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Preface

The 11th International Conference on Information and Communications Security
(ICICS 2009) was held in Beijing, China during December 14–17, 2009. The
ICICS conference series is an established forum that brings together people from
universities, research institutes, industry and government institutions, who work
in a range of fields within information and communications security. The ICICS
conferences give attendees the opportunity to exchange new ideas and investigate
developments in the state of the art. In previous years, ICICS has taken place
in the UK (2008), China (2007, 2005, 2003, 2001 and 1997), USA (2006), Spain
(2004), Singapore (2002), and Australia (1999). On each occasion, as on this
one, the proceedings have been published in the Springer LNCS series.

In total, 162 manuscripts from 20 countries and districts were submitted to
ICICS 2009, and a total of 37 (31 regular papers plus 6 short papers) from 13
countries and districts were accepted (an acceptance rate of 23%). The accepted
papers cover a wide range of disciplines within information security and applied
cryptography. Each submission to ICICS 2009 was anonymously reviewed by
three or four reviewers. We are very grateful to members of the Program Com-
mittee, which was composed of 44 members from 14 countries; we would like to
thank them, as well as all the external referees, for their time and their valuable
contributions to the tough and time-consuming reviewing process.

In addition to the contributed speakers, the program also featured two in-
vited speakers in the technical track. We are grateful to Richard A. Kemmerer
(University of California, Santa Barbara, USA), and Wenbo Mao (EMC, USA),
for accepting our invitation to speak. We also thank the keynote speakers from
TCG on the first day of the conference, which was devoted to the industrial
aspects of trusted and trustworthy computing.

ICICS 2009 was organized and hosted by the Institute of Software, Chinese
Academy of Sciences (CAS), and the Institute of Software and Microelectronics,
Peking University in co-operation with International Communications and In-
formation Security Association (ICISA). The conference was sponsored by the
National Natural Science Foundation of China under Grant No. 60573042 and
No. 60970135, the Microsoft Corporation, Beijing Tip Technology Corporation,
and the Trusted Computing Group (TCG).

We would like to thank Guilin Wang for his great work in arranging the
publishing of the proceedings, and Dongmei Liu for her great contribution to
the pre-conference arrangements and helping with many local details. Finally,
we would like to thank the authors who submitted their papers to ICICS 2009,
and the attendees from all around the world.

October 2009 Sihan Qing
Chris J. Mitchell
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How to Steal a Botnet and What Can Happen  
When You Do 

Richard A. Kemmerer 

University of California, Santa Barbara, USA 
kemm@cs.ucsb.edu 

Abstract. Botnets, which are networks of malware-infected machines that are 
controlled by an adversary, are the root cause of a large number of security 
threats on the Internet. A particularly sophisticated and insidious type of bot is 
Torpig, which is a malware program that is designed to harvest sensitive 
information (such as bank account and credit card data) from its victims. In this 
talk, we report on our efforts to take control of the Torpig botnet for ten days. 
Over this period, we observed more than 180 thousand infections and recorded 
more than 70 GB of data that the bots collected.  

While botnets have been hijacked before, the Torpig botnet exhibits certain 
properties that make the analysis of the data particularly interesting. First, it is 
possible (with reasonable accuracy) to identify unique bot infections and relate 
that number to the more than 1.2 million IP addresses that contacted our 
command and control server during the ten day period. This shows that botnet 
estimates that are based on IP addresses are likely to report inflated numbers. 
Second, the Torpig botnet is large, targets a variety of applications, and gathers a 
rich and diverse set of information from the infected victims. This allowed us to 
perform interesting data analysis that goes well beyond simply counting the 
number of stolen credit cards. In this talk we will discuss the analysis that we 
performed on the data collected and the lessons learned from the analysis, as well 
as from the process of obtaining (and losing) the botnet.  
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A User-Mode-Kernel-Mode Co-operative Architecture 
for Trustable Computing 

Wenbo Mao 

EMC Research China 
Mao_Wenbo@emc.com 

Abstract. The Trusted Computing Group's technology takes a load-time code 
measurement approach to compute platform security, in which a code in a more 
privileged layer of the software stack is supposed to be able to maintain the 
correctness for one in a less privileged layer. In this work we first report evidences 
that this load-time code measurement method is insufficient for maintaining the 
software execution correctness. We propose a user-mode-kernel-mode co-operative 
architecture for trustable computing in which a secure application in user mode 
works in co-operation with the privileged system management software in kernel 
mode. We argue for the necessity of co-operation between a secure application and 
the secure service code in kernel mode, and showcase the practicality of this 
method. 



Security Evaluation of a DPA-Resistant S-Box Based on
the Fourier Transform

Yang Li1, Kazuo Sakiyama1, Shinichi Kawamura2, Yuichi Komano2,
and Kazuo Ohta1

1 The University of Electro-Communications
1-5-1 Chofugaoka, Chofu-shi, Tokyo 182-8585, Japan

{liyang,saki,ota}@ice.uec.ac.jp
2 Toshiba Corporation

1, Komukai Toshiba-cho, Saiwai-ku, Kawasaki 212-8582, Japan
{shinichi2.kawamura,yuichi1.komano}@toshiba.co.jp

Abstract. At CHES 2006, Prouff et al. proposed a novel S-box calculation based
on the discrete Fourier transform as a first-order DPA countermeasure. At CHES
2008, Coron et al. showed that the original countermeasure can be broken by
first-order DPA due to a biased mask and they proposed an improved algorithm.
This paper shows that there is still a flaw in the Coron’s S-box algorithm with
respect to a practical software implementation. We pre-process the power traces
to separate them into two subgroups, each has a biased mask. For the separated
power traces, we propose two post analysis methods to identify the key. One is
based on CPA attack against one subgroup, and the other is utilizing the differ-
ence of means for two subgroups and a pattern matching. Finally, we compare
these two attack methods and propose an algorithm level countermeasure to en-
hance the security of Coron’s S-box.

Keywords: Side channel attacks, Masking, Fourier transform, S-box, Probability
density function.

1 Introduction

Side Channel Attacks (SCAs) which expose secret information using side channel leak-
ages gained from the physical implementations of cryptosystem was first introduced by
Kocher in 1996 [7]. Since then, various SCAs based on different leakage sources or dif-
ferent techniques are proposed. Among them, Differential Power Analysis (DPA) has
been demonstrated to be very powerful. On the other hand, many DPA countermea-
sures were proposed both at algorithm level [2,4,6] and at logic level [13,11]. The goal
of algorithm level countermeasure is masking every sensitive variable to suppress the
dependence between the side channel leakage and the secret information. While the
logic level countermeasures trend to improve the hardware gates to diminish the DPA
leakage at the source.

At CHES 2006, Discrete Fourier Transform (DFT) was introduced by Prouff et al.
as a general technique achieving immunity against first order DPA [8]. The proposed
AES S-box algorithm based on DFT is referred as Prouff’s S-box in this paper. Two

S. Qing, C.J. Mitchell, and G. Wang (Eds.): ICICS 2009, LNCS 5927, pp. 3–16, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



4 Y. Li et al.

years later, Coron et al. shows that Prouff’s S-box is vulnerable to first-order DPA due
to a biased mask in their algorithm [3]. They also propose an improved version of S-
box based on the DFT(referred as Coron’s S-box in this paper). In the Coron’s S-box,
it is proved that all the intermediate variables are masked by random numbers and are
uniformly distributed.

In this paper, we show that Coron’s S-box still has a flaw in terms of power analy-
sis in a practical software implementation. In Coron’s S-box, according to the value of
the input, the output of the S-box is calculated as a combination of pre-calculated pa-
rameters. A random mask bit is used switching this calculation into two power profiles
randomly. Focusing on a practical software implementation of Coron’s S-box, we show
that different values of this mask bit can be distinguished from the power consump-
tion at certain points of the algorithm. Our pre-process analysis method can separate
traces into two subgroups with biased mask, and it is similar to the power analysis
using Probability Density Function (PDF) proposed by Schaumont and Tiri [12,10].
After grouping the power traces, two post-processing analysis methods are explained
and compared. One is first order DPA attack against one subgroup, and the other one is
calculating the Difference of Means (DoMs) for two subgroups and matching the peaks
with pre-calculated patterns.

2 Background Information

2.1 Masking Countermeasures against First Order DPA

Both [8] and [3] explain that if all the intermediate variables during the calculation are
independent of any sensitive variable, the implementation is immune to first order DPA.
The intermediate variables refer to the variables manipulated during the calculation,
and the sensitive variables can be calculated by a key guess and public variables (i.e.
plaintext or ciphertext). In the masking countermeasures against first order DPA, it is
necessary all the intermediate variables are masked by uniformly distributed random
variables to be independent of the sensitive variables.

2.2 Coron’s S-Box Calculation Based on DFT

In order to explain the concept of Coron’s S-box briefly, we follow the notations used in
[3]. The DFT function ̂F for the original function F is defined with Z=(Zn−1, · · · , Z0)
∈ F

n
2 by

̂F (Z) =
∑

i∈F
n
2

F (i)(−1)i·Z , (1)

where i = (in−1, · · · , i0) ∈ Fn
2 and “·” denotes the scalar product calculated by

i · Z =
n−1
⊕

j=0

ijZj . (2)

If we perform the DFT operation against ̂F again, we have ̂

̂F = 2nF as

F (Z) =
1
2n

∑

i∈F
n
2

̂F (i)(−1)i·Z . (3)
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In order to mask all the intermediate variables in calculating Eq. (3), three n-bit random
numbers R1, R3 and R4 ∈ Fn

2 and one-bit random number R2 ∈ F2 are necessary.
For the input ( ˜Z = Z ⊕ R1, R1), the 3-tuple output

(

(−1)R2F (Z) + R3, R2, R3
)

is
calculated by

(−1)R2F (Z) + R3 mod 2n =
1
2n

(

R′ +
∑

i∈F
n
2

̂F (i)(−1)R2⊕(i· ˜Z)⊕(i·R1)
)

, (4)

where R′ = 2nR3 + R4.
We denote the scalar product function X, Y �→X ·Y by SP and the function X, T �→

̂F (X)(−1)T by SFT. Then, the calculation used for Coron’s S-box can be described as
shown in Alg. 1. The operation � denotes addition modulo 22n.

Algorithm 1. Calculation Steps for Coron’s S-box [3]
INPUTS: A masked value ˜Z = Z ⊕R1 and the mask R1

OUTPUT: The 3-tuple output
(

(

(−1)R2F (Z) + R3

)

mod 2n, R3 ,R2

)

1. Generate a random bit R2

2. Generate two n-bit random R3 and R4

3. result← 2nR3 + R4

4. for i from 0 to 2n − 1 do
5. T1 ← SP (i, ˜Z) [T1 = i · ˜Z]
6. T1 ← T1 ⊕R2 [T1 = R2 ⊕ i · ˜Z]
7. T2 ← SP (i, R1) [T2 = i · R1]
8. T1 ← T1 ⊕ T2 [T1 = R2 ⊕ i · Z]
9. T1 ← SFT (i, T1) [T1 = ̂F (i)(−1)R2⊕i·Z]
10. result← result � T1

11. end [result = (2nR3 + R4) �
∑2n−1

i=0
̂F (i)(−1)R2⊕i·Z]

12. result = result� n [result =
(

(−1)R2F (Z) + R3

)

mod 2n]
13. return (result,R3, R2)

3 The Flaw of Coron’s S-Box and Attack Principle

3.1 Target Steps in the Coron’s S-Box

Coron et al.’s paper proved that all the intermediate variables manipulated in Alg. 1
are well masked. However, there still exist several target steps in Alg. 1 even first-order
DPA does not work directly on Coron’s S-box. We review several steps of Coron’s
S-box considering a practical software implementation as follows.

The operation for ̂F (i), i ∈ {0, 1, . . . , N}, is decided by (−1)R2⊕i· ˜Z⊕i·R1 in Eq. (4),
which can be further transformed as

(−1)R2⊕i· ˜Z⊕i·R1 = (−1)R2⊕i·(Z⊕R1)⊕i·R1

= (−1)R2⊕i·Z⊕i·R1⊕i·R1

= (−1)R2(−1)i·Z . (5)
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We notice R2 is a one-bit mask (i.e. R2 ∈ {0, 1}) which affects steps 8, 9 and 10 of
Alg. 1 in every loop, where steps 9 and 10 perform operations as

result← result + ̂F (i)(−1)R2(−1)i·Z . (6)

In Eq. (6) the value of (−1)R2(−1)i·Z at step 9 directly decides the operation (addition
or subtraction) at step 10. Here, we assume that addition with − ̂F (0) is equivalent
to subtraction with ̂F (0) in terms of power consumption. And we denote the addition
and subtraction operations by +operation and −operation, respectively. As the −
operation involves an additional complement transform compared with the + operation
in a practical micro-processor, there may exists some difference between the + and −
operations in power consumption. Here we denote steps 9 and 10 as the target steps.

By way of experiment, we measured the power consumption when executing an
experimental C code that operates only steps 8, 9 and 10 using fixed values of R2⊕ i ·Z
and ̂F (0). As shown in Fig. 1, an obvious power difference was observed between the
cases of the + and − operations that correspond to R2 ⊕ i · Z = 0 and 1, respectively.

3.2 Experiment Setup and Overview of Our Attacks

We implemented Coron’s S-box over a composite field F2
24 based on Alg. 1 on the

SASEBO-G (Side-channel Attack Standard Evaluation Board, type-G) [9,5]. The SASEBO-
G is designed to develop evaluation schemes against physical attacks with FPGAs. We
use a 32-bit reconfigurable CPU called Microblaze on a Xilinx FPGA (Vertex-II pro,
xc2vp30) for the experiment. Coron’s S-box is written in C code and 1-MHz clock is
used for executing the compiled code. The power consumption of the CPU is obtained
by measuring the voltage drop of a resistor inserted between FPGA’s GND pins and the
ground of the board. As shown in Fig. 2, where the 8-bit plaintext, the 8-bit secret key
and the unmasked input of the S-box are denoted as P , K and a, respectively. And Z is
unmasked input of Alg. 1.
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Fig. 1. Averaged power traces for steps 8, 9 and 10 using fixed values of R2 ⊕ i · Z and ̂F (0)
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Fig. 2. The attacked S-box model

P is randomly chosen and all random variables are set to be uniformly distributed.
The S-box calculation is repeated for 4000 times and the averaged power traces are
shown in Fig. 3.

In Fig. 3, sixteen patterns can be clearly recognized corresponding to the 16-time
loop of Alg. 1 and furthermore the beginning and the ending of every loop can be
roughly guessed. Although the difference of means corresponding to + and − opera-
tions can be distinguished, but it only relates to the masked intermediate values, so first
order DPA doesn’t work. However the mask that masking target steps are used sixteen
times in Coron’s S-box, attackers can uses multiple points of power trace to reveal the
secret information.

In our attacks, the goal of our pre-processing for power traces is separating the power
traces into two subgroups with regards to the biased values of R2. This separation can
be achieved by looking into the probability density function of the certain segment of
the power traces and details will be explained later. After separation, this paper proposes
two post-processing methods to identify the secret key. One is perform traditional DPA
to one subgroup. The other method is calculation of the Difference of Means (DoM) for
two subgroups and match the peaks pattern and operation pattern to reveal the secret
information.
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Fig. 3. The upper figure plots the averaged trace for a software implementation of Coron’s S-box.
The lower figure shows the magnified average traces focusing on the calculation of Alg. 1.
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4 Pre-processing

The PDF scheme introduced by [12,10] involves using the histogram to specify the un-
balanced influences caused by different values of a random mask bit. Then after a simple
filtering and grouping of the power traces, every single subgroup should be vulnerable
to traditional power analysis again. However it is normally difficult to specify the cor-
rect time when the target steps is performed. In the case of Coron’s S-box, we would
like to see the PDF histogram at the moment of the + or− operation is performed. For
the purpose of identifying the correct attacking point, we divide the end of the first loop
into several parts along the time axis and plot the histogram for every part as shown
in Fig. 4. That is, we propose a new power analysis called PDF scanning method, in
which an attacker scans the power traces along the time axis and makes several plots
for the PDF. In this way, we can seek out the exact position where + or − operation is
performed by checking the shape of each plot for the PDF. In fact, as shown in Fig. 4,
we could find a special PDF plot at the time part 8. The magnified figure is shown in
Fig. 5.
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Fig. 4. Results of the PDF scanning method applying to around the end of the first loop of Alg. 1
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In Fig. 5, there are two peaks around the average power of 3.12 and 3.21. It is consid-
ered that two different distributions overlap each other and form those two peaks in the
PDF figures as also discussed in [10]. By setting a threshold around the average power
of 3.17, we separate the power trace into two subgroups. Notice that each subgroup
still contains the power traces influenced by both the + and − operations because the
threshold cannot separate two distributions perfectly. However, one subgroup contains
the power traces where more + operations are executed than that the − operations, and
vice versa for the other subgroup. Some discussion about the biased rate of R2 in each
subgroup is shown in Appendix A.

5 Two Post Analysis Methods

Our attack model used in this paper is similar to the one mentioned in [3] as

Z = φ(P, K), (7)

where φ is a Boolean function. The unmasked sensitive input of Alg. 1 Z is determined
by value of plaintext P and the secret key K . Denote a key guess by K� and the sensi-
tive variable according to this K� is denoted by Zk .

5.1 CPA Attack against One Subgroup

Notice that when one of the inputs for the scale product operation is zero, the result
becomes zero. Accordingly, when the first for-loop in Alg.1 is executed (i.e. i = 0 and
i · Z = 0), the value of (−1)R2⊕i·Z = (−1)R2 is decided only by R2. When it is the
first for-loop in Alg. 1 where the PDF separation is performed, even if P is randomly
selected, the biased + operation or − operation in every subgroup directly corresponds
to a biased R2. Therefore as a kind of post analysis, we can apply an improved version
of traditional DPA called (CPA [1]), where the correlation coefficient is applied to de-
termine the linear relationship between data. In the case of an implementation without
masking countermeasures, the correct key guess produces a recognizable higher corre-
lation coefficient between the vector of power traces and Zk at certain moments. When
the masking countermeasure is used but a mask is biased, we can still obtain similar
results although the correlation coefficient will become lower.

For the case of our software implementation of Coron’s S-box, we need two attacking
points; one is a point for separating the power traces (denoted by separation point) and
the other is for CPA attacks (denoted by CPA point). As mentioned previously we can
find the separation point by using the PDF scanning method at the first loop (i = 0).
Then, for the biased power traces, one of the remaining fifteen loops can be chosen as a
candidate for the CPA point. Here, we choose the second loop (i = 1) as the CPA point.

When we used 10 000 power traces in separating groups by the PDF scanning
method, the correct key can be distinguished from others with only about 200 traces. In
other words, a good separation by the PDF scanning method leads to a small number of
traces for CPA. However, the smaller the number of measurements become, the worse
separation would be obtained. Therefore, we would anticipate that an optimal number
of measurements exist between 200 and 10 000 in our experiment.
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5.2 Calculation of DoMs for Two Subgroups and Pattern Matching

Before introducing another post analysis method, we review the Fourier transform used
in Alg. 1 again. The basic formula of the S-box calculation based on the Fourier trans-
form is described in Eq. (3). Denoting 2n − 1 by N , Eq. (3) can be expressed using the
Hadamard matrix as

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

F (0)
F (1)
F (2)
F (3)

...
F (N)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=
1
2n

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 1 1 1 . . .
1 −1 1 −1 . . .
1 1 −1 −1 . . .
1 −1 −1 1 . . .
...

...
...

...
. . .

(−1)0·N (−1)1·N (−1)2·N (−1)3·N . . .

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

̂F (0)
̂F (1)
̂F (2)
̂F (3)

...
̂F (N)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (8)

As the Alg. 1 is a 16-time loop, the 1-bit R2 actually switches the practical calcula-
tion into two power profiles with regards to the + operation or − operation at sixteen
positions. As long as the PDF separation at one position generates two subgroups with
biased R2, the bias of + operation or − operation preserves for the rest fifteen target
positions. So after calculating the Difference of Means for two subgroups, 16 peaks
should appear. The important thing is that according to Eq. (2) the pattern of polarities
of these peaks should directly correspond to the value of Z .

Recover the Unmasked Input of Coron’s S-box: As a new post analysis method,
the input is fixed and 2000 power traces are used for the PDF separation. After that, we
calculate the average traces from each subgroup, and the difference of them is calculated
and plotted as shown in Fig. 6.
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Fig. 6. Difference of mean traces for two groups (Z = 1)

As expected, Fig. 6 shows a trace with sixteen peaks with positive or negative direc-
tions. According to the Eq. (2), the pattern of 16 peaks starts from time 110 in Fig. 6
matches the operation pattern for Z = 1. Therefore the sensitive unmasked input of
Alg. 1 Z is revealed by calculation of DoMs and the pattern marching.

Key Recovery from Unmasked Input: Real attackers can choose the first round of the
AES as the target to identify the secret key. As shown in Fig. 2, we have a = P ⊕K .
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As P is understandable and changeable by attackers, the recovery of a is equivalent to
the recovery of K .

The unmasked input of S-box a is an 8-bit unknown variable, while the unmasked
input of the Alg. 1 Z is a 4-bit variable. So given the value of Z , obviously the value
of a cannot be identified. The relation between a and Z is determined according to
the irreducible polynomial used in the combinational logic. By checking 256 possible
values of a in our implementation, we obtain the relationship between Z and a as shown
in Table 1.

From Table 1, we find that normally when Z is known, there are seventeen possible
values of a. However there is a special one-to-one corresponding pair that in the case
of Z = 0, a = 0. As a result, the 8-bit key can be successfully identified when the
attacker obtain the DoM figure as shown in Fig. 7. Figure 7 with sixteen peaks at the

Table 1. The relationship between Z and possible unmasked input of S-box a in our implemen-
tation

Z Possible unmasked input of S-box./a (number of possible values).
0 0 (1)
1 1, 8, 29, 47, 53, 54, 57, 64, 74, 99, 102, 171, 179, 194, 211, 232, 239 (17)
2 9, 17, 44, 72, 76, 86, 92, 118, 123, 132, 134, 136, 157, 214, 233, 234, 245 (17)
3 3, 24, 35, 39, 42, 75, 90, 93, 95, 110, 113, 165, 170, 192, 206, 222, 230 (17)
4 25, 26, 28, 60, 62, 65, 87, 138, 142, 153, 164, 200, 208, 218, 224, 235, 251 (17)
5 5, 40, 49, 73, 91, 101, 105, 121, 126, 147, 178, 221, 225, 229, 231, 238, 244 (17)
6 4, 27, 32, 37, 51, 97, 116, 131, 141, 145, 151, 154, 188, 212, 216, 228, 250 (17)
7 2, 16, 58, 77, 94, 106, 108, 114, 125, 128, 148, 159, 189, 197, 198, 203, 204 (17)
8 10, 61, 80, 98, 127, 146, 161, 182, 199, 202, 209, 210, 213, 217, 242, 243, 252 (17)
9 6, 48, 70, 78, 79, 81, 84, 135, 150, 155, 167, 180, 186, 190, 215, 220, 226 (17)
10 12, 21, 45, 55, 85, 96, 103, 111, 115, 140, 156, 158, 162, 163, 168, 181, 223 (17)
11 13, 14, 30, 31, 69, 71, 82, 100, 104, 109, 112, 129, 166, 173, 193, 240, 248 (17)
12 22, 36, 38, 43, 46, 59, 66, 67, 68, 107, 117, 133, 137, 176, 195, 247, 249 (17)
13 20, 63, 89, 119, 122, 143, 149, 160, 169, 177, 185, 191, 196, 227, 253, 254, 255 (17)
14 11, 18, 19, 23, 33, 34, 88, 144, 152, 172, 183, 184, 201, 207, 236, 241, 246 (17)
15 7, 15, 41, 50, 52, 56, 83, 120, 124, 130, 139, 174, 175, 187, 205, 219, 237 (17)
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Fig. 7. Difference of mean traces for two groups (Z = 0)
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same direction corresponds to Z = 0. Then according to the one-to-one correspondence
in Table 1, a = 0. The corresponding 8-bit key piece is the bitwise inversion of the
corresponding P . On the other hand, notice that when attackers get a pair of P1 and P2
corresponding two different groups of possible values of a, the attacker can restraint the
key space by using the relationship as:

a1 ⊕ a2 = (P1 ⊕K)⊕ (P1 ⊕K) = P1 ⊕ P2. (9)

We checked our implementation with Table 1, with only a pair of P1 and P2 that lead
us to two groups of a, at most two key candidates are left. In other words, at most 3
different values of Z are needed to identify the key.

6 Comparison of Two Attack Methods

The common parts of those two attack methods (referred as PDF+CPA attack and
PDF+DoMs attack) are the same target steps and the use of PDF separation. The major
differences between them are listed as follows:

– In the PDF+CPA attack, after the PDF separation traditional CPA is operated (a
comparison between PDF+CPA and Second-Order DPA is given in Appendix B),
while in the PDF+DoMs attack, only DoMs is calculated and pattern matching is
performed to reveal the secret information.

– In the PDF+CPA attack, for the subsequent CPA attack, P is randomly chosen,
while in the PDF+DoMs attack, a fixed P is used 2000 times to identify the value of
corresponding Z . PDF+DoMs attack needs fewer power traces, however attackers
need more details of the implementation.

– In the PDF+CPA attack, the power consumption for the first two loops of Alg. 1
is enough for a successful attack, while in the PDF+DoMs attack, the power traces
containing the entire 16 loops in Alg. 1 are necessary. Since we can have a better
resolution for the power traces in PDF+CPA attack, we have a better PDF separa-
tion rate compared with that in the PDF+DoMs attack.

– Only the PDF at the first loop (i = 0 in Alg. 1) is meaningful in the PDF+CPA
attack, while the PDF separation can be applied to any loop (i = 0∼15 in Alg. 1)
in the case of the PDF+DoMs attack.

7 Possible Countermeasures for the PDF+CPA Attack

We propose a possible countermeasure to enhance the security of Coron’s S-box. Con-
sidering that the loop index i is also a sensitive variable, we try to mask i with a random
value as a countermeasure. For instance, we introduce a look-up table q[l] (0 ≤ l ≤ 15)
where each entry has a different integer randomly chosen from 0, 1, · · ·15 to randomize
the loop index in the Coron’s S-box algorithm (see steps 2a and 4a in Alg. 2 in Ap-
pendix C). This countermeasure can prevent the PDF+CPA attack completely, however,
in the case of Z = 0 the randomization of i cannot disorder the + and− operations. As
a result, the peaks of DoMs still exists when Z = 0.



Security Evaluation of a DPA-Resistant S-Box Based on the Fourier Transform 13

8 Conclusions and Future Work

This paper reviews the algorithm of the S-box calculation based on the DFT that is
introduced as a first order DPA countermeasure [3]. Based on a practical software im-
plementation, this paper presents a flaw of this s-box algorithm due to the difference
of the power consumptions between different operations. By analyzing the power con-
sumption related to this flaw, we use PDF of the power traces to separate them into two
subgroups with biased operations. We propose and compare two post analysis methods
in which a first-order DPA, and pattern matching after calculation of DoMs are used,
respectively. Finally, we propose a possible algorithm-level countermeasure against the
attack based on DPA attack. However, our countermeasure cannot prevent the attack
based on DoMs and pattern matching completely, and the corresponding countermea-
sures should be considered in the future.
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Appendix

A The Biased Rate of R2 after PDF Separation

Suppose that the power consumption of + and − operations, denoted as Padd and Psub

respectively, both follow a normal distribution with different means of μadd and μsub

and the same deviation σ.
As long as there exists a comparably big difference between μadd and μsub, We

expect that the histogram of points at the appropriate time has the shape as shown in
Fig. 8. The two peaks in Fig. 8 correspond to μadd and μsub, respectively. The shape of
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Fig. 8. PDF of two normal distributions

every mountain relates to the value of the standard deviation σ. Because μadd 	= μsub,
two distributions will not overlap perfectly. If we use the middle of the two distributions
(i.e. the mean of all power traces) as a threshold to separate power traces into two
subgroups, we can expect in this loop one subgroup contains the addition cases more
than the subtraction cases, and vice versa for the other group. The biased operation is
equivalent to the biased value of R2. Denoting the R2 which accounts for more than a
half in one group as the major R2, and the separation rate is defined as the ratio of the
number of traces with the major R2 to the total number of traces in one group. Denoting
μadd − μsub and the separation rate by δ and α, respectively. The separation rate α can
be computed by the ratio of δ to the standard deviation σ as shown in Fig. 9.
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Suppose that the value of δ (δ > 0) is specific in a certain implementation. The result
of our attack scenario only relates to the value of σ. The smaller the σ is, the higher the
separation rate α becomes and the bigger peak we can get1.

B Comparison between PDF+CPA and Second Order DPA

If we stretch the interpretation of second-order DPA, PDF+CPA attack can be regarded
as a kind of second-order DPA because two different attack points are used for power
analysis. When permitting this extended interpretation, it is natural for us to have been
successful in attacking Coron’s S-box. However, the efficiency of PDF+CPA attack is
better than or equivalent to first-order DPA in terms of the number of power traces.
Therefore, the separation step in our two-step approach can be considered as a sort of
the filtering processes that make it possible or easy to implement the succeeding first-
order DPA.

It is worth mentioning that our attack can reduce the number of traces compared to
conventional first-order DPA attacks. To explain this, we consider attacking Prouff’s
S-box (refer to [8] for the detailed algorithm). Coron et al. pointed out a flaw

T = i · Z̃ ⊕R1 · (Z̃ ⊕ i⊕R2) = i · Z ⊕R1 · (Z̃ ⊕R2), (10)

where R1 and R2 are n-bit random variables, i is the loop index and Z̃ = Z ⊕ R1.
Coron et al. utilized the fact that R1 · (Z̃ ⊕ R2) equals to 0 or 1, respectively with the
probabilities of 17/32 or 15/32 (see the lemma in Sect. 4.1 in [3]). They applied first-
order DPA by using a set of the power traces where the bias is not very prominent as
the absolute difference between the probabilities λ is only 1/16. And it turned out that
λ in our experiment is much more than 1/16 after the PDF separation for both cases
of Coron’s S-box and Prouff’s S-box. This way, our attack can reduce the number of
power traces compared to a straightforward first-order DPA.

1 A rough approximation for the amplitude of the peak in difference of means is (2α− 1)δ.
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C Algorithm of a Possible Countermeasure against PDF+CPA
Attack

Algorithm 2. Coron’s S-box with Randomized For Loop
INPUTS: A masked value ˜Z = Z ⊕R1 and the mask R1

OUTPUT: The 3-tuple output
(

(

(−1)R2F (Z) + R3

)

mod 2n, R3 ,R2

)

1. Generate a random bit R2

2. Generate two n-bit random R3 and R4

2a. Generate a look-up table q[l] (0 ≤ l ≤ 15) (each entry has a different integer
randomly chosen from 0, 1, · · · 15

3. result← 2nR3 + R4

4. for l from 0 to 2n − 1 do
4a. i← q[l]
5-12. The same as Alg. 1.
13. return (result,R3, R2)
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Abstract. The overall structure is one of the most important properties
of block ciphers. At present, the most common structures include Feistel
structure, SP structure, MISTY structure, L-M structure and Gener-
alized Feistel structure. In [29], Choy et al. proposed a new structure
called GF-NLFSR (Generalized Feistel-NonLinear Feedback Shift Regis-
ter), and designed a new block cipher called Four-Cell which is based on
the 4-cell GF-NLFSR. In this paper, we first study properties of the n-
cell GF-NLFSR structure, and prove that for an n-cell GF-NLFSR, there
exists an (n2 +n− 2) rounds impossible differential. Then we present an
impossible differential attack on the full 25-round Four-Cell using this
kind of 18-round impossible differential distinguisher together with dif-
ferential cryptanalysis technique. The data complexity of our attack is
2111.5 and the time complexity is less than 2123.5 encryptions. In addi-
tion, we expect the attack to be more efficient when the relations between
different round subkeys can be exploited by taking the key schedule al-
gorithm into consideration.

Keywords: GF-NLFSR structure, Four-Cell block cipher, Impossible
differential cryptanalysis, Data complexity, Time complexity.

1 Introduction

The overall structure is one of the most important properties of block ciphers,
and it plays important roles in the round number choice, software and hardware
implementation performances and so on. At present, the most often used struc-
tures include Feistel structure, SP structure, MISTY structure, L-M structure
and Generalized Feistel structure. Feistel structure was introduced by H. Feistel
in the design of Lucifer block cipher and later got famous since it was used in the
design of DES. Feistel structure can transfer any function (usually called round
function F ) to a permutation. Now there are a lot of block ciphers employing
the Feistel structure, such as Camellia, FEAL, GOST, LOKI, E2, Blowfish, RC5
and so on. The security of Feistel structure against differential and linear crypt-
analysis was evaluated by many researchers, for example [1,2,3], and meanwhile
there are many results such as [4,5,6,7,8,9,10] about the pseudorandomness of
Feistel structure. Besides the Feistel structure, the other most often used struc-
ture is the SP structure, the well known block ciphers such as AES, Serpent

S. Qing, C.J. Mitchell, and G. Wang (Eds.): ICICS 2009, LNCS 5927, pp. 17–31, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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and ARIA all employ the SP structure. In each round of the SP structure, first
a layer of key-dependent inversive function named S is applied to the input,
and then applies a permutation or an inversive linear transformation named P .
Hence the SP structure is very simple and clear, and S is usually called the con-
fusion layer which achieves confusion in the cipher and P is usually referred to
as the diffusion layer which diffuses efficiently. MISTY structure is another kind
of important structures which was proposed by M. Matsui in [11], and it was
used in the design of the block ciphers MISTY [12] and KASUMI [13]. There
are many results about the security analysis of the MISTY structure such as in
[14,15,16,17]. S. Vaudenay et al. named the structure of the block cipher IDEA
as the L-M structure or Lai-Massey structure [18], and the FOX [19] cipher also
employs a variant of the L-M structure. The generalized Feistel structure was
first introduced by B. Schneier and J. Kelsey which can be considered as an
unbalanced Feistel structure[20], and then many variants of generalized Feistel
structure are proposed such as CAST-256-type [21], MARS-type [22], SMS4-type
[23], CLEFIA-type [24] and so on. All these kinds of generalized Feistel struc-
tures have similar advantages such as decryption - encryption similarity and the
inverse of round function is not necessary in decryption. Furthermore, this can
make the design of round function more simple and flexible. The security analysis
of generalized Feistel structure is very important when they are used to design
new block ciphers, and there are many results [25,26,27,28] about the security of
different kinds of generalized Feistel structures against the differential and linear
cryptanalysis and also their pseudorandomness.

In [29], Choy et al. proposed a new structure called GF-NLFSR (Generalized
Feistel-NonLinear Feedback Shift Register). It can be considered as an n-cell
extension of combining the MISTY structure and Generalized Unbalanced Feis-
tel Network together. The security of the structure against many attacks such
as differential, linear, impossible differential and integral cryptanalysis are also
considered in [29]. For an n-cell GF-NLFSR, an upper bound for the differential
and linear hull probabilities for any n + 1 rounds are given, and a 2n− 1 rounds
impossible differential distinguisher and a 3n−1 rounds integral distinguisher on
the n-cell GF-NLFSR are demonstrated. Furthermore, a new block cipher called
Four-Cell which is based on the 4-cell GF-NLFSR was designed in [29]. The block
and key size of Four-Cell are both 128-bit, and there are 25 rounds in total.

Impossible differential cryptanalysis [30] was first proposedby Biham, Biryukov
and Shamir in 1999, and it was applied to analyze the Skipjack block cipher. Un-
like differential cryptanalysis which exploits differentials with the highest possible
probability, impossible differential cryptanalysis uses the differentials which hold
with probability 0, which can thus be called impossible differential. The impossible
differentials can usually be built in a miss-in-the-middle manner. Recently, impos-
sible differential cryptanalysis had received worldwide attention, and its applica-
tion to block ciphers such as AES, Camellia and MISTY all achieved very good
results [31,32,33,34,35].

In [29], Proposition 3 stated that for an n-cell GF-NLFSR, there exist at most
2n−1 rounds impossible differential distinguishers using the U-method proposed
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in [36]. However, we examine the property of n-cell GF-NLFSR structure and
demonstrate that there exists a (n2 +n−2) rounds impossible differential distin-
guisher. Then we present an impossible differential attack on the full 25-round
Four-Cell using this kind of 18-round impossible differential distinguisher to-
gether with differential cryptanalysis technique.

This paper is organized as follows. In Section 2, we give a brief description
of the n-cell GF-NLFSR structure and Four-Cell block cipher. In Section 3,
we describe some useful properties of the n-cell GF-NLFSR structure and the
(n2 + n − 2) rounds impossible differential. Then in Section 4, we present our
impossible differential attack on the full 25-round Four-Cell block cipher. Finally,
in Section 5 we summarize this paper.

2 The n-Cell GF-NLFSR Structure and Four-Cell Block
Cipher

2.1 The n-Cell GF-NLFSR Structure

In this section, we will give a brief description of the n-cell GF-NLFSR structure,
and Fig. 1 below illustrates one round of GF-NLFSR.

For an n-cell GF-NLFSR structure, suppose the size of the internal sub-block
is m-bit, and then we can denote the mn-bit input block as (x1, x2, x3, ..., xn) ∈
({0, 1}m)n. If we denote the round subkey as sk, then the output of one round
n-cell GF-NLFSR transformation is defined as follows.

x2 = x2,
x3 = x3,
· · ·
xn = xn,
xn+1 = f(x1, sk)⊕ x2 ⊕ x3...⊕ xn,

where the output block is denoted as (x2, x3, ..., xn, xn+1) ∈ ({0, 1}m)n. Note
here the symbol⊕ is used to denote finite field addition (XOR) over GF (2)m, and
the function f : {0, 1}m × {0, 1}k → {0, 1}m is the round function. Specifically,
for each fixed round key sk, the round function f(·, sk) : {0, 1}m → {0, 1}m must
be a permutation, or else the n-cell GF-NLFSR structure is not able to decrypt
correctly. Therefore, in our later analysis, we will assume the round function f
is a permutation when the round key is fixed.

2.2 Four-Cell Block Cipher

The block and key size of Four-Cell are both 128-bit, and it uses the 4-cell GF-
NLFSR structure. Since the designers only give a rough suggestion for the key
schedule algorithm, namely using a similar cipher with 26 rounds to generate
the round keys needed. Hence in this paper, we will omit the key schedule and
just assume that the round keys are randomly chosen. The encryption algorithm
of Four-Cell can be described briefly as follows.
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Fig. 1. One Round of n-Cell GF-NLFSR structure

Let the plaintext be denoted by P = (x1, x2, x3, x4) ∈ ({0, 1}32)4, then after
applying the full 25 rounds encryption, the 128-bit ciphertext can be denoted
by C. Let (xi, xi+1, xi+2, xi+3) ∈ ({0, 1}32)4 denote the input of the i-th round,
then the output of the i-th round can be computed as follows.

xi+1 = xi+1,
xi+2 = xi+2,
xi+3 = xi+3,
xi+4 = fi(xi, ski)⊕ xi+1 ⊕ xi+2 ⊕ xi+3.

For rounds i = 1, 2, .., 5 and i = 21, 22, .., 25, the round keys are denoted as ski ∈
{0, 1}32 and the round function is defined as fi(xi, ski) = MDS(S(xi ⊕ ski)).
For rounds i = 6, 7, .., 20, the round keys are denoted as ski = (ski0, ski1) ∈
({0, 1}32)2, and the round function is defined as fi(xi, ski) = S(MDS(S(xi ⊕
ski0))⊕ ski1).

Here in each round function, S : ({0, 1}8)4 → ({0, 1}8)4 is four parallel 8× 8
s-boxes, and the s-box is similar with the s-box used in the SubBytes operation
in AES. The transformation MDS : ({0, 1}8)4 → ({0, 1}8)4 is a 4-byte to 4-byte
maximal distance separable transform with optimal branch number 5, and it is
similar with the MixColumn operation in AES. In the end, the output after 25
rounds is XORed with a 128-bit post-whitening key K26 = (k1

26, k
2
26, k

3
26, k

4
26) to

get the ciphertext, namely C = (x26 ⊕ k1
26, x27 ⊕ k2

26, x28 ⊕ k3
26, x29 ⊕ k4

26).

3 Differential Property of the n-Cell GF-NLFSR
Structure

For the n-cell GF-NLFSR structure, we can express the nm-bit input as n
words which consists of m bits each. Suppose we have a pair of plaintexts
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X = (x1, x2, x3, ..., xn) and X∗ = (x∗
1, x

∗
2, x

∗
3, ..., x

∗
n), and their difference is de-

noted by ΔX = (Δx1, Δx2, ..., Δxn), where Δx1 = x1 ⊕ x∗
1, ..., Δxn = xn ⊕ x∗

n.
Note the symbol 0 in the difference ΔX = (Δx1, Δx2, Δx3, 0, ..., 0) means that
the corresponding byte difference is zero.

Lemma 1. For the n-cell GF-NLFSR structure, there exists the following n
rounds differential characteristic whose probability is equal to 1.

(Δx1, Δx2, ..., Δxi−1, Δxi, 0, ..., 0) n rounds−−−−−−→ (Δy1, Δy2, ..., Δyi, Δyi+1, 0, ..., 0).

We denote this kind of differential characteristic as Δi, where 1 ≤ i ≤ n − 1,
and these differential characteristics Δi satisfy the following two properties.

1. Δy1 ⊕Δy2 ⊕ ...⊕Δyi ⊕Δyi+1 = 0.
2. If Δxi �= 0, then Δyi+1 �= 0.

Proof. Let the round function of Round i be fski(xi) = fi(xi, ski). Then when
the round key ski is fixed, the round function fski must be a permutation, or else
one can not decrypt correctly for the n-cell GF-NLFSR structure. According to
the structure of the n-cell GF-NLFSR, we can get the following equations which
are illustrated in Table 1.

Δy1 = fsk1(x1)⊕ fsk1(x1 ⊕Δx1)⊕Δx2 ⊕ ...⊕Δxi (1)

Δyi = fski(xi)⊕ fski(xi ⊕Δxi)⊕Δy1 ⊕ ...⊕Δyi−1 (2)

Δyi+1 = Δy1 ⊕ ...⊕Δyi−1 ⊕Δyi (3)

Table 1. The n rounds differential characteristic of the n-cell GF-NLFSR structure

Round\Diff. Δx1 Δx2 . . . Δxi−1 Δxi 0 . . . 0
1 Δx2 Δx3 . . . Δxi 0 . . . 0 Δy1

...
...

...
...

...
...

...
...

...
i− 1 Δxi 0 . . . 0 0 Δy1 . . . Δyi−1

i 0 . . . 0 0 Δy1 . . . Δyi−1 Δyi

i + 1 0 . . . 0 Δy1 . . . Δyi−1 Δyi Δyi+1

i + 2 0 . . . Δy1 . . . Δyi−1 Δyi Δyi+1 0
...

...
...

...
...

...
...

...
...

n Δy1 Δy2 . . . Δyi Δyi+1 0 . . . 0

According to Equ. (3), the following one round differential characteristic will
hold with probability 1.

(0, ..., 0, Δy1, ..., Δyi−1, Δyi, Δyi+1)
1 round−−−−−→ (0, ..., 0, Δy1, ..., Δyi, Δyi+1, 0).
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Similarly, we can know that all the differential characteristics from Round (i+2)
to Round n in Table 1 hold with probability 1. Therefore, for the n-cell GF-
NLFSR structure, there exists the following n rounds differential characteristic
and its probability is equal to 1.

(Δx1, Δx2, ..., Δxi−1, Δxi, 0, ..., 0) n rounds−−−−−−→ (Δy1, Δy2, ..., Δyi, Δyi+1, 0, ..., 0)

Then according to Equ. (3), we can easily get the first property, i.e. Δy1 ⊕
Δy2 ⊕ ...⊕Δyi ⊕Δyi+1 = 0. Therefore, in the following we only need to prove
the second property.

According to Equ. (2) and Equ. (3), we can get the following equation.

Δyi+1 = Δy1 ⊕ ...⊕Δyi−1 ⊕Δyi = fski(xi)⊕ fski(xi ⊕Δxi).

When Δxi �= 0, we can conclude that fski(xi) ⊕ fski(xi ⊕ Δxi) �= 0 since the
function fski is a permutation. Therefore, we get the second property, namely if
Δxi �= 0, then Δyi+1 �= 0. ��

Lemma 2. For the inverse of the n-cell GF-NLFSR structure which is denoted
as the n-cell GF-NLFSR−1 structure, there exists the following (2n− 2) rounds
differential characteristic whose probability is equal to 1.

(β, β, 0, ..., 0) 2n−2 rounds−−−−−−−−→ (?, ..., ?, b2, b1, 0).

We denote this kind of differential characteristic as Δ−1
β , where the symbol ?

denotes an unknown difference and β, b2, b1 denote non-zero differences.

Proof. According to the structure of the n-cell GF-NLFSR−1, we can get the
following one round differential characteristic which holds with probability 1,
and this kind of differential is illustrated in Table 2.

(β, β, 0, ..., 0) 1 round−−−−−→ (0, β, β, 0, ..., 0).

Similarly, all the differential characteristics from the Round 2 to Round (n− 1)
in Table 2 all hold with probability 1. Then in the Round n, if we denote the

Table 2. The (2n− 2) rounds differential of the n-cell GF-NLFSR−1 structure

Round\Diff. β β 0 0 . . . 0
1 0 β β 0 . . . 0
...

...
...

...
...

...
...

n− 2 0 0 . . . 0 β β

n− 1 0 0 . . . 0 0 β

n b1 0 0 . . . 0 0
n + 1 b2 b1 0 . . . 0 0

...
...

...
...

...
...

...
2n− 2 ? . . . ? b2 b1 0
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round function as gn, then b1 = gn(z) ⊕ gn(z ⊕ β). Because the difference β is
non-zero and the function gn is a permutation, we can conclude that b1 �= 0.
Similarly, in the (n + 1)-th round we have b2 = gn+1(w) ⊕ gn+1(w ⊕ b1), and
thus we can conclude that b2 �= 0 since b1 �= 0.

Finally, according to the property of the n-cell GF-NLFSR−1 structure, the
differential characteristics from Round (n + 2) to Round (2n− 2) in Table 2 all
hold with probability 1. Therefore, for the n-cell GF-NLFSR−1 structure, there
exists the following differential characteristic whose probability is equal to 1.

(β, β, 0, ..., 0) 2n−2 rounds−−−−−−−−→ (?, ..., ?, b2, b1, 0). ��

Theorem 1. For the n-cell GF-NLFSR structure, there exists the following kind
of (n2 + n− 2) rounds impossible differential where α and β are non-zero differ-
ences.

(α, 0, ..., 0) n2+n−2 rounds−−−−−−−−−−→ (β, β, 0, ..., 0).

Proof. This kind of (n2 + n − 2) rounds impossible differential is constructed
using the miss-in-the-middle technique. First we construct an n(n − 1) rounds
differential characteristic of the encryption direction and an (2n − 2) rounds
differential characteristic of the decryption direction whose probabilities are both
equal to 1. Then if these two differential characteristics contradict each other in
the middle, we get the (n2 +n− 2) rounds impossible differential. In Table 3 we
illustrate this kind of impossible differential in detail.

When we choose the input difference as (α, 0, ..., 0), we can construct an n(n−
1) rounds differential with probability 1 as follows. First of all, based on Lemma
1, we can construct the following n rounds differential Δ1 whose probability is
equal to 1.

(α, 0, ..., 0) n rounds−−−−−−→ (Δx2
1, Δx2

2, 0, ..., 0).

Since the input difference α is non-zero, according to property 1 and 2 of Lemma
1, we know that Δx2

2 is also non-zero and Δx2
1 ⊕Δx2

2 = 0.
Then, we start with the input difference of (Δx2

1, Δx2
2, 0, ..., 0), and according

to Lemma 1, we can construct again an n rounds differential Δ2 whose proba-
bility is 1 as follows.

(Δx2
1, Δx2

2, 0, ..., 0) n rounds−−−−−−→ (Δx3
1, Δx3

2, Δx3
3, 0, ..., 0).

Since Δx2
2 is non-zero, we know that Δx3

3 �= 0 and Δx3
1 ⊕ Δx3

2 ⊕ Δx3
3 = 0.

Similarly, we can construct the i-th (3 ≤ i ≤ n− 1) n rounds differential Δi in
turn. In the end, the (n− 1)-th n rounds differential Δn−1 is as follows, and we
can conclude that Δxn

n �= 0 and Δxn
1 ⊕Δxn

2 ⊕Δxn
3 ⊕ ...⊕Δxn

n = 0.

(Δxn−1
1 , Δxn−1

2 , ...., Δxn−1
n−1, 0) n rounds−−−−−−→ (Δxn

1 , Δxn
2 , Δxn

3 , ..., Δxn
n).

By concatenating the above differentials together, we can get the following n(n−
1) rounds differential whose probability is equal to 1 and Δxn

n is non-zero.

(α, 0, ..., 0)
n(n−1) rounds−−−−−−−−−→ (Δxn

1 , Δxn
2 , Δxn

3 , ..., Δxn
n).
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Table 3. The (n2 +n−2) rounds impossible differential of n-cell GF-NLFSR structure

Round\Diff. α 0 0 . . . 0 0
1 0 0 0 . . . 0 Δx2

1

2 0 0 . . . 0 Δx2
1 Δx2

2

3 0 . . . 0 Δx2
1 Δx2

2 0
...

...
...

...
...

...
...

n Δx2
1 Δx2

2 0 . . . 0 0
n + 1 Δx2

2 0 0 . . . 0 Δx3
1

n + 2 0 0 . . . 0 Δx3
1 Δx3

2

n + 3 0 . . . 0 Δx3
1 Δx3

2 Δx3
3

...
...

...
...

...
...

...
2n Δx3

1 Δx3
2 Δx3

3 0 . . . 0
...

...
...

...
...

...
...

n(n− 2) Δxn−1
1 Δxn−1

2 Δxn−1
3 . . . Δxn−1

n−1 0
...

...
...

...
...

...
...

n(n− 1) Δxn
1 Δxn

2 Δxn
3 . . . Δxn

n−1 Δxn
n

? . . . ? b2 b1 0
n(n− 1) + 1 ? . . . b2 b1 0 0

...
...

...
...

...
...

...
n2 − 3 b2 b1 0 0 . . . 0
n2 − 2 b1 0 0 . . . 0 0
n2 − 1 0 0 . . . 0 0 β

n2 0 0 . . . 0 β β
...

...
...

...
...

...
...

n2 + n− 3 0 β β 0 . . . 0

n2 + n− 2 β β 0 0 . . . 0

In the decryption direction, considering the inverse structure n-cell
GF-NLFSR−1, we get the following 2n−2 rounds differential characteristic with
probability 1 according to Lemma 2.

(β, β, 0, ..., 0) 2n−2 rounds−−−−−−−−→ (?, ..., ?, b2, b1, 0).

If we concatenate the above n(n − 1) rounds differential of the encryption di-
rection and the (2n− 2) rounds differential of the decryption direction together,
we can construct the following (n2 + n− 2) rounds impossible differential since
they contradict each other at Δxn

n.

(α, 0, 0, ..., 0)
(n2+n−2) rounds

�→ (β, β, 0, ..., 0). ��
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4 Security Analysis of Four-Cell Block Cipher

According to Theorem 1, for Four-Cell block cipher which employs the 4-cell GF-
NLFSR structure, there exists an 18 rounds impossible differential as follows.

(α, 0, 0, 0)
18 rounds
�→ (β, β, 0, 0)

By setting the 18-round impossible differential distinguisher in the middle rounds,
we can present an impossible differential attack on the full 25-round Four-Cell by
analyzing the first 4 rounds before and the last 3 rounds after the distinguisher.
Note the round functions of the first 5 rounds and the last 5 rounds are all defined
as fi(xi, ski) = MDS(S(xi ⊕ ski)).

Let the plaintext be X = (x1, x2, x3, x4) ∈ ({0, 1}32)4, then the intermediate
state after 3 rounds and 4 rounds encryption can be denoted as (x4, x5, x6, x7)
and (x5, x6, x7, x8) respectively. Furthermore, the intermediate state after 22
rounds encryption can be denoted as (x23, x24, x25, x26) and the 128-bit cipher-
text should be C = (c1, c2, c3, c4) = (x26 ⊕ k1

26, x27 ⊕ k2
26, x28 ⊕ k3

26, x29 ⊕ k4
26).

Suppose we choose another plaintext X∗ = (x∗
1, x

∗
2, x

∗
3, x

∗
4) ∈ ({0, 1}32)4, and the

plaintext difference can be denoted as Δxi = xi ⊕ x∗
i .

Then for the last three rounds of Four-Cell, we have the following equations.

x27 = MDS(S(x23 ⊕ sk23))⊕ x24 ⊕ x25 ⊕ x26,
x28 = MDS(S(x24 ⊕ sk24))⊕ x25 ⊕ x26 ⊕ x27,
x29 = MDS(S(x25 ⊕ sk25))⊕ x26 ⊕ x27 ⊕ x28.

If we denote rk25 = k1
26 ⊕ k2

26 ⊕ k3
26 ⊕ k4

26, then the input of the Sbox layer for
Round 25 can be computed as follows.

y25 = S−1(MDS−1(c1 ⊕ c2 ⊕ c3 ⊕ c4 ⊕ rk25)) = x25 ⊕ sk25.

Similarly, we can denote rk24 = sk25 ⊕ k1
26 ⊕ k2

26 ⊕ k3
26, and compute the input

of the Sbox layer for Round 24 as follows.

y24 = S−1(MDS−1(c1 ⊕ c2 ⊕ c3 ⊕ y25 ⊕ rk24)) = x24 ⊕ sk24.

Finally, for Round 23 the output of the round function is c1 ⊕ c2 ⊕ y24 ⊕ y25 ⊕
sk25 ⊕ sk24 ⊕ k1

26 ⊕ k2
26. If we denote rk23 = sk24 ⊕ sk25 ⊕ k1

26 ⊕ k2
26, then the

input of the round function can be computed in a similar way.

y23 = S−1(MDS−1(c1 ⊕ c2 ⊕ y24 ⊕ y25 ⊕ rk23)) = x23 ⊕ sk23.

Therefore, considering that Δx23 = Δy23, Δx24 = Δy24, Δx25 = Δy25 and
Δx26 = Δc1, we can obtain the values of (Δx23, Δx24, Δx25, Δx26) by just com-
puting the values of y25, y24 and y23 for a pair of ciphertexts C = (c1, c2, c3, c4)
and C∗ = (c∗1, c

∗
2, c

∗
3, c

∗
4).

For the first four rounds of Four-Cell, if we choose the plaintext difference as
(Δx1, Δx2, Δx3, Δx4) = (0, 0, 0, α), then we can get the following equations.

Δx5 = α,
Δx6 = 0,
Δx7 = 0,
Δx8 = MSD(S(x4 ⊕ sk4))⊕MSD(S(x4 ⊕ α⊕ sk4))⊕ α.
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Here, Δx8 = 0 holds if and only if S(x4⊕ sk4)⊕S(x4⊕α⊕ sk4) = MDS−1(α).
Because the branch number of MDS is 5, there is at most one passive byte of
α. For simplicity, we can assume the last byte of α is passive.

Let α = (α1, α2, α3, α4) ∈ ({0, 1}8)4 and β = (β1, β2, β3, β4) ∈ ({0, 1}8)4,
and then we will use the symbol α

S←→ β to express that there exists xi =
(xi,1, xi,2, xi,3, xi,4) ∈ ({0, 1}8)4 such that S(xi)⊕ S(xi ⊕ α) = β.

Therefore, we can choose a set A which is defined as follows.

A = {α = (α1, α2, α3, 0) ∈ ({0, 1}8)4|α S←→MDS−1(α)}.

Note here the necessary condition for α
S←→ MDS−1(α) is that α1, α2, and α3

should satisfy a linear relation (e.g. for the MDS used in AES, the linear relation
is 0b · α1 ⊕ 0d · α2 ⊕ 09 · α3 = 0). Furthermore, for the Sbox of Four-Cell, the
probability of αi

S←→ βi holds is about 2−1 for ∀βi ∈ {0, 1}8. Therefore, the set
A contains about |A| ≈ (28−1)×(28−1)×2−1×2−1×2−1 ≈ 213 possible values.
We also test this estimation using computer program, and with the same MDS
and the Sbox used in AES, our searching result shows that the set A contains
7965 ≈ 212.96 possible values of α which is very close to the theory estimation.

After analyzing the first four rounds and the last three rounds of Four-Cell,
we can set the 18-round impossible differential at Round 5 to Round 22 and
apply an impossible differential attack on the full 25-round Four-Cell. The attack
procedure consists of three steps, and we will utilize impossible differential attack
technique together with some properties of the structure.

The first step of the attack is data collection. We first choose appropriate
plaintext structures defined as follows.

SP = {(a1, a2, a3, x4)},

where a1, a2, a3 are 32-bit constants and the last byte of x4 is also an 8-bit con-
stants, namely x4 = (x4,1, x4,2, x4,3, a4,4) ∈ ({0, 1}8)4, x4,j ∈ {0, 1}8. Therefore,
each structure contains 224 plaintexts and they can construct about 224×213/2 ≈
236 useful pairs whose plaintext differences satisfy the conditions listed above.

The second step of the attack is data filtering, in which we will discard
all the useless pairs which do not satisfy the corresponding ciphertext differ-
ence. Note the output difference after the impossible differential distinguisher is
(Δx23, Δx24, Δx25, Δx26) = (β, β, 0, 0), and according to the structure of Four-
Cell, the ciphertext difference (Δc1, Δc2, Δc3, Δc4) = (Δx26, Δx27, Δx28, Δx29)
should satisfy the following two conditions.

Δc1 = 0,
Δc1 ⊕Δc2 ⊕Δc3 ⊕Δc4 = 0.

Therefore, the probability of a pair remains after this filtering is about 2−64.
The third step of the attack is key recovery. First of all, for each guess of

(sk4,1, sk4,2, sk4,3) we can partially encrypt Round 4 to check if a pair satisfies
the distinguisher. Note for each plaintext pair X = (x1, x2, x3, x4) and X∗ =
(x∗

1, x
∗
2, x

∗
3, x

∗
4), a useful pair must satisfy that the output difference of the round
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function in Round 4 equals to the input difference x4 ⊕ x∗
4. Therefore, based on

this property we can discard some useless pairs to reduce the complexity in the
following steps, and the probability of a pair remains after this filtering is about
2−21. Then for all the remained pairs, we guess the values of rk25 and rk24 to
decrypt Round 25 and Round 24 respectively. At last we recover the value of
rk23 by differential techniques. Then we can discard all the wrong subkey guesses
using the impossible differential sieving techniques.

In the following, we will describe the attack procedure in detail.

1. Data Collection: Choose 2m structures and each structure is constructed as
follows:

x1 = a1,
x2 = a2,
x3 = a3,
x4 = (x4,1, x4,2, x4,3, a4,4),

where (a1, a2, a3) are 32-bit constants, a4,4 is an 8-bit constant and the 3
bytes (x4,1, x4,2, x4,3) take all the possible values of ({0, 1}8)3. Then each
structure contains 224 plaintexts, which can generate about 224 · 213/2 = 236

plaintext pairs. Therefore, 2m structures can generate about 2m+36 plaintext
pairs.

2. Data Filtering: According to the property of ciphertext difference, for a useful
pair the difference (Δc1, Δc2, Δc3, Δc4) should satisfy the following condi-
tions.

Δc1 = 0,
Δc1 ⊕Δc2 ⊕Δc3 ⊕Δc4 = 0.

Therefore, after this test the expected number of remaining pairs is about
2m+36 · 2−64 = 2m−28.

3. For each guess of the 24-bit subkey (sk4,1, sk4,2, sk4,3), proceed as follows:
(a) List all the possible values of rk23 as a table L.
(b) For each of the remaining plaintext pair X = (x1, x2, x3, x4) and X∗ =

(x∗
1, x

∗
2, x

∗
3, x

∗
4), partially encrypt Round 4 to compute the following val-

ues respectively.

γ = (s(x4,1 ⊕ sk4,1)⊕ s(x∗
4,1 ⊕ sk4,1), s(x4,2 ⊕ sk4,2)⊕ s(x∗

4,2 ⊕ sk4,2),
s(x4,3 ⊕ sk4,3)⊕ s(x∗

4,3 ⊕ sk4,3), 0),
λ = MDS−1(x4 ⊕ x∗

4).

Then check if γ = λ holds, and if this is not the case, discard the cor-
responding plaintext pair. After this test, there remains about 2m−28 ·
2−21 = 2m−49 plaintext pairs.

(c) Guess the value of rk25 = k1
26⊕k2

26⊕k3
26⊕k4

26, and for each of the remain-
ing pair, whose ciphertexts are denoted as (c1, c2, c3, c4) and (c∗1, c∗2, c∗3, c∗4)
respectively, do as follows.
i. Compute the value of y25 as follows.

y25 = S−1(MDS−1(c1 ⊕ c2 ⊕ c3 ⊕ c4 ⊕ rk25)).

Note for the remaining pairs we have Δy25 = 0,
and y∗

25 = S−1(MDS−1(c∗1 ⊕ c∗2 ⊕ c∗3 ⊕ c∗4 ⊕ rk25)) = y25.
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ii. For each guess of the value rk24 = sk25 ⊕ k1
26 ⊕ k2

26 ⊕ k3
26, continue

to compute the values of y24 and y∗
24 as follows.

y24 = S−1(MDS−1(c1 ⊕ c2 ⊕ c3 ⊕ y25 ⊕ rk24)),
y∗
24 = S−1(MDS−1(c∗1 ⊕ c∗2 ⊕ c∗3 ⊕ y∗

25 ⊕ rk24)).

iii. If we denote the decryption function of Round 23 as g(z, rk23) =
S−1(MDS−1(z ⊕ rk23)), then for each remaining pair the inputs of
g are c1 ⊕ c2 ⊕ y24 ⊕ y25 and c∗1 ⊕ c∗2 ⊕ y∗

24 ⊕ y∗
25 respectively, and

the output difference of g should be y24⊕ y∗
24. Therefore, by making

use of the difference distribution table of Sbox we can compute the
corresponding value of subkey rk23. Discard it from the table L.

iv. If the table L is not empty after analyzing all the remaining pairs,
we can output the value of rk23 remained in table L together with
the corresponding guess of (sk4,1, sk4,2, sk4,3), rk25 and rk24 as the
correct subkey.

If we choose m = 287.5, then the number of useful pairs remained after the
data filtering in Step 2 is about 259.5. Hence there remains about 238.5 pairs
after the test of Step 3.b). In Step 3.c), according to the difference distribution
table of Sbox, each pair can discard about one candidate of rk23. Since there
are 232 possible values of rk23 in table L, then after analyzing all the 238.5

remaining pairs, the probability of a subkey guess of rk23 still remains in L is
about (1 − 2−32)2

38.5 ≈ e−26.5
. Therefore, in Step 3.c.iv) the probability of a

wrong subkey guess still remains after all the tests is about 2120×e−26.5
< 2−11,

and this means that only the correct subkey will be output.
The data and time complexities of the attack can be estimated as follows. First

of all, we choose 287.5 structures which contains 224 plaintexts each, and thus
the data complexity of the attack is about 224×287.5 = 2111.5 chosen plaintexts.

The time complexity of each step can be estimated roughly as follows. In Step
1, we need about 2111.5 encryptions. In Step 2 we have to check if the pair satisfies
the ciphertext difference for all the 2123.5 pairs. Note the time needed for filtering
is rather small which can be estimated as 2−3-round encryption. Therefore, the
time complexity of Step 2 is about 2123.5 × 1

25 × 2−3 < 2115.9 encryptions. In
Step 3.b), we need to encrypt one round for each pair, which means that the
time complexity is about 224 × 259.5/25 > 278.9 encryptions. Similarly, the time
complexities of Step 3.c.i) and Step 3.c.ii) are 224 × 232 × 238.5 × 1/25 < 289.9

encryptions and 224×232×232×238.5×2/25 < 2122.9 encryptions respectively. In
Step 3.c.iii), the operation to recover subkey rk23 from the difference distribution
table of Sbox is rather simple and can be estimated as 1-round encryption. Then
the time complexity of this step is about 224 × 232 × 232 × 238.5 × 1/25 < 2121.9

encryptions. Therefore, the total time complexity of the attack is less than 2123.5

encryptions.
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5 Conclusion

In [29], Choy et al proposed a new structure called GF-NLFSR (Generalized
Feistel-NonLinear Feedback Shift Register), and also examined the security of the
structure against many attacks such as differential, linear, impossible differential
and integral cryptanalysis. Furthermore, they designed a new block cipher called
Four-Cell which is based on 4-cell GF-NLFSR structure. In this paper, we proved
that for n-cell GF-NLFSR structure there exists (n2 + n− 2) rounds impossible
differential. Then using this kind of 18-round impossible differential distinguisher
together with some novel differential and impossible differential cryptanalysis
techniques, we presented an impossible differential attack on the full 25-round
Four-Cell. The data complexity of our attack is 2111.5 and the time complexity
is less than 2123.5 encryptions. In addition, we expect the attack to be more
efficient when the relations between different round subkeys can be exploited by
taking the key scheduling algorithm into consideration.

Compared with the other kinds of generalized Feistel strucutres, the n-cell
GF-NLFSR structure has some obvious advantage such as the ability of being
parallel. However, if it is used to design a new block cipher, more work still need
to be done about the security of the structure against various cryptanalysis and
its pseudorandomness.
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Abstract. In this paper, we introduce the rakaposhi stream cipher.
The algorithm is based on Dynamic Linear Feedback Shift Registers,
with a simple and potentially scalable design, and is particularly suit-
able for hardware applications with restricted resources. The rakaposhi
stream cipher offers 128-bit security, and aims to complement the current
eSTREAM portfolio of hardware-oriented stream ciphers.

1 Introduction

A stream cipher is a type of encryption algorithm that encrypts individual alpha-
bet elements of plaintext, one at a time, with a time-varying transformation [28].
Stream ciphers are very popular due to their many attractive features: they are
generally fast, can typically be efficiently implemented in hardware, have no (or
limited) error propagation, and are particularly suitable for use in environments
where no buffering is available and/or plaintext elements need to be processed
individually. These are particularly important features in the telecommunication
sector, and stream ciphers are ubiquitous in the field.

Recent years have witnessed an increase in the research of design and analysis
of stream ciphers, primarily motivated by eSTREAM, the ECRYPT Stream
Cipher Project [12]. eSTREAM was a multi-year project, which started in 2004,
and had the objective of selecting a portfolio of promising stream cipher designs.
The selection of algorithms was based on two usage profiles, corresponding to
specific applications identified for stream ciphers of dedicated design:

- Profile 1: stream ciphers for software applications with high throughput.
- Profile 2: stream ciphers for hardware applications with highly restricted

resources.

The project received 34 submissions, of which 16 were selected to the final
phase [31]. The final portfolio was announced in April 2008, containing eight ci-
phers: four in profile 1 and four in profile 2 [4]. The portfolio was later revised [3],

S. Qing, C.J. Mitchell, and G. Wang (Eds.): ICICS 2009, LNCS 5927, pp. 32–46, 2009.
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due to new cryptanalytic results [15] against one of the selected ciphers in profile
2 (namely, the F-FSCR-H stream cipher [1]).

Despite the end of the eSTREAM project, the research area of analysis and
design of stream ciphers remains active, with particularly eSTREAM portfolio
ciphers continuing to attract much attention of the cryptographic community [8].
In this trend, we propose in this paper a new stream cipher, called rakaposhi.
The algorithm presents a simple and potentially scalable design, and is partic-
ularly suitable for hardware applications with restricted resources (and thus it
would fall into profile 2 of the eSTREAM project). The motivation for such a
proposal soon after the end of the eSTREAM project is manifold:

- The cipher provides 128-bit security. Most eSTREAM candidates in profile 2
employ 80-bit keys, as suggested in the original call for proposals1. However
we believe 128-bit security is a very attractive feature when aiming for long-
term deployment of such ciphers.

- The cipher uses a simple and elegant design, based on Dynamic Linear Feed-
back Shift Registers (Section 2). The design can be seem as a generalisation
of constructions found in early designs [6,33,24], and may motivate a more
detailed mathematical analysis of properties of such constructions.

- The cipher design and security evaluation incorporates lessons learned during
the several years of extensive analysis in the eSTREAM process, and thus
rakaposhi is less likely to be susceptible to more recent attacks, such as
initialisation attacks.

- More importantly, as noted by the eSTREAM selection committee, ciphers
in the final portfolio are still very new, and analysis may not be mature
enough to consider widespread deployment [3]. This was indeed illustrated
by the need to revise the eSTREAM portfolio soon after its announcement.
eSTREAM algorithms in profile 2 may in fact become the most popular
stream ciphers in practice, due to the growing use of cryptographic mech-
anisms in small electronic devices (such as RFIDs). Thus we believe that
alternatives to eSTREAM ciphers in this particular profile may prove to be
desirable for future use.

In summary, we believe that rakaposhi complements the current eSTREAM
portfolio in profile 2, while presenting some attractive additional features, in-
creasing thus the choice of secure lightweight stream ciphers suitable for hard-
ware applications with restricted resources.

This paper is organised as follows. In Section 2 we give a brief overview of the
main component of the rakaposhi design (namely, DLFSR - Dynamic Linear
Feedback Shift Registers). In Section 3 we describe the details of the cipher
specification and design, and in Section 4 we describe the cipher operation. In
Section 5 we present a provisional security evaluation of the cipher. In Section 6
we discuss some implementation aspects of the rakaposhi cipher, and present
our concluding remarks in Section 7.

1 We note however that some designers later also defined 128-bit versions of the original
80-bit submissions to eSTREAM.
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2 Dynamic Linear Feedback Shift Registers

A Dynamic Linear Feedback Shift Register (DLFSR) scheme is a general con-
struction consisting usually of two registers: the first subregister A, of length
r, is clocked regularly and updated using a fixed mapping λA. Subregister B,
of length n, is updated using a linear mapping λt

B, which varies with time and
depends of the state in register A at time t. Thus subregister A is used to select
and dynamically modify the feedback function of LFSR B, and as a result, B
presents an irregular updating mechanism, as opposed to the regular clocking
that the register would present if a unique, fixed linear feedback function was
used. In practice, the state of B is used as input to a non-linear function to
produce the output sequence of a stream cipher.

Although used in early ciphers, the general concept of Dynamic Linear Feed-
back Shift Registers seems to have been first proposed in open literature in the
short article by Mita et al [29]. A simple example was presented, and properties
of the output sequence were studied and compared with the output of a con-
ventional LFSR of similar size. A more detailed characterisation of DLFSRs was
presented in [27]. We note that we may generalise the idea to have non-linear
updating functions, or possibly more than two subregisters.

Examples of stream ciphers based on the Dynamic Linear Feedback Shift Reg-
ister primitive include the stop-and-go generator [6], LILI [33], dynamic feedback
polynomial switch [21], and K2 [24]. The rakaposhi stream cipher is in fact a
successor of the K2 stream cipher, but aiming at low-cost hardware implemen-
tations. Furthermore, in the rakaposhi design, the FSR A uses a non-linear
updating function, and the state of both subregisters are used as input to a
non-linear output function to produce the cipher’s keystream.

3 Cipher Design

In this section we describe the main design criteria for the rakaposhi stream
cipher, as well as the details of the cipher specification.

3.1 Design Criteria

The main criteria used in the design of rakaposhi were: 128-bit security, use of
elegant and structurally rich FSR-based construction, and competitive perfor-
mance and hardware implementation requirements when compared to ciphers in
profile 2 of the eSTREAM portfolio. Furthermore, the cipher design is such that
increasing the speed of the algorithm may be efficiently done by implementation
of circuits for parallelization of the algorithm.

The rakaposhi parameters are the following:

Key length: 128 bits.
Initialisation Vector length: 192 bits.
NLFSR A length r: 128 bits.
DLFSR B length n: 192 bits.
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Thus the size of the internal state S = (A,B) is s = r + n = 320 bits. When
aiming for 128-bit security, we note that the internal state size of the cipher
should be at least 320 bits, in view of the TMTO attack recently proposed by
Dunkelman and Keller [11] (see Section 5.1).

We define below the notation used in this paper:

User-provided Key: {k0, k1, ..., k127}
Initialisation Vector (IV) : {iv0, iv1, ..., iv191}
Registers of NLFSR at time t: [at, at+1, ..., at+127] = At

Registers of DLFSR at time t: [bt, bt+1, ..., bt+191] = Bt

Keystream at time t: zt

3.2 RAKAPOSHI Specification

The rakaposhi stream cipher main component is the bit-oriented Dynamic
Linear Feedback Shift Register (DLFSR). It consists of a 128-bit Non-Linear
Feedback Shift Register and a 192-bit Linear Feedback Shift Register, denoted
as registers A and B, respectively. The cipher uses two bits from the state of
the NLFSR to select, and dynamically modify the (linear) feedback function
of the LFSR. The cipher keystream is produced by combining the output of
both registers with the output of a non-linear Boolean function over (F2)8. This
function takes as input six bits from the state of register B and two bits from
the state of register A. The cipher schematic is depicted in Figure 1.

Nonlinear Feedback 
Shift Register

Dynamic Feedback Shift Register

Clock
Controller

8-to-1
Nonlinear
Function Keystream

g(x)

f(x)

Fig. 1. rakaposhi Stream Cipher
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Non-Linear Feedback Shift Register A . The cipher’s registerA is a 128-bit
NLSFR, defined using the feedback function

g(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x1x3x9 + x1x7x9 + x5x8 + x2x5+
x3x8 + x2x7 + x9 + x8 + x7 + x6+
x5 + x4 + x3 + x2 + x1 + x0 + 1,

as at+128 =g(at, at+6, at+7, at+11, at+16, at+28, at+36, at+45, at+55, at+62). Explic-
itly, we have the following recurrence relation:

at+128 = 1⊕ at ⊕ at+6 ⊕ at+7 ⊕ at+11 ⊕ at+16 ⊕ at+28 ⊕ at+36 ⊕ at+45⊕
at+55 ⊕ at+62 ⊕ at+7at+45 ⊕ at+11at+55 ⊕ at+7at+28⊕
at+28at+55 ⊕ at+6at+45at+62 ⊕ at+6at+11at+62.

The feedback function g was selected according to criteria for non-linear feed-
back shift registers with maximum period [34] and consists of a primitive linear
feedback shift register and a non-linear function of degree 3. This is a balanced
function, of which the best linear approximation has bias 2−4.

Linear Feedback Shift Register B. The register B is a 192-bit Dynamic
LFSR, which can use four different linear recursive functions. These are selected
using two bits from the state of register A. Let c0 and c1 be the 42nd and 90th

bits of register A at time t, respectively (that is, c0 = at+41 and c1 = at+89).
Then LFSR B at time t is defined by the following characteristic polynomial:

f(x) =x192 + x176 + c0x
158 + (1 + c0)x155 + c0c1x

136+

c0(1 + c1)x134 + c1(1 + c0)x120 + (1 + c0)(1 + c1)x107+

x93 + x51 + x49 + x41 + x37 + x14 + 1.

We note that f(x) ∈ F2[x] is a primitive polynomial for all four choices of (c0, c1).
Thus the recurrence relation for register B is given by:

bt+192 = bt ⊕ bt+14 ⊕ bt+37 ⊕ bt+41 ⊕ bt+49 ⊕ bt+51 ⊕ bt+93⊕
c0 · c1 · bt+107 ⊕ c0 · c1 · bt+120 ⊕ c0 · c1 · bt+134 ⊕ c0 · c1 · bt+136⊕
c0 · bt+155 ⊕ c0 · bt+158 ⊕ bt+176,

where ci = 1⊕ ci represents the negation of ci.

Non-Linear Filter. rakaposhi uses as non-linear filtering function the 8-to-1
Boolean function obtained by considering the input as an element of the field
F2[x]/〈p(x)〉 � F28 , where p(x) = x8 + x4 + x3 + x + 1, and extracting the least
significant bit of the result of the inverse operation in this field (with 0 �→ 0).
We note that this is the same function used as the non-affine component of the
AES S-Box. This function v(x0, x1, x2, x3, x4, x5, x6, x7) is a balanced Boolean
function, with polynomial representation (ANF) of degree 7. We give the explicit
polynomial expression of the function v(·) in the Appendix A.
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In the rakaposhi stream cipher, the input bits for the function v are ex-
tracted from both registers A and B, as

st = v(at+67, at+127, bt+23, bt+53, bt+77, bt+81, bt+103, bt+128).

We note that both the sets B = {bt+23, bt+53, bt+77, bt+81, bt+103, bt+128} and
A = {at+67, at+127} are full-positive difference sets [14].

4 Cipher Operation

In this section we describe the details of the cipher operation.

4.1 Keystream Generation

The cipher outputs one keystream bit at each cycle. Given the cipher state
St = (At,Bt) at time t, the cipher operates as follows:

1. The keystream bit zt is computed as zt = bt ⊕ at ⊕ st and is output.
2. c0, c1 ∈ At are used to compute the updating function λt

B for B.
3. RegistersA and B are updated to obtainAt+1 = λA(At) and Bt+1 = λt

B(Bt),
respectively.

In typical operational mode, a fixed key and initialisation vector must not be used
to produce more than 264 keystream bits. Thus the cipher must be re-initialized
(potentially by only modifying the IV) after at most 264 cycles.

4.2 Initialisation Process

Before start producing the keystream, rakaposhi goes through an initialisation
process, in which the secret key and IV are loaded into the registers and mixed.

The secret key {k0, k1, ..., k127} and IV {iv0, iv1, ..., iv191} are loaded into the
NLFSR and DLFSR, respectively, as follows:

a0, a1, ..., a127 ← k0, k1, ..., k127,
b0, b1, ..., b191 ← iv0, iv1, ..., iv191.

The cipher then clocks 448 times with the output of the filter function v(·) (that
is, st rather than zt) being fed back into the cipher state. This process is divided
into two stages:

– Stage 1

In the first stage of the initialisation, the cipher runs for 320 cycles, with the
output of the non-linear filter function v(·) being fed back into the register
B. Thus during this stage the LFSR B uses the following recurrence relation:

bt+192 = bt ⊕ bt+14 ⊕ bt+37 ⊕ bt+41 ⊕ bt+49 ⊕ bt+51 ⊕ bt+93⊕
c0 · c1 · bt+107 ⊕ c0 · c1 · bt+120 ⊕ c0 · c1 · bt+134⊕
c0 · c1 · bt+136 ⊕ c0 · bt+155 ⊕ c0 · bt+158 ⊕ b176 ⊕ st.
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– Stage 2

In the second stage of the initialisation, the cipher runs for further 128 cy-
cles, with the output of the non-linear filter function v(·) being fed back
into the register A. Thus during this stage the NLFSR A uses the following
recurrence relation:

at+128 = 1⊕ at ⊕ at+6 ⊕ at+7 ⊕ at+11 ⊕ at+16 ⊕ at+28 ⊕ at+36 ⊕ at+45⊕
at+55 ⊕ at+62 ⊕ at+7at+45 ⊕ at+11at+55 ⊕ at+7at+28⊕
at+28at+55 ⊕ at+6at+45at+62 ⊕ at+6at+11at+62 ⊕ st.

At the end of the initialisation, the cipher internal state is S0 = (A0,B0), and
it is ready to produce the first output bit of the keystream z0, as specified in
Section 4.1.

5 Security Evaluation

In this section we provide a provisional security analysis of the rakaposhi
cipher, taking into account the most common cryptanalytic methods against
stream ciphers.

5.1 Time-Memory Trade-Off Attacks

Time-Memory Trade-off attacks are generic attacks against several cryptographic
constructions, consisting of a precomputation phase and an online phase. In a
typical attack scenario, one would perform extensive offline computation and
store the results, with the goal of reducing the time complexity of the online
attack. Time-Memory Trade-off attacks were originally proposed by Hellman [18]
for attacking the DES block cipher.

In the context of stream ciphers, TMTO attacks were first proposed by Bab-
bage [2], and later improved by Biryukov and Shamir [7]. In these attacks, one
tries to invert the function mapping the cipher internal state to a segment of the
keystream output. As a result, to prevent against such attacks a cipher should
have its internal state at least twice as long as its key length.

On a different attack scenario, proposed by Hong and Sarkar [19,20], the
function inverted maps the key/IV to a keystream segment. In their original
approach, the IV is treated as part of the secret key, and as a result, prevention
against such attack scenario requires stream ciphers to have the IV at least
as long as the key. More recently Dunkelman and Keller [11] proposed a new
approach, in which an attacker selects in advance several IVs, and mounts the
attack to invert the function mapping the key to a keystream segment (with the
chosen IVs). As a result, it follows that if n is the cipher key length, then the
IV length must be at least 3

2n to withstand this form of TMTO attack.
The rakaposhi stream cipher uses 128-bit keys and 192-bit IVs, with internal

state with 320 bits. Therefore it withstands the currently known TMTO attacks
against stream ciphers.
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5.2 Guess-and-Determine Attacks

In guess-and-determine attacks, the attacker guesses a subset of the cipher in-
ternal state, and recovers further bits from the state based on the observed
keystream and guessed values. This procedure may be repeated for other values
until the full state and/or the secret key is recovered.

For the rakaposhi stream cipher, one may guess a selected subset of the
state of register A and hope to recover bits from B (since A is the source of
non-linearity to both registers). A näıve attack would be to guess all bits of the
NLFSR A, and then recover the state of the DLFSR B. This attack is however
essentially equivalent to a brute force attack on the cipher key, and is thus
considered infeasible.

We have considered a number of alternative scenarios, in which an attacker
guesses a number of bits of the cipher’s internal state, and tries to recover further
bits from the observed keystream. However due to the rakaposhi internal struc-
ture (its registers’ taps and input to non-linear filtering function), we have not
been able to come up with an efficient attack. Thus we believe that rakaposhi
is not susceptible to guess-and-determine attacks.

5.3 Distinguishing Attacks

In distinguishing attacks, one attempts to find ways to distinguish the stream
cipher (considered as a bit generator) from a purely random source of binary
digits. It is notoriously difficult (if not impossible) to provide assurance that a
cipher is not susceptible to distinguishing attacks. In fact some secure construc-
tions (for instance, AES in counter mode) can be trivially distinguished from
a random source [16], and as a result several researchers dispute the general
applicability of some forms of distinguishing attacks against stream ciphers.

For rakaposhi, we tried to construct linear distinguishers, by considering
linear approximations of functions used in the cipher. For instance, the best
affine approximation of the nonlinear filter has bias ε = 2−6, and the function
uses as input 6 bits from register B. For fixed values of c0, c1, the number of terms
in the register’s recurrence function f is 11. Now, if we omit the 2-bit input from
the NLFSR for the nonlinear filter, we can construct a linear distinguisher using
11 keystream bits as follows:

D : zt⊕zt+14⊕zt+37⊕zt+41⊕zt+49⊕zt+51⊕zt+93⊕zt+107⊕zt+155⊕zt+176⊕zt+192 = 0,

where we assume two clock bits c0, c1 from the NLFSR are (c0, c1) = (0, 0) for
each feedback function accompanying the distinguisher D. Using the pilling-up
lemma [26], the bias of the linear distinguisher is estimated as 210 ∗ (2−6)11 =
2−56. We note however that the two clock control bits in the linear recurrence
f have to be determined to obtain the correct equation. As a result, the data
complexity of this particular distinguishing attack for the cipher increases to
((1/2−56) ∗ 22∗6)2 = 2136. Thus even by ignoring the effects of the NLFSR A,
this distinguishing attack can be considered infeasible.

We have also considered several other linear approximations, which are better
than the above scenario; however, due to effects of the NLFSR, we have not



40 C. Cid, S. Kiyomoto, and J. Kurihara

been able to find a more efficient linear approximation. Thus, we expect that
the cipher is secure against distinguishing attacks.

5.4 Algebraic Attacks

Algebraic attacks against stream ciphers were originally proposed in 2003 by
Courtois and Meier [9]. The attack is a powerful cryptanalytic technique against
some LFSR-based stream cipher constructions (e.g. the filter generator). When
mounting an algebraic attack, one attempts to construct a system of equations
derived from the cipher operation, which can then be solved using a choice of
methods. A stream cipher designer can protect the algorithm against algebraic
attacks by using to compute the keystream, a non-linear filter function z(·) of
high degree, for which the annihilating sets of both z or its complement z + 1
contain no low degree polynomials (the lowest degree of polynomials in either of
these sets is called the algebraic immunity of z).

For the rakaposhi stream cipher, the keystream output zt is computed by
means of a Boolean function over (F2)10 given by

zt = st+at+bt = v(at+67, at+127, bt+23, bt+53, bt+77, bt+81, bt+103, bt+128)+at+bt.

This function z(·) has degree 7 and algebraic immunity 4 (which is the same of the
function v). Indeed, there are 21 linearly independent functions of degree 4 in the
annihilating set of both z and z+1. However both registers A and B are updated
non-linearly (by functions g and f respectively). This increases very rapidly
the degree and the complexity of the polynomial expression of the keystream
output bits; this was verified experimentally for several clocks of the cipher.
Thus conventional algebraic attacks do not seem to work against rakaposhi.

We note an alternative to the approach above. One could guess several bits
of the register A, in the hope of keeping the resulting degrees at a reasonably
low value (since A is the source of non-linearity to both registers). A trivial,
somewhat näıve algebraic attack against rakaposhi would thus be to guess
all the 128 values for the register A, and generate 21 equations of degree 4 for
each output bit of the cipher. If the state of register A is fully known, then the
complexity of an algebraic attack would be on the order of

(

4
∑

k=0

(

192
k

)

)3

≈ 277

operations, requiring approximately 221 output bits. The total complexity of the
attack would thus be on the order of 2205 operations. One could instead guess
fewer bits from A; however the results above indicate that the overall complexity
of the attack would remain well above the one required for exhaustive key search.
Thus we conclude that rakaposhi is secure against algebraic attacks.

5.5 Analysis of the Initialisation Process

The rakaposhi initialisation process consists of 448 steps. The first 320 steps
affect the subregister B, ensuring that after this initial stage, all bits of the
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Table 1. Diffusion of the Initialisation Process

Stage 1 Stage 2
cycles cycles

0 293 319 105 128
All registers - - - All KEY All KEY
of NLFSR - - - - All IV

All registers - All KEY All KEY All KEY All KEY
of DLFSR - - All IV All IV All IV

DLFSR B have been influenced by all bits of the secret key (that is, the initial
state of NLFSR A) and all bits of the IV (that is, the initial state of DLFSR B).
The second stage consists of further 128 steps, which affects the subregister A,
and as a result all bits of the NLFSR A would have been influenced by all bits of
the IV and the secret key at the end of this stage. This is summarised in Table 1.
We have also analysed how complex the relationship between the state bits and
the secret key / IV are, by computing the algebraic expression of the state bits
during several steps of the initialisation. Our experiments indicate that these are
dense, high-degree polynomials involving a large number of internal state bits.
Thus, the number of cycles in the initialisation process seems to be sufficient
for diffusing the bits of the initial state in a very complex way, and we believe
that rakaposhi is secure against the most recent attacks on the initialisation
process [10,25,32,35].

5.6 Statistical Tests

The statistical properties of the cipher depend on the properties of the output
sequences of the NLFSR and DLFSR; given their construction, we expect the
keystream of the cipher to have good statistical properties. We have evaluated
the statistical properties for the cipher keystream, as well as the output sequences
of the NLFSR and DLFSR using the NIST Test Suite [30]. The results indicated
that the statistical properties of the rakaposhi output sequence are good.

6 Implementation Aspects

In this section we discuss various aspects related to the implementation and
performance of the rakaposhi stream cipher.

6.1 Parallelization

The throughput of rakaposhi can be increased by applying parallelization
techniques. It is in fact possible to increase the cipher output to 64 bits per
clock cycle by adding some additional circuits. To realise n times parallelization
(1 ≤ n ≤ 64), we add circuits for n feedback functions (for f(·) and g(·)), n
keystream generation functions (for v(·)), and add n− 1 bits to the NLFSR A.
The increase of registers for the DLFSR is not required for parallelization up to
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Table 2. Evaluation Results of rakaposhi

Cir. Size Max. Cl. Freq. Throughput Throughput
(Slices) (MHz) (Mbps) / Slices

Spartan-II 199 111.6 111.6 0.56
Spartan-3 194 120.1 120.1 0.62

Spartan-3 (Opt.) 63 155.9 155.9 2.47
Vertex-II 193 218.9 218.9 1.13

Spartan-3 (×8) 342 125.5 1004.0 2.94
Spartan-3 (×16) 445 124.5 1992.0 4.48
Spartan-3 (×32) 849 125.0 4000.0 4.71
Spartan-3 (×64) 1302 95.0 6080.0 4.67

64 times, since the input for the nonlinear filter does not include any of the last
63 bits of DLFSR.

The design of rakaposhi has been optimised for 32 times parallelization: the
last 15 bits of the DLFSR are not used in the feedback function f(·). We note
however that 64 times parallelization is also possible by a design criterion for
NLFSR: the last 65 bits of NLFSR are not used for execution of the feedback
function g(·).

6.2 Circuit Size and Performance

We present here the evaluation results of hardware implementations using an
FPGA simulator. We implemented rakaposhi targeted towards the Xilinx
Spartan-II, Spartan-3, and Virtex-II FPGAs. We used Xilinx ISE 9.1 for post-
place and route simulation and static timing analysis. Circuit sizes of the DLFSR,
NLFSR, Nonlinear Filter function on Spartan-II are 1575 gates, 1060 gates, and
147 gates respectively. The circuit size of the whole algorithm is 3130 gates2.

We have also implemented parallelized versions of the algorithm that pro-
duce 8-bit, 16-bit, 32-bit, and 64-bit outputs for each clock cycle. Table 2 shows
evaluation results of circuit size, maximum clock frequency, throughput, and ef-
ficiency for each implementation. The efficiency is computed as throughput per
slice. The efficiency improves due to circuit parallelization and it reaches its max-
imum by 32-times parallelization. The maximum throughput is approximately
6 Gbps using the 64-times parallelized circuit on Spartan-3.

6.3 Comparison with Other Stream Ciphers

As stated in Section 3, one of the design goals of the rakaposhi stream ci-
pher is to complement the eSTREAM portfolio in profile 2. As such, we present
a comparison between various aspects of the rakaposhi implementation and
some of the eSTREAM ciphers in Table 3. We use in this comparison the evalu-
ation results of circuit sizes and maximum clock frequency presented in [13,22].
2 This corresponds to approximately one tenth of the circuit size of the K2 stream

cipher [23], a predecessor of rakaposhi which targets however software applications
with high throughput requirements.
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Table 3. Comparison on Spartan-3

Algorithm Key Len IV Len Internal Cir. Size Max. Cl. Thr/ # Cyc.
State (Slices) Freq(MHz) Slices for Init.

Grain [13] 80 64 160 122 193 1.58 160
Grain (opt.) [22] 80 64 160 44 196 4.45 160

Trivium [13] 80 80 288 188 206 1.10 1152
Trivium (opt.) [22] 80 80 288 50 240 4.80 1152
MICKEY-128 [13] 128 128 320 261 156 0.60 416

MICKEY-128(opt.)[22] 128 128 320 176 223 1.27 416
Grain-128(opt.)[22] 128 96 256 50 196 3.92 256

DECIM-128(opt.)[22] 128 128 352 89 43.5 0.49 1584
Rakaposhi 128 192 320 194 120.1 0.62 448

Rakaposhi (opt.) 128 192 320 63 155.9 2.47 448

We can note that rakaposhi presents a competitive performance profile when
compared with MICKEY-128[5] with regards to throughput per slice. Grain v1
and Trivium are however more efficient than rakaposhi. We note however that
these algorithms do not provide 128-bit security level, which as noted earlier,
we consider a particularly attractive feature when aiming for long-term deploy-
ments. Furthermore, given those ciphers’ state/key/IV sizes, they would appear
to be susceptible to more recently proposed TMTO attacks (see Section 5.1).
We note that the latter remark is also applicable to Grain-128 [17].

7 Conclusion

In this paper we propose a new stream cipher, called rakaposhi. The algorithm
presents a simple and elegant design, and is particularly suitable for hardware
applications with restricted resources. We have presented a provisional secu-
rity evaluation of the cipher, which indicates that it is secure against the most
common attacks against stream ciphers. Furthermore, evaluation of several im-
plementation and performance aspects shows that rakaposhi is a competitive
alternative to ciphers in the final eSTREAM portfolio. We believe therefore that
rakaposhi can complement the current eSTREAM portfolio in profile 2, while
presenting some attractive additional features, increasing thus the choice of se-
cure lightweight stream ciphers suitable for hardware applications with restricted
resources.
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Appendix

A Rakaposhi Non-linear Function

The rakaposhi stream cipher uses the following Boolean function to produce
the keystream output.

v(x0, x1, x2, x3, x4, x5, x6, x7) =
x0x1x2x3x4x5x6 + x0x1x2x3x4x5 + x0x1x2x3x4x6 + x0x1x2x3x5x6x7+
x0x1x2x3x5x6 + x0x1x2x3x5x7 + x0x1x2x3x5 + x0x1x2x3x6x7+
x0x1x2x4x5x6 + x0x1x2x4 + x0x1x2x5x6 + x0x1x2x5x7 + x0x1x2x7+
x0x1x2 + x0x1x3x4x5x6x7 + x0x1x3x4x5x7 + x0x1x3x4x5 + x0x1x3x4x7+
x0x1x3x4 + x0x1x3x6 + x0x1x4x5x6x7 + x0x1x4x5x6 + x0x1x4x5x7+
x0x1x4x6x7 + x0x1x4x7 + x0x1x5x6x7 + x0x1x5x6 + x0x1x5 + x0x1x6+
x0x1 + x0x2x3x4x5x6 + x0x2x3x4x5x7 + x0x2x3x4 + x0x2x3x5x6x7+
x0x2x3x5x6 + x0x2x3x5x7 + x0x2x3x6 + x0x2x4x5x6x7 + x0x2x5x6+
x0x2x5 + x0x2x6x7 + x0x2x7 + x0x3x4x5x6x7 + x0x3x4x5x6 + x0x3x4x5x7+
x0x3x4x5 + x0x3x4x7 + x0x3x5x6x7 + x0x3x5 + x0x3x6 + x0x3 + x0x4x5x6+
x0x4x6x7 + x0x5x6 + x0x6 + x0 + x1x2x3x4 + x1x2x3x5x6 + x1x2x3x5x7+
x1x2x3x5 + x1x2x3 + x1x2x4x5x6 + x1x2x4x6 + x1x2x4 + x1x2x5 + x1x2+
x1x3x4x5x6x7 + x1x3x4x5x7 + x1x3x4x6x7 + x1x3x4x6 + x1x3x4+
x1x3x5x6 + x1x3x5 + x1x3x6 + x1x3x7 + x1x4x5x6x7 + x1x4x5x7+
x1x5x6 + x1x5x7 + x1x5 + x1x6x7 + x1x6 + x1 + x2x3x4x5x6 + x2x3x4x5x7+
x2x3x4x5 + x2x3x4x6x7 + x2x3x4 + x2x3x5x7 + x2x3x6x7 + x2x3x6+
x2x4x5x6 + x2x4x5x7 + x2x4x5 + x2x4x6x7 + x2x4x6 + x2x4x7 + x2x4+
x2x5x6x7 + x2x6x7 + x2x6 + x2x7 + x3x4x5x6x7 + x3x4x5 + x3x4x6x7+
x3x4x6 + x3x4x7 + x3x5x6x7 + x3x6x7 + x3x6 + x3x7 + x4x5x6 + x4x5+
x5x6x7 + x5x6 + x5 + x6 + x7.

B Test Vector

Key: 00000000000000000000000000000000
IV: 000000000000000000000000000000000000000000000000
Internal State Bits after the Initialization:
(NLFSR-A) 3c12b227eccb28a0baf327a7d42a51e5
(DLFSR-B) 619344585ae94087412e9863bd028f18f42eefe6378c5011
Keystream:
7a72bd702002121880960ed4ae0c054ecad09b0459c334866fbbd8
84aa0ff5585497943c6095d427c96eeb8719f87a02761465d0f62a
1e0faad849302104827e6db2e0b81e49a7b81ce170e4cf261468d6
6b2e6e13cfcabca1073f2077298b2c0fe0da1feb8c1e20b27f5907
b883eb17c5165113acfb2a7ca7a0c6cf3578f87c
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Abstract. We propose an efficient technique for the detection of errors in cryp-
tographic circuits introduced by strong adversaries. Previously a number of linear
and nonlinear error detection schemes were proposed. Linear codes provide pro-
tection only against primitive adversaries which no longer represents practice. On
the other hand nonlinear codes provide protection against strong adversaries, but
at the price of high area overhead (200–300%). Here we propose a novel error
detection technique, based on the random selection of linear arithmetic codes.
Under mild assumptions the proposed construction achieves near nonlinear code
error detection performance at a lower cost (about 50% area overhead) due to the
fact that no nonlinear operations are needed for the encoder and decoder.

1 Introduction

Cryptographic devices are vulnerable to side-channel attacks such as timing analysis
attacks [1], power analysis attacks [2] and fault injection attacks [3],[4]. Due to their
active and adaptive nature, fault based attacks are one of the most powerful types of
side-channel attacks. Since a fault attack was demonstrated by Boneh et al. in [5] in
1996, numerous papers have been published proposing a variety of fault attacks on both
public-key and private-key cryptographic devices. One of the most efficient fault injec-
tion attacks on AES-128, for example, requires only two faulty ciphertexts to retrieve
all 128 bits of the secret key [6]. Without proper protection architecture against fault
injection attacks, the security of cryptographic devices can never be guaranteed.

Error detecting codes are often used in cryptographic devices to detect errors caused
by injected faults and prevent the leakage of useful information to attackers. Most of
the proposed error detecting codes are linear codes like parity codes, Hamming codes
and AN codes [7]. Protection architectures based on linear codes concentrate their error
detecting abilities on errors with small multiplicities or errors of particular types, e.g.
errors with odd multiplicities or byte errors. However, in the presence of unanticipated
types of errors linear codes can provide little protection. Linear parity codes, for ex-
ample, can detect no errors with even multiplicities. By carefully selecting faults and
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injection methods an attacker can with high probability bypass the protection archi-
tectures based on linear codes and still be able to break the security of cryptographic
devices in a reasonably short time.

In [8], robust algebraic codes were proposed as an alternative to classical linear codes
to protect cryptographic devices implementing AES against fault injection attacks. In
[9], robust arithmetic residue codes were proposed which can be used to design fault
tolerant cryptographic devices performing arithmetic operations. Instead of concentrat-
ing the error detecting abilities on particular types of errors, robust codes provide nearly
equal protection against all error patterns. Hence robust codes eliminate the weakness
of linear codes which can be exploited by attackers to mount successful fault attacks.
Variants of both algebraic and arithmetic robust codes – partially robust and minimum
distance robust codes – were proposed in [10]. These architectures allow various trade-
offs in terms of robustness and hardware overhead.

Robust codes are based on nonlinear functions [11] and the robustness of the code is
highly related to the nonlinearity of the function. Systematic robust codes, for example,
can be constructed by appending a signature generated by a nonlinear function f to the
information part of the code. The worst case error masking probability of any nonzero
error is bounded by Pf , which gives a measure of the degree of the nonlinearity of f .

The main disadvantage of robust codes is the large hardware overhead when imple-
menting nonlinear operations for the encoding and decoding circuits. In this paper, we
propose a different method to achieve similar levels of protection. Instead of using non-
linear functions to generate the signature of the code, we randomly select a code from
multiple linear codes at each clock cycle. The resulting codes are called multilinear
codes. The proposed method can have as small number of undetectable errors as clas-
sical robust codes while requiring much less hardware overhead due to the fact that no
nonlinear operations are needed for the encoder and decoder.

Multipliers are widely used as sub-blocks in public key cryptosystems. In this paper
we present constructions of multilinear arithmetic codes and their use to design reli-
able multipliers. We compare the proposed protection architecture for multipliers with
that based on single linear arithmetic code. We assume that countermeasures are im-
plemented in the cryptographic device preventing the attackers from tampering with
the clock signals. We further assume that a low-rate true random number generator
(e.g. [12]) is available. In fact, most cryptographic devices incorporate a true random
number generator by default for key initialization, random pad computation, challenge
generation etc. The error detection capabilities of different architectures are simulated
in MATLAB and the advantage of the proposed technique is demonstrated.

The constructions of multilinear algebraic codes and the analysis of fault detection
capabilities of architectures based on multilinear algebraic codes were discussed in [13].

The paper is organized as follows. Section 2 describes the error and attacker models
we use throughout the paper. In section 3 we formalize the design and propose sev-
eral constructions based on randomly selecting multiple linear codes. In Section 4 we
compare different protection architectures for a fixed precision multiplier. We finish the
paper by drawing the conclusions in Section 5.
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2 Error and Attacker Model

In this paper we concentrate on the analysis of the error detection abilities for systematic
arithmetic codes and the reliability of multipliers based on these codes. Different from
the widely used nonsystematic AN codes [7], the codewords of systematic arithmetic
codes contain two parts: the information part and the redundancy part. Any codeword
c can be written in the format of (x, y), x ∈ Z2k , y ∈ Z2r , where k is the number
of information bits, r is the number of redundant bits and Z2k is the additive group
of integers {0, 1, · · · , 2k − 1}. We denote by e = (ex, ey) the error vector and c̃ =
(|x + ex|2k , |y + ey|2r ) the distorted codeword in which ex ∈ Z2k , ey ∈ Z2r , + is the
arithmetic addition and ||p is the modulo p operation.

Let C be an arithmetic code. An error e = (ex, ey) is masked by a codeword c =
(x, y) ∈ C if c̃ = (|x + ex|2k , |y + ey|2r ) also belongs to C. Given an error e, the error
masking probability Q(e) is calculated as follows:

Q(e) =
{c|c ∈ C, c̃ ∈ C}

|C| . (1)

If an error is masked by all codewords of the code, Q(e) = 1 and the error is called
undetectable. If 0 < Q(e) < 1, the error is called conditionally detectable. Differ-
ent from algebraic codes, arithmetic codes usually do not have undetectable errors. To
illustrate the advantage of the proposed codes, we compare the number of bad errors,
which are errors e with Q(e) ≥ 0.5, for linear arithmetic codes and the proposed mul-
tilinear arithmetic codes. Since bad errors are the most difficult to detect, we will show
that the transition from linear to multilinear arithmetic codes results in a drastic reduc-
tion of the number of bad errors and an improvement of the error detection ability of
the code.

Throughout the paper we assume a strong attacker model in which an attacker knows
everything about the hardware architecture of the device including the code used to
detect errors. The attacker can utilize any fault injection methodologies and is able to
inject faults with high spatial resolution to generate a specific error vector (ex, ey) at
the output of the devices. The only limitation on the attacker is that he cannot change
the error at each clock cycle. Once faults are injected and an error is generated, the
faults stay for several clock cycles and the error tends to repeat. This is the case for
several well known fault injection methodologies such as introducing power glitches
into the power supply, using laser guns, etc [4]. We call this kind of channels where
errors have high probabilities to repeat themselves for several consecutive clock cycles
lazy channels or channels with memory.

The advantages of multilinear arithmetic codes in terms of error detection capabili-
ties are two-fold. First, they are better than linear arithmetic codes in a sense that it has
much smaller number of bad errors. Second, multilinear arithmetic codes have much
higher error detection abilities than linear codes in lazy channels hence they will effec-
tively prevent the attacker from implementing a successful fault induction attack under
the aforementioned attacker model. To facilitate the analysis and comparison of the er-
ror protection architectures based on different codes in lazy channels, we assume that
errors last for at least t consecutive clock cycles, t ≥ 1.
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The experimental results for the error detection properties of multipliers protected
by different codes are presented in Section 4, which shows that as t increases the error
detection probabilities are much higher for architectures based on multilinear arithmetic
codes than that based on single linear arithmetic code.

3 Constructions

We first analyze the error detection properties of linear arithmetic codes.

Theorem 1. (Linear Arithmetic Codes) Let C be a linear arithmetic code defined by

C = {(x, y)|x ∈ Z2k , y = f(x) ∈ Z2r}, (2)

where p is a prime number larger than 2 and f(x) = |x|p where ||p represents the
modulo p reduction operation. Denote by e = (ex, ey) an additive error, ex ∈ Z2k , ey ∈
Z2r , r = �log2 p�, c+ e = (|x+ ex|2k , |y + ey|2r ), c ∈ C. When p << 2k, the number
of bad errors is upper bounded by

2 · (2k + p− 2k(Hp−1 −H� p
2 �)−

2k−1

p
). (3)

In the equation Hn represents the n-th harmonic number. For large p the difference
Hp−1 − H� p

2 � converges to ln 2. Thus, for large p, the number of bad errors is upper

bounded by 2p− 2k+1(ln 2− 1)− 2k/p.
If no errors occur to the redundant part of the code, the number of bad errors occur-

ring only to the information part of the code is upper bounded by

2 · �2
k−1

p
�. (4)

When p is large and p << 2k, the estimated probability of bad errors is 0.3 · 2−r+1.
The estimated probability of bad errors occurring to the information part is 2−2r.

Proof. To simplify the analysis, we divide the errors into two classes according to the
value of x + ex.

1. x + ex < 2k, we have |x + ex|2k = x + ex, f(x + ex) = |x + ex|p.
(a) |x|p + ey < p, then ||x|p + ey|2r = |x|p + ey . An error (ex, ey) is masked if

and only if |x + ex|p = |x|p + ey . Or equivalently |ex|p = ey. For a codeword
x to mask a given error (ex, ey), the following conditions must be satisfied:

x + ex < 2k, (5)

|x|p + ey < p, (6)

|ex|p = ey. (7)

From (6) and (7) we have |x|p < p − |ex|p. For a certain value of |x|p <

p − |ex|p, the number of x satisfying (5) is bounded by � 2
k−ex

p �. Thereby for
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a given error (ex, ey), the total number of codewords that mask the error is

� 2k−ex

p � · (p− |ex|p). For bad errors the error masking probability is larger or
equal to 0.5. Thus

2−k · �2
k − ex

p
� · (p− |ex|p) ≥ 0.5. (8)

When p << 2k, it is reasonable to rewrite (8) as follows:

2−k · 2
k − ex

p
· (p− |ex|p) ≥ 0.5. (9)

Thereby,

ex ≤
2k−1(p− 2 · |ex|p)

p− |ex|p
. (10)

We know that ex ≥ 0, so
0 ≤ |ex|p ≤ �

p

2
�. (11)

The total number of ex satisfying (10) and (11) is upper bounded by (For sim-
plicity, let i = |ex|p.)

� p
2 �
∑

i=0

(
1
p
· 2

k−1(p− 2i)
p− i

+ 1). (12)

So the number of bad errors in this class is bounded by (12), which can be
simplified to be

2k + p

p
(�p

2
�+ 1)− 2k−1 ·

� p
2 �
∑

i=0

(
1

p− i
). (13)

(b) p ≤ |x|p + ey < 2r, errors in this class will never be masked because the
redundant part is a value that cannot occur.

(c) |x|p +ey ≥ 2r, then ||x|p +ey|2r = |x|p +ey−2r. An error (ex, ey) is masked
if and only if |x + ex|p = |x|p + ey − 2r. Or equivalently |ex|p = |ey − 2r|p.
It is easy to show that ey − 2r ∈ [−p + 1, 0], so |ey − 2r|p = p + ey − 2r. For
a codeword x to mask a given error (ex, ey), the following conditions must be
satisfied:

x + ex < 2k, (14)

|x|p + ey ≥ 2r, (15)

|ex|p = ey + p− 2r. (16)

From (15) and (16) we have |x|p ≥ p − |ex|p. For a certain value of |x|p ≥
p − |ex|p, the number of x satisfying (14) is bounded by � 2k−ex

p �. Thereby
for a given error (ex, ey), the total number of codewords that mask the error is
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� 2k−ex

p � · |ex|p. For bad errors the error masking probability is larger or equal
to 0.5. Thus

2−k · �2
k − ex

p
� · |ex|p ≥ 0.5. (17)

When p << 2k, we rewrite (17) as follows:

2−k · 2
k − ex

p
· |ex|p ≥ 0.5. (18)

So

ex ≤
1
|ex|p

· 2k−1 · (2|ex|p − p). (19)

Because ex ≥ 0,

|ex|p ≥ �
p

2
�. (20)

The total number of ex satisfying (19) and (20) is upper bounded by(For sim-
plicity, let i = |ex|p.)

num <

p−1
∑

	 p
2 


(
1
p
· 2

k−1(2i− p)
i

+ 1). (21)

So the number of bad errors in this class is bounded by (21), which can be
simplified to be

2k + p

p
· (p− �p

2
�)− 2k−1 ·

p−1
∑

	 p
2 


1
i
. (22)

From (13) and (22), the total number of bad errors for the case when x + ex < 2k

is bounded by 2k + p− 2k
∑p−1

i=	 p
2 


1
i −

2k−1

p .

2. x + ex ≥ 2k, we have |x + ex|2k = x + ex − 2k, f(x + ex) = |x + ex − 2k|p.
Following the same analysis, we can show that the number of bad errors in this
class is also bounded by 2k + p− 2k

∑p−1
i=	 p

2 

1
i −

2k−1

p .

Thereby for linear arithmetic codes, an upperbound of the number of bad errors is

2 · (2k + p− 2k

p−1
∑

i=	 p
2 


1
i
− 2k−1

p
)

= 2 · (2k + p− 2k(Hp−1 −H� p
2 �)−

2k−1

p
).

If no errors occur to the redundant part of the code, ey = 0. For the case when x+ex <
2k, a codeword x mask an error e = (ex, ey = 0) if and only if |ex|p = ey = 0. It is easy

to prove that the number of errors in this class is upper bounded by � 2k−1

p �. Similarly,

when x + ex ≥ 2k, the number of bad errors in the format of (ex, 0) is also upper
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bounded by � 2k−1

p �. So the total number of bad errors occurring to the information part

of the code is no more than 2 · � 2k−1

p �.
When p is large and p << 2k, the estimated probability of bad errors and bad

errors occurring to the information part of the code can be derived directly from (3)
and (4). �

The number of bad errors occurring to the information part of the code decreases as p
increases according to (4). When p > 2k−1, there are nearly no bad errors in the format
of (ex, ey = 0). However, the total number of bad errors is still very large for linear
arithmetic codes.

In general, the hardware overhead for the encoder of the code is mostly affected by
the number of redundant bits r = �log2(p)�. Many different p can be selected when r
is fixed and some of them are better in terms of the total number of bad errors. Table 1
shows the best p and the corresponding fraction of bad errors for different k and r. The
numbers outside the parentheses are the prime numbers which will result in the smallest
number of bad errors for the given k and r. The numbers inside the parentheses are the
corresponding fractions of bad errors.

When 2r << 2k, we should select p to be the largest possible prime number for the
purpose of minimizing the number of bad errors, e.g. when r = 4, the best p for the
three k values are all 13, which is the largest prime number less than 24. However, if r
is comparable to k, smaller p can achieve the same error detection capability as larger p.

The smallest fraction of bad errors for linear arithmetic code is of the order of 2−r.
The only way to reduce the fraction is to increase the number of redundant bits, which
is costly in terms of the hardware overhead.

We next propose a construction of multilinear arithmetic codes that have smaller
total number of bad errors than linear codes with the same number of redundant bits r.

Table 1. Best p and the corresponding fractions of bad errors (in parentheses) for different k and
r for linear arithmetic codes

k = 16 k = 32 k = 64
r = 4 13 (2−4.6) 13 (2−4.6) 13 (2−4.6)
r = 8 131 (2−8.6) 251 (2−8.6) 251 (2−8.6)
r = 12 2053 (2−12.5) 2053 (2−12.5) 4093 (2−12.5)
r = 16 − 32771 (2−16.7) 65521 (2−16.7)
r = 20 − 524309 (2−20.7) 1048549 (2−20.7)

Theorem 2. ([|x|p, |2x|p] Multilinear Code) Let C1, C2 be two arithmetic systematic
codes defined by

Ci = {(x, y)|x ∈ Z2k , y = fi(x) ∈ Z2r}, i ∈ {1, 2},

where f1(x) = |x|p , f2(x) = |2x|p , p is a prime number larger than 2 and ||p is
the modulo operation. Denote by e = (ex, ey) the arithmetic errors and c̃ = c + e =
(|x+ex|2k , |y+ey|2r ) the distorted codeword, where ex ∈ Z2k , ey ∈ Z2r , r = �log2 p�
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is the number of redundant bits. If we randomly select C1 and C2 to encode the original
messages with equal probability, the total number of bad errors is upper bounded by

2 · �2
k−1

p
�. (23)

When p << 2k, the estimated probability of bad errors for [|x|p, |2x|p] multilinear
codes is 2−2r.

Proof. For each linear code, there are four cases resulting in four sets of bad errors
(refer to the proof for Theorem 1), which are shown in Table 2. When we randomly
select C1 and C2 with equal probability, an error e = (ex, ey) is bad if and only if the
total number of codewords in C1 and C2 that mask e is larger or equal to 2k.

Table 2. Classification of bad errors for linear arithmetic codes

Case1 Case2 Case3 Case4
x + ex < 2k x + ex < 2k x + ex ≥ 2k x + ex ≥ 2k

fi(x) + ey < p fi(x) + ey ≥ 2r fi(x) + ey < p fi(x) + ey ≥ 2r

fi(ex) = ey fi(ex) = ey + p− 2r fi(ex − 2k) = ey fi(ex − 2k) = ey + p− 2r

1. For a given error e, when C1 is in Case1 (i.e. x+ex < 2k, f1(x)+ey < p, f1(ex) =
ey) or Case2 and C2 is in Case3 or Case4, the total number of codewords masking
the error e is less than 2k. So there are no bad errors in this class. Similarly, when
C1 is in Case3 or Case4 and C2 is in Case1 or Case2, there are no bad errors.

2. C1 is in Case1 and C2 is in Case2. For C1, |x|p + ey < p, the possible number of
|x|p is p− ey . For C2, |2x|p + ey ≥ 2r, the possible number of |x|p is p− 2r + ey .

For each possible value of |x|p, the number of x is � 2k−ex

p �. It is easy to prove that

the total number of x masking the error is less than 2k. So there are no bad errors
in this class. Similarly we can prove that for the following three cases there are also
no bad errors.
(a) C1 is in Case2, C2 is in Case1;
(b) C1 is in Case3, C2 is in Case4;
(c) C1 is in Case4, C2 is in Case3.

3. When C1 and C2 both belong to Case2, x+ex < 2k, we have |x+ex|2k = x+ex,
|x|p + ey ≥ 2r and |2x|p + ey ≥ 2r. In this case ||x|p + ey|2r = |x|p + ey − 2r,
||2x|p + ey|2r = |2x|p + ey − 2r. For C1, an error (ex, ey) is missed if and only if

|x + ex|p = |x|p + ey − 2r. (24)

Equivalently,
|ex|p = |ey − 2r|p. (25)

For C2, an error (ex, ey) is missed if and only if

|2 · (x + ex)|p = |2x|p + ey − 2r. (26)
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Thus
|2ex|p = |ey − 2r|p. (27)

From (25) and (27) we have |ex|p = |ey − 2r|p = ey + p− 2r = 0. For an error to
be masked by both of the codes, the following conditions must be satisfied:

x + ex < 2k, (28)

|x|p + ey ≥ 2r, (29)

|2x|p + ey ≥ 2r, (30)

|ex|p = ey + p− 2r = 0. (31)

From (31), ey = 2r − p. So |x|p + ey < 2r, |2x|p + ey < 2r. Thereby no errors in
this case will be masked by both of the codes. Errors in this class are all non-bad
errors. Similarly, when C1 and C2 both belong to Case4, there are no bad errors.

4. When C1 and C2 both belong to Case1, x+ex < 2k, we have |x+ex|2k = x+ex,
f1(x+ex) = |x+ex|p, f2(x+ex) = |2·(x+ex)|p. |x|p+ey < p and |2x|p+ey < p.
In this case ||x|p + ey|2r = |x|p + ey, ||2x|p + ey|2r = |2x|p + ey. For C1, an error
(ex, ey) is missed if and only if

|x + ex|p = |x|p + ey. (32)

Equivalently,
|ex|p = ey. (33)

For C2, an error (ex, ey) is missed if and only if

|2 · (x + ex)|p = |2x|p + ey. (34)

Equivalently,
|2ex|p = ey. (35)

From (33) and (35) we have |ex|p = ey = 0. For a codeword x to mask a given
error (ex, ey), the following conditions must be satisfied:

x + ex < 2k, (36)

|x|p + ey < p, (37)

|2x|p + ey < p, (38)

|ex|p = ey = 0. (39)

When (39) is satisfied, (37) and (38) are also satisfied. For each (ex, ey) such that
|ex|p = ey = 0, the total number of codewords in C1 and C2 that mask the error is
2 · (2k − ex). For bad errors this number should be larger or equal to 2k. Thus

2 · (2k − ex) ≥ 2k. (40)

Equivalently,
ex ≤ 2k−1. (41)

From (39) and (41), the number of bad errors is bounded by � 2k−1+1
p �. Similarly,

when C1 and C2 both belong to Case3, the number of bad errors is bounded by
� 2k−1

p �.
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So an upperbound of the total number of bad errors is

�2
k−1 + 1

p
�+ �2

k−1

p
� ≈ 2 · �2

k−1

p
�. (42)

The estimated probability of bad errors can be derived directly from (23). �
All bad errors for [|x|p, |2x|p] multilinear codes are in the format of (ex, ey = 0). They
have the same value as bad errors occurring to the information part of the linear arith-
metic code. In another word, the proposed multilinear arithmetic code will not help if
we assume that ey is always 0. This situation, however, can be prevented by implement-
ing a merged design of the original device and the encoder of the code since in this case
faults will have high probability to affect not only the original device but also the en-
coder that generates the redundant part of the code. The advantage of this construction
is that it has no other bad errors except for errors occurring to the information part of
the code. The total number of bad errors is much smaller than that of linear arithmetic
codes. Moreover, it is possible to reduce the number of bad errors to be nearly zero
using [|x|p, |2x|p] multilinear codes, which is impossible for linear arithmetic codes.

The next construction based on utilizing multiple modulus can drastically reduce the
number of bad errors in the format of (ex, ey = 0). The theorem can be proved in a
similar way to the proof for Theorem 2. Here we omit the proof due to the limit of
space.

Theorem 3. ([p,q] Multilinear Code) Let C1, C2 be two arithmetic systematic codes
defined by

Ci = {(x, y)|x ∈ Z2k , y = fi(x) ∈ Z2r}, i ∈ {1, 2},

where r = max(�log2 p�, �log2 q�), p and q are different prime numbers larger than 2,
f1(x) = |x|p and f2(x) = |x|q (||p is the modulo operation). Without loss of generality,
we assume that p > q. Denote by e = (ex ∈ Z2k , ey ∈ Z2r) the arithmetic additive
errors and c̃ = c + e = (|x + ex|2k , |y + ey|2r ) the distorted codeword. If we randomly
select C1 and C2 with equal probability to encode the original messages and assume
that the error only occurs to the information part of the code, the number of bad errors
is upper bounded by

2 · (�2
k−1

pq
�+ �2

k

pq
�). (43)

When pq << 2k and q is close to p, the estimated probability of bad errors occurring
to the information part of [p, q] multilinear codes is 3 · 2−3r.

Remark 1. The precise number of bad errors for [p, q] multilinear codes is hard to ana-
lyze. However, experimental results indicate that it is comparable to that of [|x|p, |2x|p]
multilinear codes and is much smaller than that of linear arithmetic codes. The idea
of utilizing multiple residues as the redundant part of the code has already been pre-
sented in [7]. With two residues, the codeword was in the format of (x, |x|p, |x|q). We
want to emphasize that our construction is different from multiresidue codes proposed
in [7] since at each clock cycle our code has only one residue for the redundant part.
Instead of using multiple residues simultaneously, we use only one for each encoding
and decoding operation and randomly select the modulus for different operations.



Design of Reliable and Secure Multipliers by Multilinear Arithmetic Codes 57

To demonstrate that [p, q] multilinear codes have less bad errors in the format of
(ex, ey = 0) than linear and [|x|p, |2x|p] multilinear arithmetic codes, we compare the
number of bad errors in this class for the three constructions in Table 3. The number of
information bits of the codes in the table is 32. For [p, q] multilinear codes, q is selected
to be the largest possible prime number less than p, e.g. when p = 241, q = 239. Linear
arithmetic codes and [|x|p, |2x|p] multilinear codes have the same number of bad errors
occurring to the information part of the code. As p increases, this number for [p, q] mul-
tilinear codes decreases much faster than the other two. When p = 2767(r = 12), [p, q]
multilinear codes has only 1.7× 103 bad errors in the format of (ex, 0) while the other
two have 1.6× 106.

Table 3. Number of bad errors occurring to the information part of linear and multilinear codes
(k=32)

p = 5 p = 241 p = 563 p = 883 p = 1237 p = 2767
LinearArithmetic 8.6× 108 1.8× 107 7.6× 106 4.9× 106 3.5× 106 1.6× 106

[|x|p, |2x|p] codes 8.6× 108 1.8× 107 7.6× 106 4.9× 106 3.5× 106 1.6× 106

[p, q] codes 8.6× 108 2.2× 105 4.1× 104 1.7× 104 8.5× 103 1.7× 103

To end this section, we summarize results on the probability of bad errors and the
probability of bad errors occurring to the information part of linear and multilinear
codes in Table 4. When bad errors occurring to the information part is more critical,
[p, q] multilinear codes should be used. Otherwise, [|x|p, |2x|p] multilinear codes should
be used because they are better than linear arithmetic codes in terms of the error detec-
tion abilities and require less hardware overhead to implement than [p, q] multilinear
arithmetic codes (Section 4).

Table 4. Probability of bad errors and probability of bad errors occurring to the information bits
of linear and multilinear codes

Probability of Linear Arithmetic Codes [|x|p, |2x|p] codes [p, q] codes
bad errors ≈ 0.3 · 2−r+1 ≈ 2−2r ≈ 2−2r∗

bad errors in info. part ≈ 2−2r ≈ 2−2r ≈ 3 · 2−3r

∗ : Based on experimental results.

4 Protection of Multipliers Using Multilinear Arithmetic Codes

In this section, we propose protection architectures for multipliers based on multilin-
ear arithmetic codes. The multiplier is a basic block in many public key and even in
some secret key cryptographic devices. Due to its arithmetic nature of the operations,
arithmetic error model is most often used for such devices. In this section, we assume
that additive arithmetic errors manifest themselves at the output of the multiplier and
the predictor1. The error is in the format of e = (ex, ey), ex ∈ Z2k , ey ∈ Z2r , where

1 The term predictor is used in this context to refer to the circuit that computes the checksum
of the output of the operation directly from the inputs. In our case the predictor computes the
checksum of the multiplication result.
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k is the number of information bits and r is the number of redundant bits. We analyze
and compare the number of bad errors for architectures protected by the three codes
presented in Section 3. The advantage of architectures based on multilinear codes in
terms of the number of bad errors is demonstrated.

The general hardware architecture of multipliers protected by block codes contains
three parts: the original multiplier, the predictor that generates the redundant bits of the
code and the error detection network which detects errors at the output of the device.
The detailed architectures for the alternatives are shown in Figure 1.

(a) (b) (c)

Fig. 1. Hardware arthictectures for multipliers protected by (a) linear arithmetic codes, (b)
[|x|p, |2x|p] multilinear codes and (c) [p, q] multilinear codes

The predictor for the linear arithmetic codes contains one multiplier in Zp. Except
for the r bit comparator, the only operation implemented in the error detection network
(EDN) is a modulo p operation. The hardware overhead mainly comes from the r =
�log2(p)� bit multiplier, whose complexity is of the order of O(r2), and the modulo p
operation in EDN, whose complexity is O(k). (k is the number of information bits).

Compared with architectures based on linear arithmetic codes, the architecture utiliz-
ing [|x|p, |2x|p] multilinear codes only needs one extra r-bit multiplexer and one extra
×2 operation in Zp for both the predictor and the EDN.×2 operation is equal to shifting
the operands by 1 bit, which is trivial in terms of the hardware overhead. The complex-
ity of an r-bit multiplexer is in general of the order of O(r). Thereby this architecture
has comparable hardware overhead to linear arithmetic codes.

The protection architecture based on [p, q] multilinear codes needs one more mul-
tiplier in Zq for the predictor. When p << 2k, which is often the case in real life, q
should be selected as the largest prime number that is smaller than p if we want to min-
imize the number of bad errors. A multiplier in Zq will have about the same hardware
complexity as the multiplier in Zp and this will double the overhead for the predictor.
However, we claim that a merged design of the two multipliers for the predictor should
be implemented. First, from the security point of view, separate redundant data path
may be used by attackers to derive the secret information of the devices, e.g. the at-
tacker can inject faults into one redundant path of the device which will never influence
the other. A merged design can effectively solve the problem because most of the faults
injected into the redundant part of the device will affect the generation of redundant bits
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for both codes. Second, the hardware overhead of the predictor will be reduced if we
merge the design of the two multipliers. A more aggressive approach is to design the
original multiplier and the predictor of the code together as discussed in Section 3.

Remark 2. There is a tradeoff between the error detection abilities and the hardware
overhead when we select p and q as specialized p and q can significantly reduce the
hardware complexity of the modulo operation e.g. using Mersenne primes.

In Table 5 we compare the hardware overhead, the estimated probability of bad errors
and the probability of bad errors occurring to the information part of the three archi-
tectures for the case when k = 32, r = 7, p = 27 − 1. For [p, q] multilinear codes
q = 25 − 1. The three designs were modeled in Verilog and synthesized in Synopsis
Design Compiler. The hardware overhead for the predictor and EDN for linear arith-
metic codes is in total 32%. With 7 redundant bits, the probability of bad errors for linear
arithmetic codes is of the order of 2−7. With similar hardware overhead, [|x|p, |2x|p]
multilinear code can reduce this probability to 2−14. Experimental results shown that
[p, q] multilinear codes have nearly the same probability of bad errors as [|x|p, |2x|p]
multilinear codes, which is 2−14. Meanwhile the probability of bad errors occurring to
the information part is only about 3 ·2−21, which is the smallest of the three. The disad-
vantage of this architecture is that it requires more overhead to implement. But we note
that 53% is still less than the overhead to implement (x, |x2|p) partially robust codes
proposed in [10].

Table 5. Hardware overhead and the estimated probability of bad errors for architectures based
on linear and multilinear codes (k = 32, r = 7)

Linear Arith. Codes [|x|p, |2x|p] ML codes [p, q] ML codes
Overhead for Predictors 32% 40% 53%
and EDN
Probability of bad errors ≈ 2−7

≈ 2−14
≈ 2−14∗

Probability of bad errors
in the information part ≈ 2−14 ≈ 2−14 ≈ 3 · 2−21

∗ : Based on experimental results

We next present experimental results of the error detection capabilities of 8-bit mul-
tipliers protected by linear, [|x|p, |2x|p], [p, q] and (x, |x2|p) arithmetic codes to demon-
strate the advantages of architectures based on the proposed multilinear codes. All the
four alternatives were simulated in MATLAB. The number of bad errors were analyzed
and compared. In this experiment, k = 16, p = 31. For [p, q] multilinear code q = 29.
Each operand of the multiplier is a 8-bit binary vector and is randomly selected from 0
to 28−1. Additive errors happen at the output of the multiplier and the predictors of the
devices. The X axis in Figure 2 is the error masking probability. The Y axis shows the
number of errors masked by a certain probability. Errors on the right half of each sub-
figure are bad errors that are masked by a probability larger or equal to 0.5. As expected,
the number of bad errors for (b),(c) and (d) are drastically reduced compared with ar-
chitectures based on linear arithmetic codes. Compared with (d), the advantage of (b)
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(a) (b)

(c) (d)

Fig. 2. Number of bad errors for 8-bit multipliers protected by (a) linear arithmetic codes, (b)
[|x|p, |2x|p] codes, (c) [p, q] codes and (d) (x, |x2|p) codes

and (c) is that they require less hardware overhead than the former. (For the estimation
of the hardware overhead for (x, |x2|p) code, please refer to [10]).

To further demonstrate the advantages of multilinear arithmetic codes, we compare
the error/fault detection capabilities of the above four alternatives when errors at the
output of the devices repeat. As discussed in Section 2, we assume that an attacker can
use any fault injection methodologies and can inject faults with high spatial resolution
to generate a specific error at the output of the device. Once injected, the fault/error stays
for several clock cycles because the temporal resolution of the fault injection method is
limited.

The X-Axis in Figure 3 is the number of consecutive clock cycles that the error lasts,
which is denoted by t. Suppose the same error stays at the output for t consecutive
clock cycles, the error is said to be detected if it is detected at least once among these t
clock cycles. Otherwise, we say that the error is masked. Figure 3(a) compares the error
masking probability for linear, [|x|p, |2x|p], [p, q] and (x, |x2|p) arithmetic codes. The
Y-Axis is the average error masking probability.

The average error masking probabilities of all four alternatives decrease as t in-
creases. However, [|x|p, |2x|p], [p, q] and (x, |x2|p) arithmetic codes have much better
error detection capabilities than linear codes for large t. Figure 3(b) plots the ratio of
the average error masking probability of [|x|p, |2x|p], [p, q] and (x, |x2|p) codes to that
of the linear arithmetic codes. When the error stays for two consecutive clock cycles,
the error detection abilities for multilinear and robust arithmetic codes are already twice
better than that of linear codes. (x, |x2|p) has the lowest error masking probability when
t = {2, 3, 4}. For t > 6, [|x|p, |2x|p] codes and (x, |x2|p) codes have similar perfor-
mance. [p, q] codes are the best among the three nonlinear arithmetic codes when t > 4
and p = 31, q = 29. For smaller q, the error detection ability of [p, q] codes will be
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(a) (b)

Fig. 3. Error detection properties of 8-bit multipliers protected by linear, multilinear and partially
robust arithmetic codes in lazy channels

worse but still better than linear arithmetic codes. Thereby, the proposed multilinear
arithmetic codes can provide comparable or even better error protection abilities than
partially robust arithmetic codes (x, |x2|p) while requiring much less hardware over-
head. Architectures based on nonlinear arithmetic codes are better than that based on
linear arithmetic codes in terms of the number of bad errors and have lower error mask-
ing probability in lazy channels where errors tend to repeat.

5 Conclusions

In this paper we presented several constructions of multilinear arithmetic codes and
compared their error detection properties to that of linear and partially robust arithmetic
codes. Architectures of reliable multiplier based on multilinear arithmetic codes were
introduced. Experimental results show that the error detection capability can be signif-
icantly improved over that of linear codes at the expense of a very mild increase in the
hardware overhead (Table 5). The proposed multilinear codes can achieve as good error
detection abilities as that of the partially robust arithmetic codes with smaller hardware
overhead and are better choices than linear arithmetic codes in lazy channels where
errors tend to repeat. These codes can efficiently prevent the attackers from injecting
undetectable faults/errors under the assumption that the temporal resolution of the fault
injection methodologies is limited. Finally, we would like to point out that in this paper
we considered only the case when multilinear codes are constructed from 2 codes. But
the results can be easily generalized to any number of codes.

References

[1] Kocher, P.C.: Timing attacks on implementations of diffie-hellman, RSA, DSS, and other
systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer,
Heidelberg (1996)

[2] Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO
1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

[3] Skorobogatov, S.: Optical fault induction attacks. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C.
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Abstract. Modern mobile devices like cell phones or PDAs allow for a
level of network connectivity similar to that of standard PCs, making
access to the Internet possible from anywhere at anytime. Going along
with this evolution is an increasing demand for cryptographically secure
network connections with such resource-restricted devices. The Secure
Sockets Layer (SSL) protocol is the current de-facto standard for secure
communication over an insecure network like the Internet and provides
protection against eavesdropping, message forgery and replay attacks.
To achieve this, the SSL protocol employs a set of computation-intensive
cryptographic algorithms, in particular public-key algorithms, which can
result in unacceptably long delays on devices with modest processing
capabilities. In this paper we introduce a hardware/software co-design
approach for accelerating SSL protocol execution in resource-restricted
devices. The software part of our co-design consists of MatrixSSLTM, a
lightweight SSL implementation into which we integrated elliptic curve
cryptography (ECC) to speed up the public-key operations performed
during the SSL handshake. The hardware part comprises a SPARC V8
compliant processor core with instruction set extensions to support the
low-level arithmetic operations carried out in ECC. Our co-design exe-
cutes a full SSL handshake using an elliptic curve over a 192-bit prime
field in less than 300 msec when the SPARC processor is clocked at 20
MHz. A pure software implementation like OpenSSL is, depending on
the field type and order, up to a factor of 10 slower than our co-design
solution.

1 Introduction
The current de-facto standard for secure communication over an insecure, open
medium like the Internet is the Secure Sockets Layer (SSL) protocol [9] and
its successor, the Transport Layer Security (TLS) protocol [8,33]. Both use a
combination of public-key and secret-key cryptographic techniques to ensure
confidentiality, integrity and authenticity of communication between two parties
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(typically referred to as client and server). The SSL protocol is composed of two
layers and includes several sub-protocols. At the lower level is the SSL Record
Protocol, which specifies the format used to transmit data between client and
server (including encryption and integrity checking) [9]. It encapsulates various
higher-level protocols, one of which is the SSL Handshake Protocol. The main
tasks of the handshake protocol are the negotiation of a set of cryptographic
algorithms, the authentication of the server (and, optionally, of the client1), as
well as the establishment of a pre-master secret via asymmetric (i.e. public-key)
techniques [9]. Both the client and the server derive a master secret from this
pre-master secret, which is then used by the record protocol to generate shared
keys for symmetric encryption and message authentication [9]. The handshake
protocol, on the other hand, relies on services provided by the record protocol
to exchange messages between client and server.

The SSL/TLS protocol is algorithm-independent (or algorithm-agile) in the
sense that it supports different algorithms for one and the same cryptographic
operation, and allows the communicating parties to make a choice among them
[9]. At the beginning of the handshake phase, the client and the server negotiate
a cipher suite, which is a well-defined set of algorithms for authentication, key
agreement, symmetric encryption, and integrity checking. Both SSL and TLS
specify the use of RSA or DSA for authentication, and RSA or Diffie-Hellman
for key exchange. In 2006, the TLS protocol was revised to include ECDSA as
signature primitive and ECDH for key exchange [5]. The big benefit of Elliptic
Curve Cryptography (ECC) [19] over traditional public-key schemes operating
in Zn or Z∗

p is its better security-per-bit ratio: A carefully chosen 160-bit ECC
cryptosystem attains a security level comparable to that of 1024-bit RSA. As
a consequence, public-key schemes based on elliptic curves over finite fields can
use significantly shorter keys compared to their “classical” counterparts. These
reduced key lengths translate directly into memory and bandwidth savings when
SSL handshakes are performed with one of the ECC-based cipher suites from
[5] instead of an RSA cipher suite. In addition, certain cryptographic operations
(e.g. generation of signatures, key exchange) can be executed much faster in an
elliptic curve group than in a multiplicative group like Z∗

p.
The advent of the wireless Internet has created a strong demand for secure

communication via mobile devices such as cell phones or PDAs. However, these
devices are battery-operated, and hence severely constrained by computational
resources (processing power, memory, network bandwidth, etc.). When imple-
menting SSL for mobile devices, great care must be taken to utilize the scarce
resources as efficiently as possible [2,3,14]. The delay a user experiences when
establishing an SSL connection depends heavily on the execution time of the
public-key operations carried out during the handshake (i.e. authentication and
key agreement). If an RSA-based cipher suite is used, the client has to perform

1 Most Internet applications use SSL only for server-side authentication, which means
that the server is authenticated to the client, but not vice versa. Client authentication
is typically done at the application layer (and not the SSL layer), e.g. by entering a
password and sending it to the server over a secure SSL connection.
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two modular exponentiations, one for the verification of the server’s certificate
and one for the encryption of the pre-master secret2. Even though these expo-
nentiations involve public exponents (which are usually small), they constitute
a significant overhead. For example, Gupta et al [14] analyzed the performance
of an SSL client written in Java on a 20 MHz Palm Vx and found that the two
RSA public-key operations account for almost 30% of the overall execution time
of the SSL handshake3. On the other hand, when using an ECC cipher suite, the
public-key operations (i.e. ECDSA verification, ECDH key exchange) make up
more than 80% of the handshake time4 [23]. Therefore, hardware acceleration
of the public-key operations carried out during the handshake is desirable.

The straightforward approach to hardware acceleration of public-key cryp-
tography is the integration of a dedicated co-processor to off-load the compu-
tationally expensive parts of an algorithm (e.g. modular exponentiation in the
case of RSA, scalar multiplication in ECC) from the main processor [7,17]. In
the embedded realm, however, fixed-function hardware accelerators in the form
of cryptographic co-processors exhibit a number of disadvantages. Co-processors
for RSA generally demand large silicon area, which poses a particular problem
for low-cost embedded devices. On the other hand, co-processors for ECC often
lack the flexibility to support the multitude of implementation options that are
recommended by several standardization organizations around the world. One
example of these options is the large number of “standardized” finite fields upon
which elliptic curve cryptosystems can be built [34]. Supporting various fields
of different characteristic and order is difficult with a fixed-function (i.e. hard-
wired) accelerator and may also consume a large amount of silicon area. Given
the algorithm-agile nature of the SSL protocol, it seems questionable whether a
cryptographic co-processor can meet the desired level of flexibility at moderate
hardware cost. Modern security protocols, such as SSL or IPSec, are constantly
evolving and hence changing their repertoire of crypto algorithms (e.g. to phase
out compromised algorithms, to include new algorithms, or to adapt the minimal
key size of algorithms), which again calls for a flexible and scalable approach to
hardware acceleration.

In this paper we present a new methodology for hardware acceleration of the
SSL handshake based on hardware/software co-design [35] of the involved cryp-
tographic algorithms. The specific co-design approach we followed in our work is
the integration of custom instructions into a general-purpose processor to speed
up the processing of performance-critical arithmetic operations carried out in
ECC (e.g. multiplication in finite fields). Hardware/software co-design at the

2 Instead of sending a single certificate to the client, the server may also send a chain
of two or more certificates linking the server’s certificate to a trusted certification
authority (CA). However, throughout this paper we assume that the certificate chain
consists of just one certificate, and hence a single signature verification operation is
sufficient to check the validity of the certificate.

3 A 1024-bit modular exponentiation with a public exponent of 65537 executes in 1433
msec [14, Table I], and the full SSL handshake takes approximately 10 seconds.

4 We will argue in Subsection 3.2 why ECC is advantageous over RSA for client-side
SSL processing on resource-constrained devices.
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granularity of instruction set extensions is particularly area-efficient and allows
one to retain the full flexibility of a “pure” software solution, which makes this
approach perfectly well suited for hardware acceleration of the SSL protocol in
low-cost embedded systems. The hardware part of our co-design comprises an
embedded SPARC V8 processor into which we integrated a set of six custom
instructions to facilitate the efficient execution of arithmetic operations in prime
and binary fields of large order [13]. The software part consists of MatrixSSL, a
“lightweight” SSL implementation written in ANSI C [29]. MatrixSSL provides
both client and server functionality, but lacks support for ECC. Therefore, we
developed a simple crypto library including RSA, DSA, Diffie-Hellman, as well
as ECC over prime and binary fields, and integrated it into MatrixSSL along
with the ECC cipher suites from [5]. Our experimental results show that, due
to the lightweight implementation of the SSL stack, the speed-up gained at the
low-level field arithmetic propagates almost lossless up to the application layer.
We also compare the results of our co-design with the performance figures of a
pure software implementation of the SSL protocol, namely OpenSSL [28]. This
comparison confirms that hardware/software co-design in the form of instruction
set extensions for public-key cryptography, in particular ECC, is a good way to
accelerate the SSL handshake.

2 Public-Key Cryptography

The SSL/TLS protocol makes heavy use of public-key cryptography during the
handshake phase to accomplish such tasks as authentication and key establish-
ment. In this section we briefly discuss implementation aspects of both classical
public-key cryptosystems (RSA, DSA, Diffie-Hellman) as well as elliptic curve
cryptosystems in the context of the SSL handshake.

2.1 RSA, DSA, Diffie-Hellman

The RSA cryptosystem operates in the residue class ring Zn, where n is the pro-
duct of two large primes. DSA and Diffie-Hellman, on the other hand, use the
multiplicative group Z∗

p (or a subgroup thereof) as underlying algebraic struc-
ture. The basic operation of all these cryptosystems is exponentiation, i.e. the
repeated application of the ring or group operation, namely multiplication, to an
element of the ring (resp. group). Of course, the multiplications are performed
modulo n (or modulo p, respectively), which means that said exponentiation is
actually a modular exponentiation of the form c = me mod n [24]. In case of the
RSA algorithm, the modulus n is a product of primes, the exponent e satisfies
gcd (e, φ(n)) = 1, and the base m is in the interval [0, n− 1], i.e. m ∈ Zn. The
security of the RSA cryptosystem is closely related to the Integer Factorization
Problem (IFP), even though no mathematical proof exists that the factorization
of n is needed to break RSA. Factoring an RSA modulus is widely believed to
be computationally infeasible if its prime factors are large (e.g. ≥ 512 bits). On
the other hand, the security of DSA and Diffie-Hellman relies on the Discrete
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Logarithm Problem (DLP) in Z∗
p, which is defined as follows: Given a generator

g for Z∗
p (or a subgroup thereof) and an element a of said (sub)group, find the

integer x such that a = gx mod p. The DLP is considered intractable, provided
that the group Z∗

p and the generator g are properly chosen.
The standard algorithm for computing a modular exponentiation me mod n

is the square-and-multiply algorithm, which is also referred to as binary expo-
nentiation method [24] since it uses the binary expansion of the exponent e. Two
variants of the binary method are described in [24]; one scans the bits of e from
left to right (i.e. MSB first), the other from right to left (i.e. LSB first). Assuming
an exponent e of length l = 1 + �log2 e� bits, the square-and-multiply algorithm
executes l modular squarings and roughly l/2 modular multiplications, with the
exact number depending on the Hamming weight of e. The number of modular
multiplications can be reduced if some extra memory for storing powers of the
base m is available. For example, the k-ary exponentiation method (also called
window method) processes k bits of the exponent e at a time, thereby reducing
the number of modular multiplications to l/k in the worst case. However, the
k-ary exponentiation requires pre-computation and storage of 2k powers of the
base m (see Algorithm 14.82 in [24]), which is why this method is rarely imple-
mented on resource-constrained embedded devices like smart cards. If the base
m is fixed and known a-priori (which is, for example, the case when generating
a DSA signature), the number of both modular multiplications and squarings
can be reduced through the fixed-based comb method as described in [24].

The execution time of a modular exponentiation depends heavily on the im-
plementation of the two operations it consists of, namely modular multiplication
and modular squaring. Both operations include a modular reduction, which can
be efficiently performed using the well-known Montgomery technique [25]. Koç
et al [22] describe several optimized software algorithms for Montgomery mul-
tiplication, among these is the so-called Coarsely Integrated Operand Scanning
(CIOS) method. The CIOS method executes a total of 2s2 + s single-precision
(i.e. w-bit) multiply instructions, whereby n denotes the number of w-bit words
that are needed to accommodate an n-bit operand, i.e. s = �n/w� (see [22] for a
detailed analysis).

The computational cost of a modular exponentiation can be reduced if the
exponent e and/or the base m are suitably chosen, which is possible for RSA as
well as DSA and Diffie-Hellman. For example, it is common practice to choose a
small public exponent in RSA; a typical value is 216 +1. In this case, operations
involving the public exponent (e.g. RSA encryption) are significantly faster than
operations involving the private exponent, even when the latter are supported
by the Chinese Remainder Theorem [24]. On the other hand, Diffie-Hellman and
DSA can use special primes to simplify the reduction operation. In addition, the
generator g used in Diffie-Hellman key exchange can be small (e.g. g = 2), which
reduces the cost of a modular exponentiation. DSA implementations generally
take advantage of a generator g that generates a (large) subgroup of Z∗

p, e.g. a
160-bit subgroup when p is a 1024-bit prime, which considerably alleviates the
computational burden of a modular exponentiation with g as base.
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2.2 Elliptic Curve Cryptography

Elliptic curve cryptosystems operate in an additive Abelian group, namely the
group of points on an elliptic curve defined over a finite field. A discussion of the
mathematical foundations of ECC is beyond the scope of this paper; we refer
the interested reader to textbooks such as [19] and [4]. In short, ECDSA and
ECDH can be seen as the elliptic-curve “equivalents” of the classical DSA and
Diffie-Hellman cryptosystems, whereby the group Z∗

p is replaced by E(Fq), the
group of Fq-rational points on a curve E. The basic building block of all ECC
schemes is scalar multiplication, i.e. an operation of the form k · P where P is a
point on the curve (i.e. P ∈ E(Fq)) and k is an integer [4]. Scalar multiplication
in an additive group corresponds to exponentiation in a multiplicative group;
both are performed through repeated application of the group operation to an
element. However, the group operation in E(Fq) is the addition of points, which
in turn is realized by a sequence of arithmetic operations in the underlying finite
field Fq. The security of both ECDH and ECDSA is based on the intractability
of the elliptic curve discrete logarithm problem (ECDLP), which can be defined
as follows: Given an elliptic curve group E(Fq), a base point P ∈ E(Fq), and a
second point Q ∈ E(Fq), find the smallest integer k so that Q = k · P , provided
such an integer exists. Currently, the fastest algorithm known for solving the
ECDLP requires fully exponential time when E(Fq) and the base point P were
chosen with care. As a consequence, ECC schemes can use much shorter keys
than their “classical‘” counterparts based on the DLP or the IFP (e.g. 160 bits
instead of 1024 bits) [19].

Ephemeral ECDH key exchange requires the server and the client to execute
two scalar multiplications of the form k · P ; one to generate a key pair and the
other to obtain the shared secret key. On the other hand, the generation of an
ECDSA signature costs just one scalar multiplication k · P , but the verifier has
to execute a double scalar multiplication of the form k · P + l ·Q [4]. Similar to
the square-and-multiply algorithm for exponentiation, a scalar multiplication
can be carried out via point additions and point doublings, both of which, in
turn, involve a sequence of arithmetic operations (i.e. addition, multiplication
and inversion) in the underlying finite field Fq [19]. Inversion is by far the most
expensive field operation. However, it is possible to add points on an elliptic curve
without the need to perform costly inversions, e.g. by representing the points in
projective coordinates [19]. When using projective coordinates, an entire scalar
multiplication can be carried out solely with field additions (resp. subtractions)
and field multiplications (resp. squarings); just a single inversion is necessary to
convert the result from projective coordinates back to the conventional (affine)
coordinate system.

Before an ECDH key exchange (or any other elliptic curve scheme) can be
carried out, the involved entities have to agree upon a common set of so-called
domain parameters [19], which specify the field Fq, the elliptic curve E (i.e. the
coefficients a, b ∈ Fq defining the curve), a base point P ∈ E(Fq) generating a
cyclic subgroup of large order, the order n of this subgroup, and the co-factor
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h = #E(Fq)/n. Consequently, elliptic curve domain parameters are simply a
sextuple D = (q, a, b, P, n, h).

The efficient implementation of the field arithmetic, in particular the multi-
plication, has a major impact on the performance of ECC cryptosystems. Prime
fields and binary extensions fields are especially important since they have been
recommended by numerous standards bodies around the world. The elements
of a prime field Fp are simply the integers 0, 1, 2, . . . , p − 1, and the arithmetic
operations are addition and multiplication modulo p. Therefore, all algorithms
for arithmetic in Z∗

p can be used for Fp as well, e.g. Montgomery reduction as
described in [22]. However, it is possible (and common practice) to use special
primes in ECC for which optimized modular reduction methods exist; a typical
example are the generalized-Mersenne (PM) primes that are specified in some
standards, e.g. in [34]. For example, the reduction of a 384-bit integer modulo
the 192-bit GM prime p = 2192 − 264 − 1 can be performed with three simple
192-bit additions. GM primes allow one to achieve better performance with the
trade-off that each GM-prime requires a different reduction routine, resulting in
large code size if all standardized GM-primes are to be supported.

The elements of a binary finite field F2m are binary polynomials of degree
up to m − 1; the arithmetic in F2m is polynomial arithmetic (i.e. addition and
multiplication of binary polynomials) performed modulo an irreducible polyno-
mial p(t) of degree m. Addition in F2m is equivalent to exclusive-or and can be
realized using the processor’s XOR instruction on words of the operands. The
major disadvantage of binary fields is that multiplication is relatively costly in
software. Multiplication in F2m consists of a polynomial multiplication over F2,
followed by a reduction of the product modulo the irreducible polynomial. The
former is typically realized with the basic Shift-and-XOR method or one of its
optimized variants such as the left-to-right comb method (see Algorithm 2.36 in
[19]). Combining this method with Karatsuba’s technique can be advantageous
for large operands [21]. Also the reduction modulo p(t) requires just shift and
XOR instructions, and is relatively fast when p(t) is sparse. Squaring in F2m is
a linear operation and, hence, requires just a faction of the execution time of a
multiplication.

3 Secure Sockets Layer (SSL) Protocol

The Secure Sockets Layer (SSL) protocol and its successor, the Transport Layer
Security (TLS) protocol, are standardized protocol suites for enabling secure
communication between a client and a server over an insecure network [8]. The
main focus in the design of these protocols lay in modularity, extensibility, and
transparency. Both SSL and TLS use a combination of asymmetric (i.e. public-
key) and symmetric (i.e. secret-key) cryptographic techniques to authenticate
the communicating parties and encrypt the data being transferred. The actual
algorithms to be used for authentication and encryption are negotiated during
the handshake phase of the protocol. SSL/TLS supports traditional public-key
cryptosystems (i.e. RSA, DSA, Diffie-Hellman) as well as elliptic curve systems
such as ECDSA and ECDH.
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Table 1. SSL handshake, optional messages printed italic

Client Server

ClientHello
ServerHello
Certificate

ServerKeyExchange
CertificateRequest
ServerHelloDone

Certificate
ClientKeyExchange
CertificateVerify
ChangeCipherSpec
Finished

ChangeCipherSpec
Finished

Application Data Application Data

3.1 SSL Handshake

The SSL protocol contains several sub-protocols, one of which is the handshake
protocol. After agreeing upon a cipher suite5 that defines the cryptographic
primitives to be used and their domain parameters, the server (and possible the
client too) is authenticated and a pre-master secret is established using public-
key techniques. Table 1 shows an overview of this process (see [9] for a more
detailed description). When using an RSA cipher suite, the pre-master secret is
established through key transport: The client generates a random number and
sends it in RSA-encrypted form to the server. On the other hand, when using
an ECC-based cipher suite, the pre-master secret is established through a key
exchange to which both the client and the server contribute randomness.

In the ClientHello message the client sends its supported cipher suites to the
server, who confirms the selected suite in its own ServerHello message. Then,
the server transmits its certificate and an optional request for authentication to
the client. In most cases there is no mutual authentication and only the server
presents its certificate to the client. The client is rarely authenticated during
the handshake phase, but rather thereafter, e.g. by sending a password to the
server. The client then verifies the server’s certificate and answers with the
ClientKeyExchange message, containing the material needed for the server to
derive the shared pre-master secret. If the public key extracted from the server’s
certificate can not be used for encryption (e.g. because it is only authorized to
signing), then the server sends a ServerKeyExchange message including a sec-
ond public key. The ChangeCipherSpec is just a status message, telling both
parties to use the negotiated suite from now on. The final Finished message is
then the first one encrypted with the selected cipher and the symmetric key,
derived from the pre-master secret.
5 A cipher suite is a pre-defined combination of three cryptographic algorithms: A key

exchange/authentication algorithm, an encryption algorithm, and a MAC algorithm.
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The expensive steps in this process are the verification of the certificate’s
signature (using, for example, RSA, DSA, or its elliptic curve equivalent ECDSA)
and the establishment of the shared pre-master secret, which is usually done in
one of two ways, depending on the cipher suite chosen.

– If RSA is chosen, the client creates a random value, encrypts it with the
server’s public key (one modulo exponentiation) and sends the result back
to the server, who can decrypt it (another modulo exponentiation).

– If ECDH is chosen, the client creates a random value k, calculates R =
k · P (first scalar multiplication) and sends this value to the server. Then
it calculates k · Q (second scalar multiplication), with Q being the server’s
public key, obtained from its certificate. The server finally performs a single
scalar multiplication using R and its own private key. The final result for
both server and client is the shared pre-master secret (see [5] for details).

3.2 Advantages of ECC Cipher Suites over RSA Cipher Suites

When an RSA cipher suite is used for the handshake, the client has to perform
two modular exponentiations: one to verify the RSA signature contained in the
server’s certificate, and the other to encrypt the pre-master secret. Both of these
exponentiations are carried out with public exponents, which are usually small
[18,31]. Unfortunately, when using an ECC-based cipher suite, the situation is
less favorable for the client. ECDH key exchange requires the client to execute
two scalar multiplications, while the verification of an ECDSA signature involves
a double-scalar multiplication of the form k · P + l · Q [19]. ECDSA signature
verification is the most costly of the cryptographic operations performed during
an ECC-based handshake. In summary, RSA cipher suites impose high compu-
tational load on the server but low overhead on the client [1], while in general
the opposite holds when an ECC cipher suite is used [16]. It is widely believed
that RSA cipher suites are to prefer over their ECC-based counterparts when
the SSL client runs on an embedded device with modest resources, while ECC
cipher suites yield considerable better performance (i.e. throughput) figures on
the server side [15,30]. However, there exist also numerous good arguments in
favor of using ECC-based cipher suites on resource-restricted clients:

– Elliptic curve cryptosystems can use much shorter keys than RSA schemes
to ensure a certain level of security (e.g. 160 vs. 1024 bits), which translates
directly into memory and bandwidth savings. The former is important for
low-cost devices with small memory, while the latter is relevant for mobile
and battery-powered devices since wireless data transmission is very costly
in terms of energy [32].

– Results from the literature confirm that a 1024-bit RSA signature can be
verified significantly faster than a 160-bit ECDSA signature. However, the
picture changes with higher security levels (i.e. longer keys). Brown et al [6]
found that when using a Koblitz curve over F2233 , an ECDSA signature can
be verified in 5,878 msec on a Palm V device, whereas the verification of an
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RSA signature of roughly comparable strength (i.e. 2048-bit modulus and
17-bit public exponent) takes 7,973 msec.

– The key length of ECC scales linearly with that of symmetric ciphers such
as the AES. For example, the NIST [26] recommends to use 128-bit AES
in combination with 256-bit ECC or 3,072-bit RSA. However, 256-bit AES
demands RSA keys with a length of 15,360 bits for equivalent security, while
512-bit keys suffice when using ECC. This linear scaling property makes a
good case for ECC if AES-equivalent security levels are to be supported.

– Even though this paper focusses on client-side acceleration of SSL, it should
be noted that ECC offers significant performance-advantages for SSL servers
[15,16]. RSA cipher suites are highly computation-intensive on the server
side [7,36], which may also impact the overall latency of the handshake, in
particular if the server is under heavy load.

– When performing an SSL handshake with client authentication, ECC-based
cipher suites are, in general, less costly than their RSA counterparts (this
applies to both sides, the server and the client [15,30]).

– Using a cipher suite with ephemeral ECDH key exchange provides forward
secrecy, whereas RSA-based key transport does not [4]. Another advantage
of ECDH key exchange is that both the client and the server can contribute
randomness to the generation of the pre-master secret, which is not the case
with RSA-based key transport.

– ECDSA, ECDH, and ECMQV (an authenticated variant of ECDH) are the
only public-key schemes included in NSA Suite B [27], i.e. RSA must not be
used to secure sensitive or classified U.S. government communications.

For all these reasons we decided to use ECC cipher suites for the performance
evaluation of our co-designed SSL stack. However, other cipher suites based on
RSA, DSA, or Diffie-Hellman are also supported.

4 Implementation Details and Results

The hardware platform we used for our co-design is SPARC V8 softcore into
which we integrated a small set of custom instructions to speed up public-key
cryptography. Instruction set extension is a simple and efficient way to enhance
a processor’s capabilities to support special application domains. In contrast to
a dedicated co-processor, the hardware overhead of custom instructions is, in
general, relatively small. Moreover, since the instructions are directly integrated
into the ordinary processing pipeline, there is no need for expensive operand
transfers, which can heavily affect the performance of such solutions. Dedicated
co-processors are also limited in terms of flexibility and usually not designed to
support such a multitude of cryptographic algorithms as is needed in SSL.

Software implementations of cryptosystems often spend the majority of exe-
cution time in a few performance-critical code sections (e.g. inner loops), which
makes it amenable to processor customization. It was shown in [12] that a small
set of only five or six custom instructions suffices to accelerate the full domain
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Table 2. Format and description of the CIS instructions for public-key cryptography

Format Description Operation

umac rs1, rs2 Unsigned Multiply & Accumulate accu ← accu + rs1 × rs2

umac2 rs1, rs2 Unsigned Mul. & Accumulate Twice accu ← accu + 2(rs1 × rs2 )

uaddac rs1, rs2 Add to Accumulator Unsigned accu ← accu + rs1 + rs2

shacr rd Shift Accu Registers Right rd ← accu[31: 0]; accu ← accu � 32

gf2mul rs1, rs2 Bin. Polynomial Multiply accu ← rs1 ⊗ rs2

gf2mac rs1, rs2 Bin. Polynomial Mul. & Accumulate accu ← accu ⊕ rs1 ⊗ rs2

of public-key primitives specified in the IEEE Standard 1363 [20]; these include
traditional cryptosystems such as RSA, but also ECC systems over both prime
fields and binary extension fields. Based on the ideas in [11,12], we devised the
Cryptography Instruction Set (CIS) extensions to the SPARC V8 architecture
[13] and integrated them into the LEON-2 softcore, an open-source SPARC V8
implementation developed by Gaisler Research. The LEON-2 VHDL model can
be synthesized to FPGA and standard cell technologies [10].

The CIS extensions for PKC consist of a set of six custom instructions (see
Table 2) and a functional unit (FU) on which the instructions are executed. This
FU is basically a multiply-accumulate (MAC) unit composed of a (32× 16)-bit
unified multiplier and a 72-bit accumulator. A so-called unified multiplier is
a multiplier that uses the same datapath for two different types of operands,
namely integers and binary polynomials [12]. The MAC unit also contains three
result accumulation registers (%asr20, %y, and %asr18), in the following called
accu registers. Besides the six custom instructions shown in Table 2, the MAC
unit is capable to execute the two “native” SPARC V8 multiply instructions
umul and smul. Consequently, the CIS extensions can be easily integrated into
a SPARC V8 core by replacing the original integer multiplier by a MAC unit
for integers and binary polynomials and modifying the instruction decoder to
support the custom instructions.

Most of the CIS instructions listed in Table 2 get two 32-bit words from the
general-purpose register file as input and place the result in the accu registers.
The umac instruction can be used to implement the inner loop of long integer
multiplication according to the product scanning technique and is also useful
for Montgomery multiplication [11]. Long integer squaring can be efficiently ex-
ecuted with help of the umac2 instruction. The two instructions uaddac and
shacr facilitate the modular reduction operation for the special primes used in
EC cryptography. Finally, the instructions gf2mul and gf2mac interpret their
operands as binary polynomials and perform polynomial multiply/MAC oper-
ations that allow to speed up EC systems based on binary fields. A detailed
description of the custom instructions and their use in the diverse arithmetic
algorithms can be found in [11,12].

Especially for binary extension fields, the presence of hardware support for
polynomial multiplication offers a significant performance gain compared to a
native software implementation. The additional instructions are easily accessi-
ble through a modified assembler and the use of inline assembly in ordinary



74 M. Koschuch et al.

C programs. Due to their generic nature, they can be used for all sorts of cryp-
tographic algorithms requiring fast integer or polynomial arithmetic.

We integrated the CIS extensions into the LEON-2 core and prototyped the
extended processor in an FPGA. The CIS extensions have no impact one the
cycle time, i.e. the extended LEON-2 can be clocked with the same frequency
as the “original” LEON-2 processor (up to 50 MHz in our FPGA device). We
also synthesized the extended LEON-2 using a 0.35μ standard cell library and
found that the CIS extensions entail an increase in area by merely 5,550 gates
compared to a baseline LEON-2 core with a (32× 16)-bit multiplier.

4.1 Evaluation of Code Size and Performance

The software part of our co-designed SSL stack is based on the freely available
MatrixSSL library [29]. MatrixSSL in its original form provides both client and
server functionality, but does not feature ECC. Therefore, we developed a light-
weight public-key cryptographic library and integrated it into MatrixSSL so as
to support the ECC cipher suites specified in [5]. We used OpenSSL [28] as a
reference implementation with respect to code size and performance. Similar to
OpenSSL, our implementation is generic in the sense that it works for every
curve over prime or binary extension fields and allows free combination of the
cryptographic primitives (e.g. using ECDSA as signature primitive and RSA for
key establishment). Table 3 shows a comparison between our implementation
(i.e. MatrixSSL+ECC), the original MatrixSSL version (without ECC support)
and the OpenSSL library in terms of source files and code size. The integration
of ECC increased the size of MatrixSSL by just 15-20%. For comparison, the
OpenSSL executable is almost 20 times larger.

The crypto library we integrated into MatrixSSL is realized in a very straight-
forward way. We used Algorithm 2.9 in [19] to implement the multiple-precision
multiplication and Montgomery’s well-known algorithm for modular reduction
[25]. In order to keep the size of our library at a minimum, we did not include
optimized reduction functions for special primes like the NIST primes. Also the
curve arithmetic over Fp is based on well-known algorithms. We represent the
elliptic curve points using the mixed Jacobian-affine coordinates described in
[19, Section 3.2.2]. The scalar multiplication over Fp is carried out according
to the double-and-add technique with non-adjacent-form (NAF) representation
of the scalar to save some point additions. For ECDSA verification, Shamir’s
trick [19] in combination with a joint-sparse-from (JSF) representation of the
scalars is used to interleave the two scalar multiplications [19]. We decided to

Table 3. Comparison of MatrixSSL, our SSL, and OpenSSL

Number of Lines of Size ofImplementation
source files code executable

Original MatrixSSL 30 ∼ 9,500 114 kB
MatrixSSL with ECC 50 ∼ 10,900 130–140 kB
OpenSSL 0.9.8 1,100 ∼ 250,000 2,374 kB
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not implement a window method for scalar multiplication because we aimed to
keep the memory footprint at a minimum.

Also the algorithms for arithmetic in F2m are well documented and rather
straightforward to implement. We used the so-called left-to-right comb method
with windows of width 4 for the multiplication of binary polynomials [19]. Fur-
thermore, we implemented a generic reduction function for irreducible trinomials
and pentanomials. The term generic in this context means that the reduction
function accepts arbitrary trinomials and pentanomials as input. In addition, we
also included the Montgomery reduction for binary polynomials in our library to
support irreducible polynomials which are not trinomials or pentanomials. The
scalar multiplication on elliptic curves over F2m is performed according to the
well-known algorithm of Lopez and Dahab [19].

We actually implemented two versions of the crypto library: one is written
entirely in ANSI C, whereas the second contains assembly-language statements
to access the custom instructions of our extended LEON-2 core. Reference [13]
explains the implementation of the field arithmetic using the CIS instructions
in detail. The CIS-optimized version uses Montgomery multiplication for both
prime and binary fields. We refrained from the implementation of special re-
duction techniques for GM primes or sparse irreducible polynomials since we
aimed at a “lightweight” implementation of the cryptographic primitives with
small code size. The results from [13] indicate that the CIS extensions speed up
the multiplication in prime fields by a factor of between two and three, whereas
the multiplication in binary fields achieves a six to ten-fold performance gain.
The exact speed-up factor depends on a number of implementation options (e.g.
loop unrolling) and the length of the operands (e.g. when Karatsuba’s technique
[21] is used).

In the following, we evaluate and analyze the handshake performance of the
co-designed SSL stack. As mentioned before, our implementation is generic in
the sense that it supports arbitrary cipher suites and arbitrary ECC domain
parameters. It is, of course, not feasible to evaluate every possible combination
of cipher suites and domain parameters in this paper. Therefore, we focus on a
representative example, namely an ECC cipher suite that uses ephemeral ECDH
for key exchange and ECDSA as signature primitive [5]. We let our co-designed
SSL stack operate as server, which means that it has to execute two scalar mul-
tiplications to establish a shared secret key. As usual, no client authentication is
performed, i.e. the client does not send a certificate to the server.

Figure 1 shows the execution time (in clock cycles) of a scalar multiplication
using four NIST prime fields as underlying algebraic structure. All cycle counts
were measured on a LEON-2 core with CIS extensions [13], synthesized onto a
Xilinx XCV-800 board, clocked at 20 MHz. When using a small field (e.g. a 160
or 192-bit field), the ANSI C version of our crypto library reaches roughly the
same performance as OpenSSL, which is a remarkable result when considering
that the latter features several performance enhancements such as specialized
reduction methods for standardized primes, hand-written assembly code for all
performance-critical operations, and code-size increasing optimizations like loop
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Fig. 1. Performance of scalar multiplication over prime fields
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Fig. 2. Performance of entire handshake over prime fields

unrolling). On the other hand, both versions of our library perform the modular
reduction according to Montgomery’s algorithm [25], i.e. better timings would
be possible when using one of the optimized reduction methods discussed in
Section 2.2. The CIS extensions allow one to execute a full scalar multiplication
over a 192-bit prime field in 2.6 · 106 cycles. Depending on the field size, the CIS
extensions accelerate scalar multiplication by a factor of between 2.0 and 2.5.

Figure 2 illustrates that the performance gained at the field or group level
propagates almost lossless all the way up to the application (i.e. the handshake)
level. The CIS version of our SSL stack is again by a factor of between 2.0 and
2.5 faster than the ANSI C version that does not use custom instructions for field
arithmetic. Our co-design is able to perform a full SSL handshake, from sending
the first Hello message until receiving final Finished message, in less than 300
msec on a device running at 20 MHz when using a 192-bit field as underlying
algebraic structure. Similar results can also be achieved for binary extension
fields of roughly the same order. For comparison, OpenSSL is—depending on
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the field type and order—up to a factor of 10 slower than our implementation
utilizing the CIS instructions. This big difference is partly due to the efficiency
of our field arithmetic and partly due to the lightweight implementation of our
protocol stack.

5 Conclusion

We presented a hardware/software co-design of the SSL handshake based on
instruction set extensions for the low-level arithmetic operations carried out in
public-key cryptography. Our solutions offers a significant gain in performance
for field arithmetic as well as for an entire handshake when compared with a
pure software implementation, thus allowing a handshake over a 192-bit prime
field to complete in about 300 msec on a 20 MHz LEON-2 processor equipped
with our CIS extensions. A single scalar multiplication over the same field takes
approximately 2.6 · 106 cycles when using Montgomery’s algorithm for the field
arithmetic. Our solution requires very little additional hardware (about 5,500
gates), consumes a negligible amount of additional memory, and allows one to
speed up a multitude of cryptographic algorithms, including RSA, DSA, Diffie-
Hellman, as well as ECDSA and ECDH over both prime and binary fields. In
addition, we have shown that the speed-up achieved in the low-level operations
(i.e. the field arithmetic) propagates almost lossless up to the highest layers
of the SSL protocol. So, by speeding up field multiplication and squaring using
instruction set extensions, the entire high-level SSL handshake can be sped up
by almost the same factor.
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Abstract. In this paper, for the first time in the literature, we introduce
the notion of online/offline ring signature scheme. Our primitive enables
ring signature schemes to be used in practice, since the online mecha-
nism can be performed very efficiently and hence, it is very suitable to
be used in a mobile-device environment. We provide a formal model to
capture our primitive, and we proceed with a concrete construction of
online/offline ring signature schemes. Finally, we show that our scheme
is secure in our model.

1 Introduction

Bluetooth is a short-range exchange data enabler protocol that allows mobile
devices to communicate in an ad-hoc way. It was originally motivated as the
wireless alternative to the RS232 data cable. This technology enables mobile
devices, such as iPhone, Windows devices or Android devices, to communicate
wirelessly in an ad-hoc manner. It will enable an ad-hoc communication built
among business people meeting in a conference room, since the communication
can be done efficiently and in a very simple manner. This technology will al-
low cryptographic techniques to be embedded to it, for instance to create an
authenticated message on behalf of the group. One possible solution is by incor-
porating the primitive put forth by Rivest, Shamir and Tauman known as the
ring signature schemes [26]. In fact, this has been “implied” since the invention
of ring signatures that these types of primitives can be used on top of ad-hoc
technology, such as Bluetooth.

A ring signature scheme (for examples [1, 7, 8, 14, 15, 26, 33, 13, 31, 24, 22, 32,
23, 3, 20, 2, 4, 21, 25]) allows members of a group to sign messages on behalf of
the group without revealing their identities, i.e. signer anonymity. In addition,
it is not possible to decide whether two signatures have been issued by the same
group member. Different from a group signature scheme (for examples, [11], [9]
and [5]), the group formation is spontaneous and there is no group manager to
� The first and fourth author of this work are funded by the EU project SMEPP-

033563.
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revoke the identity of the signer. That is, under the assumption that each user is
already associated with a public key of some standard signature scheme, a user
can form a group by simply collecting the public keys of all the group members
including his own. These diversion group members can be totally unaware of
being conscripted into the group.

Ring signature schemes could be used for whistle blowing [26], anonymous
membership authentication for ad hoc groups [8] and many other applica-
tions which do not want complicated group formation stage but require signer
anonymity. For example, in the whistle blowing scenario, a whistleblower gives
out a secret as well as a ring signature of the secret to the public. From the
signature, the public can be sure that the secret is indeed given out by a group
member while cannot figure out who the whistleblower is. At the same time,
the whistleblower does not need any collaboration of other users who have been
conscripted by him into the group of members associated with the ring signa-
ture. Hence the anonymity of the whistleblower is ensured and the public is also
certain that the secret is indeed leaked by one of the group members associated
with the ring signature.

Ring signature scheme can be used to derive other primitives as well. It had
been utilized to construct non-interactive deniable ring authentication [29], per-
fect concurrent signature [30] and multi-designated verifiers signature [19].

Nevertheless, the existing ring signature schemes requires very heavy compu-
tations. Usually the number of exponentiations required during the signing stage
is proportional to the number of users included in the ring signature. Say, if the
signature includes 10000 users, the signing stage requires at least 10000 expo-
nentiations. This may not be a big problem for personal computers. However,
the schemes will not be suitable in practice to be used in mobile devices as these
computations will drain the battery quickly.

In this paper, we address the above problem specifically by introducing the
notion of “online/offline ring signatures”. In our primitive, the signing stage is
divided into two phases. Similar to other online/offline signatures [16, 28, 18,
12, 17, 6], the offline mechanism can be quite computationally heavy, but the
online mechanism should be very efficient. This way, we can achieve an ad-hoc
communication among mobile devices using the available technology, such as
Bluetooth. Our primitive has enabled the use of ring signature schemes in a
more practical way.

However, there is one major difference between normal online/offline signa-
tures and online/offline ring signatures. For a normal signature, there is only
1 user. For a ring signature, there are n different users included. The crux
of constructing such a scheme relies on the fact that during the offline phase,
the signers are not known in advance. The group of signers will only be known
during the online phase, and therefore this creates some subtleties in the scheme.
Otherwise, by using some generic construction of normal online/offline signature
schemes such as [28], it is quite trivial to construct one from a normal ring sig-
nature scheme.
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In the practical point of view, if we need to fix the possible signers in the
offline phase, it is not useful. Suppose we need to create a ring signature during
a meeting using a mobile device. The offline phase should be done before the
meeting. However, it maybe impossible to know who are going to attend the
meeting at this moment yet. We are not interested in this model as it is not
practical to be used in many applications. Instead, we do not need to know any
possible signers in the offline phase. Furthermore, we even allow any third party
to generate the offline phase. That is, no secret key is needed and no secret
information is generated in the offline phase. This creates even more flexibility
for different kinds of scenarios. Therefore it is quite challenging to design and
construct such a scheme with these nice properties.

1.1 Contribution

In this paper, we propose a new notion called online/offline ring signature
scheme. It is the “online/offline” version of ring signature scheme, with the fol-
lowing additional properties:

1. Most of the heavy computations are done in the offline phase, while the
online phase just requires relatively light computation.

2. The online computation requirement is independent to the number of possi-
ble signers included in the ring signature. In our construction we just require
2 exponentiations in this phase, no matter how many possible signers are in-
cluded in the signature.

3. The offline phase does not require the public keys of the possible signers.
That is, the public keys are not needed to be fixed at this phase yet.

4. The offline phase can be done by any third party. All information produced or
generated during this phase is publicly known. There is no secret information
included or required in this phase.

Our scheme is proven secure in the random oracle model, under the standard
RSA assumption.

2 Definitions

2.1 Mathematical Assumption

The security of our scheme relies on the RSA assumption with safe prime, which
is defined as follow:

Definition 1 (Safe Prime). p is a safe prime if it can be expressed as 2p′ + 1
where p′ is also a prime.

Definition 2 (RSA Assumption with Safe Prime). Let N = pq where p
and q are k-bits length safe primes. Let e be a number such that e and φ(N) are
co-prime. Given an element r ∈ ZN chosen at random, find an integer x such
that xe = r mod N . An adversary A has at least an ε advantage if

Pr[A(N, e, r) = x | xe = r mod N ] ≥ ε
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We say that the (ε, τ, k)-RSA assumption holds if no algorithm running in time at
most τ can solve that RSA problem with advantage at least ε, where the modulus
is a product of two safe primes with k-bits length.

2.2 Security Definition

Definition 3. A online/offline ring signature scheme is defined by the following
algorithms:

– Key-Gen is a probabilistic algorithm taking as input a security parameter. It
returns the user secret key sk and public key pk.

– Offline-Sign is a probabilistic algorithm taking n′ as input, where n′ is the
maximum number of users to be included in the ring signature. Optionally,
it may also take the actual signer’s secret key sk and public key pk as input.
It returns an offline signature σ̄.

– On-Sign is a probabilistic algorithm taking (L, m, sk, σ̄) as input, where L is
the list of n public keys to be included in the ring signature and n ≤ n′ and
m is the message to be signed. It returns a signature σ.

– Verify is a deterministic algorithm taking (L, m, σ) as input. It outputs either
Accept or Reject.

The security of a ring signature scheme consists of two requirements, namely
Signer Ambiguity and Existential Unforgeability. They are defined as follows.

Definition 4 (Signer Ambiguity). Let L = {pk1, · · ·, pkn} be the list of
public keys and Lsk = {sk1, · · · , skn} be the corresponding secret keys. Each
key is generated by Key-Gen. A ring signature scheme is said to be uncondi-
tionally signer ambiguous if, for any L, any message m, and any signature
σ ← On-Sign(L, m, skπ, Offline-Sign(|L|)) where skπ ∈ Lsk, any unbound ad-
versary A accepts as inputs L, m and σ, outputs π with probability 1/n.

It means that even all the private keys are known, it remains uncertain that
which signer out of n possible signers actually generates a ring signature.

Definition 5 (Existential Unforgeability). For a ring signature scheme with
n public keys, the existential unforgeability is defined as the following game be-
tween a challenger and an adversary A:

1. The challenger runs algorithm Key-Gen. Let L = {pk1, · · · , pkn} be the set
of n public keys and Lsk = {sk1, · · · , skn} be the corresponding secret keys.
A is given L.

2. A can adaptively queries the signing oracle qS times: On input any message
m and L′ where L′ ⊆ L (the corresponding secret keys are denoted by L′

sk)
returns a ring signature σ ← On-Sign(L′, m, skπ, Offline-Sign(|L′|)), where
skπ ∈ L′

sk and Verify(L′, m, σ) = Accept.
3. Finally A outputs a tuple (L∗, m∗, σ∗).
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A wins the game if:

1. L∗ ⊆ L.
2. (L∗, m∗) has not been submitted to the signing oracle.
3. Verify(L∗, m∗, σ∗) = Accept

We define A’s advantage in this game to be Adv(A) = Pr[A wins ].

3 The Proposed Scheme

3.1 Construction

Let k1, k2, k3 be security parameters such that k1 ≤ k2 − 1. Assume G is a hash
function that maps any arbitrary string into k1-bits odd integer.

Key-Gen: Each user selects two safe primes p, q of length k2-bits, such that p =
2p′ +1, q = 2q′ +1 where p′, q′ are also primes. His secret key is (p, q) and public
key is N = pq.

Offline-Sign: Assume there are maximum n′ users to be included in the ring
signature (their public keys are not yet known in this stage, except the real
signer). For i = 1, . . . , n′ − 1, randomly selects integers xi ∈R {0, 1}2k2−1, ei ∈R

{0, 1}k3 and computes yi = x
G(ei)
i (without modulus). Stores the offline signature

σ̄ = (x1, e1, y1, . . . , xn′−1, en′−1, yn′−1).

Online-Sign: Let L = {N1, . . . , Nn} be a list of n public keys to be included in the
ring signature, where n ≤ n′. Let Hi : {0, 1}∗ → ZNi be some hash functions for
i = 1, . . . , n. W.l.o.g., we assume user n is the actual signer. The actual signer
executes the following steps:

1. Randomly generates an integer en ∈R {0, 1}k3 and computes dn =
1/G(en) mod φ(Nn).

2. Randomly generates rn ∈R ZNn , computes c1 = H1(L, m, rn).
3. For i = 1, . . . , n− 1, computes ci+1 = Hi+1(L, m, ci + yi mod Ni).
4. Computes xn = (rn − cn)dn mod Nn.

If |xn| = 2k2 bits, repeats step 2 - 4 until getting another xn which is strictly
less than 2k2 bits. Outputs the signature σ = (x1, e1, . . . , xn, en, c1).

Verify: To verify a signature for message m and public keys L = {N1, . . . , Nn},
For i = 1, . . . , n computes ri = ci + x

G(ei)
i mod Ni and ci+1 = Hi+1(L, m, ri) if

i 	= n. Accept if c1 = H1(L, m, rn). Otherwise reject.

Remarks

1. The offline signing phase can be executed by any third party. We do not
require the secret key of the actual signer. There is neither any secret infor-
mation (such as secret randomness) produced at this stage. All data gener-
ated here are publicly known. The tradeoff is, we require a modulus inverse
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1/G(en) in the online part. To further improve efficiency, this part (step 1 of
the online signing stage) can be put into the offline signing phase. However,
since this step requires the knowledge of the secret key (factorization of Nn),
by doing so, the offline signing phase also requires the secret key as the input
and (en, dn) are stored as part of the offline signature.

2. The expected running time of step 2 - 4 in Online-Sign is 2. It is calculated
as follow: For each time,

Pr[|xn| = 2k2] ≤ 0.5

as |Nn| = 2k2. That means at least with probability 0.5 the computation of
step 4 is successful (|xn| < 2k2). The expected running time S should be:

S = 1× 1
2

+ 2× 1
22 + 3× 1

23 + 4× 1
24 + · · · (1)

From (1), multiply both sides by 1
2 , we get

1
2
S =

1
22 +

2
23 +

3
24 +

4
25 + · · · (2)

(1) - (2), we get

1
2
S =

1
2

+
1
22 +

1
23 +

1
24 + · · · =

1
2

1− 1
2

= 1 (3)

From (3), we can get the result S = 2.

3.2 Security Analysis

Theorem 1. Our ring signature scheme is unconditionally signer ambiguous.

Proof. All ei are taken randomly from {0, 1}k3 and all xi except xn are also
taken randomly from {0, 1}2k2−1. At the closing point, xn ∈ {0, 1}2k2−1 also
distributes randomly as rn is randomly chosen, cn depends on previous xi and
ei which are all random numbers. The remaining c1 is uniquely determined from
L, m and rn.

Note that the reason why we need to restrict xn to be at most 2k2 − 1 bits
is that, as other xi are all at most 2k2 − 1 bits, if xn is 2k2 bits, one may know
that user n is the actual signer. 
�
Theorem 2. Suppose the (τ ′, ε′, k2)-RSA assumption with safe prime holds.
Then our ring signature scheme with n users is (τ, qs, qh, qg, ε)-secure against
existential forgery under an adaptive chosen message attack provided that:

ε′ ≥
2
(

1− qhqs

Nmin

)(

1− 1
Nmin

)(

1− 1
2k2−1

)

ε

qh(qh + 1)qgn
τ ′ = τ

where Nmin is the smallest modulus among n public keys, qs is the maximum
number of signing oracle queries allowed, qh is the maximum number of Hi

random oracle queries allowed, qg is the maximum number of G random oracle
queries allowed.
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Proof. Setup: The proof uses the approach described in [1]. Suppose the ad-
versary A can forge the ring signature scheme with n users. We construct an
algorithm S that uses A to solve the (τ ′, ε′, k2)-RSA problem.
S receives the problem instance (N, e, r), where N is the product of two safe

prime numbers of length k2-bits, e is coprime to φ(N), 2 < e < N and 0 ≤ r < N .
S is asked to output an integer x such that xe = r mod N . For simplicity, we let
k1 = k2 − 1 to be the length of the output string of G random oracle.
S randomly chooses π ∈R [1, n] and assigns the public key of user π to be N

(the problem instance). For the other n− 1 users’ public keys, S generates them
according to the algorithm.
S also chooses three integers u, v, w such that 1 ≤ u ≤ v ≤ qh and 1 ≤ w ≤ qg.

Oracle Simulation:

– Hi Random Oracle: For simplicity, the Hi random oracles are treated as
single oracle that takes Qj = (i, Lj , mj, rj) as the j-th query and returns
a random value that corresponds to Hi(Lj, mj , rj) maintaining consistency
against duplicated queries.

– G Random Oracle: S assigns e (the problem instance) to be the output of
the w-th query. For the other queries, it just returns a random value and
maintaining consistency against duplicated queries.

– Signing Oracle: Upon receiving the signing query for (Lj , mj), S simulates
the signing oracle in the following way.
1. Randomly choose c1 ∈R ZN1 .
2. For i = 1, . . . , |Lj|, randomly select integers xi ∈R {0, 1}2k2−1 and ei ∈R

{0, 1}k3, compute ri = x
G(ei)
i + ci mod Ni, and then compute ci+1 =

Hi+1(Lj , mj, rj) if i 	= |Lj |.
3. Assign c1 to the value of H1(Lj , mj, r|Lj |).

Output Calculation: Since the queries form a ring, there exists at least one index,
say κ, in {1, . . . , n} such that Qu = (κ+1, L, m, rκ) and Qv(κ, L, m, rκ−1) satisfy
u ≤ v. Namely, κ is in between the gap of query order. We call such (u, v) a gap
index. Note that u = v happens only if n = 1, which means that the resulting
L contains only one public-key. If there are two or more gap indices with regard
to a signature, only the smallest one is considered.

At the beginning of the simulation, S has chosen a pair of index (u, v) ran-
domly such that 1 ≤ u ≤ v ≤ qh. If the guess is correct, S receives Qu =
(κ + 1, L, m, rκ) and Qv = (κ, L, m, rκ−1) so that (u, v) is a gap index. When
query Qv is made (u-th query has been already made by this moment), S returns
cκ = rκ − r mod Nκ (r is the problem instance) as the value of Hκ(L, m, rκ−1).
If A is successful in forgery, it outputs xκ that satisfies rκ = cκ +x

G(eκ)
κ mod Nκ.

Since rκ = cκ + r mod Nκ, we obtain xκ as the inverse of r with regard to N ,
if eκ is the w-th G-query. That is, the output of that particular query is e (the
problem instance).
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Probability Analysis: S is successful if

1. A outputs a valid forged signature;
2. There is no abortion or failure in any oracle simulation; and
3. All guesses are correct.

A outputs a valid forged signature with probability ε.
S fails if Step 3 in the signing oracle simulation causes inconsistency in H1.

It happens with probability at most qh/Nmin where Nmin is the smallest Ni in
L. Hence, the simulation is successful qs times with probability at least

(

1− qh

Nmin

)qs

≥ 1− qhqs

Nmin

For Hi random oracle, with probability at least 1− 1/Nmin, there exist queries
Qj = (i + 1, L, m, ri) for all i = 1, . . . , n due to the ideal randomness of H .
Similarly, for G random oracle, with probability at least 1− 1/2k2−1, there will
be no collision occur.

At the beginning of the simulation, B selects a pair of index (u, v). With
probability 2/qh(qh + 1), the guess is correct. B also selects an index w for
the G random oracle query, whose output is assigned to the problem instance.
With probability 1/qg, the guess is correct. B needs to guess the index of the
user corresponding to the (u, v) gap. B is correct if π = κ. This happens with
probability 1/n.

Combining all cases, overall successful probability of B is at least

2
(

1− qhqs

Nmin

)(

1− 1
Nmin

)(

1− 1
2k2−1

)

ε

qh(qh + 1)qgn

The running time of S is almost the same as τ as S runs A only once and the
simulation cost for the signing oracle and the random oracles are assumed to be
sufficiently smaller than τ . 
�

4 Efficiency of Existing Ring Signatures

The following table (Table 1) summarizes the time complexities of existing ring
signatures. We breakdown the time complexity of the protocol into the num-
ber of multi-exponentiations (multi-EXPs). A multi-EXP computes the product

Table 1. Time Complexities of Existing Ring Signatures

Scheme Number of Multi-EXP
Rivest-Shamir-Tauman [26] n + 1

Abe-Ohkubo-Suzuki [1] n + 1
Dodis-Kiayias-Nicolosi-Shoup [15] 14

Chow-Wei-Liu-Yuen [13] n

Shacham-Waters [27] 2n + 2
Chandran-Groth-Sahai [10] 5 + 6

√
n + n+1

3

Our scheme 2
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of exponentiations faster than performing the exponentiations separately. Nor-
mally, a multi-based exponentiation takes only 10% more time compared with
a single-based exponentiation. We assume that one multi-EXP operation multi-
plies up to 3 exponentiations. Let n be the size of the ring and the number of
multi-EXP is taken after the n public keys and the message are known.

5 Conclusion

In this paper, we have proposed a new notion called Online/Offline Ring Signa-
ture scheme. Under this notion, most of the heavy computations are done in the
offline phase. At this phase the public keys of all users and the message to be
signed are yet to be known. In the online phase, only very little computations are
needed after knowing those public keys and the signing message. We provided
a concrete construction of this notion. In our construction, the offline phase
can be done by other third party. This allows more flexibility. We believe the
online/offline ring signature scheme can be used in many different applications
such as authentication or whistle blowing using mobile devices.

There are some future improvements that can be done. One of them is to
further reduce the online computation requirement. Currently we still require
about 2 exponentiations during the online phase. It is better to eliminate it
totally. Another open problem is to construct a constant size online/offline ring
signature scheme as the signature size of our current construction is still linear
with the number of users included in the ring. Finally, it would be interesting
to construct an online/offline ring signatures that do not require random oracle
models.
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2007. LNCS, vol. 4596, pp. 423–434. Springer, Heidelberg (2007)

11. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)

12. Chen, X., Zhang, F., Susilo, W., Mu, Y.: Efficient generic online/offline signatures
without key exposure. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521,
pp. 18–30. Springer, Heidelberg (2007)

13. Chow, S.S., Liu, J.K., Wei, V.K., Yuen, T.H.: Ring Signatures without Random
Oracles. In: ASIACCS 2006, pp. 297–302. ACM Press, New York (2006)

14. Chow, S.S.M., Yiu, S.-M., Hui, L.C.K.: Efficient Identity Based Ring Signature. In:
Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp.
499–512. Springer, Heidelberg (2005); Also available at Cryptology ePrint Archive,
Report 2004/327

15. Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous Identification in Ad
Hoc Groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 609–626. Springer, Heidelberg (2004)

16. Even, S., Goldreich, O., Micali, S.: On-line/Off-line digital signatures. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 263–275. Springer, Heidelberg (1990)

17. Joye, M.: An efficient on-line/off-line signature scheme without random oracles. In:
Franklin, M.K., Hui, L.C.K., Wong, D.S. (eds.) CANS 2008. LNCS, vol. 5339, pp.
98–107. Springer, Heidelberg (2008)

18. Kurosawa, K., Schmidt-Samoa, K.: New online/offline signature schemes without
random oracles. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC
2006. LNCS, vol. 3958, pp. 330–346. Springer, Heidelberg (2006)

19. Laguillaumie, F., Vergnaud, D.: Multi-designated Verifiers Signatures. In: López,
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Abstract. In this paper, we present a new cryptographic primitive
called “policy-controlled signature”. In this primitive, a signer can sign
a message and attach some policies to it. Only a verifier who satisfies the
policies attached can verify the authenticity of the message. This type
of signature schemes has many applications, in particular to deal with
sensitive data, where the signer does not want to allow anyone who is
not authorized to verify its authenticity. Nonetheless, there is no exist-
ing cryptographic primitives that can offer this feature in the literature.
Policy-controlled signatures can be seen to be similar to the notion of des-
ignated verifier signatures, as it can also be used to designate a signature
to multiple recipients. When there is only a single attribute involved in a
policy presented by a verifier, then we will achieve a designated verifier
signature (with some trivial modifications). Therefore, policy-controlled
signatures can be viewed as the generalization of the notion of the des-
ignated verifier signatures. We present a formal model to capture this
notion. Furthermore, we also present a concrete scheme that is secure
in our model. Finally, we briefly mention about an implementation that
incorporates P3P to realize policy-controlled signatures.

1 Introduction

Consider the following scenario. Alice is a CIA agent. She would like to convey
a sensitive message in regards to the international terrorism to the other secret
agents, but this message should not be verifiable by the public. Therefore, this
message should be verifiable by {CIA agents ∨ KGB agents ∨ (secret agents in
the country ∧ authorized agents by the US Government)}. The first two conditions
imply that if the agent is either a CIA agent or a KGB agent, then the message
should be verifiable. The third condition implies that if the person is a secret
agent in the country where he/she is authorized by the US government, then
he/she should be able to verify the message as well. The message should not be
verifiable by any other people outside this authorized set. Furthermore, it is also
required that upon the verification of the message by the authorized agents, the
agents cannot relay this conviction and convince any other third party outside
the authorized set. This is a typical scenario where policy-controlled signatures
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are useful. Furthermore, there are many other applications that involve contents
sensitive, such as medical records, that are only authorized to several people
such as medical doctors, etc.

The above scenario seems to be straightforward and it could be solved by us-
ing the existing cryptographic primitives. Nonetheless, we shall demonstrate that
unfortunately, the existing cryptographic primitives cannot be used to solve this
problem. Firstly, the notion that is close to this scenario is the notion of policy-
based cryptography [1]. In a policy-based cryptography, the sender is equipped
with the policy, but not the verifier. Unlike our scenario, policy-based cryptog-
raphy introduced in [1] allows the sender to sign a message correctly if and only
if the sender satisfies some policies. We argue that our scenario is more natural
compared to the scenario used in policy-based cryptography [1] since usually the
sender should specify which receiver(s) that should be able to verify the authen-
ticity of the message. At a glance, we may be able to achieve the above solution
by signing a message with a regular signature scheme, and then encrypt it with a
policy-based encryption scheme. Nevertheless, in this solution, a verifier who can
decrypt the ciphertext can obtain the signature and make it publicly verifiable.
Hence, it violates the requirement as stated above.

At the first glance, this notion seems to be closely related to designated verifier
signatures [2]. With a trivial modification, policy-controlled signatures are in fact
the generalization of the notion of designated verifier signatures. If the number
of verifiers is merely only one, then policy-controlled signatures with a trivial
modification will achieve a designated verifier signature scheme as defined in [2].
Nevertheless, policy-controlled signatures allow multiple verifiers to verify the
signature on some message (and hence, it provides a similar property as the
designated multiple verifiers signatures). The idea is to allow several receivers
to satisfy some policies, and therefore, the signature produced by the signer
should be verifiable by these receivers. Nevertheless, the other party who does
not satisfy the policies should not be able to verify the signature.

This notion resembles a similar idea to the notion of multi-designated ver-
ifier signatures. However, in the latter, the collaborations of the verifiers are
required in verifying the designated signatures. In contrast to this notion, in
policy-controlled signatures, each verifier can verify it individually, as long as it
holds the satisfying policies.

Due to the requirements of the verifier to satisfy some policies specified by
the signer, we call our primitive as policy-controlled signatures. We further argue
that this cryptographic primitive is hard to construct. In particular, we should
ensure that any coalition of unauthorized verifiers must not be able to verify the
authenticity of any signature. If coalition resistance is not required, then we can
simply assign a separate policy for each verifier to enable the verifier to test the
authenticity of the signature.

This notion can be viewed as the dual of secret handshakes, as introduced
in [3]. Secret handshakes aim to allow members of the group to identify each
other. Secret handshakes ensure that non-group members cannot recognize the
handshake and hence are not able to recognize group members. Additionally,
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non-group members cannot perform the handshake and hence are unable to
trifle group members into thinking they are also members [3]. Secret handshakes
are merely encryption schemes that only allow the group members to decrypt
the ciphertext.

1.1 Related Work

Since the seminal introduction of digital signature notion [4] and its formaliza-
tion [5], the notion of digital signatures have been extended to capture different
scenarios and situations in real life. Among the different type of signatures, we
include some variants of digital signatures that are related to our notion, that
include (universal) designated verifier signature [6,7,8,9,10,11,12,13] and policy-
based crytography [1,14,15,16].

The notion of designated verifier signatures was put forth by Jakobsson, Sako
and Impagliazzo in [2]. In this notion, a signature ensures authenticity and de-
niability properties at the same time. The deniability property stops further
conviction of a validity of a digital signature by a verifier to any other third
party. The authenticity is ensured by the signature since the verifier can be sure
that the signature is indeed created by the original signer, but nobody else will
be convinced with this fact. Recently, the topics on designated verifier signatures
have been actively studied [6,7,8,9,10,11].

The notion of ring signatures was introduced and formalized by Rivest, Shamir
and Tauman [17] with the aim to provide an unconditional security to the signer
in a group. In this notion, a signer (alone without any cooperation with other
signers) can generate a signature that is verifiable to have been signed by one
of the signers in a ring (a set of signers). Hence, from the verifier’s point of
view, a ring signature provides authentication of a message by one signer in the
ring. Two-party ring signatures are known to give the construction of designated
verifier signatures. This notion has also been actively studied in the literature
[18,19,20,21,22,23,24,25,26]. In particular, the notion of threshold ring signa-
tures, which provides the integrity of the message, and the authenticity, non-
repudiation and anonymity of the multi-signers, was first formalized by Bresson,
Stern and Szydlo in [18]. Similar to ring signature schemes, threshold ring sig-
nature schemes support multi-signers (cf. the original ring signature schemes).

The notion of policy-based cryptography, which includes policy-based en-
cryption schemes and policy-based signature schemes, was firstly introduced by
Bagga and Molva in [1]. In this notion, a sender (or signer, resp.) can only con-
struct an encrypted message (or sign a message, resp.) if he/she satisfies the
required policy. A policy-based encryption scheme provides the authorization
and the message’s integrity, while a policy-based signature provides the mes-
sage’s integrity, and the authenticity and non-repudiation of signer. Bagga and
Molva gave an improved construction of policy-based encryption in [14]. This im-
proved policy-based encryption is enhanced from the previous construction by
including a public key of user into a user’s credential. Here, the user is required
to have a credential and a public key to decrypt the ciphertext. The purpose of
this improvement is to prevent the collision attack.
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1.2 Our Contributions

In this paper, we introduce the notion of policy-controlled signature (PCS)
schemes. Our notion allows a receiver to verify the authenticity of the signed
message if and only if the receiver satisfies the policy specified by the sender
(or signer). We formalize this notion and define its security model and require-
ments. Furthermore, we instantiate our model with a concrete construction that
is proven secure in our model.

Paper Organization
The paper is organized as follows. In the next Section, we will review some
preliminaries that will be used throughout this paper. The definition of PCS and
its security notions will be presented in Section 3. Next, our concrete scheme will
be provided in Section 4.2. Then, proof of the security of our concrete scheme is
presented in Section 5. In Section 6, we briefly demonstrate our implementation
that incorporates P3P [27]. Finally, we conclude the paper.

2 Preliminaries

2.1 Notation

We will use the following notations throughout this paper. Let PPT denote
a probabilistic polynomial-time algorithm. When a PPT algorithm F privately
accesses and executes another PPT algorithm E, we denote it by FE(.)(.). We de-
note by poly(.) a deterministic polynomial function. For all polynomials poly(k)
and for all sufficiently large k, if q ≤ poly(1k) then we say that q is polynomial-
time in k. We say that a function f : N → R is negligible if, for all constant
c > 0 and for all sufficiently large n, f(n) < 1

nc . Denote by l
$← L the operation

of picking l at random from a (finite) set L. A collision of a function h(.) refers
to the case when there are message pair m, n of distinct points in its message
space such that h(m) = h(n). We denote by || the concatenation of two strings
(or integers).

2.2 Bilinear Pairing

Let G1 and G2 be cyclic multiplicative groups generated by g1 and g2, resp. The
order of both generators is a prime p. Let GT be a cyclic multiplicative group
with the same order p. Let ê : G1 × G2 → GT be a bilinear mapping with the
following properties:

1. Bilinearity: ê(ga
1 , gb

2) = ê(g1, g2)ab for all g1 ∈ G1, g2 ∈ G2 , a, b ∈ Zp.
2. Non-degeneracy: There exists g1 ∈ G1 and g2 ∈ G2 such that ê(g1, g2) 	= 1.
3. Computability: There exists an efficient algorithm to compute ê(g1, g2) for

all g1 ∈ G1, g2 ∈ G2.

Note that there exists ϕ(.) function which maps G1 to G2 or vice versa in one
time unit.
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2.3 Complexity Assumptions

Definition 1 (Computation Diffie-Hellman (CDH) Problem). Given a
3-tuple (g, gx, gy ∈ G1) as input, output gx·y. An algorithm A has advantage ε′

in solving the CDH problem if

Pr [A(g, gx, gy) = gx·y] ≥ ε′

where the probability is over the random choice of x, y ∈ Z∗
q and the random bits

consumed by A.

Assumption 1 ((t, ε′)-Computation Diffie-Hellman Assumption). We
say that the (t, ε′)-CDH assumption holds if no PPT algorithm with time com-
plexity t(.) has advantage at least ε′ in solving the CDH problem.

Definition 2 (Decision Bilinear Diffie-Hellman (DBDH) Problem)
Given a random 4-tuple (g, ga, gb, gc) ∈ G1 and a random integer Z ∈ GT as
input, decide whether or not Z = ê(g, g)abc. An algorithm A is said to (t, ε′)
solves the DBDH problem in G1, GT , if A runs in time t, and
∣

∣Pr
[

A
(

g, ga, gb, gc, Z = ê(g, g)abc
)

=1
]

− Pr
[

A
(

g, ga, gb, gc, Z = ê(g, g)d
)

= 1
]∣

∣

≥ ε′,

where the probability is taken over the random choices of a, b, c, d ∈ Zp, g ∈ G1,
and the random bits consumed by A.

Assumption 2 (Decision Bilinear Diffie-Hellman Assumption). We say
that the (t, ε′)-DBDH assumption in G1, GT holds if there is no PPT algorithm
that (t, ε′) solves the DBDH problem.

3 Policy-Controlled Signature Schemes (PCS)

Model
Let TA denote a trusted authority who issues credentials associated with policies.
Let CA denote a certificate authority who generates system parameters and
certifies public keys for all parties. There are two main players in a policy-
controlled signature scheme, namely a signer and a verifier. A signer S generates
a signature that can be verified only when a verifier V holds a credential satisfying
the policy. V holds credentials issued by TA.

Let A denote an assertion issued by TA. Each assertion A may be a hash
value of some statements, such as “CIA agent”. We define POL to be a pol-
icy which contains a set of assertions POL =

∧a
i=1[
∨ai

j=1[
∧ai,j

k=1 Ai,j,k]] where
i, j, k are indexes. In general, a policy POL can be represented in the dis-
junctive normal form (DNF) or the conjunctive normal form (CNF) or any
combination of both forms. The policy POL is in the DNF when a = 1 and
in CNF when ∀i, ∀j : ai,j = 1. For example, a policy in DNF is as follows
POL = “(A1,1,1

∧

A1,1,2)
∨

(A1,2,1
∧

A1,2,2)
∨

A1,3,1
∨

(A1,4,1
∧

A1,4,2)”.
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For simplicity, let V CRi,j,k be a credential for an assertion and let POL =
[{V CR1,1,1, ..., V CRa,1,ai,1}, ..., {V CR1,ai,1, ..., V CRa,ai,ai,j}] be a set of the en-
tire possible set of credential that satisfy the policy POL, where i, j, k are indexes
for assertion associated to credential. Let {V CRi,j,k} = V CR1,j,1, ..., V CRa,j,ai,j

be a set of credentials, which it may or may not be a set of credentials in POL.
Let {V CR} = V CR1,1,1, ..., V CRa,ai,ai,j be the entire credentials, where i, j are
indexes.

Without losing generality, we assume that all parties must comply with the
registration protocol with a certificate authority CA to obtain a certificate on
their respective public keys. In the following, we provide a definition of policy-
controlled signature scheme as follows.

Definition 3. A policy-controlled signature scheme Σ is an 6-tuple (Setup,
TKeyGen, SKeyGen, CreGen, Sign, V erify) such that

Signature Scheme Setup:

– System Parameters Generation (Setup):
Setup is a PPT algorithm that, on input a security parameter K, outputs
the system parameters param.

– TA Key Generator (TKeyGen) :
TKeyGen is a PPT algorithm that, on input the system parameters
param, outputs strings (skTA, pkTA) where they denote a secret key and
a public key of trusted authority, respectively. That is {pkTA, skTA} ←
TKeyGen(param).

– Signer Key Generator (SKeyGen) :
SKeyGen is a PPT algorithm that, on input the system parameters
param and a public key of the trusted authority pkTA, outputs strings
(skS , pkS) where they denote a secret key and a public key of a signer,
respectively. That is {pkS , skS} ← SKeyGen(param, pkTA).

– Verifier Credential Generator (CreGen) :
CreGen is a PPT algorithm that, on input the system parameters param,
the TA’s public key, the policy POL, outputs verifier credential strings
{V CRi,j,k} where i, j, k are an index of credential strings. That is
{V CRi,j,k} ← CreGen(param, pkTA, POL).

Policy-controlled Signature Signing (Sign):
On input the system parameters param, the trust authority’s public key pkTA,
the signer’s secret key skS, the signer’s public key pkS, a message M and the
policy POL, Sign outputs signer’s signature σ. That is σ ← Sign(param, M,
skS , pkS , pkTA, POL).

Policy-controlled Signature Verification (V erify):
On input the system parameters param, the trust authority’s public key pkTA,
the signer’s public key pkS, the policy POL, a set of credentials {V CRi,j,k} ∈
POL, a message M and a signature σ, V erify outputs a verification decision
d ∈ {Accept, Reject}. That is d← V erify(param, M, σ, pkTA, pkS ,
POL, {V CRi,j,k}).
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3.1 Security Model

Queries: To model the ability of the adversaries in breaking the security of
PCS schemes, the following queries is prescribed.

SSO oracle: At most qSS , A can make a query for a signature σ on its choice
of a message M . As a response, SSO runs the Sign algorithm to generate a
signature σ on a message M corresponding with pkTA, pkS and POL. SSO
then returns σ, M to A.

VCO oracle: At most qV C , A can make a query for the credential V CRi cor-
responding to the assertion Ai. As a response, VCO replies A with a corre-
sponding credential V CRi.

VSO oracle: At most qV S ,A can make a query for the verification of a signature
σ to VSO with a signature σ as input. As a response, VSO returns with
Accept or Reject corresponding to a validation of signature σ.

Unforgeability: The unforgeability property in our model aims to provide a
security against existential unforgeability under adaptive chosen message and
credential exposure attack. It intentionally prevents an attacker accesses to cre-
dential queries to generate a policy-controlled signature σ∗ on a new message
M∗. Formally, the unforgeability provides an assurance that one, with an ac-
cess to signing queries, credential queries, and the signer public parameters pkS ,
should be unable to produce a policy-controlled signature on a new message M∗

even with arbitrarily choosing policy POL, message M and the entire credentials
{V CR} as inputs.

We denote by CM -A the adaptively chosen message and credential exposure.
We also denote by EUF -PCS the existential unforgeability of PCS scheme. Let
ACM−A

EUF−PCS be the adaptively chosen message and credential exposure adversary
and let F be a simulator. The following game between F and A is defined to
describe the existential unforgeability of PCS scheme:

Given a choice of messages M and an access to queries SSO and VCO, A ar-
bitrarily make queries to oracles in an adaptive way. At the end of the above
queries, we assume that A outputs a forged signature σ∗ on a new message M∗

with respect to the public key pkS and policy POL∗. We denote that POL∗ is
the entire possible set of credential of a policy POL∗. We say that A wins the
game if:

1. Accept← V erify(M∗, σ∗, pkS , POL∗, {V CRi,j,k} ∈ POL∗).
2. A never made a request for a policy-controlled signature on input M∗, pkS ,

POL∗, {V CRi,j,k} ∈ POL∗ to SSO oracle.

Let SuccCM−A
EUF−PCS(.) be the success probability function of that ACM−A

EUF−PCS

wins the above game.

Definition 4. We say that PCS scheme is (t,qH ,qSS ,qV C ,ε)-secure existentially
unforgeable under a chosen message and credential exposure attack if there are no
PPT adversary ACM−A

EUF−PCS such that the success probability SuccCM−A
EUF−PCS(k) =
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ε is non-negligible in k, where ACM−A
EUF−PCS runs in time at most t, make at most

qH to the random oracle, and at most qSS, and qV C queries to queries SSO and
VCO, respectively.

Coalition-resistant: In this section, we will discuss about coalition-resistant
property of PCS schemes. Coalition-resistant property aims to prevent an at-
tacker as a group of corrupted credential holders (verifiers) to verify a policy-
controlled signature σ∗ on a message M∗ with a policy POL which an attacker
does not have enough credential to satisfy the policy POL.

The condition “verifier does not have enough credential to satisfy the policy
POL” is elaborated as follows:

At least one set of credential of assertions A in the policy POL=
∧a

i=1[
∨ai

j=1[
∧ai,j

k=1
Ai,j,k]] is not given to the verifier such that the verifier does not have sufficient
credentials to verify a policy-controlled signature on a message M with the policy
POL. For example:

1. In case of a = 1; ai = 1; ai,j > 1, the verifier does not have one (or more)
credential V CRl of assertions A1, ..., Aai,j .

2. In case of a = 1; ai > 1; ai,j > 1, the verifier does not have one set of creden-
tial V CRl,1, ...,V CRl,ai of assertions [A1,j,1, ..., A1,j,ai,j ]1≤j≤ai that satisfy
the first cases.

3. In the case of a > 1; ai > 1; ai,j > 1, the verifier has one set of credential (e.g.,
[V CRl,j,1, ..., V CRl,j,ai,j ]1≤j≤ai) of assertions [Ai,j,1, ..., Ai,j,ai,j ]1≤i≤a,1≤j≤ai

that does not satisfy the second case.

Formally, the coalition-resistant provides an assurance that one, with an access to
signing queries, credential queries, and the signer public parameters pkS , should
be unable to distinguish a valid signature out of two policy-controlled signature
on a message M∗ even by arbitrarily choosing policy POL∗, message M∗ and the
entire credential {V CR} except one set of credentials that make unsatisfiable to
policy POL∗ as inputs. This intentionally prevents a distinguisher to distinguish
a valid signature from a (simulated) invalid signature on any message M with a
new policy POL∗.

Let CRI-PCS denote the existential coalition-resistant of PCS scheme. Let
ACMP−A

CRI−PCS be the adaptively chosen message and chosen policy attack and let
F be a simulator. The following experiment between F and A is prescribed the
existential coalition-resistant of PCS scheme. The experiment is divided into two
phases. We run them as follows:

1. Phase 1: With any adaptive strategies, A arbitrarily sends requests of query
to SSO, VCO queries. The queries response as per their design.

2. Challenge: At the end of the first phase, A decides to challenge and then
outputs M∗ and POL∗ =

∧a
i=1[
∨ai

j=1[
∧ai,j

k=1 Ai,j,k]] such that:
a. On input POL∗ and M∗, A never issued a request for a policy-controlled

signature to SSO queries.
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b. On input POL∗, A can issue a request of credentials to VCO queries,
however, A must not make sufficient requests of credentials to satisfy the
policy POL∗ as mentioned clearly above.

After that F chooses a random bit b
$← {0, 1}. If b = 1 then, on input a

policy POL∗, a signer public key pkS and a message M∗, F makes a request
for a policy-controlled signature to SSO queries and responds A with σ∗

as an output from SSO queries. Otherwise, on input a policy POL∗, a
signer public key pkS , a message M∗, a valid policy-controlled signature σ∗

on message M∗ with policy POL∗ and a set of credentials {V CRi,j,k} ∈
POL∗, F computes a (simulated) invalid policy-controlled signature σ∗ and
responds A with σ∗.

3. Phase 2: In this phase, A can return to Phase 1 or Challenge as many
as A wants, on one condition, A must have at least one set of challenges
M∗, POL∗, σ∗ such that
a. On input POL∗ and M∗, A never issued a request for a policy-controlled

signature to SSO queries.
b. On input POL∗, A can issue a request of credentials to VCO queries,

however, A must not have enough credentials to satisfy the policy POL∗

and to verify σ∗ as mentioned clearly above.
4. Guessing: On the challenge M∗, POL∗, σ∗, A finally outputs a guess b′.

The distinguisher wins the game if b = b′.

Let SuccCMP−A
CRI−PCS(.) be the success probability function of that ACMP−A

CRI−PCS wins
the above game.

Definition 5. We say that PCS scheme is (t,qH ,qSS ,qV C ,ε)-secure existen-
tially coalition-resistant under a chosen message and chosen policy attack if
there are no PPT distinguisher ACMP−A

CRI−PCS such that the success probability
SuccCMP−A

CRI−PCS(k)= |Pr[b = b′] − Pr[b 	= b′]| = ε is non-negligible in k, where
ACMP−A

CRI−PCS runs in time at most t, make at most qH to the random oracle, and
at most qSS, and qV C queries to queries SSO and VCO, respectively.

Invisibility: In this section, we will elaborate the invisibility property of PCS
schemes. Intuitionally, the invisibility property is to prevent an attacker, who
does not have any credential to satisfy a policy POL, to verify a policy-controlled
signature σ on a message M with respect to a policy POL. Formally, the invisibil-
ity provides an assurance that one, with an access to signing queries, verification
queries and the signer public parameters pkS , should be unable to distinguish a
valid policy-controlled signature on a message M∗ from an invalid one even with
arbitrarily choosing policy POL∗ and message M∗ as inputs.

Let INV -PCS denote the existential invisibility privacy of PCS scheme. Let
ACMP−A

INV −PCS be the adaptively chosen message and chosen policy distinguisher
and let F be a simulator. The following experiment between F and A is pre-
scribed as the existential invisibility privacy of PCS scheme. The experiment is
divided into two phases. We run them as follows:
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1. Phase 1: With any adaptive strategies, A arbitrarily sends requests of query
to SSO and VSO. The queries response as their design.

2. Challenge: At the end of the first phase, A decides to challenge and then
outputs M∗ and POL∗ =

∧a
i=1[
∨ai

j=1[
∧ai,j

k=1 Ai,j,k]] such that, on input POL∗

and M∗, A never issued a request for a policy-controlled signature to SSO
queries. After that F chooses a random bit b

$← {0, 1}. If b = 1 then, on
input a policy POL∗, a signer public key pkS and a message M∗, F makes
a request for a policy-controlled signature to SSO queries and responds A
with σ∗ as an output from SSO queries. Otherwise, on input a policy POL∗,
a signer public key pkS , a message M∗, a valid policy-controlled signature
σ∗ on message M∗ with policy POL∗, F computes a (simulated) invalid
policy-controlled signature σ∗ and responds A with σ∗.

3. Phase 2: In this phase, A can return to Phase 1 or Challenge as many
as it want. With one condition, A must have at least one set of challenge
M∗, POL∗, σ∗ such that:
a. On input POL∗ and M∗, A never issued a request for a policy-controlled

signature to SSO queries.
b. On input POL∗, M∗ and σ∗, A never issued a request for the verification

of the policy-controlled signature σ∗ to VSO queries.
4. Guessing: On the challenge M∗, POL∗, σ∗, A finally outputs a guess b′.

The distinguisher wins the game if b = b′.

Let SuccCMP−A
INV −PCS(.) be the success probability function of thatACMP−A

INV −PCS wins
the above game.

Definition 6. We say that PCS scheme is (t,qH ,qSS,qV S ,ε)-secure existentially
invisibility under a chosen message and chosen policy attack if there are no PPT
distinguisher ACMP−A

INV −PCS such that the success probability SuccCMP−A
INV −PCS(k)=

|Pr[b = b′] − Pr[b 	= b′]| = ε is non-negligible in k, where ACMP−A
INV −PCS runs in

time at most t, make at most qH to the random oracle, and at most qSS, and
qV S queries to SSO and VSO, respectively.

Theorem 1. The invisibility of of policy-controlled signature schemes implies
the coalition-resistant property of policy-controlled signature schemes.

Proof. Assume that an invisibility adversary AI solves the invisibility of PCS
scheme, we will show that an adversary ACR can solve the coalition-resistant of
PCS scheme by using AI . Let S be a simulator and then S runs the existentially
coalition-resistant game defined earlier with ACR. Meanwhile, ACR runs the
existentially invisibility game defined earlier with AI . On access to the SSO
and the VCO queries constructed by S, ACR passes the SSO queries from S to
AI . Then, by using VCO queries from S, ACR construct VSO queries for AI by
making queries to VCO for credentials to verify a signature queried by AI . At
the end of phase 2, AI outputs for challenge with M∗ and POL∗ to ACR. ACR

then relays this challenge to S. S responses with σ∗. ACR returns σ∗ to AI .
Finally, AI outputs a decision b′ and give to ACR. Then ACR returns b′ to S.
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From the above experiment, it is clearly shown that if AI can solve the invisi-
bility of PCS scheme, then ACR can solve the coalition-resistant of PCS scheme
via AI . Hence, the coalition-resistant is a stronger model of the invisibility in
the notion of PCS scheme. 
�

4 PCS Scheme

4.1 High Level Idea

Prior to presenting our concrete construction of policy-controlled signature
schemes, we will first describe our idea and intuition behind our construction
for clarity. Intuitively, we can achieve a policy-controlled signature scheme by
combining the idea of policy-based encryption schemes [1], a general signature
scheme and a designated verifier signature scheme as follows. Firstly, we com-
bine a designated verifier signature on a message into a policy-based ciphertext
such that only a verifier, who has satisfied the policy, can verify the authenticity
of the signature. This will constitute the part of policy-controlled signatures,
which we refer to as “the encrypted designated verifier signature”. Then, a sig-
nature scheme is used to sign the concatenation of the policy and the encrypted
designated verifier signature. The encrypted designated verifier signature and
the signature from the above construction constitutes a policy-controlled signa-
ture. The purpose of the above construction is to ensure the authentication of
the signer such that the verifier is convinced that the signer has actually gen-
erated this policy-controlled signature. The signature can be publicly verifiable,
however, one could not be convinced that the signature is indeed associated
to a message, unless one has the credentials satisfying the policy to verify the
encrypted designated verifier signature. Hence, without revealing the verifier’s
private information (the credentials associated to the policy), the verifier should
not be able to convince other party that a signer generated the policy-controlled
signature.

4.2 The Construction

In this section, we present our concrete construction of PCS schemes. Let H0 :
{0, 1}∗ → G1; H1 : {0, 1}∗ → G1; H2 : {0, 1}∗ → G1 be three distinct random
one-way functions that map any string to group G1 and let h : {0, 1}∗ → Z∗

p

be a collision-resistant hash function. We denote by G1 and GT groups of prime
order p. Assume that there exists an efficient computationally bilinear mapping
function ê which maps G1 to GT . The above mapping function is defined as
ê : G1 ×G1 → GT . The scheme is described as follows.

Setup: On input a security parameter K, a trusted third party randomly chooses
a prime p ≈ poly(1K). Select a random generator g ∈ G1 and a bilinear map-
ping function ê. Select hash functions H0(.), H1(.), H2(.), h(.). We denote by
param = (p, ê, g, H0, H1, H2, h) the system parameters. Then, Setup returns
param.
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TKeyGen: On input a system parameters param, a trusted authority TA ran-
domly generates a private key skTA and a public key pkTA as follows: select
two random integers μ, γ ∈ Zp. Let U = gμ; W = gγ denote a public key.
Therefore, TKeyGen returns skTA = (μ, γ) as a private key of the trusted
authority and pkTA = (U, W ) as a public key of the trusted authority.

SKeyGen: On input a system parameters param and a public key of the trusted
authority pkTA, a signer S randomly generates a private key skS and a public
key pkS as follows: select a random integer x ∈ Zp. Let X = gx; X̂ = W x

denote a public key. Therefore, SKeyGen returns skS = x as a private key
of the signer and pkS = (X, X̂) as a public key of the signer.

CreGen: Let P be a statement in the policy, e.g., P =‘CIA agent’. An as-
sertion A of P is computed as follows: A = H2(P ). On input a system
parameters param, the trusted authority’s public key pkTA, the trusted au-
thority’s private key skTA and a set of assertions A1, ..., An that verifier is
satisfied to obtain, a trusted authority TA randomly generates each ver-
ifier’s credential strings V CRi = (CVi, CRi, CGi) where i is an index of
credentials as follows: TA randomly selects νi ∈ Z∗

p and computes each
credential CVi = U1/νi ; CRi = g(μγ)/νiAμ

i ; CGi = gνi and then returns
V CRi = (CVi, CRi, CGi) to the verifier as a credential of assertion Ai. Ver-
ifier checks the validity of V CRi as follows:

ê(CRi, g) ?= ê(Ai, U)ê(W, CVi),

ê(CVi, CGi)
?= ê(U, g).

Sign: Given param, pkTA, skS , pkS , POL =
∧a

i=1[
∨ai

j=1[
∧ai,j

k=1 Ai,j,k]] and a
message M , S computes a policy-controlled signature σ on a message M as
follows:

r, t1, ..., ta
$← Zp, t = ⊕a

i=1ti, σ1 = gr,

σ2 = Xr, σ3 = X̂r,

M ′ = M ||σ1||σ2||σ3||t||t1||...||ta||pkS ||pkTA||POL,

for i = 1 to a, for j = 1 to ai:

αi,j = h(ê((
ai,j
∏

k=1

Ai,j,k)r·x, U)||H0(M ′)||i||j),

Ri,j = ti ⊕ h(ê(gαi,j , H0(M ′)x)||i||j),

Then compute

M̆ = σ1||σ2||σ3||t||t1||...||ta||pkS ||pkTA||POL||[Ri,1||...||Ri,ai ]1≤i≤a,

σ4 = H1(M̆)x.

The policy-controlled signature on a message M is

σ = (H0(M ′), σ1, σ2, σ3, σ4, [Ri,1, ..., Ri,ai ]1≤i≤a).
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V erify : Let {V CRi,j,k} = V CR1,j,1, ..., V CRa,j,ai,j be a set of credentials in
POL that verifier possessed. Given pkS , pkTA, pkV , {V CRi,j,k} ⊂ POL,
POL, σ and a message M , a verifier V first checks whether

ê(σ2, g) ?= ê(σ1, X), ê(σ3, g) ?= ê(σ2, W ).

holds or not. If not, then V outputs reject. Otherwise, V computes as
follows: for i = 1 to a:

αi,j = h((
ai,j
∏

k=1

(ê(CRi,j,k, σ2)ê(CVi,j,k, σ3)−1))||H0(M ′)||i||j)

t̂i = Ri,j ⊕ h(ê(H0(M ′)αi,j , X)||i||j).

After that, compute

t̂ = ⊕a
i=1t̂i, M̂ = M ||σ1||σ2||σ3||t̂||t̂1||...||t̂a||pkS ||pkTA||POL.

Then, V checks whether H0(M̂) ?= H0(M ′), ê(σ4, g) ?= ê(H1(σ1||σ2||σ3||t̂||
t̂1||...||t̂a||pkS ||pkTA||POL||[Ri,1||...||Ri,ai ]1≤i≤a), X) holds or not. If not,
then it outputs reject. Otherwise, it outputs accept.

5 Security Analysis

Theorem 2. Our policy-controlled signature scheme is existentially unforgeable
under an adaptive chosen message and credential exposure attack if the CDH
assumption holds in the random oracle model.

Theorem 3. In the random oracle model, the proposed policy-controlled signa-
ture scheme is existentially coalition-resistant against adaptively chosen message
and chosen policy attack ACMP−A

CRI−PCS attack if the DBDH assumption is hold.

Due to the page limitation, please find the proof for Theorem 2 and Theorem 3
in the full version of this paper [28].

6 Implementation

In this section, we briefly discussed our implementation to realize policy-
controlled signatures. We incorporated the P3P privacy policy description lan-
guage [27] and extended the description to capture the notion of policy-controlled
signatures. We augment the XML digital signature with the P3P privacy policy
to ensure that the policies attached will be enforced. An example of a policy-
controlled signature given in our earlier scenario is provided in Figure 1. We
note that in this section, we only demonstrate how the policy can be written
in the P3P description language and we do not describe its enforcement, as it
is not in the scope of this paper. The purpose of this section is just merely to
demonstrate that our primitive is also applicable in practice.
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<?xml version="1.0" encoding="UTF-8"?>

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

. . .

<SignatureValue>NC3E~LE=</SignatureValue>

<KeyInfo>

<POLICIES>

<POLICY discuri="http://p3pbook.com/privacy.html" name="policy">

<RECIPIENT>

<DATA ref=‘‘CIA Agent’’/>

<DATA ref=‘‘KGB Agent’’/>

<DATA ref=‘‘Agents’’ AND ref=‘‘Authorized by US’’/>

</RECIPIENT>

</POLICY>

</POLICIES>

Fig. 1. P3P for policy-controlled signatures

7 Conclusion

In this paper, we introduced the notion of policy-controlled signatures that al-
lows a signer to control the verification of his signature by attaching policies.
If the verifier satisfies the policies provided, then the verifier can test the au-
thenticity of the message. Otherwise, the verifier cannot do so. Only a verifier
who has credentials satisfying the policies provided by the signer can verify
the policy-controlled signatures. We argue that this cryptographic primitive has
many applications, in particular the ones that involve sensitive information. We
presented a security model for PCS schemes, together with a concrete construc-
tion that is secure in our model.
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Abstract. An important research area in the past decade is to search
for efficient cryptographic schemes that do not rely for their security on
the controversial random oracle assumption. In this paper, we continue
this line of endeavors and report our success in identifying a very effi-
cient public key encryption scheme whose formal security proof does not
require a random oracle. Specifically, we show how to modify a universal
hash based public key encryption scheme proposed by Zheng and Seberry
at Crypto’92, in such a way that the resultant scheme not only preserves
efficiency but also admits provable security against adaptive chosen ci-
phertext attack without a random oracle. We also compare the modified
Zheng-Seberry scheme with related encryption schemes in terms of effi-
ciency and underlying assumptions, supporting our conclusion that the
modified Zheng-Seberry scheme is preferable to its competitors.

Keywords: random oracle, universal hash, public key encryption.

1 Introduction

The notion of chosen ciphertext security was introduced by Naor and Yung [24].
Then, Rackoff and Simon [26] provided a stronger notion called indistinguisha-
bility under adaptive chosen ciphertext attack (IND-CCA2). Adaptive chosen
ciphertext security has since become a standard notion for the security of public
key encryption. A considerable amount of work on the construction of adaptive
chosen ciphertext secure encryption have been presented. Some of these research
results are based on non-interactive zero knowledge proofs [13], which are not
quite practical in real world applications. To construct an efficient encryption
scheme, many encryption techniques have been proposed in the so-called random
oracle model [4][14][3]. The random oracle model, however, is one of the most
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controversial issues in cryptography. A notable argument against the random
oracle model was made by Canetti, Goldreich and Halevi [8] who demonstrated
that there exist cryptographic schemes that are secure in the random oracle
model but insecure for any instantiation of the random oracle. Recently, Leurent
and Nguyen [23] showed that instantiations of full domain hash functions (ran-
dom oracles) proposed in the literature are insecure. They also advocated to
assess carefully the impact of potential flaws in random oracle instantiations on
a system that relies on the instantiations.

To address the concern over random oracles, an obvious approach is to design
an adaptive chosen ciphertext secure public key encryption scheme that does
not rely on a random oracle. The often cited adaptive chosen ciphertext secure
encryption scheme proposed by Cramer and Shoup [10] represents the first con-
crete result in this line of research. A multiple number of techniques have since
been proposed and studied by many researchers. Most of these techniques, how-
ever, share a common drawback that impedes their possible adoption in practice,
that is, they generally require at least a few times more computation than their
random oracle based counterparts.

Given the computational superiority of random oracle based encryption, it is
a shared view amongst most researchers that alternative encryption techniques
without random oracles will not be able to win over practitioners unless these
alternatives afford a computational speed comparable to that enjoyed by random
oracle based techniques.

A major advantage of random oracle based schemes [4][14][3] lies in its simplic-
ity. To preserve the simplicity while not relying on a random oracle for security
proofs, new computational assumptions have been examined. One such effort is
made by Pandey, Pass and Vaikuntanathan [25] who introduce a few complex-
ity theoretical hardness assumptions that abstract out concrete properties of a
random oracle. Based on these assumptions, they are able to solve a number
of open problems, including the construction of a non-interactive concurrently
non-malleable string commitment. Their results point to an interesting approach
towards designing efficient and provably secure cryptographic schemes without
random oracles. We note that although these assumptions are stronger than tra-
ditional cryptographic hardness assumptions, they seem quite reasonable and it
is conceivable that, like many other assumptions in the field such as the deci-
sional Diffie-Hellman assumption, this type of new assumptions may gain wider
acceptance after further screening by peers in the field.

1.1 Our Contribution

The goal of this paper is to search for a public key encryption scheme that
(1) does not rely on a random oracle, (2) is adaptive chosen ciphertext secure,
and (3) is truly practical in that it requires no more exponentiations of large
integers than does a comparable random oracle based scheme. To achieve our
goal, we examine a variant of Pandey et al.’s assumption [25], called the adaptive
DDH assumption. Based on the adaptive DDH assumption, a modified version of
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Zheng and Seberry’s encryption scheme proposed in [30] is proved to be adaptive
chosen ciphertext secure without a random oracle.

Zheng and Seberry [30] proposed three simple methods for immunizing public
key cryptosystems against chosen ciphertext attacks. The nature of the three
methods is the same. They immunized a public key cryptosystem by append-
ing to each ciphertext a tag that is correlated to the message to be encrypted.
Soldera, Seberry and Qu [29] showed the insecurity of the first scheme, denoted
by Zheng-Seberry1wh, on some special circumstances and attempted to modify
Zheng-Seberry1wh resulted on an El Gamal variant. Based on the Gap Diffie-
Hellman assumption (GDH), Baek and Zheng [2] provided a security proof for
the slightly modified version of Zheng-Seberry1wh, in the random oracle model,
leaving as an open problem proofs for the other two schemes. The focus of this
paper is to modify the second scheme in [30], denoted by Zheng-Seberryuh, so
that the resultant scheme is adaptive chosen ciphertext secure (see Section 4).
The scheme Zheng-Seberryuh is worth studying for the following reasons: First,
the scheme immunizes public key encryption against adaptive chosen ciphertext
attacks with the help of a universal hash function. This allows the scheme to
steer clear of a one-way hash function with non standard output size, whereby
successfully averting potential risks recently discovered in [23]. Second, the input
length of a plaintext can be arbitrary, while the overhead of the corresponding ci-
phertext is a constant. As a result, the ratio between the length of the ciphertext
and that of the plaintext can be close to 1 as the length of the plaintext increases.

1.2 Related Work

Hybrid encryption, which is also known as the KEM-DEM approach, applies a
public key cryptosystem to encapsulate the key of a symmetric cryptosystem and
the symmetric cryptosystem is subsequently used to conceal data. Cramer and
Shoup first generalized the notion in their work [27][11]. Kurosawa and Desmedt
[22] later presented a more efficient hybrid encryption scheme by using a KEM
which is not necessarily adaptive chosen ciphertext secure. More recently, Kiltz
et al. [20] improved on the Kurosawa-Desmedt technique and proposed a new
approach to design adaptive chosen ciphertext secure hybrid encryption schemes
without a random oracle. Compared with Kiltz et al.’s concrete scheme [20] which
relies on the DDH assumption and AE-OT1 secure symmetric encryption, our
modified Zheng-Seberryuh scheme is conceptually much simpler and relies only
on the adaptive DDH assumption. More important, this newly modified scheme
requires less computation time than Kiltz et al.’s.

Another important progress was made by Hofheinz and Kiltz [18] recently.
They proposed a new public key encryption scheme based on factoring. Their
scheme requires only roughly two exponentiations in encryption and roughly one
exponentiation in decryption. (Here, “roughly” two or one exponentiation means

1 According to [20], a symmetric cipher is AE-OT secure if it satisfies (one-time)
ciphertext indistinguishability (IND-OT) and (one-time) ciphertext integrity (INT-
OT).
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two or one full exponentiation and additional exponentiations with small expo-
nents.) While for the encryption schemes based on discrete logarithm, DHIES
[1] is one of the most efficient schemes without random oracle. Compared with
DHIES which relies on the Oracle Diffie-Hellman (ODH) assumption together
with the security of symmetric encryption and a message authentication code,
our modified scheme relies only on the adaptive DDH assumption and preserves
the computational efficiency of Zheng-Seberryuh. However, it is fair to say that
our modified Zheng-Seberry scheme and DHIES are comparable, each having
its own pros and cons in practice. With DHIES, all three assumptions on sym-
metric encryption, MAC and ODH are responsible for the security of DHIES
and it is relatively easy to select proper candidates to realize each function of
the assumption. With our modified Zheng-Seberry scheme, the adaptive DDH
assumption which is solely responsible for the security of the scheme is slightly
stronger than the ODH assumption required by DHIES.

2 Preliminaries

Notation and Definition. |X | denotes the length of a binary string X or the
size of (or number of elements in) a set X . x

R← X denotes picking an element
x from X uniformly at random. x ← A(x1) denotes the experiment of running
an algorithm A on input x1 and outputting x. x||y denotes the concatenation
of strings x and y. A function μ : N → R is called negligible in n if for every
positive polynomial p(·) and all sufficiently large n’s, we have μ(n) < 1/p(n).

Universal hashing [9]. A family of functions H : {0, 1}P → {0, 1}l is a universal
family of hash functions if, for every x1 	= x2 ∈ {0, 1}P and every y1, y2 ∈ {0, 1}l,
the number of functions in H mapping x1 to y1 and x2 to y2 is precisely |H |/22l,
where |H | denotes the number of functions in H .

For the security proof in this paper, we need the following lemma whose proof
can be found in [28].

Lemma 1. [28] Let S1, S2, and S′ be events defined on a probability space such
that Pr[S1 ∧ ¬S′] = Pr[S2 ∧ ¬S′]. Then we have |Pr[S1]− Pr[S2]| ≤ Pr[S′]

3 New Assumptions

In this section, we give the definitions of the adaptive DDH assumption and
other related assumptions. First, we recall the definition of an adaptive one-to-
one one-way function introduced in [25]. In the definition, an adversary picks
an index tag∗ and is given y∗ = ftag∗(x∗) for a random x∗ in the domain of
ftag∗(x). The aim of the adversary is to compute x∗. The difference between
the traditional definition for an one-way function and the one in [25] is that the
adversary in [25] has access to a “magic oracle” Otag(·, ·) that on input (tag, y)
with tag 	= tag∗, returns f−1

tag(y). The security requirement is that the adversary
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can compute x∗ only with a negligible probability, even if the adversary can
get help from the “magic oracle”. Similarly to the definition of adaptive one-way
function, the definition of adaptive pseudorandom generator Gtag in [25] requires
that the adversary can not tell the output of Gtag∗ from the random string, even
if the adversary can get help from a magic oracle that, on input (tag, y) with
tag 	= tag∗, returns 0 or 1 depending on whether y is in the range of Gtag

or not. Formal definitions of the adaptive one-way function and the adaptive
pseudorandom generator (PRG) in [25] are given in Appendix.

Combining definitions of the adaptive one-way function and the adaptive
PRG, we have the definition for a variant of the adaptive PRG. The variant
is similar to the definition of the adaptive PRG except that, the adversary A
has some auxiliary information ftag(x) on a seed x and interacts with the oracle
Otag(·, ·, ·).

Definition 1. (Auxiliary adaptive PRG) Let

G = {Gtag : {0, 1}n → {0, 1}s(n)}tag∈{0,1}n

be a pseudorandom generator (PRG). And let Otag(·, ·, ·) denote an oracle that,
on input (tag′, ftag′(x), y) such that tag′ 	= tag, |tag′| = |tag|, outputs the seed
x if

– y = Gtag′ (x), and
– x is consistent with its auxiliary information ftag′(x).

Otag(·, ·, ·) outputs ⊥ otherwise.
We say that the PRG G is adaptively secure if, for any probability polynomial-

time adversary A which has the auxiliary information ftag(x) on the seed x and
has access to the oracle Otag(·, ·, ·), there exists a negligible function μ such that
for all n and for all tags tag ∈ {0, 1}n,

|Advreal
A −Advrand

A | ≤ μ(n)

where Advreal
A denotes Pr[x ← Un : AOtag(·,·,·)(ftag(x), Gtag(x)) = 1], Advrand

A

denotes Pr[y ← Us(n) : AOtag(·,·,·)(ftag(x), y) = 1] and the probability is over the
random choice of y and x, and the coin-tosses of A.

Definition 1 is a combination of definitions of the adaptive one-way function and
the adaptive PRG in that the auxiliary information on x in Definition 1 can be re-
placed by an one-way function f(x) and the inversion oracle Otag(·, ·, ·) plays the
role of Otag(·, ·) in the definition of adaptive one-way function. In addition, Defi-
nition 1 implies that the adversary can not invert the one-way function f(x) even
with the help fromOtag(·, ·, ·). A candidate construction for an auxiliary adaptive
PRG, based on AES , is defined by Gtag(x) = AESx(tag||0)||AESx(tag||1).

From Definition 1 and the specific number theory assumption DDH, we derive
the definition of the adaptive DDH assumption.

Let G be a group with prime order q. g ∈ G is the generator. Gtag(·) : G →
{0, 1}∗ is a pseudorandom generator. Gtag(·)[i,...,j] denotes the substring from
the i-th bit to the j-th bit of the output of Gtag(·).
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Definition 2. (Adaptive DDH assumption) Given

{g, ga, gb, Gga,gb(gc)[1,...,P+W ]}

where a, b, c ∈ Zq, it is computationally infeasible for any PPT distinguisher D
to tell whether c = ab, even if D has access to an oracle Oga,gb(·, ·, ·), where P
and W are polynomials in a security parameter.

The oracle Oga,gb(·, ·, ·), on input (ga′
, gb′ , Gga′ ,gb′ (gc′)[P+1,...,P+W ]), outputs

ga′b′ if the input (ga′
, gb′ , Gga′ ,gb′ (gc′)[P+1,...,P+W ]) satisfies:

– (ga′
, gb′ , Gga′ ,gb′ (gc′)[P+1,...,P+W ]) 	= (ga, gb, Gga,gb(gc)[P+1,...,P+W ])

– Gga′ ,gb′ (ga′b′)[P+1,...,P+W ] = Gga′ ,gb′ (gc′)[P+1,...,P+W ]

Otherwise, the oracle outputs ⊥.

That is, for all PPT D, there is a negligible function μ such that

| Pr
a,b,c

R←Zq

[DO
ga,gb (·,·,·)(S) = 1]− Pr

a,b
R←Zq

[DO
ga,gb (·,·,·)(S′) = 1]| ≤ μ(n)

where S = (g, ga, gb, Gga,gb(gc)[1,...,P+W ]), S′ = (g, ga, gb, Gga,gb(gab)[1,...,P+W ]),
and n is the security parameter. A quadruple {g, ga, gb, Gga,gb(gc)[1,...,P+W ]} sat-
isfying c = ab is called an adaptive DDH quadruple.

Remark. Comparing with Definition 1, (ga, gb) is not only a tag but also rep-
resents some auxiliary information on gab. Note that it is not required that the
length of the substring of Gga′ ,gb′ (gc′) in the adversary’s query be equal to that
of Gga,gb(gc)[1,...,P+W ]. However, the length of Gga′ ,gb′ (gc′)[P+1,...,P+W ], that is
W , should be large enough to guarantee that the adversary can guess a “right”
query only with a negligible probability. Intuitively, that means, in almost all
cases, the oracle does not provide any “useful” help for the adversary. However
that does not mean the adversary can not provide the right query with a non-
negligible probability. In fact, the adversary can randomly pick a′, b′ and generate
the “right” query (ga′

, gb′ , Gga′ ,gb′ (ga′b′)[P+1,...,P+W ]) by himself. Although the
oracle’s answer to such a query does not provide any useful information for the
adversary, it is important for the simulation in the security proof, which will be
explained later.

3.1 Relationships with Other Assumptions

HDH, ODH and SDH assumptions. Abdalla et al. introduce three related
notions, which are the hash Diffie-Hellman assumption (HDH), the oracle Diffie-
Hellman (ODH) assumption and the strong Diffie-Hellman assumption (SDH)
[5] [1]. It seems that the ODH assumption and the adaptive DDH assumption
are similar in flavor. But the adversary’s power in the adaptive DDH assumption
is much more restricted, as the adversary can get the help of the oracle only if
it can produce a useful and “right” query, which happens with only a negligible
probability.
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Non-malleable pseudorandom generator. In order to prove the security
($NM-CPA) of OAEP without random oracle, Boldyreva and Fischlin [7] fully
instantiated OAEP by assuming special properties of the two pseudorandom
generators G and H in OAEP. To be more precise, G is a near-collision resis-
tant trapdoor pseudorandom generator, which can recover the pre-image s of
G(s) according to the k least significant bits of G(s); H is a non-malleable pseu-
dorandom generator. Our adaptive DDH assumption is closely related to their
assumption. To some extent, the adaptive DDH combines the above properties
of G and H , and takes advantage of concrete algebra structures to replace the
random oracle.

4 Modified Zheng-Seberryuh Scheme

First, we give the description of the modified Zheng-Seberryuh in Table 1. As-
sume that H : {0, 1}∗ → {0, 1}l is a family of universal hash functions. Each
function in H is specified by a string of exactly Q bits. Denote by hs the func-
tion in H that is specified by a string s ∈ {0, 1}Q. L denotes an encryption
label, which consists of public data. In addition, m denotes a plaintext to be
encrypted. Our major modification to the original Zheng-Seberryuh scheme [30]
is to increase the output length of the pseudorandom generator by W bits. These
additional W bits play the role of a tag for an ephemeral key yx

A and will be

Table 1. The modified Zheng-Seberryuh Scheme

Modified Zheng-Seberryuh Scheme

Public parameters: A label L, a universal class of hash functions H :
{0, 1}∗ → {0, 1}l, a group G, a generator g of G with order q, and an adaptively
secure pseudorandom generator Gtag : G → {0, 1}∗.
Key Generation: Choose xA randomly in Z

∗
q and compute yA = gxA . The

public key is yA and the private key is xA.

Encryption Euhf (yA, m, L)

1. x
R← Z

∗
q , r = yx

A

2. c1 = gx. Let tag = (yA, c1).
3. s = Gtag(r)[1,...,Q],

t = hs(m||L)
4. z = Gtag(r)[Q+1,...,Q+P+W ],

c2 = z ⊕ (m||t||0W )

Output the ciphertext (c1, c2).

Decryption Duhf (xA, yA, c1, c2, L)

1. r′ = c1
xA , s′ = Gtag(r′)[1,...,Q],

z′ = Gtag(r′)[Q+1,...,Q+P+W ],
2. m′||t′ = (c2 ⊕ z′)[1,...,P ],

where m′ = (c2 ⊕ z′)[1,...,P−l],
t′ = (c2 ⊕ z′)[P−l+1,...,P ]

3. if hs′(m′||L) = t′ and
z′
[P+1,...,P+W ] = c2[P+1,...,P+W ],

then output m′ as a plaintext;
otherwise output ⊥.
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sent to a recipient as part of a ciphertext. In practice, in order to minimize the
impact of these additional bits on the efficiency of the scheme, W should be cho-
sen to be as short as practical. For a security level of 280, we suggest W ≥ 160.
Additionally, the pseudorandom generator G(·) is required to be a adaptively
secure pseudorandom generator Gtag(·), where tag = (yA, c1).

Other modifications. A public label L is employed in Table 1. Using such a
label is a widely adopted practice and does not affect the security proof. Besides,
the universal hash value is encrypted together with a message, which allows the
use of a broader range of universal hash functions that may not necessarily hide
all the information on a message.

4.1 Security Proof of the Modified Zheng-Seberryuh Scheme

Theorem 1. Assuming the adaptive DDH assumption holds, the modified
Zheng-Seberryuh scheme is secure against adaptive chosen ciphertext attacks.

Proof. The main idea of the security proof is to construct three adaptive chosen
ciphertext attack games, which are denoted by Game 1, Game 2 and Game 3,
and prove that the adversary’s views in these games are indistinguishable.

Game 1: Game 1 is a real run of a standard adaptive chosen ciphertext attack
game. After the adversary submits a pair of plaintexts (m0, m1) in the challenge
phase, the challenger creates a target ciphertext as follows: c∗ = (c∗1, c

∗
2) =

(gx∗
, z∗ ⊕ (mβ ||t∗||0W )), where t∗ = hs∗(mβ ||L), and β

R← {0, 1}.

Game 2: Game 2 is similar to Game 1 except that the target ciphertext is
modified to c∗∗+ =(gx∗

, z∗∗ ⊕ (mβ ||t∗∗||0W )), where s∗∗ = GyA,gx∗ (r∗∗)[1,...,Q],

z∗∗ = GyA,gx∗ (r∗∗)[Q+1,...,Q+P+W ], r∗∗ R← G, t∗∗ = hs∗∗(mβ ||L).

Game 3: Game 3 is similar to Game 2 except that the target ciphertext is
modified to c∗+ =(gx∗

, u3⊕(mβ||t∗+||0W )), where u2
R← {0, 1}Q, u3

R← {0, 1}P+W ,
t∗+ = hu2(mβ ||L). Since the distribution of c∗+ is independent of the choice of
β, the probability that the adversary can guess β correctly in Game 3 is 1/2.
That is Pr[Game 3] = 1/2, where Pr[Game i] denotes the probability that the
adversary wins Game i, for 1 ≤ i ≤ 3.

Next, we will prove that |Pr[Game 1] − Pr[Game 2]| ≤ μ(k), where μ(k) is
a negligible function. Assume for contradiction that there exists a polynomial
p(k) such that, for infinitely many k’s, |Pr[Game 1] − Pr[Game 2]| ≥ 1/p(k),
which means there exists an adversary B for Game 1 and Game 2 such that
|Pr[Game 1]−Pr[Game 2]| is non-negligible. We show how to construct a PPT
algorithm A to break the adaptive DDH assumption using B, by explicitly con-
structing an experiment of statistical test for the adaptive DDH problem.

Given {g, ga, gb, Gga,gb(gc)[1,...,Q+P+W ]}, A sets yA = ga and simulates the
adaptive chosen ciphertext attack game for the adversary B in the following
experiment.
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Experiment: A sets the target ciphertext (c∗1, c
∗
2) to

(gb,Gga,gb(gc)[Q+1,...,Q+P+W ] ⊕ (mβ ||hG
ga,gb (gc)[1,...,Q]

(mβ ||L)||0W ))

and uses the oracle Oga,gb(·, ·, ·) to answer the decryption query. Notice that
the oracle Oga,gb(·, ·, ·) would output ⊥ if the challenger does not propose the
“right” query. More precisely, when the challenger receives the decryption query
(c1, c2), he computes T = c2[P+1,...,P+W ] and decrypts as follows

1. If c1 	= c∗1, the challenger makes the query (ga, c1, T ) to the oracleOga,gb(·, ·, ·).
– If the oracle returns the answer r, the challenger can compute

m||t = c2[1,...,P ] ⊕Gga,gb(r)[Q+1,...,Q+P ]

s = Gga,gb(r)[1,...,Q]

and check whether t = hs(m||L). If t = hs(m||L), the challenger returns
the plaintext m. Otherwise, the challenger outputs ⊥.

– If the oracle outputs ⊥ which means the (g,ga,c1,T ) is not an adaptive
DDH quadruple and the corresponding ciphertext is not valid, then the
challenger outputs ⊥.

2. If c1 = c∗1, c2 	= c∗2, T = T ∗, where T ∗ = c∗2[P+1,...,P+W ], the challenger
can not get help from the oracle Oga,gb(·, ·, ·) and outputs ⊥. Let Pr[Bad]
denote the probability that (c1, c2) is a valid ciphertext such that c1 =
c∗1, c2[1,...,P−l] 	= c∗2[1,...,P−l], T = T ∗. Pr[Bad] is negligible, because the
adversary needs to find a c2 satisfying

(c2 ⊕ z∗)[P−l+1,...,P ] = hs∗((c2 ⊕ z∗)[1,...,P−l]||L)
(c∗2 ⊕ z∗)[P−l+1,...,P ] = hs∗((c∗2 ⊕ z∗)[1,...,P−l]||L)

According to the definition of the universal hash functions, if h is chosen
uniformly from the universal class H , for every c2[1,...,P ], c∗2[1,...,P ] ∈ {0, 1}P
with c2[1,...,P ] 	= c∗2[1,...,P ], c2[P−l+1,...,P ] and c∗2[P−l+1,...,P ] are uniformly and
independently distributed over {0, 1}l×{0, 1}l. Therefore, the adversary can
find such a c2 only with negligible probability 1/2l. Otherwise, it would imply
that h is not chosen uniformly from H . That means, the pseudorandom string
s∗ could be distinguished from a random string by an efficient algorithm with
a non-negligible advantage. This is a contradiction.

3. Otherwise, the challenger outputs ⊥.

Let Pr[Exp] denote the probability that the adversary B wins the above game
in the experiment. The following claims, Claim 1 and Claim 2, show that, if
|Pr[Game 1] − Pr[Game 2]| is non-negligible, then whether {g, ga, gb,
Gga,gb(gc)[1,...,P+Q+W ]} is an adaptive DDH quadruple or not can be decided
with a non-negligible advantage. Due to Claim 1 and Claim 2, we have Claim 3.
More details of proofs of Claim 1, Claim 2 and Claim 3 are given in Appendix.



116 P. Wei, X. Wang, and Y. Zheng

Claim 1. If {g, ga, gb, Gga,gb(gc)[1,...,P+Q+W ]} is an adaptive DDH quadruple,
then |Pr[Game 1]− Pr[Exp]| is negligible and |Pr[Game 2]− Pr[Exp]| is non-
negligible.

Claim 2. If {g, ga, gb, Gga,gb(gc)[1,...,P+Q+W ]} is not an adaptive DDH quadru-
ple, then |Pr[Game 2] − Pr[Exp]| is negligible and |Pr[Game 1] − Pr[Exp]| is
non-negligible.

Claim 3. |Pr[Game 1] − Pr[Game 2]| ≤ μ(k) if the adaptive DDH assumption
holds, where μ(k) is a negligible function.

Finally, |Pr[Game 3] − Pr[Game 2]| is also negligible if G is a secure pseudo-
random generator. (Otherwise, Game 2 would serve as an efficient algorithm to
distinguish the output distribution of G from the uniform distribution.) Hence,
we obtain the following claim:

Claim 4. |Pr[Game 3]− Pr[Game 2]| ≤ μ′(k) if Gtag is a secure pseudorandom
generator, where μ′(k) is a negligible function.

From Claim 3 and Claim 4, we have

|Pr[Game 1]− 1/2| = |Pr[Game 1]− Pr[Game 3]|
≤ |Pr[Game 1]− Pr[Game 2]|+
|Pr[Game 2]− Pr[Game 3]|

≤ μ(k) + μ′(k)

where μ(k) + μ′(k) is a negligible function.
That is, the adversary can win the standard adaptive chosen ciphertext attack

game with only a negligible advantage. This completes the proof of Theorem 1.

5 Instantiation

First we note that an ε-AXU hash function [12] can be used in place of a
universal hash function. One may also use an efficient universal hash func-
tion family proposed by Bernstein [6]. Such a substitution almost does not
affect the security proof. In fact, only minor revisions need to be made in
the security proofs. Specifically, in Case 2 of the experiment for the security
proof of the modified Zheng-Seberryuh scheme, the probability that the adver-
sary can find c2 satisfying (c2 ⊕ z∗)[P−l+1,...,P ] = hs∗((c2 ⊕ z∗)[1,...,P−l]||L) and
(c∗2 ⊕ z∗)[P−l+1,...,P ] = hs∗((c∗2 ⊕ z∗)[1,...,P−l]||L) needs to be changed. To in-
stantiate the adaptively secure pseudorandom generator Gtag(·), we can use the
HMAC-based key derivation function (KDF) [21], which follows the extract-
then-expand paradigm.
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6 Comparison

For the modified Zheng-Seberryuh scheme, the length of a ciphertext is |m| +
|p| + 320, where |p| denotes the binary length of a element in G. Thanks to
the use of the pseudorandom generator and the universal hash function, the
input length of the plaintext can be flexibly adjusted. With the increase in
the length of a plaintext m, the ratio between the length of a ciphertext and a
plaintext, α = |m|+|p|+320

|m| , becomes even closer to 1. Table 2 shows a comparison
of the modified Zheng-Seberryuh schemes with a few of the relevant encryption
schemes.

Table 2. Efficiency comparison of the modified Zheng-Seberryuh schemes with some
relevant encryption schemes. “trapdoor permutation+” denotes trapdoor permutations
that are uninvertible with access to a H-inverting oracle. “one-way hash+” denotes
adaptively secure perfectly one-way hash. “SPD-OW” denotes set partial domain one-
wayness. “SKE” denotes secure symmetric encryption. “MAC” denotes secure message
authentication code. “Enc Exp” (“Dec Exp”) denotes the number of exponentiations
or double exponentiations in encryption (decryption).

Enc Exp Dec Exp Assumption RO
Modified Zheng-Seberryuh 2 1 adaptive DDH No

Cramer-Shoup [10] 4 3 DDH No
Kurosawa-Desmedt [22] 3 1 DDH, SKE No

Hofheinz-Kiltz [17] 3 1 DDH No
Hofheinz-Kiltz [18] roughly 2 roughly 1 Rabin’s trapdoor OWP No

DHIES [1] 2 1 ODH, SKE, MAC No
trapdoor permutation+,

Pandey-Pass-Vaikuntanathan [25] - - one-way hash+ No

Zheng-Seberry1wh[2] 2 1 GDH Yes
OAEP [15] 1 1 SPD-OW Yes

Bellare-Rogaway [3] - - trapdoor OWP Yes

7 Concluding Remarks

We have proved the adaptive chosen ciphertext security of a modified version
of Zheng and Seberry’s encryption scheme that employs universal hashing. The
scheme investigated in this work is based on discrete logarithms in a subgroup.
A possible interesting area for further research is to investigate whether simi-
lar results can be obtained with schemes built on other computationally hard
problems, such as the integer factorization problem.
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Appendix

Definition 3. (Family of adaptive one-to-one one-way functions) [25]. A family
of injective one-way functions F = {ftag : Dtag → {0, 1}∗}tag∈{0,1}n is called
adaptively secure if

– There is an efficient randomized domain sampler D, which on input tag ∈
{0, 1}n, outputs a random element in Dtag. There is a deterministic poly-
nomial algorithm M such that for all tag ∈ {0, 1}n and for all x ∈ Dtag,
M(tag, x) = ftag(x).

– Let Otag(·, ·) denote an oracle that, on input tag′ and y, outputs f−1
tag′(y) if

tag′ 	= tag, |tag′| = |tag| and ⊥ otherwise. The family F is adaptively secure
if, for any probabilistic polynomial time adversary A which has access to the
oracle Otag(·, ·), there exists a negligible function μ such that for all n, and
for all tags tag ∈ {0, 1}n,

Pr[x← Dtag : AOtag(·,·)(tag, ftag(x)) = x] ≤ μ(n)

where the probability is over the random choice of x and the coin tosses of
A.

Definition 4. (Adaptive PRG)[25]. Let a family of functions G = {Gtag :
{0, 1}n → {0, 1}s(n)}tag∈{0,1}n be a pseudorandom generator (PRG). And let
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Otag(·, ·) denote an oracle that, on input (tag′, y) such that tag′ 	= tag, |tag′| =
|tag|, outputs 1 if y is in the range of Gtag′ and 0 otherwise.

We say that G is an adaptively secure PRG if, for any probability polynomial-
time adversary A which has access to the oracle Otag(·, ·), there exists a negligible
function μ such that for all n and for all tags tag ∈ {0, 1}n,

|Pr[y ← Gtag(Un) : AOtag(·,·)(y) = 1]− Pr[y ← Um : AOtag(·,·)(y) = 1]| ≤ μ(n)

where the probability is over the random choice of y and the coin-tosses of the
adversary A.

Proof of Claim 1, Claim 2 and Claim 3.

To show that Claim 1 holds, we first note that if {g, ga, gb, Gga,gb(gc)[1,...,P+Q+W ]}
is an adaptive DDH quadruple and the event Bad does not happen, then the ex-
periment perfectly simulates Game 1 and the adversary’s views in the experiment
and Game 1 are identical. Hence, we have

Pr[Game 1 ∧ ¬Bad] = Pr[Exp ∧ ¬Bad]

Applying Lemma 1, we have |Pr[Game 1]−Pr[Exp]| ≤ Pr[Bad], where Pr[Bad]
is negligible. On the other hand, since |Pr[Game 1]−Pr[Game 2]| ≥ 1/p(k), we
have

|Pr[Game 1]− Pr[Exp]|+ |Pr[Game 2]− Pr[Exp]|
≥ |Pr[Game 1]− Pr[Game 2]|
≥ 1/p(k).

Therefore, |Pr[Game 2]−Pr[Exp]| is non-negligible, from which Claim 1 follows.
Using a similar argument to the correctness of Claim 1, we have Claim 2. Sum-

ming up Claim 1 and Claim 2, the adaptive DDH assumption can be compro-
mised by observing the behavior of the adversary. Specifically, if |Pr[Game 1]−
Pr[Exp]| is negligible, then |Pr[Game 2] − Pr[Exp]| must be non-negligible. In
this case, {g, ga, gb, Gga,gb(gc)[1,...,P+Q+W ]} must be an adaptive DDH quadru-
ple. Likewise, if |Pr[Game 1]− Pr[Exp]| is non-negligible, then |Pr[Game 2]−
Pr[Exp]| must be negligible. In this case, {g, ga, gb, Gga,gb(gc)[1,...,P+Q+W ]} must
not be an adaptive DDH quadruple. These lead to Claim 3.
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Abstract. The way of transmitting the encrypted digital content to
the legitimate subscribers over a broadcast channel has wide commer-
cial applications, such as Pay-TV, DVD, etc. In order to discourage
the legitimate subscribers from giving away their decryption keys, the
traitor tracing scheme comes up. In this paper, we propose a public-key
traitor tracing scheme that has optimal transmission rate. In other words,
our scheme enables everyone to transmit the encrypted digital contents
almost without any redundancy. As for tracing, our scheme supports
black-box tracing, i.e., identifying colluders without opening the pirate
decoder. Moreover, in our scheme, the storage requirement for legitimate
subscribers and digital content broadcasters is smaller than that of pre-
vious schemes.

Keywords: Traitor tracing, transmission rate, fingerprinting code.

1 Introduction

Consider the scenario that a data supplier distributes the digital content over
a broadcast channel. The data supplier gives a secret key to each legitimate
subscriber. Then the data supplier broadcasts the encrypted digital content and
the legitimate subscribers decrypt the digital content by their secret keys. The
protection for some Pay-TV, CD-ROM, DVD, and online databases is based on
this scenario. However, some malicious subscribers (called traitors) might give
copies of their secret keys to illegitimate users (called pirates). Then the pirates
decrypt the digital content for free. In order to solve the problem above, the
traitor tracing scheme comes up.

The goal of traitor tracing schemes is to discourage legitimate subscribers from
giving away their secret keys. One approach is to give each subscriber a unique
set of secret keys that both decrypt the encrypted digital content and identify
(“trace”) the subscribers. To avoid being traced by a tracer, the traitors may
collude to obfuscate their secret keys and generate a new secret key set (called
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pirate key). We call a traitor tracing scheme t-collusion resistant if at least one
of the traitors can be identified when t traitors collude to generate a pirate key
in this way. If t is the number of all legitimate users, the traitor tracing scheme
is called fully-collusion resistant. Note that the traitors may embed the pirate
keys into a “tamper-resistant” hardware (called pirate decoder) to prevent the
tracer from reading any data inside. So, during the tracing, the tracer has to
treat the pirate decoder as a black box – only the outcome of a pirate decoder
can be examined.

In many previous traitor tracing schemes, the overhead of broadcasting the
encrypted digital content is proportional to the number of legitimate subscribers.
But in some applications, such as Pay-TV, the number of legitimate subscribers
might be up to millions. This is a great burden. The approach of public-key
traitor tracing schemes is to enable everyone (e.g. Pay-TV stations) to broad-
cast the encrypted digital content. The public traceability of a traitor tracing
scheme allows everyone with a pirate decoder to trace the traitors. In order to
measure the efficiency of traitor tracing schemes, we consider the “transmission
rate” of encrypted digital content (“ciphertext”), that is, the ratio of the size
of ciphertext to the size of the digital content. We also care about the storage
requirements of subscribers’ secret keys, and the broadcast keys.

Related work. The traitor tracing scheme was first introduced by Chor, Fiat
and Naor [9], and later refined in [15,10]. The concept of public-key traitor tracing
schemes was proposed in Kurosawa and Desmedt [14], and Boneh and Franklin
[2]. The traitor tracing schemes in [2,3,8,12,11,14,13,16,18,21,22] are public-key
traitor tracing schemes. In [8], Chabanne, Phan, and Pointcheval proposed the
concept of public traceability. A class of traitor tracing schemes relying on the us-
age of fingerprinting codes [5,20] was introduced by Kiayias and Yung [13]. They
showed that if the plaintexts are large (e.g. multimedia content), it is possible to
obtain constant transmission rate. For example, the schemes in [8,18,17,11] have
constant transmission rate. While considering the transmission rate, we have two
main categories in the traitor tracing schemes:

– Schemes with no constant transmission rate [2,4]: These schemes are well-
suited to encrypt small digital content (usually using for the session-key
exchanges in the “hybrid encryption”). The user-key size and the public-key
size are often relatively small in these schemes. But the transmission rate in
these schemes is often linear or sublinear to the maximal number of colluders.

– Schemes with constant transmission rate [13,8,11] (including ours): These
schemes are well-suited to encrypt large digital content (e.g. multimedia
content). They are all constructed by using the fingerprinting codes. One
advantage of these schemes is that they often have efficient black-box trac-
ing algorithms. Nevertheless, the user-key size and the public-key size are
often relatively large (according to the codeword length in the fingerprinting
codes).

Our Contributions. We propose a public-key traitor tracing schemes with effi-
cient black-box tracing and the optimal transmission rate. The storage
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Table 1. Scheme Comparison

transmission user-key public-key black-box traceability
rate size size tracing

BF99 [2] 2t + 1 2t 2t + 1 inefficient private
BSW06 [4] 6

√
N 1 4

√
N + 2 O public

KY02 [13] ∼ 3 2� 4� O private
CPP05 [8] ∼ 1 2� � + 1 X private
FNP07 [11] ∼ 1 2� 10� O private

Ours ∼ 1 � + 2 2� + 1 O private
† �: the codeword length in fingerprinting code
† N : the total number of legitimate subscribers

requirements in our scheme for user-keys and pubic-keys are smaller than previ-
ous schemes that have the constant (or optimal) transmission rate. Our scheme
is based on a fingerprinting code, and an all-or-nothing transformation [6,7,19].
The idea is to encrypt a block of the output of an all-or-nothing transformation
by a special public-key scheme. The encryption does not entail much overhead
and allows us to feed indistinguishable messages for tracing. The comparison
with other related schemes is given in Table 1. We show that our scheme is se-
mantically secure based on the DDH assumption and the indistinguishability of
PKE-AONT. We also show that our traitor tracing scheme is t-collusion resistant
under the DDH assumption.

2 Preliminaries

Notations. A function f : N→ R is negligible if for every constant c ∈ N, there
exists an integer k0 ∈ N such that f(k) ≤ k−c for all k ≥ k0, denoted by neg(k).

We use x
$←− X to denote that x is chosen from the set X uniformly. Let M be

the plaintext space.

Fingerprinting Codes. The fingerprinting technique with fingerprinting codes
embeds a specific fingerprint (codeword) to each document copy so that one can
identify which copy of document by examining the embedded fingerprint. The
codeword is a collection of some alphabets. The traitors will collude and try to
modify their codewords to avoid being identified. However, the coalition of the
traitors is restricted by the marking assumption: the traitors are only able to com-
pare their codewords and make a modification from their respective codewords
differing in some positions. Under the marking assumption, the possible modified
codeword set from t traitor’s codewords set W is called a feasible set of W .

– For a codeword w ∈ {0, 1}	, we write w = w1w2...w	, where wi ∈ {0, 1}.
– Let W = {w(1), ..., w(t)} ⊆ {0, 1}	. We say that a codeword w̄ is feasible for

W if ∀i ∈ {1, 2, ...�} ∃j ∈ {1, 2, ..., t} s.t. w̄i = w
(j)
i . For example, if W =

{0101, 1111}, the codewords {0101, 0111, 1101, 1111} are feasible for W .
– For a codeword set W ⊆ {0, 1}	, we say that the feasible set of W , denoted

by F (W ), is the set of all codewords that are feasible for W .
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Table 2. Length of the fingerprinting codes with respect to the number N of codewords

t-collusion resistant fully-collusion resistant
BS98 [5] � = O(t4 log(N/ε) log(1/ε)) � = O(N3 log(N/ε))
T03 [20] � = O(t2 log(N/ε)) � = O(N2 log(N/ε))

A fingerprinting code scheme consists of two probabilistic polynomial-time al-
gorithms: the codeword generation algorithm G and the codeword tracing algo-
rithm T. Algorithm G generates codeword set Γ = {w(1), ..., w(N)} ∈ ({0, 1}	)N

for some � > 0 and the trace-key tk. By taking a pirate codeword w̄ and tk as
input, algorithm T outputs at least one of the traitors who collude to gener-
ate w̄. The fingerprinting codes enable a data supplier to distribute an “object”
with many fingerprinting copies. Assume Γ ∈ ({0, 1}	)N is a codeword set gen-
erated by the algorithm G, and denote a L-length object to be distributed by P .
First we partition the object P into � blocks and embed exactly one “mark” in
each block. Let Pj,s be the j-th block which contains the j-th mark with state
s ∈ {0, 1}. For each block, choose a random key Kj,s, the distributed data will
be {fKj,s(Pj,s)|1 ≤ j ≤ �, s ∈ {0, 1}}, where f is an encryption scheme. Let
w(u) ∈ Γ be the codeword in Γ and associated with user u. The private user-key
for u is {K1,w

(u)
1

, K2,w
(u)
2

, ..., K
	,w

(u)
�

}, and P (w(u)) = P1,w
(u)
1
||P2,w

(u)
2
||...||P

	,w
(u)
�

will be the copy of P implied by w(u).
Boneh and Shaw [5] constructed a fully-collusion resistant fingerprinting code

as well as t-collusion resistant secure codes. Tardos [20] proposed a shorter code.
The comparison of their codeword lengths is in Table 2, where N is the number
of codewords, and ε is the security parameter.

All-Or-Nothing Transformation. An all-or-nothing transformation (AONT)
Σ is an efficient, unkeyed, and randomized transformation with the property
that it is hard to invert unless the entire output is known [19]. Σ maps an �′-
block sequence x, together with a random string ρ to an �-block sequence y with
the following properties:

– Given x and ρ, y
$←− Σ(x; ρ) can be computed efficiently.

– Given all blocks of y, x← Σ−1(y) can be computed efficiently.
– It is infeasible to get any information about x if any block of y is missing.

Notice that the AONT expands plaintext size by roughly 1 + 1/�. This results
in an asymptotical unitary ciphertext-to-plaintext ratio.

Decisional Deffie-Hellman (DDH) Assumption. For a cyclic group� with
a generator g. Let V be the distribution {(g, gu, gv, guv)} and R be the distribu-
tion {(g, gu, gv, gw)}. For any polynomial time adversary A, A distingishes the
two distributions V and R with negligible function of λ, i.e., |Pr[A(X) = 1 :
X ∈ V ]− Pr[A(X) = 1 : X ∈ R]| = neg(|�|).
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3 The Notion for Public-Key Traitor Tracing Scheme

A public-key traitor tracing scheme is a 4-tuple of probabilistic polynomial-time
algorithms (Setup, Encrypt, Decrypt, Trace), where

Setup(1λ, N). The setup takes as input a security parameter λ and N , the
number of users in the system. The algorithm outputs a public broadcast-key
BK, a secret trace-key TK, and the private user-key SKu for each legitimate
subscriber u.

Encrypt(BK, M). The encryption algorithm takes as input the public broadcast-
key BK and a message M ∈ M. The algorithm outputs a ciphertext C.

Decrypt(SKu, C). The decryption algorithm takes as input the private user-key
SKu of user u and a ciphertext C. The algorithm outputs a message M or
⊥.

TraceD(TK). The tracing algorithm takes as input the private trace-key TK and
queries the pirate decoder D as a black-box oracle. The algorithm outputs a
traitor set S which is a subset of {1, ..., N}.

Moreover, the scheme must satisfy the correctness property as follows:

For all u ∈ {1, ..., N} and for all M ∈ M: if 〈BK, TK, (SK1, ..., SKN )〉 $←−
Setup(1λ, N) and C

$←− Encrypt(BK, M), then Decrypt(SKu, C) = M .

Semantic Security Game

– Setup. The challenger runs Setup, and gives BK to the adversary.
– Challenge. The adversary chooses two plaintexts M0, M1 ∈ M to the chal-

lenger. Then the challenger flips a coin b ∈ {0, 1}, and gives a ciphertext

Cb
$←− Encrypt(BK, Mb) to the adversary.

– Guess. The adversary returns a guess b′ ∈ {0, 1} of b to the challenger.

The advantage of winning this game by the adversary is AdvTTS
SS := |Pr[b′ =

b]− 1
2 |

Definition 1 (Semantically secure). An N -user public-key traitor tracing
scheme is semantically secure if for all polynomial time adversaries A, AdvTTS

SS

is a negligible function of the security parameter.

Traceable against t-collusion Game

– Setup. The challenger runs Setup and gives BK to the adversary. The ad-
versary chooses a traitor set T = {u1, ..., ut} ⊆ {1, ..., N} to the challenger.
Then the challenger gives the adversary SKu1 , ..., SKut to produce a pirate
decoder D.

– Trace. By taking a pirate decoder D as a decryption oracle, the challenger
runs the algorithm TraceD(TK) to obtain a traitor set S ⊆ {1, ..., N}.

The adversary wins this game if (1) D decrypts all valid ciphertext with a con-
stant probability δ, i.e., Pr[D(Encrypt(BK, M)) = M ] ≥ δ, and (2) S ∩ T 	= ∅.

The probability of adversary winning this game is AdvTTS
TR .
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Definition 2 (Traceable against t-collusion). An N -user pubic-key traitor
tracing scheme is traceable against t-collusion if for all polynomial time adver-
saries A of corrupting t users and any constant δ > 0, AdvTTS

TR is a negligible
function of the security parameter.

4 A Public-Key Traitor Tracing Scheme for Two Users

In this section, we give a construction of a public-key traitor tracing scheme for
two users. Then we show that this scheme is semantically secure and traceable
against 1-collusion. Indeed, this scheme will be a subscheme in the construction
of our public-key traitor tracing scheme for N users in section 5.

4.1 Our Construction

Our public-key traitor tracing scheme for two users is 2-PK-TTS = (2-Setup, 2-
Encrypt, 2-Decrypt, 2-Trace), where

2-Setup(1λ) Given a security parameter λ, the algorithm generates a λ-bit prime
q, a cyclic group � of order q, and a generator g of �. Then the algorithm
chooses f(x) = a0 + a1x (mod q), where a0, a1

$←− Z∗
q and sets

– Public broadcast-key bk := 〈g, (ga0 , ga1)〉
– Secret trace-key tk := 〈f(x)〉
– User-key skσ := 〈iσ, f(iσ)〉, where iσ ∈ Z∗

q , ∀σ ∈ {0, 1}
2-Encrypt(bk, m) Given bk and a plaintext m ∈M, the algorithm chooses r, j

$←−
Z
∗
q , where j 	= i0 or i1, computes grf(j) = (ga0(ga1)j)r and outputs the

ciphertext c := 〈mgra0 , gr, (j, grf(j))〉.
2-Decrypt(skσ, c) Given a ciphertext c = 〈A, R, (j, W )〉 and a user-key skσ,

the algorithm computes the plaintext based on the lagrange interpolation:
m = A/W

−iσ
j−iσ Rf(iσ) −j

iσ−j .
2-TraceD(tk) Given a pirate decoder D that decrypts all valid ciphertext per-

fectly as a decryption oracle. The algorithm does:
1. 2-TrEncrypt(bk, m) The algorithm chooses r, r̂, j

$←− Z
∗
q and computes a

probe ciphertext ĉ
$←− 〈A = mgra0 , R = gr, (j, Ŵ = gr̂f(j))〉.

2. ∀σ ∈ {0, 1}, pre-compute Vσ = Ŵ
−iσ

j−iσ Rf(iσ) −j
iσ−j .

3. ∀σ ∈ {0, 1}, if D(ĉ) = A/Vσ, output S = {σ}; else output S = {0, 1}.

4.2 Security Analysis of our 2-PK-TTS scheme

Theorem 1. The 2-PK-TTS scheme is semantically secure under the DDH as-
sumption.

Proof. By contradiction, assume that there exists a 2-PK-TTS scheme adversary
A that wins the semantic security game with a non-negligible advantage ε >
0. We construct an algorithm B that breaks the DDH assumption with non-
negligible advantage ε as follows:
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– Setup. Algorithm B is given as input an instance (g, gu, gv, X) of the DDH
assumption, and it wants to determine whether X = guv or X is a random
element in � (� has prime order q). B chooses a0, a1

$←− �∗
q and sets bk =

〈g, (gu, ga1)〉 to A. (we see that f(x) = u + a1x (mod q))
– Challenge. A chooses two plaintexts m0, m1 ∈ M to B, then B flips a coin

b ∈ {0, 1}, and sets the challenge cb = 〈mbX, gv, (j, X(gv)a1j)〉 to A, where

j
$←− �∗

q .
– Guess. A outputs b′ ∈ {0, 1} to B. If b′ = b, B answers that X = guv; else B

answers that X is a random element in �.

If X = guv, A gets a valid ciphertext cb = 〈mbg
uv, gv, (j, gv(u+a1j))〉. Therefore,

A answers b′ = b successfully with probability 1
2 + ε;

If X is a radom element in �, A gets an invalid ciphertext. In this case, A
answers b′ = b successfully with probability 1

2 .
Hence, B solves the DDH problem with non-negligible advantage ε. This is a

contradiction to the DDH assumption. So we conclude that such adversary A
does not exist.

Theorem 2. The 2-PK-TTS scheme is traceable against 1-collusion under the
DDH assumption.

Proof. By contradiction, assume that there exists an adversary A that, given
the public-key bk and one of user-keys skσ in 2-PK-TTS scheme, A produces
a pirate decoder D that decrypts all valid ciphertexts perfectly, i.e., Pr[D(2-

Encrypt(bk, m)) = m : D $←− A(bk, skσ), σ ∈ {0, 1}] = 1. But when given a probe
ciphertext ĉ, D outputs a different value from the pre-computed values in 2-Trace
algorithm with non-negligible probabilistic ε > 0, i.e., Pr[D(ĉ) 	= A/Vσ] = ε. We
construct an algorithm B that breaks the DDH assumption with non-negligible
advantage ε

2 as follows:

– Setup. Algorithm B is given as input an instance (g, gu, gv, X) of DDH as-
sumption, and it wants to determine whether X = guv or X is a random
element in �. B chooses i, z

$←− �∗
q and gives A bk = 〈g, (gu, ga1 = ( gz

gu )i−1
)〉.

A chooses a traitor set T = {0} or {1} to B. Then B gives A sk = 〈i, z〉 to
produces a pirate decoder D.

– Trace. By taking a pirate decoder D as a decryption oracle, B runs the
modified 2-Trace as follows:
1. Choose A

$←− � , and j
$←− �∗

q , where j 	= i. Compute W = X( (gv)z

X )ji−1

and set the ciphertext as c̄← 〈A, gv, (j, W )〉.
2. Pre-compute V ←W

−i
j−i (gv)z −j

i−j .
3. If D(c̄) = A/V , B answers that X = guv or X is a random element in �

randomly; else B answers that X is a random element in �.

If X = guv, ciphertext c̄ is a valid ciphertext, since

X(
(gv)z

X
)ji−1

= guv(
(gv)z

guv
)ji−1

= guv((
gz

gu
)i−1

)vj = guv(ga1)vj = gv(u+a1j).

In this case, D(c̄) = A/V , B gives the correct answer with probability 1
2 ;
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If X is a random element in �, ciphertext c̄ is an invalid ciphertext. In this
case, D(c̄) 	= A/V with probability ε, and D(c̄) = A/V with probability 1 − ε.
Therefore, B gives the correct answer with probability ε + 1

2 (1− ε) = 1
2 + ε

2 .
Hence, B solves the DDH problem with non-negligible advantage ε

2 . This is
a contradiction to the DDH assumption. So we conclude that such adversary A
does not exist.

5 A Public-Key Traitor Tracing Scheme for N Users

Our construction is based on the use of our 2-PK-TTS scheme, an AONT Σ and
a fingerprinting code Γ = {w(1), ..., w(N)} over {0, 1}	. At a high level, the idea is
to “concatenate” � instance of 2-PK-TTS scheme according to the code Γ . Each
legitimate subscriber u ∈ {1, ..., N} is associated to a codeword w(u) in Γ and
assigned a private user-key set SKu = {sk1,w

(u)
1

, ..., sk
	,w

(u)
�

}, where w
(u)
j is the

j-th bit of the codeword w(u), and skj,0, skj,1 are the keys for the j-th instance of
the 2-PK-TTS scheme. For example, let � = 3. If the codeword corresponding to
legitimate subscriber u is 011, its user-key set is {sk1,0, sk2,1, sk3,1}. For tracing,
we use the j-th 2-PK-TTS to identify the j-th symbol of the pirate codeword, for
all j ∈ {1, 2, ..., �}. Finally, by the tracing algorithm in the fingerprinting code,
we find the collusion codeword set for constructing a pirate codeword, i.e., we
find the collusion traitor set.

In order to achieve the optimal transmission rate, we notice the cryptosystem
PKE-AONT proposed by Zhang, Hanaoka, and Imai [23]. It encrypts some bits
of the output of an AONT by a public-key encryption scheme. Given an AONT
Σ and a public-key encryption scheme (G, E, D), PKE-AONT first transforms the
original message M ′ into an all-or-nothing message M = m1||...||m	 by Σ and
then randomly chooses a block of M to encrypt it as C = m1||...||mk−1||E(pk, mk)
||mk+1||...||m	. For decrypting the ciphertext C, the decryption algorithm first
decrypts the k-th block to recover M and compute the original message M ′

by Σ.

5.1 Our Construction

For convenience, we introduce some notations in our scheme:

– Let Σ be an AONT that maps an �′-block sequence together with a random
string to an �-block sequence.

– MINUSk(M) Given an �λ-bit message M = m1||...||m	 and a position index
k ∈ {1, ..., �}, the algorithm “minus” the k-th block of M , i.e., MINUSk(M) =
m1||...||mk−1||mk+1||...||m	.

– COMBk(Y, m) Given an (�−1)λ-bit message Y = y1||...||y	−1, a λ-bit message
m and a position index k ∈ {1, ..., � − 1}, the algorithm first splits Y into
X1||X2, where X1 is the front (k − 1)λ bits of Y and X2 is the rest bits of
Y . The algorithm “combines” and outputs the messages with order X1, m,
and X2, i.e. COMBk(Y, m) = y1||...||yk−1||m||yk||...||y	−1.
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Our traitor tracing scheme for N users Π = (Setup, Encrypt, Decrypt, Trace) is
as follows:

Setup(1λ, N). Given a security parameter λ and user number N , the algorithm
generates a fingerprinting code Γ = {w(1), ..., w(N)} ∈ ({0, 1}	)N for some �.
Then it runs 2-Setup � times to generate the keys 〈(bki, tki, (sk0,i, sk1,i))N

i=1〉
(but use the same q,�, g, i0, i1) and sets
– Public broadcast-key BK := 〈g, (ga0,j , ga1,j )	

j=1〉
(we denote the k-th key of BK by BKk = (g, (ga0,k, ga1,k)))

– Secret trace-key TK := 〈(fj(x))	
j=1〉

– User-key SKu := 〈w(u), i0, i1, (fj(iw(u)
j

)	
j=1〉, ∀u ∈ {1, 2, ..., N}

(we denote k-th key of SKu by SKu,k = (i
w

(u)
k

, fk(i
w

(u)
k

)))

Encrypt(BK, M ′). Given BK and a plaintext M ′ ∈M	′ , the algorithm chooses a

random string ρ
$←− {0, 1}τ , and computes Σ(M ′; ρ) = M = m1||...||m	. Then

it chooses a position index k
$←− {1, 2, ..., �}, and computes the ciphertext

C
$←− 〈k, 2-Encrypt(BKk, mk), MINUSk(M)〉.

Decrypt(SKu, C). Given a ciphertext C = 〈k, ck, Y 〉, user u computes mk ←
2-Decrypt(SKu,k, ck) and M ′ = Σ−1(COMBk(Y, mk)).

TraceD(TK). Given a pirate decoder D that decrypts all valid ciphertext per-
fectly as a decryption oracle. The algorithm does:
– For each position index k ∈ {1, 2, ..., �},

1. Compute Σ(M ′; ρ) = M = m1||m2||...||m	, where M ′ $←− M	′ and

ρ
$←− {0, 1}τ .

2. Call 2-TrEncrypt(BKk, mk) $−→ ĉk = 〈Ak = mkgra0,k , R=gr, (j, Ŵk =

gr̂fk(j)))〉. Set the probe ciphertext as Ĉ
$←− 〈k, ĉk, Y = MINUSk(M)〉.

3. ∀σ ∈ {0, 1}, pre-compute Mk,σ = COMBk(Y, Ak/Ŵ
−iσ

j−iσ

k Rfk(iσ) −j
iσ−j ).

4. ∀σ ∈ {0, 1}, if Σ(D(Ĉ); ρ) = Mk,σ, set w∗
k = σ; else set w∗

k = 0 for
convenience.

– Recover w∗ = w∗
1w∗

2 ...w∗
	 , then call the tracing algorithm in fingerprint-

ing code by taking w∗ as the input to obtain collude codewords. Finally,
output the corresponding traitor set S.

5.2 Security Analysis of Our Scheme

Theorem 3. The scheme Π is semantically secure under the semantic security
of 2-PK-TTS and the indistingushability of PKE-AONT.

Proof. For each position index k ∈ {1, 2, ..., �}, we use two games to bound the
advantage of semantically secure in Π with Adv2-PK-TTS

SS and AdvPKE-AONT
ind as

follows:

Game G0. Define G0 as the original semantic security game and let S0 be the
event where b′ = b, i.e., AdvΠ

SS := |Pr[S0]− 1
2 |.
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Game G1. This game is identical to G0 except that in the Encrypt, rather than
being set Ak = mkgra0,k , in G1 Ak is a random λ-bit string, i.e., C

$←− 〈Ak
$←−

{0, 1}λ, R = gr, (j, Wk = grfk(j))〉, and we let S1 be the event that b′ = b in this
game.

Claim: |Pr[S0]− Pr[S1]| ≤ 2Adv2-PK-TTS
SS .

By reduction, if there exists an adversary A that distinguishes the challenge
of G0 and G1 with non-negligible probability ε > 0, we use A to construct
an adversary B for breaking the semantic security of 2-PK-TTS scheme with
non-negligible advantage as follows:

– Setup. Algorithm B is given as input an instance bk = 〈g, (ga0 , ga1)〉 of 2-PK-
TTS scheme and wants to determine whether the challenge C is construct
by G0 or G1. B chooses a0,j , a1,j

$←− �∗
q , ∀j ∈ {1, 2, ..., �}\{k}, lets ga0,k =

ga0 , ga1,k = ga1 , and sets BK = 〈g, (gao,j , ga1,j )	
j=1〉 to A.

– Challenge. A chooses two plaintexts M0, M1 ∈ M	′ to B, then B flips a coin
b′ ∈ {0, 1}, and it calls Σ(Mb′ ; ρ) = mb′,1||mb′,2||...||mb′,	, lets m1−b′,k

$←−
{0, 1}λ, and sends mb′ = mb′,k, m1−b′ = m1−b′,k to 2-PK-TTS scheme chal-
lenger. Then 2-PK-TTS scheme challenger flips a coin b ∈ {0, 1} and sets

the challenge cb
$←− 2-Encrypt(bk, mb) to B. Finally, B sends A the challenge

Cb′ = 〈k, cb, Y = mb′,1||...||mb′,k−1||mb′,k+1||...||mb′,	〉.
– Guess. A outputs b̂ ∈ {0, 1} to B. Then B gives b̂ as its guess to 2-PK-TTS

scheme challenger.

By the above construction, we see that B “interpolates” between G0 and G1 for
A:

- If b′ = b, A gets a challenge in G0;
- If b′ = 1− b, A gets a challenge in G1.

Thus, it holds that Pr[S0] = Pr[b̂ = b′|b′ = b] and Pr[S1] = Pr[b̂ = b′|b′ = 1− b],
and we get

Pr[b̂ = b] = Pr[b̂ = b|b′ = b] Pr[b′ = b] + Pr[b̂ = b|b′ = 1− b] Pr[b′ = 1− b]

=
1
2
(Pr[b̂ = b|b′ = b] + Pr[b̂ = b|b′ = 1− b])

=
1
2
(Pr[b̂ = b|b′ = b] + 1− Pr[b̂ = 1− b|b′ = 1− b])

=
1
2

+
1
2
(Pr[b̂ = b′|b′ = b]− Pr[b̂ = b′|b′ = 1− b])

=
1
2

+
1
2
(Pr[S0]− Pr[S1]).

It follows that |Pr[S0]− Pr[S1]| = 2|Pr[b̂ = b]− 1
2 | = 2Adv2-PK-TTS

SS .
To conclude the proof, due to indistinguishability of PKE-AONT, the adver-

sary distinguishes the ciphertexts in G1 and the random bit string (as the same
length with ciphertexts) with probability 1

2 + AdvPKE-AONT
ind .
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Hence, by the discussion above and the triangle inequality,

|Pr[S0]| = |Pr[S0]− Pr[S1] + Pr[S1]|
≤ |Pr[S0]− Pr[S1]|+ |Pr[S1]|

= 2Adv2-PK-TTS
SS + AdvPKE-AONT

ind +
1
2
.

Since Adv2-TTS
SS and AdvPKE-AONT

ind are two negligible functions of λ, we conclude
that the advantage of A winning the semantic security game is bounded by a
negligible function of λ.

Theorem 4. The scheme Π is traceable against t-collusion under the DDH as-
sumption.

Proof. By contradiction, assume that there exists an adversaryA that, given the
public key BK, t of user keys {SKu1 , SKu2 , ..., SKut} and an AONT Σ, produces
a pirate decoder D that decrypts all valid ciphertexts perfectly. But when given
a probe ciphertext, D outputs a different value from the pre-computed values
in Trace algorithm with non-negligible probabilistic ε > 0, i.e., Pr[Σ(D(Ĉ); ρ) 	=
Mk,σ] = ε. We construct an algorithm B that breaks the DDH assumption with
non-negligible advantage ε

2 as follows:

– Setup. Algorithm B is given as input an instance (g, gu, gv, X) of DDH
assumption, and it wants to determine whether X = guv or X is a ran-
dom element in � (� has prime order q). B chooses a position index k

$←−
{1, 2, ..., �}, chooses fj(x) = a0,j + a1,jx (modq), where a0,j, a1,j

$←− �∗
q , ∀j ∈

{1, 2, ..., �}, chooses i0, i1, z
$←− �∗

q and gives A BK = 〈g, (ga0,j , ga1,j )	
j=1〉

but repalces ga0,k by gu and ga1,k by ( gz

gu )i−1
σ , where σ

$←− {0, 1}. A chooses
a traitor set T ⊆ {1, ..., N} of size t to B. Then B chooses t codewords

w(u1), w(u2), ..., w(ut) $←− Γ (even if Γ is public, the information of which user
get which codeword can be hiden, so B can choose t codewords by his own)
satisfy w

(u1)
k = w

(u2)
k = ... = w

(ut)
k = σ (the existence of these codewords is

guaranteed by the fingerprinting codes) and sets A the keys

SKu1 = 〈w(u1), i0, i1, (f1(i
w

(u1)
1

), ..., fk−1(i
w

(u1)
k−1

), z, fk+1(i
w

(u1)
k+1

), ..., f�(i
w

(u1)
�

))〉,

SKu2 = 〈w(u2), i0, i1, (f1(i
w

(u2)
1

), ..., fk−1(i
w

(u2)
k−1

), z, fk+1(i
w

(u2)
k+1

), ..., f�(i
w

(u2)
�

))〉,
...
SKut = 〈w(ut), i0, i1, (f1(i

w
(ut)
1

), ..., fk−1(i
w

(ut)
k−1

), z, fk+1(i
w

(ut)
k+1

), ..., f�(i
w

(ut)
�

))〉,

to produces a pirate decoder D.
– Trace. By taking a pirate decoder D as a decryption oracle, B runs the

modified Trace algorithm as follows:



132 Y.-R. Chen and W.-G. Tzeng

1. Compute M
$←− Σ(M ′; ρ), where M ′ $←−M	′ , ρ

$←− {0, 1}τ .

2. Choose j
$←− �∗

q , where j 	= i0 or i1. Compute c̄ ← 〈Ak = mkX, R =
gv, (j, Wk = X( (gv)z

X )ji−1
σ )〉 and set the ciphertext as C̄ ← 〈k, c̄, Y =

MINUSk(M)〉.
3. If Σ(D(C̄); ρ) = COMBk(Y, Ak/W

−iσ
j−iσ

k Rfk(iσ) −j
iσ−j ), B answers X = guv

or X is a random element in � randomly; else B answers X is a random
element in �.

If X = guv, ciphertext c̄ is a valid ciphertext, since

X(
(gv)z

X
)ji−1

σ = guv(
(gv)z

guv
)ji−1

σ = guv((
gz

gu
)i−1

σ )vj = guv(ga1,k)vj = gv(u+a1,kj).

In this case, Σ(D(C̄); ρ) = M ′
k,σ, B gives the correct answer with probability 1

2 ;
If X is a random element in �, the ciphertext C̄ is an invalid ciphertext.

In this case, Σ(D(C̄); ρ) 	= M ′
k,σ with probability ε, and Σ(D(C̄); ρ) = M ′

k,σ

with probability 1 − ε. Therefore B gives the correct answer with probability
ε + 1

2 (1− ε) = 1
2 + ε

2 .
Hence, B solves the DDH problem with non-negligible advantage ε

2 . This is
a contradiction to the DDH assumption. So we conclude that such adversary A
does not exist.

6 Conclusion

We propose a fully-collusion resistant public-key traitor tracing schemes with
efficient black-box tracing. It achieves the asympototically optimal transmission
rate for ciphertexts. The storage requirement of each user-key and each public-
key are � + 2 and 2� + 1 respectively, where � is the codeword length of the
fingerprinting codes. We show that our scheme is semantically secure based on
the DDH hardness assumption and the indistinguishability of the cryptosystem
PKE-AONT. Also, our scheme is t-collusion resistant.

There are two open problems. First, How to improve the storage requirements
of the user-keys and public-keys further? Second, Billet and Phan [1] proposed
a general attack “Pirate 2.0” to attack the code-base traitor tracing schemes. In
Pirate 2.0, traitors only give away “part” of user-keys away such that a tracer
can trace them with a small probability only. This probability is controlled by
traitors according to a specific set of given away keys. How to avoid such attack
is also an important problem to make the code-base traitor tracing schemes more
practical.
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T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 496–508. Springer, Hei-
delberg (2007)

13. Kiayias, A., Yung, M.: Traitor tracing with constant transmission rate. In: Knud-
sen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 450–465. Springer, Hei-
delberg (2002)

14. Kurosawa, K., Desmedt, Y.G.: Optimum traitor tracing and asymmetric schemes.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 145–157. Springer,
Heidelberg (1998)

15. Naor, M., Pinkas, B.: Threshold traitor tracing. In: Krawczyk, H. (ed.) CRYPTO
1998. LNCS, vol. 1462, pp. 502–517. Springer, Heidelberg (1998)

16. Naor, M., Pinkas, B.: Efficient trace and revoke schemes. In: Frankel, Y. (ed.) FC
2000. LNCS, vol. 1962, pp. 1–20. Springer, Heidelberg (2001)

17. Phan, D.H.: Traitor tracing for stateful pirate decoders with constant ciphertext
rate. In: Nguyên, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 354–365.
Springer, Heidelberg (2006)

18. Phan, D.H., Safavi-Naini, R., Tonien, D.: Generic construction of hybrid public
key traitor tracing with full-public-traceability. In: Bugliesi, M., Preneel, B., Sas-
sone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 264–275. Springer,
Heidelberg (2006)



134 Y.-R. Chen and W.-G. Tzeng

19. Rivest, R.L.: All-or-nothing encryption and the package transform. In: Biham, E.
(ed.) FSE 1997. LNCS, vol. 1267, pp. 210–218. Springer, Heidelberg (1997)

20. Tardos, G.: Optimal probabilistic fingerprint codes. In: STOC, pp. 116–125. ACM,
New York (2003)
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Abstract. Self-healing group key distribution is a primitive aimed to
achieve robust key distribution in wireless sensor networks (WSNs) over
lossy communication channels. However, all the existing self-healing
group key distribution schemes in the literature are designed for
homogenous WSNs that do not scale. In contract, heterogeneous WSNs
have better scalability and performance. We are thus motivated to
study self-healing group key distribution for heterogeneous WSNs. In
particular, we propose the concept of hierarchical self-healing group key
distribution, tailored to the heterogeneous WSN architecture; we further
revisit and adapt Dutta et al.’s model to the setting of hierarchical
self-healing group key distribution, and propose concrete schemes that
achieve computational security and high efficiency.

Keywords: Heterogeneous wireless sensor network, self-healing group
key distribution, scalability.

1 Introduction

Wireless sensor networks (WSNs) have a wide range of potential applications,
such as battlefield surveillance, wildlife tracking, healthcare monitoring, and nat-
ural disaster monitoring. A WSN consists of a large number of sensor nodes, each
being a small sensing device capable of collecting and reporting environmental
data to base station. Sensor nodes are extremely constrained in hardware, having
limited computation capability, storage capacity, and radio transmission range.
Worse yet, sensor nodes are usually powered by batteries, restricted power supply
is thus yet another major limitation of WSNs.

As WSNs are often deployed where there is no network infrastructure sup-
port, they are easily susceptible to adversaries who can intercept or interrupt
the wireless communications. It is thus crucial to ensure secure communication
when a WSN is used for mission-critical applications. A fundamental service to
achieve secure communication is key distribution, whereby sensor nodes establish
(secret) keys, to be used to encrypt and authenticate messages. Unfortunately,
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it is commonly acknowledged that key distribution in WSNs is not trivial, con-
sidering the resource-constrained nature of sensor nodes. Hence lots of efforts
have been dedicated to the study of key management and distribution in WSNs
[6,7,9,8,12,15,18,19,20,21,27,28,31]. These methods are categorized into group
key distribution [6,9,15,20,21] and pairwise key distribution [7,8,12,18,19,27,31].
The former enables a group of sensor nodes to establish a common group key,
while the latter allows pairs of nodes to share distinct keys.

Among the existing group key distribution schemes, self-healing group key
distribution [9,21,28] particularly suits WSNs. A prominent property of this
type of group key distribution is self-healing, which allows group members to
recover lost group keys of past sessions based simply on the key update message
of the current session. This makes group key distribution resilient to the lossy
wireless channels of WSNs. Moreover, self-healing group key distribution offers
group member revocation such that revoked group members can no longer get
the group keys for new sessions after their revocation. This feature is extremely
important in mitigating the effect of sensor node compromises: amputate com-
promised sensor nodes from the WSN, so that the adversary acquiring the secret
information of the compromised nodes still cannot get the new group keys.

We observed that all the self-healing group key distribution schemes in the
literature considered homogeneous WSNs where all sensor nodes are assumed
to be of the same capabilities. However, homogeneous WSNs are not scalable.
Indeed, both theoretical and empirical studies have found that the throughput
of each sensor node decreases rapidly as the number of nodes increases, and as
the traffic becomes heavy, the control overhead due to the underlying routing
protocols will consume a large portion of the available bandwidth [11,13]. We
are thus motivated to study self-healing group key distribution in heterogenous
WSNs. A heterogenous WSN is composed of not only resource constrained sensor
nodes, but also a number of more powerful high-end devices. More specifically,
a WSN is partitioned into a number of groups/clusters, and a high-end device is
placed into each group, acting as the group manager/cluster head. Compared to
sensor nodes, a group manager is more powerful, and thus does not suffer from
the resource scarceness problem as much as a sensor node does.

Our Contributions. Tailored to the heterogeneous WSN architecture, we pro-
pose the concept of hierarchical self-healing group key distribution. In particular,
we formulate a security model for hierarchical self-healing group key distribu-
tion by revisiting and adapting Dutta et al.’s model [9]. We then propose a basic
and an extended scheme, both proven secure under the model. Our construction
basically follows Dutta et al.’s idea of a combination of a reverse and a forward
one-way hash chain, but we show that their model and scheme have some weak-
nesses, which are rectified in ours. Our extended scheme further exploits the
hierarchy of the heterogeneous architecture by secret-sharing the manger key of
each group among all group managers, so as to counter possible compromises of
group managers. To show that the (extended) scheme is efficient for WSNs, we
implement the core (yet the most costly) element of the scheme upon MICAz
mote [24], and the experiments demonstrate satisfactory performance.
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2 Related Work

Key management and distribution is a security bootstrapping service, funda-
mental to many other security mechanisms in WSNs, hence tremendous effort
has been dedicated to the study of this issue [7,9,8,12,18,19,20,21,27,31]. In gen-
eral, public key cryptosystems are too expensive for WSNs, and symmetric key
primitives such as secret key encryption or cryptographic hash function are of-
ten preferred. As such, key management and distribution in WSNs boils down
to sharing of secret keys among sensor nodes. To achieve this objective, a com-
monly used approach is to pre-load a set of secrets inside sensor nodes before
their deployment. These pre-loaded secrets are then used either directly as pair-
wise keys between each pair of sensor nodes, i.e., pair-wise key distribution
[7,8,12,18,19,20,27,31], or as a basis to establish new common keys shared by
a group of sensor nodes, i.e., group key distribution [6,9,15,20,21].

Among the existing group key distribution schemes, self-healing group key
distribution is particularly suitable for WSNs, because of its self-healing and
membership revocation properties. Staddon et al. [28] first proposed the concept
and a concrete construction of self-healing group key distribution based on se-
cret sharing of two dimensional polynomials. Their construction, however, is not
efficient, suffering from high communication and storage overhead. Liu et al. [21]
then generalized the security notions in [28], and presented a new scheme with
better efficiency by combining personal secret distribution with the self-healing
technique of [28]. Blundo et al. [4] analyzed the security definitions in [21,28]
and concluded that it is impossible for any scheme to achieve all of the security
requirements formulated in [21,28]. They then formulated a new definition for
self-healing group key distribution and came up with a new scheme [5]. Blundo
et al. [3] also showed an attack to the construction in [28] and discussed the
use of randomness in self-healing group key distribution schemes. Other schemes
based on the strategy in [28] include [25,14].

All the above self-healing group key distribution schemes are intended to
achieve information theoretic security. In [9], Dutta et al. proposed novel com-
putationally secure schemes, based on a combination of a reverse one-way hash
chain and a forward one-way hash chain. While Dutta et al.’s model is weaker
and cannot meet all the security requirements put forth in [21,28], their ap-
proach tremendously improves the efficiency of the information theoretically
secure schemes. Unfortunately, as we shall show in Section 3, Dutta et al.’s
definition on the secrecy of personal secrets in their model has some problems,
and we give two attacks on the secrecy of personal secrets in their scheme. The
schemes proposed by Du and He [10] followed Dutta et al.’s approach, and are
also subject to our attacks. Besides rectifying the problems in Dutta et al.’s
scheme, other differences between our schemes and Dutta et al.’s are as follows.
First, our schemes are hierarchical, tailored to the heterogeneous WSNs. Sec-
ond, our schemes achieve authenticated group key distribution, allowing every
non-revoked sensor node to verify whether or not its generated group keys are
valid, without requiring any extra communications.
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Fig. 1. Definition of Group Keys

3 Review and Analysis of Dutta et al.’s Scheme

3.1 Review of Dutta et al.’s Scheme

In Dutta et al.’s scheme [9], a WSN proceeds in sessions, and at the start of each
session the base station broadcasts a key update message to the sensor nodes,
enabling the latter to generate a new group key. Suppose the maximal number
of sessions supported by the WSN is m. The group key for the jth session is
defined as gKj = hj(sF )+hm−j+1(sR), where h is a one-way hash function, and
sF , sR are random seeds (see Figure 1). Here, hj(.) = h(h(· · ·h(.)))

︸ ︷︷ ︸

j times

. It can be

seen that the hash chain associating with sR is used in the reverse order thus
called the reverse hash chain, and that associated with sF called the forward
hash chain. The details of Dutta et al.’s scheme are as follows.

– System Initialization. The base station chooses random seeds sR and sF ,
and it also selects m random t-degree polynomials f1(x), · · · , fm(x) ∈ Fq[x],
each corresponding to a session, where Fq is a finite field with q being a
large prime number, and t is a system parameter denoting the robustness of
sensor nodes. The personal secret for a member sensor node i is defined to
be Si = [f1(i), · · · , fm(i)]. Finally, the base station secretly sends Si and sF

to each node i.
– Broadcast. At the start of each session, the base station broadcasts a key

update message to enable sensor nodes to generate a new group key. Let
Rj = {i1, ..., iw} be the set of revoked sensor nodes upon the start of session
j ∈ {1, · · · , m} and |Rj | = w ≤ t. The base station computes the following
polynomials:

rj(x) = (x − i1) · · · (x − iw)
bj(x) = h(sR)m−j+1.rj(x) + fj(x), (1)

where rj(x) is called the revocation polynomial. Finally, the base station
broadcasts the key update message Bj to all sensor nodes, where Bj =
Rj ∪ {bj(x)}.
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– Session Key Generation. Upon receipt of Bj, if node i is not revoked, it is
able to recover hm−j+1(sR) = bj(i)−fj(i)

rj(i)
. Then it continues to compute the

group key gKj = hm−j+1(sR) + hj(sF ) using sF .
– Addition of New Group Member. A newly added member in session j is not

allowed to compute group keys of previous sessions. To add a new member
with ID α starting from session j, the group manager computes and gives
Sα = {fj(α), fj+1(α), · · · , fm(α)} and hj(sF ) to the node.

3.2 Attacks

In Dutta et al.’s model [9], the secrecy of personal secrets is defined as any t
or less revoked members cannot compute the personal secrets of other members.
We next give two attacks, showing that their scheme cannot achieve the secrecy
of personal secrets. We also notice that the self-healing key distribution scheme
proposed by Du and He in [10] follow Dutta et al.’s approach, and our attacks
apply to their scheme too (to avoid repetition, we do not review their scheme).

Attack 1. In the above construction, the revocation polynomial rj(x) is simply
defined as rj(x) = (x − i1) · · · (x − iw). Let fj(x) = atx

t + · · · + a1x + a0. It is
clear that broadcasting bj(x) directly reveals at, at−1, · · ·, and aw+1. This means
that fj(x) only has w + 1 ≤ t unknown coefficients, i.e., aw, · · · , a0, and any
w + 1 (instead of t + 1) revoked nodes together can determine fj(x) and in turn
compute fj(i) for any i. Therefore, the scheme cannot achieve the secrecy of
personal secrets.

Attack 2. Let us consider a particular non-revoked node i in session j. From
the broadcast message Bj , node i calculates h(sR)m−j+1 = bj(i)−fj(i)

rj(i)
. Based

on h(sR)m−j+1, node i can actually compute any f(i′), i′ 	= i, as f(i′) =
bj(i′) − h(sR)m−j+1.rj(i′). This suggests that once the group key for a session
is established, the element of a sensor node’s personal secret corresponding to
that session is revealed to all other non-revoked nodes. As such, even node i is
revoked in a subsequent session, it already knows a part (albeit corresponding
to the past sessions) of other non-revoked nodes’ personal secrets.

4 Model and Security Definition

4.1 Heterogeneous Architecture

We consider the heterogeneous architecture, where a WSN is partitioned into
a number of groups. A high-end device is placed into each group, acting as the
group manager. Compared to sensor nodes, high-end group managers have rela-
tively higher computation capability, larger storage size, and longer radio range.
They also have longer power supply, and can even be line-powered in some cir-
cumstances, e.g., when a WSN is deployed to monitor a building, the group
managers can easily tap on the electricity lines to get power supply. Therefore
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unlike sensor nodes, group managers do not suffer too much from the resource
scarceness problem. Depending on applications, hardware capabilities of a group
manager may vary from that comparable to a bluetooth device to that of a high
end PDA. The introduction of high-end group managers into a WSN makes the
once homogeneous network heterogeneous. The entire network including base
station, group managers, and sensor nodes forms a logically hierarchical archi-
tecture, as depicted in Figure 2.

Sensor
Nodes

Group
Managers

Base
Station

Fig. 2. Heterogeneous WSN Architecture

In this architecture, downlink messages broadcast by the base station directly
reach sensor nodes, whereas uplink messages sent by a sensor node to the base
stattion is forwarded via its group manager, which acts as an intermediary be-
tween the base station and the sensor nodes within its jurisdiction. A sensor
node may reach the group manager directly, or by traversing a short multi-hop
path. Intuitively, the inclusion of powerful group managers provides shortcuts for
data delivered from the sensor nodes to the base station, so the overall system
performance and in turn the lifetime of the network are expected to be greatly
improved. Indeed, numerous studies have corroborated the higher efficiency of
the heterogeneous WSN architecture, e.g., [16,26,29].

4.2 System Model

Three types of entities are involved in our hierarchical group key distribution
system: base station, group managers, and a large number of sensor nodes. The
sensor nodes are partitioned into a number of NG groups, and each group G	

has a group manager, � ∈ {1, · · · , NG}. Each sensor node in a group is uniquely
identified by an ID number i, where i ∈ I	 ⊆ {1, · · · , n}, where I	 is the set of all
node ID numbers in G	 and n is the largest possible ID number in the system.
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Corresponding to the heterogenous architecture, the keys held by the entities
form a hierarchy, as shown in Figure 3: the base station holds a root key at level
2, each group manager has a distinct manager key at level 1, and at level 0 sensor
nodes in each group hold a group key during each session. A key at a lower level
is generated from the keys at higher levels, but not the other way around. This
key hierarchy helps to implement “separation of duty” within the system, e.g., it
is not necessary for the sensor nodes to process the control messages broadcast
by the base station to the group managers.

Level 2root key

Level 1
manager key

Level 0
group key

Base Station

Group Manager

Fig. 3. Key Hiearchy

A group manager takes charge of distribution of group keys within its group.
A group key is uniquely associated with a session. To distribute a group key
for a new session, the group manager broadcasts a key update message to all
its sensor nodes. The group key is then computed by a sensor node based on
the received key update message and its preloaded personal secret. Denote the
personal secret of sensor node i as Si, which is a vector of m elements with m
being the maximum number of sessions. Each element in Si corresponds to a
session and we use Si[j] to denote the element corresponding to the jth session,
j ∈ {1, · · · , m}. Si[j] becomes obsolete once the group key for the jth session
is established; otherwise Si[j] is fresh. A sensor node can be revoked or non-
revoked, and only non-revoked sensor nodes can compute the group keys.

4.3 Adversary Model

As usual, we assume that the base station is trusted. In our basic scheme, the
group managers are also presumed trusted, but his assumption is removed in
the extended scheme. We are mainly concerned with the distribution of group
keys among sensor nodes. As such, we assume an adversary is able to passively
eavesdrop on, or actively intercept, modify, insert, or drop key update messages
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from a group manager to all its sensor nodes. We also allow the adversary to
compromise up to t sensor nodes in a group, where t is a system parameter.

4.4 Security Definition

We formally define the concept and security requirements of hierarchical self-
healing group key distribution, by revisiting and extending the definition in [9].

Definition 1. (Hierarchical Self-healing Group Key Distribution with t-
Revocation) Let NG, n, m, t be system parameters defined as above. D is hi-
erarchical self-healing group key distribution with t-revocation, if the following
holds:

a. (Key Hierarchy) The manager keys held by the group managers are derived
from the root key of the base station, but it is computationally infeasible to
compute the root key from the manager keys. The same relationship should
hold between group keys and the corresponding manager key.

b. (Secrecy of Personal Secret) For any U	 ⊂ {1, · · · , n} in group G	, � ∈
{1, · · · , NG}, if |U	| ≤ t, then it is computationally infeasible for the nodes
in U	 to collectively determine the fresh elements of Si for any i /∈ U	.

c. (Authenticated Generation of Group Key) Let gK	,j be the group key of group
G	 for session j, and B	,j be the broadcast key update message from the group
manager, where j ∈ {1, · · · , m}. For any non-revoked sensor node i in the
group, gK	,j is efficiently computed from B	,j and Si[j] in an authenticated
manner. On the contrary, it is computationally infeasible to compute gK	,j

from the key update message or a personal secret alone.
d. (t-Revocation) For any session j, let R	,j be the set of revoked nodes in G	

at the start of session j, where |R	,j | ≤ t, it is computationally infeasible to
compute gK	,j from the broadcast message B	,j and {Si}i∈R�,j

.
e. (t-wise Forward Secrecy) Let U	 ⊆ {1, · · · , n} denote the sensor nodes which

joined G	 after session j. Given that |U	| ≤ t, it is computationally infeasible
for all members in U	 to collectively compute gK	,1, · · · , gK	,j, even with the
knowledge of gK	,j+1, · · · , gK	,m.

f. (Self-healing) A non-revoked sensor node in G	 between sessions j1 and j2,
1 ≤ j1 < j2 ≤ m, can efficiently compute any gK	,j, j1 ≤ j ≤ j2, from B	,j2

and its personal secret.

Remark. Compared to Dutta et al.’s model, we distinguish between obsolete ele-
ments and fresh elements of a personal secret, and the secrecy of personal secret
in our definition actually mandates the secrecy of fresh elements. This differenti-
ation addresses our second attack, and suggests that personal secret should not
be used for purposes other than distribution of group keys, and once an element
is obsolete, it should be discarded immediately.

5 Basic Scheme

We first present a basic hierarchical self-healing group key distribution scheme,
assuming that the group managers are trusted. We suppose that the set of
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revoked users is monotonic, i.e., a revoked user never rejoins the network. Let
Fq be a finite field, where q is a large prime number. All arithmetic operations
below are performed in Fq. Let h, hR, hF : {0, 1}∗ → Fq be cryptographic hash
functions, and NG, n, m, t be system parameters. The basic scheme is a slight
extension of Dutta et al.’s scheme reviewed above, and rectifies its weaknesses.

- System Initialization. The base station chooses a root key rK = [rk1, rk2],
where rk1 and rk2 are random numbers of appropriate length. For each
group G	, � = {1, · · · , NG}, the base station computes a manager key as
mK	 = [mk	,1, mk	,2], where mk	,1 = h(G	, rk1) and mk	,2 = h(G	, rk2).
Clearly, it is computationally infeasible to compute the root key from the
manager keys. Then the base station securely passes the manager keys to
the corresponding group managers. We do not specify how this can be done,
but it often suffices by using some out-of-band channel.
Upon receipt of the manager keys, the group managers begin the preparation
for setting up group keys. In particular, the group manager for G	 whose
manager key is mK	 = [mk	,1, mk	,2] sets mk	,1 to be the seed s	,R of the
reverse one-way hash chain of length m + 1:

kj
	,R = hR(kj−1

	,R )

= hR(hR(kj−2
	,R )) = · · ·

= hj
R(s	,R), 1 ≤ j ≤ m + 1 (2)

and sets mk	,2 to be the seed s	,F for the forward hash chain of length m:

kj
	,F = hF (kj−1

	,F )

= hF (hF (kj−2
	,F )) · · ·

= hj
F (s	,F ), 1 ≤ j ≤ m (3)

The group key gK	,j for session j ∈ {1, · · · , m} is defined to be gK	,j =
km−j+1

	,R +kj
	,F = hm−j+1

R (s	,R)+hj
F (s	,F ). The group manager next selects m

random t-degree polynomials f	,1(x), · · · , f	,m(x) ∈ Fq[x], each correspond-
ing to a session. The personal secret for the member sensor node i is defined
to be Si = [f	,1(i), · · · , f	,m(i)]. The group manager then sends Si, k

m+1
	,R and

s	,F to each node i in a secure manner, e.g., preloading before the deployment
of nodes. Note that km+1

	,R will be used as the initial authenticator, denoted
as Γ	, in subsequent group key generation process.

- Broadcast. The broadcast procedure for EACH group is almost the same
as in Dutta et al.’s scheme, with the main exception on the computation of
the revocation polynomial. In particular, let R	,j = {i1, ..., iw} be the set
of revoked sensor nodes in G	 upon the start of session j ∈ {1, · · · , m}
and |R	,j| = w ≤ t. The group manager chooses a random set R′

	,j =
{i′t, · · · , i′w+1} ⊂ {1, · · · , n} \ I	, where I	 is the set of all node IDs in G	.
That is, the group manager chooses t − w random IDs that are not in that
group. Then, the revocation polynomial r	,j(x) is computed as r	,j(x) =
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(x − i1) · · · (x − iw)(x − i′w+1) · · · (x − i′t). It is clear that r	,j(x) defined as
such avoids our first attack. b	,j(x) is then computed with this r	,j(x) as in
Dutta et al.’s scheme (Eqn. 1). Accordingly, the key update message B	,j

also includes R′
	,j , i.e., B	,j = R	,j ∪R′

	,j ∪ {b	,j(x)}.
- Session Key Generation. The main difference from that in Dutta et

al.’s scheme is that each sensor node in G	 holds an authenticator Γ	. As
such, when a non-revoked node recovers km−j+1

	,R = b�,j(i)−f�,j(i)
r�,j(i)

, it validates

km−j+1
	,R using Γ	: for example, if Γ	 = km+1

	,R (the initial value)1, then the

validation is to test Γ	
?= hj

R(km−j+1
	,R ). Other steps remain the same as in

Dutta et al.’s scheme.
- Addition of New Group Member. This procedure is the same as in

Dutta et al.’s scheme.

Efficiency. This scheme is highly efficient in terms of storage, communication,
and computation overhead. For storage, the personal secret together with the au-
thenticator accounts for (m+1) log q bits storage in each sensor node (compared
to Dutta et al.’s scheme, ours only needs log q-bit more storage for the authen-
ticator). For communications, our scheme generates t(log q + log n) ≈ t log q bits
key update message (since n  q), which is almost the same as the bit length
of the key update message in Dutta et al.’s scheme. For computation, no costly
public key primitive is involved in our scheme, and the computation overhead
inflicted upon sensor nodes includes only cryptographic hash function and poly-
nomial operations.

Security. For security of the scheme, we have the following theorem and the
proof can be found in [30].

Theorem 1. The above construction is a hierarchical self-healing group key
distribution scheme with respect to Definition 1.

6 Extended Scheme

In the above basic scheme, we assumed that the group managers are trusted
and not compromised. We next deal with the potential compromises of group
managers in our system. There are two aspects to this problem: how to timely
detect break-ins to group managers and how to mitigate the damage once a
group manager is compromised. The first aspect can be addressed along the
lines of cooperative intrusion detection techniques as proposed in [2,17,22]. We
next discuss to address the second aspect, and in particular how to mitigate the
damages caused by group managers’ compromises.

It should be clear that once a group manager is compromised, the manager key
it holds is unavoidably disclosed. In the basic scheme, since the manager key is
used to derive all group session keys, once the manager key is revealed, so does all
1 For better efficiency, a node should overwrite Γ� by setting Γ� = km−j+1

�,R at the end
of the session key generation procedure.
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the derived group keys. As such, probably the best we can expect is that in case
a group manager is compromised in a certain session, only the group keys for
that and earlier sessions are revealed, without affecting subsequent sessions. Note
that since we desire self-healing, it is inevitable that disclosure of the manager
key in a session leads to the disclosure of the group keys for all earlier sessions.
To this end, the manager key of a group should be sessional too, rather than
a constant quantity as in the basic scheme2. According to this rationale, we
propose the following approaches to address the issue of compromises of group
managers.

6.1 Naive Approach

A naive approach is to involve the base station into distributing the sessional
manager keys to the group managers. Specifically, at the initialization phase, the
base station generates s	,R and s	,F for each group G	 using the root key, as per
the basic scheme, i.e., s	,R = h(G	, rk1) and s	,F = h(G	, rk2). However, the base
station does not pass s	,R to the group manager, but keeps it to itself. For each
session j ∈ {1, · · · , m}, the base station computes km−j

	,R = hm−j
R (s	,R) (Eqn. 2)

and sends it to the corresponding group manager. Here we assume a secure
communication channel between the base station and each group manager. Then,
the sessional manager key held by the group manager is mK	,j = [km−j

	,R , s	,F ].
Using km−j

	,R , the group manager computes and broadcasts km−j+1
	,R = hR(km−j

	,R )
to the sensor nodes as in the basic scheme (Eqn. 1), which enables the nodes to
compute group key gK	,j = km−j+1

	,R +kj
	,F . It is easy to see that the manager keys

thus generated sustain key hierarchy, and compromise of mK	,j does not disclose
group keys for sessions later than j + 1. This is almost the best we can expect.

This approach is quite simple. However, the involvement of the base station
offsets the benefits offered by the heterogeneous architecture, one of which is to
dispense with the implication of the base station into the management (including
security enforcement) of individual groups. The involvement of the base station
may result in single point of failure, in the sense that once the adversary manages
to block the base station by, e.g., DoS attacks, the whole system is crashed.

6.2 An Extended Scheme

The extended scheme tries not to get the base station involved, as in the ba-
sic scheme. As such, secret-sharing s	,R of each group among multiple group
2 One may argue that since the group manager is the only party that takes charge of

the distribution of group session keys, once the group manager is compromised, all
subsequent sessions of that group will fall to the control of the adversary, regardless
of the measures taken to protect the manager key. This argument is actually based
on the assumption that the adversary can continue controlling the compromised
group manager. We, however, expect that the base station can timely detect the
compromised group manager (e.g., using the cooperative intrusion detection tech-
niques) and recover it in a certain later session. In fact, we believe that a WSN in
real application should achieve this. Our extended schemes aim to work in such a
scenario.
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managers seems to be the only possible solution. The approach should satisfy
that at no time should s	,R be reconstructed at any group manager including
the one it belongs to. This requires computing kj

	,R, j = 1, · · · , m, in a dis-
tributed way, while without reconstructing s	,R. It is clear that if hR() is a regu-
lar cryptographic one-way hash function, it is quite hard (if possible) to compute
kj

	,R = hj
R(s	,R) as required. We have to find a special hR() that facilitates the

desired distributed computation.
Our choice for hR() is hR : ZN → QRN , and in particular hR(x) = x2

(mod N), where N is a product of two large primes such that factorization of N
is computationally intractable, and x’s are sufficiently large numbers in ZN . In
such a case, hR(.) is a one-way function, under the intractability assumption of
computing square root modulo a composite. The well known Rabin encryption
is based on this assumption. hR(.) thus defined has the following property: sup-
pose s	,R has t′ multiplicative shares π1, · · · , πt′ such that s	,R = π1 × · · · × πt′

(mod N), then hj
R(s	,R) = (s	,R)2

j

= (π1)2
j×· · ·×(πt′)2

j

(mod N). This prop-
erty well meets our need of computing hj

R(s	,R) without reconstructing s	,R. By
using this hR(.), we next highlight the main idea of our scheme. The commu-
nication channel among the group managers is assumed secure. Let us further
suppose that we offer t′-robustness to our system, i.e., the adversary does not
recover s	,R unless compromising t′ or more group managers, where t′ is a system
parameter.

- System Initialization. The base station selects the root key and computes
s	,R and s	,F for each group G	, as in the basic scheme. To secret-share s	,R

among all group managers, the base station partitions s	,R into t′ shares
π1, · · · , πt′ such that s	,R = π1 × · · · × πt′ (mod N); then securely sends
π1 together with s	,F to the group manager of G	, and sends each of the
remaining shares to �(NG − 1)/(t′ − 1)� other group managers. That is,
the shares, except the one held by the group manager of G	, are evenly
distributed among the remaining NG − 1 group managers. Note that this
offers resilience to the share availability, in the sense that loss of some shares
does not affect computation of the manager keys. This also gives a higher
weight to π1 held by the group manager of G	, without which the group
session keys cannot be computed.

The steps taken by the group managers in preparation for setting up
group keys are the same as in the basic scheme.

- Broadcast. In session j, the group manager of G	 asks other group managers
to help generate km−j

	,R = hm−j
R (s	,R) as follows: each group manager raises

the share πi at its disposal to the power of 2m−j, i.e., ζi = π2m−j

i , and
passes the result to the group manager of G	, who then computes km−j

	,R by
pooling (multiplying) together a combination of appropriate ζi’s (including
its own). The pooling procedure has to filter out redundant and erroneous
shares. We stress that there are many means to detect erroneous shares,
e.g., in the initialization phase, the base station gives the group manager of
G	 an authenticator for each share. The manager key mK	,j is then set to
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mK	,j = [km−j
	,R , sF ]. The remaining steps are the same as in the above naive

approach.
- Session Key Generation & Addition of New Member. These steps

remain the same as in the basic scheme and the naive approach.

Security: Security of this approach is straightforward, given the security of the
basic scheme. We only point out that in this approach, t-revocation is based
on the intractability assumption of computing square root modulo a composite,
instead of the one-way-ness of the cryptographic hash function.

Experimental Results: In both of the basic and the extended schemes, the
bit length of q should be at least equal to that of hR(.), i.e., |q| ≥ |hR(.)|. For
the basic scheme, since hR(.) can be instantiated by a regular cryptographic
hash function, it suffices that |q| = 161, assuming |hR(.)| = 160. However, in the
extended scheme, |hR(.)| = |N |. To make factorization of N hard, |N | should be
at least 1024 bits, so should be |q|. We thus need to examine the actual efficiency
of the extended scheme.

For computation overhead, squaring operations (i.e., computing hR(.)) dom-
inate the workload of sensor nodes. Note that although a squaring operation is
an exponentiation, it is essentially also a multiplication operation. Thus in prin-
ciple, squaring operations are not deemed expensive. Nevertheless, as squaring
operations are the most costly part in our scheme, it still makes sense to gauge
their actual computation cost on real world sensors. To this end, we tested upon
MICAz mote [24] running TinyOS 2.0. Hardware configuration of MICAz mote
includes a ATMega 128L (8-bit,8MHz) processor, 128K-byte program memory,
and 2.4 GHz radio transmission. Figure 4 lists the experimental results on the
timing of squaring operations over x’s of varying sizes, modulo a 1024-bit N . The

650

Size of x (bits) Timing (millisecs) Size of x (bits) Timing (millisecs)

26
700 32.5

750 39.7

800 51.3

850 59.6
900 71

950 83.2

1000 98.6

Fig. 4. Experimental Results

results indicate that a squaring operation takes less than 100 milliseconds, which
is quite satisfactory for WSNs. For storage overhead, each sensor node needs to
store the personal secret, each element of which is |q| = 1024 bits. Recall that the
MICAz mote we experimented upon has 128K-byte program memory. Even the
mote allocates 8K-byte program memory to store personal secrets, the network
can have approximately 60 sessions.
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7 Conclusion

Both experimental and theoretical studies have shown that heterogeneous WSNs
have better scalability and performance than homogenous ones. However, all
existing self-healing group key distribution schemes consider homogenous WSNs.
We were thus motivated to study hierarchical self-healing group key distribution
for heterogenous WSNs. In particular, we formulated a model for hierarchical
self-healing group key distribution, and proposed concrete schemes that achieve
computational security (instead of information theoretic security as in previous
schemes in the literature) and high efficiency.
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(eds.) ICALP 2004. LNCS, vol. 3142, pp. 234–245. Springer, Heidelberg (2004)

5. Blundo, C., D’Arco, P., Santis, A., Listo, M.: Design of Self-healing Key Distribu-
tion Schemes. Designs, Codes and Cryptography 32(1-3), 15–44 (2004)

6. Blundo, C., De Santis, A., Herzberg, A., Kutten, S., Vaccaro, U., Yung, M.:
Perfectly-secure key distribution for dynamic conferences. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 471–486. Springer, Heidelberg (1993)

7. Chan, H., Perrig, A., Song, D.: Random Key Pre-distribution Schemes for Sensor
Networks. In: Proc. IEEE Symposium on Security and Privacy, pp. 197–213 (2003)

8. Du, W.L., Deng, J., Han, Y.S., Varshney, P.K.: A Pairwise Key Pre-distribution
Scheme for Wireless Sensor Networks. In: Proc. ACM Conference on Computer
and Communication Security, CCS 2003, pp. 42–51 (2003)

9. Dutta, R., Change, E.C., Mukhopadhyay, S.: Efficient Self-healing Key Distribution
with Revocation for Wireless Sensor Networks Using One Way Key Chains. In:
Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 385–400. Springer,
Heidelberg (2007)

10. Du, W., He, M.: Self-healing Key Distribution with Revocation and Resistance to the
Collusion Attack in Wireless Sensor Networks. In: Baek, J., Bao, F., Chen, K., Lai,
X. (eds.) ProvSec 2008. LNCS, vol. 5324, pp. 345–359. Springer, Heidelberg (2008)

11. Das, S., Perkins, C., Royer, E.: Performance Comparison of Two On-demand Rout-
ing Procotols for Ad Hoc Networks. In: Proc. of IEEE INFOCOM 2000, vol. 1, pp.
3–12. IEEE Press, Los Alamitos (2000)



Computationally Secure Hierarchical Self-healing Key Distribution 149

12. Eschenauer, L., Gligor, V.D.: A Key-Management Scheme for Distributed Sensor
Networks. In: Proc. ACM Conference on Computer and Communication Security,
CCS 2002 (2002)

13. Gupta, P., Kumar, P.: The Capacity of Wireless Networks. IEEE Transactions on
Information Theory 46(2), 388–404 (2000)

14. Hong, D., Kang, J.: An Efficient Key Distribution Scheme with Self-healing Prop-
erty. IEEE Communication Letters 9, 759–761 (2005)

15. Huang, D., Mehta, M., Medhi, D., Harn, L.: Location-aware Key Management
Scheme for Wireless Sensor Networks. In: Proc. 2nd ACM workshop on Security
of Ad Hoc and Sensor Networks

16. http://www.intel.com/research/exploratory/heterogeneous.htm

17. Kachirski, O., Guha, R.: Effective Intrusion Detection Using Multiple Sensors in
Wireless Ad Hoc Networks. In: Proc. 36th Annual Hawaii International Conference
on System Sciences, HICSS 2003 (2003)

18. Liu, D., Ning, P.: Location-based Pairwise Key Establishement for Relatively Static
Sensor Networks. In: Proc. ACM Workshop on Security of Ad hoc and Sensor
Networks (2003)

19. Liu, D., Ning, P.: Improving Key Pre-distribution wih Deployment Knowledge in
Static Sensor Networks. ACM Transactions on Sensor Networks (2005)

20. Liu, D., Ning, P., Du, W.L.: Group-based Key Pre-distribution in Wireless Sensor
Networks. In: Proc. ACM Workshop on Wireless Security (2005)

21. Liu, D., Ning, P., Sun, K.: Efficient Self-Healing Group Key Distribution with re-
vocation Capability. In: Proc. ACM Conference on Computer and Communication
Security, CCS 2003 (2003)

22. Marchang, N., Datta, R.: Collaborative Techniques for Intrusion Detection in Mo-
bile Ad-hoc Networks. Ad Hoc Network 6, 508–523 (2008)

23. Madden, S.R., Franklin, M.J., Hellerstein, J.M., Hong, W.: TAG: A Tiny AGgre-
gation Service for Ad-Hoc Sensor Networks. In: Proc. 5th Annul Symposium on
Operating Systems Design and Implementation, OSDI 2002 (2002)

24. http://www.xbow.com/Products/productdetails.aspx?sid=156

25. More, S., Malkin, M., Staddon, J.: Sliding-window Self-healing Key Distribution
with Revocation. In: Proc. ACM Workshop on Surviable and Self-regenerative
System (2003)

26. Mache, J., Wan, C.Y., Yarvis, M.: Exploiting heterogeneity for sensor network
security. In: Proc. IEEE Communications Society Conference on Sensor, Mesh and
Ad Hoc Communications and Networks, SECON 2008, pp. 591–593 (2008)

27. Perrig, A., Szewczyk, R., Wen, V., Culler, D., Tygar, D.: SPINS: Security Protocols
for Sensor Networks. Wireless Networks Journal, WINE (2002)

28. Staddon, J., Miner, S., Franklin, M., Balfanz, D., Malkin, M., Dean, D.: Self-
healing Key Distribution with Revocation. In: Proc. IEEE Symposium on Security
and Privacy, S&P 2002, pp. 241–257 (2002)

29. Yarvis, M., et al.: Exploiting Heterogeneity in Sensor Networks. In: Proc. IEEE
INFOCOM 2005 (2005)

30. Yang, Y.J., Zhou, J.Y., Deng, R.H., Bao, F.: Hierarchical Self-Healing Key Distri-
bution for Heterogeneous Wireless Sensor Networks. In: Proc. Securecomm 2009
(2009),
http://icsd.i2r.a-star.edu.sg/staff/yanjiang/papers/securecomm09.pdf

31. Zhu, S., Setia, S., Jajodia, S.: LEAP: Efficient Security Mechanisms for Large-
scale Distributed Sensor Networks. In: Proc. ACM Conferenc on Computer and
Communication Security, CCS 2003, pp. 62–72 (2003)

http://www.intel.com/research/exploratory/heterogeneous.htm
http://www.xbow.com/Products/productdetails.aspx?sid=156
http://icsd.i2r.a-star.edu.sg/staff/yanjiang/papers/securecomm09.pdf


Enabling Secure Secret Updating for
Unidirectional Key Distribution in

RFID-Enabled Supply Chains

Shaoying Cai1, Tieyan Li2, Changshe Ma1, Yingjiu Li1, and Robert H. Deng1

1 School of Information Systems, Singapore Management University
shaoyingcai.2009@phdis.smu.edu.sg,

{changshema,yjli,robertdeng}@smu.edu.sg
2 Institute for Infocomm Research, A*STAR Singapore

litieyan@i2r.a-star.edu.sg

Abstract. In USENIX Security 08, Juels, Pappu and Parno proposed a
secret sharing based mechanism to alleviate the key distribution problem
in RFID-enabled supply chains. Compared to existing pseudonym based
RFID protocols, the secret sharing based solution is more suitable for
RFID-enabled supply chains since it does not require a database of keys
be distributed among supply chain parties for secure ownership transfer
of RFID tags. However, this mechanism cannot resist tag tracking and
tag counterfeiting attacks in supply chain systems. It is also not conve-
nient for downstream supply chain parties to adjust the size of RFID
tag collections in recovering tag keys. To address these problems, we
propose a flexible and secure secret update protocol which enables each
supply chain party to update tag keys in a secure and efficient manner.
Our proposal enhances the previous secret sharing based mechanism in
that it not only solves the flexibility problem in unidirectional key dis-
tribution, but also ensures the security for ownership transfer of tags in
RFID-enabled supply chains.

1 Introduction

Radio-frequency identification (RFID) is a wireless Automatic Identification and
Data Capture (AIDC) technology that has been widely deployed in many appli-
cations including supply chain management. While RFID technology facilitates
efficient management of RFID tags, it also triggers privacy concerns since sensi-
tive information about RFID tags may be collected by an adversary via wireless
communication channel without their owner’s awareness. To prevent RFID tags
from unwanted readouts, various solutions have been proposed in the literature.
One solution is to send a Kill command [2] to a tag so that the tag is “dead”
to any queries. Another solution is to physically clip a tag’s antenna so that
the tag is silenced [7]. Juels, Rivest and Szydlo introduced the blocker tag [6],
which generates a signal that collides with all tags to be protected. Once the
blocker tag is removed or disabled, however, the privacy of the protected tags
may be disclosed. To make RFID tags always readily responsible, Fishkin, Roy

S. Qing, C.J. Mitchell, and G. Wang (Eds.): ICICS 2009, LNCS 5927, pp. 150–164, 2009.
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and Jiang [3] proposed a distance-based access control scheme in which the tags
reply with different levels of details depending on their distance to the reader,
assuming that an adversary cannot get close enough to a tag as an authorized
reader. However, it is difficult to prevent an adversary from getting close to
a tag in many applications; consequently, the adversary may obtain sensitive
information about some tags.

To address this concern, many protocols based on pseudonymous ID have
been proposed [5], including the hash-lock of Weis et al. [15], the hash chain
of Ohkubo, Suzuki and Kinoshita [12], the tree-based proposal of Molnar and
Wagner [11], and many randomized pseudonym-based protocols such as the
one proposed by Li and Ding [10]. In such protocols, each tag is associated
with a pseudonymous ID. An authorized reader can identify the tag from its
pseudonyms because it has access to a database that maps each tag’s pseudonym
to its real ID based on a secret key. Without the database, an adversary cannot
identify a tag nor track it from its pseudonyms (which may change from time
to time). When the tagged items change their ownership in a supply chain, the
database needs to be transferred so that the new owner can recognize the tags ac-
cording to the database. How to efficiently distribute the database among autho-
rized parties is critical for applying pseudonym based protocols in RFID-enabled
supply chains. Since the database consists of the keys for all tags, this problem is
essentially a key distribution problem to be addressed in RFID-enabled supply
chains.

In supply chain practice, especially for dynamic or ad hoc supply chain struc-
ture, the parties in supply chain are usually lack of secure network connections.
A practical solution to the key distribution problem is to split a tag key into a
number of shares and store the shares to multiple tags. Since the tag keys are
stored in the tags directly, an authorized reader/party can collect enough shares
and recover the keys, while an adversary is assumed to have limited access to
the tags such that he/she cannot collect enough shares for recovering the keys.
In this solution, there is no need of distributing a key database among supply
chain parties. This secret sharing based solution is thus particularly useful for
protecting dynamic and ad hoc supply chains.

A recent work in this direction is conducted by Juels, Pappu and Parno [4],
which we call Juels-Pappu-Parno key sharing mechanism, or JPP mechanism for
short. In this solution, a common key k of a batch of tags is split with a (τ, n)-
secret sharing scheme, and each tag Ti stores a share Si of k and its individual
(encrypted) information Mi. A reader can recover k with access to at least τ
shares. From k and Mi, a reader can decrypt the information about tag Ti. The
reader is referred to Section 2.3 for more details about the JPP mechanism. This
proposal does not restrict on the time period in which a tag should be read, or
the number of the tags which should be attached to an item; thus, it is considered
to be the only secret sharing based solution that is suitable for RFID-enabled
supply chains.

However, the JPP mechanism is not secure in that a tag always sends a
constant reply to any query. As a result, the tag is vulnerable to tracking by
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either supply chain parties or outsiders. Also, an adversary can impersonate a
tag in replay attack. When the tagged items are handed over from upstream
parties to downstream parties in a supply chain, the downstream parties need
to adjust the threshold in key recovery as they reassemble the collection/batch
of tagged items. The JPP mechanism does not provide such flexibility.

In this paper, we propose a secret update protocol to address the problems of
the JPP mechanism. Our secret update protocol enhances the security level of
the JPP mechanism against tracking and impersonation attacks. It also makes
it convenient for a supply chain party to adjust the threshold in key recovery
according to the size of each batch of tags to be processed. Our work enhances
the security and practicality of the JPP mechanism with reasonable cost paid
to increase the tag’s functionality.

The rest of this paper is organized as follows. In Section 2, we review the char-
acteristics of supply chain, the secret sharing approaches, and the JPP mecha-
nism. In Section 3, we elaborate on our secret update protocol. In Section 4, we
formally prove the security of our secret update protocol. At last, we conclude
this paper.

2 Reviews

In this section, we briefly introduce the background knowledge about the security
requirements for RFID-enabled supply chains. We review several secret sharing
approaches and revisit the JPP mechanism.

2.1 Security Requirements for RFID-Enabled Supply Chains

As pointed out in [4], the requirements for any security mechanism in RFID-
enabled supply chains should be carefully defined according to the supply chain
characteristics, which are summarized below.

! None pre-existing trust relationship: The two adjacent parties in a
supply chain may have no previous trust relationship. The current owner of
the tagged items may not always know which party will take over part or all
of the tagged items before it gets the order from the next party.
! Unidirectional downsizing: Items start off in large collections and pro-

gressively get whittled down into smaller aggregates as they make their way
from upstream parties to downstream parties.
! Compulsory processing orders: A batch of tags that are processed to-

gether by a downstream party must be processed together by an upstream
party.

As such, a schematic representing the de- & re-packing of a case containing
multiple item tags within a supply chain party is illustrated in Fig. 1 as our
running example: On receiving a case of 100 items transported from an upstream
party, the current owner disassembles the case into item-level tags. According to
some business orders from downstream parties, the owner then repackages those
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Fig. 1. De- & Re-packing of Item Tags in RFID-enabled Supply Chains. A case of
10× 10 items, transported from an upstream party, can be de-packed and re-packed by
the current owner. The newly packed cases are to be shipped out to the downstream
parties.

items into smaller cases with variable sizes and ships them out. Before shipping
out, the owner of the tags would most likely update the tags so that the smaller
batches can be efficiently authenticated by the downstream parties.

2.2 Secret Sharing Approaches

Till now, three secret sharing mechanisms [8,9,4] were proposed to solve the key
distribution problem in RFID-enabled supply chains.

The Shamir tag proposed by Langheinrich and Marti [8] is the first proposal
in this direction. This solution splits the true ID of a tag using Shamir’s secret
sharing scheme [14] and stores all the shares on the tag itself. All the shares
form the new ID of a tag. Upon a reader’s inquiry, an initial set of random bits
from the new ID is released, following by subsequent throttled single-bit releases.
Eventually, all bits of the new ID will be released and only then can the true ID
be computed [8]. The security of this proposal is relevant to the time that an
adversary can access the tag. An RFID reader needs a sufficient period of time
to collect all bits of a tag’s new ID before it can recover the tag’s ture ID. The
time period is typically several minutes for reasonable security. The security of
this solution depends on the assumption that a “hit-and-run” adversary cannot
access a tag in a long enough time period to collect all bits of a tag’s new ID.
The problem is, in a supply chain, typically a large number of tags need to
be processed in an efficient manner. It may not be practical to spend several
minutes to identify a tag. Although the initial set of random bits can be used for
fast identifying, it works only when the reader knows all tags’ new IDs and true
IDs. Since a database of tags is not distributed among supply chain parties (for
solving the key distribution problem), a new owner of the tags has no knowledge
about the tags’ new IDs. Therefore, the Shamir tag scheme is not practical for
ownership transfer in RFID-enabled supply chains.

Langheinrich and Marti have also extended Shamir’s scheme to distribute
an item’s ID over hundreds of tags that are attached to or integrated into the
item’s material [9]. This method may be suitable for protecting containers or
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large items; however, it is not practical to authenticate hundreds of tags for each
item in supply chains.

In USENIX Security 08, Juels, Pappu and Parno proposed a key sharing
mechanism (i.e., the JPP mechanism) [4] to enhance the practicality of the two
early secret sharing based solutions proposed by Langheinrich and Marti [8,9] by
removing the constraints on the period of each tag being read and the number
of tags attached to each item. The JPP mechanism is particularly efficient for
ownership transfer in RFID-enabled supply chains since it eliminates the need
for distributing a database of tag keys among supply chain parties.

2.3 The JPP Mechanism

In the JPP-mechanism, a batch of tags share the same key k, which is split to
n shares using a (τ, n) threshold secret sharing (TSS) scheme [14], where τ < n
is a threshold. Anyone who collects at least τ shares can recover k. The JPP
mechanism provides two methods to implement the (τ, n)-TSS scheme.

The first one is called “secret sharing across space” which uses Error Correct-
ing Code (ECC) to construct the (τ, n)-TSS scheme. Each tag Ti stores a share
si as well as its symmetrically encrypted information Ek(mi), where mi is the
information about the tag Ti. The tag Ti sends (si, Ek(mi)) to any reader who
queries it.

The other method is called “secret sharing across time”, which uses the
“Sliding-Window Information Secret Sharing” (SWISS) scheme to generate the
shares of a tag. Each tag stores values of (si1, si2, ri), where si1 and si2 are two
key shares, and ri is a tag-specific random number. One of key shares is used
to derive the common key k of the tags in the timing window to which tag Ti

belongs (the timing window determines which key share is used in deriving the
key). From k and ri, a reader can derive an individual key1 ki for each tag Ti,
which is used to symmetrically encrypt the tag information mi as Eki(mi).

We can see that the JPP mechanism is based on spreading a common secret
into different tags. To summarize, we denote the tag’s content as (Si, Mi), where
Si represents the values used to derive the common key k, and Mi is the infor-
mation related to the tag Ti itself. In the “secret sharing across space” method,
we have Si = si and Mi = Ek(mi), while in the “secret sharing across time”
method, we have Si = si1‖si2 and Mi = ri‖Eki(mi), where ki is derived from
the common key k.

The JPP mechanism is secure under the assumption that an adversary cannot
get access to enough shares for recovering a tag key in the “open area” (e.g.,
retail stores or customer homes), while legitimate supply chain parties can collect
enough shares for recovering each tag key in the “closed area” of a supply chain,
to which the adversary does not have access.
1 Note that although in the “secret sharing across time” method, each tag has a

separate key ki, the key ki is derived from a common key k and ri as ki = h(ri, k),
where h is a hash function. Since ri is available to any reader, this method does
not provide any stronger security than the “secret sharing across space” method in
which all the tags shares a common key.
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3 Secret Updating for Unidirectional Key Distribution

3.1 Observations

One of the highlights of the JPP mechanism is that it is suitable for EPC-
global Class-1 Generation-2 tags. The reason is that JPP mechanism requires
no processing power on the tags and that the storage of EPCglobal Class-1
Generation-2 tags is enough to hold the tag information. This means that the
JPP mechanism can easily be deployed in current RFID systems without chang-
ing the requirements to the tags. It also eliminates the need of distributing a
database of tags among supply chain parties for efficient ownership transfer in
RFID-enabled supply chains. However, we have two key observations over the
JPP mechanism.

Firstly, the adversary model of the JPP mechanism is not too strong in that
the tags are assumed to be secure within the “closed area” of a supply chain,
while the tags are exposed to an adversary only in the “open area.” In practice,
the security of supply chain is arguable; the parties in a dynamic or ad hoc
supply chain may not trust or even know each other before they transfer tags to
each other. It is more reasonable to assume that the adversary’s power is limited
rather than the tags are secure. Under this assumption, we have the following
security observation on the JPP mechanism.

Vulnerable to tracking: In the JPP mechanism, a tag Ti always sends the
same reply (Si, Mi) to any reader who queries it. Although an adversary
may not get enough shares to decrypt the content of the tag, the never-
changing reply can be used by the adversary to track the tag.

Vulnerable to counterfeiting: As the public accessible message (Si, Mi) is
used for a reader to identify the tag Ti, an adversary can easily fabricate a
tag that also sends (Si, Mi), and replace the tagged item with the fabricated
tag.

Secondly, the realistic deployment of the JPP mechanism is largely restricted by
the so called monopolistic key assignment model, in which a monopoly (typically
the manufacturer of the goods) pre-assigns all the keys (shares) to the tags
according a fixed secret sharing scheme with conjectured parameters. Under this
assumption, the monopoly has to know or predict much detailed information
on how goods are de-packed and re-packed by the downstream parties along a
supply chain. If the threshold of the secret sharing scheme is set to be too large,
it is possible that the batch size becomes smaller than the threshold so that a
valid downstream party cannot promptly collect enough shares to recover the
key k. If the threshold is set to be too small (so that all supply chain parties can
easily collect enough shares), it may also be easier for an adversary to collect
enough shares, especially in upstream supply chains. Without the knowledge
that is either not known, or hard to predict, and subject to uninformed changes,
a proper threshold is hard, if not impossible, to be decided. Thus, this one-size-
fits-all solution is not flexibly applicable.
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In the unidirectional supply chain channel, no one has better knowledge on
how to de-pack and re-pack the tagged goods than the current owner. As in
our running example shown in Fig. 1, a 10 × 10 case, in which all the tags can
be originally assigned with shares by a (33, 100)-TSS scheme, is de-packed and
re-packed into smaller cases by the current owner such that the tags in a 3 × 3
case can be re-assigned with secret shares by a (3, 9)-TSS scheme, and the tags
in a 6×6 case with shares by a (12, 36)-TSS scheme. It is highly demanded that
this current owner be able to update the tags according to the status quo. We
thus promote a flexible unidirectional key distribution scheme in RFID-enabled
supply chains, where an intermediate supply chain party can flexibly and securely
update the secrets (or shares) on the tags that are currently in processing, with
some secret update protocol as proposed below.

3.2 The Secret Update Protocol

In order to solve the security and flexibility problems of the JPP mechanism
while maintaining its merits, we propose a flexible and secure secret update
protocol as an enhancement of the JPP mechanism. The purpose is to change
the tag message (Si, Mi) by each supply chain party to prevent the tracking and
counterfeiting across supply chain parties; the secret update protocol may also
change the parameters of the secret sharing scheme to adapt to the changes in
collection size in supply chains.

A tag must verify the validity of the reader when executing the secret update
protocol, or else any malicious reader can rewrite the tag. In the JPP mechanism,
the only difference between the valid reader and unauthorized reader is the valid
reader can recover the key k. Consequently, a tag can verify the reader’s validity
by checking the reader’s possession of k.

We realize the reader authentication by adding a value ci = h(k‖Si) on the
tag, where h : {0, 1}∗ → {0, 1}l is a one-way hash function, and l is the security
parameter of the system 2. In our scheme, ci is used by the tag Ti to authenticate
the reader. The secret update protocol updates all the values stored on the tag,
namely (Si, Mi, ci), to a set of new values (S′

i, M
′
i , c

′
i). The requirement on tags is

that the tags should have the ability to perform hash functions and have slightly
more storage than the JPP mechanism to store ci. This is the price to pay for
the enhanced security and functionality.

Before the secret update protocol is launched by a reader, the reader is as-
sumed to have recovered the key k with enough shares. It is also assumed that
the reader has chosen a new key k′ and split it using a pre-chosen secret sharing
scheme with new parameters (τ ′, n′), where typically τ ′ ≤ τ and n′ ≤ n for tags
moving towards downstream supply chain. The secret update protocol is shown
in Fig. 2 and described in the following.

1. Reader←→ Tag: The reader first identifies the tag Ti based on the recov-
ered key k and the shared secret ci, with any privacy-enhanced

2 The length of (S′
i‖M ′

i) is supposed to be 96 bits in [4], then we set l to be 96 bits.
Refer to Section 3.5 for more discussions on the implementation issues.
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Reader Tag Ti

[k,k′] [Si, Mi, ci = h(k||Si)]

Prepare new key k′; Identify the tag Ti;
Prepare new share S′

i for Ti;

Private Tag Authentication

Compute ci = h(k||Si), c′i = h(k′||S′
i),

A = (S′
i‖M ′

i)⊕ h(′0′‖ci),
B = c′i ⊕ h(′1′‖ci),
and C = h(ci‖S′

i‖M ′
i‖c′i). A, B, C

Compute S′
i‖M ′

i = A⊕ h(′0′‖ci);
Compute c′i = B ⊕ h(′1′‖ci);
if C = h(ci‖S′

i‖M ′
i‖c′i),then

Si ← S′
i,

Mi ←M ′
i ,

ci ← c′i.

Fig. 2. The Secret Update Protocol

authentication protocol3. Once the tag is authenticated, the reader is ready
to prepare the new secret share for the tag’s updating.

2. Reader −→ Tag: The reader then computes ci = h(k||Si), and assigns an
unused share S′

i (of the new key k′) to Ti. The reader calculates c′i = h(k′||S′
i),

A = (S′
i‖M ′

i) ⊕ h(′0′‖ci), B = c′i ⊕ h(′1′‖ci), C = h(ci‖S′
i‖M ′

i‖c′i). Finally,
the reader sends (A, B, C) to Ti.

3. Tag: After receiving (A, B, C) from the reader, Ti computes S′
i‖M ′

i =
A ⊕ h(′0′‖ci), c′i = B ⊕ h(′1′‖ci). If C = h(ci‖S′

i‖M ′
i‖c′i), the reader is

authenticated. Then Ti updates its values to be Si = S′
i, Mi = M ′

i and
ci = c′i.

To make sure that a tag is updated successfully, the reader can identify the
tag after the updating process. Recall that in the JPP mechanism, a tag Ti

always sends the same reply (Si, Mi) to the reader who queries it. The reader
does not authenticate the tag; thus, an adversary can easily forge a tag by
replaying the reply message. In comparison, our secret update protocol restricts
this counterfeiting problem from propagating to different supply chain parties,
it can be further strengthened to solve the problem even within a supply chain
party’s territory. To achieve this goal, the first step of the secret update protocol
can be any privacy-enhanced tag authentication protocol. For instance, a typical
challenge-response tag authentication protocol could be as follows: First, a reader
sends its query together with a fresh random number r1 to a tag. Second, the tag

3 To propose any new private tag authentication protocol is not our major intention
in this paper. As an example, a typical challenge-response protocol is described in
the following paragraph. Note that if performance is the primary goal, a tag could
be quickly identified without being privately authenticated by solely presenting its
identifier.
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Ti generates a fresh random number r2 and replies (r2, D) to the reader, where
D = h(r1‖r2‖ci). The reader verifies the value of D based on its knowledge on
ci of Ti. Below we discuss the security, performance and implementation aspects
of our protocol.

3.3 Security Properties

We list several primary security goals which are desired in a secret update pro-
tocol, and discuss how they are achieved in our protocol.

Authoritative access to tags. The security of the secret update protocol re-
lies on the confidentiality of ci. Given an update message (A, B, C), only the
one who knows the value of ci can obtain the values of S′

i, M ′
i and c′i. With-

out knowing ci, an adversary cannot forge a valid message (A′, B′, C′) due
to the security property of the hash function. Thus, unauthorized readers
cannot update the tags’ secret.

Authenticity of tags. In our updating protocol, the tag Ti is authenticated with
any privacy-enhanced authentication scheme (E.g., the challenge-response
protocol, where Di, the authentication message, can be verified only with the
knowledge of ci). The JPP mechanism does not provide tag authenticity since
the tag always sends static reply to any query. Thus, our secret update proto-
col solves the counterfeiting problem.

Forward security. In our secret update protocol, the tag Ti is updated with
new values (S′

i, M
′
i , c

′
i), which are totally independent from its previous val-

ues (Si, Mi, ci). Therefore, the protocol achieves forward secrecy for the tags’
content in previous periods.

Untraceability. The JPP mechanism cannot resist tracking attacks, as the tag
always sends static values Si and Mi to any reader who queries it. Our se-
cret update protocol provides the anti-tracking property by updating a tag’s
secret to a new value, thus an attacker is not able to link the values before
and after the updating operation to the same tag (with the assumption that
the updating messages are secure against eavesdropping, while an adversary
is allowed to track a tag before and after the updating protocol). Note that
even if an adversary eavesdrops the updating messages, as long as s/he can-
not correlate the messages before and after the updating, s/he still cannot
track a tag in different periods. However, if an active adversary is able to
monitor the update process and query a tag immediately before and after
its updating, s/he can track the tag by correlating Si and S′

i. Note that such
correlation is difficult to achieve in practice because the limited radio fre-
quency range makes the protocol operate in a relatively secure environment,
especially when update is performed.

Besides the enhancement of the security level, our secret update protocol solves
the reassembly issue since the current owner of a tag can write new values
(S′

i, M
′
i) into the tag according to new secret sharing parameters (τ ′, n′). Thus,

a downstream party may flexibly choose τ ′ < τ and n′ < n for the convenience of
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processing smaller batches of tags required in dynamic supply chain environment.
The formal proof on the privacy of the tags can be found in Section 4.

3.4 Comparisons

Above we mentioned that secret sharing approaches present a new research di-
rection on solving the key distribution problem in RFID-enabled supply chains.
Their advantage can be demonstrated by comparing with several existing RFID
authentication protocols that are selected to be classical and representative un-
der a coarse classification. We list the major security and performance metrics
of these schemes and compare our solution with them in Table 1.

Table 1. Security and Performance Comparisons

Requirement for Resistance to Resistance to Complexity in
Key Distribution Tracking Counterfeiting Online Identification

Hash chain [12] yes yes no O(log n)
Hash tree [11] yes yes yes O(log n)
Pseudonym [10] yes yes yes O(n)
JPP mechanism [4] no no no O(1)
Our protocol no yes yes O(1)

From Table 1, the advantage of using secret sharing based mechanisms is very
clear, as they simply solve the key distribution problem which is considered as
a cornerstone of cryptography, and is also fraught with complexity in real world
applications, while traditional schemes [12,11,10] presuppose the existence of
shared keys between mutually trusted parties.

The hash chain-based scheme [12] is efficient since the online identification
complexity is O(log n); however, it cannot resist counterfeiting attack. In the
tree-based scheme [11], each tag stores log n secrets, in which log n − 1 secrets
are shared with other tags. It increases the storage requirement on the tags
and communication rounds between the tag and the reader, although it also
decreases the online identification time to log n. The randomized pseudonym-
based protocol [10] assigns each tag with a pseudonymous ID, which is mapped
to a real ID stored in the backend database. The protocol can resist tracking
and counterfeiting attacks, but its complexity of searching a tag is O(n).

The JPP mechanism is the first applicable solution that is suitable for sup-
ply chains and without the need for pre-sharing of the secrets. However, it’s
security level is not sufficient as mentioned above. Our solution enhances the se-
curity of the JPP mechanism with additional computational requirements that
are comparable with existing solutions, which typically require random number
generator and hash function on the tag. In our protocol, the reader can obtain
all tags’ information after getting τ shares to recover the secret k. The reader
also needs to conduct a private authentication protocol for identifying a tag.
Besides, each tag needs to store three values which are constant on storage.
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3.5 Implementation Considerations

In [4], Juels, Pappu, and Parno implemented a (15, 20) threshold secret sharing
scheme on Gen2 tags. In their case, for totally 20 available tags, a reader needs
to collect at least 15 tags’ shares to successfully recover the secret key and
decrypt the encrypted information. The implementation only employs the 96-bit
EPC memory bank of a “Alien Squiggle” Gen2 tag, of which 16 bits are used
for storing a single share and 80 bits are used for storing the encrypted identity.
Note that the shares are generated and written into the tags by encoding a secret
key into 20 16-bit symbols using a (20, 15) Reed-Solomon Error Correcting Code
(RS-ECC) [13].

Given this parameterization (w.r.t., |Si| = 16 and |Mi| = 80), our protocol,
replacing (Si, Mi) with (S′

i, M
′
i , c

′
i), requires additional memory space for storing

c′i message (which is equivalent to 160 bits, if SHA-1 cryptographic hash func-
tion is used.). As such, we can not put them all into the EPC memory bank,
but put (S′

i, M
′
i) into the EPC memory bank as in [4], and put (c′i) into the

“User” memory bank 4. Additionally, we comment that a typical EPC is exactly
96 bits, by applying a block cipher in any authenticated and encrypted method,
the encrypted EPC message still has 96-bit length. Hence, a share value (Si) in
[4] might not be properly stored in the EPC memory bank (although its length is
only 16-bit), but inevitably be stored in the user memory bank. Fortunately, un-
like the memory banks for storing the Tag unique IDentifier (or “TID”) and the
Access and Kill passwords, both the EPC memory and the user memory have
similar physical and deployment characteristics (regarding the password-based
lock, unlock, permalock, and password-based write operations on these memory
banks) according to EPCglobal UHF C1 G2 standard [2]. While the JPP mecha-
nism requires only write-once EPC memory, our protocol requires rewritable EPC
memory and user memory on a Gen2 tag. Such a (re)write operation is typically
allowed in a secured state on interrogating a Gen2 tag, which is transitioned
from an open state by providing the correct Access password. On implement-
ing our protocol, we indicate that the 32-bit Access password of a Gen2 tag be
individually derived from the recovered shared key k (e.g., we obtain the 32-bit
Access password by hashing the key k concatenated with the tag’s EPC code,
and then taking the first 32 bits of the output.).

Moreover, in real-world usage, one has to determine the number of tags n
processed in a batch and the threshold τ to recover the secret key. Now suppose
the current owner in Fig. 1 receives a case of 100 tags, which are formatted with
(τ, 100)-TSS scheme. On choosing a proper threshold, τ can be set as the biggest
value (e.g., τ = 80) that is less than certain upper bound to maximally tolerate
(up to 20) reading or erasure errors; alternatively, τ can be set as the smallest
value (e.g., τ = 20) that is greater than certain lower bound to guarantee the
robustness on recovering the key with a minimum number (20) of tags. As such,
the owner can recover the secret key and then decrypt the encrypted information
4 Note that different tag manufactures will produce different form-factor Gen2 tags

all conforming to EPCglobal C1 G2 specification [2]). E.g., a Philips UCODE EPC
Gen2 tag contains 224 bits in the user memory bank.
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attached with each tag. According to downstream parties’ requirements, the
owner can de-pack the case and re-pack it into several smaller cases including 4
cases with 4×4 tags and 1 cases with 6×6 tags. Similarly, a flexible (4 ∼ 12, 16)-
TSS scheme and a flexible (8 ∼ 28, 36)-TSS scheme can be chosen for these two
kinds of cases respectively, to either maintain robust recovery with minimal 20%
available tags, or tolerate about 20% of reading/erasure errors.

4 Security Proof

In this section, we formally prove the security of our secret update protocol. At
first, we formalize the security requirement for the secret update protocol. Then,
we show that the proposed protocol satisfies the privacy requirement.

4.1 Security Model

We focus on the privacy property of our secret update protocol. As for the JPP
authentication protocol running between an RFID reader and a batch of tags, it
has been proven that in [4], it is infeasible for any polynomial time adversary to
learn the shared key of the tags if the adversary cannot get access to the replies
from at least τ tags. This privacy property is strengthened in our secret update
protocol since the shared key of the tags can be updated by each valid supply
chain party.

Informally, in the secret update protocol, there are two basic security require-
ments: (i) The former owner should not be able to trace the current owner. (ii)
Any adversary outside the supply chain should not be able to link any two pro-
tocol messages in different periods (a period is the lifetime of a tag between its
being updated by two adjacent owners). A formal privacy definition is described
in the following privacy game of secret update protocol (Game PoT for short,
which is illustrated in Fig. 3.).

We first give a formal description of an RFID system. In an RFID system,
there are a set of tags T = {T1, · · · , T	}, a set of readers R = {R1, · · · , Rm}
and an adversary A. Each tag stores a secret which is updated when its owner
has changed. The RFID system is initialized and updated through a (τ, n) secret
sharing scheme [14]. To identify a tag, a reader interacts with the tag through
the authentication protocol π(Ri, Tj). When a tag is passed from one owner to
another owner, its current owner Ri runs the secret update protocol κ(Ri, Tj)
to reset the internal state of tag Tj .

As above, the Game PoT consists of three phases. In the setup phase, the
game initializes the RFID system. Then in the learning phase, the adversary
A performs a series of queries to enlarge its knowledge base about the RFID
system. In the third phase, the adversary A chooses two tags for challenging.
Then, a tag is chosen by randomly updating one of the two tags. After this, the
updated tag is given to the adversary as a challenging tag for him to distinguish
it from the original two tags.

In the Game PoT, the adversary A is allowed to eavesdrop the protocol mes-
sages (by invoking an authentication protocol π(Ri, Tj) between a reader Ri and
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Game PoT
〈Game PoT〉

Setup:
(1) Initialize a set of tags T = {T1, · · · , T�}.
(2) Initialize a set of readers R = {R1, · · · , Rm}.

Learning phase:
(3) For any Ri ∈ R and Tj ∈ T , A may do the following in any order as long as

rk,pd + vk,pd � τ , where rk,pd and vk,pd denote the number of authentication
protocol calls related to tags whose data was encrypted by k in the period pd and
the number of corruption calls related to tags whose data was encrypted by k in
the period pd respectively:

(3.1) Make π(Ri, Tj) calls, without exceeding r overall calls.
(3.2) Make κ(Ri, Tj) calls, without exceeding u overall calls.
(3.3) Corrupt tags, without exceeding v overall calls.
(3.4) Corrupt any reader except the reader R′.

Challenge phase:
(4) A selects two tags Tp and Tq.
(5) Let T0 = Tp, T1 = Tq and b ∈R {0, 1}.
(6) the game runs κ(R′, Tb) and then sends Tb to A.
(7) For any Ri ∈ R and Tj ∈ T , A may do the following in any order as long as

rk,pd + vk,pd � τ :
(7.1) Make π(Ri, Tj) calls, without exceeding r overall calls.
(7.2) Make κ(Ri, Tj) calls, without exceeding u overall calls.
(7.3) Corrupt tags, without exceeding v overall calls.
(7.4) Corrupt any reader except the reader R′.

(8) A outputs a guess bit b′.
(9) If b′ = b then output 1, else 0.

Fig. 3. Privacy Game of Secret Update Protocol

a tag Tj) and to corrupt the tags under the restriction that the sum of the num-
ber of calls of the authentication protocol and the number of tag corruptions is
at most τ (i.e., the threshold of the secret sharing scheme) during the same pe-
riod. The adversary A is also allowed to invoke secret update protocol κ(Ri, Tj)
with restriction that it cannot learn the messages in the secret update protocol.
Note that this assumption is commonly used in most secret update protocols
and it is reasonable since the secret update protocol is usually executed in a
relative secure environment such as the warehouse of a supply chain party. The
adversary A is allowed to corrupt any readers (and hence to get their internal
states) except the reader R′ to which the challenging tag is presented.

The goal of the adversary A in the Game PoT is to distinguish between two
different tags chosen by itself. The adversary may know the internal state of both
tags. But the challenging tag is chosen by updating a tag selected randomly from
the two tags.

Definition 1. A function f : N → R is said to be negligible if for every c > 0
there exits a number m ∈ N such that f(n) < 1

nc holds for all n > m. Also, a
function f : N → R is said to be overwhelming if 1− f(n) is negligible.

Definition 2. The advantage of adversary A in the Game PoT is defined as

AdvA(r, u, v, τ, n, �,m) = |2Pr[Game PoT outputs 1]− 1|.
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Definition 3. We call that the RFID system is (r, u, v, τ, n, �, m, t, ε)-private,
if there exists no polynomial probabilistic time adversary A whose advantage
AdvA(r, u, v, τ, n, �, m) is at least ε and whose running time is at most t in the
Game PoT.

4.2 Privacy of the Secret Update Protocol

The privacy of our secret update protocol relies on the privacy of the under-
lying secret sharing scheme. We now prove that our secret update protocol is
(r, u, v, τ, n, t, ε)-private if the underlying secret sharing scheme is (τ, n, t, ε/2)-
private. The following theorem characterizes the security of our secret update
protocol5.

Theorem 1. In the random oracle model, if the secret sharing scheme used
in our RFID protocol is (τ, n, t, ε/2)-private, then the proposed RFID system is
(r, u, v, τ, n, �, m, t, ε)-private.

5 Conclusion

In this paper, we design a flexible and secure secret update protocol as an exten-
sion to Juels, Pappu and Parno’s unidirectional key distribution scheme [4]. Our
secret update protocol provides desirable flexibility so that downstream supply
chain parties can adjust the threshold in key recovery for the convenience of
processing smaller batches of tags. Moreover, the secret update protocol makes
it particularly difficult for the tags to be tracked across multiple supply chain
parties. Compared with previous works, our solution is similar in that it does
not require a database storing keys of tags being distributed to different supply
chain parties, while it is more secure against tracking and counterfeiting attacks,
and is more flexible in addressing the reassembly problem. Although our secret
update protocol requires more powerful tags than the EPCglobal Class-1 Gen-2
tags, it is worth to pay for the enhanced security and functionality. Our future
work will focus on the minimization of the cost of tags in our design.
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Abstract. This work explores the problem of using biometric data to achieve
non-transferability of anonymous credentials; that is, sharing of anonymous cre-
dentials, which allow one to anonymously authenticate, can be severely limited
if their use requires possession of the credential owner’s biometric. We target to
provide strong security guarantees using minimal trust assumptions, namely that
a fresh reading of a biometric is enforced on each use of the credentials. Further-
more, no biometric or other information is compromised if an adversary obtains
full access to all credential-related data. Our solution relies on constructions for
fuzzy extractors that allow one to extract and reproduce a random string from
noisy biometric images. We first examine security requirements of biometric key
generators, and then show how they can be integrated with anonymous credentials
to achieve a high degree of non-transferability and security.

1 Introduction

Biometric-based authentication is becoming more prevalent today. This is well justified
by the advances in biometric recognition techniques and a higher degree of security
of biometric-based authentication compared to some alternative authentication mecha-
nisms. Biometric-based authentication is also viewed as convenient to users, as it does
not require them to remember passwords or carry authentication tokens or keys. Bio-
metric data, however, requires very careful handling and protection, since, once cap-
tured, it can uniquely identify an individual and cannot be revoked. For that reason,
a lot of research in the recent years has been dedicated to designing mechanisms that
minimize the impact of (accidental or intentional) leakage of biometric data stored in
databases for authentication purposes. Instead of working on protecting privacy of bio-
metric data, the direction explored in this work comes from the (opposite) idea of using
biometrics to aid privacy and anonymity. In particular, biometric data can be incorpo-
rated into privacy-preserving tools to limit abuse of anonymity, and thus enable a safer
deployment of such techniques on a wider scale.

Anonymous authentication allows the prover to convince the verifier that she has
a certain property or credential without revealing any other information (and without
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the ability of two authentication instances to be linked to the same individual by the
verifier). In the case of theft or voluntary sharing of such credentials by duplication,
these credentials can be freely used by others without the ability to find out the iden-
tity of their owner. Incorporating biometrics in the authentication process then results
in a high degree of assurance that credentials cannot be transferred and that access is
performed by credential bearers only. We arrive at a setting where biometrics is used to
ensure non-transferability of anonymous credentials realizing the concept of account-
able anonymity. The benefits of such an approach are clearly seen in numerous appli-
cations where non-transferability is essential. For example, in an organization where
digital locks are used to enter buildings and facilities, it is extremely easy to track one’s
movements, and the employer that respects individual privacy can be willing to imple-
ment anonymous access to its facilities, i.e., the same as conventional keys provide.1

Digital keys can then be issued in the form of anonymous credentials that encode ac-
cess privileges of an employee, and should not be used by any other individual. Other
important applications of non-transferable anonymous credentials include certification
that the credential-bearer is a U.S. citizen, guaranteeing that the insurance company will
pay for an anonymous HIV test of the credential-bearer, and others.

When biometry is integrated into the authentication process, to achieve unlinkability
of protocol executions, biometrics can no longer be scanned by the device that performs
access control enforcement. This means that biometrics are captured on a device that each
user carries and which is trusted by the system. Then during the enrollment phase, user
credentials are placed on that device, and during authentication the device is trusted to
capture a biometric and use the scan in combination with the user credentials to authen-
ticate anonymously. While anonymous credentials schemes where biometrics is used to
achieve non-transferability have been proposed in the past [5,24], the key difference be-
tween our and prior work is in the trust requirements we place on the tamper-resistant
device. In our case these requirements are minimal: the only functionality the device
is required to do correctly is to enforce capturing a new biometric (and erase it after-
wards). Should the integrity of the device be compromised and all information stored
on it retrieved, it is not feasible to either recover the biometric data that identifies the
credential-bearer or to successfully authenticate using the captured credentials (this is
achieved without reliance on any additional secrets that the credential-bearer must know).

The structure and contributions of this work are as follows: We first discuss biomet-
rics key generators, which allow one to extract cryptographic keys from biometric data,
including their common constructions and security requirements. We then propose a
generic way of improving security of biometric key generators with respect to privacy
protection of the biometric from which such keys are derived. In addition to being use-
ful for biometric key generators, this construction has a direct application to our anony-
mous credentials scheme where biometrics are used to achieve non-transferability. The
next part of this work is dedicated to constructing a general solution for such anony-
mous credentials, to which we refer as biometric-based non-transferable credentials.

1 Note that anonymous access will not be suitable for certain organizations where access to
information or restricted-access facilities must be monitored by law or other provisions, but in
most environments anonymous access to facilities is natural and harmless if access control is
properly implemented.
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The only requirement that we pose to ensure correct operation of the system is that
biometric readings are enforced on each use of the credentials (and erased afterwards).
Once again, this offers protection of credentials in cases of both voluntary duplication
of anonymous credentials and when such credentials are stolen.

2 The Model and Preliminaries

2.1 The Model

The operation of our system proceeds in a standard way: First, an authority A sets
up the system, which includes generation of a public-private key pair (pkA, skA), where
the private key will allow it to issue user credentials and the public key can be used to
verify them. When a user joins the system, her biometric is recorded and credentials are
issued by the authority in accordance with user privileges. During the authentication
protocol, the user’s biometric is captured by her device and the credentials are verified
by the authority (or a different entity on behalf of the authority) in an anonymous way.
More precisely, an authentication scheme consists of the following components:

– AC-Setup is an algorithm that, on input a security parameter κ, sets up the sys-
tem including A’s public-private key pair (pkA, skA). Its output consists of public
parameters pub that include pkA, and A’s secret key skA.

– AC-Enroll is a procedure during which, given system’s parameters pub, a user U’s
input consists of her biometric, the authority’s input consists of its secret key skA

and U’s privileges. It results in U obtaining credentials cred that are tied to her
biometric and specify her access privileges.

– AC-Auth is a protocol between a user U and server S, in which U’s input consists of
her fresh biometric reading and credentials cred, and the server’s input consists of
public parameters pub. Authentication is successful if the server could successfully
verify U’s credentials as authentic and meeting the access control policy.

A secure anonymous biometric-based authentication scheme must satisfy the following:

Completeness: Every honest user should be able to successfully authenticate using her
biometric and credentials.

Soundness: A person without proper credentials should not be able to successfully
authenticate with more than negligible (in κ) probability after observing any (poly-
nomial) number of successful authentication protocols. Furthermore, any coalition
of valid users should not be able to gain access to more resources than what they
can already legitimately access with more than negligible probability.

Unlinkability: To satisfy anonymity requirements, we require that one should not be
able to determine with more than negligible probability whether two executions of
the authentication protocol correspond to the same user or different users.

Privacy of biometric: We require that in the case of compromise of a user’s device,
the information stored on it does not allow one to learn the credentials owner’s
biometric or successfully authenticate without the knowledge of it.

These properties are defined formally in section 4.2.
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2.2 Signatures with Protocols

We use signature schemes due to Camenisch and Lysyanskaya [12,13], which have two
protocols associated with them: (i) they allow a user to obtain a signature on a com-
mitted value without revealing that value to the signer; and (ii) they enable a user to
convince a third party that she possesses a signature on a certain value. The commit-
ment scheme used is the Pedersen commitment [32], in which the public parameters are
a group Gq of prime order q such that the discrete logarithm problem is hard in Gq and
generators g0, g1, . . . , g	. To compute a commitment to x1, . . ., x	 ∈ Zq , we randomly
choose r ∈ Zq and set com(x1, . . ., x	; r) = gr

0
∏	

i=1 gxi

i . This commitment is uncon-
ditionally hiding (i.e., com(x1, . . ., x	; r) reveals no information about x1, . . ., x	) and
is computationally binding (assuming that the discrete logarithm problem is hard in Gq ,
the sender cannot open the commitment to values other than x1, . . ., x	).

Then given a commitment com(x1, . . ., x	; r), it is possible obtain the signer’s
Camenisch-Lysyanskaya (CL) signature σ(x1, . . ., x	) without revealing any informa-
tion about the values x1, . . ., x	 to the signer. Furthermore, possession of σ(x1, . . ., x	)
allows its owner to use commitments to x1, . . ., x	 to prove to other parties that she has
the signer’s signature on the values included in the commitments without revealing addi-
tional information about the signed values themselves. If this protocol is combined with
a zero-knowledge proof that the values included in these commitments satisfy certain
properties, it becomes possible to convince a third party that the prover possesses a CL
signature that meets these conditions without disclosing additional information about
the signed values. The signature scheme [12] relies on the Strong RSA assumption for
its security. The scheme [13] relies on LRSW assumption in groups with bilinear maps.

2.3 Zero-Knowledge Proofs of Knowledge

Zero-knowledge proofs of knowledge (ZKPKs) allow one one party, the prover, to prove
to another, the verifier, the veracity of some statement without revealing to the verifier
any information besides the fact that it is valid. Prior literature provides efficient ZKPKs
for a variety of statements, with many efficient proofs being based on the discrete log-
arithm problem (see, e.g., [16,15,14,6,9]). ZKPKs used in our protocols are a proof of
knowledge of the discrete logarithm representation, equality of discrete logarithms, and
conjunction of two or more statements [15], solutions to which are well known. Verifi-
cation of context-specific user privileges might include other techniques such as, e.g., a
proof of knowledge that a committed values lies in an interval and others.

3 Biometric Key Generators

Before proceeding with our anonymous credentials scheme, we give a brief descrip-
tion of a biometric key generator (BKG), which is a system that allows one to pro-
duce a cryptographic key from a biometric and later reconstruct the key using the same
(noisy) biometric. Constructions for biometric key generators will be directly used in
our biometric-based anonymous authentication scheme, and the results presented in
this section have uses in both biometric key generation and our construction of non-
transferable anonymous credentials. In what follows, we assume that the system is first
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initialized using a security parameter κ, which is used to determine other parameters
and algorithms’ configurations (i.e., BKG-Setup algorithm is implicit).

BKG-Enroll: a probabilistic algorithm that, on input a user U’s identity and a biometric
representation W , outputs a cryptographic key K and public information or helper
data P that will aid key recovery. If the input does not meet certain criteria, the
algorithm might output a special failure symbol⊥.

BKG-KeyRec: a deterministic algorithm that, on input a biometric representation W ′

and helper data P , outputs either a cryptographic key K or a failure symbol⊥ if it
is unable to compute a key from its input.

Normally, during the enrollment phase, a cryptographic key is chosen anew and locked
with the biometric, or is derived from the biometric. The purpose of the helper data
is, given a noisy biometric image W ′, to correct the errors and permit unlocking or
derivation of the key. Recovery of the correct key is possible only if the biometric rep-
resentations W and W ′ are close enough, for some definition of distance specific to
the type of biometrics and BKG construction used. Helper data P is designed to leak
as little information about the biometric as possible, so that it can be assumed to be
non-private data.

Recent work of Ballard et al. [3] lists security properties that must hold for a BKG.
We define them next with the difference that we additionally require privacy of the
biometric to hold when a user U is enrolled in the system more than once using the same
(noisy) biometric and the same or a similar key generation mechanism. In other words,
we want biometric information remain protected when U’s key is lost or compromised
and it re-enrolls, when it legitimately assumes more than one role within the system, or
when it is enrolled at more than one system that use similar biometric key generators.

– Key randomness (REQ-KR): A key K contains sufficient amount of randomness
(based on the security parameter κ) and appears random to any adversary with
access to the helper data P used in deriving K and any auxiliary information.

– Weak biometric privacy (REQ-WBP): Given helper data P and any auxiliary in-
formation, any adversary does not learn useful information about the biometric W
used in generating P . Often the difficulty of recovering the entire biometric W can
be sufficiently well measured, but it is desirable that learning parts of the biometric
is also difficult (i.e., we might desire to prevent an adversary from learning any
function of the biometric).

– Strong biometric privacy (REQ-SBP): Given helper data P , any auxiliary infor-
mation, and the key K itself, any adversary does not learn any useful information
about the biometric W used in generating P . Similar to the above, we might require
that an adversary is unable to compute any function of the biometric.

In the above, the auxiliary information refers to any additional information that can
surround the system. Such information available to an adversary can contain biometric
data, corresponding helper data, and keys, not associated with the user in question.
It can also contain information about distributions of biometric data, implementation
decisions, and other information from the environment that can potentially weaken the
security of the keys or biometrics.
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In recent years, a large number of proposals for biometric key generators have been
developed. Examples of thoroughly analyzed and well studied constructions include
fuzzy vaults [25] (and work that builds on them [17,36,34,37,29,28,27,30]), secure
sketches and fuzzy extractors [21,7,26,8,20] (and work that builds on them [23,2,10,1]).
Many of them were designed and adapted to work on real data before the security re-
quirements were defined in the current form. For that reason, many existing construc-
tions and implementations would fail to achieve the strong biometric privacy require-
ment (and some proposals can fail other requirements as shown in [3]). Here we show
that property REQ-SBP is not hard to achieve if a BKG construction can meet the
REQ-WBP requirement.

Before we present our generic conversion from REQ-WBP to REQ-SBP, we first
need to provide more detail about how BKGs normally work. Secure sketches [21,20]
were introduced as a mechanism of correcting errors in noisy secrets (e.g., biometrics)
by releasing a helper string S that does not reveal a lot of information about the secret.
A secure sketch is generated using a “sketch” procedure SS that, given W , produces
a string S; and can be “recovered” using Rec that given W ′ and S, outputs W if the
distance between W and W ′, dist(W, W ′), in the appropriate metric space is at most
t. Secure sketches have been constructed for different types of metric spaces including
the Hamming distance (applicable to iris codes, which are represented as binary strings)
and set intersection (applicable to fingerprints represented as a set of points in a two-
dimensional plane). Security of a secure sketch is evaluated in terms of leakage of
biometric information associated with the release of helper data, i.e., the difference
between the “worst-case” entropy of W and the average minimum entropy of W after
the release of S.2 Since secure sketches are normally built using error-correcting codes,
the larger the number of errors that need to be corrected, the more redundancy needs to
be included in the code, and the less effective it is at protecting information about the
biometric stored in the helper data.

Fuzzy extractors allow one to extract randomness from W (for use in cryptographic
constructions) and later reproduce it exactly using different W ′ close to the original W .
A fuzzy extractor is generated by Gen that, on input W , outputs extracted random string
R and a helper string P ; and can be reproduced by Rep that on input W ′ and P outputs
R that was generated using Gen(W ) if dist(W, W ′) ≤ t. The security requirement
is such that, for any W with sufficient entropy, R is sufficiently close to a uniformly
chosen random string, even after observing the helper data P . A fuzzy extractor can be
built from a secure sketch as follows [21]: on input W , Gen executes S ← SS(W ) and
applies a strong extractor Ext to W to extract a random string R. S and random coins
used by Ext form the helper data P . Let r1 denote the random coins used by SS and r2
random coins used by Ext (i.e., execution is of the form SS(W ; r1) and Ext(W ; r2)).
We obtain P = (S, r2). Algorithm Rep(W ′, P ) uses S from P to recover the original
W (given that dist(W, W ′) ≤ t) and extracts R by computing Ext(W, r2). Fuzzy vault
is a secure sketch construction for the set intersection metric, so we will use secure
sketch and fuzzy extractor terminology in the rest of this paper.

One complaint regarding the theoretical work on biometric key generation is that
proposed solutions cannot tolerate realistic variations in the biometric signal such as

2 We refer the reader to [21] for precise definitions.
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variable-length representations, unordered or unaligned representations [35]. In fact,
the unlocking algorithm in the fuzzy vault implementation given by Uludag et al. [34]
produces many potential keys, one of which must be selected as authentic. Uludag et
al. [34] address this issue by adding some structure (i.e., redundancy) to the secret being
locked, thus weakening the hiding properties of the construction. Such variations in the
biometric, however, are not arbitrary and often key recovery still can be performed
using the proposed schemes. Thus, to aid recovery of the exact secret among several
candidates, we propose to ship helper data with a verification value that will permit
confirmation of the correct key. Adding a verification value computed using a one-
way function can cleanly avoid additional information leakage. Now we are ready to
describe our construction.

Assume that we are given a BKG (BKG-Enroll0, BKG-KeyRec0) that achieves
REQ-WBP, but BKG-KeyRec0 might output several key candidates rather than a single
key. Let f be a one-way function that hides all information about its inputs and let || de-
note string concatenation. We then simultaneously address key confirmation and strong
biometric privacy using the following construction:

BKG-Enroll(W )
1. Run (K0, P0)← BKG-Enroll0(W ).
2. Set P = (P0, f(K0||“0”)) and K = f(K0||“1”).
3. Output (K, P ).

BKG-KeyRec(W ′, P = {P1, P2})
1. Run BKG-KeyRec0(W

′, P1) to find a set K of candidate keys for K0.
2. For each k ∈ K, if f(k||“0”) = P2, set k = K0 and output K = f(K0||“1”).

Theorem 1. Given a BKG (BKG-Enroll0, BKG-KeyRec0) that satisfies REQ-WBP and
a one-way function f that hides information about its inputs, the above construction for
(BKG-Enroll, BKG-KeyRec) satisfies REQ-SBP.

Proof. The proof is straightforward. Given P = {P1, P2}, K and auxiliary information
aux, we need to show that an adversaryA does not learn useful information about W .
By the assumption that (BKG-Enroll0, BKG-KeyRec0) satisfies REQ-WBP,A does not
learn information about W from P1 and aux. The only other information available toA
is P2 and K , which, by our assumption, were produced using a one-way function that
hides information about its inputs. This means that A cannot gain information about
K0 or W from these data. �

4 Non-transferable Anonymous Credentials via Biometrics

Now we proceed with combining biometric key generators with anonymous creden-
tials to result in anonymous biometric-based authentication with non-transferable cre-
dentials. Recall that we want a user’s credentials to encode a cryptographically strong
value derived from the user’s biometric. This value is not stored with the credential (and
cannot be recovered from the credential) and must be recomputed from the biometric
on each use. To ensure that the value was actually derived from the biometric, we want
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the derivation procedure to be one-way, and a proof of derivation should be provided at
authentication time in zero knowledge.

In our construction of non-transferable anonymous credentials we crucially rely on
the following fact that holds true for known secure sketch constructions and allows us
to build a simple and efficient solution.

Fact 1. Let P ← SS(W ; r1), where r1 denotes the random choices the algorithm SS
makes. Then knowledge of W ′, such that dist(W, W ′) ≤ t, implies knowledge of r1 and
W . Furthermore, knowledge of r1 implies knowledge of W and therefore some W ′′

with dist(W, W ′′) ≤ t.

Since the trust requirement we place on the device is to enforce a fresh biometric read-
ing, it would be necessary to provide assurance that the key was actually derived from
W ′. Using the above fact, however, we have that knowledge of one of W , r1, and W ′ is
equivalent in presence of P . Thus, if an adversary is able to recover r1 or W from P and
then compromise the integrity of the device to avoid enforcing a new biometric scan,
it will be able to successfully produce W ′ and pass the verification procedures of the
protocol. The above fact then mitigates the need to provide expensive zero-knowledge
proofs of correct computation of W from W ′ (procedure Rec) and lets us enforce only a
proof that the key was derived from the original biometric W (and, as mentioned above,
we want the derivation process to be one-way). Fuzzy extractors were not explicitly de-
signed to be one-way and in fact are not guaranteed to be one-way (i.e., the underlying
randomness extractors do not have this property). Thus, we enforce the one-way re-
quirement of key derivation using the construction for REQ-SBP given in the previous
section. Note that in this case the REQ-SBP property is not as crucial as in the case of
BKGs, because with anonymous biometric-based authentication the derived key does
not leave the client; instead, one-wayness of the computation ensures the verifier that
the necessary value was actually derived from biometric data.

In our construction, we assume that fuzzy extractor parameters are chosen in such
a way as to output strings indistinguishable (to a polynomial-time distinguisher) from
strings chosen uniformly at random (for the appropriate choice of the security parame-
ter). That is, using the terminology of randomness extractors, we assume that the fuzzy
extractor is configured to output strings ε-close to uniform, where ε is a negligible func-
tion of the security parameter. See [31] for more detail. This makes the output suitable
for use in cryptographic protocols.

4.1 The Scheme

To be able to prove to the server that the computation was performed as prescribed,
the application of one-way function f must be verifiable in zero-knowledge. To achieve
this, we use the verifiable random function (VRF) of Dodis and Yampolskiy [22] to
implement f . This function is computed as y = fsk(x) = g1/(sk+x) over groups of
prime order with bilinear maps, where g is the group generator, sk is the secret key, and
x is the input to the function (which can be public); its security is based on q-DHI and
q-DBDHI assumptions (see [22] for more information). In particular, we will assume
that the verification value and the extracted key are computed as fsk(“0”) and fsk(“1”),
where sk is derived from W ′ and the fuzzy extractor helper data (and must meet the
requirements for f ).
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AC-Setup: On input security parameter 1κ, authority A sets up the group parameters and
its public-private key pair (pkA, skA) for the CL signature scheme. All values except
the signing key skA are stored in pub.

AC-Enroll :

1. Biometric W of user U is measured with small error, BKG-Enroll(W ) is executed
to produce (P, K), where P = (P ′, V ) such that (P ′, K ′) is the output of the fuzzy
extractor Gen algorithm and V = fK′(“0”) denotes the verification data.

2. U chooses z1 at random and sends commitment Z1 = gz1 to A.
3. A verifies the validity of the computation in step 1 and computes K = fK′(“1”).
4. A chooses random z2 and uses Z1 to compute commitment com(K, priv; z), where

z = z1 + z2 (i.e., both A and U contribute randomness, but the value of z will be
know only to the user).

5. A uses skA to produces signature σA(K, priv) and sends it and z2 to U .
6. U computes z = z1 + z2 and verifies the validity of the signature.
7. User U’s credentials cred = (P, priv, σA(K, priv)) are stored at his device.

Technically speaking, the signature here is a signature on values K , priv, and random
value z, and the value of z will be necessary for showing the validity of the signature.
Thus, it is implicitly assumed that this value is also stored with the user’s credentials.
With this setup, authority A learns biometrics and keys of users and is expected to erase
such information after the enrollment protocol. This does not permit A to distinguish
between different users at authentication time, but it might be desirable to prevent A
from learning user biometrics at all; we leave this as a direction for future work.

AC-Auth: A user U with a device holding credentials cred = (P, priv, σA(K, priv))
engages in interaction with a server S as follows:

1. The device scans the user’s biometric W ′, recovers K ′ using P ′ and confirms it
using V stored in cred. It then forms commitment C1 = com(K ′; z1).

2. The device computes K = fK′(“1”) and a commitment to it C2 = com(K; z2).
3. The device computes commitment C3 = com(priv; z3) using priv from U’s cre-

dentials.
4. The device sends to S C1, C2, C3, and performs the following ZKPKs:

(a) the opening of C2 corresponds to the result of applying function f to the open-
ing of commitment C1 and string “1”;

(b) U possesses A’s signature on the opening of C2 and C3 (more precisely, only
the parts of priv relevant for obtaining access to the resource);

(c) the opening of C3 satisfies the access control rules imposed by S.
5. S verifies all proofs in step 4, and if they pass, grants user U access to the resource.
6. The device erases all information captured and computed during the authentication

process (in particular, it is important that the device erases W ′ and all information
derived from it).

4.2 Security Analysis

In this section, we give a more detailed description of the security games and prove
security of the scheme.
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We model soundness as a game in which adversary A is allowed to corrupt users,
obtain access to their credentials cred, and engage in authentication protocols with the
server, as well as monitor authentication protocols of other (honest) users in the system.
Let U1, . . .,Un denote the set of users thatA controls and let credU1 , . . ., credUn denote
their corresponding credentials.Awins the game if it is able to successfully authenticate
to the server by forging credentials cred′U of a user U ′ it does not control or by gaining
access to more resources than what the corrupted users can already access (and possibly
authenticating as one of the users it controls). An authentication scheme is sound if A
has at most negligible advantage in winning this game.

One way to model unlinkability is to have a simulator Sim that can simulate a valid
execution of the authentication protocol without access to user information. Then no
information about the user is leaked if the server’s view after interacting with a valid
user is indistinguishable from its view after interacting with the simulator. The unlink-
ability game proceeds as follows: the adversaryA represents the authority A colluding
with the server S. It creates the authority’s private and public keys, enrolls all users,
and possibly corrupts some users obtaining full access to their credential information
(including random choices made at enrollment time). After that, A engages in a chal-
lenge authentication protocol with either a valid uncorrupted user or a simulator. We
say that unlinkability is achieved if, for any adversary A, it is able to correctly guess
whether it was communicating with a real user or a simulator with the probability at
most negligibly larger than 1/2.

To ensure biometric privacy, we let A obtain access to user credentials. ThenA who
is in possession of credentials credU1 , . . ., credUn should be unable to extract biometric
information of any of the users with high probability and successfully authenticate (on
behalf of one of them or as a non-existing user) without proper biometric data. This
property is required to hold even if A colludes with S.

Before showing security of the overall scheme, we provide a supplemental result.
Let σA(m1, . . ., m	; r) denote CL-signature with A’s key on values m1, . . ., m	 using
randomness r. That is, we make the random value used for hiding the messages explicit
in the representation of the signature.

Lemma 1. There exists a CL-signature scheme over group G such that, given a CL-
signature σA(m1, . . ., m	; r) and values m1, . . ., mj−1, mj+1, . . ., m	 for some 1 ≤
j ≤ � and r, it is infeasible for a polynomial-time adversary to determine mj , where
mj is drawn from a distribution indistinguishable from uniform to a polynomial-time
adversary, assuming that the discrete logarithm problem is hard. This holds even if the
signing key skA is known.

We omit the proof due to space considerations.

Theorem 2. Assuming the security of the CL-signature scheme and the verifiable ran-
dom function f , the scheme presented above is a secure anonymous biometric-based
authentication scheme in groups where the discrete logarithm problem is hard.

Proof. Completeness: this property can be shown to hold by examination.

Soundness: As previously described, we let adversaryA enroll in the system on behalf
of users and corrupt existing users. For the set of users U1, . . .,Un that A controls, we
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assume that not only A has access to their credential information credUi , but can also
obtain access to information not stored in the credentials. In particular, we assume that
A can have access to key K for each user it controls. Let K(i) denote the key belonging
to userUi. To violate soundness of the scheme,A then will either attempt to authenticate
using invalid K ′ or using one of valid K(i) with privileges Ui does not have.

In the first case,A has to produce a proof that either it knows the authority’s signature
on openings of C2 and C3 or it has to correctly form the zero-knowledge proof in
step 4(a) of the AC-Auth using K ′ of A’s choice. The former can happen only with a
negligible probability assuming that CL-signatures are secure, and the latter can also
happen only with a negligible probability assuming that the function f is secure.

In the second case, A attempts to authenticate using K(i) and privileges Ui does not
have. The only way forA to achieve this is to produce a proof that it knows the author-
ity’s signature on openings of C2 and C3, which can happen with at most negligible
probability.

Unlinkability: LetA be the adversary defined for the unlinkability game that represents
the colluding A and S (and thus has access to enrollment information). During the
challenge, A is asked to engage in an authentication protocol with either a real user U
or a simulator Sim without access to any user information. Our simulator engages in
the authentication protocol by performing the following steps:

1. Sim chooses K ′ at random, computes K = fK′(“1”), and produces commitments
C1 = com(K ′; z1) and C2 = com(K; z2).

2. Sim selects privileges priv and computes commitment C3 = (priv, z3).
3. Sim produces a zero-knowledge proof that the opening of C2 corresponds to the

result of applying f to the opening of C1, which we denote by π1.
4. Sim produces a simulated proof of knowledge, π2, of a CL-signature from the

authority on the openings of C2 and C3. This requires usage of the corresponding
simulator of CL-signatures.

5. Sim produces a proof π3 that the opening of C3 satisfies the access control rules.

At the end of this interaction, A obtains (C1, C2, C3, π1, π2, π3). We next argue that
A’s view during interaction with a simulator is indistinguishable from its view when
interacting with a real user.

The commitments C1, C2, and C3 information-theoretically hide the values encoded
in them, and therefore the values Sim chooses are indistinguishable from those chosen
by real users. The proofs π1 and π3 produced by the simulator are real proofs of knowl-
edge and thus are indistinguishable from a user’s proofs. Finally, the (simulated) proof
π2 differs from a real proof of knowledge of a CL-signature, but due to the security of
CL-signatures,A can distinguish between a real and simulated proofs only with a neg-
ligible probability. Therefore, A can distinguish between real and simulated protocol
executions with at most negligible probability, as required.

Privacy of biometric: Let A be in possession of credentials credU1 , . . ., credUn . Since
biometric information encoded in each user credential is independent of information
included in credentials of other users, A does not gain additional advantage in im-
personating a user or recovering her biometrics by using information in other creden-
tials, and we consider attacking a user by using only her own credentials. We have
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credU = (σA(K, priv; z), z, P ′, V, priv). For A to impersonate the user, it has to ei-
ther recover K from credU or authenticate without knowledge of K . Lemma 1 states
that the former is infeasible when K is indistinguishable from a random value (which
in our case is true due to pseudo-randomness of output of function f that we use to
produce K), and the soundness property states that the latter is infeasible. To be able to
recover U’s biometric from the credentials, the only way for A to do this is to recover
the biometric (or other information that leads to recovery of the biometric) from P ′.
Assuming that a secure biometric generator is used to produce P ′, A can be successful
only with a small probability. �

5 Practical Considerations

The purpose of this section is to assess the feasibility of applying theoretical crypto-
graphic techniques to empirical biometric data, as proposed in this work. We use iris
codes as an example biometric. The two main questions we would like to address is (i)
whether biometric key generation from iris codes is feasible, and (ii) whether key ma-
terial extracted from iris codes can satisfy the requirements of the cryptographic tools.

In regards to the first question, the work of Hao et al. [23] was able to achieve a no-
table step toward biometric key generation by constructing a secure sketch for iris data.
The construction used nested error-correcting codes and was able to achieve excellent
key recovery rates. In particular, it used Hamming distance over binary strings as the
metric with two types of error-correcting codes. A disadvantage of any secure sketch
based approach is that correcting a large number of errors can cause the public data
to potentially leak a lot of information about the biometric. In particular, as described
in section 3, the current techniques give only worst-case information leakage analysis,
which is measured as the loss of entropy after the release of the public data. Then to
correct 10% of errors in a 2048-bit iris code, up to 411 bits of entropy can potentially be
leaked. An iris code, however, is estimated to have about 250 degrees-of-freedom [18],
and a noticeably higher error rate for authentic codes must be tolerated.

A natural way to lower the entropy loss in this case is to attempt to reduce the noise.
A pioneering work on biometric-based authentication of Davida et al. [19] gave the idea
of reducing the noise by acquiring multiple samples and performing majority decoding
to create a single image with low noise. That is, during both the enrollment and key
recovery stages, the algorithms take a number of biometric readings W1, W2, . . ., Wm

rather than a single one, and create a single representation W using majority compu-
tation that more accurately represents the corresponding biometric. This technique is
believed to be effective, and was recently empirically evaluated on iris codes in [4].
For a realistic bound of error tolerance of 30% [35,23], the theoretical approach signif-
icantly reduces the error (e.g., to 5% if 15 scans were used), while in practice the error
was shown not to go lower than 16–18% [4], which is still a significant improvement.
Other techniques for reducing noise also exist (e.g., scanning both eyes instead of a sin-
gle one for iris recognition), which can be combined to result in even lower error rates.
This means that the entropy loss will become tolerable when the error rate is reduced
to a rather small value. We emphasize that the entropy-based analysis is only an upper
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bound on the information leakage that we can compute rather than a close estimate, and
the latter is likely to be significantly lower.

Now with respect to the second question raised above, we have already seen that
iris codes can be assumed to have at least 250 bits of entropy. Currently known con-
structions of extractors extract all of the randomness from a source [31] assuming a
sufficient number of additional truly random bits (which in our case are supplied as
a part of the public information in sufficient quantity). This means that we can extract a
250-bit random string from an iris code. Our construction is built using groups over el-
liptic curves with bilinear pairings for which using a 160–190-bit modulus is sufficient.
Thus, a random string extracted from a biometric has sufficient amount of randomness,
and we will be able to construct the key exactly as prescribed by the protocol.

In addition to the above concerns, recent work of Simoens et al. [33] shows that ex-
isting constructions of secure sketches and the keys produced by fuzzy extractors that
rely on them might not meet security requirements sought of encryption keys. In partic-
ular, the release of public data might allow one to link together ciphertexts belonging to
the same individual (i.e., generated using keys produced from related biometrics). This
threat, however, does not exist in our framework because the public data always stays
with the client and the authentication protocol does not leak any information that can
be linked to the individual.

6 Related Work

Related work on biometric-based key generation is very extensive, especially publi-
cations at biometric-related venues, and its survey is beyond the scope of this work.
Anonymous credentials where biometric data are used for non-transferability are known
in prior literature. They were first introduced by Bleumer in [5], and later expanded
upon by Impagliazzo and More in [24]. The construction of Bleumer is based on the
“Wallet with Observer” protocol originally constructed by Chaum and Pedersen for
achieving the properties of non-transferability and privacy-protection. The second paper
extends and formalizes these results, and adds the feature of revoking credentials. Such
“Wallet with Observer” architecture, which is used in both of these works, however,
requires non-trivial tamper-resistant hardware that runs trusted processes and executes
parts of cryptographic protocols.

Other approaches to achieving non-transferability include encoding external sensi-
tive information, e.g., credit card numbers, into the credentials (see, e.g., [11]). Then,
when such credentials are used, the owner must prove knowledge of said information
to the verifier. While such information may be shared by close relatives or friends who
will be able to use the credentials on behalf of the owner, such sharing is often accept-
able to service providers, and their goal is to prevent large-scale sharing of credentials
(by, e.g., posting credentials on a Web page). The above approach assumes that the
credential issuer will have access to a large quantity of external or otherwise sensitive
information about the user that can be included in the credential. When, however, such
information is not readily available, alternative solutions must be sought. The current
framework provides such an alternative.
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7 Conclusions

This work examines most researched techniques for extracting keys from biometric
data and their use in cryptographic applications. We first provide a generic mechanism
of enhancing biometric privacy protection of biometric key generators. We then build on
biometric key generators to construct anonymous credentials, where biometric is used
to ensure non-transferability of user credentials. Unlike previous proposals, we target
at making minimum trust assumptions on the execution environment: we only require a
fresh biometric to be captured on each use of such credentials. Then even if tampering
with the user device results in full access to the information stored on it, this does not
lead to weakening the security guarantees nor compromises the biometric, even in the
event of collusion of multiple participants.

The scope of this work could not cover all schemes for biometric key generation
and could not provide their thorough analysis with respect to security and re-usability.
Thus, we leave it to future work to analyze the security of different BKG constructions
and different metric spaces and determining which constructions would provide the best
security guarantees for a particular type of biometric data.

Acknowledgments

This work benefited from discussion regarding biometrics with Karen Hollingsworth,
Patrick Flynn, and Kevin Bowyer.

References

1. Arakala, A., Jeffers, J., Horadam, K.: Fuzzy extractors for minutiae-based fingerprint authen-
tication. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 760–769. Springer,
Heidelberg (2007)

2. Bakhtiari, A., Shirazi, A., Zamanlooy, B.: An efficient biocryptosystem based on the iris
biometrics. In: Mery, D., Rueda, L. (eds.) PSIVT 2007. LNCS, vol. 4872, pp. 334–345.
Springer, Heidelberg (2007)

3. Ballard, L., Kamara, S., Reiter, M.: The practical subtleties of biometric key generation. In:
USENIX Security Symposium, pp. 61–74 (2008)

4. Blanton, M., Aliasgari, M.: Secure computation of biometric matching. Technical Report
2009–03, Department of Computer Science & Engineering, University of Notre Dame (2009)

5. Bleumer, G.: Biometric yet privacy protecting person authentication. In: Aucsmith, D. (ed.)
IH 1998. LNCS, vol. 1525, pp. 99–110. Springer, Heidelberg (1998)

6. Boudot, F.: Efficient proofs that a committed number lies in an interval. In: Preneel, B. (ed.)
EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444. Springer, Heidelberg (2000)

7. Boyen, X.: Reusable cryptographic fuzzy extractors. In: ACM Conference on Computer and
Communications Security (CCS 2004), pp. 82–91 (2004)

8. Boyen, X., Dodis, Y., Katz, J., Ostrovsky, R., Smith, A.: Secure remote authentication using
biometric data. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 147–163.
Springer, Heidelberg (2005)

9. Bresson, E., Stern, J.: Proofs of knowledge for non-monotone discrete-log formulae and
applications. In: Chan, A.H., Gligor, V.D. (eds.) ISC 2002. LNCS, vol. 2433, pp. 272–288.
Springer, Heidelberg (2002)



Biometric-Based Non-transferable Anonymous Credentials 179

10. Bringer, J., Chabanne, H., Cohen, G., Kindarji, B., Zemor, G.: Optimal iris fuzzy sketches.
In: IEEE BTAS, pp. 1–6 (2007)

11. Camenisch, J.L., Lysyanskaya, A.: An efficient system for non-transferable anonymous cre-
dentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EUROCRYPT 2001.
LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)

12. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient revo-
cation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp.
61–76. Springer, Heidelberg (2002)

13. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials from bi-
linear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 56–72. Springer,
Heidelberg (2004)

14. Camenisch, J., Michels, M.: Proving in zero-knowledge that a number is the product of two
safe primes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 107–122. Springer,
Heidelberg (1999)

15. Camenisch, J., Stadler, M.: Proof systems for general statements about discrete logarithms.
Technical Report No. 260, ETH Zurich (1997)

16. Chaum, D., Evertse, J.-H., van de Graaf, J.: An improved protocol for demonstrating pos-
session of discrete logarithms and some generalizations. In: Price, W.L., Chaum, D. (eds.)
EUROCRYPT 1987. LNCS, vol. 304, pp. 127–141. Springer, Heidelberg (1988)

17. Clancy, T., Kiyavash, N., Lin, D.: Secure smartcard-based fingerprint authentication. In:
ACM SIGMM Workshop on Biometrics Methods and Applications, pp. 45–52 (2003)

18. Daugman, J.: How iris recognition works. IEEE Transactions on Circuits and Systems for
Video Technology 14(1), 21–30 (2004)

19. Davida, G., Frankel, Y., Matt, B.: On enabling secure applications through off-line biometric
identification. In: IEEE Symposium on Security and Privacy, pp. 148–157 (1998)

20. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate strong
keys from biometrics and other noisy data. SIAM Journal of Computing 38(1), 97–139
(2008)

21. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate strong keys from biomet-
rics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 523–540. Springer, Heidelberg (2004)

22. Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and keys. In:
Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer, Heidelberg (2005)

23. Hao, F., Anderson, R., Daugman, J.: Combining crypto with biometrics effectively. IEEE
Transactions on Computers 55(9), 1081–1088 (2006)

24. Impagliazzo, R., Miner More, S.: Anonymous credentials with biometrically-enforced non-
transferability. In: ACM Workshop in Privacy in the Electronic Society (WPES 2003), pp.
60–71 (2003)

25. Juels, A., Sudan, M.: A fuzzy vault scheme. In: International Symposium on Information
Theory (2002)

26. Juels, A., Wattenberg, M.: A fuzzy commitment scheme. In: ACM Conference on Computer
and Communications Security, pp. 28–36 (1999)

27. Lee, S., Moon, D., Jung, S., Chung, Y.: Protecting secret keys with fuzzy fingerprint vault
based on a 3d geometric hash table. In: Beliczynski, B., Dzielinski, A., Iwanowski, M.,
Ribeiro, B. (eds.) ICANNGA 2007. LNCS, vol. 4432, pp. 432–439. Springer, Heidelberg
(2007)

28. Lee, Y.J., Bae, K., Lee, S.J., Park, K.R., Kim, J.: Biometric key binding: Fuzzy vault based
on iris images. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 800–808.
Springer, Heidelberg (2007)



180 M. Blanton and W.M.P. Hudelson

29. Nagar, A., Chaudhury, S.: Biometrics based asymmetric cryptosystem design using modified
fuzzy vault scheme. In: International Conference on Pattern Recognition (ICPR 2006), pp.
537–540 (2006)

30. Nandakumar, K., Jain, A., Pankanti, S.: Fingerprint-based fuzzy vault: Implementation
and performance. IEEE Transactions on Information Forensics and Security 2(4), 744–757
(2007)

31. Nisan, N., Ta-Shma, A.: Extracting randomness: A survey and new constructions. Journal of
Computer and System Sciences 58, 148–173 (1999)

32. Pedersen, T.: Non-interactive and information-theoretic secure verifiable secret sharing. In:
Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg
(1992)

33. Simoens, K., Tuyls, P., Preneel, B.: Privacy weaknesses of biometric sketches. In: IEEE
Symposium on Security and Privacy, pp. 188–203 (2009)

34. Uludag, U., Pankanti, S., Jain, A.K.: Fuzzy vault for fingerprints. In: Kanade, T., Jain, A.,
Ratha, N.K. (eds.) AVBPA 2005. LNCS, vol. 3546, pp. 310–319. Springer, Heidelberg (2005)

35. Uludag, U., Pankanti, S., Prabhakar, S., Jain, A.: Biometric cryptosystems: Issues and chal-
lenges. Proceedings of the IEEE 92(6), 948–960 (2004)

36. Yang, S.: Secure fuzzy vault based fingerprint verification system. In: Asilomar Conference
on Signals, Systems, and Computers, vol. 1, pp. 577–581 (2004)

37. Yang, S., Verbauwhede, I.: Automatic secure fingerprint verification system based on fuzzy
vault scheme. In: ICASSP, pp. 609–612 (2005)



Secure Remote Execution of Sequential Computations

Ghassan O. Karame, Mario Strasser, and Srdjan Čapkun
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Abstract. We describe a scheme that secures the remote execution of sequen-
tial computations in grid-computing scenarios. To the best of our knowledge, this
is the first contribution that addresses the security of generic sequential compu-
tations. By dividing sequential tasks into smaller subtasks and permuting them
among participants, we show that our scheme facilitates the insertion of selective
redundancy and/or pre-computed functions (ringers) that are indistinguishable
from other computations. We analyze the security of this proposal and we demon-
strate that our scheme enables the detection of individual and colluding malicious
participants. In addition, we show that our scheme can be equally used to securely
track the progress of remote execution. We further investigate the damages intro-
duced by possible chaining of errors within the remote execution and we discuss
recovery mechanisms to counter these challenges. We validate our findings both
analytically and empirically via simulations.

1 Introduction

The recent years have witnessed an increasing development of distributed computing
platforms that leverage on the idle computing power of volunteer hosts (SETI@home [1],
Distributed.net [2]) to run computationally expensive tasks on behalf of academic re-
search groups, industry labs and even individual clients.

However, the open and untrusted environment in which these distributed computa-
tions are performed tends to cast suspicion on the results returned by the participants of
these platforms. For instance, it is often the case that a participant (the task supervisor),
that wishes to run a computationally expensive task, recruits several other nodes that
agree to execute the task on its behalf in exchange of some form of reward (e.g., mon-
etary remuneration). In typical scenarios, the supervisor has a limited computational
capability and, therefore, cannot afford to check the computations itself.

One important challenge to address therefore is designing secure and efficient mecha-
nisms to check the correctness of remote computations with minimum verification over-
head. Although there is a large body of studies that address the security of distributed
systems, there are few contributions that deal with the security of remote computations
(e.g., [4], [5], [7]). With the exception of reputation/voting-based solutions [15], [16],
[17], [18], an even smaller subset of these works proposes practical and efficient solu-
tions to securely verify the execution of generic classes of sequential computations [4].
The latter class mainly refers to those sequential functions used in practice that are not
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necessarily repetitive, yet too computationally expensive to be run on the supervisor’s
machine (e.g., extensive simulations). The main challenge in securing these functions
resides in the direct relation between intermediate results which might limit the num-
ber of viable countermeasures that can be used to prevent possible misbehavior dur-
ing execution. Namely, the sequential nature of these computations prevents the use
of selective embedded “security checks” (e.g., pre-computed functions or ringers [4])
within the flow of computations. Currently, the only known method to efficiently verify
(with low overhead) remote sequential computations is by relying on sample redun-
dancy (e.g., [5]). However, this method is not entirely secure against collusion between
malicious entities.

In this work, we propose a probabilistic scheme that secures sequential computa-
tions, in spite of collusion among malicious hosts. To the best of our knowledge, this is
the first contribution that addresses this problem and that demonstrates that the ringer
scheme – initially proposed by Golle et al. in [4] to secure parallel computations – can
be equally used to efficiently secure their sequential counterpart. Another important aim
of our work is to provide a practical framework that enables the supervisor to efficiently
recover from possible misbehavior in the execution of its tasks. The major challenge in
executing sequential computations is that a single erroneous intermediate computation
renders the results of the entire sequential task useless to the supervisor. While several
contributions rely on the use of selective sampling to check the credibility of remote
hosts, as far as we are aware, no prior work has tackled the problem of efficiently re-
covering from undetected erroneous computations. In this paper, we address this issue
and we show that by capitalizing on the high detection rate of our scheme, the correct-
ness of the sequential functions can be ensured with a modest overhead in execution
time. Our contributions in this work are summarized as follows:

- We show that by breaking each task into smaller pieces and by permuting the result-
ing subtasks among different participants, the supervisor can efficiently make use of
indistinguishable pre-computed functions (or “ringers” [4]), combined with selective
redundancy to probabilistically secure and track the remote executions of its sequen-
tial tasks. We validate our findings both analytically and empirically via extensive
simulations.

- We evaluate the robustness of our proposal in practical settings and we discuss effi-
cient solutions that enable the supervisor to recover from possible tampering with the
execution of its tasks. We further analyze the resilience of our scheme to chaining of
errors caused by incorrect intermediate results.

The remainder of this paper is organized as follows. In Section 2, we briefly overview
the related work in the area. In Section 3, we present our solution and we analyze
its resilience against individual and colluding malicious participants. In Section 4, we
analyze efficient solutions that enable the supervisor to remotely ensure the correctness
of its executing tasks and to counter possible chaining of errors caused by intermediate
incorrect computations. In Section 5, we discuss further insights with respect to our
scheme and we conclude the paper in Section 6.
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2 Related Work

A comprehensive survey in the area of result-checking and self-correcting programs can
be found in [6]. Golle et al. propose in [4] to secure a specific class of parallel problems:
inverse one-way functions (IOWF), where participants are required to compute the pre-
images of several one-way functions. Their solution relies on inserting special-purpose
ringers in each task. These correspond to the pre-computed images of randomly chosen
elements. In [5], Szajda et al. extend this solution to secure non-sequential optimiza-
tion problems and Monte Carlo simulations. In addition, the authors briefly propose
assigning selective redundancy to secure repetitive sequential functions. Golle et al. fur-
ther propose in [7] a security framework for commercial distributed computations that
equally relies on selective redundancy. They further analyze the impact of varying the
distribution that dictates the application of redundancy among participants. Similarly,
Du et al. discuss in [10] a scheme that uses sampling techniques along with a Merkle-
tree based commitment technique to secure non-sequential distributed problems in grid
computing. Goodrich et al. discuss in [11] mechanisms to duplicate tasks among partic-
ipants in grid computing applications as a mean to efficiently counter collusion among
malicious participants.

Sanders et al. suggest computing with encrypted functions to provide security for
mobile agents [8]. The major drawback of this proposal lies, however, in the fact that
it might be very difficult to create encryption functions that result in correct executable
procedures. Vigna et al. propose a mechanism based on execution tracing to protect
the execution of mobile agents [9]. In [12], Yang et al. describe a method that uses the
program counter values to monitor remotely executing computations. The supervisor,
then, checks sample computations in order to detect possible misbehavior.

Several other proposals suggest the use of tamper-proof hardware/software [13] to
prevent possible tampering with the results of the computations. However, tamper-proof
software/hardware comes at high implementation costs nowadays. Another solution to
the problem we consider in this paper would be for the supervisor to send an obfus-
cated executable code; however, existing code obfuscation techniques can only result in
modest, best-effort efficacy nowadays [14].

3 Secure Verification and Tracking of Remote Execution

In this section, we describe our scheme that enables secure verification and tracking of
the execution of sequential computations. and we analyze its resilience against individ-
ual and colluding malicious participants.

3.1 System and Attacker Model

Our computing platform consists of a supervisor interested in remotely running several
sequential tasks (e.g., exhaustive simulations) on the machines of multiple participants.
We assume that participants have considerable incentives to execute the tasks on behalf
of the supervisor (e.g., in exchange of recognition, monetary reward). Detailed analysis
of such incentive mechanisms is beyond the scope of this paper.
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Individual tasks are independent of each others. However, each task can be divided
into smaller sub-tasks that can be solved in a reasonable amount of CPU time. That is,
owing to its sequential nature, a task function f(x) = (g ◦h◦ j ◦k...)(x) can be divided
into the sequential individual components g(), h(), etc.. The supervisor can directly
extract these sub-functions from the original code (e.g., subroutines) or, alternatively,
the supervisor can use available tools that decompose a code piece into smaller sub-
routines according to its control flow structure. Note that our analysis equally covers
the case of multiple inputs per function. We further assume secure communication be-
tween the supervisor and the participants and we abstract away the peculiarities of the
communication channel, such as delays, congestion, jitter, etc..

We assume the existence of one or multiple malicious participants. These participants
possess technical skills by which they can efficiently analyze, decompile, and modify
executable code as necessary. Furthermore, these participants have knowledge of the
measures used by the supervisor to prevent potential tampering with the computations.

In our analysis, we assume that malicious participants are motivated to cheat in order
to obtain credit without performing all of their assigned work. For instance, a selfish
participant might only execute 50% of its assigned job and defect from running the rest
of its tasks. In the mean time, it might decide to use its resources to run another task by
a different participant to increase its benefit in the network. Here, two or more malicious
participants might collude to increase their chances of not being detected.

Similar to [4], [5], [10], we do not consider the case where a malicious participant
cheats only once in an attempt to disturb the computations (for personal gain or to
achieve some e.g., political goal). To the best of our knowledge, with the exception of
re-checking every subtask or relying on tamper-resistant software, little can be done by
the supervisor to counter this threat. In this work, we assume, however, that untrusted
participants are motivated to cheat in a considerable number of subtasks (e.g., > 10%).

3.2 Securing the Remote Execution of Sequential Tasks

We assume that the supervisor is interested in executing N distinct and independent
tasks on the remote machines of P different participants. Our scheme described here-
after can be applied to arbitrarily chosen N and P such that N ≤ P . Our scheme for
securing the remote execution of N tasks unfolds as follows:

1. The supervisor first divides each task into M smaller subtasks. This can be achieved
by decomposing the composite function of the task into its smaller functional com-
ponents. Alternatively, the subtasks could be obtained by extracting the control flow
structure of the task function. Note, here, that the subtasks do not necessarily have
to be of the same computational length. The supervisor then proceeds to running
the N tasks on the machines of P participants in M consecutive rounds as shown
in Figure 1.

2. In round i, the supervisor picks an idle participant and according to some proba-
bility, it decides to verify its credibility by inserting “security checks” within the
computations; otherwise it randomely assigns to the participant a pending subtask.
In our scheme, the supervisor evaluates the credibility of a participant by requesting
that it runs a subtask whose results are already known to the supervisor (a ringer) or
by redundantly assigning the same subtask to another participant. We show later that
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this process is transparent to participants and that they cannot distinguish whether
they are running a legitimate subtask or whether their work is being checked by the
supervisor. Round i ends when all N participants are assigned to a job. In this way,
the supervisor checks the work of several participants in each round.

3. At the beginning of round i + 1, the supervisor collects the results reported by the
participants and checks the correctness of the ringers and the redundantly assigned
subtasks. If these verifications pass, the supervisor re-permutes the next logical
subtasks (since each task is sequential) among the participants that are considered
to be honest while using the corresponding outputs of the last round as inputs to
the subtasks of this round. Otherwise, if the supervisor detects inconsistent results,
it stops interacting with the malicious node1.

4. The supervisor repeats Steps 2) and 3) until all subtasks are executed.

Before analyzing the security of our proposal, we first describe the main rationale be-
hind our approach.

Fig. 1. N tasks assigned to P participants. Each
box denotes a subtask. The notation “Subtask X-
Y” refers to subtask # Y of task # X. The dark gray
boxes refer to “ringer” subtasks (pre-computed
subtasks whose result is known to the supervisor)
and the boxes with shaded borders refer to redun-
dantly assigned subtasks.

The Main Intuition: The main intu-
ition behind our proposal relies on the
fact that by randomly permuting the ex-
ecution of N different tasks, the super-
visor gains a considerable advantage in
securing their remote execution when
compared to the scenario that features
a single executing task.

The major challenge in securing se-
quential tasks resides in the fact that
the output of one subtask is the input to
the next consecutive subtask. This lim-
its the number of viable “tricks” that
the supervisor can make use to pre-
vent participants from cheating. Note
that redundant computations might
not solely achieve a desired level of
security in scenarios where collusion
between malicious participants is pos-
sible. In this case, the supervisor might
have to accept the burden of checking
sample computations itself.

By permuting N different tasks
among P participants (Figure 1), the
sequential property of the tasks becomes largely transparent to the participants. This en-
ables the supervisor to embed pre-computed indistinguishable “checks”, ringers, within
the subtasks assigned to participants. Ringers were first proposed in [4] to secure a

1 It is out of the scope of this paper to discuss mechanisms to isolate malicious participants from
the network. The supervisor can make use of cryptographic proofs to inform a central authority
of its opinion about participants (e.g., [20]).



186 G. Karame, M. Strasser, and S. Čapkun

special class of non-sequential inverse one-way functions. Provided that ringers are in-
distinguishable to participants from other subtasks, they provide a strong form of prob-
abilistic security to remote computations. In fact, since ringers can be directly verified
by the supervisor, they are resilient to collusion between malicious participants and do
not incur computational burden on the supervisor, which makes them ideal for real-time
grid-computing applications.

Generating Indistinguishable Ringers: In our scheme, ringers could be constructed
from previously executed tasks. We point that a poor choice of ringer candidates might
allow malicious colluding participants to abuse our scheme. If ringer subtasks were
completely independent from each other, then malicious participants can collude and
analyze the input/output of each subtask they execute: if the input of one subtask was
provided previously by another participant, colluding participants could identify that
the subtask in question is not a ringer subtask and that it pertains to a genuine task.
As mentioned previously, if the supervisor uses previously executed tasks (or any “rea-
sonable” executable code) as ringer tasks, the corresponding ringer subtasks are likely
to share comparable computational workload when compared to other subtasks while
inherently exhibiting a similar relation between its inputs and outputs. This would in-
deed ensure that the inserted ringers cannot be distinguished from other subtasks in the
system, in spite of collusion among malicious participants.

Let the random variable X denote the number of subtasks pertaining to the same
task run by the same participant. In our scheme, the probability that a participant runs
at most one subtask pertaining to each task (X ≤ 1) in M execution rounds is:

P [X ≤ 1] =
i=1
∑

i=0

(

M

i

)(

1
N

)i(

1− 1
N

)M−i

, (1)

where N is the number of required tasks to be run. In Figure 2, we plot P [X ≤ 1] with
respect to different values of N . Equation 1 suggests that by randomly permuting tasks
and their corresponding subtasks among the participants in the system, the probability
that a participant cannot distinguish which task it is actually running in each execution
round is satisfactorily large (> 0.7) given a reasonable number of participants and tasks
in the system (N ≤ P ). This suggests that it is highly unlikely for participants to estab-
lish a correlation between different tasks. Since participants do not know the number of
tasks in the system, the supervisor can take advantage of this fact and probabilistically
requests that participants run ringer subtasks. Recall that once the supervisor detects a
malicious participant, it stops interacting with the detected node.

To ensure an acceptable level of security, the number of embedded ringers should be
considerable when compared to the number of subtasks executed per participant (typi-
cally > 20%). However, depending on the nature of the supervisor tasks (e.g., repetitive
tasks such as in the GIMPS project [3]), finding a large number of ringers might be pro-
hibitively expensive [5]. To address this issue, the supervisor can combine the use of
ringers along with sample redundancy. For example, if the supervisor needs to ran-
domly check 40% of a participant’s work and possesses a number of ringer candidates
that only account for 20% of the number of subtasks per participant, then the supervi-
sor can redundantly assign 20% of the subtasks to achieve its desired level of security.
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Fig. 2. Probability that a participant runs at
most one subtask pertaining to each task. Here,
we assume that the number of subtasks per task
is equal to the number of available tasks.

M PC PR PP PM Overhead P

10 0.7 0.15 0.15 0.2 30% 0.88
10 0.9 0.15 0.15 0.2 30% 0.94
20 0.5 0.15 0.15 0.2 30% 0.95
20 0.5 0.25 0.25 0.2 50% 0.99
20 0.5 0.15 0.15 0.4 30% 0.92
20 0.5 0.2 0.1 0.4 30% 0.94
50 0.5 0.2 0.2 0.2 40% 0.999

Fig. 3. Probability of detecting malicious
participants with respect to different input
parameters. M is the the number of sub-
tasks per task.

We show in the following subsection that this combination remains, to a large extent,
resilient to collusion between malicious participants.

Coordination and Synchronization Overhead: Similar to [5], our scheme incurs an
increased workload on the supervisor since it has to coordinate the permutation of sub-
tasks among participants “on the fly”. Given a modest number of tasks and participants
(typically < 50), this process can be made very efficient in real-time settings through
an automated interface that coordinates the computations between participants. In Sec-
tion 3.4, we discuss in greater details the benefits of this solution. Furthermore, subtask
permutation might require loose synchronization among the participants’ machines to
efficiently manage the time cost of computations. However, since the supervisor will
presumably pick those participants with considerable computing performance, synchro-
nization costs are likely to be satisfactorily negligible. Note that the synchronization
costs in our scheme can be further minimized if the supervisor makes use of an optimal
assignment of subtasks to participants that optimizes the total execution time. In Sec-
tion 4.1, we show via simulations that our proposed scheme performs well even in the
case when the subtasks are assigned to participants at random. Note that our scheme
does not induce any additional communication overhead on the supervisor; the super-
visor would have the same communication burden even if it would send the full tasks
to the participants.

3.3 Security Analysis

Throughout our analysis, we make the worst case assumption that malicious partici-
pants will always collude with each other. That is, if the supervisor redundantly assigns
subtasks to two or more malicious nodes, we assume that they will coordinate their
results to avoid being detected. We further assume that the distribution of ringers and
redundant subtasks is uniform per subtask. This suggests that the best strategy of a ma-
licious participant to decrease the likelihood that it gets caught is to equally follow a
uniform distribution of cheating per subtask. In case the supervisor detects inconsis-
tencies between the results of the redundantly assigned subtasks without being able to
determine the genuine subtasks’ outcome (i.e., with the absence of majority consen-
sus), we assume in our analysis that it will proceed to re-run the corresponding subtasks
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(Section 4) to increase its confidence in their correctness. We do acknowledge that there
might exist methods to redundantly assign subtasks among participants that might per-
form better than uniform distributions [11]; however, we show in this work that even
the simplistic random redundancy achieves a satisfying level of security when com-
bined with ringers. We point that the supervisor is not likely to benefit by choosing
biased distributions in verifying the job of participants since these latter might change
their cheating strategies accordingly in order to increase their gain. We, nevertheless,
briefly discuss in Section 5 the implications of choosing non-uniform distributions on
the performance of our scheme.

On the other hand, in our scheme, assuming that a malicious participant cheats with
probability PC per subtask and that the supervisor inserts an indistinguishable ringer
with probability PR per subtask or redundantly assigns the same subtask to another
node with probability PP , then the probability PT of catching a malicious participant
in a single subtask is given by: PT = PC(PR + PP (1− PM )).
Here, subtask redundancy will only be beneficial when the supervisor picks an honest
participant (with probability (1−PM ), where PM is the fraction of malicious nodes in
the network).

Assuming that each participant is required to execute at least M different subtasks,
then the probability that the supervisor catches potential misbehavior in our scheme is
computed as follows:

P = 1− (1− PT )M = 1− (1− PC(PR + PP (1− PM )))M . (2)

Table 3 shows the probability of detecting a malicious participant with respect to vari-
ous input parameters. As PC increases, the probability to detect a malicious participant
equally increases; in the case where malicious participants always cheat in their sub-
tasks, the probability that they get detected in our scheme approaches 1. Note that the
higher is the number of inserted ringers and/or redundant computations, the higher is the
level of assurance in the correctness of the computations and the higher is the induced
time overhead of our scheme. In other words, the time required for the computations
to complete increases by the amount of time needed to execute all the inserted ringers
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Fig. 4. Probability to detect cheating
versus the fraction of inserted ringers.
Here, the number of subtasks is 20.
The network contains 20% malicious
participants that cheat in 50% of their
assigned subtasks.
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Hybrid Ringer and Redundancy

Ringer Scheme
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Fig. 5. Comparison of probabilistic schemes for se-
curing sequential computations. Here, we assume that
the supervisor randomly checks 30% of the subtasks.
We consider scenarios where 20% of the participants
are malicious and randomly cheat in 50% of the sub-
tasks.
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and redundant subtasks. Nevertheless, as shown in Figure 4, our scheme can ensure an
acceptable security level even when the overhead resulting from inserting ringers and
redundant computations is as low as 30%.

In Figure 5, we analytically compare the security of ringer-based schemes with
solutions based on selective redundancy with respect to the number of subtasks per
participant. Our findings suggest that ringer-based solutions considerably outperform
redundancy-based schemes in scenarios where malicious participants collude. For in-
stance, when the supervisor selectively checks 30% of the computations performed by
a participant, by solely relying on ringers, the probability of detecting a malicious par-
ticipant is as high as selectively assigning redundant subtasks to 3 different participants.
Furthermore, even in hybrid solutions – equally combining ringer-schemes and selec-
tive redundancy – the probability of detecting possible cheating is at least twice as high
when compared to redundancy-based solutions.

3.4 Secure Tracking of Remote Execution

As described earlier, the starting time of the computations required for each subtask
is known to the supervisor. Since subtask permutation and verification is performed
on the fly, each participant depends on the supervisor to acquire its newly assigned
subtask function along with its corresponding input. This equally allows the supervisor
to know the time each subtask took to complete; as shown in Figure 1, once a participant
completes the execution of a subtask, it reports the result back to the supervisor, which
then verifies the reported result (in case the subtask corresponded to a ringer or it was
redundantly assigned) and sends back to the participant another subtask to execute.

Given the random permutation, participants cannot guess beforehand which subtask
they are going to execute. This suggests that the starting time of each individual com-
putation is solely dependent on the supervisor. Malicious participants could, still, try to
trick the supervisor by reporting incorrect results. As explained previously, such misbe-
havior will be detected by the supervisor with high probability. Malicious participants
could equally delay reporting the results to the supervisor. However, given that the par-
ticipants are rational players aiming at maximizing their benefit in the network (e.g.,
claim credit for their work), participants are unlikely to benefit from this strategy.

We conclude that our scheme enables probabilistically secure tracking of remote
execution of the supervisor tasks at a subtask granularity. That is, the supervisor knows
at anytime during the execution process the number of executed (and pending) subtasks
in each task.

4 Ensuring the Correctness of the Sequential Tasks

In the previous section, we analyzed the performance of our scheme in detecting mali-
cious participants. In what follows, we evaluate other practical aspects and limitations
related to our proposal.

From a practical perspective, one potential limitation of our scheme lies in the fact
that a single undetected intermediate result renders the entire’s task output erroneous;
this limitation applies to all solutions that target sequential computations. Furthermore,
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due to task-permutation, one malicious participant is likely to cheat in several subtasks
pertaining to different tasks before getting detected. This might result in the deterioration
of the system’s efficiency. In what follows, we analyze these limitations and we discuss
efficient solutions to counter their impact.

Assuming a perfect random permutation of tasks among participants such that each
participant runs at most a single subtask of each task and given that a malicious partic-
ipant cheats with probability PC per subtask, then the maximum fraction of incorrect
tasks in the system T is computed as follows:

T = PC(1− (PR + PP (1 − PM ))), (3)

where PR and PP denote the probability of inserting a ringer and redundant assignment
per subtask respectively and PM is the initial fraction of malicious nodes in the network.

The most intuitive solution to limit the damage that a malicious participant can cause
is by increasing the number of checks (e.g., ringers, redundant assignment). This also
comes at the benefit of increasing the confidence C in the correctness of the subtasks’
results that were previously computed by a participant. C is computed as follows:

C = 1− T = 1− (PC(1− (PR + PP (1 − PM )))) . (4)

The drawback of an increased confidence C is a prolonged task execution time; once
the supervisor detects that a participant is malicious, it has to re-run all the tasks that
the malicious participant participated in executing. This is needed to prevent a possible
chaining of errors due to the sequential property of the tasks.

In what follows, we analyze this additional cost as a function of the confidence in the
correctness of the tasks. More precisely, we compute the number of subtask executions
(i.e., rounds) that are required to correctly complete a task, given an initial fraction of
malicious nodes and the verification overhead per task (i.e., PR and PP ).

Recall that detected malicious participants are isolated and no longer considered for
subtask execution (in Section 5, we discuss the case where the supervisor might not be
able to fully isolate malicious nodes). The fraction of malicious participants therefore
decreases over time upon every detection. More specifically, let PMi be the fraction
of malicious participants in the i-th round. Given that all N tasks can be executed in
parallel (i.e., that P ≥ N ), the expected number of malicious participants that are newly
detected in the i-th round is NPMiPC(PR +PP (1−PMi)). That is, after i− 1 rounds,
a total of Qi−1 malicious nodes have been removed:

Qi−1 =
i−1
∑

j=0

NPMj PC(PR + PP (1− PMj )). (5)

Hence, the expected fraction of malicious nodes in the i-th round is:

PMi =
PMP −Qi−1

P −Qi−1
=

PMP −
∑i−1

j=0 NPMj PC(PR + PP (1 − PMj ))

P −
∑i−1

j=0 NPMj PC(PR + PP (1− PMj ))
. (6)
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Fig. 6. Markov chain representing a task ex-
ecution for M = 3. The states si,j represent
the number j of subtasks that have been ex-
ecuted after i rounds. We omit some labels
for purposes of better clarity.

The expected number of rounds i∗ af-
ter which all malicious participants have
been identified and isolated can now be de-
rived by (numerically) solving the equation
�PMP −

∑i−1
j=0 NPMj PC(PR + PP (1− PMj ))

� = 0 for i. The upper bound i∗ on the ex-
pected number of rounds to complete a task
is computed as follows:

i∗ = i∗ + M.

This suggests that after i∗ rounds all the ma-
licious nodes are eliminated; the final result
can then be computed in M rounds. Figure 7
depicts this upper bound as a function of the
initial fraction of malicious nodes (PM ) and
the verification overhead (PR and PP ).

To obtain a more accurate estimate of
the expected running time of a task as a
function of the confidence in its correctness,
we model its execution with an absorbing
Markov chain [19] (refer to Figure 6). In this
chain, the states si,j represent the number j of subtasks that have already been executed
after i rounds and each state transition accounts for one subtask execution. We further
associate to each state si,j a random variable Yi,j that represents the number of required
state transitions (i.e., rounds) to reach an absorbing state from si,j ; once an absorbing
state is reached, the processing of a task terminates.

For example, consider the situation represented by state s2,1. Here, after two rounds
only the result of the first subtask has been accepted. As depicted in Figure 6, there
essentially exists two possibilities on how the processing of the task can proceed:

1. If neither the currently used participant nor the participant that computed the pre-
vious subtask are identified as malicious in this round, both results are considered
valid. This new state (two subtasks completed after three rounds) is represented by
state s3,2. From the analysis in Section 3.3, it follows that in round i a participant
is identified as malicious with probability PZi :

PZi = PMiPC(PR + PP (1 − PMi)). (7)

The probability that we proceed to state s3,2 (i.e., that none of the j + 1 = 2
participants we used so far has been identified as malicious) is thus given by (1 −
PZi)(j+1) = (1− PZi)2.

2. If at least one of the nodes that participated in the execution of the completed sub-
tasks is identified as malicious, all subtasks subsequent to those executed by a ma-
licious participant must be discarded. In state s2,1, the likelihood of this event is



192 G. Karame, M. Strasser, and S. Čapkun
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1− (1− PZi)(j+1) = 1− (1− PZi)2. The actual number of subtasks that must be
discarded depends on the execution trace of the process; in the best case, only the
current execution must be repeated. In the worst case, the first subtask was already
run on a malicious participant and, due to the sequential property of the function,
the entire task execution must be restarted. Given that subtasks are assigned to
participants uniformly at random, any of these events is equally likely. In state s2,1
this means that either the current or the current plus the already completed subtask
must be discarded with probability 1

2 (1 − (1 − PZi)2) each. The former case is
represented by the state s3,1 the latter by the state s3,0.

Based on the above observations, we derive an (recursive) expression for the expected
number of required state transitions (i.e., rounds) to reach an absorbing state (i.e., to
terminate the task execution) from the current state s2,1. Let PXi,j = 1−(1−PZi)(j+1)

be the probability that at least one subtask was run on a malicious participant, then
E[Y2,1] can be computed as:

E[Y2,1] = 1 +
PX2,1

1 + 1

1
∑

k=0

E[Y3,k] + (1− PX2,1 )E[Y3,3].

Generalizing this result to an arbitrary state si,j yields:

E[Yi,j ] =

⎧

⎪

⎨

⎪

⎩

0 , if j = M,

M − j , if i = i∗,
1 + PXi

j+1

∑j
k=0 E[Yi+1,k] + (1− PXi)E[Yi+1,j+1], otherwise.

The first case trivially follows from the fact that a task terminates once all M sub-
tasks have been executed and their results been accepted. The second case uses the
observation that after i∗ rounds all malicious nodes have been eliminated and that the
remaining M − j subtask therefore can be computed in M − j rounds. The third case
follows from the above discussion on the example of state s2,1. Finally, the expected
number of rounds to complete an entire task is given by E[Y0,0] and can be computed
by means of recursive insertion.
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The expected number of rounds to complete a task as a function of the initial fraction
of malicious nodes and the verification overhead per task (PR and PP ) is shown in Fig-
ure 8. In this example, the number of tasks and subtasks is 20, the number of participants
50, and initially 10 % of the nodes are malicious and cheat with a probability of 40 %.
We observe that even for a moderate initial fraction of malicious nodes, the actual ex-
pected value is significantly lower than the expected upper bound (depicted in Figure 7).
That is, to perform the task executions in parallel to the node set purification takes less
time than it takes to first identify and remove the malicious nodes and subsequently ex-
ecute the tasks on a set of honest nodes. We therefore conclude that the naive approach
in which one tries to “clear” the node set prior to the actual task executions (by running
preliminary extra-computations) is only reasonable if the number of subtasks M is com-
paratively high. Note that the number of subtasks in which a task can be split depends
on the structure of the task and on the induced overhead for communication and syn-
chronization per subtask. In order to account for the impact of a non-equal number of
subtasks per task as well as for other realistic conditions such as a (possibly) imperfect
(pseudo-random) permutation of task assignments, we further evaluate the performance
of our scheme by means of extensive simulations.

4.1 Evaluation Results

We implemented a C-based simulator to evaluate the performance of our proposal in
realistic settings and with respect to various parameters. Our simulator is sequential
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Fig. 9. Performance of our scheme with respect to various parameters. Each data point in our plots
is averaged over 1000 measurements. We show the corresponding 95% confidence intervals. Our
results suggest that our scheme can ensure that a substantial percentage of the tasks had been
correctly executed while incurring an acceptable overhead in time (typically less than twice as
much as the time needed to re-run all the N tasks on trusted nodes).
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and round-based. It takes as input the number of tasks and subtasks (default value is
20, respectively), the number of participants (22 by default), the number of malicious
nodes in the system (10% of the nodes are malicious by default), the probability of
cheating per malicious node (default value = 40%) and the probability of inserting se-
curity checks within tasks (default value for the fraction of ringers = 10% and selective
redundancy fraction = 10%). We chose a modest number of participants and tasks in our
simulations (< 50) to better emulate realistic settings. Note, however, that the perfor-
mance of our scheme considerably improves as the numbers of participants and tasks
increase (Equation 2).

Throughout our simulations, we consider hybrid schemes where the supervisor equally
relies on the use of embedded ringers and selective subtask redundancy. As discussed pre-
viously, such schemes are likely to be less resilient to malicious behavior when compared
to the solutions where the supervisor solely makes use of ringers. We argue, therefore,
that our findings presented thereafter correspond to a worst-case scenario, where the su-
pervisor has only a limited number of ringer candidates. Conforming with our analysis
in Section 3, we assume perfect collusion between malicious participants; whenever two
or more malicious participants run the same subtask, they will all report the same incor-
rect result to the supervisor in an attempt to decrease the probability that they get caught.
In our simulations, the various tasks are broken into smaller subroutines according to
the control flow structure of their function. To better analyze synchronization costs in
practical settings, we randomely vary the length of each subtask. The supervisor then
permutes and assigns these subtasks among participants as shown in Figure 1. To ensure
the correctness of the executing tasks, we adopt the recovery mechanism described in
Section 4.

Our results2 (Figure 9) confirm the analysis that we conducted in the previous sec-
tions; our proposed scheme provides a practical and robust tradeoff between the detec-
tion rate and the overhead in time with respect to the assurance level in the correctness
of the tasks. In fact, even in scenarios featuring 20% colluding malicious nodes, our
scheme can achieve a satisfactorily large detection rate and ensures that a substantial
percentage of the tasks had been correctly executed (> 90%) while incurring an over-
head in time3 that is typically less than twice as much as the time needed to execute all
the N tasks on trusted nodes. Needless to mention, as the number of malicious nodes in
the network increases, a larger fraction of ringers and/or redundancy is needed to pre-
vent possible misbehavior in our scheme. In turn, this increases the number of required
re-runs per task and subsequently the time required to complete the tasks’ execution to
ensure a satisfying level of confidence in the results (Figure 9(b)).

5 Discussion

Efficient recovery mechanisms from possible misbehavior within the remote execution
constitute an important and orthogonal problem to securing distributed computations.

2 In our plots, “Overhead in Time” refers to the additional overhead incurred by re-running a
subset of the subtasks (e.g., an overhead of 50% means that our scheme results in 50% increase
in execution time when compared to the time required to run a task in trusted settings).

3 This equally includes the synchronization overhead among nodes in each round.
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This problem is further aggravated when dealing with sequential computations; a single
erroneous undetected subtask affects the correctness of the entire task. In the previ-
ous section, we attended to this “hitch” and we presented a framework that facilitates
efficient recovery from erroneous computations.

Non-Uniform Sampling Distributions: Throughout our analysis, we considered the
case where the supervisor checks a sample of the computations following a uniform
distribution. Uniform distributions proved to provide a strong form of probabilistic se-
curity because they limit the number of viable countermeasures that untrusted hosts can
adopt (these hosts equally have to adopt a uniform cheating strategy to increase their ad-
vantage in the network). However, uniform sampling distributions might be less optimal
with respect to the efficiency of recovering from erroneous computations in sequential
tasks; indeed, when relying on such distributions, the probability to catch an erroneous
mistake in subtask # 1 is equal to the probability of catching an error in subtask # M .
Although this comes at the benefit of a superior overall detection rate, this seems to be
suboptimal in practice. In typical cases, the supervisor is more interested in catching
misbehavior earlier during the execution since this implies less recovery overhead (an
undetected error in subtask # 1 renders all subsequent computations erroneous). This
suggests that biased sampling distributions – in which the supervisor checks more often
the preliminary subtasks – are likely to require less re-runs to ensure the correctness of
the tasks, thus boosting the recovery performance. Biased distributions come, however,
at the cost of reduced detection rate; malicious participants can cheat more often in the
final computations without being detected.

The optimal tradeoff between the performance in detecting malicious participants
and the efficiency in recovering from malicious behavior emerges as an interesting re-
search problem. For instance, one alternative would be to combine the use of both biased
and uniform sampling distributions; this can be achieved by relying on biased checks
within each task and permuting the tasks among participants such that these checks are
almost uniform amongst the subtasks that each participant executes. Given this scheme,
a participant is likely to expect an (almost) uniform sample-checking whereas, from the
supervisor’s point of view, early subtasks are checked more often than later ones. This
solution requires, however, that the execution time of the tasks in the system equally
follows a biased distribution in time.

Impact of Imperfect Node Isolation: So far, our analysis was based on the assumption
that, once identified, malicious nodes can be completely excluded from the subsequent
computation rounds. This corresponds to a closed network system where each entity can
be uniquely identifiable. However, participants might be able to operate under several
identities (Sybil attack [21]) or to re-enter the system with a new identity (i.e., white-
washing), which renders this assumption rather unrealistic in typical settings. In such
“open” systems, the supervisor might not be able to fully isolate malicious participants;
the overall fraction of malicious nodes tends to remain, to a large extent, constant in this
case. Here, as opposed to a (partially) closed system, sample checking solely protects
past computations performed by the participants and does not improve the conditions
for the subsequently executed subtasks. Nevertheless, even in this case, our results show
(refer to Figure 10) that our scheme achieves a high level of confidence in the computed
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Fig. 10. Impact of Imperfect Isolation of Malicious Participants on the performance of our
scheme. Our findings are derived from the simulation setup described in Section 4.1. Our re-
sults suggest that our proposed scheme achieves high confidence in the correctness of the tasks
even in scenarios where perfect isolation of malicious participants might not be possible.

results. This indicates that although isolating malicious nodes is clearly beneficial, it is
not a requirement to achieve reliable results in our scheme; due to the high performance
of our scheme in detecting malicious behavior, the supervisor can ensure the correctness
of its executing tasks by re-running a modest subset of the tasks, as described in Sec-
tion 4. Note that the performance of the entire system can be further ameliorated through
the use of reputation-based approaches (e.g., [15], [16], [17], [18]); in this case, each
participant can be associated with a reputation value that indicates how trustworthy it
is. Such an approach enables the supervisor to start with better knowledge of the partic-
ipants’ credibility (i.e., the initial probability of malicious participants is slightly lower
when compared to open systems) and therefore bridges the gap between the aforemen-
tioned extremes: closed systems in which malicious participants can be fully isolated
and open systems, where malicious nodes cannot be isolated from the system.

6 Conclusion

While there are several proposals that address the security of distributed non-sequential
functions, the literature includes very few proposals for securing remote sequential
computations. In this paper, we address this problem and we show that by permut-
ing sequential tasks among several participants, efficient probabilistic measures can be
used to secure the remote execution of tasks. More specifically, we demonstrate that
our proposal enables a remote supervisor to selectively embed indistinguishable secu-
rity checks within the sequential computations and we show that the resulting scheme
facilitates the detection of individual and colluding malicious participants that cheat in
a subset of the computations. We further discussed mechanisms that facilitate recovery
from possible chaining of errors within the ongoing remote computations. Our findings
indicate that by capitalizing on the high detection rate of our scheme to identify mali-
cious participants, a satisfactorily modest number of re-runs per task can ensure high
confidence levels in the correctness of all the tasks in the system, thus bounding the
impact of malicious behavior.
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Abstract. Dynamic test generation approach consists of executing a
program while gathering symbolic constraints on inputs from predicates
encountered in branch statements, and of using a constraint solver to
infer new program inputs from previous constraints in order to steer
next executions towards new program paths. Variants of this technique
have recently been adopted in finding security vulnerabilities in binary
level software. However, such existing approaches and tools are not retar-
getable: on the one hand, they can only find vulnerabilities in the binaries
for a specific ISA; on the other hand, they can only find vulnerabilities
over a specific OS because the execution trace is totally OS-dependently
recorded in these tools. This paper presents a new dynamic test gener-
ation technique and a tool, ReTBLDTG, short for ReTargetable Binary-
Level Dynamic Test Generation, that implements this technique. Unlike
other such techniques, ReTBLDTG can deal with binaries for any ISAs
over any OSes. ReTBLDTG is based on the whole system virtual machine
that provides OS-independent and fast concrete execution of the target
program. And which thread the executing instruction belongs to is OS-
independently identified by analyzing the registers’ value and hardware
events over the virtual machine. Thus, the execution trace is recorded,
without knowing the internal structure of the guest OS. At the same
time, ReTBLDTG defines a Meta Instruction Set Architecture (MetaISA);
ReTBLDTG maps the execution information, which is collected during
the binary source code execution, to MetaISA; and symbolic execution,
constraint collection and constraint solver operates on MetaISA, thus
making these tasks ISA-independent. We have implemented our ReT-
BLDTG, retargeted it to 32-bit x86, PowerPC and Sparc ISAs, and used
it to automatically find the six known bugs in the six benchmarks over
Linux and Windows. Our results indicate that our ReTBLDTG can be
easily retargeted to any ISA with only a few overheads; and ReTBLDTG
can effectively find bugs located deep within large applications over any
OS.

1 Introduction

Dynamic test generation approach, like DART [6], EXE [3] and SAGE [7], is be-
coming increasingly popular to find security vulnerabilities in software. Starting
with a fixed input, the approach symbolically executes the program, gather-
ing input constraints from conditional statements encountered along the way.
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The collected constraints are then systematically negated and solved with a
constraint solver, yielding new inputs that exercise different execution paths in
the program. For example, symbolic execution of the conditional statement “if
(x==10) then” on the input x = 0 generates the constraint x != 10. Once this
constraint is negated and solved, it yields x = 10, which gives us a new input that
causes the program to follow the then branch of the given conditional statement.
This allows us to exercise and test additional code for security bugs, even without
specific knowledge of the input format. Furthermore, this approach automati-
cally discovers and tests corner cases where programmers may fail to properly
allocate memory or manipulate buffers, leading to security vulnerabilities.

More and more research institutes and groups use this approach to find security
vulnerabilities in the pre-release software, which is usually shipped in binary code,
after it has been heavily tested using a combination of code review, manual and
random testing, dynamic tools and static analysis, because it finds security vul-
nerabilities without generating false alarms and requires no domain knowledge.

However, existing such tools are not retargetable. On the one hand, they
can only find vulnerabilities in the binaries for a specific ISA, due to specific
architecture details of different Instruction Set Architectures (ISAs).

On the other hand, they can only find vulnerabilities over a specific OS be-
cause the execution trace is totally OS-independently recorded in these tools.
The execution trace, made up of the instruction flow, of the target program
run with the initial input, should be recorded for the following constraint gen-
eration and solver. Currently, the execution trace is recorded as the program
is executed either by statically injected instrumentation code or with the help
of binary instrumentation tools such as Nirvana [2] or Valgrind [12]. However,
these instrumentation tools strongly depend on the OS (Operation System), thus
make existing dynamic test generation un-retargetable. These instrumentation
tools run over the guest OS and call OS-dependent Application Programming
Interfaces (APIs) to identify the process and its threads of the target program,
and monitor its thread switch. Because the process and thread management are
totally defined by the OS, the instrumentation tools must know the internal
structure of guest OS.

The coupling of binary-level dynamic test generation with specific architecture
or OS details creates an interoperability problem that hinders the wide adoption
of binary-level dynamic test generation. To adopt this approach to find security
vulnerabilities for any other ISAs or over any other OSes, one has to develop
another separate tool for the specific ISA or OS.

This paper presents a new binary-level dynamic test generation technique and
a tool, ReTBLDTG, short for ReTargetable Binary-Level Dynamic Test Gener-
ation, that implements this technique. Unlike other dynamic test generation
techniques that operate only on binaries for a specific ISA, ReTBLDTG can pro-
cess binaries for any ISAs over any OSes and dynamically generates new inputs
that exercise different control paths in the program, which may lead to security
vulnerabilities.



200 G. Li et al.

To mask the difference of the CPU ISAs, ReTBLDTG defines a Meta Instruc-
tion Set Architecture (MetaISA). When working, ReTBLDTG maps the execution
information, collected during the execution of binary source code, to MetaISA.
And symbolic execution, constraint collection and constraint solver operate on
the code in our MetaISA, thus making the three processes ISA-independent. As
shown in Section 2, ReTBLDTG consists of 208KLOC and these three processes
represent over 94% of our code base. Thanks to MetaISA, ReTBLDTG is retar-
getable with only a few overheads. To port ReTBLDTG to a new CPU platform,
we only need to implement a new decoder and an ISA mapper for it.

Because symbolic execution, constraint collection and constraint solver oper-
ate on the code in our MetaISA, the following key issues must be considered
when MetaISA is designed:

– The MetaISA should be as simple and uniform as possible in order to facili-
tate the following three processes. This requires all meta instructions should
be arithmetic instructions. The conditional instructions, such as cmp, should
be transformed to the change to flag bit, including ZF, OF, and CF, and so
on; the branch instructions, such as Jnz, should be transformed to the se-
lection of PC based on some registers’ value; the complex instructions, such
as bsf (Bit Scan Forward) that searches the source operand for the least
significant set bit, and rep movsd that copies data from source to destina-
tion until ecx == 0 from x-86 ISA, should be expressed by the combination
of simple arithmetic instructions. Thus, the constraints expressed in simple
meta arithmetic instructions can be mapped to the SMT solver smoothly.
Additionally, this can also simplify the symbolic execution.

– Each instruction operation of the MetaISA should be bit-precision. This
requires how each bit of each variable of the left-hand side (LHS) of a meta
instruction is computed from every bit of the right-hand side (RHS) must
be precisely expressed. This is because the SMT solver, used to generate
a new input excising to a different control path based on the gathering
constraints, adopts bit-vector theory that demands all constraints expressed
as bit-precision .

– The design for MetaISA should consider its effect on performance and mem-
ory consuming of ReTBLDTG. In 32-bit x86 ISA, for example, most instruc-
tions operate on 32-bit data and only a few, such as mul, div and mod, gen-
erated 64-bit medium data. When 32-bit x86 ISA is mapped to MetaISA, it
is easy to map all operands to 64-bit registers. However, when ReTBLDTG
deals with very large real applications with millions of instructions, the to-
tal memory requirement of symbolic execution, constraint collection and
constraint solver would be huge. However, if all 32-bit x86 instructions are
mapped to meta instructions operating on 32-bit registers, the total memory
requirement can be reduced to nearly half, and improve the efficiency of the
SMT solver.

To mask the difference of the OSes, the execution trace of the target program
should be under the OSes or over the naked CPU. Otherwise, the identification of
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the process and its thread must call the OS API. Fortunately, running the target
program on the whole system simulator is a good choice to address the above
problem: on the one hand, the registers and hardware events can be monitored
over the whole system virtual machine, without any help of OSes; on the other
hand, the whole system virtual machine can execute the target program over
the guest OS with quite fast and acceptable speed compared with the time-
consuming constraint collection and solver.

ReTBLDTG is based on the whole system virtual machine Simics but is not
dependent on it. The whole system virtual machine provides OS-independent and
fast concrete execution of the target program. And which thread the executing
instruction belongs to is OS-independently identified by analyzing the registers’
value and hardware events over the virtual machine. Thus, the execution trace
is recorded, without knowing the internal structure of guest OS.

The main contributions of this paper are as follows.

– We design a meta ISA;
– We present a method to online identify the process;
– We present, for the fist time to the best of our knowledge, a method to online

identify the thread;
– We build, for the first time, a new binary-level dynamic test generation

technique and a tool, ReTBLDTG, that can find bugs from binaries for any
ISA over any OSes, based on a whole system virtual machine;

– We have retargeted ReTBLDTG to 32-bit x86, PowerPC and Sparc ISAs by
now;

– We have retargeted ReTBLDTG for the Linux and Windows binaries by now;
– Our ReTBLDTG efficiently found the bugs from the Linux and Windows the

binaries for 32-bit x86, PowerPC and Sparc ISAs.

The rest of this paper is organized as follows. The ReTBLDTG system architec-
ture is given in Section 2. Section 3 identifies the process and its thread of the
running target program based on the execution of virtual machine. In Section
4, we show how MetaISA is designed in order to make ReTBLDTG architecture-
independent. Our experiments and performance evaluation appear in Section 5.
The related work is discussed in Section 6 and we conclude in Section 7.

2 The ReTBLDTG System Architecture

As shown in Figure 1, ReTBLDTG is built around four levels of abstraction
to make it architecture- and OS-independent. Presently, ReTBLDTG consists
of 208KLOC with 0.6% in the Virtual Execution Layer (VEL), 5.0% in the
Process/Thread Identification Layer (PTIL), 1% in the MetaISA Layer (ML)
and 94% in the Constraint Analysis Layer (CAL). We describe each layer only
briefly in the rest of this section and focus mostly on introducing how PTIL as
well as VEL make CAL OS-independent in Section 3, and how ML makes CAL
ISA-independent in Section 4.
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Fig. 1. ReTBLDTG system architecture

2.1 Virtual Execution Layer

VEL is essentially a virtual machine (VM) or a whole system emulator like
VMware, Simics or QEMU. Presently, ReTBLDTG is based on Simics but is not
dependent on it. VEL provides OS-independent and fast concrete execution of
an application.

As a VM, ReTBLDTG is equipped with the capability of analyzing applica-
tions that are time-sensitive or protected by anti-debugging techniques. ReT-
BLDTG can freeze the entire system, including the clock when performing time-
consuming tasks like points-to analysis at a higher layer. As a result, the OS
and the application are not even aware of the elapse of the time. Furthermore,
all test cases can be restarted from exactly the same system state.

2.2 Process/Thread Identification Layer

PTIL distinguishes different processes and segments the instructions flowing
through the CPU in the same process into different instruction sequences be-
longing to different threads. This is necessary since different threads in a process
should have their own sets of registers associated with them.

The principle behind PTIL is based on some hardware events, independent
of the OS. For example, in x86 ISA, process switching is recognized by listening
to the CR3-Changed-Event as in [8]. Thread identification appears to be novel
(to the best of our knowledge). Thread starting or stopping is recognized by
identifying a thread using its stack pointer (ESP) and by monitoring the CPU
privilege level transitions between Ring0 and Ring3. These ideas generalize to
other architectures.

2.3 The Meta Instruction Set Architecture

One key motivation for introducing a MetaISA is to make CAL ISA-independent.
Another is to facilitate our symbolic execution, constraint collection and con-
straint solver on a simple and uniform MetaISA. The entire CAL layer represents
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over 94% of our code base. Thanks to MetaISA, CAL is now retargetable. To
port ReTBLDTG to a new CPU platform, we only need to implement a new
decoder and an ISA mapper for it.

2.4 Constraint Analysis Layer

As shown in Figure 1, CAL is responsible for performing symbolic execution,
constraint collection and constraint solver. This layer focuses on a process being
analyzed and ignores the instruction sequences from the other processes and the
OS kernel, which is made possible by the PTIL layer below. This layer represents
over 94% of our code base and performs the most time-consuming tasks of our
ReTBLDTG as evaluated in Section 5. Our CAL is like the of SAGE. Refer to [7]
for more details.

3 Making CAL OS-Indepedent

The VEL and PITL work together to make CAL OS-independent. The VEL
in ReTBLDTG has two tasks that: 1. VEL fast executes the instruction flow,
mixed by guest operating system and destination application; 2. it also submits
the specific hardware events like Page Table Switch (In x86, it is CR3-Changed-
Event) and CPU Privilege Switch events and allows PTIL to listen to. Based on
these hardware events, PTIL splits the single instruction sequence, flowing CPU,
into instruction sequences belonging to different threads of the target process.

It is a meticulous consideration that ReTBLDTG adopts a whole system vir-
tual machine based online approach, instead of an instrumentation as existing
dynamic test generation systems. Thus, ReTBLDTG has more flexibility, inde-
pendent on any specific OS. As discussed before, the instrumentation tools, like
Valgrind and iDNA, strongly depend on the OS API. ReTBLDTG is based on
the virtual machine and can transparently monitor the registers and hardware
events of the virtual machine. Thus, ReTBLDTG records the execution trace by
analyzing the CPU behavior, without knowing the internal structure of guest
OS. Recording the execution trace will not be affected by the operating sys-
tem protection or application self-protection. The instrumentation tools, like
iDNA [2] and Valgrind, will be disturbed by the software protections, such as
Anti-Debug. These protections should not be removed during systemic test be-
cause these protections are also part of the software under test. VEL watches
the guest OS execution in the view of CPU. Thus, the target running program
cannot feel the existence of ReTBLDTG. Therefore, VEL can not be disturbed
by software self-protection. ReTBLDTG can effectively process the time-sensitive
applications, particularly network applications. For time-sensitive applications,
like network applications, the time-pause caused by CAL may lead a timeout for
receiving/sending a packet. When ReTBLDTG does time-consuming task, such
as constraint collection and solver, ReTBLDTG freeze the whole system clock,
without the guest OS and target program aware of it. But the existing dynamic
test generation tools, based on instrumentation tools, can not correctly process
time-sensitive applications.
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Thread 1

① ②
……

Thread 2

……eax=input
      =0x100

eax=0x200

 mov eax, input   
Yield

 mov [eax],0x0   

Fig. 2. A case showing that the thread switch interferes with the symbolic execution

The PTIL, as shown in Figure 1, precisely OS-independently tracks the target
process and its threads. It dynamically filters the instructions flowing through
CPU and segments them into different instruction sequences belonging to differ-
ent threads of processes, and ReTBLDTG binds each instance of thread trackers
to track the instruction sequence for each thread.

We must accurately identify each thread of the target process because each
thread has its own register space. As shown in Figure 2, when thread 1 is execut-
ing instruction 1, eax=input=0x100. Assuming that thread 1 switches to thread
2 before executing its next instruction. The concrete execution of the guest OS
has switched to the register context of thread 2 , with eax updated to 0x200,
before thread 2 runs. Because the symbolic execution of CAL is independent on
the concrete execution, the real register status, maintained by virtual machine,
must be kept for the following CAL analysis. Otherwise, when the instruction
mem [eax] = 0 is executed in thread 2, the symbolic execution will be diverged
from the concrete execution.

Identifying target process/thread. Segmenting the single instruction sequence
flowing through CPU into different instruction sequences, belonging to different
threads of each process, can accurately track each process and its threads.

Identifying the processes. Nowadays, according to the implementation of the
mainstream OSes, every process has its own page table, pointed by CR3 register
and used to isolate virtual address resource by MMU. When the CR3-Changed-
Event happens, we can identify that the process must be switched. In Figure 3,
the CR3 is changed to 0x1000, ReTBLDTG looks at the new value of CR3 as the
PID of the switched-in process.

Identifying the threads. We can find that every process-switch event must hap-
pen in the CPU privilege level of Ring0. After the privilege level is dropped
to Ring3, the instruction sequence to be executed must belong to one of the
current process’s threads. Generally, the stack pointer (ESP) can be used to ef-
fectively distinguish and identify the threads of the same process because each
thread has its own stack. Different from the CR3 register, ESP is changed along
with the execution of the current thread. ReTBLDTG records the value of ESP
into the thread ID (TID) list when the CPU privilege level raised to Ring0; and
ReTBLDTG checks whether the current ESP has been recorded in the TID list
when the CPU privilege level drops to Ring3 in the same process. If yes, ReT-
BLDTG appends the instruction sequence to be executed before next switching
to the execution trace of the found thread; otherwise, ReTBLDTG identifies a
new thread.



Architecture- and OS-Independent Binary-Level Dynamic Test Generation 205

CR3 Switch
   CR3=0x1000  

PID=0x1000
Start Privilege 

Changed
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ESP=0x3000
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Privilege 
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CR3 Switch
CR3=0x2000

PID=0x2000
Start

Privilege 
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End

Fig. 3. Tracking generic process/thread

Figure 3 describes how to track generic threads. When the CPU privilege goes
to Ring3 in the process 0x1000 for the first time, ReTBLDTG identifies that
T1 is the current thread. The instruction sequence from T1 Start to T1 End
belongs to T1 . After T1 End, the CPU privilege rises to Ring0. Before entering
Ring0, ReTBLDTG reads 0x2000 from the current stack pointer (ESP), and
makes the value map to T1: 0x1000 �→T1. When CPU returns to Ring 3 in the
same process, ReTBLDTG examines whether the value of ESP has been mapped.
In this case, the current ESP equal to 0x9000, there is no thread mapped to
0x9000. ReTBLDTGjustifies the current thread is not T1, and identifies it as T2.

4 Making CAL ISA-Independent

One key motivation for introducing a MetaISA is to make CAL ISA-independent.
Another is to facilitate our symbolic execution, constraint collection and con-
straint solver on a simple and uniform MetaISA. The entire CAL layer represents
over 94% of our code base. Thanks to MetaISA, CAL is now retargetable. To
port ReTBLDTG to a new CPU platform, we only need to implement a new
decoder and an ISA mapper for it.

As shown in Table 1, MetaISA adopts the little endian format and defines
four types of registers with 128 non-aliased and interchangeable registers in each
category. Our meta instructions are specified using the Semantic Specification
Language (SSL) [13].

To facilitate the constraint collection, MetaISA has the following features.

Every meta instruction is a bit-precision assignment and the bit-width
of RHS and LHS of a meta instruction is equal. In dynamic test gener-
ation systems, the conditional constraints are first collected from the symbolic
execution, and then the constraints in meta instructions are transformed into
logic conditional constraints and putted into the SMT solver. Therefore, the
constraints in meta assignment instructions can be smoothly transformed into
the logic == constraints. At the same time, bit-precision assignment instructions
can precisely depicts how the left variable is computed from the right variables.
Thus, the derived logic constraints can bit-precisely show how the collected con-
straints are affected by the input or medium variables. Additionally, SMT solver,
used to generate a new input excising to a different control path based on the
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Table 1. Meta Instruction Set Architecture

Endian Little endian
32bits Regs R0,R1,. . . ,R100

64bits Regs A0,A1,. . . ,A100

80bits Float Regs F0,F1,. . . ,F100

128bits Float Regs X0,X1,. . . ,X100

Instuctions i Reg = f(Reg,mem [g(Reg)])
mem [g1(Reg)] = f(Reg,mem [g2(Reg)])

Operands v Reg, Imm, mem8,16,32,64 [g(Reg)]
Operations �t exact,sigext,zeroext,(. . . ) ? (. . . ):(. . . )

�b +,-,*,/,⊕,&,—,<<,>>,==,<,≤
�s ¬

gathered constraints, adopts bit-vector theory which demands all constraints ex-
pressed as bit-precision.

Every flag bit is defined as a register. Because input constraints are gath-
ered from conditional statements encountered along the way, the branch in-
struction and the condition instruction pair should be recognized. The existing
binary-level dynamic test generation tools, such as SAGE [7], search the most re-
cent conditional instruction when meeting a branch instruction, in order to find
the pair. However, compilation optimization of prefetching might insert a block
of instructions between the pair [1], which makes it not an easy thing to recog-
nize the branch instruction and the condition instruction pair. In our MetaISA,
we define each flag bit, including ZF (Zero Flag), OF (Overflow Flag), CF (Carry
Flag), and so on, as a register, called FLAG REG, and assign conditional con-
straints to corresponding FLAG REGs. Thus, how conditional instructions change
the flag bit is kept in these registers. Searching the FLAG REGs we can get how
the conditional constraints are affected from input or medium variables when
meeting a branch instruction.

All general-purpose registers are non-aliased. If some register bits have
alias, which causes two register identifiers point to the same register bits, it brings
difficulty to the analysis, collection and solver of the conditional constraints.
Therefore, it is a smart choice that the registers in the MetaISA are independent
without any alias. And skillful work should be done for the CPU ISA that has
aliased register bits.

All registers have the same width. Some source binary instructions, such as
mul, div and mod, may involve registers of double-size. For example, the registers,
used to hold the result of a 32-bit integer multiplied by a 32-bit integer, is of 64-bit
width. And in 32-bit x86 ISA, the lower 32 bits of the result are kept in the destina-
tion register as the multiplication result; the higher 32 bits is used to compute the
Carry Flag (CF) and Overflow Flag(OF), according to whether the multiplication
operation is overflow or not. As discussed before, registers of the MetaISA with
large width might bring about bad performance for SMT solver and huge memory
requirement. Therefore, in our MetaISA, all instructions operate on the data with



Architecture- and OS-Independent Binary-Level Dynamic Test Generation 207

the same width and all registers have the same bit-width. For the instructions in-
volved with double-size registers, we use exact, sigext or zeroext operation to
extend the intermediate results to necessary size.

Table 2 lists the map of imul and idiv, the representative instructions in-
volved with the results of double-size, to our MetaISA.

Table 2. Mapping the instructions imul and idiv to our MetaISA

Ins. Map to our MetaISA 

imul ebx,edi tmp1 := ebx   ebx := edi *! tmp1   CF := (((zeroext(edi,32,64) *! zeroext(tmp1,32,64)) == zeroext(ebx,32,64)) ? 0x0 : 0x1)[31:0] & 0x1   OF := (((zeroext(edi,32,64) *! zeroext(tmp1,32,64)) == zeroext(ebx,32,64)) ? 0x0 : 0x1)[31:0] & 0x1   idiv ecx tmp1 := eax   eax := (((zeroext(edx,32,64) << 0x20) | zeroext(tmp1,32,64)) /! zeroext(ecx,32,64))[31:0]  edx := (((zeroext(edx,32,64) << 0x20) | zeroext(tmp1,32,64)) %! zeroext(ecx,32,64))[31:0]   
 

5 Experimental Evaluation and Results

We have implemented our ReTBLDTG system in 208KLOC (Kilo Lines Of Code).
And in order to demonstrate the effectiveness of our new approach on decoupling
binary-level dynamic test generation from specific architecture details, we have
retargeted ReTBLDTG to three different architectures, including 32-bit x86 ISA,
PowerPC ISA and Sparc ISA by now. 32-bit x86 ISA falls into CISC; while
PowerPC ISA and Sparc ISA belong to RISC.

We first demonstrate the importance of our ReTBLDTG on decoupling binary-
level dynamic test generation from specific architecture details. Table 3 shows
the workload for retargeting our ReTBLDTG to a new ISA, quantified with the
number of LOC of the MetaISA Layer for each ISA. To retarget our ReTBLDTG
to 32-bt x86 ISA, 2483 LOC are needed; to PowerPC ISA, 647 LOC are needed;
and to Sparc ISA, 835 LOC are needed. Because 32-bt x86 ISA is CISC, a lot
of work is needed for the complex instructions. At the same time, compared
with the other two ISAs, 32-bt x86 ISA has more instructions. PowerPC ISA
and Sparc ISA both belong to RISC. Sparc ISA has more instructions, and
retargeting our ReTBLDTG to Sparc ISA needs more work.

The column%RetargetOverheads equals #LOCRetargeted/ #LOCReTBLDTG×
100%, where #LOCRetargeted is the number ofLOC for retargeting our ReTBLDTG
to a ISA and #LOCReTBLDTG × 100% is the total number of LOC for building
ReTBLDTG, nearly equal to 208K. This column demonstrates the easiness to re-
target our binary-level dynamic test generation tool, ReTBLDTG, to a new ISA.

Table 3. Overheads for retargeting our ReTBLDTG to 32-bit x86 ISA, PowerPC ISA
and Sparc ISA

ISA #LOC Retarget Overheads32-bit X86 2483 1.19% PowerPC 647 0.30% Sparc 835 0.40% 
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Only 1.19% of the system has to be rewritten when our system is retargeted to the
32-bit x86 ISA, the most complex ISA of them. However, without the MetaISA,
nearly the whole system has to be revised or rewritten. Therefore, our ReTBLDTG
can be easily retargeted to any ISA with only a few overheads.

We then demonstrate the effectiveness of our new approach for hunting fatal
bugs in benchmark and real-application binaries (without knowing their symbol
tables). They are binaries for x86, PowerPC and Sparc ISA respectively and
tested over Linux, Windows Vista and Windows Vista.

We show that ReTBLDTG can find 6 classic known bugs and we analyze the
performance of ReTBLDTG. All experiments are carried out on an Intel 3.0 GHZ
E8400 host PC running 32-bit Windows Vista with 4GB RAM. The VEL (i.e.
virtual machine layer) of ReTBLDTG is an essentially wrapper for Simics 3.0.31,
a high performance full-system simulator.

Table 4 shows the 6 benchmarks, Apache1, Apache2, OpenSER, MADWiFi,
ANI and OldWINS. They are known to have one bug each. The first four small
benchmarks are selected from the Verisec Security Benchmark suite [9] represent-
ing four different common scenarios causing buffer overflow errors. The binaries
of Apache1 and Apache2 for PowerPC ISA are tested over Linux2.6; and the bi-
naries of OpenSER and MADWiFi for Sparc ISA are tested over Linux2.6. The last
two are real applications with one known security bug each, MS07-017 for the
animated icons (ANI) parser in user32.dll of Windows Vista and MS04-045
in WINS Service in Windows 2000. The binaries of these two applications for
32-bit x86 ISA are tested over Windows Vista and Windows 2000, respectively.

ReTBLDTG has succeeded in finding all 6 known bugs in the six benchmarks.
The results show that our ReTBLDTG can effectively find bugs for any ISAs over
any OSes.

Table 5 gives the performance data for these applications. The first two rows
show the generated and executed test cases. Only 3 to 1487 test cases are ex-
ecuted to find all these bugs. The third row gives the time for our ReTBLDTG

Table 4. Benchmarks. IoF stands for Integer Overflow and BoF stands for Buffer
Overflow.

 Benchmark ISA OS Bug Type
Verisec 
Security 

Benchmark 
Suite 

Apache1: Apache-CVE-200-4 0940 (Full_Ptr_Bad) PPC Linux2.6 BoF by an Infinite Loop
Apache2: Apache-CVE-2006-3747 Iter2 prefixLong_ptr_bad PPC Linux2.6 Off-by-One

OpenSER: OpenSER-CVE-2006-6749 (Complete_Bad) Sparc Linux2.6 Lack of Bounds Checking 
MADWiFi: MADWiFi-CVE-2006-6332e (Ncode_Ie) Sparc Linux2.6 Unchecked Bounds in sprintf 

Large Real 
Apps 

ANI: User32.dll-MS-07-017 X86 Windows Vista Failure to Validate Parameter 
OldWINS: WINS with MS04-045 X86 Windows 2000 Using Input as Pointer 

 
Table 5. Performance results of the benchmarks

 Verisec Security Benchmark Large Real Apps 
Apache1 Apache2 OpenSER MADWiFi ANI OldWINS#Generated Test Cases 476 192 2125 5 797 807 #Executed Test Cases 131 192 1487 3 82 4 Total Time 4m12s 4m40s 29m47s 3m6s 2h3m29s 2m18s Symbolic Execution 1m15s 16s 18s 1m35s 1m12s 5s Concrete Execution 21s 46s 11m8s <1s 7s <1s Constraint Solving 1m35s 2m27s 14m53s 55s 1h26m10s 1m32s MetaISA Decoding 35s 46s 12s 1s 5m28s 8s Test Case Database 26s 23s 3m18s 33s 32m32s 14s 
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to find the bugs. It only takes from 2m18 to 2h3m29s for our ReTBLDTG to
find the bugs. The last five rows list the time distribution, which shows that
our ReTBLDTG spends most time on symbolic execution, constraint collection
and constraint solver. Our ReTBLDTG makes these time-consuming tasks ISA-
and OS-independent, thus making dynamic test generation approaches efficiently
find bugs from binaries for any ISAs over any OSes with only a few overheads.

6 Related Work

We refrain from discussing a large body of work done on static analysis, program
verification, fuzz testing [5], dynamic taint analysis and model checking since
good reviews are available in [6, 3, 14,4,7, 12, 10]. Instead, we focus mainly on a
few techniques that are closely related to our work and that can also be used to
test pre-release software in binary code.

Systematic dynamic test generation is becoming increasingly popular because
it can find bugs by automatically generating test cases without false positives.
DART [6], EXE [3], CUTE [14] and KLEE [4] are a few representatives. By
operating on the source code only, these tools do not reason well about bugs that
depend on, for example, heap layout at runtime. They represent tainted arrays
symbolically (rather than with real addresses) and handle only some limited form
of tainted pointers (e.g., scalar pointers only). Our ReTBLDTG has the similar
working mechanism as them. But these techniques do not pay their attention to
find bugs in binaries, but source code.

SAGE [7] is a dynamic test generation tool that works on Windows binaries.
Research group from Berkeley [11] also works hard on finding integer bugs.
However, they can only find a specific OS binaries for a specific ISA. And it
is a hard and time-consuming work to retarget their techniques to other OSes
or ISAs.

7 Conclusion

In this paper, we have introduced the problem of decoupling dynamic test gener-
ation from specific architecture and operating system details. We have presented
a new binary-level dynamic test generation technique and a tool, ReTBLDTG.
ReTBLDTG is based on the whole system virtual machine that provides OS-
independent and fast concrete execution of the target program. And the execu-
tion trace is recorded, even without knowing the internal structure of guest OSes.
We also design the MetaISA and map the execution trace to the MetaISA, thus
making ReTBLDTG ISA-independent. We have implemented our ReTBLDTG,
retargeted it to 32-bit x86, PowerPC, Sparc ISAs and Linux, Windows Vista,
Windows Vista OSes, and used it to automatically find the six known bugs in
the six benchmarks. Our results indicate that our ReTBLDTG can be easily re-
targeted to any ISA with only a few overheads and operate on any OSes; and
ReTBLDTG can effectively expose bugs located deep within large applications
for any ISAs over any OSes.
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Abstract. This paper outlines an approach for measuring information
flow within reactive probabilistic systems. First, we present the proba-
bilistic model of reactive labelled transition system with input-output
actions. Second, we present the language and semantics for simple reac-
tive processes, and investigate the quantified information flow analysis
over this semantics. Third, we define a metric over the semantics and then
present a method to compute the leakage in reactive processes. The met-
ric we considered is the square root of the Jensen-Shannon divergence:
the quantitative information is contained in the distance between state
transformations given by a process metric. Finally, we show that there
is a connection between our leakage definition and mutual information
in the framework of information theory.

1 Introduction

Information flow measurement has recently become an attractive research topic
in the security community. The goal of information flow security in this content is
to guarantee that information propagates throughout the execution environment
without security violations such that not too much secure information is leaked
to public outputs. Traditionally, the approach of information flow security was
based on non-interference [1], which enforces that there is no secure information
about the high inputs can be deduced by observing the low outputs. However,
non-interference is too restrictive, and it is too hard to write useful programs
in the real world. We therefore consider a new policy to relax non-interference:
the program is secure if the amount of information flow from high (confiden-
tial) to low (public) is not too much from a quantitative point of view. The
precursor for this work was that of Denning in the early 1980’s. Denning [2]
suggested that the data manipulated by a program can be typed with security
levels, and first explored the use of information theory as the basis for a quan-
titative analysis of information flow in programs. However, she did not suggest
how to automate the analysis or attempt to make the analysis formal and com-
plete. Millen [3] first built a formal correspondence between non-interference and
mutual information, and established a connection between information theory
and state-machine models of information flow in computer systems. Wittbold
and Johnson [4] gave an analysis of certain combinatorial theories of computer
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security from information-theoretic perspective and introduced non-deducibility
on strategies due to feedback and internal non-determinism. There has been
much recent work in the information theoretic based foundations of quantitative
information flow computation [5,6]. Most of the work in this area to date has
concentrated on simple programs in simple imperative languages. However, real
world programs normally allow input/output, and behave as a reactive system.
It is important to consider a quantitative analysis over reactive systems in the
computational world. There also have been several attempts on probabilistic
and concurrent systems: Di Pierro, Hankin and Wiklicky [7] gave a definition of
probabilistic measures on flows in a probabilistic concurrent constraint language
where the interference came via probabilistic operators. However, the approach
of approximate non-interference presented in this paper is based on the specific
probabilistic declarative language PCCP. It seems difficult to automate in other
framework. Gavin Lowe [8] measured information flow in CSP by counting re-
fusals. He devised a formal definition of information quantity transmitted from
a high level user to a low level user in a computing system. The definition was
based on the number of different behaviours of High that can be distinguished
from Low’s point of view. Like other quantitative definitions, Lowe’s definition
was based on Shannon’s information theory. However, this approach did not
consider probabilistic behaviours. Boreale [9] studied the quantitative models of
information leakage in the process calculi by applying an information theoretic
framework. The absolute leakage measured in bits, present the absolute leakage
of zero precisely when it satisfies secrecy. The rate of leakage, measured in bits
per action, presented the maximum information extracted by repeated exper-
iments coincided with the absolute leakage of the process. A weakness of the
ratio formulation was that it was difficult to apply to recursive processes.

All to work to date suffers several problems: some of the works provided rea-
sonable analysis on simple program in simple imperative languages, but did not
work for programs with complex behaviours like interactions [5,6,10]; some of the
works was able to process interactions but the reasonability and completeness
of the approach was somewhat weak [8,7]. In this paper, we consider quantita-
tive information flow in reactive systems with input, output, and probabilistic
behaviours. The basic concept of our work is that the quantity of information
flow is considered by looking at the different behaviours of a high user from a
low user’s distribution-based observations. We introduce a method to provide
a quantitative analysis of information flow for reactive processes due to metric
spaces on the process domain. A metric space is built over the execution of the
programs via the semantics defined, and the information flow is measured via
metrics. The metric we choose here corresponds to the framework of information
theory. The attack model in our system considers situations in which a sequence
of confidential inputs can be fed into the processes or programs. The attacker
can communicate with the program via a set of input-output behaviours. The
input-output actions are guarded by probabilistic choices which are following
probability distributions. In other words, to capture the secure information flows,
we consider the input-output actions with different security levels: high and low
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which are governed by high level users and low level users respectively. Low level
users are not allowed to observe high level actions but not vice versa. Executing
the program produces a set of distribution-based traces in which only low level
input-output actions are visible. By observing the visible traces of the program,
the attacker tries to collect and deduce some confidential information via the ob-
servations. The model we applied for measuring secure information flow within
reactive processes is based on probabilistic labelled transition system. The no-
tation of observations is used to provide a basis for recording the history traces
of behaviours from the view of low users. Intuitively, the system produces a set
of weighted observation trees. Next, inspired by the methodology introduced by
[11,12], we define a process domain based on metric spaces, and the metric is
with respect to Jensen-Shannon divergence. We use this metric to compute the
distance between the different views of the low users due to different behaviours
of the high user. We then introduce a method to quantify the secure information
flow within processes based on such distances: the quantitative information is
contained in the distance within state transformations of the tree set given by a
process metric. There are many metrics can be used to measure the distance of
distributions, we show that the Jensen-Shannon divergence is a suitable measure
of the information flow quantity. To show the intuition behind our method, we
discuss that there is a connection between our definition and mutual informa-
tion in the framework of information theory. We believe our approach provides
a reasonable measurement on secure information flow in processes.

The rest of the paper is organized as follows. Section 2 explains the probabilis-
tic model of reactive processes. In Section 3, we present a simple language and
semantics for reactive probabilistic processes. Section 4 introduces the method
for leakage computation over reactive processes. Finally, we draw conclusions in
Section 5.

2 Reactive Probabilistic Labelled Transition System

This section presents a model of reactive probabilistic labelled transition systems.
We consider our probabilistic model to be reactive in the sense that the system
can react to the environment if fed with a set of high inputs equipped with a
probability distribution: by executing a set of low level input-output actions, the
system produces a set of observation trees in the way of resulting distributions
to the outside.

2.1 Reactive Probabilistic Labelled Transition System

First of all, the model of quantitative reactive systems considered here is based
on Probabilistic Labelled Transition Systems (PLTS). In order to consider prob-
abilistic behaviour and information flow measurement, we consider probabilistic
labelled transition systems incorporating probability distributions. A probabil-
ity distribution on a set M is a function f : M → [0, 1] such that the set
{m ∈ M |f(m) > 0} is finite and

∑

m∈M f(m) = 1. Intuitively, probabilistic
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labelled transition systems are labelled transition systems with probabilities at-
tached to each transition, such that transitions are considered as P

a−→μ Q,
denoting P performing an a labelled transition and then behaving as the state
Q with probability μ. A formal definition based on Larsen and Skou’s [13] prob-
abilistic model is presented as follows.

Definition 1 (Probabilistic Labelled Transition System). The probabilis-
tic labelled transition system is given as a triple PLTS = (T, Σ, μ), where T
is a set of states, Σ is a set of actions, μ is a family of probability distribu-
tions, such that μ : T → Σ → (T → [0, 1]). Specifically, μp,a : T → [0, 1],
μp : Σ → T → [0, 1], where for any a ∈ Σ and p is a state that can per-
form the action a, indicating the possible next states and their probabilities after
p has performed a, i.e. μp,a(q) = λ means that the probability that p becomes
q after performing a is λ. Furthermore, ∀p ∈ T and can perform action a,
∑

p′∈T μa,p(p′) = 1, i.e., μp,a is a probability distribution.

Second, to allow reactive behaviours, following [12], we consider that the transi-
tion relation → is between a set of states and certain sets. The sets are defined
as a set of a pair consisting actions (Σ) and probability distribution on states
(μ(R)): {Σ×μ(R)}, which must satisfy the reactiveness condition: X ⊆ Σ×μ(R)
is said to satisfy the reactive condition if for any (a1, s1), (a2, s2) ∈ X either
a1 	= a2 or (a1, s1) = (a2, s2). The definition of the reactive probabilistic labelled
transition system is presented as follows on the basis of Norman’s definition [14].

Definition 2 (Reactive Probabilistic Labelled Transition System). A
simple reactive probabilistic transition system is defined as a tuple (R, Σ,→),
where R is a set of states, Σ is a finite set of actions, and → is a transition
relation

→⊆ R× ℘(Σ × μ(R))

satisfying: for all E ∈ R there exists S ∈ ℘(Σ × μ(R)) such that (E, S) ∈→,
written as E → S, where ℘(·× ·) denotes the power set of operators restricted to
only finite subsets of Cartesian products satisfying the reactiveness condition.

Let us consider an example of the application of the RPLTS. Consider any S ∈
℘(Σ × μ(R)) as a reactive probabilistic process in which the first move of its be-
haviour (input action) is made by external choice under a distribution. The ini-
tial high input actions set ?H = {h1, . . . , hm} feeds into the system. For any
1 ≤ i ≤ m and F ∈ R, the probability of S = {(h1, w1), . . . , (hm, wm)} per-
forming the action hi as their initial move and then behaving as Fi is also given by
wi(F ) where wi(F ) ∈ μ(R). Intuitively, the RPLTS produces a set of trees. Note
that {wi|1 ≤ i ≤ m} is a probability distribution thus

∑m
i=1 wi = 1. The action

for a particular channel is incorporated into a distribution function on the events
that occur on the channel. The execution of the reactive processes can be viewed
as action-guarded and is on the basis of the probability distributions. The result-
ing distributions are obtained by executing a sequence of input-output actions,
and can be viewed as the reaction of the system in the way of sets of probabilistic



Measuring Information Flow in Reactive Processes 215

synchronisation sub-trees due to each high-input triggered interaction. We thus
define distribution-based observations to capture the transformation of each visi-
ble interaction step of the processes. At the end of execution a full description of
all the sub-trees is obtained in the form of observations based on probability dis-
tributions. The notation of observations will be further discussed in Section 2.3.

2.2 The Security Model

The environment is high and low users: low can not observe high inputs and
outputs, but high can observe low. In addition, low knows text or description
of the program. The way of interaction between users and the system is based
on the input-output actions over channels with security levels. We consider two
levels: H and L, where H denotes high-level confidentiality and L denotes low-
level confidentiality. On the other hand, in order to simply concentrate on the
quantitative analysis of secure information flow, we consider a partition over the
actions (labels) as: input ?A, output !A and internal τ . Put two kind of partitions
together we have: Σ ::=?AH | !AH | ?AL | !AL | τ . Internal action τ can not be
seen from the outside and happens automatically. Low level input and output
actions are visible to the external environment.

2.3 Observations

Assume there are a sequence of high inputs to the RPLTS, the low observations
are the probability distribution on the low traces due to the high inputs. Infor-
mation on the projection of the high inputs from the trace can be deduced from
these observations. Observations are used to record the history of observable
transformations of the system on each interaction step during the executions
due to the high inputs, i.e. a sequence of visible communications that the sys-
tem might communicate. The observation set is generated by the system, which
is defined as a map from a set of states R to a probability distribution of ob-
servable behaviours on the experiments by performing a set of input actions ?H :
R → (?H.T → [0, 1]). We put ?H.⊥ = 1, where ⊥ denotes the case of inactive
processes. Each set of high inputs ?H introduces an interaction step. During
this interaction step, low users are communicating with the system via input-
output actions. The system therefore produce an observation tree due to such
behaviours of the low traces. The next turn of high inputs ?H ′ starts another
interaction step and so on. We present the definition of an interaction step and
the observation due to each interaction as follows.

Definition 3 (Interaction unit). We define an interaction unit as the set
of the computation steps of processes due to one set of distribution-based high
inputs ?H. The system thus produces a set of visible computational behaviours
as a reaction due to such high inputs: R → (?H.T → [0, 1]), where R is a
set of states, T is the experiment starting with ?H, and ?H is the set of high
inputs which starts this interaction and follows a distribution {wi|1 ≤ i ≤ m},
wi denotes the probability of each input: 0 < wi ≤ 1,

∑m
i=1 wi = 1, and m is the

size of the inputs.
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Definition 4 (Observation). Observation of one interaction unit on a set of
states is defined as the set of all E′s finite visible history traces, and is described
as a distribution set {πi|1 ≤ i ≤ n} due to each high input hi with its weight
(probability) wi at the beginning of this interaction, where πi is a distribution
obtained by the probabilistic computation tree started by ?hi. Note that high input
hi also follows a distribution, i.e.,

∑n
i=1 wi = 1. Let ?H = {hi|1 ≤ i ≤ n, we

have,

O(?H.E) = {wi ·
mi
∑

j=1

pij .Lij .⊥|1 ≤ i ≤ n}

where Lij denotes a set of visible labels (actions) set over the channel L, ⊥
denotes the action leads to an inactive state. Note that, πi = {pij|1 ≤ i ≤ n, 1 ≤
j ≤ mi} is a distribution,

∑mi

j=1 pij = 1,
∑n

i=1 wi = 1,
∑n

i=1 wi ·
∑mi

j=1 pij = 1.

Let us consider an example to show how the observation works.

Example 1. Consider simple process E with one interaction in Figure 1: ?h1.E =
1
3b.c.⊥ + 2

3d.e.⊥, ?h2.E = 2
3b.(1

2d + 1
2e).⊥ + 1

3c.⊥, and assume ?H = {h1, h2}
(where h1 with weight 1

3 , h2 with weight 2
3 ), and b, c, d, e are visible actions

which can be low inputs/outputs.

E
b, 1

3

c, 1

d, 2
3

e, 1

E
b, 2

3

d, 1
2

e, 1
2

c, 1
3

O(h1.E) =
1
3
b.c.⊥+

2
3
d.e.⊥

O(h2.E) =
2
3
b.(

1
2
d +

1
2
e).⊥+

1
3
c.⊥

O(?H.E) = {1
3
h1[

1
3
b.c.⊥ +

2
3
d.e.⊥],

2
3
h2[

2
3
b.(

1
2
d +

1
2
e).⊥+

1
3
c.⊥]}

Fig. 1. Example of observations due to interaction unit

3 The Language and Its Semantics of Process Algebra

We consider a CSP-like probabilistic input-output security process algebra, which
includes deterministic probabilistic choice, synchronous concurrency, and
recursion.

3.1 The Language

The syntax of all expressions is given as follows:

F ::= ⊥ | x |
∑

i∈I

ai.pi.Fi | F1‖F2 | μx.F
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where ⊥ denotes the inactive process that does nothing or a state of termination;
x denotes a variable,

∑n
i=1 ai.pi.Fi denotes action-guarded probabilistic choice,

where a is a parameterised action set: a =
⋃

ai ∈ {?H, !H, ?L, !L}, pi is the
probability of performing ai and then behaving as Fi, pi ∈ (0, 1],

∑n
i=1 pi = 1;

F1‖F2 denotes synchronous parallel composition; μx.F denotes recursion.

3.2 Operational Semantics

The set of states of the probabilistic labelled transition system (R, Σ,→) can
be considered as the set of a pair consisting of an action and a probability
distribution: Σ × μ(R), the transition relation is defined as: →⊆ R × (Σ ×
μ(R)) ∪ {∅}. The pair element of the set is written as: π.a =

∑n
i=1 pi.ai, where

π denotes the probability distribution, a denotes the parameterised action set:
a ∈ {?H, !H, ?L, !L},

∑n
i=1 pi = 1, ai ∈ a, pi denotes the probability of ai. The

action τ is invisible to the external environment and happens automatically.
The probabilistic labelled transition system with a set of prefixing inputs can
therefore be unwound into a synchronisation tree. The semantics are presented
as follows in Table 1, where E{F/x} denotes the result of replacing all free
occurrences of x in E by F .

Probabilistic choices a.E are guarded by the probabilistic actions following a
probability distribution. Consider high inputs as ?H = {hi|1 ≤ i ≤ m}, where
m is the size of the high inputs, and the probability of performing hi is wi.
Process E performs hi and then behaves as Ei. According to the semantics
rules, the process is written as ?H.E =

∑m
i=1 wi.hi.Ei. The relative probabilistic

labelled transition system thus produces a set of probabilistic synchronise trees:
{wi.hi.Ei|1 ≤ i ≤ m}. In the parallel operator, for visible action a, some π1, π2 ∈
μ(R): if E1

a−→π1 E′
1 and E2

a−→π2 E′
2. It is clear that π = π1π2 ∈ μ(R) is still

a distribution. In practice, most recursions are guarded. The first n steps of the
behaviour of a guarded recursion μx.F (x) can be obtained by unwinding the
recursion n times: Fn(μx.F (x)).

Proposition 1. For any process, the synchronisation tree produced by its oper-
ational semantics forms a RPLTS.

For proof see our techniqual report [15].

Table 1. Operational Semantics

Act
E

ai−→pi
Ei

E
a−→π

∑

n
i=1 pi.ai.Ei

π denotes the probability distribution: {pi|1 ≤ i ≤ n}

pi ∈ [0, 1],
∑n

i=1 pi = 1, a = {ai|1 ≤ i ≤ n} ∈ {?H, !H, ?L, !L}

Par
E1

τ−→ E′
1

E1‖E2
τ−→ E′

1‖E2

E2
τ−→ E′

2

E1‖E2
τ−→ E1‖E′

2

E1
a−→π1 E′

1 E2
a−→π2 E′

2

E1‖E2
a−→π1,π2 π1π2.a.(E′

1‖E′
2)

(a �= τ )

Rec
μx.E

τ−→ E[μx.E/x]
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3.3 Observing Behaviour and Equivalence Relations

A set of observable process traces can therefore be extracted from its operational
semantics. For our purpose of quantitative security analysis, a coarser equiva-
lence is considered more satisfactory as it will only distinguish processes that
can be distinguished by external low-level observations.

Definition 5 (Probabilistic low bi-simulation). The low bi-simulation ∼L

is a relation on the set of processes R: {Ei|1 ≤ i ≤ m} produced by the proba-
bilistic transition system due to a high inputs set ?H = {wi.hi|1 ≤ i ≤ m}, such
that, if Ei ∼L Ej (1 ≤ i, j ≤ m and i 	= j) then:

∀a ∈ {?L, !L}.∀S ∈ L∼.Ei
a−→μ S ⇔ Ej

a−→μ S

where L∼ denotes the set of low bi-simular classes of R and Ei
a−→μ S if and

only if μ =
∑

{μ′|E′
i ∈ S} and Ei

a−→μ′ E′
i. Probabilistic processes Ei and Ej are

called probabilistic low bi-simular if (Ei, Ej) is contained in some probabilistic
low bi-simulations.

4 Information Flow Measurement

We propose to introduce a method for measuring the quantity of information
flowed from high-level inputs to public visible observations with respect to the
observation tree sets.

4.1 A Metric for Probabilistic Processes

Inspired by the metric space construction for denotational semantics defined by
De Bakker & Zucker in [11], and Kwiatkowska & Norman in [12], we introduce
a metric with respect to the square root of Jensen-Shannon divergence for the
purpose of secure information flow measurement.There are several reasons we
choose the JSD as a measure of the difference between distributions. First, JSD is
related to other information-theoretical functionals, such as the relative entropy
or Kullback Leibler distance. It therefore shares their mathematical properties
as well as their intuitive interpretability [16]. Unlike the Kullback Leibler (KL)
distance, it is symmetric, always well defined and bounded (0 ≤ JSD ≤ 1).
Second, our system produces a set of transition trees with regard to the weighted
high input actions, which may contains more than two elements. JSD can be
generalised to measure the distance between more than two distributions, and the
compared distributions can be weighted. Third, the square root of JSD (

√

DJS)
is a true metric for the probabilistic distributions space. The

√

DJS verifies the
triangle inequality, which provides us a potential way to consider the leakage
bounds for reactive processes.

Consider m distributions P (1), P (2), . . . , P (m) and let w(1), w(2), . . . , w(m) de-
note the corresponding weights. The Jensen-Shannon distance [17] between the
m distributions P (1), . . . , P (m) with weights w(1), . . . , w(m) is given by
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DJS(P (1), P (2), . . . , P (m)) = H(
m
∑

j=1

w(j)P (j))−
m
∑

j=1

w(j)H(P (j))

To build a true metric space over the denotational semantics of process calculi
with respect to the information flow measurement, we consider the square root
of the Jensen-Shannon divergence as a metric as follows:

Definition 6. For a set of processes f1, . . . , fm ∈ R, d(f1, . . . , fm) is defined as
the square root of the JSD among m distribution trees P (1), . . . P (m) with weights
w(1), . . . , w(m), i.e.

d(f1, . . . , fm) =

√

√

√

√H(
m
∑

j=1

w(j)P (j))−
m
∑

j=1

w(j)H(P (j))

Proposition 2. For any processes f1, . . . , fm ∈ R, d(f1, . . . , fm), d(f1, . . . , fm)
= 0 iff P (1) ∼L . . . ∼L P (m).

For proof see our techniqual report [15].

4.2 Quantity of the Information Flow

We have already built a metric space for the system, which can be used to mea-
sure the distances within processes. In this section, we introduce a definition of
information flow quantity for reactive processes over the metric space. The defi-
nition of leakage needs to capture how much secure information contained in the
high input is released to the public output. First let us concentrate on one inter-
action step. Consider a set of input actions ?H = {h1, h2, . . . , hm} with distribu-
tion π upon process E: π(E) assigns a set of weight/probability (w1, w2, . . . , wm)
on a set of process trees. The system start to move with the high input actions
and then execute a set of actions based on the structure of the transition system,
produce a set of weighted trees denoted by P (1), P (2), . . . , P (m), and thus gener-
ate an observation set: {Oi(E)|0 ≤ i ≤ m} due to the tree set. The observation
set maps the process E into a resulting distribution. The information leakage is
defined as the square of the distance between the resulting distributions on the
tree set: L = d2(P (1), P (3), . . . , P (m)).

Definition 7 (Leakage of one interaction). Assume one high input action
set ?H = {h1, . . . , hm} operates on processes R. The observation tree set pro-
duced by the system is denoted by (P (1), . . . , P (m)), where P (i) = hi.R1≤i≤m

with weight wi describes the probabilistic transformations of each observed tree.
The leakage on one interaction due to such processes is defined as the square of
the metric between the observed tree set:

L = d2(P (1), . . . , P (m)) = H(
m
∑

i=1

w(i)P (i))−
m
∑

i=1

w(i)H(P (i))
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P(1)

a, 0.4

c, 1

b, 0.6

d, 1

P (2)

a, 0.5

c, 1

b, 0.5

d, 0.5 c, 0.5

P (3)

a, 1

c, 1

P (4)

a, 0.3

c, 1

b, 0.7

d, 1

Fig. 2. Example of the leakage computation

Example 2. Assume a high input action set ?H = {hi → wi|1 ≤ i ≤ 4} as:
hi → 0.2, h2 → 0.4, h3 → 0.1, h4 → 0.3. By accepting the set of input actions as
the initial move, the system produces a set of process trees as follows:

O(P (1)) = 0.4 · a.c.⊥+ 0.6 · b.d.⊥
O(P (2)) = 0.5 · a.c.⊥+ 0.25 · b.d.⊥+ 0.25 · b.c.⊥
O(P (3)) = 1 · a.c.⊥
O(P (4)) = 0.3 · a.c.⊥+ 0.7 · b.d.⊥

We know that the weight of the process trees are: w(1) = 0.2, w(2) = 0.4,
w(3) = 0.1, w(4) = 0.3. According to our definition of information flow quantity
over processes, we have:

L = d2(P (1), P (2), P (3), P (4)) = H(
4
∑

i=1

w(i)P (i))−
4
∑

i=1

w(i)H(P (i)) = 0.31

Clearly, zero leakage implies the intuition that for different high inputs, the
observer can not tell the difference between them by observing the process trees,
and therefore it satisfies non-interference. Bigger leakage implies the observer
can tell more difference of the process trees due to the high inputs, and thus
more secure information is leaked to the public.

4.3 Measuring Information Flow Over Interaction Steps

One interaction step in the reactive labelled transition systems produces a pair
set: Σ × μ(R). Assume the initial high inputs ?H0 start the first interaction
step as: ?H0 = {(w01.h01), . . . , (w0m0 , h0m0)}, where

∑m0
i=1 w0i = 1. Due to

such initial high inputs set, the system produces a set of probabilistic sub-trees.
Each computation step of each sub-tree is described as a pair set Σ × μ(E0),
where E0 denotes the set of the states taking ?H0 as the initial move. Dur-
ing the execution of the program, we may have a sequence of high inputs
sets as: {?H0, ?H1, . . . , ?Hk}, where ?H0 = {(w01,h01), . . ., (w0m0 , h0m0)}, . . .,
?Hk = {(wk1, hk1), . . . , wkmk

, hkmk
)}. For each interaction, we have obtained

the metric space (ξ[i], di), where ξ[i] denotes the set of probabilistic computa-
tion sub-trees due to ?Hi, di denotes the distance between the computational
sub-trees, and 0 ≤ i ≤ k. We therefore consider the collection of the metric
spaces: {(ξ[i], di)|0 ≤ i ≤ k}. Each interaction tree may be incorporated with
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a probability of this interaction happens and behaves as an active process. The
probability of the process taking ?Hi can be considered as the product of the
probabilities from the root to the current state which is going to take ?Hi as the
next move, denoted as qi, where 0 ≤ i ≤ k. Such collection describes the history
of the sequence of interaction trees with their probabilities. We then define the
maximum information flow leakage due the sequence of high inputs sets as the
square of the probabilistic sum of the distance between the sub-trees of each
interaction step, i.e., L ≤ (

∑k
i=1(qi · di))2.

Example 3. Consider we have a sequence of high inputs set with two elements:
the initial one is ?H0 = { 1

3h01,
2
3h02} which is input at the beginning of the

program, another one is ?H1 = { 1
2h11,

1
2h12} which is input into the process

during the execution of the program. Assume actions a, b, c are visible. Consider
the total distribution tree obtained due to the program is as follows:

E
h01,

1
3

a, 1
2

h11,
1
2

a, 2
3

b, 1
3

h12,
1
2

c, 1

b, 1
2

h02,
2
3

a, 1
3

c, 2
3

Fig. 3. Example of interactions

O(ξ[0]) = {1
3
h01 · [

1
2
a.⊥+

1
2
b.⊥],

2
3
h02 · [

1
3
a.⊥+

2
3
c.⊥}

O(ξ[1]) =
1
6
· {1

2
h11 · [

2
3
a.⊥+

1
3
b.⊥],

1
2
h12 · [c.⊥]}

where ξ[0] denotes the truncation of the tree of the process after taking the initial
high inputs set but before the second high inputs getting in, ξ[1] denotes the
truncation of the tree after taking the second high inputs set with its probability
1
6 due to current state. Let d0 denote the distance within ξ[0], and d1 denote the
distance within ξ[1], the maximum information flow quantity from the sequence
of high inputs set ?H0, ?H1 to the outside is computed by: d0 =

√
0.459 = 0.677,

d1 = 1, L ≤ (d0 + 1
6 · d1)2 = 0.712.

Definition 8 (Leakage upper bound over multi-interaction steps). As-
sume we have a sequence of high inputs sets, which are fed into the program at
the beginning of and during the execution of the program: {?H0, ?H1, . . . , ?Hk},
?H0 = {(w01.h01), . . . , (w0m0 .h0m0)}, . . ., ?Hk = {(wk1.hk1), . . . , (wkmk

, hkmk
)},

assume the probabilities of taking ?H0, . . . , ?Hk and behaving as an active process
are q0, q1, . . . , qk. The observation tree sets obtained are:
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{

{P (01), . . . , P (0m0)}, {P (11), . . . , P (1m1)}, . . . {P (k1), . . . , P (kmk)}
}

We define the information leakage upper bound of this program from the sequence
of high inputs sets to the public observer as:

Llub =

(

k
∑

i=0

qi · d(P (i1), . . . , P (imi))

)2

4.4 Relationship with Information Theoretic Based Definition

Inspired by the discussion in [16], in this section, we consider a connection be-
tween our leakage computation and mutual information to show some intuitions
of our method. When only one interaction happens in our reactive probabilistic
transition system, the process can be viewed as a batch program produced a
set of public outputs in the way of distribution given a set of high inputs under
any distribution, i.e. a distribution transformer over one interaction from the
denotational point of view [10]. Let us concentrate on the case of one interaction
step. We have discussed that the observation set provides a set of weighted re-
sulting distributions. Let us denote the observation set due to the truncation of
the viewed interaction step as a random variable O = {o1, o2, . . . , ok}. Suppose
that the sequence of O is divided into m subsequences: T (1), T (2), . . . , T (m) with
probability w(1), w(2), . . . , w(m) based on the distribution of the high input action
set which starts this interaction. Let us consider a random vector (o, t) where
random variables o ∈ O and t ∈ {T (1), T (2), . . . , T (m)} are generated as follows:
o denotes the observing element locates at t, t denotes the high subsequence
that leads to the process tree containing observing point o. Let pij denotes the
joint probability o = oi and t = T (j) for i = 1, 2, . . . , k and j = 1, 2, . . . , m,

and it can be viewed as:

⎛

⎜

⎜

⎝

p11 p12 . . . p1m

p21 p22 . . . p2m

. . . . . .
pk1 p12 . . . pkm

⎞

⎟

⎟

⎠

. Then we get that the random vari-

able o assuming the values o1, o2, . . . , ok with probability p1, p2, . . . , pk. We also
get that the random variable t if assuming the values T (1), T (2), . . . , T (m) with
probability w(1), w(2), . . . , w(m) where the marginal probability pi and w(j) are
given by pi =

∑m
j=1 pij , w(j) =

∑k
i=1 pij , for i = 1, 2, . . . , k and j = 1, 2, . . . , m.

Intuitively, pi =
∑m

j=1 w(j)p
(j)
i defines the probability of finding oi in the whole

tree sequence, i.e. p
(j)
i =

∑k
i=1

pij

w(j) is the normalised probability of finding oi in

T (j). Therefore P (j) =
∑k

i=1 p
(j)
i . We consider the Jensen-Shannon distance of

P (1), P (2), . . . , P (m) due to the truncation of one interaction:

DJS(P (1), P (2), . . . , P (m)) = H(
m
∑

j=1

w(j)P (j))−
m
∑

j=1

w(j)H(P (j))
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=
m
∑

j=1

w(j)
k
∑

i=1

p
(j)
i log2 p

(j)
i −

k
∑

i=1

(
m
∑

j=1

pi) log2(
m
∑

j=1

pi)

Intuitively, P (j) =
∑k

i=1 p
(j)
i is the probability of finding o in all subsequence

of t. If P (1) ∼L P (2) ∼L . . . ∼L P (m) then it is easy to understand that the
identity of o does not tell us anything about the identity of high subsequence t
from which observing point o is observed, as the probability distribution of o is
identical in all subsequence t, i.e. by observing visible actions, we can not get
any knowledge about high-level input.

Next, let us consider the mutual information in o about sequence t due to high
input, which quantifies the amount of information we obtained from learning the
identity of the observing element o about the identity of that subsequence t from
which element o was observed. It can be mathematically proven [16] that the
mutual information in o about t is identical to the mutual information in t about
o, and hence we can state that the Jensen-Shannon divergence DJS quantifies
the amount of information we obtain from learning the identity of the chosen
element o about the identity of the subsequence t. The mutual information I in
o about t is defined by Shannon [18]:

I =
k
∑

i=1

m
∑

j=1

pij log2
pij

w(j)pi
=

k
∑

i=1

m
∑

j=1

w(j)p
(j)
i log2

p
(j)
i

pi

=
m
∑

j=1

w(j)
k
∑

i=1

p
(j)
i log2 p

(j)
i −

k
∑

i=1

pi log2 pi = DJS(P (1), P (2), . . . , P (m))

Therefore, DJS(P (1), P (2), . . . , P (m)) over one interaction is equal to the mutual
information of o about t, and we obtain Proposition 3.

Proposition 3. Each interaction truncation of the process can be viewed as
a batch program which is given a distribution based high inputs and produces
distribution based low observations. For this case, our definition is equivalent to
the mutual information between high inputs and low observations.

Example 4. Let us consider an example with one interaction to see the intu-
itions. Assume we have two possible high input actions with weights w(1) =
0.4, w(2) = 0.6 as the initial move of the process. The system thus produces
trees t ∈ {T (1), T (2)} due to such inputs. Assume that the observation over the
first tree T (1) with weight w(1) = 0.4 is as

O(P (1)) = 0.2a.b.⊥+ 0.3b.⊥+ 0.5a.b.c.⊥, i.e. p
(1)
1 p

(1)
2 p

(1)
3 p

(1)
4

0.2 0.3 0.5 0

and the observation over the second tree T (2) with weight w(2) = 0.6 is as

O(P (2)) = 0.3a.b.⊥+0.4b.⊥+0.2a.b.c.⊥+0.1d.⊥, i.e. p
(2)
1 p

(2)
2 p

(2)
3 p

(2)
4

0.3 0.4 0.2 0.1
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Therefore, the leakage according to our definition can be computed by:

DJS(P (1), P (2)) = H(
2
∑

j=1

w(j)P (j))−
2
∑

j=1

w(j)H(P (j)) = 0.1034

On the other hand, since the joint probability pij of (o, t) obtained by the dis-

tribution trees can be considered as:
(

0.08 0.12 0.20 0
0.18 0.24 0.12 0.06

)

, we

then can compute the public output pi as (0.26 0.36 0.32 0.06). Therefore,
mutual information in o about t, i.e. the mutual information between public
output view Y = {p1, p2, p3, p4} and high input with weight X = {w(1), w(2)} is
computed by:I(X ; Y ) =

∑4
i=1
∑2

j=1 pij log2
pij

w(j)pi
= 0.1034.

The example illustrates Proposition 3, and thus shows the intuition of the con-
nection between our method of leakage analysis of interactive processes and the
information theoretic based definition for batch programs discussed above.

5 Conclusions

We have introduced a method to measure the information flow within reactive
system. The probabilistic system we considered is based on probabilistic labelled
transition systems. We apply the framework of Kwiatkowska and Norman’s met-
ric probabilistic semantics [12], and investigate the quantified security properties
over this semantics. We define a metric over the semantics and develop a method
to compute the information flow quantity over interaction steps in reactive pro-
cesses. It is shown that there is a connection between our leakage definition and
the framework of information theory and non-interference. We have come out
with a novel way of binding the leakage from reactive program system which
has RPLTS semantics. This is a big step forward. The outcome is that we get
estimating an upper bound on the leakage on reactive processes. However, our
observer is very strong. Similar to Boreale’s work [9], the observers can observe
all the possible actions of the system. Another weakness of our approach is that
the leakage is a function of the semantics, in general, it is not executable. A
suitable approximation is required. For future work, we plan to look a way to
weaken the observers, e.g. the observers only can observe low output or some
other restrictions. We also want to investigate developing algorithm which is able
to compute approximation on the leakage upper bound.
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Abstract. The Trusted Computing Group (TCG) proposed remote attestation as 
a solution for establishing trust among distributed applications. However, cur-
rent TCG attestation architecture requires challengers to attest to every program 
loaded on the target platform, which will increase the attestation overhead and 
bring privacy leakage and other security risks. In this paper, we define a con-
ceptual model called the Trusted Isolation Environment (TIE) to facilitate re-
mote attestation. We then present the implementation of TIE with our tailored 
Usage CONtrol model (UCONRA) and a set of system-defined policies. With its 
continuous and mutable feature and obligation support, we construct the TIE 
with flexibility. Lastly, we propose our attestation architecture with UCONRA 
gaining the benefits of scalable and lightweight.  

Keywords: Remote attestation, trusted computing, usage control, MAC model, 
isolation. 

1   Introduction 

Problems brought about by malicious applications are becoming severer as the widely 
use of distributed applications. There are increasing needs to securely identify the 
software stacks running on remote systems. People may want to determine that  
services advertised by a remote server really exist and that the system is not compro-
mised, e.g. the E-banking they are interacting with has not been tampered with. Mean-
while, a server needs to confirm that its remote clients will behave in the expected way. 
For instance, a game client is not fabricated and will abide the game's rules.  

To equip applications (or challengers) with the capability of identifying the genuine 
behaviors of their interacting peers (or targets), the Trusted Computing Group (TCG) 
[1] introduced remote attestation as an important feature in TCG specifications to vali-
date the configuration states of remote platforms (or target platforms). TCG-compliant 
system can build a trust chain from an immutable booting base called the Core Trusted 
Root for Measurement (CRTM), ultimately to applications [2] by iteratively measuring 
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each part of the boot sequence. With the measurement of the trust chain, corresponding 
measurement logs and a known-good measurements list, the challenger can then verify 
whether the target platform has specific configurations. 

In order to discover the existence of malicious programs, the TCG attestation re-
quires the challenger to verify every program loaded on the target platform [1], [2], 
[3], [4], [5], namely the target, the target's dependencies and all other unrelated pro-
grams. However, to attest to those unrelated programs will not only introduce unnec-
essary overheads, but also make the list of known-good measurements unmanageable 
[3]. Moreover, to expose information of all programs running on the system will incur 
privacy leakage and increase security risks [4], [5]. A variety of approaches have been 
proposed for these deficiencies. However, most of them introduce different limita-
tions. For example, some rely on well-configured security policies on the target plat-
forms [3], [16]. They will introduce extra management complexities especially when 
the number of applications grows. Another line of works demand modifications to 
software [13], [14]. Hence they may only be applied to particular kinds of applica-
tions. Property-based attestation [4], [5] enhances privacy and scalability for the target 
platform. However, to clearly define and classify appropriate properties for general 
applications is still an open issue. 

In this paper, we propose a Trusted Isolation Environment (TIE) for improving 
TCG attestation architecture, with our following efforts: a) With our Usage CONtrol 
model [6] for Remote Attestation (UCONRA) and a set of system-defined UCONRA 
policies, we construct the TIE for a target application in a dynamic and scalable way, 
without the needs to manually specify the access control policies for managing com-
plicated access relationship. b) Most operations of the attestation are performed in the 
target platform, gaining more controllable attestation granularity and timing (with the 
trustworthy guarantee from underlying trusted hardware [9], [10] and related protec-
tion mechanisms [12], [14], [18] to protect the local attestation mechanisms). c) A 
lightweight and easy-to-implement attestation architecture is proposed in this paper. 
Moreover, with practices [15], [17] in MAC (Mandatory Access Control) models and 
enforcement mechanisms, our architecture is easy to be integrated into exist systems.  

The remainder of the paper is organized as follows: Section 2 presents the defini-
tion and requirements for the Trusted Isolation Environment. Section 3 describes the 
formal specification for UCONRA and corresponding system-defined policies to im-
plement the semantics of the TIE. Our attestation architecture with UCONRA is then 
illustrated in Section 4. Section 5 presents a case study on Firefox for our architecture. 
Section 6 discusses some related issues. Section 7 summarizes the related works and 
section 8 concludes this paper and presents our future works. 

2   Trusted Isolation Environment 

Commonly, an application needs to interact with other software components on the 
same system to implement its own functionalities. For instance, during an applica-
tion's execution, it may need to load extra libraries or to read some data or configura-
tion files. We denote those components, whose integrity will subvert the genuine be-
havior of a program, as the program's dependencies (or the operating-system-level de-
pendencies [8]). They represent the program’s functionalities. As the loading process  
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Fig. 1. Remote Attestation with TIE 

continues iteratively, a dependency tree can be built for a program, with the program 
as the root of the tree. On the other hand, even if every node on a dependency tree is 
intact, their behaviors still depend on the genuinely execution of their codes or the ac-
curate interpretation of their data. For example, the subversion of the kernel system-
call table will tamper with the genuine behaviors of a program even if its codes are 
not modified. We denote these instruction-level dependencies [8] to implement the 
behaviors of the target and its dependencies, whether directly or indirectly, as the tar-
get's Trusted Computing Base (TCB) (see Figure 1), which usually includes the OS 
kernel, the boot-loader, the BIOS and the CRTM. They represent the capabilities of 
fulfilling target's functionalities.  

In this paper, as depicted in Figure 1, we propose to isolate all entities in a target's 
dependency tree in a Trusted Isolation Environment (TIE). A TIE for a target can 
guarantee that, at operating-system-level, a) only entities expected by the target can 
be imported; b) all entities inside are measured and trusted by the target; c) the integ-
rity of the entities inside is continually protected. A TIE is constructed when a target 
application is loaded, which is called the TIE Entrance (TIEE). The TIEE can specify 
an initial Trusted Measurement List (TML), which contains a list of the TIEE’s ex-
pected dependencies, their genuine measurement values and optional attestation 
method specifications. Any program loaded in the TIE can also specify its TML to 
declare its genuine dependencies. Hence, all TMLs define the dependency tree for the 
target. Entities must be attested to by their parents in the tree when they are entering 
the TIE (being loaded by entities inside the TIE). All entities can then be trusted by 
the target in an iterative way and, ultimately, by the challenger. Meanwhile, a TML 
can also specify rules for inspecting the program's critical state. With the isolation and 
attestation mechanism of the TIE, a challenger only needs to attest to the target, its 
TCB and its TML (Figure 1).  

2.1   Threat Model 

As depicted in Figure 2, adversaries can interfere with the target through three kinds 
of objects: User Space Objects (USO), Kernel Space Objects (KSO) and Kernel Ob-
jects (KO). The USOs are objects existing in the file system (data, libraries). They 
comprise the most parts of the target' dependencies tree. KSOs are kernel services 
specified to a program, such as IPC objects, semaphore, etc. They also represent the  
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Fig. 2. Threat Model 

target's functionalities. Hence they are the target’s dependencies. KOs are kernel 
components (resources and functionalities), e.g. the system call table, kernel codes. 
They are important parts of the target’s TCB. On the other hand, we assume that the 
adversaries cannot tamper with the secure hardware: the TPM [1], Intel TXT [9] or 
AMD SVM [10].  

Therefore, an isolated and protected environment must be provided for USOs and 
KSOs. Moreover, the integrity of KOs and the isolation mechanism must also be pro-
tected. The former is implemented as the TIE isolation mechanism and the latter as 
the TIE protection mechanism. Min Xu et al. [12] presented a tailored Usage Control 
Model (UCON) [6] for kernel-integrity protection (UCONKI). They regarded the OS 
kernel as a set of Kernel Objects (KO) and can then monitor accesses to them with 
UCONKI rules. Because our solution is also derived from UCON, it is easy to inte-
grate UCONKI into our model. Moreover, the TIE protection mechanism can be facili-
tated by the trustworthy guarantee from underlying secure hardware [9], [10], and  
additional protection mechanisms [12], [14], [18]. Therefore, we will focus on the 
TIE isolation mechanisms in this paper. 

3   Usage Control Model for Remote Attestation 

In this section, we will first present an overview of the Usage Control model [6] and 
our Usage CONtrol model for Remote Attestation (UCONRA). Afterwards, we will 
present the formal definition of UCONRA, together with our system-defined policies. 

3.1   Usage Control Model Overview 

Usage control model (UCON) [6] proposed by Jaehong Park and Ravi Sandhu pos-
sesses two distinct features over traditional access control models: continuity and muta-
bility. The continuity means that an access decision is not only made before access but 
also during access and may result in revocation of access permissions if particular con-
ditions are no longer satisfied. The mutability means that attributes of subjects or objects 
may change as side effects of access, which may also result in a change in ongoing or 
subsequent access decisions. Policy statements in UCON are categorized as authoriza-
tions, obligations and conditions. Authorizations refer to functional predicates that have 
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to be evaluated for usage decisions before the access action (pre-authorization) or while 
the action is performing (on-authorization). Obligations are mandatory actions that a 
subject has to perform before obtaining (pre-obligation) or exercising rights on an ob-
ject (on-obligation).  

3.2   TIE Isolation with UCONRA 

In this paper, we present a tailored Usage CONtrol model (UCON) [6] called 
UCONRA (Usage CONtrol for Remote Attestation) to construct and maintain a 
Trusted Isolation Environment (TIE) for the target application and its dependencies 
(USO and KSO). In our model, a special label called tag is defined for TIE identifica-
tion. We hence specify a simple authorization rule for TIE isolation: subjects can only 
access the objects with the same tag. We then define a set of policies as the frame-
work for implementing TIE semantics, which are called the system-defined policies. 
We utilize the mutability property and obligation of UCON for TIE entrance attesta-
tion: when a subject inside a TIE trying to access entities outside, a pre-obligation 
will first be executed to measure the entities and verify the measurements against the 
subject's TML. The expected entities will be assigned with the tag of the TIE, allow-
ing all subsequent access requests. Finally, with the continuity feature, we define on-
obligation and on-authorization for TIE introspection. They are executed each time 
when particular rights are exercised, and can move the compromised entities out of 
the TIE by revoking their tags.  

Unlike most MAC models, which manage complicated access relationship, the 
main concern of UCONRA is to construct and maintain an isolated environment. 
Therefore, only rules specified above are necessary. Subjects and objects in UCONRA 
are discovered and labeled at runtime (by obligations), and obligation actions for at-
testation and monitors are specified in a TML. A TML is defined and issued by the 
software vendor who has the best knowledge of the software's security requirements 
and can be refined by the challenger in an attestation session, who can best defined 
the security requirements for that session. Hence a TIE can be constructed in scalable 
and flexible way while introducing only a few management overheads.  

3.3   UCONRA Definition 

In this section, we will examine the components of our tailored usage control model 
UCONRA. We use the UCON definition in [6]. 
 

Definition 1. A UCONRA model has seven components: 
Subjects (S): active processe; 
Objects (O): USO (files), KSO (IPC objects, etc.); 
Subject attributes (ATT(S)): tag, text, certificates, TML; 
Object attributes (ATT(O)): tag, text, certificates; 
Rights (R): access; 
Authorizations (A): functional predicates that have to be evaluated for usage deci-

sions. 
Obligation (OB): mandatory actions that a subject has to perform before obtain-

ing or exercising rights. 
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Subjects are mainly active processes. Two kinds of objects are concerned: USO and 
KSO. Tags specify the TIE the entity (subject or object) belonging to. Text, certifi-
cates and the TML are essential for attestation. Only the right “access” is needed for 
TIE isolation.  

An authorization is a functional predicate that has to be evaluated for usage deci-
sions. It can be either evaluated before or while the requested right is exercising, 
which are called pre-authorization and on-authorization respectively.  

 

Definition 2. Pre-authorization: 
preA (ATT(S), ATT(O), R)  
DEFINITION 3. On-authorization: 
onA (ATT(S), ATT(O), R) 

 

Pre-authorization examines usage requests using ATT(S), ATT(O), and R, and then 
decides whether the request is allowed or not. On-authorization implements the con-
tinuous feature of UCON [6]. It can revoke access right dynamically when specific 
predicates (onA) are not satisfied. The evaluating process can be performed periodi-
cally based on time or event.  

Obligations specify mandatory actions (obligation actions) that a subject has to 
perform before obtaining or on exercising rights on an object (pre-obligation and on-
obligation respectively). Both kinds of obligations can be performed with postUpdate 
actions, which update attributes of specific subjects or objects as a side-effect. 

 

Definition 4. Pre-obligation with postUpdate: 
 

OBS, OBO, and OB: (obligation subjects, obligation objects, and obligation ac-
tions, respectively); 

preB : and preOBL, (pre-obligations predicates and pre-obligation actions, re-
spectively); 

preOBL: OBS × OBO × OB;  
preFulfilled: OBS × OBO × OB → {true, false}; 
getPreOBL: S × O × R → 2preOBL, a function to select pre-obligations for a re-

quested usage; 
preB(s, o, r) = ∧(obsi,oboi,obi)�getPreOBL(s,o,r) preFulfilled(obsi, oboi, obi);  
preB(s, o, r) = true if getPreOBL(s, o, r) = φ; 
postUpdate(ATT(s)), postUpdate(ATT(o)): an optional procedure to change cer-

tain attributes as a consequence of pre-obligations. 
 

The preB predicate evaluates if all the required pre-obligation actions (preOBL) are 
fulfilled by using preFulfilled and returns either true or false. GetPreOBL decides on 
what kind of actions are required for requests. OBS is the entity who has to perform 
the action. OBO is the entity on which the action has to be performed. OB represents 
what has to be performed. The postUpdate specifies the attributes of subjects or ob-
jects to update after the obligation. 

 

Definition 5. On-obligation: 
 

T, a set of time or event elements; 
onB and onOBL, (ongoing-obligations predicates and ongoing-obligation ele-

ments, respectively); 
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onOBL OBS × OBO × OB × T ; 
getOnOBL: S × O × R → 2onOBL, a function to select ongoing-obligations for a re-

quested usage; 
onFulfilled: OBS × OBO × OB × T → {true, false}; 
onB(s, o, r) = ∧(obsi,oboi,obi,ti)�getOnOBL(s,o,r) onFulfilled(obsi, oboi, obi, ti); 
onB(s, o, r) = true if getOnOBL(s, o, r) = φ; 

On-obligations fulfill obligation actions, either periodically or continuously, while the 
rights are being exercised. Most actions are similar with the ones defined in pre-
obligation. Particularly, a time parameter T is introduced as part of obligation actions 
on OBL. T is likely to define certain time intervals that are either time-based or event-
based. OnB must be assumed to be true all the time though actual obligation verifica-
tion intervals can vary.  

3.4   System-Defined Policies 

To implement the TIE functionalities, we must first confine communications within 
entities in the same TIE, and then make sure only trusted entity can enter the TIE. 
Lastly, the dynamic state of a TIE can be introspected. We hence define three polices: 
pre-authorization for TIE confinement, pre-obligation for TIE entrance attestation, 
and on-obligation/on-authorization for TIE monitors. 

 

Two kinds of decisions can be defined in UCONRA. 
 

Definition 6. Allowed decision: 
allowed(s, o, r)  predicates 

 

Definition 7. Stopped decision: 
stopped(s, o, r)  ¬predicates 

 

The allowed(s, o, r) indicates that subject s is allowed right r to object o. According to 
[6], the ‘implies’ connectives is used, which represents the ‘necessary condition’. 
Henceforth, the decision process can include other rules that might be necessary for 
finer and richer controls. The ‘stopped(s, o, r)’ indicates rights r of subject s to object 
o is revoked, and the right-hand-side is a 'sufficient condition', by which means the 
dissatisfied of any predicates may cause the 'stopped' decision. 

The TIE confinement policy is quite simple: subjects can only access objects with 
the same tag. 

 

Definition 8. The TIE confinement policy: 
T is the tag of a subject (s) or an object (o), representing which TIE it is currently 

belonging to (NULL for none). 
Tag: S -> T, O->T 
ATT(S) = (Tag) 
ATT(O) = (Tag) 
preA1: Tag(S) == Tag(O) 
preA2: Tag(S) == NULL && Tag(O) == NULL 
allowed(S,O,access)  preA1 || preA2 

 

When a subject in the TIE requests to access an object outside, the TIE isolation 
mechanism will first decide whether the object is trustworthy by measuring it and 



 Trusted Isolation Environment: An Attestation Architecture 233 

then verifying the measurement against the object's certificate and the certificate 
against its loader's TML. Moreover, the loader can choose to perform the attestation 
by itself with only a few changes to its TML as described in Section 5. Expected ob-
ject will be assigned with the same tag as the subject, by which means to be moved 
into the TIE. This semantic is implemented by a pre-obligation with post tag update.  

 

Definition 9. TIE entrance attestation obligation: 
 

TXT is the text of an object. 
L is the Trusted Measurement List of a subject. 
C is the certificate of an object. 
Text: O -> TXT ; TML: S -> L; Certificates: O -> C; 
Attest: ((Text(O), Certificates(O), TML(S)) → {true, false} 
ATT(O) = (Text, Certificates) 
ATT(S) = (TML) 
OBS = Measurement Agent; 
OBO = Text(O); 
OB = {Attest}; 
getPreOBL(s,o,r) = {(measurement agent, text(o), attest)} if (tag(s) != NULL && 

tag(o) == NULL)  
allowed  preFulfilled(getPreOBL(s,o,r)) 
postUpdate(Tag(OBO)): tag(o) = attest(obo, tml(s), certificates(obo)) ? 

tag(s):NULL; 
 

Monitor obligations can inspect the state of a TIE at runtime. It performs particular 
actions (specified in TML) while subjects are accessing objects, and updates the at-
tributes when necessary. Meanwhile, monitor authorization can perceive the change 
of the system state by examine the entities’ tags while specified rights are exercising. 

 

Definition 10. Monitor obligation: 
 

OBS = Monitor Agent 
OBO = {S, O} 
OB = {Monitor} 
Monitor: predicates must be satisfied. 
T = {always} 
getOnOBL(s, o, r) = {(monitor agent, obo, monitor, always)} 
postUpdate(Tag(OBO): Tag(OBO) = monitor ? Tag(OBO) : NULL 
DEFINITION 11. Monitor authorization:  
allowed(s, o, r)  true 
stopped(s, o, r) (Tag(S) != Tag(O)) || (Tag(S) == NULL && Tag(O) != NULL) 

|| (Tag(S) != NULL && Tag(O) == NULL) 
 

According to UCON, on-obligation can also specify allowed and stopped decisions, to 
make or revoked usage decision directly. However, in our model, we clearly separated 
the duty of obligations and authorizations. The former are responsible for TIE en-
trance or exit, and the latter are for isolation. Authorizations make decisions simply 
by the tag of both subjects and objects. Meanwhile, obligations utilize other attributes, 
and affect the access decision through altering the tags. The separation of duties 
makes it easy to simplify our model and system-defined polices, and hence reduces 
the management complexities. 
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Obligations above only provide a framework for specifying the occasions to per-
form particular obligation actions. Obligation actions for particular applications are 
commonly specified within the TML by their vendors, and can be revised by the chal-
lenger. Hence different kinds of monitors and attestation methods can be customized 
as needed. With the attestation action specifiable in a TML, we can choose the best-fit 
attestation methods. Moreover, we can specify particular parts of an entity to be at-
tested, achieving the best attestation granularity. Section 5 will present examples for 
specifying the attestation methods in a TML.  

4   Attestation Architecture with UCONRA 

In this section, we will first describe our attestation architecture and its functional 
components. Then we will illustrate how they cooperate in the scenarios of TIE con-
struction and remote attestation.  

4.1   Attestation Architecture with TIE 

Figure 3 illustrates the overview of our attestation architecture with UCONRA. Just as 
a typical Mandatory Access Control (MAC) enforcement architecture [17], our archi-
tecture includes three main components: Policy Enforcement Point (PEP), Attribute 
Repository (AR) and Policy Decision Point (PDP). PEP is a module to intercept ac-
cess request from the processes, to pull subject and object attributes from AR, and to 
enforce access executions. AR is used to store subject and object attributes. PDP de-
livers authorization decisions according to policies stored in the Policy DB. Obliga-
tions are stored in the Policy DB as well. To improve performance, the Access Vector 
Cache (AVC) component caches access decisions. The TIE Registry maintains an en-
try for each TIE, recording information for their lifetimes. Our architecture also con-
tains two components for obligation action execution, namely Measurement Agent 
and Monitor. The component of Monitor is actually a monitor enforcement driver to 
execute specific scripts or programs specified by the software vendor or the chal-
lenger for monitoring various states of a TIE. The integrity of these monitor actions 
must also be guaranteed. Lastly, Attestation aGent (AG) collects related information 
and manages attestation sessions with the remote parties. 

 
 

 

Fig. 3. Attestation Architecture with TIE 
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Because the attestations for the target’s dependencies are performed in the target 
platform, we move the components for TIE and policy management, obligation action  
enforcement, and policy decision out of the kernel space into a tiny hypervisor [11], 
which is called the Attestation Authority (AA), to minimize their TCB and to achieve 
strong isolation. Therefore an additional component for AA communication is added, 
named AA Client. Lastly, the AA Command component serves as the interface to user.  

4.2   TIE Construction 

A TIE is represented as a UCONRA tag. Hence we can control the affiliation of an en-
tity by managing its tag. After we registered the program in the TIE Registry as the 
TIE Entrance (TIEE), we can initiate it through the AA Command, which will then 
inform Attestation Authority (AA) to load and parse its Trusted Measurement List 
(TML) and store obligation actions into Policy DB. AA will measure and load the 
TIEE and assign it a tag representing the newly created TIE. Afterwards, any entity 
created by the subjects in the TIE will be assigned with the same tag. 

When Policy Decision Point (PDP) receives an access request from a subject inside 
a TIE to an object outside (with a different or no tag), the attestation obligation is first 
executed. PDP first searches for particular obligation action, and transfers it (or a de-
fault one) to the Measurement Agent (MA), which will attest to the object in the way 
specified by the obligation action in subject’s TML. MA then updates the object’s tag 
in the Attribute Repository (AR) to allow or deny the request. On the other hand, 
when a subject outside the TIE (untagged) requests to the access an object inside 
(tagged), Policy Enforcement Point (PEP) will simply deny it, or for shared USOs 
(Section 5), it will copy the object to a location specific to the TIE and redirect the ac-
cess requests from the tagged subjects to the new copy. The origin one is then unla-
beled, enabling the access request from other untagged subjects. 

4.3 Remote Attestation 

Figure 4 illustrates our remote attestation procedure. Administrator first informs At-
testation aGent (AG) to initiate the TIE Entrance (TIEE) and construct the TIE (step 
1.1-1.2). When the TIEE connects to a challenger, AG will first transfer the measure-
ment of the TCB (from the CRTM up to the OS kernel and AA) and the target  
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application to the challenger (step 2.1-2.2) for attestation (step 3), and negotiates the 
Trusted Measurement List (TML) with the challenger (step 4.1-4.2). The challenger 
then verifies the TML (step 5) and returns a revised TML to AG when needed (step 
6). Afterwards, AG updates the Policy DB in accordance with the new TML (step 7) 
and then loads the target application. In addition, the PDP and PEP, though not in-
volved in the attestation process directly, are responsible for maintaining the TIE.  

5   Case Study 

In this section, we will present a case study on Firefox. We will illustrate a TML for 
the Firefox, and describe its TIE’s building and attestation process in our architecture.  

5.1   TML Specification for Firefox 

Typically, the TML will be defined and signed by the Firefox's vendor. In our case, 
we downloaded the package of Firefox-3.0.5 from its official site and manually speci-
fied its TML by identifying all legal dependencies, calculating their measurements 
and specifying related measurement methods (if needed). Table 1 shows an abridged 
view of the TML. 

Only the security-related files need to be attested, such as the firefox-bin (the 
TIEE), the shared libraries (.so files), and all files in the directories of components, 
modules, and searchplugins. Resource files such as icon files (.gif files) will not affect 
the genuine behavior of Firefox. Henceforth, their attestation methods and measure-
ments in the TML are specified as NONE. By specifying the Attestation Method en-
try, our architecture can easily support attestation for particular parts of a file, e.g. for 
configuration files as browserconfig, we specify that the browser.startup.home page 
entry must be assigned to the default value. 

Web services may demand to load particular plugins, which can also be specified 
through the TML negotiation phase. For files that might be altered, we specify Muta-
ble flags in their TML entries. When the TIE is exiting, those files are hashed and the 
measurement entries are updated. Every time files with Shared flags are referenced by 
entities with a different or no tag, Attestation Agent (AA) will first copy them to a 
dedicated directory for the current TIE, redirect all existing access requests and untag  
 

Table 1. Abridged TML for Firefox-3.0.5 

 

File Name Example Measurement Attestation Method 
firefox-bin C9D250E82A4C3CFED2246E1CF2

A39526E7CC3CC3 
Full file 

libfreebl3.so 1A34E6AFE7B07FBD1CD3C1D94C
485A68D598B9DC 

Full file. Shared 

*.gif NONE NONE 
browsercon-
fig.properties 

http://en-
US.start2.mozilla.com/firefox?client=
firefox-a&rls=org. mozilla:en-
US:official 

ENTRY: brows-
er.startu p.homepage 

blocklist.xml E8579795550DF3C2B4C4F474148E
BAF98D214C44 

Full file. Mutable. 
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the original one to allow access from those entities (libfreebl3.so). Monitors for state 
introspecting are usually challenger-specific. Hence they are often specified as obliga-
tion actions by the challenger in the TML negotiation phrase. Obligation actions are 
executed by monitor module specific to a program, which should also provided by 
software vendors. They will be invoked by the Monitor component of AA according 
to the system-defined monitor obligation rules and obligation actions in the TML.  

One difficulty is that the Firefox's GUI system is depending on the integrity of xorg 
server, which is commonly started before the TIE of Firefox. Because our architecture 
currently only supports the attestation for the files to load, we confine the xorg server 
in another TIE and add an entry in Firefox's TML to refer to the TML of the xorg 
server. When Firefox is started, AA will compare the xorg TML reference to the TML 
of the currently running xorg server. If they match, an authorization policy will be 
added to the Policy DB, permitting communication between the two TIEs.  

5.2   TIE Isolation for Firefox 

Firefox-bin is first registered as a TIEE in the TIE Registry together with its TML and 
then initiated through the AA command, which will inform AA to construct a corre-
sponding TIE. AA first loads the TML, calculates the hash value of firefox-bin and 
then compares the hash with related entry in the TML. If the values match, firefox-bin 
is loaded and assigned with a UCONRA tag representing its embracing TIE. Otherwise 
firefox-bin will be loaded as a normal program. Every time when firefox-bin is trying 
to access entities with no tag assigned, a measurement obligation of UCONRA is exe-
cuted by the Measurement Agent to attest to the entities against TML and to assign 
those expected ones with the same tag. For those illegal ones, a different tag is as-
signed, avoiding repeatedly attestation. 

The TIE can resist following kinds of threats in our case: a) replacing the shared li-
braries. Any access request to those libraries from programs outside the TIE is denied 
by the TIE isolation policy (Definition 8). The tag value is calculated with a nonce 
every time when a new TIE is constructed, hence cannot be predicted by malicious 
programs. For files can be shared among the system, each TIE keeps a dedicated 
copy. Hence changes to the origin ones cannot tamper with the TIE. b) Instructing 
Firefox to load unexpected plugins. Before firefox-bin loads the new plugin 
(untagged), the TIE entrance attestation obligation (Definition 9) is executed, which 
hashes the plugin and searches the hash value in TML. When there is nothing found, 
the request is denied, and the access decision is cached. c) Instructing Firefox to con-
nect to a new URL. Since the specific state of firefox-bin can be monitored (by Defi-
nition 10 and 11 respectively), any connection to URLs other than those specified in 
the TML are denied. More sophisticated monitor rules and monitor enforcement com-
ponents can be designed by software issuer or negotiated with the challenger. 

6   Discussion 

Because the semantics of a TIE are implemented as an MAC model, the TIE isolation 
mechanism is easy to be integrated into exist systems. Only a few modules are needed 
to be added to the existing systems, with most derived from SELinux [15]. The At-
testation Authority (AA) can be hosted in a tiny-hypervisor as Secvisor [11] to 
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achieve high security guarantee, which introduces no more than 2,000 lines of codes 
and can be efficient. The main overheads for TIE are the MAC enforcement and deci-
sion. They are well studied and can be under good control. Moreover, because only 
target’s dependencies are measured, both measurement and verification efforts are re-
duced. Although the target platform has to perform extra verifications, they are re-
lated lightweight, compared to those saved measurement efforts. 

Our scheme does not eliminate software vulnerabilities. Instead, we minimized the 
ways for malicious entities to utilize vulnerabilities of programs in the trust chain by 
isolating them in a Trusted Isolation Environment (TIE). Our architecture can guaran-
tee the challenger that the target application will behave as the way it is designed, and 
the challenger can then decide its trustworthiness according to extra information, e.g. 
reported vulnerabilities, or specify monitors for filtering and introspecting. 

UCONRA only concerns about constructing and maintaining the TIE. Pre-
authorizations control communications between entities inside the TIE and entities 
outside. Entrance obligations deal with importing entities into the TIE. Monitor obli-
gations utilize the feature of continuously for dynamic introspecting. However, since 
our model is derived from usage control model, which can implement the semantics 
of most prevalent access control models (e.g. Role Based Access Control) by specify-
ing particular authorizations [6], access control inside a TIE can easily be supported. 

The Trusted Measurement List (TML) is specified by the issuer of the target appli-
cation and can be customized by the challenger through the TML negotiation phase 
(step 6 in Section 4.3). Hence the dependencies can be clearly defined. Meanwhile, 
they can also be identified with both static program analysis and runtime monitoring 
[8]. We also considered many ways to reduce the length of a TML, e.g. TML can be 
referenced and entities can be copied and dedicated to a particular TIE as the xorg and 
libfreebl3.so case in previous section respectively. For complicated applications with 
various dependencies, the TML may become very large or may refer to many other 
TMLs on the target platform. However, the complexity is still relative low comparing 
to the known-good measurement list for these kinds of applications. We will investi-
gate further on reducing the size of TML. 

7   Related Work 

Terra [7] uses a Trusted Virtual Machine Monitor (TVMM) that provides the seman-
tics of either an “open box” or a “closed box”. The hardware and TVMM can act as a 
trusted party to allow closed-box to cryptographically identify the software they run 
to remote parties. However, administrators have to pay extra management overheads 
to deploy the closed box for each target application. In our scheme, a TIE is con-
structed at runtime, and administrators only need to register the TIE Entrance (TIEE) 
and initiate the TIEE. The TIE semantics are implemented as an MAC model; hence 
they can easily be tailored or enhanced and can be integrated into existing systems 
with only few efforts, gaining scalable and lightweight. As a result, we avoid the 
overheads brought by extra virtualization layer, e.g. the hypervisor. 

Policy-Reduced Integrity Measurement Architecture (PRIMA) [3] enables the 
challengers to only verify the applications which are permitted by the policies to in-
teract with the target. Model-based behavior attestation (MBA) [16] attests to the be-
havior of a model, which is associated with different components of a policy model 
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and can be attested to separately at runtime. However, as the dimension of the entities 
scales, the management complexities for MAC policies introduced by them escalate 
rapidly. The main concern of UCONRA is to construct and maintain an isolated envi-
ronment. Therefore, only a few polices are needed (Section 3). Tags are specified as a 
side-effect of measurement, and the measurement is taken automatically as an obliga-
tion when an unauthorized access request occurs. Moreover, obligation actions for  
attestation and monitors are specified in a TML, which are customizable and can be 
negotiated with the remote party. 

BIND (Binding Instructions aNd Data) [13] attests to only the concerned pieces of 
codes, which greatly simplifies the verification, instead of the entire memory content. 
Flicker [14] isolates sensitive code execution with hardware support for late launch and 
attestation introduced in commodity processors from AMD [10] and Intel [9]. How-
ever, BIND and Flicker need developers’ supports: only the specially designed applica-
tion can be supported. In our architecture, all legacy applications are supported.  

Property-based attestation (PBA) [4], [5] proposes to attest to specific property of a 
system without receiving detailed configuration data. However, to identify appropri-
ate properties for every application is a complicated job, which makes the PBA hard 
to implement. Min Xu et al. [12] presented a tailored UCON model for kernel-
integrity protection (UCONKI). They regarded OS kernel as a set of Kernel Objects 
(KO) and protected them by UCONKI rules. While UCONKI mainly considers the ker-
nel integrity protection, our focus is to provide a runtime constructed trusted and iso-
lated environment to facilitate remote attestation. Moreover, UCONKI can be easily 
integrated into our model to provide a bottom-up protection. 

8   Conclusion and Future Work  

In this paper, we proposed a conceptual model called the Trusted Isolation Environ-
ment (TIE) to facilitate remote attestation. With the TIE, only genuine entities ex-
pected by the target application can interact with it. Therefore, challengers only need 
to attest to the TCB of the target platform, the target, and the target’s Trusted Meas-
urement List (TML). We then presented our tailored UCONRA model and properly de-
signed policies. With the continuous and mutable feature and obligation support from 
UCONRA, our architecture can be scalable and lightweight. For future works, we will 
investigate additional mechanisms to reduce the complexity of the TML. 
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Abstract. With the advance of packing techniques, a few generic and
automatic unpackers have been proposed. These unpackers are designed
to automatically unpack packed binaries without specific knowledge of
the packing techniques used. In this paper, we present an automatic
packer with which packed malware forges spurious unpacking behaviors
that lead to a denial-of-service attack on host-based generic unpackers.
We present the design, implementation, and evaluation of the proposed
packer and malware produced using the proposed packer, and show the
success of denial-of-service attacks on host-based generic unpackers.

Keywords: generic unpacker, denial-of-service attack, spurious unpack-
ing behavior.

1 Introduction

Most malware is packed in order to evade malicious content detection. It has
been reported that among 20, 000 malware samples collected in April 2008, more
than 80% were packed by packers from 150 different families [10]. This is further
complicated by the ease of obtaining and modifying the source code of various
packers. Currently, new packers are created from existing ones at a rate of 10 to
15 per month [17].

A few generic and automatic unpacking techniques have been proposed to
unpack packed binaries without specific knowledge of the packing technique
used, e.g., OmniUnpack [9], Justin [5], Renovo [8], PolyUnpack [14] and others1.
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A difficulty that most of these generic unpackers face is to determine the end of
the unpacking routine in the execution of the packed malware, which has been
proved to be an undecidable problem [14]. Intuitively, the malware might be
packed with multiple layers of packers, which makes it difficult to differentiate the
end of the unpacking and the start of the execution of the original malware. Many
generic unpackers adopt various heuristics to handle this difficulty. However, they
may be wrong in determining the end of unpacking [9].

Using the heuristics does not necessarily expose the unpacker and its oper-
ating machine to attacks like denial-of-service attacks we propose in this paper,
especially if the unpacker runs on a controlled and protected environment, e.g.,
emulators or virtual machines. However, when the unpacker is running on a real
host machine that has to be protected by, e.g., anti-virus software, a denial-of-
service attack becomes possible.

Some of the latest and most sophisticated unpackers operate on real host
machines instead of emulators or virtual machines to improve efficiency [5,9].
Since they do not run under a controlled and protected environment, anti-virus
software is invoked at all potential end-of-unpacking points to protect the host
machine and to detect the unpacked malware. For example, OmniUnpack [9]
invokes anti-virus software to scan the malware whenever a page is written and
then executed, and the execution involves a dangerous system call made.

Our proposed denial-of-service attack exploits the requirement of host-based
generic unpackers to invoke anti-virus software at all potential end-of-unpacking
points during the execution of the packed malware, and the fact that the anti-
virus scanning time dominates the overhead of the unpacker (see Section 2).
The idea is for the DoS-packed malware to forge a large number of spurious
unpacking routines that lead to a large number of invocations of the anti-virus
software, which costs lost of resources on the unpacker including CPU cycles,
memory, and time.

The automatic packer we propose in this paper attaches the DoS attack code
into the executable of malware. The resulting packed malware has the following
properties.

– benign: the DoS attack code we add to the malware (not including the origi-
nal malware) does no harm to the operating system, which makes the packed
malware and its partially packed version evade the anti-virus scanning.

– environment-aware: the DoS attack only targets the unpacker and is not
executed in normal machines (victims of the original malware).

– semantic-preserving: our packer does not change the semantics of the original
malware.

– light-weighted: the overhead when executing on normal machines is small.

In this paper, we present a security vulnerability of host-based generic unpack-
ers, and propose an automatic packer with which packed malware forges spurious
unpacking behaviors that lead to a denial-of-service attack on host-based generic
unpackers. We implement this packer and try it out on a number of malware. Ex-
periments show that the packed malware successfully differentiates the unpacker
and normal environments, and launches DoS attacks on the target unpacker.



Denial-of-Service Attacks on Host-Based Generic Unpackers 243

In the rest of this paper, we first describe the two types of unpackers available
and an analysis of the host-based unpackers (see Section 2). In Section 3, we
detail the design of our denial-of-service attack and the implementation our
automatic packer that realizes the attack. Section 4 presents the evaluation of
the proposed attack and its implementation.

2 Generic Unpackers and Their Heuristics

When a packed malware is executed, it first dynamically unpacks its malware
payload and then executes the malware. Generic unpackers try to extract the
malware payload after detecting the end of unpacking. However, determining
the end of unpacking is proved to be an undecidable problem [14]. Therefore,
generic unpackers either 1) extract the malware payload after it is executed, or
2) have to introduce various heuristics to approximate the end of unpacking.
The approach adopted by an unpacker depends on its executing environment.
Some unpackers execute on emulators or virtual machines, while others execute
directly on host machines for better efficiency.

2.1 Unpackers on Controlled Environments

A controlled environment may use emulators (e.g., Qemu, Bochs) or virtual ma-
chines (e.g., VMware, VirtualPC). Unpackers on controlled environments first
dynamically execute the packed code for a period of time that is sufficient for
completing the unpacking, and then extract the real payload. It is usually tricky
to choose the time period which is sufficient to extract the actual payload. If the
malware payload gets executed within this time period, the executing environ-
ment of the unpacker runs into an unsafe mode. However, this is not an issue as
the controlled environment guarantees the safety of the host machine. Even if
the emulated or virtual machine is infected with viruses, it can be restored by,
e.g., previous and clean snapshots.

Examples in this category include PolyUnpack [14], which compares the exe-
cuting instructions with static disassembly code by monitoring the program’s ex-
ecution. Malware Normalizer [2], Renovo [8], Azure [13], Saffron [11], Paradyn2,
and Pandora [1] unpack the program based on the fact that the packed code has
to write the instruction in memory and then execute these instructions. Renovo
and Pandora use emulators to monitor the memory access, Saffron and Paradyn
use dynamic instrumentation, and Azure uses Intel’s VT extension. Eureka [15]
monitors two system calls, NtTerminateProcess and NtCreateProcess, to find
the malicious payload.

Using emulators and virtual machines have two challenges in general. One is
that running a program in emulators or virtual machines is much slower (up
to several hundreds of times [17]) than running it on a host machine. Another
is due to the various anti-emulation and anti-vm techniques [3,4,12] that may
terminate the program’s execution once the existence of a controlled environment
is detected.
2 Paradyn, http://pages.cs.wisc.edu/~paradyn/.

http://pages.cs.wisc.edu/~paradyn/
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2.2 Host-Based Unpackers

Running the unpacker on a host machine improves the performance but might
leave the system in an unsafe state. Therefore, it is important for unpackers to
terminate the execution once the unpacking routine is completed and before the
malicious payload gets executed. Heuristics are introduced to approximate the
end of unpacking. Fig. 1 gives an overview of host-based generic unpackers.

In general, the unpacker monitors memory accesses of the packed code and
detects satisfying conditions of the heuristics. Whenever the conditions are met,
the unpacker invokes anti-virus software to scan the (partially) unpacked code to
decide the end of unpacking. The calling of the anti-virus software is important
as the unpacker needs to protect its operating environment not to be infected
by the malware.

Both OmniUnpack [9] and Justin [5] monitor events when a memory page is
written and subsequently executed, although they use different heuristics. Omni-
Unpack uses a heuristic that when the malware gets executed, it needs to inter-
act with the operating system using dangerous system calls. Justin incorporates
other heuristics including unpacker memory avoidance, stack pointer checking,
and command-line argument checking. In order to improve performance, both
of them monitor memory accesses at the page level.

Note that these heuristics adopted by host-based unpackers might not be
always accurate. For example, an invocation of a dangerous system call is not a
sufficient condition to indicate end of the unpacking or execution of the malware.

2.3 Overhead of Host-Based Unpackers

We used our implementation of a previously proposed unpacker (see Section 4)
to unpack a number of packed malware (Amanda, BirdWatcher, Aimbot, Arus,
BlackEyes, Adroar, Aidid and DenisBee) and analyzed the breakdown of the
time spent. Fig. 2 shows the average time spent in each stage of the unpacking.
It shows that the time taken by the anti-virus software dominates the overhead
of the unpacker. This result is consistent with another report on the time spent
by anti-virus software [6], in which it was reported that scanning a binary or
system file of 1 Mbytes takes at least 0.02 seconds for more than 40 AV-scanners
(the average size of the malware we tested is 61 Kbytes, which corresponds to
0.01953 second per Mbytes).
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Inspired by this analysis, we designed packed malware that results in a large
number of invocations of the anti-virus software in order to make effective denial-
of-service attacks on host-based unpackers.

3 Denial-of-Service Attack and Its Implementation

Fig. 3 shows an overview of our denial-of-service attack on a particular host-based
generic unpacker, OmniUnpack. The packed malware first detects the existence
of the unpacker in the executing environment (see Section 3.1), then forges (a
loop of) spurious behavior if an unpacker is detected or executes the original
malware otherwise. Each iteration of the spurious behavior tries to satisfy the
heuristic condition of the unpacker, which, for example, includes writing to a
memory page, executing the memory page, and making a dangerous system call.

The spurious behavior satisfying the heuristic conditions of the unpacker will
result in an invocation of the anti-virus software to scan for viruses. TW , TE , and
TS represent the overhead introduced by monitoring write behavior, execute
behavior, and scanning for malware by the anti-virus software, respectively.

Designing this denial-of-service attack in a packed malware with all the prop-
erties shown in Section 1 has a few challenges. First, the packed malware needs
to be able to detect the existence of an unpacker. This ensures that the original
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Malware

Packed code: DoS attack

Detecting
Unpacker Original Code

Spurious Behavior Y
N

Writing a 
memory page
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memory page
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dangerous 
system call
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Fig. 3. Overview of the DoS attack on OmniUnpack
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Fig. 4. Measuring CPU cycles to detect the existence of an unpacker

malware will be executed when the packed code is run on a normal machine (the
victim of the original malware). Second, the code that facilitates the denial-of-
service attack, including the forged spurious behavior, should not be flagged as
a virus by the anti-virus software. If it is, it will be detected the first time the
anti-virus software is triggered, which in term will result in the success of the
unpacker in detecting the malware, and the denial-of-service attack will fail. On
the other hand, as long as this code is benign, the anti-virus software will have
to be invoked for every iteration of the spurious behaviors, which forms the base
of our denial-of-service attack.

3.1 Detecting the Existence of an Unpacker

Generic unpackers introduce overhead in, e.g., monitoring memory access and in-
voking anti-virus software. To distinguish between executing environments with
and without a generic unpacker, we monitor the time-stamp counter of the pro-
cessor (TSC) to measure the number of CPU clock cycles in executing spurious
unpacking routines. Figure 4 shows the details of such a measurement.

To implement this checking, we used the RDTSC instruction to measure the
number of CPU cycles. We measure T (the difference between T 2 and T 1) many
times (each of which consists of 5 iterations of the execution of a spurious un-
packing routine to reduce the cache warm-up effect) to find its upper bound.
By applying standard statistical techniques to our experiments, we arrived at a
threshold value of 5, 000 clock cycles, i.e., if T exceeds 5, 000, it is most likely
that the process is being executed with an unpacker. Please refer to Section 3.4
for some implementation details.

One possible way for the unpacker to confuse this measurement is to fake the
RDTSC instruction by hooking the Interrupt Descriptor Table (IDT)3. However
this needs a driver to be executed in supervisor mode (ring 0) and may affect
the system stability. Dealing with this issue is beyond the scope of this paper.

3.2 Spurious Unpacking Behavior

As mentioned in Section 2.2, host-based generic unpackers adopt various heuris-
tics to approximate the end of unpacking. These heuristics help identifying the
potential points in the execution of the packed code that are likely to be the
end of unpacking. However, these potential points in the execution of the packed

3 Fake RDTSC, ARTeam, http://deroko.phearless.org/ring0.html

http://deroko.phearless.org/ring0.html
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code might not be the correct ones. The host-based generic unpackers under-
stand the potential inaccuracy and invoke the anti-virus software at all these
potential points of execution. Our denial-of-service attack forges a large number
of the spurious unpacking behaviors so that the unpacker invokes the anti-virus
software many times.

To make the discussion more concrete, here we take OmniUnpack as an exam-
ple. As discussed in Section 2.2, OmniUnpack monitors events when a memory
page is written and subsequently executed, and uses a heuristic that when the
malware gets executed, it needs to interact with the operating system using dan-
gerous system calls. Our denial-of-service attack first writes a memory page p
with predefined instructions which do no meaningful operation (e.g., nop), and
then executes instructions in p. After that, it invokes a dangerous system call.
Note that as discussed at the beginning of Section 3, the forged spurious behav-
ior should not be flagged as a virus by the anti-virus software. To satisfy this
requirement, we choose to first create a file and then invoke the dangerous sys-
tem call NtDeleteFile to delete it. We tested this with a number of anti-virus
software and found that none of them flags such behavior as malicious.

3.3 Our Automatic Packer

To implement a packer that takes as input unpacked malware and outputs packed
code that performs our denial-of-service attack on a host-based generic unpacker,
we took a packer from aPLib4 and modified its compressor engine. Our modified
packer is not very different from the original one in their construction of packed
code, i.e., both will first load the original malware binary into memory, compress
the data from different sections (e.g., .text, .data and .rsrc), and obfuscate
the import table to make reverse engineering difficult, and then add the code
needed for unpacking (decompressing the packed code and rebuilding the import
table). The difference is that our modified packer also inserts the DoS attack
stub, which gets executed before the original binary is decompressed. Fig. 5
presents the structure of the packed code produced by our automatic packer.

At load time the DoS attack stub is first executed to detect whether a host-
based generic unpacker exists. If an unpacker does not exist, the code starts
decompressing the packed malware and rebuilding the original imports using
addresses obtained from APIs LoadLibrary and GetProcAddress. Control is
then transferred to the entry point of the decompressed code, and the original
malware binary gets executed. If an unpacker exists, the DoS attack code starts
iterations of the spurious behavior.

3.4 Implementation Details

In order to make our measurement of TSC more accurate, we took into consider-
ation several issues. First, because Intel CPU supports out-of-order execution, we
flush the instruction pipeline to prevent early termination of the measurement.

4 aPLib compression library, http://www.ibsensoftware.com/

http://www.ibsensoftware.com/
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EntryPoint

Fig. 5. Structure of the packed code

The CPUID instruction is used for serializing execution [7]. We also subtract the
overhead of instructions RDTSC and CPUID from our results (350 to 400 clock
cycles). Second, cache effect might bias our results. It takes a large number of
cycles to load data and code into the cache when execution starts. To reduce
the cache warm-up effect, we repeat the measurement at least five times and
discount the first measurement. Third, time-stamp counters on different cores
may not be synchronized with each other. Instruction SetThreadAffinityMask
is used to force execution on only one core.

Context switch and memory page swapping sometimes confuse our detection
of the existence of an unpacker, because they introduce big overhead even if an
unpacker does not exist. In order to reduce the false-positive rate of detecting an
unpacker, we choose to detect the existence of an unpacker every time the spuri-
ous unpacking behavior is generated. The overhead introduced by this checking
is very small compared to the overhead of the spurious behavior generated, but
it lowers the false-positive rate significantly. In our experiments, our packed mal-
ware always manages to detect the existence of an unpacker correctly with at
most two rounds of spurious behaviors.

4 Evaluation

In order to evaluate our proposed denial-of-service attack and the packer we im-
plemented, we chose one of the latest and most sophisticated host-based generic
unpackers, OmniUnpack [9], as the target. Since we do not have the OmniUn-
pack source code from the authors, we implemented it ourselves based on the
descriptions from the paper and some help from the OmniUnpack authors on
a computer with an Intel CPU of 3 GHz and 1 Gbytes of memory running
Windows XP SP3.

There are three parts in our evaluation. First, we use anti-virus software to
scan a few pieces of malware packed using existing packers and our packer. Sec-
ond, we execute malware packed using our packer on normal computers without
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Table 1. Size of the packed code (bytes)

Amanda BirdWatcher Aimbot Arus BlackEyes Adroar Aidid DenisBee
Original packer 40,960 77,824 20,480 186,368 20,480 77,824 20,480 41,472

Our packer 41,472 78,336 20,992 186,880 20,992 78,336 20,992 41,984

Table 2. Packed malware escaping detection of anti-virus software

Amanda BirdWatcher Aimbot Arus BlackEyes Adroar Aidid DenisBee
Kaspersky
ClamAV
Mcafee ⊗ ⊗ ⊗ ⊗ � ⊗ � ⊗ �

Microsoft ⊗ ⊗ ⊗ ⊗
Protection
NOD32 ⊗ ⊗ � ⊗ ⊗ ⊗ ⊗
Norman ⊗

TrendMicro ⊗ �
nProtect ⊗ � ⊗ ⊗ � ⊗ �

⊗: malware packed with the original packer is detected
�: malware packed with our packer is detected

unpackers. Third, we execute malware packed using our packer on machines with
our implementation of the OmniUnpack.

4.1 Anti-virus Software Detection

This part of the evaluation tries to see if the code added by our packer can escape
detection by various anti-virus software. As described in Section 3.3, our packer
is implemented by adding our denial-of-service attack code to an existing packer
from aPLib. We first measure the size of the packed code with the original packer
from aPLib and the one with our packer. Results are shown in Table 1. We find
that our packer adds roughly 0.843% overhead compared to packed code with
the original packer.

In order to find whether the original packer from aPLib or our denial-of-service
attack code contributes to anti-virus detection, we use anti-virus software to scan
both the malware packed using the original packer from aPLib and packed using
our packer. Table 2 shows the result.

Columns and rows in Table 2 show different malware samples and anti-virus
software we have tested, respectively. Results show that the denial-of-service
attack code introduced by our packer does not contribute to the detection by
anti-virus software, because in all the eight cases where malware packed with
our packer is detected, the same malware packed using the original packer is
also detected. Also note that there are a few cases where malware packed using
the original packer is detected, while the one packed with ours is not.
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Fig. 7. Malware execution with OmniUnpack

4.2 Executing Our Packed Malware

In this part of the evaluation, we executed malware packed using our packer
on two different environments, one with an unpacker (our implementation of
OmniUnpack) and one without an unpacker (victim of the malware). We used the
same anti-virus software OmniUnpack uses, i.e., ClamAV5. OmniUnpack claims
that it only scans modified pages since the last dangerous system call. However
according to a later report [5], this scanning strategy is not compatible with most
existing commercial AV-scanners. Instead, we dumped the whole memory image
and scan it with ClamAV just as what Justin [5] does. We also instrumented our
implementation of the OmniUnpack to record TW , TE , and TSin every spurious
unpacking behavior found.

We ran eight malware samples (the same as those reported in Table 2) packed
with our packer. Fig. 6 and Fig. 7 show our observations of the execution of these
eight malware samples with and without OmniUnpack in the executing environ-
ment, respectively. Numbers shown in the figures are number of CPU cycles. We
found that all eight packed malware samples succeeded in the denial-of-service
attack on OmniUnpack by forging a large number of spurious unpacking behav-
iors (Fig. 7). At the same time, they all managed to unpack the original malware
with only five spurious unpacking iterations on a normal executing environment

5 Clam AntiVirus, http://www.clamav.net/

http://www.clamav.net/
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(Fig. 6 only shows the last spurious iteration, and the first four are used to
reduce the cache warm-up effect, see Section 3.1).

A closer look at Fig. 6 reveals that only about 1, 000 CPU cycles were spent
in the first spurious unpacking iteration, which is well below the threshold used
in detecting the executing environment (see Section 3.1). However, this number
is several order of magnitude larger in the presence of OmniUnpack (see Fig. 6).
This result verifies that our packed malware detects the existence of a host-based
generic unpacker correctly.

4.3 Applicability of Our Attack and Limitations

Unpackers like OmniUnpack could introduce a counter to monitor the number of
spurious unpacking behaviors and use a threshold to fight against our denial-of-
service attack. However, this does not solve the problem as it is hard to set such
a threshold and it comes with the price of failure in unpacking many packed
code. This is because the idea of our attack is based on 1) end of unpacking
is undecidable and heuristics have to be used for approximation; and 2) host-
based generic unpackers need to protect itself by invoking anti-virus software in
all potential execution points of the end of unpacking. We do not believe a simple
solution exists for practical host-based generic unpackers in fighting against our
denial-of-service attack.

However, our attack is not applicable to the unpackers which adopt very dif-
ferent heuristics. For example, Eureka [15] introduces statistical n-gram analysis
to help find the end of unpacking. Hump-and-dump [18] creates a histogram of
the addresses of executed instructions ordered by the last time the address is
executed. Our attack will not work on these unpackers.

5 Related Work

Ferrie introduced various anti-unpacking tricks, including anti-dumping, anti-
debugging, anti-emulating, and anti-intercepting techniques [4]. Since the real
payload will eventually be unpacked to the memory, unpackers dump the mem-
ory when they detect the existence of the payload. Anti-dumping techniques are
designed to prevent the unpacker from dumping the process memory. Several un-
packers make use of a debugger or emulator to monitor the unpacking behavior.
Anti-debugging and anti-emulating tricks are used to circumvent the unpacking
whenever there is a debugger or an emulator running. Some unpackers use page
intercepter to monitor memory page accesses. Anti-intercepting techniques are
used to detect the existence of an interceptor and evade it.

There have also been works to detect the existence of an emulator [3,12],
including CPU bugs, model-specific registers, and alignment checking. These
techniques can be adopted to evade emulator-based unpackers.

Dual-mapping is used to evade unpackers which dynamically unpack the pro-
gram by detecting memory execution [16]. In this work, physical memory regions
are mapped into two virtual ones, one for written and another for execution.

Our work is different from these previous work in that we use timing infor-
mation for detecting the existence of an unpacker.
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6 Conclusion

In this paper, we present a denial-of-service attack on host-based generic unpack-
ers. Malware samples packed using our automatic packer detects the existence of
a host-based generic unpacker and forges spurious unpacking behaviors, and these
spurious unpacking behaviors result in a denial-of-service attack on the unpacker.
Our experimental evaluation demonstrates the effectiveness of this attack.
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Abstract. Signature-based network intrusion detection requires fast
and reconfigurable pattern matching for deep packet inspection. This pa-
per presents a novel pattern matching engine, which exploits a memory-
based programmable state machine to achieve deterministic processing
rates that are independent of packet and pattern characteristics. Our
engine is a portable predictive pattern matching finite state machine
(P 3FSM), which combines the properties of hardware-based systems
with the portability and programmability of software. Specifically we
introduce two methods, “Character Aware” and “SDFA”, for encoding
predictive state codes which can forecast the next states of our FSM. The
result is software based pattern matching which is fast, reconfigurable,
memory-efficient and portable.

1 Introduction

Network Intrusion Detection System (NIDS) is one of the most important aspects
of any computer network [4,8]. Specifically, signature-based NIDS provides the
comprehensive detailed detection capabilities that are vital to preventing network
attacks [5]. The key challenge with the deep packet inspection performed by
signature-based NIDS, is that it requires fast, programmable and efficient pattern
matching capabilities [2,6] that have yet to be developed in a well rounded solution.

Previous attempts to solve this problem include pattern matching engines that
can be hardware or software based. Hardware-based pattern matching can achieve
acceptable speed, programmability and memory efficiency [3,1], however, these so-
lutions require specialized hardware in order to implement them. Software-based
pattern matching is universally portable, however still lacks the sheer speed and
deterministic properties necessary to keep up with network line rates [10].

Our goal in this work is to develop a well-rounded solution that combines
the properties of hardware-based systems with the portability of software-based
systems, to produce a software NIDS that is fast, programmable and memory-
efficient, solving the overall problem of signature-based NIDS. This system will
fill the gap between highly programmable, portable, yet slow software based
NIDS; and fast, memory efficient, yet hard to implement, hardware based NIDS.
Works like [9] which is a hardware-based system have exploited the deterministic
nature of Deterministic Finite Automata (DFA), and created solutions to the
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excessive memory requirements of DFA. It is these concepts, which are built
upon and extended by our design called P 3FSM .

P 3FSM is a software-based Finite State Machine that implements Deter-
ministic Finite Automata using predictive state codes. DFA are used because
of their deterministic behavior, which allows for fast, deterministic packet pro-
cessing, regardless of the number and size of patterns. DFA however require
excessive amounts of memory to be stored. P 3FSM solves this problem by stor-
ing only a single code for each state in a DFA. These codes are derived such that
each state code can forecast all of its possible next states. An FSM is formed
from these state codes which allows for quick system operation. The result is
a pattern matching engine which combines the benefits of both hardware and
software systems. P 3FSM is fast, memory-efficient, highly programmable and
still completely portable. Several different implementations of P 3FSM , along
with experimental results are presented in order to validate its operation as well
as demonstrate its many benefits.

The remainder of this work is organized as follows. Related work is discussed in
Section 2. The overall system architecture is discussed in Section 3, and Sections
4, 5 and 6 demonstrate the programming and operation of P 3FSM . Experimen-
tal results are discussed in Section 7 and Section 8 concludes the paper.

2 Related Work

A flurry of work has been proposed to design a high performance string matching
engine. However, few works consider memory efficiency and ease of update of new
patterns. We present some background and most related work to P 3FSM .

2.1 Deterministic Finite Automata

Deterministic Finite Automata (DFA) are able to match multiple strings simul-
taneously, in worst-case time linear to the size of a packet. Figure 2 shows an
example DFA used to match “SHE”, “HERS” and “HIS”. Starting at state s0,
the state machine is traversed to state s1 or s2 depending on whether the input
character is “H” or “S”. When an end state is reached, a string has been said to
be matched. In the example in Figure 2, if state s9 is reached, string “HERS”
has been matched.

Each state in the machine has pointers to other states in the machine. If an
input character is the next character in a string that is currently being matched,
the algorithm moves to the next state in that string, otherwise, the algorithm
follows a failure pointer to the first state of another string that begins with that
character, or to the initial state of the machine if no other strings begin with
that character. An example of this can be seen in Figure 2. If the current state of
the machine is s3, the last input characters would have been “HE”. If the next
input character were to be “R”, then the next state would be s6. If the next
input character were not “R”, but instead, “S”, then the next state would follow
a failure pointer to state s2, which is the starting point for the string “SHE”.
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2.2 Storage Requirement of Traditional DFA

A DFA can be implemented using hardware or memory. In a memory based
implementation of a DFA, the Current State and Input Character are used as
the memory address location of the memory content. The memory content con-
sists of the Next State and Tag. A memory implementation of a DFA can be
easily reconfigured by reprogramming the memory with a new or updated State
Transition Table.

In a memory based implementation of a DFA, the memory size needed to hold
the State Transition Table is based on the number of bits needed to represent
each state s and the number of bits needed to represent each input character (8
bit). For example, Snort Dec. 05 has 2733 patterns, which need 27,000 states to
represent them so the storage requirement is about 13MB, which is too big to
fit onto on-chip memory.

The amount of memory needed to store a DFA is large and increases greatly as
the number of strings being matched increases. The reason for the large memory
requirement in traditional memory-based FSM is that all possible 256 next states
of any given state are explicitly stored in the memory array even though many
of these next states are the same.

2.3 Memory Efficiency Optimization

The Aho-Corasick (AC) algorithm [11] is able to match multiple strings simul-
taneously by constructing a state machine. Starting from an empty root state,
each string to be matched is represented by a series of states in the machine,
along with pointers to the next appropriate state. A pointer is added from each
node to the longest prefix of that node which also leads to a valid node in the
machine. The major drawback of the AC algorithm is possible 256 fan-out, which
results in low memory efficiency.

Bitmap and compression [12] have been proposed to optimize the AC algo-
rithm data structure to improve the memory efficiency. The problems of bitmap
compression require 2 memory references per character in the worst case and 256
bits per bitmap. A potential problem with path compression is, failure pointers
may point to the middle of other path compressed nodes.

Our recent work [9] presents the idea of using a novel encoding method to
implement a DFA with an FSM that stores only one entry in memory for each
state, rather than an entry for each transition. The problem of our previous work
[9] has very limited portability and flexibility due to the hardware-coded group
detector. Our P 3FSM addresses this limitation by a software detection engine,
which leverages packet pre-fetching and character-aware encoding to achieve
comparative performance as hardware.

Lunteren [6] introduces a pattern matching engine called BFPM, or Balance
Randomized Tree FSM Pattern Matching. This approach is similar to our ap-
proach in the way it utilizes DFA. BFPM uses a prioritized rule list which reduces
the number of transitions in a DFA. This is similar to the “SDFA” optimization
discussed in Section 3.
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3 System Architecture

P 3FSM is a fast, space-efficient, fully-programable and portable pattern-
matching engine which runs purely in software. P 3FSM is unique in the way
that it mimics the very desirable properties of DFA based pattern matching
hardware, but is completely software-based. The system utilizes a DFA in order
to maintain deterministic performance, however, the DFA is stored in a novel
way such that minimum memory is required. This means that secondary mem-
ory is not required in P 3FSM making both memory-efficiency and performance
excellent. P 3FSM achieves these properties by only storing one entry in mem-
ory for each state in a DFA, rather than storing numerous DFA transitions as in
typical memory based DFA implementations. The code for each state is derived
such that it is predicitve, in that, each state code contains information that de-
notes all of its possible next states. The FSM formed from these codes is able to
isolate the appropriate next state very quickly due to the unique properties of
these codes. Multiple algorithms for deriving state codes and for FSM operation
are discussed in Sections 4, 5 and 6.

The overall functionality of P 3FSM software comes from two distinct compo-
nents, the Pattern Compiler and FSM. This architecture is illustrated by Figure
1. The Pattern Compiler can further be broken down into two components, Pat-
tern Analysis and State Analysis. In the Pattern Analysis component, the first
step is the formation of a DFA from patterns. A clustering algorithm is then
used to generate state codes. The DFA and state codes are then passed to the
State Analysis component. This is where all the information needed for FSM
functionality is organized. Select information about characters, clusters (each
state code contains clusters which is discussed later) and state codes is stored
in tables which are where the FSM Operation component gets the information

Pattern Compiler

DFA_Generator()

Pattern File
(Strings/Regex)

DFA File
(State Transition Table)

Clustering()

Code File
(State Codes)

(Cluster Arrangement)

Pattern Analysis State Analysis

Characters()
Completes
Character

Table

Clusters()
Completes

Cluster Index
Table

Codes()
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needed to operate. After the Pattern Compiler completes, the FSM component
can operate. The FSM Operation component is responsible for the actual pattern
matching of P 3FSM .

As aforementioned, the following sections contain examples of differentP 3FSM
approaches. The names for the different approaches are derived from the way in
which the state codes for theFSMare generated.The state encoding algorithmused
in any approach may utilize a property called “Character Aware”. When deriving
state codes fromaDFA, states are grouped and clustered together in order to gener-
ate self-addressable state codes for each state. During the clustering process, if the
algorithm takes into account the character required to transition to each state, it is
a “Character Aware” algorithm. Second, if the DFA used to derive the state codes
goes through an optimization which we have deemed Split-DFA (SDFA), then it
is an “SDFA” algorithm. All of the approaches discussed in this paper utilize at
least one of these properties, either “Character-Aware” or “SDFA”, and the algo-
rithms are named based on the combination of these properties that they utilize.
Depending on which properties are used, the resulting FSM will have either smaller
memory requirements, greater throughput or a trade-off between the two.

4 Approach A: “Character Aware” for High-Throughput

Discussed here is the first implementation of P 3FSM . This approach is called
“Character Aware”. What can be observed about this approach is that because
it is “Character Aware” it has excellent throughput, more-so than the other
approaches. However, it is not as memory efficient. More about this will be
discussed in the Results section. The following sections describe by example the
different components, starting with the Pattern Compiler and then the operation
of the FSM.

4.1 Pattern Compiler: Pattern Analysis

This section describes the Pattern Analysis component of the Pattern Compiler.
The two stages of this component are construction of a DFA and the derivation
of state codes from the DFA.

Deriving a DFA. The first step of the Pattern Analysis component is to
construct a DFA from a set of patterns. Figure 2a shows a DFA constructed
from the patterns “SHE”, “HERS” and “HIS”.

Deriving State Codes. The second step of the Pattern Analysis component
is to derive the predictive state codes for each state. The following example
illustrates the derivation of state codes for the DFA in Figure 2b. The first step
in deriving the state codes is to group all the states in the DFA that have the
same next state into a group. The result is one group for each state (ie. G1 = the
fan-in of S1), etc. Also, the character needed to transition to a state is associated
with that state’s group (ie. S1.character = ‘H’). The resulting groups are: G1[S0,
S1, S3, S4, S5,S6,S8][H], G2[S0, S1, S2, S3, S5, S7, S8, S9][S], G3[S1][E], G4[S1,
S5][I], G5[S2, S7, S9][H], G6[S3][R], G7[S4][S], G8[S5][E], G9[S6][S].
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 (a) DFA for Patterns “SHE”,
“HERS”, “HIS”

 

Secondary 
Block 

Primary 
Block1 

(b) SDFA with Primary and Secondary
Blocks

Fig. 2. DFA before and after SDFA Modification

Next clusters are formed by placing all the groups with same character into
one cluster as shown in Table 1. The next step of this process is generating a code
for each group. The group code for every character begins with 1 and increments
for each group, starting over at the beginning of each cluster. The group codes
are given in Table 2. The code for any group is referred to as the state signature
of the state which the group is a representative of.

Finally, a state code for each state is obtained by concatenating the group
codes for the groups that a state is a member of. The group codes are formed
into a state code by being placed in the position of the cluster that the group
is a member of. Table 3 shows the state codes for all states. As an example,
state S4 is a member of groups G1 and G7 and the codes for G1 and G7 are
01 and 10 respectively. The state code for S4 is formed by placing the code for
G1 in the position of cluster C1 and the code for G7 in the position of cluster
C2. The remaining cluster positions receive all zeros as state S4 is not a member
of a group that lies in clusters C3, C4 or C5. The state code for S4 is thusly a
concatenation of 01, 10, 00, 0, and 0 which yields the final code 01100000.

4.2 Pattern Compiler: State Analysis

This section describes the State Analysis component of the Pattern Compiler.
This consists of the creation of the tables involved in FSM Operation.

Character/Cluster Table. The Character/Cluster Table (Table 4) contains
the cluster index required to derive the next state. The index starts at 0 for
cluster 1 and is incremented for each cluster by the number of group members in
the previous cluster. The character for each cluster is also included in the table.

Code Table. The calculation for deriving the index for any state, which deter-
mines its order in the Code Table, is seen in Equation 1. The state index is simply
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Table 1. Clustering (A)

Cluster Character Group Bit Length
C1 H G1 G5 2
C2 S G2 G7 G9 2
C3 E G3 G8 2
C4 I G4 1
C5 R G6 1

Table 2. Group Coding
(A)

Group Coding

G1 0 1
G5 1 0
G2 0 1
G7 1 0
G9 1 1
G3 0 1
G8 1 0
G4 1
G6 1

Table 3. State Codes (A)

State Group Code

S0 G1 G2 0 1 0 1 0 0 0 0
S1 G1 G2 G3 G4 0 1 0 1 0 1 1 0
S2 G2 G5 1 0 0 1 0 0 0 0
S3 G1 G2 G6 0 1 0 1 0 0 0 1
S4 G1 G7 0 1 1 0 0 0 0 0
S5 G1 G2 G4 G8 0 1 0 1 1 0 1 0
S6 G1 G9 0 1 1 1 0 0 0 0
S7 G2 G5 1 0 0 1 0 0 0 0
S8 G1 G2 0 1 0 1 0 0 0 0
S9 G2 G5 1 0 0 1 0 0 0 0

Table 4. Character/Cluster Table (A)

Character Cluster Index

H 1 0
S 2 2
E 3 5
I 4 7
R 5 8

Table 5. Code Table (A)

Index State Code State

0 0 1 0 1 0 0 0 0 S0
1 0 1 0 1 0 1 1 0 S1
2 0 1 0 1 1 0 1 0 S5
3 1 0 0 1 0 0 0 0 S2
4 1 0 0 1 0 0 0 0 S7
5 1 0 0 1 0 0 0 0 S9
6 0 1 0 1 0 0 0 1 S3
7 0 1 0 1 0 0 0 0 S8
8 0 1 1 0 0 0 0 0 S4
9 0 1 1 1 0 0 0 0 S6



Predictive Pattern Matching for Scalable Network Intrusion Detection 261

the sum of the cluster index for a state and the value of its state signature. Table
5 shows the completed code table for this example. The state codes are stored
in this table in the order of their index which is calculated as aforementioned.

Sindex = Clindex + Ssig (1)

4.3 FSM Operation

The following example explains the functionality of the FSM Operation compo-
nent. Consider the current state as S3 and incoming character ‘R’. To derive the
next state for incoming character ‘R’ we require the cluster index and the state
signature. Table 1 shows that ‘R’ belongs to cluster 5. We obtain the cluster in-
dex for cluster 5 from Table 4 which is 8. The state signature is found in cluster
5 of the current code S3. From the Code Table the code for S3 is 01010001. This
means that the state signature for cluster 5 in S3 is 1. Using Equation 1 we get
the next state index which is calculated as, 8 + 1 = 9. Therefore, the index 9 in
the Code Table gives the next state as S6.

5 Approach B: “SDFA” for Reduced Memory

Discussed here is the second implementation of P 3FSM . This approach is called
“SDFA”. What can be observed about this approach is that because it uses the
“SDFA” optimization its memory requirements are very small, more-so than the
previous approach. However, it has a much lower throughput. More about this
will be discussed in the Results section.

5.1 Pattern Compiler

For this approach, after the DFA is formed as aforementioned, it is optimized into
what we have deemed a Split-DFA or SDFA. SDFA eliminates redundant transi-
tions and then partitions the DFA into multiple blocks called the Primary-Block
and Secondary-Block. States which have a high-density of redundant transitions
are those which also receive transitions from the initial or zero state of the DFA.
We call these states first-level states as they hierarchically lie on the first level of
the DFA. All transitions to these states other than those from state zero are re-
moved from the DFA and subsequently these remaining transitions to first-level
states are partitioned into the Secondary-Block of the SDFA as seen in Figure
2b. At this point the majority of transitions have been removed from the DFA
(especially in larger DFA), and the remainder of the transitions are said to lie
in the Primary-Block of the SDFA.

Groups are formed from states in the DFA as in previous examples, however,
this approach does not utilize the “Character Aware” property. This means that
groups can be clustered together if they do not share any members, regardless of
what characters those groups posses. A maximal clique algorithm is used to per-
form this clustering operation and the result is the shortest state codes of all three
implementations. The state codes derived for this approach can be seen in Table 6.
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Table 6. State Codes (B)

State State Code

S1 0 0 1 1 1
S2 0 1 0 0 0
S3 0 1 0 1 0
S4 0 1 1 0 0
S5 0 1 1 1 1
S6 1 0 0 0 0
S7 0 1 0 0 0
S8 0 0 0 0 0
S9 0 1 0 0 0

5.2 FSM Operation

The FSM Operation for this approach uses several bitwise masking operations
to isolate the cluster containing the next state signature. This algorithm has a
much greater time complexity than the other two algorithms. The reason for this
time complexity is the very short state codes. Although more memory efficient
than the other two approaches, these codes tell little about the potential next
states and therefore require more work from the FSM to extract the appropriate
next state.

6 Approach C: “Character Aware / SDFA” for High
Throughput and Reduced Memory

Discussed here is the final implementation of P 3FSM . This approach is called
“Character Aware / SDFA”. What can be observed about this approach is that,
because it is “Character Aware” it can quickly isolate the next state, however,
because of the “SDFA” optimization it is memory efficient. This implementation
is the most balanced as far as memory efficiency and throughput. More about
this will be discussed in the Results section. The following sections describe by
example the different components, starting with the Pattern Compiler and then
the FSM component operation.

6.1 Pattern Compiler: Pattern Analysis

This section describes the Pattern Analysis component of the Pattern Compiler.

Deriving and Optimizing a DFA. In this example, state codes are derived
from the SDFA in Figure 2b.

Deriving State Codes. The next step which is the derivation of predictive
state codes is explained by the following example. The DFA to be referred is
given in Figure 2b. All the states in the DFA are grouped together as explained
in Section 4.1. The resulting groups are: G1[S0][H], G2[S0][S], G3[S1][E], G4[S1,
S5][I], G5[S2, S7, S9][H], G6[S3][R], G7[S4][S], G8[S5][E], G9[S6][S].
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The second step is to combine these groups together to form clusters. For
this, first the groups with the same character are combined into a cluster. Next,
the number of clusters are reduced by merging all the clusters that do not have
common states to form one cluster. The clustering result thusly obtained is given
in Table 7. As seen in this table, characters ‘H’, ‘S’, ‘E’, ‘R’ do not have common
states and hence, can be placed in one cluster.

The third step of this process is encoding the groups. This has two parts, the
character signature and state signature. The character signature identifies if the
incoming character has a valid state transition (explained in FSM operation) and
it begins with 0. This signature remains unchanged for the groups with same
character. The state signature gives the next state and always begins with 1.
The resulting group codes are shown in Table 8. For example, from the table we
see that the groups G1 and G5 have same character signature 00, this is because
both the groups have character ’H’ however their state signatures are 01 and 10
respectively. Therefore, we get the code for G1 as 0001.

The last step is to obtain the state codes as shown in Table 9. The process
for constructing state codes from the group codes is the same as in Approach A.

6.2 Pattern Compiler: State Analysis

This section describes the State Analysis component of the Pattern Compiler.
This consists of creating tables for use in the FSM operation. Tables for charac-
ters, clusters and state codes are created.

Character/Cluster Table. The character/cluster table is created to contain
several pieces of information. Firstly, the character signature for each character
is stored. Secondly, the cluster that contains all the states associated with that

Table 7. Clustering (C)

Cluster Character Group Bit Length
C1 H S E R G1 G5 G2 G7 G9 G3 G8 G6 4
C2 I G4 1

Table 8. Group Coding (C)

Group Char Sig State Sig

G1 0 0 0 1
G5 0 0 1 0
G2 0 1 0 1
G7 0 1 1 0
G9 0 1 1 1
G3 1 0 0 1
G8 1 0 1 0
G6 1 1 0 1
G4 0 1

Table 9. State Codes (C)

State Group Code

S1 G3 G4 1 0 0 1 0 1
S2 G5 0 0 1 0 0 0
S3 G6 1 1 0 1 0 0
S4 G7 0 1 1 0 0 0
S5 G8 G4 1 0 1 0 0 1
S6 G9 0 1 1 1 0 0
S7 G5 0 0 1 0 0 0
S8 0 0 0 0 0 0
S9 G5 0 0 1 0 0 0
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character. Thirdly, each character is given an index number. The index starts at
0 for the first character and is incremented for each character by the number of
states with the previous character. Finally, each character is assigned a failure
index. This is necessary because of the SDFA optimization done in the pattern
analysis component. If a valid transition is not produced during FSM operation,
this failure index automatically becomes the next state index as discussed in
Section 6.3. Table 10 shows the final Character/Cluster Table for this example.

CodeTable. The shared tables used to operate theFSM are the character/cluster
table and the code table. The code table consists solely of the state codes placed in
the correct order. The index position for each state code in the code table can be
calculated by Equation 2, by adding the state signature to the character index for
any given state. Table 11 shows the final Code Table for this example.

Sindex = Chindex + Ssig (2)

6.3 FSM Operation

The functionality of the FSM Operation component is illustrated in the following
example. Assume that the current state of the system is S1 and the incoming
character is ‘E’. Table 11 shows that this means the current state index is 1. The
state code for index 1 is 100101. The character ‘E’ has a signature of 10 and a
cluster of 1. Since the character signature in cluster 1 of the current code is also

Table 10. Character/Cluster Table (C)

Character Signature Cluster Index Failure Index

H 0 0 1 0 1
S 0 1 1 2 3
E 1 0 1 5 0
R 1 1 1 7 0
I 0 2 8 0

Table 11. Code Table (C)

Index State Code State

1 1 0 0 1 0 1 S1
2 1 0 1 0 0 1 S5
3 0 0 1 0 0 0 S2
4 0 0 1 0 0 0 S7
5 0 0 1 0 0 0 S9
6 1 1 0 1 0 0 S3
7 0 0 0 0 0 0 S8
8 0 1 1 1 0 0 S6
9 0 1 1 0 0 0 S4
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10, then the state signature in cluster 1 which is 01, along with the character
index for ‘E’ which is 5 can be used to calculate the next state index. This is
done by utilizing Equation 2 with a simple addition: 1 + 5 = 6. Thus, the next
state index is 6 which is the state code for S3. From the DFA in Figure 2b it can
be observed that for state S1 on the occurrence of an ‘E’ , the next state should
be S3, which verifies the next state result.

In a different scenario, assume that the current state is S6 and the incoming
character is ‘H’. Referring to Table 11 we get the current state index to be 8 and
the corresponding state code 011100. Also, Table 10 gives the cluster for ‘H’ as
1 and the signature 00. The character signature in cluster 1 for S6 is 01 which is
different from the signature for ‘H’. This is an invalid condition. Thusly, the next
state index becomes the failure index for character ‘H’ which is 1. This gives the
next state as S1.

7 Results

The P 3FSM approaches provide noticeable tradeoffs for memory requirements
and throughput. As seen in Figure 3 the “SDFA” approach has lowest memory
requirement. This is because it removes all the failure transitions as discussed
earlier and hence has large cluster sizes yielding small state codes. However,
this decreases the throughput drastically because now we may have to perform
lookups in different clusters to obtain the next states for a given character. On
the other hand, the “Character Aware” approach achieves the highest through-
put. This approach stores each character in a separate cluster which increases
the speed of lookup as all the possible next states for a given character are now
in one cluster. But it also increases the memory requirement because the cluster-
ing method used in this approach increases the number of clusters. “Character
Aware / SDFA” utilizes the properties of both “SDFA” and “Character Aware”
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Fig. 3. Memory Requirements vs. Throughput with SDFA Only as Baseline
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approaches to produce good memory requirements and throughput. It places
many characters into a single cluster but limits the next states of each character
to be in one cluster. The simulated results in the following section verify the
validity of these approaches.

7.1 Memory Requirements and Performance

Table 12 shows the memory requirements for both a standard DFA, as well as
all three P 3FSM implementations. The “SDFA” approach is the most memory
efficient, followed by the “Character Aware / SDFA”, and lastly the “Character
Aware”. All three approaches are however, more memory efficient than a stan-
dard DFA. For 200 patterns, the three P 3FSM implementations range from 10
to 85 times more memory efficient than a standard DFA.

Table 13 contains the throughput and number of instructions per algorithm
iteration (FSM Cycles) for the three P 3FSM approaches. As expected, the
“SDFA Only” approach has the lowest throughput. It requires more instructions
and many more memory accesses than the other methods. The “Character Aware
/ SDFA” achieves a desirable throughput but is not the fastest implementation.
“Character Aware Only” achieves the highest throughput. This is because the
state codes used in this implementation allow for a quick isolation of the ap-
propriate next state. This comes with the price of greater memory requirements
however.

From both Tables 12 and 13 it can be observed that combining the “SDFA”
and “Character Aware” properties into one FSM, allows for a very memory
efficient yet still high throughput system. The “Character Aware / SDFA” FSM
achieves high throughput while still reducing the memory requirements from a
standard DFA by many times.

Table 12. Storage Requirement (in KByte)

Patterns States DFA Size SDFA Size Character Aware Size Character Aware / SDFA Size
5 93 23.25 0.08 0.69 0.10
20 302 94.38 0.48 5.16 0.77
50 568 195.25 1.11 13.31 2.50
100 1060 397.50 3.36 34.16 8.15
200 1601 600.38 6.84 60.39 16.03
300 3098 1258.56 22.69 218.21 42.73
400 4837 2116.19 41.92 268.66 72.63
500 5267 2304.31 49.51 298.33 81.65

Table 13. Performance (in Throughput and Number of Instructions)

Performance SDFA Character Aware Character Aware / SDFA
Throughput (in Gbps) < 0.20 1.50 1.09
Number of Instructions > 97 13 44
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8 Conclusion

In this work we have presented P 3FSM , a fast, portable, memory-efficient and
scalable pattern matching engine. P 3FSM is completely software based, yet
offers the benefits of many hardware-based pattern matching engines. Three
approaches to P 3FSM have also been evaluated, presenting multiple options
which concentrate on memory efficiency, throughput and the tradeoff between
the two. From simulated results it can be concluded that utilizing predictive state
codes to represent a DFA, and taking advantage of intelligent optimizations such
as “SDFA” and “Character Aware” clustering, a pattern matching FSM can be
implemented which is ideal for NIDS and other high speed applications.

Due to the increasing importance of NIDS, as well as ever growing network
speeds, P 3FSM is a suitable solution to modern day signature-based NIDS
requirements. It is able to perform its duties at high speeds, yet is portable
enough to be easily implemented in any network or end user system.
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Abstract. In the midst of vastly numbered and quickly growing inter-
net security threats, Network Intrusion Detection System (NIDS) be-
comes more important to network security every day. Vital to effective
NIDS is a multi-pattern matching engine which requires deterministic
performance and adaptability to new threats. Memory-based Determin-
istic Finite Automata (DFA) are ideal for pattern matching but have se-
vere memory requirements that make them difficult to implement. Many
previous heuristic techniques have been proposed to reduce memory re-
quirements, however in this paper, we aim to effectively understand the
basic relationship between DFA characteristics and memory, in order to
create minimal memory DFA implementations. We show what DFA char-
acteristics either cause or reduce memory requirements, as well as how
to optimize DFA to exploit those characteristics. Specifically, we intro-
duce the concepts of State Independence and State Irregularity, which
are DFA characteristics that can reduce memory waste and allow for
memory reuse. Furthermore, we introduce DFA normalization which op-
timizes DFA to fully exploit these characteristics. Altogether this work
serves as a source for how to extract and utilize DFA characteristics to
create minimal memory implementations.

1 Introduction

Deterministic Finite Automata (DFA) have been studied extensively for many
purposes [1,2,14]. One of the most common uses is for deterministic pattern
matching, specifically for signature-based Network Intrusion Detection Systems
[3,4,5] which utilize pattern matching to detect network attack signatures [6,7,8].
DFA are preferred for this purpose as they can be used to match many patterns
simultaneously and still achieve deterministic performance.

Unfortunately, DFA are difficult to implement effectively as they posses many
characteristics which make them spatially complex and memory inefficient
[9,10,11,12]. Many attempts have been made to remedy DFA space issues but
most are based solely on observations made about DFA test-sets and trends.
Thusly, most solutions either present negative performance tradeoffs, or limit
the scope of patterns that DFA can be constructed from. There are however,
certain DFA characteristics that, when exploited properly, can supersede these
limitations.
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For this reason, this paper presents a theoretical analysis of the characteristics
of DFA that cause complexity and memory issues using two metrics: State Ir-
regularity and State Independence. State Irregularity for characterizing memory
“waste” due to unbalanced transition distribution, and State Independence for
characterizing memory efficiency due to state correlation. With a theoretical un-
derstanding of the relationship between these metrics and memory requirements,
we present novel DFA implementations that exploit these concepts, culminating
in a design that fully exploits all DFA characteristics discussed in this paper, for
a minimal DFA implementation that is platform independent.

The remainder of the paper is organized as follows. Deterministic Finite Au-
tomata are discussed in Section 2. The concept of State Independence is dis-
cussed in Section 3, and State Irregularity in Section 4. Several memory-based
DFA implementations that exploit State Independence and State Irregularity
are discussed in Section 5. Experimental results for supporting the theory and
implementations in this paper are discussed in Section 6. Related work and its
relationship to State Independence and State Irregularity is discussed in Section
7 and the paper is concluded in Section 8.

2 Deterministic Finite Automata

2.1 DFA Description

A Deterministic Finite Automaton (D) is defined as follows: D = {Q, C, δ, q0,
F}, where:

– Q is a finite set of states
– C is a finite set of input symbols
– δ is a transition function from Q× C → Q for all qi ∈ Q
– q0 is the initial state and q0 ∈ Q
– F is the set of matching states and F ⊆ Q

The operation of δ is deterministic and therefore, maximum of one qj exists for
any δ(qi, c)→ qj . This means there is only one outgoing transition per character
per state, at the most. Also, δ(qi, c)→ {∅} for any c 	∈ C. A result of {∅} resets
to the initial state q0.

Given a string t ∈ T where T is the set of strings whose symbols compose
C, the sequence of symbols in t as input to δ will yield at least one fi ∈ F and
exactly one fi ∈ F where i is unique to t.

2.2 DFA Representation

A DFA can be represented using multiple methods depending on the purpose of
that representation. In order to help convey ideas about DFA, we may represent
them as a visual graph as seen in Figure 1(a). This figure shows a DFA with |Q| =
6. Each directed edge represents δ(qsource, cdest)→ qdest, or a transition from a
source state to a destination state on the input character of the destination state.
The characters or symbols in C are not shown in this example graph however, it
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can be assumed that a transition to any state is a conditional transition assuming
an input character specific to the destination state.

We can also use an adjacency matrix as representation, which is helpful in
mathematically extracting properties of DFA. Figure 1(b) shows an adjacency
matrix which represents δ of Figure 1(a). Each row represents a source state
and each column a destination state. If the intersection of any row and column
contains a one, then δ contains a transition δ(qrow, ccol)→ qcol. If an intersection
does not contain a one then δ(qrow, ccol)→ {∅}.

2.3 DFA Memory

In memory based DFA implementations (including hardware and software), the
goal of the transition function δ is to store the appropriate next states for all
current states in memory locations retrievable based on information known in
δ. We can denote L as the memory space needed to store the results of δ(qi, c)
for all c for any i. This concept is illustrated by Figure 2. Each state needs Lqi

bit memory to store its next state information. Each next state’s information
is stored in some predefined location in L. So the memory requirements M for
any DFA implementation can be generalized by Equation 1, where |Q|, is the
size of the finite set of states Q. For example, in a standard memory-based DFA
implementation where the input character c and the current state qi are used as
the lookup address for the numeric value of the next state, L = �log2(|Q|)� · 28.

δ(q0) δ(q0) ------ ------

δ(q1) δ(q1) δ(q1) δ(q1)

δ(qn) ------ δ(qn) ------

Lq0

Lq1

Lqn

 

Fig. 2. Abstraction of a memory-based DFA
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Next state information must be stored in predefined locations in memory for the
sake of lookup and thusly, L in Equation 1, must be equi-sized for all states.
This is the nature of the memory in DFA implementations.

M = |Q| · L (1)

Observing any DFA will show that no matter how a standard DFA is imple-
mented in memory, L will not be regular for all states. In actuality, a summation
of Lqi for all qi ∈ Q, as in Equation 2, will always yield a smaller result than
Equation 1, meaning, M ′ ≤M . This means that regularity of M is achieved by
growing Lqi for all i to the size of Lmax which is the maximum Lqi for all i.

M ′ =
|Q|
∑

i=1

Lqi (2)

Ideally we want to minimize Lqi for all i and make M and M ′ equivalent. Two
concepts can be used to achieve these goals. State Independence can be exploited
in order to reduce Lqi for all i, as independent states can be made to share the
same location in L. State Irregularity in δ can be examined and made regular
in order to make M and M ′ naturally equivalent. In the next two sections, we
will describe state independence, exploit naturally occurring state independence
to minimize memory, describe state irregularity, and eliminate irregularity to
further minimize memory.

3 State Independence

Two states qi and qj are independent if there exists no δ(qk)→ qi and δ(qk)→ qj

for any k. In other words, neither qi nor qj are adjacent to the head of a directed
edge from the same state qk, where 0 ≤ k ≤ |Q|, including i or j. Figure 3(a)
shows two states i and j that are independent, whereas Figure 3(b) shows states
i and j that are dependent.

State Independence can be used to minimize Lqk
for all k. If two states are inde-

pendent, then δ can store both states in the same location in L as there will never
be any δ(qk) that results in both qi and qj . However, if qi and qj are dependent then
Lqk

must contain qi and qj simultaneously, increasing the size of L.
We can estimate the excess percentage of L that is caused by states being

dependent using Equation 3. SD gives a general metric for measuring state

i j
 

(a) Inde-
pendent

i j

 

(b) Depen-
dent

Fig. 3. Example of independent and dependent states
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dependence (not independence) for a given DFA. As SD approaches zero, a
DFA contains very little dependence and will yield a low width for L, where as
a value of close to one for SD, indicates much more dependency and will yield
a longer L.

SD = 1− �log2(|Q| −Qdep)�
Qdep + �log2(|Q| −Qdep)�

(3)

In Equation 3, Qdep is the number of states in a DFA that are nearly completely
dependent. In order to estimate Qdep, we start with adjacency matrix [A] as
representation of transition function δ. If we define the fan-in transitions for
any state qi as all δ(qj , ci) → qi, where j is all rows in column i of [A] that
contain one’s, then the fan-in degree sequence (FIdeg) for Q can be calculated
by Equation 4. In Equation 4, I is identity matrix. Figure 4 shows an example
of this calculation. The diagonal of the resulting matrix is the fan-in degree for
each state qrow. This degree sequence can then be used in Equation 5 to estimate
dependent states.

FIdeg = [A]T · [A] · I (4)

Qdep =

|Q|
∑

i=1

FIdeg(i)

|Q| (5)

3.1 Exploiting State Independence

The first thing necessary for exploiting State Independence is the independence
number α of any DFA(D), which is the largest group of mutually independent
states in D, can be found by creating a new graph G. Each node in G represents
a state in D and if two states in D are independent, their respective nodes in
G receive an adjoining, non-directed edge. Given this new graph G, we can find
α(D), as ω(G) = α(D). ω(G) is the size of the vertex-set of the maximum clique
Clmax in G. In summary, this clique represents the largest group of states in D
that can be stored in the same location in any Lqi for any i.

We can remove Clmax from G we can again find ω(G) forming the next largest
set of independent states and so on until G = {∅}. The independent sets in D can
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 Fig. 4. Calculating Fan-In Degree Sequence with Adjacency Matrix
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share the same memory locations in δ helping to minimize the memory needed
to implement δ for any D. These independent sets can also be optimized for
performance by distributing states such that all states that receive a transition
on character ci are in the same independent set for all i. This optimization is
called character aware State Independence.

4 State Irregularity

The quantity of next state information stored in Lqi may be different for each
i. This is due to the irregularity of δ for each state. In order to quantify this
irregularity, we will again use the fan-in degree sequence from Equation 4.

If we label the largest value in FIdeg to be FImax, then we can define State
Irregularity(SR), by Equation 6. SR is the level of irregular edge distribution.
As the value of SR approaches one, the more irregularity that exists relative to
the states with the largest fan-in degrees. This irregularity manifests itself as
wasted memory. However, an SR value of zero means that each state has the
exact same fan-in degree, yielding better memory efficiency. The ideal scenario
is if both conditions 1 and 2 from Equation 7 are met.

SIr =

|Q|
∑

i=1

(1− FIdeg(i)
FImax

)

|Q| (6)

1.)SIr = 0 2.)
|Q|
∑

i=1

FIdeg(i) = |Q| (7)

So, before exploring solutions to State Irregularity, the causes of such irregularity
need be examined. The following are rules for transitions in δ. Following said
rules, a discussion of why irregularity is caused by these rules is included. Given:

– DFA, D = {Q, C, δ, q0, F}
– Px = Set of states contained by all paths in δ that match pattern x.
– Ki = Hierarchy level of each of each qi ∈ Q (shortest path from q0 to each

qi)

Transitions are formed in δ by the following categories:

1. A single transition δ(qi, cj)→ qj , where Kj = Ki + 1, is allowed for each Kj

assuming the following:
(a) There exists no other δ(qh, cj)→ qj where Kh ≤ Ki

(b) If qj ∈ Px then qi ∈ Px

2. Failure transitions δ(qi, cj)→ qj are allowed assuming the following:
(a) Kj ≤ Ki

(b) If qj ∈ Px then qi ∈ Py and x 	= y and qi 	∈ Px
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3. The following transitions violate transition rules 1 and 2 respectively:
(a) δ(qi, cj) → qj and qi ∈ Px and qj ∈ Py and qi 	∈ Py and qj 	∈ Px and

Kj > Ki

(b) δ(qi, cj)→ qj and δ(qi, ck)→ qk and (δ(qj , ck)→ qk or δ(qk, cj)→ qj)

Transitions from category 1 are called forward matching transitions. They rep-
resent a successful match of the next character in the character sequence of some
pattern. These transitions occur from a level K to level K + 1 and according to
condition 1(a), a state can only receive one forward matching transition. Con-
dition 1(b) states that the state which is adjacent to the tail of the forward
matching transition must be in the same set of states for the same pattern as
the receiving state.

If patterns have a shared prefix, then those prefixes share states in their
pattern sets for all characters in the shared prefix. A branch will occur to two
different states after the shared prefix states. Figure 5(a) shows a DFA with
forward matching transitions only. The branches seen in this figure occur because
of shared prefixes. Branches only occur at states representing the end of a shared
prefix and thusly cause State Irregularity.

Transitions from category 2 are called failure transitions. These are transitions
from a state on an input character that is not a valid character for the next
forward matching transition. Thusly, a transition is followed for said character to
a destination state that represents the longest prefix that matches the sequence
of characters that caused forward matching up to the state where the failure
occurred. As in condition 2(a), these failure transitions must point to a state
at the same level or less. Condition 2(b) says that a state cannot have a failure
transition which points to a state that is a member of the set of states for the
same pattern.

Being that, the longer a prefix is the less likely that a sequence of states will
contain that pattern, most failure transitions point to states at level K = 1.
This creates an irregular distribution of edges, as the greater the value of K
for a state, the less likely it is that this state will receive a failure transition.
Figure 5(b) shows a DFA with both forward matching transitions and failure
transitions.

 

(a) Forward
Matching

 

(b) Failure

 

(c) Illegal
(Dotted-
Lines)

Fig. 5. DFA Transitions
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The two types of transitions aforementioned both contribute to State Irreg-
ularity. This is partially because some transitions are not allowed. Transitions
that conform to conditions 3(a) and 3(b) are illustrated by the dotted edges
in Figure 5(c). Condition 3(a) represents a transition that converges from one
pattern set to another, which is represented by the forward matching dotted line
in Figure 5c. This transition violates conditions 1(a) and 1(b). If this transition
were allowed, it would help to balance out irregularity. The same can be said for
a transition conforming to condition 3(b), represented by the failure transition
dotted line, however, this transition violates condition 2(b). The fact that these
transitions violate the structure of DFA makes substantial State Irregularity a
typical scenario.

4.1 Normalizing State Irregularity

In order to help correct State Irregularity, DFA can be normalized. This nor-
malization is comparable to database normalization, in which a one-to-one or
one-to-many relationship is created between data which belongs to the same set.
Figure 6(a) shows a DFA for several patterns. There are a substantial amount
of transitions causing irregularity, most of which are failure transitions. Typical
in database normalization, is the use of a single lookup record to represent in-
formation that would otherwise be repeated many times. The same can be done
for transitions in DFA.

For any state that receives more than one transition, a single transition can
be kept as a lookup transition for the character needed to transition to that
state. The remaining transitions to said state can subsequently be removed.
For example, in Figure 6(a), state 1 receives many failure transitions. These
transitions always occur on the letter “a”. If the transition δ(q0, a)→ q1 is used
as a lookup transition, then a one-to-many relationship is created between all
transitions to state 1 and the lookup transition. The same can be done for all
transitions δ(q0, cj) → qj , yielding the DFA in Figure 6(b). If a state fails for
any character, the lookup transitions can be used to determine the appropriate
next state.
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After one level of normalization is applied as in Figure 6(b), the only transi-
tions which still contribute to irregularity are shared prefix branches and multiple
character prefix failure transitions. Although typically few in number, these tran-
sitions can still contribute a great deal to memory inefficiency, as well as match-
ing operation complexity. Complete normalization can be achieved by adding
another level of normalization. After completing this normalization as seen in
Figure 6(c), each lookup block is completely regular relative to itself. When stor-
ing δ in memory for a normalized DFA, there is little to no wasted memory due
to State Irregularity.

5 Implementations

This section presents two memory-based DFA implementations that exploit the
characteristics and optimizations discussed in previous sections. Both implemen-
tations in Sections 5.1 and 5.2 are solely memory-based in that they only require
memory, no special hardware is required. Both implementations also exploit State
Independence to minimize memory. The first implementation normalizes DFA to
one level of normalization. The second in Section 5.2, uses two levels of normaliza-
tion and has a very simple lookup structure. It is the culmination of all concepts
discussed in this paper. It is very memory efficient and executes quickly.

5.1 Portable Predictive Pattern Matching Finite State Machine

Portable Predictive Pattern Matching Finite State Machine (P 3FSM) is ideal
for implementation in software. It utilizes one level of DFA normalization. For
this example, we will refer to the DFA in Figure 6(b). From this DFA, State
Independence is determined. This determines what location(loc) the each next
state information will be stored in as in Table 1, which shows the primary mem-
ory contents. Table 2 shows the secondary memory contents. Each location(loc)
in Table 1 consists of a character value in the left column and a next state value
in the right column. In order to keep Lqi small for all i, the character and next
state values are generated relative to the location(loc) which means that values
can be reused, making them shorter.

The operation of P 3FSM consists of a short series of simple lookups as illus-
trated by the following examples:

Example 1. Primary Memory: Assume the current state is q3 and the next
input character is “f”, or δ(q3, f). We first lookup the information for “f” in Table
2. With this information we move to Table 1 at adrs(8) which is the address of
Lq3 . At adrs 8, we now compare the val for “f” which is 100, to the char val in
loc(1) which is also 100. Since both values match, we extract the state val at
adrs(8)/loc(1) which is 010. We add this state val to the offset for “f” which is
9, yielding: 9+010 = eleven. This means eleven is the address of the next state.
At adrs(11) in Table 1 lies Lq9 . Now, if we reference the DFA from Figure 6(b),
we see the transition δ(q3, f)→ q9.

Example 2. Secondary Memory: If we redo the same scenario except using
a different input character such as δ(q3, b), the comparison of the val for “b”
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Table 1. Primary Memory Content (Q long by L wide)

Adrs Loc(1) Loc(2) Loc(3)
Lq1 1 001 010 1 001 0 1
Lq2 2 010 001 0 000 0 0
Lq7 3 010 011 0 000 0 0
Lq8 4 011 010 0 000 0 0
Lq12 5 000 000 0 000 0 0
Lq13 6 011 010 1 010 0 0
Lq16 7 000 000 0 000 0 0
Lq3 8 100 010 0 000 0 0
Lq14 9 100 010 1 011 0 0
Lq4 10 000 000 0 001 0 0
Lq9 11 000 000 0 011 0 0
Lq10 12 010 100 0 000 0 0
Lq11 13 000 000 0 000 0 0
Lq15 14 000 000 0 100 0 0
Lq19 15 000 000 0 000 0 0
Lq5 16 000 000 0 010 0 0
Lq17 17 000 000 0 000 0 0
Lq18 18 000 000 0 000 0 0
Lq6 19 010 010 0 000 0 0

Table 2. Secondary
Memory Content

Char Val Loc Offset Adrs
a 000 1 0 1
b 001 1 1 2
c 010 1 3 0
d 0 3 18 0
e 011 1 7 8
f 100 1 9 10
h 0 2 11 0
x 1 2 15 0

would not match the char val at adrs(8)/loc(1). Therefore, we chose as the next
state, the adrs for b from Table 2, which is 2. This means the system chooses
δ(q3, b)→ q2. This transition is not present in Figure 6(b), but does not need to
be due to the normalization process.

5.2 Simple Instruction Finite State Machine

Simple Instruction Finite State Machine (SI-FSM) is also ideal for implementa-
tion in software. It utilizes two levels of DFA normalization. For this example,
we will refer to the DFA in Figure 6(c). From this DFA, the primary memory
content is populated by storing Lqi for each i in the order they appear in their
respective primary blocks in Figure 6(c). The primary memory content is shown
in Table 3. The secondary(1) memory contents are shown in Table 4. Since this
implementation uses two levels of normalization, an extra secondary block is
used as shown in Table 5. This table is populated much the way the primary
table is in P 3FSM .

The operation of SI-FSM consists of a short series of simple lookups as illus-
trated by the following examples:

Example 1. Primary Memory: Assume the current state is q3 and the next
input character is “f”, or δ(q3, f). We can immediately go to Table 3 at adrs(13)
and compare the input character “f” to the char at adrs(13), which is also “f”.
Since there is a match, the adrs is simple incremented moving the current state
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Table 3. Primary Memory Con-
tent

Adrs Char Fail
Lq5 1 h 0
Lq11 2 — 0
Lq1 3 d 1
Lq6 4 c 0
Lq12 5 — 0
Lq7 6 c 0
Lq13 7 x 2
Lq17 8 — 0
Lq2 9 c 0
Lq8 10 e 0
Lq14 11 x 3
Lq18 12 — 0
Lq3 13 f 0
Lq9 14 h 0
Lq5 15 h 4
Lq19 16 — 0
Lq4 17 h 0
Lq10 18 c 0
Lq16 19 — 0

Table 4. Secondary(1)
Memory Content

Char Loc Adrs
a 0 3
b 1 9
c 1 0
d 0 0
e 1 13
f 1 17
h 0 0
x 2 0

Table 5. Sec-
ondary(2) Memory
Content

Fail Loc(1) Loc(2)
1 b 6 x 1
2 e 11 — —
3 f 14 — —
4 c 19 — —

to adrs(14) which is Lq9 . We know from before that δ(q3, f)→ q9 is the correct
transition.

Example 2. Secondary(1) Memory: If we redo the same scenario except
using a different input character such as δ(q3, b), the comparison of “b” would
not match the char “f” adrs(13). Therefore, the 0 in the fail field at adrs(13)
tells us to use the adrs for “b” from Table 4 which is 9. Adrs(9) is the address
for q2 which yields the correct transition δ(q3, b)→ q2.

Example 3. Secondary(2) Memory: Assume input δ(q1, b). We compare the
incoming character “b” to the character at adrs(3) in Table 3. The characters
do not match b 	= d, so we use the value of 1 from the fail field and move to
the fail index of 1 in Table 5. We compare the incoming character “b” to the
“b” in loc(1) and find a match. Are next state address becomes adrs(6) which
is Lq7 . This means a transition δ(q1, b) → q7 has occurred which is the correct
transition.

6 Results

DFA contain varying levels of State Independence and State Irregularity in a
natural form, that is, with no optimizations. These characteristics drastically
affect memory requirements for different DFA. In Section 6.1 we begin by exam-
ining naturally occurring State Independence and State Irregularity, and their
relationship to each other and to memory. We proceed in Section 6.2 to show
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how normalization works to correct State Irregularity and enhance State Inde-
pendence, thusly decreasing memory requirements.

6.1 Non-normalized DFA

To start out we will examine the correlation between SD and SR, as well as
SD and SR versus DFA size. Figure 7 shows the values for SD and SR given
DFA constructed from 1 to 500 patterns. The patterns used to build the DFA
are randomly extracted from Snort [13] rules. Several observations can be made
about SD and SR from this figure.

Although State Independence occurs naturally in DFA, improving State Ir-
regularity helps improve State Independence. In this figure SD and SR are
moderately parallel. As State Irregularity Increases, so does the dependence be-
tween states. The transitions that promote SR such as shared prefix branches
and failure transitions do contribute to dependency between states. That is why
an increase in SD is observed as SR increases as well.

Another observation that can be made from Figure 7 is based on the fact
that, as the number of patterns, or size of the DFA, increases, the number of
failure transitions to single character prefixes increase. This both decreases the
transition balance and increases dependency between states. So as SR increases,
SD increases.
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Table 6. Group of snort ruleset characteristics (memory data relative to synthetic 1)

Ruleset Patterns Characters States SD SR Memory-per-Char Memory-per-Pattern
Synthetic 1 1 20 20 0.286 0.815 1.0 1.0
Synthetic 2 2 37 37 0.333 0.885 1.4 1.3
Synthetic 3 5 111 93 0.462 0.918 2.9 3.2
Synthetic 4 20 363 302 0.591 0.921 5.4 4.9
IMAP 33 232 181 0.619 0.936 5.4 4.8
FTP 58 343 296 0.700 0.942 8.6 4.5
Policy 88 1009 875 0.767 0.963 10.4 6.0
Web-CGI 200 2361 1733 0.773 0.989 10.5 6.2
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Next we will examine how SD and SR effect memory. To illustrate this,
refer to Table 6 which shows characteristics for different Snort rulesets. For
each ruleset, the table shows the number of patterns and characters in those
patterns, as well as the number of states in the resulting DFA. SD and SR
are calculated for each ruleset. Lastly, the memory-per-character and memory-
per-pattern fields show the amount of memory required relative to the memory
results for the Synthetic 1 ruleset. For example, IMAP requires 5.4 times the
memory per character than Synthetic 1. Memory per character and per pattern
are used because each ruleset has a different number of patterns and characters.
The results are relative to Synthetic 1 so the effects of SD and SR are more
easily observed.

In Table 6, similar trends can be seen for SD and SR as in Figure 7. This
table reveals how these values effect memory. As SD increases, more memory
(relative to DFA size) is required to implement patterns in a DFA. The same
can be said for SR, as more memory is needed as SR increases. A small increase
in SR means an increase in the percentage of states that are dependent, hence
the increase in SD. This increase in SD yields a longer L, or memory width,
due to the dependent states needed to be stored in separate locations in L. The
end result is empty or wasted memory for many states as shown in Figure 2.
Adjusting SR through normalization as in Section 4.1 allows for nearly complete
reduction of SR and SD for a minimal L, or memory width. This is demonstrated
in the next section.

The difference in memory is also substantial per pattern, however, many fac-
tors can effect this such as; the number of shared prefixes in the patterns, sim-
ilarity in non-prefix substrings in patterns and length of patterns. Therefore,
memory per character is a better metric for observing the effect of State Inde-
pendence and State Irregularity.

6.2 Normalized DFA

State Independence can be utilized to reduce the memory for DFA implemen-
tations. Also, State Irregularity can be reduced, while State Independence in-
creased through normalization as discussed in section 4.1. Figure 8 shows SD,
SR and memory for zero, one and two levels of normalization. The data comes
from a 500 pattern DFA derived from Snort rulesets. The value of the memory
is relative to memory for zero levels of normalization.

Without normalization, SD is around 0.84. After one level of normalization
SD decreases to 0.09 and when the DFA is completely normalized at two levels,
SD reduces to less than 0.01, which essentially means almost complete indepen-
dence between states. This is because normalization reduces dependency between
states as well as irregularity in transition distribution.

The most important observation to be made from Figure 8, is that the memory
is reduced to about 47 percent of the original requirement after one level of
normalization and to about 12 percent after two levels of normalization. These
values for memory are especially exciting because the base value for memory
with zero levels of normalization already takes state independence into account.
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So the decrease to 47 percent(1 level) and then 12 percent(2 levels) comes solely
from the increase in State Independence due to normalization.

7 Related Work

Soewito and etc. [14] introduced a memory-based hardware DFA implementa-
tion called SAM-FSM, or Self-Addressable Memory-based Finite State Machine.
SAM-FSM is the first approach to memory-based DFA to explicitly exploit State
Independence. It groups states into independent sets. Those sets can share a lo-
cation in the so called self-addressable codes stored in memory for each state.
These codes are synonymous to Lqi in this paper.

Kumar and etc. [10] introduced a method for DFA minimization called D2FA.
This method points many redundant failure transitions toward a default state.
It allows many failure transitions that fan-out from a single state to many other
states, to become one transition to a default state. In D2FA however, many de-
fault states are allowed. Since a transition to a default state means not advancing
to the next input character, but instead holding the character for processing at
the default state, if multiple default transitions are followed in a row, it may be
many clock cycles before a character is processed and the input character is ad-
vanced. To circumvent this processing cost, Becchi and Crowley [9] introduces an
optimization which places a bound on the number of default states that can be
followed in a row. This bound slightly limits the transition reduction capability,
however State Independence is not exploited by D2FA.

Lunteren [11] introduced a string-matching engine, BFPM which uses a pri-
oritized list of state transition rules stored in memory. These prioritized rules
are very similar to our normalization techniques. Occasionally, lookup needs to
take place between the clustered sections. BFPM does not exploit State Indepen-
dence. Also, the normalization used is not complete and there may be multiple
transitions spanning clustered sections.

8 Conclusion

This paper presents a thorough analysis of DFA in order to understand the rela-
tionship between DFA characteristics and memory requirements. Two concepts
related to minimization of memory-based DFA are introduced: State Indepen-
dence and State Irregularity. State Independence allows next state information
for DFA to be stored in the same location in memory, minimizing memory width.
State Irregularity is a characteristic of DFA that can be normalized to reduce
memory waste. We present experimental results using realistic pattern sets, that
demonstrate the affect these characteristics have on memory requirements.

With a clear understanding of the relationship between DFA characteristics
and memory, we show how to optimize DFA to exploit these characteristics for
enhanced memory reductions. We believe that our work bridges many gaps be-
tween existing heuristic minimization methods, in order to help solve the overall
problem of memory-based, deterministic pattern matching for scalable Network
Intrusion Detection Systems.
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Abstract. Abnormal traffic detection is a difficult problem in network 
management and network security. This paper proposed an abnormal traffic 
detection method based on LoSS (loss of self-similarity) through comparing the 
difference of Hurst parameter distribution under the network normal and 
abnormal traffic time series conditions. This method adopted wavelet analysis 
to estimate the Hurst parameter of network traffic in large time-scale, and the 
detection threshold could self-adjusted according to the extent of network 
traffic self-similarity under normal conditions. The test results on data set from 
Lincoln Lab of MIT demonstrate that the new detection method has the 
characteristics of dynamic self-adaptive and higher detection rate, and the 
detection speed is also improved by one time segment. 

Keywords: Network traffic, Anomaly detection, Hurst parameter, Discrete time 
series, Self-similarity. 

1   Introduction 

Along with the development and popularization of network, more and more serious 
attacks have been present and threat to the stability of the internet. It can be seen that 
network traffic related to attacks, especially distributed denial-of-service (DDoS) 
attacks, is “pulse” from the perspective of dynamical aspects for limited time interval 
in physics[1], so we call these attack-contained traffic abnormal traffic and attack-free 
traffic normal traffic. The abnormal traffic can cause a huge harm to the network 
performance, mainly reflect in two aspects: (ⅰ) consumes a large amount of network 
bandwidth resource, and causes network congestion, therefore results in network 
packet loss rate increases, and prolongs the transmission delay-time; (ⅱ) occupies 
network equipment system resources (CPU, memory etc.), therefore leads the network 
unable to provide normal services. So it is necessary to detect and prevent this 
abnormal traffic timely and successfully. 
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In 1993, Leland et al.[2] first found the local network traffic had the nature of self-
similarity and long-range dependence (LRD). Paxson et al.[3] also found the wide area 
network traffic had the self-similarity nature. Self-similar is the property that 
associated with the objects whose structure is unchanged at different time scales. The 
work presented in [4] showed that the self-similarity of internet traffic distributions 
could often be accounted for a mixture of the actions of a number of individual users, 
hardware and software behaviors at their originating hosts, multiplexed through an 
interconnection network.  

Li[5] quantitatively described the abnormal traffic statistics, and found that the 
averaged Hurst parameter of abnormal traffic usually tended to be significantly 
smaller than that of normal traffic. The works in [6][7][8][9] presented new methods 
of detecting the possible presence of abnormal traffic without a template of normal 
traffic. These methods used LoSS definition with the self-similarity or Hurst 
parameter beyond the fixed threshold, but the real-world network traffic self-
similarity extent is changing over time, so these detection methods had low detection 
rate and high false alarm rate. In this paper, we present a dynamic self-adaptive 
abnormal traffic detection method based on the self-similar nature, and the detection 
threshold can change with the network traffic self-similarity extent automatically. The 
method mainly includes three steps: (ⅰ ) estimates the Hurst parameter of the 
incoming network traffic using wavelet analysis, and (ⅱ ) decides whether the 
incoming traffic is normal or not by comparing the Hurst parameter with the detection 
threshold, then (ⅲ) updates the detection threshold if the incoming traffic is normal, 
otherwise informs the network administrators. This method has the characteristics of 
dynamic self-adaptive and convenience to be implemented. 

The remainder of this paper is organized as follows. Section 2 briefly introduces 
the theoretical background of self-similarity and wavelet-based Hurst parameter 
estimation. Section 3 describes the detection principle and explains the abnormal 
traffic detection process in detail. The detection results of the data set from Lincoln 
Lab of MIT are presented in Section 4. Finally, a brief summary of our work and 
future research are provided in section 5. 

2   Self-similarity and Hurst Parameter Estimation 

2.1   A Brief Review of Self-similarity 

Self-similarity means that the sample paths of the process ( )X t and those of rescaled 

version ( )Hc X t c , obtained by simultaneously dilating the time axis by a factor 

0c > , and the amplitude axis by a factor Hc , cannot be statistically distinguished 
from each other. H  is called the self-similarity or Hurst parameter. Equivalently, it 
implies that an affine dilated sunset of one sample path cannot be distinguished from 
its whole. 

Let { , }iX X i += ∈  be a wide-sense stationary discrete stochastic process with 

constant mean μ , finite variance 2σ , and autocorrelation function ( ), ( )r k k +∈ . 

Let ( )mX  be a m-order aggregate process of X , 
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( )
1( )m

i mi m miX X X m− += + +  ,i m +∈  . (1) 

For each m, ( )mX defines a wide-sense stationary stochastic process with 

autocorrelation function m ( ), ( )r k k +∈（ ） . 

Definition 1. A second-order stationary process X  is called exactly second-order 
self-similar (ESOSS) with Hurst parameter =1- 2H β , 0 1β< < , if the 
autocorrelation function satisfies 

( ) ( ) ( ), ( , )mr k r k k m += ∈  . (2) 

Definition 2. A second-order stationary process X  is called asymptotical second-
order self-similar (ASOSS) with Hurst parameter =1- 2H β , 0 1β< < , if the 
autocorrelation function satisfies 

( )lim ( ) ( ), ( )m

m
r k r k k +→∞

= ∈  . (3) 

where 2 2 2( ) [( 1) 2 ( 1) ] 2r k k k kβ β β− − −= + − + − . In the field of network traffic theory, it 
is more practical to use ASOSS. 

2.2   On-line Hurst Parameter Estimation 

Several methods had been developed to estimate the Hurst parameter, such as 
aggregated variance[10], local whittle[11], and the wavelet-based methods[12]. By far, the 
wavelet-based estimator of the Hurst parameter stands out as one of the most reliable 
estimators in practice for it is more robust with respect to smooth polynomial trends 
and noise[13]. Wavelet-based Hurst parameter estimation mainly includes three 
methods: wavelet variance analysis, wavelet power spectra analysis, and wavelet 
energy analysis. These methods are consistent in essence. In this section, the wavelet 
energy analysis method is briefly introduced, and more details please refer to[12]. 

For a given traffic trace time series X , Hurst parameter H  can be estimated as 
follows: 

 First, for each scale j  and position k , compute the wavelet coefficients:  

, ,1
( , ) , ( ) ( )j k j kn

d j k X n X n
∞

=
= Ψ = Ψ∑  . (4) 

where 2
, 0( ) 2 (2 )j j

j k n n k− −Ψ = Ψ −  and 0Ψ  is the (Daubechies) mother wavelet. 

 Second, compute the wavelet energy jμ  for each scale j : 

2

1

1
( , )jN

j k
j

d j k
N

μ
=

= ∑  . (5) 

where jN  is the total number of wavelet coefficients at scale j . 

 Then, make a plot of 2log ( )jμ  versus scale j  and apply linear regression 
over the curve region that looks linear, and compute the slope α . 
 Finally, estimate the Hurst parameter as: 

= 1 2H α +（ ）  . (6) 



286 Z. Xia et al. 

3   Abnormal Traffic Detection 

3.1   Detection Principle 

For given discrete time series { , }iX X i += ∈ , { , }iY Y i += ∈  and { , }iZ Z i += ∈ , 
let X  and Y  be normal traffic and abnormal traffic respectively, and Z  be the attack 
traffic during transition process of attacking. X  and Z  are uncorrelated[5], so Y  can 
be abstractly expressed by Y X Z= + . 

Fig. 1 illustrates the components of normal and abnormal traffic, ( )kx i represents 

the number of bytes send out by node  k  at time i  for normal network services, and 
( )qz i  represents the number of bytes send out by node q  at time i  for network 

attacks, and iY  be total traffic the target received at time i . 

Let XXr , ZZr  and YYr  be autocorrelations of X , Z  and Y respectively. During the 

transition process of attacking, YY XXr r−  is noteworthy[5], and YY XX ZZr r r＝ ＋ . For 

each value of ( ]H ∈ 0. 5， 1 , there is exactly one autocorrelation function with self-

similarity as it can be seen from Beran (1994, p. 55). Thus, a consequence is that 

Y XH H−  is considerable, where YH  and XH  are average Hurst parameters of Y  

and X , respectively. Hence, H  is a parameter that can yet be used to describe the 
abnormality of network traffic. 

3.2   Detection Process 

In general, the network traffic of one host or one LAN is almost equal and remains 
steady as a whole under normal conditions for a period of time. But for longer time, 
the traffic is unstable, and it changes with the network circumstance (network load, 
and number of users, et al.), so the detection threshold also should change 
accordingly. Figure 2 is the flowchart of self-adaptive abnormal traffic detection. 

∑  

Fig. 1. Composition of normal and abnormal traffic 

{ , }iX X i += ∈ H

( )U U，  

Fig. 2. Self-adaptive abnormal traffic detection process 
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The detailed detection process is as follows: 
 

Step one: detection threshold initialization 
Before the detection, the detection threshold should be initialized. According to 

[8], the typical Hurst parameter of network traffic is 0.75, and the traffic will be 
considered as abnormal if the change of Hurst parameter is more than 0.15. So, let the 
down threshold U  and up threshold U  be 0.6 and 0.9, respectively. 

Step two: abnormal traffic detection 
Divide the traffic X  received at time segment N  into M non-overlapping blocks. 

Each block is a series of L  length. Let ( )NH m 1 2m M（ ＝，， ， ）  be the Hurst 

parameter of each block. Averaging ( )NH m  in terms of index m  yields 

1

1
( )

M

N N
m

H H m
M =

= ∑  . (7) 

NH represents the Hurst parameter of time segment N . The traffic X is considered 

normal if NH U U∈（ ， ）  and goes to step three, otherwise X is considered abnormal, 
and then goes to step one, and reports the abnormal to the network administrators at 
the same time. 

Step three: detection threshold updating 
When the traffic X is considered normal, the detection threshold should be 

updated before the next detection. Considering the Hurst parameter 

nH 1 2n N（ ＝，， ， ） of time segment N  and 1N −  consecutive time segments before 

time segment N , a normality assumption for nH  is quite accurate in most cases for 
10M ≥ （Bendat and Piersol, 1986）. 

Let H  and 2
Hσ  be the mean and variance estimates of nH  separately, 

[ ]
1

1 N

n n
n

H E H H
N =

= = ∑  

2 2 2

1

1 N

H n
n

H H
N

σ
=

= −∑  

Then, the probability density function of nH  can be expressed as  

( )
2

222 1
; ,

2

n

H

H H

n H

H

f H H e σσ
πσ

⎡ ⎤−⎣ ⎦−

=  . (8) 

The confidence interval of nH  with (1 )α−  confidence coefficient is given by 

( )2 2,H HH z H zα ασ σ− + . Considering the self-similar network traffic’s Hurst 

parameter is located between ( ]0. 5， 1 , so the down threshold U  and up threshold 

U  could be set as: 

2

2

max ( )

min  ( ]

H

H

U H z

U H z

α

α

σ

σ

−

+

＝ 0. 5，

＝ ， 1
 . (9) 
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3.3   Detection Performance 

One performance of the proposed method is that, you can control the false alarm 
probability ( fp ) as low as you wish. The term false alarm means mistakenly 
recognizing a normal traffic as abnormal traffic. 

In step three of section 3.2, we assumed that nH  satisfy a normal distribution in 

normal condition, so the false alarm probability fp  can be expressed by  

     ( ) ( )f n np p H U p U H= < + <  

                       

2 2

2 22 21 1

2 2

n n

H H

H H H HU

n n

UH H

e dH e dHσ σ

πσ πσ

⎡ ⎤ ⎡ ⎤− −⎣ ⎦ ⎣ ⎦+∞− −

−∞

= +∫ ∫  

          α=  
This means, you can control the false alarm probability by setting appropriate value of 
α . 

4   Experiment 

4.1   Data Preparation 

To testing the proposed method, we used the traffic data set from Lincoln Lab of 
MIT, named DARPA 2000 LL_DDoS_2.0.2. It collected from U.S. Air Force base 
over a span of approximately 1 hour 45 minutes on April 16 2000. This data set 
includes five phases of DDoS attack: probe a host; break in-to the host; upload DDoS 
software and attack script; initiate attack; launch the DDoS. Some of the traffic is 
displayed in figure 3, and the merge time scale is 100ms. 

4.2   Experimental Results and Analysis 

Let M N＝ ＝10 , and L＝128 , so the total data set can be divided into 48 time 
segments, and each time segment lasts about 128s, that means every segment has 10 
blocks, and each block contains 128 datas. We use Daubechies(3)[8] as mother  
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Fig. 3. Traffic of LL_DDoS_2.0.2 
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Fig. 4. Change trend of nH , U  and U  ( L＝128 , 0.05α＝ ) 

wavelet to estimate the Hurst parameter of each block. The change trend of nH , U  

and U  are displayed in figure 4. 
In figure 4, time segments 1~10 are the initialization of the detection threshold, so 

the down threshold U  and up threshold U  could be set as 0.6 and 0.9, respectively. 
At time segment 11, the traffic of 10 consecutive time segments before time segment 
11 is normal, so the updated U  and U  could be set as 0.67477 and 0.87885 

respectively with 95% confidence level ( 0.05α＝ ), and 11H U U∈（ ， ） , so the traffic 

of time segment 11 is considered normal. At time segment 20, the updated U  and U  
could be set as 0.71306 and 0.884606 respectively with the same confidence level, 
and 20H U U∉（ ， ） , so the traffic of time segment 20 is considered abnormal. Report 
this abnormal to network administrators, and reinitialize the detection threshold of 10 
consecutive time segments after the time segment 20. Using this detection method, 
the traffic is considered abnormal at time segments 20, 27-29, and 39-42.  

Change the confidence level to 99% ( 0.01α＝ ), so the nH , down threshold U  and 

up threshold U  of each time segment are displayed in figure 5. From figure 5, we can 
see that the traffic is considered abnormal at time segments 27-29, and 39-42. 

Comparing the figure 4 and figure 5, we can find that the wider the confidence 
level is, the less abnormal traffic will be detected; the narrower the confidence level  
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Fig. 5. Change trend of nH , U  and U  ( L＝128 , 0.01α＝ ) 
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is, the more abnormal traffic will be detected. This is because under the condition of 
wider confidence level, some low-rate abnormal traffic will be missed, and under the 
condition of narrower confidence level, some normal change of traffic will be taken 
as abnormal.  

Let L＝256 , so the total data set can be divided into 24 time segments, and each 
time segment lasts about 256s. We still use Daubechies(3) as mother wavelet to 
estimate the Hurst parameter of each block. The change trend of nH , U  and U  are 
displayed in figure 6. 
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Fig. 6. Change trend of nH , U  and U  ( L＝256 , 0.05α＝ ) 

By detection, the traffic is considered abnormal at time segments 14-15, and 20-21, 
corresponding to time segments 28-30, and 40-42 when L＝128 .  

Comparing the figure 4 and figure 6, we can find that the longer the L  is, the less 
abnormal traffic will be detected; the shorter the L  is, the more abnormal traffic will be 
detected. This is because when L  is long, some short-time abnormal traffic will be 
missed, and when L  is short, the data used to estimate the Hurst parameter is less, so the 
accuracy of Hurst parameter estimation will be degrade and lead to the false detection. 

According to Ref.[8], we use Daubechies(3) to estimate Hurst parameter of every 
time segment directly when L＝256 , and use the fix down threshold 0.6U =  and up 
threshold 0.9U =  to detect the abnormal traffic, the results is displayed in figure 7. 
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Fig. 7. Change trend of nH , U  and U  ( L＝256 ) 
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Through detection, the traffic is considered abnormal at time segments 15 and 21. 
Comparing figure 6 and figure 7, we can find that the detection speed of self-adaptive 
threshold detection method is faster than fixed threshold detection method one time 
segment (256s). This will bring a great benefit to network administrators for early 
finding out abnormal traffic and taking effective measures to prevent more damages 
to the network. 

5   Conclusion 

This paper compared the difference of Hurst parameter distribution under network 
normal and abnormal traffic time series conditions, and designed an abnormal traffic 
detection method using self-adaptive detection threshold. The detection results on 
data set DARPA 2000 LL_DDoS_2.0.2 demonstrated that the new detection method 
had the characters of self-adaptive and higher detection rate, and the detection speed 
is also improved. These merits will bring a great benefit to network administrators for 
early find out abnormal traffic and take effective measures to prevent more damages 
to the network. Recent research found that wireless network traffic also had the 
character of self-similarity, so our future research will focus on abnormal traffic 
detection of wireless network. 
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Abstract. Conventional network security solutions are performed on network-
layer packets using statistical measures. These types of traffic analysis may
not catch stealthy attacks carried out by today’s malware. We aim to develop
a host-based security tool that identifies suspicious outbound network connec-
tions through analyzing the user’s surfing activities. Specifically, our solution for
Web applications predicts user’s network connections by analyzing Web con-
tent; unpredicted traffic is further investigated with the user’s help. We describe
our method and implementation as well as the experimental results in evalu-
ating its efficiency and effectiveness. We describe how our studies can be ap-
plied to detecting bot infection. In order to assess the workload of our host-based
traffic-analysis tool, we also perform a large-scale characterization study on 500
university-users’ wireless network traces for 4-month period. We study both the
statistical and temporal patterns of individuals’ web usage behaviors from col-
lected wireless network traces. Users are classified into different profiles based
on their web usage patterns. Our results show that users have regularities in their
Web activities and the expected workload of our traffic-analysis solution is low.

1 Introduction

Several studies estimate that millions of computers worldwide are infected by malware
and have become bots that are controlled by cyber criminals [9,10,14]. The infected
computers are coordinated and used by the attackers to launch diverse malicious and
illegal network activities, including perpetrating identity theft, sending spam (estimated
100 billion spam messages every day [25]), launching denial of service (DoS) attacks,
and committing click fraud. Malicious bots are stealthy and difficult to detect using con-
ventional anti-virus software. Botnet communications including command and control
(C & C) and attacks disturb the usual and routine traffic patterns of a user. For a good
description of the botnet structures, we refer readers to the paper by Dagon, Gu, Lee,
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and Lee [6]. Malicious bot is a special type of malware, which is an umbrella term for
all malicious software such as virus, worm, rootkit, and spyware.

Many network-wide intrusion detection and protection systems, both commercial
products or research prototypes, have been developed for monitoring network traf-
fics and report alerts if observing known suspicious attack patterns [24,26]. Simi-
larly, anomaly detection systems aim to detect deviations or abnormal events from his-
toric usage patterns [22]. However, the existing network analysis and security tools
are inadequate in two main aspects: individualized analysis and personalized secu-
rity. It is reported that on average 3-5 percent of organizational assets are compro-
mised by bots and malware – even when the best and most up-to-date security soft-
ware is applied [7]. Most current network trace analysis focuses on the aggregated
traffic flow of the entire network, e.g., network-side traffic volume, busiest hosts on
the network, and bursty periods of the organization. These types of network-wide
traffic analysis do not give insights to the usage patterns of individuals on the net-
work.

In this paper, we describe a novel host-based anomaly detection approach based on
both traffic prediction and user participation. We call it a personalized security ap-
proach. Specifically, we implement a traffic monitoring framework that is capable of
predicting legitimate outbound network connections. Our framework intercepts net-
work traffic from the host. The connections that are observed but not predicted by the
framework may be due to malware activities on the host.

In order to further classify the unpredicted outbound connections, our approach is
to leverage the user’s personal knowledge about his or her Web activities, for exam-
ple, by prompting a window asking the user whether she initiated a connection to a
Web address. Studies found that users demonstrated regularities in their surfing pat-
terns [12]. Our characterization results presented in this paper also indicate that users
have highly repetitive network-connection patterns. Many botnets successfully evade
the IRC (Internet Relay Chat protocol)-based detection by switching to HTTP-based
command and control [13,30], as HTTP traffic is usually allowed through firewalls and
not blocked.

Therefore, our study focuses on identifying HTTP traffic of malware. Our approach
can be generalized to other application protocols. With a personalized security
approach, we monitor and examine host-based traffic patterns to detect abnormal
network requests caused by malware. This type of investigations represents a per-
sonalized analytical approach that can also be applied to managing the security of
large organizations. We implement our traffic-monitoring framework in Python and
evaluate its efficiency and prediction effectiveness. The technical challenges involved
in predicting Web-related traffic are the diversity and flexibility of hypertexts including
scripts. We focus on parsing and analyzing static Web pages, embedded iframes and
cascaded style sheets, as well as redirected pages. Our results indicate that most
traffic can be effectively predicted using our code for static Web content. Legitimate
connections that our prediction misses are mainly due to JavaScript code. In an effort
to reduce the number of questions asking to the user, we also utilize a whitelisting
approach.
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Another contribution of this paper is a large-scale characterization study on 500-
users’ wireless network traces for four-month period. We collected wireless network
traces from a university. Our characterization work aims towards discovering the pat-
terns and properties of individuals’ network behaviors, in particular, we study both the
statistical and temporal patterns of individual host’s Web activities. (A host is uniquely
identified by its MAC address which remains consistent throughout the dataset.) Our
investigation is different from the conventional network-wide aggregated traffic analy-
sis, as we focus on the micro-scale pattern of an individual user. Our characterization
results suggest that users have low diversity in terms of daily Web sites visited – people
tend to visit a small number of Web sites regularly. This repetitiveness can be leveraged
to construct effective host-based malware detection solutions because malware-caused
deviations from the regular patterns may be identified. It also indicates that the expected
workload of our traffic-monitoring tool is low.

The rest of the paper is organized as follows. Our host-based traffic-monitoring
framework is described in Section 2. Our wireless network trace analysis is given in
Section 3. The related work is described in Section 4. Conclusions and future work are
in Section 5.

2 Outbound Malware-Traffic Detection with User Participation

In this section, we describe a traffic monitoring framework that aims to identify mal-
ware traffic by carefully analyzing user’s Web requests and content as well as involving
the user in the process of classifying traffic. Although detecting anomaly traffic with
user’s help may appear to be straightforward, the challenge here is how to encourage
user’s participation and avoid intrusiveness to user. Thus we need a precise and effi-
cient prediction mechanism. Our solution requires the minimal participation from the
user and causes no undesirable delays to the user’s surfing experience. Our study is fo-
cused on Web traffic because HTTP based malware activities such as Spyware or botnet
command and control are notorious hard to detect – most firewalls allow HTTP traffic
on port 80. Our implementation is realized in Python in Linux, but the architecture can
be realized in other programming languages and platforms as well.

Our malware attack model and security assumptions are as follows. We consider
stealthy malware that is secretly sending outbound HTTP traffic. The malware may
corrupt the browser, e.g., through malicious extensions [16]. Thus, the browser is not
assumed to be trusted. The malware may be at the application-level or kernel-level such
as rootkits which actively hide their presence from the host’s operating system. How-
ever, for kernel-level malware, we assume that components in our detection framework
along with its files are not corrupted by the malware. This last assumption is reasonable,
as the integrity of our framework can be ensured using trusted computing infrastructure
such as Trusted Platform Module (TPM) [28,29] that are available on most commod-
ity PCs through a standard attestation procedure [20]. The integration of TPM into our
framework is not described in this paper. Our study addresses client-side security, and
complements any server-side security solutions.
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2.1 System Architecture and Algorithm for Traffic Monitoring

In order to identify unauthorized HTTP connections possibly due to malware, our ap-
proach is to monitor and analyze outbound network requests. Blocking outbound mal-
ware packets can effectively render malware useless. Thus, we do not need to examine
all incoming traffic, which makes our solution all the more efficient. Our solution can
effectively eliminate a wide spectrum of harmful malware activities, e.g., identity theft,
spam, DDoS attacks, click fraud, or botnet command & control messages. Malware is
unable to deliver stolen personal data to the outside. Our framework has the following
three main components:

– Sniffer: intercepting and filtering all outbound HTTP requests. Pending outbound
HTTP requests are put on a list waiting for approval to execute. Sniffing outbound
HTTP requests can be realized using existing network libraries such as libpcap
library in Python.

– Predictor: the prediction of legitimate outbound HTTP requests based on the user’s
activities and parsing of Web content retrieved out of band (Section 2.2). Observed-
yet-unpredicted connections will be prompted to the user for further classification.
An important requirement to the predictor is to reduce the number of questions for
the user while maintaining the prediction accuracy.

– User interface: pop-up windows where a user can indicate whether or not observed
network attempts are initialized by her (Section 2.3). The interface needs to be easy
to use by nontechnical-savvy users. A screenshot of our user interface is shown in
Figure 3.

In the next few sections, we will describe the technical details involved in realizing our
predictor as well as our experimental evaluation on the framework.

2.2 Analysis on Web Contents

In HTTP protocols, each object is retrieved in a separate HTTP request. For example, if
a Web page has 10 images, then the browser issues 11 separate HTTP requests sequen-
tially to the Web server. For persistent HTTP connections, all 11 HTTP requests may be
sent in one TCP connection between the server and the client, whereas for nonpersis-
tent HTTP connection, each HTTP request requires a separate TCP connection. Being
persistent or not does not affect the deployment of our solution.

To predict legitimate Web traffic, a straightforward solution is that each time an out-
bound HTTP request is observed, we ask the user whether she is responsible for that
connection. However, this simple approach may create many questions and be quite
intrusive to users due to the pervasive third-party content on the Web – advertisements
or (multimedia) content hosted by content delivery providers instead of the main web
server. Third-party content (e.g., from amakai.com or yimg.com) is retrieved from
URLs that may seem arbitrary to the user, i.e., bearing no similarity to the main website
URL (e.g., yahoo.com), impacting user’s classification decisions. This problem is
solved by us with out-of-band retrieval and analysis of Web content (explained below).
The workflow for identifying suspicious outbound traffic in our solution is as follows.

amakai.com
yimg.com
yahoo.com
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1. The predictor fetches the requested Web page independent of the browser (e.g.,
using wget), which we call out-of-band retrieval. It parses the retrieved content
to whitelist the outbound HTTP requests for fetching referenced objects (e.g., im-
ages). The predictor repeats this step until there are no referenced objects. The
whitelist is stored in memory, and is domain-based to improve our prediction effi-
ciency.

2. The sniffer intercepts all attempted outbound HTTP connections from the
host (including those from applications other than the browser), which are
put into a waiting list. The HTTP requests that appear on the predictor’s
whitelist are permitted. For example, a HTTP GET request to fetch object
yimg.com/images/tree.jpg is allowed if yimg.com is on the whitelist.

3. For the pending connections that cannot be predicted, we prompt a small window to
the user asking whether she has initialized that request. The connection is allowed
if the user enters Yes, and denied otherwise.

A schematic drawing of the detailed workflow regarding our traffic prediction is
shown in Figure 1 and explained as follows. Figure 2 gives an example of the ob-
jects/connections predicted as a result of a user visiting www.cs.rutgers.edu.

1. The user visits a target website W in Step 1 and 2. This initial request to URL W
is intercepted by libpcap library in Step 3.

2. In Step 4, our predictor checks to see if the domain of W is whitelisted or not. If
the domain is blacklisted, then the user is given a warning. If it is whitelisted, the
request is allowed. Otherwise, we prompt the user to confirm URL W as shown
in Figure 3 in Step 5. User-permitted domains are put onto the whitelist for future
reference.

3. In Step 6, the object HTTPRedirectHandler is for keeping track of redirected
requests by putting a listener to each executed outbound HTTP request. Therefore,
our predictor is capable of tracking redirections of any arbitrary depth. We note that
our analysis including the sending and processing of HTTP requests is outside and
independent of the browser, which we call out-of-band analysis.

1
2

3

HTML5Lib

HTTPRedirectHandler

User

Target
Website

4,9,11

5, 10

6

Web Browser

White/Black List

7

8 8a

8b
8c

PCAP Module

Fig. 1. Workflow in our traffic-monitoring framework

yimg.com/images/tree.jpg
yimg.com
www.cs.rutgers.edu
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Fig. 2. The illustration of a tree capturing the hierarchical invoking sequences among (automatic)
outbound HTTP requests as a result of visiting www.cs.rutgers.edu

Fig. 3. A screenshot of our user interface

4. The core parsing and prediction steps are Step 7 and 8 (8a, 8b, and 8c). Content
retrieved by the out-of-band request is parsed by the HTML5Lib Python library
to predict additional HTTP requests for objects therein. For example, in Figure 2
.CSS file may contain additional image objects that need to be requested. This
process loops (indicated by Step 8c) until there is no more object to retrieve.

5. Unique domain names of predicted connections are put on the whitelist in Step 9.
Observed actual connections that do not appear on the whitelist are prompted to
the user for classification in Step 10, the results of which are used to update the
white/black lists in Step 11.
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In our current implementation, our analysis is in parallel with the browser and takes
place in a postmortem fashion where we aim to identify suspicious URL connections
and alert to the user. Therefore, it causes no delay in the user’s actual surfing experience.
An alternative solution is to suspend all outbound HTTP requests until they are either
predicted by our tool or explicitly approved by the user. This approach may cause delays
in users’ Web usage and is not adopted by us.

Because our analysis is completely independent of the browser, it is robust against
corrupted browser. For example, a browser with malicious extensions on the client may
secretly exporting users’ personal data to the attacker (e.g., spyware); our solution can
detect the stealthy traffic. Our parser utilizes the HTML5LIB Python module. This mod-
ule provides a robust ability to parse through HTML/XML and XHTML code including
those with malformed markup code. The module can automatically fix bad markup and
return the parsed data in several formats including a tree format. After we download
and parse through an HTML file, our predictor goes through every node in the tree
using a built-in tree-traversal mechanism from the HTML5lib module to identify tags
with the attribute SRC. HTML tag with the attribute SRC initiates a network request to
fetch the contents of the source destination. The tags include IMG, SCRIPT, IFRAME,
FRAME, and INPUT, as well as tags AUDIO, EMBED, VIDEO in HTML5. The content
found within style tags are parsed through for any URL includes. This procedure
predicts @import requests and image includes for backgrounds or behavior scripts.
Last but not the least, attribute HREF from link tags is parsed, as it usually contains the
include for CSS files. In essence, we recursively identify objects referred in retrieved
WebPages to estimate the (separate) HTTP connections required to fetch all of them.
We note that our solution does not require crawling hyperlinks and thus is quite effi-
cient. Advanced Web contents such as Applets or AJAX (asynchronous JavaScript and
XML) requests through XMLHttpRequest typically concern objects residing on the
same domain as their parent page, and thus are safely disregarded by us.

2.3 Experimental Evaluation

In this section, we describe experimental evaluation on our solution. All the experiments
were executed on a HP Pavilion dv9500t laptop computer that has 4GB memory, an
Intel Core 2 Duo 2.2GHz CPU with ArchLinux X86 64.

In Table 1, we evaluate our program on several websites to assess its ability to predict
legitimate outbound HTTP connections. For most websites studied, our program is able
to predict most of the actual requests. For websites with the heavy use of JavaScript
code such as digg.com, the prediction percentage is relatively low. Improving our
prediction on JavaScript-generated requests requires interpreting JavaScript code along
with the DOM object out of the browser. This task is subject to our future study.

We perform extensive experiments to evaluate the efficiency of the predictor mech-
anism in our implementation. The prediction is performed in parallel with the actual
Web requests by the browser, and thus its execution has little impact on the browser’s
responsiveness to the user. Nevertheless, fast prediction is desirable because of the
early detection of suspicious outbound HTTP requests. We evaluate four websites
with distinct characteristics and our results shown in Table 2 blogs.zdnet.com
is a very dynamic and rich website, which usually has new connections on every

digg.com
blogs.zdnet.com
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Table 1. Evaluation on the prediction ability of outbound HTTP requests. Req. stands for re-
quests. Dom. stands for domains.

URL Actual Req. Predicted Req. % Predicted Actual Dom. Predicted Dom.

yahoo.com 37 67 92% 7 4
eset.com 51 67 94% 5 2

google.com 7 3 43% 3 2
cs.rutgers.edu 34 39 100% 1 1

digg.com 111 47 42% 21 7
codeigniter.com 29 177 100% 1 6

Table 2. Evaluation of prediction efficiency on four websites with full (F.) or lite (L.) predictors.
Results are averaged from three runs. The time is shown in seconds.

blogs.zdnet.com www.cs.rutgers.edu yahoo.com google.com

Actual Req. 228 67 40 3
Network time (F.) 23.50 3.54 1.86 0.22
Parsing time (F.) 2.19 0.28 0.09 0.03

Total (F.) 30.99 4.035 2.87 0.28
Network time (L.) 3.75 0.22 0.56 0.19
Parsing time (L.) 0.83 0.27 0.09 0.03

Total (L.) 12.55 0.68 1.39 0.24

page load. yahoo.com provides less dynamic content than blogs.zdnet.com –
this Web page stays consistent over a short period of time (e.g., a couple of days).
www.cs.rutgers.edu is a static and medium-sized website. google.com is a
very light and mostly static website. It only uses JavaScript code for the pull-down
menu at the top.

We test two versions of our predictor implementation: a full predictor and a lite pre-
dictor. The full predictor is as described in Section 2.2, where each requested object
is analyzed in the same fashion. In the lite predictor, images and JavaScript objects
are not requested and processed, i.e., Steps 6 through 8c are skipped if the request is
to fetech an image or JavaScript object. The lite version is effective for most web-
sites and may significantly improve our prediction efficiency. For yahoo.com and
www.cs.rutgers.edu, the lite predictor is faster than the full predictor, in partic-
ular for the more dynamic pages. For simple static page like google.com, the two
versions do not differ much as expected. For blogs.zdnet.com, prediction time
goes down with the lite predictor. However, some unique domains are not discovered in
the process: certain objects are not found (404) or being redirected (300); these cases
are not pursued by the lite predictor. Our experimental results indicate that both the
full and lite versions of predictors perform reasonably well for typical websites on a
personal computer.

yahoo.com
eset.com
google.com
cs.rutgers.edu
digg.com
codeigniter.com
blogs.zdnet.com
www.cs.rutgers.edu
yahoo.com
google.com
yahoo.com
blogs.zdnet.com
www.cs.rutgers.edu
google.com
yahoo.com
www.cs.rutgers.edu
google.com
blogs.zdnet.com


User-Assisted Host-Based Detection of Outbound Malware Traffic 301

3 Analysis on University Wireless Network Traces

Our solution provides a real-time suspicious out-bound traffic discovery mechanism.
In detection phrase, we need user’s participation to classify suspicious traffic into ma-
licious or good traffic. In order to assess user’s workload of our host-based traffic-
analysis tool, we carry out a characterization study on 500 university-users’ wireless
network traces for 4-month period. We study both statistical and temporal patterns of
individuals’ Web usage behaviors from collected wireless network traces. Unlike pat-
tern recognition based detection mechanism, we use these patterns to gain an insight in
user’s network activity, which implies the user’s workload in using our system.

We run several filters on the original data. First, we remove the users whose total
traffic volume is lower than 1 MB, which effectively remove the users with failed login
and temporary users. Second, we only keep the outgoing and incoming TCP traffic with
destination or source port 80, in order to filter out non-HTTP connections and exclude
data from peer-to-peer software. Many HTTP-based P2P applications run on high port
numbers. We find that there are many invalid MAC addresses in our data. We wrote a
program to automatically verify the validity of a MAC address by comparing it with
the published prefixes of authorized network interface card manufactures. Unmatched
MAC addresses are notified and their corresponding traffic is removed.

In what follows, we use the words host and user interchangeably, as the hosts that
connect to the wireless network are virtually all personal laptops.

Volume of Distinct IP Addresses. Our overall analysis methodology is to explore and
characterize network activities belonging to individual hosts. We compute and catego-
rize each host’s daily web traffic volume. We choose the top 500 users represented by
distinct local MAC addresses that have the highest number active days. In an inactive
day, the host has zero HTTP traffic with port 80. In Figure 4 (left), hosts are categorized
by their daily numbers of IP addresses visited. Y-axis denotes the number of users who
are in a category represented by the values in the square bracket. The majorities of users
out of the 500 studied only visited a small number of servers and have low diversity in
their daily Web traffic. On the other hand, a few users are extremely active and visit a
large number of distinct IP addresses every day. On average, 278 hosts contacted less
than 50 distinct IP addresses daily. Note that duplicate HTTP connections are counted
only once, thus automatic refresh or reload operations by Web servers do not artificially
increase the count of IP addresses.

Temporal Analysis Of Individual Web Usage. We analyze how many new IP addresses
and old IP addresses that a host visits each day. If an IP address visited by a host exists
in the previous surfing history, then it is labeled as an old IP, otherwise, a new IP of that
day. The surfing history of a user is initialized to be empty on day one, i.e., H1 = ∅.
Thus, all traffic on that day is new. At the beginning of an active day i, the surfing history
is concatenated with day i− 1’s new IP set newi−1, i.e., Hi = Hi−1 ∪ newi−1. Thus,
an IP address at day i is new only with respect to a user’s surfing history up to day i. We
observe that most hosts visit fewer numbers of new IP addresses than old IP addresses
each day, indicating that most nodes are consistent with their surfing history. In Figure 4
(right), X-axis is the index of each user, Y-axis is daily number of IP addresses that
visited by a user, the solid line is daily number of old IP addresses, and the dotted one
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Fig. 4. Left: The number of hosts (in Y-axis) based on their volume of daily distinct IP addresses
visited. Values in square brackets are the ranges of daily number of IP addresses visited. Right:
The numbers of daily old and new IP addresses visited by 50 hosts, respectively.

is the daily number of new IP addresses. We select the most active 50 hosts to show in
this analysis. For most users in Figure 4, the number of new IP addresses grows with
the number of old IP addresses. An overwhelming majority of hosts visited many more
old IP addresses than new IP addresses on active days.

We show the analysis results on two specific hosts in Figure 5, where Y-axis denotes
the percentage of daily old IP addresses visited by a host and X-axis denotes the index of
active days. For each day, the percentage is computed as the number of old IP addresses
divided by the number of all IP addresses visited by the host. Inactive days are not
included in the analysis. Both hosts visit significantly more old IP addresses than new
ones each day. Both users demonstrate repetitive patterns in their surfing history. As
the volume of new IP addresses is significantly lower than that of old IP addresses, the
workload for analysis and monitoring would be low. For our host-based bot detection
approach described in Section 2, we aim to focus on analyzing new IP addresses or
URLs visited by a host.

We also identify the two active hosts in our dataset and find that both hosts have
a high degree of repetitiveness in the IP addresses visited. In Table 3, we count the

Fig. 5. Percentage of daily old IP addresses visited by two hosts, respectively. Both hosts have 55
active days.



User-Assisted Host-Based Detection of Outbound Malware Traffic 303

Table 3. Numbers of days during which two hosts visit a certain percentage of old IP addresses,
respectively. Total numbers of active days are 122 and 118, respectively.

Percentage of Old IP addresses Visited Host 1 Host 2

100% 59 days 57 days
≥ 90% 80 days 79 days
≥ 80% 100 days 95 days

numbers of days during which two hosts visit a certain percentage of old IP addresses,
respectively. For each active day of a host, the percentage is computed as the number of
old IP addresses visited divided by the total IP addresses visited during that day.

Profiling Visit Patterns Of Individual Hosts. The degree of activity of a host can be
represented by the number of total and new IP addresses visited daily or the number
of active days during the 4-month long period. Intuitively, a user who surfs on Internet
regularly tends to be more proficient in using the web and visit a diverse and large
number of IP addresses. In an effort to investigating the correlation between the two
metrics, we plot the number of daily visited IP addresses against the number of active
days of a user in Figure 6. We study the 500 most active hosts whose numbers of active
days range from 10 to 130 days. In Figure 6, X-axis in each graph is the number of
active days; Y-axis is the daily number of the total IP addresses in (a) and new IP
addresses in (b), respectively. We find that for some hosts the number of IP addresses
visited grows with the number of active days, which is consistent with our intuition. The
area close to the origin is dense with points in Figure 6 indicating that the majority of
users studied have limited HTTP-based network activities both in terms of active days
and the volume of distinct remote IP addresses visited. We further draw a 3-D plot with
500 hosts according to their (1) number of active days (2) daily IP addresses visited and
(3) daily new IP addresses visited. The details can be found in technical report [32].

Fig. 6. X-axis is the number of active days of a host. Y-axis is the average number of the total
IP addresses in (a) and new IP addresses in (b), respectively. 500 hosts are plotted. Each dot
represents a user.
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Summary on wireless network traces. The number of distinct IP addresses visited
by a host is most likely to be higher than the actual number of websites visited.
A website refers to the top-level domain name, e.g., google.com, yahoo.com,
amazon.com. There are several reasons. (1) Many popular servers have mul-
tiple IP addresses for load-balancing and fault-tolerance purposes. For example,
066.102.001.166 and 074.125.067.118 are among the several google.com servers.
They are counted as two different IP addresses in our analysis. (2) Many websites heav-
ily use third-party content providers for multimedia contents or advertisements. For
example, when www.cnn.com is loaded, several content providers are contacted. (3)
Dynamic IP addresses due to DHCP cause a single (remote) host to have distinct IP
addresses at different time. More fine-grained data collection and analysis on the URLs
and websites visited by the users are subject to our future study. We note that our anal-
ysis is based on distinct IP addresses visited as opposed to URLs, due to the limitation
of our dataset. As a Web server typically hosts many Web pages, the actual number of
URLs visited by the user may differ from the number of IP addresses.

4 Related Work

Our proposed personalized security approach is different from existing anomaly
detection techniques [3,22]. Personalized security aims at exploring individuals’ and
personal usage patterns for the detection purpose, whereas conventional anomaly de-
tection methods construct generic solutions for users. In addition, we focus on detect-
ing internal malware abuse and threats, as opposed to preventing break-ins coming
from outside in the conventional settings. Security-oriented traffic analysis has caught
much attention from both the network and security communities, including malware
or botnet characterization [8,21,23,31] and privacy-preserving routing and packet trace
anonymization [17,18,19]. Our work differs from them in that i) we analyze the sta-
tistical and temporal patterns of individuals’ application-layer Web usage (as opposed
to low-level network packets); and ii) our analysis is user-centric by leveraging user’s
personal knowledge about her own surfing activities. To that end, our solution aims to
address the usability, in particular nonintrusiveness, of the host-based malware detec-
tion solutions. Our tool is complementary to the existing network-level or program-level
malware identification solutions.

Analyzing and characterizing organizational wireless network traces have tradi-
tionally been studied for maintaining the stability and availability of network re-
sources [4]. Several studies have been performed on university campus wireless
network traces [1,11,15,27]. Researchers in Stanford University [27] studied a 12-week
trace of their local-area wireless network in Computer Science Department building
with attempt to find out the peak throughput rates and the cause of the peaks. Kotz and
Essien [15] carried out a similar study with a significantly larger and broader population.
They found out that network backup and file-sharing traffic contributed an unexpectedly
large amount to the overall traffic, which was also found in [11].

Authors in the paper [1,2] paid more attention on user behavior in the wireless net-
work, but these behavior studies served as parameters for network performance opti-
mization. For example, authors in [1] pointed out the load of each access point was
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determined mostly by individual user behaviors. In [2], it was found that the data-
transfer rates of users follow a power law distribution. Power-law distributions were
also found in certain characteristics of WWW, such as the distributions of document
sizes and user requests for documents [5]. In comparison, our study on user behaviors
in local wireless network differs from aforementioned studies. As opposed to optimiz-
ing network or server performance, we focus on analyzing users’ individual and tem-
poral behavior patterns in their wireless Web traffic, which is motivated by the need for
personalized security. Policies in firewalls are typically based on port numbers and IP
addresses. In contrast, we provide much more fine-grained inspection as we examine
each HTTP connection intercepted on the network interface.

5 Conclusions and Future Work

In this paper, we proposed a novel host-based security tool that identifies suspicious out-
bound network requests with user’s participation. Specifically, we described a personal-
ized security approach and a simple-yet-effective host-based network security solution
that identifies abnormal outbound HTTP requests based on out-of-band (i.e., browser-
independent) prediction and user-assisted classification. We also described our results
on analyzing a large-scale wireless network dataset that involves more than 500 users
over 4-month period. We analyzed the individual usage patterns of users in an organiza-
tion in order to assess the workload of our host-based malware detection solution. Our
characterization analysis on individuals’ surfing patterns is useful beyond the specific
malware-detection problem studied, as it provides insights to how individual surfing-
behavior patterns may be leveraged for improved web services.

For future work, we plan to carry out user studies to evaluate humans’ traffic recog-
nition abilities. The hypothesis that we aim to evaluate in the user study is that a user
knows the websites she is currently visiting and thus can recognize malware-related
traffic to unfamiliar URLs. In a user study, each participant will be asked to freely
surf online for 10 to 20 minutes, during which we will randomly access a list of arbi-
trary (bot) servers, i.e., inject malware traffic to test whether a user can recognize it.
For unpredicted outbound HTTP requests including the injected ones, we will prompt
a window (as in Figure 3) asking whether or not the user just visited the URL. From
users’ responses, we will compute false positive and false negative rates of their perfor-
mance. Here, a false positive result will indicate that the user misclassified legitimate
user-initiated traffic as malware HTTP requests. A false negative result, conversely, will
indicate that the participant has misclassified bot URLs for their own traffic. With our
comprehensive traffic prediction mechanism described in this paper, we expect this se-
curity tool to be nonintrusive to users.

In addition, we will investigate techniques to include personalized semantic analy-
sis of surfing records and novel clustering methods for identifying outliers and suspi-
cious traffic. This study will first extract surfing tastes of individuals and then detect
suspicious Web requests whose content is inconsistent with the user’s previous surf-
ing history. We also plan to construct more advanced pattern-recognition techniques on
individuals’ usages.
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Abstract. We propose a novel approach for statistical risk modeling
of network attacks that lets an operator perform risk analysis using a
data model and an impact model on top of an attack graph in combina-
tion with a statistical model of the attacker community exploitation skill.
The data model describes how data flows between nodes in the network –
how it is copied and processed by softwares and hosts – while the impact
model models how exploitation of vulnerabilities affects the data flows
with respect to the confidentiality, integrity and availability of the data.
In addition, by assigning a loss value to a compromised data set, we can
estimate the cost of a successful attack. The statistical model lets us in-
corporate real-time monitor data from a honeypot in the risk calculation.
The exploitation skill distribution is inferred by first classifying each vul-
nerability into a required exploitation skill-level category, then mapping
each skill-level into a distribution over the required exploitation skill, and
last applying Bayesian inference over the attack data. The final security
risk is thereafter computed by marginalizing over the exploitation skill.

1 Introduction

In order to manage the dynamic nature of the security of a network, where
new nodes are added and new softwares are installed, operators regularly run
scanning tools such as Nessus to discover the network topology and existing
vulnerabilities [1]. However these tools do not put vulnerabilities into the context
of how these vulnerabilities can be exploited to obtain illegal access to resources
in the network. Likewise, they do not automatically determine the impact to the
system or the potential risk.

As a consequence, a great number of automated approaches to security anal-
ysis have been proposed during the last decade [2]. Some of these automated
approaches define security metrics over the paths of an attack graph [3,4,5,6,7],
while others define a security metric in terms of security risk [8,9,10,11].

In this paper, we follow the second path by proposing a novel approach to
compute the security risk. Risk is usually defined as the expected loss or as
defined in [12]:
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Risk is a function of the likelihood of a given threat-source’s ex-
ercising a particular potential vulnerability, and the resulting
impact of that adverse event on the organization.

Accordingly, a risk computation consists of two parts: a probability estimation
of a successful attack and an impact estimation.

Most of the papers referred to above, use a simple model for estimating the
impact to the network. Typically, they either do not use an explicit model, e.g.
only probabilities, or sum the assigned weights of compromised nodes. As an
example, in [13], the security of two networks, one patched and one unpatched,
was compared by computing the number of hosts removed from the attack graph
or by assigning a weight of importance to each host as well. This would be
equivalent to estimating the impact by counting the number of compromised
hosts in the attack graph or by computing the sum of their weights. In addition,
many of the papers that use probabilistic models do not describe of how to
estimate these probabilities. Therefore, in this work, we extend existing work
with a more advanced network impact model and with a novel approach for
inferring probabilities over attack graphs using a Bayesian approach assuming
that a record of historical attack data from a honeypot is given [14].

The network impact model consists of a data model in combination with an
impact model over an attack graph. The data model models how data is copied
between softwares in a network, thereby taking into account the dependencies
between different hosts and the dependencies between different data flows. The
impact model describes what impact individual vulnerabilities have on the data
sets with respect to confidentiality, integrity and availability as well as the impact
propagation from compromised data sets. By assigning loss values to data sets,
we can estimate the cost of a successful attack. Thus, in our work, an operator
does not need to understand the importance of each node in a network as is the
case in the papers referred to above.

The probability estimation of a successful attack is computed by first clas-
sifying each vulnerability into a required exploitation skill-level category that
denotes how hard it is to successfully exploit the vulnerability. Then, based on
historical attack data, we can create a statistical model of the exploitation skill
of the attacker community using a Bayesian approach. Last, the final security
risk is computed by marginalizing over the exploitation skill.

For our model, we follow the terminology of the multi-prerequisite attack
graph (MP attack graph) presented in [13], but we introduce our own notation.
The MP attack graph is fast to create, easy to understand and easy to work
with; it uses very few model elements and have been shown to scale to large
networks [13]. However, we are not bound to any specific attack graph as long
as we can model the flow of data.

Notice however, that our model subsumes the original model such that our
model can instantiate an equivalent recommendation algorithm for patching as in
[13]. By removing all data flows, assigning all probabilities of successful attacks
to the constant value 1.0 and putting data sets with a uniform loss value of
1 at each node, we can reproduce the original recommendation algorithm. By
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assigning different loss values to the different data sets, we also can reproduce
the weighted version of the original algorithm. In addition, in contrast to the
original model, our model makes it possible to apply partial patches that instead
of removing a vulnerability, increase the required exploitation skill-level.

The Common Vulnerability Scoring System (CVSS) is an open framework
for communicating the impact of vulnerabilities to an IT-system [15]. We take
advantage of the expert knowledge gathered through CVSS by using the impact
elements from CVSS version 2.

A simple network from [13] that is shown in Fig. 1(a) illustrates what sort of
problem we want to address with our approach. In this simple example, attacks
start at host A with root access. All other hosts, but the firewall (FW ), have
a single vulnerability instance, e.g. vB, that can be exploited remotely via one
single open port. The firewall will accept that hosts C and D communicate with
host E and will deny all other communication. In Fig. 1(b), we show the MP
attack graph where the triangles indicate vulnerability nodes, circles indicate
attack states and rectangles indicate what nodes can be reached from an attack
state. The problem we are addressing is how to compare the security of different
networks with respect to their vulnerabilities.

The rest of the paper is organized as follows. Sect. 2 introduces our formaliza-
tion of the network model and the attack graph from [13]. Sect. 3 describes the
network impact model. Sect. 4 presents the model for computing the probability
that an attack will successfully exploit a vulnerability. Sect. 5 describes how to
compute the security risk given a historical record of attack data. Sect 6 applies
our framework to the simple network example described above. Sect. 7 compares
related work with the proposed framework.

2 Introducing the MP Attack Graph Model

Our approach begins with constructing a model of the network containing el-
ements such as a network topology, and traffic rules. Then, we define the MP
attack graph. In the next sections, we follow the terminology of the NetSPA tool
presented in [13], but we introduce our own notation.

Basic Network Model. A network topology consists of a set of hosts N and
a set of links E. Each host h ∈ N has a set of interfaces i(h) ⊆ I where I
is the set of all interfaces in the network. Each link l ∈ E connects a set of
interfaces i(l) ⊆ I. Each interface i ∈ i(h) has a set of ports p(h, i).

A traffic rule allows source and destination software instances to commu-
nicate via two interfaces of a host. Each host h ∈ N has a set of traffic rules
r(h). By setting the second interface in a traffic rule equal to the first, we
can allow traffic to only flow from or to the host of the rule.

MP Attack Graph. The MP attack graph consists of three types of nodes:
prerequisites, attack states and vulnerability instances.

A prerequisite is the means needed to gain access to a vulnerability instance.
We use Q to denote the set of all prerequisites in a network. For each prereq-
uisite q ∈ Q, v(q) denotes the set of (reachable) vulnerability instances of q.
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An attack state a consists of a host h ∈ N and an attack level o ∈ {root,
user, dos, other}. We use A to denote the set of all attack states. For each
a ∈ A, an attacker will, by obtaining attack state a, also obtain a set of
prerequisites q(a) ⊆ Q available at a.

A vulnerability instance is any means that an attacker can use to gain
access to a system. We let V denote the set of all vulnerability instances.
Each software instance s ∈ S has a set of vulnerability instances v(s) ⊆ V .
By successfully exploiting a vulnerability instance v ∈ V , an attacker will
obtain a single attack state a(v) ∈ A.

3 Modeling the Impact to a Network Using Data Flows

After defining the basic network model and the attack graph, we define the data
model and the impact model. These are our own contributions, except for some
borrowed notions from [15]. A more elaborate description of the network impact
model can be found in [16].

3.1 Defining the Data Model

A data set instance is a copy of any set of data that we protect with respect to
the three security aspects – confidentiality, integrity and availability – that we
denote c, i and a. D denotes the set of all data set instances.

A data set instance location consists of a data set instance d ∈ D and a
location identifier with a host h ∈ N , an interface i ∈ i(h) of host h and a port
p ∈ p(h, i) of interface i.

All data set instances are assumed to be processed by software instances. S
denote the set of all software instances. For each host h ∈ N , s(h) ⊆ S denotes
all software instances at h. For each software instance s ∈ s(h), store(s) denotes
all data set instances stored at s and for each interface i ∈ i(h), inputs(s, i) and
outputs(s, i) denotes the set of data set locations from where s retrieves and
produces data set instances via interface i respectively.

We let depends(s, d) denote the set of data set instances used by s to produce
data set d. Then, either, for each data set instance d ∈ depends(s, d′), d ∈
store(s) or there is an interface i ∈ i(h) such that d has a data set instance
location in inputs(s, i).

A data flow for data set instance d ∈ D from a producer software instance
s0 ∈ S to a retriever software instance sn ∈ S is a sequence of hosts (h0, h1, h2,
. . . , hn−1, hn) in N where: (a) n > 0, (b) outputs(s0, i0) and input- s(sn, in)
contain the same data set instance location with host h0, interface i0, port
p0 ∈ p(h0, i0) and data set instance d, (c) there exists links with interfaces
connecting all hosts in the sequence, and (d) there exists a traffic rule at each host
allowing traffic from source host h0 to destination host hn using as source and
destination the location identifiers of the producer and the retriever softwares
respectively.

In addition, a data flow f is active if the data set instance of f is depending
on other data set instances through the depends relation and then each of these
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data sets are either stored at the producer or retrieved such that there must
exist an active data flow f ′ for the retrieved data set instance with the producer
of f as the receiver of f ′.

3.2 Defining the Impact Model

As a means to define the local impact, we define that a data set instance d ∈ D
is accessible to a software instance s ∈ S if either d ∈ store(s) (d is stored),
there exists an active data flow for d with s as receiver (d is retrieved) or there
exists an interface i such that d has a data set instance location in outputs(s, i)
while for each d′ ∈ depends(s, d), either d′ ∈ store(s, d) or there exists an active
data flow for d′ with s as receiver (d is produced). Similarly, a data set instance
d ∈ D is accessible to a host h ∈ N if there exists a software instance s′ ∈ s(h)
such that d is accessible to s′ or there exists an active data flow for d with a
sequence of hosts containing h.

Since we want to model the impact of a successful attack to the three security
aspects, confidentiality, integrity and availability, we define that for each vulner-
ability instances v ∈ V and for each security aspect e ∈ {c, i, a}, impact(v, e) ∈
{None, Partial, Complete} denotes the local impact that vulnerability instance
v has on security aspect e at a host h. We borrow the values None, Partial,
Complete for the three security aspects from CVSSv2 [15].

For our purpose, we interpret the impact values of CVSSv2 such that for each
security aspect e ∈ {c, i, a}, an attacker will locally violate the security aspect e
of, in the case of impact value: (a) None, no data set instances, (b) Partial, all
data set instances accessible to the software instance with an exploited vulnera-
bility instance, and (c) Complete, all data set instances accessible to the host of
the software instance with the exploited vulnerability instance. Then, we define
that for each data instance d ∈ D, for each security aspect e ∈ {c, i, a}, for each
subset of exploited vulnerability instances Vexploit ⊆ V and for each host h ∈ N ,
locallyV iolated(e, d, h, Vexp) denotes that d was locally violated by an attacker
at host h with respect to e given VExploit.

Now, we define predicates that infer violation of data set instances at the
network level:

Loss of confidentiality. For each data set instance d ∈ D, for each host h ∈ N
and for each subset of vulnerability instances Vexp ⊆ V , lossOfConf(d, h,
Vexp) holds true if locally- V iolated( c, d, h, Vexp) holds true.

Loss of integrity. For each data set instance d ∈ D, for each host h ∈ N and
for each set of vulnerability instances Vexp ⊆ V , lossOfInteg(d, h, Vexp)
holds true if either (a) locallyV iolated(i, d, h, Vexp) holds true, or (b) there
exists s ∈ S such that d′ ∈ depends(s, d) and there exists an active data flow
f for d′ where the receiver is s and there exists a host h′ in the sequence of
hosts of f where h′ 	= h and lossOfInteg(d′, h′, Vexp) holds true.

Loss of availability. For each data set instance d ∈ D, for each host h ∈ N
and for each set of vulnerability instances Vexp ⊆ V , lossOfAvail( d, h,
Vexp) holds true if either (a) locallyV iolated (a, d, h, Vexp) holds true, or (b)



Assessing Security Risk to a Network Using a Statistical Model 313

there exists s ∈ S such that d′ ∈ depends(s, d) and for each active data flow
f for d′ where the receiver is s there exists a host h′ in the sequence of hosts
of f where h′ 	= h and lossOfAvail(d′, h′, Vexp) holds true.

Generic loss of security. For each security aspect e ∈ {c, i, a}, for each data
set instance d ∈ D and for each set of vulnerability instances Vexp ⊆ V ,
lossOfSecurity(e, d, Vexp) holds true if there exits h ∈ N such that either
e = c and lossOfConf(d, h, Vexp) or e = i and lossOfInteg(d, h, Vexp) or
e = a and lossOfAvail(d, h, Vexp) holds true.

Lastly, by assigning a loss value, we can estimate a cost of exploiting a vulnera-
bility instance with a certain loss of security. For each data set instance d ∈ D,
and for each security aspect e ∈ {c, i, a}, cost(d, e) denotes the loss value of data
set d with respect to e.

4 Modeling the Probability of a Successful Attack

In [13], the authors assume a worst case scenario for a successful attack: a sin-
gle attacker, starting at an initial attack state, will be able to exploit every
vulnerability instance in the MP attack graph. However, it is not a reasonable
assumption, since attackers might have different exploitation skills and vulner-
ability instances might have different required exploitation skills. We propose a
different scenario where an attacker will be able to try to exploit all vulnera-
bility instances it has gained access to, but that the probability of successfully
exploit a vulnerability instance depends on the required exploitation skill-level of
the vulnerability instance and the exploitation skill of the attacker. Notice that
we view each attacker as an instantiation of the wider attacker community, and
thus, we do not model each attacker individually, but as a group.

For convenience, we have chosen to use four different exploitation skill-levels
that we define in terms of a required exploitation skill. We map each exploita-
tion skill-level into a probability distribution over the required exploitation skill.
Similarly, we have chosen the exploitation skill to be in the arbitrary range [0,1].

In addition, we assume that an expert has assigned a exploitation skill-level to
each vulnerability instance, for instance, by analyzing a freely available database
such as NVD [17].

Required Exploitation Skill-Level. First we define the required exploitation
skill-level. For each vulnerability instance v ∈ V , z(v) ∈ {Low, MediumLow,
MediumHigh, High} denotes the exploitation skill-level required by an at-
tacker to successfully exploit v. To make formulas shorter, we sometimes use
the following notation: z0 = Low, z1 = MediumLow, z2 = MediumHigh
and z3 = High. Thus, instead of typing z(v) = Low, we type z(v) = z0 and
so forth.

Successful Exploitation. Then, we define the successful exploitation proba-
bility. For each vulnerability instance v ∈ V , k ∈ [0, 1] denotes the actual
exploitation skill of an attacker, kv ∈ [0, 1] denotes the required exploita-
tion to successfully exploit v, p(kv|mz, σz) denotes the probability density
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function over kv (where kv is normally distributed with parameters mz and
σz and z = z(v)), and Φ(k, z) denotes the probability that an attacker with
exploitation skill k will succeed to exploit v:

∀i ∈ {0, 1, 2, 3}, mzi =
i

4
+

1
8

and σzi =
1
5
, (1)
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∫ 1
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2
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√
2
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where erf is the error function [18].

5 Computing the Risk

In order to compute the risk to a network, without relying too much on expert
knowledge, we use Bayesian statistical inference over a historical record of attack
data.

To gather historical attack data for whether vulnerability instances were suc-
cessfully exploited or not, we propose using a high-interactive honeypot. A hon-
eypot is a controlled computer created to be vulnerable to attacks and therefore,
any occurring traffic is suspicious [19]. Hence, it easy to detect attack attempts.
If the nature of a set of vulnerability instances in the honeypot is known, it
should also be possible to verify whether they where successfully exploited [20].
Of course, it is also possible to add other compromises investigated by the op-
erator of the network.

Notice though, that to keep the probability estimations up-to-date, we must
limit how old attack data we take into account. For instance, it might be realistic
to only use the last six months of data, since older data might make the risk
value obsolete.

Recall from Sect. 1 that risk is a function of an impact value and the prob-
ability of a successful attack. Therefore, we define the total risk to a network
from attacks starting at a0 ∈ A in attack graph A during next s time slots as
the expected loss over all data set instances:

risk(a0, s, X,A) =
∑

d∈D,e∈{c,i,a}
cost(d, e) · Pe(d|a0, s, X,A) (3)

where Pe(d|a0, s, X,A) is the probability of at least one successful attack on data
d given the historical attack data X , a0 and s.

Historical Attack Data. First, we define the historical record of attack data
X over a time period T where X contains n(X) number of attacks and
and T contains n(T ) number of time slots. For each attack data instance
x ∈ X , z(x) ∈ {z0, z1, z2, z3} denotes the required exploitation skill-level
of the vulnerability instance during the attack, and e(x) ∈ {0, 1} denotes
whether the attack was successful (e(x) = 1) or not (e(x) = 0).
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Posterior Distribution. Second, we derive the posterior distribution for the
exploitation skill k and a parameter λ, which governs the number of expected
attack instances, using Bayesian inference. The posterior distribution given
X is:

P (k, λ|X) ∝ P (X |k, λ) · P (k) · P (λ) (4)

where P (X |k, λ) denotes the probability that X was generated by an attacker
community with exploitation skill k and parameter λ, while P (k) and P (λ)
denotes the prior distributions for k and λ, respectively. We let P (k) ∝ 1
(uniform distribution) and P (λ) = Gamma(a, b) (Gamma distribution). The
prior distributions describe what we know about the parameters prior to
having the real data. Assuming independence between k and λ, we have:

P (X |k, λ) = P (X |k) · P (n(X)|λ) (5)

where P (X |k) is the probability of X given k and P (n(X)|λ) is the proba-
bility of n(X) number of attack instances during time period T . For P (X |k)
we have:

P (X |k) ∝
∏

x∈X

P (x|k) (6)

where for each attack data instance x ∈ X , P (x|k) denotes the probability
distribution over x given exploitation skill k ∈ [0, 1]:

P (x|k) = (1− Φ(k, z))(1−e(x)) · Φ(k, z)e(x) where z = z(x) (7)

such that

P (X |k) ∝
3
∏

i=0

(1− Φ(k, zi))
e−zi · Φ(k, zi)ezi (8)

where e−zi is the total number of unsuccessful attacks and ezi is the number
of successful attacks on vulnerability instances with required skill-level zi.
Then, for P (n(X)|λ) we assume a Poisson distribution with mean value
n(T ) · λ such that:

P (n(X)|λ) =
(n(T )λ)n(X)e−n(T )λ

n(X)!
. (9)

Probability of Success. Last, we derive the probability of at least one suc-
cessful attack by marginalization. In case of attack graph A and attacks
starting in attack state a0 ∈ A, for each data set instances d ∈ D and for
each security aspects e ∈ {c, i, a}, Pe(d|a0,A, k) denotes the probability that
an attacker from an attacker community with exploitation skill k ∈ [0, 1] will
successfully exploit vulnerability instances in A such that d will be compro-
mised with respect to e, and Pe(dn|a0,A, k) denotes the probability that at
least one of n attack attempts succeeds:

Pe(dn|a0,A, k) = 1− (1− Pe(d|a0,A, k))n
. (10)
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Then, we can compute the probability of at least one successful attack on d
with respect to e, given X and within next s time slots, as:

Pe(d|a0, s, X,A) ∝
∫ 1

0

∫ ∞

0

∞
∑

n=0

Pe(dn|a0,A, k) P (n(s)|λ) P (X |k, λ) p(k) p(λ)dλdk =

C −
∫ 1

0

1
(

1 + sPe(d|a0,A,k))
b+n(T )

)a+n(X)

3
∏

i=0

(1− Φ(k, zi))
e−zi Φ(k, zi)ezi dk

(11)

where n(s) is the number of attacks during next s time slots, for which we
use a Poisson distribution with mean s · λ, and C is a constant.

We compute the marginal distribution in (11) using a Monte-Carlo simulation,
since computing Pe(d|a0,A, k) for the generic problem is NP-complete for rea-
sonably complex networks [21].

The Monte-Carlo algorithm (Appendix A) is a variant of the algorithm for
probabilistic networks with random links presented in [21]. In our case, instead
of links, vulnerabilities can be randomly exploited or not, but where the ex-
ploitation of a vulnerability might require that some other vulnerabilities must
already have been exploited. Our algorithm starts from the initial attack state,
and then randomly draws an exploitation skill k. Thereafter, we follow the MP
attack graph by randomly exploiting all vulnerability instances reachable from
the prerequisites of the initial attack state. Next, we repeat the last step for
all reachable attack states of the exploited vulnerability instances, until we have
tried to exploit all vulnerability instances gained access to through prerequisites.
Then, from a large number of repetition of the previous steps, while keep start-
ing the attacks from the initial attack state, we can use our predicates to check
for loss of security for any data set instance, and finally, estimate probabilities
of successful attacks.

6 Modeling and Analyzing the Simple Network Example

In Table 1-2, we model the simple network example from Sect. 1. The network
in Fig. 1(a) is modeled in Table 1 and the MP attack graph shown in Fig. 1(b)
is modeled in Table 2. Table 3 and Table 4 shows a data model as well as an
impact model respectively. The data model models that data set dE is located
at host E, dF is located at F and that dE′ is dependent of dE for its existence
and that dE′ flows from E to C. We let all vulnerabilities have the same required
exploitation skill-level.

In Fig. 6, each curve shows the expected risk during the next time slot (s = 1)
for one of the required exploitation skill-levels. The expected risk is shown on
the y-axis (maximum risk is 10.5) and the time on the x-axis. At time point
zero, there are no attacks, but because of our prior distributions, we can infer
a risk anyway. Thereafter, an attack attempt is recorded at each time point as
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(b) The multi-prerequisites at-
tack graph.

Fig. 1. The simple example from [13]

shown in Table 5. A time slot is 15 time points and thus, the number of time
slots n(T ) is 1, 2, . . . , 7 depending on at what time the risk is computed.

Our prior distribution p(k) ∝ 1 implies the cautious, prior belief that the
exploitation skill is uniformly distributed in the attacker community, while for
the prior distribution of λ we set a = 1 and b = 1 in (11) such that p(λ) = e−λ.

As we might have expected, each curve looks different given a different re-
quired exploitation skill-level. Not surprisingly, for all curves, the risk decreases
given evidence of unsuccessful attacks, while the risk increases when given evi-
dence of successful attacks. Reasonable enough, the Low-curve is most sensitive
to all types of attacks, while attacks at a lower skill-level have lesser impact on
a risk curve with a higher required skill-level.

We can now compare our model with the recommendation algorithm for
patches in [13]. Table 6 shows the impact estimation when the probability of
success is 1.0 for all vulnerabilities. We have compared three different data mod-
els and five different patch choices. In [13], patches of set of vulnerabilities are
compared. For this simple example, we only patch a single vulnerability instance.
Column 2 shows the impact estimation of the models in Table 3 and 4. Column 3
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Table 1. Network model

N = {A, B, C, D, FW,E, F}
E = {l1, l2}
i(FW ) = {iF W1, iF W2}
∀n ∈ N0 : i(n) = {in}
i(l1) = {iA, iB , iC , iD, iF W1}
i(l2) = {iF W2, iE , iF }
r(FW ) = {〈iF W1, iF W2, [C, iC , 0],
[E, iE, 0]〉, 〈iF W1, iF W2, [D, iD, 0],
[E, iE , 0]〉}
r(C) = {〈iC , iC , [C, iC , 0], [E, iE , 0]〉}
r(D) = {〈iD, iD, [D, iD, 0], [E, iE , 0]〉}
r(E) = {〈iE , iE , [C, iC , 0], [E, iE , 0]〉,
〈iE, iE , [D, iD, 0], [E, iE , 0]〉}

Table 2. MP attack graph

A = {aA, aB, aC , aD, aE, aF}
Q = {qBCD , qE , qEF}
v(qBCD) = {vB , vC , vD}
v(qE) = {vE}
v(qEF ) = {vE , vF }
q(aA) = q(aB) = {qBCD}
q(aC) = {qBCD , qE}
q(aD) = {qBCD , qE}
q(aE) = {qEF }, q(aF ) = {qEF }
a(vB) = aB , a(vC) = aC

a(vD) = aD, a(vE) = aE, a(vF ) = aF

Table 3. Data model

S = {sB, sC , sD, sE, sF }
∀h ∈ N − {A, FW} : s(h) = {sh}
D = {dE , dE′ , dF }
store(sF ) = {dF }
store(sE) = {dE}
dependencies(sE, dE′) = {dE}
outputs(sE, iE) = {〈dE′ , E, iE , 0〉}
inputs(sC , iC) = {〈dE′ , E, iE , 0〉}

Table 4. Impact Model

V = {vB , vC , vD, vE , vF }
∀h ∈ N − {A, FW} : v(sh) = {vh}
∀h ∈ N − {A, FW}, e ∈ {c, i, a} :

impact(vh, e) = Complete
∀e ∈ {c, i, a} : loss(dE, e) = 1
∀e ∈ {c, i, a} : loss(dE′ , e) = 0.5
∀e ∈ {c, i, a} : loss(dF , e) = 2

shows the values when we remove the data flow, in which case dE′ cannot be
reached anymore because vE is patched. Column 4 has the values for the case
when each host B − F has a data set instance with loss value 1. Notice that
patching vE is the best choice in all cases.

The column 3 and 4 of Table 6 can easily be replicated by the algorithm in
[13], but not column 2. Column 3 is replicated by letting E have weight 4.5 and
F weight 6 and column 4 by letting B−F have weight 1. However, consider the
second column, if we use the same weights as for the third column, we would
have the result in the first column in Table 7, where the value of patching vE

differs from that in column 2 in Table 6. To fix this, we can assign weight 3
to E, 1.5 to C and 6 to F , but then we get the result in column 2 of Table 7,
where instead the value of patching vC differs from that in column 2 in Table 6.
Consequently, the importance of a host depends on the attack graph in case of
the original algorithm, while this is not the case for our improved model. The
problem is that in order to compromise data set instance dE′ , we only have to
compromise either C or E. Thus compromising one of them is enough. However,
this is not possible to express using the simple weight assignment.

In Fig. 6, we show the estimated risk using our statistical model, corresponding
to column 1 in Table 6. We let all vulnerabilities have required skill-level Low
while using the attacks from Table 5. As can be seen, the risk curves of our
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Low

MediumLow

MediumHigh

High

Fig. 2. Risk as function of time according to required exploitation skill-level

Table 5. Attack data; a time slot is 15 time points

Time Skill-level Success. #attacks
0 none - 0

1 - 15 Low No 15
16 - 30 Low Yes 30
31 - 45 MedLow No 45
46 - 60 MedLow Yes 60
61 - 75 MedHigh No 75
76 - 90 MedHigh Yes 90
90 - 105 High No 105
106 - 205 High Yes 205

Table 6. Impact for three different
data models

Patch Unmod No Flow Uniform
none 10.5 10.5 5
vB 10.5 10.5 4
vC 10.5 10.5 4
vD 10.5 10.5 4
vE 1.5 0 3
vF 4.5 4.5 4

Table 7. Impact for original model

Original 1 Original 2
10.5 10.5
10.5 10.5
10.5 9
10.5 10.5
0 1.5

4.5 4.5
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algorithm converge into the same values, given enough attack evidence, as in
column 1 in Table 6. Thus similarly, by removing vulnerability instance vE we
would have the least risk regardless of attack data. Thus, ve would be our best
recommendation. The next best would be vF . However, if we would have made
the recommendation before time point 45, we would instead have recommended
vulnerability instance vC as the next best recommendation. Notice also that at
time step 100, removing vD or vC would be better than removing vB or doing
nothing. Accordingly, in contrast to the original algorithm that produces no
difference in risk/impact over time, our algorithm makes it possible to make fine
grained prioritization of patches, using not only expert knowledge as input, but
also monitor data.

V
E
: *

V
F
:

none : 

V
B
: x

V
D
: +

V
C
: -

Fig. 3. The risk curves for patching one vulnerability

7 Related work

A set of papers [3,4,5,6,7] define metrics to measure the security of networks
based primarily on different ways of weighing paths in an attack graph. Other
approaches – like our work – use the risk as a measure of the security of a
network where the cost or loss of an intrusion is used as the basis for the metric
[8,9,10,11].

An early work in this area is presented in [3,4]. As security metrics the authors
use the time from an attack starts until it succeeds and the effort required by the
attacker to succeed. They use a Markov model over a privilege graph to compute
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the two metrics, where they assume exponential distributions for the required time
and effort. Their metrics are complementary to our work in that they consider the
cost for an attacker, while we consider the loss to the system owners.

A work inspired by reliability analysis is presented in [5,6]. The authors use a
model checker to construct an attack graph from a detailed model of the system.
As a security metric they propose the probability that an attacker will end up
in a unsafe system state. They estimate the probabilities by the use of a Markov
Decision Process (MDP) [22]. In contrast to our work, they don’t consider the
different skill required to use an exploit. In addition, they do not suggest how
to come up with estimations of the transition probabilities of the MPD.

In [7] the authors use the PageRank algorithm of Google to measure the
security of a network from an attack graph. The result is an ergodic Markov chain
that converges into a probability distribution over the attack states. In contrast
to our work, they do not consider the value of protected assets or dependencies
between attack states; neither do they suggest how to use historical data to
derive transition probabilities.

In [8], the authors present a framework called RheoStat that uses a risk-
based analysis to select a response. Due to that RheoStat’s likelihood metric
is not probability based, RheoStat can only estimate the risk conditioned on
the current intrusion alerts, while our work also can estimate the risk given the
intrusion activities over time. Thus, our work can be used to compare different
network configurations.

The work in [9] uses a Hidden Markov Model (HMM) to estimate the prob-
ability that nodes in a network are in malicious states given observed intrusion
alerts from an IDS. In contrast to our work, the authors only assign costs of
each host being in a malicious state. The impact is estimated either as the total
expected cost for all hosts or the average expected cost per host. They neither
consider the value of protected assets nor dependencies between host.

Another approach to real-time risk analysis uses Hidden Markov Models as
input to a Fuzzy inference system [10]. A set of Fuzzy rules are used to derive
three linguistic variables: intrusion frequency, probability of threat success and
severity. The HMMs provide an estimation of the intrusion frequency of different
attack types, while the other input values come from a distributed intrusion
detection system and from a traffic rate monitor. Then another set of Fuzzy
rules infer the final risk assessment from the three linguistic variables. In [11],
the same authors present an extension where the Fuzzy rules are optimized using
a neural network that learn from given training examples. The papers are brief
on how the system works and how it was tested, hence a comparison with our
approach is not easy to do.

8 Summary and Concluding Remarks

We have presented a framework for assessing the security risk to a network using
data flows over an attack graph and a Bayesian model of the exploitation skill
of the attacker community, given a record of attack data. By modeling the flow
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of data, we take into account dependencies between different hosts and different
data flows. In addition, we are able to update the risk computation as soon as
we receive more attack data.

We also propose using a honeypot to collect historical attack data. However,
in order to model the exploitation skill, each vulnerability instance must be
classified by an expert into a required exploitation skill-level. This can turn into
a problem since a vulnerability that once was hard to exploit might suddenly
become easy when somebody creates a downloadable exploitation code. Thus,
some monitoring system for updating the information about vulnerabilities is
needed as well as a support system for classifying old and new vulnerabilities
given new information.

Acknowledgements. This work has been performed within the SICS Center
for Networked Systems funded by VINNOVA, SSF, KKS, ABB, Ericsson, Saab
Systems, TeliaSonera and T2Data.
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A Monte-Carlo Algorithm

Input: a0 - attack state, d - data set instance, s - time slots, e - security aspect,
X - attack data

Output: prob - the estimated probability of loss of security.
N ← 100000 : Number of sampled values.

me ← 0 : mean value of the probability of loss of security .

x← 0 : a weighted value, indicating whether d was compromised.

mP (X) ← 0 : estimated mean value for probability of the Data.
sP (X) ← 0 : estimated standard deviation of probability of the Data.
for i = 0; i < N ; i = i + 1 do

k ← sample from p(k);
StatesCurrent← {a0}, V ulnsCurrent← ∅, StatesUsed← ∅;
V ulnsUsed← ∅, PrerequistesUsed← ∅, V ulnsExploited← ∅;
Collect samples of successfully exploitations:

while StatesCurrent �= ∅ do
foreach a ∈ StatesCurrent do

foreach q ∈ q(a) and q �∈ PrerequistesUsed do
foreach v ∈ v(q) and v �∈ V ulnsUsed do

V ulnsCurrent← V ulnsCurrent ∪ {v};
V ulnsUsed← V ulnsUsed ∪ v(q);

PrerequistesUsed← PrerequistesUsed∪ q(a);
StatesUsed← StatesUsed∪ StatesCurrent, StatesCurrent← ∅;
foreach v ∈ V ulnsCurrent do

if rand(0, 1) > 1− Φ(k, mz(v), σz(v)) and a(v) �∈ StatesUsed then
StatesCurrent← StatesCurrent∪ {a(v)},
V ulnsExploited← V ulnsExploited ∪ {v};

V ulnsCurrent← ∅;
Estimate current mean value:

if lossOfSecurity(e, d, V ulnsExploited) holds true then

x←
(

n(T )+b
n(T )+s+b

)n(X)+a

· p(X|k) else x← P (X|k);

if i = 0 then
m′

e ← x, s′e ← 0, m′
P (X) ← P (X|k), s′P (X))← 0 : Init old values

else
me ← m′

e + (x−m′
e)/(i + 2),

mP (X) ← m′
P (X) + (P (X|k)−m′

P (X))/(i + 2)
m′

e ← me, s′e ← se, m′
P (X) ← mP (X), s′P (X) ← sP (X) : Save old

values

prob← 1− me
mP (X)

;
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Abstract. This paper presents how the Solaris Service Management
Facility (SMF) is used as a fundamental building block to improve system
security. The Service Management Facility is a backwards-compatible
extension to the traditional way Unix services are managed with the rc

(run command) utility command scripts.
As an integrated framework for managing services and service in-

stances, the SMF improves service availability through automatic cor-
rection of failed services in dependency order. It also serves as a launch
pad for unmodified, often third party services to be transparently started
under the Solaris privilege process rights management without the need
to modify source code. Furthermore, different system profiles can be de-
fined that allow a system to come up with or change at runtime into a
predefined set of services. Finally, the SMF and service administration
are tightly integrated into the Solaris administrative Role-Based Access
Control (RBAC) model, subject to the principle of least privilege with
strong audit and full administrator accountability.

1 Introduction

In spite of many years and much progress in research and development of sys-
tem security technologies, it is still a major challenge to configure and maintain
servers in a state as resilient to security exploitation as desirable. UNIX operat-
ing systems have traditionally included a set of services: software programs not
associated with any interactive user login that listen for and respond to requests
to perform certain tasks, such as delivering email, responding to ftp requests, or
permitting remote command execution. These traditional services were usually
individual applications that executed as a single process that started at boot
time and executed continuously while a system was up and running, servicing
any requests that were received.

Today, administrators must contend with a collection of services that has
grown to such a point that it has exceeded the utility of this original model. Sun
has created the Service Management Facility (SMF) to simplify management of
these system services. The SMF is a feature of the Solaris Operating System
that creates a supported, unified model for services and service management on
each Solaris system. It is a core part of the Predictive Self-Healing technology

S. Qing, C.J. Mitchell, and G. Wang (Eds.): ICICS 2009, LNCS 5927, pp. 325–335, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



326 C. Schuba

available in Solaris 10, which provides automatic recovery from software and
hardware failures as well as administrative errors.

2 Background

The following subsections give some technicalbackground on the security technolo-
gies in the (Open)Solaris operating environment that are tied together through the
Service ManagementFacility. While this section describes the least privilege rights
management model, the Role-Based Access Control (RBAC) model, and the Se-
cure by Default stance, the following section explains in detail, how they all come
together through the SMF.

While other security-related system services, such as the Solaris Crypto-
graphic Framework ([7]), are managed by SMF, this paper focuses on how the
system itself is better protected through SMF rather than through the services
SMF manages.

2.1 Solaris Privilege Process Rights Management

The principle of least privilege states that every program and every user of a
system should operate using the least set of privileges necessary to complete
the job. The Solaris operating environment has two primary mechanisms to
implement this principle: fine-grained process rights for executable code and
role-based access control for administrators. The following sections explain these
two mechanisms in detail.

Solaris Privileges. The Solaris operating system implements a set of privi-
leges that provide fine-grained control over the actions of processes. Traditionally,
Unix-based systems have relied on the concept of a specially-identified superuser,
called root. This concept of a Unix superuser has been replaced in a backward
compatible manner with the ability to grant one or more specific privileges that
enable processes to perform otherwise restricted operations. The privilege-based
security model is equally applicable to processes running under user id 0 (root)
or under any other user id. For root-owned processes, the ability to access and
modify critical system resources is restricted by removing privileges from these
processes. For user-owned processes privileges are added to explicitly allow them
to access such critical resources. The implications for such privilege-aware pro-
cesses are both, that root processes can run more safely because their powers
are limited, and that many processes that formerly required to be root processes
can now be executed by regular users by simply giving them the additionally
required privileges.

Experience with modifying a large set of Solaris programs to be privilege-
aware revealed an interesting fact. Most programs that formerly required to be
executed as user root require only very few additional privileges and in many
cases require them only once before they can be relinquished. The change to
a primarily privilege-based security model in the Solaris operating system gives
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developers an opportunity to restrict processes to those privileged operations ac-
tually needed instead of having to choose between all privileges (superuser) or no
privileges (non-zero UIDs). Additionally, a set of previously unrestricted opera-
tions now require a privilege; these privileges are dubbed the ”basic” privileges.
These are privileges that used to be always available to unprivileged processes.
By default, processes still have the basic privileges. The single, all-powerful UID
0 assigned to a root process has been replaced with more than 70� discrete
privileges that can be individually assigned to processes using the Service Man-
agement Facility (SMF), Role-based Access Control (RBAC), or a command-line
program, such as ppriv(1) or pfexec(1).

Taken together, all defined privileges with the exception of the basic privi-
leges compose the set of privileges that are traditionally associated with the root
user. The basic privileges are those privileges unprivileged processes were accus-
tomed to having. They are also called the basic set and consist of file link any,
proc exec, proc fork, proc info, and proc session. The privilege implemen-
tation in Solaris extends the process credential with four privilege sets:

– I, the inheritable set: The privileges inherited on exec.
– P, the permitted set: The maximum set of privileges for the process.
– E, the effective set: The privileges currently in effect.
– L, the limit set: The upper bound of the privileges a process and its offspring

can obtain.

The implementation of Solaris privileges empowers application developers to
control how privileges are used within their programs. Using a technique called
privilege bracketing, developers can write their programs such that they are
only running with privileges in the effective set when they are needed by certain
system calls. Even more importantly, programs can not only enable or disable
their privileges (aka privilege bracketing), but they can also drop any privileges
granted to them (assuming they will never be needed) and even relinquish them
(so they can no longer be used) when there is no longer a need for the privilege.
Just as importantly, programs can also restrict which of their privileges can be
passed along to their children (e.g., programs that they execute). In the Solaris
operating system many setuid programs (e.g., ping, traceroute, rmformat) and
system services (e.g., nfsd, ftpd, mountd) use these techniques.

Solaris RBAC. Role-based Access Control (RBAC) in Solaris is an alterna-
tive to the all-or-nothing security model of traditional superuser-based systems.
With RBAC ([4]), an administrator can assign privileged functions to specific
user accounts (or special accounts, called roles). RBAC is in keeping with the
security principle of least privilege by allowing organizations to selectively grant
privileges to users or roles based upon their unique needs and requirements.

� The set of Solaris privileges is expanding over time. As of build 112, April 6, 2009, the
OpenSolaris operating systems makes 75 discrete privileges available, only 5 of which
represent user space privileges for backwards compatibility for non privilege-aware
software.
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In general, organizations are strongly encouraged to use Solaris RBAC to re-
strict access to privileged operations rather than granting users complete access
to the backwardly compatible root account. Solaris RBAC was introduced in
the Solaris 8 operating system, having come from Trusted Solaris, and has been
enhanced and expanded with each new release of Solaris. Solaris RBAC function-
ality contains several discrete elements that can be used individually or together
including authorizations, privileges, rights profiles and role designations.

2.2 Secure by Default

Traditionally, Unix systems have provided a large number of network services by
default. This open approach is convenient, but it also makes it easy for remote
attackers to exploit any vulnerabilities that may exist in the software providing
the network services. The Solaris Secure by Default stance reduces this attack
surface by disabling as many network services as possible while still leaving a
useful system.

Secure by Default changes the default configuration of Solaris so that ssh is
the only network-listening service. Other network services are either disabled or
configured to accept requests only from the local system. While implementing this
approach with traditional rc utility commands is certainly possible, it is not a very
flexible approach, because only a single configuration can be captured on one sys-
tem at any given time. Rather, Secure by Default uses the Solaris Service Man-
agement Facility (SMF) to control the affected network services. The key elements
are the conversion of some existing services to SMF control, the addition of prop-
erties for existing SMF services to provide for local-only operation, the creation
of an SMF profile to configure the system in the hardened state, and the netser-
vices(1M) command to apply the SMF profile and set related SMF properties.

3 The Service Management Facility

The Service Management Facility (SMF) provides an infrastructure that amends
the traditional UNIX start-up scripts, init run levels and configuration files. The
SMF provides the following functionalities. It is described in great detail by
Adams et al. in [1].

3.1 Service Management

Services can be enabled, disabled, or restarted using the svcadm(1M) command.
Failed service(s) are restarted automatically in dependency order, whether the
failure is a result of administrative error, software bugs, or because of an un-
correctable hardware error. Service objects can be viewed and managed with
commands such as svcadm(1M), svcs(1), svccfg(1M). Service failures are also
relatively easy to debug as SMF provides the explanation of why a service is
not running by using svcs command. Separate persistent log files make this pro-
cess even easier. It is simple to restore, backup and undo changes to services
by taking snapshots of service configuration files. Systems managed with SMF
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boot and shut down much faster than traditional Unix systems, because services
are started/stopped not sequentially, but concurrently, according to the depen-
dencies between services. With the use of role-based access control (RBAC),
administrators can securely delegate tasks to non-root users who can modify
properties as well as status of services without having administrative privileges
that go beyond the tasks at hand. Finally, SMF is compatible with traditional
UNIX rc scripts.

3.2 Service Instances and Properties

SMF has a fundamental unit of administration known as a service instance. A
service instance is a specific configuration of a service. For Example: A web
server is a service and a single web server daemon that is configured to accept
web service requests on port 80, can be called as an instance. Each SMF service
can have multiple versions of it configured and multiple instances of the same
version can run on a single Solaris operating system instance.

To name service instances, each service is associated with a Fault Manage-
ment Resource Identifier (FMRI) that includes the service name and an instance
name. For example, the FMRI for ssh is svc:/network/ssh:default where
network/ssh denotes the service and default identifies the service instance.
Legacy scripts are also represented with FMRIs, however, they start with lrc
instead of svc. For example, the legacy ppp daemon can be monitored using
SMF via the FMRI lrc:/etc/rc2 d/S47pppd.

In SMF, service properties are defined in an XML format in files called SMF
service manifests. They are stored in the directory /var/sc/manifest. The man-
ifests are the authoritative source of configuration information of a service and
their running instances and they can be modified with the SMF administrative
tools, such as svccfg(1M) or inetadm(1M).

3.3 Service Profiles

An SMF profile is a definition of which services should be enabled or disabled.
It is represented in an XML file format. A few profiles are delivered by default
with Solaris and are available in directory /var/svc/profile/. Administrators
can customize copies of these profiles or define their own.

During the first boot after a new installation or an upgrade to the Solaris 10
release, some Solaris profiles are automatically applied. By default /var/svc/
profile/generic.xml is applied. This file is usually symbolically linked to
generic open.xml or generic limited net.xml. If a profile called as site.xml
is in directory /var/svc/profile, the contents of the profile are applied. The
initial set of enabled services may be customized by an administrator at any
given point of time.

4 Security Advantages Using the Solaris Service
Management Facility

This section presents how the Service Management Facility is used as a funda-
mental building block for system security. SMF ties together a number of security
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technologies to accomplish security goals, such as improving system and service
availability, integrity assurance, resilience against attacks, administrative autho-
rizations, and audit.

4.1 Improved Availability

SMF monitors if services that are under its control are properly executing. Failed
services are automatically restarted in dependency order, whether they failed as
a result of administrative error, software bugs, or uncorrectable hardware errors.
In many cases restarting the service will solve the problem. In cases where it
does not, the affected service, as well as its dependent services, are put into
maintenance mode and an administrator can be notified. Services may consist
of zero, one, or many processes. Firstly, services consisting of one process make
it easy to understand the process to service mapping. If, e.g., the service process
crashes, the service is down and needs to be restarted. Secondly, Sendmail is
a good example of a service that consists of typically two processes. Failure of
either process should cause sendmail to be restarted. Traditional monitoring im-
plementations that relied on parent-child relationships to monitor process health
break down, because in the case of sendmail both processes are re-parented to
the init process. Thirdly, there is a category of processes that are transient pro-
cesses. They appear briefly during the startup process or exist only to execute
a few commands to affect configuration change.

SMF introduces a kernel interface called a contract. A process contract is
used by userland processes to register an interest in a process and all its chil-
dren. Whenever important state changes occur, the interested process is notified
of those changes and can take corrective action. Such changes include process
exit, coredumps, fatal signals, hardware errors, etc. Service restarters are then
responsible for managing service instances in response to those monitored state
changes. There is a comprehensive state model for managing services, which are
always in one of the following states: uninitialized, disabled, offline, online, de-
graded, or maintenance. Service transitions happen because of administrative
action or service errors. They are also influenced by service dependencies, a
major step forward in complex system service administration, because through
dependency information the root cause of problems is determined automatically.
A system administrator is directly pointed to the component that must be re-
paired, which is not necessarily the one exhibiting the most visible failure. The
command svcs -x is a powerful diagnostic tool, as it describes what is going
on in plain language with simple output, usually including a URL where to get
detailed information how to proceed.

In many cases, an administrator never needs to get involved and services are
restarted by the service restarter that monitored their health via the service
contract. These contracts are the generic mechanism to express the relationship
between a process and the kernel-managed resources a process depends upon.
There are systems with sophisticated hardware error handling capabilities ([8]).
SMF can take advantage of such capabilities. Where formerly the only corrective
action was to kill affected processes and risk cascading failure, or restart the
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entire system, now the operating system can determine e.g., the broader effect of
a faulted cell on a DIMM and manage the error flow between services gracefully.

4.2 Process Rights Management Integration

The Service Management Facility also serves as a launch pad for software to
be transparently started under the Solaris privilege process rights management.
Ideally, one would modify the source code of services to take advantage of the
Solaris privilege mechanism, properly minimizing the privilege sets to what is
required, including dropping privileges that are not needed, bracketing privileged
operations, and relinquishing privileges that are no longer needed.

However, in many cases it is not possible to make such source code modifi-
cations, e.g., when using third party software that is distributed only in binary
form. It is therefore important to have a mechanism that can approximate the
least privilege behavior for services in this category. SMF provides just that, a
way to launch services with a reduced set of privileges, thereby eliminating the
need for binary changes for participation in the Solaris least privilege process
rights management model. The use of SMF for operating services in privilege-
aware mode is, however, functionally limited, as it is not possible to bracket
individual operations or to relinquish privileges once they have been used and
are no longer needed by the service.

Still, restricting a service’s privileges out of over 70 to just the few that are
needed, represents a major step forward, mitigating effects of future flaws and
protecting data and service functionality from both faults and malicious behavior.

To configure services to run with reduced privileges, the manifest author or
the administrator would set the appropriate properties as part of the service
manifest using the svccfg(1M) command. The following example shows how
to use the svccfg command to reduce privileges and the limit privileges for the
apache2 web service. It also shows a few other properties, such as the working
directory and project and resource pools. The latter two are especially interesting
from a security point of view, because they are the tie-in to the Solaris resource
management. By setting those properties, it is possible to limit the amount of
system resources available to applications, preventing system denial of service
attacks, should individual services be attacked.

In the example in Table 1 the effective set of privileges for the web server
are set to be the basic set (file link any, proc exec, proc fork, proc info,
proc session), minus the privileges proc session, proc info, and file link
any plus the net privaddr privilege. The latter is needed for binding to a low-
numbered port 1-1023 (usually port 80 for a web server.) The resulting effective
set of privileges for this web server SMF service instance configuration is there-
fore just proc exec, proc fork, and net privaddr. Were there access to the
source code, one could tighten the webserver execution even further by

– bracketing the privileges proc exec, proc fork, and net privaddr around
the associated system and library calls exec(2), fork(2), bind(3socket),
and by
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Table 1. Example how to reduce privileges for the apache2 web service through SMF.

svcadm$ svccfg -s apache2
svc:/network/http:apache2> setprop start/privileges = astring: basic, \

!proc session, !proc info, !file link any, net privaddr
svc:/network/http:apache2> setprop start/limit privileges = astring: \

basic, !proc session, !proc info, !file link any, net privaddr
svc:/network/http:apache2> setprop start/working directory = astring: \

default
svc:/network/http:apache2> setprop start/project = astring: default
svc:/network/http:apache2> setprop start/resource pool = astring: default
svc:/network/http:apache2> end
svcadm$ svcadm refresh apache2

– relinquishing these privileges once the program flow makes them unnecessary
to keep around. E.g., the net privaddr privilege could be relinquished after
the only call to bind().

4.3 SMF Profiles

The information associated with a service or service instance that is stored in
the configuration repository can be exported as XML-based files. Such XML
files, known as service bundles, are portable and suitable for backup purposes.
Service bundles are classified as one of the following types:

manifests Files that contain the complete set of properties associated with a
specific set of services or service instances.

profiles Files that contain a set of service instances and values for the enabled
property on each instance.

The Solaris Secure by Default stance is defined as an SMF profile. It reduces the
overall system attack surface of the Solaris operating system by disabling as many
network services as possible while still leaving a useful system. In this way, the
number of exposed network services (in a default configuration) is dramatically
reduced. The default configuration of the Solaris operating system is changed such
that ssh is the only network-listening service. Other network services are either
disabled or configured to accept requests only from the local system.

There is one high-profile example, where this mechanism helped save the day.
In March 2007, when Sun distributed Solaris operating source code to external
developers and users under an OpenSolaris license, an early scrutinizer of the
code reported a previously unknown vulnerability in Solaris’ telnet program.
Because the code was open sourced, the report could and did include a pointer
to the lines in the code that were responsible. The report was posted on a Sunday
afternoon. By Monday, Sun engineers and testers in Australia, the UK, and the
U.S. determined how the telnet -f -l root command could compromise a system,
posted a Sun Alert, and provided a temporary fix. By Tuesday, Sun issued a
patch. Sun’s countermeasures were not complex. Between 1988 and today, Sun’s
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security features limit the damage an attack can inflict. A Secure By Default
(SBD) installation closes the telnet port as part of the netservices limited SMF
profile. And even if the port was open, a simple SMF command (svcadm disable
telnet) ends the telnet service persistently across reboots.

The creation of new SMF profiles can be used to minimize or customize sys-
tems in deployment. Ideally one would combine this step with additional hard-
ening by removing (or not even installing in the first place) software packages
that won’t ever be needed on a given system.

4.4 RBAC Integration

SMF uses the Solaris Role-Based Access Control (RBAC) facility to delegate
access to SMF administrative tasks. By integrating with RBAC in this way, a
consistent approach for privilege delegation is applied throughout the system,
both if a command is run by a user or role who has been given specific au-
thorizations or privileges or if a service is started by SMF directly. The RBAC
authorizations solaris.smf.modify and solaris.smf.manage are the primary
authorizations for granting additional privileges to users or roles.

There are also a number of property group-specific authorizations to pro-
vide additional granularity. They can be used to subdivide the authority of the
solaris.smf.modifyauthorization for finer control. The authorization solaris.
smf.modify.method permits changing values or creating, deleting, or modify-
ing a property group of type method. Each service or service instance must
define a set of methods that start, stop, and (optionally) refresh the service.
The authorization solaris.smf.modify.dependency permits changing values
or creating, deleting, or modifying a property group of type dependency. Service
instances may have dependencies on services or files. Those dependencies gov-
ern when the service is started and automatically stopped. The authorization
solaris.smf.modify.application permits changing values or creating, delet-
ing, or modifying a property group of type application. This property group
is reserved to store application-specific properties. Finally, the authorization
solaris.smf.modify.framework permits changing values or creating, deleting,
or modifying a property group of type framework.

These capabilities can be leveraged by using the RBAC rights profiles ”Service
Management” or ”Service Operator” that are supplied with Solaris out of the box.

To run services directly through SMF with certain authorizations, the admin-
istrator would install the appropriate authorizations or properties as part of the

Table 2. Example how to reduce leverage RBAC controls for the apache2 web service
through SMF

svcadm$ svccfg -s apache2
svc:/network/http:apache2> setprop httpd/value authorization = \

astring: solaris.smf.value.application.http/apache2
svc:/network/http:apache2> end
svcadm$ svcadm refresh apache2
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service manifest using the svccfg(1M) command. The example above in table 2
shows how to use the svccfg command to install the httpd/value authorization
property for the apache2 web service.

There is development guidance for SMF services to provide service related
RBAC authorizations, as appropriate, by providing service-specific values for the
action authorization, modify authorization, value authorization, and
read authorization of property groups. All service instances bundled with
Solaris include an appropriate set of service profiles. Service method scripts are
delivered as read-only and customizable settings are accessible only via service-
specific properties or existing configuration files. Sun delivered services also in-
clude an appropriate RBAC profile and authorizations for manipulating the
service and its specific configuration.

5 Conclusions

The Solaris Service Management Facility (SMF) ties together a number of se-
curity technologies to accomplish security goals, such as improving system and
service availability, integrity assurance, resilience against attacks, administrative
authorizations, and audit.

The SMF improves service availability through automatic correction of failed
services in dependency order. As a launch pad for third party software it trans-
parently starts system services under the Solaris least privilege process rights
management without the need to modify source code. The Solaris ”Secure by
Default” stance is implemented by defining a profile that configures new system
installations to have only a single network-facing port open for ssh-based system
administration. Strong audit and full administrator accountability are achieved
through the tight integration of SMF into the Solaris administration role-based
access control model.
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Abstract. Recently, Integer bugs have been increasing sharply and become the
notorious source of bugs for various serious attacks. In this paper, we propose
a tool, IntFinder, which can automatically detect Integer bugs in a x86 binary
program. We implement IntFinder based on a combination of static and dynamic
analysis. First, IntFinder decompiles a x86 binary code, and creates the suspect
instruction set. Second, IntFinder dynamically inspects the instructions in the sus-
pect set and confirms which instructions are actual Integer bugs with the error-
prone input. Compared with other approaches, IntFinder provides more accurate
and sufficient type information and reduces the instructions which will be in-
spected by static analysis. Experimental results are quite encouraging: IntFinder
has detected the integer bugs in several practical programs as well as one new bug
in slocate-2.7, and it achieves a low false positives and negatives.

1 Introduction

Integer bug is a notorious bug in programs written in languages such as C/C++, and it
can not be obviously witnessed by traditional bug detector. Integer bugs can be clas-
sified into four categories: integer overflow, integer underflow, signedness error and
assignment truncation. Recently, Integer bug has been increasing sharply, Common
Vulnerability and Exploit (CVE) shows that integer overflow and signedness error have
been increasing [7]. Besides, in OS vendor advisories, integer overflow has become the
second most common bug type among all the bugs.

In recent years, several researches are focused on Integer bugs. Given program source
code, there are three approaches to detect Integer bugs. (1)Safe Language, this method
either translates the C program into type safe language (such as CCured [21], Cy-
clone [16]) or uses safe class (such as SafeInt [17], IntSafe [15]). (2) Extension to C
compilers, this method inserts checking code for certain operations when compile the
source code (such as BLIP [14], RICH [9]). (3) Static source code analysis, this method
inspects the whole program to find the suspect instruction (such as LCLint [13], inte-
ger bug detection algorithm proposed by Sarkar et al. [11]). Although the works men-
tioned above may be effective for detecting Integer bugs, they all need source code,
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which is not available for COTS programs. To prevent integer bugs at binary level, sev-
eral techniques are proposed, such as UQBTng [25],BRICK [10], IntScope [24] and
SmartFuzz [20]. UQBTng [25] is a tool capable of dynamically finding integer over-
flow in Win32 binaries. BRICK [10] is a binary tool for run-time detecting integer
bugs. IntScope is a static binary analysis tool for finding integer overflow. SmartFuzz
generates test cases that cause Integer bugs at the point in the program where such
behavior could occur. The state-of-the-art techniques of detecting Integer bugs at bi-
nary level have several limitations. First, some tools, such as IntScope and UQBTng,
can only detect integer overflow. Second, although these works render type reconstruc-
tion by using hints from the x86 instruction set, they do not explicitly discuss how to
extract this information, and no approach proposes type extraction based on both data-
flow and control-flow analysis. Third, the binary static method like IntScope has false
positives, because it is difficult to statically reason about integer values with sufficient
precision. IntScope leverages symbolic execution only for data that from outside input
to the sinks defined by the tool, however, it lacks the information of constraints between
inputs and global information [24]. By contrast, the dynamic binary approach such as
BRICK [10] and UQBTng [25] may be time-consuming or have high false negatives,
because it either checks all the suspect operations including the benign ones or ignores
several critical operations. SmartFuzz can generate test cases to trigger Integer bugs,
however, without dynamic detecting tools specific to Integer bugs, just using the mem-
ory error detecting tool such as Memcheck [22], SmartFuzz would not report certain
test cases, which trigger Integer bugs but can not be detected by Memcheck. To sum up,
existing binary level detection tools have at least one of the following limitations: (1)
ineffective for integer bugs except Integer overflow (2) imprecise type reconstruction
(3) high false positives of static analysis (4) time-consuming and high false negatives
of dynamic analysis.

To overcome the limitations mentioned above, we implement our tool at binary level,
and automatically detect Integer bugs by using static and dynamic analysis. Our paper
makes three major contributions:

– We reconstruct the sufficient type information from binary code.
– We propose a systematic method of combining static and dynamic analysis to

specifically detect integer bugs in executables.
– We implement a prototype called IntFinder and use it to analyze real-world binaries.

Experimental results show that our approach has low false positives and negatives
and is able to detect 0-day integer bugs.

The rest of this paper is organized as follows: The characteristic of Integer bugs are
described in section 2. In section 3, we present the overview of IntFinder. The imple-
mentation of IntFinder is illustrated at section 4. Section 5 provides the evaluation of
our tool. Section 6 examines its limitations. Finally, section 7 concludes our work.

2 Integer Bugs

We studied 350 Integer bugs on CVE [5], and noticed that the common root cause
of Integer bugs is the mismatch of operand value and its type. We also noticed that
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exploiting Integer bugs leverages several common mechanisms, which can also be used
for us to detect the integer bugs. We summarize the most common tricks as following.

– Memory Allocation Function: Memory allocation functions directly deal with the
memory space and certainly become the first target for attacker. As the size argu-
ment of memory allocation function is unsigned integer. There are two mechanisms
to achieve attack. First, through integer overflow/underflow, the size parameter will
get smaller or larger value than expected, and the allocated memory will be either
insufficient or exhausted. Second, signedness error may lead to bypass the com-
parison operation, and transfer a negative value to the size argument of memory
allocation function.

– Array Index: Array index can be regarded as an unsigned integer, and it is often
leveraged to compute the offset from the base address to access the memory. When
the array index is crafted by Integer bugs, it will facilitate the attacker to access any
memory space.

– Memory Copy Function: Memory copy function often has the unsigned parameter,
and the parameter determines the size of memory which is copied from source
operand to destination operand. If the parameter is crafted by Integer bugs, it will
lead to buffer overflow.

– Signed Upper Bound Check: Signed upper bound check (often comparison opera-
tion) can be bypassed by negative values. And later this value will be converted to
be a larger values via a signedness error or integer underflow. If the large value is
used as an argument of memory allocation or memory copy functions, an attacker
may be able to exploit this bug to corrupt application memory.

3 Overview

In this section, we will describe the architecture and working process of IntFinder. There
are three main components in IntFinder: (1) Extended type analysis on decompiler (2)
Taint analysis tool (3) Dynamic detection tool. Figure 1 shows the architecture.

The work flow of our approach is as below: first, IntFinder leverages the decompiler
to translate x86 binary program into its SSA-like intermediate language. Second, we

Decompiler

Type Analysis

Dynamic Instrumentation Tool

Taint Analysis Detection Tool

Static Analysis

Dynamic Analysis

Integer Bug Report

Suspect Instruction Set

Fig. 1. Architecture of IntFinder
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Table 1. Example of control flow based type information

[1] char * buf;
[2] int size;
[3] if(...){
[4] if(size>100)
[5] {
[6] ...
[7] }
[8] else
[9] ...
[10] }
[11] else{
[12] ...
[13] buf=(char *)malloc(size);
[14] }

extend the type analysis of decompiler in order to get more type information from binary
code and create the suspect integer bug set. Third, with the suspect integer bug set, we
implement the dynamic detection tool combined with taint analysis to further diagnose
the instructions in the suspect sets, and determine which are Integer bugs.

– Type Analysis: Our type analysis is based on decompiler. It provides the relatively
precise type information and gives the suspect instruction set for dynamic testing
or debugging. Compensating to existing type information extracted by decompiler,
IntFinder further rebuilds the type information based on exploited function and
statement just discussed in Section 2. In addition, IntFinder also reconstructs the
type information by using both data flow analysis and control flow analysis. Con-
trol flow analysis will be benefit because type information of operand may be col-
lected from different basic blocks. Table 1 shows an example of control flow related
type information, which contains apparently type conflicting about signed integer
variable named size, and has potential signedness error. Specifically, at line 4 size
is illustrated as signed integer, while at line 13 size will be illustrated as unsigned
integer. Note that statements at line 4 and line 13 are at different basic blocks. Thus,
conflicting type information may be missed without control flow analysis.

– Taint Analysis: To further reduce the number of suspect instruction and false pos-
itives of our tool, we use dynamic taint analysis to select those instructions with
tainted data.

– Dynamic Detection Tool: Our detection tool is implemented on dynamic instrumen-
tation tool. During program is executing, the tool selects the suspect instruction
which is tainted and uses our checking mechanisms to verify whether it is a real
Integer bug.

4 Implementation Details

In this section, we give the detailed design of IntFinder, which is implemented on de-
compiler Boomerang-0.3 [12] and dynamic instrumentation tool PIN-2.2 [19].
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4.1 Type Analysis

Type Information Extraction. As discussed in Section 3, our type analysis is imple-
mented on decompiler. To get sufficient type information, we extend type analysis on
Boomerang from the following three aspects:

– Existing integer type reconstruction of Boomerang only considers some specific
arithmetic operation, such as IMUL and SAL, to determine the signedness type of
operand, we additionally extract the type information at several sensitive points just
as discussed in Section 2.

– Boomerang provides the sparse type information, that is to say, it does not store
the type information for operand. To be convenient for type analysis, we addition-
ally store type information for memory operand in each statement. In addition,
Boomerang does not consider the backward type information propagation(in the re-
verse order of normal decompilation). However, for Integer bugs, we need to trace
back to determine the previous undefined type. For example, in signedness error,
we need to find whether current type conflicts with the previous type information.

– Existing type analysis of Boomerang only extracts the type information based on
data flow analysis, and it can only extract type information within single basic
block. We traverse the control flow graph, and propagate the type of operand to
other control branch and eventually provide sufficient type information.

We rebuild the type information in the following steps: First, at loading time, we modify
the signature of some library functions. For example, we modify the type of the mem-
cpy’s third argument from “size t” to “unsigned int”. Second, decompiler executes its
own type analysis. Third, at certain functions and statements discussed in Section 2,
we extract additional type information and propagate the type information backwards
within a basic block. Fourth, we traverse the control flow graph, and propagate the type
information to other basic blocks. Note that we only propagate the type with sufficient
information (contains both signedness and width type). When we find the type con-
flicting, we set the type of the operand as “BOT”, which is not propagated. We stop
traversing the control flow when there is no updated type information.

Suspect Instruction Set. After type analysis, we traverse the intermediate statements
generated by decompiler, and create the suspect instruction set. The format of suspect
instruction is shown in Table 2. Address field is the address of suspect instruction. bug-
type field is the type name of the bug. opcode field is specific to integer overflow/un-
derflow, including arithmetic operations. signedness type field is the signedness type of
the destination operand in the instruction. type of left operand field is the type of left
operand, including memory, register and constant value. type of right operand field is
the type of right operand. size field is the width type of the destination operand.

Table 2. Format of suspect instruction set

Address bugtype opcode signedness type type of left operand type of right operand size
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4.2 Taint Analysis

We find that Integer bugs often exist in the applications which get input resources just
like network package, configuration file, database file, user command and so on. Some
typical source functions manipulate the input data, like read, fread ,recv and so on. We
select these functions as the source of taint analysis, and tag the memory which holds
the data from these functions, and then, we propagate the tag according to different
kinds of instructions in the granularity of byte-wise. We only check those suspect in-
structions whose operands are tainted. Taint analysis can help us to distinguish the mali-
cious instruction from the benign instruction which is often introduced by programmer
or compile optimization, and then reduce the false positives.

4.3 Dynamic Detection Tool

Our detection tool is implemented on dynamic instrumentation tool PIN [19], it lever-
ages the suspect instruction set produced by type analysis and apply our checking
scheme to these instructions. Our checking scheme can be divided into three categories:

– Integer Overflow/Underflow: We check integer overflow/underflow at arithmetic
operations. Followed the integer overflow detecting rule introduced by William
Stallings [23], we determine integer overflow/underflow by using EFLAGS reg-
ister. However, there are several exceptions that we need to re-calculate the result
of the arithmetic operation. Take 8/16 bits addition for example, GCC compiler
promotes the 8/16 bits operand to 32 bits register, and then do the addition opera-
tion. It will fill dirty value to the high part of the register, and finally set the CF or
SF flag incorrectly. Instead, we re-calculate the addition for these two cases.

– Signedness Error: We check the value of the operand which has the conflicting type
information, and determine whether it has a negative value.

– Assignment Truncation: When truncation occurs, the value of the source operand
will be larger than the maximum value which destination operand can hold, then
we check whether the high-order bits of source operand are not zero.

5 Evaluation

We evaluated IntFinder with several utility applications. The evaluation is performed on
an Intel Pentium Dual E2180 2.00GHz machine with 2GB memory and Linux 2.6.15
kernel. Tested programs are compiled by gcc 3.4.0 and linked with glibc 2.3.2.

5.1 Suspect Instruction Set

As discussed in Section 4, IntFinder statically selected the suspect instructions, it is
the first step to reduce the instructions to be checked. Table 3 shows the number of
suspect instructions produced by type analysis. We can see that, in average, IntFinder
statically reports about six suspect instructions per 100k. In order to evaluate the precise
of type reconstruction, we compare the type information listed in suspect instruction set
to original source code manually. As shown in Table 3, we find that the precise of type
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Table 3. Suspect Instruction Set of IntFinder

Program Size Overflow/Underflow Signedness Error Truncation Total Precise
PHP-5.2.5 10.3M 330/339 84/84 234/234 648/657 98.6%
slocate-2.7 46.8K 6/6 1/1 1/1 8/8 100%

zgv-2.8 284.7K 23/24 19/19 16/16 58/59 98.3%
python-2.5.2 3.4M 95/96 21/21 61/67 177/184 96.2%
ngircd-0.8.1 329.1K 15/17 13/13 18/19 46/49 93.9%

openssh-2.2.1 150.8K 14/15 1/1 9/9 24/25 96%

Precise rate of type reconstruction is in the form of x/y, “x” represents the instructions with precise type, and “y” represents the total suspect instructions.

reconstruction is nearly to 100%. Note that some false positives for type reconstruction
exists in IntFinder, because it is hard to distinguish the following two cases: (1) pointer
and integer variable; (2) pointer and array. The former case may cause some pointer
arithmetic operation being regarded as potential integer overflow/underflow. The later
case may cause the imprecise type analysis for the offset of pointer, because the offset
of pointer should be regarded as signed integer, which is different from the unsigned
type of the array index. However, we consider that they are non-trivial problems.

5.2 Analysis of False Positives and False Negatives

We choose several real applications to verify whether integer bug can be efficiently
detected. The experiment results in Table 4 and Table 5 show that IntFinder has low
false negatives and false positives.

We also test the false positives of IntFinder. Note that we uses the same error-prone
input as used in false negatives testing. Table 5 shows that the false positives of IntFinder
is relatively low. There is no false positives in our experiments.

Table 4. Applications with Integer Bugs Tested on IntFinder

CVE# Program Vulnerabiltiy Types IntFinder
2008-1384 PHP 5.2.5 php sprintf appendstring() bug [6] Integer Overflow �
2003-0326 slocate-2.7 parse decode path() bug [1] Integer Overflow �
2004-1095 zgv-5.8 multiple integer overflow [2] Integer Overflow �
2008-1721 python-2.5.2 zlib extension module bug [8] Signedness Error �
2005-0199 ngIRCd-0.8.1 Lists MakeMask() bug [3] Integer Underflow �
2001-0144 openssh-2.2.1 detect attack() bug [4] Assignment Truncation �

Table 5. False Positives of IntFinder

CVE# Program Overflow/Underflow Signedness Error Truncation Real Bugs
2008-1384 PHP-5.2.5 1 0 0 1
2003-0326 slocate-2.7 1 0 0 1
2004-1095 zgv-5.8 11 0 0 11
2008-1721 python-2.5.2 0 1 0 1
2005-0199 ngIRCd-0.8.1 1 0 0 1
2001-0144 openssh-2.2.1 0 0 1 1
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5.3 Performance Overhead

We evaluate the performance overhead of IntFinder. Table 6 shows the slow down fac-
tors of IntFinder. Each program runs natively, under PIN without instrumentation and
under IntFinder without taint analysis once respectively. We find that the average per-
formance overhead of PIN without instrumentation is 3.7 X, while the average perfor-
mance overhead of IntFinder without taint analysis is 4.4 X. Note that we also test the
performance overhead of taint analysis, which is not list in Table 6. The average slow
down factor of IntFinder with taint analysis is nearly 50X. We provide the interface of
taint analysis for the user to choose open/close it.

Table 6. Performance Slow Down

Program Benchmark Native Run Under PIN Under IntFinder Slow Down of PIN Slow Down of IntFinder
PHP-5.2.5 CVE-2008-1384 0.022s 1.101s 1.432s 50.0 X 65.1 X
slocate-2.7 CVE-2003-0326 0.008s 0.296s 0.390s 37.0 X 48.7 X

zgv-5.8 CVE-2004-1095 0.101s 0.348s 0.447s 3.4 X 4.4 X
python-2.5.2 CVE-2008-1721 0.585s 2.033s 2.592s 3.5 X 4.4 X
ngIRCd-0.8.1 CVE-2005-0199 1.156s 3.945s 4.377s 3.4 X 3.8 X

Average 0.420s 1.545s 1.848s 3.7 X 4.4 X

5.4 New Bugs

IntFinder uncovered one new signedness error in slocate-2.7. This bug exists in de-
code db function in main.c. In slocate, a signed integer “tot size” is passed as the size
argument to realloc at main.c :1224, but this value may be negative after shift operation
at main.c: 1222, it depends on the size of database file which reads from at main.c:1232.
When the size of database reaches “G” level, it will trigger the integer bug. However, we
could find no evidence in mailing lists or CVS logs that the developers were specifically
trying to fix this bug.

6 Discussion

6.1 Decompile Limitation

– Missing certain functions: In experiment, decompiler Boomerang may fail to de-
compile some functions, we find that these functions either have indirect jump
which may be hard for decompiler to construct accurate path, or have some re-
lationship with other functions which can not be decompiled. Fortunately, from the
experiment results, we find that the accurate decompile rate is above 95%.

– Imprecise of decompiler: Boomerang suffers from the common limitations of de-
compiler: (1) Imprecise of decoding the indirect jump. (2) Imprecise differentiate
the pointer from integer variable. (3) Imprecise differentiate the pointer from array.

6.2 Dynamic Detection Limitation

– Semantic Error IntFinder may lose Integer bugs caused by semantic error. For ex-
ample, NetBSD has an Integer bug and suffers from forcing a reference counter to
wrap around to 0, which may cause the referenced object to be freed even though
it was still in use.
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– Logic Operation In our current implementation, we ignore the Integer bugs associ-
ated with certain logic operation, except the SHL and SAL. We have the following
consideration: (1) It is hard to distinguish the benign logic operation from the ma-
licious one. (2) Logic operation occurs frequently in the program. If we check the
logic operation, it will bring more false positives and raise performance overhead.

6.3 Dynamic Testing Input Limitation

In our current implementation, we use existing error-prone inputs published by vulner-
ability database just like CVE. However, this method can only detect the known inte-
ger bugs. To further leverage our tool to find more unknown vulnerability, we need to
construct the input associated with the suspect instructions. To achieve the goal, there
are certain feasible methods:(1) Using symbolic execution to generate inputs to trig-
ger the suspect instructions. (2) Using some verification tools, such as dynamic testing
tool [18], to construct the relationship between input and suspect points.

7 Conclusion

In this paper, we present the design, implementation, and evaluation of IntFinder, a tool
for automatically detecting integer bugs. Given a binary code, IntFinder decompiles
a binary, and creates the suspect instruction set. Then IntFinder dynamically inspects
the instructions in the suspect set and confirms which instruction is real Integer bug
with the error-prone input. Compared with other approaches, IntFinder provides more
accurate and sufficient type information and reduces the instructions which will be dy-
namically inspected. The evaluation of IntFinder shows that it has low false positives
and negatives.
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Abstract. Privacy of PII(Personally Identifiable Information) on the Internet is a 
major concern of a netizen. On the Internet different service providers are 
supposed to publish their own privacy policies but understanding of these 
policies is a major problem. Standards like Platform for Privacy 
Preferences(P3P), provide a computer readable format and a protocol for 
allowing web browsers to retrieve and process privacy policies. In this paper we 
studied the various privacy mechanisms in place and compared them on the basis 
of their architecture and third party intervention. We also proposed an alternative 
privacy mechanism that introduces the concept of a third party whose role is to 
verify the privacy policy and keep a proactive check on the use of specified PII's. 
In case of a violation the third party, informs the users of the breach. The 
implementation of the proactive check on the PII  has been done through 
software agents. The requirement of  granting legal status to transactions of the 
PII by the use of Digital Signatures and PKI has  also been proposed,thereby 
legally binding the web entity to use the PII as per the agreed terms.  

Keywords: Privacy, Trusted Third Party, Security,P3P, EPAL, Digital 
Signatures, Personally Identifiable Information (PII), Security. 

1   Introduction 

The growth of web services which require the use of PII's has increased manifold. 
Hence the use and distribution of the PII”s between business entities have increased. 
The misuse of the PII which has resulted in crimes like spim , spam and junk mails. 
As PII itself is an identity of a netizen on the Internet. Therefore the use of PII itself 
should be checked and verified by the user at the service providers end. The 
interchanging of the PII's between business entities should also be notified to the user. 
. In case the entities commit a misuse of the PII they should be legally held for such a 
breach of confidence. Paradoxically the netizen will express very strong concerns 
about privacy of their PII, but be less than vigilant about safeguarding it [1]. Thereby 
requiring the inclusion of third party to safeguard the PII.  
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Web Services are associated with a Privacy Policy which states the objectives and 
aims of using the PII's [2][3]. Trade practices require that the privacy policies should 
be stated by the web services and laws like GLBA(Gramm Beach Bliley Act) state 
that the language of the policy stated should be in very simple and in clear 
terms[3].But the users of these services do not use the policies as they find these 
policies complex and difficult to understand. This does not allows user to make an 
informed choice about sharing their PII's.W3C provided a mechanism which allows 
the web services to state their policies in XML encoded form called P3P(Platform for 
Privacy Preferences)[5].This XML encoded form makes it easier to understand and 
provide a standardized way of stating privacy policy. And as compared to the privacy 
policies stated in Human Readable languages ,it is much easier to understand. 
Different other mechanisms like E-P3P, EPAL provide and enforce privacy policies 
inside Web Service entity. These restrict the access to the PII's to different groups 
inside an entity. But this whole approach to privacy is an inactive one ,once the PII is 
given to the  Web Service there is no check to how the data is being used. We propose 
a privacy mechanism that solves this problem by introducing the concept of  trusted 
third party which monitors the use of the PII by the web service. And in case there is a 
unauthorized  use of the PII which violates agreed terms between the user and the web 
service. Thereby keeping a proactive check on the use of the PII.    

2   Different Privacy Mechanisms 

Most of the transactions for any service e.g. Setting up an email account on a email 
service, on the Internet is never complete without the exchange of PII. Hence the need 
to ensure the privacy of the PII is very important and must be addressed technically. 
Hence various mechanisms were developed and adopted the most popular being the 
P3P and EPAL. P3P was the first to be introduced and helped the privacy policy of 
the company to be stated in the machine readable form. The next step is to allow user 
to specify its privacy preference with the P3P document of the service. This is 
implemented with the use of user agents which allow the comparison of the policy 
and the preference e.g. AT& T  Privacy Bird[6].The natural extension to this is to 
enforce the privacy policy of the company through out the the organization. EPAL is 
the mechanism that implemented the privacy policy through out the organization. 
This allows transparency and the synchronization of the privacy policies and the 
internal PII usage practices.  

2.1   P3P (Platform for Privacy Preferences) 

P3P is a standard defined by W3C,that allows a Web Service to state the privacy 
policy in a standardized machine readable form. The privacy policy states all the 
objectives of a web service regarding the information collected in a semi-structured 
XML form. The P3P specification[5] has a standard vocabulary to describe data 
practices which states the entities that will access the data and the purpose. Base data 
Schema is used for collecting information. An overview of the P3P vocabulary as 
stated in the P3P Specification[5] is described in the Table 1.  
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Table 1. Overview of the P3P vocabulary 

P3P Policy Element Detail 

Entity The web service or website which collects the 
information. This element stores the contact 
information of the entity which will collect the users 
PII 

Access This element specifies the which sub-entities can 
access the PII  

Dispute Describes how to resolve related disputes with the 
web service 

Data The kind of data collected by the web service 

Purpose This element states the purpose for which the PII 
collected will be used 

Recipient States the entities with which the data will be shared 

Retention Describes the retention policies of the information 
collected 

Consequences Human Readable element and explains the web 
services data practices  

The privacy policy in the P3P Specification uses the above vocabulary to state their 
privacy policy. The P3P specification also has a protocol,built on the HTTP protocol 
to transmit and receive the privacy policies  

2.1.1   Overview of P3P 
The Privacy Preferences is the XML format defined under  P3P which provides for 
the user to state the privacy preferences and also provides the algorithms for matching 
of the user privacy preferences with the web services privacy policy which are stated 
in the W3C APPEL. The overview of P3P and the various steps involved are shown 
in the Figure 1. 

 
Fig. 1. Overview of P3P 
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2.1.2   Overview of User Agents 
User Agents are tools that fetch the P3P policy of the site .The user agents like AT&T 
privacy bird,Microsoft IE 6 and Privacy Companion allow users to specify their 
privacy preferences[6].They can either be built into the web browser or can be end 
user applications. User agents also compare the privacy policies to privacy 
preferences and gives advice to users to whether to exchange PII with the specified 
web service. If the privacy policy is found in conflict with the user privacy preference 
the user agent takes the appropriate action e.g. blocking the page,Displaying a 
warning on the status bar. Hence allowing the user to make a choice to whether share 
the information e.g. AT&T Privacy Bird a very popular user agent uses the following 
Symbols are showed in the header of the Web Browser [6],[7] to show different 
status. Different symbols are described in Table-2. 

Table 2. Symbols and Descriptions of AT&T Privacy Bird[6] 

Header Symbols Details 

 

This symbol indicates that the privacy policy and the 
preferences matches. 

 

Indicates that privacy policy and the preferences match 
but the site contains some frames, pictures etc. 

 

Indicates that Web Service\Site does not have P3P 
policy.  

 

Indicates that the Privacy policy does not Match 

 

Indicates that the Tool has been turned of 

 
Thereby this gives adequate warning and information about the site to the user. Hence 
user can make a informed choice about the site. 

P3P also provides mechanism for specifying cookie related data practices. These 
P3P policies are referred to as “compact policies”.These are included in HTTP-
Response headers and provide a quick way for a user agent to compare the policy 
with the preferences without referring to another document. 

2.1.3   Drawbacks of P3P 
P3P though provides a machine readable format for the specification of privacy 
policy, but the mechanism to ensure the privacy of the user is not present. The P3P 
privacy policy  is a formal document that states the usage of the PII, but it is not 
enforceable throughout the web service.P3P documents are difficult to write as 
compared to EPAL Policy documents[8].Due to its complicated syntax it has been not 
adopted widely[9].   
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2.2   EPAL(Enterprise Privacy Authorization Language) 

EPAL[10] [11] is a XML based privacy specification language that is used by 
organizations to specify their internal privacy policies. EPAL is basically used by web 
services or entities to define how the data is accessed inside them,it also synchronizes 
the policies of the entities and their business partners so that compliance is assured 
between the respective business policies. Developed by IBM,it was defined as a 
formal language to specify internal privacy policies which unlike P3P are enforceable  
and automated across entities systems. The privacy policy in EPAL is made up of 
elements which are analogous to P3P's policies elements,these defines access to the 
data. These are shown in table 3. 

Table 3. Overview of EPAL elements 

EPAL Policy 
Element 

Detail 

Ruling Specifies one rule which can be “allow” or “deny” 
User Category This element specifies which User Group can access the 

specified data 
Action Models how the collected data is used. 
Data-category The different kind of data collected by the web service e.g. 

medical record or Contact information 
Purpose This element states the purpose for which the PII  will be 

used. Can serve as a ruling whether to allow or deny the 
use of PII 

Obligation  This element states certain actions to be completed 
Condition This element defines external conditions  

 
The EPAL policy stated is enforceable throughout the organization. This is done by 
the Enforcement Engine[10] which parses the policy stated and controls the access of 
the user groups to the data store. The overview of the EPAL is given below in the 
Figure 2. 

 

Fig. 2. Overview of the EPAL architecture  
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The EPAL policy is made up of rules which define the access conditions e.g. consider 
the EPAL policy given below 
 
<epal-policy> 
 <rule id="Email_Privacy_Rule_1" ruling=”allow”> 
 <user-category refid="Subsidiaries"/>   
 <data-category refid="Email"/> 

 <obligation refid="Check opt-out list"/> 

</rule> 

</epal-policy> 

Consider the rule Email_Privacy_Rule_1.The ruling is “allow” which means allow 
access to the Email address. The user group allowed access is the Subsidiaries. The 
Obligation that the user group needs to perform is the checking of the opt-out list. 

Another important concept of EPA called “Sticky Policy Paradigm” [10] which 
states that the terms and conditions which were promised or agreed upon will be 
applicable even if it is transfered from one entity to another. 

2.3   Limitations of Current Privacy Mechanisms 

The Privacy Mechanisms discussed above have the following disadvantages  
 

1.  No third party evaluation:- In both of the privacy mechanism there is no third 
party involved. The concept of third party ensures the impartiality of the system. 

 

2. Non Proactive Approach towards protection of PII:-The PII is the identity of a 
netizen. And the user/netizen requires that the web service which has its PII to 
discloses the way it has been used. This can help in solving lots of problem related 
to proliferation of data from unscrupulous web services  e.g. spam, spim, fraud. 

 

3.  Legal Status for PII transactions and its use:- PII is the identity of a netizen on the 
INTERNET .The privacy policies purpose is to ensure user that the PII will be 
safe. But to give legal recognition to this transaction of  is the need of the hour. 

Limitations  are summarized in Table 4 

Table 4. Limitations of the Current Privacy Mechanisms  

Limitations P3P EPAL 

Enforceability of privacy policy throughout the web service No Yes 

Easily understandable syntax   No Yes 

Third Party Audit and Evaluation of PII use No No 

Ability of user to monitor use of PII No No 

Legal binding on exchange of PII No No 

Legal Binding on the use of PII as per the stated privacy 
policy 

No No 

Ability to link policy with data(Sticky Policy paradigm) No Yes 
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3   Proposed Privacy Framework 

The proposed framework is a scheme for privacy-enabled management of netizen's 
data. Its core is an authorization scheme that defines how collected data may be used. 
Also a platform which facilitates third party evaluation is added to the proposed 
framework. The  Proposed Privacy framework  has four parties involved  

 

1. User-The user represents a netizen who accesses and shares his/hers PII with the 
web service. 

 

2. Web Service-The web service is an organization /entity which  provides service 
and requires the PII from the user. Web service is also required to share some 
access details\logs with the trusted third party. 

  

3. Trusted Third Party-The trusted  third party is an entity which monitors the use of 
PII given to the web service for the user. This party legally binds the web services 
to follow the conditions agreed on by the user and the web service.   

4. Controller For Privacy Insurers- This party will control the Trusted  third party. It is 
a regulatory body and will control and regulate the trusted third party. Each 
country will have one. Since its role is similar to the CCA (Controller of Certifying 
Authorities) ,it can perform the role of CPI. 

3.1   Prerequisites and Application Model  

The Web Service run applications that collect and use PII's. Each application performs 
some tasks. For example a “view  record” displays the record of a certain user. 

Therefore there is a privacy policy that controls the access of the PII throughout the 
organization. Privacy policy may be informal rules that are applicable throughout the 
web service. These privacy policy is implemented in the form of EPAL policies in the 
system. 

3.2   Policies Definition and Conversion 

The Privacy policies state how the PII will be used. The privacy policy is defined 
using the EPAL Rules. These rules define the usage of a certain field in the form of 
information. The EPAL policy thus stated is thus converted into the P3P format [12] 
and hosted by the web service. 

3.3   Collection and Transfer of PII 

The is the first step when a user interacts with  the web service for the first time and 
agrees to use the service and transfer the PII. The following steps take place  
 

1. The user accepts the web services terms and conditions also stating the Opt-in and 
Opt-out choices and sends its privacy preferences in the XML form as stated in the 
privacy preferences in P3P.   

2. The Web Service replies back to the user,the XML form is converted into a SQL 
query and it is compared with the web services privacy policy. The reason why the 
user sends the web service also returns its privacy policy.  
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3. The user transfers the web services privacy policy  to the trusted third party to 
analyze the privacy policy further. The trusted third party can store the history of the 
defaulter web services hence advice the user about the web services previous record   

4. The trusted third party returns its analysis to the user. 
 

5. The user and Web service transfers the PII and sign a contract which states the 
users preferences and the web services privacy policy with their private keys. 

 

6. The document is further attested by the third party and a clause is added that the 
third party will be allowed full access to access details .The web service passes a 
“key” to the third party which will identify the specified PII in the web service. 

 

7. The user is informed that the transaction is complete. 
 

The overview of the collection and transfer of the PII is given in the Figure 3 below  

 

 

Fig. 3. Overview of the collection and transfer of the PII 

3.4   Granting or Denying Access 

The form and associated Opt In and Opt Out choices is used to decide whether the 
access will be granted or not. Any access to the PII is checked and verified as per the 
agreed terms and a separate audit log is maintained. 

 3.5   Privacy Insuring Mechanism 

The privacy of the user is ensured by an evaluation of the audit logs that contains the 
access details to the PII. The access details includes the following fields of 
information 
 

1. Access Purpose-States the purpose of PII access. 
2. Access Time  
3. Access Fields-The fields of information that were accessed 
4. Request By-By whom the access request is generated. This field will store the 

information uniquely identifying user or the program that accessed the PII. 
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5. Sub-Entity name-Every employee of the  web service is part of certain  sub 
entity which can be the different departments of the company for e.g. 
Marketing,Finance.   

  

The audit of the the access details is carried by a software agent which is deputed by 
the third party that was involved in the transfer of PII phase. The access detail of the 
specific PII is searched by a unique key that was transferred to the third party in the 
previous steps. The following steps are involved in whole process. 
 

1. The user feels that the PII has been leaked e.g. unsolicited communication 
,the user informs the trusted third party.  

2. The Trusted third party asks the Web services for access details\logs. This 
step can occur at regular intervals of time. Inability of the web service to 
provide access to Trusted Third Party leads to the  breach of contract. Hence 
making the Web Service accountable and need to be compliant  .The access 
of audit Logs can be  implemented by the use of Software Agents which is 
discussed later.  

3. The Access detail is provided by the Web service to the Trusted Third Party. 
4. The Analysis of the Access detail is done and the terms and conditions 

agreed by the user and the Web Service and check if any breach occurred. If 
any breach of terms agreed upon the user and the web service,user is 
informed and the user is entitled to take Legal remedies. 

3.6   Access Classes 

The access details reveal the day to day activities of the web service to the trusted third 
party. Therefore there is a abstraction layer required for hiding which sub entities 
access the PII's, at the same time not hiding the logs from the trusted third party. 

This is implemented by Access Classes which classifies the different sub entities of 
the Web services into access classes. Classification is done as per the data 
proliferation risk each sub entity presents for e.g. 
 

1. Least Data Proliferation Risk Class:-This class consists of sub business entities like 
the Maintenance Department,which requires very frequent access to the data and 
the risk for the proliferation of an individual PII is very less. 

 

2. Medium Data Proliferation Risk Class:-This class consists of those entities that 
require less frequent access to the data or require data for purposes that include 
marketing. 

 

3. High Data Proliferation Risk Class:-This class consists of the entities from where 
the proliferation of the PII is a major issue. This class should only contain entities 
that the organization wants to restrict the access of the PII's for e.g. the subsidiaries 
and other partner companies lie in this class. 

 

The exact sub entity in the access details is mapped to the access class thus protecting  
the integrity of web services.  

3.7   Framework Overview 

The whole framework is Consists of the following Sub Modules 
 

1. Privacy Policy Sub-Module:-This sub module states the privacy policy of the 
organization and helps in stating the Privacy policy which can be converted from 
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the Internal Privacy Policy as stated by Karjoth et AL (Conversion of EPAL[12] to 
P3P).This Submodule will produce a P3P document that will state all the data 
usage terms which the user can compare with his/her privacy preferences. Thus 
this Sub Module will represent the privacy system to the user when he first 
accesses the web services and wants to transfer his/her PII. 

 

2. Digital Signature Storage Sub-Module:-This Module stores the agreements signed 
by the user and the trusted Third party with the web service .This component will 
act as a repository and since the UNICITRAL's Model IT law the Digital 
Signatures has the same status as a signed contract this protects the web service 
from any fraud and gives legal recognition to transfer to the PII. 

3. Internal Privacy Enforcement Engine:This engine is similar to EPAL's 
Enforcement Engine. It is responsible  for the internal enforcement of the privacy 
policies agreed upon and stated in the privacy policy sub module ,it further  
consists of 

 

1. Authorization Director:-It parses the policies and authorizes any request 
to  access the protected resource. 

2. Resource Monitor:-Its role is to get permission of access to the protected    
resource and make audit of every request. This component plays an 
important role in the whole system as it is responsible for the 
maintenance of the audit logs. 

3.  Policy Management System:-This system defines all the privacy 
policies.  

4. Audit logs:-An important part stores every access detail. It contains the 
entity which accessed the data,Purpose for the access, date, etc. 

 

4. External audit Engine:-This engine implements the concept of access classes and 
the access map. And it is responsible for the mapping the access  class to the 
audit logs. Also an agent platform for the Software agents  is the part of the 
submodule. This allows for the Software agents of the third party to access the 
audit logs. 

The Overview of the whole framework is given in Figure 4. 

3.8   Hierarchy of Trusted Third Party and Their Regulators   

The regulator of the trusted third party plays an important role of monitoring and 
regulating the trusted third party. Since the trusted third parties play such a critical 
role in the security and are entrusted with access to audit logs of the web services. The 
CPI(Controller for Privacy Insurers) ensure that the third parties are non-biased,and in 
any case this is compromised,take severe action against it. 

Each country has a CPI and all the trusted third parties are required to get  
themselves registered with the CPI in which country they have a presence. The role of 
CPI will be  similar to the role of  CCA ( Controller of Certifying  Authorities) as 
recommended in  UNICITRAL's Model IT law and implemented in Information 
Technology  Act 2000 Chapter 6[13] . 

Since the laws and rules are in place the role of the CPI can be assigned to the 
CCA. The control structure is given below in Figure 5. 
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Fig. 4. Overview of the framework 

 

Fig. 5. Hierarchy of CPI and Trusted Third Parties 

3.9   Advantages and Disadvantages of the Proposed Privacy Framework 

The proposed privacy framework provides the following advantages 
 

1. Third party evaluation-the third party plays an active role in auditing and 
evaluating the users PII usage. 

2. Ability of the user to monitor PII use. 
3. Legal Binding of transfer of PII. 
4. Availability of legal remedies to address the  problems of data proliferation by web   

services 
5. Legal Framework of CPI and trusted third parties. 
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6. Integrity of the Web Service protected through Access Classes. 
Disadvantages of the Proposed Privacy Policy 

1. Complex technologies involved for example Software Agents . 
2. Uses Data Intensive auditing to enforce PII's integrity.  

4   Implementation Details 

The whole system is implemented using Microsoft Visual Studio 2005 and the 
database used is Microsoft SQL Server 2005.The object oriented programming 
methodology is used in the implementation of the model. The policies are written  
using EPAL vocabulary. EPAL to P3P converter [12] is used to  convert the EPAL 
policy to P3P and host it on the web service. The database is used to store all the data 
and users preferences. Access map is also in the form of a XML file. The Software 
Agent platform has no been implemented.     

5   Future Scope and Conclusion 

The proposed privacy platform solves many of the problems identified(Trusted Third 
Party,Legal Recognition to PII). The whole problem of privacy of PII will take even 
more and more significance,as the Internet penetration increases. The problems of 
privacy will be magnified in such a scenario,therefore  the concept of third party is 
bound to make comebacks as it provides impartiality. The framework will also 
compel the web services to manage the PII in a better and secure manner. 

Future scope lies in developing the  Software Agent Platform and the  
standardization of the framework. The concept of  Access Classes can be further 
refined and extended. 
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Abstract. Privacy-preserving data mining (PPDM) primarily addresses
the incorporation of privacy preserving concerns to data mining tech-
niques. In this paper, we explore the problem of privacy-preserving dis-
tributed association rule mining in vertically partitioned data among
multiple parties, and propose a collusion-resistant protocol of distributed
association rules mining based on the threshold homomorphic encryption
scheme, which can prevent effectively the collusion behaviors and con-
duct the computations across the parties without compromising their
data privacy. In addition, the correctness, complexity and security of the
collusion-resistant protocol are analyzed, and the result shows that the
protocol has a reasonable efficiency and security.
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1 Introduction

Privacy-preserving data mining(PPDM) focuses on incorporating privacy preser-
vation methods into data mining techniques (e.g.[3]). In this paper, we are par-
ticularly interested in the mining of association rules in a scenario where the
data is vertically distributed among different parties. To mine the association
rules, these parties need to collaborate with each other so that they can jointly
mine the data and produce results that interest all of them. Without privacy
concerns, all parties can send their data to a trusted central place to conduct
the mining. However, Due to privacy law or motivated by business interests, the
parties may not trust anyone and do not want to reveal her own portion of the
data, although they realize that combining their data has some mutual benefit.

Privacy preserving protocols or algorithms are designed to preserve privacy
even in the presence of adversarial participants that attempt to gather infor-
mation about the inputs of their peers. There are, however, different levels of
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adversarial behavior. Cryptographic research typically considers two types of
adversaries [13]: A semi-honest adversary is a party that correctly follows the
protocol specification, yet attempts to learn additional information by analyz-
ing the messages received during the protocol execution. On the other hand, a
malicious adversary may arbitrarily deviate from the protocol specification. As
mentioned in previous works on privacy-preserving distributed mining [10], the
participants are assumed to be semi-honest that is a practical and realistic one
for distributed data mining, but malicious adversaries, for example, the collusion
of parties, happen easily to gain additional benefits. Of course, we can first design
a secure protocol for the semi-honest case, and then transform it into a protocol
that is secure against malicious adversaries. This transformation can be done by
requiring each party to use zero-knowledge proofs to prove that each step taken
follows the specification of the protocol [8]. Yet, this generic approach might be
rather inefficient and add considerable overhead to each step of the protocol.

In this paper, we provide a secure distributed association rules mining protocol
based on the threshold additively homomorphic encryption scheme and the pro-
tocol is designed to target malicious adversaries, especially collusion-resistant.
The major contributions of this paper are as follows.

(1) We present a new solution to distributed association rules in vertically
partitioned data.

(2) We provide a secure protocol of the distributed association rules mining,
which can prevent effectively the collusion of parties by employing the threshold
homomorphic cryptography, and the protocol analysis shows that the protocol
has a reasonable efficiency and security.

The rest of the paper is organized as follows: in Section 2 we present an
overview of the related work. Subsequently, in Section 3 we present the tech-
nical preliminaries. We then present the definition of the distributed mining of
association rules and the secure protocol in Section 4. Finally, we present the
conclusion and future work in Section 5.

2 Related Work

Privacy-preserving data mining has received a lot of attention recently due to
the increasing need to share and analyze data, and many methods were proposed
to preserve the privacy of the data.

Data perturbation represents one common approach in privacy preserving
data mining (PPDM), where the original (private) dataset is perturbed and the
result is released for data analysis. Reference [3] first proposed randomization
approaches to solve the problem of privacy-preserving in data mining. Data per-
turbation includes a wide variety of techniques as follows: additive, multiplica-
tive, matrix multiplicative, k-anonymization, micro-aggregation, categorical data
perturbation, data swapping, data shuffling [9]. Typically, a “privacy/accuracy”
trade-off is faced. On the one hand, perturbation must not allow the original data
records to be adequately recovered. On the other, it must allow “patterns” in
the original data to be mined. In addition, [5] presented an approach to conduct
association rule mining based on randomized response techniques.
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Secure Multi-party Computation (SMC) technique is an alternative approach
to achieve privacy-preserving data mining, which was introduced by [18], and
has been proved that there is a secure multi-party computation solution for any
polynomial function [7]. This approach, though appealing in its generality and
simplicity, is highly impractical for large data sets. Based on the idea of secure
multiparty computation, privacy-oriented protocols are designed for the prob-
lem of privacy-preserving collaborative data mining. Reference [16]presented the
component scalar product protocol for privacy-preserving association rule min-
ing over vertically partitioned data for the case of two parties. Reference [17]
proposed an efficient and practical protocol for privacy-preserving association
rule mining based on identity-based cryptography, which has an additional ad-
vantage that no public key certificate is needed.

Reference [19] proposed a homomorphic cryptographic approach to tackle
collaborative association rule mining among multiple parties. The protocol we
propose resemble the approach given by [19] in that we also employ a secure
multiparty computation approach for preserving privacy that is based on a ho-
momorphic cryptosystem. But we have two major differences with [19]:

(1) In our paper, we propose the protocol of distributed association rules based
on not only the homomorphic cryptographic, but also the threshold cryptography.

(2) Our protocol is designed to target the malicious adversary, specifically
collusion-resistant, which can be achieved by employing a threshold homomor-
phic cryptosystem, but [19] is proposed to take care of the semi-trust adversary.

3 Technical Preliminaries

3.1 Homomorphic Encryption

A cryptosystem is homomorphic [14] with respect to some operation∗ on the
message space if there is a corresponding operation ∗′ on the ciphertext space ,
such that e (m1) ∗

′
e (m2) = e (m1 ∗m2) . In the privacy-preserving protocol of

distributed mining of association rules, we use additive homomorphism offered
by [12] that is comparable with the encryption process of RSA in terms of the
computation cost, while the decryption process of the additive homomorphism
is faster than the decryption process of RSA.

An additively homomorphic cryptosystem has the nice property that for two
plain text message m1 and m2 , it holds

e (m1)× e (m2) = e (m1 + m2) . (1)

where × denotes multiplication. This essentially means that we can have the sum
of two numbers without knowing what those numbers are. Moreover, because of
the property of associativity, when e (mi) 	= 0,

e (m1)× e (m2)× · · · × e (mn) = e (m1 + m2 + · · ·+ mn) . (2)

And we can easily have the following corollary:

e (m1)
m2 = e (m2)

m1 = e (m1 ×m2) . (3)
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3.2 Threshold Cryptography

Based on the secret sharing scheme proposed by [15], [4] presented the concept
of threshold cryptography, where a secret key associated with a single public
key is distributed among a group of users. Only if a predetermined number of
users cooperate, can they perform some crypto-operations, such as decrypting or
signing, which has drawn great attentions and enabled threshold cryptography
to be widely used in many fields since proposed.

3.3 The Definition of the Association Rules Mining

The association rules mining can be defined as follows [1]: let I = {i1, i2, · · · , im}
be a set of items, DB be a set of transactions, where each transaction T is an
itemset such that T ⊆ I. Given an itemset X ⊆ I, a transaction T contains
X if and only if X ⊆ T , An association rule is an implication of the form
X ⇒ Y where X ⊆ I, Y ⊆ I and X ∩ Y = ∅. The rule X ⇒ Y has support s in
the transaction database DB if s% of transactions in DB contain X ∪ Y . The
association rules hold in the transaction database DB with confidence c if c% of
transactions in DB that contain X also contains Y . An itemset X with k items
called k-itemset . The problem of mining association rules is to find all rules
whose support and confidence are higher than certain user specified minimum
(namely thresholds) support and confidence. With this framework, we consider
mining Boolean association rules. The absence or presence of an attribute is
represented as 0 or 1, so transactions are strings of 0 and 1.

4 Privacy-Preserving Distributed Mining of Association
Rules in Vertically Partitioned Data

4.1 Problem Definition

In this paper, we consider the distributed mining of association rules, that is, the
mining environments is distributed. Let us assume that a transaction database
DB is vertical partitioned among n parties (namely P1, P2, · · · , Pn ), where
DB = DB1 ∪ DB2 ∪ · · · ∪ DBn, DBi ∩ DBj = ∅, for ∀i, j ∈ n, DBi resides
at party Pi(1 ≤ i ≤ n). Now they want to conduct distributed association rule
mining on the concatenation of their data sets, because concerned about their
data privacy, no party is willing to disclose its raw data set to others, so we
formulate the following privacy-preserving distributed association rule mining
problem in vertically partitioned data:

problem definition
Party P1, P2, · · · , Pn have private data set DB = DB1, DB2, · · · , DBn respec-
tively, and DBi ∩DBj = ∅, for ∀i, j ∈ n, DBi. The data set DB = DB1, DB2,
· · · , DBn forms a database DB , namely DB = DB1 ∪ DB2 ∪ · · · ∪ DBn ,
which is actually the concatenation of DB = DB1, DB2, · · · , DBn , let N de-
note the total number of transactions for each data set. The n parties want to
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conduct association rule mining on DB = DB1 ∪DB2 ∪ · · · ∪DBn and to find
the association rules with support and confidence being greater than the given
thresholds.

During the mining of association rules, we assume all parties follow the proto-
col, and the object of the paper is to propose a protocol of distributed association
rules mining in vertically partitioned data based on the threshold homomorphic
encryption scheme, which can prevent effectively the collusion behaviors and con-
duct the computations across the parties without compromising their data pri-
vacy. Simultaneously, the security of the protocol refer to semantic security [6].

4.2 Association Rule Mining Algorithm

In order to learn association rules, one must compute confidence and support of
a given candidate itemset, and given the values of the attributes are 1 or 0, to
find out whether a particular itemset is frequent, we only count the number of
records where the values for all the attributes in the itemset are 1. The following
is the algorithm to find frequent itemsets:

1. L1 = large 1-itemset
2. for (k = 2; Lk−1 	= ∅; k + +)
3. Ck = apriori-gen (Lk−1)
4. for all candidates c ∈ Ck do begin
5. Compute c.count (c.count divided by the total number of records is

the support of a given itemset. We will show how to compute it in Section 4.3.)
6. end
7. Lk = Lk ∪ {c|c.count ≥ minsup}
8. end
9. Return L = ∪kLk.
In step 3, the function Ck =apriori-gen (Lk−1) is the following algorithm[2]:
Input: Li−1 // large (i-1)itemset

Output: Ci //i candidate itemset
Apriori-gen algorithms:
Ci = ∅

for each I ∈ Li−1 do
for each J 	= I ∈ Li−1 do

if i− 2 of the elements in I and J are equal then
Ck = Ck ∪ I ∪ J .

Given the counts and frequent itemsets, we can compute all association rules
with support ≥ minsup .

In the procedure of association rule mining, step 1 , 3 , 5 and 7 require sharing
information. In step 3 and 7, we use merely attribute names, in step 1, to compute
large 1-itemset, each party elects her own attributes that contribute to large
1-itemset , where only one attribute forms a 1-itemset, there is no compu-
tation involving attributes of other parties. Therefore, data disclosure across
parties is not necessary. At the same time, since the final result L = ∪kLk is
known to all parties, step 1 , 3 and 7 reveal no extra information to either party.
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However, to compute c.count in step 5, a computation accessing attributes
belonging to different parties is necessary. How to conduct these computations
across parties without compromising each party’s data privacy is the challenge
we are faced with. If all the attributes belong to the same party, then c.count ,
which refers to the frequency counts for candidates, can be computed by this
party. If the attributes belong to different parties, they may first construct vec-
tors for their own attributes. For example, for the some candidate itemset, party
Pi have attributes a1, a2, · · · , ap, then party Pi can construct vector Ai, the
jth element denote Aij =

∏p
k=1 ak in vector Ai . subsequently, they apply our

secure protocols to obtain c.count, which will be discussed in Section 4.

4.3 Threshold Homomorphic Encryption Protocol in Vertically
Partitioned Data

The fact that the collaborative parties jointly compute c.count without reveal-
ing their raw data to each other presents a great challenge for the case of multiple
parties. Without loss of generality, assuming Party P1 has a private vector A1 ,
Party P2 , a private vector A2, · · · , and Party Pn, a private vector An. we use
Aij to denote the jth element in vector Ai, so the value of Aij is the attribute
value of the Pi in the jth transaction of the database. Given that the absence
or presence of an attribute is represented as 0 or 1, the value of Aij is equal to
0 or 1. For example Ai = (1, 0, 1, 1, · · · , 0)T

.
we develop a collusion-resistant and secure protocol to compute c.count as

follows:

protocol
1. P1, P2, · · · , Pn perform the following:

(a) P1, P2, · · · , Pt (1 ≤ t ≤ n) jointly generate a threshold cryptographic key
pair (d(d1, d2, · · · dt), e) of a homomorphic encryption scheme. That is, a secret
key associated with a single public key is distributed among a group of parties.
For simplicity and without loss of generality, let t = n, then only if all parties
cooperate, can they decrypt the ciphertext and prevent the collusion of parties.
Let e(·) denote encryption and di(·) denote party i decryption. Meanwhile, the
threshold cryptographic key pair (d(d1, d2, · · ·dn), e) is semantic security [6].
They also generate the number X , where X is an integer which is more than n.

(b) P1 generates a set of random integers R11, R12, · · · , R1N and sends

e (A11 + R11X) , e (A12 + R12X) , · · · , e (A1N + R1NX)

to Pn ; P2 generates a set of random integers R21, R22, · · · , R2N and sends

e (A21 + R21X) , e (A22 + R22X) , · · · , e (A2N + R2NX)

to Pn; · · · ; Pn−1 generates a set of random integers R(n−1)1, R(n−1)2, · · · , R(n−1)N
and sends
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e
(

A(n−1)1 + R(n−1)1X
)

, e
(

A(n−1)2 + R(n−1)2X
)

, · · · , e
(

A(n−1)N + R(n−1)NX
)

to Pn ; Pn generates a set of random integers Rn1, Rn2, · · · , RnN and encrypts
his private vector

e (An1 + Rn1X) , e (An2 + Rn2X) , · · · , e (AnN + RnNX) .

(c) Pn computes:

E1 = e (A11 + R11X)× e (A21 + R21X)× · · · × e (An1 + Rn1X)
= e (A11 + A21 + · · ·+ An1 + (R11 + R21 + · · ·+ Rn1)X)

E2 = e (A12 + R12X)× e (A22 + R22X)× · · · × e (An2 + Rn2X)
= e (A12 + A22 + · · ·+ An2 + (R12 + R22 + · · ·+ Rn2)X)
· · · · · ·

EN = e (A1N + R1NX)× e (A2N + R2NX)× · · · × e (AnN + RnNX)
= e (A1N + A2N + · · ·+ AnN + (R1N + R2N + · · ·+ RnN )X)

(d) Pn randomly permutes [11] E1, E2 · · · , EN and obtains the permuted
sequence D1 , D2 , · · · , DN .

(e) From computational balance point of view, Pn divides D1 , D2, · · · , DN

into n parts with each part having approximately equal number of elements.
(f) Pn decrypts using himself private key dn and sends

dn(D1) , dn(D2) , · · · , dn(DN/n)

to Pn−1 ; Pn−1 decrypts

dn−1dn(D1) , dn−1dn(D2) , · · · , dn−1dn(DN/n),

and send it to Pn−2 ,· · · · · · ,P1 ; P1 finally decrypts

d1d2 · · · dn−1dn(D1) = M1 ,

d1d2 · · · dn−1dn(D2) = M2 ,

· · · · · · ,
d1d2 · · · dn−1dn(DN/n) = MN/n.

(g) Pn decrypts using himself private key dn and sends

dn(DN/n+1) , dn(DN/n+2) , · · · , dn(D2N/n)

to Pn−1 ; Pn−1 decrypts

dn−1dn(DN/n+1) , dn−1dn(DN/n+2) , · · · , dn−1dn(D2N/n)

and sends it to Pn−2 , · · · , P3 , P1 , P2; P2 decrypts

d2d1d3 · · · dn−1dn(DN/n+1) = MN/n+1 ,

d2d1d3 · · · dn−1dn(DN/n+2) = MN/n+2 ,

· · · · · · ,
d2d1d3 · · · dn−1dn(D2N/n) = M2N/n.
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(h) Continue until Pn decrypts using himself private key dn and sends

dn

(

D(n−2)N/n+1
)

, dn

(

D(n−2)N/n+2
)

, dn

(

D(n−1)N/n

)

to Pn−2 ; Pn−2 decrypts and sends it to Pn−3, · · · , P2 , P1 , Pn−1 ; Pn−1 finally
decrypts

dn−1d1d2 · · · dn−2dn

(

D(n−2)N/n+1
)

= M(n−2)N/n+1,

dn−1d1d2 · · · dn−2dn

(

D(n−2)N/n+2
)

= M(n−2)N/n+2,

· · · · · · ,
dn−1d1d2 · · · dn−2dn

(

D(n−1)N/n

)

= M(n−1)N/n.

(i) Pn sends D(n−1)N/n+1 , D(n−1)N/n+2 , · · · , DN to Pn−1 ; Pn−1 decrypts and
sends it to Pn−2 , · · ·P2 , P1 , Pn ; Pn finally decrypts

dnd1d2 · · · dn−2dn−1
(

D(n−1)N/n+1
)

= M(n−1)N/n+1,

dnd1d2 · · · dn−2dn−1
(

D(n−1)N/n+2
)

= M(n−1)N/n+2,

· · · · · · ,
dnd1d2 · · · dn−2dn−1 (DN) = MN .

2.Compute c.count
(a) P1, P2, · · · , Pn make M1 , M2 , · · · , MN module X respectively, note that if

a decrypted term Mi is equal to n mod X , it means the values of P1, P2, · · · , Pn

are all 1, then let mi = 1 , otherwise mi = 0 . For example, if the transaction j
is permuted as position i, then

Mi mod X = (A1j + A2j + · · ·+ Anj + (R1j + R2j + · · ·+ Rnj)X) mod X.

Consequently, compare whether each decrypted term Mi mod X is equal to
n mod X, if yes, then let mi = 1, otherwise mi = 0.

(b) P1 computes c1 =
∑N/n

i=1 mi , P2 computes c2 =
∑2N/n

i=N/n+1 mi , · · · , Pn

computes cn =
∑N

i=(n−1)N/n+1 mi.
(c) all parties Pi (1 ≤ i ≤ n) encrypt e(ci) and send it to Pn.
(d) Pn computes

e(c1)× e(c2)× · · · × e(cn) = e (c1 + c2 + · · ·+ cn) ,

then decrypts
dn (e (c1 + c2 + · · ·+ cn))

and sends it to Pn−1 ; Pn−1 decrypts

dn−1dn (e (c1 + c2 + · · ·+ cn))

and sends it to Pn−2, · · · , P1 decrypts

d1 · · · dn−1dn (e (c1 + c2 + · · ·+ cn)) = c1 + c2 + · · ·+ cn = c.count.
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4.4 Analysis of the Secure Distributed Association Rules Mining
Protocol

Correctness Analysis. Assume all of the parties follow the protocol, in which
the threshold cryptographic system is a additively homomorphic cryptosystem,
which enable us to get

Ei = e (A1i + R1iX)× e (A2i + R2iX)× · · · × e (Ani + RniX)
= e (A1i + A2i + · · ·+ Ani + (R1i + R2i + · · ·+ Rni) X)

where 1 ≤ i ≤ N . And given X > n, so

Mi mod X = (A1j + A2j + · · ·+ Anj + (R1j + R2j + · · ·+ Rnj)X) mod X.

If A1j + A2j + · · · + Anj are all equal to 1, this means the transaction has the
whole attributes and supports the association rule, we let mi = 1. Otherwise,
if some attributes of are not equal to 1, this means the transaction has not the
whole attributes and does not support the association rules, we let mi = 0, to
compute the number of transactions which support the association rule, we only
count the number of mi = 1 , then c1 + c2 + · · ·+ cn = c.count.

Meanwhile, in the protocol, Pn permutes Ei (1 ≤ i ≤ N) before sending them
to other parties, permutation does not affect c.count, and summation is not
affected by a permutation. Therefore, the final c.count is correct.

Complexity Analysis. The bit-wise communication cost of this protocol is
upper bounded by
2α [(n− 1)N + n], where α is the number of bits for each encrypted element. It
consist of (1) the maximum cost of (n− 1)N from step 1(b); (2) the maximum
cost of (n− 1)N from step 1(f)-1(i); (3) the maximum cost of 2n from step 2(c)
and 2(d).

The following contributes to the computational cost: (1) the generation of a
threshold cryptographic key pair, the integer X and nN random integers ; (2)
the total number of nN + n encryptions; (3) the total number of (n− 1)(N + 1)
multiplications; (4) the generation of permutation function; (5) the total number
of N permutations; (6) the total number of (n + 1)N decryptions; (7) the total
number of N modulo operations; (8) the total number of (n + 1)N additions;
(9) dividing N numbers into n parts.

The communication cost and computational cost of our protocol are approxi-
mately equal to those of [19], except for the increased complexity in the decryp-
tions for the prevention of collusion.

Security Analysis. Given that Pn obtains all the encrypted terms from other
parties and the cryptographic system is a semantic security, the ciphertext does
not leak any useful information about the plaintext and Pn can not get other
useful information of the plaintext from the ciphertext. Meanwhile, since the
cryptographic system is a threshold cryptosystem, those parties will not able
to decrypt and get the plaintext unless they cooperate. That is, Pn will not
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have access to the original values of other parties without cooperating with
those parties. As a result, the collusion behaviors can be prevented effectively.
In our protocol P1, P2, · · · , Pn jointly generate a threshold cryptographic key
pair (d(d1, d2, · · ·dn), e) of a homomorphic encryption scheme, which means
the protocol is secure under the condition of the number of the collusion par-
ties is less than n. Generally, given P1, P2, · · · , Pt (1 ≤ t ≤ n) jointly generate
a threshold cryptographic key pair (d(d1, d2, · · · dn), e) of a homomorphic en-
cryption scheme, which means the protocol is secure under the condition of the
number of the collusion parties is less than t.

Meanwhile, each party of P1, P2, · · · , Pn−1 obtains some plaintexts of all Di.
Since Di are in permuted form and those n− 1 parties don’t know the permu-
tation function, so they cannot know which transaction support the association
rule. And each party only knows a part of transactions supporting the association
rules, which lead to trivial benefit for them.

5 Conclusion

This paper concerns itself with the issue of privacy-preserving distributed associ-
ation rule mining. In particular, we focus on how multiple parties can conduct dis-
tributed association rule mining in their joint database of the vertically
partitioned private data, in which we propose a collusion-resistant protocol for
privacy-preserving distributed association rules mining based on the threshold ho-
momorphic encryption scheme. In-depth analysis of correctness, complexity and
security about our protocols is given, and the result shows that the protocol has
a reasonable efficiency and security. Our technique can be further explored and
applied to other data mining computations, such as decision tree classification.
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Abstract. Privacy-preservingSQLcomputation in distributed relational
database is one of important applications of secure multiparty computa-
tion. In contrast with comparatively more works on privacy-preserving
data-query in database, only few works deal with provably-secure privacy-
preserving data manipulations, among which the join operator is the most
powerful in generating newdata (relation). This paper proposes a very gen-
eral cryptographic protocol framework for secure 2-party join computation
based on anonymous IBE (identity-based encryption) scheme and its user
private-keys blind generation techniques. This construction is
provably GUC (generalized universally composable) secure in standard
model with acceptable efficiency.

Keywords: Secure Multiparty Computation, Distributed Relational
Database, Anonymous Identity-basedEncryption, Generalized Universally
Composable Security.

1 Introduction

Relational database (RDBMS) is one of the most widely deployed and mission-
critical information systems. In addition, distributed relational database tech-
nology has become one of the major recent developments in this area [15]. In
distributed RDBMS, unlike a single centralized RDBMS server, information is
distributed among multiple sites and some pieces of this information are highly
private for its owners. Therefore a natural secure multiparty computation prob-
lem arises in this setting: how to generate the useful information while keeping
all participating sites’ data privacy?

In RDBMS information is modeled as relations or tables. Such highly struc-
tured information is processed by the powerful relational algebra operators, e.g.,
(constrained) selection, projection, product and join operators, which are ap-
plied to one or multiple tables to generate new table [7]. Set operators, e.g.,
union, intersection, insert, etc., are also regarded as extended relational algebra
operators. All these have been formally standardized as the RDBMS program-
ming language SQL (Structured Query Language) which is widely used even in
distributed RDBMS systems.
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Motivations. So far lots of works have been done to develop solutions to se-
cure SQL computations in distributed RDBMS and the most majority comes from
database rather than cryptography community. However, from the cryptography
theorist’s perspective, only few of them are reliable: most works, although highly
heuristic, do not have precise security analysis or even without precise security def-
initions. As a (unfortunate) result, most of them are actually either insecure under
the standard security definition currently accepted by cryptographists or unable-
to-be-proved. In particular, since the SQL-operator is always called by high-level
programs, its security must be preserved no matter how it is called and combined
with any other (maybe malicious) running contexts. In other words, secure solu-
tions to SQL-operators must be provably UC or GUC secure [4,5]. But with our
knowledge none of such solution exists in this area. For this reason, we won’t fur-
ther review these works from database community (interested readers can refer
the survey [9] and its references) and only focus on provably secure solutions.

Among the provably secure solutions to distributed data processing (not lim-
ited to distributed RDBMS), most of them are focused on data query (i.e., read-
only) rather than data manipulation operators. Although data query is one of the
most important and frequently-used operations in distributed systems, lack of se-
cure solutions to data manipulation operators will become a bottleneck in deploy-
ing highly security-critical applications. Roughly speaking, secure data query solu-
tions are applied on encrypted data (e.g.,[1,2,11,16,17], many approaches are not
limited to relational data model) to extract the desired information via smartly
designed trapdoor mechanisms. All these solutions can provide techniques for con-
structing secureSQL-queryoperators suchas themost frequently-used constrained
selection operators. Generally speaking, secure data manipulation is more tech-
nically involved than data query schemes and so far there are indeed few works
on this problem, among which [10,12,13] provide the provably secure solutions.
[10,13] can be also regarded as the secure solution to SQL set operators, but none
of them reaches Canetti’s UC/GUC-security [4,5] ([10] works in two relaxed ad-
versarymodels to achieve security of “half-simulatability” and “full-simulatability
against covert adversaries”; [13] is provably secure in terms of full-simulatability
which is still strictlyweaker thanUC/GUC-security).Withour knowledge, there’re
no satisfactory secure solutions to important relational data manipulation opera-
tors such as join and its variants.

In this paper we focus on secure join computation. Join is a powerful SQL oper-
ator to generate a new table from existing tables in RDBMS. For example, given
two tables, Incom with attributes “customer id”and “income”, Debt with at-
tributes “customer id” and “debt”, then the joint operator Join(customer id :
Incom, Debt) produces a new table with attributes “customer id”, “income” and
“debt” which entries are derived from the product of the entries in table Incom
and Debt which have the same values in customer id field. For instance, sup-
pose Incom has entries {(c1, 2500), ( c2 , 3000), ( c5 , 1010), (c6, 2000)}, Debt has
entries {( c2 , 19000), (c4, 7000), ( c5 , 88), (c7, 100)}, then the above join opera-
tor outputs the entries {(c2, 3000, 19000), (c5, 1010, 88)}. Join computation with
equality constraints on multiple common attributes is also useful in practice.
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Furthermore, if the table Incom and Debt are stored at different sites and the
information about those uncommon customers must be kept secret to each other
site, this join operator must be securely implemented in consistency with the
cryptographic multiparty computation definition, i.e., each site knows nothing
about the other table beyond the join operator’s output.

Contributions. In this paper we construct a GUC-secure [4,5] protocol for join
computation in standard model with acceptable efficiency. Like many theoretical
works, we focus on the 2-party case. Our approach is very general based-on the
anonymous IBE scheme and it’s user private-key’s blind generation techniques
(i.e., to generate the correct user private-key usk(a) = UKG(msk, a) for a user
without leaking the user-id a to the key-generator). The protocol’s high-level de-
scription is simple: let Π = (Setup, UKG, E, D) be an IBE scheme both anony-
mous and data-private, M0 be some publicly-known plaintext. Site P1 owns the
table X1 with attributes w and x and site P2 owns table X2 with attributes w
and y. The goal is securely computing Join(w : X1, X2) and outputting at P2

1.
Suppose X1 is filled with entries {(w1, x1), ( w2 , x2), (w3, x3), ( w4 , x4)} and X2

is filled with {( w2 , y2), ( w4 , y4), (w5, y5), (w7, y7)} where wi’s, xi’s and yi’s
are values of the attribute w, x and y respectively. P1 generates IBE’s master
public/secret-key (mpk, msk), sends mpk and all ξi = E(mpk, wi, xi‖M0)(i =
1, 2, 3, 4) to P2. When P2 tries to decipher each ξi by private-keys usk(w2),
usk(w4), usk(w5) and usk(w7) (obtained via Π ’s user private-keys blind gener-
ation protocol), only usk(w2) and usk(w4) can succeed in obtaining the plaintext
with a suffix M0. As a result, P2 gets X1’s entries {(w2, x2), (w4, x4)} and can
now get the result of Join(w : X1, X2), i.e., {(w2, x2, y2), (w4, x4, y4)}, by a local
join computation. Note that Π ’s anonymity and data-privacy prevents P2 from
knowing anything about X1 beyond {(w2, x2), (w4, x4)} while the private-key
generation protocol’s blindness prevents P1 from knowing anything about X2.

This protocol’s incorrectness probability is not 0, but by choosing M0 lengthy
enough, e.g., 128-bit, its incorrectness probability can be negligible in practice.

To be GUC-secure the formal construction is more involved (section 3). It
is constant-round in communications and linear-size in message-complexity. In
computation-complexity, one party is O(N1+N2) and the other is O(N1N2) en-
cryptions/decriptions where N1, N2 are each party’s private table’s cardinality.
Note that O(N1N2) is also local join operator’s computation complexity [7], i.e.,
neglecting a constant factor our construction’s efficiency is asymptotically the
same as that of conventional join operator.

The formal construction is also well-modularized, only executing few zero-
knowledge proofs of knowledge which can be efficiently instantiated. Most impor-
tantlyanddistinctively, our construction is provablyGUC-secure againstmalicious
adversaries assuming static corruptions in the ACRS(augmented common refer-
ence string) model [5]. For this goal we introduce a notion of identity-augmented
non-malleable zero-knowledge proofs of knowledge which may be of independent
values.
1 In most cases a distributed SQL-transaction outputs its final result at some particular

site.
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2 Notations, Definitions and Tools

P.P.T. means “probabilistic polynomial-time”, x‖y means string x and y in con-
catenation, |x| means string x’s size (in bits) and |X | (X is a set) means X ’s
cardinality, x←$ X means randomly selecting x from the domain X . k denotes
the complexity parameter. ≈PPT stands for computational indistinguishability
and ≈ for perfect indistinguishability.

2.1 Secure Join Computation and Its GUC Security

Briefly speaking, GUC-security means that any adversary attacking the real-
world protocol can be efficiently simulated by an adversary attacking the ideal-
world functionality, both have the outputs indistinguishable by the (malicious)
environment. For space limitations, we assume the reader’s familiarity with the
whole theory in [4-6] and only provide necessary descriptions with respect to the
secure join computation problem here.

Similar to many theoretical works, we focus on the 2-party scenario. Further-
more, in this paper we only consider the horizontal distribution setting in which
each table is at a site as a whole, none table is separated among different sites.
Let X1 and X2 denote the tables with attributes w, u(1) and w, u(2) respectively,
w is the common attribute and for equijoin we consider only single such common
attribute without loss of generality (in case of multiple common attributes, e.g.,
v and w, we simply consider a imaginary single attribute v‖w which values are
just the concatenation of values of v and w). The ideal cryptographic function-
ality to perform equijoin computation on X1 and X2 with equality constraint on
w is defined as

FJoin : (X1, X2)→ (|w|2, |X1|‖Join(w : X1, X2))

where |w|2 means the number of different values of w in X2 and Join(w : X1, X2)
means the reault of ideal relational join computation. More precisely, let P ∗

1 , P ∗
2

be parties in ideal model with private tables X1 and X2 respectively, N1 = |X1|,
N2 = |X2|, S be the adversary in ideal model, the ideal model works as follows:

On receiving message (sid,“input”,P ∗
1 , X1) from P ∗

1 , FJoin records X1
and sends message (sid,“input”,N1) to P ∗

2 and S; On receiving message
(sid,“input”,P ∗

2 , X2) from P ∗
2 , FJoin records X2 and sends (sid,“input”,|w|2)

to P ∗
1 and S.
On receiving message (sid,“equijoin”, P ∗

2 ) from P ∗
2 , FJoin responses P ∗

2
with message (sid,“equijoin”, Join(w : X1, X2)).

At last P ∗
1 outputs |w|2, P ∗

2 outputs N1‖Join(w : X1, X2).

Let ψ be the real-world protocol, each party Pi of ψ corresponds to an ideal-
world party P ∗

i . A is the real-world adversary attacking ψ, Z is the environment
in which the real protocol/ideal functionality executes. According to [4-5], Z is
a P.P.T. machine modeling all malicious behaviors against the protocol’s execu-
tion. Z is empowered to provide inputs to parties and interacts with A and S,
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e.g., Z gives special inputs or instructions to A/S, collects outputs from A/S
to make some analysis, etc. In UC theory [4], Z cannot access parties’ shared
functionality (such shared functionality is specified in specific protocol) while in
the improved GUC theory [5] Z is enhanced to do this, i.e., to provide inputs to
and get outputs from the shared functionality. As a result, in GUC theory Z is
strictly stronger and more realistic than in UC theory.

Let outputZ(ψ, A) denote the outputs (as a joint stochastic variable) from
ψ’s parties P1, P2 under Z and A, outputZ(FINT , S) denote the similar thing
under Z and S. During the real/ideal protocol’s execution, Z (as an active dis-
tinguisher) interacts with A/S and raises its final output, w.l.o.g., 0 or 1. Such
output is denoted as Z(outputZ(ψ, A), u) and Z(outputZ(FINT , S), u) respec-
tively, where u is the auxiliary information.

Definition 2.1 (GUC security [5]). If for any P.P.T. adversary A in real-
world, there exists a P.P.T. adversary S (called A’s simulator) in ideal-world,
both corrupt the same set of parties, such that for any environment Z the func-
tion |Pr[Z(outputZ(ψ, A), u) = 1]− Pr[Z(outputZ(FJoin, S), u) = 1]| is negligi-
ble in complexity parameter k (hereafter denote this fact as outputZ(ψ, A) ≈PPT

outputZ(FJoin, S)), then we define that ψ GUC-emulates FJoin or say ψ is GUC-
secure, denoted as ψ →GUC FJoin.

The most significant property of GUC-security is the universal composition
theorem [4,5].

2.2 IBE Scheme, Its Anonymity and Blind User-Private Key
Generation Functionality

In addition to data-privacy, anonymity (key-privacy) is another valuable property
for public-key encryption schemes [2]. An IBE scheme Π = (Setup, UKG, E, D)
is a group of P.P.T. algorithms, where Setup takes the complexity parameter k as
input to generate master public/secret-key pair (mpk, msk), UKG takes msk and
user’s id a as input to generate a’s user private-key usk(a); E takes (mpk, a, M) as
inputwhereM is themessage plaintext to generate ciphertext y,D takes (mpk, usk
(a), y) as input to do decryption. Altogether these algorithms satisfy the consis-
tency property: for any k, a and M

Pr[(mpk, msk)← Setup(k); usk(a)← UKG(msk, a);
y ← E(mpk, a, M) : D(mpk, usk(a), y) = M ] = 1

Definition 2.2 (IBE Scheme’s Chosen Plaintext Anonymity [1]). Given
an IBE scheme Π = (Setup, UKG, E, D), for any P.P.T. attacker A = (A1, A2)
consider the following experiment ExpANO CPA

Π,A (k):

(mpk, msk)← Setup(k);
(M∗, a∗

0, a
∗
1, St)← A

UKG(msk,.)
1 (mpk), a∗

0 	= a∗
1;

b←$ {0, 1};
y∗ ← E(mpk, a∗

b , M
∗);

d← A
UKG(msk,.)
2 (St, y∗);
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output(d ⊕ b);

A is constrained not to query its oracle UKG(msk, .) with a∗
0 and a∗

1. Define
AdvANO CPA

Π,A as |2Pr[ExpANO CPA
Π,A (k) = 1]−1|. If AdvANO CPA

Π,A is negligible in
k for any P.P.T. A then Π is called anonymous against chosen plaintext attack
(ANO CPA for short). In the above, if M∗, a∗

0, a∗
1 are generated independent

of mpk then Π is called selective ANO CPA.
Denote maxA∈P.P.T. AdvANO CPA

Π,A (k) as AdvANO CPA
Π (k) or AdvANO CPA

Π (t,
q) where t is the adversary’s maximum time-complexity and q is the maximum
number of queries for the UKG-oracle.

Now we present the ideal functionality FΠ
Blind−UKG for an IBE scheme Π ’s

user private-key blind generation (note: even IBE scheme is not anonymous such
functionality still makes sense. However, in this paper only anonymous IBE’s
such protocol is needed). In the ideal model, one party generates (just one time)
Π ’s master public/secret-key pair (mpk, msk) and submits it to FΠ

Blind−UKG;
FΠ

Blind−UKG generates usk(a) = UKG(msk, a) for another party who submits
its private input a (this computation can take place any times and each time for a
new a), revealing nothing about a to the party who provides (mpk, msk) except
how many private-keys are generated. Formally, let S be the ideal adversary, P ∗

1 ,
P ∗

2 the ideal party, sid and ssid the session-id and subsession-id respectively, the
ideal model works as follows:

P ∗
1 selects randomness ρ and computes (mpk, msk) ← Setup(ρ), sends

the message (sid, mpk‖msk‖ρ) to FΠ
Blind−UKG; FΠ

Blind−UKG sends message
(sid, mpk) to P ∗

2 and S;
On receiving a message (sid‖ssid, a) from P ∗

2 (ssid and a are fresh every-
time), in response FΠ

Blind−UKG computes usk(a)← UKG(msk, a), sends the
message (sid‖ssid, usk(a)) to P ∗

2 and the message (sid‖ssid, n) to P ∗
1 and S,

where n is initialized to be 0 and increased by 1 everytime the computation
takes place.

At last, P ∗
1 outputs its last n, P ∗

2 outputs all its obtained usk(a)’s.

2.3 (Identity-Augmented) Non-malleable Zero-Knowledge Proofs of
Knowledge

This subsection presents the concept of zero-knowledge proofs of knowledge fol-
lowing [8,14] with slight symbolic modifications. Let L be a NP language, R is
its associated P-class binary relation. i.e., x ∈ L iff there exists w such that
R(x, w) = 1. Let A, B be two machines, then A(x; B)[σ] represents A’s output
due to its interactions with B under a public common input x and common ref-
erence string (c.r.s.) σ, trA,B(x)[σ] represents the transcripts due to interactions
between A and B under a common input x and c.r.s. σ. When we emphasize A’s
private input, say y, we also use the expression Ay(x; B)[σ] and trA(y),B(x)[σ]
respectively. Let A = (A1, A2), B and C be machines where A1 can coordinate
with A2 by transferring status information to it, then (〈B, A1〉, 〈A2, C〉) repre-
sents the interaction between A1 and B, (maybe concurrently) A2 and C. Due
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to such interactions, let tr be the transcripts between A2 and C, u be the fi-
nal output from A2 and v be the final output form C, then (〈B, A1〉, 〈A2, C〉)’s
output is denoted as (u, tr, v).

Two transcripts tr1 and tr2 are matched each other, if tr1 and tr2 are the same
message sequence (consisted of the same messages in the same order) and the
only difference is that any corresponding messages are in the opposite directions.

Let A be a machine, the symbol A represents such a machine which accepts
two kinds of instructions: the first one is in the form of (“start”, i,x,w) and A
in response starts a new instance of A, associates it with a unique name i and
provides it with public input x and private input w; the second is in form of
(“message”,i,m) and A in response sends message m to instance Ai and then
returns Ai’s response to m.

Definition 2.3 (Zero-Knowledge Proof and Non-malleable Zero-Knowl-
edge Proof Protocol [14].) ZPoKR = (Dcrs, P, V, Sim = (Sim1, Sim2)) is a
group of P.P.T. algorithms where Dcrs takes k (complexity parameter) as input
to generate c.r.s. σ; P (called prover) takes (σ, x, w) as input where R(x, w) = 1
to generate a proof π; V (called verifier) takes (σ, x) as input to generate 0 or
1; Sim1(k) generates (σ, s), Sim2 takes x ∈ L and (σ, s) as input to generate
the simulation. All algorithms except Dcrs and Sim1 take the c.r.s. σ as one of
their input, so σ is no longer explicitly included in all the following expressions
unless for emphasis. Now ZPoKR is defined as a zero-knowledge proof protocol
for relation R, if the following properties are all satisfied:

(1) For any x ∈ L and σ ← Dcrs, it’s always true that Pr[V (x; P )[σ] = 1] = 1;
(2) For any P.P.T. algorithm A, x /∈ L and σ ← Dcrs, it’s always true that
Pr[V (x; A)[σ] = 1] = 02;
(3) For any P.P.T. algorithm A which outputs 0 or 1, let ε be empty string, the
function

|Pr[σ ← Dcrs; b← A(ε; P )[σ] : b = 1]− Pr[(σ, s)← Sim1(k);

b← A(ε; Sim2(s) )[σ] : b = 1]|

is always negligible in k, where we emphasize the fact by symbol Sim2(s) that
all Sim2 instances have the same s as one of their inputs.

The non-malleable zero-knowledge proof protocol for relation R is defined as
NMZPoKR = (Dcrs, P, V, Sim = (Sim1, Sim2), Ext = (Ext1, Ext2)) where
(Dcrs, P, V, Sim) is a zero-knowledge proof protocol for relation R as above,
P.P.T. algorithm Ext1(k) generates (σ, s, τ) and the interactive P.P.T. machine
Ext2 (called witness extractor) takes (σ, τ) and protocol’s transcripts as its input
and extracts w, and all the following properties hold:

(4) The distribution of the first output of Sim1 is identical to that of Ext1;
(5) For any τ , the distribution of the output of V is identical to that of Ext2’s

2 Strictly this protocol should be called “zero-knowledge argument”, however, such
difference is not essential in this paper so we harmlessly abuse the terminology.
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restricted output which does not include the extracted value(w);
(6) There exists a negligible function η(k) (named as knowledge-error function)
such that for any P.P.T. algorithm A = (A1, A2) it’s true that

Pr[(σ, s, τ) ← Ext1(k); (x, tr, (b, w))← (〈 Sim2(s) , A1〉, 〈A2, Ext2(τ)〉)[σ] :

b = 1 ∧R(x, w) = 1 ∧ tr doesn’t match any transcript generated by Sim2(s) ]

> Pr[(σ, s)← Sim1(k); (x, tr, b)← (〈 Sim2(s) , A1〉, 〈A2, V 〉)[σ] :

b = 1 ∧ tr doesn’t match any transcript generated by Sim2(s) ]− η(k).

It’s easy to see that NMZPoKR is a zero-knowledge proof of knowledge. [8,14] de-
veloped an efficient method to derive non-malleable zero-knowledge proof proto-
cols based-on simulation-sound tag-based commitment schemes and the so-called
Ω-protocols (proposed in [14]). In order to achieve GUC-security in our construc-
tion, we need to further enhance NMZPoK to the concept of identity-augmented
non-malleable zero-knowledge proof protocol (IA-NMZPoK) as follows.

Definition 2.4 (IA-NMZPoK Protocol for Relation R). The IA-NMZPoK
Protocol for relation R, IA-NMZPoKR=(D, Setup, UKG, P, V, Sim = (Sim1,
Sim2), Ext = (Ext1, Ext2)) is a group of P.P.T. algorithms. Setup(k) generates
master public/secret key-pair (mpk, msk), UKG(msk, id) generates id’s private-
key usk(id) where id ∈ {P, V } (the prover’s and verifier’s identity). Sim1 takes
usk(V ) as input, Ext1 takes usk(P ) as input. All algorithms except Setup take
(mpk, σ) as one of its inputs (so it no longer explicitly appears). The protocol
has the same properties as R’s NMZPoK protocol in definition 2.3.

Note that by this definition an IA-NMZPoK protocol works in ACRS model [5]
which ACRS is its mpk. In addition, only the corrupt verifier can run Sim (Sim1
taking usk(V ) as input) and only the corrupt prover can run Ext (Ext1 taking
usk(P ) as input). This is exactly what is required in the ACRS model. Given a
relation R, a general and efficient construction of IA-NMZPoK protocol for R is
presented in Appendix D of this paper’s full version(eprint.iacr.org/2009/204).

2.4 Commitment Scheme

We need the non-interactive identity-based trapdoor commitment scheme [5]
(IBTC for short) as another important tool in our construction.

Definition 2.5 (IBTC scheme [5]). Let k be complexity parameter, the non-
interactive identity-based trapdoor commitment scheme IBTC = (D, Setup,
UKG, Cmt, V f, FakeCmt, FakeDmt) is a group of P.P.T. algorithms, where
D(k) generates id, Setup(k) generates master public/secret-key pair (mpk, msk),
UKG(msk, id) generates id’s user private-key usk(id), Cmt(mpk, id, M) gener-
ates message M ’s commitment/decommitment pair (cmt, dmt), V f(mpk, id, M,
cmt, dmt) outputs 0 or 1, verifying whether cmt is M ’s commitment with respect
to id. These algorithms are consistant, i.e., for any M :
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Pr[(mpk, msk)← Setup(k); (cmt, dmt)← Cmt(mpk, id, M) :
V f(mpk, id, M, cmt, dmt) = 1] = 1

FakeCmt(mpk, id, usk(id)) generates (cmt, λ), FakeDmt(mpk, M, λ, cmt) gen-
erates d̄(w.l.o.g. λ contains id‖usk(id) as one of its components so FakeDmt
doesn’t explicitly take id and usk(id) as its input). A secure IBTC scheme has
the following properties:

(1) Hiding: for any id and M0, M1, (cmti, dmti) ← Cmt(mpk, id, Mi), i = 0, 1,
then cmt0 ≈P.P.T. cmt1;
(2) Binding: for any P.P.T. algorithm A, the function Advbinding

IBTC,A(k) ≡ Pr[(mpk,

msk) ← Setup(k); (id∗, cmt∗, M∗
0 , d∗0, M

∗
1 , d∗1) ← AUKG(msk,.)(mpk) : A doesn’t

query oracle-U(msk,.) with id∗ ∧ M∗
0 	= M∗

1 ∧ V f(mpk, id∗, M∗
0 , cmt∗, d∗0) =

V f(mpk, id∗, M∗
1 , cmt∗, d∗1) = 1] is always negligible in k.

(3) Equivocability: For any P.P.T. algorithm A = (A1, A2) the following ex-
periment always has |Pr[b∗ = b]− 1/2| upper-bounded by a negligible function
in k:

(mpk, msk)← Setup(k);
(St, id∗, M∗)← A1(mpk, msk);
usk(id∗)← UKG(msk, id∗); (cmt, λ)← FakeCmt(mpk, id∗, usk(id∗));
d1 ← FakeDmt(mpk, M∗, λ, cmt); d0 ←$ {0, 1}|d1|;
b←$ {0, 1};
b∗ ← A2(St, db);

Note that equivocability implies Pr[V f(mpk, id∗, M∗, cmt, d∗1) = 1] > 1 − γ(k)
where γ(k) is a negligible function in k. [5] presented an efficient IBTC construc-
tion and its security proof.

3 General Construction

Now we present the formal construction of the real-world private equijoin pro-
tocol Ψ . P1 and P2 denote two real-world parties with private tables X1 and
X2, each with attributes w, x and w, y respectively (more generally x is the
vector of all attributes in X1 other than w, similar for y, but this is immaterial
in our approach), X1 = {(u1, x1), . . . , (uN , xN )}, X2 = {(v1, y1), . . . , (vN , yN )}
where ui’s, vj ’s are values of w, xi’s are values of x and yj ’s are values of
y. Π = (ESetup, UKG, E, D) is a id-selective ANO CPA anonymous and id-
selective IND CPA data-private IBE scheme, ΔΠ

Blind−UKG is the real-world
protocol for Π ’s user private-keys blind generation. In addition, we suppose a
predefined bijective coding function H mapping strings or values (e.g., xi, yj)
to Π ’s plaintexts, but for simplicity we always write E(mpk, a, x‖y) instead of
E(mpk, a, H(x‖y)).IA-NMZPoK(w : R(x, w) = 1) denotes an IA-NMZPoK pro-
tocol for relation R where w is x’s witness. TC = (D, TSetup, UKG, Cmt, V f,
FakeCmt, FakeDmt) is an IBTC scheme. M0 is a (fixed) public common string
and |M0| = poly(k). Ψ ’s ACRS is mpkTC‖mpkΔ‖mpkZK‖M0 where mpkTC ,
mpkΔ, mpkZK are respectively TC’s, ΔΠ

Blind−UKG’s and an IA-NMZPoK pro-
tocol (see below)’s master public key. Ψ works as follows. For intuition it is also
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presented in a figure where the IA-NMZPoK protocol’s arrow points from the
prover to its verifier.

Equijoin Protocol Ψ : General Construction
(1) P1 computes Π ’s master public/secret-key (mpk, msk)← ESetup(k), for each
(ui, xi) ∈ X1(i = 1, . . . , N1) computes ciphertext ξi ← E(mpk, ui, xi‖M0; ri)
where ri is the independent randomness in each encryption, then computes
(cmt, dmt)← Cmt(mpkTC , P2, ξ1‖ . . . ‖ξN1) and sends mpk‖cmt to P2.
(2) P1 and P2 run the protocol ΔΠ

Blind−UKG where P1 (as the key-generater) in-
puts (mpk, msk) and P2(as the key-receiver) inputs v1, . . . , vN toΔΠ

Blind−UKG. On
ΔΠ

Blind−UKG’s completion, P1 obtains N and P2 obtains usk(v1), . . . , usk(vN2) as
the output.
(3) P1 sends ξ1‖ . . . ‖ξN1‖dmt to P2.
(4) P2 verifies V f(mpkTC , P2, ξ1‖ . . . ‖ξN1, cmt, dmt) = 1.
(5) P1 runs the protocol IA-NMZPoK((ui, xi, ri) : ξi = E(mpk, uixi‖M0; ri), i =
1, , N1) as a prover with P2 as a verifier. On this IA-NMZPoK’s completion, P2
tries to decrypt each ξi by usk(vj)’s it obtained in step 2 and everytime the
output has suffix M0, i.e., D(mpk, usk(vj), ξi) = xi‖M0, it generates an entry
(vj , xi). All such entries constitute a temporary table X0, then P2 performs a
local join Y0 ← Join(w : X0, X2).
(6) P1 outputs N and P2 outputs Y0.

Note that X0 = {(vj , xi) ∈ X1: there exists ξi s.t. D(mpk, usk(vj), ξi) =
xi‖M0} and D(mpk, usk(vj), ξi) = xi‖M0 implies ui = vj with negligible excep-
tion, so Y0 = Join(w : X1, X2), i.e., Ψ ’s output is correct with only negligible
exception probability.

Ψ is actually a ΔΠ
Blind−UKG-hybrid protocol and we require ΔΠ

Blind−UKG

→GUC FΠ
Blind−UKG (definition 2.1). However, merely requiring ΔΠ

Blind−UKG

→GUC FΠ
Blind−UKG cannot guarantee Ψ ’s GUC-security but only “half GUC-

security” instead (i.e., the real adversary A corrupting P1 can be completely
simulated by an ideal adversary S but this is not true when A corrupts P2. Only
data-privacy can be proved in the latter case). In order to make the real adver-
sary completely simulatable in ideal-world, some additional property is required
for ΔΠ

Blind−UKG. This leads to definition 3.1 and it is not hard to verify that our
concrete construction of ΔΠ

Blind−UKG in next section really satisfies it.

Definition 3.1 (IBE’s User Private-keys Blind Generation Protocol
with Extractor.) Given IBEschemeΠ=(ESetup, UKG, E, D)andΔΠ

Blind−UKG

→GUC FΠ
Blind−UKG, let P1, P2 be ΔΠ

Blind−UKG’s parties where P2 provides user-
id a and obtains usk(a), P1 owns msk and (blindly) generates usk(a) for P2. This
ΔΠ

Blind−UKG is defined as extractable, if there exists P.P.T. algorithm SetupΔ,
UKGΔ, ExtΔ = (Ext1, Ext2) and anegligible function δ(k), called the error func-
tion, such that

(1) SetupΔ(k) generates the master public/secret key-pair (mpkΔ, mskΔ).
(2) UKGΔ(mskΔ, id) outputs a trapdoor uskΔ(P2) when id = P2(key-receiver’s
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identity) and outputs nothing otherwise.
(3) for any user-id a, honest P1 and any P.P.T. algorithm A, it is true that (via
notations in subsection 2.3) Ext1(usk(P2)) outputs (σ, τ) such that
Pr[Ext2(mpk‖τ ; A(a))[σ]=a]>Pr[Aa(mpk; P1(mpk, msk))[σ]=UKG(msk, a)]−
δ(k)
where (mpk, msk) is Π ’s master public/secret-key owned by P1 (mpk is pub-
lished).

We stress that all extractors in definition 2.3 and definition 3.1 are non-
rewinding.

Combining all the instantiations of subprotocols in this general construc-
tion (details presented in Appendix C and D of this paper’s full version at
eprint.iacr.org/2009/204), it’s easy to see that we can get a O(1) and O(N1+N2)
message-complexity solution. The exact computation efficiency analysis can be
only done for specific instantiations.

Theorem 3.1. Suppose that IBE scheme Π=(ESetup, UKG, E, D) is both id-
selective ANO CPA anonymous and id-selective IND CPA data-private,
ΔΠ

Blind−UKG→GUCFΠ
Blind−UKG with extractor ExtΠ=(ExtΠ,1, ExtΠ,2) and er-

ror function δ as in def.3.1, IA-NMZPoK((ui, xi, ri) : ξi = E(mpk, ui, xi‖M0; ri),
i = 1, . . . , N1) is an IA-NMZPoK protocol, TC = (D, TSetup, UKG, Cmt, V f,
FakeCmt, FakeDmt) is an IBTC scheme, then Ψ →GUC FINT assuming static
corruptions.

Proof. We prove the GUC-security in two cases that the real-world adversary A
corrupts P1 or P2 respectively. Below P ∗

1 and P ∗
2 stand for P1 and P2’s respective

counterparts in ideal-world.
All parties are assumed to be initialized with a copy of the common refer-

ence string ACRS, i.e., the concatenation of TC’s master public-key mpkT C,
ΔΠ

Blind−UKG’s mpkΔ, the IA-NMZPoK protocol’s mpkZK and M0, generated by
the pre-setup GACRS. For this ACRS, its msk = mskTC‖mskΔ‖mskZK and
UKG(msk, id) responses with usk(id) = uskTC(id)‖uskΔ(id)‖uskZK(id) where
uskTC(id), uskΔ(id) and uskZK(id) are respectively TC’s, ΔΠ

Blind−UKG’s and
the IA-NMZPoK protocol’s user private-keys corresponding to id ∈ {P1, P2}.
(1) A corrupts P1: for simplicity we first make the proof in FΠ

Blind−UKG-hybrid
model and then complete the proof by generalized universal composition the-
orem. Let X1 = {(u∗

1, x
∗
1), . . . , (u

∗
N1, x

∗
N1)} be A’s (i.e., P1’s) own table, X2 =

{(v∗1 , y∗
1), . . . , (v∗N2, y

∗
N2)} be P ∗

2 ’s own table. We need to construct an ideal ad-
versary S1 who corrupts P ∗

1 , runs A as a black-box and simulates the real-world
honest party P2 to interact with A:
On receiving the message (sid, “input”, N2) from FINT , S1 gets usk(P1) by
querying the shared functionality GACRS with (“retrieve”, sid, P1) where usk(P1)
=uskTC(P1)‖uskΔ(P1)‖uskZK(P1), computes (σ, s, τ)←IA-NMZPoK::
Ext1(uskZK(P1)) (to avoid ambiguity, we use Γ :: f to represent a protocol Γ ’s
algorithm f), generates N2 entries (v1, y1), . . . , (vN2, yN2) at random and then
starts A;
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After A sends the first message (mpk‖cmt), S1 interacts with A as an honest
key-receiver in model of FΠ

Blind−UKG and obtains usk(v1), . . . , usk(vN2);
S1 intercepts the message ξ1‖ . . . ‖ξN1‖dmt sent from A, verifies whether

V f(mpkTC , P2, ξ1‖ . . . ‖ξN1, cmt, dmt) = 1 and then participates in protocol IA-
NMZPoK((u∗

i , x
∗
i , ri) : ξi = E(mpk, u∗

i , x
∗
i ‖M0; ri), i = 1, . . . , N1 as a verifier

calling the knowledge extractor IA-NMZPoK::Ext2(τ) to extract the witness
(u∗

i , x
∗
i , ri), i = 1, . . . , N1 (in fact only u∗

i ’s and x∗
i ’s are needed in this proof);

S1 sends the message (sid,“input”, {(u∗
1, x

∗
1), . . . , (u∗

N1, x
∗
N1)}) to FJoin, then

outputs whatever A outputs to the environment.
Let tr(A, S1) denote the transcripts due to the interaction between S1 and

A, trψ(A, P2(X2)) denote the transcripts due to the interaction between A and
P2(X2) in the real-world protocol Ψ(P2(X2) means the real-world party pos-
sessing the same private set X2 as P ∗

2 ). From A’s perspective, the difference be-
tween tr(A, S1) and trψ(A, P2(X2)) is that the former provides FΠ

Blind−UKG with
{v1, . . . , vN2} as the input, the latter provides FΠ

Blind−UKG with {v∗1 , . . . , v∗N2},
but according to FΠ

Blind−UKG’s specification A knows nothing about what data-
entries are provided to FΠ

Blind−UKG by the other party except the number
N2, as a result, tr(A, S1) ≈ trψ(A, P2(X2)) (perfectly indistinguishable) from
A’s perspective. In particular, the distribution of A’s output due to interac-
tions with S1 is the same as that (in real-world protocol Ψ) due to interac-
tions with P2(X2). Let η be IA-NMZPoK protocol’s error function, Advbinding

TC

be attacker’s advantage against TC’s binding property, all are negligible func-
tions in k. It’s not hard to show (by contradiction) that the probability with
which S1 correctly extracts all A’s data-entries (u∗

1, x
∗
1), . . . , (u

∗
N1, x

∗
N1) is greater

than the probability Pr[P2(mpk‖ξ1‖ . . . ‖ξN1; A) = 1] − N1(η + Advbinding
TC ) ≥

Pr[P2outputsJoin(w : X1, X2)] − N1(η + Advbinding
TC ), therefore, the difference

between the probability with which P ∗
2 (X2) outputs Join(w : X1, X2) under the

ideal-world adversary S1’s attacks and the probability with which P2(X2) out-
puts Join(w : X1, X2) under the real-world adversary A’s attacks against Ψ is
upper-bounded by N1(η+Advbinding

TC ), also a negligible function in k. Combining
all the above facts, for any P.P.T. environment Z we have outputZ(Ψ, A) ≈PPT

outputZ(FJoin, S1), i.e., Ψ →GUC FJoin in FΠ
Blind−UKG-hybrid model.

Now replace the ideal functionality FΠ
Blind−UKG with ΔΠ

Blind−UKG in Ψ . By
what is just proved, the assumption ΔΠ

Blind−UKG →GUC FΠ
Blind−UKG and the

GUC-theorem, we still have the GUC-emulation consequence. In addition, it’s
not hard to estimate S1’s time complexity TS1 = TA + O(N2 + N1Te) where TA

and Te are A’s and the knowledge extractor’s computation time.

(2)A corrupts P2: Denote A’s (i.e.,P2’s) own table as X2 = {(v∗1 , y∗
1), . . . ,

(v∗N2y
∗
N2)}, P ∗

1 ’s own table as X1 = {(u∗
1, x

∗
1), . . . , (u∗

N1, x
∗
N1)}, we need to con-

struct an ideal adversary S2. S2 corrupts P ∗
2 , gets usk(P2) by querying the pre-

setup GACRS with (“retrieve”, sid, P2) where usk(P2) = uskTC(P2)‖
uskΔ(P2)‖uskZK(P2), generates (σ, s) ←IA-NMZPoK::Sim1(uskZK(P2)), runs
A as a black-box and simulates the real-world honest party P1 to interact with A:
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On receiving message (sid, “input”, N1) from FJoin, S2 generates (u1, x1), . . . ,
(uN1, xN1) at random, computes (mpk, msk)← Setup(k) and ξi ← E(mpk, ui,
xi‖M0; ri) for each (ui, xi) where ri is the independent randomness in each en-
cryption, computes (cmt0, λ)← FakeCmt(mpkTC , P2, uskTC(P2)), starts A and
sends the message mpk‖cmt0 to A;

S2 interacts with A as the user private-key generator in ΔΠ
Blind−UKG and calls

the extractor ΔΠ
Blind−UKG :: ExtΔ(uskΔ(P2)) to extract v∗1 , . . . , v∗N (N is the

number of distinct v∗i ’s), generates {y1, . . . , yN} at random, sends the message
(sid, “input”, P ∗

2 , {(v∗1 , y1), . . . , (v∗N , yN}) to FJoin;
S2 sends the message (sid, “join”, P ∗

2 ) to FJoin and gets the response {(u∗
j1, x

∗
j1,

yj1), . . . , (u∗
jt, x

∗
jt, yjt)} (i.e., the equijoin ofX1 and {(v∗1 , y1), . . . , (v∗N , yN)}, inpar-

ticular this result implies that there are t-vj ’s such that u∗
j1 = vj1, . . . , u

∗
jt = v∗jt).

To simplify the notation, denote this response table as {(u∗
1, x

∗
1, y1), . . . , (u∗

t ,
x∗

t , yt)}.
S2 computes ξ∗i ← E(mpk, u∗

i , x
∗
i ‖M0; r∗i ) where r∗i ’s are independent ran-

domness for i = 1, . . . , t, replaces arbitrary t ξi’s with ξ∗i ’s and keeps other
N1-t ξi’s unchanged, making a new sequence denoted as ξ′1‖ . . . ‖ξ′N1, computes
dmt0 ← FakeDmt(mpkTC , ξ′1‖ . . . ‖ξ′N1, λ, cmt0). S2 sends the message ξ′1‖ . . . ‖
ξ′N1‖dmt0 to A, interacts with A by calling IA-NMZPoK::Sim2(ξ′1‖ . . . ‖ξ′N1, s)
where ξ′i = E(mpk, u0

i , x
0
i ‖M0; r′i), i = 1, . . . , N1, u0

i = u∗
i = v∗i and x0

i = x∗
i for

i = 1, . . . , t and u0
i = ui, x0

i = xi for other i’s.
Finally S2 outputs whatever A outputs to the environment.
Let tr(S2, A) denote the transcripts due to the interaction between A and S2,

trΨ (P1(X1), A) denote the transcripts due to the interaction between A and the
real-world party P1(X1) (possessing the same set X1 = {(u∗

1, x
∗
1), . . . , (u

∗
N1, x

∗
N1)}

as the ideal-world party P ∗
1 ). From A’s perspective, the differences between these

two transcripts are: a) cmt in these two transcripts are respectively cmt0 output
by FakeCmt and cmt output by Cmt(mpkTC , P2, E(mpk, u∗

1, x
∗
1‖M0; r1)‖ . . . ‖

E(mpk, u∗N1, x∗
N1‖M0; rN1)); b) dmt in these two transcripts are dmt0 output

by FakeDmt and dmt output by Cmt(mpkTC , P2, E(mpk, u∗
1, x

∗
1‖M0; r1)‖ . . . ‖

E(mpk, u∗
N1, x

∗
N1‖M0; rN1)) respectively; c) Among the ciphertext sequence ξ1‖

. . . ‖ξN1 in these two transcripts, there are t ciphertexts ξi having the same
identity public-key u∗

i and the same plaintext x∗
i ‖M0 but the remaining N1-t

ciphertexts having different identity public-keys; d) there are t IA-NMZPoK-
witness’ with the same u0

i and x0
i .

Because of TC’s equivocation property, (cmt, dmt)’s are P.P.T.-
indistinguishable in both cases; because of IBE scheme’s selective ANO CPA
anonymity and IND CPA data-privacy, ξ1‖ . . . ‖ξN1‖dmt in both cases are
P.P.T.-indistinguishable (otherwise suppose they are P.P.T.-distinguishable with
the difference δ ≥ 1/poly(k), it’s not hard to construct either a selective ANO
CPA or IND CPA attacker against Π with an advantage at least δ/N1, contra-
dicting with Π ’s either selective ANO CPA anonymity or data-privacy). Now
denote the ciphertext sequence ξ1‖ . . . ‖ξN1 in two cases as ξ

(1)
1 ‖ . . . ‖ξ(1)

N1 and
ξ
(2)
1 ‖ . . . ‖ξ(2)

N1 respectively, denote the transcripts in session of IA-NMZPoK as
IA-NMZPoK(1)(= trS2,A(mpk‖M0‖ξ(1)

1 ‖ . . . ‖ξ(1)
N1)) and IA-NMZPoK(2)
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(=trP1,A(mpk‖M0‖ξ(2)
1 ‖ . . . ‖ξ(2)

N1)) respectively, by the above analysis we have
ξ
(1)
1 ‖ . . . ‖ξ(1)

N1 ≈PPT ξ
(2)
1 ‖ . . . ‖ξ(2)

N1; furthermore, by IA-NMZPoK’s zero-knowledge
property we have

IA-NMZPoK(2) ≈PPT IA-NMZPoK::Sim2(ξ
(2)
1 ‖ . . . ‖ξ(2)

N1, s)

and by S2’s construction we also have

IA-NMZPoK(1) =IA-NMZPoK::Sim2(ξ
(1)
1 ‖ . . . ‖ξ(1)

N1, s)

so IA-NMZPoK(1) ≈PPT IA-NMZPoK(2).
As a result, the transcripts received by A in both cases are P.P.T.-indistingui-

shable.
Let δ be ΔΠ

Blind−UKG’s extractor’s error function (negligible in k), then the
probability with which S2 correctly extracts A’s one data-item y∗

i is at least
Pr[A(mpk; P1(mpk, msk)) = UKG(msk, y∗

i )]− δ, so the probability with which
S2 correctly extracts A’s all values v∗1 , . . . , v∗N is at least Pr[A(mpk; P1(mpk,
msk)) = UKG(msk, v∗i ) : i = 1, . . . , N ] − N2δ ≥ Pr[P2 outputs Join(w :
X1, X2)]−Nδ. As a result, S2’s output is P.P.T.- indistinguishable from A’s out-
put in Ψ with respect to the GUC-environment Z with an error upper-bounded
by N1(k)AdvANO CPA

Π (k)+N2δ(N ≤ N2), which is negligible in k. Note that in
both cases the other party P ∗

1 (X1) and P1(X1) always output the same N , so
we have the consequence that outputZ(ψ, A) ≈PPT outputZ(FJoin, S2) and it’s
easy to estimate S2’s time-complexity TS2 = TA + O(N1 + N2Text) where TA

and Text are A’s and the extractor’s computation-time.
By all the facts, we have Ψ →GUC FJoin.

4 Summary and Extensions

We present a general solution to 2-party join operation in distributed relational
database via the secure and anonymous IBE scheme which is provably GUC-
secure in standard model with reasonable efficiency. Although there can be other
approaches to the same solution, our approach has the good potential to deal
with more complicated cases within a unified framework. In fact what we deal
with in this paper is just the most simple (also most frequently-used) case:
equijoin. A general join-operator (called theta-join) involves some condition on
attributes from each of its argument tables, i.e., Join(θ(a,b) : X1, X2) where
θ is a predicate, a, b are vectors of attributes of X1 and X2 respectively, e.g.,
a = (a(1), a(2)), b = (b(1), b(2)). For equijoin, θ(a,b) ≡ a(1) = b(1) ∧ a(2) = b(2)

but in general θ(a,b) can be any predicate, e.g., a(1) < b(1), a(1) + a(2) ≥
b(1) + b(2), a(1) < b(1) ∧a(2) = b(2), etc. In future work we will apply the recently
proposed ABE schemes(e.g.,[11,17], which are powerful generalizations of IBE)
to develop solutions to these secure SQL-operations within the same general
protocol framework as in section 3, which has obvious advantages in practice.
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Abstract. This paper proposes a hierarchical network model for trust
evaluation after introducing time cognition, which mainly considers trust
dynamics. In this model, the Temporal SequentialMarker (TSM) is tagged
on each item in an implicit or explicit manner and all items are divided into
several layers according to their TSMs information. Furthermore, three
different kinds of forgetting effects are investigated and quantified for the
computing of TSM- Trust. These effects are: distance effect, boundary ef-
fect and hierarchical effect. Next, according to the Ebbinghaus curve of
forgetting, cosine function is used to model the forgetting process of Ex-
perience Information (EI) approximately, the D-S theory is exploited to
build up a computational dynamic trust (TSM-Trust) model based on our
proposed hierarchical network model. Finally, our future work is pointed
out after analysizing the limitations of this paper.

Keywords: TSM, trust evaluation, Dempster-Shafer theory of belief
functions, Ebbinghaus curve of forgetting, hierarchical network model.

1 Introduction

It is out of discussion that the importance of trust and reputation in human
societies is realized [1]. As a kind of informal social capital, trust has been playing
a unique role in maintaining the stability of societies and driving its progress, and
especially nowadays its function is even irreplaceable. Trust and reputation has
been regarded as one of the most important elements in accelerating transactions
and fostering markets in Virtual Organizations (VOs). Furthermore, people have
not stopped researching and probing into trust. So far, most researches can be
classified into the following: The one that focuses on the concepts of trust, that
is ”what is trust”; another emphasizes on trust modeling and reputation (i.e.
trust management). The last one considers trust decision-making.

Historically, although some contributions on trust dynamics have been con-
tributed, to this date only a few of them have taken into account its reliance
� Please note that the LNCS Editorial assumes that all authors have used the west-

ern naming convention, with given names preceding surnames. This determines the
structure of the names in the running heads and the author index.
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to time cognition and focus on trust dynamics. With reference to what we have
just highlighted therefore, we will begin this paper with an extensive review and
discussions on related literatures. Our main contributions are as follows:

– Interaction experiences includes direct and indirect information, which are
regarded as series of items with time information (time information is rep-
resented by Temporal Sequential Marker). As far as trust computing is con-
cerned, experiences used to reason the value of trust are imputed to the
related information tagged with TSM.

– After the process of tagging information with TSM is achieved, each item
is then classified into different groups to form a hierarchical network. Next
we discuss the trust reasoning mechanism for each agent, based on which
we construct a conceptual model of trust computation on its attribution of
dynamics.

– After that we explain its logical method in weaving the hierarchical net-
work and introduce three different kinds of forgetting effects: distance effect,
boundary effect and hierarchical effect.

– Considering its fuzzy semantics, trust is fit to be dealt with by such uncertain
mathematics theories as Dempster-Shafer theory of belief functions. Here
D-S theory is expanded to be used for computing the values of trust in
dichotomy (i.e. trust or distrust) situation.

In section 2, we review the related work on trust dynamics and discuss their
advantages and disadvantages respectively. We introduce time cognition and
Temporary Sequential Marker (TSM) and then consider applications in various
multi-agent systems. Section 3 constructs a conceptual Hierarchical Network
Model based on TSM. In Section 4, a computational trust model is proposed
based on D-S theory. Such a D-S theory model mainly concerns the fuzzy se-
mantics of trust dynamics. Finally, section 5 holds our conclusions and points
out our future work.

2 Related Work

Although a few works have attempted to address the dynamics of trust, less of
them focus on the attribution of time cognition, that is to say, there are nearly
no works which research trust dynamics from a cognitive view. Next we will
introduce some outstanding work about trust dynamics.

Liu et al [2] propose a temporal logical belief for specifying the dynamics of
trust for multi-agent systems. In their opinion, trusting someone means having
beliefs for a given goal in some fixed environment, and the reason for trust dy-
namics lies in its continuous changing environments. Therefore temporal logical
belief is used to specify this dynamics. It is one of the earlier works in consid-
ering temporal features and introducing temporal dimensions to model evolving
theories of trust for multi-agent systems through proposing TML (Typed Modal
Logic, which extends classical first-order logic with typed variables and multiple
belief modal operators.). Furthermore, they examine two main aspects of trust
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dynamics: a) How direct experiences involving trust, with their successes or fail-
ures, influences the future trust of an agent about similar facts. The authors
believe that a cognitive attribution process is needed in order to update trust on
the basis of ’interpretation’ of the outcome of interactions between them (failure
or success); b) How the fact that A trusts B and relies on it in a situation can
actually (objectively) influence B’s trustworthiness in the Ω situation.

Literature [3] provides a method for modeling the dynamics of trust within a
system, which includes a technique for expressing trust changes at a given trust
state, and an abstract algorithm for obtaining the new trust state from a given
state and a trust change.

Another work is from Chang Jun-Sheng et al [4], their work presents a time-
frame based dynamic trust model DyTrust. After incorporating time dimension
using time-frame, the authors also introduce four trust parameters in computing
trustworthiness of peers. Altogether, these parameters are adjusted in time to
reflect the dynamics of trust environment using feedback control mechanism,
thus trust evaluation has better adaptability to the dynamics of trust.

Zhang Wei et al [5] point out that the dynamic nature of trust creates the
biggest challenge in measuring trust and predicting trustworthiness, therefore
they introduce the theory of Fuzzy Cognitive Time Maps (FCTMs) into mod-
eling and evaluating trust relationships and show how relevant is the inter-
organizational trust based on trust sources and their credibility. This is a most
recent work in considering the time cognition of trust.

Advances in network and microprocessor technology have increased the adop-
tion of computer technology in areas such as consumer shopping, banking, vot-
ing, and automotive technology. In the meanwhile, the general public has been
aware of the following risk. Trust is playing a crucial role both in the successful
introduction of new products and services (including computer technology) and
the evolution of intelligent vehicles [6]. However, trust is a dynamic phenomenon
in its intrinsic nature, whether in the human society or in the computer-based
virtual community. Trust changes with experience, with the modification of the
different sources it is based on, with the emotional state of the trustor, with the
modification of the environment in which the trustee is supposed to perform,
and so on. In other words, since trust is an attitude depending from dynamic
phenomena, it is itself a dynamic entity [3]. There are some other studies on the
dynamics of trust [7][8].

3 TSM Based Hierarchical Network Model

Information must happen at a given history time, so time is attached to it when
coding for each information, either in an implicit or explicit manner. As far as
trust computing is concerned, experiences used to reason the value of trust are
imputed to the related information tagged with TSM. In this way, we embark
on the representation of trust dynamics.

In fact, TSM is a kind of structured social annotation. As a form and tool for
network resources or documents, it is widely popular among more and more
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researchers. In the meanwhile, as a form of knowledge discovery, sharing and co-
operating, it also embodies the spirit of web 2.0, and hence has been paid more
and more attention to. TSM is tagged to EI so as to model the dynamics of trust.

All TSMs of items form an organization with hierarchical network. As we
know, TSM can be any symbolic system with fixed order, e.g. 1, 2, 3 n; a, b, c
. . . z. According to Li Boyue et al [9], in order to improve cognitive efficiency, the
items (here is EI) should be divided into groups once the number of them reaches
a preset threshold. When there are rich semantics in the items, we can depend
on the semantic relationship to divide them. Otherwise what we can rely on is
TSM. Furthermore, as items become more, more layers division is needed, and
as a consequence there emerges distance effect, boundary effect and hierarchical
effect. In Li’s views [9], there is no direction effect. Next we will give a conclusion
about distance effect, boundary effect and hierarchical effect mainly based on
Li’s experimental results.

Proposition 1. When two items of EI are from different groups, there will exist
distance effect, boundary effect and hierarchical effect.

– When several items are combined into groups without a clear boundary,
distance effect will exist between two items with an interval of other two
items. That is to say, if some EIs for trust are combined, distance effect will
exist between any two EIs with an interval of other two EIs.

– When several items are combined into groups with a clear boundary, the
boundary effect will exist between two items in different groups. When two
items in different groups are combined to compute the value of trust, bound-
ary effect will exist.

– When hierarchical network is formed, the hierarchical effect will exist be-
tween two items of EI in different levels.

Of course, how to construct a hierarchical network of EI based TSM is a puzzle,
and in most cases in human society it is formed automatically and implicitly.
But in e-society or so called computer-centered system, it must be carried out
artificially. Therefore different subjective judgment of each individual will impact
on three effects derived by distance and boundary dramatically. In this paper, as
a TSM tool, calendar time is used to construct a hierarchical network based on
TSM, and trust computed and reasoned from such a hierarchical network is called
TSM-Trust based on TSM-HN. How distance and boundary and hierarchical
effects will impact on the value of trust will be discussed in section 4.

When several items are assembled as a group without an indefinite boundary,
distances effect will exist between two items with an interval of other two items.
When there is definite boundary between such groups, boundary effect will exist
between two items in different groups. And lastly when a hierarchical network
is formed, hierarchical effect will exist between two items in different layers. In
fact, these effects are same in nature, i.e. all of them belong to time forgetting
effects. Each TSM locates at one position of this network, and also owns the
corresponding code to represent hierarchical network. The order of two items
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is compared by searching the positions of their representations (TSMs) in the
hierarchical network.

Comparing with the semantic hierarchical network model initiated by Collins
and Quillian [10], TSM based Hierarchical Network (TSM-HN) has the following
characteristics, which are also reasons why we choose TSM-HN as our reasoning
foundation.

– TSM-HN´ s representation has automatic embedded and implicit features.
Firstly, any item happens at a given time, therefore time information is
tagged upon this item automatically and implicitly. That is to say, there is no
need to worry about losing time information of each item, because the time
information is stored in system logs automatically. Secondly, when dealing
with item with TSM, it is implicit that items are divided into chunks, groups
and levels. Of course, as far as trust evaluation is concerned, EI ( including
direct information and indirect information) is tagged with time information
intentionally and artificially, and then just because of its automatics of TSM-
HN, each EI is existent together with its TSM all the time.

– The fuzzy characteristic of the representation of TSM-HN. Individual can
deal with TSM-HN in a fuzzy way, which results into fuzzy boundary problem
of TSM-HN. For a system with continuous sequential markers, there is not
a line of definite boundary. ”1” and ”3” can belong to one group, ”3” and
”5” can belong to another group, ”5” and ”7” can belong to another group,
but ”1” and ”5” can not belong to the same group, ”1” and ”7” can not
either. Conversely, ”5” and ”3” can belong to one group, and ”5” and ”7”
can belong to another group. In a word, human must divide all items into
more layers, but no boundary line can be found, such a moving line in fact
is a fuzzy line, it is dependent on individual subjective judgment. That is
one of the most important reasons for our exercising D-S theory to compute
the value of trust.

– The capacity of the representation of TSM-HN is also fuzzy. In order to
improve the efficiency of our searching for TSM, we also need make the ca-
pacity of each group consistent with the capacity of time memory of human,
although computer system has much more capacity of memory and storage.
For human, what is the biggest capacity of a group? To answer this question,
one point should be mentioned: because of the limitation of the capacity of
human’s work memory, one group can contain at most seven items. Broad-
bent et al [11] point out each group can contain no more than three items.
However Li Boyue et al [10] believe that one group can contain at most four
to five items after repeated experiments, which is in conflict with results
from Broadbent et al. Simply put, such a capacity of one group is also fuzzy,
it relies on individual age and other individual differences. In this paper, we
assume this capacity is seven, which is the limitation of the capacity of work
memory and can improve the efficiency of searching TSM information.

– The subjectivity of the representation of TSM-HN. Objective time is linear,
TSM-HN is formed artificially, hence is subjective. The above automatics,
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implicit, fuzzy and capacity and so on, are all resulted from the subjectivity.
More importantly, in Li’s [10] views, even ”objective” TSM-HN organization
coded by calendar time is limited by this subjectivity.

– The forgetting effects mentioned above exist in TSM-HN. Bigger the interval
between items is, more obvious the forgetting effect becomes.

In this paper, trust dynamics involving the time information of interaction is
paid more attention to. As for space dimension, much work has pointed out
trust can be classified into direct trust and indirect trust, which are derived
from direct experience and indirect experience information respectively. Like
some work considering time dimension, here short time trust and long time
trust are also regarded as the most two kinds of trust.

Our model is two-dimensional metrics of time-space, so although there are
many unique aspects including considering both time and space characteristics
concurrently, some work is based upon previous achievements from either time
dimension or space dimension respectively. As other models mentioned above,
trust is computed by EI (including direct information and indirect information,
the latter is also called recommending information). This kind of trust is reasoned
from space dimension, and it can only represent the attribution of space; as for
the time attribution, the following trust reasoning model is built up based on
TSM-HN[Fig.1].

4 Computational Model Based on TSM-HN and Its
Algorithm

Ebbinghaus is famous for the Ebbinghaus curve of forgetting effect [12]. There is
still much evidence which have proved that memory is changing with time in a
curve of attenuation trend. Since TSM is used to represent time information of
EI, when assessing the trust of given agent, our reasoning model shown in Fig-
ure 1 becomes our main foundation. What’s more, actually time characteristics is
reduced to a problem of space through introducing TSM-HN, then first trust is
considered from space dimension aspect. As some research work has pointed out
that trust is classified into direct trust and indirect trust, and they are also com-
bined to compute the value of trust. Here the rating of trust is defined as follows:

Definition 1. Space Trust (Space-Trust) is made up of direct trust (DTij) and
indirect trust (ITij), that is

(Space− Trust)ij = f (DTij , ITij) = λ×DTij + (1− λ) ITij (1)

Where λ is the preference factor, whose value depends on much more compli-
cated factors than expected. As in human society, each agent focuses on direct
experience while pays less attention to indirect experience. Therefore although
the value of λ can not be confirmed concisely, its value always lies above 0.5. Ac-
cording to trust transfer mechanism and trust clustering mechanism [13], direct
trust (DTij ) and indirect trust ( ITij ) are defined as follows.
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Definition 2. Direct Trust DTij = [Belij ({T }) , P lij ({T })] can be computed in
that all EIs are looked as parallel information, and then they can be combined
by Shafer’s rule of combination.

Based on the Shafer’s rule of combination [14],
mij = m1(i, j)⊕m2(i, j)⊕ · · · ⊕mn(i, j)

If evidence information (namely Experience Information, EI) e1(i, j), e2(i, j),
· · · , en(i, j) have basic probability assignments m1(i, j), m2(i, j), · · · , mn(i, j) ,
and the corresponding belief intervals arenoted asDT k

ij = [Belk ({T }) , P lk ({T })] ,
1 ≤ k ≤ n .Thenaccording to trust clusteringmechanism [13],direct trustbetween
agent i and agent j is:

DTij =
n
⊕

k=1
DT k

ij =
n
⊕

k=1
[Belk ({T }) , P lk ({T })] , 1 ≤ k ≤ n (2)

Definition 3. Indirect Trust can be gotten approximately by regarding each rec-
ommendation router as series case, then regarding all routers as a parallel case,
that is to say, indirect trust (ITij ) can be computed as follows:

Assuming that there are μ routers between i and j , and there is no less than
one node. For any given router ν , if there are p nodes between i and j , i.e.

ν = {i→ r → r + 1→ · · · r + p− 2→ r + p− 1→ j}
Then

Belvij ({T}) = Beli,r ({T}) Belr,r+1 ({T}) · · ·Belr+p−2,r+p−1 ({T}) Belr+p−1,j ({T})
(3)

Plvij ({T }) = Pli,r ({T })Plr,r+1 ({T }) · · ·Plr+p−2,r+p−1 ({T })Plr+p−1,j ({T })
(4)

So we can get indirect trust between i and j transferred by router ν :

IT ν
ij =
[

Belνij ({T }) , P lνij ({T })
]

(5)

Since all routers between i and j are regarded as parallel relationships, their
combination can use trust clustering mechanism [13].

ITij = [Belij ({T }) , P lij ({T })]
=

μ
⊕

ν=1
IT ν

ij = IT 1
ij ⊕ IT 2

ij · · · ⊕ IT v
ij ⊕ · · · ⊕ IT μ

ij

=
μ
⊕

ν=1

[

Belνij ({T }) , P lνij ({T })
]

=
[

Bel1ij ({T }) , P l1ij ({T })
]

⊕
[

Bel2ij ({T }) , P l2ij ({T })
]

· · ·
⊕
[

Belνij ({T }) , P lνij ({T })
]

⊕ · · · ⊕
[

Belμij ({T }) , P lμij ({T })
]

(6)

Definition 4. TSM based Dynamic Trust (TSM-Trust) is classified into two kinds
of trust: non-forgetting trust(trust without forgetting effect), trust with forget-
ting effect (including trust with distance effect, trust with boundary effect and
trust with hierarchical effect). For any two nodes (i, j) , if there is two pieces of
EI (e1, e2 ) to support the same proposition, then according to the Ebbinghaus
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curve of forgetting, cosine function is exploited to model trust dynamics in time
dimension.

(TSM − Trust)ij = f
(

(Space− Trust)ij , dt
)

=
{

(Space− Trust)ij , no forgetting trust

g (dt)× (Space− Trust)ij , otherwise

(7)

And

g (dt) = cos
(

π (dt)
2Tmax

× γ

)

(8)

Where g (dt) is called function of forgetting, dt = |tϕ − tφ| is the time interval
between two pieces of current EI(e1, e2 ); Tmax is the maximal time interval
which the trustor can tolerate or memorize trustee (here means EI between
nodes i, j ); g (dt) is called ”the attenuation function of trust”, it is modelled
by cosine function about the dispersion of time [15]; what’s more, in order to
normalization, then

for x
dt = π/2

Tmax

then x = π(dt)
2Tmax

(9)

γ is the forgetting factor, its value is assumed as:

γ =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1.5, there is distance effect
2, there is boundary effect
3, there is hierarchical effect
0, there is no forgetting effect

(10)

That is to say, when two EIs with an interval of two other chunks in different
chunks are combined, distance effect will exist, i.e. γ = 1.5 ; when two EIs in
different groups are combined, boundary effect will exist, i.e.γ = 2 ; when two EIs
in different layers are combined, and hierarchical effect will exist, i.e.γ = 3 . Of
course, the value of γ is dependent upon trustors’ subjective judgment according
to their experience knowledge or other factors like trust preference, here we choose
a simple assignment for simplicity.

Since the domain of cosine function is limited within
[

0, π
2

]

, that is

for 0 ≤ π(dt)
2Tmax

× γ ≤ π
2

then 0 ≤ dt ≤ Tmax
γ

(11)

and cos
(

π
2

)

= 0, When dt ≥ π
2 , the attenuation function of trust equals zero.

Then (Eq. 7) becomes:

(TSM − Trust)ij = f
(

(Space− Trust)ij , dt
)

=
⎧

⎪

⎨

⎪

⎩

(Space− Trust)ij , no forgetting trust

g (dt)× (Space− Trust)ij , 0 ≤ dt < Tmax
γ

0, dt ≥ Tmax
γ

(12)
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The above work is devoted to the computation of TSM-T, and however it
can only be used in situation with two pieces of EI and does not consider the
situation with more than two pieces of EI, so modification about should be given
out: dt = |tmax − tmin|, here tmax is the maximum time (more close to Tmax )
among all TSMs; tmin (more far from Tmax ) is the minimum time among all
TSMs.

Then TSM-Trust can be computed by the following:

(TSM − Trust)ij = f
(

(Space− Trust)ij , dt
)

=
⎧

⎪

⎨

⎪

⎩

(Space− Trust)ij , no forgetting trust

cos
(

π(tmax−tmin)
2Tmax

γ
)

(Space T rust)ij , otherwise

0, dt ≥ Tmax
γ

(13)

It should be noted that all the time information is gotten from TSM of EI based
on the TSM-HN. Lastly a method for TSM-Trust computing is gotten till now.

5 Concluding Remarks

To investigate the dynamic evolvement of trust, this study bases on the research
of time cognition, which formally constructs a hierarchical network model with
time lags as TSM. Next, three different kinds of forgetting effects (distance
effect, boundary effect and hierarchical effect) are investigated and quantified
for the computing of TSM-Trust. Furthermore, Ebbinghaus curve of forgetting
is introduced, and then cosine function is exercised to model the attribution
of trust dynamics approximately. And then D-S theory is exploited to build
up a computational dynamic trust (TSM-Trust) model based on our proposed
hierarchical network model.

Some limitations should nevertheless be underlined. First, our hierarchical
network is structured according to the TSM system of calendar time, which
becomes the only base of classifying different groups, such as chunks, groups
and hierarchical levels. Of course, as an attempt of TSM network, it is of im-
portance in investigating the attribution of time cognition for trust dynamics,
however more common paradigm should be found out. Second, when dealing
with the quantifying the forgetting effect, cosine function is used, whose ratio-
nality should be studied more. Finally, the largest memory time Tmax is assumed
as seven years, and the value of forgetting factor γ is assigned by 0, 1.5,2 and 3,
both of which may be an arbitrary decision and more related study should be
committed. In conclusion, trust dynamics is more complex than expected and
much more related work should be carried out till people completely mater its
natural properties so as to foster and manage trust effectively within whether
human society or agent society.

It must be pointed out that our example and experiments are discarded here
for the limitation of pages, which will be published in a journal paper soon.
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Abstract. Trust Management(TM) aims to provide effective access con-
trol in open systems. It enables the resource owners to reason and de-
termine the access permissions on the basis of a collection of distributed
authorization knowledge about the requester. However, to be efficient,
most current TM approaches are based on DATALOG which can’t di-
rectly express the connotation of TM authorization policies. Thus these
policies are hard to be understood and maintained by human beings.
In this paper, we propose a new approach called OT based on the on-
tology language OWL 2 EL. OT supports the connotation expressible
policies and remains efficient since its procedure of compliance checking
is provable to be tractable.

1 Introduction

The access control in the open distributed system remains to be a challenging
problem, and Trust Management(TM)[5] is one of the possible solutions. TM
approaches support the distributed authorization and enable the local admin-
istrators to make decisions both on local policies and external authorization
statements, which are generally in format of signed certifications.

Multitudes of TM approaches with different design features have been studied,
such as PolicyMaker[5], KeyNote[4], and RT[13][14] etc. Existing TM approaches
are often composed of a language for describing policies/credentials that state
what attribute, role, clearance etc.(referred to as authorization terms from now
on) a principal has when he/she has another issued authorization terms, and
a compliance checking procedure for deciding whether an access request com-
plies with the submitted credentials and local policies(we use p/c to denote
policy/credential from now on).

Every authorization item in a p/c consists of a subject term and several
parameter constraints. For example, if an authorization item’s subject term is
“graduated Student”, it may have constraints over three parameters: major,
attending university, and GPA. Under human language, these parameter con-
straints can be free expressed and as complicated as needed. For example, the
� this paper is supported by grants from 863 High-tech Research and Development

Program of China ( 2007AA1204040 and 2007AA1204050).
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administrators may define such credentials with “graduated Student” authoriza-
tion item in the real world:

Example 1.1. The Central Academy of Sciences(CAS) says Alice is “a graduated
Student, studying in information security, attending the Institute A, gotten a
cumulative GPA of 3.8”

Example 1.2. The Ministry of Education (MOE) says “a CAS graduated student,
who is studying in any one of the following fields: information security, software
engineering, network,..., and attends any one of the following CAS Institutes:
Institute A, Institute B ,...., and has a GPA higher than 3.6” can get an ‘appli-
cation for becoming an exchange student to VirtualCountry with 5,000 dollars
scholarship per year”

Example 1.3. MOE says “a CAS graduated student, who is studying in some
fields about computer science, and attends some CAS institute which has coop-
erated projects with VirtualCountry’s Institutes, and has a GPA which is higher
than average” can get an “application for becoming an exchange student to Vir-
tualCountry with 5,000 dollars scholarship per year”

The first case shows a credential of Alice issued by CAS. In this credential, every
parameter is constricted to a specific value. In the second credential, the value
of every parameter is constricted to be in a predetermined static set. If we call
this way in case 1.2 as a denotation constraint description way, then in the last
credential, administrator uses a connotation description way to determine a set
for every parameter which describes the common property of elements in the set.

Compared with the denotation description way, the connotation constraint
description way of authorization items has several advantages in the real world
because:

(1) It can reflect the real authorization intention of local administrators accu-
rately. According to some potential security consideration, administrators often
can decide which type of parameter values may premise safety and qualification.
Writing the “type” instead of plenty of distinct values into the authorization items
will make p/c more comprehensible, more concise, and easier to be examined.

(2) It helps the local administrators to create p/c more quickly. It is a time-
consuming task to predetermine the parameters’ extension values of authoriza-
tion items before creating a p/c. What’s worse, when external authorization
items are to be included in the new p/c, local administrators have to ask for
external entities’ help to figure out the external parameter values pertaining to
their thoughts. That premises plenty of time spent for many rounds of commu-
nication and negotiation. So, if administrators can write some words standing
for the connotation of parameter constraints into p/c directly, the time of pre-
determining the extension values of those parameter will be greatly reduced.

(3) It makes the created p/c more stable. Under the extension description
way, after the extension value sets are determined and the p/c is created, the
p/c can’t adapt to any change of the value sets. Actually the sets’ changes may be
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frequent in the real world, e.g. the average of GPA in a university will be different
when new semester arrives, the number of Institutes which have co-projects with
VirtualCountry may increase or decrease daily by daily. Therefore, if there is a
method for administrator to express the connotation of parameter constraints,
the p/c will maintain stable no matter how frequently the extension value sets
are changed.

Motivation. In order to support the connotation description way in TM, a
schema to define, publish, share and maintain some machine-readable lexical
conceptual structure is needed(so appropriate concept words can be picked to
describe the connotation of authorization items in p/c), while a mechanism to
match local policies with external credentials not syntactically but semantically
(the semantic relation between ”computer science” in policy and ”information
security,network...” in credential can be recognized) is necessary too.

To our best knowledge, there are no existing TM approaches which can
be both connotation expressible and decidable. The earliest TM approach—
Policymaker is able to express any kind of p/c and check specific semantic re-
lation between policy and credential in some custom-built program since ev-
erything in it is free programmable. However, this super capability leads to its
undecidability in almost all cases. Most of the subsequent TM approaches, such
as DL[11], SD3[9], Binder[7], and RT1

C [11], are based on tractable logic pro-
gramming language DATALOG or its tractable variant DATALOGC . Though
tractable in compliance checking, these TM approaches neither include any lexi-
cal conceptual structure construction schema, nor support any semantic match-
ing mechanism, so none of them can support the connotation description way.
What’s worse, the pure DATALOG based ones can’t even support the denota-
tion description way because they can’t express parameters constraint under the
functionless deficiency of DATALOG.

Contribution. In this paper we propose a novel TM approach called OT based
on the ontology language OWL 2 EL, which has the following advantages:

(1) OT supports the connotation description way, and partially supports the
denotation description way. Local administrators can freely assemble simple ab-
stract concepts from public ontologies into compound concepts to describe pa-
rameter constraints, i.e., they can use sharable concept blocks to construct the
connotation of parameter constraints like the way they take under human lan-
guage. As for the capability to describe the denotation of parameter values in
p/c, though restricted in some respects, OT shows some merits over RT C

1 —the
existing best TM language supporting the denotation description way. (2)The

compliance checking procedure of OT is provable to be tractable. In OT, every
access request can be converted into a concept subsumption question under an
EL + + (EL’s logic foundation) knowledge base. It is provable in this paper
that, the compliance checking procedure of OT is tractable when the concrete
data domains used in OT’s supporting ontologies are all so called p admissible
domains.
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The remainder of this paper is organized as follows. Section 2 presents related
work of Trust Management. Section 3 provides the overview of OWL 2 EL and
its logic basis. In section 4, we describe the entire OT approach. In section 5 we
discuss the efficiency and expressivity of OT. Lastly, section 6 summarizes this
paper and presents our future work.

2 Related Work

PolicyMaker is the first TM approach proposed in 1996 by Blaze etc[5]. In Policy-
Maker, security policies and credentials are freely programmable. Programmable
expression guarantees the expressivity, however the compliance checking proce-
dure of PolicyMaker is polynomial-time solvable in a strictly limited case but
undecidable in general[6]. Keynote [4], the second-generator of PolicyMaker, stip-
ulates main parts of p/c to be written as mappings from condition attributes
sets to compliance values. Such stipulation makes Keynote more easily to be
integrated into application, but meanwhile it lowers the flexibility of expression.
Keynote’s undecidability has been proved in many cases[14].

Most of the subsequent TM approaches are based on DATALOG which con-
tributes to the tractability of compliance checking. RT0, Binder, and SD3 etc
are typical of them. Binder[7] uses the horn clauses to define authorization state-
ments, and arbitrary predicates to represent authorization contents. RT0 is one
sublanguage of RT—a family of Role-based Trust Management languages[13].
RT0 uses roles to denote the sets of subjects who are granted some specific au-
thorization items and gives the fundamental roles define rules to specify the
role membership relation. Except Binder and RT0, there are a lot of other
DATALOG-based TM approaches, such as Delegation Logic[11], and SD3 etc.
The expressiveness of these approaches is constrained as DATALOG is a quite
restrictive logic programming language. In fact, they even can’t describe param-
eter constraints of the authorization terms (such as “GPA > 3.6”, “institute ∈
{A, B, C}” and so on).

Li et al made use of DATALOG’s extension version—DATALOGC to design
a RT1

C TM language[11]. By introducing three kinds of parameter constraints:
f = c, f ∈ S, f = ref (Here, every f is a parameter with specific data type) to
modify role types, RT1

C shows better expression power than former DATALOG-
based TM approaches, and still keeps tractable in compliance checking. Actually,
RT1

C is quite adapt to express the extension constraints. For example, it can
describe the first authorization item in example 1.2 as “student(researchfield ∈
{infosec, soft engineering, network, ...}, institute ∈ {A, B, ...}, GPA > 3.6)”
easily. However, even RT1

C still can’t express the connotation of parameter
constraint such as the ones in the case 1.3.

Cassandra[15] is another TM approach based on DATALOGC . It is able to au-
tomatically retrieve missing credentials over the network and supports
automated trust negotiation. Furthermore, by introducing the predicates “can-
Activate”,“canDeactivate”,“canRedCred” etc., Cassandra can make multiple au-
thorisation decisions apart from the one of performing an action, such as activating
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and deactivating a role, and requesting a credential. Polakow and Skalka proposed
a TM approach based on a monadic linear logic programming language so called
LolliMon[16]. Their approach unifies authorization checking and distributed cre-
dential retrieval, which solves the distributed certificate chain discovery problem
in full RT framework . Though several novel functionalities are added in these
TM approaches, their expressiveness about parameter constraints in authoriza-
tion items is not superior to RT1

C ’s, i.e., they are still unable to express connota-
tion of parameter values.

3 OWL 2 EL

3.1 Syntax and Semantics

An ontology is a formal, explicit specification of a shared conceptualization, in-
cluding a taxonomy describing the structural concepts of a knowledge area, and
axioms capturing the essential rules in that area. OWL 2 Web Ontology Lan-
guage provides several sub-languages to describe ontologies. One of the profiles
of OWL 2 is EL[1] whose logic correspondent is description logic EL + +. EL
can describe definitions, roles and axioms about different concepts to capture
the specific knowledge shared in specific domain. Its description contents form a
knowledge ontology about that domain. The syntax of EL can be converted into
the one of EL + + to run knowledge reasoning. Table 1 illustrates the abstract
syntax of EL and the syntax and semantics of EL+ +.

In EL + + Atomic concepts (denoted by C,D), atomic roles(denoted by R),
features(denoted by f1, ..., fk), and individuals(denoted by a1, ..., am) can be
used to construct complex concepts with constructors. The one through five
rows of table 1 illustrate the constructed forms of concepts in EL + +. Among
them, p(f1, ..., fk) denotes a concrete domain constructor with every fi in it
is a feature which maps every object to an element in that concrete domain.
Formally, a concrete domain D is a pair (�D, PD). �D is a data set such as
integer set Z,string set S and so on, while PD is a set of predicate names. Each
p ∈ P can be interpreted as a set of n-ary tuple pD ⊆ (�D)n. The other rows
represent the valid concepts axioms which constitute an EL++ knowledge base.
The knowledge base is divided into a TBox and an ABox. The TBox comprises
four kinds of constraint axioms, which respectively are general concept inclusion
axioms(GCIs)— a set of concept inclusion axioms such as C � D, role inclusion
axioms (RIs)— axioms for role hierarchy, domain restrictions(DRs) and range
restrictions(RRs)—respectively contain axioms for domain and range of roles.
ABox is a finite set of individual assertions of two kinds: C(a) or r(a,b). C(a)
is an assertion denoting that a is an individual which belongs to the concept C,
while r(a,b) denotes there exists a binary relation r between a and b.

The semantics of EL + + is an interpretation I = (�I ,.I), which consists of
a non null abstract individual set �I and an interpretation functions. I maps
1 EL’s current version only supports ObjectOneof containing a single individual,

though EL supports nominal with more than one individuals.
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Table 1. OWL 2 EL syntax and semantics

Name OWL 2 EL Syntax EL + + syntax Semantics
top owl:Thing � �I

bottom owl:Nothing ⊥ ∅
nominal ObjectOneof(a1, ..., am)1 (a1, ..., an) {x ∈ �I |x ∈ {a1

I , ..., an
I}}

conjunction ObjectIntersectionOf(C,D) C � D CI ∩ DI

Existential
restriction

ObjectSomeValuesFrom(R,C) ∃R.C {x ∈ �I |∃y ∈ �I , (x, y) ∈ RI ∧
y ∈ CI}

Concrete do-
main

DataSomeValuesFrom(f1, ...fk,p)p(f1, ..., fk) for
p ∈ P Dj

{x ∈ �I |∃y1, ..., yk ∈
�Dj , fi

I(x) = yi for
1 ≤ i ≤ k, (y1, ..., yk) ∈ P Dj }

GCI SubClassOf(C,D) C � D CI � DI

Equivalent EquivalentClasses(C,D) C=D CI = DI

RI SubObjectPropertyOf(SubObject-
PropertyChain(R1, ..., Rk),R)

R1 ◦ ... ◦ Rk � R R1
I ◦ ... ◦ Rk

I ⊆ RI

Domain ObjectPropertyDomain(R, C) Dom(R)=C {x ∈ �I |∃y ∈ �I , (x, y) ∈
RI} ⊆ CI

Range ObjectPropertyRange(R, C) Ran(R)=C {y ∈ �I |∃y ∈ �I , (x, y) ∈
RI} ⊆ CI

Concept
assertion

ClassAssertion(a, C) C(a) aI ∈ CI

Role assertion ObjectPropertyAssertion(R,a,b) R(a,b) (aI , bI ) ∈ RI

each concept A to a subset of �I , each role r to a binary relation rI in �I ,
each individual a to a aI in �I and each feature name f to a partial function f I :
�I →�D.

3.2 Knowledge Base Reasoning

EL + + enables a lot of questions to be answered under the knowledge base
reasoning. Subsumption questions are the most typical questions among them.
Since all of other questions can be reduced to the subsumption questions in EL+
+, the computational complexity of knowledge base reasoning in EL++ depends
on the performance of reasoning about the subsumption problems. Under the
semantics of EL + +, given two concept C and D, C is subsumed by D under
knowledge base K iff CI � DI for every model I of K.

In 2008, Badder et al have proved that subsumption in any knowledge base of
EL++(D1, ..., Dn) can be decided in polynomial time w.r.t the knowledge base’s
size when two conditions are satisfied [3]. The first one is each of D1, ..., Dn is
p admissible concrete domain whose definition can be find in [8]. The second
condition is that each axiom in RIs of the EL + +(D1, ..., Dn) knowledge base
should meet the restriction stated below. Before we quote the restriction, we
must make this point clear: Under a knowledge base T , and role names r, s, we
write T |= r � s iff r=s or T contains role inclusions:

r1 � r2, ..., rn−1 � rn, where r1 = r, rn = s

And T |= ran(r) � C, iff T |= r � s, and ran(s) � C ∈ T .

Definition 3.1. Role Range Inclusion Restriction(RRIR): for every r1 ◦ r2... ◦
rk � r ∈ T , n ≥ 1, if T |= ran(r) � C, then T |= ran(rk) � C.
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4 The OT Approach

4.1 Design of Supporting Ontologies

For every authorization entity, fundamental vocabularies and background knowl-
edge of authorization can be formally conceptualized in three ontologies. The first
one is a built-in ontology about the most general taxonomy which is shared by
all entities. The second one named Auth-Info ontology defines the taxonomy of
parameterized authorization items granted by the entity, while the last domain
ontology represents the domain knowledge of the application system which the
entity resides in.

Specific Auth-Info ontology and Domain ontology need to be developed by
the specific application system administrators. In this paper, we assume every
application system can publish its Auth-Info ontology and Domain ontology, or
at least their fragments relevant to the public credentials signed by it. Those top-
secret application systems which want to hide their authorization architectures
and domain vocabularies strictly, such as government or military information
systems are not considered in this paper’s scope. In the following, we discuss the
atomic classes and properties in the three EL ontologies at length.

Built-In Ontology

1. Principal class: representing all involved subjects such as access requesters,
resource owners, administrators and so on. Every individual of this class is
a universal unique ID in the form of URI reference, related to a public
Key (for example, based on PKI certification or mapped to ID-Based public
key). Principal contains two overlapping subclasses: Grantor and Grantee ,
which represent the authorization items’ grantors and grantees respectively.

2. Authorization class: representing various authorization items in different
applications.

3. hasAuth objectProperty: this object property relates every Grantee in-
dividual to his/her/its granted Authorization individuals.

4. grantedBy objectProperty: this connects every Authorization to its
Grantor.

Auth-Info Ontology

1. subAuthorization classes: Applications can define and share their own
Authorization subclasses. Every subAuthorization class denote a type of au-
thorizations items and their names can be used as the subject term of those
authorization items. For example, some common subAuthorization classes
are “Role”, “Permission”, and “Group”. The subAuthorization classes may
form class hierarchies. The application system for CAS referred in example
1.1-1.3 can form a hierarchy of subAuthorization classes like the one in Fig.1.

2. objectProperties: Every subAuthorization class may possess some specific
objectProperties to describe its object parameters. Every ObjectProperty
hasOP has some class in the Domain ontology as it value range. It can
be used to express a constraint in the form of ∃hasOP.E, where E is a
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Fig. 1. An example of supporting ontologies in CAS’s system

compound class freely constructed from a Domain ontology according to the
administrators’ needs.

3. odataProperties: In order to express constraints over data parameters,
such as age > 40, GPA > 3.6, and so on, dataProperties are needed.
However, in real world, even data value has diverse connotations in spe-
cific scenarios. For example, the GPA value 3.6 in GAS may stand for a
minimum standard for student to be regarded as excellent. Hence all of the
dataProperties of subAuthorization classes representing the data parameters
are replaced by objectProperties in such way:
For every data parameter dp, we define an objectProperty hasDP in Auth-
Info ontology, and define a class DP and a dataProperty fdp for it in Domain
ontology, where each value of dp corresponds to an individual of class DP
whose feature fdp equals to that value, and hasDP’s range is DP. Each con-
straint about dp can be expressed in the form of ∃hasDP.(DP [
p(fdp)][
F ]),
where p(fdp) is a data constraint about the parameter such as < 3.6(fgpa),
F is a compound class from Domain ontology to explain the connotation
of the data parameter’s value. In the expression, 
F and 
p(fdp) may be
absent when administrator doesn’t need them. In order to make such design
behave well, we assume that every data parameter of authorization item has
finite value range. In order to distinguish hasDP from other objectProperties
in Auth-Info ontology, we call hasDPs as odataProperties.
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Domain Ontology
Domain ontology models knowledge about specific application domain. Many ap-
plications have built or will build their own domain ontology no matter whether
they use OT or not, such as the digital libraries which use the discipline ontol-
ogy to classify their papers, and hospitals which use medical ontology to help
their digital resource systems operate. The objectProperties of subAuthorization
classes reside their ranges in Domain ontology, so administrators can use concep-
tualized knowledge from Domain ontology to describe the connotation of value
constraints of objectProperties. Figure 1 also shows a simple ontology example
from the application domain of CAS.

Applications can share the same Auth-Info and domain ontologies with others,
or construct their own ones. All of these Auth-Info and domain ontologies should
meet the RRIR restriction of definition 3.1 for all of their RI axioms. It can be
easily achieved by making sure every Rk’s range is subsumed by R’s range when
RI axioms are designed.

4.2 Basic Blocks of Credentials and Policies

Based on these ontologies, we can construct the OT credentials and policies and
their basic building blocks with abundant vocabularies. There are many ways
to format the policies/credentials, such as encapsulating every part of them into
specific xml tag, expressing them as well-defined rules and so on. In order to
simplify the following presentation, we developed an EL++-EL mixed syntax to
describe OT policies/credentials and their supporting blocks, which also makes
the description easy to be converted into the Description Logic level in the
process of compliance checking. At first, we use EBNF to define the syntax
about the basic building blocks:

CPR:: =′ ∃hasAuth.(′ CAI ′ 
 ∃grantedBy.(′ CPR|APR′))′

CAI:: = subAuth{′
′opconstraint}{′
′dpconstraint}
opconstraint :: =′ ∃′hasOP ′.′ E|(′{′s {′,′ s}′}′)
dpconstraint :: =′ ∃′hasDP ′.(′ DP [′
′p′(′f ′)′] [′
′F ] ′)′

APR:: =′ {′anygrantor′}′

Here, subAuth is a subAuthorization class in an Auth-Info ontology, while hasOP
represents objectProperty and hasDP represents odataProperty of subAuth. E,F
are compound classes whose components come from a Domain ontology. s is a
Domain ontology’s individual. DP and f are class and feature name of the domain
ontology. anygrantor is an individual of Class Grantor. The former non-standard
terms are all presented under the owl 2 EL syntax, while p is a predicate stated
in EL+ + syntax.

A single Compound Auth-Info expression(CAI) can be regarded as an
authorization item. It represents a group of Authorization individuals of the same
subAuth class which match all opconstraint and dpconstraint. In the following,
we demonstrate how the authorization items of example 1.3 can be directly
interpreted by CAIs in the concept assembling way:
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Example 4.1. The CAS authorization item in example 1.3:

CAIexp1 = graduatedstudent 
 ∃study.CS 
 ∃attend.ObjectIntersectOf
(CASIns, ObjectSomeV alueFrom(coProject, V CIns)) 
 ∃hasGPA.(GPA 

Excellent)
Here, the relevant classes and properties are all from the ontologies in Fig.1.

Example 4.2. MOE authorization item in example 1.3
CAIexp2 = Applicance 
 ∃Type.exStudentToV C 
 ∃hasSCH.(SCH
 =

5000(fsch))
Here the Applicance is a subAuhtorization class in Auth-Info ontology of MOE’s
application system. Type is its objectProperty. Together with SCH and fsch
defined in Domain ontology, its odataProperty hasSCH is used for describe the
data value constraint of “scholarship” parameter. exStudentToVC is a domain
class representing a category of applications.

Building block Atomic Principal expression(APR) is a nominal class
representing a single Grantor individual, while Compound Principal expres-
sion(CPR) describes a group of Grantor individuals who are granted the au-
thorization item described by CAI and their grantor may be an APR individual
or a member of another CPR class. One example of CPR is:

Example 4.3. the principals who are granted the network administrator Role
by a super administrator
∃hasAuth.(NetAdmin 
 ∃grantedBy.{superAdmin})

4.3 Complete Expression of Credentials and Policies

Credential: every credential is of the form:
〈Head : Reference〉〈Body : Assertion〉〈Signature〉
The head part includes all the URI references of relevant signed ontologies and

the public Key to verify them. The signature part contains the signature on this
credential(the issuer’s public Key certification can be included in this part). The
authorization assertion in the body is one of the two forms:AtoAC which pro-
vides an authorization to a group of grantees who have gotten other designated
authorizations except identities, and AtoIC which grants the authoritzation to
a grantee with the designated ID.

AtoAC ::= CPR{′
′CPR}′ � ∃hasAuth.(′CAI ′ 
 ∃grantedBy.{′anygrantor′})′

AtoIC ::= o′ : ∃hasAuth.(′CAI ′ 
 ∃grantedBy.{′anygrantor′})′

In AtoAC , the “anygrantor” should be the same principal as the issuer of the
credential. Otherwise, the credential will be verified as invalid. In AtoIC , o is a
grantee individual, and the “anygrantor” should be the same principal as the
issuer of the credential.

Policies: Every policy is an authorization assertion stored in local system. In
general, policies assert in what condition the local authorizations can be granted
to the principals. They are not needed to be signed, connected to some local
ontologies, and of the following two forms :
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AtoAP ::= CPR {′
′CPR}′ � ∃hasAuth.(′CAI ′ 
 ∃grantedBy.{′localAdmin′})′

AtoIP ::= o′ : ∃hasAuth.(′CAI ′ 
 ∃grantedBy.{′localAdmin′})′

Here Grantor individual localAdmin represents some local administrator.

Add standard term GROUP as macro: Every ∃hasOP.E or ∃hasDP.G
(G = DP [
p(f)][
F ]) in a CAI portrays a parameter constraint satisfied by
the group of authorizations referred by the CAI. Since the quantifier used in the
structures is ∃, the real meaning is “there exists at least one individual pertaining
to E/G that can be ‘hasOPed’/ ‘hasDPed’ by every one of these Authorization
individuals”. If creators want to express “every individual pertaining to E/G can
be ‘hasOPed’/ ‘hasDPed’ by every one of these Authorization individuals”, they
should look up every individual ei in E/G from the Domain ontology, and write
the feature of the CAI as:

EOP : ∃hasP.{e1} 
 ...∃hasP.{em}

Here, hasP represents hasOP or hasDP. To write the feature in this form is a
heavy task. So we introduce a GROUP standard term to solve the problem. In
this case, grantors only need to write the feature as the following SOP form in
their credentials or policies.

SOP : ∃hasP.(E/G 
GROUP )

When a request comes, credentials and policies are submitted to the decision
module of the resource provider’s OT subsystem. OT subsystem will recognize
every GROUP standard term and automatically look up the corresponding Do-
main ontology to replace every SOP structure with the EOP structure.

4.4 Compliance Checking

In OT, every access request is made by one user, and decision is made under
lots of relevant credentials and policies. Apparently, users are responsible for
keeping, delegating or submitting their own AtoIC credentials. However, who can
be responsible for collecting the relevant AtoAC credentials for every request?
We suggest two reasonable and feasible strategies on this: (1) With a free-style
strategy, resource providers don’t control the delegation depth of authorization.
So the middle level AtoAC credentials are free issued out of their control and
the requesters should be responsible for gathering them and submitting to the
OT subsystem. (2) In the strick-control strategy, providers will designate
explicitly all the AtoAC credentials trusted by themselves, but permit the issuer
to sign AtoIC credentials freely. Henceforth all the AtoAC credentials are stored
in the OT subsystem of the resource provider. Then requesters only need to
submit their own AtoIC credentials along with the request.

Under any one of the two strategies, OT subsystem is supposed to get enough
credential sets and can check the compliance efficiently. When an access request
is submitted, the compliance checking procedure is processed in two phases.

Preparation phase: After receiving the request, server need to (1)collect rele-
vant credentials according to free-style or strick-control strategy, (2) verify every
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credential collected. If any credential is invalid drop it, (3) retrieve the relevant
ontologies of every credential and verify their integrity. If any ontology fails in
this step, drop the corresponding credential.
Execute phase: (1)Expand every GROUP macro appeared in collected creden-
tials. (2)Merge and translate the relevant ontologies, authorization assertions in
local policies and credentials into a synthesized EL++ knowledge base TB, and
translate the request into a subsumption problem “{req} � ∃hasAuth.(CAI 

∃grantedBy.{localAdmin})?” where ‘req’ is the requester individual’s ID, and
CAI is the requested local authorization. (3)Run the reasoner and check if the
subsumption holds under TB.

Next, we present a running example about the compliance checking. Supposed
that the example 1.3 denotes a local policy of MOE, it will be expressed as such
a OT policy:

∃hasAuth.(CAIexp1 
 ∃grantedBy.{CAS})
� ∃hasAuth.(CAIexp2 
 ∃grantedBy.{MOE})

Meanwhile, Alice has a credential issued by Institute A of CAS like this:

Alice : ∃hasAuth.(graduatedStudent 
 ∃study.{infoSec} 
 ∃attend.{InsA} 

∃hasGPA.{GPA
 = 3.8(fgpa)} 
 ∃grantedBy.{CAS}).

If she wants to apply for the scholarship, she can make the request and sub-
mit her student credential MOE’s OT subsystem. Then after relevant ontologies
and credentials verified to be valid, MOE will generate a subsumption question:
{Alice} � ∃hasAuth.(CAIexp2 
 ∃grantedBy.{MOE}). Under the relevant on-
tologies, MOE can infer that InsA is an individual of “CASIns” and is coop-
erating with the VCIns InsC, and infoSec is one research field in CS. No doubt
that finally this subsumption question can be reasoned to be true. So Alice is a
lucky girl to be qualified for this application.

5 Property Analysis

So far, we have presented the whole design of OT approach. As follows, we
will present the efficiency result about OT’s compliance checking procedure,
and then give a detailed comparison between OT and former TM approaches in
expressivity.

5.1 Compliance Checking Efficiency

As referenced at section 4.4, the compliance checking procedure is divided into
two phases. Apparently, the preparation phase won’t cost much time. Hence,
the efficiency of compliance checking depends on the execute phase. Before in-
troducing our conclusion about the efficiency of execute phase, we quote the
p admissible concrete domain’s definition[8].
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Definition 5.1. A concrete domain D is p admissible if:

1. the satisfiability of
∧

i

pi(fi,1, . . . , fi,ni) and implication of
∧

i

pi(fi,1, . . . , fi,ni) →

q(f1, . . . , fn) in D are decidable in polynomial time;
2. D is convex, i.e., if a conjunction of atoms of the form p(f1, . . . , fk) implies

a disjunction of such atoms, then it also implies at least one of the disjuncts.

Theorem 5.1. If every concrete domain Di used in the EL++ knowledge base
TB synthesized in execution phase is p admissible, then the execution phase can
be finished in polynomial time w.r.t the size of TB.

Proof. Every RI axiom of every Domain ontology or Auth-info ontology meets
RRIR when they are designed, so RRIR is kept for TB. Besides, every concrete
domain Di in TB is p admissible. Thus, TB satisfies both the p admissible con-
dition and the RRIR condition. According to the discussion in section 3, the
subsumption problem under TB is tractable w.r.t the size of TB. Because the
Domain ontology of every relevant credential is part of TB’s sources, the sub-
sumption problem under the Domain ontology’s corresponding EL++ knowledge
base is tractable w.r.t n if the size of that Domain ontology is n too.

Now we consider all steps in execution phase. In the first step, for every cre-
dential which has SOP expression to expand, the only time-consuming job is to
find out all the individuals belonging to Ei of the SOP in its Domain ontology.
This job can be done in polynomial time w.r.t the size of the Domain ontology
n, because it needs no more than n subsumption decisions and every decision
is solvable in polynomial time w.r.t n. Then the sum of all credentials’ expan-
sion time is polynomial w.r.t the size of the whole TB. The time spent in the
second step can be neglected, while the third step is a polynomial time solvable
subsumption decision in TB, so the whole execution phase can be finished in
polynomial time w.r.t the size of TB. 


There exist a lot of p admissible concrete domains, a typical one of which is
D = (Q,P), where Q is a domain of real numbers, and P consists of unary
predicates = q, > q for every q in Q. Though other non p admissible may in-
troduce intractability, they can still maintain the decidability if the satisfiability
and implication in them are decidable. So the efficiency of OT can be kept at
the decidability level at most cases.

5.2 Expressivity

In expressivity, with the unique concept assembling way to describe parameter
constraints, OT can support not only the connotation description but also the
denotation description.

(1) connotation description
As showed in the former sections, OT provides a desirable method for policy ad-
ministrators to express the connotation of authorization. In OT, administrators
can use concepts from external entity’s Auth-Info ontology and Domain ontology
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to express the connotation of authorization item they need. Since the ontologies
are under the dynamic and lasting maintenance of external administrators, they
can help the compliance checking procedure to automatically find out the cur-
rent valid value sets for every property’s connotation. But in the former efficient
TM approaches, these can’t be achieved.

(2) denotation description
To our best knowledge, RT1

C is the best solution when describing denotation
of parameter constraints. Thus we just make a comparison between RT1

C and
OT about their denotation description capabilities in the following:

Due to the absence of variable in OWL 2 EL, the third kind of parameter con-
straint “f = ref” of RT1

C is problematic in OT. However, OT can express
RT1

C ’s “f ∈ S”( “f=c” is just one kind of “f ∈ S”) parameter constraints in its
own way. Without loss of generality, we assume there is an authorization item
expressed as R(f ∈ S) in RT1

C . In general, there are two translation versions
about it in OT:

a. R(f ∈ S) appears in the body part of any RT1
C rule(e.g, A.R1(..) ←

B.R(f ∈ S)): since it’s in the rule’s body, f’s hidden quantifier is ∃. If S belongs to
a linearly ordered range set, we can use R
∃hasDP.(DP
 ∈ S(f)) to represent
R(f ∈ S). When the S belongs to some set of unordered enumeration elements,
R 
 ∃hasOP/hasDP.{s1, ..., sn} can be used where every si corresponds to an
elements in S.

b. R(f ∈ S) appears in the head part of any RT1
C rule(e.g, A.R(f ∈ S) ←

B.R1): Since it’s in the rule’s head, f’s hidden quantifier is ∀. So we can use
R 
 ∃hasDP.(DP
 ∈ S(f) 
 GROUP), or R 
 ∃hasOP/hasDP.({s1, ..., sn} 

GROUP) to represent R(f ∈ S).

In detail, these translation ways show both disadvantages and advantages:
(1) disadvantages: The introduction of predicate “∈ S” will cause intractabil-

ity since domain D=(C,{∈ S}) where C is any linearly ordered set is non
p admissible (Despite this fact, the decidability can still be maintained). On
the other hand, a few datatypes such as long, double are not supported in the
current EL version, which causes those S sets of these restricted datatypes can’t
be expressed at present.

(2) advantages: As discussed before, the hidden quantifier for f in R(f ∈ S)
is decided by the position of R(f ∈ S) in a rule. That is to say, R(f ∈ S) can
become neither ∃fR(f ∈ S) in head nor ∀fR(f ∈ S) in body. This inability
hinders it to express some human thoughts about authorization. But in OT,
GROUP macro can show up in head or body of rules, so this problem doesn’t
exist for OT.

6 Conclusions

In this paper, we proposed an OWL 2 EL based TM approach OT, illustrated OT’s
capability in expressing connotation of TM authorization policies and provedOT’s
tractability in compliance checking. In the future, we will study how to extend
OT’s expressivity further, such as introducing variables into OT’s policy language.



410 Y. Zhang, Z. Zhai, and D. Feng

References

1. OWL EL Introduction. See http://www.w3.org/TR/owl2-profiles/�OWL 2 EL.
2. Baader,F.,Brandt,S., Lutz,C.: Pushing the EL envelope. In: Proceedings of IJCAI

(2005) 364–369.
3. Baader,F., Brandt,S., C. Lutz.: Pushing the EL envelope further. In: Proceedings

of the OWLED 2008 DC Workshop on OWL: Experiences and Directions. (2008).
4. Blaze, M., Feigenbaum,J., Keromytis,A.D.: Keynote: Trust management for public-

key infrastructures (position paper). In: Proceedings of the 6th International Work-
shop on Security Protocols. (1999) 59–63.

5. Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized Trust Management. In: Pro-
ceedings of the 17th Symposium on Security and Privacy. (1996) 164C-173

6. Blaze, M., Feigenbaum, J., Strauss,M.: Compliance checking in the policymaker
trust management system. In: Proceedings of the Second International Conference
on Financial Cryptography. (1998) 254–274,.

7. DeTreville,J.: Binder, a logic-based security language. In: Proceedings of the 2002
IEEE Symposium on Security and Privacy. (2002)page 105–113.

8. Baader,F., Lutz, C.: Pushing the EL envelope. Technical report, LTCS-
Report ltcs-05-01, Inst.for Theoretical Computer Science, TU Dresden, See
http://lat.inf.tudresden.de/research/reports.html (2005).

9. Jim,T.: SD3: A trust management system with certified evaluation. In: Proceedings
of the 2001 IEEE Symposium on Security and Privacy. (2001) 106–115.

10. Li,N.: Local names in SPKI/SDSI. In: Proceedings of the 13th IEEE workshop on
Computer Security Foundations. (2000) 2–15.

11. Li,N., Grosof, B.N., and Feigenbaum,J.: Delegation logic: A logic-based approach
to distributed authorization. ACM Trans. Inf. Syst. Secur., 6(1):128–171 (2003).

12. Li,N., Mitchell,J.C.: Datalog with constraints: A foundation for trust management
languages. In: Proceedings of the Fifth International Symposium on Practical As-
pects of Declarative Languages. (2003).

13. Li,N., Mitchell,J.C., Winsborough,W.H.: Design of a role-based trust-management
framework. In: Proceedings of the 2002 IEEE Symposium on Security and Privacy.
(2002) 114-130.

14. Li,N., Mitchell,J.C., Winsborough,W.H.: Beyond proof-of-compliance: security
analysis in trust management. J. ACM, 52(3):474–514, 2005.

15. Becker,M.Y., Sewell,P.: Cassandra: flexible trust management and its appli-
cation to electronic health records.In IEEE Computer Security Foundations
Workshop.(2004)139-154

16. Polakow,J., Skalka,C.:Specifying Distributed Trust Mnagement in LolliMon. In
Proceedings of the 2006 workshop on Programming languages and analysis for
security (2006)37–46.



A User Trust-Based Collaborative Filtering
Recommendation Algorithm�

Fuzhi Zhang, Long Bai, and Feng Gao

School of Information Science and Engineering Yanshan University,
Qinhuangdao , 066004, Hebei Province, P. R. China

Abstract. Due to the open nature of collaborative recommender sys-
tems, they can not effectively prevent malicious users from injecting fake
profile data into the ratings database, which can significantly bias the
system’s output. With this problem in mind, in this paper we introduce
the social trust of the users into the recommender system and build
the trust relation between them. The values of trust among users are
adjusted by using the reinforcement learning algorithm. On the basis of
this, a user trust-based collaborative filtering recommendation algorithm
is proposed. It uses the combined similarity to generate recommendation,
which considers not only the similarity between user profiles but user
trust as well. Experimental results show that the proposed algorithm
outperforms the traditional user-based and item-based collaborative fil-
tering algorithm in recommendation accuracy, especially in the face of
malicious profile injection attacks.

Keywords: collaborative filtering; recommender system; trust model;
malicious attack; Reinforcement learning.

1 Introduction

At present, personalized collaborative recommender systems have become an
important part of many e-commerce Web sites. However, such recommender
systems introduce security issues that must be solved if users are to perceive
these systems as objective, unbiased, and accurate [1]. The open nature of col-
laborative recommender systems provides an opportunity for malicious users to
access the systems with multiple fictitious identities and insert a number of fake
user profiles in an attempt to bias the recommender systems in their favor. Tradi-
tional collaborative recommender systems can not prevent this kind of malicious
attack. Thus how to ensure the quality of recommendations for personalized
collaborative recommender systems in the face of profile injection attacks has
become an important issue.

Recent research on the security issues of collaborative recommender systems
has focused on techniques that can be used to protect the predictive integrity
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of collaborative recommenders from malicious profile injection attacks. Research
work falls into two categories: techniques for detecting and discounting biased
profiles [2,3]; and techniques that increase the robustness of the recommender
systems [4,5]. In this paper, we will explore to combine the user trust mech-
anism with collaborative filtering algorithm for the purpose of improving the
robustness of collaborative recommendation algorithm and ensuring the quality
of recommendations.

Montaner et al. [6] introduced a trust model into the recommendation algo-
rithm, so users could get the recommendations from the trust-building group.
The tentative idea was that trust-factor was based on the customer’s satisfaction
with the recommended items and trust value could be dynamically adjusted. It
was a fresh idea for the recommendation algorithm. The drawback of this method
was lack of trust information among users at the beginning of recommendation,
and what’s more it was inefficient to build the trust group. So it was not an
effective way to defend against the malicious noise.

Massa et al [7] proposed a method that users who accepted the recommenda-
tions would evaluate the recommended items. The active user would get a rating
that stands for the trust value of target user to the active user. The trust infor-
mation was propagated among users who had a trust relation with the accepter.
In this way a relation network with the trust value among users in the group
would be built, even if they didn’t have a direct interaction with each other.
This was an effective way to build the trust network among users. However, due
to the lack of restriction on the propagation of trust among users in the group,
this method might lead to the flooding of trust and cause it to be out of control
in the end. In addition, the authors did not give an effective way to measure
the relation between users, so the initial trust values could not be effectively
quantified, which could not ensure the reliability of trust values.

John O’Donovan et al [8] proposed an approach to overcome the shortcoming
mentioned above. The basic idea was to build a relation between users with
recommended items. Based on the tentative idea, there would be a higher weight
to active user who had more accurate recommendations on items than those
with poor records within the recommendation process. They supposed that users
with a high authentic value have less intention to deceive others. The item-trust
recommendation algorithms were more effective to defend the random attacks
[9], but if the malicious users changed the attack strategies, in particular, they
had some collaboration with others; this method would not effectively cut down
the negative effect. Due to the lack of trust between users, they couldn’t clearly
judge who accepted item, who can be trusted or not.

To overcome the drawback, in this paper we explore to exploit trust informa-
tion explicitly expressed by the users to improve the robustness of recommender
systems. We give a user trust model and build a trust network for users by re-
inforcing learning. The trained items are chosen from the items which have been
rated by the users. We also propose a user trust-based collaborative recommenda-
tion algorithm to defend malicious noise. The experimental results show that our
algorithm has a significant improvement in stability compared with the standard
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collaborative filtering algorithm, and the algorithms with the constraint of user
trust are more robust than other model-based algorithms, especially for counter-
acting malicious noise.

2 Background

2.1 Traditional Collaborative Recommendation Algorithm

Traditional collaborative recommendation algorithm, for example, the user-based
collaborative filtering, uses the similarity of user profiles to form a neighborhood
of peer users with similar tastes, then extrapolates the user’s predicted rating for
a target item from the ratings of his or her peer users [1]. The core of this algo-
rithm is to compute the similarity between users. There are several methods can
be used to compute the similarity of users, such as cosine correlation coefficient,
modify cosine similarity, and Pearson correlation coefficient. In this paper we use
the Pearson correlation to calculate the similarity of users.

Let D = {U, I, R} be a data source of a recommender system, where U =
{user1, user2, ..., userm} is a set of users of the system, I = {item1, item2, ...,
itemn} is a set of items of the system, and R is a user ratings matrix, where ri,j ∈ R
represents the rating of useri on itemi. The similarity between user u and user n
is given by the following Pearson’s correlation coefficient Equation [10]:

Sim(u, n) =

∑

C∈Iu,n
(Ru,c −Ru)(Rn,c −Rn)

√

∑

C∈Iu,n
(Ru,c −Ru)2

√

∑

C∈Iu,n
(Ru,c −Ru)2

(1)

Where Ru,c and Rn,c are the rating of user u and user n on item c, Ru and
Rn are the average ratings over all rated items for u and v, respectively. The
set Iu,n stand for the rating items on which user u and user n have co-rated.It
is important to underline that the coefficient can be computed only if there are
items rated by both the users.

2.2 Reinforcement Learning

Reinforcement learning is a machine learning method to solve problem through
trial-and-error interactions with a dynamic environment. In the standard rein-
forcement learning model, an agent was connected to its environment via per-
ception and action. In this paper we use the idea of the reinforcement learning to
build the direct trust between users. Formally, the reinforcement learning model
consists of [11]:

(1) a set of environment states: S;
(2) a discrete set of agent actions: A;
(3) a reward function R :S × A −→ R;
(4) a state transition function T :S × A −→

∏

(s),where a member of
∏

(s) is
a probability distribution over the set S. We write T (s, a, s′) for the probability
of making a transition from state s to s′ using action a.



414 F. Zhang, L. Bai, and Feng Gao

2.3 Item-Level Trust

In [8] the authors proposed a view that the users who had made lots of accurate
recommendation predictions in the past could be viewed as trustworthy com-
pared with those made many poor predictions. It is a good manner to evaluate
the recommendation quality by the target user. The evaluation can be viewed
as a trust value to the active user. In traditional collaborative filtering, partici-
pators were viewed as collectivity to predict the items for target user, which is
hard for assessor to estimate trust for each user.

Accordingly, we separately calculate correctness of producer’s prediction by
comparing predicted rating and the actual rating of the target users.

Let Tn(i, u) be a trust value of user u for user n, if user n predicts the rating
for the user u, the trust value is given by Equation 2.

Tn(i, u) = 1− vi
n (2)

Where variable vi
n is the deviation factor which represents the deviation degree

of the active user n to the target user u on item i. The value of vi
n is given by

Equation 3 [12].

vi
n =

|ri
n − ri

u|
d

(3)

Where variable ri
n is the rating of user u on item i, ri

u is the rating of the target
user u on item i, d is the span value of item’s rating and the default value of the
variable is 5.

3 User Trust Model and Generation Algorithm

Traditional user-based collaborative recommendation algorithm uses the simi-
larity of users’ tastes to generate recommendations. This profile-level similarity
method is subject to manipulation by malicious users. Thus the reliability of
users should take into account within the recommendation process. In this pa-
per we use trust between users to express the reliability of users and combine
user trust with user-based collaborative recommendation algorithm.

3.1 Definition of User Trust Model

In this section we introduce a formal trust relationship which is the extension
of the representation used in [8]. To model the degree of trust, we assume that
target user can assign a certain value to the active user by using the co-rated
items of the users.

Trust metrics can be imported to help the target user to compute the trust value
about the active users. The trust metrics is computable on most users, even on
pairs of users who have only one co-rated item. A user is also able to establish trust
via trust propagation on users with whom has no co-rated item. We use two types
of trust: direct trust and recommendation trust. The former can be constructed
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by users with exchange experiences such as friendship, good views. The latter is
credit of a user award by the other users who are reliable by public.

Definition 1. Direct trust:
LetT u

n represent the direct trust of the target user for the active user, the direct
trust value is given by Equation 4.

T u
n =

k
∑

i=1

tin

k
∑

i=1

|tin|
(4)

Where tin represents the trust value of target user u for active user n on item
i. The trust value can be divided into five parts, tin ∈ [−0.2,−0.1, 0, 0.1, 0.2],
the value of each part depends on the deviation factor of vi

n which is given by
equation 3, and k is the number of the set which contains items that the active
user and the target user have co-rated.

The direct trust has the following property. If the active user has a posi-
tive experience to influence the target user, then the positive experience will
be strengthening. If there has a negative experience, it will be given a distrust
value as a punishment. In a real recommender system, however, the number of
items is huge and the number of ratings provided by each user is very small,
so there are few co-rated items between users. In such cases the traditional col-
laborative recommendation algorithm can’t effectively calculate the similarity
between users, which provides few chances for users to interact with each other.
As a result, the direct trust is also scarce. Thus the single direct trust is not
enough to express the trust relation between users. We need to introduce the
recommendation trust into the trust building process.

Definition 2. Recommendation trust:
The recommendation trust is computed by target user’s trust group who has an
interaction with the active user. Let m be a set of trust group of the target user,
which contains the users who have a reliable intercourse with the target user u.
Let wi be a trust factor of the target user for the active user, which depends
on the history of intercourse experiences. Let T n

m represent the recommendation
trust that is computed by the set of user m who has a direct trust with active
user n.

T n
m =

k
∑

i=1

wiT
n
mi

k
∑

i=1

wi

(5)

Where wi is a trust value of the target user u for the reliable user in the set m,
T n

mi
is the direct trust value of user mi (in the set m) for the active user n.
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Using Equation 5, we can build a trust relation between target user and active
user with the expression of the trust set that has a direct interaction with the
target user. In this way we can reduce the negative influence caused by lacking
information about the active user. If a user has a poor credit record, the record
about the user will spread via recommendation trust, so the user will have less
chance to participate in the recommendation. On the contrary if a user has a
perfect record, he will be viewed as a genuine user instead of a malicious.

Definition 3. User trust value:
Let Trustun stand for the trust value of the target user u for the active user n, it
is combined with the direct trust T u

n , which is the value of the target user u for
the active user n, and the recommendation trust which is the expression of the set
trusted by the target user u. The combined trust value is given by Equation 6.

Trustun = αT u
n + βT n

m (6)

Where α,β are weighting factors to adjust the two parts, they are constrained
by the equation α + β = 1. The parameter α is used to balance the direct trust
and β is used to balance the recommendation trust. If users have more successful
interaction, there will be more similarity and direct trust between those users
who have interaction with each other.

As mentioned above, a user usually rates on a very small part of the items.
It is difficult to compute direct trust between arbitrary users. We can introduce
recommendation trust to solve this problem. The proportion of recommendation
trust must be restricted, because it will bring about a distortion recommenda-
tion. For example, a target user ’A’ may have little direct trust with the active
user ’D’ due to the lack of co-rating items. Maybe the two users have different
interest. If user ’D’ has similar tastes with group ’m’ trusted by user ’A’, and
they have a good trust with each other. Thus the recommendation trust of T B

m

will be a good value. As a result, the active user ’D’ who has little common
interesting with ’A’ will be a candidate to participate in the prediction. We can
introduce the parameters to balance the direct trust and recommendation trust.

The user trust includes two parts. The first part is the interaction of target
user and active user. If the active user has many good predictions for target
user, he or she will not deceive the target user. The second part is the opinions
of the other users who are trusted by the active user, they are also an important
reference to the target user. In this way the target user will receive a credible
recommendation from the producers.

3.2 User Trust Generation Algorithm

In the open collaborative recommendation environment, ensuring the reliability
of users’ ratings is very important to improve the quality of recommendation.
With this problem in mind, we introduce the user trust into the collaborative
filtering algorithm and calculate the degree of user trust using the idea of rein-
forcement learning.

In this section, we will provide three algorithms. The first algorithm is to
calculate the direct trust between the target user and the active user, the second
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is to compute the recommendation trust between users, and the third is to
calculate the combined trust of direct trust and recommendation trust.

Algorithm 1
Input: target user, active user
Output: the value of the direct trust
Step:
1: begin
2: repeat
3: ItemU ←− getItem(userId)

/*To store the rating items of target user into set ItemU*/
4: end repeat
5: repeat
6: CommItem ←− getCommonItem(ItemU, userID)

/*To get the co-rated items by target user and active user*/
7: for i = 1 to k do /*k is the number of co-rated items*/
8: compute the trust value about the common item i, by Equation 3
9: end for
10: compute the direct trust value T n

u by Equation 4
11: Trust Array1←− T n

u /*To store the direct trust value into the matrix*/
12: end repeat
13: end

The function of this algorithm is to build trust relationship between the target
user and the active user. Line 2 to 4 is to collect the co-rated items for the
preparation of computing the direct trust value, and the line 5 to 12 is the core
of building the direct trust. When calculating the correctness of active user’s
recommendation, we separately perform the recommendation process by using
active user as the target user’s sole recommendation partner.

The recommendation trust is to get the expressions about the active user from
the target users’ partners. For this purpose, the trust derivation algorithm is used
to derive all possible direct trust relationships with the active user as trusted
factor from a given set of initial trust relationships. The algorithm tries for each
recommendation trust expression to derive as many new trust expressions as
possible. Then the considered recommendation trust is removed from the set
and the new recommendation trusts are inserted into it.

Algorithm 2
Input: target user, active user, the number of the target user’s partner k, and

the trust matrix Trust Array1
Output: the value of the recommendation trust T n

m

Step:
1: begin
2: repeat
3: Trust List←− query(u, T rust Array1)

/*To get the trust set of the target user*/
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4: end repeat
5: Trust quene(key, wi)←− Sort(Trust List, k)

/*To obtain the k nearest of the target user’s neighbor
that is order by the direct trust between users. The
variable key is user’s id, while the wi is the value of
the trust.*/

6: for i =1 to k do
7: T (mi, n, T n

mi
)←− indexOf(key, n, T rust Array1)

/*To index the direct trust T n
mi

between the user mi and active user n*/
8: end for
9: Compute the recommendation trust T n

m by Equation 5
10: end

This algorithm consists of two parts. The first part, from line 2 to 4, is to get
the trust set of the target user and prepare for computing the recommendation
trust; the second part, from line 5 to 9, is to compute the recommendation trust
of active user’s.

Algorithm 3
Input: target user, active user
Output: the value of the combination trust Trustun
Step:
1: begin
2: T u

n ←− T (u, nj)
3: T n

m ←− T (u, m)
4: Trustun ←− αT u

n +β T n
m

5: Trust Array2 ←− Trustun
6: end

This algorithm performs the combination of direct trust and recommendation
trust, which is computed by Equation 6. As mentioned earlier, we assume that
the value of each recommendation can be measured by the recommendation
precision to reflect the reputation of active user, and the reputation value (trust
value) will be import in the k-nearest neighbor algorithm.

4 User Trust-Based Collaborative Filtering Algorithm

4.1 Description of Algorithm

With the trust factor introduced into the traditional collaborative recommen-
dation algorithm, there will be two factors to influence the result of prediction.
One is the similarity of the users’ tastes; the other is the trust value between
users, which is the combination of direct trust and recommendation trust.

The steps of the trust-based collaborative recommendation algorithm are as
follows.
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(1) To generate the trust matrix Trust Array2 of the users

Trust Array2 =

⎡

⎢

⎢

⎢

⎣

T11 T12 · · · T1n

T21 T22 · · · T2n

...
...

. . .
...

Tn1 Tn2 · · · Tnn

⎤

⎥

⎥

⎥

⎦

The matrix is an n-order square that filled with trust value of the users, which
has been calculated by offline. The element Tmn is the combination of direct and
recommendation trust, which stands for the relation between the target user m
and the active user n. Values symmetrically distributed on the both sides of the
matrix diagonal.

(2) To generate the similarity matrix by Equation 1. Users with similar interest
or behavior would be gathered (e.g., accessed the same type of information,
purchased a similar set of products, liked or disliked a similar set of goods).
Simmn similarity value between user u and n.

Sim =

⎡

⎢

⎢

⎢

⎣

Sim11 Sim12 · · · Sim1n

Sim21 Sim22 · · · Sim2n

...
...

. . .
...

Simn1 Simn2 · · · Simnn

⎤

⎥

⎥

⎥

⎦

(3) To calculate the combined similarity values, the simplest way to combine
trust value with similarity to produce a compound weight that can be got by
Resnick’s formula. We use the CITEM algorithm introduced in [9] to generate
the improved similarity value. This approach is a combination of trust-based
weighting of producer’s reputation with interesting similarity of producer profile
ratings on the item.

W (u, n) =
2(Sim(u, n))(Trust(u, n))
Sim(u, n) + Trust(u, n)

(7)

(4) The weighting approach simply adds the extra metric of trust to the stan-
dard similarity weighting in Resnick’s prediction formula. The modified version
of Resnick’s formula is shown in Equation 8 to include the trust weighting.

pred(u, i) = Ru +
∑

Neu W (u, n) ∗ (Rn,i −Rn)
∑

Neu(|W (u, n)|) (8)

We use Resnick’s algorithm to compute the prediction of item i for target user
u. Where Neu is the set of k similar neighbors that have rated on item i; Rn,i is
the rating of i for neighbor n; Ru and Rn are the average ratings over all rated
items for user u and user v, respectively.

According to the above-mentioned, we give the user trust-based collaborative
filtering recommendation algorithm as follow.
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Algorithm 4
Input: target user, trust matrix Trust Array2
Output: the prediction rating of the item
Step:
1: begin
2: for i=1 to m do /*The ’m’ is the number of the neighbor*/
3: Item←− getItem(u)

/*Get the rating items of the target user*/
4: for j=i to m do
5: Comm Item Array ←− getCommonItem()
6: end for
7: Comm List(u, n)←− Comm Item Array
8: Sim←− Sim(u, n)
9: Trust(u, n)←− Trust Array2
10: Compute the similarity W (u, n) with Equation 7
11: Sim List←−W (u, n)
12: end for
13: Neu←− Sort(Sim List)
14: for i=1 to k do
15: Compute the prediction value Pred(u, i)
16: end for
17:end

This algorithm consists of two parts. The first part, from line 2 to 13, is the core
of the algorithm. In this part, the first step is to build the trust relation of users
using the algorithm 3; the second step is to get the neighbors of the target user
with the improved algorithm. The second part, from line 14 to 16, is to predict
the ratings of the items by Equation 8.

Using trust metrics in the traditional collaborative recommendation model can
enhance the robustness of recommendation algorithm and improve the prediction
accuracy of collaborative filtering in the face of malicious noise.

4.2 Algorithm Computational Complexity

The computational complexity of our user trust-based collaborative recommen-
dation algorithm depends on the amount of time required to build the model
and the amount of time to compute the recommendation using this model.

To build the model, we need to compute the similarity between each user u and
all the other users, and select the most similar users. Let n be the number of users in
a recommender system, m the number of items. We need to compute n(n−1) sim-
ilarities, so the time complexity for similarity computation is O(n2). Each poten-
tially requires m operations, the time complexity is O(m). According to Pearson’s
correlation coefficient Equation 1 , the time complexity is O(n2+m). In Algorithm
4, the user trust value used in Equation 7 can be computed via offline, it does not
bring about additional computation. Thus our user trust-based collaborative rec-
ommendation algorithm does not increase the computational complexity.
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5 Experimental Results

To evaluate our algorithm that combined user trust with the collaborative fil-
tering approach. We have carried out our experiments and given a comparison
with other collaborative filtering algorithm. The experimental condition: the
hardware environment is PC of Intel Pentium IV 2.4GHz CPU and 1G RAM,
Operating system is Windows XP Professional. Data stored by Mysql database,
and algorithm programming with Java.

In our experiment we used the publicly available dataset provided by MovieLens
Site (http://movielens.umn.edu/). The site is a Web-based recommendation sys-
tem provided by GroupLens (http://www.grouplen.org) team. The dataset con-
tains 100,000 ratings on 1682 movies by 943 users. All ratings are integer values
between 1 and 5, where 1 is the lowest (disliked) and 5 is the highest (most liked).
Our data includes all the users who have rated at least 20 movies.

5.1 Evaluation Metrics

The most used technique for evaluating Recommender Systems is based on leave-
one-out. It is an offline technique that can be run on a previously acquired
dataset and involves hiding one rating and then trying to predict it with a
certain algorithm. The predicted rating is then compared with the real rating
and the difference in absolute value is the prediction error. The procedure is
repeated for all the ratings and an average of all the errors is computed, the
Mean Absolute Error (MAE).

MAE is usually applied to measure the accuracy, which measures the average
absolute difference between the predictions and the ratings over all items. The
formula is as follows:

MAE =
∑N

1 |Pi −Qi|
N

(9)

Where N is number of the rated items, and Pi is predicted rating on the item i,
Qi is rating of target user on item i.

5.2 Accuracy Analysis

To evaluate the recommendation precision of our algorithm, we have carried out
the experiments with our user trust-based collaborative filtering recommendation
algorithm, traditional collaborative filtering recommendation algorithm [10] and
item-trust collaborative filtering recommendation algorithm [8].

Figure 1 shows the comparison of recommendation quality using different
weighting factor α. The performance of our user trust-based collaborative rec-
ommendation algorithm is better than that of the user-based collaborative rec-
ommendation algorithm, and the different weight value of α performs different
accuracy. Appropriate value of the weight can effectively balance direct trust
and recommendation trust and avoid the similar users being hijacked by the
user trust value, which may lead to a distortion recommendation.
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Fig. 1. Comparison of recommendation quality using different weighting factor

Fig. 2. Comparison of recommendation precision

Figure 2 shows the comparison of recommendation precision of three algo-
rithms. The precision of item trust-based collaborative filtering algorithm and
our user trust-based collaborative filtering algorithm is better than that of tradi-
tional user-based collaborative filtering algorithm, because they have considered
the trust factor. The precision of our user trust-based collaborative filtering al-
gorithm outperforms the item trust-based collaborative filtering algorithm. The
performance is more remarkable with the number of neighbors increasing.

5.3 Robustness Analysis
In order to evaluate the robustness of the algorithm, we inserted some malicious
ratings into the original data set. The rate of the malicious attack reached to
15%, namely the number of ratings achieved 252. But there were only 9.65% of
the original users in the system reached the standard, under this condition there
was only 91 ordinary user, a lower number compared with the malicious number.
We selected 42 normal users as the test users whose ratings were over 320 so
as to fully reflect the user’s hobby with the rating items and avoid the negative
effects caused by lack of user hobby information. Figure 3 shows the comparison
of attack resist capability of the three algorithms under different attack size.
And the size of neighbor users takes 11 when calculating MAE.

In Figure 3, although the malicious users only occupy the recommendation
user 5%, the influence on recommendation algorithms is significantly obvious.
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Fig. 3. Comparison of attack resist capability

Referencing figure 2 is not difficult to discover, the precision deviation sepa-
rately expands from original (1.004, 0.947, 0.879) to (1.23, 1.04, 0.94). Because
the traditional collaborative filtering algorithm generates recommendation only
depends on the user ratings, the malicious users can provide a number of ratings
which may become the similarity neighbors of the active user so as to have a great
influence on its recommendation precision. Although item trust-based collabora-
tive filtering algorithm and our user trust-based collaborative filtering algorithm
also have some extent deviation, they introduce the trust pattern when they pro-
duce the recommendation neighbor, so they can effectively resist the influence
of malicious noise. Thus the robustness of item trust-based and user trust-based
collaborative filtering algorithm surpasses the traditional collaborative filtering
algorithm in the face of malicious noise.

In Figure 3, when the attack size is smaller than 11%, the capability of attack
resist for our user trust-based collaborative filtering algorithm outperforms the
traditional collaborative filtering algorithm and item trust-based collaborative
filtering algorithm. We notice that in general the user-trust approaches perform
better than the item-trust approaches, especially the malicious attack size over-
steps 11%. This is to be expected as the user-trust values provide a far more
reliability of profile during recommendation and prediction. The reason of the
phenomenon showed in Figure 3 is that the malicious users have a higher filled
size with the rated items, and there would be more co-rating items with the
target user, so that malicious users have more impact on the target users. But
our user trust-based collaborative filtering algorithm is able to maintain a high
precision in the face of malicious noise.

6 Conclusions

Traditional collaborative filtering recommendation algorithm is quite vulnerable
in the face of malicious noise, which is a serious threat to the recommender sys-
tems that use collaborative filtering algorithm as an essential recommendation
component. Recent research has showed that traditional collaborative recom-
mendation algorithms can not ensure the precision of recommendations in the
face of malicious noise.
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In this paper, we have proposed an improved recommendation algorithm. It
is an effective method to reduce the negative impact caused by malicious user
ratings through the combination of user trust with the traditional user similarity.
The user trust computation model and the corresponding user trust production
algorithm are described. Combining user trust mechanism with traditional col-
laborative recommendation model can provide an effective way to defend against
malicious noise. Experimental results have shown that the proposed algorithm is
better in recommendation precision and resist-attack capability than the men-
tioned algorithm in this paper.

In the future we will improve our user trust-based collaborative recommenda-
tion algorithm and eliminate the vibration problem of the recommendation user
trust value by introducing the detection mechanism of malicious user feature.
This might be accomplished by filtering out bias recommendations or malicious
neighbors in the recommendation algorithm.
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Abstract. We present a novel way to implement a fingerprinting attack
against Onion Routing anonymity systems such as Tor. Our attack is a
realistic threat in the sense that it can be mounted by a single controller
of entrance routers and furthermore require very few resources. The
conventional fingerprinting attack based on incoming traffic does not
work straightforwardly against Tor due to its multiplex and quantized
nature of traffic. By contrast, our novel attack can degrade Tor’s
anonymity by a metric based on both incoming and outgoing packets.
In addition, our method keeps the fingerprinting attack’s advantage of
being realistic in terms of the few required resources. Regarding evalu-
ation, the effectiveness of our method is discussed in a comprehensive
manner: experimentally and theoretically. In order to enhance further
studies and show the significance of our idea, we also discuss methods
for defending against our attack and other applications of our idea.

Keywords: fingerprinting attack, anonymity system, Tor, onion routing.

1 Introduction

The internet brings us convenience, but also hurts our anonymity. With some
tools, it is easy for an attacker to eavesdrop activities of other users. Individuals
and organizations need anonymity on the Internet. People want to surf webpages,
make online purchases, and send email without exposing their identities and
activity patterns to others. Encryption solves some parts of this problem, but
not everything. It can hide the communicating contents, but can do nothing
with the packet headers, which reflects the identity of communication parties.
Anonymity systems provides the foundation for users to share information over
public networks without compromising their privacy.

A simple example: the websites nowadays keep profiles of users to provide a
more suitable services. Large-scale B2C sites like Amazon will supply more suit-
able items for each user based on their surfing history and transaction records.
If we bought some game software, then some games with the same platform will
be recommended to us the next time. It makes seller provide better service and
gives the buyer convenience, but it also hurts our privacy, since our transaction
records could also be misused by the seller.

S. Qing, C.J. Mitchell, and G. Wang (Eds.): ICICS 2009, LNCS 5927, pp. 425–438, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Anonymity systems could keep websites from profiling individual users.
Anonymity systems could also be used for socially sensitive communication: fo-
rums or chat rooms for survivors of serious criminal cases, or people with specific
illnesses. Journalists could use anonymity system to communicate with whistle-
blowers and dissidents safely. Corporations could use anonymity system as a safe
way to conduct competitive analysis.

Moreover, big organizations such as embassies use anonymity systems to con-
nect with their overseas headquarters. Law enforcement uses it for collecting
evidence without alerting suspects. Non-governmental organizations usually use
anonymity systems to connect to their website while they are abroad, without
notifying everybody nearby what they are working with.

Modern anonymity systems was first introduced by Chaum as early as 1981
[4]. Many discussions followed that, both theoretical and practical, such as The
Dining Cryptographers Problem [3], Babel [8], Crowds [13], Tarzan [7], Mor-
phMix [14] etc. Among all of these anonymity systems, Tor [6] is one of the most
widely used. It employs the Onion Routing scheme to anonymize the traffic,
by using layered cryptography combined with widely distributed relay nodes in
different administrative domains.

Although Tor is a well developed and still improving state-of-the-art
anonymity system, it is vulnerable to traffic analysis attacks just like other
low-latency anonymity system. Many researches concern about how to reveal
the relationship between users who are using the anonymity system and how to
degrade the anonymity. We believe that research on attacks against anonymity
system will help us to understand the concept of anonymity more clearly, and
help the anonymity system become more secure in the future.

The remaining parts are organized as follows: we will summarize the related
works in Section 2, the attack plan in Section 3, and the experiments in Section
4. Countermeasures will be discussed in Section 5, and finally we will give the
conclusion with some open questions in Section 6.

2 Related Works

After the early-day discussions about theoretical anonymity systems, many prac-
tical anonymity systems were presented in recent years as we discussed in Section
1. Practical anonymity systems trade off resistance against some kinds of adver-
saries with lower latency and better performance to provide usability to attract
users. The mainstream of attacks toward anonymity systems are end-to-end con-
firmation attacks, which is mainly based on timing-based analysis techniques. It
is widely researched and many papers exist, like [1,10]. It is a really powerful
attack but also requires a strong assumption that the adversary controls both of
the nodes adjacent to communication partners.

In low-latency anonymity system design, defense against timing attacks is
merely considered as an desirable feature to achieve. Like in [6], Tor’s designer
claimed that known solutions seem to require either a prohibitive degree of traffic
padding or an unacceptable degree of latency. Both will greatly decrease the
usability of the anonymity system.
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In 2008, Pries et al. presented a novel confirmation attack [12]. They do not use
the classical way to analyze whether the two flows observed by two compromised
nodes are identical, but just copy a packet from the flow by the entry node, and
then choose the right time to replay it. The replayed packet could go through
the whole path. And in the exit node, it will cause an integrity error, which is an
unusual event. If the adversary could observe this event, he could assume that
the two nodes are in the same path.

Although end-to-end confirmation attack dominates the attack research in this
area, the disadvantage is also very clear - it is not practical enough. The assump-
tion about control of both entry and exit node is unrealistic in the real world.
Generally, we cannot be a global eavesdropper. The nodes in anonymity systems
are usually distributed among the whole world. Even for big organization, such as
governments or ISPs, it is also hard to control both ends of a path.

There are also other types of attacks towards anonymity systems. Fingerprint-
ing attack was raised relatively early by Hintz in 2003 [9]. It uses different file
sizes in a webpage to make a fingerprint, and try to use it to identify user’s latter
actions. It was first designed against SafeWeb. We will discuss it in detail later.

Chakravarty et al. presented another interesting idea in [2], 2008. In their
threat model, the adversary needs not to be any point along the path. A com-
pletely separated attacker just observes all the bandwidths of nodes in the
anonymity system using Linkwidth, a bandwidth-estimation technique. If several
nodes’s bandwidth changed by the same amount, then we could assume these
nodes are in the same path. The disadvantage of this attack is that it assumed
that the adversary occupies sufficient bandwidth and stands at a “vantage”
point, which means that the bottleneck in the path connecting the adversary to
the victim relay should always be the latter.

In [5,11], a well-known class of attacks called statistical disclosure treat the
whole system as a black box. It correlates traffic that enters and exits it to
discover some communication patterns. But the used model of anonymity system
is somewhat simple and theoretical. The same as timing attacks, the threat model
they used is out of anonymity system’s consideration.

3 Fingerprinting Attack on Tor

In this section, we will first review the original fingerprinting attack, discuss the
characteristic of Tor, and then raise our proposal of the fingerprinting attack
on Tor.

3.1 The Original Fingerprinting Attack

Generally, when a user visits a typical webpage, it consists of many different
files. First, the HTML file is downloaded from the site, after the links contained
in the HTML file is analyzed by the browser and pictures included in the page,
background music, flv movie, etc. would also be downloaded after that. If we
surf the webpage at www.yahoo.co.jp, about 23 files would be retrieved from the
server. Each of files has a specific file size.
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In a typical browser, such as Microsoft Internet Explorer, each file would be
downloaded via a separate TCP connection. So we can easily detect every TCP
flows since they use different ports to transfer the files. Then, the attacker can
determine the size of each file being returned to the client. All the attacker needs
to do is just count the total size of the packets on each port.

This kind of attack can not only be applied to the plain flows, but also to the
simple anonymity system like SafeWeb. Because common encryption methods do
not try to obfuscate the transmitted data, for both performance and requirement
reasons. If someone monitors the Safeweb user, the number and approximated
file size could be determined. For example, the eavesdropper found that the user
created 3 connections with the same target, each of the connections received
respectively 1324 bytes, 582 bytes, and 32787 bytes. So each of these transfer
sizes corresponds to a certain file directly, and the fingerprint of a webpage
consists of the set of file sizes.

So the attacker could first try to build the fingerprint of the file sizes of web-
pages, then monitor the user. When the user is surfing a webpage, connections
and related data could be detected by the attacker. Then the attacker just com-
pare the connect data with a set of fingerprints, choose the closest one, then
“guess” that the page is what user surfing now. The attack is low-cost, easy to
apply, and really hurts the user’s anonymity.

3.2 The Characteristics of Tor

Tor is a low-latency, well developed anonymity system. It uses multi-hop en-
crypted connections to protect sender and/or receiver anonymity. Tor extends
the former onion routing scheme by adding some features like integrity protec-
tion, congestion control, and location-hidden service. Tor can be used for both
sender and receiver anonymity. Sender anonymity could help a user to use ser-
vices without disclosing their identities. In Tor’s design, it employs two significant
characteristics, which prevents the fingerprinting attack to some extent.

First, Tor employs quantized data cells, each data cell is fixed at 512 bytes.
So it is obviously difficult for an attacker to detect the accurate size of files
transferred by separated connection stream.

Second, Tor uses multiplexing to combine all the TCP streams into one con-
nection. This is not for the safe aspect at first. The original Onion Routing
creates a path for each TCP stream. But for the expensive communication cost,
Tor decides to use multiplexing to reduce the expensive path-establish cost. And
it also provides some resistance to the client against fingerprinting attacks, for
the attacker cannot distinguish the connections between each other easily.

3.3 Threat Model of Fingerprinting Attack

Although many attacks toward low-latency anonymity systems are successful in
their assumed environment, Tor and other anonymity systems are considered
to be secure in practical use. Many attacks involve a strong adversary, who
could perform end-to-end confirmation or even global eavesdrop. And in practical
world, it is obviously difficult to achieve this kind of requirement. Even for
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big organizations to observe all the nodes distributed in the whole world is
almost impossible. The advantage of fingerprinting attacks is the low resource
requirement. The adversary only needs to occupy the entry point of the user.
Compare to the end-to-end confirmation attacks, they just use the resources
which much easier to satisfy, make it more possible to implement.

Our fingerprinting attack on Tor uses the same threat model with the fin-
gerprinting attack by Hintz, the attacker is assumed to occupy the entry router
of the user and observe all the data flows from the user. He wants to guess
what webpage the user is surfing now. The design objective of Tor is attempting
to defend against external observers who cannot observe both sides of a user’s
connections. So we think our threat model is appropriate against low-latency
anonymity system.

Let us describe the model more formally, assume there is a user and two
responders: Alice and Bob. An adversary can watch all the connections related
to the user. First, the adversary could use the anonymity system to visit Alice and
Bob for many times. Then the user visits either Alice or Bob using the anonymity
system under the adversary’s observation. Then the adversary would guess which
responder the user connected to. We have some a priori probability, which models
our suspicion about who is communicating with whom. More precisely, the a
priori probability that the user is communicating with Alice is p and the a priori
probability that user is communicating with Bob is 1 − p. If we have no priori
information, p = 1/2. See Figure 1(a).

Then, the model could also easily be extended to n responders, assume now
there are n responders, from Responder 1 to Responder n. First, the adversary
could use the anonymity system to visit any responder for many times. Then
the user visits one responder using the anonymity system under the adversary’s
observation. Then the adversary would guess which responder the user connected
to. We have some a priori probability, which models our suspicion about who
is communicating with whom. More precisely, the a priori probability that user
is communicating with Responder i is p and the a priori probability that the
user is communicating with other responders are 1 − p. If we have no priori
information, p = 1/n. See Figure 1(b).

(a) Model with 2 responders (b) Model with n responders

Fig. 1. Model in Fingerprinting Attack
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3.4 Fingerprinting Attack on Tor

So we come to make our fingerprinting attack towards Tor. The biggest problem
is that the only connection makes it hard for the adversary to distinguish each
file size and the characteristic of the webpages becomes hard to define.

Generally, if we observe the traffic flow from/to the user, we will see a sequence
of packets. If we use the outflow from user to separate the flow, we will see some
interesting things. Some intervals may be very short, like 1 or 2 packets between
two outflow packets. That means this interval transferred some small files or does
some protocol transactions, etc. And some intervals may be relatively long, like
5 or 6 packets. This means a bigger file is being transferred. And after the TCP
sliding window is fulfilled, the user send the acknowledge packet and continue the
transfer process. If the network condition remains stable, this traffic pattern will
not change much. So, for the webpages with different files and different loading
process, we can distinguish them to some extent.

With a specific packet sequence, we could use the method described above
to make a continuous intervals with the different number of packets. We call all
the inflow packets in a sequence, without any outflow packet placed in them, an
interval. We then define a vector V = (v1, v2, . . . , vn), where vi means “the
number of intervals with i packets”. nV means “the total number of intervals in
V ”. We build a fingerprint vector F in advance. Let weight w defined as nV /nF

or nF /nV which is smaller (equal when nV = nF ) than 1. So we use this formula
to calculate the similarity S:

S =
V · F
‖V ‖‖F ‖ · w (1)

If we have several fingerprints, we could calculate observed V with each F i to
get several similarity Si, then we could sort all the Si and make the assumption
the user is surfing the webpage with the F correlated to the largest Si.

In the ordinary fingerprinting attack, because a webpage is usually consists
from about 20 to 30 files, and each file has its own unique file size. It means
that the number of distinguishable webpages is very large. But in our work, the
information we used is really limited due to the multiplexing. So if the number of
fingerprint we use is too large, we may not have a very high detection rate. When
the webpages the user may access are too many, after sorting the similarity S, we
do not make the assumption only with the biggest S, but also using a threshold
value θ instead. All fingerprints with calculated score larger than θ could be the
possible page the user has seen. And we could make this as a set. If we could
make sure the user is surfing the same page again and again (but we do not
know which page he is watching), then we get other sets. Combine these sets
and finally we could get the most possible answer.

3.5 The Choice of Fingerprints

So far we have discussed our threat model, the score formula and the method to
recognize the page. But how can we choose a fingerprint?
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Generally, any vector V could be a fingerprint but the unique noises are also
included in the fingerprint. An adversary may do the sampling work in advance
and make a lot of vectors from one page. He wants to use them to achieve a
higher detection rate from the data, so which one should he choose?

The fingerprint choosing method is also discussed in ordinary fingerprinting at-
tack paper: the author claims that we should choose the smallest sizes sampled for
each file. It is an intuitive idea that if we observed the same thing with the smallest
size, then it must be with minimum noises. But in our opinion, for the adversary
has almost same network condition as the user. The fingerprint should not only
reflect the characteristic of webpage, but also the network condition of user.

We could assume the attacker access a webpage n times and recorded vectors
as V 1, V 2, . . . , V n. We calculate the scores with each other by formula 1. Then
we could get the scores Sij calculated from V i and V j (i = 1, 2, . . . , n−1, j > i).
So we could choose V i with the maximum S′

i as the fingerprint vector F , which
represents:

S′
i =

j �=i
∏

j

Sij (2)

4 Evaluation

4.1 Environment and Data Collecting Method

We use Windump to capture the Tor packets (Version 0.2.0.34) on a PC with
Intel Core2 Duo 1.86G, 4G RAM, Vista Business. We shall run the windump to
observe the port 9001 on the host machine. Then we use firefox which installed
TorButton to surf the webpage. After a webpage is fully loaded, we stop captur-
ing the packets. We use Wireshark to open the pcap file, filter the obvious noise
manually. More precisely, in a short period, all the connections raised from Tor
are going through the same path. So most of the packets will obviously have the
same destination address (Actually, this address refers to the first node in the
path). And some packets with other destination addresses refer to other control
packets used in Tor, like establishing new paths. After this process, a data is
recorded. We also wrote some programs to analysis the captured data to make
the calculation.

4.2 Data Analysis

First, we shall use Alexa Ranking - Top Sites in Japan1 to see how our method
works in a practical environment. In Figure 2, we use n to represent the top n
sites’ mainpages we used to implement the experiment. We choose the top 20
sites to implement the experiments.

In the experiment, we choose top n = 5, 10, 15, 20 sites, and built fingerprint
of the site. Then we surfed webpages and recorded the user activity vector,
compared with the fingerprint, and guessed which website user is surfing. The
success rate represents in the Figure 2.
1 http://www.alexa.com/topsites/countries/JP
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Fig. 2. Success Rate in Different n

From Figure 2, we could see that: the success rate is relatively high when
n is small. With n increases, the success rate decreases significantly. There are
several reasons for this: First, the information we used is limited, the fingerprint
of the webpage is not so unique. So obviously the success rate decreases when
n increases. Second, some pages are not suited for fingerprinting, like youtube2,
amazon3. The items on these sites would change from time to time, which hurts
the consistency of fingerprinting. Other sites like Yahoo4 will have ads change
frequently, too. But compared with other parts of the page, the ratio of ads is
not so large and we could just treat them as noise. Third, the pages we have
chosen are all homepages, with the similar design, it increases the difficulty of
distinguishing. Fourth, the noise in practical network affects the result a lot,
and that’s why we need to implement our method instead of just making the
simulation. Last, there are some sites hard to see the difference but still be
counted as different ones, like Google5 and Google Japan6. This problem also
exists in the distinguishing between the original page and phishing page. We will
discuss the success rate in more formal way in the following section.

2 http://www.youtube.com/
3 http://www.amazon.co.jp/
4 http://www.yahoo.co.jp/
5 http://www.google.com/
6 http://www.google.co.jp/
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4.3 Theoretical Discussion

In this part, we will discuss the effectiveness of this attack in theory. We will
discuss two topics: The factors that related to success rate and make an estimate
of how many webpages (or webpage groups) could be distinguished without too
high error rate.

First, Let us discuss with the success rate. We will use the method in [10] to
show the attack success probability formally: We use V ∼ F , to indicate that the
attacker’s test says that vector V and fingerprint F are from the same site. And
we use V = F to indicate that the event that vector V and fingerprint F are
from the same site. We have the false positive rate, Prfp = Pr(V ∼ F |V �= F ),
and false negative rate, Prfn = Pr(V � F |V = F ), are both known. We can
therefore obtain:

Pr(V ∼ F ) = Pr(V ∼ F |V = F )Pr(V = F ) + Pr(V ∼ F |V �= F )Pr(V �= F )
= (1− Prfn)Pr(V = F ) + Prfp(1− Pr(V = F ))
= (1− Prfn − Prfp)Pr(V = F ) + Prfp

Which leads us to obtain:

Pr(V = F |V ∼ F ) =
Pr(V = F ∧ V ∼ F )

Pr(V ∼ F )

=
Pr(V ∼ F |V = F )Pr(V = F )

Pr(V ∼ F )

=
(1− Prfn)Pr(V = F )

(1− Prfn − Prfp)Pr(V = F ) + Prfp
(3)

Suppose Pr(V = F ) = 1/n, e.g., we are observe n sites and the adversary has
no additional information about which site the user is likely surfing. Then, the
success probability depends on Prfp and Prfn.

In the simplest case, we first assume the false positive rate and false negative
rate are constant. Then, with Prfn = Prfp = 0.1 and n = 10, which means
the user could surf 10 webpages and we’ve made all the fingerprints of them, we
could get Pr(V = F |V ∼ F ) = (0.9 · 0.1)/(0.8 · 0.1 + 0.1) = 50%. And if we
improve Prfn and Prfp to 0.01, then with 10 webpages, the success probability
is about 91.7%. As n rises to 100 webpages, this probability also falls to only
50%. With n = 1000, it is less than 10%.

But as we see in the evaluation above, the Prfn and Prfp rises with n. So,
we will describe the false positive rate and the false negative rate as a function
of n. We also use the assumption Pr(V = F ) = 1/n discussed above. Then the
Equation 3 would be:

PrSuccess =
(1− Ffn(n))/n

((1− Ffn(n)− Ffp(n))/n) + Ffp(n)

=
1− Ffn(n)

1− Ffn(n)− Ffp(n) + Ffp(n) · n (4)
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Actually, it is almost impossible to make a reasonable function to reflect the
relationship between n and the error rate, for it is affected greatly by the sites
we have chosen. But we could assume Prfn and Prfp have a linear relationship
with the increase of n, then from the Equation 4, we could see the numerator
falls with n, and the denominator increases even faster, which will leads the
success probability decreasing even faster.

The equations we listed above tell us if we want to increase the success rate,
there are several points: First, to improve the accuracy, that is, decrease the false
positive and false negative rate. Second, make the webpages we need to guess as
few as possible, what means make the n lower. What’s more, we assume the ad-
versary knows nothing in advance. So the Pr(V = F ) equals 1/n. But if in some
situation, Pr(V = F ) is greater than 1/n, which means the adversary gets some
additional information from other ways, the success rate itself will also be raised.

Then, we shall come to how many webpages we could distinguish without
high error rate, if not choose the webpages randomly but we could choose by
ourselves.

Notice that the similarity S consists of two components, the relative interval
ratio and the vector’s dot product. First, we take a look at the relative interval
ratio. We have implemented an experiment to get that the mainpage of Ya-
hoo Japan have an average interval of 159.2105, with the standard deviation of
14.8495. Figure 3 shows the distribution of intervals of Yahoo Japan.
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From our observation, the intervals of webpages often fall in the range from
50 to 600. We can choose the page freely here, webpages with more than 1000
intervals are not so rare in practical. But here we just want to make an theoretical
estimate; we will choose the range of interval up to 600.

As our experiment about Yahoo Japan, the standard deviation is approx-
imately 10% of the intevals, that means, with about ± 20% gap between two
sites, there is about 95% chance the vector could be recognized correctly. Roughly
speaking, there are log1.4(600/50)+1 ≈ 8.38 slots for us to choose webpages with
high detection rate.

Then we come to the dot product of vectors. In our implementation, the vector
is limited to 5-dimension. Because intervals with more than 5 packets are so rare,
intervals with more than 5 packets would be treated as one with just 5 packets.

Theoretically speaking, if we use 20% gap as we do in the discussion about
interval, then there are a lot of available slots for us to choose, considering we
have 5-dimension to do the permutation. But actually, in typical situation, the
intervals with 1 or 2 packets dominated in the total dimensions, for there are a
lot of transactions to be done(Also, in some extreme condition, such as file trans-
ferring, we could expect to observe a lot of long intervals). By our observation, in
the situation with similar intervals, there are about 3 or 4 significantly different
results. Combine this with the result about interval, we have approximately 20
to 40 available slots for choosing webpages to be recognized.

It is hard to improve this result, unless we could find some way to significantly
reduce the noise. But it is expected to be improvedby following research. For exam-
ple, our method does not employ with time/latency, if we could employ it into the
calculation of score, the number of pages we could detect maybe greatly increased.

5 Countermeasures and Discussions

In this section, we will discuss some countermeasures to our attack and some
countermeasures which is believed to be effective toward fingerprinting attack
and its possible extensions. And there are also some open questions waiting to
be further researched.

5.1 Change the Fixed Cell Size

It is believed a longer Tor cell size will make it harder to attack, e.g. Increase
the Tor’s cell size from 512 bytes to 1024 bytes. But unfortunately, in our attack
scheme, it will have little impact. Tor’s fixed cell size gives the system some
advantage in traffic analysis theoretically. But the protocol it uses is still built
on TCP. So no matter what the cell size is, it could still be wrapped by TCP
packet and be divided into 1500 bytes a packet in ethernet. If there exists a
scheme to analysis Tor’s cell from TCP packets, this defense method could have
some results, but not in our proposal.
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5.2 Make Odd Requests

Odd requests refers to some surfing actions which is unusual. For example, always
surfing several pages meanwhile, restricting the scripts or pictures downloading,
etc. If there is a page with vector V 1 and another with vector V 2, then when we
view these two pages at same time, the adversary could get a V 3 equals V 1+V 2,
and V 3 has no difference with the vector V ′

3 which has the same elements as V 3,
although it may be observed from one single page. Other odd requests like the
restriction on downloading some specific files. Like the combination of two pages,
it is also difficult for an adversary to match the characteristic from the fingerprint
vector. Although this kind of defensive method seems to be so effective against
fingerprinting attack, it depends on the user’s action. But we cannot make the
system’s security depends how users use this system. It is dangerous to assume
the users have the knowledge in security and will work in a secure way. Moreover,
it is not hard to develop some kind of explorer plug-in to achieve this objective.
Like TorButton, if we activate this plug-in, it will randomly disable some kinds of
files in the current webpage, maybe forbid running script or download pictures.
It will help us in the anonymity, but we do not think users would really accept
some plug-ins like this.

5.3 Run Own Entry Node

Entry nodes are also called ”guard nodes”. And people believed that they could
guard your traffic from malicious nodes. First, it is not so useful to run a node by
oneself when the adversary occupies the entry router. Especially the time when
they are allocated in the same ethernet. Second, to run an own entry node and
achieve the requirement of anonymity is very costly. That means, to make an
adversary unable to distinguish the flows from a user. The own node may accept
many connections from other users, which may hurt the usability of company’s
network and unacceptable. But running a node with only permitted user also
makes this node meaningless. How to make the balance could be a question to
network administrators.

5.4 Defensive Dropping

Defensive Dropping is a defensive method against timing attacks introduced by
Levine et al. [10]. It employs the mechanism of dummy packets. The communica-
tion initiator constructs some of the dummy packets. These dummy packets are
transferred on the path as normal packets. But to each packet, there is a prob-
ability Pdrop to be dropped in each node rather than passing it on to the next
node. If the number of dummy packets is randomly placed with a sufficiently
large frequency, the correlation between every visiting will be greatly reduced.
As we see in this theoretical discussion part, the increasing in the false positive
rate and false negative rate will greatly reflected in the situation where we need
to recognize object from a lot of webpages.

Although it is an effective way to defend against not only end-to-end attacks
but also fingerprinting attack, we must notice that it is a really expensive defense
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mechanism, especially in low-latency anonymity system. If the number of the
dummy packets is relatively small, then these dummy packets are no more than
normal background traffics. But with many dummy packets, it is unacceptable
for consuming so many resources. What’s more, use more dummy packets in
sensitive connection is also not a good idea for it gives the adversary a clear sign
to notice the sensitive data transfer. So how to determine the sufficient number
of packets will leave to be an open question for further research.

5.5 Other Applicable Situations

Although this attack is mainly designed towards Tor, it could also be applied in
other situations.

First, it is not hard to see every anonymity systems with multiplexing or
quantized cells could be attacked by our proposal. And even without multiplexing
or quantizing, our proposal also works. You can treat all the connections as if
they were one. But it would be ineffective for we discard some useful information
by this process.

Second, this kind of attack can not only be applied attacking information re-
garding webpage surfing, but also other forms of network activities. For example,
in instant chatting, there should be differences between one who talks quickly
but every sentence is short and another merely talks but using long paragraphs.
This kind of differences could be reflected in their traffic flows, although the
significance may not be high enough to be detected.

What’s more, our scheme do not only apply to the entry point of the path, but
also the exit point. Imaging that if you are a curious server administrator who
is running a system which accepts both anonymous and non-anonymous visits
from anonymity systems. You could record the patterns when users visiting your
sites in non-anonymous mode. And someday, for some purpose, a user visits your
sites anonymously. Then you could use this scheme to guess which user it is. Just
by comparing the historical patterns and the flows you observed.

We just simply described some other possible situations for the application
of our proposal. Theoretically, for any kinds of activities with stable traffic pat-
terns, our proposal could be a potential threat. Although the effectiveness of our
proposal still needs to be improved by further research.

6 Conclusion

In this paper, we have discussed a novel fingerprint attack against the Tor
anonymity system. Our scheme works by analyzing users’ traffic flows in the
anonymity system. We use outflow packets to divide a flow into several inter-
vals, turn a flow into a vector, and give a formula to calculate the similarity of
two vectors in this scheme. It can easily be implemented by network adminis-
trators, governments, or ISPs. The experimental results showed our scheme to
be very effective. The user’s anonymity is really degraded by this simple and
practical attack. As we have discussed, this effectiveness has a potential of being
improved even more. Also, we have given a theoretical reasonable estimate of the
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effectiveness, showed the simple model of fingerprinting attacks on anonymity
systems. Moreover, the result showed the need for the use of dummy traffic in
the low-latency anonymity systems, but how to evaluate it is still left as an open
question. As future work, we may improve the attack method, especially the
scalability. We could also try to present some new threat models.
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Abstract. The commonly used technique for cheating detection in ver-
ifiable secret sharing (VSS) require public key systems. Based on linear
integer secret sharing (LISS) scheme, this paper presents a private verifi-
able protocol over arbitrary access structure without public key systems,
which can avoid cheating both from participants and dealers. For fur-
ther consideration of share refreshing and renewal, this paper shows the
proactive property of our scheme with new method. Furthermore, this
paper applies combinatorial structure into the proactive scheme to re-
duce the time of the computation.

Keywords: LISS; refresh; renewal; proactive property; combinatorial
structure.

1 Introduction

One important topic in cryptography is how to securely share a secret among
a group of people. In a secret sharing scheme, a dealer distributes the secret
to a number of shareholders, such that only qualified sets can reconstruct the
secret, while other subsets have no information about it. It is a fundamental
building block for many cryptographic protocols and is often used in the general
composition of secure multiparty computations. The collection of consisting of
qualified sets is called the access structure.

Blackley, G.R.[1] and Shamir, A. [2] independently introduce the first Secret
Sharing in 1979, which store critical information such that we get at the same
time protection of privacy and security against loosing the information. Later,
secret sharing has proved extremely useful, not just as a passive storage mecha-
nism, but also as a tool in interactive protocols. So it’s a important and useful
tool to make a good secret sharing scheme.

Linear integer secret sharing (LISS) was introduced by Damgard, I. and Thor-
bek, R. [3]. In LISS scheme, the secret was an integer chosen from a (publicly
known) interval, and each share was computed as an integer linear combination
of the secret and some random numbers chosen by the dealer. Reconstruction of
the secret was also by computing a linear combination with integer coefficients
of the shares in a qualified set.
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Based on the concept of an integer span program (ISP) introduced by Cramer
et al. shown that any ISP could be used to build a private secure LISS scheme.
The details could be find in [4,5]. Private security and perfect security were
different concepts in some cases and they were shown in [6,7] that perfect se-
cret sharing and private computation over countably infinite domains (like the
integers) were not possible. However, this didn’t rule out schemes of this type
since the secrets were chosen from a publicly known interval, and protocols were
proved to be statistical security rather than perfect privacy.

Another security aspect in secret sharing schemes is cheating prevention.
There are two ways to do this. One method uses longer shares as in [21]. The
other requires extra information to verify the shares of the shareholders. There
are many papers investigate such schemes[10,11]. The verifiable secret sharing
schemes depended on some cryptographic assumptions. In Pedersen’s scheme,
the privacy of the secret was unconditionally secure, but the correctness of the
shares based on a computational assumption.

The third security consideration is share refreshing and renewal. In some
occasions, a secret value (for example a cryptographic master keys, data files and
legal documents) should to be stored for a long time. In this case, an adversary
attacked the locations one by one and eventually got the secret or destroyed it.
To resist such attack, proactive secret sharing schemes were proposed. Proactive
security for secret sharing was first suggested by Ostrovsky, R. and Yung, M. [8].
Their paper presented a proactive polynomial secret sharing scheme. Proactive
security refers to security and availability in the presence of a mobile adversary.
Herzberg, A. et al. [9] specialized this notion to robust secret sharing schemes
and gave a efficient proactive secret sharing scheme.

Our contribution are three fold: the first is verifiable, the second is
proactive and the third optimize. In this paper a new proactive secret
sharing scheme is proposed. Shares are periodically renewed without changing
the secret. Every participant is able to verify the share which he receives and
those other participants show. This scheme can prevent adversaries from getting
the secret or sharing and the participants cheating from each other efficiently.

Moreover, we introduce some combinatorial structures [12] in the scheme so
that the scheme will be more efficient. With uses of combinatorial structures, we
can obtain a predetermined arrangement of the servers which permits the pos-
sibility of reducing the computation of the scheme. Our scheme is more efficient
in the situation when the number of the possible corrupted servers are much
smaller as compared to the total number of the servers in the system.

The remainder of this paper is organized as follows. In Section 2 we give some
preliminaries and recall the LISS scheme. Section 3 describes our Verifiable LISS
scheme. In Section 4 we provide a Proactive secret sharing. Section 5 gives an
security analysis. Section 6 introduces Verifiable LISS scheme with combinatorial
structure and analyzes the efficiency of our scheme briefly. Finally, conclusions
is presented in Section 7.
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2 Secret Sharing Scheme

2.1 Preliminaries

First we describe the definition of the access structures from [5].

Definition 1. [5] A monotone access structure on {1, . . . , n} is a non-empty
collection Γ of sets A ⊆ {1, . . . , n} such that ∅ /∈ Γ and such that for all A ∈ Γ
and for all sets B with A ⊆ B ⊆ {1, . . . , n}, it holds that B ∈ Γ .

In the following we define the notion of an Integer Span Program (ISP, introduced
in [5]) and show how any ISP can be used to build a correct and private LISS
scheme in [13].

Definition 2. [5] M = (M, ψ, ε) is called an Integer Span Program (ISP),
if M ∈ Zd×e and the d rows of M are labelled by a surjective function ψ :
{1, . . . , d} → {1, . . . , n}. Finally, ε = (1, 0, . . . , 0)T ∈ Ze is called the target
vector. We define size (M ) = d, where d is the number of rows of M .

Definition 3. [13] Let Γ be a monotone access structure and let M = (M, ψ, ε)
be a integer span program. Then M is an ISP for Γ , if for all A ⊆ {1, . . . , n}
the following holds.
1. If A ∈ Γ , then there is a vector λ ∈ Zd such that MT

Aλ = ε.
2. If A /∈ Γ , then there exists κ = (κ1, . . . , κe)T ∈ Ze such that MAκ = 0 ∈ Zd

with κ1 = 1, which is called the sweeping vector for A.

Then we review the definition of Verifiable Secret Sharing protocol in [14].

Definition 4. [14] A player execute protocol honestly is called a good player.

Definition 5. [14] The protocol π is an private Verifiable Secret Sharing proto-
col if the following properties are hold:

1.If a good player Pi outputs veri = 0 at the end of Share then every good
player outputs veri = 0 ;

2.If the dealer is good, then veri = 1 for every good Pi ;
3.If at least n− b players Pi output veri = 1 at the end of Share, then there

exists an s, ∈ S such that the event that all good Pi outputs s, at the end of
Reconstruct is fixed at the end of Share and s, = s if the dealer is good ;

4.For any two secrets s, s,, any forbidden set A of shareholders. Set vector
ri = Miρ for i = 1, . . . , t− 1, ri ∈ [0 . . . 2l] we can find symmetrical matrix ρ, ,
set ri = Miρ

, , where r, r, are statistically indistinguishable. More precisely, the
statistical distance between the two distribution is negligible in k.

2.2 Linear Integer Secret Sharing

The materials of this subsection come from [13].
Let P = {1, . . . , n} denote the n shareholders (or players) and D as the

dealer. The dealer D wants to share a secret s from the publically known interval



442 C. Ma and X. Ding

[0 . . . 2l] to the shareholders P over Γ . such that every set of shareholders A ∈ Γ
can reconstruct s, but such that a set of shareholders A /∈ Γ gets no or little
information on s.

There is an adversary which can corrupt at most b servers at most during any
time period. Corrupting a server means learning the secret information of the
server, modifying its data, sending out wrong message, changing the intended
behavior of the server, disconnecting it, and so on. Since the server can be
rebooted , the adversary is a mobile one.

A secret value s ∈ GF (q) will be shared by the servers through the scheme.
The value of s needs to be maintained for a long period of time. The life time
is divided into time periods which are determined by the global clock. At the
beginning of each time period the servers engage in an interactive update proto-
col. The update protocol will not reveal the value of s. At the end of the period
the servers hold new shares of s. The mobile adversary who corrupts b servers in
a time period cannot get any information about the secret value s. The system
can reproduce s in the presence of the mobile adversary at any time.

Share
We use a distribution matrix M ∈ Zd×e and a distribution vector ρ =
(s, ρ2, . . . , ρe)T , where s is the secret, and the ρs

i are uniformly random cho-
sen integers in [0 . . . 2l0+κ] for 2 ≤ i ≤ e, where κ is a security parameter and
l0 is a constant that is part of the description of the scheme. The dealer D
calculates shares by

M · ρ = (s1, . . . , sd)T

where we denote each si as a share unit for 1 ≤ i ≤ d. Let ψ : {1, . . . , d} → P be
a surjective function. The i’th share unit is then given to the i’th shareholder,
we say that ψ(i) owns the i’th row in M . If A ⊆ P is a set of shareholders,
then MA denotes the restriction of M to rows jointly owned by A. We denote
dA as the number of rows in MA. Similarly, for s ∈ Zd let sA ∈ ZdA denote the
restriction of s to the coordinates jointly owned by A.

Reconstruct
For a qualified set A, there is λA ∈ ZdA which gives MAκ = 0 ∈ ZdA ,

sT
AλA = (MAρ)T · λA = ρT · (MT

A · λA) = ρT · ε = s

From [3] we know that the LISS scheme is correct and private. But secret shar-
ing have two problems: one is the security of initialization, although we think
Dealer as a trusty center in many instances, there are many unpredictable fac-
tors practicality, which is difficult to guarantee transmission correctly in network
and malicious attack dealer. Another aspect is efficiency of share units, i.e. how
to ensure the correctness of share units when transmitted from each other. The
next section will show the method to solve these problems.
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3 Verifiable Secret Sharing

To prevent cheating behaviors among secret sharing and recovering. we present
a verifiable LISS scheme with a different method from traditional verifiable
schemes.

Before reconstructing secret, combiner reconstructor first validate share units
from other participators. The following is the detail protocol.

1. Dealer random construct a symmetrical matrix ρ = (ρ0, . . . , ρe−1) =
(ρij)e×e,where ρ00 = s, M is matrix of ISP. Let Mρ00 = (s01, . . . s0d) be share
units and Mρi, for i = 1, . . . e− 1 as public verifiable vectors.

2. Pi sends sψ(i) = Mψ(i)ρ0 to Pj ,
3. After receiving Mψ(i)ρ0, Pj checks whether Mψ(i)ρMψ(j)=Mψ(j)ρMψ(i), if

Pj finds that Mψ(i)ρMψ(j) �= Mψ(j)ρ Mψ(i), Pj broadcasts(i, j).
4. Each Pi computes the maximum subset G ⊆ {1, . . . , n} such that any

ordered pair (i, j) ∈ G ×G is not broadcasted, If |G| ≥ n − b, then Pi outputs
veri = 1; otherwise, Pi outputs veri = 0, and requires Dealer repeat share secret.

It is obvious that every good player computes the same subset G in the end
of share. The reconstruct phase that is the same as stated above.

4 Proactive Secret Sharing

It is dangerous for long live periodic secret. The most efficient method is pro-
cessing. This section introduces share renewal in period to protect this kind of
secret. So in this situation, we can divide life time into time periods: mark the
length of each time period as t, time of share renewal at beginning and end
phase,and keep secret changeless after share renewal.

4.1 Share Renewal Protocol

Each Pi for 1 ≤ i ≤ n random choose vector ρi = (0, ρi2, . . . , ρie), calculates
shares by Mρi = (si1, . . . , sid), where sij is given to pψ(j), i.e. pψ(j) receive
(s1j , . . . , snj), renewal share as st

j = st−1
j + s1j + . . . + snj .

Reconstruct secret: For a qualified subset A we have that

(st
A)T λA = (st

1, . . . , s
t
dA

)T λA = (st−1
1 + s11 + . . . + sn1, . . . , s

t−1
dA

+ s1dA + . . . +
sndA)T λA = (st−1

1 , . . . , st−1
dA

)λA +(s11 + . . .+sn1, . . . , s+1dA + . . .+sndA)λA = s

4.2 Detection of Corrupted Shares

In the proactive secret sharing system, users must be able to ensure that shares
of other users have not been corrupted or lost, and be able to restore the correct
shares if necessary. Otherwise, an adversary could cause the loss of the secret
by destroying shares. This subsection presents a mechanism for detection of
corrupted shares.
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The idea is to save some fingerprint for each share that is common to all the
shareholders, so that periodically, shareholders can compare shares (using secure
broadcast). In order to implement the distributed verifiability of shares, a basic
feature is added to the previous protocol. In each time period, each user stores
the encryptions of all the shares he/she received from the other users.

Definition 6. 1. Pi sends Mψ(i)ρ to Pj, j = 1, . . . , n, j �= i;
2. Pj checks whether Mψ(i)ρMψ(j) = Mψ(j)ρMψ(i), then Pj broadcasts an

accusation listj which contains those i such that Mψ(i)ρMψ(j) �= Mψ(j)ρMψ(i)
or Mψ(i)ρ was not received.

3. Each good player updates the list L so that it contains those i accused by
at least b + 1 players of the system.

4.3 Recovery of Lost/Corrupted Shares

This is a fundamental phase in the proactive scheme, because without it, this
scheme would not be secure against adversaries who disable some users from
performing the required protocol.

After running detection, the system will recover the shares for all players Pl,
where l ∈ L. The recovery protocol is as follows.

1. For each l ∈ L, every good players Pi sends Mψ(i)ρ
k
0 to Pl;

2. Upon receiving the data, Pl computes Mψ(l)ρ
kMψ(i) = Mψ(i)ρ

kMψ(l), Pl

sets Mψ(l)ρ
k
0 + Mψ(l)ρ0 as its shares.

5 Security Analysis

The private and verifiable of our scheme can be illuminated from the follow
theorem.

Theorem 1. The above LISS scheme is private and Verifiable.

Proof. We prove that the above scheme satisfies the conditions of the definition
5 as follows:

1. If a good player Pi outputs veri = 0 , then the size of the maximum subset
G is at most n− b − 1. Thus every good player will output 0;

2. If the dealer is good, then good player receives Mψ(i)ρ
0 .Since ρ is a sym-

metric matrix, Mψ(i)ρMψ(j) = Mψ(j)ρMψ(i) for all good players Pj , Thus all
good players are in the subset G . Therefore veri = 1 for every good Pi ;

3. Suppose at least n − b players output ”1” at the end of the Share. Then
there is a subset G of size n − b such that no one in the subset complained the
others. Since we assume that there at most b bad players , there are at least
n− 2b good players in G, in which who all of them have consistent shares. Thus
there is a qualified set A, λA ∈ ZdA , st:
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s, = sT
AλA = (MAρ)T · λA = ρT · (MT

A · λA) = ρT · ε = s

4. For arbitrary s We have chose ρ = (ρ0, ρ1, . . . , ρe−1), with ρ00 = s, ρij ∈
[0 . . . 2l0+κ] as uniformly random numbers, and secret s ∈ [0 . . . 2l].

Let s′ ∈ [0 . . . 2l] be arbitrary, We first observe that sA = MAρ is the subset of
shares that belongs to A. If A is a forbidden set, there exists a sweeping vector
κ , such that MAκ = 0 ∈ ZdA .

Define ρ, = (ρ0 +(s,−s)κ, ρ1, . . . , ρe−1), then we have Mρ = Mρ, , that is the
shareholders in A see the same shares, but the secret s, was shared instead of s.
Define ρ is good if ρ, = (ρ0 + (s, − s)κ, ρ1, . . . , ρe−1) has entries in the specified
range, as mean to ρ, ∈ [0 . . . 2l0+κ]. That request each ρ0i for i = 1, . . . .e − 1
satisfied :

|ρi|+ 2l · κmax ≤ 2l0+κ

where kmax = max{|a| : a is an entry in some sweeping vector}
So the probability that a ρ0i is not good is :

1− 2l0+κ−2l·κmax

2l0+κ = 2l·κmax

2l0+κ

It follows that the statistical distance between the distribution of A,s shares of s
and s, is at most twice the probability that ρ is not good. Which we can estimate
by the union bound as e − 1 times the probability that a single entry is out of
range. So |s, − s| ≤ 2l. the distance is at most

2 · 2lkmax(e−1)
2l0+k ≤ 2−k

Now the Theorem 1 holds.

6 Optimization of Our Scheme

In this section, we will introduce combinatorial structure [12,14] into our scheme.
The combinatorial structure provides a predetermined arrangement of the servers
which permits the possibility of reducing the computation of the scheme. This
method optimizes our scheme apparently.

6.1 Set Systems

A set system is a pair (X,B), where X is a set of n points and B is a collection
of subsets of X called blocks.

We will use a set system with the following properties:

1. |B| ≥ t for any B ∈ B;
2. For any subset F ⊆ X with |F | ≤ b, there exists a B ∈ B such that

F
⋂

B = ∅. where t ≤ n
4 − 1

It is easy to see that such a set system exists.

Definition 6. A collection T of k-subsets of {1, . . . , n} (called blocks) is an
(n, k, b)-covering if every b-subset of {1, . . . , n} is contained in at least one block.

Theorem 2. A set system T satisfies above properties:1,2 if and only if the set
system
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{1, . . . , n}\T : T ∈ T
is an (n, n− t, b)

It is easy to see that if (X,B) is an (n, n− k, b)-covering, then the set system

{1, . . . , n}\T : T ∈ T
is a set system satisfying our purpose.

6.2 Applying Set System to the Verifiable LISS

The idea of using the set system is to reduce the computations for the share
renewal and recover protocol. In the Section 4, share renewal and recover used
the data from all the participants. However, these operations can be carried out
using the data from good players. So there are redundant computations. On the
other hand, we should be very careful when the good players are selected, since
the adversary is mobile. The good player could turn to bad at any time. Thus
in the scheme of this section, we will actually select correct information instead
of good servers, although we will use ”good player” for convenience.

Now let us use the set system to improve our LISS scheme. Suppose (X,B)
is a set system satisfying the condition of subsection 4.1, where X = {1, . . . , n},
and B = {B1, . . . , Bs}. The set system is published so that each participant can
consult it.

Note that in our scheme, in any phase there is a list L containing all the bad
players. By the property of the set system, there is a block B which contains only
good players. If the system can determine one of the ”good” blocks, then the
system can renew the shares or recover the shares only using the data from these
players. We will call these players as the members of an executive committee.

For a list L of bad players, the system can decide following list of blocks:
Bi1, . . .,Bie, such that Bij ∩ L = ∅, j = 1, . . . , e. These blocks are called ex-
ecutive committee candidates. Note that the adversary is mobile, therefore we
cannot guarantee that these candidates contain only good servers in the next
time period.

The verifiable LISS scheme with combinatorial structure works. In each time
period the system dose the following:

1. Run the Detection to obtain the list L of bad players and the executive
committee candidates: Bi1, . . . , Bie;

2. If an executive committee has not been found, then for next executive com-
mittee candidates B, each Pk ∈ B dose the following:

(1) Each Pk selects a random symmetric matrix ρk = (ρk
0 , . . . , ρk

e−1), where
ρk

ij = ρk
ji, and ρk

00 = 0, M is matrix of ISP. We send Mρk
0 as shares, Mρk

i ,
i = 1, . . . , e− 1 as public verifiable vectors;

(2) Pk sends Mψ(k)ρ
k
0 to Pm, m = 1, . . . , n. Pm checks whether

Mψ(k)ρ
kMψ(m) = Mψ(m)ρ

kMψ(k), If the conditions are not satisfied, Pm broad-
casts an accusation of Pk.

(3) A member in B is accused by at least b + 1 players is bad. If a member in
B is accused by at most b players, then it can defend itself. If no member in B
is bad, then B is found to be the executive committee.



Proactive Verifiable Linear Integer Secret Sharing Scheme 447

3. The system runs the recovery protocol to recover the shares for the players
in L;

4. Each player Pk ∈ B updates its shares:

Mψ(k)ρ
k
0 + Mψ(k)ρ0

The reconstruction protocol is the same as in the Section 3.

6.3 Performance Evaluation

In this subsection, we analyze the efficiency of our scheme more clearly and
explicitly. We claim the scheme is more efficient, according to the two reasons
as follows:

First reason, the traditional Verifiable secret sharing scheme used exponentiation
with pubic key, the cost of computation is tremendous. This paper introduces a
proactive verifiable LISS protocol, whose computation is only the level of integral
multiplication. So this method improves efficiency in the practical application.

The second reason is that we apply combinatorial structure into our scheme.
The combinatorial structure provides a predetermined arrangement of the
servers, which reduce the computations for the share renewal and share recover
protocol. From comparing the difference and advantage between our proposal
and previous scheme, our scheme is more efficient.

7 Conclusion

In this paper, we propose a proactive verifiable Linear Integer Secret Sharing
protocol which improves efficiency in the practical application. Then we de-
scribe the process of shares renewal and recovery carefully and prove it correct,
private and verifiable. We also scheme out a verifiable LISS scheme with com-
binatorial structure which makes the scheme more efficient. Finally, we give the
performance evaluation of this scheme.
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Abstract. A multi-stage secret sharing (MSS) scheme is a method of
sharing a number of secrets among a set of participants, such that any
authorized subset of participants could recover one secret in every stage.
The first MSS scheme was proposed by He and Dawson in 1994, based
on Shamir’s well-known secret sharing scheme and one-way functions.
Several other schemes based on different methods have been proposed
since then. In this paper, the authors propose an MSS scheme using All-
Or-Nothing Transform (AONT) approach. An AONT is an invertible
map with the property that having “almost all” bits of its output, one
could not obtain any information about the input. This characteristic
is employed in the proposed MSS scheme in order to reduce the total
size of secret shadows, assigned to each participant. The resulted MSS
scheme is computationally secure. Furthermore, it does not impose any
constraint on the order of secret reconstructions. A comparison between
the proposed MSS scheme and that of He and Dawson indicates that the
new scheme provides more security features, while preserving the order
of public values and the computational complexity.

Keywords: Multi-stage secret sharing, All-or-nothing transforms,
Resilient functions.

1 Introduction

In order to provide both security and availability for a given secret, one way is
to distribute it among a number of shareholders (participants). The distribution
should be accomplished in such a way that any subset of participants, the size of
which is at least equal to a given number, be able to reconstruct the secret, using
their shares (shadows). More specifically, a (t, n)-threshold secret sharing scheme
refers to the procedure of assigning each of the n participants a private share,
such that every subset of at least t participants could recover the secret. This
concept was introduced by Shamir [1] and Blakley [2] in 1979, independently.
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Later, various features like verifiability of the shares [3], resistance against the
presence of a number of cheaters [4], dynamic change of the threshold and the
number of participants [5] were added to the threshold secret sharing scheme.

A (t, n)-threshold secret sharing scheme is called perfect if less than t partic-
ipants neither could reconstruct the secret, nor obtain any information about
it. It has been shown that in a perfect secret sharing scheme, the size of the
shares should at least be the same as the size of the secret [6]; in the case of
equality, the scheme is referred to as ideal. Now, suppose that there are more
than one secret to be shared among a group of participants. The dealer may
run a perfect threshold secret sharing scheme for each of the secrets and send
the related shares to each of the participants via a secure channel. In this way,
even though the problem is solved, the difficulty of managing the possible large
number of shadows arises. That is, each participant needs to keep multiple shad-
ows to participate in each run of the secret sharing. Besides, protecting shares
from an unauthorized access becomes more difficult, due to the increase in the
number of shares assigned to each shareholder.

The concept of multi-stage secret sharing (MSS) was introduced by He and
Dawson in 1994 [7] to solve the above mentioned problem. An MSS scheme is a
method of distributing many secrets among a set of participants, while each of
them gets only one master shadow. In an MSS scheme, the secrets are recovered
one by one in different stages, possibly according to a pre-specified order. MSS
schemes usually need a number of public values. The shareholders, who wish to
participate in a secret reconstruction stage, derive the corresponding sub-shadow
from their master-shadow and these public values.

The MSS scheme in [7] was based on the Shamir’s polynomial secret sharing,
a one-way (hash) function and the concept of “shift values”. Later, various MSS
schemes were presented based on different methods such as coding approach
[8], congruence relations and Chinese Reminder Theorem [10] and linear equa-
tions [9]. The computational complexity and number of public values are two
important factors for comparing the efficiency of MSS schemes and a number of
publications appeared to reduce the value of these parameters [11] and [12].

In this paper, the authors employ All-or-Nothing Transforms(AONT) to re-
alize the concept of an MSS scheme . An AONT is an invertible and randomized
transformation T, which reveals no information about x even if almost all the
bits of T(x) are known. This concept was first introduced by Rivest [13] and
further improved by Canetti et al. [14]. In the proposed MSS scheme, AONT is
utilized so as to dramatically reduce the size of secret shadows corresponding to
a particular secret. Therefore, one could share more secrets among the partici-
pants by assigning each of them several private values (shadows), the total size
of which is equal to the size of each secret. Regarding the information theoretic
lower bound of shares proposed in [15] and [6], an unconditionally secure MSS
scheme is impossible. More Precisely, to achieve an unconditionally secure (per-
fect) secret sharing scheme, the size of each shadow should be at least equal to
the sum of the sizes of different secrets. This contradicts the definition of the
MSS schemes, which are proposed to reduce the size of the shares. Hence, the
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proposed scheme aims to provide the computational security. The authors com-
pare the new MSS scheme with that of He and Dawson. This comparison shows
that the new scheme provides more security features, while the computational
complexity and number of public values remain almost the same. Moreover, the
secrets should be reconstructed according to a pre-specified order in [7], while
they can be recovered with an arbitrary order in the proposed scheme.

The rest of the paper is organized as follows. In section 2, we briefly review the
MSS scheme proposed by He and Dawson. In section 3, the concept of AONT
is described and some of its features are illuminated. The authors propose the
new MSS scheme in section 4. A thorough analysis of the new scheme together
with a comparison between the proposed scheme and that of He and Dawson is
presented in the subsequent section. Finally, a summary of the whole paper is
given in section 6.

2 He and Dawson’s MSS Scheme

In this section, we briefly explain the earliest MSS scheme proposed by He and
Dawson.

Let p be an odd large prime number. All the values in this scheme are chosen
from the field GF (p). Let s1, s2, . . . , sm denote m secrets to be shared according
to (t, n)-threshold schemes among n participants. Suppose that f : GF (p) →
GF (p) is a one-way function. For any x and any nonnegative integer k, f k(x)
resembles k successive application of f to x. Let x1, x2, . . . , xn be the public
identities of the n participants. The dealer performs the following steps.

1. Choose n random values y1, y2, . . . , yn and privately send yi, i = 1, . . . , n, to
the ith participant as his/her shadow.

2. For j = 1, . . . , m, choose a random polynomial of degree t − 1 with the
constant value equal to sj :

gj(x) = sj + a1,jx + a2,jx
2 + . . . + at−1,jx

t−1 (1)

and compute gj(xi) and di,j = g(xi) − f j−1(yi) for every 1 ≤ i ≤ n. The
values di,j are called shift values. Publish all shift values.

The secrets reconstruction process should be conducted in m successive stages
with j th secret sj reconstructed at the (m-j+1)th stage. When a shareholder pi

wants to participate in the j th secret reconstruction stage, he/she should submit
the value gm−j+1(xi) which can be calculated by adding the sub-shadow f m−j(yi)
to the public value di,m−j+1. Having t points on the function gm−j+1(x), one could
obtain sm−j+1. The pre-specified order of secret reconstruction in this scheme is
needed to guarantee that no information leaks about the shadows corresponding
to the undisclosed secrets from the revealed ones.

A security analysis of this scheme is given in section 5.2.
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3 All-or-Nothing Transforms

The concept of AONT was first introduced in [13]. However, more general de-
scriptions of it and its applications are presented in [14].

Definition 1. An l-AONT is a randomized polynomial time computable trans-
formation T : {0, 1}k → {0, 1}s × {0, 1}p such that [14]:

– For any string x, given (all the bits of) T(x), one can efficiently recover x.
– Any polynomial time adversary that learns all but l bits of the secret part of

T(x), obtains “no information” about x, where the first s bits of the output
indicates the secret part and the last p bits of it represents the public part.

Indeed, all-or-nothing transforms allow to encode any x in such a way that the
encoding is easily invertible, and still, an adversary who learns all but l bits of
the secret part of the encoded data, cannot extract any useful information about
x. Therefore, using AONT, we can protect an arbitrary secret x by storing T(x)
in an “exposure-resilient” way. That is, even if almost all the bits of T(x) are
exposed, no information can be revealed about x.

AONT could be categorized into three classes: AONT with perfect security,
AONT with statistical security and AONT with computational security (for an
exact definition, see [14]). However, the last class of AONT involves parameters
taken from a wider range of values. In addition, in an MSS scheme, we look for
computational security rather than perfect security. Hence, this class of AONT
is taken into consideration hereafter.

There are many approaches towards devising AONT, some of which are apply-
ing a hash function to the message, using a scheme based on an FFT-like arrange-
ment of randomized multi-permutations and an approach based on secret sharing
schemes [13]. Another construction for an AONT T : {0, 1}k → {0, 1}s × {0, 1}k
is presented in [14] in which the process of creating an l -AONT is seen as that
of a one-time-pad encryption. Here, the encryption of x ∈ {0, 1}k is just x

⊕

R,
where R is a random string of length k derived by inserting an l -exposure re-
silient function f : {0, 1}s → {0, 1}k on a secret value r, that is R = f (r). An
l -exposure resilient function is a concept tightly related to l -AONT, which means
that knowing all but l bits of the input, no one could gain any information about
the output[16],[14]. The l -AONT output is the pair (r, x

⊕

f (r)). The following
theorem [14] has been obtained from this construction and it will be used in the
design of the proposed MSS scheme.

Theorem 1. Assume l ≤ s ≤ poly(l) where m = poly(k) indicates that m is
polynomialy bounded in k. There exist functions T : {0, 1}k → {0, 1}s × {0, 1}k
(with secret output of length s and public output of length k), such that T is a
computationally secure l-AONT with l < k ≤ poly(s).

A reasonable setting seems to be s = O(k) (that is just slightly smaller than k)
and l = �sε� to have excellent exposure-resilience [14].
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4 The Proposed AONT Approach to Multi-Stage Secret
Sharing

In this section, we propose an MSS scheme based on l -AONT with computational
security. The value of parameters in the new scheme are derived from the results
of theorem 1.

4.1 Reducing the Share Size in a Secret Sharing Scheme

Before considering the special case of an MSS scheme, here we explain how one
could reduce the size of shares in a secret sharing scheme, using an AONT. To
clarify the technique, the well-known Shamir’s threshold secret sharing scheme
is utilized. However, it could be implemented on any other perfect secret sharing
scheme. The security level of the resulted scheme depends on the secrecy of the
AONT; that is, the scheme would have statistical or computational security if
an AONT with the same level of security is used. As stated before, we just focus
on computationally secure ones.

All secret sharing protocols consist of two processes: distribution and recon-
struction. In the distribution process, a dealer shares a secret and distributes the
shares among participants. In the secret reconstruction process, the shareholders
exchange their shares and reconstruct the secret. In the following, we describe
each process for the secret sharing scheme with reduced share size.

:Let S denotes a secret that the dealer wishes to share among a set {p1, . . . , pn}
of n participants according to a (t, n)-threshold secret sharing scheme. Let p be
a large prime number such that S ∈ GF (p). The dealer first chooses t − 1 arbi-
trary random coefficients a1, a2, . . . , at−1, uniformly distributed over GF (p), and
constructs the following polynomial:

f(x) = S + a1x + a2x
2 + . . . + at−1x

t−1 (2)

Next, he/she chooses n distinct nonzero values x1, . . . , xn ∈ GF (p) as the iden-
tities corresponding to the n participants and calculates y1 = f(x1), . . . , yn =
f(xn), which are values in GF (p). Suppose that all elements in GF (p) have
size k, that is, they could be represented by k bits, where k = �log2p�. The
dealer chooses a computationally secure l -AONT T : {0, 1}k → {0, 1}s × {0, 1}k
with s = O(k) and l = sε for some small 0 < ε < 1. Then he/she computes
the values T(y1), T(y2), . . . , T(yn) and publishes the k + s − l least significant
bits of each (least significant s − l bits of the secret part and all k bits of
the public part). Finally, the dealer sends the l most significant private bits
of T(y1), T(y2), . . . , T(yn) to the n participants as their secret shadows and pub-
lishes the map T and its inverse.

: Let a subset of t participants {pi1 , . . . , pit} come together in order to re-
construct the secret. By appending the corresponding (k + s − l)-bit public
values to their l -bit shadows, the shareholders could obtain the whole bits of
T(yi1), T(yi2 ), . . . , T(yit). Next, they could efficiently recover yi1 , . . . , yit , using
the inverse transform T

−1. Having t points on the secret polynomial of degree
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t− 1, the participants are able to calculate the polynomial and recover the con-
stant coefficient S.

Note that in the above scheme, the size of each share is l/k times of the secret
size which is a small fraction, due to the choice of l -AONT parameters. Indeed,
l/k � sε/s for some small 0 < ε < 1. Below, a multi-stage secret sharing scheme
for m secrets is represented where m denotes �k/l�.

4.2 Sharing Multi Secrets

Let S1, . . . , Sm ∈ GF (p) denote the m secrets to be shared among the par-
ticipants p1, . . . , pn, according to (t, n)-threshold secret sharing schemes. The
dealer performs all steps mentioned in the distribution process of section 4.1
for each secret. Let yi,j = fj(xi) for 1 ≤ i ≤ n and 1 ≤ j ≤ m, where fj(x)
is the polynomial used for sharing the j th secret. In this case, the shadow of
the ith shareholder is the concatenation of the first l bits taken from each of
T(yi,1), T(yi,2), . . . , T(yi,m). Likewise, the public values are comprised of the last
k + s− l bits of each T(yi,j), for 1 ≤ i ≤ n and 1 ≤ j ≤ m.

Now, let a group of t participants {pi1 , . . . , pit} wish to collaborate on recon-
structing the secret Sj in a stage. Each of them first attaches those l private bits
from his/her shadow, which are related to the j th secret, to the corresponding
k + s − l bits of the public values. In this way, they could recover the val-
ues T(yi1,j), T(yi2,j), . . . , T(yit,j). Then, using the inverse map, the cooperating
participants are able to derive the values yi1,j , yi2,j , . . . , yit,j . Finally, using the
Lagrange interpolation, the participants could recover the secret Sj .

fj(x) =
t
∑

u=1

yiu,j

t
∏

v=1,v �=u

x− xiv

xiu − xiv

= Sj + a1,jx + a2,jx
2 + . . . + at−1,jx

t−1 (3)

In the proposed scheme, the total size of each shadow assigned to a participant
is m× l bits which is m× l/k times of the secret size. Regarding that m = �k/l�,
we have m × l/k = �k/l� × l/k � 1. This implies that the share size does
not exceed the secret size. Also, the total size of public values in this scheme is
m×(k+s−l)×n bits, which is �k/l�×(k+s−l)/k×n � �k/l�×(2k−l)/k×n =
�k/l� × (2− l/k)× n � (2m− 1)× n times of the secret size.

It is easy to check that in the proposed scheme, there is not any constraint on
the order of secret reconstruction and the participants could disclose the secrets
at any order they wish. Moreover, the threshold corresponding to the various
secrets could be different. Indeed, it suffices to make use of secret polynomials
with different degrees. A comprehensive analysis of the proposed MSS scheme
and a comparison with that of He and Dawson is presented in the next section.

5 Investigation of the Proposed Scheme

In this section, we discuss about the security and performance of the proposed
scheme in two parts. In the first part, it is shown that the scheme provides
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computational security. In the subsequent part, efficiency of the scheme is inves-
tigated and a comparison with some of other MSS schemes, especially that of
He and Dawson’s scheme is made. The reason behind this choice of the reference
scheme is due to the simplicity of its structure. Moreover, it is the first scheme
which introduced the concept of multi-stage secret sharing [7]. The comparison
results show that the proposed scheme achieves two additional security features,
while preserving the same order of computational complexity and public values.

5.1 Security Analysis

So as to demonstrate that the proposed scheme provides computational security,
we state the following two theorems.

Theorem 2. In the proposed scheme, a group of participants whose number is
less than the threshold t, do not gain any information about any of the secrets
Sj , 1 ≤ j ≤ m.

Proof. To prove this assertion, we assume that there are at most t − 1 par-
ticipants who conspire to discover the secret Sj in one stage. To achieve this
goal, the collaborating participants need to recover t points of fj(x) (as defined
in 3). However, they have at most t − 1 points of it. Since the secret polyno-
mial coefficients are randomly chosen from GF (p) with a uniform distribution,
the secret takes all the values in GF (p) with the same probability when the
unknown point of fj(x) varies over GF (p) (p is a large prime number). Hence,
the cheaters (collaborating participants) obtain no information about the secret.
From the other side, since T(x) is a computationally secure l -AONT, knowing
at most k + s − l bits from T(x), makes it computationally infeasible to gain
any information about x. Hence, the public values do not leak any information
about the shares of non-attendant participants.

Theorem 3. In the proposed scheme, there is no information leakage from re-
constructed secrets to the non-disclosed ones.

Proof. Since all coefficients of every secret polynomial (including the secrets)
are chosen uniformly at random from GF (p), the shares generated by one of
them are independent from those generated by the others. Hence, there is no
information leakage from the reconstructed secret(s) and the revealed shares to
the non-disclosed ones. The two above theorems ensure that the proposed scheme
offers the desired level of security.

5.2 Comparative Results

Here, we compare the proposed MSS scheme with that of He and Dawson from
the following points of view: Number of public values and share size, the com-
putational complexity of the scheme, and security features.

Before investigating the special case of He and Dawson’s scheme [7], we should
remark that the schemes in [8] and [12] focus on reconstructing the secrets simul-
taneously. However, the scheme proposed in [7] and that of this paper have the



456 M. Fatemi, T. Eghlidos, and M. Aref

privilege of recovering the secrets in different stages. Hence, it does not seem rea-
sonable to compare these two types of multi-secret sharing schemes. In addition,
in [10] there is an increase in the share size as a consequence of applying the
Chinese Reminder Theorem on different sub-shadows. Indeed, in this scheme,
the share size is equal to the sum of the secret sizes.

The comparison results between the proposed MSS scheme and [7] are pre-
sented in Table 1. It could be inferred from the results that the share size in
both schemes is nearly the same as the secret size. Note that if the number of
shared secrets in the proposed scheme be less than m = �k/l�, the share size
would be smaller than the secret size. Besides, the number of public values of
the proposed scheme has the same order as in [7]. Precisely speaking, it is two
times of the number of public values in the scheme presented in [7].

The scheme proposed by He and Dawson employs a one-way function in ad-
dition to the Shamir’s threshold secret sharing scheme. However, the proposed
MSS scheme based on l -AONT approach utilizes an all-or-nothing transform to-
gether with the Shamir’s secret sharing scheme. The construction of the applied
AONT is based on a one-time pad encryption and a resilient function. Also,
resilient functions have structures based on one-way functions [14]. As a conse-
quence, both schemes make use of similar structures with the same number of
times (Tabel 1).

Table 1. Comparison of the proposed scheme with that of He & Dawson

He-Dawson’s Prposed
scheme scheme

share size to
secret size ratio 1 m× l/k � 1

No. of
public values m× n (2m− 1)× n

Computational m× Shamir’s scheme m× Shamir’s scheme
complexity (m− 1)× n one-way function m× n AONT

Shadow memory m× n n

In the MSS schemes proposed in [7] and [17], once a number of bits of a
participant’s master-shadow reveals, the security of all of his her sub-shadows
gets compromised. This is a consequence of deriving different sub-shadows from
a master-shadow. This problem is inhibited in our scheme by deriving different
sub-shadows independently.

As a final point, we indicate that in the He and Dawson’s scheme, once a partic-
ipant receives his/her master shadow yi, he/she has to compute all sub-shadows
f(yi), f2(yi), . . . , fm−2(yi), fm−1(yi) since fm−1(yi) is supposed to be the first
sub-shadow he/she would use. This is implicitly equivalent to an increase in the
share size. That is, each shareholder needs m×k bits of memory (shadow memory)
to store m units of k -bit sub-shadow. The larger the share size, the more suscep-
tible shares to the information leakage. On the other side, once a sub-shadow is
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exposed, all of the subsequent sub-shadows, derived from it, get revealed. This
is resulted from applying a one-way function to the participants master shadows
in order to derive their different sub-shadows. The proposed scheme brings this
problem to an end by independently generating the sub-shadows.

6 Conclusions

In this paper, the authors have considered secret sharing schemes with several
secrets and proposed a new approach, based on l -AONT, for multi-stage se-
cret sharing schemes. Under these functions, any bit string is converted to an
exposure-resilient one, that is, having “almost all” bits of the output, one could
not obtain any information about the input. Using this property, the authors
have reduced the share size such that the total size of sub-shadows assigned to
a participant for reconstructing different secrets has become as small as a secret
size. To the best of author’s knowledge, this is the first time that l -AONTs (re-
silient functions) are used to realize secret sharing schemes. The proposed MSS
scheme is compared with that of He and Dawson. The results indicate that the
new scheme has removed the security drawbacks in their scheme, which are re-
sulted from deriving different sub-shadows by applying a one-way function on the
previous sub-shadow. Still, the number of public values and the computational
complexity of the scheme have the same order as those of [7].
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Abstract. Based on Pseudo-Zernike moments and synchronization code, we 
propose a new digital audio watermarking algorithm with good auditory quality 
and reasonable resistance toward de-synchronization attacks in this paper. 
Simulation results show that the proposed watermarking scheme is not only 
inaudible and robust against common signals processing such as MP3 
compression, noise addition, re-sampling, and re-quantization etc, but also robust 
against the de-synchronization attacks such as random cropping, amplitude 
variation, pitch shifting, etc. 

1   Introduction 

Due to the advent of network and computer technology, there has been an explosion in 
growth of the use of digital media through electronic commerce and on-line services. 
Since digital media is easily reproduced and manipulated, anyone is potentially capable 
of incurring considerable financial loss. Digital watermarking is introduced to 
safeguard against such loss. [1].  

Nowadays, there is an unprecedented development in the audio watermarking field. 
On the other hand, attacks against audio watermarking systems have become more 
sophisticated [2]. In general, these attacks can be categorized into common signal 
processing and de-synchronization attacks. Most of the previous audio watermarking 
schemes are robust to common signal processing, but show severe problems to 
de-synchronization attacks. Fortunately, several approaches against the 
de-synchronization attacks have been developed in recent years. These schemes [2] can 
be roughly divided into exhaustive search, invariant watermark, self-synchronization, 
and synchronization pattern.  

Exhaustive search: In [3] and [4], by performing multiple correlation tests, the 
authors applied the detection engine to search for resynchronization. However, 
exhaustive search schemes need large amount of calculation, and often cause false 
alarm. Invariant watermark: Mansour et al. [5-6] proposed a time-scale invariant 
watermarking embedding strategy by changing the relative length of the middle 
segments between two successive maximum peaks of the smoothed waveform. In [7], 
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by using music content analysis, the authors presented a new audio watermarking 
method. The watermark is robust to pitch-invariant TSM but vulnerable to the common 
signal processing. Self-synchronization: In [8], self-synchronization was implemented 
by applying special peak point extraction scheme. In general, the current 
self-synchronization algorithm cannot extract invariant audio feature steadily. 
Synchronization pattern: In [9], the authors chose Bark code which has better 
self-relativity as synchronization mark and embedded it into temporal domain. 
However, this method is vulnerable to some de-synchronization attacks such as 
amplitude variation, pitch shifting, jittering, time-scale modification (TSM) etc.   

Pseudo-Zernike moment is an ideal region-based shape descriptor, with the 
characteristics of rotation invariant, low noise sensitive, expression effectiveness and 
fast computation. It has been widely used for pattern recognition, signal analysis and 
other fields [10]. Based on Pseudo-Zernike moment and synchronization code, we 
propose a new digital audio watermarking algorithm. The watermark bit is embedded 
into the average value of modulus of the low-order Pseudo-Zernike moment. Meanwhile 
combining the two adjacent synchronization code searching technology, the algorithm 
can extract the watermark without the help from the original digital audio signal.  

2   Fundamental Theory and Synchronization 

2.1   Fundamental Theory 

In our audio watermarking scheme, the watermark can be embedded into the host audio 
by 3 steps. Firstly, the original digital audio is segmented and then each segment is cut 
into two parts. Secondly, with the spatial watermarking technique, synchronization 
code is embedded into the statistics average value of audio samples in the first part. And 
then, map 1-D digital audio signal in the second part into 2-D form, and calculate its 
Pseudo-Zernike moments. Finally, the watermark bit is embedded into the average 
value of modulus of the low-order Pseudo-Zernike moments.  

2.2   Synchronization Code 

Synchronization is one of the key issues of audio watermarking. Watermark detection 
starts by alignment of watermarked block with detector. Losing synchronization causes 
false detection. Time-scale or frequency-scale modification makes the detector lose 
synchronization. So we need exact synchronization algorithms based on robust 
synchronization code.  

Generally, we should avoid false synchronization during selecting synchronization 
code. Several reasons contribute to false synchronization: (1) the style of the 
synchronization code, (2) the length of synchronization code, (3) the probability of 
“0”and“1”in synchronization code. Among of them, the length of synchronization code 
is especially important. The longer it is, the more robust it is. 

The proposed scheme embeds Barker code in front of the watermark to locate the 
position where watermark is embedded. Barker codes, which are subsets of PN 
sequences, are commonly used for frame synchronization in digital communication 
systems. Barker codes have low correlation side lobes. A correlation side lobe is the 
correlation of a codeword with a time-shifted version of itself.  
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3   The Pseudo-Zernike Moments 

Pseudo-Zernike moments consist of a set of complex polynomials [11] that form a 
complete orthogonal set over the interior of the unit circle, 122 ≤+ yx . If the set of these 

polynomials is denoted by{ }),( yxVnm , then the form of these polynomials is as follows 

)exp()(),(),( θρθρ jmRVyxV nmnmnm ==  (1)

where 22 yx +=ρ , ( )xy1tan −=θ . Here n  is a non-negative integer, m  is 

restricted to be nm ≤  and the radial Pseudo-Zernike polynomial )(ρnmR  is defined 

as the following  
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Like any other orthogonal and complete basis, the Pseudo-Zernike polynomial can be 

used to decompose an analog 2-D signal ),( yxf  
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where nmA  is the Pseudo-Zernike moment of order n  with repetition m . Given a 2-D 

signal of size NM × , its Pseudo-Zernike moments (approximate version) are computed as  
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where the value of i and j  are taken such that 122 ≤+ ji yx , and  
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N
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2=Δ , ( )jinm yxh ,  can be computed to address the nontrivial issue 

of accuracy. In this research, we adopt the following formulas (6) which are most 
commonly used in literature to compute Pseudo-Zernike moments of discrete 2-D 
signals, and the orthogonality and completeness of the Pseudo-Zernike yield the 
following formula (7) for reconstructing the 2-D signal. 
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4   Analysis of Audio Pseudo-Zernike Moments 

In this paper, the digital watermark will be embedded into original audio signal by 
utilizing the excellent characteristics of Pseudo-Zernike moments. However, in 
transmission process, audio signal (or watermarked audio) may suffer from attacks 
such as low-pass filtering, MP3 compression, and amplitude variation etc, which will 
impact the audio Pseudo-Zernike moments unavoidably. So, it is very necessary to 
analyze the audio Pseudo-Zernike moments and select the stable audio Pseudo-Zernike 
moments for embedding. 

4.1   Decomposition and Reconstruction of Audio Pseudo-Zernike Moments 

Digital audio signal is one-dimensional (1-D) discrete signal, and the two-dimensional 
(2-D) Pseudo-Zernike transform cannot be performed on digital audio directly, so the 
1-D digital audio { })(ig  must be mapped into a 2-D form { }),( yxf  by using the 

following 

( ) ( )⎩
⎨
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≤≤+⋅=
+<≤+×=

RyxyRxgyxf

RMMRRL

,0,,

120,
(8) 

where ),( yxf  is corresponding 2-D audio version after projection, L  is the length of 

1-D digital audio, M  is the rest of audio samples, and R  is the width or height in 
),( yxf  which should be as large as possible under the constraint of Equation (8).  

After mapping, Pseudo-Zernike decomposition and reconstruction procedures on audio 
signal are performed by using Equation (6) and (7). For the convenience of explaining the 
audio Pseudo-Zernike decomposition and reconstruction, we choose a clip from our test  
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Fig. 1. The original audio and the reconstructed audios under the different order 
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data set, flute music denoted as origin.wav (16-bit signed mono audio file with the length 
of 1.25s), for testing under different sampling rate from 8 kHz to 44.1 kHz. The number of 
the given max order maxN  is assigned to 4, 10, 20, 30, and 40, respectively. The 

waveform of original one and the reconstructed audios are aligned in Fig.1 (Here, the 
sampling rate is 8 kHz, and the audio signal is mapped into 100×100 form).  

In Fig. 1, origin.wav is the original audio while AudioWithOrder*.wav denote the 
reconstructed ones, in which maxN  is assigned as ‘*’. It is noted that the low-order 

moments captured the basic shape of audio signal while the higher order ones fill the high 
frequency details. This observation is similar to that in images [11]. The degradation 

caused in reconstruction procedure is due to that when maxN  is lower the high frequency 

information is discarded, while maxN  is higher the cumulative computation error occurs 

in the reconstruction [11]. Referred to Fig.1, it is evident that the reconstruction 
degradation from limited moments is unavoidable. As to other kinds of audio, such as pop 
music, piano music and speech, etc., the simulation results are similar.  

4.2   Selection of Audio Pseudo-Zernike Moments  

In the following experiment, we investigate the robustness performance of audio 
Pseudo-Zernike moments to common signal processing. We choose a clip flute music 
denoted as music.wav (16-bit signed mono audio file sampled at 44.1 kHz with 250000 
audio samples), for testing. First, the digital audio is mapped into 500×500 form. And 
then, the following mathematical expression is designed to compute the modification of 
moments before and after audio processing. 

∑∑ == nmbnnman ZEZE ",  (9) 

where nmZ , ''
nmZ  are the modulus of Pseudo-Zernike moments of order 

n ( max0 Nn ≤≤ ) with repetition m . anE
 
and bnE  denote the total amplitude of all 

moments with the given order n  before and after audio processing, respectively.  
 
1) The influence of low-pass filtering on audio Pseudo-Zernike moments 
Fig. 2 shows the influence of low-pass filtering on audio Pseudo-Zernike moments 
under different cutoff frequency. We can see that the Pseudo-Zernike moments under 
order 20, with cutoff frequency of 0.8 kHz, are very robust to low-pass filtering. 
 

2) The influence of MP3 compression on audio Pseudo-Zernike moments 
Fig. 3 shows the influence of MP3 compression on audio Pseudo-Zernike moments 
under different bit rates. We can see that the Pseudo-Zernike moments under order 10, 
with the lowest bit rate of 32 kbps, are very robust to MP3 compression. 

 

3) The influence of amplitude variation on audio Pseudo-Zernike moments 
Fig. 4 gives the influence of amplitude variation on audio Pseudo-Zernike moments 
(Scaling factor α  is 0.8 and 1.2, respectively). We can see that the relation between 
audio amplitude and its Pseudo-Zernike moments is linear.  
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Fig. 2. The effects of low-pass filtering on audio Pseudo-Zernike moments under different cutoff 
frequency  
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Fig. 3. The effects of MP3 compression on audio Pseudo-Zernike moments under different bit 
rates  
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Fig. 3. (Continued) 
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Fig. 4. The relationship between amplitude variation and Pseudo-Zernike moments 

We select flute music as the example clip to test the effect of MP3 compression, 
low-pass filtering and amplitude variation. As to other kinds of audio, such as pop 
music, piano music and speech, etc., the simulation results are similar. Based on the 
extensive testing with different audio signals, we have the following observations:  

 

i) Pseudo-Zernike transform of 1-D signal may be achieved by mapping the signal 
into 2-D form. It is noted that the low-order moments capture the basic shape of the 
signal but the reconstruction degradation from Pseudo-Zernike moments is large and 
unavoidable. 

ii) Based on the extensive experiments, it is also found that the low-order 
Pseudo-Zernike moments are robust to common signal processing. The moments under 
order 10 are very robust to MP3 compression even with the lowest bit rate of 32 kbps. 
The moments under order 20 are robust to low-pass filtering up to with cutoff 
frequency of 0.8 kHz. 
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iii) Scaling linearly audio amplitude not only can change the audio Pseudo-Zernike 
moments, but also is insensitive to human perceptual system. The relation between 
audio amplitude and its Pseudo-Zernike moments is linear. 

As a conclusion, if we embed the digital watermark into that Pseudo-Zernike 
moments under order 10 and try to avoid the degradation in reconstruction procedure, it 
is expected that the watermark will be very robust to common signal processing and 
some hostile attacks.  

5   Watermark Embedding Scheme 

We propose a new audio watermarking scheme in which the Pseudo-Zernike moments 
and synchronization code are utilized. Firstly, the original audio is segmented and then 
each segment is cut into two parts. Secondly, with the spatial watermarking technique, 
synchronization code is embedded into the statistics average value of audio samples in 
the first part. And then, map 1-D digital audio signal in the second part into 2-D form, 
and calculate its Pseudo-Zernike moments. Finally, the watermark bit is embedded into 
the average value of modulus of the low-order Pseudo-Zernike moments.  

Let }0),({ LengthiiaA <≤=  represent a host digital audio signal with Length  

samples.  
}0,0),,({ NjMijiwW <≤<≤=  represent a binary image to be embedded 

within the host audio signal, and }1,0{),( ∈jiw  is the pixel value at ( )ji, .       

( ){ iifF ≤= 0, }Lsyn<  represent a synchronization code with Lsyn  bits, 

where { }1,0)( ∈if . 

The main steps of the embedding procedure based on Pseudo-Zernike moments and 
synchronization code can be described in detail as follows.  

5.1   Watermark Preprocessing 

In order to dispel the pixel space relationship of the binary watermark image, and 
improve the robustness of the whole digital watermark system, watermark scrambling 
algorithm is used at first. In our watermark embedding scheme, the binary watermark 
image is scrambled from W  to 1W  by using Arnold transform, where Then, it is 

transformed into a 1-D sequence of ones or zeros, and each bit of the watermark data is 
mapped into an antipodal sequence using BPSK modulation: 

}0,0),,({ 11 NjMijiwW <≤<≤=  

}}1,0{)(,,0,0),,()({ 2122 ∈+×=<≤<≤== kwjNikNjMijiwkwW  (10) 

}}1,1{)(,1,,1,0,)(21)({ 3233 −∈−×=×−== kwNMkkwkwW L
 

 

In order to improve the robustness of proposed scheme, audio segmenting is used at first. 
Then, each segment is cut into two parts with 1L  and 

2L  samples, respectively, where 

}0),({)( LkkiLaiA <≤+=  ⎣ ⎦)0( L
Lengthi <≤

 
(11) 
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Where 21 LLL += , nLsynL ×=1 , n  is a constant and is chosen to be 5 samples in 

our experiment, 92 ××××= NMRRL  (We use 9 sub-segments to embed 1 

watermark bit). 

5.2   Synchronization Code Embedding 

In order to guarantee robustness and transparency of watermarking, the proposed 
scheme embeds synchronization code into the statistics average value of audio samples 
as follows. 

1) The first part 0
1A  of audio segment 0A  is cut into Lsyn  audio sub-segments, and 

each audio sub-segment )(0
1 mPA  having n  samples, where 

{ }LsynmninmiaimpamPA <≤<≤×+== 0,0),())(()( 0
1

0
1

0
1  

2) Calculating the average value of )(0
1 mPA : 
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3) The synchronization code can be embedded into each )(0
1 mPA  by quantizing the 

average value )(0
1 mPA , the rule is given by 
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where }0),)(({)( 0
1

0
1 niimpamPA <≤=  is original sample, and 

}0),)(({ 0
1

0
1 niimpaPA <≤′=′

 is modified sample. 

5.3   Watermark Embedding 

1) The second part 0
2A  of audio segment 0A  is cut into audio sub-segments and each 

audio sub-segment )(0
2 kA  )19,,1,0( −××= NMk L  is chosen to have RR ×  

samples.   
2) The audio sub-segment )(0

2 kA  is mapped into 2-D form, and low-order 

Pseudo-Zernike moments are calculated. Then, the total modulus of the low-order 
Pseudo-Zernike moments is given 

∑∑
=

=
max

0

N

n m
nmk ZS

where kS  is the total modulus of the Pseudo-Zernike moments for the thk  audio 

sub-segment )(0
2 kA , nmZ  is the low-order Pseudo-Zernike moments of order n  

with repetition m . And in this paper, maxN =10.   
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3) Three successive sub-segments are selected as a group (sub-segment group), and 

the average value of modulus of the low-order Pseudo-Zernike moments for the thr  
Sub-segment group is  

3
11 +− ++= kkk

r
SSSAVE (12) 

4) Let the average values of modulus in the three consecutive sub-segment groups be 

represented as 1−rAVE , rAVE  and 1+rAVE . Their relations may be obtained from 

the following Equation 
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where A  and B  stand for the differences, respectively. And 

),,( 11max +−= rrr AVEAVEAVEMaxE
 

),,( 11min +−= rrr AVEAVEAVEMinE  

So we can exploit the following Equation to embed one digital watermark bit )(iw  
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where 3
)( 11 +− ++⋅= rrr AVEAVEAVEdT  is the embedding strength, and d  

is the intensity factor.  

If the Equation (14) holds, we will embed the watermark bit )(iw  directly; else we 

use the strategy as followed in Table I to adjust maxE , medE
 
and minE  until they satisfy 

Equation (14). 
5) The sub-segments are reconstructed by using the modified Pseudo-Zernike 

moments. Assumed that after embedding one digital watermark bit, 1−rAVE , rAVE  

and 1+rAVE  go to '
1−rAVE , '

rAVE  and '
1+rAVE , respectively. It is equivalent to 

scale 1−rAVE , rAVE  and 1+rAVE  by using the corresponding factor 1−rα , rα  
and 1+rα , which may be computed by the following expressions 
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According to the analysis of audio Pseudo-Zernike moments, we can know that the 
relationship between audio amplitude and its Pseudo-Zernike moments is linear (see 
Section 4.2, Fig.4). It means that the modification of Pseudo-Zernike moments may be 
mapped as the operation of scaling audio amplitude. Using this conclusion, we  
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Table 1. The adjust Strategy of minmax ,, EEE med  

If embedded watermark bit w3(i) is '1' and
A-B<T: 

Step 1: Emax increase. 
Step 2: 
      If (Emed>Emin) 
          Emed reduce, Emin increase. 
      Else if (Emed<=Emin & Emin >0) 
               Emed reduce, Emin reduce. 

If embedded watermark bit w3 (i) is '-1' and 
B-A<T: 

Step 1: If (Emin >0) 
      Emin reduce. 
Step 2: If (Emax>Emed) 
       Emax reduce� Emed increase. 
   Else if (Emax<=Emed) 
          Emax increase, Emed increase. 

 
introduce the following strategy to generate the watermarked audio by scaling the 
sample values in each sub-segment, referred to Equation (16). 
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(16) 

where rα  is the amplitude scaling factor of the thr  audio sub-segment group (It has 

three successive sub-segments, ),(1 yxfk − , ),( yxfk , and ),(1 yxfk + ), computed 

by using Equation (14). ),( yxfk  and ),('k yxf  
denote the thk  sub-segment of the 

original 2-D signal and the watermarked 2-D signal, respectively.  

5.4   Repeat Embedding 

In order to improve the robustness against cropping, the proposed scheme repeats 5.2 and 
5.3 sections to embed synchronization code and watermark into every audio segment. 

Finally, by using Equation (8) we obtain the reconstructed watermarked audio 'A .  

6   Watermark Detecting Scheme 

The watermark detecting procedure in the proposed scheme neither needs the original audio 
signal nor any other side information. The synchronization code detection and digital 
watermark extraction are two key steps in the whole watermark detection procedure. 

6.1   Synchronization Code Detection 

Synchronization code detection refers to check the synchronization code in the audio 
data segment covered by the window (the size is 1L ), and synchronization code 

detection can be described as follows.  

1) According to Section 5.2, the average value )(* mPA  of former mn×  audio 

samples )(mPA∗  in the audio data segment (covered by the window) is calculated.  

{ }LsynmninmiaimpamPA <≤<≤×+== 0,0),())(()( ***
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2) The synchronization code is extracted by using below rule 

}0   ,2mod)()({ *
1

*

Lsynm
S

mPAmfF <≤⎥
⎦

⎥
⎢
⎣

⎢
=′=′

 

where *
1S  is the quantization step size. 

3) In order to avoid effectively false synchronization, the frame synchronization 
technology of digital communications (The bit comparison) is utilized for identifying 
the synchronization code. That is to say, if the extracted synchronization code is same 
completely as the original one, the synchronization code is thought to be found, and the 
corresponding position is recorded.   

6.2   Digital Watermark Extraction 

In this paper, digital watermark is extracted from the audio data segment between two 
adjacent synchronization codes. 

1) The audio data segment 
*0

2A (the size is *
2L ), which is candidate audio segment 

for watermark extraction, is defined by two adjacent synchronization codes.  

2) The audio data segment 
*0

2A  is cut into audio sub-segments and each audio 

sub-segment )(
*0

2 kA  is mapped into 2-D form. Then, the low-order Pseudo-Zernike 

moments are calculated. See Section 5.3. 
3) As in Equation (12), we compute **

1, rr AVEAVE −
 and *

1+rAVE , which are ordered 

to obtain *
maxE , *

medE
 
and *

minE . Similar to Equation (13), we have 
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Comparing *A  and *B , we can get the hidden watermark bit by using the following rule 
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The process is repeated until all hidden watermark bits are extracted. 
4) Step 1)-step 3) is repeated until several copies of watermark are extracted, and the 

optimal digital watermark })({ *
4

*
4 iwW = )1,,1,0( −×= NMi L  is obtained 

according to the majority rule.  

5) The 1-D binary sequences *
2W  is obtained by BPSK demodulating the optimal 

watermark *
4W  

}}1,0{)(,1,,1,0,2/))(1()({ *
2

*
4

*
2

*
2 ∈−×=−== kwNMkkwkwW L  
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6) The 1-D binary sequences *
2W  are rearranged to form the binary watermark 

image *
1W . 

7) Finally, the watermark image 

}0,0),,({ ** NjMijiwW <≤<≤=  

can be obtained by descrambling. 

7   Experimental Results 

In order to evaluate the performance of our scheme, performance test and robustness 
test are illustrated for the proposed watermarking algorithm. All of the audio signals in 
the test are music with 16 bits/sample, 44.1kHz sample rates, and 20 seconds. We use a 
16×16 binary image as our watermark for all audio signals and a 16-bit Barker code 
1111100110101110 as synchronization code. The quantization step 1S =0.2, the 

intensity factor d =0.2, the audio sub-segment is mapped into RR × =8×8 2-D form, 

and maxN
=8.  

In order to illustrate the robust nature of our watermarking scheme, common signal 
processing and de-synchronization attacks are used to estimate the robustness of our 
scheme, as shown in Table 2. The PSNR of proposed algorithm is 40.39dB. 

Table 2. The watermark detection results for various attacks (BER) 

Attack free 
Re- 

quantization 

Re-sampling 
(22.05kHz~8k

Hz) 

Low-pass 
filtering 

(9kHz-3kHz) 

Low-pass 
filtering (6kHz) 

0 0 0 0 1.75 

MP3 
(256kb~56kb) 

Equalization  Noise addition  Echo addition 
Low-pass 

filtering (2kHz) 

0 0 0 6.25 4.47 

Cropping  
(1s~6s)  

Adding  
(1s~2s) 

Pitch shift one 
degree higher 

Pitch shift one 
degree lower 

Amplitude-scal
ing 

(180%~10%) 

0 0 0 0 0 

TSM（+1%） TSM（-1%） TSM（-2%） TSM（-3%） TSM（-4%） 

38.28 46.48 46.09 50.78 53.52 

Low-pass 
filtering(4kHz) 
+ Cropping  1s 

Re-sampling 
(11.025kHz) + 

Low-pass 
filtering (8kHz) 

Re-sampling 
(22.05kHz) + 
Cropping 1s 

Low-pass 
filtering(8kHz) 
+ Amplitude 

-scaling 150% 

Noise addition 
+ Amplitude 
-scaling 50% 

0 0 0 0 0 

Noise addition 
+ MP3(112k) 

Re-quantizati
on + Noise 

addition  

Equalizatio
n + Cropping 1s 

Re-quantiza
tion + Adding 

1s 

Noise 
addition + 

Cropping 1s 

0 0 0 0 0 
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8    Conclusion  

De-synchronization attacks are the Achilles heel for many audio watermarking 
schemes. Based on Pseudo-Zernike moments and synchronization code, we propose a 
new digital audio watermarking algorithm with good auditory quality and reasonable 
resistance toward de-synchronization attacks in this paper. Simulation results show that 
the proposed watermarking scheme is not only inaudible and robust against common 
signals processing but also robust against the de-synchronization attacks. In addition, 
the watermark can be extracted without the help of the original digital audio signal and 
can be easily implemented.  
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Abstract. We developed an efficient and secure image sanitizing scheme
that enables integrity check and authentication of a sanitized image.
Sanitizing is to delete or conceal sensitive data such as national secrets or
personal information in digital images/documents. With a typical digital
signature or digital watermarking scheme, a sanitized image cannot be
authenticated because the integrity of the content is broken when it is
sanitized. Our image sanitizing scheme solves this problem by combining
a digital signature, digital watermarking and error correction technique
with Reed-Solomon (RS) code. In addition, due to the RS encoding, we
can realize the lightweight image sanitizing with small signature size,
which is quite significant for the practical implementation. Furthermore,
we investigate the security of our image sanitizing scheme. Considering
the security requirements for image sanitizing, our scheme turned out
to be quite effective to safely release a sensitive image to the public.
The detailed explanation of our image sanitizing scheme and its security
evaluation are given in this paper.

1 Introduction

When digital documents or images are published in the Internet, guaranteeing
their integrity and authenticity is essential to prevent malicious activities such as
impersonation and falsification. For such purpose, digital signature and digital
watermarking are widely used in various applications. In addition, when digital
contents are released to the public, sensitive information, for example personal
data and national secretes, should be deleted or concealed for the privacy and
security. The data processing to delete/conceal sensitive information is called
sanitizing. Sanitizing, however, causes a problem that the sanitized content is
not correctly authenticated since the integrity of the data is broken when it
is sanitized. A naive use of a digital signature or digital watermarking cannot
achieve both content sanitizing and authentication. Note that generating a dig-
ital signature after sanitizing is not the solution because the time stamp of the
original signature cannot be restored.
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This problem is first pointed out in [1] as the digital document sanitizing prob-
lem, and several studies tackling this problem have been reported so far [1,2,3,4,5].
As for the image sanitizing problem, only a few studies have been reported as far
as the authors know [6,7]. In this paper, we propose an efficient and secure im-
age sanitizing scheme combining the digital signature, digital watermarking and
Reed-Solomon (RS) code. The previous study [7] only uses a digital watermark
and RS code, and therefore, the authenticity of the embedder of the watermark
is not considered and the watermark can possibly be fabricated. Our scheme
solves this vulnerability by utilizing a digital signature.

In this paper, we explain the detailed model and procedure of the proposed
sanitizing scheme. To discuss the security of our scheme, we also present the
categories of the attacks against sanitized data and security requirements for
the image sanitizing. Then we clarify the feasibility and effectiveness of our
sanitizing scheme by comparing its performance with the past studies.

The rest of this paper is organized as follows. Section 2 describes the outline
of the related works and their problems. Section 3 explains our image sanitizing
scheme and gives the model of our scheme, assumption of the attackers, and
security requirements for image sanitizing. Section 4 evaluates the security of
our sanitizing scheme, and finally Section 5 summarizes our study.

2 Related Work

2.1 Digital Signature-Based Document Sanitizing

The sanitizing problem of digital content has been mainly studied in document
sanitizing. Some studies have applied a digital signature technique to authenticat-
ing sanitized digital documents [1,2,3,4,5]. These sanitizing schemes are the three-
party model that consists of a signer, sanitizer(s) and verifier. The signer generates
a signature of the document with a secret key. Then, the documents and signature
are transferred from the signer to the sanitizer. The sanitizer divides the document
into sanitize-allowed blocks (hereinafter SA) and sanitize-prohibited blocks (here-
inafter SP), and sanitizes some of the SAs if necessary. Note that simply masking
the SA with random data will destroy the integrity of the document and conse-
quently the authentication will fail. Therefore, special mask data for document
sanitizing must be calculated in advance. Due to this mask data, the past sanitiz-
ing studies suffer from a large amount of data to transfer and its long computation
time. Then finally, the sanitized image and the signature are transferred to the
verifier. The verifier checks the digital signature and accepts the image only if the
authenticity of the image is successfully verified.

Miyazaki et al. proposed the digital document sanitizing scheme which can
control the disclosure condition [2]. The disclosure condition is the information
about which blocks of the document are SAs and which are SPs. In this scheme,
an SA includes original document and its pre-calculated mask data, while an
SP has only the original document. By deleting the pre-calculated mask data,
the SA is unable to be sanitized and thus changed to the SP. Miyazaki et al.
improved this scheme by using the aggregate signature based on bilinear maps [3].
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This scheme can hide the number of the sanitized blocks. However, the digital
signature must be recalculated whenever the disclosure condition is updated.

Izu et al. proposed the sanitizable signature scheme where verifiers can au-
thenticate the sanitizer, and thus, the malicious sanitizers can be eliminated [4].
However, this scheme also suffers from the inefficiency due to the requirement
of pre-calculated mask data. As described above, the past studies have been
suffering from the large data size and long computation time since they must
always handle the large data set: the original document, digital signature and
pre-calculated mask data. Therefore, simply applying the digital signature for
document sanitizing is neither efficient nor practical.

2.2 Digital Watermark-Based Image Sanitizing

Digital watermarking is a technique to secretly embed information in an image.
The principle of the digital watermarking is that, even if secret information
is scattered in an image, one cannot detect the subtle change of the image.
Therefore, the digital watermark cannot be utilized for document sanitizing. The
digital watermarking can be applied to authentication and is practically used for
protecting the copyright of digital publications and so on. If the integrity of the
watermark is broken, one cannot prove that the publication surely belongs to
the author. Therefore, the digital watermark should be tamper-resistant for the
purpose of authentication.

To the contrary, for tamper-detecting purpose, the digital watermark should
be fragile [8,9,10,11]. If the embedded watermark is broken, the image turns
out to be tampered. In this paper, we refer to the fragile digital watermark as
a tamper-detecting watermark. Kawadu et al. proposed the digital watermark-
based image sanitize scheme utilizing fragile watermarks [6,7]. Their scheme is
the three-party model which consists of an embedder of the digital watermark,
sanitizer(s) and verifier.

The scheme proposed in [6] embeds tamper-detecting watermarks into each
SPs. Verifying the watermarks, one can detect tampering with the SAs and SPs,
and fabrication of the SPs. This scheme, however, cannot detect fabrication of
the SAs. Moreover, this scheme requires the information about which blocks
are SAs/SPs, and therefore, it is not efficient for the practical implementation.
The scheme proposed in [7] embeds symbols of RS code as a tamper-detecting
watermark. Using RS code, the verifier does not need to know the position of
SAs/SPs. This scheme, however, does not utilize a digital signature and cannot
detect fabrication of the watermark. Additonally in [6,7], the model of the
scheme is ambiguous and the security issues are not well considered.

3 The Details of the Image Sanitizing Scheme

3.1 System Model

Our image sanitizing scheme includes four types of players: Client, Embedder,
Sanitizer(s) and Verifier. Each players is described as follows:
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Client is the person who wants to release a digital image to the public. As shown
in Fig. 1, Client divides the image into several blocks, and each of the blocks is
assigned as a sanitize-allowed block (SA) or sanitize-prohibited block
(SP). Though determining SAs and SPs in advance of sanitizing seems a
strong restriction, our scheme works quite well in practice since only limited
blocks are assigned as SAs.

Embedder generates a digital signature of the image, encodes the signature
using RS encoding, and embeds the code in the image as a digital watermark.
Since data in SA can be changed by sanitizing, the signature is generated only
from SPs to maintain the consistency of the signature, while the signature
is embedded in both SAs and SPs.

Sanitizer sanitizes SAs inappropriate for disclosing to the public. When san-
itizing the SA, all the data bits are changed into 0. Note that any addi-
tional mask data for sanitizing is not required in our scheme, while the
pre-calculated mask is required in the previous studies.

Verifier authenticates the transferred image by extracting and verifying the
watermark embedded in the image. Note that the verifier does not need to
know which blocks are SAs/SPs.

These four types of players are not necessarily the different persons. For example,
Client and Embedder can be the same person.

3.2 Attack Models

To concentrate on the security issues on sanitizing scheme, we assume that the
channels among the players are secure. Insecure channels should be protected
using some proper technology, e.g., PKI. We assume that the client and embedder
are honest, and the sanitizer(s) and verifier can be dishonest. In this model, we
define the anticipated attacks as follows:

Recovery attack is to restore the original image from the sanitized image,
embedded watermark and so on. If the original image is restored by an
attacker, the attack is considered as succeeded.

Alteration attack is to alter the image data in SPs. If an SP is altered and the
alternation is not detected by Verifier, the attack is considered as succeeded.
Altering the data in SAs is legitimate and is not considered as an attack.

Forgery attack is a trial to generate a counterfeit SP that would pass the
verification. If the counterfeit SP is not detected by Verifier and passes the
verification, the attack is considered as succeeded.

3.3 Security Requirements

Here we describe the security requirements of image sanitizing necessary for
safely releasing an image to the public. In our scheme, we introduce three secu-
rity requirements: Privacy, Inalterability and Unforgeability; the previous work
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Fig. 1. Example of an image and its
SA/SP blocks

Fig. 2. The procedure for Reed-Solomon
(RS) encoding

proposed Invisibility instead of Inalterability [3]. Invisibility is the requirement
that the verifier cannot determine the number of the sanitized blocks. The re-
quirement Invisibility, however, constrains the intuitive image sanitizing which
we are aiming at, and consequently, Invisibility is not adopted in our scheme.
The security requirements in our scheme are summarized as follows:

Privacy: The original image is not restored from the sanitized one.
Inalterability: Altering the data in SPs can be detected.
Unforgeability: The verifier can verify whether the transferred image is cor-

rectly sanitized, in other words, the verifier can check if the watermark is
generated by the authorized embedder.

3.4 The Detailed Procedure

As described in section 3.1, our image sanitizing scheme includes 4 players:
Client, Embedder, Sanitizer and Verifier. First, Client divides the image into
several blocks and each block is assigned as an SA or SP. Then Embedder calcu-
lates the digital signature from the SPs and embeds it as a watermark into both
SAs and SPs. Next, Sanitizer sanitizes some blocks which includes sensitive data,
and finally Verifier extracts and verifies the embedded watermark. The detailed
procedure is explained as follows.

SA/SP setting

1. Client divides the original image into G blocks.
2. Client designates the sanitize-allowed blocks as SAs, and the rest of the blocks

as SPs. The number of the SAs is G− L and the number of the SPs is L.
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Watermark embedding

1. Embedder looks for the blocks including secret or sensitive data, and des-
ignate such blocks as SAs and others as SPs. Embedder embeds the code
symbols (sanitizing watermark) to the determined blocks.

2. Embedder determines the position to embed the watermark for each SA/SP.
3. Embedder divides the signature into K (= 2L) portions.
4. Embedder generates (K − 1)-dimensional information polynomial p(x) from

the information bits, and generates an RS code as follows:
Cp = {p(0), p(1), p(α), . . .}.
Here, Cp consists of N code symbols (Fig. 2).

5. Embedder embeds 2 code symbols into the particular position of each SA/SP.
In the SA, one of the two symbols is intentionally erroneous; In the SP, both
of the 2 symbols are correct. Due to this intentional error, tampering with
the SP is surely detected.

6. Embedder embeds another tamper-detecting watermark to the SA separately
from the watermark generated using RS code.

Sanitizing

1. Sanitizer determines which SAs should be actually sanitized.
2. Sanitizer sets all pixel values to zero in the selected SA. The image in the

SA is blacked out and all information in the SA is deleted.

Verification

1. Verifier extracts the code symbols of RS code from non-sanitized SA/SPs ,
and decodes the code to obtain the digital signature. If the decode process
fails, the image is considered as fraudulently tampered.

2. If the code is correctly decoded, the block including the intentional error
symbol is considered as an SA, and others as SPs. Then, Verifier concatenates
the SPs(excluding the code symbols), and calculates and verifies the digital
signature of the concatenated data.

3. Verifier extracts and verifies the digital watermark from SAs to check if the
SAs are tampered.

3.5 Example

Here we consider sanitizing a VGA-size (640×480) image. The size of the divided
block is 16 × 16, and therefore, there are totally 1200(= G) blocks and 2400(=
2G = N) code symbols in the image. Let r be the number of digits of the code
length N . In this example, r ≥ 12 [bits] because 2r > N . Let S be the signature
length and here we suppose S = 1024. Since the number of the information
symbols K must satisfy the inequality r > S/K, K must be K = 2L ≥ 86
because r ≥ 12. Therefore, the number of the SPs L must be equal to or larger
than 43. Presumably, secret or sensitive data are included only in the limited
blocks of the image, and thus, the inequality L ≥ 43 will be satisfied in most
cases. To sum up, in this example, two 12-bit symbols (24-bit symbols) are
embedded into each SA/SP.
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4 Considerations

4.1 Decoding Conditions

Let e be the number of the error symbols and h be the number of the erasure
symbols. The decoding condition in RS code is described as follows:

2e + h ≤ N −K.
Assume that the number of sanitized SAs and sanitized SPs are y and y′,

respectively. Let E(= G − L) be the number of the error symbols of the pre-
sanitized image, then the decode condition is 2(E−y)+2(y+y′) ≤ N−K. After
embedding the watermark, since parameters satisfies 2E = 2(G− L) = N −K,
the decode condition is y′ ≤ 0. On the other hand, y′ is the number of the
sanitized areas and satisfies y′ ≥ 0. Therefore, p(x) can be decoded only when
y′ = 0, that is, p(x) is decoded only when no SP is tampered.

4.2 Evaluation of the Security Requirements

This section evaluates if the proposed scheme satisfies the security requirements
described in Section 3.3.

Privacy: Both of the original image data and the watermark in the SA are
deleted when the SA is sanitized. Therefore, restoring the original image
from sanitized one is impossible.

Inalterability: Tampering with SPs can be detected by verifying the water-
mark. Tampering with the sanitized SAs can be easily detected since all
pixel values are zero in the sanitized SAs. Tampering with non-sanitized SAs
can be detected with the sanitizing watermark.

Unforgeagility: Since the embedded watermark is the digital signature signed
by Embedder, verifying the watermark is equivalent to verifying the digital
signature. Therefore, unintended sanitizing by unauthorized persons can be
detected by the digital signature scheme.

4.3 Advantage of Signature Encoding

In our scheme, the generated digital signature of SPs is encoded using RS code
and embedded to the image, instead of directly embedding the signature without
RS coding. The reason for this is that, without encoding, the information about
which block is SA/SP is required for extracting the signature. If the information
of SA/SP position is tampered, the SA/SP can be substituted. Therefore, the
digital signature scheme with RS encoding is resistant against the attack of
SA/SP substitution.

4.4 Comparison with Past Studies

Table 1 shows the performance comparison between our image sanitizing scheme
and past studies. In Table 1, ©, �, × denote the best, middle and worst per-
formance, respectively. As Table 1 shows, our scheme can solve the problems of
forgery and SP-alternation in Kawadu’s scheme.
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Table 1. Comparison with each method

Sanitizing signature Kawadu [7] Our scheme Signature directly

Efficiency � © © ©
Disclosure condition control © × × ×
Sanitizing demand × © © ©
Privacy © © © ©
SA-inalteration © � � �
SP-inalteration © � © ©
Unforgeability © × © ©
Substitution of SA/SP — © © ×

5 Conclusions

We developed an efficient and secure digital image sanitizing scheme that enables
integrity check and authentication of a sanitized image. Sanitizing is to delete
or conceal sensitive data such as national secrets or personal information. With
a typical digital signature or digital watermarking scheme, a sanitized image
cannot be authenticated because the integrity of the image is broken when it
is sanitized. Our image sanitizing scheme solves this problem by combining a
digital signature, digital watermarking and error correction technique with Reed-
Solomon code. The basic ideas of our scheme is described as follows:

– Divides the image into Sanitize-Allowed (SA) blocks and Sanitize-Prohibited
(SP) blocks.

– Generates the digital signature from SP blocks, encodes the signature based
on RS code to generate the tamper-detecting codes, and embeds 2 tamper-
detecting codes into every SA/SP.

– In SA blocks, one of the 2 tamper-detecting codes is intentionally erroneous.
Due to this intentional error, the decoding condition of the RS code is main-
tained during the image sanitizing.

Additionally, applying RS encoding, we can realize the secure and lightweight
image sanitizing with small signature size, and thus, we can utilize the digital
watermarking technology to embed the tamper-detecting codes. Therefore, our
scheme requires no separate additional data such as a digital signature. This
feature is quite significant for the practical use of the proposed scheme. Further-
more, we investigate the security of our image sanitizing scheme in this paper.
Considering these security requirements, our scheme is quite effective to safely
release a sensitive image to the public.
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Abstract. An adaptive k-out-of-n oblivious transfer protocol (OTn
k×1)

allows a receiver to obtain mσi−1 before deciding on the i-th index σi.
This paper studies adaptive k-out-of-n oblivious transfer protocols in
the presence of static adversaries in the universal composition (UC)
framework. We show that the proposed OTn

k×1 protocol realizes the
UC-security in the FD

crs-hybrid model under the joint assumptions that
the underlying signature scheme is secure, the decisional Diffie-Hellman
problem and the decisional composite residuosity problem in ZN2 are
hard as well as all knowledge proof protocols applied in this paper are
computational zero-knowledge in the presence of static adversaries.

Keywords: Adaptive security, oblivious transfer, simulator, universal
composability.

1 Introduction

An adaptive k-out-of-n oblivious transfer protocol (OTn
k×1), first introduced by

Naor and Pinkas in the context of the half-simulation model, allows a receiver
to obtain mσi−1 before deciding on the i-th index σi. Naor and Pinkas proposed
interesting OTn

k×1 protocols in the half-simulation model and showed that their
schemes analyzed in the half-simulation model might admit practical attacks on
the receiver’s privacy [16]. Camenisch, Neven and Shelat [2] and Green and Ho-
henberger [13] proposed fully-simulatable OTn

k×1 protocols under the bilinear as-
sumptions. The proofs of their protocols employ adversarial rewinding, and thus
do not support the universally composable security. Green and Hohenberger [14]
proposed the first implementation of universally composable adaptive oblivious
transfer protocols based on the joint hardness assumptions of symmetric external
Diffie-Hellman problem, decision linear problem and q-hidden LRSW problem.
A well-motivated problem is thus to find new frameworks for adaptive oblivi-
ous transfer schemes in the universally composable framework of Canetti under
the standard cryptographic assumptions. At Crypto’08, Peikert, Vaikuntanathan
and Waters [18] proposed non-adaptive, universally composable 1-out-of-2 obliv-
ious transfer protocols in the presence of static adversaries. Their protocols are
based on a new notion called dual-mode cryptosystem. The dual-mode cryp-
tosystem is set up in one of two modes: extraction mode or decryption mode.
A crucial of the dual-mode cryptosystem is that no adversary can distinguish

S. Qing, C.J. Mitchell, and G. Wang (Eds.): ICICS 2009, LNCS 5927, pp. 483–492, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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the common reference string between two modes. The recent work of Kurosara
and Nojima [15] provides two weaker simulatable adaptive k-out-of-n oblivious
transfer protocols in the standard cryptographic assumptions. However, their
proofs invoke the rewinding technique and thus their protocols are not secure in
the standard universally composable framework.

To the best of our knowledge, no universally composable adaptive k-out-of-n
oblivious transfer protocols constructed from the standard cryptographic assump-
tions are available in the research community. This paper aims to provide OTn

k×1
protocols in the present of malicious adversaries under the standard cryptographic
assumptions. We first set up a verifiably committed database in an initial stage of
a protocol execution once the committer gets the instruction (send, sid, ssid, S, R)
from an environment Z, where sid is a session id of an OTn

k×1 query and ssid is a
sub-session id of any jth query in the OTn

k×1 execution (1 ≤ j ≤ k). Such a verifi-
ably committed database must be equivocable since the simulator does not know
the honest receiver’s adaptive index σi. This is not the case in the non-adaptive,
1-out-of-2 oblivious transfer protocols. We then ensure that the verifiably public
database is extractable during the course of the OT executions since the simulator
must extract the malicious sender’s input and forward the extracted input to the
OT functionality when the environment Z instructs an adversaryA to send mes-
sages to the receiver R on behalf of the corrupted sender S. In a nutshell, we apply
the Damg̊ard-Neilsen’s mixed commitment protocol [10] to realize the equivocable
property and the Bresson-Catalano-Pointcheval’s double trapdoor protocol [1] to
realize the extractable property.

We will make use of the ideas introduced in [19], [20] and [21] to prove the
security. That is, to prove the receiver’s security against a malicious sender, the
master secret key msk is used to extract implicit input of the corrupted sender.
Consequently, a simulator for the corrupted sender is well defined; To prove the
sender’s security against a malicious receiver, the local keys sk1, . . . , skn are used
to extract implicit input of the corrupted receiver and then the simulator makes
use of the extractable keys (E-keys) to interpret a fake commitment to a commit-
ment of any message. Such an interpretation is necessary when we consider the
adaptive OT protocols where the simulator does not have any knowledge of an
honest sender. This technique is crucial to prove the security without involving
the standard rewinding technique even though the zero-knowledge proof systems
are involved in our implementation.

We stress that we do not apply the corresponding knowledge extractors of
zero-knowledge protocols employed in our OT protocol but the double trapdoor
mechanism to prove the security of our implementation that is the most signif-
icant difference between our ideas and that of Kurosara and Nojima [15]. The
application of the double trapdoor mechanism for extracting implicit inputs of
corrupted parties is a key point to realize the universally composable security.
The Kurosara and Nojima’s scheme fails to reach the universally composable
security since their proof relies on the notion of the corresponding knowledge
extractor of a zero-knowledge proof system where the rewinding technique is
unavoidable by the definition of any zero-knowledge proof/argument system.
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2 Definitions

Throughout the paper, we assume that the reader is familiar with the following
building blocks:

– The Canetti’s universally composable framework [4];
– The Bresson, Catalano and Pointcheval’s double trapdoor encryption

scheme [1] which is in turn constructed from the Paillier’s encryption
scheme [17];

– The Damg̊ard and Neilsen’s mixed commitments [10];
– The standard zero-knowledge proof techniques such as Camenisch and

Michels protocol [3] for proving that N is a product of two safe primes p
and q, Damg̊ard-Fujisaki’s protocol [11] for zero-knowledge proof of knowl-
edge of a commitment and the equality of a commitment and an encryption
and the Cramer-Damg̊ard-Schoenmakers’ OR-protocol [8].

Common Reference String Model. Canetti and Fischlin have shown that OT
cannot be UC-realized without a trusted setup assumption [5]. We thus assume
the existence of an honestly-generated Common Reference String (crs) and work
in the so called FD

crs-hybrid model. The functionality of common reference string
model assumes that all participants have access to a common string that is drawn
from some specified distribution D. The functionality defined below is due to [6].

Functionality FD
crs

FD
crs proceeds as follows, when parameterized by a distribution D.

When receiving a message (sid, Pi, Pj) from Pi, let crs ← D(1n) and send (sid, crs)
to Pi, and send (crs, sid, Pi, Pj) to the adversary, where sid is a session identity. Next
when receiving (sid, Pi, Pj) from Pj (and only from Pj), send (sid, crs) to Pj and to the
adversary, and halt.

Functionality for adaptive k-out-of-n oblivious transfer OTn
k×1. Follow-

ing [14] and [7], functionality OTn
k×1 is described below.

Definition 1. Let F be a functionality for OTn
k×1. A protocol π is said to uni-

versally composably realize F if for any adversary A, there exists a simulator S
such that for all environments Z, the ensemble IDEALF ,S,Z is computationally
indistinguishable with the ensemble REALπ,A,Z .

3 OTn
k×1 Based on Bresson-Catalano-Pointcheval’s

Protocol

With the help of the Bresson-Catalano-Pointcheval double trapdoor encryption
scheme (BCP) and the Damg̊ard-Nielsen’s mixed commitment scheme, we are
now ready to describe our OTn

k×1 protocol, denoted by π which consists of the
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Functionality FOTn
k×1

FOTn
k×1

proceeds as follows, parameterized with κ, k and n (k ≤ n), and running with
an oblivious transfer sender S, a receiver R and an ideal world adversary S.

– Upon receiving a message (sid, sender, m1, . . . , mn) from S, where each mi ∈
{0, 1}κ, an imaginary trusted third party (TTP) stores (m1, . . . , mn);

– Upon receiving a message (sid, ssidi, receiver, σi) from R, TTP checks if a
(sid, sender, . . . ) message was previously received and i ≤ k. If no such message
was received, or i > k, TTP sends nothing to R. Otherwise, TTP sends (sid, ssidi,
request) to S and receives the tuple (sid, ssidi, b ∈ {0, 1}) in response.

– TTP then passes (sid, ssidi, b) to the adversary, and: if b = 0, TTP sends
(sid, ssidi,⊥) to R; if b = 1, TTP sends (sid, ssidi, mσi) to R.

following three subprotocols − a common reference string generation protocol,
an initialization protocol and an ith adaptive OT-query protocol.

The common reference string generation protocol. The common reference
string generation algorithm is depicted below:

– On input a security parameter λ, the common reference generation algorithm
OTcrsGen(1λ) (for OT) invokes a key generation algorithm G of the BCP’s
encryption to generate composite modulus of the form N =pq that is a
product of two safe primes p and q (i.e., p = 2p′+1, q =2q′+1), a cyclic group
G ⊆ Z∗

N2 of order N ′ (N ′ =p′q′), and n random generators g1, . . . , gn of G
and n random elements (h1, . . . , hn) such that hi = gxi

i mod N2, xi ∈U ZN ′ ,
i = 1, . . . , n. Let crsDE = < des(G), (g1, h1), . . . , (gn, hn), N >.

– OTcrsGen(1κ) then invokes a key generation algorithm of Damg̊ard-Nielsen’s
mixed commitment scheme to generate the global public key ˜N and n ran-
dom keys K1, . . . , Kn ∈U Z∗

N2 , where ˜N= p̃q̃, p̃ = 2p̃′ + 1, q̃ =2q̃′ + 1, and
p̃, p̃′, q̃ and q̃′ are large prime numbers. Let crsMC = < ˜N, K1, . . . , Kn >.

– The common reference string generation algorithm also proves that f(x)
=xN mod N and ˜f(x) =x

˜N mod ˜N are permutations over Z∗
N and Z∗

˜N
,

respectively. This can be done by invoking Camenisch and Michels protocol
that proves in zero-knowledge that the number N ( ˜N , respectively) is the
product of two safe primes p and q (p̃ and q̃ respectively) [3].
Let ZK-PRoPrimes be a transcript of zero-knowledge to convince a verifier
N (N , respectively) are product of large safe primes. Given a copy of ZK-
PRoPrimes, one can immediately delivery a proof that f(x) =xN mod N

( ˜f(x) =x
˜N mod ˜N , respectively) is a permutation over Z∗

N (Z∗
˜N

respectively)

since gcd(N, φ(N)) = 1 (gcd( ˜N, (φ( ˜N )) = 1 respectively) is trivial if N (N ,
respectively) is product of two large prime numbers.

The common reference string crs is (crsDE, crsCM, ZK-PRoPrimes).



Adaptive and Composable Oblivious Transfer Protocols 487

The initialization protocol. The initialization protocol enables a sender to set
up a verifiably committed database. That is, on input n messages (m1, . . . , mn)
(mi ∈ Z

˜N ) and the common reference string crs, a sender S performs the fol-
lowing computations

– S invokes the Damg̊ard-Nielsen’s mixed commitment scheme to generate
n commitments ci = COMKi(mi, ri) mod ˜N2 = Kmi

i r
˜N
i mod ˜N2, where

mi ∈ Z
˜N and ri ∈ Z∗

˜N
.

– S invokes the Damg̊ard-Fujisaki’s protocol [11] and proves that he knows mi

and ri such that ci = COMKi(mi, ri) mod ˜N2 (i = 1, . . . , n). Let DB-PRoK
be a zero-knowledge proof of the knowledge < (m1, r1), . . . , (mn, rn) > such
that ci = COMKi(mi, ri) mod ˜N2 (i = 1, . . . , n).

– Let C = (c1, . . . , cn) and D =(C, DB-PRoK). S then signs D by means of a
secure signature scheme which is independent of the described OT protocol
(say the Cramer-Shoup’s signature scheme [9] which is secure in the sense of
Goldwasser, Micali and Rivest [12]). Let ΣD be a signature of D and DB =
(D, ΣD) (we call DB a verifiably committed database). The public database
DB is then broadcasted to all participants.

The ith adaptive OT-query protocol. On input common reference strings
crsDE = < des(G), (g1, h1), . . . , (gn, hn), N >, crsMC = < ˜N, K1, . . . , Kn > and
the public database DB = (D, ΣD), the sender S and the receiver R jointly runs
the following 3-step communications:

Step 1: R first verifies the validity of public database DB = (D, ΣD) (i.e.,
verifying the signature of the database). If it is not valid, then outputs ⊥; If the
database DB is valid, R continues the following procedures:

– On input the retrieved (i−1) messages mσ1 , . . . , mσi−1 and its random string
rR, R adaptively outputs the ith index σi ∈ [1, n];

– on input crs and σi ∈ [1, n], R randomly chooses zσi ∈ [0, N2/4], and com-
putes g = g

zσi
σi mod N2 and h = h

zσi
σi mod N2. Let tpk=(g, h) and tsk =zσi .

R then invokes the Cramer-Damg̊ard-Schoenmakers’ OR-protocol [8] and
proves to the sender that

(g1, h1, g, h) ∨ (g2, h2, g, h) ∨ · · · ∨ (gn, hn, g, h)

is a Diffie-Hellman quadruple. Let ZK-PRoOR be the zero-knowledge proof
of the relationship via the Cramer-Damg̊ard-Schoenmakers’ OR-protocol. R
keeps tsk as a secret and sends tpk together ZK-PRoOR to S.

Step 2: On input crs, tpk and ZK-PRoOR, the sender S checks the following
three conditions: 1) g ∈ Z∗

N2 and h ∈ Z∗
N2 ; 2) g2N �= 1 and h2N �= 1 and 3) the

transcript ZK-PRoOR is valid. If any of three conditions is violated, then outputs
⊥; otherwise, S performs the following computations:
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1. S randomly chooses sj , tj ∈ [0, N2/4];
2. S computes uj = g

sj

j h
tj

j mod N2, vj =gsj htj (1 + N)mj mod N2; Let Ej

= (uj , vj). S then invokes the Damg̊ard-Fujisaki’s protocol [11] and proves
that cj (the ciphertext cj is generated in the initial stage) and Ej are ci-
phertexts of the same message mj . Let ZK-PKoEQ be a zero-knowledge proof
of the equality of two ciphertexts Ei and ci (i = 1, . . . , n). S then sends n
ciphertexts (E1, . . . , En) together with ZK-PKoEQ to R.

Step 3: Upon receiving (E1, . . . , En) and ZK-PKoEQ, R checks the proof. If the
check is valid, R decrypts Eσi to obtain mσi , otherwise, outputs ⊥.

This ends the description of the protocol π.

Theorem 1. The proposed adaptive oblivious transfer protocol OTn
k×1 is uni-

versally composable in the FD
crs-hybrid model in the presence of static adversaries

under the joint assumptions that the underlying signature scheme is secure in the
sense of Goldwasser, Micali and Rivest [12],the decisional Diffie-Hellman prob-
lem over G and the decisional composite residuosity problem in ZN2 are hard
as well as all knowledge proof protocols are (either statistical or computational)
zero-knowledge against malicious participants.

Proof. Let A be a static adversary that interacts with the parties S and R
running the protocol π. We will construct an ideal world adversary S interacting
with the ideal functionality OTn

k×1 such that no environment Z can distinguish
an interaction with A in the protocol π from an interaction with the simulator
S in the ideal world.

Simulating the corrupted sender. When S is corrupted and R is honest, the
adversary A gets S’s input from the environment Z, and generates all the mes-
sages from S. The goal of a simulator S now is to generate the remaining messages
(namely, messages from R) so that the entire transcript is indistinguishable from
the real interaction between S and R from the point view of the environment Z.
The details of simulator for corrupted party S is described below:

1. when the environment Z queries to OTcrsGen(1κ) for a common reference
string crs, the simulator invokes the key generation algorithm G of the BCP’s
encryption to generate composite modulus of the form N =pq that is a
product of two safe primes p and q (i.e., p = 2p′+1, q =2q′+1), a cyclic group
G ⊆ Z∗

N2 of order N ′ (N ′ =p′q′), and n random generators g1, . . . , gn of G
and n random elements (h1, . . . , hn) such that hi = gxi

i mod N2, xi ∈U ZN ′ ,
i = 1, . . . , n. The simulator keeps the auxiliary strings (p, q) and (x1, . . . , xn)
secret. Let crsDE = < des(G), (g1, h1), . . . , (gn, hn), N >.

OTcrsGen then invokes the key generation algorithm of Damg̊ard-Nielsen’s
mixed commitment scheme to generate a public key ˜N and n extractable keys
K1, . . . , Kn ∈U Z∗

N2 , where ˜N= p̃q̃, p̃ = 2p̃′ + 1, q̃ =2q̃′ + 1, and p̃, p̃′, q̃ and
q̃′ are large prime numbers.

Let Ki =(1 + ˜N)kir
˜N
ki

mod ˜N (i = 1, . . . , n). The simulator keeps (p̃, q̃)
and < (k1, rk1), . . . , (kn, rkn) > secret. Let crsMC = < ˜N, K1, . . . , Kn >.
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Given (p, q) and (p̃, q̃) such that N = pq and ˜N = p̃q̃, the simulator further
invokes Camenisch and Michels protocol and proves in zero-knowledge that
N ( ˜N , respectively) is a product of two safe primes p and q (p̃ and q̃ respec-
tively). The transcript of zero-knowledge proof is denoted by ZK-PRoPrimes.
Let crs = (crsDE, crsMC, ZK-PRoPrimes). FD

crs returns (sid, crs) to the envi-
ronment Z;

2. when the simulator S receives (sid, ssidi, (D, ΣD)) from the real world ad-
versary A who fully controls the corrupted sender S. The simulator checks
the validity of DB. If the signature is invalid, S outputs ⊥.

3. If DB is valid, then the simulator S extracts the messages (m1, . . . , mn)
from the given ciphertexts (c1, . . . , cn) using the trapdoor strings (p̃, q̃)
and < (k1, rk1), . . . , (kn, rkn) > and then forwards the extracted message
m1, . . . , mn to the ideal functionality FOTn

k×1
. We stress that the simulator

S must send the messages (m1, . . . , mn) to the functionality FOTn
k×1

at the
initial stage.

4. S randomly selects (g, h) with order N ′ and sets pk =(g, h). We stress that
the choice of (g, h) is a trivial task since S holds the master key (p, q).
S invokes Cramer-Damg̊ard-Schoenmakers’ OR-protocol to prove that there
exists an index i∗ ∈ [1, n] such that (gi∗ , hi∗ , g, h) is a Diffie-Hellman quadru-
ple. Let ZK-PRoOR a transcript of OR-protocol. The simulator then sends
tpk =(g, h) and ZK-PRoOR to the adversary A.

5. Upon receiving (E1, . . . , En) and ZK-PKoEQ from the adversary A, the sim-
ulator S checks the given proof. If the check is valid, S decrypts Eσi to reveal
mσi , otherwise, outputs ⊥.

Let IDEALF ,S,Z be the view of ideal world adversary S described above and
REALπ,A,Z be the view of real world adversaryA of protocol π. Notice that when
S receives (sid, ssidi, (D, ΣD)) from the real world adversary A, it checks the
validity of DB. If the signature is invalid, S outputs ⊥. If the signature is valid, S
extracts the messages (m1, . . . , mn) from the given ciphertexts (c1, . . . , cn) using
the trapdoor string (p̃, q̃) to the ideal functionality FOTn

k×1
. This means that

the rewinding technique for extract implicit messages of the corrupted sender is
not applied here. The only difference between REALπ,A,Z and IDEALF ,S,Z is
the different strategies to generate the public key (g, h) in π and the public key
(g, h) generated in the simulation stage. By the Diffie-Hellamn assumption over
Z∗

N2 , we know that REALπ,A,Z ≈ IDEALF ,S,Z .

Simulating the corrupted receiver. When S is honest and R gets corrupted,
the adversary A gets R’s input from the environment Z, and generates all the
messages from R. The goal of the simulator now is to generate the remaining
messages (namely, all messages from S) so that the entire transcript is indistin-
guishable from the real interaction between S and R from the point view of the
environment Z.

1. when the environment Z queries to OTcrsGen(1κ) for a common reference
string crs, the simulator S invokes a key generation algorithm G of the BCP’s
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key generation algorithm to generate crsDE, where crsDE = < des(G), (g1, h1),
. . . , (gn, hn), N >. The trapdoor string τ is (x1, . . . , xn). The simulator is
given the master auxiliary string < p, q >.
The simulator then invokes the key generation crsMC to generate crsMC = <
˜N, K1, . . . , Kn >, where Kj =ψ(0, kj) (i.e., all Kj are E-keys). The auxiliary
string is (k1, . . . , kn). The simulator keeps the auxiliary information p̃ and q̃

such that ˜N= p̃q̃, p̃ = 2p̃′ + 1, q̃ =2q̃′ + 1 secret.
Let crs = (crsDE, crsMC). FD

crs returns (sid, crs) to the environment Z;

2. the simulator S invokes the Damg̊ard-Nielsen’s mixed commitment scheme to
generate n commitments Ci = COMKi(mi, ri) mod ˜N2 = Kmi

i r
˜N
i mod ˜N2,

where mi = 0 (all are dummy messages) and ri ∈ Z∗
˜N
.

3. Given crs, tpk and ZK-PRoOR, the simulator S checks the following three
conditions: 1) checking g ∈ Z∗

N2 and h ∈ Z∗
N2 ; 2) checking g2N �= 1 and

h2N �= 1 and 3) checking the validity of the transcript ZK-PRoOR. If any of
three conditions is violated, then outputs ⊥; otherwise, S extracts an index
σi by testing the equation h

?= gxσi (i =1, . . . , n). S sends σi to the ideal
functionality FOTn

k×1
and obtains mσi .

4. S modifies the internal states to generate a transcript that is consistent with
the given database DB according to the following strategy: given cσi (the
encryption of dummy message with randomness rσi), the simulator extracts

a new randomness r′σi
from the equation Kσi

0rσi

˜N = Kσi

mσi r′σi

˜N , where
Kσi =ψ(0, kσi).
The simulator then invokes the Damg̊ard-Fujisaki’s protocol to output a
transcript that cj (the ciphertext cj is generated in the initial stage) and Ej

are ciphertexts of the same message mj . Let ZK-PKoEQ be a transcript of
the proof. S then sends n ciphertexts (E1, . . . , En) together with ZK-PKoEQ
to the adversary A.

Let IDEALF ,S,Z be the view of ideal world adversary S described above and
REALπ,A,Z be the view of real world adversary A of protocol π. Notice that S
extracts an index σi by testing the equation h

?= gxσi (i =1, . . . , n) and then sends
σi to the ideal functionality FOTn

k×1
to learn mσi . This means that the implicit

input of the corrupted receiver is extracted by the auxiliary string (x1, . . . , xn).
The only difference between REALπ,A,Z and IDEALF ,S,Z is the generation of
n keys (K1, . . . , Kn) of the Damg̊ard-Nielsen’s mixed commitment. By the key
indistinguishability assumption, we know that REALπ,A,Z ≈ IDEALF ,S,Z .

A close look at the proof shows that both statistical zero-knowledge proof
protocols and computational zero-knowledge proof protocols work in our scheme.

Combining the above statements, we know that the proposed adaptive oblivi-
ous transfer protocol OTn

k×1 is universally composable in the FD
crs-hybrid model

assuming that the decisional Diffie-Hellman problem over G is hard as well as
all knowledge proof protocols are zero-knowledge. 
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4 Conclusion

In this paper, a new implementation of adaptive oblivious transfer protocol
OTn

k×1 has been proposed. We have shown that the proposed scheme has
achieved the UC-security in the FD

crs-hybrid model under the joint assumptions
that the underlying signature scheme is secure, the decisional Diffie-Hellman
problem and the decisional composite residuosity problem in ZN2 are hard as
well as all knowledge proof protocols applied in this paper are computational
zero-knowledge in the presence of static adversaries.
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Abstract. At PKC 2006, Chevallier-Mames, Paillier, and Pointcheval
proposed encryption schemes that are partially homomorphic, either ad-
ditively or multiplicatively and announced an open research problem:
finding a discrete-log-based cryptosystem that would help realize fully
additive or multiplicative homomorphism. In this study, we achieve this
goal by lifting the message space of the ElGamal scheme fromM to gM

0 .
We then apply our scheme for constructing a novel protocol for secure
data aggregation in Wireless Sensor Networks.

Keywords: Discrete-logarithm problem, additively homomorphic en-
cryption, wireless sensor networks, data aggregation.

1 Introduction

1.1 Background: Homomorphic Encryption

In general, we expect a cryptosystem to be as secure as possible. To this end, vari-
ous security notions have been developed. The basic requirement for a cryptosys-
tem is that adversaries must be prevented from learning confidential
messages. This is the so-called security notion of one-wayness (OW) and was
recognized even before 2500 B.C. With the development of modern cryptogra-
phy, particularly after the advent of public-key cryptosystems [7], new desirable
security notions were conceived. Naor suggested that different security notions
for encryption should be defined by orthogonally considering the various possible
goals and the various possible attack models [1]. Typically, two goals, namely,
indistinguishability (IND) [13] and non-malleability (NM) [8], and three attack
models, namely, chosen-plaintext attack (CPA), non-adaptive chosen-ciphertext
attack (CCA1) [14], and adaptive chosen-ciphertext attack (CCA2) [16], have
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been considered. Currently, IND-CCA, especially IND-CCA2, is known to be
the most desirable security property for many applied cryptosystems.

However, people also visualized a lot of scenarios in which IND-CCA is too
rigid to be flexible. It might be possible to perform some positive transformations
on a ciphertext without decryption. Thus, the idea of homomorphic encryption
was proposed. Homomorphic encryption enables blind transformations on plain-
texts via (possibly different) algebraic operations on ciphertexts [6,4]. Depend-
ing upon the specific viewpoint, this is either a positive or a negative attribute
of a cryptosystem. Homomorphic encryption schemes are inherently malleable
and are thus unsuitable in scenarios in which modifications to ciphertexts are
forbidden. On the other hand, the homomorphic property is useful for building
secure voting systems, collision-resistant hash functions, private information re-
trieval schemes, etc. At PKC 2006, Chevallier-Mames, Paillier, and Pointcheval [4]
proposed encryption schemes that are partially homomorphic, either additively
or multiplicatively and finally announced an open research problem: finding a
discrete-log-based cryptosystem that helps realize fully additive or multiplicative
homomorphism. Note that there are many additively homomorphic encryption
schemes based on factoring-related assumptions, such as Goldwasser-Micali’s
scheme [12], Benaloh’s scheme [2], and Pailliar’s scheme [15]. Most recently, Gen-
try proposed a lattice-based fully homomorphic encryption scheme [11].

1.2 Background II: Secure WSN Data Aggregation

A very typical application of homomorphic encryption in practice is data ag-
gregation in wireless sensor networks (WSN) [19,5,20,3]. Aggregation techniques
are used to reduce the amount of data communicated within a WSN so as to
conserve battery power. Since measurements are recorded by individual sensors,
they need to be periodically collected and processed to yield data representative
of the entire WSN, such as the average and/or variance of the temperature or hu-
midity within an area [3]. One natural approach to data aggregation is to simply
add up values as they are forwarded toward the sink. Homomorphic encryption
allows some types of statistical computations on encrypted data, similar to those
on plaintext data [10], thereby offering significant advantages in securing WSN
data aggregation by preventing eavesdropping attacks. If homomorphic encryp-
tion is not used, the intermediate sensors must have access to the secret keys
in order to decrypt the collected data before they are added. However, we know
that methods in which sensitive information such as secret keys is stored inside
sensors are prone to many attacks [3]. Once the secret keys are exposed, the net-
work is no longer secure. Homomorphic encryption prevents this problem since
sensitive information is not stored on the intermediate sensors [3].

While it is intuitive to use homomorphic encryption for secure data aggrega-
tion in WSN, no silver bullet application has been seen so far, and the majority
of available schemes are vulnerable to some extent. For example, in [3], an ad-
ditively homomorphic encryption for WSN data aggregation was proposed. The
scheme is essentially a stream cipher and its homomorphic property relies on
the synchronization among the key-stream generators, i.e., all sensors in the
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field must share the same key-stream generator. Clearly, this is impractical in
a distributed environment. More seriously, this approach has two fundamental
flaws: (1) it is difficult to ensure the confidentiality of this commonly shared key-
stream generator and (2) the scheme would be insecure if some sensors that have
access to the key-stream generator were colluded by the adversaries. Therefore,
to achieve secure WSN data aggregation, we prefer homomorphic public-key en-
cryption (Hom-PKE) than secret-key encryption. In public-key encryption, no
secret is embedded in the sensors, and thus, this scheme is immune to colluding
attacks. Vaidehi [10] tried to solve this problem by using a privacy homomor-
phism called DF-a-New-PH. However, we found that DF-a-New-PH does not
have the desired effect of encryption for two reasons: (1) some secret parameters
can be easily computed from the public parameters and (2) all secret parameters
are explicitly involved in the encryption algorithm. We know that no public-key
encryption scheme can operate in this manner. DF-a-New-PH is essentially an
encoding/decoding system rather than a cryptosystem since it does not pro-
vide confidentiality. In DF-a-New-PH, all secrets can be made public! Of course,
when using Hom-PKE, a malicious node can still insert junk data to disturb the
aggregation. However, this problem is not specific to Hom-PKE. All encryption
schemes, public-key or secret-key, are vulnerable to this kind of attack. In terms
of consequence, this kind of attack can be viewed as denial of service (DOS)
attack. How to resist DOS or DDOS attacks is another significant research topic
that is beyond the scope of this paper.

1.3 Motivation and Contributions

In this paper, we first try to answer the open problem raised by Chevallier-Mames,
Paillier, and Pointcheval [4]. We achieve this goal by lifting the message space in
the ElGamal scheme. This yields a discrete-logarithm-based additively homomor-
phic encryption scheme. Then, we design a new protocol for WSN data aggrega-
tion by employing the proposed additively homomorphic encryption scheme.

2 Intractability of Discrete Logarithm Problems

Definition 1 (Discrete Logarithm Problem, DLP). Let G be a finite cyclic
group of order n and g be a generator. For any h ∈ G, the discrete logarithm of
h with respect to g, denoted DLOGg(h), is the element x ∈ Zn such that h = gx.

In particular, in the remain sections we assume that G = Z
∗
p, where p is a

large prime. The security of the Diffie-Hellman protocol [7], as well as ElGamal
encryption scheme [9] rely on the intractability of DLP over Z∗

p for secure prime
p. Note that not all discrete logarithm problems are intractable. In fact, the
difficulty of computing discrete logarithms in Z∗

p is determined by the size of
the largest prime factor of p − 1. More specifically, given the prime factoring
p− 1 =

∏r
i=1 qei

i and q = max{q1, · · · , qr}, the running time for computing x is
bounded by q1/2len(p)O(1) [18], where len(·) indicates the bit-length of a given
number. This suggests that when p− 1 does not contain any large prime factor,
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the discrete logarithm problem over Z∗
p can be solved efficiently. A prime p is

called secure prime if p− 1 contains large, say at least 160 bits, prime factors.
In subsequent contexts, we assume that q, p = 2q + 1 are large primes and

G =< g >⊂ Z∗
p be a cyclic group of order q generated by g. Other frequently

used DLOG-based cryptographic problems are

Definition 2 (Computational Diffie-Hellman problem, CDH). Given gx,
gy ∈ G for some unknown x, y ∈ Zq, compute gxy ∈ G.

Definition 3 (Decisional Diffie-Hellman problem, DDH). Given two dis-
tributions D = (gx, gy, gxy) ∈ G3 and R = (gx, gy, gz) ∈ G3 for randomly dis-
tributed x, y, z ∈ Zq, distinguish D from R.

It is easily seen that DDH !P CDH !P DLP where !P denotes polyno-
mial reduction between computational problems. At present, we know that for
a secure prime p, DLP, CDH, and DDH are intractable, except for resorting a
quantum computer [17].

3 The Proposed Scheme

3.1 OW-CPA ElGamal and Multiplicative Homomorphism

Recall that the original version of the ElGamal cryptosystem [9] is multiplica-
tively homomorphic, and thus, let us denote it by ×HomElG. The encryption
algorithm in ×HomElG is denoted by E× and is multiplicatively homomorphic in
the sense that under the same public key y = gx mod p (where g is a generator
of some q order subgroup of Z∗

p with q|p− 1, both p and q are large primes and
x is the private key picked randomly from Zq), given two ciphertexts

E×(y; m1) = (gr1 mod p, yr1m1 mod p), and (1)
E×(y; m2) = (gr2 mod p, yr2m2 mod p), (2)

anyone can, without knowing the secret key x, the original messages mi, and the
random numbers ri (i = 1, 2), compute the ciphertext for the plaintext m1m2
by using the following formula:

E×(y; m1m2) = (gr1 · gr2 mod p, yr1m1 · yr2m2 mod p). (3)

More formally, given two valid ciphertexts (c11, c12) and (c21, c22) for the mes-
sages m1 and m2 under a common public key, (c11, c12) " (c21, c22) would be a
valid ciphertext for the message m1 · m2 under the same public key, where "
denotes component-wise modular multiplication, i.e.,

(c11, c12)" (c21, c22) = (c11 · c21 mod p, c12 · c22 mod p). (4)

Note that this version of ElGamal merely achieves OW-CPA security, i.e., one-
wayness against chosen plaintext attacks.
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3.2 Message Lifting and Parameter Selection

A natural idea for converting a multiplicatively homomorphic scheme into an
additively homomorphic one is to lift the message space M to the exponential
space gM0 for some base g0. To maintain the compactness of the lifted message
space, we choose a prime p0 such that p0−1 does not contain large prime factors
and then define the following lifting operation:

m #→ gm
0 mod p0, ∀m ∈ {0, · · · , p0 − 2}, (5)

where g0 is a primitive root of Z∗
p0

. Further, let Lg0(·) indicate the reverse, i.e.,
an unlift operation that is defined by

Lg0(g
m
0 mod p0) = m mod (p0 − 1). (6)

Note that the precision is determined by the size of the encoding space. Thus,
the precision increases with the prime p0. Typically, we can choose p0 = 216 + 1
and g0 = 3. Then, the sensed data are 16 bits long and the sensing precision is
dmax−dmin

216 , where dmax and dmin are potential maximum and minimum of the
concerned data. This is perhaps suitable for most WSN-oriented applications in
which the relevant data would be temperature, humidity, atmospheric pressure,
noise, etc.

3.3 DLP-Based Additive Homomorphism

Now, let us proceed to develop an additively homomorphic ElGamal encryption
scheme, denoted +HomElG. This scheme is based on the original multiplicatively
homomorphic ElGamal scheme, ×HomElG.

– Key-generation algorithm K(1k): Take as input the security parameter k,
choose two primes p and p0 such that
(1) p = 2q + 1 for some large prime q,
(2) p0 = 2tκ + 1 < p for a small prime t and some positive integer κ.
And then, select two generators g and g0 so that g generates a q-order sub-
group of Z

∗
p, while g0 generates the group Z

∗
p0

. (Typically, let t = 2, κ = 15
and g0 = 3.) Next, randomly select a private key x from Zq and compute the
corresponding public key y = gx mod p. Finally, output the system public
parameters

params = (p, q, g; p0, g0) (7)

and return the public/private key pair (y, x). Note that the message space is
M = {0, · · · , p0 − 2} ⊂ Z∗

p, while the ciphertext space is C = Z∗
p × Z∗

p. The
security of the scheme is rooted in the secure prime p and irrelevant to p0.

Remark 1. Under this condition, we have that: (1) |Z∗
p0
| = p0 − 1 and thus

(gm
0 mod p0) goes through the set {1, · · · , p0 − 1} when m goes through the

set {0, · · · , p0 − 2}; and (2) the maximal prime factor of (p0 − 1) is t, and
thus the unlifing operation can be finished efficiently. Note that our scheme
also works for other form prime p0 when p0− 1 does not contain large prime
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factors. But for simplicity, we merely select p0 taking the form p0 = 2tκ+1 for
some small prime t and some positive integer κ. Then, the time complexity
of unlifting operation is bounded by

√
2 logc p0 for some constant c [18].

– Encryption algorithm E+(y; m): Take as inputs the public key y and a mes-
sage m ∈ M, choose r ∈ Zq at random and output the ciphertext (c1, c2),
where

c1 = gr mod p, c2 = yr · (gm
0 mod p0) mod p. (8)

– Decryption algorithm D+(x; (c1, c2)): Take as inputs the secret key x and a
ciphertext (c1, c2), compute the plaintext m by using the decryption algo-
rithm of ×HomElG and then perform unlifting, i.e.,

m = Lg0(D×(x; (c1, c2))), (9)

where D× is defined by

D×(x; (c1, c2)) = c2/cx
1 mod p. (10)

Remark 2. In practice, we need pay attention to the issue of overflow1. Notice
that when (gm

0 mod p0)N > p, the following inequality

((gm
0 mod p0)N mod p) mod p0 �= ((gm·N mod p0−1

0 mod p0) mod p) mod p0
(11)

might hold. This suggests the ciphertext on the message N ·m cannot be cor-
rectly formed by using the proposed scheme. Considering there exists m∗ such
that gm∗

0 mod p0 achieves the maximum, p0−1. In order to compute the cipher-
text of N ·m∗ correctly by using the above additive homomorphism, N should
satisfy N < log p/ log(p0 − 1), where N indicates the maximal number of the
messages than can be correctly added up. This undesirable restrictions might
bring inconvenient for certain applications. For example, if p and p0 are 1024-bit
and 16-bit primes as aforementioned, N ≤ 64.

The following theorem that captures the consistency and the security of the
proposed scheme.

Theorem 1. Under the same public key y and for ∀m1, m2 ∈ M, we have that

E+(y; m1)" E+(y; m2) = E+(y; m1 + m2), (12)

and under the same private key x and for ∀(c11, c12), (c21, c22) ∈ C, we have that

D+(x; (c11, c12))+D+(x; (c21, c22)) ≡ D+(x; (c11, c12)"(c21, c22)) (mod p0−1).
(13)

Proof. See Appendix A.

Theorem 2. The proposed cryptosystem is indistinguishable against chosen
plaintext attack assuming that the decisional Diffie-Hellman problem over Z∗

p

(where p is a secure prime) is intractable.

Proof. Omitted for space limitation.
1 This issue is noticed by an anonymous referee (cf. Acknowledgments).



Discrete-Log-Based Additively Homomorphic Encryption 499

4 Protocol for Secure WSN Data Aggregation

Without loss of generality, let us visualize a multilevel network tree in which
numerous sensor nodes and only one sink node exist. We assume that all nodes
are potential aggregators and that data get aggregated as they propagate toward
the sink. Suppose the system public parameters, as well as the sink’s public key
y, are input to each sensor node beforehand. Now, the protocol for secure WSN
data aggregation involves the following steps:

– Parameters selection. Suppose that the maximum number of potential sensor
nodes is at most N ,2 the range of the sensed data is [dmin, dmax], and the
desired sensing precision is δ. Then, we should select prime p0 so that p0−1 >
N dmax−dmin

δ . Finally, let us select a generator g0 for the group Z∗
p0

. (E.g., in
sensing the temperature of the atmosphere, it is enough to set dmin = −50,
dmax = 50 and δ = 0.01. Now, suppose that the number of involved sensors
is no more than N = 20000. Then, we can set t = 3, κ = 17 and then
p0 = 2 · 317 = 258280327 and g0 = 5.)

– Encryption. Each leaf sensor node si encrypts the corresponding data mi by
using the algorithm c(i) = E+(y; mi) and then sends c(i) to its parent sensor
node.

– Aggregation.Each intermediate sensor node, sj, collects all ciphertexts from
its children nodes, sj1 , · · · , sjr w.l.o.g., and then aggregates them by

c(j) = c(j1) " c(j2) " · · · " c(jr) " E+(y; mj), (14)

where mj is the vaule measured by sj itself. Then, sj transmits c(j) to its
parent sensor node, where similar aggregation is performed.

– Decryption.Finally, suppose that the sink node, say s0, collects all ciphertexts
from its children sensor nodes.
(1) At first, s0 performs the aggregation operation in an identical manner to

the general intermediate sensor nodes and obtains the ciphertext c(0) =
(c(0)

1 , c
(0)
2 ).

(2) Then, s0 extracts the aggregated data m by performing the decryption

m = D+(x; c(0)). (15)

Clearly, m =
∑

i mi holds. (Note that, since N/δ < p0− 1, thus the formula
(13) holds exactly even without modular operation. This condition is crucial
for ensuring the correctness of summation obtained by using our additively
homomorphic encryption scheme +HomElG.)

Additive aggregation can also be used to compute variance, standard deviation,
and any other moments of the measured data [CMT05] even when the difference
between the value obtained at each sensor node and the average of all values
2 We can make a rough estimation on N since our protocol is not sensitive to this

boundary.
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obtained at the sensor nodes is unknown. Of course, for this purpose, the above
aggregation protocol should be updated accordingly. For example, when com-
puting the variance, each leaf sensor node computes and transmits E+(y; mi) as
well as E+(y; m2

i ) (i.e., the ciphertext of the square of mi) to its parent sensor
node, which in turn aggregates not only ̂S(1) =

⊙

i E+(y; mi) = E+ (y;
∑n

i=1 mi)

but also ̂S(2) =
⊙

i E+(y; m2
i ) = E+

(

y;
∑n

i=1 m2
i

)

. Eventually, the sink obtains

DM = EM2 − (EM)2 = 1/n · D+

(

x;̂S(2)
)

−
(

1/n · D+

(

x;̂S(1)
))2

, (16)

where DM and EM indicate the variance and the expectation of the random
variable M defined over the message space M, which should be re-defined as

M =
{

0, · · · ,
⌊
√

(p0 − 2)/N
⌋}

(17)

so as to let the potential maximal value of
∑n

i=1 m2
i lie in the set of {0, · · · , p0−

2}. This also means we should select larger p0 if it is not convenient to com-
press M. Similarly, for computing k(> 2)-order moments, even large primes p0
should be used. Here, n indicates the total number of sensor nodes involved in
measuring data. We assume that intermediate sensor nodes also measure the
relevant statistical data. Otherwise, n should be the total number of leaf nodes.
A general approach for calculating the appropriate n is to view n as a new
statistical variable and count it during the process of counting ̂S(1) and ̂S(2).
We can even maintain the anonymity of the sensor nodes involved in the mea-
surement by employing the above protocol for the statistical variable n, i.e., by
counting n secretly. This task is essentially equivalent to e-voting, which can be
implemented easily by an additively homomorphic encryption scheme.

In addition, by adopting the idea of Yokoo and Suzuki [21], it is not difficult
to find the maximum of some secret numbers by using the proposed scheme.
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Appendix A: Proof of Theorem 1

Proof. According to the definition of the encryption and decryption, we have

E+(y; m1)" E+(y; m2)
= (gr1 , yr1gm1

0 )" (gr1 , yr1gm1
0 )

= (gr1+r2 , yr1+r2gm1+m2
0 )

= E+(y; m1 + m2),
(under new random number r = r1 + r2)

while

D+(x; (c11, c12)) +D+(x; (c21, c22))
≡ Lg0(D×(x; (c11, c12)) + Lg0(D×(x; (c21, c22))
≡ Lg0(c12/cx

11) + Lg0(c22/cx
21)

≡ Lg0(
yr1 · gm1

0

(gr1)x
) + Lg0(

yr2 · gm2
0

(gr2)x
)

≡ Lg0(
(gx)r1 · gm1

0

(gr1)x
) + Lg0(

(gx)r2 · gm2
0

(gr2)x
)

≡ Lg0(g
m1
0 ) + Lg0(g

m2
0 )

≡ m1 + m2 (mod p0 − 1),

and

D+(x; (c11, c12)" (c21, c22))
≡ D+(x; (gr1 , yr1gm1

0 )" (gr1 , yr1gm1
0 ))

≡ D+(x; (gr1+r2 , yr1+r2gm1+m2
0 ))

≡ Lg0(D×(x; (gr1+r2 , yr1+r2gm1+m2
0 )))

≡ Lg0(
yr1+r2gm1+m2

0

(gr1+r2)x
)

≡ Lg0(
(gx)r1+r2gm1+m2

0

(gr1+r2)x
)

≡ Lg0(g
m1+m2
0 )

≡ m1 + m2 (mod p0 − 1).

This concludes the theorem. 
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