
τ − 1

1− n1−τ
k−τ (1 ≤ k ≤ n). (9)

As an alternative, we can also study EO with threshold updating, which Ref. [35]
has shown rigorously to be optimal. Yet, the actual value of this threshold at
any point in time is typically not obvious (see also Ref. [36]). We will implement
a sharp threshold s (1 ≤ s ≤ n) via

Ps(k) ∝ 1
1 + er(k−s) (1 ≤ k ≤ n) (10)

for r →∞. Since we can only consider fixed thresholds s, it is not apparent how
to shape the rigorous results into a successful algorithm.

5.2 Update Probabilities for Extremal Optimization

As described in Sec. 5.1, in each update of τ -EO a variable is selected based on
its rank according to the probability distribution in Eq. (9). When a rank k(≤ n)
has been chosen, a variable is randomly picked from state α, if k/n ≤ ρα, from
state α−1, if ρα < k/n ≤ ρα +ρα−1, and so on. We introduce a new, continuous
variable x = k/n, for large n approximate sums by integrals, and rewrite P (k)
in Eq. (9) as

pτ (x) =
τ − 1

nτ−1 − 1
x−τ

(
1
n
≤ x ≤ 1

)
, (11)
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where the maintenance of the low-x cut-off at 1/n will turn out to be crucial.
Now, the average likelihood in EO that a variable in a given state is updated is
given by

Qα =
ˆ ρα

1/n

p(x)dx =
1

1− nτ−1

(
ρ1−τ

α − nτ−1) ,

Qα−1 =
ˆ ρα+ρα−1

ρα

p(x)dx =
1

1− nτ−1

[
(ρα−1 + ρα)1−τ − ρ1−τ

α

]
,

. . .

Q0 =
ˆ 1

1−ρ0

p(x)dx =
1

1− nτ−1

[
1− (1− ρ0)

1−τ
]
, (12)

where in the last line the norm
∑

a ρa = 1 was used. These values of the Q’s
completely describe the update preferences for τ -EO at arbitrary τ .

Similarly, we can proceed with the threshold distribution in Eq. (10) to obtain

ps(x) ∝ 1
1 + er(nx−s) (

1
n
≤ x ≤ 1), (13)

with some proper normalization. While all the integrals to obtain Q in Eq. (12)
are elementary, we do not display the rather lengthy results here.

Note that all the update probabilities in each variant of EO are independent
of the matrix T in Eq. (6), i. e. of any particular model, which remains to be
specified. This is special, as the following case of a Metropolis algorithm shows.

5.3 Update Probabilities for Metropolis Algorithms

It is more difficult to construct Q for a Metropolis-based algorithm, like simu-
lated annealing [42,43]. Let’s assume that we consider a variable in state a for an
update. Certainly, Qa would be proportional to ρa, since variables are randomly
selected for an update. But as the actual update of the chosen variable may be
accepted or rejected based on a Metropolis condition, further considerations are
necessary. The requisite Boltzmann factor e−βnΔεa for the potential update from
time t → t + 1 of a variable in a, aside from the inverse temperature β(t), only
depends on the entries for Ta,b:

Δεa =
α∑

b=0

b [ρb(t+1)−ρb(t)]

∣∣∣∣∣
a

∼
α∑

b=0

bρ̇b

∣∣∣∣∣
a

=
α∑

b=0

b

α∑
c=0

Tb,cQc

∣∣∣∣∣
a

=
α∑

b=0

bTb,a,

where the subscript a expresses the fact that it is a given variable in state a
considered for an update, i. e. Qc| a = δa,c. Hence, from Metropolis we find for
the average probability of an update of a variable in state a:

Qa =
1
N ρamin

{
1, exp

[
−βn

α∑
b=0

bTb,a

]}
, (14)

where the norm N is determined via
∑

a Qa = 1. Unlike for EO, the update
probabilities here are model-specific, i. e. they depend on the matrix T.
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5.4 Evolution Equations for a Simple Barrier Model

To demonstrate the use of these equations, we consider a simple model of an en-
ergetic barrier with only three states (α = 2) and a constant flow matrix Tb,a =
[−δb,a + δ(2+b mod 3),a]/n, depicted in Fig. 3. Here, variables in ρ1 can only reach
their lowest-energy state in ρ0 by first jumping up in energy to ρ2. Eq. (6) gives

ρ̇0 =
1
n

(−Q0 + Q2) , ρ̇1 =
1
n

(Q0 −Q1) , ρ̇2 =
1
n

(Q1 −Q2) , (15)

with some Q discussed in Sec. 5.2 for the variants of EO.
Given this T, we can now also determine the specific update probabilities for

Metropolis according to Eqs. (14). Note that for a = 2 we can evaluate the min
as 1, since

∑
b bTb,a=2 < 0 always, while for a = 0, 1 the min always evaluates

to the exponential. Properly normalized, we obtain

Q0 =
ρ0e

−β/2

(1− e−β/2)ρ2 + e−β/2 , Q1 =
ρ1e

−β/2

(1− e−β/2)ρ2 + e−β/2 ,

Q2 =
ρ2

(1− e−β/2)ρ2 + e−β/2 . (16)

Fig. 3. Flow diagram with energetic
barriers. Arrows indicate the net num-
ber of variables transferred, nTb,a, into
a state b, given that a variable in a gets
updated. Diagonal elements Ta,a cor-
respondingly are negative, accounting
for the outflow. Here, variables trans-
ferring from ρ1 to ρ0 must first jump
up in energy to ρ2.

ρ
2

1/21/2

1/2

1−θ+ρ

ρ
0

ρ
1

Flow jam

θ−ρ
1

1

1/2

Fig. 4. Same as Fig. 3, but with a
model leading to a jam. Variables can
only transfer from ρ2 to ρ0 through ρ1,
but only if ρ1 < θ. Once ρ1 = θ, flow
down from ρ2 ceases until ρ1 reduces
again.
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It is now very simple to obtain the stationary solution: For ρ̇ = 0, Eqs. (15) yield
Q0 = Q1 = Q2 = 1/3, and we obtain from Eq. (12) for τ -EO:

ρ0 = 1−
(

1
3
nτ−1 +

2
3

) 1
1−τ

, ρ2 =
(

2
3
nτ−1 +

1
3

) 1
1−τ

, (17)

and ρ1 = 1− ρ0 − ρ2, and for Metropolis:

ρ0 =
1

2 + e−β/2 , ρ1 =
1

2 + e−β/2 , ρ2 =
e−β/2

2 + e−β/2 . (18)

For EO with threshold updating, we obtain

ρ0 =
1
3
− 1

3n
− s

n
− 1

3nr
ln
[
1 + er(n−s)

]
+

1
nr

ln
[
(enr + ers)

(
1 + er(1−s)

) 1
3

+ e
r
3 (2n+1)

(
1 + er(n−s)

) 1
3
]

,

ρ2 =
1
3

+
2
3n

+
s

n
− 2

3nr
ln
[
1 + er(n−s)

]
+

1
nr

ln
[
(enr + ers)

(
1 + er(1−s)

) 2
3

+ e
r
3 (n+2)

(
1 + er(n−s)

) 2
3
]

, (19)

and, assuming a threshold anywhere between 1 < s < n, for r →∞:

ρ0 = 1− 2s + 1
3n

, ρ2 =
s + 2
3n

, ρ1 =
s− 1
3n

. (20)

Therefore, according to Eq. (7), Metropolis reaches its best, albeit sub-optimal,
cost ε = 1/2 > 0 at β → ∞, due to the energetic barrier faced by the variables
in ρ1, see Fig. 3. The result for threshold updating in EO are more promising:
near-optimal results are obtained, to within O(1/n), for any finite threshold s.
But results are best for small s → 1  n, in which limit we revert back to “basic”
EO (only update the worst) obtained also for τ →∞.

Finally, the result for τ -EO is most remarkable: For n →∞ at τ < 1 EO remains
sub-optimal, but reaches the optimal cost in the entire domain τ > 1! This transi-
tion at τ = 1 separates a (diffusive) random walk phase with too much fluctuation,
and a greedy descent phase with too little fluctuation, which would trap τ -EO in
problems with a complex landscape. This transition derives generically from the
scale-free power-law in Eq. (9), as had been argued on the basis of numerical results
for real NP-hard problems in Refs. [2,4]. The difference between reaching optimal-
ity in a limit only (τ →∞ as in basic EO, s → 1 for our naive threshold-EO model)
or within a phase (τ > 1) seems insignificant in the stationary regime, Trun →∞.
Yet, it is the hallmark of a local search in a complex landscape that stationarity
is rarely reached within any reasonable computational time Trun < ∞. At inter-
mediate times, constrained variables jam each others evolution, requiring a subtle
interplay between greedy descent and activated fluctuations to escape metastable
states, as we will analyze in the following.

5.5 Jamming Model for τ -EO

Naturally, the range of phenomena found in a local search of NP-hard problems
is not limited to energetic barriers. After all, so far we have only considered
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constant entries for Tb,a. Therefore, as our next AOM we want to review the case
of T depending linearly on the ρi for τ -EO [41]. It highlights the importance
of the fact that τ -EO attains optimality in the entire phase τ > 1, instead of
just an extreme limit such as basic EO (τ → ∞) or s → 1 for EO with fixed
threshold. From Fig. 4, we can read off T and obtain for Eq. (6):

ρ̇0 =
1
n

[
−Q0 +

1
2
Q1

]
,

ρ̇1 =
1
n

[
1
2
Q0 −Q1 + (θ − ρ1)Q2

]
, (21)

and ρ̇2 = −ρ̇0− ρ̇1 from Eq. (8). Aside from the dependence of T on ρ1, we have
also introduced the threshold parameter θ. In fact, if θ ≥ 1, the model behaves
effectively like the previous model, and for θ ≤ 0 there can be no flow from
state 2 to the lower states at all. The interesting regime is the case 0 < θ < 1,
where further flow from state 2 into state 1 can be blocked for increasing ρ1,
providing a negative feed-back to the system. In effect, the model is capable
of exhibiting a “jam” as observed in many models of glassy dynamics [40], and
which is certainly an aspect of local search processes. Indeed, the emergence of
such a jam is characteristic of the low-temperature properties of spin glasses and
real optimization problems: After many update steps, most variables freeze into
a near-perfect local arrangement and resist further change, while a finite fraction
remains frustrated (temporarily in this model, permanently in real problems) in
a poor local arrangement [44]. More and more of the frozen variables have to be
dislodged collectively to accommodate the frustrated variables before the system
as a whole can improve its state. In this highly correlated state, frozen variables
block the progression of frustrated variables, and a jam emerges.

We obtain for the steady state, ρ̇ = 0:

0 =
3
2
(A− 1) +

[
θ −A1/(1−τ) + (3A− 2)1/(1−τ)

] (
3A− 2− nτ−1) , (22)

which can be solved for A to obtain

ρ0 = 1−A1/(1−τ), ρ2 = (3A− 2)1/(1−τ), (23)

and ρ1 = 1 − ρ0 − ρ2. Eq. (22) has a unique physical solution (A > 2/3) for
the ρ’s for all 0 ≤ τ ≤ ∞, 0 < θ < 1, and all n. As advertised in Sec. 5.4, in
the thermodynamic limit n → ∞ the generic critical point of τ−EO at τ = 1
emerges: If τ < 1, the sole n-dependent term in Eq. (22) vanishes, allowing A,
and hence the ρ’s, to take on finite values, i. e. e > 0 in Eq. (7). If τ > 1, the
n-dependent term diverges, forcing A to diverge in kind, resulting in ρ0 → 1 and
ρi → 0 for i > 0 in Eqs. (23), i. e. e→ 0.

While the steady state (t → ∞) features of this model do not seem to be
much different from the model in Sec. 5.4, the dynamics at intermediate times
t is more subtle. In particular, as was shown in Ref. [41], a jam in the flow
of variables towards better fitness may ensue under certain circumstances. The
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emergence of the jam depends on initial conditions, and its duration will prove to
get longer for larger values of τ . If the initial conditions place a fraction ρ0 > 1−θ
already into the lowest state, most likely no jam will emerge, since ρ1(t) < θ for
all times, and the ground state is reached in t = O(n) steps. But if initially
ρ1 + ρ2 = 1− ρ0 > θ, and τ is sufficiently large, τ -EO will drive the system to a
situation where ρ1 ≈ θ by preferentially transferring variables from ρ2 to ρ1, as
Fig. 5 shows. Then, further evolution becomes extremely slow, delayed by the
τ -dependent, small probability that a variable in state 1 is updated ahead of an
extensive (∝ n) number of less-fit variables in state 2.

Clearly, this jam is not a stationary solution of Eq. (21). We consider initial
conditions leading to a jam, ρ1(0) + ρ2(0) > θ and make the Ansatz

ρ1(t) = θ − η(t) (24)

with η  1 for t � tjam, where tjam is the time before ρ0 → 1. To determine
tjam, we apply Eq. (24) to the evolution equations in (21) and use the norm and
ρ̇1 = 0 to leading-order, ρ̇0 = −ρ̇2, which yields an equation solely for ρ2(t),

− dρ2

dt
∼ 1

nτ

[
1− 3

2
(θ + ρ2)1−τ +

1
2
ρ1−τ
2

]
, (25)

or, using the fact that ρ2 almost instantly takes on the value of ρ1(0)+ρ2(0)−θ =
1− θ − ρ0(0) (see Fig. 5), we solve Eq. (25) to get

t ∼ nτ

ˆ 1−θ−ρ0(0)

ρ2(t)

2dξ

2− 3(θ + ξ)1−τ + ξ1−τ
. (26)

0 50000 100000 150000

t
0.0

0.2

0.4

0.6

0.8

1.0

0 50000 100000 1500000

ρ0
ρ1
ρ2

Fig. 5. Plot of the typical evolution of the system in Eqs. (21) for some generic initial
condition that leads to a jam. Shown are ρ0(t), ρ1(t), and ρ2(t) for n = 1000, τ = 2,
θ = 0.5 and initial conditions ρ0(0) = 0.2, ρ1(0) = ρ2(0) = 0.4. Since ρ1(0) < θ, ρ1 fills
up to θ almost instantly with variables from ρ2 while ρ0 stays ≈constant. After that,
ρ1 ≈ θ for a very long time (� n) while variables slowly trickle down through state
1. Eventually, after t = O(nτ ), ρ2 vanishes and EO can empty out ρ1 directly which
leads to the ground state ρ0 = 1 (i. e. e = 0) almost instantly.
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0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
τ

0.0

0.2

0.4

0.6

0.8

<e
>

0.0 2.0

0.0

n=      10
n=    100
n=  1000
n=10000

Fig. 6. Plot of the energy 〈e〉, averaged over initial conditions, vs. τ in many τ -EO runs
of Eqs. (21) with Trun = 100n, n = 10, 100, 1000, and 10000 and θ = 1/2. For small
values of τ , 〈e〉 closely follows the steady state solutions from Eqs. (22-23). It reaches
a minimum at a value near the prediction for τopt ≈ 3.5, 2.1, 1.6, and 1.4, approaching
τ = 1+ along the yellow arrow, and rises sharply beyond that, comparable to Fig. 1.

We can estimate the duration of the jam ending at t = tjam by setting ρ2(tjam) ≈
0, see Fig. 5, leaving the integral as a constant to find:

tjam ∼ nτ . (27)

Instead of repeating the lengthy calculation in Ref. [41] for the ground state
energy averaged over all possible initial conditions for finite runtime Trun ∝ n,
we can content ourselves here with the obvious remark that a finite fraction of
the initial conditions will lead to a jam, hence will require a runtime Trun � tjam
to reach optimality. With Trun ∝ nk, the fact that the phase transition in τ -EO
provides good solutions for all τ > 1 allows us to choose 1 < τ < k, as is apparent
from Fig. 1 where k = 3. Fig. 6, obtained here from simulations of this jammed
model in Eqs. (21), verifies the general asymptotic scaling, τopt − 1 ∼ 1/ ln(n),
with small enough τ to fluctuate out of any jam in a time near-linear in n while
still attaining optimal results as it would for any τ > 1 at infinite runtime.
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Abstract. The rapid evolution of real-time multimedia applications re-
quires Quality of Service (QoS) based multicast routing in underlying
computer networks. The constrained Steiner Tree, as the underpinning
mathematical structure, is a well-known NP-complete problem. In this
paper we investigate a variable neighborhood descent (VND) search, a
variant of variable neighborhood search, for the delay-constrained least-
cost (DCLC) multicast routing problem. The neighborhood structures
designed in the VND approaches are based on the idea of path replace-
ment in trees. They are simple, yet effective operators, enabling a flexible
search over the solution space of this complex problem with multiple con-
straints. A large number of simulations demonstrate that our algorithm is
highly efficient in solving the DCLC multicast routing problem in terms
of the tree cost and execution time. To our knowledge, this is the first
study of VND algorithm on the DCLC multicast routing problem. It
outperforms other existing algorithms over a range of problem instances.

1 Introduction

The general problem of multicast routing has received significant research atten-
tion in the area of computer networks and algorithmic network theory [1,2,3].
It is defined as sending messages from a source to a set of destinations that be-
long to the same multicast group. Many real-time multimedia applications (e.g.
video conferencing, distance education) require the underlying network to sat-
isfy certain quality of service (QoS). These QoS requirements include the cost,
delay, delay variation and hop count, etc, among which the delay and cost are
the most important for constructing multicast trees. The end-to-end delay is the
total delay along the paths from the source to each destination. The cost of the
multicast tree is the sum of costs on its edges.

To search for the minimum cost tree in the multicast routing problem is the
problem of finding a Steiner Tree [4], which is known to be NP-complete [5].
The Delay-Constrained Least-Cost (DCLC) multicast routing problem is the
problem of finding a Delay-Constrained Steiner tree (DCST), also known to be
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NP-complete [6]. Surveys in the literature of multicast communication problems
exist on both the early solutions [7] and recent optimization algorithms [8].

Algorithms for multicast routing problems can usually be classified as source-
based and destination-based algorithms. Source-based algorithms assume that
each node has all the necessary information to construct the multicast tree (e.g.
[9,10,11]). Destination-based algorithms do not require that each node maintains
the status information of the entire network, and multiple nodes participate in
constructing the multicast tree (e.g. [6,12]).

The first DCST heuristic, Kompella-Pasquale-Polyzos (KPP) heuristic, uses
Prim’s algorithm [14] to obtain a minimum spanning tree. Another heuristic,
Constrained Dijkstra (CDKS) heuristic, constructs delay-constrained shortest
path tree for large networks by using Dijkstra’s heuristic [15]. Bounded Shortest
Multicast Algorithm (BSMA) [11], a well known deterministic multicast algo-
rithm for the DCST problem, iteratively refines the tree to lower costs. Although
developed in the mid 1990s, it is still being frequently compared with many mul-
ticast routing algorithms in the current literature. However, it requires excessive
execution time for large networks as it uses the k Shortest Path algorithm [16]
to find lower cost paths.

The second group of algorithms considers distributed multicast routing prob-
lems. The idea of Destination-Driven MultiCasting (DDMC) comes from Prim’s
minimum spanning tree algorithm and Dijkstra’s shortest path algorithm. The
QoS Dependent Multicast Routing (QDMR) algorithm extends the DDMC al-
gorithm by using a weight function to dynamically adjust how far a node is from
the delay bound and adds the node with the lowest weight to the current tree.

In recent years, metaheuristic algorithms such as simulated annealing [17,18],
genetic algorithm [19,20], tabu search [21,22,23,24], GRASP [25] and path re-
linking [26] have been investigated for various multicast routing problems. In the
tabu search algorithm in [24], initial solutions are generated based on Dijkstra’s
algorithm. A modified Prim’s algorithm iteratively refines the initial solution by
switching edges chosen from a backup path set. In the path relinking algorithm
in [26], pairs of solutions in a reference set are iteratively improved. A repair
procedure is used to repair any infeasible solution. Simulation results show that
this path relinking algorithm outperforms other algorithms with regards to the
tree cost. However, when the network size increases and many infeasible solu-
tions need to be repaired, it is time consuming only suitable for real-time small
networks.

In this paper we investigate variable neighborhood descent (VND) search,
a variant of variable neighborhood search (VNS), for DCLC multicast routing
problems. Although VNS algorithms have been applied to Steiner tree problems
(e.g. VNS as a post-optimization procedure to the prize collecting Steiner tree
problem [27], and the bounded diameter minimum spanning tree problem [28]),
as far as we are aware, no research has been carried out using VND on DCST
problems. Experimental results show that our VND algorithms obtained the best
quality solutions when compared against the algorithms discussed above.
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The rest of the paper is organized as follows. In Section 2, we present the
network model and the problem formulation. Section 3 presents the proposed
VND algorithms. We evaluate our algorithms by computer simulations on a
range of problem instances in Section 4. Finally, Section 5 concludes this paper
and presents possible directions for future work.

2 The Delay-Constrained Least-Cost Multicast Routing
Problem

We consider a computer network represented by a directed graph G = (V , E)
with |V | = n nodes and |E| = l edges, where V is a set of nodes and E is a
set of links. Each link e = (i, j) ∈ E is associated with two parameters, namely
the link cost C(e): E �→ �+ and the link delay D(e): E �→ �+. Due to the
asymmetric nature of computer networks, it is possible that C(e) �= C(e′) and
D(e) �= D(e′), for link e = (i, j) and link e′ = (j, i). The nodes in V include
a source node s, destination nodes which receive data stream from the source,
denoted by R ⊆ V − {s}, called multicast groups, and relay nodes which are
intermediate hops on the paths from the source to destinations.

We define a path from node u to node v as an ordered set of links, denoted by
P (u, v) = {(u, i), (i, j), . . ., (k, v)}. A multicast tree T (s, R) is a set of paths
rooted from the source s and spanning all members of R. We denote by PT (ri)
⊆ T the set of links in T that constitute the path from s to ri ∈ R. The total
delay from s to ri, denoted by Delay[ri], is simply the sum of the delay of all
links along PT (ri), i.e.

Delay[ri] =
∑

e∈PT (ri)

D(e), ∀ri ∈ R (1)

The delay of the tree, denoted by Delay[T ], is the maximum delay among all
the paths from the source to each destination, i.e.

Delay[T ] = max{Delay[ri] | ∀ri ∈ R} (2)

The total cost of the tree, denoted by Cost(T ), is defined as the sum of the costs
of all links in the tree, i.e.

Cost(T ) =
∑
e∈T

C(e) (3)

Applications may assign different upper bounds δi for each destination ri ∈ R.
In this paper, we assume that the upper bound for all destinations is the same,
and is denoted by Δ = δi, ri ∈ R.

Given these definitions, we formally define the Delay-Constrained Steiner Tree
(DCST) problem as follows [6]:

The Delay-Constrained Steiner Tree (DCST) Problem: Given
a network G, a source node s, destination nodes set R, a link delay func-
tion D(·), a link cost function C(·), and a delay bound Δ, the objective
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of the DCST Problem is to construct a multicast tree T (s, R) such that
the delay bound is satisfied, and the tree cost Cost(T ) is minimized. We
can define the objective function as:

min{Cost(T ) | PT (ri) ⊆ T (s, R), Delay[ri] ≤ Δ, ∀ri ∈ R} (4)

3 The Variable Descent Neighborhood Search Algorithms

Variable neighborhood search (VNS), jointly invented by Mladenović and Hansen
[29] in 1996, is a metaheuristic for solving combinatorial and global optimization
problems. Unlike many standard metaheuristics where only a single neighbor-
hood is employed, VNS systematically changes different neighborhoods within
a local search. The idea is that a local optimum defined by one neighborhood
structure is not necessarily the local optimum of another neighborhood struc-
ture, thus the search can systematically traverse different search spaces which
are defined by different neighborhood structures. This makes the search much
more flexible within the solution space of the problem, and potentially leads to
better solutions which are difficult to obtain by using single neighborhood based
local search algorithms [29,30,31]. The basic principles of VNS are easy to apply,
parameters being kept to a minimum. Our proposed algorithm is based on basic
variable neighborhood descent search (VND), a variant of VNS algorithm [29].

3.1 Initialisation

In our VND Multicast Routing (VNDMR) algorithm, let us denote Nk, k =
1, . . ., kmax as the set of solutions of the kth neighborhood operator upon an
incumbent solution x. We first create an initial solution T0 and then iteratively
improve T0 by employing three neighborhoods, defined in Section 3.2, until the
tree cost cannot be reduced, while the delay constraint is satisfied. To investigate
the effects of different initial solutions, we design two variants of the algorithm,
namely VNDMR0 and VNDMR1, with the same neighborhood structures, but
starting from different initial solutions:

– Initialisation by DKSLD (VNDMR0): Dijkstra’s shortest path algorithm is
used to construct the least delay multicast tree;

– Initialisation by DBDDSP (VNDMR1): A modified Delay-Bounded DDSP
(DBDDSP) algorithm is used as the initialisation method based on the
Destination-Driven Shortest Path (DDSP) algorithm, a destination-driven
shortest path multicast tree algorithm with no delay constraint developed
in [32].

3.2 Neighborhood Structures within the VND Algorithms

The first group of neighborhood structures within our VNDMR algorithms are
designed based on an operation called path replacement, i.e. a path in a tree Ti
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is replaced by another new path not in the tree Ti, resulting in a new tree Ti+1.
Our delay-bounded path replacement operation guarantees that the tree Ti+1 is
always delay-bounded and loop free. To present the candidate paths chosen in
the path replacement, we define superpath (based on [11], also called key-path in
the literature [33,34]) as the longest simple path in the tree Ti, where all internal
nodes, except the two end nodes of the path, are relay nodes and each relay node
connects exactly two edges. The pseudo-code of VNDMR is presented in Fig.1.

– VNDMR(G = (V , E), S, R, Δ, kmax, Nk, k = 1, . . ., kmax)
– /*S: the source node; R: the destination nodes set; Δ ≥ 0: the delay bound; kmax

= 3: the number of neighborhood structures; Nk(T ): the set of neighborhoods by
employing neighborhood Nk */
• Create initial solution T0; // by using DKSLD or DBDDSP, see Section 3.1
• if T0 = NULL then return FAILED; // a feasible tree does not exist
• else

∗ Tbest = T0; k = 1;
∗ while k ≤ kmax

· select the best neighbor Ti, Ti ∈ Nk(Tbest);
· if(Ti has lower cost or low delay) then Tbest = Ti; k = 1;
· else k++;

∗ end of while loop
• return Tbest

Fig. 1. The Pseudo-code of the VNDMR Algorithm

The three neighborhood structures of VNDMR0 and VNDMR1 are described
as below:

1. Neighbor1: the most expensive edges on each superpath in tree Ti are
the candidates of the path replacement. At each step, one chosen edge is
deleted, leading to two separate subtrees T 1

i and T 2
i . The Dijkstra’s shortest

path algorithm is then used to find a new delay-bounded shortest path that
connects the two subtrees and reduces the tree cost;

2. Neighbor2: this operator operates on all superpaths in the tree Ti (either
connecting or not connecting to a destination node). At each step, one su-
perpath is replaced by a cheaper delay-bounded path using the same path
replacement strategy in Neighbor1;

3. Neighbor3: all the superpaths connected to destination nodes in Ti are the
candidate paths to be replaced. At each step, the deletion of a superpath
divides the tree Ti into a subtree T ′

i and a destination node ri. Then the
same path replacement strategy is used to search for a new delay-bounded
shortest path reconnecting ri to T ′

i .

To test how different neighborhood structures will affect the performance of
the VND algorithm with the same initial solution, another VND algorithm,
named VNDMR2, is developed with an extended new node-based neighborhood
structure. The three neighborhood structures of VNDMR2 are as follows:



20 R. Qu, Y. Xu, and G. Kendall

1. Neighbor1’: one neighborhood tree is defined by deleting a non-source and
non-destination node from the current multicast tree and creating a mini-
mum spanning tree which spans the remaining nodes by using Prim’s span-
ning tree algorithm. Once a better tree is found, the current tree is updated.
These steps are repeated until no better tree can be found for 3 times;

2. Neighbor2’: the same as Neighbor2 in VNDMR0 and VNDMR1;
3. Neighbor3’: the same as Neighbor3 in VNDMR0 and VNDMR1.

3.3 Time Complexity of the VNDMR Algorithm

Proof of the probability of transition from a spanning tree si to sj (see [35]):
According to Cayley’s theorem [36], for a n node network, there are nn−2

possible spanning trees. Thus, the number of Steiner trees is bounded by nn−2.
Let us consider a Markov chain of nn−2 states, where each state corresponds to
a spanning tree. We sort these states in a decreasing order with respect to the
cost of the Steiner tree. Replacing each state in the sorted list with n copies of
itself results into a total number of nn−1 states. In the Markov chain, transition
edges from a state si go only to a right state sj of si. Assume that each possible
transition is equally likely. Thus the probability of a transition from si to sj is:

pij =
1

i− 1
(1 ≤ j < i, P11 = 1) (5)

We prove the time complexity of VNDMR based on the method used in [35]. Let
mi be the number of transitions needed to go from state si to s1, the expected
value E[mi] = log(i). Therefore, if the VNDMR algorithm starts from the most
expensive state, i.e. nn−1, the expected number of transitions is O(log(nn−1)) =
O(nlog(n)). So the expected maximum number of iterations of the neighborhood
structures in VNDMR is O(nlog(n)). The VNDMR algorithm includes three
neighborhood structures (N1, N2, N3 ), then the time complexity of VNDMR
is:

O(nlog(n)(O(N1) + O(N2) + O(N3))) (6)

For example, the three neighborhoods of VNDMR0 and VNDMR1 use the same
path replacement strategy. A path-replacement operation is dominated by Dijk-
stra’s shortest path algorithm which takes O(llog(n)), where l = |E| is the total
links in the network. In the worst case, each neighborhood requires replacing at
most O(l) superpaths. Thus the time complexity of VNDMR0 and VNDMR1 is:

O(nlog(n)(3 ∗ l ∗ llog(n))) = O(l2nlog2(n)) (7)

4 Performance Evaluation

To evaluate the efficiency of our VNDMR algorithm, we use a multicast rout-
ing simulator (MRSIM) implemented in C++ based on Salama’s generator [1].
MRSIM generates random network topologies using a graph generation algo-
rithm described in [37]. The positions of the nodes are fixed in a rectangle of
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size 4000× 4000km2. The simulator defines the link delay function D(e) as the
propagation delay of the link (queuing and transmission delays are negligible)
and the link cost function C(e) as the current total bandwidth reserved on the
link in the network. The Euclidean metric is used to determine the distance l(u,
v) between pairs of nodes (u, v). Edges connect nodes (u, v), with a probability

P (u, v) = βexp(−l(u, v)/αL) α, β ∈ (0, 1] (8)

where parameters α and β can be set to obtain desired characteristics in the
graph. A large β gives nodes a high average degree, and a small α gives long
connections. L is the maximum distance between two nodes. In our simulations,
we set α = 0.25, β = 0.40, the average degree = 4 and the capacity of each link
= 155Mb/s (in this paper we set the capacity to a large enough value so that
such constraint is not considered in the problem). All simulations were run on a
Windows XP computer with Pentium VI 3.4GHZ, 1G RAM.

To encourage scientific comparisons, we have put the problem details of all in-
stances tested at http://www.cs.nott.ac.uk/∼yxx/resource.html, with some ex-
ample solutions obtained by the proposed algorithms.

4.1 VNDMR with Different Initialisations

In the first set of experiments, we randomly generate 20 different network topolo-
gies for each size of 20, 50, 100, 200 and 300 nodes in the networks. For each
network topology, the source node and the destination nodes are randomly se-
lected. The delay bound in our experiments for each network topology is set as 2
times the tree delay of the DKSLD algorithm, i.e. Δ = 2 ×Delay(TDKSLD). For
each network topology, the simulation was run 50 times, where the average tree
costs and execution times were reported. We investigate the performance of two
variants of VNDMR with different initializations, e.g. VNDMR0 with DKSLD
and VNDMR1 with DBDDSP. Both variants employ the same neighborhood
structures as defined in Section 3.2.

Fig.2 presents the tree cost and execution time of VNDMR0 and VNDMR1 for
problems of different network sizes with a group size (number of destinations) of
10. We can see that the tree cost of the initial solutions obtained from DBDDSP
and DKSLD can both be improved by the VNDMR algorithms. The paired t-test
value of the average tree cost between VNDMR0 and VNDMR1 is 3.85, meaning
VNDMR1 is significantly better than VNDMR0. We conclude that VNDMR1
performs better than VNDMR0 in terms of both tree cost and computational
time.

Fig.3.(a) presents the tree costs of the two VNDMR algorithms with differ-
ent initial solutions for networks of 50 nodes with different group sizes. In the
table, the above observations still hold. The initial solutions from DBDDSP for
VNDMR1 are better than that of DKSLD for VNDMR0. Both VNDMR algo-
rithms can further reduce the tree cost, and VNDMR1 performs slightly better
than VNDMR0. Fig.3.(b) also shows that VNDMR1 requires less execution time
than that of VNDMR0.
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Fig. 2. Results of VNDMR with different initialisations, group size = 10

Fig. 3. Execution time by VNDMR with different initialisations, network size = 50

This group of experiments show that our VNDMR algorithms can always
improve the initial solutions when constructing the DCLC multicast trees. The
quality of initial solutions affects the performance of the VND algorithm. It is
shown that better initial solutions from more intelligent heuristics lead to better
final results, and also reduce the execution time of the VND algorithm.

4.2 VNDMR with Different Neighborhood Structures

In the second group of experiments, we test VNDMR1 and VNDMR2 on the
same randomly generated network topologies in the same manner as mentioned
in Section 4.1. Both VNDMR1 and VNDMR2 start from the same initial solution
(DBDDSP), whereas they apply the different neighborhood structures described
in Section 3.1 and 3.2, respectively.

The average tree cost and execution time of VNDMR1 and VNDMR2 on
5 different network sizes with group sizes equal to 10 are shown in Table 1.
VNDMR2 always gets better average tree cost than VNDMR1 on these different
network sizes. The paired t-test value of the average tree cost between VNDMR1
and VNDMR2 is 4.84, indicating a significantly difference between them. It is
also observed that VNDMR2 spends longer computing time than VNDMR1.
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Table 1. Average tree cost and execution time vs. network size, group size = 10

Network Initial Solution VNDMR1 VNDMR2
Size DBDDSP Cost Time(s) Cost Time(s)
20 513.85 416.25 0.008 407.9 0.053
50 583.1 466.5 0.067 456.85 0.509
100 892.75 667.85 0.924 650.2 4.969
200 1029.15 840.55 16.474 829.55 29.891
300 1084.55 875.05 41.379 851.25 86.365

Table 2. Average tree cost and execution time vs. group size, network size = 50

Group Initial Solution VNDMR1 VNDMR2
Size DBDDSP Cost Time(s) Cost Time(s)
5 330.05 280.75 0.038 280.15 0.075
10 583.1 466.5 0.067 456.85 0.214
15 809.1 682.95 0.117 643.65 0.373
25 1077.75 840.25 0.141 845.15 0.473
35 1359.95 1055.75 0.187 1063.45 0.583
45 1591.45 1214.75 0.287 1224.95 0.595

The average tree cost and execution time of VNDMR1 and VNDMR2 on the
same group of 50-node networks with different group sizes are shown in Table 2.
We can see that VNDMR2 gets better tree costs on the networks with small
group sizes (5, 10, 15), while VNDMR1 performs better than VNDMR2 when
the group size increases (25, 35, 45). It means the design of the neighborhood
structures affects the performance of the VND algorithm. The Neighbor1’ of
VNDMR2 is based on an operation on the nodes in the multicast tree. With the
increasing group size, i.e. the number of destination nodes, the amount of nodes
which can be deleted from the current tree decreases. Since the possible neigh-
borhood trees of the current tree that can be explored are reduced, Neighbor1’
plays not much role when exploring the solution space. However, the edge-based
VNDMR1 still performs well even on the networks with large group sizes. On
the other hand, VNDMR1 spends less computing time than VNDMR2 on the
tested problems.

4.3 Comparisons with Existing Algorithms

In the second set of experiments, we compare VNDMR1 with four existing mul-
ticast routing algorithms in terms of both the solution quality and the computa-
tional time on the same network topologies in Section 4.1. The four algorithms
include BSMA, CDKS, QDMR, which are DCLC multicast routing algorithms,
and DKSLC, which uses Dijkstra’s algorithm to construct the least cost mul-
ticast trees without the delay constraint. These algorithms have already been
integrated in the MRSIM simulator and reviewed in Section 1.
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Fig. 4. Tree cost and execution time with group size = 10 from different approaches

Fig.4 presents the tree cost and execution time of these four algorithms and
our VNDMR1 algorithm. It can be clearly seen in Fig.4.(a) that VNDMR1 out-
performs the other four algorithms in terms of the tree cost. CDKS and DKSLD
have the worst and similar tree cost; BSMA is better than QDMR but worse on
the tree cost than VNDMR. In addition, Fig.4.(b) shows that VNDMR1 requires
less execution time than BSMA. The other three algorithm CDKS, QDMR and
DKSLC require lower computational time. However, the solution quality is of
much lower quality than both BSMA and VNDMR1.

Fig.5 presents the results of our VNDMR1 algorithm and other algorithms
in terms of the tree cost and execution time for problems of different network
sizes, where the group size is 10% of the overall network size. Again, it can be
seen in Fig.5.(a) that VNDMR1 outperforms the other four algorithms upon the
solution quality. Fig.5.(b) shows that VNDMR1 requires less execution time than
BSMA. This is due to that the time complexity of VNDMR1 is O(l2nlog2(n)),
while BSMA’s time complexity is O(kn3log(n)) (n: the number of nodes, l: the
number of edges, k: the kth shortest path between source and a destination).

In [26], Ghaboosi and Haghighat develop a path relinking algorithm and show
that it outperforms a number of existing algorithms including KPP, BSMA, GA-
based algorithms [19,20], tabu search based algorithms [23,24,22,21] and another
path relinking algorithm [38]. In order to compare our VNDMR algorithms with
these algorithms in the literature, we generate a group of random graphs with
different network sizes (10, 20, 30, 40, 50, 60, 70, 80, 90, 100 nodes). For a fair
comparison, three random topologies are generated for each network size, which
are the same as the simulations designed in [26]. In these graphs, the link cost
depends on the link length, all the link delays are set to 1, the group size is set to
30% of the network size, the delay bounds are set to different values depending
on the network sizes (Δ = 7 for network size 10-30, Δ = 8 for network size 40-60,
Δ = 10 for network size 70-80 and Δ = 12 for network size 90-100).

We test two variants of VND, VNDMR1 and VNDMR2, with the same ini-
tial solution DBDDSP but different neighborhood structures as described in
Section 3.2. The simulation results are reported in Tables 3 and 4.
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Fig. 5. Results of different approaches, group size = 10% of network size

Table 3. Average tree costs of existing algorithms on random graphs

Algorithms Average Tree Costs
KPP1 [9] 905.581

Heuristics KPP2 [9] 911.684
BSMA [11] 872.681

GA-based Wang et al. [19] 815.969
Algorithms Haghighat et al. [20] 808.406

Skorin-Kapov and Kos [22] 897.578
TS-based Youssef et al. [21] 854.839
Algorithms Wang et al. [23] 1214.75

Ghaboosi and Haghighat [24] 739.095
Path relinking Ghaboosi and Haghighat [26] 691.434

VNDMR1 680.067
VNS Algorithms VNDMR2 658.967

As only the average tree cost over all problem instances of different sizes are
reported in [26], we report the same in Table 3. It shows that the VNDMR2 per-
forms the best in terms of the average tree cost from 10 runs for each graph. De-
tails of the average tree cost and the execution time of VNDMR1 and VNDMR2
on each network size are given in Table 4, showing that VNDMR2 obtains the
best solutions on 9 out of 10 network sizes, while VNDMR1 gets 1 best result.
We also observe that VNDMR2 spends longer computing time than VNDMR1 to
get the better results. The standard deviations of both VNDMR1 and VNDMR2
for each graph are 0, due to that the order of the nodes changed in the search is
fixed for comparisons, i.e. there is no random factor in VNDMR1 and VNDMR2.
For the 3 graphs of each size, results vary in VNDMR1 and VNDMR2. For ex-
ample, for the largest graph, VNSMR2 obtained solution of 1097, 922 and 998
(average 1005.67), compared with those of 1130, 916 and 1076 (average 1040.67)
from VNSMR1.
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Table 4. Average results of our VNDMR on the random graphs

Network VNDMR1 VNDMR2
Size Cost Time(s) Cost Time(s)
10 94.67 0.005 94.67 0.003
20 282.33 0.015 275.33 0.032
30 415.67 0.036 399.67 0.17
40 518 0.063 514 0.362
50 726.67 0.151 674.67 0.859
60 812.33 0.292 777.67 1.392
70 805.33 0.682 805 2.571
80 922.33 1.286 905.33 5.127
90 1182.67 3.151 1137.67 11.705
100 1040.67 4.292 1005.67 15.332

We re-implemented the path relinking algorithm in [26]. Fig.6 presents the
execution time of the path relinking algorithm, VNDMR1 and VNDMR2 tested
on the same computer. Our VNDMR algorithms can obtain better results in a
very short time compared with that of the path relinking algorithm.

Fig. 6. Average execution time of VNDMR and the Path Relinking [26]

In summary, over a large number of simulations on instances of different char-
acteristics, we have demonstrated that the proposed VND algorithms outperform
other existing algorithms with regard to both the average tree cost and compu-
tational time. Our VNDMR2 obtains the best average tree cost on the random
graphs so far.

5 Conclusions

In this paper, we have investigated variable neighborhood descent (VND) search
algorithms for solving multicast network routing problems, where delay-
constrained least-cost multicast trees are constructed. The problem is a Delay-
Constrained Steiner tree problem and has been proved to be NP-complete. The
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main characteristic of our VND algorithms is that of using three simple, yet
effective, neighborhood structures. Each neighborhood is designed to reduce the
tree cost in different ways and at the same time satisfy the delay constraint.
This enables a much more flexible search over the search space. A large num-
ber of experimental results demonstrate that our VND algorithms are the best
performing algorithms in comparison with other existing algorithms in terms of
both the total tree cost and the execution time.

Many promising directions of future work are possible. Real world network
scenarios are mostly dynamic with some nodes leaving and joining the multicast
groups at various times. Additionally, our VND algorithm can be easily adapted
for solving a variety of network routing problems with different constraints.

Acknowledgements. This research is supported by Hunan University, China,
and the School of Computer Science at The University of Nottingham, UK.

References

1. Salama, H.F., Reeves, D.S., Viniotis, Y.: Evaluation of multicast routing algorithms
for realtime communication on high-speed networks. IEEE Journal on Selected
Areas in Communications 15, 332–345 (1997)

2. Yeo, C.K., Lee, B.S., Er, M.H.: A survey of application level multicast techniques.
Computer Communications 27, 1547–1568 (2004)

3. Masip-Bruin, X., Yannuzzi, M., Domingo-Pascual, J., Fonte, A., Curado, M., Mon-
teiro, E., Kuipers, F., Van Mieghem, P., Avallone, S., Ventre, G., Aranda-Gutierrez,
P., Hollick, M., Steinmetz, R., Iannone, L., Salamatian, K.: Research challenges in
QoS routing. Computer Communications 29, 563–581 (2006)

4. Hwang, F.K., Richards, D.S.: Steiner tree problems. IEEE/ACM Trans. Network-
ing 22, 55–89 (1992)

5. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company, New York (1979)

6. Guo, L., Matta, I.: QDMR: An efficient QoS dependent multicast routing algo-
rithm. In: Proceedings of the 5th IEEE Real Time Technology and Applications
Symposium, pp. 213–222 (1999)

7. Diot, C., Dabbous, W., Crowcroft, J.: Multicast communication: a survey of pro-
tocols, functions, and mechanisms. IEEE Journal on Selected Areas in Communi-
cations 15, 277–290 (1997)

8. Oliveira, C.A.S., Pardalos, P.M.: A survey of combinatorial optimization problems
in multicast routing. Computers & Operations Research 32(8), 1953–1981 (2005)

9. Kompella, V.P., Pasquale, J.V., Polyzos, G.C.: Multicast routing for multimedia
communication. IEEE/ACM Transactions on Networking 1, 286–292 (1993)

10. Sun, Q., Langendoerfer, H.: Efficient multicast routing for delay-sensitive applica-
tions. In: Proceedings of the 2nd Workshop on Protocols for Multimedia Systems,
pp. 452–458 (1995)

11. Zhu, Q., Parsa, M., Garcia-Luna-Aceves, J.J.: A source-based algorithm for delay-
constrained minimum-cost multicasting. In: Proceedings of the 14th Annual Joint
Conference of the IEEE Computer and Communication (INFOCOM 1995), pp.
377–385. IEEE Computer Society Press, Boston (1995)



28 R. Qu, Y. Xu, and G. Kendall

12. Shaikh, A., Shin, K.: Destination-driven routing for low-cost multicast. IEEE Jour-
nal on Selected Areas in Communications 15, 373–381 (1997)

13. Kou, L., Markowsky, G., Berman, L.: A fast algorithm for Steiner trees. Acta
Informatica 15, 141–145 (1981)

14. Cormen, T.H., Leiserson, C.E., Revest, R.L.: Introduction to Algorithms. MIT
Press, Cambridge (1997)

15. Betsekas, D., Gallager, R.: Data Networks, 2nd edn. Prentice-Hall, Englewood
Cliffs (1992)

16. Eppstein, D.: Finding the k shortest paths. SIAM Journal of Computing 28, 652–
673 (1998)

17. Wang, X.L., Jiang, Z.: QoS multicast routing based on simulated annealing algo-
rithm. In: Proceedings of International Society for Optical Engineering on Network
Architectures, Management, and Applications, pp. 511–516 (2004)

18. Zhang, K., Wang, H., Liu, F.Y.: Distributed multicast routing for delay variation-
bounded Steiner tree using simulated annealing. Computer Communications 28,
1356–1370 (2005)

19. Wang, Z., Shi, B., Zhao, E.: Bandwidth-delay-constrained least-cost multicast rout-
ing based on heuristic genetic algorithm. Computer communications 24, 685–692
(2001)

20. Haghighat, A.T., Faez, K., Dehghan, M., Mowlaei, A., Ghahremani, Y.: GA-based
heuristic algorithms for bandwidth-delay-constrained least-cost multicast routing.
Computer Communications 27, 111–127 (2004)

21. Youssef, H., Sait, M., Adiche, H.: Evolutionary algorithms, simulated annealing
and tabu search: a comparative study. Engineering Applications of Artificial Intel-
ligence 14, 167–181 (2001)

22. Skorin-Kapov, N., Kos, M.: The application of steiner trees to delay constrained
multicast routing: a tabu search approach. In: Proceedings of the seventh interna-
tional Conference on Telecommunications, Zagreb, Croatia, pp. 443–448 (2003)

23. Wang, H., Fang, J., Wang, H., Sun, Y.M.: TSDLMRA: an efficient multicast routing
algorithm based on tabu search. Journal of Network and Computer Applications 27,
77–90 (2004)

24. Ghaboosi, N., Haghighat, A.T.: A tabu search based algorithm for multicast rout-
ing with QoS constraints. In: 9th International Conference on Information Tech-
nology, pp. 18–21 (2006)

25. Skorin-Kapov, N., Kos, M.: A GRASP heuristic for the delay-constrained multicast
routing problem. Telecommunication Systems 32, 55–69 (2006)

26. Ghaboosi, N., Haghighat, A.T.: A path relinking approach for Delay-Constrained
Least-Cost Multicast routing problem. In: 19th International Conference on Tools
with Artificial Intelligence, pp. 383–390 (2007)

27. Canuto, S.A., Resende, M.G.C., Ribeiro, C.C.: Local search with perturbations for
the prize collecting Steiner tree problem in graphs. Networks 38, 50–58 (2001)

28. Gruber, M., Raidl, G.R.: Variable neighborhood search for the bounded diameter
minimum spanning tree problem. In: Hansen, P., Mladenović, N., Pérez, J.A.M.,
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Abstract. Probabilistic Neural Networks (PNNs) constitute a promis-
ing methodology for classification and prediction tasks. Their performance
depends heavily on several factors, such as their spread parameters, ker-
nels, and prior probabilities. Recently, Evolutionary Bayesian PNNs were
proposed to address this problem by incorporating Bayesian models for
estimation of spread parameters, as well as Particle Swarm Optimization
(PSO) as a means to select prior probabilities. We further extend this
class of models by introducing new features, such as the Epanechnikov
kernels as an alternative to the Gaussian ones, and PSO for param-
eter configuration of the Bayesian model. Experimental results of five
extended models on widely used benchmark problems suggest that the
proposed approaches are significantly faster than the established ones,
while exhibiting competitive classification accuracy.

1 Introduction

Classification models exhibit a rapid development in the past few years, due to
their wide applicability in modern scientific and engineering applications. Prob-
abilistic Neural Networks (PNNs) [1] is a widely used classification methodology,
which has been used in several applications in bioinformatics [2, 3, 4, 5], as well
as in different scientific fields [6, 7] with promising results. PNNs constitute a
variant of the well–known Discriminant Analysis [8], presented in the framework
of artificial neural networks. Their main task is the classification of unknown
feature vectors into predefined classes [1], where the Probability Density Func-
tion (PDF) of each class is estimated by kernel functions. For this purpose, the
Gaussian kernel function is usually employed.

The type of kernels and their spread parameters, as well as the prior probabil-
ity of each class affect the performance of PNNs, significantly [9, 10]. Evolution-
ary Bayesian PNNs (EBPNNs) [11] were proposed as variants of the standard
PNNs, where the spread parameters are estimated by Bayesian models, while the
prior probabilities are determined by the Particle Swarm Optimization (PSO)
algorithm. However, the employed Bayesian models included also several param-
eters, configured through a time consuming exhaustive search procedure.

T. Stützle (Ed.): LION 3, LNCS 5851, pp. 30–44, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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The present work aims at extending the EBPNN model in order to reduce
the required execution time. For this purpose, new features are introduced, such
as the Epanechnikov kernels. Also, besides the prior probabilities, PSO is used
for determining the constants of the Bayesian model’s prior distributions. The
new class of models is called Extended EBPNN (EEBPNN), and five models are
compared with different established EBPNN and PNN approaches on four widely
used classification problems from the UCI repository, with promising results.

The paper is organized as follows: Section 2 contains the necessary background
information on PNNs and PSO. The proposed EEBPNN model is described
in Section 3, and experimental results are reported in Section 4. The paper
concludes in Section 5.

2 Background Material

PNNs and PSO are briefly described in this section for presentation completeness.

2.1 Probabilistic Neural Networks

PNNs are supervised neural network models, closely related to the Bayes clas-
sification rule [7, 12] and Parzen nonparametric probability density function
estimation theory [1, 13]. Their training procedure consists of a single pass over
all training patterns [1], thereby rendering PNNs faster to train, compared to
the Feedforward Neural Networks (FNNs).

Consider a p–dimensional classification task and let K be the number of
classes. Let also Ttr be the training data set with a total of Ntr feature vec-
tors, while Nk be the number of training vectors that belong to the k–th class,
k = 1, 2, . . . , K. The i–th feature vector of the k–th class is denoted as Xik ∈ R

p,
where i = 1, 2, . . . , Nk, k = 1, 2, . . . , K. Then, a PNN consists of four layers: the
input, pattern, summation , and output layer , as depicted in Fig. 1 [1, 9].

PATTERN LAYER

INPUT LAYER

SUMMATION LAYER

OUTPUT LAYER

X1 X2 X p

F1,1 F1,N
1

F2,1 F2,N
2

FK,1 FK,N
K

1G 2G KG

C

Fig. 1. The probabilistic neural network model
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An input feature vector, X ∈ R
p, is applied to the p input neurons that

comprise the input layer, and it is passed to the pattern layer. The latter is fully
interconnected with the input layer and organized into K groups of neurons.
Each group of neurons in the pattern layer consists of Nk neurons, and the i–th
neuron in the k–th group computes its own output by using a kernel function.
The kernel function is typically a multivariate Gaussian of the form,

fik(X) =
1

(2π)p/2|Σ|1/2 exp
(
−1

2
(X −Xik)� Σ−1 (X −Xik)

)
, (1)

where Xik ∈ R
p is the center of the kernel, and Σ is the matrix of spread

(smoothing) parameters. PNNs that exploit a global smoothing parameter are
called homoscedastic, while the use of a different parameter per class is referred
to as heteroscedastic PNN [14].

The summation layer consists of K neurons and each one estimates the con-
ditional probability of the corresponding class given the input feature vector, X ,
according to the Bayes decision rule:

Gk(X) =
Nk∑
i=1

πkfik(X), k ∈ {1, 2, . . . , K}, (2)

where πk is the prior probability of the k–th class, and
∑K

k=1 πk = 1. Thus, X
is classified in the class that achieves the maximum output of the summation
neurons.

A limitation of PNNs is the curse of dimensionality. When the dimension of
the data set is large, PNNs usually do not yield good results. A faster version
of the PNN can be obtained by using only a part, instead of the whole training
data set. Such a training set can be obtained either by randomly sampling from
the available data or by finding “representative” training vectors for each class
through a clustering technique.

For this purpose, the widely used K–medoids clustering algorithm [15] can
be applied on the training data of each class. The extracted medoids are then
used as centers for the PNN’s kernels, instead of using all the available training
data. The resulted PNNs are significantly smaller with respect to the number of
neurons in the pattern layer, although there is no sound procedure for estimating
the optimal required number of medoids.

2.2 The Particle Swarm Optimization Algorithm

Particle Swarm Optimization (PSO) was introduced in 1995 by Eberhart and
Kennedy [16, 17], drawing inspiration from the dynamics of socially organized
groups. PSO is a stochastic, population–based optimization algorithm that ex-
ploits a population of individuals to synchronously probe the search space. In
this context, the population is called a swarm and the individuals (i.e., the search
points) are called the particles.

Each particle moves with an adaptable velocity within the search space and
retains in memory the best position it has ever encountered. This position is also



Expeditive Extensions of Evolutionary Bayesian PNNs 33

shared with other particles in the swarm. In the global PSO variant, the best
position ever attained by all individuals of the swarm is communicated to every
particle at each iteration. On the other hand, in local PSO, best positions are
communicated only within strict neighborhoods of each particle.

Assume a d–dimensional search space, S ⊂ R
d, and a swarm consisting of N

particles. Let
Zi = (zi1, zi2, . . . , zid)� ∈ S,

be the i–th particle and

Vi = (vi1, vi2, . . . , vid)�, Bi = (bi1, bi2, . . . , bid)� ∈ S,

be its velocity and best position, respectively. Assume g to be the index of the
particle that attained the best previous position among all particles, and t be
the iteration counter. Then, the swarm is manipulated by the equations:

Vi(t + 1) = χ
[
Vi(t) + c1 r1

(
Bi(t)− Zi(t)

)
+ c2 r2

(
Bg(t)− Zi(t)

)]
, (3)

Zi(t + 1) = Zi(t) + Vi(t + 1), (4)

where i = 1, 2, . . . , N ; χ is a parameter called the constriction coefficient; c1 and
c2 are two positive constants called the cognitive and social parameter, respec-
tively; and r1, r2, are random vectors uniformly distributed within [0, 1]d [18].
All vector operations in Eqs. (3) and (4) are performed componentwise.

The best positions are then updated according to the equation:

Bi(t + 1) =
{

Zi(t + 1), if f (Zi(t + 1)) < f (Bi(t)) ,
Bi(t), otherwise.

The particles are bounded within the search space S, while the constriction
coefficient is derived analytically through the formula:

χ =
2κ

|2− ϕ−
√

ϕ2 − 4ϕ|
,

for ϕ > 4, where ϕ = c1 + c2 and κ = 1, based on the stability analysis due to
Clerc and Kennedy [18].

3 The Proposed Extended Model

EBPNN models were proposed as a new variant of PNNs that estimate the
spread parameters through Bayesian models. More specifically, a different diag-
onal matrix of spread parameters,

Σk = diag
(
σ2

1k, σ2
2k, . . . , σ2

pk

)
, k = 1, 2, . . . , K,

for each one of the K classes is used to increase model flexibility [10, 11].
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The centered data per class, received from the preprocessing phase with the
K–medoids algorithm as described in Section 2.1, are modeled by:

Xik
iid∼ Np(μk, Σk), i = 1, 2, . . . , Nk, k = 1, 2, . . . , K.

The prior distributions of the model parameters are defined as:

μjk ∼ N (0, ν2),
τjk ∼ G(α, β), j = 1, 2, . . . , p,

where τjk = σ−2
jk and α, β, ν > 0.

In EBPNNs, it is assumed that the class centers, Xik, are conditionally in-
dependent given μk and τjk. Also, μk and τjk are also considered independent,
with joint posterior distribution:

π(μjk, τjk|X·k,j) ∝ τ
Nk
2 +α−1

jk ×exp

{
−τjk

(∑Nk

i=1 (Xik,j − μjk)2

2
+ β

)
−

μ2
jk

2ν2

}
,

where Xik,j stands for the j–th component of the p–dimensional vector Xik.
Simulation from the posterior distribution of (μjk, τjk), for j = 1, 2, . . . , p,

k = 1, 2, . . . , K, requires the application of an indirect method, such as Gibbs
sampler, since direct simulation is not feasible. The Gibbs sampler [19] produces
a Markov chain by an iterative, recursive sampling from the conditional distribu-
tions that converges in distribution to the joint distribution. The full conditional
distributions are given as follows:

μjk|τjk, X·k,j ∼ N
(

τjk

∑Nk

i=1 Xik,j

τjkNk + 1
ν2

,
1

τjkNk + 1
ν2

)
, (5)

τjk|μjk, X·k,j ∼ G
(

Nk

2
+ α,

∑Nk

i=1 (Xik,j − μjk)2

2
+ β

)
. (6)

Starting from any point in the support of the joined distribution, we draw suc-
cessively from the conditional distributions of μjk and τjk, each in turn, using
the previously drawn value of the other parameter, and the obtained sequence
converges to the joint distribution.

Conjugated prior distributions were chosen in EBPNNs, such that closed
forms are available for the full conditional distributions. The choice of conjugated
prior distributions has minor importance, since any distribution can be used as
prior. In such cases, we can use a hybrid Gibbs sampler (Gibbs sampler em-
bedding a Metropolis Hastings step) or different Monte Carlo or Markov Chain
Monte Carlo simulation methods, such as Importance Sampling and Metropolis
Hastings [20].

Based on the aforementioned Bayesian model, EBPNNs estimate the spread
parameters of their kernels. Thus, instead of estimating p×K spread parameters,
only the values of α, β, and ν, need to be determined. In recent implementa-
tions [10, 11], an exhaustive search was carried out in the range [10−4, 10], using
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Table 1. Pseudocode of the sampling procedure and the determination of the prior
probabilities with PSO in EBPNNs

Create the clustered training set T c
tr from the original training set Ttr.

// Estimation of the spread parameters using the Gibbs sampler //

Do (k = 1, 2, . . . , K)
Do (j = 1, 2, . . . , p)

Select initial value for μjk.
Do (m = 1, 2, . . . , Gmax)

Draw from Eq. (6) a new τnew
jk , using μjk.

Draw from Eq. (5) a new μnew
jk , using τnew

jk .
Set μjk ← μnew

jk and τm
jk ← τnew

jk .
End Do

Compute mean value, τjk, of τm
jk, m = 1, 2, . . . , Gmax.

End Do

Set the spread matrix Σk of class k by using the relation τjk = σ−2
jk .

End Do

// Estimation of the prior probabilities by PSO //

Initialize a swarm of particles Zi, i = 1, 2, . . . , N , within the range [0, 1]K .
Initialize best positions, Bi, and velocities, Vi, i = 1, 2, . . . , N .
While (stopping condition not met)

Update swarm using Eqs. (3) and (4).
Constrain particles within [0, 1]K .
Evaluate particles based on the classification accuracy on Ttr.
Update best positions.

End While

Write the obtained spread matrices Σk, k = 1, 2, . . . , K, and prior weights.

variable step size, for the selection of α and β. Furthermore, the value of ν was
set arbitrarily to ν = 1 [10, 11].

In standard PNNs, the prior probabilities of Eq. (2) are either estimated from
the available data or set randomly. In contrast to this procedure, EBPNNs em-
ploy the PSO algorithm to determine the most promising values for the prior
probabilities with respect to classification accuracy. Thus, a swarm of weights
is randomly generated and probes the search space of weights to find the most
promising values. The underlying objective function utilized by PSO is the clas-
sification accuracy of the PNN over the whole training data set [11]. The pseu-
docode of the Gibbs sampling phase as well as the determination of the priors
with PSO, is presented in Table 1.

The proposed Extended Evolutionary Bayesian Probabilistic Neural Network
(EEBPNN) model extends the aforementioned EBPNN models, as follows:

(1). The Epanechnikov kernel, which is defined as:

fik(X) = max
{

0, 1− 1
2κ2 (X −Xik)� Σ−1

k (X −Xik)
}

, (7)
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where κ is the kernel’s parameter [21], is used instead of the typical Gaussian
kernels. This choice is based on the fact that the Epanechnikov kernel has
the smallest asymptotic mean integrated squared error (AMISE) and it is
considered as optimal kernel [22]. The expected gain is significantly faster
execution time, since there is no need to calculate the time–consuming
exponential functions included in the Gaussian kernel. The parameter κ
can be set arbitrarily by the user or, alternatively, determined by using the
PSO algorithm.

(2). The PSO algorithm is employed for the selection of the most appropriate
values of α and β in the Bayesian model. The constant, ν, is set to the
value 0.2, which is adequate to cover the range [−0.5, 0.5] of the data in the
considered problems.

The described EEBPNN model introduces several new features in different as-
pects of the standard PNN and EBPNN model. Generally, it is not necessary to
use all the new features concurrently in the same model. Thus, one can define
EBPNN models with Gaussian kernels, using PSO for determining the constants
of the prior distributions in the Bayesian model, as well as the prior probabilities.
Alternatively, Epanechnikov kernel can be used with the established EBPNN
and BPNN models, where Bayesian constants are determined through exhaus-
tive search. In the next section, we define several alternative models, and report
their performance on widely used classification tasks.

4 Experimental Settings and Results

We considered four widely used benchmark problems from the Proben1 bench-
mark data sets [23] of the UCI repository [24]. Specifically, we used the following
data sets:

1. Wisconsin Breast Cancer Database (WBCD): the aim is to predict whether
a breast tumor is benign or malignant [25]. There are 9 continuous attributes
based on cell descriptions gathered by microscopic examination and 699
instances.

2. Card Data Set: the aim is to predict the approval or non–approval of a credit
card to a customer [26]. There are 51 attributes (not explicitly reported for
confidential reasons) and the number of observations is 690.

3. The Pima Indians Diabetes Data Set: the aim is to predict the onset of
diabetes, therefore, there are two classes [27]. The input features are the
diastolic blood pressure; triceps skin fold thickness; plasma glucose concen-
tration in a glucose tolerance test; and diabetes pedigree function. These 8
inputs are all continuous without missing values and there are 768 instances.

4. Heart Disease Data Set: the aim is to predict whether at least one of the
four major vessels of the heart is reduced in diameter by more than 50%, so
there are two classes [28]. The 35 attributes of the 920 patients are age, sex,
smoking habits, subjective patient pain descriptions and results of various
medical examinations such as blood pressure and cardiogram.
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Table 2. Characteristics of the four benchmark data sets

Cancer Card Diabetes Heart
Number of Instances 699 690 768 920
Variables 9 51 8 35
Classes 2 2 2 2

The characteristics of the four data sets are summarized in Table 2. In our
experiments, the number of medoids extracted from each class was only the 5%
of the class size. This reduces the size of the pattern layer by a factor of 20,
compared to the standard PNN that utilizes the whole training data set. The
choice of 5% was based on numerous trials with different fractions of the class
size. Also, for the Gibbs sampler, a number of Gmax = 104 draws was used.

The following new models of the EEBPNN class were considered in our
experiments:

M1. Epan.BPNN: BPNN that uses Epanechnikov kernels with κ = 1, ex-
haustive search for the selection of the prior distributions’ constants of
the Bayesian model, and the prior probabilities are set explicitly based
on the fraction of each class in the data set.

M2. Epan.EBPNN: EBPNN that uses Epanechnikov kernels with κ = 1,
exhaustive search for the selection of the prior distributions’ constants
of the Bayesian model, and the prior probabilities are computed with
PSO.

M3. Gauss.MCPNN: EBPNN with Gaussian kernels, prior distributions’
constants of the Bayesian model estimated by PSO, and prior probabi-
lities are set explicitly based on the fraction of each class in the data
set.

M4. Gauss.PMCPNN: EBPNN with Gaussian kernels, prior distributions’
constants of the Bayesian model as well as the prior probabilities are
estimated by PSO.

M5. Epan.EEBPNN: EEBPNN with Epanechnikov kernels, where the prior
distributions’ constants of the Bayesian model, the prior probabilities
and Epanechnikov’s κ are all estimated by PSO.

Moreover, the following established PNN–based models were used for comparison
purposes:

M6. PNN: Standard PNN with exhaustive search for the selection of the
spread parameter σ.

M7. CL.PNN: Standard PNN that uses the clustered instead of the whole
training set.

M8. GGEE.PNN: A variant of the standard PNN, proposed by Gorunescu
et al. [29], which incorporates a Monte Carlo search technique.

M9. Hom.EPNN: Homoscedastic EPNN [9] that utilizes the whole training
data set for the construction of the PNN’s pattern layer.
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M10. Het.EPNN: Heteroscedastic EPNN [9] that utilizes the whole training
set.

M11. CL.Hom.EPNN: Same with the Hom.EPNN, where only the clustered
training set was used for PNN’s construction.

M12. CL.Het.EPNN: Same with the Het.EPNN, where only the clustered
training set was used.

M13. Bag.EPNN: Bagging EPNN that incorporates the bagging technique
for the prior weighting, clustered training set and generalized spread
parameters’ matrix [30].

M14. Bag.P.EPNN: Bagging EPNN with bagging, clustered training set,
generalized spread parameters’ matrix and prior probabilities estimation
by PSO.

M15. Gaus.BPNN: BPNN with Gaussian kernels and prior distributions’
constants of the Bayesian model are selected by an exhaustive search.

M16. Gaus.EBPNN: EBPNN with Gaussian kernels, prior distributions’
constants of the Bayesian model are selected by an exhaustive search,
and prior probabilities estimated by PSO.

Regarding PSO, we used the default parameter values, c1 = c2 = 2.05, and
χ = 0.729 [18]. The number of particles was set to 10, and a maximum number
of 50 generations was allowed for the detection of the prior probabilities. In
the Hom.EPNN (M9) model, the number of particles was set to 5, while in
the Het.EPNN (M10), Bag.EPNN (M13), and Bag.P.EPNN (M14) models, 10
particles were used and a maximum number of 100 iterations was allowed. For the
bagging EPNNs, 11 bootstrap samples were drawn from each clustered training
data set. Based on these samples, an ensemble of 11 EPNNs was constructed,
and the final classification was obtained by a majority voting procedure. In the
proposed EBPNN variants (M1, M2), a swarm of 10 particles was used for 50
iterations, while for the MCPNN and EEBPNN variants (M3–M5), 5 particles
were used for 30 iterations.

Every benchmark data set was applied 10 times using 10–fold cross–valida-
tion, where every time the folds were randomly selected. The mean, median,
standard deviation, minimum and maximum of the obtained classification ac-
curacies and CPU times were recorded for all models and they are reported in
Tables 3–6. Each table consists of two parts divided by a horizontal line. The
upper part contains all statistics for the five proposed models M1–M5, while the
lower part contains the statistics for the rest of the models. The best classifica-
tion performance for the proposed models, as well as for the rest of the models,
is boldfaced. Thus, there is a boldfaced line in each of the two parts of the table,
which corresponds to the best performing model of the corresponding part of
the table, with respect to its classification accuracy.

In Table 3, which corresponds to the Cancer data set, the M14 model, i.e.,
EPNN model with bagging, clustered training set, generalized spread parame-
ters’ matrix and prior probabilities estimation by PSO, exhibited the highest
classification accuracy of 97.17% and a CPU time of 90.01 seconds. On the
other hand, the most promising of the proposed models was M3, i.e., EBPNN
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Table 3. Test set classification accuracy percentages and CPU times for the Cancer
data set

Classification Accuracy (%) CPU time (sec.)
Model Mean Median St.D. Min Max Mean Median St.D. Min Max
M1 96.39 96.35 0.18 96.14 96.71 21.40 21.42 0.06 21.32 21.47
M2 96.53 96.56 0.22 96.14 96.85 24.39 24.42 0.07 24.28 24.48
M3 96.75 96.71 0.22 96.42 97.14 41.12 41.11 0.69 40.04 42.72

M4 96.75 96.71 0.17 96.42 97.00 65.04 65.65 2.91 57.23 67.78
M5 96.55 96.49 0.24 96.28 97.13 62.36 64.27 3.59 57.04 65.31
M6 95.79 95.85 0.25 95.27 96.14 42.09 42.42 0.66 40.66 42.69
M7 91.91 92.06 0.84 90.42 92.99 0.08 0.08 0.00 0.08 0.09
M8 96.39 96.42 0.20 95.99 96.71 1.52 1.61 0.17 1.22 1.65
M9 95.82 95.85 0.28 95.28 96.28 89.12 88.82 1.07 88.12 91.73
M10 95.32 95.21 0.57 94.42 96.14 171.78 171.75 1.07 170.21 174.04
M11 90.50 90.84 1.58 87.85 92.56 0.16 0.15 0.02 0.14 0.20
M12 87.89 87.78 1.74 85.27 90.56 0.32 0.33 0.06 0.24 0.43
M13 96.85 96.78 0.46 96.14 97.85 82.78 78.07 8.86 76.22 99.75
M14 97.17 97.14 0.16 96.86 97.43 90.01 89.86 0.92 88.97 92.12

M15 96.36 96.35 0.22 96.13 96.85 27.74 28.08 1.08 24.67 28.17
M16 96.51 96.49 0.14 96.28 96.71 31.62 32.02 1.33 27.84 32.16

Table 4. Test set classification accuracy percentages and CPU times for the Card data
set

Classification Accuracy (%) CPU time (sec.)
Model Mean Median St.D. Min Max Mean Median St.D. Min Max
M1 80.58 80.94 1.03 78.55 81.59 193.86 193.69 1.37 191.86 195.82
M2 82.83 83.04 0.89 81.45 84.06 203.71 203.47 1.42 201.77 205.95
M3 84.84 84.57 0.76 84.06 86.23 223.64 221.09 20.04 199.17 262.71
M4 84.64 84.64 0.66 83.77 85.66 350.22 347.19 45.94 268.26 408.51
M5 85.90 85.87 0.57 84.78 86.96 354.45 351.22 34.93 310.75 399.69

M6 82.10 81.96 0.76 80.87 83.48 182.01 186.37 7.88 169.82 187.93
M7 80.49 80.58 0.66 79.13 81.45 0.23 0.23 0.00 0.22 0.24
M8 84.31 84.28 0.63 83.48 85.51 5.46 5.45 0.06 5.38 5.53
M9 85.35 85.22 0.38 84.93 86.09 266.10 274.39 74.56 168.72 342.27
M10 87.67 87.76 0.51 86.96 88.55 521.60 510.24 142.74 327.08 671.83

M11 82.02 81.81 1.15 80.73 84.49 0.49 0.47 0.06 0.46 0.66
M12 85.20 85.36 0.97 83.34 86.52 0.66 0.70 0.14 0.42 0.86
M13 86.64 86.67 0.51 85.80 87.39 309.85 309.36 1.88 307.58 314.33
M14 86.83 86.81 0.34 86.38 87.39 309.73 309.84 2.62 305.26 314.95
M15 84.93 85.00 0.25 84.49 85.22 215.39 214.92 1.24 214.14 217.49
M16 86.21 86.02 0.54 85.66 87.54 229.49 228.98 1.37 228.09 231.70
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Table 5. Test set classification accuracy percentages and CPU times for the Diabetes
data set

Classification Accuracy (%) CPU time (sec.)
Model Mean Median St.D. Min Max Mean Median St.D. Min Max
M1 73.90 73.93 1.16 71.89 75.91 25.18 25.38 0.64 23.37 25.44
M2 71.68 71.79 1.08 69.92 73.55 28.61 28.86 0.81 26.31 28.93
M3 66.79 66.72 0.56 66.05 67.93 37.82 37.87 0.76 36.59 39.19
M4 73.88 73.64 0.53 73.35 74.49 49.92 49.52 1.18 48.80 51.59
M5 74.64 74.47 1.18 72.80 76.69 56.29 56.53 1.42 54.15 58.18

M6 65.08 65.08 0.05 64.99 65.15 49.58 49.64 0.38 49.06 50.09
M7 65.08 65.08 0.05 64.99 65.15 0.10 0.10 0.00 0.10 0.11
M8 69.43 69.24 0.68 68.53 70.38 1.87 1.87 0.03 1.83 1.90
M9 67.67 67.58 0.88 66.03 68.80 101.17 101.13 0.48 100.40 102.01
M10 69.37 69.46 0.80 67.73 70.54 195.27 195.66 0.92 193.82 196.62
M11 65.35 65.14 0.48 64.99 66.35 0.18 0.18 0.00 0.17 0.18
M12 69.30 69.18 1.59 67.08 72.36 0.36 0.36 0.01 0.35 0.38
M13 71.00 71.16 1.02 68.90 72.09 106.42 106.53 0.92 104.25 107.73
M14 71.22 71.39 1.00 69.75 72.54 106.24 106.26 0.81 105.31 108.06
M15 74.21 74.35 0.93 72.43 75.91 25.18 25.63 1.09 22.48 25.79

M16 72.93 73.26 1.50 69.92 75.06 29.62 30.27 1.51 25.94 30.43

Table 6. Test set classification accuracy percentages and CPU times for the Heart
data set

Classification Accuracy (%) CPU time (sec.)
Model Mean Median St.D. Min Max Mean Median St.D. Min Max
M1 72.26 72.12 0.48 71.52 72.94 88.26 88.17 0.47 87.52 89.27
M2 73.32 73.31 0.48 72.72 74.02 104.54 104.28 0.72 103.55 106.12
M3 82.11 82.17 0.66 80.54 83.04 158.79 152.13 14.25 145.29 182.52

M4 81.82 81.90 1.06 79.78 83.37 160.80 163.87 9.40 147.96 174.22
M5 81.82 81.90 1.06 79.78 83.37 151.42 150.62 8.70 143.03 173.56
M6 79.23 79.13 0.48 78.59 80.00 207.99 223.48 45.27 125.62 241.32
M7 79.84 79.78 0.71 78.48 80.98 0.32 0.32 0.02 0.30 0.35
M8 80.68 80.65 0.52 79.89 81.41 6.47 6.94 0.92 4.95 7.18
M9 81.50 81.52 0.27 80.87 81.74 223.28 224.35 4.28 215.15 228.97
M10 82.60 82.45 0.40 82.07 83.26 438.10 440.29 6.82 422.45 449.24

M11 79.96 79.95 0.56 79.24 81.09 0.67 0.63 0.08 0.61 0.83
M12 77.62 77.66 1.16 75.98 79.35 1.37 1.31 0.16 1.19 1.70
M13 82.28 82.34 0.62 81.20 83.15 394.49 392.36 5.93 387.13 404.55
M14 82.35 82.50 1.05 80.43 84.13 393.22 391.47 4.95 388.02 401.03
M15 80.46 80.43 0.69 79.13 81.52 88.55 88.54 0.38 87.92 89.03
M16 81.60 81.68 0.65 80.44 82.61 106.71 106.79 0.56 105.79 107.53
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Table 7. The gain and loss percentages for classification accuracy and CPU between
the best performing of the proposed and the rest of the models, for each benchmark
problem. Negative values denote loss instead of gain.

Best proposed Best of the Gain in classifi- Gain in
model rest models cation accuracy CPU time

Cancer M3 M14 −0.4% 54.3%
Card M5 M10 −2.1% 32.1%
Diabetes M5 M15 0.5% −55.2%
Heart M3 M10 −0.5% 63.7%

with Gaussian kernels, prior distributions’ constants of the Bayesian model are
selected by PSO, and prior probabilities that are set explicitly based on the frac-
tion of each class in the data set, with a classification accuracy of 96.75% and
CPU time equal to 41.12 seconds. Thus, the proposed model provides a satis-
factory performance that is almost 0.4% worst with respect to its classification
accuracy than the best performing model, but at a 54.3% gain in CPU time.

In the results for the Card data set, reported in Table 4, the M10 model,
i.e., Heteroscedastic EPNN trained with the whole training set, had the best
performance, 87.67%, among all models, with a CPU time of 521.60 seconds.
The most promising from the proposed models, was M5, i.e., EEBPNN with
Epanechnikov kernels, where the prior distributions’ constants of the Bayesian
model, prior probabilities and Epanechnikov’s κ are all estimated by PSO. M5
had a classification accuracy of 85.90% at the cost of a CPU time equal to 354.45
seconds. Thus, M5 had a competitive performance that is about 2% worst than
the best model, although requiring 32% less CPU time.

In the Diabetes data set, reported in Table 5, the proposed M5 model had
the best performance, 74.64%, among all models. However, this came with an
increased CPU time of 56.29 seconds, compared to M15, which was the best
performing among the rest of the models, with classification accuracy of 74.21%
and CPU time 25.18 seconds. M15 consists of a BPNN with Gaussian kernels and
prior distributions’ parameters of the Bayesian model estimated by an exhaustive
search.

In the Heart data set, reported in Table 6, M10 was again the best performing
model as for the Card data set, with a classification accuracy of 82.60% and CPU
time equal to 438.10 seconds. On the other hand, M3 was the best performing
from the proposed models, with an accuracy of 82, 11%, which is 0.5% worse
than M10, but at a computational cost of 158.79 seconds, i.e., it was 63.7%
faster than M10.

In Table 7, we summarize all the gain and loss in classification accuracy and
CPU time between the the best performing of the proposed and the rest of the
models, for each benchmark problem, with negative values denote loss instead of
gain. As we observe, the proposed models M3 and M5 have the best performance
among the five proposed models M1–M5. They were able to achieve highly com-
petitive classification accuracies but at significantly lower computational times,
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rendering them promising variants that can be useful especially in time–critical
applications.

5 Conclusions

We proposed a class of Extended EBPNN models that incorporate several new
features compared to the standard EBPNNs. These features include the use of
the Epanechnikov kernel instead of the standard Gaussian kernels, as well as the
selection of the prior distributions’ constants of the Bayesian model by using
the PSO algorithm. Five models are proposed that incorporate alternatively the
aforementioned features, and four widely used benchmark classification problems
from the UCI repository are employed to investigate their performance against
several established PNN–based classification models.

The obtained results show that the proposed models can be competitive to
the best performing of the rest models, while achieving significantly faster com-
putation times in most cases. Thus, the proposed model can be considered as
a promising alternative in time–critical PNN applications, although further re-
search is needed to fully reveal the potential of EEBPNNs in such applications.
However, in one of the test problems, the proposed model had the best perfor-
mance overall, but at a higher computational cost.
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Abstract. This work introduces new bounds on the clique number of
graphs derived from a result due to Sós and Straus, which generalizes the
Motzkin-Straus Theorem to a specific class of hypergraphs. In particular,
we generalize and improve the spectral bounds introduced by Wilf in 1967
and 1986 establishing an interesting link between the clique number and
the emerging spectral hypergraph theory field. In order to compute the
bounds we face the problem of extracting the leading H-eigenpair of
supersymmetric tensors, which is still uncovered in the literature. To
this end, we provide two approaches to serve the purpose. Finally, we
present some preliminary experimental results.

1 Introduction

Let G = (V, E) be a (undirected) graph, where V = {1, . . . , n} is the vertex set
and E ⊆

(
V
2

)
is the edge set, with

(
V
k

)
denoting the set of all k-element subsets of

V . A clique of G is a subset of mutually adjacent vertices in V . A clique is called
maximal if it is not contained in any other clique. A clique is called maximum
if it has maximum cardinality. The maximum size of a clique in G is called the
clique number of G and is denoted by ω(G).

The problem of finding the clique number of a graph is one of the most famous
NP-complete problems, and turns out to be even intractable to approximate [1].
An interesting field of research consists in trying to bound the clique number of
a graph. In the literature we find several bounds on the clique number, but, in
this paper, our attention will be on bounds that employ spectral graph theory,
since our new bounds are obtained using spectral hypergraph theory. However,
it is worth noting that there is another very promising class of bounds, which
will not be covered in this work, based on semidefinite programming [2,3].

In 1967, Wilf [4] used for the first time spectral graph theory for computing
bounds on the clique number of graphs. His result was inspired by a theorem
due to Motzkin and Straus [5], which establishes a link between the problem
of finding the clique number of a graph G and the problem of optimizing the
Lagrangian of G over the simplex Δ, where the Lagrangian of a graph G = (V, E)
is the function LG : �n → � defined as

LG(x) =
∑

{i,j}∈E

xixj ,

T. Stützle (Ed.): LION 3, LNCS 5851, pp. 45–58, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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and the standard simplex Δ is the set of nonnegative n-dimensional real vectors
that sum up to 1, i.e., Δ = {x ∈ �n

+ :
∑n

i=1 xi = 1}.
Theorem 1 (Motzkin-Straus). Let G be a graph with clique number ω(G),
and x∗ a maximizer of LG over Δ then

LG(x∗) =
1
2

[
1− 1

ω(G)

]
.

Assuming S a maximum clique of G, Motzkin and Straus additionally proved
that the characteristic vector xS of S defined as

xS
i =

{
1
|S| i ∈ S

0 i /∈ S

is a global maximizer of LG over Δ.
Before introducing the bounds of Wilf, we introduce some notions from spec-

tral graph theory, namely, a discipline that studies the properties of graphs in
relationship to the eigenvalues and eigenvectors of its adjacency matrix or Lapla-
cian matrix. The spectral radius ρ(G) of a graph G is the largest eigenvalue of the
adjacency matrix of G. An eigenvector of unit length having ρ(G) as eigenvalue
is called Perron eigenvector of G. The Perron eigenvector is always nonnegative
and it may not be unique unless the multiplicity of the largest eigenvalue is ex-
actly 1. By definition, the spectral radius ρ and an associated Perron eigenvector
xP of a graph G satisfy the eigenvalue equation

AGxP = ρxP ,

which can be equivalently expressed in terms of the graph Lagrangian LG as

∇LG(xP ) = ρxP ,

where ∇ is the standard gradient operator. Since G is undirected and hence, AG

is symmetric, a useful variational characterization of ρ and xP is given by the
following constrained program,

ρ = max
x∈S2

xT AGx = 2 max
x∈S2

LG(x) , (1)

where Sk = {x ∈ �n : ‖x‖k
k = 1}. Note that the eigenvectors of AG are the crit-

ical points of this maximization problem. A further alternative characterization
of the spectral radius and Perron eigenvector, that will be useful in the sequel,
consists in maximizing the Rayleigh quotient, i.e.,

ρ = max
x∈�n

xT AGx
xT x

= 2 max
x∈�n

LG(x)
xT x

. (2)

Note that every eigenvector associated to ρ is a maximizer in (2), whereas in (1)
only a Perron eigenvector is a global maximizer.

As mentioned, in 1967 Wilf [4] obtained a spectral upper bound to the clique
number exploiting both the Motzkin-Straus theorem and (2).
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Theorem 2. Let G be an undirected graph with clique number ω(G) and spectral
radius ρ. Then

ω(G) ≤ ρ + 1 .

Proof. Let xω be the characteristic vector of a maximum clique of G, then
xT

ωxω = 1/ω(G) and by the Motzkin-Straus theorem xT
ωAGxω = 1 − 1/ω(G).

By (2) we have that

xT
ωAGxω

xT
ωxω

=
1− 1

ω(G)
1

ω(G)

= ω(G)− 1 ≤ ρ ,

from which the property derives.

Later in 1986, Wilf [6] introduced also a lower bound again combining the
Motzkin-Straus theorem and (2), but this time also the Perron eigenvector is
involved in the result.

Theorem 3. Let G be an undirected graph with spectral radius ρ and Perron
eigenvector xP . Then

ω(G) ≥ s2
P

s2
P − ρ

,

where sP = ‖xP ‖1.

Proof. Let y = xP /sP . Clearly y ∈ Δ. By the Motzkin-Straus theorem we have
that

yT AGy =
xT

P AGxP

s2
P

=
ρ

s2
P

≤ 1− 1
ω(G)

,

from which the result derives.

For a review of further spectral bounds we refer to [7]. We also refer to [8] for
bounds that employ spectral graph theory based on the Laplacian of the graph.

In this paper, we introduce new classes of upper and lower bounds on the
clique number of graphs, generalizing the Wilf’s ones. More precisely, we achieve
our goal combining a reformulation of a theorem due to Sós and Straus in terms
of hypregraphs, and the emerging spectral hypergraph theory field. Further, we
tackle the computational aspects of our new bounds and, finally, we present some
preliminary experiments on random graphs.

2 A Reformulation of the Sós and Straus Theorem

In this section, we provide a reformulation of a generalization of the Motzkin-
Straus theorem due to Sós and Straus [9], by explicitly establishing a connection
to hypergraph theory, which will form the basis of our new bounds.To this end
we start introducing hypergraphs.
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A k-uniform hypergraph, or simply a k-graph, is a pair G = (V, E), where
V = {1, . . . , n} is a finite set of vertices and E ⊆

(
V
k

)
is a set of k-subsets of

V , each of which is called a hyperedge. 2-graphs are typically called graphs. The
complement of a k-graph G is given by Ḡ = (V, Ē) where Ē =

(
V
k

)
\E. A subset

of vertices C ⊆ V is called a hyperclique if
(
C
k

)
⊆ E. To improve readability, in

the sequel we will drop the prefix “hyper” when referring to edges and cliques of
a k-graph. A clique is said to be maximal if it is not contained in any other clique,
while it is called maximum if it has maximum cardinality. The clique number of a
k-graph G, denoted by ω(G), is defined as the cardinality of a maximum clique.
The Lagrangian of a k-graph G with n vertices is the following homogeneous
multilinear polynomial in n variables:

LG(x) =
∑
e∈E

∏
i∈e

xi . (3)

Given an undirected graph G and a positive integer k not exceeding the clique
number ω(G), we can build a hypergraph H , that we call the k-clique (k + 1)-
graph of G having k-cliques of G as vertices and (k+1)-cliques of G as edges. Note
that each (k + 1)-clique of G has exactly (k + 1) different k-cliques as subsets.
By shrinking each k-clique of G into a vertex in H , each (k + 1)-clique of G
can be transformed into an edge of H containing exactly k + 1 vertices. Before
addressing a more formal definition we provide an example. Figure 1 shows an
undirected graph G on the left and the related 3-clique 4-graph H on the right.
Each vertex in H is associated to the 3-clique of G reported in red over it. For
each 4-clique C in G, there exists an edge in H containing the vertices associated
to 3-subsets of C. For example, the clique {1, 2, 3, 4} in G is associated to the
edge {1, 2, 3, 4} in H , and the vertices 1, 2, 3, 4 of H are associated to the 3-cliques
{1, 2, 3}, {2, 3, 4}, {1, 2, 4}, {1, 3, 4} of G respectively. It is worth noting that the
construction of the k-clique (k +1)-graph of a graph G depends on how we label
the vertices in H , i.e., an enumeration of the set of k-cliques of G. Therefore, we
provide also a more formal definition. Let G be an undirected graph G, Ck(G)
the set of all k-cliques of G, and let ΦG

k be the set of possible enumerations of
Ck(G), i.e., one-to-one mappings from {1, . . . , |Ck(G)|} to Ck(G). The k-clique
(k + 1)-graph of G with respect to φ ∈ ΦG

k is the (k + 1)-graph H = (V, E),

where V = {1, . . . , |Ck(G)|}, and E =
{
e ∈

(
V

k+1

)
:
⋃

i∈e φ(i) ∈ Ck+1(G)
}

.
Let G be an undirected graph with clique number ω and let H be its k-clique

(k + 1)-graph with respect to an enumeration φ ∈ ΦG
k . Sós and Straus provided

a characterization of the clique number of a graph G in terms of the maximum
of the Lagrangian of H over Δk, where

Δk = {x ∈ �n
+ : ‖x‖k

k = 1} ,

leading to the following result.

Theorem 4. Let G be an undirected graph with clique number ω and let H be
its k-clique (k + 1)-graph with respect to any φ ∈ ΦG

k . The Lagrangian of H

attains its maximum over Δk at
(

ω
k+1

)/(
ω
k

)(k+1)/k
.
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Fig. 1. Example of a 3-clique 4-graph (right) of an undirected graph (left)

Moreover, a subset of vertices C is a maximum clique of G if and only if the
vector x ∈ Δk defined as

xi =

{(
ω
k

)−1/k if φ(i) ⊂ C

0 otherwise ,
(4)

is a global maximizer of LH over Δk.

Proof. See [9].

If we consider k = 1, then Theorem 4 is the Motzkin-Straus theorem.
As the Motzkin-Straus theorem inspired new bounds on the clique number

of graphs, Theorem 4 prompted our new bounds by combining it with spectral
hypergraph theory.

3 Spectral Hypergraph Theory

Opposed to spectral graph theory, which has a long history, spectral hypergraph
theory is a novel field roughed out by Drineas and Lim [10]. Clearly, spectral
hypergraph theory includes spectral graph theory as a special case, but this
generality introduces some ambiguities. For example, the adjacency matrix for
graphs becomes an adjacency tensor for hypergraphs, for which there are several
possible notions of eigenvalues and eigenvectors that can be taken into account
for studying the properties of the hypergraph [10,11].

For our purposes, we will employ spectral hypergraph theory in a transversal
way, as we will use the spectral properties of the adjacency tensor of the k-clique
(k + 1)-graph of a graph G to study properties of G. This means that we do not
want to study the properties of the hypergraph by itself, but those of the graph
it is constructed from.
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A real kth-order n-dimensional tensor A consists of nk real entries, Ai1,...,ik
∈

�, where ij = 1, . . . , n for j = 1, . . . , k. The tensor A is called supersymmetric if
its entries are invariant under any permutation of their indices.

Given a n-dimensional vector x, we denote by Xk the kth-order n-dimensional
rank-one tensor with entries xi1 · · ·xik

, and by xk the n-dimensional vector with
entries xk

i . Finally, if A is a kth-order n-dimensional tensor and x ∈ �
n, then

AXk is the real scalar given by

AXk =
n∑

i1,...,ik=1

ai1,...,ik
xi1 · · ·xik

,

and AXk−1 is the n-dimensional vector, whose ith entry is given by

(
AXk−1)

i
=

n∑
i2,...,ik=1

ai,i2,...,ik
xi2 · · ·xik

.

The adjacency tensor of a k-graph H = (V, E) with n vertices is the kth-order n-
dimensional tensor AH , whose entry indexed by (i1, . . . , ik) is 1, if {i1, . . . , ik} ∈
E, 0 otherwise. Clearly, AH is supersymmetric.

As mentioned before, there are several notions of eigenvalue/eigenvector for
tensors, but only one fits our needs. In 2005, Lim [10] and Qi [11] independently
introduced the same notion of eigenvalue, which they called �p-eigenvalue and
H-eigenvalue respectively. Given a kth-order n-dimensional tensor A, a real value
λ and a vector x ∈ �n are an eigenvalue and an eigenvector of A respectively, if
they satisfy the following equation

AXk−1 = λxk−1 . (5)

The eigenvalues derived from (5) reflect many properties of the eigenvalues of
matrices [11]. In fact, Drineas and Lim [10] successfully generalize some results
from spectral graph theory to hypergraphs employing this notion of eigenvalue.

The spectral radius ρ(H) of a k-graph H is the largest eigenvalue of the adja-
cency tensor of H . An eigenvector of unit k-norm having ρ(H) as eigenvalue is
called Perron eigenvector of H . As it happens for graphs, the Perron eigenvector
may not be unique unless the multiplicity of the largest eigenvalue is 1. In the
sequel, a leading eigenpair of a k-graph will be a pair comoposed by the spectral
radius and a Perron eigenvector.

The eigenvalue equation for hypergraphs can be rewritten in terms of the
Lagrangian as follows,

(k − 1)!∇LH(x) = λxk−1 , (6)

and there is a variational characterization of the spectral radius and a related
Perron eigenvector of H derived from the following constrained program,

ρ(H) = max
x∈Sk

AHXk = k! max
x∈Sk

LH(x) , (7)



New Bounds on the Clique Number of Graphs 51

which has the Perron eigenvector as maximizer. Note that all the eigenvalues of
AH are the critical points of (7).

By a generalization of the Perron-Frobenius theory to nonnegative tensors
[12], it turns out that a Perron eigenvector of H is always nonnegative. This
allows us to add a non negativity constraint to (7) without affecting the solution,
i.e. we can replace Sk with Δk, yielding

ρ(H) = max
x∈Δk

AHXk = k! max
x∈Δk

LH(x) , (8)

Alternatively, a further characterization is obtained by maximizing a generaliza-
tion of the Rayleigh quotient, namely

ρ(H) = max
x∈�n

AHXk

‖x‖k
k

= k! max
x∈�n

LH(x)
‖x‖k

k

, (9)

where all eigenvectors associated to ρ are global maximizers.

4 New Bounds Based on Spectral Hypergraph Theory

In this section, we provide new classes of upper and lower bounds that generalize
those introduced by Wilf [4,6] for graphs. The basic idea is to combine the Sós
and Straus theorem with spectral hypergraph theory.

Theorem 5 (New Upper Bound). Let G be an undirected graph with clique
number ω(G) and H a k-clique (k + 1)-graph of G with spectral radius ρ(H).
Then

ω(G) ≤ ρ(H)
k!

+ k .

Proof. Let C be a maximum clique of G and xω the vector defined as (4). We
write ω for ω(G). By (9) and Theorem 4,

(k + 1)!
LH(xω)
‖xω‖k+1

k+1

= (k + 1)!

(
ω

k+1

)(
ω
k

)−(k+1)/k

(
ω
k

)−1/k
=

= (k + 1)!

(
ω

k+1

)
(
ω
k

) = k!(ω − k) ≤ ρ(H) ,

from which the result derives.

Note that for each choice of 0 < k ≤ ω(G), we have a new bound. In particular,
by taking k = 1, we have H = G obtaining Wilf’s upper bound (Theorem 2).
Note also that if we take k = ω(G), then H is a hypergraph consisting only of
vertices (one per maximum clique of G) and no edges. In this case, the bound
gives trivially ω(G).
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Theorem 6 (New Lower Bound). Let G be an undirected graph with clique
number ω(G) and H a k-clique (k +1)-graph of G with spectral radius ρ(H) and
Perron eigenvector xP . Then

ω(G) ≥ ψ−1
k

(
ρ(H)

k!‖xP ‖k+1
k

)
ψk(x) = (x− k)

(
x

k

)− 1
k

.

Before proving this result we prove that ψk(x) is monotonically increasing for
x ≥ k.

Lemma 1. ψk(x) is monotonically increasing for x ≥ k.

Proof. For all x ≥ k,

ψ′
k(x) =

(
x

k

)− 1
k

⎡
⎣1− 1

k

k−1∑
j=0

x− k

x− j

⎤
⎦ ,

which is positive for x ≥ k. Hence, ψk(x) is monotonically increasing for x ≥ k.

Proof (Theorem 6). Let y = xP /‖xP ‖k. Clearly, y ∈ Δk. We write ω for ω(G).
By (7) and Theorem 4,

LH(y) =
LH(xP )
‖xP ‖k+1

k

=
ρ(H)

(k + 1)!‖xP ‖k+1
k

≤

≤
(

ω

k + 1

)/(ω

k

) k+1
k

=
ω − k

k + 1

(
ω

k

)− 1
k

=
ψk(ω)
k + 1

.

Since by Lemma 1, ψk(x) is monotonically increasing and ω ≥ k, the result
follows.

Theorem 6 introduces a class of lower bounds, one for each choice of 0 < k ≤
ω(G). Again, by taking k = 1, we obtain the Wilf’s lower bound (Theorem 3).
Moreover, by taking k = ω(G), the bound trivially returns ω(G).

By Lemma 1, ψk(x) is invertible for x ≥ k, however, it is difficult, and maybe
not possible, to find a general analytical inverse. It is straightforward to find the
inverse for k = 1, 2 analytically. In fact we obtain,

ψ−1
1 (y) =

1
1− y

ψ−1
2 (y) =

8− y2 + y
√

y2 + 16
2(2− y2)

,

but, in general, the best way for computing the inverse is numerically through
some kind of section search, like the dicotomic search.

The computational complexity of our bounds is dominated by the construction
of the k-clique (k + 1)-graph. This, in fact, increases exponentially with the
parameter k, that can be chosen between 1 and the clique number. This fact



New Bounds on the Clique Number of Graphs 53

0

5

10

15

20

25

30

35

40

45

2 3 4 5 6 7 8

ω
(G

)

k

Upper Bound
Lower Bound

Fig. 2. Application of our classes of upper and lower bounds to a random graph [n =
100; δ = 0.4]. We conjecture that, by increasing k, the upper bound is monotonically
non increasing and our lower bound is monotonically non decreasing.

intuitively suggests that also the tightness of the bound should increase with k,
as we require more computational effort for its calculation. Although we have
no prove by now, we conjecture that, by increasing k, our new upper and lower
bounds are monotonically non increasing and non decreasing respectively. This
fact is also supported by all the experiments that we conducted. As an example
of this monotonicity, Figure 2 plots our bounds on the clique number of a random
graph [n = 100; δ = 0.4] at varying values of k.

Although our new bounds are intuitively simple, their computation is not
obvious, in particular we refer to the extraction of the Perron vector and spectral
radius of a k-graph. Therefore the next section is devoted to the computational
aspects of our new spectral bounds.

5 Computing the Bounds

As mentioned, the computational complexity of our approach is dominated by
the construction of the k-clique (k + 1)-graph, which increases exponentially
with k. Despite the complexity, the construction of the hypergraph is a fairly
simple task. Indeed, the computation of the bounds involves more interesting
problems such as the computation of the spectral radius and Perron eigenvector
of a k-graph.

We have seen that a useful characterization of the leading eigenpair of a
k-graph derives from the maximization in (7), whose critical points are those
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satisfying Equation (6). From this, we can derive a primal method for the opti-
mization of (7) consisting in the following update rules:

y(t+1) = ∇LH

(
x(t)

) 1
k−1

x(t+1) =
y(t+1)

‖y(t+1)‖k
ρ(t+1) = k!LH

(
x(t+1)

)
, (10)

where x(0) ∈ Δk and x(0) > 0 and where we remind the notation xk, for rep-
resenting a vector with entries xk

i . Note that the fixed points of this iterative
process satisfy equation (6). Hence, the solution at convergence is a nonnegative
eigenvector with the related eigenvalue. This approach can be straightforwardly
extended to the extraction of the leading eigenpair of any nonnegative tensor,
yielding a Generalization to nonnegative tensors of the known Power Method,
which is a method for extracting the leading eigenpair of matrices (case k = 2).
Thereby, we call GPM the method governed by (10). Although, we achieved this
method autonomously, it was already proposed in [12,13], in a more general set-
ting, for optimizing nonnegative generalized polynomials under �p constraints.
There is still no prove of convergence for this approach, except for the case
k = 2, however, supported by the experimental results, we conjecture that it
always converges.

Another interesting method (called GBE) that we developed for extracting
the leading eigenpair of k-graphs, and more in general of nonnegative tensors,
derives from a Generalization of the Baum-Eagon Theorem [14] to nonnegative
generalized homogeneous polynomials.

A generalized polynomial is a function P : �n → � of the form:

P (x) =
∑
α

cα

n∏
i=1

xαi

i

where α ranges over a finite set of �n
+. By definition, the degree of P is h =

maxα hα, where hα =
∑

i αi. If hα = h for all α, we call P a homogeneous
generalized polynomial of degree h. We say that P is nonnegative if cα ≥ 0 for
all α.

Theorem 7. Let P (x) be a nonnegative generalized homogeneous polynomial in
the variables xi, and let x ∈ Δ. Define the mapping z =M(x) as follows:

zi = xi∂iP (x)
/ n∑

j=1

xj∂jP (x) , i = 1, . . . , n .

Then P (M(x)) > P (x), unless M(x) = x. In other words, M is a growth
transformation for the polynomial P .

Proof. See [15].

In order to apply this result, we cast (8) into an equivalent optimization prob-
lem, which satisfies the conditions of Theorem 7, obtaining in this way a new
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optimization approach. We define the diffeomorphism ϕk : �n
+ → �

n
+ by putting

ϕk(x) = x
1
k . By setting y = ϕ−1

k (x), we have that

ρ(H) = k! max
x∈Δk

LH(x) = k! max
y∈Δ

(LH ◦ ϕk) (y) . (11)
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Fig. 3. Comparison of GPM and GBE on the extraction of (a) the spectral radius and
(b) the Perron eigenvector, of a random graph [n = 100; δ = 0.9]
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Here LH ◦ ϕk is a generalized nonnegative homogeneous polynomial of degree 1
and by applying Theorem 7, we obtain the following update rules:

x
(t+1)
i =

[
x

(t)
i ∂iLH(x(t))∑

j x
(t)
j ∂jLH(x(t))

] 1
k

ρ(t+1) = k!LH

(
x(t+1)

)
, (12)

where x(0) ∈ Δk and x(0) > 0.
It is worth noting that this idea can be extended to compute the leading

eigenpair of any nonnegative tensor. In particular, it provides us with a new
approach for computing the leading eigenpair of nonnegative matrices, which is
different to the standard known techniques.

Differently from GPM, it is not obvious that the fixed points of GBE are only
those satisfying equation (7). Experimentally, this was always the case and we
aim at proving this result in future developments of this work.

The nonnegative eigenvector of AH that we obtain from one of the two pro-
posed approaches, may unfortunately not be a Perron eigenvector, because our
methods are basically local optimizers. However, we can easily overcome this
problem, yielding a global solution. In fact, by employing a generalization of the
Perron-Frobenious theory to generalized polynomials [12], it can be shown [15]
that every nonnegative eigenvector has the positive components indexed by the
vertices of a connected component of the hypergraph (or more than one in some
special cases). This suggests a simple approach to achieve a global solution. We
first find the connected components of the hypergraph H . Then we apply GPE
or GBE on each component and keep the best solution. In this way we are able
to extract the spectral radius and a Perron eigenvector of H .

There is experimental evidence that GPM converges faster than GBE. As an
example, we calculated through GPM and GBE the spectral radius and a Perron
eigenvector of a random graph with n = 100 vertices and density δ = 0.9. In
Figure 3(a) we plot the evolution of 2LG(x(t)), which has ρ(G) as limit point.
It is evident that GPM with just one step reaches a good approximation of the
spectral radius, while GBE manifests a smoother curve. Figure 3(b) focuses on
the approximation of the Perron eigenvector and plots the distance between x(t)

and the Perron eigenvector, i.e., ‖x(t) − xP ‖. Here, we see that GPM needs 2
steps for a good approximation of the Perron eigenvector, whereas GBE needs
about 9 steps. Therefore for the experiments we will use GPM for computing
the leading eigenpair of the k-cliques (k + 1)-graphs.

6 Experiments

In this section, we evaluate only the performances of our 3th-order upper and
lower bounds, which have a complexity O(γn3), where γ is the number of itera-
tions of GPM and can be assumed constant. Clearly, provided that our conjecture
holds, by increasing k, we can only improve the results obtained with k = 3, but
also the computational effort will increase.
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Table 1. Experiments on random graphs. The columns n, δ and ω are the order,
density and average clique number of the random graphs, respectively. The results,
expecting the last row, are expressed in terms of relative error.

Random graphs Upper bound errors Lower bound errors
n δ ω Wilf Amin Order 3 Wilf Budin. Order 3

100 0.05 3.12 1.25 10.58 0.13 0.648 0.641 0.119
0.10 3.96 1.99 9.26 0.15 0.714 0.707 0.363
0.20 5.00 3.33 7.84 0.59 0.745 0.738 0.512
0.30 6.13 4.17 6.52 0.91 0.761 0.753 0.616
0.40 7.51 4.49 5.24 1.34 0.775 0.765 0.664
0.50 9.11 4.58 4.19 2.00 0.779 0.768 0.685
0.60 11.51 4.28 3.16 2.29 0.782 0.769 0.711
0.70 14.55 3.85 2.33 2.52 0.772 0.756 0.714
0.80 19.99 3.03 1.45 2.30 0.754 0.734 0.708
0.90 30.69 1.94 0.61 1.70 0.695 0.662 0.646
0.95 43.50 1.19 0.16 1.08 0.606 0.562 0.587

200 0.10 4.17 4.25 19.97 0.29 0.728 0.725 0.463
0.50 11.00 8.19 7.71 3.62 0.817 0.811 0.746
0.90 ? 180.10 99.08 164.19 9.646 10.330 10.851

We compare our 3rd-order bounds against other state-of-the-art spectral
bounds, which were the best performing approaches reviewed in the work of
Budinich [7]. For the upper bound, we compare against Wilf’s upper bound [4]
(which is our bound with k = 2), that will never perform better than our 3rd or-
der bound according to our conjecture, and we compare also against the Amin’s
bound [16]. For the lower bound, we compare against Wilf’s lower bound [6] and
Budinich’s lower bound [7].

Table 1 reports the obtained results. The columns n, δ and ω are the order,
density and average clique number of the random graphs, respectively. The re-
sults, expecting the last row, are expressed in terms of relative error, i.e. if ω̄ is
the value of the bound then the relative error for the upper and lower bounds
are (ω̄ − ω)/ω and (ω − ω̄)/ω, respectively. In the last row, where the average
clique number could not be computed, we reported the absolute value of the
bounds. It is clear that, as expected, our 3th-order bounds strictly improve the
Wilf’s one. It is also evident that our lower bound outperforms the competitors,
excepting very dense graphs (δ = 0.95), whereas our upper bound outperforms
Amin’s one on low and medium densities (δ ≤ 0.6). The decrease of the per-
formances with respect to Amin and Budinich on high densities is due to the
fact that the advantage of knowing the triangles of the graph becomes irrelevant
when approaching the complete graph. However, also the relative error slowly
approaches zero, since for the complete graph all our bounds are exact.

7 Conclusions

In this work, we introduce a new class of bounds on the clique number of graphs
by employing, for the first time to our knowledge, spectral hypergraph theory.
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The bounds are derived from a result due to Sós and Straus and generalize the
classic spectral upper and lower bounds of Wilf.

The computation of our new bounds introduces the side problem of estab-
lishing the spectral radius and a Perron eigenvector of a k-graph, which is still
uncovered. To this end, we introduce two dynamics that serve our purposes. The
first is a generalization of the known Power Method, while the second derives
from our generalization of the Baum-Eagon result to generalized polynomials.

Finally, we test our 3th-order bounds comparing them against state-of-the-art
spectral approaches on random graphs. The results show the superiority of our
bounds on all graphs excepting the dense ones, where anyway we achieve low
relative errors.
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Abstract. Beam-ACO algorithms are hybrid methods that combine the
metaheuristic ant colony optimization with beam search. They heavily
rely on accurate and computationally inexpensive bounding information
for choosing between different partial solutions during the solution con-
struction process. In this work we present the use of stochastic sampling
as a useful alternative to bounding information in cases were comput-
ing accurate bounding information is too expensive. As a case study we
choose the well-known travelling salesman problem with time windows.
Our results clearly demonstrate that Beam-ACO, even when bounding
information is replaced by stochastic sampling, may have important ad-
vantages over standard ACO algorithms.

1 Introduction

Ant colony optimization (ACO) is a metaheuristic that is based on the proba-
bilistic construction of solutions [1]. At each algorithm iteration, n solutions are
constructed independently from each other. A recently proposed ACO hybrid,
known as Beam-ACO [2,3], employs at each iteration a probabilistic beam search
procedure that constructs n solutions non-independently in parallel. A crucial
component of beam search is bounding information for choosing between differ-
ent partial solutions at each step of the solution construction process [4]. At each
step, beam search keeps a certain number of the best partial solutions available
for further extension, and excludes the rest from further examination. A problem
arises when bounding information is either misleading (that is, the wrong par-
tial solutions are kept for further examination) or when bounding information
is computationally expensive.

Browsing the relevant artificial intelligence literature, we came across a differ-
ent method for the evaluation of partial solutions in the context of tree search
procedures: probing or stochastic sampling [5,6]. Hereby, each given partial so-
lution is completed a number of N s times in a stochastic way. The information
that is obtained is used to differentiate between different partial solutions.

In this work we propose to replace the use of bounding information in Beam-
ACO with a stochastic sampling procedure. For this case study we choose the
travelling salesman problem with time windows (TSPTW), due to the fact that
accurate bounding information that is computationally inexpensive is—to our
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knowledge—not available for this problem. Finally, we want to state clearly at
this point that the primary goal of this research is not to obtain state-of-the-art
results for the TSPTW, which is left for future work. Our aim is to show that
Beam-ACO based on stochastic sampling may have significant advantages over
standard ACO algorithms.

The remainder of this work is organized as follows. In Section 2 we give a tech-
nical description of the TSPTW. Furthermore, in Sections 3 and 4 we first intro-
duce our standard (in the sense of non-hybrid) ACO algorithm for the TSPTW
and then we introduce the probabilistic beam search procedure that is needed
for Beam-ACO. Finally, in Section 5 we present an experimental evaluation, and
in Section 6 we offer conclusions and an outlook to future work.

2 The TSPTW

The traveling salesman problem with time windows (TSPTW) is the problem
of finding an efficient route to visit a number of customers, starting and ending
at a depot, with the added difficulty that each customer may only be visited
within a certain time window. In practice, the TSPTW is an important problem
in logistics.

The TSPTW is proven to be NP-hard, and even finding a feasible solution
is an NP-complete problem [7]. The problem is closely related to a number of
important problems. For example, the well-known traveling salesman problem
(TSP) is a special case of the TSPTW. The TSPTW itself can be seen as a special
case with a single vehicle of the vehicle routing problem with time windows
(VRPTW). The state of the art in solving the TSPTW is a simulated annealing
approach by Ohlmann and Thomas [8].

2.1 Formal Problem Definition

The TSPTW is formally defined as follows. Let G = (N, A) be a finite graph,
where N = {0, 1, . . . , n} consists of a set of nodes representing the depot (node
0) and n customers, and A = N ×N is the set of arcs connecting the nodes.

For every arc aij ∈ A between two nodes i and j, there is an associated cost
c(aij). This cost typically represents the travel time between customers i and j,
plus a service time at customer i.

For every node i ∈ N , there is an associated time window, [ei, li], where ei

represents the earliest service start time and li is the latest service start time.
A solution to the problem is a tour visiting each node once, starting and ending

at the depot. Hence, a tour is represented as P = (p0 = 0, p1, . . . , pn, pn+1 = 0),
where the sub-sequence (p1, . . . , pk, . . . , pn) is a permutation of the nodes in
N \{0} and pk denotes the index of the customer at the kth position of the tour.
Two additional elements, p0 = 0 and pn+1 = 0, represent the depot.

It is assumed that waiting times are permitted, that is, a node i can be reached
before the start of its time window ei, but cannot be left before ei. Therefore, the
departure time from customer pk is calculated as Dpk

= max(Apk
, epk

), where
Apk

= Dpk−1 + c(apk−1,pk
) is the arrival time at customer pk in the tour.
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The literature defines two related but different objectives for this problem.
One is the minimization of the cost of the arcs traversed along the tour∑n

k=0 c(apk,pk+1). The other alternative is to minimise Apn+1 , the arrival time
at the depot. In this work, we focus on the former, and, therefore, we formally
defined the TSPTW as:

minimise: F (P ) =
n∑

k=0

c(apk,pk+1)

subject to:

Ω(P ) =
n+1∑
k=0

ω(pk) = 0

where:

ω(pk) =

{
1 if Apk

> lpk
,

0 otherwise;

Apk+1 = max(Apk
, epk

) + c(apk,pk+1) .

(1)

In the above definition, Ω(P ) denotes the number of time window constraints
that are violated by tour P , which must be zero for feasible solutions.

3 The ACO Algorithm

The application of the ACO framework to any problem implies the definition of a
solution construction mechanism and the specification of appropriate pheromone
information T . In the case of the TSPTW, ants construct a complete tour by
starting at the depot (node 0) and iteratively adding customers to the tour. Once
all customers have been added to the tour, it is completed by adding node 0.

As for the pheromone information, ∀aij ∈ A, ∃τij ∈ T , 0 ≤ τij ≤ 1, where
τij represents the desirability of visiting customer j after customer i in the tour:
the greater the pheromone value τij , the greater is the desirability of choosing j
as the next customer to visit in the current tour.

The particular ACO algorithm proposed in this paper for the TSPTW
combines ideas from both MMAS and ACS algorithms implemented in the
hyper-cube framework (HCF) as proposed by Blum and Dorigo [9]. A high level
description of the algorithm is given in Algorithm 1. The data structures used,
in addition to counters and to the pheromone values, are: (1 ) the best-so-far
solution P bf, i.e., the best solution generated since the start of the algorithm;
(2 ) the restart-best solution P rb, that is, the best solution generated since the
last restart of the algorithm; (3 ) the convergence factor (cf), 0 ≤ cf ≤ 1, which
is a measure of how far the algorithm is from convergence; and (4 ) the Boolean
variable bs update, which becomes true when the algorithm reaches convergence.

Roughly, the algorithm works as follows. Initially, all variables are initialized.
In particular, the pheromone values are set to their initial value 0.5. Then, a
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Algorithm 1. ACO algorithm for the TSPTW
1: input: Na ∈ Z

+, q0 ∈ [0, 1] ⊂ R

2: P bf := null, P rb := null, cf := 0, bs update := false
3: τij := 0.5 ∀τij ∈ T
4: while CPU time limit not reached do
5: for each ant a ∈ {1, . . . , Na} do
6: Pa := (0) {start at the depot}
7: repeat
8: choose next customer j ∈ N (Pa) following Eq. (2)
9: add j as last element of partial solution Pa

10: until all n customers are visited
11: end for
12: add 0 as last element of Pa {finish at the depot}
13: P ib := minlex{P1, . . . , PNa} {identify iteration-best}
14: if P ib <lex P rb then P rb := P ib

15: if P ib <lex P bf then P bf := P ib

16: cf := ComputeConvergenceFactor(T )
17: if bs update = true and cf > 0.99 then
18: τij := 0.5 ∀τij ∈ T
19: P rb := null
20: bs update := false
21: else
22: if cf > 0.99 then
23: bs update := true
24: end if
25: ApplyPheromoneUpdate(cf, bs update , T , P ib, P rb, P bf)
26: end if
27: end while
28: output: P bf

main loop is repeated until a termination criteria, such as a CPU time limit, is
met. Each algorithm iteration consists of the following steps.

First, a number of ants (Na) construct complete tours by following the state
transition rule defined in Eq. (2). Each ant a constructs a single tour Pa by
iteratively adding customers to its partial tour. At each construction step, ant
a chooses one customer j among the set N (Pa) of customers not visited yet by
the current partial tour Pa. The decision is made by firstly generating a random
number q uniformly distributed within [0, 1] and comparing this value with a
parameter q0 called the determinism rate. If q ≤ q0, j is chosen deterministically
as the value with the highest product of pheromone and heuristic information.
Otherwise, j is stochastically chosen from a distribution of probabilities. This
rule is described by the following equation:

⎧⎨
⎩

j = argmaxk∈N (Pa){τik · ηik} if q ≤ q0,

j ∼ {pi(k) | k ∈ N (Pa)} otherwise.
(2)
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where i is the last customer added to the tour Pa, ηij is a heuristic value that
represents an estimation of the benefit of visiting customer j after customer i,
and the symbol ∼ denotes drawing a random number from a probability dis-
tribution defined by the probabilities pi(k). These probabilities depend on the
pheromone and heuristic information associated to each choice and are defined
by the following probabilistic rule:

pi(j) =
τij · ηij∑

k∈N (Pa) τik · ηik
if j ∈ N (Pa) (3)

For the TSPTW, we define a heuristic information that combines the travel
cost between customers (cij) and the latest service time (lj). The values are
first normalized to [0, 1], with the maximum value corresponding to 0 and the
minimum to 1, and then combined with equal weight:

ηij =
1
2

(
cmax − cij

cmax − cmin +
lmax − lj

lmax − lmin

)
(4)

After all ants have completed their tours, the tours are compared to identify the
iteration-best solution (P ib), i.e., the best solution among the ones constructed
in the current iteration, denoted as minlex = {P1, . . . , PNa}. To identify the
best solution, tours are compared lexicographically (<lex) by first minimising
the number of constraint violations (Ω) and, if they have equal number of con-
straint violations, comparing their tour cost (F ). More formally, we compare two
different tours P and P ′ as follows:

P <lex P ′ ⇐⇒ Ω(P ) < Ω(P ′) ∨ (Ω(P ) = Ω(P ′) ∧ F (P ) < F (P ′)) (5)

Next, a new value for the convergence factor cf is computed. Depending on this
value, as well as on the value of the Boolean variable bs update, a decision on
whether to restart the algorithm or not is made. If the algorithm is restarted,
all the pheromone values are reset to their initial value (0.5). The algorithm is
iterated until the CPU time limit is reached. Once terminated, the algorithm
returns the best solution found which corresponds to P bf. In the following we
describe the two remaining procedures of Algorithm 1 in more detail.

Procedure ComputeConvergenceFactor(T ) computes the convergence factor cf,
which is a function of the current pheromone values, as follows:

cf = 2

(∑
τij∈T max{τmax − τij , τij − τmin}

|T | · (τmax − τmin)
− 0.5

)
(6)

where τmax and τmin are, respectively, the maximum and minimum pheromone
values allowed. Hence, cf = 0 when the algorithm is initialized (or reset), that
is, when all pheromone values are set to 0.5. In contrast, when the algorithm
has converged and all pheromone values have either the value τmax or the value
τmin, then cf = 1. In all other cases, cf has a value within (0, 1).

The next step of the algorithm updates the pheromone information by means
of the procedure ApplyPheromoneUpdate(cf, bs update, T , P ib, P rb, P bf). In ge-
neral, three solutions are used for updating the pheromone values. These are
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Table 1. Setting of κib, κrb and κbf depending on the convergence factor cf and the
Boolean control variable bs update

bs update false true
cf [0, 0.4) [0.4, 0.6) [0.6, 0.8) [0.8, 1] —

κib 1 2/3 1/3 0 0
κrb 0 1/3 2/3 1 0
κbf 0 0 0 0 1

the iteration-best solution P ib, the restart-best solution P rb, and the best-so-far
solution P bf. The influence of each solution on the pheromone update depends
on the state of convergence of the algorithm as measured by the convergence
factor cf. Hence, each pheromone value τij ∈ T is updated as follows:

τij = τij + ρ · (ξij − τij) , (7)

with
ξij = κib · P ib

ij + κrb · P rb
ij + κbf · P bf

ij , (8)

where ρ is a parameter that determines the learning rate, P ∗
ij is 1 if customer j

is visited after customer i in solution P ∗ and 0 otherwise, κib is the weight (that
is, the influence) of solution P ib, κrb is the weight of solution P rb, κbf is the
weight of solution P bf, and κib + κrb + κbf = 1. Equation (8) allows to choose
how to schedule the relative influence of the three solutions used for updating
the pheromone values. For our application we used a standard update schedule
as shown in Table 1 and a value of ρ = 0.1.

After the pheromone update rule in Eq. (7) is applied, pheromone values that
exceed τmax = 0.999 are set back to τmax (similarly for τmin = 0.001). This
is done in order to avoid a complete convergence of the algorithm, which is a
situation that should be avoided. This completes the description of our ACO
approach for the TSPTW problem.

4 Beam-ACO with Stochastic Sampling

As mentioned before, a Beam-ACO algorithm is obtained from a standard ACO
algorithm by the replacement of the independent construction of solutions with
a probabilistic beam search procedure. The probabilistic beam search that we
invented for the TSPTW is described in Algorithm 2. The algorithm requires
three input parameters: kbw ∈ Z

+ is the so-called beam width, μ ∈ R
+ ≥ 1

is a parameter that determines the number of children that can be chosen at
each step, and N s is the number of stochastic samples taken for evaluating a
partial solution. Moreover, Bt denotes a set of partial tours called the beam.
Hereby, index t denotes the current iteration of the beam search. At any time it
holds that |Bt| ≤ kbw, that is, the beam is smaller or equal to the beam width.
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Algorithm 2. Probabilistic Beam search (PBS) for the TSPTW
1: B0 := {(0)}
2: for t := 0 to n do
3: C := C(Bt)
4: for k = 1, . . . , min{�μ · kbw�, |C|} do
5: 〈P, j〉 := ChooseFrom(C)
6: C := C \ 〈P, j〉
7: Bt+1 := Bt+1 ∪ 〈P, j〉
8: end for
9: Bt+1 := Reduce(Bt+1, kbw)

10: end for
11: output: arg minlex {T | T ∈ Bn}

A problem-dependent greedy function ν() is used to assign a weight to partial
solutions.

At the start of the algorithm the beam only contains one partial tour starting
at the depot, that is, B0 := {(0)}. Let C := C(Bt) denote the set of all possible
extensions of the partial tours in Bt. A partial tour P may be extended by
adding a customer j not yet visited by that tour. Such a candidate extension
of a partial tour is henceforth denoted by 〈P, j〉. At each iteration, at most
�μ · kbw� candidate extensions are selected from C by means of the procedure
ChooseFrom(C) to form the new beam Bt+1. At the end of each step, the new
beam Bt+1 is reduced by means of the procedure Reduce in case it contains more
than kbw partial solutions. When the current iteration is equal to the number of
customers (t = n), all elements in Bn are completed by adding the depot, and
finally the best solution is returned.

The procedure ChooseFrom(C) chooses a candidate extension 〈P, j〉 from C,
either deterministically or probabilistically according to a parameter q0 called
determinism rate (see also the description of ACO). More precisely, for each call
to ChooseFrom(C), a random number q is generated and if q ≤ q0, the decision
is taken deterministically by choosing the candidate extension that maximises
the product of the pheromone information T and the greedy function ν():

〈P, j〉 = arg max
〈P ′,k〉∈C

τ(〈P ′, k〉) · ν(〈P ′, k〉)−1 (9)

where τ(〈P ′, k〉) corresponds to the pheromone value τik ∈ T , supposing that i
is the last customer visited in tour P ′.

Otherwise, if q > q0, the decision is taken stochastically according to the
following probabilities:

p(〈P, j〉) =
τ(〈P, j〉) · ν(〈P, j〉)−1∑

〈P ′,k〉∈C

τ(〈P ′, k〉) · ν(〈P ′, k〉)−1 (10)

The greedy function ν(〈P, j〉) assigns a heuristic value to each candidate exten-
sion 〈P, j〉. In principle, for this purpose we could use the heuristic η given by
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Eq. (4), that is, ν(〈P, j〉) = η(〈P, j〉). As in the case of the pheromone infor-
mation, the notation η(〈P, j〉) refers to the value of ηik as defined in Eq. (4),
supposing that i was the last customer visited in tour P . However, when compar-
ing two extensions 〈P, j〉 ∈ C and 〈P ′, k〉 ∈ C, the value of η might be misleading
in case P �= P ′. We solved this problem by defining the greedy function ν() as
follows.

Firstly, instead of using the value of η directly, we rank the extensions with
respect to their value of η and use the corresponding ranks for comparison.
More specifically, the extension with the highest value of η for all candidate
extensions of the same tour receives rank 1. Formally, r(〈P, j〉) = 1 where
〈P, j〉 = arg maxk∈N (P ) η(〈P, k〉). The extension with the second highest value
of η receives rank 2, and so on and so forth. Secondly, the value of the greedy
function of an extension ν(〈P, j〉) is calculated as the sum of the ranks that
correspond to the sequence of extensions generated during the construction of
partial tour P = {p0, p1, . . . , p|P |}. Formally:

ν(〈P, j〉) = r(〈0, p1〉) +

⎛
⎝ |P |∑

i=2

r(〈(p0, . . . , pi−1), pi〉)

⎞
⎠+ r(〈P, j〉) , (11)

where p0 = 0 is the depot, and pi denotes the index of the customer visited in the
ith position of the tour. This definition of ν() allows us to compare extensions
of different partial tours by giving more priority to those extensions maximising
ν()−1.

Finally, the application of procedure Reduce(Bt) removes the worst max{|Bt|−
kbw, 0} partial solutions from Bt. As mentioned before, in standard applications
of beam search, the worst solutions are determined by applying—in the case of
minimization—a lower bound to each partial solution. The solutions removed
from Bt are then the ones with the greatest lower bound value. However, as the
literature for the TSPTW does not offer accurate and at the same time compu-
tationally inexpensive lower bounds, we use stochastic sampling for evaluating
partial solutions. More specifically, a sample of a partial solution is obtained by
using an ant (from the standard ACO algorithm) to complete the tour by iter-
atively adding unvisited customers following Eq. (2). For each partial solution,
a number N s of complete solutions is sampled. The value of the best of these
samples (with respect to Eq. 5) is used for evaluating the corresponding partial
solution. Only the kbw best partial solutions (with respect to their corresponding
best samples) are kept in Bt and the others are discarded. The PBS algorithm
keeps track of the best solution among the ones sampled. A partial solution
which is already worse than the best solution sampled can only become even
worse when further extended. Hence, such partial solutions are removed from Bt

without further sampling. If no solution in Bt is better than the best solution
sampled, PBS returns the latter.

The above procedure defines a probabilistic beam search algorithm, henceforth
denoted by PBS(kbw, μ, N s). In Beam-ACO, this PBS algorithm replaces the
construction loop performed by the ants in Algorithm 1 (lines 5–13). Instead, a
single call to PBS generates the iteration-best solution.
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5 Experimental Evaluation

We implemented ACO and Beam-ACO in C++. The algorithms were tested on
30 instances provided by Potvin and Bengio [10] and derived from Solomon’s RC2
VRPTW instances [11]. These instances are known to contain a mix of randomly-
spaced and clustered customers. First, we performed a set of initial experiments
in order to find appropriate values for various parameters of ACO and Beam-
ACO. Next, we compared the results obtained by the two algorithms for the 30
instances mentioned above. All experiments were run on a AMD Opteron 8218
processor, with 2.6 GHz CPU and 1 MB of cache size running GNU/Linux 2.6.24.

Comparing different algorithms for the TSPTW is not a trivial task. In the
literature it can sometimes be observed that algorithms are compared with re-
spect to their average number of constraint violations and their average cost,
where average refers to the average over several runs. However, in general one
is not interested in trading a lower tour cost for a higher number of constraint
violations. Comparing the two averages mentioned above, it is difficult to assess
if such a trade-off has indeed occurred. As an alternative, one might focus on the
median tour cost of those runs that achieved the minimum number of constraint
violations. Yet, this information does not summarise the typical behaviour of
an algorithm, and does therefore not provide a means for a fair comparison.
(Imagine, for example, a situation in which one of the algorithms has achieved
its minimum number of constraint violations in only one run.)

Instead, we decided for the following mechanism for the comparison of two
or more algorithms. More specifically, we calculate a score for each algorithm,1

measuring the quality of its solutions relative to the quality of the solutions ob-
tained by the competing approaches. The score is given by the percentage of
times that the outcome of one algorithm was better than the outcomes obtained
by the alternatives minus the percentage of times that the outcome of the same
algorithm was worse than the outcomes obtained by the alternatives. For exam-
ple, let us compare three different algorithms X , Y , Z. Let us assume that each
algorithm is applied 5 times to a problem instance. Then, we calculate the score
of, for example, algorithm X as follows. First, each of the 5 solutions obtained
by X are compared with each of the 10 solutions obtained by Y and Z. The
comparison is done lexicographically, following the order defined in Eq. (5), by
considering first the number of constraint violations (Ω) and next the tour cost
(F ). Hence, for each comparison, a tour may be better, equal, or worse than
another. We count the number of times that an outcome of X was better minus
the number of times it was worse than the solutions produced by competing al-
gorithms. Finally, we calculate the percentage with respect to the total number
of pairwise comparisons, 50 in our example. A positive score indicates that the
solutions obtained by X were more often better than the solutions obtained by
the alternatives Y and Z. A negative score indicates that the alternative algo-
rithms obtained more often better outcomes than X . A value close to zero either

1 Here, the term algorithm may refer to ACO or Beam-ACO, or to different configu-
rations of ACO and Beam-ACO.
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indicates that the outcomes were most of the times equal or that X obtained as
many better outcomes as worse outcomes than the rest.

We applied the ACO algorithm to each instance with various values for the
number of ants, that is, Na = {10, 20, 50, 100, 200}. The rest of the parameters
of ACO were set as follows: τmax = 0.999, τmin = 0.001, q0 = 0.9, and ρ =
0.1. Each run of ACO was stopped after 15 CPU seconds and we repeated
each experiment 25 times with different random seeds. Table 2 gives the scores
obtained by ACO for each value of Na. As discussed above, at each row of the
table, each entry represents a percentage score obtained by the difference of two
values: the number of times that a tour obtained by ACO using the number of
ants given in the column heading was better than a tour obtained when using a
different number of ants, minus the number of times that the former was worse
than the latter. Therefore, larger positive values indicate a higher (relative)
quality of the results in comparison with the other values of Na, while negative
values indicate a worse quality of the tours obtained. The results in Table 2
show that the best setting of Na varies depending on the particular instance.
Although higher values of Na lead to a better overall performance, they result
in significantly worse results for a few instances, such as rc203.1 and rc204.3.
This suggests that instances have important structural differences that are not
reflected by their corresponding number of customers n.

In a similar manner, Table 3 shows the scores obtained by Beam-ACO when
using different settings of kbw and N s. We decided to study all combinations
between kbw = {10, 20, 30, 40, 50} and N s = {1, 5, 10, 20}. The remaining Beam-
ACO parameters were set in the same way as for ACO, except for the beam-
search parameter μ = 1.5. We applied each configuration of Beam-ACO 25 times
for 15 CPU seconds to each test instance. Each table cell in Table 3 gives the
score obtained by Beam-ACO using the kbw and N s settings given by the column
with respect to the results obtained by all the other configurations of Beam-ACO
in the same row. Again, the best configuration per instance is indicated in bold-
face. Note that, for example, for instance rc201.1 all configurations obtained
the optimal solution in all runs. In such cases, we indicate in boldface the con-
figuration that required less median CPU time.

The best settings of kbw and N s depend strongly on the particular instance,
as shown in Table 3. In most cases, a small beam-width (kbw = 10) and number
of samples N s ∈ {1, 5} obtained the best solutions. However, in certain cases,
these settings produced notably worse results and higher values of kbw and N s

are required, as for example when instances rc204.3 and rc205.1 are concerned.
Finally, a comparison between ACO and Beam-ACO is presented in Table 4.

In this comparison, we used for each instance and for each algorithm the con-
figuration that obtained the highest scores in Tables 2 and 3, that is, the ones
marked in boldface. For both ACO and Beam-ACO, Table 4 gives the median
(Ω̃), standard deviation (sd), and minimum (Ωmin) number of constraint vio-
lations obtained in 25 runs, then the number of runs ([#]) that obtained that
minimum number of constraint violations. For those runs that obtained Ωmin
constraint violations, F̃ and sd give the median and standard deviation tour
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Table 2. Relative scores obtained by ACO with different settings of Na

Instance Na

Problem n 10 20 50 100 200

rc201.1 19 0.0 0.0 0.0 0.0 0.0
rc201.2 25 11.3 27.8 -14.1 0.9 -25.9
rc201.3 31 -45.9 -7.3 19.1 23.6 10.6
rc201.4 25 -50.2 -48.6 -0.6 45.3 54.0

rc202.1 32 -37.1 -37.3 15.4 26.0 32.9

rc202.2 13 12.9 -3.2 -19.3 -5.5 15.2

rc202.3 28 -27.5 -19.3 13.1 22.3 11.4
rc202.4 27 -30.4 -29.0 0.8 38.5 20.0

rc203.1 18 -0.8 50.2 37.4 -3.7 -83.0
rc203.2 32 -27.2 -26.1 17.0 12.7 23.6

rc203.3 36 -20.7 -20.0 -4.0 14.0 30.7

rc203.4 14 -74.2 9.0 1.0 34.4 29.8

rc204.1 44 -21.0 -10.2 7.0 18.6 5.8
rc204.2 32 -12.4 1.4 19.6 -1.9 -6.8
rc204.3 33 65.2 32.4 -21.2 -40.9 -35.6

rc205.1 13 -3.0 -3.0 2.0 2.0 2.0

rc205.2 26 -41.6 -52.2 16.4 27.0 50.4

rc205.3 34 18.0 -2.2 -53.2 0.0 37.4

rc205.4 27 -38.2 -17.0 34.2 4.8 16.1

rc206.1 3 0.0 0.0 0.0 0.0 0.0
rc206.2 36 6.8 -8.5 -24.0 5.8 20.0

rc206.3 24 -56.9 -20.8 19.8 37.8 20.0
rc206.4 37 -8.4 -35.6 10.7 9.3 24.0

rc207.1 33 -26.2 -13.4 22.3 0.0 17.3
rc207.2 30 5.2 5.4 -27.5 6.7 10.2

rc207.3 32 -46.8 14.0 4.9 17.6 10.2
rc207.4 5 0.0 0.0 0.0 0.0 0.0

rc208.1 37 -26.3 4.6 2.0 -1.1 20.9

rc208.2 28 -66.7 -13.0 37.0 15.3 27.4
rc208.3 35 -26.4 -10.8 5.0 2.3 29.9

cost and T̃cpu and sd are the median and standard deviation CPU time (in
seconds). Finally, we calculate the score (column “Score”) of Beam-ACO with
respect to ACO as described earlier. In other words, we compare each of the
25 solutions obtained by Beam-ACO with each of the 25 solutions generated
by ACO, for each instance. Next, for the resulting 625 pairwise comparisons,
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we count the percentage of how many times Beam-ACO was better minus how
many times it was worse than ACO. Hence, a positive score indicates that the
solutions generated by Beam-ACO were more frequently better than those of
ACO.

Table 4 shows, first, that Beam-ACO obtains a positive score in 20 out of
30 cases. Of the remaining 10 instances, 5 appear to be excessively easy for
both algorithms, since both reach an optimal solution in all runs. Only in 5
instances ACO obtains a better score than Beam-ACO. Nevertheless, comparing
the median tour costs (F̃ ) reveals that the advantage of ACO is quite small.
In summary, we can conclude that Beam-ACO based on stochastic sampling
provides an evident advantage over the non-hybrid ACO algorithm when applied
to the 30 test instances used in this study. This becomes also clear when studying
the columns with heading [#]: Beam-ACO is generally more robust in finding
solutions with a low number of constraint violations.

6 Conclusions

In this paper, we have proposed a Beam-ACO approach for the TSPTW. Beam-
ACO is a hybrid between ant colony optimization and beam search that relies
heavily on bounding information that is accurate and computationally inexpen-
sive. We studied a new version of Beam-ACO in which the bounding information
is replaced by stochastic sampling. We performed experiments on a set of stan-
dard benchmark instances for the TSPTW, comparing a pure ACO algorithm
with Beam-ACO based on stochastic sampling. The results showed that Beam-
ACO obtains generally better results in most instances. In a few instances, ACO
achieved slightly better results than Beam-ACO. In those instances, the heuristic
information is probably quite deceptive. Nonetheless, the overall positive perfor-
mance of Beam-ACO based on stochastic sampling in comparison to ACO shows
that Beam-ACO can be useful even when no accurate and computationally in-
expensive bounding information is available.

In the future we plan to improve the performance of our Beam-ACO approach
further, for example, by the inclusion of local search and by the study of different
types of heuristic information.

Acknowledgements. We wish to thank Professor Ohlmann for making widely
available the benchmark instances used in his work.

References
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Abstract. Haplotype Inference is a challenging problem in bioinformat-
ics that consists in inferring the basic genetic constitution of diploid
organisms on the basis of their genotype. This information allows re-
searchers to perform association studies for the genetic variants involved
in diseases and the individual responses to therapeutic agents. A notable
approach to the problem is to encode it as a combinatorial problem
(under certain hypotheses, such as the pure parsimony of the entropy
minimization criteria) and to solve it using off-the-shelf combinatorial
optimization techniques.

In this paper, we present and discuss an approach based on local
search metaheuristics. A flexible solver is designed to tackle the Haplo-
type Inference under the criterion of choice, that could be defined by the
user. We test our approach by solving instances from common Haplo-
type Inference benchmarks both under the hypothesis of pure parsimony
and entropy minimization. Results show that the approach achieves a
good trade-off between solution quality and execution time and compares
favorably with the state of the art.

1 Introduction

The role of genetic variation and inheritance in human diseases is extremely im-
portant, though still largely unknown [19]. To the aim of increasing this body of
knowledge, the assessment of a full Haplotype Map of the human genome has be-
come one of the current high priority tasks of human genomics [18]. A haplotype
is one of the two non identical copies of a chromosome of a diploid organism,
i.e., an organism that has two copies of each chromosome, one inherited from the
father and one from the mother. The information haplotypes convey allows to
perform association studies for the genetic variants involved in diseases and the
individual responses to therapeutic agents. The most important variations are
the Single Nucleotide Polymorphisms (SNPs), which occur when a nucleotide in
the DNA sequence is replaced by another one. Technological limitations make it
currently impractical to directly collect haplotypes by experimental procedures,
but it is possible to collect genotypes, i.e., the conflation of a pair of haplotypes.
Moreover, instruments can easily identify only whether the individual is homozy-
gous (i.e., the alleles are the same) or heterozygous (i.e., the alleles are different)

T. Stützle (Ed.): LION 3, LNCS 5851, pp. 74–88, 2009.
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at a given site. Therefore, haplotypes have to be inferred from genotypes in or-
der to reconstruct the detailed information and trace the precise structure of
DNA variations in a population. This process is called Haplotype Inference (also
known as haplotype phasing) and the goal is to find a set of haplotype pairs
(i.e., a phasing) so that all the given genotypes are resolved, that is, they can be
obtained by combining a pair of haplotypes from the set.

The main methods to tackle the Haplotype Inference are either combinatorial
or statistical. Both, however, being of non-experimental nature, need some ge-
netic model that could provide criteria for evaluating the solution returned with
respect to actual genetic plausibility. In the case of the combinatorial methods,
which are the subject of the present work, the most often used criteria are pure
parsimony and entropy minimization. The pure parsimony criterion [10] sug-
gests to search for the smallest collection of distinct haplotypes that solves the
Haplotype Inference problem. This criterion is consistent with current observa-
tions in natural populations for which the actual number of haplotypes is vastly
smaller than the total number of possible haplotypes. Conversely, the rationale
of the entropy minimization [12] criterion is to maximize phasing likelihood. The
entropy is defined in terms of occurrences of a haplotype in the phasing.

Both criteria are widely adopted and the solutions found are considered as
good and informative phasings. The adequacy of these model, indeed, has al-
ready been discussed elsewhere [9, 10]. Nevertheless, up to now, the techniques
used to tackle the Haplotype Inference problem under either criterion are sub-
stantially different and developed ad hoc for the criterion chosen. In this paper,
we present an approach that allows to easily accommodate different criteria in a
single solver. The advantage of this approach is that the solver can be adapted
to the criterion of choice and criteria can also be combined together without
having to change the search strategy. The method we present is a local search
metaheuristic1 that tackles the Haplotype Inference problem as a constrained op-
timization problem with an objective function defined by the phasing evaluation
criterion of choice (in this paper either pure parsimony or entropy minimiza-
tion). The approach extends and improves upon a previous work in which a
local search method was presented for the Haplotype Inference problem [5].

Current approaches for solving the solving the Haplotype Inference (HI) prob-
lem under the pure parsimony hypothesis (HIpar) include simple greedy heuris-
tic [4] and exact methods such as Integer Linear Programming [3, 10, 11, 15],
Semidefinite Programming [13, 14], SAT models [16, 17] and Pseudo-Boolean
Optimization algorithms [8]. At present, complete approaches, i.e., the ones that
guarantee to return an optimal solution, such as SAT-based ones, are very effec-
tive but they do not scale very well with respect to the instance size. Hence, the
need for approximate algorithms, such as metaheuristics, that trade complete-
ness for efficiency. Moreover, a motivation for studying and applying approxi-
mate algorithms is that the criteria used to evaluate the solutions provide an
approximation of the actual solution quality, therefore a proof of optimality is
not particularly important. To the best of our knowledge, besides our previous

1 For an introduction to metaheuristics, see, e.g., [2].
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work [5], the only attempt to employ metaheuristic techniques for HIpar is a
recently proposed Genetic Algorithm [20]. However, also the cited paper does
not report results on real size instances.

As far as we know, the state of the art for the problem under the entropy
minimization criterion (HIent) is an iterative greedy algorithm [9] that can tackle
also large instances (long genotypes) by dividing the set of genotypes into groups
and solving the problem by considering overlapping windows. Moreover, it can
also deal with pedigree information.

The remainder of this paper is structured as follows. We formally introduce
the problem in Section 2. In Section 3 we describe the metaheuristic approach we
developed that exploits problem structure. Experimental results are discussed in
Section 4, where we compare our technique against the state of the art for HIpar

and HIent. Finally, we discuss some possible improvements and future work in
Section 5.

2 The Haplotype Inference Problem

In the Haplotype Inference problem we deal with genotypes, that is, strings of
length m that correspond to a chromosome with m sites. Each value in the
string belongs to the alphabet {0, 1, 2}. A position in the genotype is associated
with a site of interest on the chromosome (e.g., a SNP) and it has value 0 (wild
type) or 1 (mutant) if the corresponding chromosome site is a homozygous site
(i.e., it has that state on both copies) or the value 2 if the chromosome site is
heterozygous. A haplotype is a string of length m that corresponds to only one
copy of the chromosome (in diploid organisms) and whose positions can assume
the symbols 0 or 1.

2.1 Genotype Resolution

Given a chromosome, we are interested in finding an unordered2 pair of haplo-
types that can explain the chromosome according to the following definition:

Definition 1 (Genotype resolution). Given a chromosome g, we say that the
unordered pair 〈h, k〉 resolves (or covers) g, and we write 〈h, k〉
g (or g = h⊕k),
if the following conditions hold (for j = 1, . . . , m):

g[j] = 0⇒ h[j] = 0 ∧ k[j] = 0 (1a)
g[j] = 1⇒ h[j] = 1 ∧ k[j] = 1 (1b)
g[j] = 2⇒ (h[j] = 0 ∧ k[j] = 1) ∨ (h[j] = 1 ∧ k[j] = 0) (1c)

If 〈h, k〉 
 g we indicate the fact that the haplotype h (respectively, k) contributes
in the resolution of the genotype g writing h � g (resp., k � g). We also say
that h is a resolvent of g). This notation can be extended to a set of haplotypes,
writing H = {h1, . . . , hl} � g, with the meaning that hi � g for all i = 1, . . . , l.
The operator ⊕ is defined accordingly.
2 In the problem there is no distinction between the maternal and paternal haplotypes.
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Conditions (1a) and (1b) require that both haplotypes must have the same value
in all homozygous sites, while condition (1c) states that in heterozygous sites
the haplotypes must have different values.

Observe that, according to the definition, for a single genotype string the hap-
lotype values at a given site are predetermined in the case of homozygous sites,
whereas there is a freedom to choose between two possibilities at heterozygous
places. This means that for a genotype string with l heterozygous sites there are
2l−1 possible pairs of haplotypes that resolve it.

As an example, consider the genotype g = (0212), then the possible pairs of
haplotypes that resolve it are 〈(0110), (0011)〉 and 〈(0010), (0111)〉.

After these preliminaries we can state the Haplotype Inference problem as
follows:

Definition 2 (Haplotype Inference problem). Given a population of n in-
dividuals, each of them represented by a genotype string gi of length m we are
interested in finding a set φ of n pairs of (not necessarily distinct) haplotypes
φ = {〈h1, k1〉, . . . , 〈hn, kn〉}, so that 〈hi, ki〉 
 gi, i = 1, . . . , n, such that a given
objective function F ({h1, . . . , hn, k1, . . . kn}) is optimized. We call H the set of
haplotypes used in the construction of φ, i.e., H = {h1, . . . , hn, k1, . . . , kn}.

From the mathematical point of view, there are many possibilities for building
the set H , since there is an exponential number of possible haplotypes for each
genotype. Therefore, a criterion should be added to the model for evaluating the
quality of the solutions.

One natural model of the Haplotype Inference problem is the already men-
tioned pure parsimony approach that consists in searching for a solution that
minimizes the total number of distinct haplotypes used or, in other words, |H |,
the cardinality of the set H . A trivial upper bound for |H | is 2n in the case of all
genotypes resolved by a pair of distinct haplotypes. It has been shown that the
Haplotype Inference problem under the pure parsimony hypothesis is APX-hard
[15] and therefore NP-hard.

The second criterion we consider in this work is entropy minimization. The
entropy of a phasing φ is defined upon the concept of coverage of a haplotype h
in φ, informally defined as the number of genotypes resolved by h.

Definition 3 (Coverage). Given a set of genotypes G, a phasing φ and a
haplotype h ∈ φ, the coverage of h in φ is:

cvg(h, φ) = |{g ∈ G|∃k �= h : 〈h, k〉 
 g}| (2)
+2|{g ∈ G|〈h, h〉 
 g}|

The entropy E of a phasing φ is defined as follows:

Definition 4 (Entropy of a phasing)

E(φ) =
∑

h:cvg(h,φ) 	=0

−cvg(h, φ)
2|G| log

cvg(h, φ)
2|G| (3)
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Thus, the objective in this problem formulation is to find φ (hence a set of
haplotypes H) such that E(φ) is minimized. Also this variant of the Haplotype
Inference problem was proven to be APX-hard [12].

It is important to stress, at this point, that finding a proven optimal solution
is not particularly relevant, because the criteria defining the objective functions
are an approximation of an (unknown) actual quality function. Therefore, ap-
proximate approaches that are able to return solutions of a good quality, even if
not optimal, are of notable practical importance.

2.2 Compatibility and Complementarity

It is possible to define a graph that expresses the compatibility between geno-
types, so as to avoid unnecessary checks in the determination of the resolvents.3

In the graph G = (G, E), the set of vertexes coincides with the set of the geno-
types; genotypes g1, g2 are connected by an edge if they are compatible, i.e., one
or more common haplotypes can resolve both of them. The formal definition of
this property is as follows.

Definition 5 (Genotypes compatibility). Let g1 and g2 be two genotypes,
g1 and g2 are compatible if, for all j = 1, . . . , m, the following conditions hold:

g1[j] = 0 ⇒ g2[j] ∈ {0, 2} (4a)
g1[j] = 1 ⇒ g2[j] ∈ {1, 2} (4b)
g1[j] = 2 ⇒ g2[j] ∈ {0, 1, 2} (4c)

The same concept can be expressed also between a genotype and a haplotype as
in the following definition.

Definition 6 (Compatibility between genotypes and haplotypes). Let g
be a genotype and h a haplotype, g and h are compatible if, for all j = 1, . . . , m,
the following conditions hold:

g[j] = 0 ⇒ h[j] = 0 (5a)
g[j] = 1 ⇒ h[j] = 1 (5b)
g[j] = 2 ⇒ h[j] ∈ {0, 1} (5c)

We denote this relation with h �→ g, and we write h[j] �→ g[j] when the condi-
tions hold for the single SNP j. Moreover with an abuse of notation we indi-
cate with h �→ {g1, g2, . . . } the set of all the genotypes that are compatible with
haplotype h.

Notice that the compatibility between a genotype g and a haplotype h does not
necessarily require h to be a resolvent of g.

3 In some cases, also a graph representing incompatibilities between genotypes can
provide useful information.
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It is worth to observe also that the set of compatible genotypes of a haplotype
can contain only mutually compatible genotypes (i.e., they form a clique in the
compatibility graph).

Another useful property is the following:

Proposition 1 (Haplotype complement). Given a genotype g and a haplo-
type h �→ g, there exists a unique haplotype k such that h⊕k = g. The haplotype
k is called the complement of h with respect to g and is denoted with k = g! h.

3 Flexible Stochastic Local Search for Haplotype
Inference

Local search is a search process that iteratively modifies the current candidate
solution by applying move operators trying to follow trajectories in the search
space leading to good solutions. Local search techniques belong to the family
of metaheuristics [2] and are usually stochastic as they involve decisions taken
according to a probabilistic distribution.

In this work, we present a stochastic local search designed for tackling the
Haplotype Inference problem both under the pure parsimony and minimum en-
tropy criteria. The solver is designed so as to separate the search strategy from
the cost function that guides the search. The latter is clearly dependent on the
optimization criterion chosen, whereas the search strategy could be described in
a more general way.

The high level search strategy we chose is tabu search that exhaustively ex-
plores the neighborhood of the current solution, by trying all the possible moves,
and chooses as new solution the best among the neighbors evaluated. The pecu-
liarity of tabu search is that the neighborhood is restricted by forbidding recently
performed moves.

The design process of metaheuristics involves the definition of the local search
model and the choice of the search strategy. In the following we detail the design
and implementation choices of our approach. For a discussion on alternative
metaheuristic approaches for the Haplotype Inference problem we forward the
interested reader to [5, 6].

The local search model is defined by specifying three entities, namely the
search space, the cost function and the neighborhood relation.

In the approach we propose, the search space is composed of the pairs of
haplotypes 〈h, k〉 that resolve genotype g, for all g ∈ G. Therefore in this repre-
sentation all the genotypes are fully resolved at each state by construction. Thus,
the search space is the collection of sets φ defined as in the problem statement.

The cost function is a measure of solution quality including components re-
lated both to the solution evaluation criteria of choice and to heuristic informa-
tion that could guide search toward good solutions.

The component related to the evaluation criterion is an objective function
defined as the cardinality |H | of the set of haplotypes employed in the resolution
or the entropy of the phasing, respectively in the case of pure parsimony or
minimum entropy. In formulae:
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fpar
1 (φ) = |H | (6)

f ent
1 (φ) = E(φ) (7)

Moreover, we also include a heuristic measure related to the potential quality
of the solution. In this respect, we counted the number of incompatible sites
between each genotype/haplotype pair and the component of the cost function
is expressed by the following formula:

f2 =
∑
h∈H

∑
g∈G

m∑
j=1

1− χ(h[j] �→ g[j]) (8)

In the formula, χ denotes the truth indicator function, whose value is 1 when
the proposition in parentheses is true and 0 otherwise.

The cost function F is then the weighted sum of the two components:

F = α1f
T
1 + α2f2 (9)

in which T ∈ {par, ent} and the weights α1 and α2 must be chosen for the
problem at hand to reflect the trade-offs between the different components. In
our experimentation we chose the values α1 = α2 = 1.

3.1 Neighborhood Relation and Search Strategy

We designed a stochastic local search technique, based on the tabu search meta-
heuristic template. The strategy is defined in Algorithm 1. The algorithm starts
with a set of randomly generated haplotypes of cardinality at most 2n, where n
is the number of genotypes. Then, a reduction procedure is called whose aim is
to reduce the number of haplotypes by exploiting the structure of the compat-
ibility graph. This procedure was first presented in our previous work [5] and
tries to remove from H those haplotypes that are not necessary to resolve some
genotype. The heuristic reduction procedure used in Algorithm 1 is based on the
following proposition:4

Proposition 2 (Haplotype local reduction). Given n genotypes G = {g1,
. . . , gn} and the resolvent set R = {〈h1, k1〉, . . . , 〈hn, kn〉}, so that 〈hi, ki〉 
 gi.
Suppose there exist two genotypes g, g′ ∈ G such that:

g �

{
h �→ {g, g′, . . .}
k �→ {g, . . .}

, g′ �

{
h′ �→ {g′, . . .}
k′ �→ {g′, . . .}

(10)

and h �= h′, h �= k′, h′ � A, k′ � B, where A and B are the sets of genotypes
currently resolved, respectively, by h′ and k′.

The replacement of 〈h′, k′〉 with 〈h, g′ ! h〉 in the resolution of g′ is a correct
resolution that employs a number of distinct haplotypes according to the following
criteria:
4 For proof and discussion see [5].
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– if |A| = 1 and |B| = 1, the new resolution uses at most one less distinct
haplotype;

– if |A| > 1 and |B| = 1 (or symmetrically, |A| = 1 and |B| > 1), the new
resolution uses at most the same number of distinct haplotypes;

– in the remaining case the new resolution uses at most one more distinct
haplotype.

After this preprocessing phase, the solver explores the search space by iteratively
modifying pairs of resolving haplotypes trying to reduce F . Then, the iterative
process is repeated until a termination criterion is met: in our implementation,
we either allotted a maximum runtime or we allow for a maximum number of
idle iterations (i.e., iterations from last improvement). Tabu search explores all
the neighbors of the incumbent solution s that can be reached by applying moves
that are not in the tabu list and chooses the best neighbor (lines 5–7). A move
is tabu if it or its inverse have been applied in the last tl iterations. The tabu
concept is employed to prevent the algorithm from getting stuck in local minima
and avoid cycling between a set of states.

Algorithm 1. High level scheme of Tabu search for Haplotype Inference
1: s ← GenerateRandomInitialSolution()
2: s ← Reduce()
3: sb ← s
4: while termination conditions not met do
5: Na(s) ← {s′ ∈ N (s) | s′ does not violate the tabu condition}
6: s′ ← argmin{F (s′′) | s′′ ∈ Na(s)}
7: s ← s′ {i.e., s′ replaces s}
8: if F (s) < F (sb) then
9: sb ← s

10: end if
11: end while
12: Return best solution found sb

The main strength of the local search we designed is to be found in the
move operator, that exploits the instance structure in order to consider the most
promising neighbors of a solution. In fact, in a previous work [5], we defined the
neighborhood on the basis of the unitary Hamming distance between haplotypes.
Even though this has shown to be an effective choice, it did not exploit the
structure of the instance. On the contrary, the move we present in this work
explicitly takes into account the compatibility graph. Indeed, the neighborhood
of a solution is defined by considering, for each genotype, one of its resolving
haplotypes and trying to employ it for covering other genotypes. We call this
neighborhood CommonHaplotypes.

For example, given the haplotype h = (00110) � g = (00112), it could be
employed also to solve genotypes g1 = (22112) and g2 = (02212), which are
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compatible with g. The whole neighborhood is defined on all possible haplo-
type/genotype pairs, excluding the trivial ones (i.e., non-compatible or identical
phasings).

The worst case complexity of the neighborhood exploration is O(n2), how-
ever, the average case is better, because the number of resolving haplotypes for
a given pair of compatible haplotype/genotype pairs is usually less than n2. This
move considerably improves the solver performance with respect to our previous
work. In the following, we will distinguish between the local search with Ham-
ming neighborhood and the move focusing on common resolving haplotypes by
referring to them as TSH and TSC , respectively.

4 Experimental Results

We developed our solver with EasyLocal++ [7], a framework for the develop-
ment of local search algorithms. The algorithms have been implemented in C++
and compiled with gcc 3.2.2 and run on a Intel Xeon CPU 2.80GHz machine
with SUSE Linux 2.4.21-278-smp. According to the guidelines of [1], each algo-
rithm was run on every instance one time for each combination of parameters.
We allotted 300 seconds for each execution of the algorithms.

In this section, we present and discuss the results of the comparison of our new
algorithm with our previous one and with the state of the art for HIpar and HIent.

The benchmark instances are composed of three sets of instances employed
in [3]. The main characteristics of the instance sets are summarized in Table 1.
The first two datasets, namely Harrower uniform and Harrower non-uniform,
are composed of artificial instances created by Brown and Harrower using the
ms software, which simulates neutral evolution and recombination. The Harrower
hapmap dataset contains biological data extracted from the Hapmap project [18].

Table 1. A summary of the main characteristics of the benchmarks

Benchmark set N. of instances N. of genotypes N. of sites

Harrower uniform 200 10÷100 30÷50
Harrower non-uniform 90 10÷100 30÷50
Harrower hapmap 24 5÷68 30÷75

The different algorithms were compared only on the basis of the chosen objec-
tive function, i.e., either in terms of the overall number of haplotypes employed
(fpar

1 ) or in terms of the entropy value of their final solution (f ent
1 ). The other

cost components were disregarded in the comparison since they were used only
for heuristic guidance.

4.1 Comparison against Local Search with Hamming Neighborhood

We first compare the quality of solutions returned by TSH and TSC within a
CPU time-limit of 20 seconds. Results are plotted in Figure 1. From the plots
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(a) Uniform instances

(b) Non-uniform instances

(c) Hapmap instances

Fig. 1. Comparison between TSH and TSC
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it is clear that the performance of TSC are always superior than those of TSH ,
therefore, from now on, all the comparisons will be made with respect to TSC .

4.2 Comparison with the State of the Art for HIpar

An estimation of the quality of solutions produced by TSC, and its overall
performance, in the case of HIpar can be obtained by comparing it against
rpoly [8], a state-of-the-art exact solver for the HIpar . We run the solver on the
same benchmark instances and on the same machine.

In Figure 2 the plots showing the comparison between TSC and rpoly on the
solved instances are drawn. We can observe that the solution quality achieved
by TSC is very high and it approximates the optimal solution quality returned
by rpoly on some benchmarks. Nevertheless, it has to be observed that TSC can
return a good feasible solution to all the instances of the real-world Hapmap
set and its running time is a fraction of the time required by the exact solver.
Therefore, we expect that TSC can scale very well on very large instances, with
a high number of genotypes and heterozygous sites.

4.3 Comparison with the State of the Art for HIent

The local search approach discussed in this work has the advantage of enabling
the developer to easily specify different objective functions or also a weighted
combination of objectives. This characteristic can be very useful to explore dif-
ferent solutions to the Haplotype Inference, making it possible for biologists to
compare different candidate solutions to the real problem. To this respect, we
now analyze the performance of TSC on HIent and contrast it with the greedy
local search proposed in [9] that, to the best of our knowledge, is the state of
the art for the Haplotype Inference problem under entropy minimization. The
method proposed in [9] is a best improvement local search in which the neigh-
borhood is composed of all the possible pairs resolving each genotype.

The results show that TSC performs systematically better than the greedy
local search of Gusev et al. [9], however at the price of a longer running time.

5 Discussion and Future Work

We have presented a metaheuristic approach to tackle the Haplotype Inference
problem under two well-known hypotheses, namely pure parsimony and entropy
minimization. The algorithm is designed in such a way that the criterion of
choice can be changed and even combined with other criteria very easily, without
changing the component implementing the search strategy. Our solver compares
favorably against the state of the art for both the problem variants, as it achieves
a good balance between solution quality and execution time.

This technique can be further improved by modifying the search strategy so
as to take into account also pedigree information and possible unknown values
in the data. We are working towards these goals.
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(a) Uniform instances

(b) Non-Uniform instances

(c) Hapmap instances

Fig. 2. Comparison between TSC and rpoly for HIpar
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(a) Uniform instances

(b) Non-Uniform instances

(c) Hapmap instances

Fig. 3. Comparison between TSC and ent for HIent



Flexible Stochastic Local Search for Haplotype Inference 87

Acknowledgments. We thank Inês Lynce and Ana Sofia Graça for kindly
providing us their instances and solvers. We also thank Ian M. Harrower for
sending us his datasets.

References

1. Birattari, M.: On the estimation of the expected performance of a metaheuristic
on a class of instances. how many instances, how many runs? Technical Report
TR/IRIDIA/2004-01, IRIDIA, Univerisé Libre de Bruxelles (2004)
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Abstract. Using a knowledge discovery approach, we seek insights into the 
relationships between problem structure and the effectiveness of scheduling 
heuristics. A large collection of 75,000 instances of the single machine 
early/tardy scheduling problem is generated, characterized by six features, and 
used to explore the performance of two common scheduling heuristics. The best 
heuristic is selected using rules from a decision tree with accuracy exceeding 
97%. A self-organizing map is used to visualize the feature space and generate 
insights into heuristic performance. This paper argues for such a knowledge 
discovery approach to be applied to other optimization problems, to contribute 
to automation of algorithm selection as well as insightful algorithm design.  

Keywords: Scheduling, heuristics, algorithm selection, self-organizing map, 
performance prediction, knowledge discovery. 

1   Introduction 

It has long been appreciated that knowledge of a problem’s structure and instance 
characteristics can assist in the selection of the most suitable algorithm or heuristic  
[1, 2]. The No Free Lunch theorem [3] warns us against expecting a single algorithm 
to perform well on all classes of problems, regardless of their structure and 
characteristics. Instead we are likely to achieve better results, on average, across many 
different classes of problem, if we tailor the selection of an algorithm to the 
characteristics of the problem instance. This approach has been well illustrated by the 
recent success of the algorithm portfolio approach on the 2007 SAT competition [4]. 

As early as 1976, Rice [1] proposed a framework for the algorithm selection 
problem. There are four essential components of the model:  

 

• the problem space P represents the set of instances of a problem class;  
• the feature space F contains measurable characteristics of the instances 

generated by a computational feature extraction process applied to P;  
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• the algorithm space A is the set of all considered algorithms for tackling the 
problem; 

• the performance space Y represents the mapping of each algorithm to a set of 
performance metrics. 

In addition, we need to find a mechanism for generating the mapping from feature 
space to algorithm space. The Algorithm Selection Problem can be formally stated as: 

For a given problem instance x ∈  P, with features f(x) ∈  F, find the selection 

mapping S(f(x)) into algorithm space A, such that the selected algorithm α ∈ A 

maximizes the performance mapping y(α(x)) ∈ Y. The collection of data describing 
{P, A, Y, F} is known as the meta-data. 

There have been many studies in the broad area of algorithm performance 
prediction, which is strongly related to algorithm selection in the sense that supervised 
learning or regression models are used to predict the performance ranking of a set of 
algorithms, given a set of features of the instances. In the AI community, most of the 
relevant studies have focused on constraint satisfaction problems like SAT, QBF or 
QWH (P, in Rice’s notation), using solvers like DPLL, CPLEX or heuristics (A), and 
building a regression model (S) to use the features of the problem structure (F) to 
predict the run-time performance of the algorithms (Y). Studies of this nature include 
Leyton-Brown and co-authors [5-7], and the earlier work of Horvitz et al. [8] that 
used a Bayesian approach to learn the mapping S. In recent years these studies have 
extended into the algorithm portfolio approach [4] and a focus on dynamic selection 
of algorithm components in real-time [9, 10].  

In the machine learning community, research in the field of meta-learning has 
focused on classification problems (P), solved using typical machine learning 
classifiers such as decision trees, neural networks, or support vector machines (A), 
where supervised learning methods (S) have been used to learn the relationship 
between the statistical and information theoretic measures of the classification 
instance (F) and the classification accuracy (Y).  The term meta-learning [11] is used 
since the aim is to learn about learning algorithm performance. Studies of this nature 
include [12-14] to name only three of the many papers published over the last 15 
years. 

In the operations research community, particularly in the area of constrained 
optimization, researchers appear to have made fewer developments, despite recent 
calls for developing greater insights into algorithm performance by studying search 
space or problem instance characteristics. According to Stützle and Fernandes [15], 
“currently there is still a strong lack of understanding of how exactly the relative 
performance of different meta-heuristics depends on instance characteristics”.  

Within the scheduling community, some researchers have been influenced by the 
directions set by the AI community when solving constraint satisfaction problems. 
The dynamic selection of scheduling algorithms based on simple low-level 
knowledge, such as the rate of improvement of an algorithm at the time of dynamic 
selection, has been applied successfully [16]. Other earlier approaches have focused 
on integrating multiple heuristics to boost scheduling performance in flexible 
manufacturing systems [17]. 
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For many NP-hard optimization problems, such as scheduling, there is a great deal 
we can discover about problem structure which could be used to create a rich set of 
features. Landscape analysis (see [18-20]) is one framework for measuring the 
characteristics of problems and instances, and there have been many relevant 
developments in this direction, but the dependence of algorithm performance on these 
measures is yet to be completely determined [20].  

Clearly, Rice’s framework is applicable to a wide variety of problem domains. A 
recent survey paper [21] has discussed the developments in algorithm selection across 
a variety of disciplines, using Rice’s notation as a unifying framework, through which 
ideas for cross-fertilization can be explored. Beyond the goal of performance 
prediction also lies the ideal of greater insight into algorithm performance, and very 
few studies have focused on methodologies for acquiring such insights. Instead the 
focus has been on selecting the best algorithm for a given instance, without 
consideration for what implications this has for algorithm design or insight into 
algorithm behaviour. This paper demonstrates that knowledge discovery processes 
can be applied to a rich set of meta-data to develop, not just performance predictions, 
but visual explorations of the meta-data and learned rules, with the goal of learning 
more about the dependencies of algorithm performance on problem structure and data 
characteristics.  

In this paper we present a methodology encompassing both supervised and 
unsupervised knowledge discovery processes on a large collection of meta-data to 
explore the problem structure and its impact on algorithm suitability. The problem 
considered is the early/tardy scheduling problem, described in section 2. The 
methodology and meta-data is described in section 3, comprising 75,000 instances (P) 
across a set of 6 features (F). We compare the performance of two common heuristics 
(A), and measure which heuristic produces the lowest cost solution (Y). The mapping 
S is learned from the meta-data {P, A, Y, F} using knowledge derived from self-
organizing maps, and compared to the knowledge generated and accuracy of the 
performance predictions using the supervised learning methods of neural networks 
and decision trees. Section 4 presents the results of this methodology, including 
decision tree rules and visualizations of the feature space, and conclusions are drawn 
in Section 5. 

2   The Early/Tardy Machine Scheduling Problem 

Research into the various types of E/T scheduling problems was motivated, in part, by 
the introduction of Just-in-Time production, which required delivery of goods to be 
made at the time required.  Both early and late production are discouraged, as early 
production incurs holding costs, and late delivery means a loss of customer goodwill.  
A summary of the various E/T problems was presented in [22] which showed the NP-
completeness of the problem. 

2.1   Formulation 

The E/T scheduling problem we consider is the single machine, distinct due date, 
early/tardy scheduling problem where each job has an earliness and tardiness penalty 
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and due date. Once a job is dispatched on the machine, it runs to completion with no 
interruptions permitted. The objective is to minimise the total penalty produced by the 
schedule.  The objective of this problem can be defined as follows:  

( )∑
=

+
−+

+
−

n

i
idiciicidi

1
min βα  . (1) 

where n is the number of jobs to be scheduled, ci is the completion time of job i, di is 

the due date of job i, αi is the penalty per unit of time when job i is produced early,  

βi is the penalty per unit of time when job i is produced tardily, and |x|+ = x if x > 0, 

or 0 otherwise. We also define pi as the processing time of job i. The decision 

variable is the completion time ci of job i, derived from the optimal starting sequence 
of jobs and their processing times. 

The objective of this problem is to schedule the jobs as closely as possible to their 
due dates; however the difficulty in formulating a schedule occurs when it is not 
possible to schedule all jobs on their due dates, which also causes difficulties in 
managing the many tradeoffs between jobs competing for processing at a given time 
[23]. Two of the simplest and most commonly used dispatching heuristics for the E/T 
scheduling problem are the Earliest Due Date and Shortest Processing Time 
heuristics.   

2.2   Earliest Due Date (EDD) Heuristic 

The EDD heuristic orders the jobs based on the date the job is due to be delivered to 
the customer. The jobs with the earliest due date are scheduled first, while the jobs 
with the latest due date are scheduled last. After the sequence is determined, the 
completion times of each job are then calculated using the optimal idle time insertion 
algorithm of Fry, Armstrong and Blackstone [24]. For single machine problems the 
EDD is known to be the best rule to minimise the maximum lateness, and therefore 
tardiness, and also the lateness variance [25]. The EDD has the potential to produce 
optimal solutions to this problem, for example when there are few jobs and the due 
dates are widely spread so that all jobs may be scheduled on their due date without 
interfering with any other jobs. As there are no earliness or tardiness penalties, the 
objective value will be 0 and therefore optimal.   

2.3   Shortest Processing Time (SPT) Heuristic 

The SPT heuristic orders the jobs based on their processing time. The jobs with the 
smallest processing time are scheduled first, while the jobs with the largest processing 
time are scheduled last; this is the fastest way to get most of the jobs completed 
quickly. Once the SPT sequence has been determined, the job completion times are 
calculated using the optimal idle time insertion algorithm [24]. The SPT heuristic has 
been referred to as “the world champion” scheduling heuristic [26], as it produces 
schedules for single machine problems that are good at minimising the average time 
of jobs in a system, minimising the average number of jobs in the system and  
minimising the average job lateness [25]. When the tardiness penalties for the jobs are 
similar and the due dates are such that the majority of jobs are going to be late, SPT is 
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likely to produce a very good schedule for the E/T scheduling problem, as it gets the 
jobs completed as quickly as possible. The “weighted” version of the SPT heuristic, 
where the order is determined by pi/βi, is used in part by many E/T heuristics, as this 
order can be proven to be optimal for parts of a given schedule.  

2.4   Discussion 

Due to the myopic nature of the EDD and SPT heuristics, neither heuristic is going to 
consistently produce high quality solutions to the general E/T scheduling problem.  
Both of these simple heuristics generate solutions very quickly however and therefore 
it is possible to carry out a large sample of problems in order to demonstrate whether 
or not the approach proposed here is useful for exploring the relative performance of 
two heuristics (or algorithms) and is able to predict the superiority of one heuristic 
over another for a given instance. 

3   Methodology 

In this section we describe the meta-data for the E/T scheduling problem in the form 
of {P, A, Y, F}. We also provide a description of the machine learning algorithms 
applied to the meta-data to produce rules and visualizations of the meta-data. 

3.1   Meta-data for the E/T Scheduling Problem 

The most critical part of the proposed methodology is identification of suitable 
features of the problem instances that reflect the structure of the problem and the 
characteristics of the instances that might explain algorithm performance. Generally 
there are two main approaches to characterizing the instances: the first is to identify 
problem dependent features based on domain knowledge of what makes a particular 
instance challenging or easy to solve; the second is a more general set of features 
derived from landscape analysis [27]. Related to the latter is the approach known in 
the meta-learning community as landmarking [28], whereby an instance is 
characterized by the performance of simple algorithms which serve as a proxy for 
more complicated (and computationally expensive) features. Often a dual approach 
makes sense, particularly if the feature set derived from problem dependent domain 
knowledge is not rich, and supplementation from landscape analysis can assist in the 
characterization of the instances. In the case of the generalised single machine E/T 
scheduling problem however, there is sufficient differentiation power in a small 
collection of problem dependent features that we can derive rules explaining the 
different performance of the two common heuristics. Extending this work to include a 
greater set of algorithms (A) may justify the need to explore landscape analysis tools 
to derive greater characterisation of the instances. 

In this paper, each n-job instance of the generalised single machine E/T scheduling 
problem has been characterized by the following features. 

1. Number of jobs to be scheduled in the instance, n 
2. Mean Processing Time p : The mean processing time of all jobs in an instance 
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3. Processing Time Range pσ : The range (max – min) of the processing times of 
all jobs in the instance 

4. Tardiness Factor τ : Defines where the average due date occurs relative to, and 
as a fraction of the total processing time of all jobs in the instance. A positive 
tardiness factor indicates the proportion of the schedule that is expected to be 
tardy, while a negative tardiness factor indicates the amount of idle time that is 
expected in the schedule as a proportion of the total processing time of all jobs 
in the sequence. Mathematically the tardiness factor was defined by Baker and 

Martin [29] as: 
∑

∑
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5. Due Date Range factor Dσ : Determines the spread of the due dates from the 
average due date for all jobs in the instance, normalized by the size of 

processing times. It is defined as 
∑

−=
ip

ab
D

)(
σ , where b is the maximum due 

date in the instance and a is the minimum due date in the instance, and is a 
fraction of the total processing time needed for the instance 

6. Penalty Ratio ρ :  The maximum over all jobs in the instance of the ratio of 
the tardy penalty to the early penalty. 

 
Any instance of the problem, whether contained in the meta-data set or generated at a 
future time, can be characterized by this set of six features. It is not the only possible 
set of features but, as the results presented later in this paper demonstrate, it captures 
the essential variation in instances needed to accurately predict heuristic performance. 
Since we are comparing the performance of only two heuristics, we can create a 
single binary variable to indicate which heuristic performs best for a given problem 
instance. Let Yi=1 if EDD is the best performing heuristic (lowest objective function) 
compared to SPT for problem instance i, and Yi=0 otherwise (SPT is best). The meta-
data then comprises the set of six-feature vectors and heuristic performance measure 
(Y), for a large number of instances, and the task is to learn the relationship between 
features and heuristic performance. 

In order to provide a large and representative sample of instances for the meta-data, 
an instance generator was created to span a range of values for each feature. Problem 
instances were then generated for all combinations of parameter values. Note that 
these parameters are targets for the instances and the random generation process may 
create slight variation from these target values. The parameter settings used were: 

• problem size (number of jobs, n): 20-100 with increments of 20 (5 levels) 
• target processing time range pσ : processing times randomly generated with a  

range (pmax – pmin) of 2-10 with increments of 2 (5 levels).   
• target due date range factor Dσ as a proportion of total processing time:  

ranges from 0.2 to 1 in increments of 0.2 (5 levels)  
• target tardiness factor τ as a proportion of total processing time: ranges from 

0 (all jobs should complete on time) to 1 (all jobs should be late) in 
increments of 0.2 (6 levels)  

• penalty ratio ρ : 1-10  with increments of 1 (10 levels) 
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From these parameters the following instance data can be generated: 

• processing times pi : calculated within the processing time range. 
• processing time means p : calculated from the randomly generated pi 

• due dates di : due dates randomly generated within the due date range and 
offset by the tardiness factor.   

To calculate the actual pσ, actual Dσ and actual τ we use the actual pi, di of the 
problem rather than the target values. Ten instances using each parameter setting were 
then generated, giving a total of 5 (size levels) x 5 (processing time range levels) x 6 
(tardiness factor levels) x 5 (due date range factor levels) x 10 (penalty ratio levels) x 
10 (instances) = 75,000 instances. 

A correlation analysis between the instance features and the Y values across all 
75,000 instances reveals that the only instance features that appear to correlate 
(linearly) with heuristic performance are the tardiness factor (correlation = -0.59) and 
due date range factor (correlation = 0.44). None of the other instance features appear 
to have a linear relationship with algorithm performance. Clearly due date range 
factor and tardiness factor correlate somewhat with the heuristic performances, but it 
is not clear if these are non-linear relationships, and if either of these features with 
combinations of the others can be used to seek greater insights into the conditions 
under which one heuristic is expected to outperform the other. 

Using Rice’s notation, our meta-data can thus be described as: 

• P = 75,000 E/T scheduling instances 
• A = 2 heuristics (EDD and SPT) 
• Y = binary decision variable indicating if EDD is best compared to SPT 

(based on objective function which minimizes weighted deviation from due 
dates) 

• F = 6 instance features (problem size, processing time mean, processing time 
range, due date range factor, tardiness factor and penalty ratio). 

Additional features could undoubtedly be derived either from problem dependent 
domain knowledge, or using problem independent approaches such as landscape 
analysis [28], landmarking [28], or hyper-heuristics [30]. For now though, we seek to 
learn the relationships that might exist in this meta-data. 

3.2   Knowledge Discovery on the Meta-data 

When exploring any data-set to discover knowledge, there are two broad approaches. 
The first is supervised learning (aka directed knowledge discovery) which uses 
training examples – sets of independent variables (inputs) and dependent variables 
(outputs) - to learn a predictive model which is then generalized for new examples to 
predict the dependent variable (output) based only on the independent variables 
(inputs). This approach is useful for building models to predict which algorithm or 
heuristic is likely to perform best given only the feature vector as inputs. The second 
broad approach to knowledge discovery is unsupervised learning (aka undirected 
knowledge discovery) which uses only the independent variables to find similarities 
and differences between the structure of the examples, from which we may then be 
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able to infer relationships between these structures and the dependent variables. This 
second approach is useful for our goal of seeking greater insight into why certain 
heuristics might be better suited to certain instances and, rather than just building 
predictive models of heuristic performance. 

In this section we briefly summarise the machine learning methods we have used 
for knowledge discovery on the meta-data.  

Neural Networks 
As a supervised learning method [31], neural networks can be used to learn to predict 
which heuristic is likely to return the smallest objective function value. A training 
dataset is randomly extracted (80% of the 75,000 instances) and used to build a non-
linear model of the relationships between the input set (features F) and the output 
(metric Y). Once the model has been learned, its generalisation on an unseen test set 
(the remaining 20% of the instances) is evaluated and recorded as a percentage 
accuracy in predicting the superior heuristic. This process is repeated ten times for 
different random extractions of the training and test sets, to ensure that the results 
were not simply an artifact of the random number seed. This process is known as ten-
fold cross validation, and the reported results show the average accuracy on the test 
set across these ten folds. 

For our experimental results, the neural network implementation within the Weka 
machine learning platform [32] was used with 6 input nodes, 4 hidden nodes, and 2 
output nodes utilising binary encoding. The transfer function for the hidden nodes was 
a sigmoidal function, and the neural network was trained with the backpropagation 
(BP) learning algorithm with learning rate = 0.3, momentum = 0.2.  The BP 
algorithm stops when the number of epochs (complete presentation of all examples) 
reaches a maximum training time of 500 epochs or the error on the test set does not 
decrease after a threshold of 20 epochs.  

Decision Tree 
A decision tree [33] is also a supervised learning method, which uses the training data 
to successively partition the data, based on one feature at a time, into classes. The 
goal is to find features on which to split the data so that the class membership at lower 
leaves of the resulting tree is as “pure” as possible. In other words, we strive for 
leaves that are comprised almost entirely of one class only. The rules describing each 
class can then be read up the tree by noting the features and their splitting points. Ten-
fold cross validation is also used in our experiments to ensure the generalisation of the 
rules. 

The J4.8 decision tree algorithm, implemented in Weka [32], was used for our 
experimental results, with a minimum leaf size of 500 instances. The generated 
decision tree is pruned using subtree raising with confidence factor = 0.25.  

Self-Organizing Maps 
Self-Organizing Maps (SOMs) are the most well-known unsupervised neural network 
approach to clustering. Their advantage over traditional clustering techniques such as 
the k-means algorithm lies in the improved visualization capabilities resulting from 
the two-dimensional map of the clusters. Often patterns in a high dimensional input 
space have a very complicated structure, but this structure is made more transparent 
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and simple when they are clustered in a lower dimensional feature space. Kohonen 
[34] developed SOMs as a way of automatically detecting strong features in large data 
sets. SOMs find a mapping from the high dimensional input space to low dimensional 
feature space, so any clusters that form become visible in this reduced dimensionality. 
The architecture of the SOM is an multi-dimensional input vector connected via 
weights to a 2-dimensional array of neurons. When an input pattern is presented to the 
SOM, each neuron calculates how similar the input is to its weights. The neuron 
whose weights are most similar (minimal distance in input space) is declared the 
winner of the competition for the input pattern, and the weights of the winning 
neuron, and its neighbours, are strengthened to reflect the outcome. The final set of 
weights embeds the location of cluster centres, and is used to recognize to which 
cluster a new input vector is closest. 

For our experiments we randomly split the 75000 instances into training data 
(50000 instances) and test data (25000 instances). We use the Viscovery SOMine 
software (www.eudaptics.com) to cluster the instances based only on the six features 
as inputs. A map of 2000 nodes is trained for 41 cycles, with the neighbourhood size 
diminishing linearly at each cycle. After the clustering of the training instances, the 
distribution of Y values is examined within each cluster, and knowledge about the 
relationships between instance structure and heuristic performance is inferred and 
evaluated on the test data. 

4   Experimental Evaluation 

4.1   Supervised Learning Results 

Both the neural network and decision tree algorithms were able to learn the 
relationships in the meta-data, achieving greater than 97% accuracy (on ten-fold 
cross-validation test sets) in predicting which of the two heuristics would be superior 
based only on the six features (inputs). These approaches have an overall 
classification accuracy of 97.34% for the neural network and 97.13% for the decision 
tree. While the neural network can be expected to learn the relationships in the data 
more powerfully, due to its nonlinearity, its limitation is the lack of insight and 
explanation of those relationships. The decision tree’s advantage is that it produces a 
clear set of rules, which can be explored to see if any insights can be gleaned. The 
decision tree rules are presented in the form of pseudo-code in Figure 1, with the 
fraction in brackets showing the number of instances that satisfied both the condition 
and the consequence (decision) in the numerator, divided by the total number of 
instances that satisfied the condition in the denominator. This proportion is equivalent 
to the accuracy of the individual rule. 

The results allow us to state a few rules with exceptionally high accuracy: 
 

1) If the majority of jobs are expected to be scheduled early (tardiness factor <= 
0.5) then EDD is best in 99.8% of instances 

2) If the majority of the jobs are expected to be scheduled late (tardiness factor 
> 0.7) then SPT is best in 99.5% of instances 
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3) If slightly more than half of the jobs are expected to be late (tardiness factor 
between 0.5 and 0.7) then as long as the tardiness penalty ratio is no more 
than 3 times larger than the earliness penalty (ρ ≤ 3), then EDD is best in 
98.9% of the instances with a due date range factor greater than 0.2. 

The first two rules are intuitive and can be justified from what we know about the 
heuristics - EDD is able to minimise lateness deviations when the majority of jobs can 
be scheduled before their due date, and SPT is able to minimise the time of jobs in the 
system and hence tardiness when the majority of jobs are going to be late [25]. The 
third rule reveals the kind of knowledge that can be discovered by adopting a machine 
learning approach to the meta-data. Of course other rules can also be explored from 
Figure 1, with less confidence due to the lower accuracy, but they may still provide 
the basis for gaining insight into the conditions under which different algorithms can 
be expected to perform well. 

 

 

Fig. 1. Pseudo-code for the decision tree rule system, showing the accuracy of each rule  

4.2   Unsupervised Learning Results 

After training the SOM, the converged map shows 5 clusters, each of which contains 
similar instances defined by Euclidean distance in feature space. Essentially, the six-
dimensional input vectors have been projected onto a two-dimensional plane, with 
topology-preserving properties. The clusters can be inspected to understand what the 
instances within each cluster have in common. The statistical properties of the 5 
clusters can be seen in Table 1. The distribution of the input variables (features), and 
additional variables including the performance of the heuristics, can be visually 
explored using the maps shown in Figure 2. A k-nearest neighbour algorithm (with 
k=7) is used to distribute additional data instances (from the test set) or extra variables 
(Y values) across the map. 

Looking first at the bottom row of Table 1, it is clear that clusters 1, 2 and 3 
contain instances that are best solved using EDD (Y=1). These clusters are shown 
visually in the bottom half of the 2-d self-organizing map (see Figure 2a for cluster 
boundaries, and Figure 2b to see the distribution of Y across the clusters). These three 
clusters of instances account for 70.2% of the 75,000 instances (see Table 1). The 
 

If (τ  <= 0.7) Then  
If (τ  <= 0.5) Then EDD best (44889/45000 = 99.8%)  
If (τ  > 0.5) Then If (Dσ <= 0.2) Then If (ρ <= 3) Then EDD best (615/750 = 82.0%)  

   Else SPT best (1483/1750 = 84.7%) 
  Else If (ρ <= 3) Then EDD best (5190/5250 = 98.9%)  

         Else If (τ  <= 0.6) Then EDD best (8320/8750 = 95.1%)  
             Else If ( p  <= 2) Then EDD best (556/700 = 79.4%)  

              Else If (n <= 60) Then SPT best (1150/1680 = 68.4%)  
               Else EDD best (728/1120 = 65%) 

Else SPT best (9950/10000 = 99.5%) 
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remaining clusters 4 and 5 are best solved, on average, by SPT. The maps shown in 
Figure 2c – 2h enable us to develop a quick visual understanding of how the clusters 
differ from each other, and to see which features are prominent in defining instance 
structure. 

Table 1. Cluster statistics for training data (test data in brackets) - mean values of input 
variables, and heuristic performance variable Y, as well as cluster size 

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 All Data 

instances 
17117 
(8483) 

10454 
(5236) 

7428 
(3832) 

8100 
(4000) 

6901 
(3449) 

50000 
(25000) 

instances 
(%) 

34.23 
(33.93) 

20.91 
(20.94) 

14.86 
(15.33) 

16.2 
(16.0) 

13.8 
(13.8) 

100 
(100) 

n 60.65 
(61.03) 

59.73 
(59.73) 

58.73 
(58.96) 

57.8 
(57.7) 

63.39 
(61.56) 

60.0 
(59.97) 

p  2.77 (2.76) 5.24 (5.22) 5.08 (5.07) 5.12 (5.11) 2.70 (2.71) 4.0 (3.99) 

pσ 3.54 (3.52) 8.48 (8.45) 8.16 (8.13) 8.24 (8.21) 3.41 (3.41) 6.0 (5.99) 

τ 0.31 (0.31) 0.36 (0.35) 0.21 (0.21) 0.72 (0.73) 0.72 (0.72) 0.43 (0.42) 

Dσ 0.70 (0.70) 0.88 (0.88) 0.38 (0.38) 0.40 (0.39) 0.40 (0.40) 0.6 (0.59) 

ρ 5.89 (5.88) 4.93 (4.99) 5.37 (5.41) 5.24 (5.19) 5.87 (5.72) 5.5 (5.49) 

Y 1.00 (0.99) 1.00 (1.00) 0.99 (0.99) 0.36 (0.36) 0.42 (0.41) 0.82 (0.82) 

 
By inspecting the maps shown in Figure 2, and the cluster statistics in Table 1, we 

can draw some conclusions about whether the variables in each cluster are above or 
below average (compared to the entire dataset), and look for correlations with the 
heuristic performance metric Y. For instance, cluster 2 is characterized by instances 
with above average values of processing time mean and range, below average 
tardiness factor, and above average due date range factor. The EDD heuristic is 
always best under these conditions (Y=1). Instances in cluster 3 are almost identical, 
except that the due date range factor tends to be below average. Since cluster 3 
instances are also best solved by the EDD heuristic, one could hypothesize that the 
due date range factor does not have much influence in predicting heuristic 
performance. An inspection of the maps, however, shows this is not the case. 

The distribution of Y across the map (Figure 2b) shows a clear divide between the 
clusters containing instances best solved using EDD (bottom half) and the clusters 
containing instances best solved using SPT (top half).  Inspecting the distribution of 
features across this divide leads to a simple observation that, if the tardiness factor τ is 
below average (around 0.5 represented by white to mid-grey in Figure 2f), then EDD 
will be best. But there are small islands of high Y values in clusters 4 and 5 that 
overlay nicely with the medium grey values of due date range factor. So we can 
observe another rule that EDD will also be best if the tardiness factor is above average 
and the due date range factor is above average. Also of interest, from these maps we 
can see that problem size and the penalty ratio do not influence the relative  
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Fig. 2. Self-Organizing Map showing 5 clusters (fig. 2a), the heuristic performance variable Y 
(fig 2b), and the distribution of six features across the clusters (fig 2c – fig 2h). The grey scale 
shows a minimum value as white, and maximum value as black. 

performance of these heuristics. As neither heuristic considers the penalty ratio (it is 
used within the optimal idle time insertion algorithm [24], common to both heuristics, 
but not used by the EDD or SPT heuristics themselves), its not being a factor in the 
clusters is not surprising.   

d) Distribution of p  c) Distribution of n e) Distribution of σp  

f) Distribution of τ  g) Distribution of σD  h) Distribution of ρ  

a) 5 Clusters in 2-d space b) Distribution of Y across clusters 
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Within Viscovery SOMine, specific regions of the map can be selected, and used 
as the basis of a classification. In other words, we can define regions and islands to be 
predictive of one heuristic excelling based on the training data (50,000 instances). We 
can then test the generalization of the predictive model using the remaining 25,000 
instances as a test set, and applying the k-nearest neighbour algorithm to determine 
instances that belong to the selected region. We select the dark-grey to black regions 
of the Y map in Figure 2b, and declare that any test instances falling in the selected 
area are classified as Y=1, while any instances falling elsewhere in the map are 
classified as Y=0. The resulting accuracy on the test set is 95% in predicting which 
heuristic will perform better. The self-organizing map has proven to be useful for both 
visualization of feature space and predictive modeling of heuristic performance, 
although the accuracy is not quite as high as the supervised learning approaches. 

5   Conclusions and Future Research 

In this paper we have illustrated how the concepts of Rice’s Algorithm Selection 
Problem can be extended within a knowledge discovery framework, and applied to 
the domain of optimization in order that we might gain to insights into optimization 
algorithm performance. This paper represents one of the first attempts to apply this 
approach to understand more about optimisation algorithm performance. While only 
two very simple heuristics have been used to illustrate the approach, we expect full 
generalization of the methodology to consider a broader range of complex heuristics 
and meta-heuristics. A large meta-data set comprising 75,000 instances of the E/T 
scheduling problem has been used to explore what can be learned about the 
relationships between the features of the problem instances and the performance of 
heuristics. Both supervised and unsupervised learning approaches have been 
presented, each with their own advantages and disadvantages made clear by the 
empirical results. The neural network obtained the highest accuracy for performance 
prediction, but its weakness is the lack of explanation or interpretability of the model. 
Our goal is not merely performance prediction, but to gain insights into the 
characteristics of instances that make solution by one heuristic superior than another. 
Decision trees are also a supervised learning method, and the rules produced 
demonstrate the potential to obtain both accurate performance predictions and some 
insights. Finally, the self-organizing map demonstrated its benefits for visualization of 
the meta-data and relationships therein.  

One of the most important considerations for this approach to be successful for any 
arbitrary optimization problem is the choice of features used to characterize the instances. 
These features need to be carefully chosen in such a way that they can characterize 
instance and problem structure as well as differentiate algorithm performance. 

There is little that will be learned via a knowledge discovery process if the features 
selected to characterize the instances do not have any differentiation power. The result 
will be supervised learning models of algorithm performance that predict average 
behaviour with accuracy measures no better than the default accuracies one could 
obtain from using a naïve model. Likewise, the resulting self-organizing map would 
show no discernible difference between the clusters when superimposing Y values 
(unlike in Figure 2b where we obtain a clear difference between the top and bottom 
halves of the map). Thus the success of any knowledge discovery process depends on 
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the quality of the data, and in this case, the meta-data must use features that serve the 
purpose of differentiating algorithm performance. In this paper we have used a small set 
of problem-dependent features, related to the E/T Scheduling Problem, which would be 
of no use to any other optimization problem. For other optimization problem like graph 
colouring or the Travelling Salesman Problem, recent developments in phase transition 
analysis (e.g. [35]) could form the foundation of the development of useful features. 
Landscape analysis [20, 27] provides a more general (problem independent) set of 
features, as do ideas from landmarking [28] and hyper-heuristics [30]. It is natural to 
expect that the best results will be obtained from a combination of generic and problem 
dependent features, and this will be the focus of our future research. In addition, we plan 
to extend the approach to consider the performance of a wider variety of algorithms, 
especially meta-heuristics, where we will also be gathering meta-data related to the 
features of the meta-heuristics themselves (e.g. hill-climbing capability, tabu list, 
annealing mechanism, population-based search, etc.). This will help to close the loop to 
ensure that any insights derived from such an approach are able to provide inputs into 
the design of new hybrid algorithms that adapt the components of the meta-heuristic 
according to the instance features – an extension of the highly successful algorithm 
portfolio approach [4]. 
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Abstract. The fitness landscape of the resource constrained project
scheduling problem is investigated by examining the search space po-
sition type distribution and the correlation between the quality of a so-
lution and its distance to an optimal solution. The suitability of the
landscape for search with evolutionary computation and local search
methods is discussed.

1 Introduction

The problem considered in this paper is the non-preemptive single mode resource-
constrained project scheduling problem (RCPSP). It consists in scheduling a
set of activities with deterministic processing times, resource requirements, and
precedence relations between activities. The aim is to find a schedule with min-
imum makespan (total project duration) observing both precedence relations
and resource limits. The RCPSP is a classical problem in project scheduling. It
is related to and subsumes many other scheduling problems (e.g., the job shop
scheduling problem (JSP) as a special case [1]). The RCPSP is encountered in
diverse contexts, including production, service industry, software development,
and civil engineering.

The RCPSP is an NP-hard optimization problem [2]. Hence, the majority of
state-of-the-art algorithms are based on metaheuristics. Kolisch and Hartmann
[3] present a comprehensive experimental evaluation of heuristic approaches for
the RCPSP where the best performing algorithms are population-based meta-
heuristics (evolutionary methods) such as genetic algorithms, discrete parti-
cle swarm optimization (DPSO), and scatter search. Nowadays most effective
population-based methods use some kind of hybridization to improve individual
solutions; see, e.g., [4]. Consequently, the best algorithms in [3] utilize a heuristic
procedure to improve single schedules, in particular forward-backward improve-
ment (FBI, see [5], [6]). However, general local search methods, which depend
on an underlying neighborhood structure and move selection rules, such as tabu
search and simulated annealing, are not competitive under the experimental
settings in [3].

The concept of a fitness landscape and its statistical analysis has been shown
to be useful for understanding the behavior of search algorithms and can help in
predicting their performance [7]. The aim of this paper is to analyze the fitness
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landscape of the RCPSP and to contribute to the explanation of the empirical
results presented by Kolisch and Hartmann [3].

2 The Resource Constrained Project Scheduling Problem

A project consists of a set J of N activities, J = {1, . . . , N} and a set R of
K renewable resources, R = {1 . . . , K}. In general the dummy start activity
1 and the dummy termination activity N are added to the project and act as
source and sink of the project, respectively. The duration or processing time of
activity j ∈ J is dj with d1 = dN = 0. Each activity has to be processed without
interruption. Precedence constraints force activity j not to be started before all
its immediate predecessors in the set Pj ⊂ J have been finished. The structure of
a project can be represented by an activity-on-node (AON) network G = (V ,A),
where V is the set of activities J and A is the set of precedence relationships [8].
While being processed, activity j requires rj,k units of resource k ∈ R in every
time unit of its duration (with r1,k = rN,k = 0, k = 1, . . . , K). For each renewable
resource k there is a limited capacity of Rk at any point in time. The values
dj , Rk, and rj,k (duration of activities, availability of resources, and resource
requirements of activities) are assumed to be nonnegative and deterministic.

A schedule can be presented as S = (s1, . . . , sN ), where sj denotes the start
time of activity j with s1 = 0. The objective is to determine the start time of each
activity, so that the project makespan (total project duration) is minimized, and
both the precedence and the resource constraints are satisfied. Effective search
methods for the RCPSP are mostly based on a genotype search space which
consists of precedence-feasible activity lists (permutations). The serial schedule
generation scheme may be used to derive a schedule from the activity list [9].

As a generalization of the classical job shop scheduling problem the RCPSP
belongs to the class of NP-hard optimization problems [2] and it is noted as
PS|prec|Cmax according to the common classification and notation described
in [1]. Hartmann and Kolisch [3,10] present basic components of heuristic ap-
proaches and evaluate the state-of-the-art of the design and application of
metaheuristics for the RCPSP on a benchmark set of test instances.

3 Fitness Landscape Analysis

Given some search space, a fitness landscape is induced by a particular operator
which defines a neighborhood structure [11]. More precisely, a fitness landscape is
a labeled, directed graph [12, Chap. 2]. Since we employ an unary neighborhood
operator (see Sec. 4) we can simplify Jones’s model [12]: The vertices of the
graph correspond to genotype solutions (i.e., permutations) of the RCPSP. A
directed edge connecting vertex Π to Π ′ indicates that Π ′ is reachable from
Π with one application of the neighborhood operator (i.e., Π is a neighbor of
Π ′ under the considered neighborhood operator). The vertices of the graph are
labeled with the corresponding fitness values, giving raise to the landscape image
when thought of as heights [12, Chap. 2]. Based on this definition seven position



106 J. Czogalla and A. Fink

types for points in the search space can be defined according to the topology of
their local neighborhood [13, p. 211f]:

– strict local minima (SLMIN, all neighbors have larger fitness values)
– local minima (LMIN, no neighbor has a smaller fitness value)
– interior plateau (IPLAT, all neighbors have the same fitness values)
– ledge (LEDGE, different kinds of neighbors)
– slope (SLOPE, no neighbor has the same fitness value)
– local maxima (LMAX, no neighbor has a larger fitness value)
– strict local maxima (SLMAX, all neighbors have smaller fitness values)

Every search space position can be assigned to exactly one position type. For
small instance sizes the exact position type distribution (PTD) can be determined
by total enumeration. Sampling methods have to be applied for larger instance
sizes. For a detailed discussion we refer to [13, p. 213].

Several global features of fitness landscapes influence the performance of
heuristic optimization algorithms [7]. The ruggedness of a landscape is a measure
for the correlation of fitness values of neighboring points in the search space and
for the number of local optima. Observed in a time-series generated by a ran-
dom walk it can be used to predict the performance of local search procedures
incorporated in evolutionary methods [14]. A prerequisite for useful statistics
based on random walks is the regularity of the search space, i.e., all elements of
the landscape are visited by a random walk with equal probability. Precedence
constraints cause the fitness landscape of the RCPSP to be non-regular render-
ing this statistical method meaningless. Directed stochastic search performed
on such a landscape may be biased. As shown for the JSP in [14] a negative
correlation between solution quality and the number of neighbors (minimization
problem) can guide local search toward regions of the fitness landscape contain-
ing high-quality solutions. In [14] the correlation between solution quality and
the number of neighbors was termed drift.

In [12] the fitness distance correlation (FDC) as a measure of problem dif-
ficulty for evolutionary methods is proposed. FDC requires the definition of a
distance measure (see below). FDC is the correlation between the quality of a
solution and its distance to an optimal solution. In case of two or more optimal
solutions the distance to the closest optimal solution may be considered. The
FDC states how closely fitness and distance to an optimal solution are related.
If fitness increases when the distance to the optimum becomes smaller, search is
expected to be relatively easy for selection-based algorithms, since the evolution
of the population is guided to a global optimum via solutions with increasing
fitness [7]. The FDC coefficient can be computed based on a sample of m so-
lutions f and the corresponding distances d to the optimal solution. The FDC
coefficient is defined as [13, p. 222f]

�(f, d) =
cov(f, d)
σ(f)σ(d)

(1)
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where

cov(f, d) =
1

m− 1

m∑
i=1

(fi − f)(di − d) (2)

σ(f) =

√√√√ 1
m− 1

m∑
i=1

(fi − f)2, σ(d) =

√√√√ 1
m− 1

m∑
i=1

(di − d)2. (3)

High � values indicate that fitness and distance to the optimum are related and
that search promises to be relatively easy for evolutionary methods [7]. In [15]
a classification of problem difficulty based on FDC coefficients is suggested. A
problem with � ≥ 0.15 (in [15] maximization problems were investigated) is
called straightforward and should be suitable for evolutionary methods.

The FDC coefficient can be estimated using randomly generated samples [12,
Chap. 5] or solutions that are improved by means of problem-specific procedures.
Fitness distance scatter plots can support the evaluation of the FDC coefficient
by avoiding misinterpretations.

Based on FDC analysis a big valley structure was reported for some combina-
torial optimization problems, e.g., the traveling salesman problem [16], the graph
bisection problem [16], the permutation flowshop sequencing problem [11], the
no-wait flow-shop scheduling problem [17], the quadratic assignment problem
[7], and the capacitated vehicle routing problem [18]. The big valley structure
means that local optima tend to be relatively close to each other and to a global
optimum. High FDC coefficients are an indicator for the presence of the big
valley structure [19]. Further evidence for a big valley structure can be obtained
from results on the correlation between the solution quality and the average
distance between one element and any other element of a given set of locally
optimal solutions [16]. The presence of a big valley structure should support
the performance of recombination in population-based search. Usually the ini-
tial population of solutions is uniformly distributed over the complete search
space. Recombination should focus the search in a region with good solutions.
In a big valley structure recombination can potentially drive the search towards
the optimal solution [19].

In the following we review distances derived from the interpretation of the
permutation representation where either the adjacency relation among the ele-
ments of the permutation, or the relative order of the elements, or the absolute
position of the elements may be of relevance.

The unidirectional version of the adjacency distance (R-type distance in [20],
adjacency based distance in [21]) is defined as the number of times a pair of
activities i, j is adjacent in both Π and Π ′ [20]:

d(Π, Π ′) =
n−1∑
i=1

yi with yi =

{
1 for πi = π′

j and πi+1 = π′
j+1

0 otherwise
(4)
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with dadj,max = n−1. The precedence distance is the number of times npre some
activity j is preceded by activity i in both Π and Π ′ [11]:

dpre(Π, Π ′) =
n(n− 1)

2
− npre (5)

with dpre,max = (n(n − 1))/2. The absolute position distance (exact match
distance in [22]) is the number of exact positional matches of activities [22]:

dabs(Π, Π ′) = n−
n∑

k=1

yi with yi =

{
1 if πi = π′

i

0 otherwise
(6)

with dabs,max = n. The deviation distance (position-based metric in [11]) requires
the definition of the inverse permutation Σ of sequence Π , where the position of
activity πi is given by σπi = i. The deviation distance is the amount of positional
deviation and can be calculated as [11]

ddev(Π, Π ′) =
n∑

j=1

|σj − σ′
j | (7)

with ddev,max = n2/2 if n is even, or ddev,max = (n2−1)/2 if n is odd [22]. Given
a set of solutions P with p = |P |, the average distance between all solutions is
defined as [23]

d◦,avg(P ) =

∑p
i=1

∑p
j=i+1 d◦(Πi, Πj)

p(p− 1)/2
(8)

with Πi as the i-th solution of the set P .
In Section 4 we will present normalized distances d◦ = d◦(Π, Π ′)/d◦,max.

4 Computational Experiments

We use benchmark instances for the RCPSP according to [24] and [25]. The
instances have been generated by a project generator (ProGen) using a full
factorial design of the instance parameters network complexity (NC), resource
strength (RS), and resource factor (RF) defining precedence relations, resource
demands, and resource availabilities respectively. There are 480 instances with
30 and 60 activities and 600 instances with 120 activities. The instances and
best known solutions are available from the project scheduling library PSPLIB1.

A solution for the RCPSP is represented as an activity list which is assumed
to be a precedence feasible permutation of the set of activities J (that is, the
solution space consist of all precedence feasible permutations). In order to de-
rive a schedule from the activity list a schedule generation scheme (SGS), either
serial or parallel, is used as decoding procedure. In this work we use the serial
SGS, which proceeds in N stages. At each stage the next unscheduled activity
in the activity list, with every predecessor activity scheduled, is selected and
1 Available at http://129.187.106.231/psplib/

http://129.187.106.231/psplib/
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scheduled at its earliest precedence and resource feasible start time. The algo-
rithm terminates when all activities are scheduled. For a detailed description of
the serial and parallel generation scheme see [9]. Note that in addition to this
forward scheduling technique backward scheduling can be applied which might
result in schedules that cannot be obtained by forward scheduling. In this paper
we employ only the forward scheduling technique. The result of the serial SGS is
an active schedule, i.e., no activity can be started earlier without delaying some
other activity [10]. For a formal definition of active schedules see [26]. The set
of active schedules will always contain an optimal solution, i.e., the serial SGS
does not exclude optimal schedules a priori [10]. There is some redundancy in the
search space since distinct activity lists may be related to the same schedule. Ad-
ditionally different schedules might possess the same makespan. Consequently,
multiple optimal solutions are to be expected.

In order to generate optimal solutions for the instance set J30 and near optimal
solutions for the instance set J602 a DPSO (as proposed in [27]) was run at most
1,500 times and stopped as soon as 5003 distinct optimal/near optimal solutions
were found. We start with randomly generated initial populations. In order to
limit a possible bias in the distribution of the solutions, due to the used DPSO, we
employ the lbest topology (see [28]), which facilitates subpopulations in different
regions of the search space. In order to examine the distribution of optimal/near
optimal solutions we calculate the average distance ratio

r◦,avg =
d◦,avg(O)
d◦,avg(A)

(9)

with O as the set of optimal/near optimal solutions and A as the set of all solu-
tions (i.e., optimal/near optimal and random solutions). In case the set of opti-
mal/near optimal solutions O contains only one solution4 the average distance
ratio was set to zero. A ratio close to 1.0 indicates that the optimal/near optimal
solutions are not clustered at some point in the search space but rather are as
widely spread as the random solutions. Figure 1 shows the histograms of rpre,avg

for the instance sets J30 and J60. Furthermore we present some percentiles of
the average distance ratio (precedence distance) in Table 1. The rational be-
hind the choice of the precedence distance will become clear later. The results
show a high average distance ratio (precedence distance) for the majority of the
instances suggesting that the DPSO does not introduce a large bias5.

2 As near optimal solutions for the instance set J60 the best known heuristic solutions
from PSPLIB (as of August 2008) were used. For 14 instances those solutions could
not be generated.

3 Those numbers were selected as a compromise between meaningful statistics and
computational requirements after some preliminary tests.

4 This is the case for one instance from the instance set J30 and for 11 instances from
the instance set J60.

5 Since precedence constraints reduce the search space a simple calculation of maximal
distances between solutions does not promise meaningful results since the actual size
of the search space in terms of the precedence distances is not clear.
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Fig. 1. Histogram of average distance ratio for the instance sets J30 (left, N = 480)
and J60 (right, N = 480)

Table 1. Percentiles for average distance ratio (precedence distance)

instance set P10 P20 P25 P30 P40 P50 P60 P70 P75 P80 P90

J30 0.559 0.693 0.766 0.839 0.914 0.949 0.968 0.982 0.987 0.992 0.999
J60 0.439 0.562 0.605 0.706 0.917 0.951 0.980 0.990 0.993 0.996 1.000

Based on randomly generated solutions and their distances to the nearest op-
timal/near optimal solution the FDC coefficient � (Eq. 1) for different distances
was calculated. A randomization test [29] was used to determine the significance
of the obtained FDC coefficients at a significance level of α = 0.05 (as in [11]).
Since most effective algorithms for the RCPSP use FBI it was applied to the
random solutions and � was calculated as well. For the instances with an RS
value of 1.0 the application of the serial SGS to a precedence feasible permuta-
tion generated always schedules with optimal makespan. For an RS value of 1.0
the capacity of resources is defined as the amount of resources needed when the
project is realized according to the earliest start time schedule. Consequently the
optimal makespan equals the critical path lower bound obtained by computing
the length of a critical path in the resource relaxation of the problem.

The histograms of the number of optimal solutions for the instance set J30
and near optimal solutions for the instance set J60 are shown in Figs. 2 and 3
without the instances with an RS value of 1.0. The vertical separation indicates
the value 500. Table 2 shows the number of FDC coefficients that are larger
than 0.15 and are significant at a significance level of α = 0.05 for the distance
measures reviewed in Sec. 3. For the instances with only optimal/near optimal
solutions � was set to 1.0. We will use the precedence distance for the remainder
of this paper since the most relevant correlation coefficients were found using
this distance measure.

In Figs. 4 and 5 the histograms of FDC coefficients (significant at α = 0.05)
for the instance sets J30 and J60 are depicted without the instances with an RS
value of 1.0. The vertical separation marks the value of � = 0.15. The results of
the FDC analysis presented in Table 2 and Figs. 4 and 5 indicate that the fitness
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Fig. 2. Histogram of optimal solutions for instance set J30; random solutions (left,
N = 360) and FBI (right, N = 360)
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Fig. 3. Histogram of near optimal solutions for instance set J60; random solutions (left,
N = 360) and FBI (right, N = 360)

Table 2. Fitness distance correlation coefficients for different distance functions.
Shown are the number of instances for which correlations above 0.15 were found. The
numbers in brackets show the number of instances for which a significant correlation
at a significance level of α = 0.05 was found.

absolute dist. adjacency dist. precedence dist. deviation dist.

J30 (random) 392 (444) 355 (425) 413 (442) 405 (437)
J30 (FBI) 443 (464) 441 (465) 453 (467) 443 (463)
J60 (random) 389 (454) 344 (445) 422 (452) 416 (444)
J60 (FBI) 456 (463) 460 (467) 467 (471) 462 (470)

landscape of the RCPSP is suitable for evolutionary methods according to [15]
and explain the effectiveness of evolutionary methods as noted by Kolisch and
Hartmann in [3]. Whereas the FDC coefficients indicate the presence of a big
valley structure the average distance ratio contradicts the finding of a big valley
structure. It seems that the decoding of precedence feasible permutations by
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Fig. 4. Histogram of fitness distance correlation coefficients (significant at α = 0.05)
for instance set J30; random solutions (left, N = 322) and FBI (right, N = 347)
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Fig. 5. Histogram of fitness distance correlation coefficients (significant at α = 0.05)
for instance set J60; random solutions (left, N = 332) and FBI (right, N = 351)

means of the serial SGS “creates” peaks (that is optimal/near optimal solutions)
in different regions of the search space. Thus good solutions tend to be close to
other good solutions but it seems that good solutions are not clustered in some
region of the search space.

In order to examine the influence of instance characteristics on FDC coeffi-
cients the non-parametric Kruskal-Wallis one-way analysis of variance [30] was
used for testing equality among groups. The results are presented in Table 3.
In case of significant differences at a significance level of α = 0.05 the results
of Mann-Whitney tests were used to classify FDC coefficients into groups that
are homogeneous in a sense that there is no significant difference among group
members. The groups are indicated by small numbers. Note that we present the
means of FDC coefficients rather than rank means for better readability. The re-
sults show that resource strength, that is the amount of available resources, has
a significant effect on FDC. With more available resources (larger value for RS)
the evolutionary search should become easier. Additionally FBI does support
the evolutionary search.
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Table 3. Statistical analysis of the influence of different instance characteristics on
fitness distance correlation

J30 (rand.) J30 (FBI) J60 (rand.) J60 (FBI)
N mean N mean N mean N mean

NC

1.50 147 0.542 - 152 0.716 - 147 0.553 - 156 0.746 -

1.80 151 0.507 - 151 0.698 - 149 0.501 - 158 0.733 -

2.10 144 0.525 - 150 0.699 - 156 0.489 - 157 0.707 -

RF

0.25 104 0.540 - 107 0.764 - 107 0.476 1 115 0.722 -

0.50 109 0.506 - 115 0.678 - 116 0.537 3 119 0.761 -

0.75 115 0.539 - 116 0.689 - 113 0.513 2 119 0.737 -

1.00 114 0.515 - 115 0.692 - 116 0.527 2 118 0.694 -

RS

0.20 110 0.309 1 110 0.497 1 118 0.297 1 119 0.430 1

0.50 111 0.367 1/2 109 0.584 2 113 0.367 2 114 0.621 2

0.70 101 0.367 2 114 0.709 3 101 0.356 2 118 0.858 3

1.00 120 1.000 3 120 1.000 4 120 1.000 3 120 1.000 4

In order to determine the position type distribution 1,000 random solutions
were examined for each instance. As neighborhood structure the restricted shift
move was used. Formally, let ri denote the position of the ith activity in the
current list, Pi the set of its immediate predecessors, Si the set of its immediate
successors, Li = max{rj , ∀j ∈ Pi}, and Hi = min{rj , ∀j ∈ Si}. The activity i
can be shifted to positions between (and including) the position Li + 1 and the
position Hi − 1 [31]. In our experiments we found only solutions of the types
LMIN, IPLAT, LEDGE, and LMAX. A high amount of position type LEDGE
is favorable for local search procedures since improving moves are always possi-
ble from those positions (the same holds true for LMAX since we investigate a
minimization problem). A high percentage of types LMIN and IPLAT impedes
local search procedures since non-improving steps are necessary in order to con-
tinue the search process. For instances with an RS value of 1.0 we found only
search space positions of the type IPLAT confirming the results obtained with
the FDC analysis. In order to investigate the influence of the different instance
characteristics on position type distribution we use the Kruskal-Wallis test for
testing equality among groups. The results are presented in Tables 4, 5, and 6.
The results indicate a rugged and challenging landscape for local search proce-
dures due to a relatively large amount of position types LMIN and IPLAT. The
landscapes of the instances from the instance set J120 appear not as rugged as
those of the smaller instances. Note the different levels of RS for the instance
set J120.
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Table 4. Statistical analysis of the influence of different instance characteristics on
position type distribution for instance set J30

N LEDGE LEDGE+LMAX LMIN IPLAT

NC

1.50 160 0.573 - 0.644 - 0.093 - 0.260 -

1.80 160 0.563 - 0.632 - 0.103 - 0.263 -

2.10 160 0.581 - 0.655 - 0.086 - 0.265 -

RF

0.25 120 0.354 1 0.521 1 0.195 1 0.284 2

0.50 120 0.593 2 0.650 2 0.093 2 0.257 1

0.75 120 0.665 3 0.698 3 0.046 3 0.256 1

1.00 120 0.677 3 0.705 3 0.041 3 0.254 1

RS

0.20 120 0.909 4 0.944 4 0.053 2 0.003 1

0.50 120 0.762 3 0.859 3 0.127 3 0.015 2

0.70 120 0.618 2 0.772 2 0.195 4 0.033 3

1.00 120 0.000 1 0.000 1 0.000 1 1.000 4

Table 5. Statistical analysis of the influence of different instance characteristics on
position type distribution for instance set J60

N LEDGE LEDGE+LMAX LMIN IPLAT

NC

1.50 160 0.629 - 0.672 - 0.066 - 0.262 -

1.80 160 0.627 - 0.672 - 0.065 - 0.263 -

2.10 160 0.658 - 0.700 - 0.046 - 0.254 -

RF

0.25 120 0.513 1 0.617 1 0.111 1 0.272 2

0.50 120 0.658 2 0.692 2 0.053 2 0.256 1

0.75 120 0.690 2/3 0.711 3 0.036 2/3 0.253 1

1.00 120 0.690 3 0.706 3 0.036 3 0.259 1

RS

0.20 120 0.974 4 0.986 4 0.014 2 0.000 1

0.50 120 0.890 3 0.938 3 0.060 3 0.003 2

0.70 120 0.688 2 0.802 2 0.162 4 0.037 3

1.00 120 0.000 1 0.000 1 0.000 1 1.000 4

Figure 6 shows the correlation between the number of shift neighbors and
solution quality for the instance sets J30, J60, and J120. Depicted are the cases
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Table 6. Statistical analysis of the influence of different instance characteristics on
position type distribution for instance set J120

N LEDGE LEDGE+LMAX LMIN IPLAT

NC

1.50 200 0.973 - 0.984 - 0.016 - 0.001 -

1.80 200 0.972 - 0.982 - 0.016 - 0.002 -

2.10 200 0.981 - 0.989 - 0.011 - 0.000 -

RF

0.25 150 0.923 1 0.953 1 0.043 1 0.004 2

0.50 150 0.991 2 0.994 2 0.006 2 0.000 1

0.75 150 0.993 3 0.994 3 0.005 3 0.001 1

1.00 150 0.995 3 0.997 3 0.003 3 0.000 1

RS

0.10 120 0.998 5 0.999 5 0.001 1 0.000 1

0.20 120 0.994 4 0.996 4 0.004 2 0.000 1

0.30 120 0.984 3 0.990 3 0.010 3 0.000 1

0.40 120 0.971 2 0.983 2 0.017 4 0.000 2

0.50 120 0.932 1 0.956 1 0.039 5 0.005 2

where a significant correlation according to a randomization test at a significance
level of α = 0.05 was found. The instances with an RS value of 1.0 are again
left out since a useful correlation could of course not be calculated with equal
makespan for all solutions. The majority of the instances show a negative drift
indicating a bias in local search towards regions of good solutions.

As side result of the PTD and drift analysis we obtained the average number
of shift neighbors as presented in Table 7. Additionally we present the number
of shift neighbors without precedence constraints ((n − 1)2) considering only
non-dummy activities. The reduction of the size of the search space clearly ac-
commodates local search procedures.
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Fig. 6. Histogram of drift for instance sets J30 (left, N = 336), J60 (middle, N = 328),
and J120 (right, N = 589)
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Table 7. Average number of shift neighbors for different NC values

NC J30 J60 J120

1,50 191.4 757.9 2,931.4
1,80 157.6 622.2 2,448.6
2,10 128.4 504.7 1,964.2

shift 841.0 3,481.0 14,161.0

5 Conclusions

In this paper we examined the fitness landscape of the RCPSP with the aim to
investigate its suitability for evolutionary methods and local search procedures.
The solution space consists of all precedence feasible permutations which are
decoded by means of a serial SGS applied as forward scheduling technique.

The results from the fitness landscape analysis were obtained by creating ran-
dom samples and additionally improving those solutions by the application of the
forward-backward improvement heuristic. The results, firstly, indicate that evo-
lutionary methods should be able to detect good solutions for the RCPSP and,
secondly, are in line with the experimental evaluation of heuristic approaches
for the RCPSP presented by Kolisch and Hartmann in [3]. The application
of the FBI heuristic supports the evolutionary process and explain its success
in [3].

The results of the analysis of the fitness landscape of the RCPSP regarding
local search procedures is twofold. On the one hand a search space reduction due
to precedence constraints could be observed. Furthermore a negative correlation
between solution quality and numbers of shift neighbors for the majority of the
instances could be ascertained. Both properties should support the performance
of local search procedures. On the other hand the fitness landscape of the RCPSP
is rugged featuring a large number of search space positions of types LMIN
and IPLAT. Since non-improving steps at those positions have to be accepted
sophisticated escape mechanisms as in tabu search have to be used; this leads to
a large number of evaluated schedules. Consequently, local search procedures are
not among the best performing approaches in [3] with an imposed termination
criterium of 50,000 evaluated schedules. Multi-moves that perform several moves
simultaneously in a single iteration might be an approach to guide the search
process to more promising areas of the search space while avoiding the evaluation
of not promising schedules.

Even if there is no superior distance measure (or measure for similarity) for the
RCPSP the precedence distance might be regarded as the most important one
(which might not be a big surprise since precedence constraints are an important
part in the formulation of the RCPSP).
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Abstract. We introduce two reactive frameworks for dynamically adapt-
ing some parameters of an Ant Colony Optimization (ACO) algorithm.
Both reactive frameworks use ACO to adapt parameters: pheromone trails
are associated with parameter values; these pheromone trails represent
the learnt desirability of using parameter values and are used to dynami-
cally set parameters in a probabilistic way. The two frameworks differ in
the granularity of parameter learning. We experimentally evaluate these
two frameworks on an ACO algorithm for solving constraint satisfaction
problems.

1 Introduction

Ant Colony Optimization (ACO) has shown to be very effective to solve a wide
range of combinatorial optimization problems [1]. However, when solving a prob-
lem (with ACO like with other metaheuristics), one usually has to find a compro-
mise between two dual goals. On the one hand, one has to intensify the search
around the most promising areas, that are usually close to the best solutions
found so far. On the other hand, one has to diversify the search and favor ex-
ploration in order to discover new, and hopefully more successful, areas of the
search space. The behavior of the algorithm with respect to this intensifica-
tion/diversification duality (also called exploitation/exploration duality) can be
influenced by modifying parameter values.

Setting parameters is a difficult problem which usually lets the user balance
between two main tendencies. On the one hand, when choosing values which
emphasize diversification, the quality of the final solution is often better, but
the time needed to converge on this solution is also often higher. On the other
hand, when choosing values which emphasize intensification, the algorithm often
finds better solutions quicker, but it often converges on sub-optimal solutions.
Hence, the best parameter values both depend on the instance to be solved and
on the time allocated for solving the problem. Moreover, it may be better to
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change parameter values during the solution process, depending on the search
landscape around the current state, than to keep them fixed.

To improve the search process with respect to the intensification/diversifica-
tion duality, Battiti et al [2] propose to exploit the past history of the search
to automatically and dynamically adapt parameter values, thus giving rise to
reactive approaches.

In this paper, we introduce a reactive framework for ACO to dynamically
adapt some parameters during the search process. This dynamic adaptation is
done with ACO: pheromone trails are associated with parameter values; these
pheromone trails represent the learnt desirability of using parameter values and
are used to dynamically set parameters in a probabilistic way. Our approach
is experimentally evaluated on constraint satisfaction problems (CSPs) which
basically involve finding an assignment of values to variables so that a given set
of constraints is satisfied.

The paper is organized as follows. We first recall in section 2 some background
on CSPs and ACO. We show in section 3 how to use ACO to dynamically
adapt some parameters during the search process. In particular, we introduce two
different reactive frameworks for ACO: a first framework where parameter values
are fixed during the construction of a solution, and a second framework where
parameters are tailored for each variable so that parameters are dynamically
changed during the construction of a solution. We experimentally evaluate and
compare these two reactive frameworks in section 4, and we conclude on some
related work and further work in section 5.

2 Background

2.1 Constraint Satisfaction Problems (CSPs)

A CSP [3] is defined by a triple (X, D, C) such that X is a finite set of variables,
D is a function that maps every variable Xi ∈ X to its domain D(Xi), that is,
the finite set of values that can be assigned to Xi, and C is a set of constraints,
that is, relations between some variables which restrict the set of values that can
be assigned simultaneously to these variables.

An assignment, noted A = {< X1, v1 >, . . . , < Xk, vk >}, is a set of vari-
able/value couples such that all variables in A are different and every value
belongs to the domain of its associated variable. This assignment corresponds
to the simultaneous assignment of values v1, . . . , vk to variables X1, . . . , Xk, re-
spectively. An assignment A is partial if some variables of X are not assigned in
A; it is complete if all variables are assigned.

The cost of an assignment A, denoted by cost(A), is defined by the number of
constraints that are violated by A. A solution of a CSP (X, D, C) is a complete
assignment for all the variables in X , which satisfies all the constraints in C,
that is, a complete assignment with zero cost.

Most real-life CSPs are over-constrained, so that no solution exists. Hence,
the CSP framework has been generalized to maxCSPs [4]. In this case, the goal
is no longer to find a consistent solution, but to find a complete assignment that
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maximizes the number of satisfied constraints. Hence, an optimal solution of a
maxCSP is a complete assignment with minimal cost.

2.2 Ant Colony Optimization (ACO)

ACO is a metaheuristic [1] which has been successfully applied to a wide range of
combinatorial optimization problems such as, e.g., travelling salesman problems
[5], quadratic assignment problems [6], or car sequencing problems [7]. The basic
idea is to iteratively build solutions in a greedy randomized way. More precisely,
at each cycle, each ant builds a solution, starting from an empty solution, by
iteratively adding solution components until the solution is complete. At each
iteration of this construction, the next solution component to be added is chosen
with respect to a probability which depends on two factors:

– The pheromone factor reflects the past experience of the colony regarding the
selection of this component. This pheromone factor is defined with respect
to pheromone trails associated with solution components. These pheromone
trails are reinforced when the corresponding solution components have been
selected in good solutions; they are decreased by evaporation at the end of
each cycle, thus allowing ants to progressively forget older experiments.

– The heuristic factor evaluates the interest of selecting this component with
respect to the objective function.

These two factors are respectively weighted by two parameters α and β.
Besides α and β, an ACO algorithm is also parameterized by

– the number of ants, nbAnts, which determines the number of constructed
solutions at each cycle;

– the evaporation rate, ρ ∈]0; 1[, which is used at the end of each cycle to
decrease all pheromone trails by multiplying them by (1 − ρ);

– the lower and upper pheromone bounds, τmin and τmax, which are used to
bound pheromone trails (when considering the MAX-MIN Ant System [6]).

The reactive framework proposed in this paper focuses on α and β which have
a great influence on the solution construction process.

The weight of the pheromone factor, α, is a key parameter for balancing in-
tensification and diversification. Indeed, the greater α, the stronger the search is
intensified around solutions containing components with high pheromone trails,
i.e., components that have been previously used to build good solutions. In par-
ticular, we have shown in [8] that the setting of α let us balance between two main
tendencies. On the one hand, when limiting the influence of pheromone with a
low pheromone factor weight, the quality of the final solution is better, but the
time needed to converge on this value is also higher. On the other hand, when
increasing the influence of pheromone with a higher pheromone factor weight,
ants find better solutions during the first cycles, but after a few hundreds or so
cycles, they are no longer able to find better solutions.

The weight of the heuristic factor, β, determines the greedyness of the search
and its best setting also depends on the instance to be solved. Indeed, the rele-
vancy of the heuristic factor usually varies from an instance to another. Moreover,
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Algorithm 1. Ant Solver
Input: A CSP (X, D, C) and a set of parameters

{α, β, ρ, τmin , τmax ,nbAnts ,maxCycles}
Output: A complete assignment for (X, D, C)
Initialize pheromone trails associated with (X, D, C) to τmax1

repeat2

foreach k in 1..nbAnts do3

Construct an assignment Ak4

Improve Ak by local search5

Evaporate each pheromone trail by multiplying it by (1 − ρ)6

Reinforce pheromone trails of Abest = arg minAk∈{A1,...,AnbAnts} cost(Ak)7

until cost(Ai) = 0 for some i ∈ {1..nbAnts} or maxCycles reached ;8

return the constructed assignment with the minimum cost9

for a given instance, the relevancy of the heuristic factor may vary during the
solution construction process.

Note finally that not only the ratio between α and β matters, but also their
absolute value. Let us consider for example the two following parameter settings:
p1 = {α = 1, β = 2} and p2 = {α = 2, β = 4}. In both settings, β is twice as high
as α. However, p2 emphasizes more strongly differences than p1. Let us consider
for example the case where ants have to choose between two components a and
b which pheromone factors respectively are τ(a) = 1 and τ(b) = 2, and heuristic
factors respectively are η(a) = 2 and η(b) = 3. When considering the p1 setting,
choice probabilities are

p(a) =
11 · 22

11 · 22 + 21 · 32 = 0.18 and p(b) =
21 · 32

11 · 22 + 21 · 32 = 0.82

whereas when considering the p2 setting, choice probabilities are

p(a) =
12 · 24

12 · 24 + 22 · 34 = 0.05 and p(b) =
22 · 34

12 · 24 + 22 · 34 = 0.95

2.3 Solving Max-CSPs with ACO

The ACO algorithm considered in our comparative study is called Ant Solver
(AS) and is described in algorithm 1. We briefly describe below the main features
of this algorithm; more information can be found in [9,10].

Pheromone trails associated with a CSP (X, D, C) (line 1). We associate a
pheromone trail with every variable/value couple 〈Xi, v〉 such that Xi ∈ X
and v ∈ D(Xi). Intuitively, this pheromone trail represents the learned desir-
ability of assigning value v to variable Xi. As proposed in [6], pheromone trails
are bounded between τmin and τmax, and they are initialized at τmax.
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Construction of an assignment by an ant (line 4): At each cycle (lines 2-8),
each ant constructs an assignment: starting from an empty assignment A = ∅, it
iteratively adds variable/value couples to A until A is complete. At each step, to
select a variable/value couple, the ant first chooses a variable Xj ∈ X that is not
yet assigned in A. This choice is performed with respect to the smallest-domain
ordering heuristic, i.e., the ant selects a variable that has the smallest number of
consistent values with respect to the partial assignment A under construction.
Then, the ant chooses a value v ∈ D(Xj) to be assigned to Xj with respect to
the following probability:

pA(<Xj , v>) =
[τ(<Xj , v>)]α · [ηA(<Xj , v>)]β∑

w∈D(Xj)[τ(<Xj , w>)]α · [ηA(<Xj , w>)]β

where

– τ(<Xj , v>) is the pheromone trail associated with <Xj , v>,
– ηA(< Xj , v >) is the heuristic factor and is inversely proportional to the

number of new violated constraints when assigning value v to variable Xj ,
i.e., ηA(<Xj , v>) = 1/(1 + cost(A ∪ {<Xj, v>})− cost(A)),

– α and β are the parameters that determine the relative weights of the factors.

Local improvement of assignments (line 5): Once a complete assignment has
been constructed by an ant, it is improved by performing some local search,
i.e., by iteratively changing some variable/value assignments. Different heuris-
tics can be used to choose the variable to be repaired and the new value to be
assigned to this variable. For all experiments reported below, we have used the
min-conflict heuristics [11], i.e., we randomly select a variable involved in some
violated constraint, and then we assign this variable with the value that mini-
mizes the number of constraint violations. Such local improvements are iterated
until reaching a locally optimal solution which cannot be improved by modifying
one variable assignment.

Pheromone trails update (lines 6-7): Once every ant has constructed an assign-
ment, and improved it by local search, the amount of pheromone laying on each
variable/value couple is updated according to the ACO metaheuristic. First,
all pheromone trails are uniformly decreased (line 6) in order to simulate some
kind of evaporation that allows ants to progressively forget worse constructions.
Then, pheromone is added on every variable/value couple belonging to the best
assignment of the cycle, Abest (line 7) in order to further attract ants towards
the corresponding area of the search space. The quantity of pheromone laid
is inversely proportional to the number of constraint violations in Abest, i.e.,
1/cost(Abest).

3 Using ACO to Dynamically Adapt α and β

We now propose to use ACO to dynamically adapt the values of α and β. In
particular, we propose and compare two different reactive frameworks. In the
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first framework, called AS(GPL) and described in 3.1, the setting of α and β is
fixed during the construction of a solution and is adapted after each cycle, once
every ant has constructed a solution. In the second framework, called AS(DPL)
and described in 3.2, the setting of α and β is personalized for each variable so
that it changes during the construction of a solution. These two frameworks are
experimentally evaluated in 4.

3.1 Description of AS(GPL)

AS(GPL) (Ant Solver with Global Parameter Learning) basically follows algo-
rithm 1 but integrates new features for dynamically adapting α and β. Hence, α
and β are no longer given as input parameters of the algorithm, but their values
are chosen with respect to the ACO metaheuristic at each cycle1.

Parameters of AS(GPL). Besides the parameters of Ant Solver, i.e., the number
of cycles nbCycles, the number of ants nbAnts, the evaporation rate ρ, and the
lower and upper pheromone bounds τmin and τmax, AS(GPL) is parameterized
by a set of new parameters that are used to set α and β, i.e.,

– two sets of values Iα and Iβ which respectively contain the set of values that
may be considered for setting α and β;

– a lower and an upper pheromone bound, τminαβ
and τmaxαβ

;
– an evaporation rate ραβ .

Note that our reactive framework supposes that α and β take their values within
two given discrete sets of values Iα and Iβ which must be known a priori. These
two sets should contain good values, i.e., those which allow Ant Solver to find
the best results for every possible instance. As discussed in Section 4, we propose
to choose the values of Iα and Iβ by running Ant Solver with different settings
for α and β on a representative set of instances, and by keeping in Iα and Iβ

the values that allowed Ant Solver to find the best results on these instances.

Pheromone structure. We associate a pheromone trail τα(i) with every value
i ∈ Iα and a pheromone trail τβ(j) with every value j ∈ Iβ . Intuitively, these
pheromone trails represent the learnt desirability of setting α and β to i and
j respectively. During the search process, these pheromone trails are bounded
between the two bounds τminαβ

and τmaxαβ
. At the beginning of the search

process, they are initialized to τmaxαβ
.

1 We have experimentally compared two variants of this reactive framework: a first
variant where the values are chosen at the beginning of each cycle (between lines 2
and 3) so that every ant uses the same values during the cycle, and a second variant
where the values are chosen by ants before constructing an assignment (between
lines 3 and 4). The two variants obtain results that are not significantly different.
Hence, we only consider the first variant which is described in this section.
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Choice of values for α and β. At each cycle (i.e., between lines 2 and 3 of
algorithm 1), α (resp. β) is set by choosing a value i ∈ Iα (resp. i ∈ Iβ) with
respect to a probability pα(i) (resp. pβ(i)) which is proportional to the amount
of pheromone laying on i, i.e.,

pα(i) =
τα(i)∑

j∈Iα
τα(j)

(resp. pβ(i) =
τβ(i)∑

j∈Iβ
τβ(j)

)

Pheromone trails update. The pheromone trails associated with α and β are up-
dated at each cycle, between lines 7 and 8 of algorithm 1. First, each pheromone
trail τα(i) (resp. τβ(i)) is evaporated by multiplying it by (1 − ραβ). Then
the pheromone trail associated with α (resp. β) is reinforced. The quantity of
pheromone laid on τα(α) (resp. τβ(β)) is inversely proportional to the number of
constraint violations in Abest, the best assignment built during the cycle. There-
fore, the values of α and β that have allowed ants to build better assignments
will receive more pheromone.

3.2 Description of AS(DPL)

The reactive framework described in the previous section dynamically adapts
α and β at every cycle, but it considers the same setting for all assignment
constructions within a same cycle. We now describe another reactive framework
called AS(DPL) (Ant Solver with Distributed Parameter Learning). The basic
idea is to choose new values for α and β at each step of the construction of an
assignment, i.e., each time an ant has to choose a value for a variable. The goal
is to tailor the setting of α and β for each variable of the CSP.

Parameters of AS(DPL). The parameters of AS(DPL) are the same as the ones
of AS(GPL).

Pheromone structure. We associate a pheromone trail τα(Xk, i) with every vari-
able Xk ∈ X and every value i ∈ Iα and a pheromone trail τβ(Xk, j) with every
variable Xk ∈ X and every value j ∈ Iβ . Intuitively, these pheromone trails
respectively represent the learnt desirability of setting α and β to i and j when
choosing a value for variable Xk. During the search process, these pheromone
trails are bounded between the two bounds τminαβ

and τmaxαβ
. At the beginning

of the search process, they are initialized to τmaxαβ
.

Choice of values for α and β. At each step of the construction of an assignment,
before choosing a value v for a variable Xk, α (resp. β) is set by choosing a value
i ∈ Iα (resp. i ∈ Iβ) with respect to a probability pα(Xk, i) (resp. pβ(Xk, i))
which is proportional to the amount of pheromone laying on i for Xk, i.e.,

pα(Xk, i) =
τα(Xk, i)∑

j∈Iα
τα(Xk, j)

(resp. pβ(Xk, i) =
τβ(Xk, i)∑

j∈Iβ
τβ(Xk, j)

)
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Pheromone trails update. The pheromone trails associated with α and β are up-
dated at each cycle, between lines 7 and 8 of algorithm 1. First, each pheromone
trail τα(Xk, i) (resp. τβ(Xk, i)) is evaporated by multiplying it by (1 − ραβ).
Then, some pheromone is laid on the pheromone trails associated with the val-
ues of α and β that have been used to build the best assignment of the cycle
(Abest): for each variable Xk ∈ X , if α (resp. β) has been set to i for choosing the
value to assign to Xk when constructing Abest, then τα(Xk, i) (resp. τβ(Xk, i))
is incremented by 1/cost(Abest).

4 Experimental Results

4.1 Test Suite

We illustrate our reactive framework on a benchmark of maxCSP which has
been used for the CSP 2006 competition [12]. We have considered the 686 bi-
nary maxCSP instances defined in extension. Among these 686 instances, 641
are solved to optimality2 both by the static version of Ant Solver and the two
reactive versions, whereas CPU times are not significantly different. Hence, we
concentrate our experimental study of section 4.3 on the 25 harder instances
that are not always solved to optimality. Among these 25 hard instances, we
have chosen 10 representative ones which features are described in Table 1. We
shall give more experimental results, for all instances of the benchmark of the
competition, in section 4.4, when comparing our reactive ACO framework with
the best solvers of the competition.

4.2 Experimental Setup

We have tuned parameters for Ant Solver by running it on a representative subset
of 100 instances (including the 25 hardest ones) among the 686 instances of the
competition, with different parameter settings. We have selected the setting that
allowed Ant Solver to find the best results on average, i.e., α = 2, β = 8, ρ = 0.01,
τmin = 0.1, τmax = 10, and nbAnts = 15. We have set the maximum number of
cycles to 10000, but the number of cycles needed to converge to the best solution
is often much smaller. In this section, AS(Static) refers to Ant Solver with this
static parameter setting.

We also have tuned α and β for every instance separately (while keeping the
other parameters to the same values). In this section, AS(Tuned) refers to Ant
Solver with the best static parameter setting for the considered instance.

For the two reactive variants of Ant Solver (AS(GPL) and AS(DPL)), we
have kept the same parameter setting for the “old” parameters, i.e., ρ = 0.01,
τmin = 0.1, τmax = 10, and nbAnts = 15. For the new parameters, that have
been introduced to dynamically adapt α and β, we have set Iα and Iβ to the

2 For most of these instances, the optimal solution is known. However, for a few
instances optimal solutions are not known. For these instances, we have considered
the best known solution.
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Table 1. For each instance, Name, X, D, C, and B respectively give the name, the
number of variables, the size of the variable domains, the number of constraints, and the
number of violated constraints in the best solution found during the 2006 competition

Nb Name X D C B Nb Name X D C B
1 brock-400-1 401 2 20477 378 5 rand-2-40-16-250-350-30 40 16 250 1
2 brock-400-2 401 2 20414 378 6 rand-2-40-25-180-500-0 40 25 180 1
3 mann-a27 379 2 1080 252 7 rand-2-40-40-135-650-10 40 40 135 1
4 san-400-0.5-1 401 2 40300 392 8 rand-2-40-40-135-650-22 40 40 135 1

Table 2. Experimental comparison of best found solutions. Each line gives, for each
variant of Ant Solver, the number of violated constraints in the best found solution
(average on 50 runs and standard deviation). For AS(Tuned), we also give the values
of α and β that have been considered.

AS(Tuned) AS(Static) AS(GPL) AS(DPL)
Nb #const (sdv) α β #const (sdv) #const (sdv) #const (sdv)
1 374.84 (0.7) 1 6 374.92 (0.39) 374. (1.01) 374. (1.01)
2 373.12 (0.26) 1 5 374.68 (1.09) 371.32 (1.09) 371.48 (1.31)
3 253.88 (0.26) 1 6 254.62 (0.49) 253.74 (0.44) 253.96 (0.28)
4 387.2 (0.11) 1 8 388.04 (1.77) 387. (0.) 387. (0.)
5 1. (0.) 2 8 1. (0.) 1.02 (0.14) 1. (0.)
6 1.02 (0.02) 2 6 1.02 (0.14) 1.04 (0.19) 1. (0.)
7 1. (0.) 1 6 1.12 (0.32) 1.66 (0.47) 1.48 (0.5)
8 1. (0.) 1 5 1.08 (0.27) 1.12 (0.32) 1.08 (0.27)

set of values that gave reasonably good results with Static Ant Solver, i.e., Iα =
{0, 1, 2} and Iβ = {0, 1, 2, 3, 4, 5, 6, 7, 8}. For the evaporation rate and the lower
and upper pheromone bounds, we have used the same values as for static AS,
i.e., ραβ = 0.01, τminαβ

= 0.1, τmaxαβ
= 10.

4.3 Experimental Comparison of AS(Tuned), AS(Static), AS(GPL)
and AS(DPL)

Table 2 gives the best setting for α and β that have been considered when
running AS(Tuned). It shows us that this best setting is clearly different from
one instance to another. We also noticed that, at the end of the search process
of AS(GPL), pheromone trails used to set α and β have rather different values
from one instance to another. This is more particularly true for β, thus showing
that the relevancy of the heuristic factor depends on the considered instance.

Table 2 also compares the number of violated constraints in the best found
solution after 10000 cycles, for the four variants of Ant Solver. As differences
between the different variants are rather small on some instances, we have per-
formed statistical significance tests. Table 3 gives the results of these statis-
tical tests. It shows us that reactive variants are always at least as good as
AS(Static), except for instances 5 and 7 which are better solved by AS(Static)
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Table 3. Results of statistical significance tests: each line compares two variants X/Y
and gives for every instance the result of the test for 50 runs, i.e., = (resp. < and >)
if X is not significantly different from Y (resp. worse and better than Y )

1 2 3 4 5 6 7 8
AS(DPL)/AS(GPL) = = = = > > = >

AS(DPL)/AS(Static) = > > > = > = =
AS(DPL)/AS(Tuned) = > = = = > < <

AS(GPL)/AS(Static) = > > > < = < =
AS(GPL)/AS(Tuned) = > = = < = < <

AS(Static)/AS(Tuned) = = < < = = < <

Table 4. Experimental comparison of the number of cycles (average and standard
deviation on 50 runs) and the CPU time in seconds (average on 50 runs) spent to find
the best solution

AS(Tuned) AS(Static) AS(GPL) AS(DPL)
cycles time cycles time cycles time cycles time

Nb avg (sdv) avg avg (sdv) avg avg (sdv) avg avg (sdv) avg
1 44 (7) 4 30 (4) 2 2717 (516) 98 2501 (491) 93
2 2247 (477) 140 323 (194) 12 2668 (463) 96 3322 (415) 125
3 2193 (309) 542 1146 (335) 160 2714 (432) 399 2204 (295) 328
4 710 (213) 123 347 (174) 39 316 (38) 34 112 (14) 12
5 394 (32) 5 394 (32) 4 379 (44) 5 412 (37) 5
6 476 (19) 26 606 (23) 13 507 (49) 18 579 (23) 15
7 2436 (166) 160 1092 (152) 31 736 (126) 39 1557 (266) 52
8 1944 (120) 140 884 (65) 29 1302 (286) 66 1977 (252) 87

than AS(GPL). It also shows us that both reactive variants are able to reach
the performances of AS(Tuned), and even outperform it, on many instances
(all but 2 for AS(DPL) and all but 3 for AS(GPL)). Finally, it also shows us
that AS(DPL) is not significantly different from AS(GPL) for 5 instances, and
outperforms it on 3 instances.

Table 4 compares the number of cycles and the CPU time spent to find the
best solution. We first note that the computational overhead due to the reactive
framework is not significant so that the four Ant Solver variants spend com-
parable CPU times for performing one cycle on one given instance. We note
also that the number of cycles needed to converge is different from one instance
to another, but also from one variant of Ant Solver to another. In particular,
AS(Static) often converges quicker than AS(Tuned).

In order to allow us to compare the four Ant Solver variants during the whole
search process, and not only at the end of the 10000 cycles, Figure 1 plots
the evolution of the percentage of runs that have found the optimal solution
with respect to the number of cycles3. It shows that AS(Static) is able to solve

3 As proof of optimality has not been done for all the considered instances, we consider
the best known solution for the instances which optimal solution is not known.
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Fig. 1. Evolution of the percentage of runs that have found the optimal solution with
respect to the number of cycles

to optimality more than half of the runs within the 2000 first cycles. However,
after 2000 or so cycles, the percentage of runs solved to optimality by AS(Static)
does not increase a lot. AS(Tuned) exhibits a rather different behavior: if it is
able to solve to optimality less runs at the beginning of the search process, it
has significantly outperformed AS(Static) at the end of the 10000 cycles. Let us
consider for example instances 2, 3 and 8: Table 2 shows us that AS(Tuned) is
able to find better solutions than AS(Static); however, Table 4 shows us that
AS(Tuned) needs much more cycles than AS(Static) to find these solutions.

Figure 1 also shows us that AS(GPL) outperforms the three other variants
during the 2000 first cycles, whereas after 2000 cycles AS(GPL), AS(DPL) and
AS(Tuned) are rather close and all of them clearly outperform AS(Static). Fi-
nally, at the end of the search process AS(DPL) slightly outperforms AS(GPL)
which itself slightly outperforms AS(Tuned).

Figure 2 plots the evolution of the percentage of runs that have found solutions
that are close to optimality, i.e., optimal solutions or solutions which violates
one more constraint than the optimal solution. It shows that AS(GPL) more
quickly finds nearly optimal solutions than AS(DPL), which itself is better than
the static variants of Ant Solver. AS(Static) is better than AS(Tuned) at the
beginning of the search process, but it is outperformed by AS(Tuned) after 1000
cycles or so.
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Fig. 2. Evolution of the percentage of runs that have found a solution that violates
one more constraint than the optimal solution with respect to the number of cycles

4.4 Experimental Comparison of AS(DPL) with State-of-the-Art
Solvers

We now compare AS(DPL) with the MaxCSP solvers of the 2006 competition.
There was 9 solvers, among which 8 are based on complete branch and propagate
approaches, and 1 is based on incomplete local search. For the competition, each
solver has been given a time limit of 40 minutes on a 3GHz Intel Xeon (see
[12] for more details). For each instance, we have compared AS(DPL) with the
best result found during the competition (by any of the 9 solvers). We have also
limited AS(DPL) to 40 minutes, but it has been run on a less powerful computer
(a 1.7 GHz P4 Intel Dual Core). We do not report CPU times as they have been
obtained on different computers. The goal here is to evaluate the quality of the
solutions found by AS(DPL).

This comparison has been done on the 686 binary instances defined in exten-
sion. These instances have been grouped into 45 benchmarks. Among these 45
benchmarks, there was 31 benchmarks for which AS(DPL) and the best solver
of the competition have found the same values for every instance of the bench-
mark. Hence, we only display results for the 14 benchmarks for which AS(DPL)
and the best solver of the competition obtained different results (for at least one
instance of the benchmark).
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Table 5. Experimental comparison of AS(DPL) with the solvers of the 2006 compe-
tition. Each line gives the name of the benchmark, the number of instances in this
benchmark (#I), the total number of constraints in these instances (#C), and the to-
tal number of violated constraints when considering, for each instance, its best known
solution (

∑
best known). Then, we give the best results obtained during the competition:

for each instance, we have considered the best result over the 9 solvers of the compe-
tition and we give the total number of constraints that are violated (

∑
cost) followed

by the number of instances for which the best known solution has been found (#Ibest).
Finally, we give the results obtained by AS(DPL): the total number of constraints that
are violated (

∑
cost) followed by the number of instances for which the best known

solution has been found (#Ibest).

Competition AS(DPL)
Bench #I #C

∑
best known

∑
cost #Ibest ∑

cost #Ibest

brock 4 56381 1111 1123 2 1111 4

hamming 4 14944 460 463 1 460 4

mann 2 1197 281 281 2 283 1
p-hat 3 312249 1472 1475 1 1472 3

san 3 48660 687 692 2 687 3

sanr 1 6232 182 183 0 182 1

dsjc 1 736 19 20 0 19 1

le 2 11428 2869 2925 1 2869 2

graphw 6 16993 416 420 4 416 6

scenw 27 29707 809 904 25 809 27

tightness0.5 15 2700 15 15 15 16 14
tightness0.65 15 2025 15 15 15 18 12
tightness0.8 15 1545 21 22 13 25 10
tightness0.9 15 1260 26 30 11 31 10

Table 5 gives results for these 14 benchmarks. It shows that AS(DPL) out-
performs the best solvers of the competition for 9 benchmarks. More precisely,
AS(DPL) has been able to improve the best solutions found by a solver of the
competition for 19 instances. However, it has not found the best solution for
15 instances; among these 15 instances, 14 belong to the tightness* benchmarks
which appear to be difficult ones for AS(DPL).

5 Conclusion

We have introduced two reactive frameworks for dynamically and automatically
tuning the pheromone factor weight α and the heuristic factor weight β which
have a strong influence on intensification/diversification of ACO searches. The
goal is twofold: first, we aim at freeing the user from the unintuitive problem of
tuning these parameters; second, we aim at improving the search process and
reaching better performances on difficult instances.
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First experimental results are very encouraging. Indeed, in most cases our
reactive ACO reaches performances of a static variant, and even outperforms it
on some instances.

Related work. There exists a lot of work on reactive approaches, that dynam-
ically adapt parameters during the search process [2]. Many of these reactive
approaches have been proposed for local search approaches, thus giving rise to
reactive search. For example, Battiti and Protasi have proposed in [13] to use
resampling information in order to dynamically adapt the length of the tabu list
in a tabu search.

There also exists reactive approaches for ACO algorithms. In particular, Ran-
dall has proposed in [14] to dynamically adapt ACO parameters by using ACO
and our approach borrows some features from this reactive ACO framework.
However, parameters are learnt at a different level. Indeed, in [14] parame-
ters are learnt at the ant level so that each ant evolves its own parameters
and considers the same parameter setting during a solution construction. In
our approach, paramaters are learnt at the colony level, so that every ant uses
the same pheromone trails to set parameters. Moreover, we have compared two
frameworks, a first one where the same parameters are used during a solution
construction, and a second one where parameters are tailored for every variable,
and we have shown that this second framework actually improves the search pro-
cess on some instances, thus bringing to the show that, when solving constraint
satisfaction problems, the relevancy of the heuristic and the pheromone factors
depend on the variable to be assigned.

Further work. We plan to evaluate our reactive framework on other ACO algo-
rithms in order to evaluate its genericity. In particular, it will be interesting to
compare the two reactive frameworks on other problems: for some problems such
as the Traveling Salesman Problem, it is most probable that tailoring parameters
for every solution component is not interesting, whereas on other problems, such
as the multidimensional knapsack or the car sequencing problems, we conjecture
that this should improve the search process.

A limit of our reactive framework lies in the fact that the search space for the
parameter values must be known in advance and discretized. As pointed out by
a reviewer, it would be preferable to solve the meta-problem as what it is, i.e.,
a continuous optimization problem. Hence, further work will address this issue.

Finally, we plan to integrate a reactive framework for dynamically adapting
the other parameters, ρ, τmin, and τmax which have strong dependencies with α
and β. This could be done, for example, by using intensification/diversification
indicators, such as the similarity ratio or resampling information.
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LNCS, vol. 3172, pp. 374–381. Springer, Heidelberg (2004)



Selection of Heuristics for the Job-Shop
Scheduling Problem Based on the Prediction

of Gaps in Machines

Pedro Abreu1, Carlos Soares1,2, and Jorge M.S. Valente1,2

1 LIAAD-INESC Porto LA, Porto, Portugal
2 Faculdade de Economia, Universidade do Porto, Porto, Portugal

pedabreu@liaad.up.pt, {csoares,jvalente}@fep.up.pt

Abstract. We present a general methodology to model the behavior of
heuristics for the Job-Shop Scheduling (JSS) that address the problem
by solving conflicts between different operations on the same machine.
Our models estimate the gaps between consecutive operations on a ma-
chine given measures that characteristics the JSS instance and those
operations. These models can be used for a better understanding of the
behavior of the heuristics as well as to estimate the performance of the
methods. We tested it using two well know heuristics: Shortest Processing
Time and Longest Processing Time, that were tested on a large number
of random JSS instances. Our results show that it is possible to predict
the value of the gaps between consecutive operations from on the job, on
random instances. However, the prediction the relative performance of
the two heuristics based on those estimates is not successful. Concerning
the main goal of this work, we show that the models provide interesting
information about the behavior of the heuristics.

1 Introduction

The complexity of optimization problems such as the Job-Shop Scheduling (JSS)
makes it very difficult to understand the behavior of heuristic methods. For
instance, little is known about the effect of different distributions of the duration
of operations on the performance of any heuristic. This is true even for simple
ones, such as the Shortest Processing Time [5]. An interesting research question is
whether it is possible to create models that relate properties of JSS instances with
the performance of different heuristics. The advantages of relating the properties
of the instances to the performance of the algorithms are the possibility to:

1. develop automatic selection of optimization methods
2. obtain a better understanding of the conditions under which a certain method

does not obtain good results
3. to support comparative studies

The first advantage represents the application of the model for practical pur-
poses. The user is faced with a new instance of the JSS and must decide which

T. Stützle (Ed.): LION 3, LNCS 5851, pp. 134–147, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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method to use. The characteristics of the instance are computed and the model
is used to indicate which of the methods is expected to generate the best solu-
tion. The second enables researchers and practitioners to learn about the weak
points of methods. The former can use this knowledge to improve the methods
while the latter can use them as guidelines to help them choose which one to
use. Finally, researchers usually compare the methods on benchmark instances.
Perhaps, some new methods have excellent performance on many instances but
it is discarded because poor performance on the set of benchmark instances used
in the empirical comparison. Knowledge about the relation between the char-
acteristics of the instances and the performance of the methods can be used to
guide the selection of instances for the study.

In this paper, we address this problem using a Machine Learning approach to
study the behaviour of two very simple and common heuristics to solve the JSS
problem are considered here, namely the Shortest Processing Time (SPT) and
the Longest Processing Time (LPT) methods [5].

In Section 2, we describe the background for this work and motivate it further.
Our approach is described in Section 3 and the results obtained are presented
in Section 4. We analyze the results and present our conclusions in Section 5.

2 The Job-Shop Scheduling Problem

The deterministic job-shop scheduling problem can be seen as the most general
of the classical scheduling problems. Formally, this problem can be described as
follows. A finite set J of n jobs {J1, J2, . . . , Jn} has to be processed on a finite
set M of m machines {M1, M2, . . . , Mm}. Each job Ji must be processed once
on every machine Mj, so each job consists of a chain of m operations. Let Oij

represent the operation of job Ji on machine Mj, and let pij be the processing
time required by operation Oij .

The operations of each job Ji have to be scheduled in a predetermined given
order, i.e. there are precedence constraints between the operations of each job Ji.
Let ≺ be used to denote a precedence constraint, so that Oik ≺ Oil means that
job Ji has to be completely processed on machine Mk prior to being processed
on machine Ml. Each job has its own flow pattern through the machines, so
the precedence constraints between operations can be different for each job.
Other additional constraints also have to be satisfied. Each machine can only
process one job at a time (capacity constraints). Also, preemption is not allowed,
so operations cannot be interrupted and must be fully processed once started.
Let tij denote the starting time of operation Oij . The objective is to determine
starting times tij for all operations, in order to optimize some objective function,
while satisfying the precedence, capacity and no-preemption constraints. The
time when all operations of all jobs are complete is denoted as the makespan
Cmax. In this paper, we consider as objective function the minimization of the
makespan:

C∗
max = min (Cmax)

= minfeasibleschedules (max (tij + pij)) ,
∀Ji ∈ J, Mj ∈M.
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Fig. 1. Schedules generated for the same instance with LPT (left) and SPT (right)

The job-shop scheduling problem is NP-hard [3,7], and notoriously difficult to
solve. Many papers have been published on the job-shop scheduling problem.
A comprehensive survey of job shop scheduling techniques can be found in [5].
Given the complexity of the job-shop scheduling problem, the exact methods are
limited to instances of small size. Metaheuristic algorithms have been success-
fully applied to instances of small to medium size. However, for large instances,
dispatching rules are the only heuristic procedure that can provide a solu-
tion within reasonable computation times. Furthermore, dispatching rules are
also often required for other heuristic procedures, e.g. metaheuristic algorithms
frequently use dispatching rules to generate initial solutions.

The longest processing time (LPT) and shortest processing time (SPT) heuris-
tics are two of the most well-known dispatching rules, and are widely used for
the job-shop scheduling problem, as well as for a large number of other schedul-
ing problems. In this paper, we consider these two rules, implemented with an
active schedule generation algorithm [2,4]. This algorithm assigns operations to
machines as soon as possible, taking into account the constraints described ear-
lier. Following this strategy, conflicts will probably occur. This means that two
or more operations will overlap on a given machine if they are scheduled as soon
as possible. In that case, the algorithm uses a rule to choose the order in which
the operations will be assigned to the machine. Many rules can be used for that
purpose. In this work, we use the dispatching rules LPT and SPT for that pur-
pose. The LPT rule schedules the operation with the longest processing time
and SPT chooses the operation with the shortest processing time. As illustrated
in Figure 1, the performance of these heuristics differs across different instances.
SPT achieves the best result in this case as in 63.7% of the 1000 instances used
in this work while LPT is the best in the 36.1%.
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3 Learning the Behavior of Heuristics

Our goal is to use machine learning methods to induce models that relate the
characteristics of JSS instances with the behavior of these dispatch rules. Given
that the schedule generated by them is the result of a series of decisions, one for
every conflict that occurs, the problem addressed here is the prediction of the
gaps separating two consecutive operations of the same job generated by each
heuristic.

Besides providing information about the behavior of the heuristics, these pre-
dictions can also be used to predict the makespan of the schedule generated by
each heuristic, and thus, be able to predict which heuristic will generate the best
schedule.. Our hypothesis is that by breaking this problem into its basic – and
possibly simpler – sub-problems (i.e., predicting the gaps) rather than address-
ing it directly [1], better results can be obtained. Therefore, the makespan is the
combination of the gaps between operations, as illustrated in Figure 1. Based
on this assumption, our method is divided into two steps, which are discussed
in the following sections:

1. Predict the gaps separating two consecutive operations of the same job, on
the schedules generated by the heuristic;

2. Calculate the makespan, using the predicted gaps.

3.1 Prediction of the Individual Gaps

Our goal is to predict the gaps generated by the two heuristics considered, SPT
and LPT , for each pair of consecutive operations, Ojmo−1 and Ojmo , defined as
GapSPT (Ojmo ) and GapLPT (Ojmo), respectively. The Gapsched

jmo
= tjmo −ejmo−1

is the length of the period between two consecutive operations in job j in a
given schedule sched, ejmo = tjmo + pjmo is the end time of operation Ojm, mo

is the machine in precedence order o ∈ {2, . . . , |M |} and Gapsched
jm1

= tjm1 . The
value of Gap is non-zero when the beginning of the second operation (Ojmo)
has been delayed by a conflict, which was resolved by the heuristic in favour of
another operation. In Figure 1 we observe two schedules generated by SPT and
LPT, respectively. It illustrates how the use of different heuristics can yield large
differences in gaps.

We address this as a regression problem [6]. In regression, the goal is to obtain
a model that relates a set of independent variables, or features, Xi with a target
variable, Y , based on a set of examples for which both the values of {X1, X2, . . .}
and Y are known. In our case, an example is a characterization of two consec-
utive operations of a job, and the target variable, Y , is the corresponding gap,
Gapsched(Ojmo ).

3.2 Features to Describe Conflicts

In order to obtain a reliable model, regression methods must be provided with
features, {X1, X2, . . .} which are good predictors of the target variable, Y . In



138 P. Abreu, C. Soares, and J.M.S. Valente

other words, to be able to make accurate predictions, features that provide infor-
mation about the target variable are required. To predict the gap between con-
secutive operations of a job, we need to design features that represent properties
of the JSS instance that affect its value. Interesting features characterize the
operations (e.g., duration), the machines (e.g., total processing time required)
and relations between operations, jobs and machines (e.g., total duration of
operations of the same job as the current operation that precede it.

Some of the measures used here are based on the Infinite Capacity Schedule
(ICS). The ICS is the schedule obtained by relaxing the capacity constraints
(i.e., the constraints that specify that each machine can only process one job at
a time). This schedule can be easily constructed by scheduling the operations as
specified by the precedence constraints. Based on the ICS, we compute a measure
of the distance between two operations (Oj1m and Oj2m) that are processed in
the same machine as follows: dist(Oj1,m, Oj2,m) = |hj1m−hj2m+1|

pj1m+pj2m

2 +1
, where hjm =

tjm + pjm

2 is the time unit when half of operation Ojm is processed. When the
operations are consecutive, the value of the measure is 1 and when the two
operations are centered on the same time unit, the value depends only on the
duration of operation. This means that if two operations are near and have a
long duration, the value of this measure is low, so there is a high possibility of
having a conflict when trying to generate a feasible schedule.

Some additional notation is: d(S) is the set containing the duration of op-
erations in S, d(S) = {pij : ∀Oij ∈ S}; ldij (hdij) is the subset of Mj con-
taining operations with shorter (longer) duration than Oij , ldij = {Orj ∈ Mj :
prj < pij} (hdij = {Orj ∈ Mj : prj > pij}); distjmo(S) is the ICS-based dis-
tance measure between Ojmo and the other operations in set S, distjmo(S) =
{dist(Ojmo , Oj1mo) : ∀Oj1mo ∈ S}; dist

[s,r]
ij is the subset of Mj containing oper-

ations with distance of ICS to Oij between s and r. Additionally, some of the
measures are computed for several operations in a machine and aggregated using
functions sum, average, minimum, maximum and variance, represented below as
f , and aggregated using functions sum, average, variance, represented below as
g, for simplicity. In the following list, we describe the groups of features using
the format: name of the feature, schema of the short name used to refer to it, an
informal explanation and one or more formulas describing its exact calculation.
The schema for short names is based on the tags: < aggregationfunction >,
< distance > and < position >. For example, the short name for the group of
features ”Processing Time in machine” is < aggregationfunction > DM , which
means that that the features are minDM, maxDM, avgDM, varDM and sumDM.
The tags < distance > and < position > are used in ”Duration with distance
higher than r and less than s and Shorter/Longer duration” features group. For
example, if we use the interval [−3,−1.5] the tag < distance > is ”Near” and
< position > is ”Neg” because the interval is between 1.5 and 3 (”Near”) and
negative (”Neg”). Therefore, the features used to characterize a given operation
(Ojmo ) are:
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– Operation Duration (OPDuration). The duration of the operation, o
– Precedence Order (PO) The pre-defined order of the operation in the

job, o
– Duration Rank in Machine (DRM). The position of the operation in a

ranking of the operations in the same machine in increasing order of duration,
|ldjmo |+ 1

– Processing Time in Machine (< aggregationfunction > DM). Aggre-
gated duration of the operations to be processed on the same machine as
Ojmo , f(d(Mmo))

– Distance to Other Operations in Machine (< aggregationfunction >
DistM). Aggregated distance in the ICS between the operation and the
other operations to be processed on the same machine, f(distjmo(Mmo

\{Ojmo}))
– Duration of Operations with Shorter/Longer Duration in Machine

(< aggregationfunction > DLDM/DHDM). Aggregated duration of op-
erations to be processed on the same machine that have shorter/longer
duration than operation Ojmo , f(d(ldjmo ))/f(d(hdjmo))

– Distance to Other Operations in Machine with Shorter/Longer
Duration (< aggregationfunction > DistLM/DistHM)
Aggregated distance in the ICS between the operation and the other oper-
ations with shorter/longer duration to be processed in the same machine,
f(distjmo(ldjmo))/f(distjmo(hdjmo))

– Duration with Distance between r and s and Shorter/Longer
Duration (< aggregationfunction > < distance > < position > Lower /
Higher Duration)

Aggregated duration of the operation with distance in the ICS to op-
eration Ojmo between [r, s] and with duration shorter/longer than the op-
eration Ojmo , g(S) where S = dist

[r,s]
jmo

∩ ldjmo/hdjmo . The values of [r, s]
are:]−∞,−3], ]− 3,−1.5], ]− 1.5, 0], ]0, 1.5], ]1.5, 3] and ]3,∞[

Some features were highly correlated with others, which may affect the perfor-
mance of some regression models. Therefore, we have carried out a simple feature
selection method. For sets of features with a correlation higher than 0.9 between
themselves, we eliminated all but one. The features are: MaxDLDM ,
MinDHDM ,MaxDHDM , MeanDistHDM ,MaxDistLDM ,MinDistLDM ,
SumDM , SumDHDM , SumDistM and SumV eryNearNegHigherDuration.
So, the total number of features used are 59.

3.3 Predicting the Makespan

The predictions of the gaps (Gap) for each schedule can be used to estimate the
makespan of the schedule generated using the rule R for instance I as follows

MKR
I = maxj∈{1,...,|J|}

⎛
⎝|M|∑

o=1

(
pjmo + GapR (Ojmo )

)⎞⎠
Note that these estimates can be used to select the best heuristic. SPT should
be used if MKSPT

I < MKLPT
I , otherwise LPT should be used.
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4 Experiments

We have tested two regression methods that are available in the R statistical
package (www.r-project.org): regression trees, linear regression, support vec-
tor machines (SVM) and random forest. In order to analyse the results, we
consider the empirical plots of the real against the predicted data, and also use
the following analytical error measure - relative mean squared error (RMSE).

This error is calculated as RMSE =
∑

i(fi−f̂i)2∑
i(fi−f̄i)2

, where f̂i is the prediction of
the target feature for example i from the test dataset, fi is the real value of
the target feature of example i from the test dataset and the f̄i(baseline) is the
average of the values of the target feature on the training dataset. We note that
if the value of RMSE is greater than 1, it means that the learning algorithm did
not learn a model capable of generalizing to new examples better than by using
the mean value of the target on the training set.

We generated three types of datasets, namely Uniform, Gaussian and Beta
datasets. These datasets differ in the method used to generate the JSS instances
that are tested. In the Uniform and Gaussian datasets, the precedence order
is generated using a uniformly random permutation, as described in Taillard
[8]. Also, in the Uniform (Gaussian) dataset, the duration of each operation is
generated using a uniform (Gaussian) distribution, such that these durations
are not correlated with the machines or jobs, as described in [9]. The Beta
dataset contains more diverse instances, with duration of operations either not
correlated with machines or jobs, correlated with machines or correlated with
jobs, and randomly generated parameters α and β. For the precedence order in
the instances of the Beta dataset, instead of generating a new precedence order
for each job, as in the Uniform and Gaussian datasets, a previously generated
precedence order is sometimes repeated. The larger the number of repetitions,
the closer the instance is to a flowshop instance, since in the flowshop problem
the precedence constraints are identical for all jobs. Each instance has 10 jobs to
be processed on 10 machines and the range of processing time values is between
1 and 99. Experiments were carried out separately for the data corresponding
to each of the distributions. We have generated 1000 instances using each of
the distributions, which corresponds to 100000 examples, each one representing
one gap of consecutive operations. For each experiment the data corresponding
to 500 instances were used for training and the remaining data were used for
testing. Note that, given the large size of the test set, there is no need to employ
re-sampling techniques, such as cross-validation, for estimating the error;

In the figures, we have on the x-axis the prediction based on the predictions
obtained with the Random Forest model and on the y-axis, the real value.

4.1 Analysis of Errors

The results on the problem of predicting the gaps are generally positive, es-
pecially the ones obtained with the Random Forest algorithm (Table 1 and
Figure 2). Better results are obtained in the prediction of the gaps generated
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Table 1. Error results obtained with different models (Linear Regression and Random
Forest) for each heuristic of the prediction of gaps (fourth column), end time jobs (fifth
column) and makespan (sixth column) on different datsets (Uniform, Gaussian and
Beta)

RMSE
Dist. Alg. Heur. Gap End Time Makespan
U LR SPT 0.58 0.45 1.33
U LR LPT 0.81 0.87 2.29
U RF SPT 0.52 0.42 1.31
U RF LPT 0.75 0.85 1.28
G LR SPT 0.63 0.55 1.50
G LR LPT 0.80 0.89 3.10
G RF SPT 0.56 0.53 1.55
G RF LPT 0.74 0.88 1.54
B LR SPT 0.63 0.27 0.22
B LR LPT 0.77 0.44 0.41
B RF SPT 0.55 0.27 0.23
B RF LPT 0.71 0.42 0.24

Fig. 2. True gap (y-axis) vs value predicted using Random Forest model (x-axis) for
SPT(left) and LPT(right) of Beta dataset. Similar plots were obtained for the Uniform
and Gaussian datasets.

with SPT than with LPT. This could either mean that the latter is a more
difficult problem or that the features are more suitable for the former problem.

Some interesting observations can be made based on Figure 2 and further
analysis of the results (not shown due to lack of space). First, there are a lot
of examples (gaps) with a true value of 0. On the other hand, although the
maximum value of the gaps is approximately 500, the predictions are generally
below 300. We observe that the largest errors occur at the extremes of the range
of real values. These observations indicate that the regression methods are not
dealing with the distribution of target values appropriately.

As shown in Section 3.3, the predictions of the gaps can be used to predict
the end time of jobs and the makespan of the schedule. In general, the errors
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Fig. 3. Histograms of the errors obtained with the Random Forest model for SPT gaps
(left) and LPT (right) on the Gaussian dataset

Table 2. Error of selecting the best heuristic based on the predictions of gaps ob-
tained with different models (Linear Regression, Random Forest and Baseline), for all
instances and for the instances for which there is a clear decision, i.e., the difference in
the makespan predicted for the two heuristics is higher than 20% (column “Selected”)

Dist. Alg. All Selected
U LR 0.38 0.25
U RF 0.37 0.2
U Bl 0.43 0.33
G LR 0.41 0.29
G RF 0.39 0.26
G Bl 0.42 0.31
B LR 0.44 0.38
B RF 0.36 0.25
B Bl 0.46 0.37

of predictions concerning LPT schedules are larger than the ones concerning
SPT schedules. Additionally, we observe that the error of predicting the end
time of jobs of the LPT schedules increases relative to the error of predicting
the corresponding gaps. The opposite occurs for the SPT schedules, except for
the instances generated with the beta distribution. Figure 3, which plots the
distribution of the errors of predicting gaps for the two heuristics, provides a
possible explanation for this. The distribution of errors on the SPT schedules
is more symmetric than on the LPT schedules. So, when adding the gaps, the
errors of the SPT heuristic may be cancelling themselves out because of the
symmetry around 0. However, further analysis of results is necessary to confirm
this. Comparing the errors in the predictions of the makespan and of the end
time of jobs, there is an increase in the Uniform and Gaussian datasets, while
on the Beta dataset they are both very similar (Table 1 and Figure 5).

These results indicate that it is possible to predict the gaps generated by these
two heuristics, which is one of the main goals of this paper. However, we also
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Fig. 4. True values of the end time of jobs (y-axis) vs the values predicted using
Random Forest model (x-axis) for SPT (left) and LPT(right) of Beta dataset. Similar
results were obtained on the Uniform and Gaussian datasets.

Fig. 5. True values of the makespan (y-axis) vs the value predicted using Random
Forest model (x-axis) for SPT(left) and LPT(right) of Beta dataset. Similar results
were obtained on the uniform and Gaussian datasets.

evaluated the accuracy of selecting the best heuristic based on the estimated
makespans. The results in Table 2 show that this is also possible. However, the
difference to the default accuracy (i.e., using a baseline method that always
selects the heuristic that wins in the largest number of instances in the training
set) is small. The table also shows that in instances with a larger difference
of performance between the heuristics, the advantage of the prediction is more
clear. These results indicate that we must improve the predictions of the gaps
before being able to accurately predict the makespan and which method will
obtain the best result. The Table 3 presents some information about the true
(y) and the predicted values (ŷ). Based on these values, we observe that:

– more than half of the values are negative, when, in fact, gaps cannot be
negative

– more than half of the true values are equal to zero while less than a quarter
of the predicted values are near 0
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Table 3. Descriptive statistics about the real value and predicted values of linear model
for SPT and LPT

Heuristic Type Min. 1Q Median 3Q Max
SPT Real values 0.00 0.00 0.00 29.00 935.00

Predicted values -67.3800 0.4862 15.4000 56.7200 404.0000
LPT Real values 0.00 0.00 0.00 53.00 870.00

Predicted values -85.88 12.45 33.88 63.77 302.40

Table 4. Values and statistical significance of the coefficients of the linear model
on the Beta dataset. Each value represents the feature with name obtained by the
corresponding: OPDuration, PO and DRM.

Statistic Coefficient
Heuristic OPDuration PO DRM OPDuration PO DRM
SPT * * *** 0.154 -1.296 -3.189
LPT *** ** *** -0.525 -1.800 -6.316

– the maximum value of the predictions is much lower than the maximum of
true values

These results provide further evidence that, although we are able to predict the
gaps, further improvements are necessary not only to the set of features used
but also to the modeling processes.

4.2 Analysis of Models

The second main goal of this work is to obtain some information about the be-
havior of the heuristics by analyzing the models generated. For that purpose, we
analyze the coefficients of the linear regression, also on the dataset containing
instances of type Beta. Although linear regression does not generate the most
accurate models in this problem, its models are easy to interpret. However, we
cannot compare the coefficients directly since the scale is not the same for differ-
ent features. On the other hand, we can test the significance of those coefficients.
So, we test the hypothesis that a particular coefficient βj = 0 using the t-test.

Under the null hypothesis that βj = 0, the t-value = β̂j

σ̂ is distributed as t dis-
tribution with N − p − 1 degrees of freedom (tN−p−1), where N is the number
of sample and p the number of features. In Tables 4, 5, 6, 7, we present the co-
efficients and the level of significance, according to the t-test. The features with
three stars have a probability (considering as true the null hypothesis) between
0 and 0.001, with two stars between 0.001 and 0.01, one star between 0.01 and
0.05 and those annotated with a dot, between 0.05 and 0.10. The tables show
that:

– Particularly in the last set of features (Table 7), most of the features with
significant coefficients for the SPT heuristic are relative to operations with
less duration in the same machine, while for the LPT heuristic this is true
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Table 5. Values and statistical significance of the coefficients of the linear model
on the Beta dataset. Each value represents the feature with name obtained by the
corresponding: < aggregationfunction > DistLM/DistHM (Shorter/Longer) and
< aggregationfunction > DistM (Global).

Statistic Coefficient
Heuristic Machine Part Min Avg Max Sum Var Min Avg Max Sum Var
SPT Global *** *** - *** 0.202 22.713 -1.609 - 0.091

Shorter - - *** - 0.123 - -2.213 0.009
Longer * - ** *** * -0.535 - 0.746 -2.145 -0.075

LPT Global *** *** ** - -1.851 17.57 -0.762 - 0.0003
Shorter - *** - ** - 0.073 - -1.016 -0.0012
Longer *** - *** ** *** 2.498 - -3.193 -1.074 0.217

Table 6. Values and statistical significance of the coefficients of the linear model
on the Beta dataset. Each value represents the feature with name obtained by
the corresponding: < aggregationfunction > DLM/DHM (Shorter/Longer) and
< aggregationfunction > DM (Global).

Aggregation Statistic
Heuristic Machine Min Avg Max Sum Var Min Avg Max Sum Var
SPT Global . - *** -0.106 0.078 0.129 - 0.019

Shorter . *** - *** 0.248 -0.596 - 0.568 0.006
Longer - *** - - *** - -0.300 - - 0.021

LPT Global *** ** - * 0.007 5.006 -0.256 - 0.0011
Shorter - *** 0.0004 -0.0186 - -0.0425 0.0003
Longer - *** - - . - -0.125 - - -0.001

for features describing operations with more duration in the same machine.
This makes sense because, in both cases, these are the operations that can
actually delay the execution of the current operation.

– Additionally, in many of the other features, the sign of the coefficient is dif-
ferent for the heuristics, which means that, although the feature is significant
for both, the influence on the gap is in opposite direction. In other words,
the same feature is associated with an increase of the value of the gap for
one heuristic and a decrease for the other. This could also be expected due
to the nature of the methods.

– A more detailed analysis of the coefficients provides information which, in
some cases, is expected while in others, it is quite surprising. For instance,
the largest coefficients are for the average distance in the ICS of the current
operation to the other operations in the same machine (AvgDistM). These
coefficients are positive in both cases (SPT and LPT) which means that
the more isolated the operation is on the ICS, the larger is the gap. This is
unintuitive, as it could be expected that the more isolated it is, the less is
the probability that it will be in conflict.
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Table 7. Values and statistical significance of the coefficients of the linear model on the
Beta dataset. Each value represents the feature with name obtained by the correspond-
ing: < aggregationfunction >< distance >< position > Lower/HigherDuration.

Statistic Coefficients
Heur Mach Position Distance Avg Sum Var Avg Sum Var
SPT Lower Pos VeryNear *** *** * -0.286 0.090 0.006

Near *** *** ** -0.400 -0.208 -0.009
Far *** *** *** -0.280 -0.433 -0.014

Neg VeryNear *** *** *** -0.366 0.295 0.014
Near *** *** . -0.166 0.107 -0.006
Far *** *** *** 0.273 -0.437 0.013

Higher Pos VeryNear ** 0.053 -0.008 0.0001
Near ** -0.055 0.013 0.001
Far *** . * -0.098 0.020 0.006

Neg VeryNear *** - 0.065 - -0.006
Near -0.034 -0.001 0.001
Far *** ** * -0.084 -0.033 -0.005

LPT Lower Pos VeryNear . 0.005 -0.0003 -0.0001
Near . -0.006 -0.0008 -0.0002
Far *** -0.01 -0.001 0.000

Neg VeryNear *** 0.018 -0.003 0.004
Near ** 0.005 -0.007 0.000
Far * *** -0.007 -0.01 -0.001

Higher Pos VeryNear *** * -0.025 0.0002 -0.001
Near *** *** -0.019 -0.016 0.000
Far *** -0.001 -0.03 -0.0001

Neg VeryNear - *** -0.001 - 0.003
Near *** *** * -0.012 -0.009 -0.001
Far *** *** *** 0.018 -0.037 0.001

5 Conclusion

In this work, we addressed the problem of learning models that are able to
predict the behavior of different heuristics for the Job-Shop Scheduling problem.
We propose a methodology that is novel and can be applied to any heuristic
that solves conflicts individually. Our goal is to determine the properties of the
instance that determine the performance of the heuristic. Our approach divides
the problem into two sub-problems: 1) for every pair of consecutive operations,
predict the size of the corresponding gap in the schedules generated by the
heuristic and 2) predict the makespan of the schedule based on the predictions
obtained by the models induced for sub-problem 1.

In our experiments, positive results were obtained in the two sub-problems.
However, the results on the second problem are not entirely satisfactory. Our plan
is to improve the set of features used in order to obtain more accurate predictions
in the first sub-problem. We expect that better base-level predictions will enable
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better results on the prediction of the makespan of the schedules generated by
the heuristics.

Also as future work, we plan to explore the generality of the method, by testing
it with another common heuristic for the JSS problem, MWR, and on heuristic
methods that generate non-delayed schedules. Finally, we will also extend this
work to predict the behavior of meta-heuristics. In this case, these results are
particularly interesting because, as these heuristics are more computationally
complex, the problem of selecting beforehand which method to apply is quite
relevant.
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Abstract. A very undesirable behavior of any heuristic algorithm is
to be stuck in some specific parts of the search space, in particular in
the basins of attraction of the local optima. While there are many well-
studied methods to help the search process escape a basin of attrac-
tion, it seems more difficult to prevent it from looping between a limited
number of basins of attraction. We introduce a Position Guided Tabu
Search (PGTS) heuristic that, besides avoiding local optima, also avoids
re-visiting candidate solutions in previously visited regions. A learning
process, based on a metric of the search space, guides the Tabu Search
toward yet unexplored regions. The results of PGTS for the graph col-
oring problem are competitive. It significantly improves the results of
the basic Tabu Search for almost all tested difficult instances from the
DIMACS Challenge Benchmark and it matches most of the best results
from the literature.

1 Introduction

It is well known that the performance of all heuristic algorithms is heavily in-
fluenced by the search space structure. Consequently, the design of an efficient
algorithm needs to exploit, implicitly or explicitly, some features of the search
space. For many heuristics, especially local searches, the difficulty is strongly in-
fluenced by the asperity of the local structures of local optima (e.g. isolated local
optima, plateau structures, valley structures, etc.). A paradigmatic example of
a difficult structure is the trap [1], i.e., a group of close local minima confined in
a deep ”well”. If trapped into such a structure, even a local search with local op-
timum escape mechanisms can become locked looping between the local minima
inside the well. Several global statistical indicators (i.e., convexity, ruggedness,
smoothness, fitness distance correlation) have also been proposed to predict the
performance of both local and evolutionary algorithms; we refer to [2, 3] for a
summary of such measures and related issues.

Other research studies focus on the structural similarities between local op-
tima (i.e., the ”backbone” structures) or on their global arrangement (see [4] for
a detailed summary of the research threads in search space analysis). Indeed, the
different local optimum characteristics of the search space (the number of local
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optima, their space distribution, the topology of their basins of attraction, etc.)
may be very different from one problem to another and even from one instance
to another. These specific properties have been investigated for several classi-
cal problems, such as: boolean satisfiability [5,6], the 0–1 knapsack problem [7],
graph coloring [8, 9, 10], graph bi-partitioning [11], the quadratic assignment
problem [12], job shop or flow shop scheduling [4,13], and arc crossing minimiza-
tion in graph drawing [14]. All these studies conclude that the local optimum
analysis has a great potential to give a positive impact on the performance.

However, the operational integration of specific search space information in a
search process remains a difficult problem. To achieve this, a heuristic needs to
learn how to make better local decisions using global information available at
coarser granularity levels. Moreover, the search process has usually no informa-
tion on the search space before actually starting the exploration. To overcome
such difficulties, the integration of a learning phase in the optimization process
(“learning while optimizing”) seems very promising. This approach, using ideas
of reactive search [15], aims at developing an algorithm capable of performing a
self-oriented exploration.

In this paper, we focus on the graph coloring problem and we present such a
reactive algorithm with two central processes: (i) a classical local search based on
Tabu Search (TS) [16], (ii) a learning process that investigates the best configura-
tions visited by the first process. This learning process has the role of effectively
guiding TS toward yet unexplored regions. It integrates a positional orientation
system based on a metric of the search space; for this, we use a distance function
that indicates how many steps TS needs to perform to go from one configuration
to another.

More precisely, the Position Guided Tabu Search (PGTS) algorithm employs
an extended tabu list length whenever it detects that it is exploring the prox-
imity of a previously visited configuration, i.e., so as to avoid re-exploring the
region. This strategy does not strictly prevent the algorithm from revisiting such
regions, but the probability of avoiding them is strongly increased by a reinforced
diversification phase associated with the extended tabu list. Here, we propose
for the graph coloring problem a strategy based on a tractable distance com-
putation, with time complexity O(|V |), where V is the vertex set of the graph.
We show that PGTS significantly improves the performances of the basic TS
algorithm on a well-known set of DIMACS instances, and that it competes well
with the best algorithms from literature.

The rest of the paper is organized as follows. Section 2 briefly outlines the
graph coloring problem and its traditional TS algorithm (Tabucol). The Position
Guided Tabu Search for graph coloring and the distance definition are presented
in section 3. Section 4 is devoted to experimental results. Section 5 presents
related work and provides elements for the generalization of PGTS to other
combinatorial optimization problems, followed by some conclusions in the last
section.
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2 The Graph Coloring Problem and Its Classical Tabu
Search Algorithm

We briefly recall the basic notions and definitions related to the graph coloring
problem and to the tabu search algorithm adapted to this problem.

2.1 Definitions

Let G = (V, E) be a graph with V and E being respectively the vertex and edge
set. Let k be a positive integer.

Definition 1. (Graph coloring and k-coloring) The graph G is k-colorable if and
only if there exists a conflict-free vertex coloring using k colors, i.e., a function
c : V → {1, 2, · · · , k} such that ∀{i,j} ∈ E, c(i) �= c(j). The graph coloring
problem (COL) is to determine the smallest k (the chromatic number denoted by
χG) such that G is k-colorable.

Definition 2. (Color (array) based representation) We denote any function c :
V → {1, 2, · · · , k} by C = (c(1), c(2), · · · , c(|V |)). We say that C is a candidate
solution (or configuration) for the k-coloring problem (G, k).

Moreover, C is said to be a proper (conflict-free) or legal coloring if and only if
c(i) �= c(j), ∀{i, j} ∈ E. Otherwise, C is an improper (conflicting) coloring. A
legal coloring is also referred to as a solution of the k-coloring problem (G, k).

Definition 3. (Partition representation) A k-coloring C = (c(1), c(2), · · · ,
c(|V |)) is a partition {C1, C2, . . . , Ck} of V (i.e., a set of k disjoint subsets
of V covering V ) such that ∀x ∈ V , x ∈ Ci ⇔ c(x) = i.

We say that Ci is the class color i induced by the coloring C, i.e., the set
of vertices having color i in C. This partition based definition is particularly
effective to avoid symmetry issues arising from the color based encoding. We
will see (Section 3.2) that the distance between two colorings can be calculated
as a set theoretic partition distance.

Definition 4. (Conflict number and objective function) Given a configuration
C, we call conflict (or conflicting edge) any edge having both ends of the same
color in C. The set of conflicts is denoted by CE(C) and the number of conflicts
(i.e., |CE(C)|—also referred to as the conflict number of C) is the objective
function fc(C). A conflicting vertex is a vertex v ∈ V , for which there exists an
edge {v, u} in CE(C).

In this paper, we deal with the k-coloring problem (k-COL), i.e., given a graph G
and an integer k, the goal is to determine a legal k-coloring. From an optimization
perspective, the objective is to find a k-coloring minimizing the conflict number
fc(C).
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Algorithm 1. Basic Tabu Search Algorithm for Graph Coloring
Input: G, k
Return value: fc(Cbest) (i.e., 0 if a legal coloring is found)
C: the current coloring; Cbest: the best coloring ever found
Begin
1. Set C a random initial configuration
2. While a stopping condition is not met

(a) Find the best non-tabu C′ ∈ N(C) (a neighbor C′ is tabu
if and only if the pair (i, i′), corresponding to the move

C
C(i):=i′−→ C′, is marked tabu)

(b) Set C = C′ (i.e., perform move C(i) := i′)
(c) Mark the pair (i, i′) tabu for T� iterations
(d) If (fc(C) < fc(Cbest))

– Cbest = C
End

2.2 Tabu Search for Graph Coloring

Following the general ideas of TS [16], Tabucol [17] is a classical algorithm for
k-COL that moves from one configuration to another by modifying the color of
a conflicting vertex. The main adaptation of the Tabu Search meta-heuristic to
graph coloring consists in the fact that it does not mark as tabu a whole configu-
ration, but only a color assignment. To check whether a specific neighbor is tabu
or not, it is enough to test the tabu status of the color assignment that would
generate the neighbor. The general skeleton of our Tabucol implementation is
presented in Algorithm 1; the stopping condition is to find a legal coloring or to
reach a maximum number of iterations (or a time limit). The most important
details that need to be filled are the neighborhood relation N and the tabu list
management.

Neighborhood N . Given a coloring problem (G(V, E),k), the search space Ω
consists of all possible colorings of G; thus |Ω| = |V |k. A simple neighborhood
function N : Ω → 2Ω − {∅} can be defined as follows. For any configuration
C ∈ Ω, a neighbor C′ is obtained by changing the color of a single conflicting
vertex in C.

Tabu List Management. There are several versions of this basic algorithm in
the literature, but their essential differences lie in the way they set the tabu
tenure T�. In our case, it is dynamically adjusted by a function depending on the
objective function (i.e., the conflict number fc(C) = |CE(C)|—as in [18,19,20]),
but also on the number m of the last consecutive moves that did not modify the
objective function. More precisely, T� = α∗fc(C)+random(A)+

⌊
m

mmax

⌋
, where

α is a parameter taking values from [0, 1] and random(A) indicates a function
returning a random value in {1, 2, . . . , A}. In our tests, as previously published
in [20], we use α = 0.6 and A = 10.
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The last term constitutes a reactive component only introduced to change
T� when the conflict number does not change for mmax moves; typically, this
situation appears when the search process is completely blocked cycling on a
plateau. Each series of consecutive mmax (usually mmax = 1000) moves leaving
the conflict number unchanged increments all subsequent values of T�—but only
until the conflict number changes again; such a change resets m to 0.

3 Position Guided Tabu Search Algorithm

3.1 Generic Description

The main objective of the algorithm is to discourage the search process from visit-
ing configurations in some space regions that are already considered as explored.
Taking as a basis the classical Tabu Search for graph coloring (see Algorithm 1),
the new algorithm PGTS (Position Guided Tabu Search) integrates a learning
component (Step 4.(c) in Algorithm 2) that processes all visited configurations
and records a series of search space regions S(C) that cover the whole exploration
path. Ideally, these recorded regions contain all colorings that are structurally
related to the visited ones.

A statistical analysis of the search space, briefly described in Section 3.3, has
led us to define S(C) as the closed sphere centered at C of radius R:

Definition 5. (Sphere) Given a distance function d : Ω ×Ω −→ IN , a configu-
ration C ∈ Ω and a radius R ∈ IN , the R-sphere S(C) centered at C is the set
of configurations C′ ∈ Ω such that d(C, C′) ≤ R.

Here, the distance d(C, C′) (see also Section 3.2) can be interpreted as the short-
est path of TS steps between C and C′. More formally, d(C, C′) is the minimal
number n for which there exist C0, C1, . . . Cn ∈ Ω such that: C0 = C, Cn = C′

and Ci+1 ∈ N(Ci) for all i ∈ [0 . . . n− 1].
PGTS starts iterating as the basic TS does, but, with the learning compo-

nent (Step 4.(c), Algorithm 2), it also records the center of the currently explored
sphere. While the current configuration C stays in the sphere of the last recorded
center Cp, we consider the search process ”pivots” around point Cp. PGTS per-
forms exactly the same computations as TS except checking the distance d(C, Cp)
that is performed each iteration (in Step 4.(c)).

As soon as the search leaves the current sphere, the learning component acti-
vates a global positioning orientation system. It first compares C to the list of all
previously recorded configurations (procedure Already–Visited in Algorithm 2) to
check whether it has already visited its proximity or not. If C is not in the sphere of
a previously recorded configuration, it goes on onlyby changing the pivot; i.e., it re-
places Cp with C and records it. Otherwise, this means the search is re-entering the
sphere of a previously recorded configuration and that should be avoided. This is a
situation that triggers a signal to make more substantial configuration changes:
a diversification phase is needed. For this purpose, the chosen mechanism is to
extend the classical tabu tenure T� with a Tc factor.
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Algorithm 2. Position Guided Tabu Search
PROCEDURE ALREADY-VISITED
Input: current configuration C
Return value: TRUE or FALSE
1. Forall recorded configurations Crec:

– If d(C, Crec) ≤ R
• Return TRUE

2. Return FALSE
ALGORITHM POSITION-GUIDED TABU SEARCH
Input: the search space Ω
Return value: the best configuration Cbest ever visited
C: the current configuration
1. Choose randomly an initial configuration C ∈ Ω
2. Cp = C (the pivot, i.e., the last recorded configuration)
3. Tc = 0 (the value by which PGTS extends the tabu tenure T�)
4. While a stopping condition is not met

(a) Choose the best non-tabu neighbor C′ in N (C)
(b) C = C′

(c) If d(C, Cp) > R (the Learning Component)
– Cp = C
– If ALREADY-VISITED(Cp)

• Then Increment Tc

– Else
• Tc = 0
• Record Cp

(d) Mark C as tabu for T� + Tc iterations
(e) If (fc(C) < fc(Cbest))

– Cbest = C
(f) If (fc(C) < fc(Cp))

– Replace Cp with C in the archive
– Cp = C (i.e., “recentering” the current sphere)

5. Return Cbest

Using longer tabu lists makes configuration changes more diverse because the
algorithm never repeats moves performed during the last T� + Tc iterations. As
such, by varying the tabu tenure, we control the balance between diversification
and intensification—a greater Tc value implies a stronger diversification of the
search process. A suitable control of Tc guarantees that PGTS is permanently
discovering new regions and that it can never be blocked looping only through
already visited regions.

The performance of this algorithm depends on three factors: a fast procedure
to compute the distance (Section 3.2), a suitable choice of the spherical radius
R (Section 3.3), and a strategy to quickly check the archive (Section 3.4).

3.2 Distance Definition and Calculation Complexity

The definition of the sphere S(C) in the search space Ω is based on the following
distance: the minimal number of neighborhood operations that need to be applied
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on a coloring so that it becomes equal with the other. This distance reflects the
structural similarity between two colorings, the smaller the distance the more
similar the colorings are. The equality is defined on the partition definition of
a coloring (Definition 3): two colorings Ca and Cb are equal if and only if they
designate the same classes of colors, i.e., if there exists a color relabeling σ (a
bijection {1, 2, . . . , k} σ→ {1, 2, . . . , k}) such that Ci

a = C
σ(i)
b , with 1 ≤ i ≤ k.

The coloring distance can thus be expressed as a set-theoretic partition dis-
tance: the minimal number of vertices that need to be transferred from one class
to another in the first partition so that the resulting partition is equal to the
second. This distance function was defined since the 60ies and it can be calcu-
lated with well-studied methods—for example, see [21] for a general set-theoretic
approach or [22] for the graph coloring application. Most studies consider a
O(|V | + k3) algorithm based on the Hungarian method. However, we recently
proved that, under certain conditions [23], this distance can be computed in
O(|V |) time with a enhanced method. Indeed, a fast distance computation is
crucial to the PGTS algorithm as it calculates at least one distance per iteration
and the time complexity of an iteration is O(|V | + k × fc(C)) (mainly due to
operation 2.(a) in Algorithm 1).

The O(|V |) distance calculation method is a Las Vegas algorithm (i.e., an
algorithm that either reports the correct result or informs about the failure) that
could calculate more than 90% of the required distances in practice: only less
than 10% of cases require using the Hungarian algorithm (of complexity between
O(|V |+k2) and O(|V |+k3) in the worst case). Basically, the distance is calculated
with the formula d(Ca, Cb) = |V | − s(Ca, Cb), where s is the complementary
function of similarity, i.e., the maximum number of elements of Ca that do not
need to be transfered to other Ca classes in order to transform Ca into Cb.
Our algorithm goes through each element x ∈ V and increments a matching
counter between color class Ca(x) of Ca and Cb(x) of Cb. Denoting by C

σ(i)
b

the best match (with the highest counter) of class Ci
a, the similarity is at most∑

1≤i≤k |Ci
a ∩C

σ(i)
b |. The computation time can be very often reduced as PGTS

does not actually require the precise value of the distance; it only has to check
whether it is greater than R or not. If the aforementioned sum is less than |V |−R,
the distance is greater than R.

Let us note that, as the distance values are in [0, |V |), we often report the
distance value in terms of percentages of |V |.

3.3 Choice of the Spherical Radius

In the exploration process of the regions, the parameter R controls the size of
the visited spheres and, indirectly, the number of recorded spheres. The extreme
value R = 0 forces the algorithm to record all visited configurations and that
compromises the solving speed (via the Forall loop of the Already-Visited
procedure). For the other extreme value R = |V |, the whole search space is
contained in a unique sphere (because the distance is always less than |V |) and
the algorithm is equivalent to the basic TS.
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The effective choice of R has been determined from an analysis of a classical
TS scenario: start the exploration process from an initial local minimum C0,
and denote by C0, C1 ,C2, . . . , Cn the best colorings it visits, i.e., the visited
configurations satisfying fc(Ci) ≤ fc(C), with 0 ≤ i ≤ n (note that most of
the C′s can be local optima, too). We recorded all these configurations up to
n = 40000 and we studied the possible values of the distances between each Ci

and Cj with 1 ≤ i, j ≤ n.
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The histogram of the statistical distribution of
these distance values directly showed a bimodal
distribution with many occurrences of very small
values (around 0.05|V |) and of some much larger
values—see an example on the right figure. There
exist some distant clusters of close points; the high
distances correspond to inter-cluster distances and
the small ones to intra-cluster distances. If we de-
note a ”cluster diameter” by cd, we observed that
cd varies from 0.07|V | to 0.1|V | depending on the
graph; moreover we noticed that:

– there are numerous pairs (i, j) such that d(Ci, Cj) < cd;
– there are numerous pairs (i, j) such that d(Ci, Cj) > 2cd;
– there are very few (less than 1%) pairs (i, j) such that cd < d(Ci, Cj) < 2cd.

It is important to note that any two visited local minima situated at a distance of
more than 0.1|V | are not in the same cluster because, ideally, they have different
backbones. We assume that this observation holds on all sequences of colorings
visited by TS; the value of R is set to 0.1|V | on all subsequent runs. Hence, as
soon as PGTS leaves the sphere S(C) of a visited configuration C, it avoids to
re-visit later other configurations from the same cluster.

3.4 Archive Exploration

The exploration of the archive is a tricky stage for the computation time because
of the numerous distance computations. Our objective is to keep the execution
time of the learning component in the same order of magnitude as the exploring
component. Due to the small bound of the distance computation time, computing
one distance per iteration (i.e., in Step 4.(c)) is fast. The critical stage appears
when PGTS needs to check the distance from the current coloring to all colorings
from the archive (the Forall loop of Step 1, procedure Already-Visited in
Algorithm 2). If the archive size exceeds a certain limit, the learning component
execution time can become too long.

However, the processing of the archive may be tractable if we focus the
learning component only the high quality configurations.

Definition 6. (High-quality configuration) We say that configuration C ∈ Ω is
high-quality if and only if fc(C) ≤ Bf , where Bf is a fitness boundary. Otherwise,
we say that C is low-quality.
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The fitness boundary Bf is automatically set by PGTS so that the total number
of iterations stays in the same order of magnitude as the number of distance
computations. This proved to be a good ”thumb rule” for obtaining an effective
algorithm. To be specific, Bf directly controls the learning overhead because the
whole learning component (Step 4.(c)) is now executed only if f(C) < Bf . In
practice, Bf varies from 5 conflicts to 20 conflicts; for some problems we can
even set Bf = ∞ and still obtain an acceptable speed. However, the algorithm
automatically lowers and raises Bf according to the balance between the number
of computed distances and the number of iterations.

4 Numerical Results

In this section, we show experimentally that the learning component helps the
TS algorithm to obtain several colorings never found before by any other TS
algorithm [17, 18, 19,20,24]. In fact, PGTS competes favorably with all existing
local search algorithms.

4.1 Benchmark Graphs

We carry out the comparison only on the most difficult instances from the
DIMACS Challenge Benchmark [25]: (i) dsjc1000.1, dsjc1000.5, dsjc1000.9,
dsjc500.5 and dsjc250.5—classical random graphs [26] with unknown chromatic
numbers (the first number is |V | and the second denotes the density); (ii)
le450.25c and le450.25d—the most difficult ”Leighton graphs” [27] with χ = 25
(they have at least one clique of size χ); (iii) flat300.28 and flat1000.76—
the most difficult ”flat” graphs [28] with χ denoted by the last number (gener-
ated by partitioning the vertex set in χ classes, and by distributing the edges
only between vertices of different classes); (iv) R1000.1—a geometric graph con-
structed by picking points uniformly at random in a square and by setting an edge
between all pairs of vertices situated within a certain distance.

For each graph, we present the results using a number of colors k such that the
instance (G, k) is very difficult for the basic TS; most of the unselected graphs
are less challenging.

4.2 Experimental Procedure

Note that PGTS is equivalent to TS in the beginning of the exploration, while
the archive is almost empty. The learning process intervenes in the exploration
process only after several millions of iterations, as soon as the exploration process
starts to run into already explored spheres. Therefore, if the basic TS is able to
solve the problem quite quickly without any guidance, PGTS does not solve it
more rapidly; the objective of PGTS is visible in the long run.

In Table 1, we perform comparative tests of TS and PGTS by launching 10
independent executions with time limit of 50 hours each. Within this time limit,
PGTS re-initializes its search with a random k-coloring each time it reaches 40
million iterations. All these restarts share the same archive of spheres for PGTS.
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Table 1. Comparison of PGTS and basic TS for a time limit of 50 hours. Columns
1 and 2 denote the instance, the success rate (Columns 3 and 5 respectively) is the
number of successful execution series out of 10; the time column presents the average
number of hours needed to solve the problem (if the success rate is not 0).

Instance PGTS Basic TS
Graph K Success rate Time [h] Success rate Time [h]
dsjc250.5 28 10/10 < 1 10/10 < 1
dsjc500.5 48 2/10 35 0/10 –
dsjc1000.1 20 2/10 9 0/10 –
dsjc1000.5 87 5/10 28 0/10 –
dsjc1000.9 224 8/10 24 2/10 44
flat300 28 0 29 7/10 8 0/10 –
le450 25c 25 4/10 11 3/10 7
le450 25d 25 2/10 19 2/10 12
flat1000 76 0 86 3/10 33 0/10 –
r1000.1c 98 10/10 < 1 10/10 < 1

To guarantee that the comparison is unbiased, we impose the same running time
limit of 50 hours for both algorithms.1

Generally speaking, a PGTS iteration is more computationally-expensive than
a TS iteration, and, consequently, TS can perform many more iterations for
the same CPU time. However, the learning process accounts for an important
performance gain: in many cases in which the basic TS fails (or has a very low
success rate in finding a solution, see Table 1, Column 5), PGTS (Column 3)
solves the problem.

Comparison with the Best Algorithms. Table 2 reports the best results
obtained by PGTS on our graph set, along with a comparison with the basic TS
and with the state-of-the-art algorithms. Note that many presented k-colorings
were never reported before by other local search algorithm. Among all local
searches that we are aware of, only VSS and PartialCol (columns 5 and 6)—two
very recent algorithms using an evolved neighborhood function and a enhanced
representation, respectively, compete effectively with PGTS.

Let us mention that in the literature on graph coloring, it is a common practice
to run a local search algorithm for hours in order to (try to) solve large problems.
For example, the most recent coloring algorithms [24,29] use running times of 10
hours for the largest instances. Another important point is that PGTS can con-
tinually explore new regions if it is given more computation time. Consequently,
it is able to find better solutions by using the additional computational resources.
Notice that this is a desirable characteristic which is not given by many existing
algorithms. Very often, running them beyond some time (or iteration) threshold
1 We used a 2.7GHz processor using the C++ programming language compiled with

the −O2 optimization option under Linux. The source code is the same for both
algorithms, the difference is only made by the learning component that is enabled
for PGTS and disabled for TS.
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Table 2. Comparison of the minimum number of colors for which a solution is found
by: (i) the basic TS (Column 3), (ii) the new PGTS algorithm (Column 4) and (iii)
state-of-the-art algorithms (Columns 5-10). Column 2 denotes the chromatic number
(? if unknown) and the best k for which a legal coloring was ever reported in the liter-
ature. The colorings we report are publicly available on the Internet: www.info.univ-
angers.fr/pub/porumbel/graphs/pgts/

Graph χ, k∗ TS PGTS VSS PCol ACol MOR GH MMT
[29] [24] [30] [31] [20] [32]
2008 2008 2008 1993 1999 2008

dsjc250.5 ?, 28 28 28 - - 28 28 28 28
dsjc500.5 ?, 48 49 48 48 48 48 49 48 48
dsjc1000.1 ?, 20 21 20 20 20 20 21 20 20
dsjc1000.5 ?, 83 88 87 88 88 84 88 83 83
dsjc1000.9 ?, 224 224 224 224 225 224 226 224 226
le450.25c 25, 25 25 25 26 25 26 25 26 25
le450.25d 25, 25 25 25 26 25 26 25 26 25
flat300.28 28, 32 30 29 29 28 31 31 31 31
flat1000.76 76, 82 87 86 87 87 84 89 83 82

r1000.1c ?, 98 98 98 − 98 - 98 − 98

will not lead to better results simply because either the algorithms are trapped
in deep local optima or because they re-explore again and again the same search
space areas.

5 Discussion

Here, we discuss the properties of our new approach comparing to previous
ones, and propose a generalization of PGTS to other combinatorial optimization
problems.

5.1 Related Work

PGTS shares some basic ideas and objectives with the feature-based Guided Lo-
cal Search [33] but our solving strategy is very different. We do not use explicit
penalties and we do not need to identify specific solution features to penalize the
evaluation function. In fact, we implicitly use a form of penalization (by encour-
aging the investigation unvisited regions) but at a higher level. Our method of
avoiding certain regions is very targeted, in contrast with the penalty approach
that might apply the same penalty (triggered by a situation in a particular re-
gion) to some very different and distant configurations.

A drawback of PGTS, when compared to the underlying basic TS, is that
it might not sufficiently explore some spherical regions that are avoided after a
first visit. This point could be completed by an algorithm that investigates only
the interior of the spheres of the best recorded local minima. However, the new
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algorithm is still competitive even with the best known algorithms (see columns
5-10 in Table 2) from the literature.

Compared to other local search algorithms for graph coloring, one can see
that PGTS resorts to a more global view of the exploration. Most previous local
search algorithms focused on local level improvements, i.e., they use more pow-
erful neighborhood relations, alternative solution encodings, specific evaluation
functions, etc. Generally speaking, there are numerous such problem-specific
techniques able to increase the performance of a combinatorial optimization
heuristic. However, we showed that, by focusing on global-level learning tech-
niques, one can more easily overcome the limitations to which the local-level
improvement potential is inevitably exposed.

5.2 Toward a Generalization for Other Combinatorial Problems

A careful examination of the code of Position Guided Tabu Search (see Algo-
rithm 2) shows that it contains no particular references to the coloring problem.
The only required components are: a search space, a neighborhood function, an
objective function and a search space metric. The performance of PGTS depends
on three factors: a fast procedure to compute the distance, a suitable choice of
the spherical radius R, and a strategy to quickly search the archive.

Hence, as long as there exists a distance measure whose computation time does
not significantly outweighs the computation time of a TS iteration, PGTS can
be applied effectively to any combinatorial problem. This search space distance
should express the minimal required number of neighborhood moves to arrive
from a configuration to the other. Ideally, one should be able to group in a R-
sphere of a local optimum only “equivalent“ local optima—i.e., configurations
sharing a common “backbone” substructure.

One can find several examples of easy–to–compute distances that can also be
defined in this manner by using some specific neighborhoods:

– the Hamming distance for problems with array representation using the 1-
Flip neighborhood (i.e., constraint satisfaction problems with a neighbor-
hood operator that consists in changing the value of a single variable of the
current configuration),

– the Kendall tau distance [34] for problems with permutation-based repre-
sentation using a neighborhood defined by adjacent transpositions (i.e., the
travelling salesman problem considering a neighborhood in which a move in-
verses two adjacent cities—the adjacent pairwise interchange neighborhood),

– the edit distance for problems with an array representation and with the
neighborhood defined using edit operations.

Concerning the archive processing time, it can be substantially reduced in at
least three ways: (i) by focusing on high-quality configurations, (ii) by increasing
the value of the radius R and (iii) by transforming the archive into a queue
that removes the oldest element at each insert operation. In the later case, the
algorithm becomes a Double Tabu Search with two lists: (1) the traditional list
of the last visited configurations that are forbidden, (2) the tabu list of spheres,
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used to avoid revisiting spheres visited in the recent past. The significance of the
expression ”recent past” would depend on the size of the queue which should be
tailored according to the learning component overhead.

6 Conclusions

We have presented a new local search algorithm that uses a learning process
to guide the exploration process toward unvisited search space regions. It is
possible to integrate this learning process in a classical tabu search with an
acceptable overhead for all combinatorial optimization problems, provided that
the distance computation is not too expensive. Moreover, the new algorithm does
not necessarily introduce too many auxiliary user-provided parameters because
the Bf value required in archive processing can be automatically set. The R
value could be determined by calculating the distances between the local minima
discovered during a classical search of the search space; for the graph coloring
problem, we found that these local optima are typically grouped in clusters that
can be confined in R-spheres with R = 0.1|V |. For other problems, R might be
determined by finding the maximum distance between two configurations sharing
an important backbone substructure.

This algorithm enabled us to improve the results of the basic TS for all graphs
for which there is at least a different algorithm that ever reported better colorings
than TS. Even compared to the best known algorithms from the literature (few of
them local searches), PGTS proved to be very effective. Except very few graphs,
it always finds the best known coloring. Moreover, in combination with another
intensification algorithm, we found for the very first time a solution with 223
colors for the well-studied dsjc1000.9 graph.
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Abstract. In this paper we present a novel hybrid algorithm, in which
ideas from the genetic algorithm and the GRASP metaheuristic are co-
operatively used and intertwined to dynamically adjust a key parameter
of the corridor method, i.e., the corridor width, during the search pro-
cess. In addition, a fine-tuning technique for the corridor method is then
presented. The response surface methodology is employed in order to
determine a good set of parameter values given a specific problem input
size. The effectiveness of both the algorithm and the validation of the
fine tuning technique are illustrated on a specific problem selected from
the domain of container terminal logistics, known as the blocks reloca-
tion problem, where one wants to retrieve a set of blocks from a bay in a
specified order, while minimizing the overall number of movements and
relocations. Computational results on 160 benchmark instances attest
the quality of the algorithm and validate the fine tuning process.

1 The Corridor Method: An Introduction

The Corridor Method (CM) has been presented by [1] as a hybrid metaheuristic,
linking together mathematical programming techniques with heuristic schemes.
As illustrated in [2], the basic idea of the CM relies on the use of an exact
method over restricted portions of the solution space of a given problem. Given
an optimization problem P , the basic ingredients of the method are a very large
feasible space X , and an exact method M that could easily solve problem P if
the feasible space were not too large. Since, in order to be of interest, problem P
is assumed to be hard, the direct application of M to solve P usually becomes
unpractical when dealing with real world as well as large scale instances.

The CM defines method-based neighborhoods, in which a neighborhood is
build taking into account the method M used to explore it. Given a current fea-
sible solution x ∈ X , the CM builds a neighborhood of x, say N (x), which can
effectively be explored by employing M . Ideally, N (x) should be exponentially
large and built in such a way that it could be explored in (pseudo) polynomial
time using M . In this sense the CM closely relates to very large scale neighbor-
hood search as well as the so-called dynasearch; see, e.g., [3,4].

Typically, the corridor around an incumbent solution is defined by imposing
exogenous constraints on the original problem. The effect of such constraints is
to identify a limited portion of the search space. The selection of which portions
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of the search space should be discarded can be driven by a number of factors,
in primis, as the power of the method itself deployed to explore the resulting
neighborhood. However, one could also envision the design of a stochastic mech-
anism that, after dividing the search space in portions, or limited regions, selects
which of these subspaces should be included in the current corridor. Factors such
as, e.g., a greedy score, the cardinality of each subregion, etc., could be used to
bias the stochastic selection mechanism that drives the definition of the corridor
around the incumbent solution. The stochastic mechanism could be designed
such that, on the one hand, the corridor selection is non-deterministic, so that
at every step different corridors around the same incumbent solution could be
created and, on the other hand, such selection is still influenced by a merit score,
accounting for the attractiveness of each portion of the search space. Following
such cooperative greedy stochastic corridor construction process, a balance be-
tween diversification and intensification is achieved, since, even though more
promising regions of the search space have higher probabilities of being selected,
not necessarily the best subregions will always be chosen.

In the next sections we will illustrate how this cooperative idea can be em-
ployed to design an effective algorithm for a well-known problem arising, e.g.,
at container ports. First, we illustrate the problem; then the algorithm is de-
scribed, and subsequently numerical results are presented. More details about
the problem as well as the steps of the algorithm are provided in [2].

2 The Blocks Relocation Problem

Relocation is one of the most important factors contributing to the productivity
of operations at storage yards or warehouses [5]. A common practice aimed
at effectively using limited storage space is to stack blocks along the vertical
direction, whether they be maritime containers, pallets, boxes, or steel plates [6].
Given a heap of blocks, relocation occurs every time a block in a lower tier must
be retrieved before blocks placed above it. Since blocks in a stack can only be
retrieved following a LIFO (Last In First Out) discipline, in order to retrieve the
low-tier block, relocation of all blocks on top of it will be necessary.

Let us consider a bay with m stacks and n blocks. In line with the available
literature [6,7], we introduce the following assumptions:

A1: pickup precedences among blocks are known in advance. We indicate the
pickup precedence with a number, where blocks with lower numbers have
a higher precedence than blocks with higher numbers;

A2: when retrieving a target block, we are allowed to relocate only blocks found
above the target block in the same stack using a LIFO policy;

A3: relocation is allowed only to other stacks within the same bay;
A4: relocated blocks can be put only on top of other stacks, i.e., no rearrange-

ment of blocks within a stack is allowed.

In the literature, the problem of arranging containers to maximize efficiency is
extensively discussed; see, e.g., [8] for a recent survey on quantitative approaches
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to container terminal logistics. One approach to the problem is the retrieval
problem considering relocations called blocks relocation problem (BRP). If the
current configuration of the bay is taken as fixed, one might be interested in
finding a sequence of moves to be executed, while retrieving blocks according to
a given sequence, in order to minimize the overall number of relocation moves.
While in the shuffling problems containers are rearranged but not removed, in
this version of the problem, at each step, a container is removed from the bay,
hence reducing the number of containers in the bay until all containers have
been picked up from the bay. Exact as well as approximate algorithms have
been proposed to minimize the number of relocations while retrieving blocks
(see, e.g., [6,7,9,10,11,12]).

In this paper, we present an enhanced algorithm for the BRP. The algorithm
is made up of (i) a corridor definition phase, during which exogenous constraints
are imposed to construct a corridor around the incumbent solution; (ii) a neigh-
borhood design and exploration phase, where the corridor is used to define the
boundaries of the neighborhood to be explored; (iii) a move evaluation and se-
lection phase, where a greedy rule is used to evaluate the fitness of the solutions
in the neighborhood and to select a restricted pool of elite solutions and, fi-
nally, (iv) a trajectory fathoming phase, in which a logical test is employed to
determine whether the current trajectory can be pruned without loosing any
improving solution.

The major contribution of the paper is two-fold: on the one hand, we propose
an effective way of enhancing the performance of a CM based algorithm by hy-
bridizing such algorithm with ideas from genetic algorithms (GA) and GRASP;
on the other hand, it is the first time that a statistically sound attempt to fine
tune a CM inspired algorithm is carried out, hence contributing to the realm of
metaheuristic calibration and fine tuning.

Let us first describe how the CM can be applied to the BRP. The basic
idea of the CM is related to the imposition of exogenous constraints upon the
original problem, such that the search space is reduced. Given an incumbent
bay configuration T , the goal of the BRP is to retrieve the block with highest
priority in the bay. However, due to the LIFO policy assumption, whenever such
target block is not in the uppermost tier of a stack, i.e., whenever other blocks
are currently placed upon the target block, relocation operations will first be
required in order to finally retrieve the target block. Given the uppermost block
currently located in the same stack of the target, a decision regarding where to
relocate such block must be made. Obviously, such decision affects the future
retrieval process, since the relocated block might be placed on top of other blocks
and, therefore, it might imply the need of further relocations in the next steps.

The size of the search space describing all the possible relocations of a set of
blocks grows exponentially with respect to the number of blocks moved at each
step. A simple way to limit the size of the search space describing the possible
configuration that can be reached starting from the initial bay configuration is
to impose “constraints,” or limitations, upon the use of stacks. Let us suppose
we are given a bay with m stacks. This implies that, when a relocation of a block
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l is required to retrieve a target block k, block l can be placed on top of any
stack different from the one where it is currently located, i.e., m − 1 possible
relocations arise. In turn, all of these m−1 possible scenarios give raise to m−1
new configurations, with an exponential growth in the number of configurations.
However, let us assume that, whenever a relocation of a block is required in order
to retrieve a target block, we are allowed to move such block on only δ < m of
the available m−1 stacks, hence creating δ different configurations. Figuratively,
we could say that such exogenous constraint builds a horizontal corridor around
the incumbent configuration, determining which configurations can be reached
starting from the incumbent one. The value of parameter δ can be used to control
the width of the corridor and, therefore, the growth of the search space.

In a similar fashion, a second parameter λ can be used to introduce a bound on
the maximum height of a stack, i.e., a vertical corridor. Consequently, a stack
can be used to relocate blocks only if the maximum height has not yet been
reached.

3 The Cooperative Algorithm

Given an incumbent bay configuration, let us indicate with Ti the ordered list of
blocks in stack i, with i = 1, . . . , m, where the first and the last elements of the
list represent the blocks at the top and at the bottom of the stack, respectively.
Consequently, we represent the incumbent bay configuration T as a sequence of
stacks, i.e., T =< T1, . . . , Tm >.

Given an incumbent bay configuration T , with a total of N blocks, let us
indicate with k ∈ [1, N ] the target block, i.e., the block with highest priority
in T . Index t, with t ∈ [1, m], is used to indicate the stack in which block k
is found. In addition, let us indicate with L the list of blocks above the target
block in stack t, and with l the uppermost block in list L, i.e., the current block
to be relocated.

Let us now define the concept of forced relocations. Given a current bay config-
uration, as in Figure 1, the number of forced relocations is given by the number
of blocks in each stack currently on top of a block with higher priority. Such
blocks will necessarily be relocated, in order to retrieve the block with higher
priority located below. For example, in Figure 1, the number of forced reloca-
tions is equal to 4, as indicated by the shaded blocks. It is worth noting that
the number of forced relocations in a bay constitutes a valid lower bound of the
minimum number of relocations required to complete the retrieval operation.

The proposed algorithm terminates when only the block with the lowest pri-
ority is left in the bay and is made up of four phases:

Corridor definition: Given the incumbent configuration and the current block
to be relocated, a corridor around the incumbent solution is defined. The
corridor width is influenced by the value of parameter δ, which indicates the
number of stacks available for relocation. As illustrated above, in order to
reduce the size of the search space, we only allow relocations towards a subset
of the available stacks, i.e., only towards those stacks that are included in
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Fig. 1. An example of forced relocations within a bay. Blocks 3, 4, 5, and 7 will neces-
sarily be relocated to retrieve blocks with higher priority.

the current corridor. A stochastic mechanism is used in order to identify the
subset of stacks to be included in the current corridor;

Neighborhood design and exploration: Once the corridor around the in-
cumbent solution is created, we define a neighborhood N (T , k, t, l), which
is made up by the set of solutions that can be reached via the application
of an admissible relocation move. Subsequently, we thoroughly explore the
neighborhood by evaluating the solutions contained in N (T , k, t, l) with re-
spect to a greedy score g : N (T , k, t, l) → R. In the spirit of the GRASP
metaheuristic, a pool of elite solutions Ω is formed, i.e., a restricted set of
solutions representing the topmost quantile of the neighborhood population
is identified;

Move evaluation and selection: A “roulette-type” probabilistic scheme is
used to randomly select one solution from the elite set Ω and the corre-
sponding move required to reach the new configuration is finally executed.
Such mechanism allows for different solutions to be selected at each iter-
ation, while still preserving a measure of attractiveness of each selection
proportional to the greedy score;

Trajectory fathoming: given the best upper bound, we apply a simple logical
test to detect whether the current trajectory is dominated by a previously
found feasible solution. In such case, the current trajectory can be fathomed
and the algorithm is restarted. Otherwise, if the logical test fails, the next
iteration of the algorithm is performed.

The next sections describe each phase of the algorithm in detail. The overall
algorithm is presented in Algorithm Hybrid_brp(). In the following, the four-
phase algorithm is repeated until a complete trajectory is build, i.e., until all
blocks of the bay are retrieved in the right order. In turn, the trajectory construc-
tion scheme is iteratively repeated until a predefined stopping_criterion() is
reached.
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Algorithm 1. Hybrid brp()

Require: initial configuration T 0, corridor width δ
Ensure: set of relocations
1: z∗ ← ∞
2: while stopping criterion() is not reached do
3: v ← 0
4: for k = 1, . . . , N do
5: identify t and L
6: while L �= ∅ do
7: l ← uppermost element in L
8: Δ ← Corridor_Selection(T , k, t, l, δ)
9: N (T , k, t, l) ← Neighborhood_Definition(T , Δ)

10: x ← Move_Selection(N (T , k, t, l))
11: v ← v + 1
12: T v ← m(T v−1, x)
13: L ← L \ {l}
14: apply logical test Trajectory_Fathoming(T v, z∗ )

15: end while
16: retrieve target block k from T v

17: end for
18: if v < z∗ then
19: z∗ ← v and save best trajectory
20: end if
21: end while

3.1 Corridor Definition

Let us assume an incumbent bay configuration T is given. With respect to
such configuration, we identify the target block k, i.e., the current block to
be retrieved, the stack upon which block k is placed, stack t, the set of blocks
on top of k, L, and the uppermost block in list L, i.e., block l. Due to the
LIFO policy assumption, in order to retrieve block k, it is mandatory to relocate
each block in L from stack t to any other stack {1, . . . , m} \ {t}. Iteratively, the
uppermost block in list L will be picked from the list and relocated, until the
list of blocking items is empty.

Given the incumbent configuration (T , k, t, l), we define a corridor around
such configuration by selecting a subset of the stacks as admissible stacks. We
identify three types of stacks with respect to the current configuration: (i) empty
stacks, towards which it is always possible to relocate block l without generating
any new forced relocation. Let us indicate with So the set of such stacks in the
current configuration; (ii) no-deadlock stacks, i.e., stacks for which the block
with highest priority has a lower priority than block l. In other words, if we
indicate with min(Ti) (in the following, min(i)) the element with highest priority
in stack i, then no-deadlock stacks are those stacks for which min(i) > l. We
indicate with S1 the set of no-deadlock stacks; (iii) deadlock stacks, i.e., stacks
for which the block with highest priority has a priority higher than block l,
min(i) < l. In this case, relocating block l onto such a stack will generate a new
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relocation in the future, since we are going to retrieve one of the blocks in the
stack prior to the retrieval of block l. Let S2 indicate the set of deadlock stacks.

For each type of stack, we compute the following score:

σ(i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
|S0| , if i ∈ S0∑
j∈S1

min(j)

min(i) , if i ∈ S1

min(i)∑
j∈S2

min(j)
, if i ∈ S2

(1)

The rationale behind such scores is that we try to capture the measure of at-
tractiveness of each stack, based upon (i) whether a new deadlock is created
after relocation of element l, and (ii) the impact of relocating block l onto the
stack with respect to future relocations. Finally, after normalizing the scores, a
roulette-wheel mechanism as in GA is used to select which stacks belong to the
corridor.

3.2 Neighborhood Design and Exploration

Given a set of admissible stacks Δ, we define a neighborhood of the current
configuration (T , k, t, l) by including in such a neighborhood only those config-
urations T ′ that can be created relocating block l onto a stack i ∈ Δ.

Let us define an admissible move as a transformation function that operates
upon a configuration T , such that m : T → T ′, where T ′ is the configuration
obtained after relocating block l from stack t to any other stack, which is, T ′ =
m(T , x), where x indicates the stack onto which block l is relocated. A move
T ′ = m(T , x) is admissible if x ∈ Δ.

Thus, a formal definition of the neighborhood is:

N (T , k, t, l) = {T ′ = m (T , x) : x ∈ Δ} (2)

3.3 Move Evaluation and Selection

In order to evaluate each configuration, we define a greedy score. We employ
a simple rule given by the number of forced relocations (deadlocks) within the
current configuration, where a forced relocation is imposed every time a block
with higher priority is found below a block with lower priority. Let us associate
with each configuration T such greedy score g : T → R, where g(T ) is equal
to the number of forced relocations within configuration T . We define the set
of elite solutions in the current neighborhood Ω as the best 50% quantile of
the overall set of solutions in N (T , k, t, l). Finally, we employ a roulette-wheel
stochastic mechanism to select one solution from Ω, in a fashion similar to what
is presented in Algorithm Corridor_Selection().
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This step of the algorithm somehow resembles parts of what is known as a
semi-greedy heuristic [13] or a GRASP procedure [14]: at each iteration, the
choice of the next element to be added is determined by ordering a set of can-
didate elements according to a greedy score. Such greedy score measures the
myopic benefit of selecting a specific move. Such mechanism is adaptive in the
sense that the score value associated with each candidate solution is changed to
take into account the effect of the previous decisions. On the other hand, the
roulette-wheel probabilistic mechanism allows to select different moves at each
iteration of the algorithm, while still preserving a measure of attractiveness of
each selection proportional to the value of the greedy score.

3.4 Trajectory Fathoming

Finally, after each step of the algorithm, we apply a logical test aimed at detect-
ing whether the current bay configuration is dominated by a previously visited
solution and, hence, could be abandoned. Given a new configuration T ′, if the
total number of moves required to reach such configuration, z(T ′), plus the
number of forced relocations in T ′, g(T ′) is greater than or equal to a given
upper bound (the best solution found so far ub), the steps followed to reach T ′

will never be part of the optimal decision sequence. Consequently, the current
trajectory path can be dropped.

4 Experimental Plan and Computational Results

In this section we present computational results on randomly generated in-
stances. All tests presented in this section have been carried out on a Pentium
IV Linux Workstation with 512Mb of RAM. The algorithm has been coded in
C++ and compiled with the GNU C++ compiler using the -O option.

We designed an experiment that resembles that of [6] and of [7]. We focus
our attention on tests on large scale instances, for which the optimal solution
is unknown. The random generation process takes as input two parameters,
the number of stacks m and the number of tiers h, and randomly generates a
rectangular bay configuration of size n = h × m, where n indicates the total
number of blocks in the bay. For each combination of m and h we generated 40
different instances.1

The experiment plan is twofold: On the one hand, we want to measure the
solution quality of the algorithm by comparing it with two benchmark algorithms
from the literature, namely those proposed in [6] and [7]. On the other hand, we
make the first attempt to fine tune and calibrate a CM inspired algorithm. We
perform a statistical analysis based upon the “Response Surface Methodology”
to draw conclusions about the relation between the algorithmic parameter δ
(corridor width) and the objective function value. The key question addressed
is: given the input size, in terms of bay width m and bay height h, is it possible
1 The code and all the instances used during the experiment can be obtained from the

authors upon request.
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to determine what the value of parameter δ should be in order to obtain the
best possible feasible solution?

This section is organized as follows: first, we illustrate how the response-
surface methodology has been used in order to find “good” values of δ for any
given instance size. Next, we validate the statistical model by collecting results
of the heuristic scheme using the values suggested by the response surface, and
comparing them with the solutions provided by the benchmark algorithms.

4.1 Response Surface Methodology

In this section we present how we adapted the response surface methodology
[15] to fine tune the proposed algorithm. A more detailed description of such a
procedure is provided in [16].

We first selected a set of factor levels, i.e., δ ∈ {1, . . . , m− 1}. Next, we
collected the objective function value of the algorithm on each run with varying
bay size, in the intervals m ∈ [6, 10] and h ∈ [6, 10]. We then tested the model:

Ye = β0 + β1δ + β2δ
2

Once the coefficients of the regression models were computed, an ANOVA anal-
ysis was used to check the significance level of the estimates. Next, the steepest
ascent method was used to reset the center of the experiment in the direction
indicated by the gradient of Ye. Finally, we minimized the polynomial Ye by
setting the first order derivative to zero and checking that the point is a local
minimum.

The minimum points, i.e., the values of δ that for any given input size mini-
mized the objective function value, were thus used to generate the final regression
model that describes what the value of δ should be. The model tested was:

δ = β0 + β1h + β2m + β3h
2 + β4m

2

Figure 2 and Table 1 present the fitting surface as well as the regression statistics
for the model. As Table 1 shows, the coefficients of the polynomial are significant
up to the second order and the model itself seems to be statistically significant,
since the model has a p-value less than 2.2e − 16. From the figure as well as
the table, it is possible to observe that, while both instance parameters h and
m have a bearing on the δ value, the value of m has a higher impact on the
corridor width.

It is worth remembering, though, that the validity of the proposed model is
limited to the interval studied, i.e., the model can be used to forecast the δ value
for instances with m ∈ [6, 10] and h ∈ [6, 10].

4.2 Computational Results

In this section we finally present computational results that prove the effective-
ness of the proposed algorithm. The value of δ is determined using the polynomial
of Table 1 (we fixed λ ≤ h + 2 throughout the experiment).
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Fig. 2. Response surface: δ = f(h, m)

Table 1. Regression coefficients and p-values

Estimate Std. Error t value Pr(> |t|)
β0 8.24093 3.45633 2.384 0.007636
β1 -1.92831 0.63195 -3.051 0.002449
β2 -0.02607 0.63195 -0.041 0.007114
β3 0.13465 0.03939 3.418 0.000704
β4 0.03962 0.03939 1.006 0.005203

In Table 2 we compare the results of the proposed scheme with those obtained
running the code of [6] and of [7] on the same set of instances. It is worth
noting that all values reported in the table are average values, computed over
40 different instances of the same class. This helps in offsetting instance specific
biases in the reported results. In addition, we fixed a maximum computational
time for the proposed algorithm of 60 seconds, after which the algorithm was
stopped and the best solution found returned.

In Table 2, the first two columns define the instance size, in terms of number
of tiers h and number of stacks m. Columns three and four report the results, in
terms of number of relocations and computational time, required by the heuristic
of [6]. Similarly, columns five and six report results of [7] on the same instance,
both in terms of relocation moves and computational time, while columns seven
and eight summarize the results of the proposed algorithm. Finally, the last two
columns provide a measure of the corridor, in terms of width (δ) and height (λ).
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Table 2. Computational results on large scale instances. Each class is made up of 40
instances of the same size. Reported results are average values over 40 runs.

Bay Size KH CM H-BRP Corridor
h m No. Time No. Time No. Time δ+ λ

6 6 37.3 0.1 32.4 7.94 30.85 0.01 3 h+2
6 10 75.1 0.1 49.5 15.72 46.17 3.21 5 h+2
10 6 141.6 0.1 102.0 30.13 76.55 6.33 4 h+2
10 10 178.6 0.1 128.3 65.42 105.5 18.37 6 h+2
+ : number of used stacks (not necessarily adjacent)

We solved each instance with different combinations of δ = {1, 2, . . . , �m/2�}
and λ = {h + 1, h + 2}. We report the values used to obtain the best solution in
the shortest computational time.

In addition, in order to further reduce the stochastic effects of the algorithm,
we run the algorithm with the same set of parameters δ and λ five times on the
same instance. In the table we report the average values over all runs of a given
instance class.

As can be observed from Table 2, the proposed algorithm is competitive both
in terms of solution quality and computational time, especially when it comes
to dealing with larger instances. The merits of our proposed algorithm stem
from the cooperative way of selecting the appropriate stacks to make up the
corridor within the CM. In that sense it resembles an “educated” choice of a
corridor based on a greedy rule rather than a somewhat arbitrary one which just
assumes a figurative distance.

We now present statistical analysis aimed at asserting:

(i) whether there is significant difference in results among the algorithms; and
(ii) how the three algorithms rank in terms of solution quality.

In order to evaluate whether an algorithm outperforms the others used as bench-
mark, we select the Friedman Test. The Friedman Test ranks algorithms accord-
ing to the objective function value obtained on each individual instance. In
comparing each individual run, the best performing algorithm on that specific
instance gets rank 1, the second best rank 2 and the third one rank 3. The null
hypothesis of the test is that all algorithms are equivalent and, therefore, their
ranking should be randomly distributed. In other words, if none of the algo-
rithms were significantly better, we would expect similar average ranking for the
three algorithms. Let rij be the rank of the jth algorithm on the ith instance.
The average rank of an algorithm is thus defined as:

Rj =

N∑
i=1

rij

N

where N is the total number of benchmark instances, i.e., N = 40× 4 = 160.
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Fig. 3. Statistical analysis of results: Ranking with a 99% level of confidence

The Friedman Test produced a p-value of less than 0.0001, i.e., it can be con-
cluded that there is a significant difference among the three algorithms.Therefore,
the null hypothesis can be rejected and we proceed, as indicated in [17], with a
post-hoc test. The Nemenyi test can be used when all algorithms are compared
to each other. The performance of two algorithms is significantly different if their
corresponding average ranks differ by at least a critical distance (see [17] for more
details).

Figure 3 provides a ranking of the three algorithms with a 99% level of con-
fidence. In the figure, we can observe the average rank of each algorithm along
with a line indicating such critical distance. Given an algorithm A with its criti-
cal distance value CDA, we can assert that all the algorithms whose average rank
falls beyond the critical distance value CDA are outperformed by algorithm A.
In other word, it is possible to claim that algorithm A is significantly better than
those algorithms. As clearly shown in the picture, algorithm H-BRP outperforms
the other two algorithms used as benchmark, since its critical value is less than
the average rank of algorithms CM and KH.

5 Conclusions

In this paper we have illustrated the design of a novel CM based algorithm,
in which ideas of the CM paradigm are hybridized with features of the GA as
well as the GRASP. The algorithm has been employed to solve a challenging
container terminal problem and its effectiveness has been proved on a set of
large scale instances of such a problem. Finally, the performance of the pro-
posed algorithm has been enhanced by the use of a thorough fine tuning phase.
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A statistically sound technique, the response surface methodology, has been em-
ployed to determine “good” values of the parameter δ, i.e., the corridor width
around an incumbent solution, for any given problem input size. The statistical
model derived by the fine tuning phase has finally been validated on a set of 160
randomly generated instances of the blocks relocation problem.
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Abstract. The performance of many efficient algorithms critically de-
pends on the tuning of their parameters, which on turn depends on the
problem at hand. For example, the performance of Evolutionary Algo-
rithms critically depends on the judicious setting of the operator rates.
The Adaptive Operator Selection (AOS) heuristic that is proposed here
rewards each operator based on the extreme value of the fitness improve-
ment lately incurred by this operator, and uses a Multi-Armed Bandit
(MAB) selection process based on those rewards to choose which opera-
tor to apply next. This Extreme-based Multi-Armed Bandit approach is
experimentally validated against the Average-based MAB method, and
is shown to outperform previously published methods, whether using a
classical Average-based rewarding technique or the same Extreme-based
mechanism. The validation test suite includes the easy One-Max problem
and a family of hard problems known as “Long k-paths”.

1 Introduction

Evolutionary Algorithms (EAs), remotely inspired from the Darwinian “survival
of the fittest” principle, have been demonstrated to be efficient in tackling ill-
posed optimization problems. Given a search space X , an objective function
defined on X , referred to as fitness, and a set of elements in X , termed population
of individuals, EAs iteratively proceed by (i) selecting some individuals, favoring
those with better fitness; (ii) perturbing these individuals through some variation
operators, thus generating offspring; (iii) evaluating the offspring fitness; (iv)
replacing some individuals by some offspring, again favoring fitter offspring.

EAs have demonstrated their ability to address a wide range of optimization
problems beyond the reach of standard methods, e.g. involving structured and
mixed search spaces; irregular, noisy, rugged or highly constrained fitness func-
tions. Their performance actually relies on tuning quite a few parameters (such
as the population size, types of variation operators and respective application
rates, types of selection mechanisms and other intrinsic parameters) depending
on the problem at hand. This wealth of tunable parameters is the main reason
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why EAs are still far away from being part of the standard optimization tool-
boxes. Although knowledgeable users can benefit from this flexibility and take
the most out of the evolutionary approach, the naive user will generally fail to
appropriately tune an EA in a reasonable amount of time. Tuning the parameters
to efficiently solve the problem at hand corresponds to an optimization problem
per se, as noted in the very early days of the field [1]. Therefore, a mandatory
step for EAs to “cross the chasm” and make it out of the research labs is to offer
some automatic parameter setting capabilities. Accordingly, Parameter Setting
in EAs was and still is one of the most active research topics in Evolutionary
Computation [2] (section 2).

This paper specifically focuses on the control of the variation operators. Dif-
ferent operators play different roles in the search process, the importance of
which depends on the current state: for instance, crossover operators ensure the
exploration of wide regions of the search space in the early stages of evolution;
meanwhile, mutation operators both ensure the exploitation and local search
around the current best individuals, at any stage, and prevent the loss of di-
versity in the last stages of evolution. The so-called Exploration vs Exploitation
trade-off thus relies on the mutation and crossover rates; in practice, these are
most often defined by the user once for all, depending on his experience and
intuition, although the need for exploration and exploitation clearly varies as
the search goes on.

Adaptive Operator Selection (AOS) is meant to adaptively update the operator
rates online, depending on e.g. the fitness improvement brought by the offspring.
Since Davis’ seminal work [3] (section 2), AOS proceeds by combining two main
ingredients, illustrated in Fig. 1: The Credit Assignment mechanism associates
a reward to each operator, reflecting the operator impact on the progress of the
search (e.g. fitness improvement); the Operator Selection mechanism actually
chooses one operator depending on the past associated rewards of all operators.

This paper investigates the combination of an Operator Selection and Credit
Assignment heuristics, first described in [4] and [5] respectively. The proposed
Operator Selection rule ([4], section 3.1), performs the dynamic operator selec-
tion by combining a Multi-Armed Bandit algorithm [6] with a statistical test for
change point detection, the Page-Hinkley test [7], assuming an unbiased Credit
Assignment mechanism. The proposed Credit Assignment ([5], section 3.2) con-
siders the extreme values of the fitness improvement due to an operator, claiming
that rare but highly beneficial “jumps” matter as much or more than frequent
but small improvements.

A proof of principle of the AOS combining the above Extreme-Value-based
Credit Assignment and the Dynamic Multi-Armed Bandit Operator Selection
rule, referred to as Ex-DMAB, is presented in this paper; this proof of principle
considers the easy One-Max problem and a family of hard problems, the Long
k-paths [8]. Not only are the Long k-path landscapes more difficult than the
One-Max ones (the former involves a single, exponentially long path leading
to the global optimum, together with many shortcuts, while the latter involves
many paths with linear length leading to the global optimum); overall, they
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Fig. 1. General scheme of the Adaptive Operator Selection framework

can be considered to be deceptive in terms of operator selection (more on this
in section 4.3). Section 4 reports on the experimental results of the approach,
showing significant improvements with respect to baseline approaches. The paper
concludes with some perspectives for further research.

2 Related Work

This section briefly describes and discusses the state of the art in Evolutionary
Parameter Setting, focusing on Adaptive Operator Selection.

2.1 Parameter Setting in EAs

After [2,9,10], Parameter Setting in EAs includes two main categories of heuris-
tics, respectively referred to as Parameter Tuning and Parameter Control :

– In Parameter Tuning (also known as off-line or external tuning), parameters
are tuned before the run. This category mostly includes statistical methods
derived from Design Of Experiments (see e.g., [11,12,13,14]). Although more
efficient than standard ANOVA methods, Parameter Tuning relies on exten-
sive, computationally expensive, experiments. Furthermore, there is strong
empirical evidence that the optimal parameter values actually vary between
the beginning and the end of evolution; choosing the parameter values once
for all thus results in a sub-optimal setting.

– In Parameter Control (also known as on-line or internal control), parameters
are controlled during the run. This category can be further divided into three
types of approaches:
1. In Deterministic Control, parameter values are predefined functions of

time, which clearly raises the question of how to define such functions
(defining these a priori is but another Parameter Setting issue).

2. In Self-Adaptive Control, parameters are encoded in the genotype, and
therefore tuned and optimized “for free” by evolution itself. The main
weakness of self-adaptive control is to aggregate the solution and the pa-
rameter spaces, thus increasing the overall complexity of the optimization
problem.
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3. In Adaptive (or Feedback-Based) Control, parameter values are prede-
fined functions of the whole history of the run. Adaptive control has met
significant successes in the last decade, specifically in the continuous
optimization framework (see [15] and references therein).

Focusing on Adaptive Operator Selection (AOS), the history of the run is used
to adjust the operator rates through two modules: a Credit Assignment module
computes the operator reward based on its impact on the search progress; an
Operator Selection module exploits these rewards and selects the operator to be
applied next.

2.2 Credit Assignment

Several Credit Assignment mechanisms have been proposed in the literature,
starting back in the late 80s with the seminal work of Davis [3]. In most ap-
proaches, the operator credit, aka reward, reflects the fitness of the offspring
built by the operator. More specifically, the reward measures the fitness im-
provement over some reference fitness: that of the offspring parents [16,17,18], of
the current best [3] or median [19] individual. Offspring which do not improve
on the reference fitness are simply not taken into account.

In some cases however, fitness improvement is but one element relevant to the
progress of evolution. Typically in multi-modal search landscapes, population
diversity is equally important; it must mandatorily be preserved in order to
avoid premature convergence to local optima. Based on this remark, the so-
called Compass credit assignment [20] measures the operator ability to produce
more fit individuals while preserving the population diversity.

While in all above approaches the operator reward is based on the current
fitness improvement, or on the fitness improvement averaged over the last n
offspring, another approach is proposed in [21]. This latter approach uses a
statistical measure aimed at outlier detection, and the authors report significant
improvement comparatively to other Credit Assignment on a set of continuous
benchmark problems.

A last issue concerns the offspring contribution to the operator rewards. Most
authors only reward the operator used to produce the current offspring [16,17,18];
other authors consider that it is only fair to reward the operators used to produce
the offspring ancestors, e.g. using a bucket brigade algorithm [3,19].

2.3 Operator Selection Rules

The simplest and most widely used Operator Selection is Probability Matching
(PM) [16,18,22]. PM implements a roulette wheel-like selection process, where
the operator rate is proportional to its reward. Some care is however exercised in
order to enforce a sufficient amount of exploration, through keeping the operator
rate above some threshold pmin. Otherwise, an operator which is inefficient in
the early stages of evolution would never be considered again, even though it
might become the best operator later on. A side effect however is to keep the
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best operator rate below pmax = 1− (K− 1)pmin being K the number of opera-
tors. In practice, all mildly relevant operators keep being selected, slowing down
evolution [23].

This drawback is partly addressed by Adaptive Pursuit (AP) [23], a method
originally proposed for learning automata, which implements a winner-takes-
all strategy. The main difference compared to PM is that the rate of the best
rewarded operator goes to pmax whereas all the others go to pmin; an additional
β parameter controls the greediness of the winner-take-all update.

Others, such as APGAIN [24], use a sequence of exploration/exploitation
phases. During each exploration phase, operators are uniformly selected and
their rewards are estimated; during the following exploitation phase, operators
are selected according to their reward. The fraction of generations devoted to
exploration phases (circa 25 % in [24]) is meant to catch up with the changes in
the reward distribution; unfortunately, it severely harms the population and the
progress of evolution whenever disruptive operators are considered [20].

3 Extreme Dynamic Multi-Armed Bandit

The Extreme Dynamic Multi-Armed Bandit (Ex-DMAB) AOS combines
Dynamic-Multi Armed Bandit as Operator Selection rule and Extreme Value
Based Credit Assignment. For the sake of self-containedness, this section sum-
marizes both heuristics, referring the interested reader respectively to [4] and [5]
for more details.

3.1 Dynamic Multi-Armed Bandit

The choice of an operator within an Evolutionary Algorithm can be viewed
as yet another instance of the Exploration vs. Exploitation (EvE) dilemma: on
the one hand, one wishes to select the operator with best empirical behavior
(exploitation); on the other hand, other operators should also be selected in
order to check whether the best empirical operator so far truly is the best one
(exploration). This dilemma has been intensively studied in the context of Game
Theory within the so-called Multi-Armed Bandit (MAB) framework [6,25].

The MAB framework involves a set of N arms; the i-th arm, when selected,
gets reward 1 with probability pi and 0 otherwise. A MAB algorithm is a de-
cision making algorithm, selecting an arm at every time step with the goal of
maximizing the cumulative reward gathered along time. The widely studied Up-
per Confidence Bound (UCB) algorithm devised by Auer et al. [6], provably
maximizing the cumulative reward with optimal convergence rate, proceeds as
follows. Let ni,t denote the number of times the ith arm has been played up to
time t, and let p̂i,t denote the average empirical reward received from arm i.
UCB1 selects in each time step t the arm maximizing the following quantity:

p̂j,t + C ∗

√
log

∑
k nk,t

nj,t
(1)
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The left term in Eq. (1) favors the option with best average empirical reward
(exploitation). The right term ensures that each arm is selected infinitely of-
ten (exploration); the lapse of time between two selections of under-optimal
arms however increases exponentially. The scaling factor C controls the explo-
ration/exploitation trade-off.

The operator selection problem can indeed be formalized as a MAB problem,
taking each operator as an arm [4], with two caveats. Firstly, arms are assumed to
be independent, which is definitely not the case in AOS as operators apply on the
same population. Secondly, and even more importantly, the reward probabilities
are fixed in standard MAB settings, whereas the operator rewards depend on the
current population and the evolution stage. In other words, AOS corresponds
to a dynamic MAB problem. It must be emphasized that although UCB keeps
exploring all arms, it would need quite some time to detect that the best operator
has changed. Therefore, a statistical change detection test was coupled with UCB
in [4], defining the Dynamic MAB (DMAB) algorithm. Specifically, the Page-
Hinkley (PH) test [7] is used to detect whether the empirical rewards collected
for the best current operator undergo an abrupt change. Upon triggering the PH
test (suggesting that the current best operator is no longer the best one), the
MAB algorithm is restarted from scratch.

Formally, the PH test considers r̄t, the empirical average of the instant rewards
r1, . . . rt. Let et denote the difference rt− r̄t+δ, where δ is a tolerance parameter,
and let mt be the sum of ei for i = 1 to t. The PH test is triggered when the
difference between the maximum of |mi| for i = 1 to t, and the current |mt| is
greater than a user-specified threshold γ. The PH test is thus controlled from
two parameters, γ governing the trade-off between false alarms and unnoticed
changes, and δ enforcing the test robustness when dealing with slowly varying
distributions. Following initial experiments [4], δ is set to 0.15 in all experiments
in this paper.

3.2 Extreme Value Based Credit Assignment

The second AOS component measures the operator impact on the progress of
evolution 2.2. Letting F , o and x respectively denote the fitness function (to be
maximized), a variation operator and an element of the current population, the
standard instant reward is set to the current fitness improvement of the offspring
(F(o(x)) − F(x))+ (the + superscript indicates the positive part of the fitness
difference).

The main originality of the Credit Assignment proposed in [5] is to consider
the extreme as opposed to the average instant reward. Let us compare an oper-
ator bringing frequent small improvements, and an operator bringing rare but
large improvements. Even though both operators might have the same expected
impact on evolution, with high probability an average-reward based AOS would
only consider the former one: after the first trials, the former operator domi-
nates the latter one, which is thus hardly selected thereafter, and thus prevented
from gathering any further rewards. In other words, average reward-based AOS
is risk-adverse. Another strategy, first investigated by [21], thus is to consider
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extreme rewards. Notably, the role of extreme events in design has long been
acknowledged in numerical engineering (e.g. taking into account rogue waves
when dimensioning an oil rig); it receives an ever growing attention in the do-
main of complex systems, as extreme events govern diffusion-based processes
ranging from epidemic propagation to financial markets.

The Extreme Value Based (EVB) Credit Assignment first presented in [5]
proceeds as follows. To each operator o is associated a register storing the last
W (positive) instant rewards collected by o. The operator reward used within
the DMAB Operator Selection is the maximum instant reward in the operator
register. This Credit Assignment mechanism thus involves the window size W
as single parameter. W is meant to reflect the time scale of the process; if too
large, operators will be applied after their optimal epoch and the switch from
the previous best operator to the new best one will be delayed. If W is too small,
operators causing large but infrequent jumps will be ignored (as successful events
will not be observed at all in the first place) or too rapidly forgotten.

4 Experimental Results

This section reports on the empirical validation of the Extreme - Dynamic Multi-
Armed Bandit (Ex-DMAB) AOS, combining Extreme-Value-Based Credit As-
signment and DMAB Operator Selection, first described in [5].

Previous results on the One-Max problem, the “Drosophila of EC”, are re-
called in section 4.2, and comparatively discussed with respect to some new
results obtained with Average-Value-Based Credit Assignment. A different fam-
ily of problems, the Long k-paths [26], is considered in section 4.3. Both sets of
experiments have been conducted using the same experimental setting, described
in section 4.1.

4.1 Experimental Setting

All experiments consider a standard (1 + λ)-EA, where λ offspring are created
from a single parent, and the best individual among the current offspring and
parent becomes the parent in the next generation. For the sake of reproducibility,
the initial individual is set to (0, . . . , 0).

For the simplicity of assessment, the AOS only considers mutation opera-
tors: the standard 1/� bit-flip operator (every bit is flipped with probability 1/�,
where � is the bit-string length), the 1-bit, 3-bit and 5-bit mutation operators
(the b-bit mutation flips exactly b bits, uniformly selected in the parent). This
setting makes it feasible to compute the optimal mutation operator depending
on the stage of evolution (fitness of the current parent), using Monte-Carlo sim-
ulations. Two baseline approaches are considered: the first one uniformly selects
an operator out of the whole set of operators; the second one selects an operator
out of the best two operators.

Two Credit Assignment procedures are considered: the Extreme-Value and the
Average-Value based reward (out of the last W instant rewards for the operator).
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These are combined with three Operator Selections: AP, PM and DMAB. The
results obtained with PM will be omitted as this Operator Selection is found
significantly dominated by the other two.

Every AOS is assessed from the average time-to-solution, averaged over 50
independent runs. The ability of each AOS to correctly identify the best operator
is also considered.

The best parameters of every considered AOS have been computed offline,
in order to compare them at their best level of performance (see [4,5]). For the
One-Max scenario, the parameters were determined after a Design of Experi-
ment campaign [4,5]. For the Long k-path, the following set of values was tried
for each parameter: for AP and PM, pmin ∈ {0, .05, .1, .2}; α|β ∈ {.1, .3, .6, .9};
for DMAB, C ∈ {.1, .5, 1, 5, 10, 50, 100}; γ ∈ {1, 5, 10, 25, 50, 100, 250, 500, 1000};
and for all techniques, concerning the Credit Assignment, W ∈ {50, 500}. Given
the number of possible configurations, the F-Race [11] method was used. For-
mally, racing techniques proceed by pruning every configuration as soon as it is
not going to be the best one after the available statistical evidence. The F-Race
was applied using a confidence level of 95%, with 11 runs being done for each
configuration before the first elimination round, up to 50 runs done or a single
candidate configuration left.

4.2 The One-Max Problem

The One Max problem involves an unimodal fitness function that simply counts
the number of “1”s in the individual binary bitstring. The only difficulty comes
from the size of the problem; in the presented experiments, the size N of the
bitstring is 10,000. This problem is viewed as a “sterile EC-like” environment,
where the ideal AOS behavior can be computed. Fig. 2 (bottom) displays the op-
timal mutation operators for a (1+50)-EA, depending on the stage of evolution;
for each fitness of the current parent, the expected fitness improvement (esti-
mated over 100 independent runs) of a (1+50)-EA is computed. The landscape
presented in such figure thus serves as a reference to assess the basic skills of an
AOS mechanism: the ability to pick up the best operator and stick to it as long
as appropriate, to catch up the changes and switch to the next best operator in
transition phases, and to remain efficient in desert phases.

Fig. 2 displays the operator rates of Ex-DMAB and Ex-AP (averaged over
50 runs) against the “oracle”; the vertical grey lines indicate the changes of the
current best mutation operator of the oracle.

Table 1 summarizes the performance of all approaches, together with their op-
timal setting. The Extreme Value-Based Credit Assignment, coupled with either
AP or DMAB, closely matches the optimal behavior and significantly improves
on the baseline approaches (see [5] for more detail). Interestingly, the Extreme
Value-Based Credit Assignment appears to be more stable than the Average
Value-Based one (the performance of the latter is much degraded when com-
bined with DMAB), despite the smoothness of the One-Max landscape (which
should thus make little difference between average and extreme rewards).
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Fig. 2. The Ex-DMAB (top) and the Ex-AP (middle) AOS compared with the Opti-
mal Operator Selection (bottom) on the 10,000 bit One-Max: operator selection rates
averaged on 50 runs

Table 1. Comparative AOS Results on the 10,000 One-Max problem, averaged over
50 runs (W = 50)

Credit Assignment Operator Selection Configuration Gens. to Optimum
Extreme DMAB C = 1; γ = 250 5467 ± 513
Average C = 10; γ = 25 7727 ± 642
Extreme

Adaptive Pursuit
pmin = 0; α = .3; β = .3 5478 ± 299

Average pmin = .05; α = .1; β = .9 5830 ± 324
- Optimal Strategy Given by “Oracle” 5069 ± 292
- Best Naive U(1-Bit+5-Bit) 6793 ± 625
- Complete Naive U(4 ops.) 7813 ± 708
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4.3 The Long k-Path Problem

First proposed by [26], Long Paths are unimodal problems designed to challenge
local search algorithms. Specifically, the optimum can be found by following a
path in the fitness landscape, the length of which increases exponentially w.r.t.
the bitstring length �. Solving the Long Path using the 1-bit mutation thus
requires a time increasing exponentially with �.

A generalization of Long Path problems was proposed by [8], referred to as
Long k-path, where k is the minimal number of bits to be simultaneously flipped
in order to take a shortcut on the path. Long k-path problems have the following
properties [27]:

– Points that are not on the path have a “Zero-Max” fitness, i.e. their fitness
is their number of 0s;

– The first point on the path is 0, 0, . . . , 0 and has fitness �;
– Any point on the path has exactly 2 neighbors on the path with Hamming

distance 1; two consecutive points on the path have a fitness difference of 1;
– The length of the path is (k + 1)2(l−1)/k − k + 1;
– A mutation of i < k bits can only lead to a point which is either off the path

(hence with a very low fitness), or on the path but only i positions away from
the original point; shortcuts (i.e. jumps to very distant points on the path)
can only be achieved by mutating at least k bits; using a mutation operator
which mutates every bit independently with probability p, the probability of
finding a given shortcut is hence pk(1− p)l−k.

Long k-path problems are defined by recurrence on �. Starting from the Long
k-path P (k, �), the P (k, � + k) path is made of three parts: (i) the first part S0
is made by concatenating k 0’s to each point of P (k, �); the third part S1 is
made by concatenating k 1’s to each point of P (k, �) in reverse order; S0 and
S1 are linked by a “bridge” containing (k − 1) points, created by concatenating
0 . . . 01, 0 . . .011, . . . , 001 . . .1, 01 . . .1 to the final point of P (k, �). The original
Long Path problem is a Long k-path with k = 2. The path length decreases as
k increases, together with the probability of finding a shortcut.

After [27], shortcuts provably speed up the convergence if k ≤
√

� (for higher
values of k one should simply follow the path). In such cases, “exceptional prop-
erties of operators sometimes reflect EA behavior more accurately than average
typical properties”.

AOS and Long 3-Path Problems
The reported experiments consider k = 3 with � ranging in {43, 49, 55, 61}. An
additional mutation operator, the 3/� bit-flip (flipping each bit with probability
3/�), has been added to the operator set.

Note that Long k-paths are challenging problems for AOS: when the parent in-
dividual belongs to the path, the 1-bit mutation improves the fitness by 1, with
probability 1/� while all other mutation operators will fail to improve the fitness
(reward 0) in the vastmajority of cases. Experimentally, the Adaptive Pursuit AOS
does not cope well with Long k-paths and will be omitted in the following; the best
results are obtained for pmin= .2, i.e. for a uniform selection of the operators.
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Results
By construction, some Long k-path runs can be “lucky” and discover the short-
cuts, thus yielding large standard deviations in the performance. For instance,
the optimal result obtained for � = 49 reaches the solution in 3590 ± 3327 gen-
erations (averaged over 50 runs). For this reason, the results will be described
in terms of min and median number of generations needed to reach the solution
(as opposed to, average and standard deviation).

Table 2 displays the results obtained for Ex-DMAB, Avg-DMAB and the base-
line approaches: the Oracle one always selects the optimal operator (determined
in the same way as for the One-Max problem) and the Naive one uniformly se-
lects an operator in the operator set. The AOS setting is the best one found by
the F-Race over all considered Long k-path.

Table 3 reports the results obtained for the best AOS setting, found by the
F-Race over each considered Long k-path. The optimal setting (W (C, γ)) is
indicated below the min and median number of generations to the solution.
As could have been expected, the Avg-DMAB AOS goes for a medium window
size (W = 50) whereas the Ex-DMAB needs a much larger window size (W =
500). Besides, the F-Race retains many good settings for the AOS parameters,
suggesting that the C and γ parameters together control the Exploration vs
Exploitation tradeoff, and might be redundant to some extent.

Table 2. Extreme vs Average Reward and DMAB AOS on the Long k-path, k = 3,
min - median number of generations to the solutions out of 50 runs; the robust optimal
AOS parameters (W, (C, γ)) are indicated below

�
DMAB - W (C, γ)

Optimal UniformExtreme Average
500 (100; 100) 50 (50; .5)

43 11 - 2579 61 - 2342 2 - 1202 50 - 3393
49 17 - 4467 6 - 6397 19 - 2668 5 - 4904
55 161 - 6190 54 - 8222 45 - 3224 344 - 10068
61 251 - 13815 94 - 15304 8 - 5408 12 - 9590

Table 3. Extreme vs Average Reward and DMAB AOS on the Long k-path, k = 3,
min - median number of generations to the solutions out of 50 runs, using the optimal
AOS parameter for each �

�
DMAB - W (C, γ) Optimal Uniform

Extreme Average

43 11 - 2216 66 - 2487 2 - 1202 50 - 3393
500(50; 50) 50(.5; 100)

49 17 - 3244 6 - 5321 19 - 2668 5 - 4904
500(100; 500) 50(.1; 1000)

55 161 - 6190 54 - 8158 45 - 3224 344 - 10068
500(100; 100) 50(50; .1)

61
80 - 10253 94 - 13865 8 - 5408 12 - 9590
500(50; 25) 50(.5; 50)
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Fig. 3. AOS results on Long k-paths, k = 3

The significance of these results is assessed using unsigned Wilcoxon rank
sum and Kolmogorov-Smirnov non-parametric tests (thereafter referred to as W
and KS).

In the robust scenario (AOS parameters are selected by F-race over all Long
k-path problems), Ex-DMAB is outperformed by (respectively similar to) the
Oracle AOS for � ∈ {43, 61} (resp. � ∈ {49, 55}) with confidence 99% according
to both W and KS tests. Ex-DMAB outperforms Avg-DMAB for � = 49 (with
W at 90% and K at 95%) and for � = 55 (with W at 90%).

In the fine tuning scenario (AOS parameters are selected by F-race for each
Long k-path problem), Ex-DMAB obtains better results as could have been
expected: no significant difference between Ex-DMAB and the Oracle strategy
is observed, with confidence 99% according to both W and KS tests. In the
meanwhile, Ex-DMAB significantly improves on the Naive AOS in all instances
(� = 43, for W at 99% and KS at 95%; � = 49, for W at 95% and KS at 90%;
� = 55, for W and KS at 99%), except for the � = 61 one. Comparatively to
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Avg-DMAB, Ex-DMAB obtains similar (respectively significantly better) perfor-
mances for � ∈ {43, 61} with both tests at 99% (resp. for � = 49, with W at 99%
and KS at 95%; for � = 55, with W at 90%).

The empirical distributions of all approaches are displayed on Fig. 3. The case
� = 61 is omitted as no strategy was found effective on this problem, which is
blamed on the very low probability of finding shortcuts.

5 Discussion and Perspectives

This paper provides a proof of principle for the proposed Ex-DMAB Adaptive
Operator Selection, based on ample empirical evidence gathered from the One-
Max and Long k-path problems. Ex-DMAB was found to efficiently detect the
best mutation operators during the whole course of evolution, keeping up with
the Oracle strategy in the majority of cases.

Although its good performances rely on the expensive offline tuning of Ex-
DMAB parameters, Ex-DMAB was found to outperform the main options opened
to the naive EA user, namely (i) using a fixed or deterministic strategy (including
the naive, uniform selection, strategy; (ii) using a former AOS strategy. Further-
more, Ex-DMAB involves a fixed and limited number of parameters (the window
size W , the scaling factor C and the change detection test threshold γ), whereas
the number of operator rates increases with the number of operators.

The most challenging situations for Ex-DMAB are the last stages of evolution.
At this point, the best operator hardly brings any improvement, and Ex-DMAB
is found to tend toward the uniform naive strategy (uniformly selecting an oper-
ator in the pool). A tentative interpretation for this fact is as follows. On the one
hand, fitness improvements are more and more rare with respect to the window
size, leading to uniform rewards and hence to uniform selection. Furthermore,
when a reward occurs after a long wandering period, it is likely to trigger the
change detection test, causing the Dynamic Multi-Armed Bandit to restart from
scratch, thus increasing the exploration bias.

Further research will aim at addressing the above weaknesses. A first per-
spective is opened by learning across runs, specifically recording the statistics
of fitness improvement in relation with the current average fitness; these statis-
tics will serve to adjust the window length W in the last stages of evolution. A
second perspective is to adjust online the Page Hinkley parameter γ, depend-
ing on the estimated number of transitions (change of the best operator) in the
fitness landscape. Along the same lines, we shall investigate how γ and the scal-
ing factor C relate, as both cooperate to control the exploration vs exploitation
trade-off.
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fel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 172–181. Springer, Heidelberg
(2004)

13. Bartz-Beielstein, T., Lasarczyk, C., Preuss, M.: Sequential parameter optimization.
In: McKay, B. (ed.) Proc. CEC 2005, pp. 773–780. IEEE Press, Los Alamitos (2005)

14. Nannen, V., Eiben, A.E.: Relevance estimation and value calibration of evolution-
ary algorithm parameters. In: Veloso, M. (ed.) Proc. IJCAI 2007, pp. 975–980
(2007)

15. De Jong, K.: Parameter Setting in EAs: a 30 Year Perspective. In: Lobo, F.G.,
et al. (eds.) Parameter Setting in Evolutionary Algorithms, pp. 1–18. Springer,
Heidelberg (2007)

16. Lobo, F., Goldberg, D.: Decision making in a hybrid genetic algorithm. In: Porto,
B. (ed.) Proc. ICEC 1997, pp. 121–125. IEEE Press, Los Alamitos (1997)

17. Tuson, A., Ross, P.: Adapting operator settings in genetic algorithms. Evolutionary
Computation 6(2), 161–184 (1998)
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Abstract. Graph partitioning is a well-known optimization problem of
great interest in theoretical and applied studies. Since the 1990s, many
multilevel schemes have been introduced as a practical tool to solve this
problem. A multilevel algorithm may be viewed as a process of graph
topology learning at different scales in order to generate a better approx-
imation for any approximation method incorporated at the uncoarsening
stage in the framework. In this work we compare two multilevel frame-
works based on the geometric and the algebraic multigrid schemes for
the partitioning problem.

1 Introduction

Graph partitioning is a computing technique used in many fields of computer
science and engineering. Applications include VLSI design, minimizing the cost
of data distribution in parallel computing, optimal tasks scheduling, etc. The
goal is to partition the vertices of a graph into a certain number of disjoint sets
of approximately the same size, so that a cut metric is minimized. Because of the
NP-hardness [1] of the problem and its practical importance, many heuristics of
different nature (spectral [2], combinatorial [3,4], evolutionist [5], etc.) have been
developed to provide an approximate result in a reasonable (and, one hopes,
linear) computational time. However, only the introduction of the multilevel
methods during the 1990s has really provided a breakthrough in efficiency and
quality.

During the past two decades many attempts have been made to use multilevel
strategies for solving combinatorial optimization problems [6,7]. The most fre-
quent branches on which the multilevel algorithms have been applied are VLSI
design [8,9,10], graph optimization problems [11] (with special attention to the
partitioning problem [12,13,14,15,16,17,18]), and several others [19,20,21].
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initial partitioning

Fig. 1. Example of multilevel framework for a 4-partitioning problem. Three empty
ellipses represent the three levels of the coarsening. The smallest colored by four colors
ellipse corresponds to the coarsest level graph. Four colors of the graphs through the
uncoarsening stage correspond to the 4-partitioning approximation.

The main objective of a multilevel based algorithm is to create a hierarchy of
problems (coarsening), each representing the original problem, but with fewer
degrees of freedom. For the partitioning and other graph modeled problems, this
hierarchy may be viewed as a process of learning of a graph topology prior to
applying any approximation method. The construction of hierarchies at differ-
ent scales ends up at the level with a very small number of degrees of freedom
(coarsest level) that allows to get a first approximation to the original problem at
very large scale within an insignificant running time (even for exact algorithm)
in comparison to the size of original problem. Then, the obtained approxima-
tion is sequentially projected along all levels of the hierarchy (interpolation or
projection) until it reaches the original problem with some approximation for it.
The projection stage can be reinforced at each level by some refinement algo-
rithm that improves the quality of approximation before further projection. The
projection reinforced by a refinement method is called uncoarsening. In terms
of graph partitioning problem, the hierarchy of coarse graphs is constructed
for different scales, and at each scale the approximation algorithm for this
problem is applied in order to project and improve current approximations. In
Figure 1, we present a small example of a multilevel framework (called V -cycle)
for the 4-partitioning problem. For needed references and background on multi-
level techniques, we refer the reader to [6].

Almost all previously developed multilevel schemes for simple graphs possess
exactly the same strict coarsening. It is carried out by matching groups (usually
pairs) of vertices together and representing each group with a single vertex in
the coarsened space (e.g., matching [17,18], first choice [10]). Another class of
multilevel schemes used for several combinatorial optimization problems is based
on an algebraic multigrid (AMG) method [22,23,15,11]. The principal difference
between these two approaches is explained in graph model terms in [11]. Be-
cause of the difficulties in performing a rigorous analysis of multilevel schemes
for discrete problems, the empirical judgment of all these algorithms is usually
based on the best achieved results on some test set. Multilevel algorithms con-
sist of many algorithmic parts, and it is not easy to realize which part plays the
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crucial role. This paper is about the role of a coarsening scheme in a multilevel
framework.

The main goal of this paper is a systematic comparison of the AMG-based
scheme versus strict scheme based on heavy edge matching (HEM, adopted since
1995 and implemented in many multilevel packages) for the partitioning problem
while having the uncoarsening parts (based on the popular sequential algorithm
called Fiduccia-Mattheyses (FM) [4]) exactly the same in both cases. This issue
still has not been studied empirically, in contrast to many other works in which a
number of a more or less successful uncoarsening and postprocessing procedures
have been suggested. The framework used for these experiments is Scotch [24],
since it provides an open architecture to easily plug in different algorithms and
choose between them at the runtime with the strategy string, a powerful way
to dynamically choose the methods and the parameters we want to use. The
AMG-based coarsening procedure was taken from [11].

2 Definitions and Notation

Consider a simple weighted graph G = (V, E), where V = [1, n] is the set of
vertices (nodes) and E is the set of edges. Denote by wij the non-negative weight
of the undirected edge ij ∈ E; if ij �∈ E, then wij = 0. Let vi be a positive weight
of vertex i ∈ V and v(A) =

∑
i∈A vi, where A ⊆ V .

The goal of the general graph k-partitioning problem is to find a partition of
V into a family of k disjoint nonempty subsets (πp)1≤p≤k, while enforcing the
following:

1)
∑

i∈πp⇒j 	∈πp

wij is minimized (called interface size or edgecut) and

2) max
p∈[1,k]

∣∣∣∣v(πp)−
v(V )

k

∣∣∣∣ is minimized (called balanced objective).

It is accepted to call one subset πp as a part and a family (πp)1≤p≤k as a partition
of V . In general, two minimization objectives can often be in conflict. Thus, in
most of the partitioning formulations the balance objective is restrained to be a
constraint

∀p ∈ [1, k], v(πp) ≤ (1 + α) · v(V )
k

,

where α is a given imbalance factor. In this paper, we refer to the constrained
version of the problem as the graph k-partitioning problem.

A common method of solving the k-partitioning problem when k > 2 is to
adopt a divide and conquer approach [25] that uses recursive bisection (or bipar-
titioning). To simplify the explanation, without loss of generality, we will talk
about bipartitioning rather than k-partitioning.

3 Coarsening Schemes

In general, any coarsening can be interpreted as a process of aggregation of graph
nodes to define the nodes of the next coarser graph. In this paper we compare
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Fig. 2. Schematic demonstration of the SAG scheme. The dashed ovals correspond
to the pairs of vertices at the fine level that form aggregates at the coarse level. For
example, vertices ”1” and ”3” are aggregated into one coarse node ”1,3”.
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Fig. 3. Schematic demonstration of the WAG scheme. The closed curves at the left
graph correspond to the subsets of vertices that form aggregates at the coarse level.
These subsets are not disjoint; in other words, vertices in intersection are divided among
several aggregates.

two coarsening schemes: strict and weighted aggregations (SAG and WAG). For
completeness we briefly review their description. In SAG (also called edge con-
traction or matching of vertices) the nodes are blocked in small disjoint subsets,
called aggregates. Two nodes i and j are usually blocked together if their coupling
is locally strong, meaning that wij is comparable to min{maxk wik, maxk wkj}
(see Figure 2).

In WAG, each node can be divided into fractions. Different fractions belong
to different aggregates (see Figure 3); that is, V will be covered by (presumably)
small intersecting subsets of V . The nodes that belongs to more than one subset
will be divided among corresponding coarse aggregates. In both cases, these
aggregates will form the nodes of the coarser level, where they will be blocked
into larger aggregates, forming the nodes of a still coarser level, and so on.

As AMG solvers have shown, weighted, instead of strict, aggregation is im-
portant in order to express the likelihood of nodes to belong together; these
likelihoods will then accumulate at the coarser levels of the process, indicating
tendencies of larger-scale aggregates to be associated to each other. SAG, in
contrast, may run into a conflict between the local blocking decision and the
larger-scale picture.

For both aggregation schemes, the construction of a coarse graph is divided
into three stages: (a) a subset of the fine nodes is chosen to serve as the seeds
of the aggregates (which form the nodes of the coarser level), (b) the rules
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for interpolation are determined, and (c) the weights of the edges between the
aggregates are calculated. For simplicity, we will unify stages (a) and (b) into
one stage in case of SAG. Here are the basic steps of these aggregation schemes.

SAG: Coarse Nodes. Visit the vertices according to some order [18] and choose
an appropriate (heaviest, lightest, random, etc., see [18]) edge for making a coarse
aggregate from its two endpoints i and j. The weight of a coarse aggregate will
be vi + vj .

WAG: Coarse Nodes-(a). The construction of the set of seeds C ⊂ V and its
complement F = V \ C is guided by the principle that each F -node should be
“strongly coupled” to C. Starting from C = ∅ and F = V , transfer nodes from
F to C until all remaining i ∈ F satisfy∑

j∈C

wij/
∑
j∈V

wij ≥ Θ ,

where Θ is a parameter (usually Θ ≈ 0.5).

WAG: Coarse Nodes-(b). Define for each i ∈ F a coarse neighborhood Ni

consisting of C-nodes to which i is connected. Let I(j) be the ordinal number in
the coarse graph of the node that represents the aggregate around a seed whose
ordinal number at the fine level is j. The classical AMG interpolation matrix P
is defined by

PiI(j) =

⎧⎪⎨
⎪⎩

wij/
∑

k∈Ni

wik for i ∈ F, j ∈ Ni

1 for i ∈ C, j = i
0 otherwise .

PiI(j) thus represents the likelihood of i to belong to the I(j)th aggregate. The
volume of the pth coarse aggregate is

∑
j vjPjp. Note that |Ni| is controlled by

the parameter called interpolation order.

SAG: Coarse Edges. Introduce a weighted coarse edge between aggregates p
and q created from fine pairs of vertices (i1, i2) and (j1, j2), respectively. Then
wpq will accumulate all possible connections between different components of
these pairs.

WAG: Coarse Edges. Assign the edge connecting two coarse aggregates p and
q with the weight wpq =

∑
k 	=l PkpwklPlq .

In general, both processes might be reformulated as a single algorithm. Note
that, given two consecutive levels l and L, in both cases∑

i∈Gl

vi =
∑

i∈GL

vi.

In contrast to the widely used SAG scheme, we are aware of two partitioning
solvers [23] and [15] in which an AMG-based scheme was employed. In contrast
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to [23] we employed the AMG-based coarsening only once directly on the original
graph. In [23] two coarsening schemes were employed: PMIS and CLJP. Some
parts of these schemes were adapted for their purposes. This solver is very suc-
cessful, however, in that work was discussed a newly introduced refinement only.
The process of coarsening in [15] is reinforced by compatible Gauss-Seidel relax-
ation [26], which improves the quality of the set of coarse-level variables, prior to
deriving the coarse-level equations. The quality measure of the set of coarse-level
variables is the convergence rate of F -nodes with respect to C. However, work
on improving the quality of coarse-level variables and equations is in progress,
and currently it is not clear wheather this relaxation plays an important role for
the partitioning problem.

4 Uncoarsening

In this section we will provide the details about the uncoarsening stage and
several recommendations of relatively easy improvement of it.

4.1 Disaggregation

To compare the different coarsening methods described in the preceding section,
we have chosen to use the same refinement techniques for all the schemes and
not to develop one specifically designed for WAG.

The uncoarsening phase typically consists of two steps: the projection of the
partition from the coarser graph to the finer graph and the refinement, a local
optimization of the partition using the available topological information at the
current level.

The projection phase is simple in the case of a strict coarsening scheme. It
consists only of assigning the same part number for a fine vertex as the one
assigned to its associated coarse vertex.

For a nonstrict coarsening scheme, the projection phase is more complex. We
can directly project only the seeds exactly as with a strict coarsening; but for
fine vertices that are not seeds, we have to do an interpolation to compute their
assignments with respect to the assignments of their neighbors.

In this paper, we have focused on two simple interpolation methods. Both re-
quire computing the probability that a fine vertex belongs to a specific part. In
the case of bipartitioning, only the knowledge of the probability to be in the part
0 (or 1) matters. Let us call P0(i) the probability that vertex i is in part 0, i.e.,

P0(i) =
∑

k∈Ni,I(k)∈π0

PiI(k) .

The first strategy assigns a vertex i to the part 0 (1) if the probability P0(i)
is greater (lower) than 1

2 . The second strategy assigns the part number propor-
tionally to the probability P0.

In these two schemes, the projection and interpolation involve two consecutive
loops. The first loop browses all the seeds and set their assignments to be those of
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their corresponding coarse vertices. The second loop scans all the fine nonseed
vertices and fixes them in their parts by computing P0. The cost in time is
thus Θ(|C| + |F | · io), where io is the interpolation order, instead of Θ(|F |) for
SAG.

The next phase consists of the optimization of current assignment using a
relaxation (or refinement) methods. In our experiments, we use one of the most
popular refinement techniques, Fiduccia-Mattheyses (FM) [4]. This algorithm
is popular because it is fast and allows randomized optimization for the cost
function. Its principle is simple: Order the vertices according to the gain in
edgecut obtained if the vertex is moved to another part; then move the vertex
of highest gain, and update the gain for the neighbors; then loop. It is possible
that the gain can signify a decrease in the partition quality, but one hopes it
can lead to a better local minimum for the edgecut. The number of degradation
moves is a parameter and by default set in Scotch to 80.

However, we have also chosen to try a poorer refinement, for two reasons.
First, to really compare the coarsening schemes, we have to avoid a too pow-
erful refinement because it can hide some artifacts caused by the coarsening.
The second reason is that a hill-climbing refinement is sometimes not available,
especially in parallel algorithms. To do this poorer refinement, we continue to
use FM but with a limitation during its execution: we force FM to stop if the
best move will degrade the partition quality. Thus, we obtain only a gradient-like
refinement.

4.2 Further Improvements

As mentioned, this paper compares of two coarsening schemes given a signif-
icantly simplified, common uncoarsening stage that can be easily parallelized.
However, we would like to include in this paper a list of possible further im-
provements of the AMG-based algorithm. These improvements were tested on
the partitioning and linear ordering problems, and all have a good chance of
exhibiting superior results to a basic algorithm.

Prolongation by Layers. In classical AMG schemes the initialization of fine
level variables is done by a prolongation operator that is equal to the transpose
of the restriction operator. In several multilevel algorithms the initialization
process depends on the already-initialized variables [11,15], while the order of
the initialization is determined by the strength of connection between variables
and the set of already initialized variables.

Compatible Relaxation. This type of strict minimization was introduced in
[26] as a practical tool for improving the quality of selecting the coarse variables
and consequently the relations between the fine and coarse variables. In general,
this relaxation minimizes the local energy contribution of fine variables while
keeping coarse variables invariant (see [11,15]).
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Generating Many Coarse Solutions. Solving the problem exactly at the
coarsest level may be reinforced by producing many solutions that differ from
each other and involve a lowcost partitioning simultaneously.

Cycling and Linearization. One complete iteration of the algorithm is called
a V -cycle, because of the order of visiting the coarse levels. Other patterns of
visiting the coarse levels are also possible. A Wν -cycle was tested in the multi-
level scheme for the linear ordering problems [11] and exhibited an improvement
proportionally to the amount of work units it spent in comparison to the V -cycle.
For both V - and Wν -cycles the linearization technique [27] was used to provide
a current approximated solution as an initial point for further approximation.

5 Computational Results

To prevent possible unexpected problems of implementation and to make a fair
comparison of the two methods, we implemented full WAG multilevel algorithm
with two separate software packages: [11] for the coarsening stage and Scotch
for the uncoarsening. The entire strict aggregation (HEM) multilevel partition-
ing algorithm was taken from the Scotch package. The combination of two
separate packages limited us in performing the bisection experiments only, since
the general k-way partitioning might be produced by Scotch by applying a bi-
section method recursively. However, this limitation does not play a crucial role
in understanding the general process. Usually, the quality of the k-way partition-
ing strongly depends on the quality of the bisectioning algorithm incorporated
into the general scheme, as a small bias on the first dissection has consequence
on all the next levels of bisection.

As is done in most multilevel graph partitioning implementations, the coars-
ening is continued until the size of the coarsest graph is more than 100 vertices.
Then, an aggressive heuristic is applied to get an initial partitioning. The exact
partitioning of the coarse graph does not influence the final quality if it is not
used in the context of a multiprojection of different partitions.

The comparison is based on the set of real-world graphs presented in
Table 1. The imbalance ratio was kept at 1% during all experiments. In order
to estimate the algorithmic stability, each test was executed twenty times with
different random seeds and initial reshuffling of V and E. Experiments with 100
executions per test did not provide a better estimation of a general statistical
view (minimum, maximum, average, and standard deviation).

5.1 Discussion

A frequent weakness of the classical matching-based coarsening schemes may
be formulated as the following observation: the results are quite unpredictable.
This can be characterized by high standard deviation of the edgecuts, undesirable
sensitivity to the parameters, random seed dependence, and other factors that
can influence the robustness of the heuristic. In terms of the coarsening stage,
this weakness can be heuristically explained by conflicts between local decisions
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Table 1. Some of the graphs on which we ran our experiments

Graph name |V |(×103) |E|(×103) Avg. degree Type

4elt 15 46 5.88 2D finite element mesh
altr4 26 163 12.5 Mesh, CEA-CESTA

oilpan 74 1762 47.78 3D stiffness matrix
ship001 35 2304 132 Parasol matrix

tooth 78 452 11.5 3D finite element mesh
m14b 215 1679 15.6 3D finite element mesh
ocean 143 410 5.71 3D finite element mesh

fe rotor 100 662 13.3 3D finite element mesh
598a 111 742 13.37 3D finite element mesh
144 144 1074 15 3D finite element mesh

Peku01-25 13 112 17.86 Placement graph
bcsstk32 45 985 44.16 3D stiffness matrix

thread 30 2220 149.32 Parasol matrix
plgr 2500 2 2.5 24 19.61 Power-law graph
plgr 5000 1 4 6.2 3.03 Power-law graph
plgr 5000 2 3.8 5.2 2.72 Power-law graph
plgr 5000 3 4.1 6.2 3.03 Power-law graph

fxm4 6 19 239 25.3 Optimization problem
p2p 1 11 31 5.72 p2p network
p2p 2 11 31 5.62 p2p network

(at the fine scale) and the global solution. In other words, by matching two
vertices we assume that, according to some argument, they will share a common
property (belonging to the same πp) and this property will be assigned to each of
them at the interpolation stage as initial solution. Unfortunately, because of the
NP-hardness of the partitioning problem (still) no argument can provide enough
pairwise local (even with high probability) decisions for the vertices to belong to
the same part. Thus, making a local decision without collecting enough global
information regarding the graph can lead to the unexpectedness.

In contrast to SAG, WAG consists of two ways to prevent itself from making
local decisions before collecting the global information: (a) each vertex must be
connected to enough seeds and (b) the nonseed vertex might be divided between
several seeds (when io > 1). Thus, the obtained covering of a fine graph by ag-
gregates (like those depicted in Figure 3) is smoother and the connectivity of a
coarse aggregate is better than a pair matching can ensure. However, by increas-
ing the number of possible F-vertices divisions, the connectivity of an aggregate
may be too high and can cause an increased coefficient in linear running time.
Thus, it must be controlled by the interpolation order. Moreover, it was never
observed that too high an interpolation order (more than twenty) has improved
the final results significantly. It can lead to the global averaging process which
result can be far from an optimality.
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Fig. 4. Edgecut between HEM and WAG with interpolation order 4 when using a
gradient refinement. The HEM average is 1. The area colored by dark-gray represents
the standard deviation, counted positively and negatively. The light-gray bars are the
WAG average, and the dark-gray boxes the standard deviation.

In Figure 4 we compare HEM and WAG with io = 4 (which still has a
low complexity and exhibits superior results); no randomized optimization was
applied at the refinement in either case. Except int two peer-to-peer graphs,
WAG clearly outperforms HEM, producing two times better average cuts.

This significant improvement is explained by a better conservation of a graph
topology during the WAG coarsening. The main reason is that one can expect
a good AMG coarsening of the graph Laplacian when the problem is associated
with, or approximated by, the problem of minimizing the quadratic functional
given by

∑
i,j wij(xi − xj)2, which is, in general, a natural problem that can be

solved better by AMG than by geometric multigrid approaches [6]. The parti-
tioning problem yields such an approximation while, for example, considering
spectral methods [2] or quadratic programming [28].

In particular, this improvement is interesting in light of designing parallel
graph partitioners, since many efforts are needed to obtain an efficient parallel
refinement. Another important observation is that the WAG standard deviation
is lower; that is, the quality of the partitions is more predictable. It can certainly
reduce the number of executions of the algorithm as it works in several tools and
by default in Scotch.

The second experiment consists of applying the same WAG and HEM re-
inforced by FM with hill-climbing capabilities. The results are presented in
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Fig. 5. Edgecut between HEM and WAG with interpolation order 4 when using a FM
refinement with hill climbing. The symbols are the same as in Figure 4.

Figure 5. For all test graphs in this case, WAG remains superior to HEM while
having a lower standard deviation. More aggressive uncoarsening allows us to
better exploit a graph topology and leads to the better partitions. Note that
WAG clearly outperforms HEM on power-law graphs. However, in the current
(not fully optimized) WAG version poorest refinement can give better results.

Another experiment was performed to determine the influence of the inter-
polation order in WAG. In the previous tests, only HEM was matching-based;
that is, the size of one aggregate was limited by two. However, a study on graph
partitioning of power-law graphs [12] shows that the size of the aggregate could
be important. In Figure 6, WAG with interpolation order of 1 corresponds to a
generic SAG, and we can observe that increasing the interpolation order usually
leads to better results.

A method of increased interpolation orders (marked here by ”inc io”) was
proposed in [27]. According to this method the interpolation order must be
increased as the coarse graphs become smaller. This hardly affects the total
complexity of the algorithm, but it does systematically improve the results since
it helps to learn better a graph topology before the uncoarsening stage.

Average edgecuts for partitions computed by standard HEM and by WAG
are summarized in Table 3. On our set of test graphs, WAG is on average 15%
better than HEM, and worse only for the graph p2p 1. However, we explain
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Table 2. Minimum edgecut obtained on 20 runs. HEM is the standard Scotch match-
ing and the Best known results are from Chris Walshaw’s database. All the HEM re-
sults and all the WAG results are obtained by using FM refinement with at most 80
unproductive moves for hill climbing.

Graph Best
HEM

WAG Delta (%)
name known io=1 io=2 io=4 io=6 io=10 io=20 inc io best HEM

4elt 138 140 138 138 138 138 138 138 138 0.00 -1.43
tooth 3823 4029 4100 3971 3921 3949 3947 3894 3987 1.86 -3.35
m14b 3826 3915 3888 3882 3860 3877 3858 3871 3863 0.84 -1.46
ocean 387 406 388 387 387 387 387 387 387 0.00 -4.68

fe rotor 2045 2104 2085 2072 2041 2039 2053 2056 2070 -0.29 -3.09
598a 2388 2451 2428 2429 2414 2418 2402 2398 2415 0.42 -2.16
144 6479 6688 6638 6622 6596 6576 6556 6575 6600 1.19 -1.97

bcsstk32 4667 5009 4740 4788 4776 4757 4938 5013 4743 1.56 -5.37

this particular problem as a lack of compatible relaxation, which has to be a
natural part of any AMG-based algorithm. Usually increasing the interpolation
order gives better results, but it seems to be a problem in some cases when too-
simplified projection and refinement are applied, since they are not designed to
deal efficiently with the gain of precision of a high interpolation order.
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Table 3. Average edgecut over 20 run with hill-climbing FM for HEM and WAG with
various interpolation orders. Delta is the difference between HEM and the average of
WAG, in percent. The numbers in bold correspond to the best average edgecut for a
graph.

Graph
HEM

WAG Delta (%)
name io=1 io=2 io=4 io=6 io=10 io=20 inc io HEM

4elt 170 152 154 141 142 140 142 142 -14.70
altr4 1656 1638 1619 1607 1593 1587 1593 1619 -2.88

oilpan 9433 9533 9153 8923 8974 8744 8771 8854 -4.66
ship001 17052 16787 16754 16733 16720 16616 16562 16770 -2.03

tooth 4346 4418 4289 4211 4152 4129 4114 4133 -3.21
m14b 4029 4043 3968 3920 3920 3913 3907 3914 -2.20
ocean 427 420 417 395 393 392 391 395 -6.33

fe rotor 2205 2147 2129 2115 2112 2160 2107 2123 -3.51
598a 2484 2478 2458 2444 2438 2424 2416 2440 -1.67
144 6826 6909 6763 6671 6637 6632 6621 6672 -1.83

Peku01-25 8305 7008 7049 6802 6798 6742 6711 6819 -17.55
bcsstk32 5588 5576 5425 5286 5067 5154 5176 5066 -6.06

thread 55933 55966 55899 55917 55970 55898 55943 55990 0.01
plgr 2500 2 6908 2308 1605 1920 2117 2588 3294 2018 -67.22
plgr 5000 1 946 771 775 757 751 752 740 762 -19.84
plgr 5000 2 627 491 496 483 478 466 466 482 -23.41
plgr 5000 3 939 772 774 754 751 747 747 753 -19.37

fxm4 6 1639 511 478 471 471 484 518 471 -70.33
p2p 1 1951 1944 1985 1936 2326 2447 2221 2254 10.65
p2p 2 3762 1981 2123 2423 2451 2261 2663 2240 -38.71

Although the goal of this work was not to obtain the best known results,
we present a comparison against the best known results obtained at Walshaw’s
database (The graph partitioning archive. http://staffweb.cms.gre.ac.uk/
~c.walshaw/partition/) in Table 2. Observe that the best WAG result is on
average less than 0.6% from the best known partitioning. We can note that the
best WAG partition is always better than the best of HEM, on average by 3%
on meshes and 15% on all of our test cases. Another interesting point is that all
the best results are obtained with normal FM refinement, except those for the
power-law graphs. Thus, at least for this class of graphs, the improvements of
uncoarsening (suggested in Section 4.2) may be interesting.

6 Conclusions

This paper compares two coarsening schemes in the context of graph partition-
ing. As a main result of this work, we recommend the adoption of WAG instead
of classical HEM because of its higher ability of graph topology learning prior to
the uncoarsening stage. In general, WAG improves the quality of the partitions
and thus provides a better chance of finding a good approximation. In particular,
the robustness of WAG was better than that of SAG coarsening when a poor

http://staffweb.cms.gre.ac.uk/
~c.walshaw/partition/
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refinement was employed and WAG provided still good-quality results. Since
parallel implementations in algebraic multigrid solvers [29,30] are very scalable
and since the refinement is often poor in parallel, WAG appears to be an ideal
candidate to design highly scalable efficient parallel graph partitioning tools.

The framework we use allowed us to combine different coarsenings with differ-
ent uncoarsenings. For example, we have done several experiments with a band-
FM refinement [31], which, despite the simplicity of our projection, worked well
with similar results. WAG allows one to obtain superior results with several dif-
ferent tested methods that are of great interest for parallel implementation [32].

The partitionings obtained during our experiments certainly may be improved
by using more sophisticated projection and relaxation methods at the refinement,
as mentioned in 4.2.
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gratitude to Dr. Erik Boman for useful advice.
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Abstract. Cooperative strategies and reactive search are very promis-
ing techniques for solving hard optimization problems, since they reduce
human intervention required to set up a method when the resolution of
an unknown instance is needed. However, as far as we know, a hybrid
between both techniques has not yet been proposed in the literature. In
this work, we show how reactive search principles can be incorporated
into a simple rule-driven centralised cooperative strategy. The proposed
method has been tested on the Uncapacitated Single Allocation p-Hub
Median Problem, obtaining promising results.

1 Introduction

Given limited time and space resources, metaheuristic algorithms are very effec-
tive in providing good quality solutions. Given a problem instance, it is generally
impossible to determine a priori the best heuristics to solve it, and the perfor-
mance of a metaheuristic depends strongly on parameters whose adjustment is
not trivial, and is usually done by experts or extensive experimentation.

The first issue can be handled by cooperative strategies [1], where a set of
potentially good heuristics for the optimization problem are executed in par-
allel, sharing information during the run. The second problem is successfully
addressed by reactive strategies [2], and the use of sub-symbolic machine learn-
ing to automate the parameter tuning process, making it an integral part of
the algorithm. Both techniques will be described more in detail in the following
section.

Despite the success of reactive strategies in other fields, to the best of our
knowledge, these principles have not yet been incorporated in cooperative strate-
gies. In this work we propose a hybrid between reactive search and cooperative
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strategies. For this purpose, we will use the simple centralised cooperative strat-
egy presented in [3]. The aim of this paper is to evaluate the performance of this
new hybrid model. The benchmark-problem used is the Uncapacitated Single
Allocation p-Hub Median Problem.

The paper is structured as follows. Section 2 outlines the principles behind
reactive search and cooperative strategies. Section 3 focuses on the description of
the cooperative strategy and the hybrid model. In Section 4, the benchmark used
is described. In Section 5 we present the results of the empirical performance
assessment of the various techniques, and we draw conclusions in Section 6.

2 Cooperative Strategies and Reactive Search

When we talk about cooperative strategies, we refer to a set of heuristics that
share any type of information among them. The cooperation can be centralised,
if the information flow is managed by a coordinator, or decentralised, when the
data exchange is directly done among the components of the strategy. These
ideas have been applied in several fields both explicitly and implicitly: Multi-
agents systems, where a set of very simple entities (ants in ACO [4] or particles
in PSO [5]) proceed in a cooperative way to progressively improve a population
of solutions; Hyper-heuristics [6], where a set of low-level heuristics are man-
aged by a higher-level heuristic that determines which one should be applied at
each iteration; Multi-thread parallel meta-heuristics [1], where several heuristics,
which are executed in parallel, cooperate sharing performance information to
reach promising regions of the search space, to avoid local minima, etc.

The term reactive search refers to an algorithmic framework [2] where opti-
mization techniques are coupled with machine learning algorithms. In particular,
the machine learning component analyzes the behavior of the optimization algo-
rithm and provides feedback by fine tuning its parameters, thus adapting it to
the properties of the instance being solved. Parameter tuning can be performed:
Offline: the machine learning component analyzes the behavior of the optimiza-
tion algorithm after a series of runs on different instances. The purpose of this
method is to learn a mapping between some instance features and a satisfactory
value of the algorithm’s parameters. In this case, the algorithm simply replaces
the researcher in performing offline adjustments when he applies an algorithm
to a new domain, with a trial-and-error approach; Online: the machine learning
component operates alongside with the optimization algorithm and tries to de-
tect hints of bad performance, such as repeated visits to the same configuration
or low improvement rate. By performing online adjustments to the optimization
component, the system can adapt to the local features of the search landscape.

The latter approach, which dates back to the seminal paper on Reactive Tabu
Search [7], will be followed in this paper.

3 General Scheme and Strategies

The cooperative strategy described in [3,8] consists of a set of solvers/threads,
each one implementing the same or a different resolution strategy for the problem
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at hand. These threads are controlled by a coordinator, which processes the in-
formation received from them. It produces subsequent adjustments of the solver
behaviours by making decisions based on fuzzy rules, and sending instructions
to the threads. The information exchange process is done through a blackboard
architecture [9].

An important part of this strategy is the information flow, which is divided
in three steps: 1) performance data (reports are sent from the solvers to the
coordinator, 2) the data are stored and processed by the coordinator and 3) the
coordinator sends orders to the solvers. Each report in the first step contains:

– solver identification;
– a time stamp t;
– the current solution of the solver at that time st;
– the best solution reached until that time by this solver sbest;
– a list with the local minima found by the method.

The coordinator stores the last two reports from each solver. From these two

reports, the coordinator calculates the improvement rate as Δf = f(st)−f(st′ )
t−t′ ,

where t − t′ represents the elapsed time between two consecutive reports, st′ is
the current solution sent by the solver in the last report and f is the objective
function. The values Δf and f(st) are then stored in two fixed length ordered
data structures, one for the improvements and the other for the costs, whose
sizes are set to 4×number of solvers. The list of local minima is processed by
the coordinator that keeps the history of all local optima in a hash table. Each
entry of this table has also a collision counter with the number of times that a
solution has been visited by any search thread. The behaviour of the solvers is
controlled by a set of rules. These rules allow the coordinator to determine if a
solver is behaving correctly, as well as the action that should be performed to
correct such behavior. These rules are of the type:

if condition then action.

The action consists of sending a solution to the solver (the best solution ever
seen by the coordinator Cbest, a random one, etc.). This solution is used by the
solver as a restart point for its search. In this way, the coordinator controls the
location of the solver in the search space.

3.1 Fuzzy Control Rule

In the past, we proposed a fuzzy rule that yielded good results on different
problems [3]. The rule was designed following the principle: “If a solver is working
well, keep it; but if a solver seems to be trapped, do something to alter its
behaviour”. Its precise definition is as follows:

if the quality of the current solution reported by solveri is low and the
improvement rate of solveri is low then send perturbed Cbest to solveri
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a) Definition for b) Definition for
improvement rates solution costs

Fig. 1. Membership function of the two sets used in the fuzzy control rule

The labels low are defined as fuzzy sets whose membership functions μ(x), for
both improvement rates and solution costs, are shown in Figure 1. The variable x
corresponds to the relative position (resembling the notion of percentile rank) of
a value (an improvement rate or a cost) in the samples stored in the respective
fixed length data structure. The parameters (a, b) are fixed to (80, 100) and
(0, 20) for the data structure of costs and improvements, respectively. This way
of measure the quality of the improvement rates and the solution is independent
of the problem, instance or scale. Cbest denotes the best solution ever recorded
by the coordinator.

What the rule says, is that, if the values reported by a solver are among
the worst stored in the two sets, then the coordinator sends the solution Cbest

(with a small perturbation) to the solver. By doing so, it relocates the solver to
a more promising region of the search space, trying to increase the chances of
finding better solutions. The details of the perturbation applied to Cbest will be
explained in Section 4.2.

The fuzzy rule shares some ideas with reactive search: in both cases, the an-
tecedent of the rule aims at discovering of the thread/solver stagnation. However
the action coded in the consequent of the fuzzy rule is fixed, while in the case of
reactive search, the intensity of the perturbation is adapted dynamically.

3.2 Reactive Control Rule

Following the principles in [7,10], this rule uses the history of visited local min-
ima to detect search stagnation. In other words, the hash table kept by the
coordinator is used to determine if a solver is visiting an already explored area
of the search space. If this is the case, the coordinator drives the searchers diver-
sification by restarting the stagnated algorithm from a perturbation of the best
configuration found across all solvers. The definition of this rule is the following:

if the collision counter cc of the last local minima visited by solveri

is bigger than λreaction, then the coordinator sends Cbest to solveri

perturbed by degree φ.

The threshold λreaction regulates the activation of the rule and φ is defined as:

φ =
{

cc− λreaction, if cc− λreaction < φmax

φmax, if cc− λreaction ≥ φmax
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The idea of this rule is that the more often a local minimum is visited, the
higher the probability that it belongs to a large attraction basin, and therefore
the perturbation needs to be higher in order to escape from that optimum. The
strength of the perturbation is controlled by the application of different mutation
operators. The description of such operators will be seen in Section 4.2.

3.3 Fuzzy + Reactive Control Rule

From the previous description, one can observe that the fuzzy rule tries to
drive the intensification of the strategy relocating the threads to promising ar-
eas, whereas the reactive rule guides the diversification of the solvers to avoid
their stagnation in local minima. As a consequence, it is expected that if both
rules are used simultaneously, the exploration and the exploitation phases of the
cooperative strategy will be better balanced.

From an operational point of view, if just one of the rules is activated (its
antecedent evaluates to true), then the corresponding consequent is applied.
When both rules are activated, we need to decide which consequent would be
applied. If the fuzzy alternative is taken, then we would move a thread towards
the Cbest solution. As all the threads implement the same algorithm with the
same parameters, then the opportunity to improve may be low. If the threads
were heterogeneous, then it would make sense to search the same region using
different search strategies. Under this situation, we consider that when both rules
are activated, then the best alternative is to apply the reactive rule’s consequent
as a way to promote diversification.

4 Case Study Details

In this section, we describe all the aspects related to the case study used for as-
sessing the performance of the methods: Uncapacitated Single Allocation
Problem, and the concrete implementation of the strategies.

4.1 The Uncapacitated Single Allocation p-Hub Median Problem

The objective of hub location problems is composed of two steps: (1) Hub
location: it decides which nodes should be the hubs and the number of them, to
distribute the flow across them. (2) Non-hub to hub allocation: it assigns the
rest of the nodes to the hubs. Generally, these tasks are performed by minimising
an objective function that depends on the exchanged flow and its cost. A general
survey of this kind of problems can be seen in [11]. Here we will focus on the
Uncapacitated Single Allocation p-Hub Median Problem (USApHMP), a specific
case of these problems where number of hubs is fixed to p.

In this paper, we will use the formulation given by O’Kelly in [12]. Let N
be a set of n nodes. We define Wij as the amount of flow from node i to j,
and Cij the cost of transporting a unit between nodes i and j. Each flow Wij ,
has three different components: collection, transfer and distribution. Collection
corresponds to the transport from i to its hub. Transfer represents the movement
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between the hubs of i and j. Distribution occurs from this second hub to j. Each
of these activities can modify the cost per unit flow by a determined constant.
Such constants are denoted, respectively, as χ (generally χ = 1), α (generally
α < 1) and δ (generally δ = 1).

Let Xij be a decision variable whose value is 1 if node i is allocated to hub j
and 0, otherwise. The USApHMP can be formulated as:

min
∑

i,j,k,l∈N

Wij(χCikXik + αCklXikXjl + δCjlXjl) (1)

subject to∑n
j=1 Xjj = p (2)

∑n
j=1 Xij = 1, ∀i = 1, . . . , n (3)

Xij ≤ Xjj , ∀i, j = 1, . . . , n (4) Xij ∈ {0, 1}, ∀i, j = 1, . . . , n (5)

The objective function (1) minimises the sum of the origin-hub, hub-hub and
hub-destination flow costs. Constraint (2) ensures that exactly p hubs exist.
Constraint (3) indicates that a node can only be allocated to a unique hub.
Condition (4) guarantees that a non-hub point can only be allocated to a hub
and not to another non-hub node. Finally, (5) is the classical binary constraint.

The instances used in this work were obtained from ORLIB [13]. Concretely,
we used the AP data set. The instances are divided in two groups, those with
20, 25, 40 and 50 nodes, and those with 100 and 200. For the first set, p ∈
{3, 4, 5}, while for the second one, we have p ∈ {3, 4, 5, 10, 15, 20}. The value of
the constants χ, α and δ were fixed to 3, 0.75 and 2 respectively. The stopping
condition for all experiments was set to 50000 evaluations for instances with 50
nodes or less, and to 500000 for those with more than 50 nodes. The optimum
for the instances with less than 50 nodes was provided by ORLIB, and for the
other instances we considered the best solution found by one of the state-of-art
algorithms for this problem, presented in [14]. The quality of the solutions is
measured as percent error = 100× obtained value−optimum

optimum .

4.2 Strategy Implementation

When implementing multi-threaded cooperative strategies, one can resort to real
parallel implementations, or simulate the parallelism in a single-processor com-
puter. The later is the strategy adopted here: we construct an array of solvers
and we run them using a round-robin scheme. In this way, each of them is run
for a certain number of evaluations of the objective function. This number is
randomly generated from the interval [500;560] which has been chosen follow-
ing previous studies. Once a solver is executed, the communication with the
coordinator takes place. These steps are repeated until the stop condition is
fulfilled.

Another important parameter for this study is the number of solvers as well as
which metaheuristic they implement. The cooperative strategy has three solvers
that implement the same algorithm, which is a standard version of Simulated
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Annealing that follows the basic guidelines described in [15]. The neighborhood
operator used by this method is composed of two distinct mechanisms: change
of the assignment of non-hub nodes and change of the location of hubs. More
precisely, the steps for the assignment of non-hub nodes are the following:

1. Choose randomly a group Gj , being Gj = {i|Xij = 1, i �= j} the group of
those nodes that are assigned to hub j.

2. Select randomly a node i ∈ Gj

3. Choose randomly another group Gk, k �= j
4. Allocate the selected node to the new group: Xij ← 0, Xik ← 1

The second neighborhood operator changes the location of a hub j to another
node that is currently allocated to hub i. If there are no nodes allocated to j,
a different node is selected as hub and j is assigned to another group. More in
detail, the following steps have to be performed:

1. Choose randomly a group Gj

2. If there is at least one node in the group (|Gj | > 0) then:

(a) Select a random node i ∈ Gj

(b) Allocate all nodes in Gj and its hub node j to the new hub node i:
∀k ∈ Gj : Xkj ← 0, Xjj ← 0, Xki ← 1, Xji ← 1 and Xii ← 1

3. If the group has no nodes (|Gi| = 0), then:

(a) Choose randomly another group Gk, k �= j with at least one node.
(b) Select a random node i ∈ Gk.
(c) Make a new group with the selected node i. Xii ← 1
(d) Allocate the last hub j as a normal node to another hub selected ran-

domly. Xjr ← 1 where r is a random hub.

When the cooperative strategy is run, each solver starts from a different initial
solution. As for the Fuzzy rule, its activation takes place when the output value
of the antecedent is higher than 0.9. The modification done to Cbest, when it is
sent to the solvers, corresponds with one assignment change and one location
change. For the Reactive rule, λreaction was set to 10. The parameter φmax is set
to 3, that is, 3 different degrees of perturbation for Cbest are considered. This
degree of perturbation is determined by the number of changes of assignment
(#assignment) and location (#location) applied to this solution. When the degree
φ = i, then #assignment = #location = number of hubs/(φmax − i − 1), i =
1, . . . , φmax.

5 Experimental Comparison

The aim of our experimentation is to assess the performance of the hybrid
strategy proposed. Specifically, we will compare the following models:

– The independent strategy (I), which is the baseline case, where the solvers
do not exchange information.
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reactive

fuzzy+reactive

fuzzy

independent

0 2 4 6 8

percentage error

Fig. 2. Box diagram for the percentage error obtained by I, F, R and F+R strate-
gies over all instances. The algorithms grouped by a dotted rectangle do not perform
differently at significance level 0.05 (non-parametric Mann-Whitney U-test).

– The cooperative strategy that uses the Reactive rule (R).
– The cooperative strategy utilising the Fuzzy rule (F).
– The cooperative strategy using both rules (F+R).

Each strategy is run 30 times, starting from different initial random solutions, for
each instance. The performance is assessed in terms of: quality of the solutions;
convergence speed; and how the rules modifies the threads.

5.1 Benefits of the Cooperative-Reactive Hybrid

Looking at the general picture, we show in Figure 2 a box diagram with infor-
mation about the percentage error obtained by each method over all instances,
where the boxes are sorted by the median. The Kruskal-Wallis non-parametric
test for multiple comparisons has been used to asses the differences between the
performances of the four strategies. The null hypothesis could not be rejected at
significance level 0.01. The statistical information about the comparison between
pairs of algorithms is also shown in Figure 2: when two boxes are inside a dotted
rectangle, a statistically significant difference could not be shown between the
percentage error distributions of the corresponding algorithms (non-parametric
Mann-Whitney U-test at significance level α = 0.05). Looking at the medians
there is no strong differences between the algorithms. However, if we take into
account the upper quartile represented by the whisker, the differences are more
noticeable, and show that the R strategy obtains the best performance. The sec-
ond position is occupied by F+R, followed by F and I in that order. Furthermore,
the statistical non-parametric test shows that R and F+R perform significantly
better that the two worst methods.

The following analysis focuses on detailed per-instance results. Figure 3 shows
a number of scatter plots providing pairwise comparisons among the four meth-
ods evaluated. Every instance is plotted as a pair (x, y) where x (y) is the
normalised mean percentage error obtained by the strategy named in the X (Y )
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Fig. 3. Comparison of the mean relative deviation from optimum (smaller values are
better). Triangles represent the instances on which the algorithms being compared
perform differently at significance level 0.05 (Wilcoxon’s unpaired rank sum test).
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axis. If the marker is above the diagonal, then the algorithm in X is better than
the one in the Y axis. A triangle is used when there is a statistically significant
difference between the performance of the two algorithms for the corresponding
instance (non-parametric Mann-Whitney U-test at significance level α < 0.05).
A circle is used in the other case.

The first plot shows how F hardly improves over I. Only in two instances the
difference between both methods is statistically significant, which means that
this rule does not obtain good results for this problem. When the coordinator
uses R, it outperforms the I strategy. As we can see in the plot, the performance
of this coordination type is significantly better on seventeen instances. When the
control is carried out by F+R, the results are similar to those obtained by R,
although now the number of cases where this control rule achieves a significant
difference over I is reduced to fourteen.

If we compare the different rules among them, we observe that F+R improves
upon F. The contribution of F+R is significantly evident in thirteen instances.
However, when F+R is compared with R, apart from one instance, the null
hypothesis of the equivalence of the performances could not be rejected. The
comparison between F and R confirms the intuition on the importance of the
reactive rule, since on fifteen cases there is a significant improvement over F.

The next step is to identify the instances where there is a significant difference
between the different cooperation schemes. Table 1 shows the mean percentage
error for the different strategies as well as the std. deviation. From the table,
we can notice that the differences of R and F+R with respect to F and I are
larger when the size of the instances increases, i.e., for a fixed number of nodes,
when the number of hubs increases. If we consider the best solution found,
something similar happens. The difference in terms of both the number of times
the optimum is reached and the quality of the best solution found is bigger for
instances with a higher number of hubs, with the only exception of F in 200-{20}.

5.2 Study of the Dynamic Behaviour

Two different aspects of the dynamic behaviour of the strategy will be inves-
tigated now. The first is the performance of the strategies during the search
process. For this, we studied how the percentage error of the best solution found
for each method evolves over time. We will focus on the six hardest instances,
which are 100-{10,15,20} and 200-{10,15,20}. The results are shown in Figure 4.

The first issue we want to highlight is the early stagnation in local minima
experienced by I and F for the instances with one hundred nodes. This behaviour
can also be observed when the instances have two hundred nodes, although in
these cases it takes places in the last stages of the search. Unlike these methods,
R and F+R do not suffer from this problem and are able to improve the quality
of the solutions during the whole search process. Just on instance 100-{10}, a
small stagnation is noticeable. This fact confirms that the reactive control rule
is capable of driving the diversification of the strategy in such a way that the
solvers can escape from the different local minima.
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Table 1. Mean, std deviation and best solution for I, F, R and F+R. In the column
best solution, when the value is an integer it indicates the number of times that the
optimum was reached. Otherwise, the cost of the best solution found by that strategy.

mean std. dev best solution
N H I F R F+R I F R F+R I F R F+R
20 3 0.25 0.44 0.00 0.00 0.74 1.00 0.00 0.00 25 23 30 30

4 1.87 1.63 0.50 0.16 1.54 1.58 1.02 0.53 11 13 24 27
5 1.02 0.85 0.01 0.00 1.04 1.33 0.04 0.00 10 16 29 30

25 3 0.90 0.72 0.21 0.20 1.38 1.29 0.77 0.77 20 21 27 28
4 0.76 0.59 0.14 0.19 1.26 1.26 0.17 0.17 4 7 16 13
5 1.84 1.06 0.00 0.00 2.79 2.14 0.01 0.00 11 12 29 30

40 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 30 30 30 30
4 0.33 0.38 0.00 0.00 1.29 1.26 0.00 0.00 28 27 30 30
5 0.79 1.19 0.28 0.57 1.08 1.18 0.77 1.02 7 5 24 21

50 3 0.17 0.08 0.00 0.25 0.64 0.46 0.00 0.77 28 29 30 27
4 0.84 1.20 0.00 0.00 2.08 2.45 0.00 0.00 20 19 30 30
5 2.86 3.12 1.66 2.44 2.05 2.29 2.11 2.16 8 8 18 12

100 3 0.00 0.09 0.00 0.09 0.00 0.47 0.00 0.47 30 29 30 29
4 0.21 0.00 0.00 0.00 1.14 0.00 0.00 0.00 25 30 30 30
5 1.76 1.83 1.44 1.50 0.81 0.76 1.11 1.08 2 2 11 10
10 2.89 2.58 1.06 1.08 1.74 1.23 0.98 0.98 0.49 0.49 3 2
15 5.12 4.94 1.75 2.47 1.56 1.61 1.16 1.44 1.48 1.27 0.75 0.42
20 4.35 3.87 2.50 2.68 1.39 1.64 0.96 0.79 2.38 1.14 0.73 0.64

200 3 0.00 0.07 0.00 0.00 0.00 0.38 0.00 0.00 30 29 30 30
4 0.22 0.22 0.00 0.00 1.13 1.13 0.01 0.01 20 16 28 26
5 0.77 0.79 0.74 0.62 0.43 0.46 0.53 0.52 0.17 1 3 1
10 2.94 2.97 2.36 2.76 1.18 1.12 1.39 1.68 1.66 1.30 0.11 0.15
15 6.68 6.12 4.51 5.03 1.58 1.76 1.49 2.17 3.15 1.89 1.56 1.48
20 6.81 5.54 4.41 4.88 1.69 2.16 1.13 1.82 3.24 2.42 2.77 2.82

Another interesting behaviour can be found in 200-{20}. In this instance, F
achieves a faster convergence than I, which leads to better results. This can
be considered as an indication that the use of this control rule is useful for
larger instances where the concentration of the solvers in the same region of
the search space is needed to, at least, obtain high quality local optima. More
experimentation is needed in order to confirm this fact.

The other aspect of the dynamic behaviour we have studied is the evolution of
the rule activation with time. Figure 5 shows the evolution of the mean number
of times the control rule is fired for I, F, R and F+R. For this last strategy, the
disaggregated behaviour for each rule (F+R:F and F+R:R) is shown. As in the
former case, we focus on the six hardest instances.

Looking at the left-side plots of Figure 5, we can observe a much higher num-
ber of activations of R and F+R:R with respect to F and F+R:F. However,
that order is inverted in the second column, that is, when the number of nodes
is increased to 200. This effect is due to an important drop in the number of
triggers for R and F+R:R. This behaviour variation is explained by the different
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Fig. 4. Evolution of the mean percentage error of the best solution found by I, F, R
and F+R during the execution time
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Fig. 5. Evolution of the mean number of times the control rule is fired for I, F, R and
F+R. For this last strategy, the disaggregated behaviour for each rule (F+R:F and
F+R:R) is shown.
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performance of the solvers in the two cases. As we have seen before, the inde-
pendent strategy stagnates in the first phases of the search process for instances
with one hundred nodes. This situation is captured by the reactive rule, which
increases the number of triggers since the early stages of the search. On the
contrary, for 200-10,15,20, the independent solvers experience a slower conver-
gence, and stop improving at the end of the process. This is also reflected in
the behaviour of the reactive rule, that delays its activation. In this way, we see
that the reactive rule is able to detect the difference between both instance sizes,
adjusting its behaviour to each case.

We can also observe that using the two rules simultaneously produces an
increase in their number of activations. This is due to the difference between
the objectives of both rules. Since the fuzzy rule tries to reallocate the threads
around promising regions of the search space, the probability of solvers to find
big local minima is higher, which leads the reactive rule to be triggered more
times. Although in a lesser degree, that interaction in the opposite sense also
happens. When the cooperation is driven by the Reactive rule, the coordinator
attempts to bring the solvers away from the local minima, and put them in
regions of the search space relatively far from the best solution. If this distance
is big enough and the solver does not achieve a good improvement rate, then the
fuzzy rule will be fired for this thread.

6 Conclusions

In this work we have presented a hybrid composition of cooperative strategies
and reactive search. Concretely, we have incorporated a rule based on the reactive
search framework into a simple centralised cooperative strategy. Experiments on
instances of the Uncapacitated Single Allocation p-Hub Median problem have
shown that the proposed hybridization (cooperative strategy + reactive rule)
achieves better results with respect to a strategy based on independent solvers
(where solvers do not exchange information), and with respect to the same coop-
erative strategy based on a fuzzy control rule previously tested with success on
other problems. We have also tested the cooperative strategy using both rules,
reactive and fuzzy, at the same time. In this case, the bigger complexity does
not pay off because the reactive rule alone performs at least as well as both rules
together. Moreover, the reactive rule is able to adapt its behaviour according to
the characteristics of the instance, and is effective for detecting stagnation and
for driving diversification strategies.

The behavior of the cooperative strategy coupled with the fuzzy rule is some-
how deceptive as it can not perform better than the independent strategy. Fur-
ther research is needed in order to assess if this is strictly related with the p-hub
problem, since previous work showed the benefit of such combination [3,8].

Our next step will be a comparison with state of the art algorithms in order
to have a good reference for the performance of the proposed technique. We
plan also to test the proposed schemes with solvers based on other optimization
algorithms such as Tabu Search or Variable Neighborhood Search, possibly with
a heterogeneous set of solvers.
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Finally, the behaviour of the proposed strategy can be analysed according to
the chosen reaction mechanism: while this paper dealt with the increase/decrease
of the perturbation applied to a solution, a critical solver parameter can be
varied, for instance, the annealing schedule for simulated annealing, or the tabu
tenure for tabu search.
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Abstract. Memetic algorithms arise as very effective algorithms to ob-
tain reliable and high accurate solutions for complex continuous opti-
mization problems. Nowadays, high-dimensional optimization problems
are an interesting field of research. Its high dimension introduces new pro-
blems for the optimization process, making recommendable to test the
behavior of optimization algorithms to large-scale problems. In memetic
algorithms, the local search method is responsible of exploring the neigh-
borhood of the current solutions; therefore, the dimensionality has a di-
rect influence over this component. The aim of this paper is to study this
influence. We design different memetic algorithms that only differ in the
local search method applied, and they are compared using two sets of
continuous benchmark functions: a standard one and a specific set with
large-scale problems. The results show that high dimensionality reduces
the differences among the different local search methods.

1 Introduction

It is now well established that hybridization of evolutionary algorithms (EAs)
with other techniques can greatly improve the efficiency of search [1,2]. EAs that
have been hybridized with local search (LS) techniques are often called memetic
algorithms (MAs) [3,4,5]. One commonly used formulation of MAs applies LS to
members of the EA population after recombination and mutation, with the aim
of exploiting the best search regions gathered during the global sampling done
by the EA.

MAs comprising efficient local improvement processes on continuous domains
(continuous LS methods) have been presented to address the difficulty of ob-
taining reliable solutions of high precision for complex continuous optimiza-
tion problems [6,7,8,9,10]. In this paper, they will be named MACOs (MAs for
continuous optimization problems).

Nowadays, high-dimensional optimization problems arise as a very interest-
ing field of research, because they appear in many important new real-world
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problems (bio-computing, data mining, etc.). Unfortunately, the performance
of most available optimization algorithms deteriorates rapidly as the dimen-
sionality of the search space increases [11]. Thus, the ability of being scalable
for high-dimensional problems becomes an essential requirement for modern
optimization algorithm approaches.

In recent years, it has been increasingly recognized that the influence of the
continuous LS algorithm employed has a major impact on the search performance
of MACOs [8]. There exists a group of continuous LS algorithms that stand out
as brilliant local search optimizers. They include the Solis and Wets’s algorithm
[12], the Nelder and Mead’s simplex method [13], and the CMA-ES algorithm
[14]. However, on some occasions, they may become very expensive, because
of the wa y they exploit local information to guide the search process. In this
paper, they are called intensive continuous LS methods. Given the potential of
these LS methods, a specific MACO model, called MACO based on LS chains,
has been designed that can effectively use them as local search operators [10].
An instance of this MACO was experimental studied, which employed CMA-
ES as local optimizer. The results showed that it was very competitive with
state-of-the-art on both MACOs and EAs for continuous optimization problems.
Particularly, significant improvements were obtained for the problems with the
highest dimensionality among the ones considered for the empirical study (in
particular, D = 30 and D = 50), which suggests that the application of this
MACO approach to optimization problems with higher dimensionalities is indeed
worth of further investigations.

In this paper, we undertake an extensive study of the performance of three
MACOs based on LS chains that apply different instances of intense LS proce-
dures on a specific set of benchmark functions with large scale problems, which
was defined for the CEC’2008 Special Session on Large Scale Global Optimiza-
tion (D = 100 and D = 200). In addition, since we are interested on investigating
the ways these MACOs respond as dimensionality increases, we have evaluated
them, as well, on the benchmark functions defined for the CEC’2005 Special
Session on Real-Parameter Optimization (D = 10, 30, and 50).

The paper is set up as follows. In Section 2, we describe the different con-
tinuous LS methods analyzed. In Section 3, we review some important aspects
of the MACO used for our study. In Section 4, we present the experimental
study of three MACO instances based on continuous LS mechanisms on test
problems with different dimensionalities. Finally, in Section 5, we provide the
main conclusions of this work.

2 Continuous LS Methods

In this section, we present a detailed description of the continuous LS methods
used in our empirical study. They are three well-known continuous local searchers:
the Solis and Wets’s algorithm [12], the Nelder and Mead’s simplex method [13],
and the CMA-ES algorithm [14]. Next, we present a detailed description of these
procedures.
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2.1 Solis and Wets’ Algorithm

The classic Solis and Wets’ algorithm [12] is a randomised hill-climber with an
adaptive step size. Each step starts at a current point x. A deviate d is chosen
from a normal distribution whose standard deviation is given by a parameter ρ.
If either x+d or x−d is better, a move is made to the better point and a success
is recorded. Otherwise, a failure is recorded. After several successes in a row, ρ is
increased to move quicker. After several failures in a row, ρ is decreased to focus
the search. It is worth noting that ρ is the strategy parameter of this continuous
LS operator. Additionally, a bias term is included to put the search momentum
in directions that yield success. This is a simple LS method that can adapt its
size search very quickly. More details about this procedure may be found in [12].

2.2 Nelder-Mead Simplex Algorithm

This is a classical and very powerful local descent algorithm. A simplex is a
geometrical figure consisting, in n dimensions, of n+1 points s0, · · · , sn. When a
points of a simplex is taken as the origin, the n other points are used to describe
vector directions that span the n-dimension vector space. Thus, if we randomly
draw an initial starting point s0, then we generate the other n points si according
to the relation si = s0 +λej, where the ej are n unit vectors, and λ is a constant
that is typically equal to one.

Through a sequence of elementary geometric transformations (reflection, con-
traction, expansion and multi-contraction), the initial simplex moves, expand or
contracts. To select the appropriate transformation, the method only uses the
values of the function to be optimized at the vertices of the simplex considered.
After each transformation, a better vertex replaces the current worst one. A
complete picture of this algorithm may be found in [13].

This method has the advantage of creating initially a simplex composed by
movements in each direction. This is a very useful characteristic to deal with
high-dimensional spaces.

2.3 CMA-ES Method

The covariance matrix adaptation evolution strategy (CMA-ES) [14,15] was ori-
ginally introduced to improve the LS performances on evolution strategies. Even
though CMA-ES reveals competitive global search performances [16], it has ex-
hibited effective abilities for the local tuning of solutions; in fact, it was used
as continuous LS algorithm to create multi-start LS metaheuristics, L-CMA-ES
[17], and G-CMA-ES [18]. At the 2005 congress of evolutionary computation,
these algorithms were ones of the winners of the real-parameter optimisation
competition [19].

In CMA-ES, not only is the step size of the mutation operator adjusted at
each generation, but so too is the step direction in the multidimensional problem
space, i.e., not only is there a mutation strength per dimension but their com-
bined update is controlled by a covariance matrix whose elements are updated as
the search proceeds. In this paper, we use the (μW , λ) CMA-ES model. For every
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generation, this algorithm generates a population of λ offspring by sampling a
multivariate normal distribution:

xi ∼ N
(
m, σ2C

)
= m + σNi(0, C) for i = 1, · · · , λ,

where the mean vector m represents the favourite solution at present, the so-
called step-size σ controls the step length, and the covariance matrix C deter-
mines the shape of the distribution ellipsoid. Then, the μ best offspring are
recombined into the new mean value using a weighted intermediate recombina-
tion:

∑μ
i=1 wixi:λ, where the positive weights sum to one. The covariance matrix

and the step-size are updated as well following equations that may be found in
[14] and [16]. The default strategy parameters are given in [16]. Only the initial
m and σ parameters have to be set depending on the problem.

3 MACOs Based on LS Chains

In this section, we describe a MACO approach proposed in [10] that employs
continuous LS methods as LS operators. It is a steady-state MA model that
employs the concept of LS chain to adjust the LS intensity assigned to the intense
continuous LS method. In particular, this MACO handles LS chains, throughout
the evolution, with the objective of allowing the continuous LS algorithm to act
more intensely in the most promising areas represented in the EA population. In
this way, the continuous LS method may adaptively fit its strategy parameters
to the particular features of these zones.

In Section 3.1, we introduce the foundations of steady-state MAs. In
Section 3.2, we explain the concept of LS chain. Finally, in Section 3.3, we
give an overview of the MACO approach presented in [10], which handles LS
chains with the objective of make good use of intense continuous LS methods as
LS operators.

3.1 Steady-State MAs

In steady-state GAs [20] usually only one or two offspring are produced in each
generation. Parents are selected to produce offspring and then a decision is made
as to which individuals in the population to select for deletion in order to make
room for the new offspring. Steady-state GAs are overlapping systems because
parents and offspring compete for survival. A widely used replacement strategy
is to replace the worst individual only if the new individual is better. We will
call this strategy the standard replacement strategy.

Although steady-state GAs are less common than generational GAs, Land
[21] recommended their use for the design of steady-state MAs (steady-state
GAs plus LS) because they may be more stable (as the best solutions do not get
replaced until the newly generated solutions become superior) and they allow
the results of LS to be maintained in the population.
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3.2 LS Chains

In steady-state MAs, individuals resulting from the LS invocation may reside in
the population during a long time. This circumstance allows these individuals
to become starting points of subsequent LS invocations. In [10], Molina et al.
propose to chain an LS algorithm invocation and the next one as follows:

The final configuration reached by the former (strategy parameter val-
ues, internal variables, etc.) is used as initial configuration for the next
application.

In this way, the LS algorithm may continue under the same conditions achieved
when the LS operation was previously halted, providing an uninterrupted connec-
tion between successive LS invocations, i.e., forming a LS chain. Two important
aspects that were taken into account for the management of LS chains are:

– Every time the LS algorithm is applied to refine a particular chromosome,
a fixed LS intensity should be considered for it, which will be called LS
intensity stretch (Istr).

In this way, a LS chain formed throughout napp LS applications and started
from solution s0 will return the same solution as the application of the conti-
nuous LS algorithm to s0 employing napp · Istr fitness function evaluations.

– After the LS operation, the parameters that define the current state of the
LS processing are stored along with the reached final individual (in the
steady-state GA population). When this individual is latter selected to be
improved, the initial values for the parameters of the LS algorithm will be
directly available. For example, if we employ the Solis and Wets’ algorithm
(Section 2.1) as LS algorithm, the stored strategy parameter may be the
current value of the ρ parameter. For the more elaborate CMA-ES (Section
2.3), the state of the LS operation may be defined by the covariance matrix
(C), the mean of the distribution (m), the size (σ), and some additional
variables used to guide the adaptation of these parameters.

3.3 A MACO Model That Handles LS Chains

In this section, we introduce a MACO model that handles LS chains (see
Figure 1) with the following main features:

1. It is a steady-state MA model.
2. It ensures that a fixed and predetermined local/global search ratio is always

kept. With this policy, we easily stabilise this ratio, which has a strong influ-
ence on the final MACO behaviour. Without this strategy, the application
of intense continuous LS algorithms may induce the MACO to prefer super
exploitation.

3. It favours the enlargement of those LS chains that are showing promising
fitness improvements in the best current search areas represented in the
steady-state GA population. In addition, it encourages the activation of in-
novative LS chains with the aim of refining unexploited zones, whenever the
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1. Generate the initial population.
2. Perform the steady-state GA throughout nfrec evaluations.
3. Build the set SLS with those individuals that potentially may be refined

by LS.
4. Pick the best individual in SLS (Let’s cLS to be this individual).
5. If cLS belongs to an existing LS chain then
6. Initialise the LS operator with the LS state stored together with cLS .
7. Else
8. Initialise the LS operator with the default LS state.
9. Apply the LS algorithm to cLS with an LS intensity of Istr (Let’s cr

LS to be
the resulting individual).

10. Replace cLS by cr
LS in the steady-state GA population.

11. Store the final LS state along with cr
LS .

12. If (not termination-condition) go to step 2.

Fig. 1. Pseudocode algorithm for the MACO based on LS chains

current best ones may not offer profitability. The criterion to choose the in-
dividuals that should undergo LS is specifically designed to manage the LS
chains in this way (Steps 3 and 4).

This MACO scheme defines the following relation between the steady-state GA
and the intense continuous LS method (Step 2): every nfrec number of evalua-
tions of the steady-state GA, apply the continuous LS algorithm to a selected
chromosome, cLS, in the steady-state GA population. Since we assume a fixed L

G
ratio, rL/G, nfrec may be calculated using the following equation:

nfrec = Istr

1− rL/G

rL/G
. (1)

where nstr is the LS intensity stretch (Section 3.2) and rL/G is defined as the
percentage of evaluations spent doing local search from the total assigned to the
algorithm’s run.

The following mechanism is performed to select cLS (Steps 3 and 4):

1. Build the set of individuals in the steady-state GA population, SLS that
fulfils:
(a) They have never been optimized by the intense continuous LS algo-

rithm, or
(b) They previously underwent LS, obtaining a fitness function improvement

greater than δmin
LS (a parameter of our algorithm).

2. If |SLS | �= 0, then apply the continuous LS algorithm to the best individual
in this set. If this condition is not accomplished, the LS operator is applied
to the best individual in the steady-state GA population.

With this mechanism, when the steady-state GA finds a new best so far individ-
ual, it will be refined immediately. In addition, the best performing individual
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in the steady-state GA population will always undergo LS whenever the fit-
ness improvement obtained by a previous LS application to this individual is
greater than the δmin

LS threshold. The last condition is very important in order to
avoid the overexploitation of search zones where the LS method may not make
substantial progresses any more.

4 Experiments

In this section, we present the experimental study carry out with three MA-
COs based on LS chains that use the Solis and Wets’s algorithm, the Nelder
and Mead’s simplex method, and the CMA-ES algorithm, respectively, on two
different test suites:

– CEC’2005 test suite. Benchmark functions recommended for the Special Ses-
sion on Real Parameter Optimization organized in the 2005 IEEE Congress
on Evolutionary Computation. It is possible to consult in [19] the complete
description of the functions, furthermore in the link the source code is in-
cluded. The set of test functions is composed of 5 unimodal functions, 7
basic multimodal functions, 2 expanded multimodal functions, and 11 hy-
brid functions. Three dimension values were considered for these problems:
D = 10, D = 30, and D = 50.

– CEC’2008 test suite. A set of benchmark functions specifically designed as
large-scale problems, which were defined for CEC’2008 Special Session on
Large Scale Global Optimization. This test suite is used to study the behavior
of the MACOs on problems with high dimensionality. It consists in 7 test
functions with two different dimension values: D = 100 and D = 200.

This section is structured in the following way. In Section 4.1, we describe
the three instances of MACO used for the experiments. In Section 4.2, we
detail the experimental setup and statistical methods that were used for this
experimental study. In Section 4.3, we analyze the results on the CEC’2005
and, in Section 4.4, the ones on the CEC’2008 test suite. In Section 4.5, we
study the influence of the LS method when the dimensionality is increased. In
Section 4.6, we compare our best model with two algorithms based on CMA-ES,
L-CMA-ES [17] and G-CMA-ES [18], which give very good results in continuous
optimization.

4.1 Three Instances of MACO Based on LS Chains

In this section, we build three instances of the MACO model described in
Figure 1, which apply the Solis and Wets’s algorithm (Section 2.1), the Nelder
and Mead’s simplex method (Section 2.2), and the CMA-ES algorithm (Section
2.3), respectively, as intense continuous LS algorithms.
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Next, we list their main features:

Steady-State GA. It is a real-coded steady-state GA [22] specifically designed
to promote high population diversity levels by means of the combination of the
BLX-α crossover operator (see [22]) with a high value for its associated parameter
(α = 0.5) and the negative assortative mating strategy [23]. Diversity is favored
as well by means of the BGA mutation operator (see [22]).

Continuous LS Algorithms. The three instances follow the MACO approach
that handles LS chains, with the objective of tuning the intensity of the three LS
algorithms considered, which are employed as intense continuous LS operators.
In particular, the application of CMA-ES for refining an individual, Ci, is carried
out following the next guidelines:

– We consider Ci as the initial mean of distribution (m).
– The initial σ value is half of the distance of Ci to its nearest individual in

the steady-state GA population (this value allows an effective exploration
around Ci).

CMA-ES will work as local searcher consuming Istr fitness function evaluations.
Then, the resulting solution will be introduced in the steady-state GA popu-
lation along with the current value of the covariance matrix, the mean of the
distribution, the step-size, and the variables used to guide the adaptation of
these parameters (B, BD, D, pc and pσ). Latter, when CMA-ES is applied to
this inserted solution, these values will be recovered to proceed with a new CMA-
ES application. When CMAE-ES is performed on solutions that do not belong
to existing chains, default values, given in [16], are assumed for the remaining
strategy parameters.

The Solis and Wets’s algorithm and the Nelder and Mead’s simplex method
are used in a similar fashion.

Parameter Setting. For the experiments, the three MACO instances apply
BLX-α with α = 0.5. The population size is 60 individuals and the probability
of updating a chromosome by mutation is 0.125. The nass parameter associated
with the negative assortative mating is set to 3. They use Istr = 500 and the
value of the L

G ratio, rL/G, was set to 0.5, which represents an equilibrated choice.
Finally, a value of 10−8 was assigned to the δmin

LS threshold. All these parameter
values are recommended in [10].

4.2 Experimental Setup and Statistical Analysis

The experiments have been carried out following the instructions indicated
in the documents associated to each set of benchmark functions. The main
characteristics are:

– Each algorithm is run 25 times for each test function, and the error average
of the best individual of the population is computed.
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Table 1. Parameters used for the experiments

Parameters Functions Bench-
mark CEC’2005

Functions
Benchmark
CEC’2008

Execution Numbers 25 25
Dimensions 10, 30, 50 100, 200
Maximum Evaluations Number (NE) 10, 000 ∗ D 5, 000 ∗ D
Stopping Criterion NE achieved or

error < 1e − 8
NE achieved

– The study has been made with dimensions D = 10, D = 30, and D = 50 for
the CEC’2005 and D = 100 and D = 200 for the CEC’2008 test suite.

– The maximum number of fitness evaluations is 10, 000 ·D for the CEC’2005
and 5, 000 ·D for the CEC’2005 test suite.

– Each run stops either when the error obtained is less than 10−8, or when the
maximal number of evaluations is achieved.

To analyse the results we have used non-parametric tests, because it has been
shown that parametric tests can not be applied with security for these test suites
[24]. We have applied the non-parametric recommended in [24], thus it can be
consulted this paper to obtain a detailed explanations of them. Next, these tests
are briefly explained:

– The Iman-Davenport’s test. This non-parametric test is used for answering
this question: In a set of k samples (where k ≥ 2), do at least two of the
samples represent populations with different median values?. It is a non-
parametric procedure employed in a hypothesis testing situation involving a
design with two or more samples; therefore, it is a multiple comparison test
that aims to detect significant differences between the behaviour of two or
more algorithms.

– The Holm’s test as a post-hoc procedure, to detect whose algorithms are
worse than the algorithm with best results. This test only can be applied
if the Iman-Davenport’s test detects a significant difference. It sequentially
checks the hypotheses ordered according to their significance. If pi is lower
than α/(k − i), the corresponding hypothesis is rejected and the process
continues. In other case, this hypothesis and all the remaining hypotheses
are maintained as supported.

4.3 Results for the CEC’2005 Test Suite

Firstly, we applied the Iman-Davenport’s test to see if there is a significant
difference between the different MACO instances, considering the three different
dimension values. Table 2 shows the results of this statistical test.

We may observe in Table 2 that for dimension 30 and 50 there exist significant
differences among the rankings of the algorithms (the statistical value is greater
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Table 2. Results of the Iman-Davenport’s test comparing the instances for D = 10,
30, and 50

Dimension Iman-Davenport value Critical value Sig. differences?

10 2,2991 3,19 No
30 9,2012 3,19 Yes
50 5,5276 3,19 Yes

Table 3. Comparison using the Holm’s test of the MACO instances with respect the
best one (based on CMA-ES), with D = 30, 50

Dimension LSMethod z p-value α/i Sig. differences?

30
Simplex 3,2527 0,00114 0,0250 Yes

Solis Wets 2,4749 0,01333 0,0500 Yes

50
Simplex 2,9698 0,00298 0,0250 Yes

Solis Wets 2,1213 0,03389 0,0500 Yes

than the critical one, 3,19). Then, attending on these results, we compare the
MACO instances by means of the Holm’s test. Table 3 shows the results.

From Table 3, we can see that the election of the continuous LS method is
crucial for D = 30 and D = 50. For D = 10, the problems become easy and then,
all instances achieve similar results. In this case, the MACO based on CMA-ES
is the best algorithm.

4.4 Results for CEC’2008 Test Suite

In this section, we compare the different instances on the large-scale problems
in the CEC’2008 test suite. First, we have applied the Iman-Davenport’s test.
Table 4 shows the results.

We may see in Table 4 that for high dimensionality (greater or equal than
100) there are no differences between the results achieved by MACO instances
based on the different LS methods. Thus, when MACOs based on LS chains
are applied on problems with high dimensionality, the election of the continuous
LS method does not provide significant statistical differences. Table 5 shows the
results for each instance and function.

4.5 Remarks from the Results

In the previous sections, we have used non-parametric test to determine when
differences between the MACO instances are statistically significant. Figure 2

Table 4. Results of the Iman-Davenport’s test for D = 100 and D = 200

Dimension Iman-Davenport value Critical value Sig. differences?

100 0,2222 3,89 No
200 1,0000 3,89 No
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Table 5. Results of each instance for the CEC’2008 test suite

LS Dimension 100
Method F1 F2 F3 F4 F5 F6 F7
CMA-ES 9,50E-9 5,89E-3 1,65E+2 2,31E+0 9,73E-9 9,76E-9 -1,42E+3
Simplex 9,43E-9 5,33E+0 8,21E+1 2,83E+0 6,90E-4 8,93E-8 -1,45E+3
Solis Wets 9,92E-9 1,71E+1 1,50E+2 2,55E+0 5,91E-4 9,94E-9 -1,45E+3
LS Dimension 200
Method F1 F2 F3 F4 F5 F6 F7
CMA-ES 9,69E-9 1,57E+0 2,31E+2 1,28E+1 2,96E-4 9,87E-9 -2,70E+3
Simplex 9,66E-9 1,74E+1 1,22E+2 3,26E+0 9,82E-9 9,88E-9 -2,76E+3
Solis Wets 9,95E-9 4,15E+1 2,85E+2 5,29E+0 2,07E-3 9,98E-9 -2,73E+3

Fig. 2. Mean ranking of each MACO instance on the problems with different
dimensionalities

shows the average rankings of these algorithms for the different dimension values
considered in this study, with the aim of showing, graphically, the differences
between them. We can obtain the following conclusions from this table:

– The improvements obtained from the best LS method, CMA-ES, decrease as
dimensionality increases (for D = 10, the difficulty is not enough to obtain
a clear difference), achieving, finally, a situation (D = 200), where it might
not be the best LS method. The difference between the Solis Wets’ method
and simplex method is also reduced.

– For D = 100, the simplex method outperforms the others continuous LS
methods.

4.6 Comparisons with Other CMA-ES Algorithms

In the CEC’2005 Special Session on Real-Parameter Optimization two algo-
rithms arise as the best algorithms [25]: the L-CMA-ES [17] and G-CMA-ES
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Table 6. Results of the Iman-Davenport’s test, comparing MA-CMAES,L-CMA-ES,
and G-CMA-ES for D = 100 and D = 200

Dimension Iman-Davenport value Critical value Sig. differences?

100 1,0000 3,89 No
200 0,3913 3,89 No

Table 7. Results of each CMA-ES based algorithms for the CEC’2008 test suite

LS Dimension 100
Method F1 F2 F3 F4 F5 F6 F7
G-CMA-ES 1,04E-13 3,41E-10 7,97E-1 2,29E+2 1,72E-12 1,71E+1 -8,63E+2
L-CMA-ES 4,49E-14 3,98E-11 6,38E-1 2,01E+2 9,44E-13 2,13E+1 -8,58E+2
MA-CMA-ES 9,50E-9 5,89E-3 1,65E+2 2,31E+0 9,73E-9 9,76E-9 -1,42E+3

LS Dimension 200
Method F1 F2 F3 F4 F5 F6 F7
G-CMA-ES 9,72E-14 6,96E-10 9,56E-1 4,69E+2 5,06E-12 1,63E+1 -3,96E+8
L-CMA-ES 4,99E-14 2,53E-9 4,78E-1 5,39E+2 2,74E-12 2,14E+1 -3,12E+7
MA-CMA-ES 9,69E-9 1,57E+0 2,31E+2 1,28E+1 2,96E-4 9,87E-9 -2,70E+3

[18], both of them invoke CMA-ES instances that specifically emphasise the lo-
cal refinement abilities of this algorithm. In this section we compare our instance
with the CMA-ES algorithm (called MA-CMA-ES in this section) with them.

CEC’2005 Test Suite. In [10] it is proven that, for CEC’2005 test suite,
our model with CMA-ES exhibits overall better performance than L-CMA-ES
and G-CMA-ES, in particular, at higher dimensionality, where the proposed
hybridisation method outperforms the others. With the higher dimension, it is
the best algorithm, and statistically better than the pure restart local search
strategy (L-CMA-ES). In [10] this analysis is explained in detail.

CEC’2008 Test Suite. Table 6 shows the results of Iman-Davenport’s test
comparing the two CMA-ES algorithms (G-CMA-ES, L-CMA-ES) with the in-
stance with CMA-ES, using the CEC’2008 test suite, for dimension 100 and 200.
Table 7 shows the results for each one of these algorithms for CEC’2008.

Although we can observe than there is no statistically differences between
them, from Table 7 we can obtain several conclusions. First, in unimodal func-
tions (F1 and F2), L-CMA-ES and G-CMA-ES obtain the best results. For more
complex functions (F4, F6, and F7 in dimension 100) our model with CMA-ES
obtain clearly the best results. In general, for easy functions where every algo-
rithm obtains a good result (a error lower than 10−8) the restart models achieve
the best results, due to a greater exploitation in the search. For other more
complex functions, our model can avoid local optima and obtain better results,
achieving a clear improvement over the multistart models.
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5 Conclusions

In this paper, we have built several instances of MACO based on LS chains
that differ in the intense continuous LS method applied: the Solis and Wets’s
algorithm, the Nelder and Mead’s simplex method, and the CMA-ES algorithm.
We have compared their performance on two set of test problems including
problems with different dimensionality, the CEC’2005 and CEC’2008 test suites.
The main conclusions obtained are:

– Our instance with CMA-ES gives better results than other restart algorithms
that use CMA-ES.

– The dimensionality strongly affects the performance of the MACO instances
based on the different LS methods; not only the differences among them, but
also, which algorithm results the best one.

– We have observed that, while there are significant differences for medium and
low dimension values (and the election of the LS method is crucial), when
the dimensionality increases, the differences between them are reduced.

– The simplex method improves as the dimension of the problems increase.
Maybe the reason is that this is an algorithm capable of exploring better the
changes in reduced group of dimensions. This is an aspect to consider for
future LS methods specifically designed for high-dimension problems.
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Abstract. We present a new knowledge-based Model Quality Assess-
ment Program (MQAP) at the residue level which evaluates single pro-
tein structure models. We use a tree representation of the Cα trace to
train a novel Neural Network Pairwise Interaction Field (NN-PIF) to
predict the global quality of a model. We also attempt to extract local
quality from global quality. The model allows fast evaluation of multiple
different structure models for a single sequence. In our tests on a large
set of structures, our model outperforms most other methods based on
different and more complex protein structure representations in both lo-
cal and global quality prediction. The method is available upon request
from the authors. Method-specific rankers may also built by the authors
upon request.

1 Introduction

In order to use a 3D model of a protein structure we need to know how good it
is, as its quality is proportional to its utility [1]. Moreover most protein structure
prediction methods produce many reconstructions for any one protein and being
able to sift out good ones from bad ones is often the key to the success of a
method.

Several different potential or (pseudo-)energy function have been developed
with the aim of mapping a three-dimensional structure into its “goodness” or
“native-likeness”.These can be roughly divided into physics-based and knowledge-
based, with some amount of overlap. The former are based on physico-chemical
calculations [2, 3, 4, 5, 6], while the latter are based on statistics obtained from
a training set of known structures (also termed “decoys”) typically generated by
computational methods. These structures or decoys can be represented in differ-
ent ways, embedded or not into a 3D lattice, in order to reduce the conforma-
tional space, and potentials can rely on more or less detailed representations of
a structure. As simplicity in the representation increases (e.g. if each residue is
represented as a single point or sphere), evaluation speed increases since fewer
interactions have to be taken into account. By contrast the reliability of the eval-
uation tends to decrease when details are stripped from a structure [7, 8, 9, 10].
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However, there may be other advantages in the use of simplified representations,
such as reduced sensitivity to small perturbations in conformations and the abil-
ity to take into account complex effects that cannot be described separately [11],
plus a reduced sensitivity to inaccuracies and uncertainties in the data (crystal
contacts, high R-factors, etc.).

Knowledge-based potentials are not only used to rank models, but for other
aims such as to drive 3D predictions and for model refinement [5, 6, 12, 13, 14];
fold recognition [15]; to place side chain and backbone atoms [16, 17]; as men-
tioned, to select native structures from sets of decoys [7, 8]; to predict stability of
proteins [18, 19, 20]; or even to predict residue residue contact maps [21, 22, 23].

Several different representations of protein structures have been used in
knowledge-based potentials. They can be classified in: 1) single point/sphere
representations of each residue; 2) two or more points for each residue; 3) full
atom models. In the first group each residue is usually represented by its Cα

atom [24, 25, 26, 27, 28, 29] or by their Cβ atom [7, 8, 15, 18, 29, 30, 31],
pseudo-Cβ, side chain (SD) centre of mass or SD centroids [32]. In group 2)
each residue is represented by two or more points, but fewer than its number
of atoms; these points range from only two (e.g. Cα+Cβ , Cα+pseudo-Cβ [33]),
backbone atoms and some sort of representation of side chains like the Cβ [19],
different rigid-body blocks/fragments [10]. In group 3) are many different po-
tentials [7, 19, 20, 30, 34, 35, 36, 37]. These depend on different reference states
and on different physico-chemical assumptions, whereas others are learnt from
examples, typically via Machine Learning algorithms [28, 35, 38, 39].

There is a further group of potential functions - those based on clustering
of many different structure predictions, and consensus methods. These usually
outperform single model evaluation methods [1, 39, 40, 41]. Consensus methods
make use of several different potentials to know the quality of the prediction
[14, 38, 39]. The potentials are joined in a (possibly weighted) average. Clus-
tering methods use similarities among high numbers of models obtained either
from different methods (in this case they are hard to apply outside the CASP
experiment environment(http : //predictioncenter.org/), as many of the meth-
ods and their predictions are not easily available outside CASP), or to rank high
numbers of reconstructions made by a single method [35, 42, 43].

The method presented here only uses information obtained from the Cα trace
and the sequence of residues associated to it. The main advantage is that the
quality of a model is assessed based on its overall topology, rather than based
on local details. Moreover, there is no need to model backbone and side chain
atoms before evaluating a structure, which allows many more Cα traces with
different conformations to be produced. From Cα traces it is possible to model
backbone and side chain atoms fairly accurately [16, 17], but this may be more
computationally expensive than predicting several conformations of the pro-
tein structure as simple Cα. If Cα traces can be evaluated effectively, back-
bone and side chains may be modelled only for those that are deemed to be
accurate.
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2 Methods

Protein model quality is often measured as the scaled distance between Cαs of
models to their postions in the native structure after optimal superimposition of
the structures. Here we encode information obtained solely from the Cα trace.
First we represent the Cα trace of each structure model as a directed acyclic
graph (rooted tree), in which the outer nodes are pairwise interactions. Each
residue in the Cα is encoded into a vector describing its environment. Interac-
tions among Cαs are simply characterised by their distance and angles between
pseudo-Cβ , alongside the two vectors encoding the residues involved. Envi-
ronments are described by several angles, distances among neighbours, pseudo-
Solvent Accessibility (SA), and coarse packing information. Both interactions
and environment descriptors are described in section 2. All these numerical de-
scriptors are computed from the Cα trace and are fed into a model (Neural
Network Pairwise Interaction Field, NN-PIF) trained to predict global quality.
In the NN-PIF each Cα (i.e. its interactions with all the other Cαs) is mapped
into a hidden state, which contains the contribution of that residue to the global
quality of the structure. Two Cαs are considered as interacting if they are closer
than a fixed distance threshold (we use 20Å, see 2.3). The hidden vectors for all
Cα are then combined and mapped to a global quality measure. The NN-PIF
allows us to evaluate all the interactions at the same time, whereas other knowl-
edge based potentials generally evaluate interactions separately. To train the
NN-PIF we use models submitted to previous CASP editions [44], as the main
purpose of this MQAP is to rank models from different prediction systems. No
native structures are included in the training set.

Incidentally, the NN-PIF is able to evaluate all the 3D server models submitted
to CASP7 [44], as it only depends on the Cα trace and a number of predictors
only submitted this. Our system runs on all the CASP7 server models (about
24000, including AL models - see section 2.6) in approximately 1 hour on a
PentiumIV 3 GHz processor. However, given the very large amount of weight
sharing, we found that training has to proceed very slowly, and training times
can be dire (in the region of months on a single CPU).

2.1 Graph Representation of a Protein Structure and NN-PIF

Ways to represent structured information (in the form of a DAG) by recursive
neural networks have been described in the past (e.g. [45, 46, 47]), and training
can proceed by extensions of the backpropagation algorithm. In our case the
complex of interactions among all Cα atoms may be naturally represented as
an undirected graph in which nodes are atoms and labelled edges describe the
nature of the interactions. However, in order to represent a structure as a DAG,
we consider interactions themselves as nodes (see figure 1). If the identity (as in
the type of residue it belongs to) and environment of the ith Cα atom is encoded
by a vector ai, and the interaction between the ith and jth atom is described by
vector dij , then each pair of atoms is mapped into a hidden state Xij as:

Xij = F (ai, aj , dij) (1)
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Fig. 1. Tree representation of a Cα trace. Squares, neighbour nodes, are connected to
the inner nodes, circles. All the inner nodes, one for each residue in the Cα trace, are
connected to the root node represented as an hexagon.

The function F () is implemented by a feed-forward neural network with a single
hidden layer and a linear output. The hidden states are then combined together
for each residue i, yielding a hidden state for the whole residue:

Yi = σ(K
∑
j∈Ci

Xij) (2)

where Ci = {∀j|d(ai, aj) < 20Å}, d() is the Euclidian distance, and K is a
normalisation constant. Finally, the hidden states for all residues are averaged
into a single output, which represents a single property for the whole structure:

O =
1
L

L∑
i=1

Yj (3)

The function F () is assumed to be stationary, hence the same network is repli-
cated for all the interactions. The overall NN-PIF architecture is trained by
gradient descent. We assume the error to be the squared difference between the
network output and the desired property (in our case the “goodness” of the
structure). The gradient can be easily computed in closed form, via the back-
propagation algorithm. It should be noted that during training the gradient is
computed for each replica of the network F (), hence there will be as many par-
tial derivatives of the global error with respect to each free parameter in F () as
there are interacting pairs of atoms in a model. The contributions to the gradi-
ent from each replica of F () are added up component by component to yield the
final gradient.

Also notice how here the states describing a pairwise interaction and all the
interactions of a residue (Xij and Yi, respectively) are mapped into the output
O through a fixed function with no free parameters. It is also possible to devise
a model in which Xij and Yi are vectors and the average, or sum, of all Yi is
mapped into the desired output through a further feed-forward network. We are
currently implementing such model.
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2.2 NN-PIF Configuration and Training

The NN-PIF we train here has 10 hidden neurons in the hidden layer of the
network implementing F (). The learning rate is set to 3.0. During training, the
weights are updated after the gradient for all pairs of residues of a single complete
structure model has been computed. As we were participating to the 7th edition
of the CASP experiment during the preparation of this work, it was possible
to run comparisons against other methods in real time. Our performances were
evaluated on the models submitted by servers at CASP (see below for details).

2.3 NN-PIF Inputs

To describe two residues in contact (i and j), their environments and the
interaction between them, the following descriptors are used:

– Local backbone conformation. We do not explicitly use secondary struc-
ture, unlike other MQAP methods [30, 35]. Instead we use several structure
descriptors computed from the Cα trace:

- Distances between all Cα in [i− 2, i + 2] to each other. A smaller set of
distances was used in [48] and to validate protein models in [24].

- Cαi−1−Cαi−Cαi+1 angles and dihedral angles (angles between vectors
formed by

−−−−−−−−−→
Cαi−1 − Cαi and

−−−−−−−−−→
Cαi − Cαi+2, and between vectors formed

by
−−−−−−−−−→
Cαi − Cαi+1 and

−−−−−−−−−→
Cαi − Cαi+2 for both i and j, as in [24, 49, 50].

- Distance to sequence neighbours: distances between each Cα in [i−2, i+2]
and each Cα in [j − 2, j + 2]. A smaller set of distances was used in [48]
to assign β Sheets.

- Relative spatial orientation with respect to sequence neighbours: angles
between pseudo-Cβ vectors (placed in the direction of the vector formed
by the sum of

−−−−−→
(i− 1, i) and

−−−−−→
(i, i + 1) - this vector is also used to compute

pseudo-solvent accessibility, see below). Angles between pseudo-Cβ of
each residue in [i − 1, i + 1] and in [j − 1, j + 1] against all the other
pseudo-Cβ vectors of the residues in the same ranges.

– Residue identities: both residues in contact (i and j) are one-hot encoded
(20 inputs/residue).

– Pseudo-Solvent Accessibility (SA) as HSE measure [51]. Briefly, a sphere of
radius 6.5Å centred on a Cα is divided into two hemispheres by the plane
whose normal vector is the sum of vectors

−−−−−−−−−→
Cαi−1 − Cαi and

−−−−−−−−−→
Cαi − Cαi+1,

then the number of other atoms falling in either hemisphere is counted.
– Coarse Packing (HSE8): we further split the a sphere, this time into 8

slices induced by three perpendicular planes and count the number of Cαs
within each slice. The normal vectors of these three planes are: the pseudo-
β vector; the vector obtained from the cross-product of

−−−−−−−−−→
Cαi−1 − Cαi and−−−−−−−−−→

Cαi − Cαi+1; the cross-product of the first two. This time we use a sphere
of 13Å .
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Some of these inputs can not be computed for residues at the protein termini,
in which case they are set to 0. If chain breaks occur (Cαs separated by more
than 4.7Å), residues at the edges of the break are treated as termini.

2.4 Model Quality Measurement: Structural Distance

All the measures we consider are based on the Euclidean distance between atoms
in the model and in the native protein structure after structural superimposition.
Those described below are or may be computed using Cα traces alone. We choose
the last in the list (TM score) as our target function.

– RMSD: Root Mean Square Distance. Widely used in the field. Not very
suitable to be used as desired output because above a certain threshold it
becomes insensitive to highly similar substructures when many atoms of the
model are wrongly modelled; also, it is not constrained to a fixed range.

– GDT TS [52]: it identifies maximum common substructures based on several
distance thresholds (e.g. 1, 2, 4 and 8 Å as used in CASP). It may miss fine
details because all the atoms within a range (e.g. (4, 8]) contribute the same
to the scoring function and all the residues without coordinates (atoms not
present in the model), contribute the same as those residues further than
the highest distance threshold.

– MaxSub score: the average scaled distance using a maximum distance thresh-
old of 3.5 Å (residues further than 3.5 Å do not contribute to the score
[53]).

– Average S score: the average scaled distance using a distance threshold of
5Å [54].

– TM-Score [55]: based on scaled RMSD but TM-Score is scaled by the protein
length - each residue in the model and native structure contributes to it. It
is a number in the [0, 1] range allowing its direct use as desired output.

2.5 Performance Test and Measures

Several different potential quality measures can been used, and here we will use
the following ones:

– Enrichment (E15%): the number of top 15% models found among the top
15% top ranked models, divided by the number obtained in a random
selection (15% x 15% x number of structures in the model set [56].

– Pearson correlation coefficient (r) for both global quality and local quality.
– Spearman’s rank correlation coefficient (ρ).
– Recall (R = TP

TP+FN , where TP are true positives, FN false negatives).
We use Recall to measure the quality of the output after quantisation into
categories (e.g. good vs. bad, defined as greater or smaller than a given
threshold).

– Precision (P = TP
TP+FP , where FP are false positives). We use Precision on

quantised output/target as for Recall.
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2.6 Dataset

The main purpose of this MQAP is to know how good protein structure models
are (how close are they to the native structure), sorting them by their quality.
Because of this we train the NN-PIF only on models submitted to CASP5, 6
and 7, while no native structure is used for training.

To train the NN-PIF we use all human and server predictions of targets for
which all 3D predictions were assessed. We randomly divide these into 5 folds,
each of which is used to train a different model. To avoid redundancies in the
training data (i.e. many models with almost exactly the same Cα trace), TM-
Score is divided into 0.001 size bins and only one model per bin for each target
is included into each training fold.

All the methods are evaluated on the CASP7 [44] server predictions. We
present results on all targets, and on two slightly smaller sets of targets, in
order to allow direct comparisons with other methods on the same sets. When
testing on one protein, we ensemble those networks that were trained on folds
not containing it. This is similar to an n-fold cross validation, except that CASP5
and CASP6 proteins are only included in training sets.

3 Results and Discussion

We compare our MQAP with other methods for global model quality assess-
ment, and also show results for single model quality. We refer to our method as
DISTILLF (its identifier at CASP8). To gauge other methods’ performances we
look at published results. A number of methods were tested on CASP7 targets,
and for these the results are extracted from the CASP web site. The results for
other methods are quoted from their respective publications.

Table 1 is extracted from [39], and shows average per target Spearman’s rank
correlations for a number of methods. The table is computed on 87 CASP7
targets. ModFOLD is a consensus method and 3D-Jury is a clustering method,
i.e. they are not primary methods, but rather rely on multiple other methods
for their predictions. As such, they are in a category of their own and it is
not fair to compare them with single model methods. All the other methods
evaluate single models, and DISTILLF clearly outperforms all of them, has a
rank correlation 7.4% higher than the next method based on TM-Score, and
2.2% based on GDT TS. The smaller gain is expected as DISTILLF is trained
to predict TM-Score.

Table 2 is extracted from [30], and compares QMEAN with other single
model evaluation methods available. QMEAN, as DISTILLF, was developed
after CASP7. This table is computed on the 95 targets evaluated at CASP7 and
on all those server predictions for which all the programs compared were able to
make a prediction (22427 models in total). It should be noted that the table is
based on GDT TS, while DISTILLF is trained to predict TM-score, and as such
it is at an obvious disadvantage. In the table we also report DISTILLF results
based on TM-Score. Not unexpectedly, its performance increases in this case.
DISTILLF performs well on correlation measures, and is only outperformed by
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Table 1. Spearman’s rank correlation on CASP7 targets server submitted models for
the 87 targets evaluated in [39], both TS and AL models used

Method TM − Score GDT TS

3D-Jury [39] 0.87 0.857
ModFOLD [39] 0.732 0.754
PROQ [35] 0.574 0.587
Pcons [38] 0.557 0.58
ProQ-MX [34] 0.55 0.556
ModSSEA [39] 0.506 0.52
MODCHECK [15] 0.412 0.444
ProQ-LG [34] 0.289 0.326
DISTILLF 0.647 0.609

Table 2. All CASP7 server models for the 95 targets evaluated. Average per target.
All the methods were evaluated on 22427 models of the 95 targets used in [30]. Other
methods extracted from [30].

Method r2 ρ E15%

Modcheck [15] 0.64 0.59 2.7
RAPDF [36] -0.5 0.5 2.44
DFIRE [19] -0.39 0.53 2.59
ProQ [34] 0.36 0.26 1.22
ProQ SSE [34] 0.54 0.43 1.71
FRST [57] -0.57 0.53 2.36
QMEAN3 [30] -0.65 0.58 2.57
QMEAN4 [30] -0.71 0.63 2.76
QMEAN5 [30] -0.72 0.65 2.9
DISTILLF GDT 0.65 0.59 2.34
DISTILLF TMS 0.68 0.64 2.53

Table 3. DISTILLF results on ab initio (AI) vs. template-based (TBM) models at
CASP7. GDT and TM-score results.

r2 ρ E15%

DISTILLF GDT AI 0.39 0.41 2.00
DISTILLF GDT TBM 0.71 0.64 2.42
DISTILLF TMS AI 0.49 0.49 2.34
DISTILLF TMS TBM 0.73 0.67 2.57

the most complete QMEAN potentials, which are based on full-atom models,
while DISTILLF only relies on Cα traces, or on a number of interactions smaller
by two orders of magnitude. However DISTILLF is less than perfect at selecting
the best models (E15% measure), indicating that it is better at estimating the
absolute quality of a model, than at ranking models that are very similar. On
all CASP7 targets we obtain an average E15% (enrichment over random choice)
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Table 4. Single residue correlation coefficient on all the CASP7 targets server models
(4.55 million residues, both AL and TS models)

Method r

DISTILLF TMS 0.71
DISTILLF MaxSub 0.70
DISTILLF S 0.69

Table 5. Ability to identify correctly modelled residues. Correct residues are those
with scaled distance ≥ 0.7. TP, TN, FP and FN are, respectively, true positives, true
negatives, false positives and false negatives, in millions of residues. True values ob-
tained with TM-Score package with default options, and setting D0 to 3.5Å and 5Å for
the MaxSub and S scores respectively. 4.55·106 residues in total.

ScaledDistance TP FP TN FN P R

TM − Score 0.963 0.396 1.777 1.417 0.708 0.405
MaxSub 0.926 0.433 1.846 1.348 0.681 0.407
Sscore 0.815 0.544 2.073 1.121 0.600 0.421

Table 6. Ability to identify badly modelled residues. Badly modeled residues are those
with scaled distance ≤ 0.3. TP, TN, FP and FN are, respectively, true positives, true
negatives, false positives and false negatives, in millions of residues. True values ob-
tained with TM-Score package with default options, and setting D0 to 3.5Å and 5Å for
the MaxSub and S scores respectively. 4.55·106 residues in total.

ScaledDistance TP FP TN FN P R

TM − Score 1.107 1.543 1.522 0.381 0.418 0.744
MaxSub 1.144 1.506 1.492 0.411 0.432 0.736
Sscore 1.361 1.29 1.376 0.526 0.513 0.721

of 2.3-2.5 - this allows us to sift out most unfolded or poorly folded models,
but is rarely sufficient to pick out the best of all models. This is not surpris-
ing, as very similar models (e.g. good predictions based on homology to known
structures) often have to be distinguished based on local atomic details, which
DISTILLF does not rely on. Results on ab initio CASP7 targets are less good
than on template-based targets (Table 3). This is not only a characteristic of
DISTILLF and is probably caused by two reasons: ab initio results have a wider
distribution; especially, there are far fewer ab initio targets than template-based
ones.

To measure the performance of DISTILLF on single residue quality, we use all
the TS and AL models submitted by automatic servers for all the 98 CASP7 tar-
gets. All measures are computed on 4.55 million residues. S and MaxSub scores
are generated fixing d0 in the TM-Score package to 5 and 3.5Å respectively.
We take the Yi hidden value from the NN-PIF (see eq.2) as the local estimate
of quality for residue i by DISTILLF. Table 4 shows the Pearson’s correlation
against TM, S and MaxSub scores. Table 5 reports results on identifying well
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modelled residues (those with a scaled distance ≥ 0.7). Table 6 reports results
on identifying wrongly modelled residues (those with an actual scaled distance
≤ 0.3).

4 Conclusion

In this manuscript we have described a novel predictor of model quality for
protein structure prediction. The main novelty of the predictor is the model it
is based on, a neural network designed to estimate properties of sets of pairwise
interactions, which we have provisionally termed NN-PIF. A single feed-forward
network is used to estimate each of the interactions, and the outputs of all
replicas of the network are combined without resorting to any free parameter, to
yield a single property. In this manuscript we predict the “goodness” or “native-
likeness” of a protein model. However, the model can be used more in general to
learn about data that can be represented as undirected graphs. While the model
we used in this manuscript is fairly simple, it can be easily extended to more
expressive versions, for instance one in which each pairwise interaction is mapped
into a hidden vector (rather than a single hidden state, as it is in this work),
and a combination of all hidden vectors is then mapped to a property of interest
via a further network. We are currently working on such model. Another simple
extension is one in which properties of single nodes of the undirected graph are
predicted. This can be achieved by mapping hidden states describing each single
node (Yi in eqn.2, or a multi-dimensional extension thereof) to the property of
the node via a second network.

The DISTILLF predictor which we have described in this manuscript, relies on
simple Cα traces as inputs. The fact that we can use such simple representation
induces a set of interactions that is two orders of magnitude smaller than that
of a full-atom model, allows very large scale processing of protein models, and
is a direct consequence of using a model that does not rely on physico-chemical
laws, but only on geometrical information and machine learning. In spite of its
simplicity, we have shown that DISTILLF is accurate, more so than any of the
CASP7 primary algorithms for model quality assessment, and only slightly less
accurate than a newer, far more computationally complex system based on full-
atom models. Although DISTILLF is meant to predict global model quality, we
have also shown that an accurate estimate of local quality can be extracted very
simply from it.

It is also important to note that, although much of the appeal of DISTILLF
is that it relies on Cα traces, the NN-PIF model is equally suited to deal with
full-atom representations of molecules. We are currently testing NN-PIF on the
prediction of protein-ligand binding energies based on full-atom models, with
encouraging preliminary results.

A further future/current direction of research is whether NN-PIF may be
applied directly as potentials for the ab initio prediction of protein structures.
In this case, rather than on endpoints of structure prediction searches, decoys
representing intermediate stages of the search need to be used for training. Al-
though building sets of examples with the correct distribution may be a hard
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task, and so is training a network on a potentially enormous set, even limited
success at this task may yield a fast, flexible predictor which could be input a
vast range of non-homogeneous information.
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Abstract. Protein function prediction represents a fundamental chal-
lenge in bioinformatics. The increasing availability of proteomics network
data has enabled the development of several approaches that exploit the
information encoded in networks in order to infer protein function.
In this paper we introduce a new algorithm based on the concept of
topological overlap between nodes of the graph, which addresses the
problem of the classification of partially labeled protein interaction net-
works. The proposed approach is tested on the yeast interaction map and
compared with two current state-of-the-art algorithms. Cross-validation
experiments provide evidence that the proposed method represents a
competitive alternative in a wide range of experimental conditions and
also that, in many cases, it provides enhanced predictive accuracy.

1 Introduction

The recent development of high-throughput technologies has allowed the gener-
ation of massive proteomic data sets for entire organisms. Several experimental
protocols (e.g. yeast two-hybrid, mass spectrometry) have been devised to ex-
tract information regarding physical interactions between proteins at proteomic-
scale [11]. These advancements in post-genomic technologies prompted the need
for computational methods that allow to elucidate the complex structure of in-
teractions underlying cellular biochemistry. In particular, the problem of predict-
ing protein functional categories given the set of interactions and the knowledge
of the function for a subset of interacting proteins has received increasing atten-
tion. Despite a considerable variety of proposed solutions, none of them can be
considered fully satisfactory, leaving open research issues to be addressed [3, 6, 10].

Previous approaches can be coarsely classified as direct methods or module-
assisted methods [10]. Direct-method algorithms basically exploit the ”guilty-by-
association” principle, which transfers annotations among neighbor-nodes in the
protein-protein-interaction (PPI) network, assuming that nodes that are located
close to each other tend to share the same functional categories [7, 9]. Module-
assisted algorithms aim at identifying, as a first computational step, coherent
clusters of nodes of the underlying PPI network and, after that, predict functions
for all genes in each cluster [1].

T. Stützle (Ed.): LION 3, LNCS 5851, pp. 249–258, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



250 V. Freschi

From a machine learning point of view, the problem of classifying nodes in
a partially labeled network can be viewed as a graph-based semi-supervised
learning problem [17]. In this framework, algorithms exploit both labeled and
unlabeled data by leveraging the relationships provided by edges of the graph.

Graph based function prediction has also been tackled as an optimization
problem: in [13] the authors predict functional annotations by minimizing the
number of times that different functions are annotated in neighbor nodes. The
resulting optimization problem has been solved by means of simulated annealing
[13] and local search [4]. Finally, a related optimization method has been pro-
posed so as to minimize the sum of costs of edges that connect nodes without
any common function, which can be cast as a minimum multiway cut problem
that can be exactly solved by means of integer linear programming [7].

In general, classification in partially labeled network is challenging for two
reasons. First, the available knowledge of labels is often very sparse w.r.t. the
network topology thus potentially impairing methods that only take into account
the local topology of the graph in the inference process. Second, data interaction
networks are inherently noisy, making methods that exploit the whole topology
of the network prone to noise propagation.

In this paper we address these issues by proposing a new approach to func-
tion prediction from protein-protein interaction networks based on the concept
of topological overlap analysis. Our algorithm takes into account, for each pair
of proteins, the level of overlap between the respective sets of neighbors of each
interacting protein. This coefficient (hereafter denoted topological overlap co-
efficient), properly quantified, can be used for the derivation of a measure of
similarity between nodes that could be used to replace link weights in a weighted-
majority setting in order to improve its accuracy, relying on the fact that proteins
that share a given number of the same neighbors, probably share some functional
role [10, 15]. The topological overlap coefficients computed for all possible pairs of
nodes in a network encode a matrix (i.e. the topological overlap matrix, T ) which
has been successfully applied in bioinformatics for the analysis of metabolic net-
works [8] and the analysis of gene expression networks [14]. Our contribution is
the application of this concept to the problem of function prediction in protein
interaction networks and its use as building block of a new prediction algorithm.

The paper is organized as follows: in the next section we describe the pro-
posed approach discussing the algorithm and its implementation, in section 3 we
introduce the experimental set up and discuss cross-validation, in section 4 we
show the results, lastly, in section 5, we conclude with some final remarks.

2 The Proposed Approach

The aim of our approach is the derivation of an algorithm for function prediction
(label classification) in PPI networks. A first input of this algorithm is a network
of physically interacting proteins that we represent as a graph whose nodes are
the proteins and whose (possibly weighted) edges represent the strength of such
interactions. A second input is the set of label annotations associated to each
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protein of a given subset of the nodes. The output of the algorithm is a prediction
of the function(s) for each of the proteins whose label is unknown.

In order to achieve this goal we first compute the degree of overlap between
sets of nodes that are neighbors of a pair of nodes. Given two nodes i and j we
compute the topological overlap coefficient T (i, j) as follows:

T (i, j) =

∑
k 	=i,j

A(i, k) · A(k, j) + A(i, j)

min(degi, degj) + 1−A(i, j)
(1)

Where A is the adjacency matrix of the graph representing the PPI network
and degi represents the degree of node i (i.e. the number of interacting proteins
directly linked to protein i) in the case of binary unweighted network or its
equivalent representative in the case of weighted PPI networks, computed as
follows:

degi =
∑
k 	=i

A(i, k)

It has been demonstrated ([14]) that 0 ≤ T (i, j) ≤ 1. Particularly, the topological
overlap coefficient T (i, j) takes its minimum value when nodes i and j are not
directly linked and do not share common neighbors, while it is maximum when i
and j are directly linked and the set of neighbors of i (respectively j) is a subset
of the set of neighbors of j (respectively i).

Hence T (i, j) carries information regarding the degree of overlap between
nodes i and j: since proteins that are close to each other and tend to form
densely connected subgraphs are supposed to be functionally correlated, we hy-
pothesize that also nodes that have significant overlap among their respective
neighborhoods could show some degree of correlation in their functional roles.

Finally we compute, for each couple of nodes, a coefficient of similarity Tm(i, j)
between nodes:

Tm(i, j) =
1
2
T (i, j) +

1
2
A(i, j) (2)

The final step of our method entails the replacement of the adjacency matrix with
the matrix Tm and the application of a majority-vote strategy on the new graph
encoded by Tm. The rationale behind our approach is to exploit the capability
of the topological overlap matrix of identifying overlapping neighbors (hence,
potential clusters of homogeneous functionally linked nodes) while retaining the
noise-resilience of a locally-based majority setting. Hence we compute, for each
target node i to predict, a score s(i, fj) that is the sum of the scores contributed
by all nodes (not just the interacting ones) that are annotated with a given
function fj (we call this set of nodes Fj):

s(i, fj) =
∑

k∈Fj

Tm(i, k)

The computation of this score is repeated for every function fj in the set of
possible labels. The overall computation is then repeated for each node of the
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graph: labels with highest scores above a given threshold are chosen as predicted
functional categories for each target node.

Notably, we do not explicitly aim at identifying modules, rather we leverage
the information associated to the topological overlap coefficient to reward with a
higher score the contribution of those nodes that have a higher degree of overlap
between their neighborhoods. On the other side, we do not have a pure local
majority approach because we do not look only at immediate neighbors, rather
we also exploit the relationships between distant nodes encoded by T (i, j) to im-
prove the effectiveness of the prediction. Hence, the proposed algorithm tries to
bridge the gap between local and global algorithms and between direct methods
and module-based algorithms by simply re-wiring the network according to the
topological overlap analysis and by using this re-wired network as a new starting
element for the semi-supervised learning process.

3 Experimental Setup

3.1 Data Sets

We tested the proposed approach on the Saccharomyces Cerevisiae PPI net-
work. This organism has been extensively studied and provides a widely accepted
benchmark for the validation of network-based prediction methods. In particu-
lar we use the reference set compiled by Nabieva et al. for cross-validating their
method [7]. It consists of a network of 12531 interactions among 4495 proteins
that are known to physically interact. The weights that are assigned to the edges
between pair of nodes are computed by evaluating the probability (i.e. the relia-
bility) of the interactions after separation of functional linkage by experimental
source of evidence [7]. The evaluation of the probabilities to be used as weights
is per se an interesting active line of research which particularly involves data
integration from multiple sources [12]. It is well known that taking into account
probability of interactions instead of binary linkage information, allows more
accurate modeling and results in better classification performances [7, 12]. We
provide independent confirmation of these findings since (as we will show in
the results section) also our algorithm benefits from the usage of probabilistic
weights in the PPI graph.

3.2 Functional Annotations

We followed the experimental setup defined in [7] also for what concerns the
reference set of labels to be used for annotating the PPI network: in particular we
used the MIPS controlled vocabulary for biological processes (second hierarchy
level) which consists of 72 labels [5, 7]. 2946 proteins out of the 4495 that take
part in the interactome are annotated with MIPS functional categories according
to [7]. In the following we also denote the PPI weighted annotated network of
Saccharomyces Cerevisiae as SCw dataset.
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3.3 Competing Algorithms

We compared our algorithm with two state-of-the-art approaches: the first one
is a standard Majority Vote algorithm (MV) which is still considered an effec-
tive strategy despite its simplicity [6, 10]; the second one is a flow-based algo-
rithm (called FunctionalFlow) that is widely recognized as a high-level accuracy
method.

The strategy of MV consists in counting the number of instances of the labels
(i.e. functional categories) annotated in the immediate neighbors of the protein
node target of the prediction. The most voted categories above a given threshold
are taken as predictions [7, 9]. A weighted version of the MV algorithm simply
weights the contribution of each neighbor by the weight of the link between the
target and the neighbor node.

FunctionalFlow works by propagating functional information according to the
whole network topology from sources of functional flow (the annotated nodes) to
sinks (the target nodes). At the end of an iteration process the unlabeled nodes
are scored according to the algorithm and, once again, the functions correspond-
ing to the highest scores above threshold are considered as candidates for the
prediction [7].

3.4 Cross-Validation

Cross-validating semi-supervised protein labeling algorithms is an issue that en-
tails the choice of proper benchmarking evaluations. Apart from differences in
measuring the effectiveness of the algorithms, all experimental frameworks need
a ground truth to compare with. To this aim, known annotations are taken
as ground truth and labels corresponding to a given number of proteins are
”cleared” (i.e. their functions are supposed to be unknown): algorithms are then
tested on their capability of recovering correct labels given the remaining subset
of annotated nodes. A first degree of freedom is the number of cleared annotated
proteins. Two choices are possible: in the leave-one-out cross-validation frame-
work one protein at the time is cleared while in the leave-a-percentage-out cross-
validation a given fraction of known annotations is cleared and used for testing
[6, 7]. We decided to evaluate our approach according to a leave-a-percentage-out
method since we believe it could better reflect real problem instances. In fact
today’s knowledge of protein functional roles is very sparse: for instance we have
that the extent of known annotation in reference species ranges from 89.9% for
the C.elegans interactome to the 23% for the A.thaliana (for biological process
categories) [10]. Moreover, this setting is also particularly challenging since it is
less conservative and provides better insights into the algorithms capability of
handling the sparsity of label annotations.

Finally, one needs to adequately measure the effectiveness of function predic-
tion algorithms by means of classification accuracy. We follow in this work a
method based on a modification of standard Receiver Operating Curve (ROC)
analysis that have been proposed by Nabieva et al. to evaluate FunctionalFlow
[7] and also recently used for cross-validating a new method based on literature-
data integration [2]. Each protein is considered correctly predicted (i.e. is taken
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as a true positive, TP ) if the number of correctly predicted functions for that
protein is more than half the number of known functions, otherwise the predic-
tion for the protein is considered incorrect (i.e. it is counted as a false positive,
FP ). Both TP and FP are computed for decreasing stringency levels of the
algorithm (e.g. properly changing the threshold upon which functional labels
are assigned), allowing to explore the tradeoff between predictive accuracy and
number of proteins for which a prediction is produced.

4 Results

We implemented our topological-overlap-based method (hereafter called Tom-
Pred) and we also re-implemented the MV and FunctionalFlow algorithms in
order to compare them on the same benchmark (SCw dataset). We tested three
different levels of sparsity in the annotation of the network to be labeled by clear-
ing, respectively, 20%, 50%, and 80% of the known annotations. We also tested
the capability of our algorithm of taking advantage of weighted links, instead
of binary unweighted networks, by comparing the performances of TomPred on
both the weighted and unweighted version of the same network (hereafter also
denoted as SCu dataset).

Since the proteins to be classified for cross-validation (i.e. the nodes whose
labels are cleared) are randomly selected, we repeated each experiment five times
with different seeds of the pseudo-random number generator and computed the
average of all the results. The consistency of this experimental setup is guaran-
teed by the small variance of the results within the same type of experiments
(with different seeds). Figures 1.a and 1.b report the behavior of the tested algo-
rithms and accounts for variation of the randomly selected input. In particular,
Figure 1.a shows a comparison between TomPred and MV for the SCw dataset
when 50% of known proteins are assumed to be unlabeled while Figure 1.b re-
ports the comparison between TomPred and FunctionalFlow under the same
experimental conditions. Error bars represent standard deviations which are, as
previously stated, limited in their range.

Figures 2, 3 and 4 show the behavior of the three tested algorithms for the
SCw dataset when, respectively, 20%, 50% and 80% of proteins are cleared (error
bars are omitted for the sake of clarity, and because of the above mentioned con-
siderations). The proposed algorithm outperforms both MV and FunctionalFlow
in almost all the range of the stringency threshold and at different degrees of
knowledge of the underlying network. In particular, we can see (Figure 2) that
when 20% of nodes are unlabeled FunctionalFlow has a slightly better perfor-
mance in the first part of the ROC curve while TomPred achieves better results
if more than 50 FP are accepted and both perform better than MV. Conversely,
when 80% of nodes are cleared TomPred shows higher accuracy except for the
rightmost part of the ROC curve (Figure 4). Finally, in the case of 50% of un-
labeled nodes, our algorithm results as good as or better than FunctionalFlow
and MV in the whole range of the ROC analysis curve (Figure 3).
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Fig. 1. ROC curve analysis for TomPred, FunctionalFlow and MV (SCw dataset, un-
known proteins: 50%). Error bars report standard deviation computed on 5 different
random experiments.
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Fig. 2. ROC curve analysis for TomPred, FunctionalFlow and MV (SCw dataset,
unknown proteins: 20%)

As a supplementary result we also present in Figure 5 a comparison between
the performance of our algorithm on the same yeast’s interactome when un-
weighted links are used instead of weighted edges (50% of unlabeled nodes): the
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Fig. 3. ROC curve analysis for TomPred, FunctionalFlow and MV (SCw dataset, un-
known proteins: 50%)
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Fig. 4. ROC curve analysis for TomPred, FunctionalFlow and MV (SCw dataset, un-
known proteins: 80%)

improvement of TomPred when run on the SCw instead of the SCu dataset is
apparent.
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Fig. 5. TomPred performance comparison between unweighted and weighted network
(SCw and SCu dataset, unknown proteins: 50%)

5 Conclusions

In this paper we have presented a new approach to graph-based semi-supervised
protein function prediction from PPI networks. The proposed method relies upon
the concept of topological overlap between sets of neighbor nodes of protein pairs.
By integrating this information with the linkage between adjacent nodes we are
able to exploit local and global properties of the topology of the PPI graph.
In fact the algorithm makes use of direct links between nodes but also exploits
topological overlap to extract informative data from distant nodes.

We have tested the proposed method on the extensively analyzed interaction
map of Saccharomyces Cerevisiae and compared it with two state-of-the-art al-
gorithms. The experimental results provide evidence of the effectiveness of our
approach which presents comparable or, in most cases, improved predictive ac-
curacy w.r.t the competing algorithms.

As a subject of future research, we think it could be worthwhile to investi-
gate how different learning algorithms perform within the topological overlap
framework: in particular, it could be interesting to check how the re-wiring of
the graph according to topological overlap analysis impacts the performance of
other classifiers [16, 17].

Acknowledgements. The author thanks Dr. E.Nabieva and Prof. M.Singh
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258 V. Freschi

References

1. Bader, G., Hogue, C.W.: An automated method for finding molecular complexes
in large protein interaction networks. BMC Bioinformatics 4, 2 (2003)

2. Gabow, A.P., Leach, S.M., Baumgartner, W.A., Hunter, L.E., Goldberg, D.S.:
Improving protein function prediction methods with integrated literature data.
BMC Bioinformatics 9, 198 (2008)

3. Hu, P., Bader, G., Wigle, D.A., Emili, A.: Computational prediction of cancer-gene
function. Nature Reviews Cancer 7(1), 23–34 (2007)

4. Karaoz, U., Murali, T.M., Letovsky, S., Zheng, Y., Ding, C., Cantor, C.R., Kasif,
S.: Whole genome annotation by using evidence integration in functional-linkage
networks. Proc. Natl. Acd. Sci. USA 101, 2888–2893 (2004)

5. Mewes, H.W., Frishman, D., Guldener, U., Mannhaupt, G., Mayer, K., Mokrejs,
M., Morgenstern, B., Munsterkotter, M., Rudd, S., Weil, B.: Mips: a database for
genomes and protein sequences. Nucleic Acid Research 30, 31–34 (2002)

6. Murali, T.M., Wu, C.J., Kasif, S.: The art of gene function prediction. Nature
Biotechnology 24(12), 1474–1476 (2006)

7. Nabieva, E., Jim, K., Agarwal, A., Chazelle, B., Singh, M.: Whole-proteome pre-
diction of protein function via graph-theoretic analysis of interaction maps. Bioin-
formatics 21, i302–i310 (2005)

8. Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N., Barabasi, A.L.: Hierarchical
organization of modularity in metabolic networks. Science 297(5586), 1551–1555
(2002)

9. Schwikowski, B., Uetz, P., Field, S.: A network of protein-protein interactions in
yeast. Nature Biotechnology 18, 1257–1261 (2000)

10. Sharan, R., Ulitsky, I., Shamir, R.: Network-based prediction of protein function.
Molecular System Biology 3(88), 1–13 (2007)

11. Shoemaker, B.A., Panchenko, A.R.: Deciphering protein-protein interactions. part
i. experimental techniques and databases. PLoS Computational Biology 3(3), 337–
344 (2007)

12. Srinivasan, B.S., Novak, A.F., Flannick, J.A., Batzoglou, S., McAdams, H.H.: In-
tegrated protein interaction networks for 11 microbes. In: Apostolico, A., Guerra,
C., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2006. LNCS (LNBI),
vol. 3909, pp. 1–14. Springer, Heidelberg (2006)

13. Vazquez, A., Flammini, A., Maritan, A., Vespignani, A.: Global protein function
prediction from protein-protein interaction networks. Nature Biotechnology 21,
697–700 (2003)

14. Yip, A.M., Horvath, S.: Gene network interconnectedness and the generalized topo-
logical overlap measure. BMC Bioinformatics 8, 22 (2007)

15. Yook, S.H., Oltvai, Z.N., Barabasi, A.L.: Functional and topological characteriza-
tion of protein interaction networks. Proteomics 4, 928–942 (2004)

16. Zhu, X., Ghahramani, Z., Lafferty, J.: Semi-supervised learning using gaussian
fields and harmonic functions. In: Proc. of 20th International Conference on Ma-
chine Learning, ICML 2003, pp. 912–919 (2003)

17. Zhu, X.: Semi-supervised learning literature survey. Technical Report 1530, De-
partment of Computer Sciences, University of Wisconsin, Madison (2005)



Substitution Matrices and Mutual Information
Approaches to Modeling Evolution

Stephan Kitchovitch, Yuedong Song, Richard van der Wath, and Pietro Liò

Computer Laboratory, University of Cambridge, Cambridge, UK
{sk490,ys340,rcv23,pl219}@cam.ac.uk

Abstract. Substitution matrices are at the heart of Bioinformatics: se-
quence alignment, database search, phylogenetic inference, protein fam-
ily classification are all based on BLOSUM, PAM, JTT, mtREV24 and
other matrices. These matrices provide means of computing models of
evolution and assessing the statistical relationships amongst sequences.
This paper reports two results; first we show how Bayesian and grid set-
tings can be used to derive novel specific substitution matrices for fish
and insects and we discuss their performances with respect to standard
amino acid replacement matrices. Then we discuss a novel application
of these matrices: a refinement of the mutual information formula ap-
plied to amino acid alignments by incorporating a substitution matrix
into the calculation of the mutual information. We show that different
substitution matrices provide qualitatively different mutual information
results and that the new algorithm allows the derivation of better es-
timates of the similarity along a sequence alignment. We thus express
an interesting procedure: generating ad hoc substitution matrices from
a collection of sequences and combining the substitution matrices and
mutual information for the detection of sequence patterns.

1 Introduction

DNA and amino acid sequences contain both the information of the genetic
relationships among species and that of the evolutionary processes that have
caused them to diverge. Various computational and statistical methods exist
to attempt to extract such information to determine the way in which DNA
and protein molecules function. Most of Bioinformatics is based on using sub-
stitution matrices: at the core of database search, sequence alignment, protein
family classification and phylogenetic inference lies the use of DNA and amino
acid substitution matrices for scoring, optimising, and assessing the statisti-
cal significance of sequence analysis [11, 12, 19, 33, 37]. Much care and effort
has therefore been taken to construct substitution matrices, and the quality of
Bioinformatics analysis results depends upon the choice of an appropriate matrix
[11, 15, 16, 19, 29, 30, 32, 33, 37]. The substitution matrices can be built empir-
ically, utilising data from comparisons of observed sequences, or parametrically,
using the known chemical and biological properties of DNA and amino acids.
These models permit the estimation of genetic distance between two homolo-
gous sequences, measured by the expected number of nucleotide or amino acid
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substitutions per site that have occurred. Such distances may be represented
as E-values, bit scores (as in BLAST) or branch lengths in a phylogenetic tree
where the existent sequences form the leaf nodes of the tree, while their ancestors
form the internal branch nodes and are usually unknown. Note that alignments
can be also considered as a part of the evolutionary model in inferring the tree
or, conversely, that a tree can be used to improve the sequence alignment [42].

It is impractical to generate a single substitution matrix to apply to all tasks:
standard substitution matrices are appropriate only for the comparison of pro-
teins with an amino acid composition similar to the one used to derive them.
Therefore, for groups of species with biased amino acid compositions, standard
substitution matrices are not optimal. It is worth remembering that species may
have different (mitochondrial) genetic codes, codon bias, different amino acid
composition and gene copy numbers. It is known that close and distant ho-
mologous proteins need different PAM (Point Accepted Mutation) or BLOSUM
substitution matrices [14]: we use PAM and BLOSUM families for BLAST and
Clustal; Dayhoff, JTT and other models for distance, Likelihood and Bayesian
methods in phylogenetic inference, etc.

One of the first amino acid substitution matrices was the PAM matrix, devel-
oped by Margaret Dayhoff in the 1970s. This matrix was calculated by observing
the differences in closely related proteins (with at least 85% similarity between se-
quences). Dayhoff and coworkers estimated substitution frequencies empirically
from alignments of related sequences. From inspection of log odds scores they
concluded that amino acids with similar properties indeed tend to form groups
that are conserved: members of a group substitute with a high frequency inter-
nally compared to substitution frequencies to external amino acids. A matrix for
divergent sequences can be calculated from a matrix obtained for closely related
sequences by taking the latter matrix to a power. The PAM1 matrix estimates
the expected rate of substitution given that 1% of the amino acids have changed.
Assuming that future mutations would follow the same rate as those observed so
far, we can use PAM1 as the foundation for calculating other matrices. Using this
logic, Dayhoff derived matrices as high as PAM250. Whereas the traditional ap-
proach considers each amino acid to share an ‘average’ environment [10, 11, 13],
Henikoff and Henikoff [14], using local, ungapped alignments of distantly related
sequences, derived the BLOSUM series of matrices. The number after the matrix
(BLOSUM62) refers to the minimum percent identity of the blocks used to con-
struct the matrix; as a thumb rule, greater numbers represent lesser distances. It
is noteworthy that these matrices are directly calculated without extrapolations.
The BLOSUM series of matrices generally perform better than PAM matrices
for local similarity searches [14]. Altschul suggested that three matrices should
ideally be used: PAM40, PAM120 and PAM250, as the lower PAM matrices will
tend to find short alignments of highly similar sequences, while higher PAM
matrices will find longer, weaker local alignments [12].

Goldman and collaborators inferred Markov chain models of amino acid replace-
ment for several structural categories and solvent accessibility states, i.e. alpha
helix, beta sheets, coils and turns [8, 9, 34]. Here, we show that two substitution
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matrices derived from two mitochondrial data sets perform better than a standard
one, mtREV24 [1], suggesting that a collection of species, while diverging from
other life tree branches, represents a special environment in terms of amino acid
preferences. For example see Figure 4 in [43] where antarctic fish have undergone
a strong fitness bottleneck that has largely affected the amino acid composition.
Following on from this we may think of the grid as a distributed system of wells
within which evolution occurs, i.e. a collection of sequences mutated according
to different parameters. The grid is becoming the resource for solving large-scale
computing applications in Bioinformatics, system biology and computational
medicine.

Furthermore we describe an algorithm which incorporates a substitution ma-
trix in the mutual information formula of an alignment of protein sequences.
This refinement of the mutual information provides a better evaluation of the
information content and similarity measure in an alignment than using the usual
formula. This represents a novel and important refinement of mutual informa-
tion which is a similarity measure in the sense that small values imply large
“distances” in a loose sense. Therefore, given that the scoring matrices provide
an effective measure of distances between amino acids, the incorporation of a sub-
stitution matrix into a mutual information leads to a more meaningful estimation
of the similarity along an alignment. This will have interesting applications in
local and global alignment which we will not describe here.

2 Generating and Testing Novel Substitution Matrices
Using a Grid Setting

Mitochondrial amino acid sequences were downloaded from GenBank; we focused
on two different different collection of species (orders): fish (chondrichthyan and
teleosts; 66) and protostomes (molluscs, arthropods, brachiopods, annelids; 42).
All the methods for generating mutational data matrices are similar to that
described by Dayhoff et al. [13]. The method involves 3 steps:

1. Clustering the sequences into homologous families.
2. Tallying the observed mutations between highly similar sequences.
3. Relating the observed mutation frequencies to those expected by pure chance.

We have generated MtPip - a novel model of evolution for fish phylogenies and
evaluated the performances of MtPan, a model of amino acid replacement of in-
sects we have used for phylogenetic inference in [21]. These two models, described
in Figure 1 a,b, were built using relative rates of estimated amino acid replace-
ment from pairwise comparisons of mitochondrial fish and insect sequences that
are identical by 85% or higher. More precisely the estimates of the relative rates
of amino acid replacement were computed by examining the database and record-
ing the number of times that, for each column, amino acid type i is observed in
one sequence and type j is observed at the corresponding site in a closely related
sequence. The 85% threshold of amino acid identity between aligned sequences
ensures that the likelihood of a particular mutation (e.g. L→ V) being the result
of a set of successive mutations (e.g. L → x → y → V) is low.
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3 Testing the Matrices

In order to test the models, we performed two different comparisons:

1. We applied the Mantel Test, [44] which computes a correlation between
two n × n distance or similarity matrices. It is based on the normalized
cross-product:

cMT =
1

n− 1

n∑
i=1

n∑
j=1

(aij − ā)
sa

(bij − b̄)
sb

where aij and bij are the generic elements of the two matrices A and B we
want to compare, ā and b̄ are the corresponding mean values and sa and sb

are the standard deviations. The null hypothesis is that the observed corre-
lation between the two distance matrices could have been obtained by any
random arrangement. The significance is evaluated via permutation pro-
cedures. The rows and columns of one of the two matrices are randomly
rearranged and the resulting correlation is compared with the observed one.

2. We used Bayesian phylogenetic inference to compute posterior probability of
best trees obtained with different models. Although here we are not focusing
on phylogenetic trees di per se, the process of testing the substitution matrix
involves considering a mathematical model of evolution which describes the
instantaneous probabilities transition (P ) from one amino acid to another:
dP (T )/dT = QP (T ) where Q is the instantaneous rate matrix of transition
probabilities.

The rate matrix for a Markov process is restricted by a mathematical
requirement that the row sums are all zero. To calculate P(t) = etQ we need
to compute the spectral decomposition (diagonalisation) of Q; if we consider,

Q = U · diag{λ1,......, λn} · U−1

then
P (T ) = U · diag{eλ1, ....., eλn} · U−1

and its component is written as

Pij(T ) =
∑

k

cijketλk

where i, j, k = 1, .., 20 for proteins and cijk is a function of U and U−1.
The row sums of the transition probability matrix over the time t, P(T ) are
all ones. Substitution matrices are then incorporated into robust statistical
frameworks such as those of Maximum Likelihood or Bayesian.

3.1 Bayesian and Grid Computing for Phylogeny

We have compared the two models of evolution with standard models in use,
mtREV24 in particular, using Bayesian inference. A Bayesian analysis combines



Substitution Matrices and Mutual Information Approaches 263

one’s prior beliefs about the probability of a hypothesis with the likelihood which
carries the information about the hypothesis contained in the observations.
Bayesian inference always produces well-calibrated results on averagewith respect
to the distribution of data and parameter values chosen from the prior. In brief,
the Bayesianposterior probability of a phylogenetic tree involves a summation over
all possible trees. Given the large number of trees for even moderately-sized prob-
lems, for each tree that is considered, the likelihood involves a multidimensional
integral over all possible combinations of branch lengths and substitution model
parameters (e.g. parameters that allow different rates among the different charac-
ter states, different stationary character-state frequencies or rate variation across
sites). By necessity, posterior probabilities of trees must be approximated.

Markov Chain Monte Carlo [2, 5, 26, 27, 28](MCMC) has been successfully
used to approximate the posterior probability distribution of trees. MCMC uses
stochastic simulation to obtain a sample from the posterior distribution of trees;
inferences are then based on the MCMC sample. The posterior probability dis-
tribution of trees can contain multiple peaks. The peaks represent trees of high
probability separated from other peaks by valleys of trees with low probability.
This is a phenomenon that has been observed for other optimality criteria, such
as maximum parsimony and maximum likelihood. Parallel MrBayes is a pro-
gram that implements a variant of MCMC called "Metropolis-Coupled Markov
Chain Monte Carlo"(MCMCMC) [4, 6, 26, 27, 28]. This entails the execution of
a certain amount of chains on as many or less processors where all but one of
them are heated. By heating a Markov chain the acceptance probability of new
states is increased allowing the heated chain to accept more states that a cold
chain and consequently crosses valleys more easily in the landscape of probabil-
ity trees. Integration is improved by attempted state swapping among randomly
selected chains. Successful swapping between states allows a chain, that is oth-
erwise stuck on a local maximum in the landscape of trees, to explore other
peaks. If the target distribution has multiple peaks, separated by low valleys,
the Markov chain may have difficulty in moving from one peak to another. As a
result, the chain may get stuck on one peak and the resulting samples will not
be representative of the actual posterior density. This is known to occur often in
phylogeny reconstruction, where multiple local peaks exist in the tree space dur-
ing heuristic tree search under maximum parsimony, maximum likelihood, and
minimum evolution criteria. The problem same can be expected for stochastic
tree search using MCMC. An obvious disadvantage of the MCMCMC algorithm
is that m chains are run and only one chain is used for inference. For this reason,
it is ideally suited for implementation on parallel machines, since each chain will
in general require the same amount of computation per iteration. The grid is
not only suitable for Bayesian MCMCMC runs but also to run simulations with
different models of evolution.

In the next section we shall review the pertinent properties of mutual
information in the Shannon version and the refinement we propose.
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4 Incorporating Substitution Matrices into Mutual
Information

Assume that one has two random variables X and Y . If they are discrete, we
write pi(X) = prob(X = xi), pi(Y ) = prob(Y = yi), and pij = prob(X =
xi, Y = yj) for the marginal and joint distributions. Otherwise (and if they have
finite densities) we denote the densities by μX(x),μ(y) and μ(x, y). Entropies are
defined for the discrete case as usual by

H(X) = −
∑

i

pi(X) log pi(X)

and
H(X, Y ) = −

∑
i,j

pij log pij

Conditional entropies are defined as

H(X |Y ) = H(X, Y )−H(Y ) = −
∑
i,j

pij log pi|j

The base of the logarithm determines the units in which information is measured.
In particular, taking base two leads to information measured in bits. In the
following, we always will use natural logarithms, measured in nats. The mutual
information between X and Y is finally defined as

I(X, Y ) = H(X) + H(Y )−H(X, Y ) =
∑
i,j

pij log
pij

pi(X)pj(Y )

It can be shown to be non-negative, and is zero only when X and Y are strictly
independent [20, 22, 23, 40, 41]. In applications, one usually has the data avail-
able in form of a statistical sample. To estimate I(X, Y ) for a real multiple
sequence alignment we have estimated the probability of each amino acid in
each column of the alignment as a weighted sum of the amino acid replacement
rates according to a substitution matrix. In here pi(X) refers to the probability
of amino acid X occurring at site i. The process of evolution for a specific site
k is described by parameters pk(X → Y ), the relative rate of change from type
X to Y .

We can also write pk(X → Y ) as

πk(Y ) sk(X → Y )

where πk(Y ) represents the equilibrium frequencies for amino acid Y in the col-
umn k, and the sk(X → Y ) ≡ sk(Y → X) represent the relative exchangeability
of amino acids X and Y in the column k once effects of amino acid frequencies
are removed. We have used a substitution matrix to estimate the pk(X → Y ) for
each amino acid, for each alignment column, by averaging all the probabilities
of changes from amino acid X to the 19 other amino acids.
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5 Results and Discussion

Central to Bioinformatics is the assessment of the statistical relationship among
species/genes, which is given by E-values, bit scores, branch lengths etc. We have
tested two specie-specific models of mitochondrial sequence evolution. Mitochon-
drial sequences are widely used in phylogenetic assessment. Mitochondria play
a central role in many key aspects of animal physiology and pathophysiology.
Their central and ubiquitous task is clearly to be the sites of aerobic respiration
and the production of ATP. They also play subtle roles in calcium storage, oxy-
gen sensing, glucose homeostasis [17, 18]. Fig 1a and b show the bubble plots of
the substitution matrices of the two models MtPan (insects) and MtPip (fish),
a model of evolution specific for fish mitochondrial proteins. Although there are
notably similarities with mtREV24, the Mantel tests (not shown) has suggested
that these three matrices are indeed different. Figure 2 a,b show the comparison
of the performances of the two specie-specific models with respect to mtREV24.
The two models perform in average better than mtREV24. In Figure 2a mt-
Pan challenges mtREV24 [29] and another recent model, MtArt [3] based on a
smaller data set than our MtPan [21]. One million generations were run, with
two MCMCMC chain settings (4-chain version and 8-chain version in Fig 2a; 8-
chain version in Fig 2b), and trees were sampled every 100 generations. Most of
the runs, regardless of the matrix used, converged to slightly different maxima.
This indicates, on one hand, that the resulting topology for each run is highly
dependent on the performance of the algorithm to explore the likelihood surface
and the starting point of the search, thus suggesting prudence when interpreting
the results. On the other hand, this underlines the importance of conducting dif-
ferent parallel runs and comparing the results in order to have a global outlook
on these aspects of the analysis. Furthermore, comparing the actual topolo-
gies to which each run converges, it becomes evident that while most of the
shallow nodes are common to most resulting trees, the deepest nodes tend to

(a) Insect (b) Fish

Fig. 1. A novel amino acid replacement matrix based on a database of Insect and Fish
mitochondrial amino acid sequences
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(a) Insect

(b) Fish

Fig. 2. Box-and-whisker plot of the posterior probabilities obtained using the different
models of evolution, showing the MCMCMC implementations of each model separately.
Note that the 4 chain versions tended to slightly outperform the 8 chain versions.

vary, and the difference in likelihood observed across runs, little as they are, de-
pend on rearrangements at the deepest nodes. Since mtART was developed on a
smaller data set, there are amino acid exchanges which are not exactly estimated
affecting the posterior probabilities.
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In the analysis of our fish and insect mitochondrial data sets, plots of likeli-
hood versus generations, together with the value of the likelihood towards which
each run converges, were used to assess the efficiency of the analysis to ex-
plore the likelihood space and reach the best maximum, and the relative per-
formance of the three amino acid substitution matrices. By running multiple
analyses, it was possible to show that the MtPip and MtPan matrices gener-
ally converge to higher likelihood values than MtREV24. Differences beween
MtPan and MtPip are mostly due to the exchange between the following pairs
of amino acids: (F,M),(D,N),(Q,E),(T,L),(W,L),(S,L),(V,T); remarkably, these
are not exchanges among similar amino acids, i.e. neutral evolution, since they
involve charge and volume changes, suggesting adaptive changes under selec-
tive pressure. Several authors have found differences in the performances of mi-
tochondrial proteins in recovering expected phylogenies [24, 35, 36]. Liò and
Goldman [9] showed that this happens for both short and long range phyloge-
netic distances and under a variety of models. They found that different models
of evolution have small effects on topology but can have large effects on branch
lengths and ML scores. Liò has shown that matrices derived from alignments of
single mitochondrial proteins are substantially different [25]. Cao and colleagues
showed that the phylogenetic relationship based on different vertebrate mito-
chondrial proteins can suggest wrong trees [24, 34, 35, 36]. Since single proteins
often support different trees, mitochondrial phylogeny is generally estimated
from all 12 proteins (either concatenated or summing up log-likelihood scores
for each gene/protein). This has the effect of making the result less prone to
statistical fluctuations, but also less robust to deviations from a uniform model
for all portions of the data. Moreover only proteins encoded by the H strand
of mtDNA are used, i.e. ND6 is always discarded [43]. The available literature
shows that ND5 and ND4 perform generally better than the other mitochondrial
proteins. This suggests that single-protein topology deviations from ‘reference’
or concatenated sequences topologies may not depend on the model of evolution
implemented, but may be intrinsic to the protein-specific evolutionary dynamics
with respect to the molecular environment.

We have also computed the mutual information of the aligned cytochrome b
mitochondrial sequences from a large variety of vertebrate species; we explored
several other substitution matrices and found that the incorporation of mtREV24
substitution improves the detection of patterns. Note that our new models are
generated from close species sequences so that the small sequence variability
result in matrices of accepted point mutations which include a large number of
entries equal to 0 or 1. Moreover the presence of a wide range of species in the
alignment suggest that mtREV24 should be used. In Figure 3 we compare the
standard mutual information (a) and the mutual information which incorporates
Dayhoff or mtREV24 substitution rate applied to a mitochondrial cytochrome
b alignment. The axes represent site position along the sequence alignment. All
figures have undergone the same normalisation procedure. The incorporation
of an appropriate substitution matrix results in extracting more information
and patterns from the sequence data. We can see that the amount of noise is
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Fig. 3. Heatmaps of mutual information of a cytochrome b alignment from a large
ensemble of vertebrate mitochondrial species (a); in (b) we have incorporated Dayhoff,
in (c) mtREV24 in the mutual information formula
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with Dayhoff incorporated in the calculation in (b) and mtREV24 in (c)
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greatly reduced from Figure 3 a when compared to b and c. Furthermore, a
few lines of high mutual information between certain columns become visible
in b and c, suggesting that the addition of a substitution matrix has revealed
a similarity between the given columns. Therefore we propose an interesting
procedure: generating ad hoc substitution matrices from a collection of sequences
and using the derived substitution matrices for the detection of patterns using
mutual information.

To further demonstrate the benefits of considering a substitution matrix in
the calculation of mutual information, we performed an additional test. Using
the program Seq-Gen[45], which simulates the evolution of amino acid sequences
given a phylogeny, we generated an alignment of amino acids. The phylogenetic
tree provided was arbitrary, as we are not concerned with the topology, and the
model used for the simulation was mtREV. A selection of adjacent columns in
the sequence alignment were copied several times at different positions within the
alignment and then permuted, so that they do not exactly match. This alignment
was then put through the same process as the aligned sequences above. The
results are shown in Figure 4. In 4 c) we have used the mtREV24 substitution
matrix and regions or ’lines’ of high mutual information can be seen occurring
in the positions where the permuted columns were inserted. These regions were
not visible without the use of a substitution matrix in a) or when the Dayhoff
matrix was incorporated in b). This confirms that the use of an appropriate
matrix allows for the extraction of additional information from multiple sequence
alignments that would not normally be visible.

6 Conclusions

Substitution matrices are at the heart of Bioinformatics, with many uses in
sequence alignment and database search, tree building, protein classification,
etc. There is no such thing as a perfect substitution matrix; each matrix has its
own limitations. If this is so, then it should be possible to use multiple matrices
so that each one complements the limits of the others. The paper is divided
in two sections; first we use Bayesian grid setting to derive novel substitution
matrices for fish and insects and discuss their performances with respect to
commonly used (standard) amino acid replacement matrices. The main result
of this paper is a novel refinement of mutual information: the incorporation of a
substitution rate generated from the sequence data set or from a larger data set
into the mutual information. We show that different substitution matrices give
qualitatively different mutual information results and that the new algorithm
allows to derive better estimate of the similarity along a sequence alignment.
Work in progress focuses on providing a more exhaustive characterisation of this
optimised mutual information in alignment and clustering.
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