
J.-J. Yang et al. (Eds.): PRIMA 2009, LNAI 5925, pp. 127–142, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Gaia Agents Implementation through
Models Transformation

Nikolaos Spanoudakis1,2 and Pavlos Moraitis2

1 Technical University of Crete, Dept of Sciences, University Campus,
73100 Chania, Greece

nikos@science.tuc.gr
2 Laboratory of Informatics Paris Descartes (LIPADE), Paris Descartes University,

45 rue des Saints-Pères, 75270 Paris Cedex 06, France
{Nikolaos.Spanoudakis,pavlos}@mi.parisdescartes.fr

Abstract. Gaia is a well-known Agent Oriented Software Engineering (AOSE)
methodology. The emerging Model-Driven Engineering (MDE) paradigm
encourages software modelers to automate the transition of one type of software
model to another and eventually the code generation process. Towards this end
we define a process for transforming the Gaia roles model liveness formulas to
statecharts. This achievement on one hand allows the modeler to work on
detailed agent design and permits, on the other hand, to automatically generate
an agent’s code using any one of the statecharts-based tools in the market.

Keywords: Agent Oriented Software Engineering, Statecharts, Gaia methodol-
ogy, Model Driven Engineering.

1 Introduction

During the last years, there has been a growth of interest in the potential of agent
technology in the context of software engineering. A new trend in the Agent Oriented
Software Engineering (AOSE) field is that of converging towards the Model-Driven
Engineering (MDE) paradigm. Thus, a lot of well known AOSE methodologies
propose methods and tools for automating models transformations in the meanwhile
proposing metamodels in the modern ecore [1] or MOF [10] formats. Examples of
such methodologies are Tropos [13] and Ingenias [3]. The Gaia methodology [19] is a
popular methodology that, however, does not address the issue of transforming its
design models to code. Efforts in the past have produced some results, however not in
the MDE sense, that is without automating the process.

In this paper we present an automated process for transforming the Gaia roles
model liveness property to a statechart [5]. The latter is a platform independent model
(PIM) of the system to be, a result that is compatible with the Object Management
Group (OMG) Model Driven Architecture (MDA) paradigm [7]. Moreover, the
produced statechart is defined in a standardized format that can be used for defining
new model to text transformations for any desired platform.

This process delivers several original results. The first result is the formal
definition of the syntax of a Gaia liveness formula. Then, we define the statecharts [5]

128 N. Spanoudakis and P. Moraitis

metamodel based on the ordered rooted tree data structure. Finally, we define a
recursive transformation algorithm from a liveness formula to a statechart. This paper
not only provides these theoretical results but also an implementation using the
Human-Usable Textual Notation (HUTN) specification of OMG [11] and the Eclipse
popular Integrated Development Environment (IDE).

This paper is organized in the following way. In section 2 we present the definition
of the Gaia liveness formula followed by the formal definition of the statechart and its
metamodel in section 3. The transformation algorithm and the technologies needed
for implementing it are presented and discussed in section 4. Finally, section 5
includes conclusions and future work.

2 The Gaia Liveness Formula Definition

The Gaia methodology [19] is an attempt to define a general methodology that it is
specifically tailored to the analysis and design of Multi-Agent Systems (MAS). Gaia
emphasizes the need for new abstractions in order to model agent-based systems and
supports both the levels of the individual agent structure and the agent society in the
MAS development process. MAS, according to Gaia, are viewed as being composed
of a number of autonomous interactive agents that live in an organized society in
which each agent plays one or more specific roles. Gaia defines the structure of MAS
in terms of the role model. The model identifies the roles that agents have to play
within the MAS and the interaction protocols between the different roles. The Gaia
methodology is a three phase process and at each phase the modeling of the MAS is
further refined. These phases are the analysis phase, the architectural design phase
and, finally, the detailed design phase.

The objective of the Gaia analysis phase is the identification of the roles and the
modeling of interactions between the roles found. Roles consist of four attributes:
responsibilities, permissions, activities and protocols. Responsibilities are the key
attribute related to a role since they determine the functionality. Responsibilities are
of two types: liveness properties – the role has to add something good to the system,
and safety properties – the role must prevent something bad from happening to the
system. Liveness describes the tasks that an agent must fulfill given certain
environmental conditions and safety ensures that an acceptable state of affairs is
maintained during the execution cycle. In order to realize responsibilities, a role has a
set of permissions. Permissions represent what the role is allowed to do and, in
particular, which information resources it is allowed to access. The activities are tasks
that an agent performs without interacting with other agents. Finally, protocols are the
specific patterns of interaction, e.g. a seller role can support different auction
protocols. Gaia has operators and templates for representing roles and their attributes
and also it has schemas that can be used for the representation of interactions between
the various roles in a system. The operators that can be used for liveness expressions-
formulas along with their interpretations are presented in Table 1. Note that activities
are written underlined in liveness formulas.

The Gaia2JADE process [9] used the Gaia models and provided a roadmap for
transforming Gaia liveness formulas to Finite State Machine (FSM) diagrams and
then provided some code generation for JADE implementation. It also proposed some
changes to Gaia such as the incorporation of a functionality table, where the activities

 Gaia Agents Implementation through Models Transformation 129

Table 1. Gaia Operators for Liveness Formulas

Operator Interpretation Operator Interpretation

x||y x and y interleaved x.y x followed by y

xω x occurs infinitely often [x] x is optional

x* x occurs 0 or more times x|y x or y occurs

x+ x occurs 1 or more times

were refined to algorithms, and a way to describe simple protocols. However, it did
not cater for parallelism, and it did not produce the FSM diagrams automatically.

The reader can see a Gaia roles model for a role named “personal assistant” in
Figure 1. This role employs seven activities and seven protocols (activities are
underlined in the Protocols and Activities field). In its liveness formula it describes
the order that these protocols and activities will be executed by this role.

The liveness formula grammar has not been defined formally in the literature, thus
it is defined here using the Extended Backus–Naur Form (EBNF), which is a
metasyntax notation used to express context-free grammars. It is a formal way to
describe computer programming languages and other formal languages. The EBNF
syntax for the liveness formula is presented in the following listing, using the BNF
style followed by Russel and Norvig [16], i.e. terminal symbols are written in bold:

liveness → { formula }
formula → leftHandSide = expression
leftHandSide → string
expression → term
 | parallelExpression

 | orExpression

 | sequentialExpression

parallelExpression → term || term || … || term
orExpression → term | term | … | term
sequentialExpression → term . term . … . term
term → basicTerm
 | (expression)

 | [expression]

 | term*

 | term+

 | termω

 | |termω|number

130 N. Spanoudakis and P. Moraitis

basicTerm → string
number → digit | digit number
digit → 1 | 2 | 3 | …
string → letter | letter string
letter → a | b | c | …

Role: Personal Assistant
Description: This role interacts with a meetings manager role in order to arrange and

negotiate the user’s meetings and with the user through a human-machine interface
in order to get the user’s requests and show him his schedule.

Protocols and Activities: get user request, read schedule, show results, learn user
preference, update user preferences, send change request, receive change results,
send new request, receive new results, receive proposed date, decide response,
send results, receive outcome, update schedule

Responsibilities:
Liveness:

 personal assistant = (manage meetings. learn user habits)ω || (negotiate
meeting date)ω

 manage meetings = get user request. (read schedule | request change meeting
| request new meeting). show results

 learn user habits = learn user preference. update user preferences
 request change meeting = send change request. receive change results
 request new meeting = send new request. receive new results
 negotiate meeting date = receive proposed date. (decide response. send

results. receive outcome)+. update schedule

Fig. 1. The Gaia role model of a personal assistant agent

The reader should note that the Gaia operators have been enriched with a new
operator, the |xω|n, with which we can define an activity that can be concurrently
instantiated and executed more than one times (n times).

Figure 1 shows that the functionality of the personal assistant role is described by
the liveness property. Thus, if the liveness formulas are transformed to a computer
program then a large portion of the agent program is complete. However, this is not
possible as there is a lot of information missing. First of all the functionality behind
each activity is obscure. Then, the variables that will determine, e.g. whether the
optional activities will be executed (i.e. an activity in brackets) are missing. This kind
of information can be inserted in a statechart, thus we decided that in order to provide
a design artifact that could lead to code generation we needed to transform the Gaia
liveness formulas to a statechart [5]. However, before defining this transformation we
needed a formal model for the statechart.

 Gaia Agents Implementation through Models Transformation 131

3 The Statechart Definition and Metamodel

Statecharts [5] are used for modeling systems. They are based on an activity-chart that
is a hierarchical data-flow diagram, where the functional capabilities of the system are
captured by activities and the data elements and signals that can flow between them.
The behavioral aspects of these activities (what activity, when and under what
conditions it will be active) are specified in statecharts. The fact that the statechart can
capture together the functional and behavioral aspects of a system is its greatest
advantage, as it completely defines a system. This is not true for a single UML model
as a number of different models need to be combined for a complete description of a
system (e.g. a class diagram together with an activity diagram). Thus, statecharts are
ideal for defining systems in a platform independent manner. We intend to use
statecharts in a specific level of abstraction, that of an agent, in order to model the
interactions between its components (or capabilities). The statechart, therefore,
implements the intra-agent control model (IAC) of an agent.

The authors in [5] present the statechart language adequately but not formally.
Several authors have presented formal models for this language; as such an approach
is needed for developing relevant statecharts-based Computer-Aided Software
Engineering (CASE) tools. For example, David et al. [2] proposed a formal model for
the RHAPSODY tool and Mikk et al. [8] for the STATEMATE tool. The first one has
been used as basis for the definition of our statechart as it is the first intended for
object-oriented language implementation (STATEMATE is for C language
development). These models not only formally describe the elements of the statechart;
they also focus on the execution semantics. However, this issue is out of the scope of
this work. It is assumed that, as long as the language of statecharts is not altered, a
statechart can be executed with any CASE tool.

The formal model that is adopted here-in is a subset of the ones presented in the
literature as there are several features of the statecharts not used herein, such as the
history states (which are also defined differently in these works). After formally
presenting the statechart in the following paragraph, we will provide a metamodel in a
common format such as the Eclipse Modeling Framework (EMF) and also discuss
why this is needed.

3.1 Formal Statechart Definition

An ordered rooted tree is a rooted tree where the children of each internal vertex are
ordered [15]. To produce a total order of the vertices of an ordered rooted tree all the
vertices must be labeled. This is achieved recursively as follows:

1. Label the root with the integer 0. Then label its k children (at level 1) from left to
right with 0.1, 0.2, 0.3, …, 0.k.

2. For each vertex ν at level n with label A, label its kν children, as they are drawn
from left to right, with A.1, A.2, …, A.kν.

Thus, A.1 means that A is the parent of A.1. The definition below for the statechart is
inspired by the definition proposed by David et al. [2].

132 N. Spanoudakis and P. Moraitis

Definition 1. A statechart is a tuple (L, δ) where:

• L = (S, λ, Var, Name, Activity) is an ordered rooted tree structure representing the
states of the statechart.

─ S⊆ℕ* is the set of all nodes in the tree.
─ λ: S {AND, OR, BASIC, START, END, CONDITION} is a mapping from the

set of nodes to labels giving the type of each node. For l∈S let AND(l) denote
that λ(l)=AND. Similarly OR(l) denotes that λ(l)=OR and the same holds for all
labels. START and END denote those nodes without activity, which exist so
that execution can start and end inside OR-states. BASIC corresponds to a basic
state. A condition state is denoted as CONDITION. START, END, BASIC and
CONDITION nodes are leaves of L.

─ Var is a mapping from nodes to sets of variables. var(l) stands for the subset of
local variables of a particular node l.

─ Name is a mapping from nodes to their names. name(l) stands for the name of a
particular node l.

─ Activity is a mapping from nodes to their algorithms in text format
implementing the processes of the respective states. activity(l) stands for the
algorithm of a particular state that is represented by node l.

• δ ⊆ S × TE × S is the set of state transitions, where TE is a set of transition
expressions.

The following are also defined according to the definitions of David et al. (2003):

Definition 2. Let l an internal vertex of an ordered rooted tree L. We call sons(l) =

{l.x ∈ S|x ∈ ℕ} the children of l

Definition 3. Let l, k two vertices of an ordered rooted tree L such that ∃x∈ℕ, k.x = l.
Then the vertex k is called parent to l and it is denoted as parent(l)

Definition 4. Let l a vertex of an ordered rooted tree L. Then, the ancestors of l are

defined as ancestors(l) = parent(l) ∪ ancestors(parent(l))

3.2 The Statechart Metamodel

Model driven engineering relies heavily in model transformation [17]. Model
transformation is the process of transforming a model to another model. The
requirements for achieving the transformation are the existence of metamodels of the
models in question and a transformation language in which to write the rules for
transforming the elements of one metamodel to those of another metamodel.

In the software engineering domain a model is an abstraction of a software system
(or part of it) and a metamodel is another abstraction, defining the properties of the
model itself. Thus, like a computer program conforms to the grammar of the
programming language in which it is written, a model conforms to its metamodel (or
its reference model). However, even a metamodel is itself a model. In the context of

 Gaia Agents Implementation through Models Transformation 133

model engineering there is yet another level of abstraction, the metametamodel, which
is defined as a model that conforms to itself [6].

A transformation that is used for transforming a textual representation to a
graphical model is called a Text to Model (T2M) transformation. The textual
representation must adhere to a language syntax definition usually using BNF. A
liveness formula proposes such a kind of syntax. The graphical model must have a
metamodel. Then, a transformation of the text to a graphical model can be defined.

In the heart of the model transformation procedure is the Eclipse Modeling
Framework (EMF, [1]). EMF unifies Java, XML, and UML technologies, allowing
the modeler to switch between them as they provide the same information in a
different representation. Regardless of which one is used to define it, an EMF model
is the common high-level representation that "glues" them all together.

Ecore [1] is EMF’s model of a model (metamodel). It functions as a
metametamodel and it is used for constructing metamodels. It defines that a model is
composed of instances of the EClass type, which can have attributes (instances of the
EAttribute type) or reference other EClass instances (through the EReference type).
Finally, EAttributes can be of various EDataType instances (such are integers, strings,
real numbers, etc). Figure 2 shows the ecore metamodel in detail.

Fig. 2. The Ecore metamodel (Budinsky et al., 2003)

A similar technology, the Meta-Object Facility (MOF), is an OMG standard [10]
for representing metamodels and manipulating them. There are a number of essential
concepts used in MOF modeling. A Package is used to encapsulate a collection of
related Classes and Associations. Packages can also contain simple type definitions.
Classes exist in the commonly-used sense of the word, describing an object and its
properties. These properties are represented through Attributes and References, which
can be inherited using a multiple-inheritance system. Attributes have a name and a
type. This includes a range of types from basic types such as integers, strings, and
booleans to more complex types such as enumerations, and through to structured
types. In addition, attributes have both upper and lower limits on the number of times
that they can appear within a class instance. An Association is used to represent a
relationship between instances of two classes, each of which plays a role within the

134 N. Spanoudakis and P. Moraitis

association. Associations can have the additional property of containment; an
association represents a containment relationship if one of the participant classes does
not exist outside the scope of the other. A Class participating in an association can
also contain a Reference to the association. A reference appears much like an
attribute, but reflects the set of class instances that participate in the Association with
the containing class instance.

MOF is older than EMF and it influenced its design. MOF was initially designed
primarily for use with the Common Object Request Broker Architecture (CORBA).
CORBA is an architecture that enables programs, called objects, to communicate with
one another regardless of what programming language they were written in or what
operating system they're running on.

EMF, on the other hand, is a product of the Eclipse project, an open source project
and was intended as a low-cost tool to obtain the benefits of formal modeling and
Java code generation. As a consequence, one could say that EMF took a bottom-up
approach whereas MOF took a top-down approach [4].

However, the EMF meta-model is simpler than the MOF meta-model in terms of
its concepts, properties and containment structure, thus, the mapping of EMF’s
concepts into MOF’s concepts is relatively straightforward and is mostly 1-to-1
translations. EMF is used today by a large open source community becoming a de
facto standard in MDE. Moreover, third parties define MDE tools based on EMF
technology, like the openArchitectureWare (oAW) platform for model-driven
software development. For all these reasons it was decided that the EMF technology
would be used.

The statechart metamodel (see Figure 3) contains nodes and transitions according
to Definition 1. The metamodel defines a Model concept that has nodes, transitions
and variables EReferences. Note that it also has a name EAttribute. The latter is used
to define the namespace of the statechart. The namespace should follow the Java or
C# modern package namespace format (see a sample namespace for the meetings
management system in the next section with the transformations).

The nodes contain the following attributes (followed by the relevant concept name
in the statechart definition):

• name (Name). The name of the node,
• type (λ). The type of the node (one of AND, OR, BASIC, START, END),
• label (label). The node’s label, and
• activity (Activity). The activity related to the node.

Nodes also refer to variables. The Variable EClass has the attributes name and type
(e.g. the variable with name “count” has type “integer”). Finally the transitions have
four attributes:

• name, usually in the form <source node label>TO<target node label>
• TE, the transition expression
• source, the source node label, and,
• target, the target node label.

 Gaia Agents Implementation through Models Transformation 135

Fig. 3. The statechart metamodel

4 The Liveness2Statechart Transformation

The Liveness2Statechart transformation is achieved by using the “Gaia operators
transformation templates” (shown in Table 2) for transforming the process part of the
agent interaction protocol model to a statechart. Table 2 has three columns. The first
depicts a Gaia formula with a certain operator. The second shows how to draw the
statechart relevant to this operator using the common statechart graphic language. The
third shows how the same Gaia formula is transformed to the statechart representation
defined in this paper (as a tree branch).

The tree branch representation (in Table 2) uses grey arrows to connect a father
node to its sons. On the top left of each node the label of the node is shown. The root
node of each branch is supposed to have a label L and the other nodes are labeled
accordingly. The type of each node is written centered in the middle of the node.
Finally, the name of each node is centered in the bottom of each node. The reader
should note that the nodes for the x or y variables of the Gaia formula do not have a
node type. This is because it is possible that they are basic or non-basic nodes. If they
are basic then the node’s type is set to BASIC, otherwise another branch is added with
this node as the root and as the reader can notice all templates set the type of the root
of the branch.

Table 2. Templates of extended Gaia operators (Op.) for Statechart generation

Op. Template Tree Branch

x | y

136 N. Spanoudakis and P. Moraitis

Table 2. (continued)

Op. Template Tree Branch

x*

xω

x . y

x+

[x]

|xω|n

Sx

Sy

Sx

Sx

… n instances

 Gaia Agents Implementation through Models Transformation 137

Table 2. (continued)

Op. Template Tree Branch

x || y

Sx

Sy

Sx

Sy

A designer can use the Gaia transformation templates to manually transform the

liveness formula to a statechart. Alternatively, he can use an implementation of the
following recursive algorithm for building the statechart automatically (three dots
represent omitted code for space reasons):

Program transform(liveness)
 Var root = 0
 S = S ∪ {root}
 Name(root) = liveness->formula1->leftHandSide
 createStatechart(formula1->expression, root)
End Program

Procedure createStatechart(expression, father)
 Var terms = 0
 For each termi in expression
 terms = terms + 1
 End For
 If terms > 1 Then
 If expression is sequentialExpression Then
 λ(father) = OR

 S = S ∪ {father.1}
 λ(father.1) = START
 Var k=2
 For Each termi in expression
 S= S ∪ {father.k}
 Name(father.k) = termi

 δ = δ ∪ {(father.(k-1), {}, father.k)}
 k = k + 1
 End For
 S = S ∪ {father.k}
 δ = δ ∪ {(father.(k-1), {}, father.k)}

138 N. Spanoudakis and P. Moraitis

 λ(father.k) = END
 Else If expression is orExpression
 ...
 Else If expression is parallelExpression
 ...
 End If
 For Each termi in expression
 If termi is basicTerm Then
 handleBasicTerm(termi, getNode(father, termi)
 Else
 If termi is of type ‘(‘term’)’ Then
 createStatechart(term, getNode(father, termi))
 Else If (termi is of type ‘[‘term’]’) or (termi is
of type term’*’) Then
 ...
 Else If (termi is of type term’

ω’) or (termi is of
type term’+’) Then
 ...
 Else If termi is of type ‘|’term’

ω|n’ Then
 ...
 End If
 End If
 End For
End function

Function getNode(father, term)
 QueuedList queue
 queue.addLast(father)
 Do While queue.notEmpty()
 elementi = queue.getFirst()
 If Name(elementi) = term Then Return elementi Else
 For each sonj in sons(elementi)
 queue.addLast(sonj)
 End For
 End If
 End do

 End function

Function handleBasicTerm(term, node)
 Var isBasic = true
 For each formulai in liveness
 If (formulai->leftHandSide = term) Then
 createStatechart(formulai->expression, node)
 isBasic = false
 End If
 End For
 If isBasic Then λ(node) = BASIC
End function

 Gaia Agents Implementation through Models Transformation 139

The program “transform” sets the root label equal to zero and its name equal to the
left hand side of the first liveness formula. Then it calls the “createStatechart”
procedure that takes two arguments. An expression, as it is defined in the Gaia
liveness grammar, and a node (its label) under which it will build the tree.

The “createStatechart” procedure firstly checks whether the expression is a
parallelExpression, an orExpression or a sequentialExpression and adds the relevant
tree branch. Then, the procedure examines each term in the expression. A special
function, the “handleBasicTerm” searches the formulas to find whether the term is a
basicTerm or it appears in the left hand side of a following formula, which in this
case needs to be expanded with the relevant tree branch. This is done by calling
again the “createStatechart” procedure (recursively). Another function is used for
this purpose, the “getNode”. It searches (breadth first search) the tree branch below a
node (the father) for the descendant with a specific name and returns its label. This is
needed because the term’s name is available but in order to add a tree branch the
node’s label is needed as a parameter for the “createStatechart” procedure call. If the
examined term of the expression is a non-basic term then again the relevant tree
branch is added to the statechart.

After applying the transformation algorithm, the statechart (or intra-agent control
model) depicted in Figure 4 is created for the personal assistant liveness property
presented in Figure 1. The reader can see the “negotiate meeting date” OR state

Fig. 4. The automatically generated statechart for the personal assistant agent

140 N. Spanoudakis and P. Moraitis

(representing the execution of an interaction protocol) executed in parallel with the
other agent capabilities.

For automating the transformation procedure we needed to implement this
algorithm and produce statecharts adhering to the statechart metamodel. This is a
T2M transformation. In order to do this we used a Java program for transforming the
liveness property to a standardized textual representation. The latter could be
automatically transformed to a statechart model based on Eclipse and EMF
technology as it is described below.

Rose et al. [14] described an implementation of the Human-Usable Textual
Notation (HUTN) specification of OMG [11] using Epsilon, a suite of tools for MDE
for Eclipse. OMG created HUTN aiming to offer three main benefits to MDE:

─ a generic specification that can provide a concrete HUTN language for any
 model, which is described by a metamodel

─ the HUTN languages to be fully automated both for production and parsing
─ the HUTN languages to conform to human-usability criteria

The Epsilon platform is an implementation of HUTN, which automates the
transformation process by eliminating the need for a grammar specification by auto
defining it accepting as input the relevant EMF metamodel (i.e. the one shown in
Figure 3). This is the main reason for choosing HUTN. In Figure 5, the eclipse project
for the realization of the Liveness2Statechart transformation is presented. It is a
simple Java project where the HUTN nature has been turned on (by right-clicking on
the project icon on the Package explorer). The input for this transformation is the Gaia
roles model liveness property in text format, adhering to the grammar presented in §2.

The presented transformation algorithm has been implemented in the java
language. It transforms the liveness formula of an SRM role to a HUTN file. The
usage of the HUTN technology also helped a lot in debugging the algorithm as the
output was in human-readable format. The modeler just has to execute the
“Liveness2HUTN.java” file in order to create the HUTN representation of the
statechart model (shown in Figure 5). Then, simply by right-clicking to the HUTN file
the modeler can generate the statechart model. An extract of this model where the
XML elements representing the HUTN representation part visible in Figure 5 is the:

<?xml version="1.0" encoding="UTF-8" ?>
<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.
org/XMI" xmlns:IAC="http://mi.parisdescartes.fr/ASEME/
metamodels/IAC">
<IAC:Node name="open_group_ReadSchedule_or_Request
ChangeMeeting_or_RequestNewMeeting_close_group" type=
"OR" label="0.2.1.2.2.2.3" activity="null" />
<IAC:Node name="GetUserRequest" type="BASIC"
label="0.2.1.2.2.2.2" activity="null" />

...

Thus, the statechart model has now been initialized with the information available
in the Gaia roles model and it can be refined in the design phase using, e.g., the
Sample Reflective Ecore Model Editor of Eclipse.

 Gaia Agents Implementation through Models Transformation 141

Fig. 5. The Eclipse project for T2M transformation

5 Conclusion

This paper showed how engineers, who use the Gaia methodology for modeling their
agent-based systems, can implement their agents through the use of statecharts. The
later allow to define the interactions between the different modules (or capabilities) of
an agent (i.e. his intra-agent control) in a sufficient detail that can lead to
implementation. A statechart is a platform independent model (PIM) of the system
under development, as statecharts can be implemented using a number of existing
programming languages and CASE tools. The statechart is automatically produced by
the Gaia liveness property (a set of liveness formulas), which describes the behavior
of an agent. This transformation is not a straightforward process and it is achieved
through the following original results:

• Definition of a grammar for representing a liveness model.
• Formal definition of a statechart for agent-oriented development.
• Conception of a recursive algorithm for transforming the Gaia liveness property to

a statechart. The modeler can make the transformation either manually (using the
Gaia transformation templates) or automatically using the popular Eclipse IDE.

The manual transformation is also a valuable result as a developer can transform
the liveness property to a statechart using any existing CASE tool. The Rhapsody tool
[5] has been successfully used for implementing the MARKET-MINER agent, a real
world system [18]. We are currently working in automating the code generation
process (model to text – M2T) for a popular agent platform, the Java Agent
Development Framework (JADE).

142 N. Spanoudakis and P. Moraitis

References

1. Budinsky, F., Steinberg, D., Ellersick, R., Merks, E., Brodsky, S.A., Grose, T.J.: Eclipse
Modeling Framework. Addison Wesley, Reading (2003)

2. David, A., Deneux, J., d’Orso, J.: A Formal Semantics for UML Statecharts. Technical
Report 2003-010, Uppsala University (2003)

3. García-Magariño, I., Gómez-Sanz, J.J., Fuentes-Fernández, R.: Model Transformations for
Improving Multi-agent Systems Development in INGENIAS. In: 10th International
Workshop on Agent-Oriented Software Engineering (AOSE 2009), Budapest Hungary
(2009)

4. Gerber, A., Raymond, K.: MOF to EMF: there and back again. In: Proceedings of the 2003
OOPSLA workshop on eclipse technology eXchange (Eclipse 2003), pp. 60–64. ACM
Press, New York (2003)

5. Harel, D., Kugler, H.: The RHAPSODY Semantics of Statecharts (Or on the Executable
Core of the UML). In: Ehrig, H., Damm, W., Desel, J., Große-Rhode, M., Reif, W.,
Schnieder, E., Westkämper, E. (eds.) INT 2004. LNCS, vol. 3147, pp. 325–354. Springer,
Heidelberg (2004)

6. Jouault, F., Bézivin, J.: KM3: A DSL for Metamodel Specification. In: Gorrieri, R.,
Wehrheim, H. (eds.) FMOODS 2006. LNCS, vol. 4037, pp. 171–185. Springer, Heidelberg
(2006)

7. Kleppe, A., Warmer, S., Bast, W.: MDA Explained. The Model Driven Architecture:
Practice and Promise. Addison-Wesley, Reading (2003)

8. Mikk, E., Lakhnech, Y., Petersohn, C., Siegel, M.: On formal semantics of Statecharts as
supported by STATEMATE. In: Proceedings of the second BCS-FACS Northern Formal
Methods Workshop. Springer, Heidelberg (1997)

9. Moraitis, P., Spanoudakis, N.: The Gaia2JADE Process for Multi-Agent Systems
Development. J. Appl. Artif. Intell. 20(2-4), 251–273 (2006)

10. Object Management Group: Meta Object Facility (MOF) Core Specification (2001)
11. Object Management Group: Human-Usable Textual Notation V1.0 (2004)
12. openArchitectureWare (oAW), http://www.openarchitectureware.org/
13. Perini, A., Susi, A.: Automating Model Transformations in Agent-Oriented Modeling. In:

Müller, J.P., Zambonelli, F. (eds.) AOSE 2005. LNCS, vol. 3950, pp. 167–178. Springer,
Heidelberg (2006)

14. Rose, L.M., Paige, R.F., Kolovos, D.S., Polack, F.A.C.: Constructing models with the
Human-Usable Textual Notation. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter,
M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 249–263. Springer, Heidelberg (2008)

15. Rosen, H.K.: Discreet Mathematics and its Applications, 4th edn. McGraw Hill, New York
(1999)

16. Russel, S., Norvig, P.: Artificial Intelligence a Modern Approach, 2nd edn. Prentice Hall,
Englewood Cliffs (2003)

17. Sendall, S., Kozaczynski, W.: Model Transformation: The Heart and Soul of Model-
Driven Software Development. IEEE Softw. 20(5), 42–45 (2003)

18. Spanoudakis, N., Moraitis, P.: Automated Product Pricing Using Argumentation. In:
Proceedings of the 5th IFIP Conference on Artificial Intelligence Applications &
Innovations (AIAI 2009). Springer, Heidelberg (2009)

19. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems: the Gaia
Methodology. ACM T. Softw. Eng. Meth. 12(3), 317–370 (2003)

	Gaia Agents Implementation through Models Transformation
	Introduction
	The Gaia Liveness Formula Definition
	The Statechart Definition and Metamodel
	Formal Statechart Definition
	The Statechart Metamodel

	The Liveness2Statechart Transformation
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

