
Chapter 12

Steered Beamforming Approaches for
Acoustic Source Localization

Jacek P. Dmochowski and Jacob Benesty

Abstract Multiple microphone devices aimed at hands-free capabilities and
speech recognition via acoustic beamforming require reliable estimates of the
position of the acoustic source. Two-stage approaches based on the time-
difference-of-arrival (TDOA) are computationally simple but lack robustness
in practical environments. This chapter presents a family of broadband source
localization algorithms based on parameterized spatiotemporal correlation,
including the popular and robust steered response power (SRP) algorithm.
Before forming the conventional spatial correlation matrix, the vector of mi-
crophone signals is time-aligned with respect to a hypothesized source loca-
tion. It is shown that this parametrization easily generalizes classical nar-
rowband techniques to the broadband setting. Methods based on minimum
information entropy and temporally constrained minimum variance are devel-
oped. In order to ease the high computational demands imposed by a location
parameterized scheme, a sparse representation of the parameterized spatial
correlation matrix is proposed.

12.1 Introduction

The localization of acoustic sources represents both a classical parameter
estimation problem and an important component of more general problems
such as hands-free voice communication and speech recognition. The problem
is significantly more difficult than that of narrowband source localization [1],
[2], as the desired signal is wideband and its propagation to the array is
convolutive.
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Simply put, the localization problem is to estimate the position of the
source using only the signals observed at an array of microphones. The basic
premise behind localization is that sources at different locations will exhibit
different relative delays – the differences in propagation time from one mi-
crophone to the next. This physical property forms the basis for virtually all
localization methods, and also necessitates the use of multiple microphones.
While the theoretical minimum number of microphones is indeed two, it will
be shown in the remaining sections of this chapter that it is advantageous to
include additional microphones in the localization scheme.

The other classical acoustic localization techniques consist of two steps. In
the first step, the relative delays across the various microphone pairs are esti-
mated using the generalized cross-correlation (GCC) method described in [3].
The estimates of the relative delays are then mapped to the source location
using one of a handful of techniques ranging from maximum-likelihood esti-
mation to spherical interpolation [4], [5], [6]. In practice, the estimates of the
relative delays are quite noisy. The second step typically involves a non-linear
transformation of these relative delays, leading to performance limitations in
harsh environments.

To that end, the methods presented in this chapter refrain from making
a hard decision on a single relative delay between each microphone pair.
Instead, a spatial statistic is formed for each potential location; having com-
puted such a statistic for each candidate location, the algorithms designate
the estimate of the source by the location which either minimizes or maxi-
mizes the statistic, depending on the context. Instead of parameterizing the
relative delay, these techniques parameterize the cross-correlation functions
with the location of the source.

Acoustic source localization is an active research area. We very briefly
mention here some recent trends. Particle filtering methods formulate the
localization problem in a state space and model the location probabilistically
using a Markov process where the current “state” (i.e., location and velocity)
evolve as a function of the previous states and estimates of the source location
[7], [8], [9], [10], [11]. The particle filtering approach is useful for tracking
purposes. While the majority of localization algorithms have focused on the
inter-microphone delays, recently approaches utilizing energy measurements
have also been proposed [12], [13], [14]. Localization methods employing a set
of distributed microphones have also been studied [15], [16]. In this paradigm,
the array consists of a set of networked multimedia devices with embedded
microphones. Finally, methods based on blind multiple-input multiple-output
(MIMO) identification of the acoustic impulse responses are presented in [17],
[18]. This chapter is not meant to serve as a comprehensive treatment of
the state-of-the-art. Rather, we present herein a group of algorithms based
on parameterized spatial correlation which generalize classical narrowband
techniques to the broadband setting.

The signal model used throughout the chapter is described in Section 12.2.
Section 12.3 briefly covers the fundamentals of spatial and spatiotemporal
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filtering. Section 12.4 presents the parameterized spatial correlation matrix
as the fundamental structure in acoustic source localization and a family
of methods based on this structure are detailed in Section 12.5. A sparse
representation of the parameterized spatial correlation matrix is described in
Section 12.6. A linearly constrained minimum variance approach based on the
parameterized spatiotemporal correlation matrix is presented in Section 12.7.
Section 12.8 summarizes the current limitations of the state-of-the-art, and
concluding statements are made in Section 12.9.

12.2 Signal Model

Assume that an array of N microphones samples the sound field in both
space and time; the output of sensor n at time k is modeled as

yn(k) = αn(rs)s [k − τ − F1n(rs)] + vn(k), (12.1)

where αn(rs), n = 1, 2, . . . , N, models the attenuation of the source signal at
sensor n as a function of the source location rs =

[
rs φs θs

]T (superscript T

denotes the transpose of a vector or a matrix), where rs, φs, and θs denote the
range, elevation, and azimuth, respectively, in a spherical coordinate system,
s is the source signal, τ is the propagation time (in samples) from the source
to sensor 1, Fnm(rs) is a function that relates the source position to the
relative delay between microphones n and m, and vn is the additive noise at
sensor n. In the free-field case,

αn(rs) ∝ 1
‖rn − rs‖

, (12.2)

where rn is the position of the nth microphone. In the majority of microphone
array applications, the distance from the desired source to the array is large
relative to the extent of the spatial aperture; in other words, the source is
located in the array’s far-field and the propagation of the signal is effectively
that of a plane wave. As a result, it may be reasonably assumed that the
attenuation coefficients are uniform across the array:

αn(rs) = 1, ∀n, rs. (12.3)

Moreover, the relative delays across the array are also independent of the
range:

Fnm(φs, θs) =
1
c
ζT (φs, θs) (xm − xn) , (12.4)

where
ζ(φs, θs) =

[
sinφs cos θs sinφs sin θs cos φs

]T (12.5)
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is a unit vector which points in the direction of propagation of the source, and
xn =

[
xn yn zn

]T is the position vector of the nth microphone in Cartesian
co-ordinates. The dimensionality of the location space is further reduced to
one if one assumes that the source and the array lie on a plane; in other
words, when φs = π

2 :

Fnm(φs, θs) = Fnm(θs)

=
1
c
ζT (θs) (xm − xn)

=
1
c

[cos θs(xm − xn) + sin θs(ym − yn)] . (12.6)

Throughout the chapter, we assume that the source rests in the array’s far-
field. Moreover, to ease notation, we further assume that the source is at
least approximately on the same plane as the microphones. While the latter
is a rather lofty assumption, the argument of the relative delay function
may be made multivariate to generalize to the case of an elevated source.
The methods presented in the remainder of this chapter apply equally to
both the two-dimensional elevation-azimuth space and the one-dimensional
azimuth space. If the source is located in the array’s near-field, Fnm becomes
a function of the range rs and the resulting methods may also determine the
source range.

Lastly, it should be mentioned that in all practical acoustic environments,
each microphone picks up a convolution of the source with a room impulse
response. Since only the direct-path component conveys location information,
the reverberant components are not included in the desired signal term and
may be lumped into the additive noise terms vn(k), thus making the additive
noise temporally correlated with the desired signal. It will be shown that this
temporal correlation is one of the challenges to robust localization in real
environments.

12.3 Spatial and Spatiotemporal Filtering

Before delving into the steered-beamforming approach to acoustic source lo-
calization, we briefly cover the fundamentals of spatiotemporal filtering.

The principle behind linear filtering is to collect the signal across an aper-
ture (i.e., a discrete set of samples), apply a weight to each collected sample,
and then sum the weighted samples to form the filter output. Spatiotempo-
ral filtering, more commonly known as broadband beamforming, is a direct
application of this principle. In addition to filtering the signal in the spatial
aperture, we store the previous L − 1 samples of each microphone to form a
spatiotemporal aperture of size NL:
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ȳ(k) =
[
yT (k) yT (k − 1) · · · yT (k − L + 1)

]T
, (12.7)

where

y(k) =
[
y1(k) y2(k) · · · yN (k)

]T (12.8)

is the spatial aperture at time k.
A linear spatiotemporal filter h is then applied to the aperture to form

the beamformer output:

z(k) = hT ȳ(k), (12.9)

where z(k) is the output of the broadband beamformer and

h =
[
hT

0 hT
1 · · · hT

L−1

]T (12.10)

is the spatiotemporal filter which consists of L spatial filters hl, where each
spatial filter spatially filters the array signals at time k − l:

hl =
[
hl,1 hl,2 · · · hl,N

]T
, (12.11)

where hl,n is the coefficient applied to yn(k − l).
The variance of the beamformer output then follows as

E
[
z2(k)

]
= E

{[
hT ȳ(k)

]2}
= hT Rȳh, (12.12)

where E [·] denotes mathematical expectation and

Rȳ = E
[
ȳ(k)ȳT (k)

]
(12.13)

is the spatiotemporal correlation matrix (STCM) of the observed signals.
If the signal of interest is narrowband, the temporal aperture length may

be taken to be L = 1, and the filter consists of a weight for each spatial
sample (i.e., microphone). In this case, the STCM simplifies to the spatial
correlation matrix (SCM), which is the fundamental structure in narrowband
localization methods:

Ry = E
[
y(k)yT (k)

]
. (12.14)

12.4 Parameterized Spatial Correlation Matrix (PSCM)

In source localization applications, one is interested in how the location of
the source affects the observed second orders statistics (SOS) at the array. In
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other words, one would like to parameterize the SCM and STCM with the
source location. One way of achieving this is to time-align the microphone
signals prior to forming the correlation matrix. This is in contrast to the
narrowband approach, where a linear weighting is applied to the SCM in
order to properly phase-delay the sensor signals. In the broadband case, the
time-aligning is performed directly in the correlation matrix.

To that end, consider forming the parameterized spatial correlation matrix
(PSCM) according to

Ry(θ) = E
[
y(k, θ)yT (k, θ)

]
, (12.15)

where

y(k, θ) =
[
y1(k) y2 [k + F12(θ)] · · · yN [k + F1N (θ)]

]T (12.16)

is the spatial aperture time aligned with respect to location θ. Substituting
(12.1) into (12.16) yields the nth element of y(k, θ):

yn(k, θ) = s [k − τ − F1n (θs) + F1n (θ)] + vn [k + F1n (θ)] . (12.17)

Thus, we may write the time-aligned spatial aperture as

y(k, θ) = s(k − τ, θ) + v(k, θ), (12.18)

where

s(k, θ) =
[
s(k) s [k − F12(θs) + F12(θ)] · · · s [k − F1N (θs) + F1N (θ)]

]T
and

v(k, θ) =
[
v1(k) v2 [k + F12(θ)] · · · v [k + F1N (θ)]

]T
.

Notice that when θ = θs,

s(k, θs) = s(k)1N , (12.19)

where 1N is a vector of N ones. Conversely, the parameterized noise vector
is given by

v(k, θs) =
[
v1(k) v2 [k + F12(θs)] · · · v [k + F1N (θs)]

]T
.

Assuming that the signal and noise vectors are uncorrelated:

E
[
s(k, θ)vT (k, θ)

]
= 0N×N , (12.20)

where 0N×N is an N -by-N matrix of zeros, the PSCM may be written as

Ry(θ) = Rs(θ) + Rv(θ), (12.21)
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where

Rs(θ) = E
[
s(k − τ, θ)sT (k − τ, θ)

]
(12.22)

and

Rv(θ) = E
[
v(k, θ)vT (k, θ)

]
. (12.23)

From (12.23), the parameterized noise correlation matrix Rv(θ) will typ-
ically be full-rank, regardless of the parameter θ. Conversely, Rs(θ) is rank-
one if θ = θs. This property allows us to localize the source by observing the
nature of the PSCM as θ is varied across the space of locations.

12.5 Source Localization Using Parameterized Spatial
Correlation

Informally speaking, the elements of the PSCM are highly correlated (i.e.,
larger in magnitude) when the hypothesized parameter θ matches the true
parameter θs. There are thus several ways of processing the various PSCMs
to identify the actual source location. The remainder of this chapter focuses
on how to choose a function g (M), where M is a matrix, such that

θ̂s = arg max
θ

g [Ry(θ)]

≈ θs. (12.24)

A convenient aspect of the parametrization of the SCM is that it allows for
the extension of the classical narrowband methods such as minimum variance,
subspace, and linear prediction [2] to the broadband signal case. This will be
clear in the forthcoming subsections.

12.5.1 Steered Response Power

The steered response power (SRP) method [20], [21] is the simplest method
based on the PSCM. Note that the correlated nature of Rs(θs) will increase
the off-diagonal values comprising the correctly-steered PSCM Ry(θs). Thus,
one way of localizing the source is to simply sum the elements of the PSCM
as a function of the parameter θ. The location which yields the largest sum
of elements is designated as the source:

θ̂s = arg max
θ

1T
NRy(θ)1N . (12.25)
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Note that this is equivalent to applying a fixed filter given by

h(θ) = h

= 1N , ∀θ, (12.26)

to the parameterized aperture y(k, θ),

z(k, θ) = hT y(k, θ), (12.27)

and computing the resulting output power at each parameter:

E
[
z2(k, θ)

]
= 1T

NRy(θ)1N . (12.28)

Since the filter h is independent of both the data and the parameter, the
SRP approach is computationally attractive.

Figure 12.1 depicts the SRP spatial spectra averaged over one minute
of synthetically convolved speech at four levels of room reverberation; the
reflection coefficients of the walls, ceiling, and floor are adjusted to generate
60 dB decay times T60 of 0, 100, 200, and 300 ms. The reverberation times are
measured using the reverse time integrated method of [22]. The image method
for simulating room acoustics is employed in order to generate the synthetic
impulse responses [23]. The simulated room has the following properties:

• dimensions given by 304.8cm-by-457.2cm-by-381cm,
• a four-element uniform linear array (ULA) with an inter-microphone

spacing of d = 0.0425 cm with the center of the array located at
(152.4, 19.05, 101.6),

• an isotropic speech source located at (254, 190.5, 101.6) cm, and
• a spatially and temporally white Gaussian noise field with an SNR of 30 dB

measured with respect to the convolved speech.

The location estimates are computed every 128 ms frame over a 60 second
female speech signal (i.e., English). The sampling rate is 48 kHz. In order to
increase spatial resolution, the cross-correlation functions are upsampled by
a factor of 20 before forming the PSCM.

In order to ease complexity, the simulations assumed (correctly) that the
source and array lie on the same plane. Thus, the parameter space was one-
dimensional, and ranged from 0◦ to 179◦ degrees azimuth in increments of
one degree, measured with respect to the array axis such that an angle of 90◦

indicates array broadside.
Notice that the absolute levels of the spatial spectra are irrelevant to per-

formance. The key factor is the level of the false direction-of-arrivals (DOAs)
relative to that of the true DOA, which in this case is 120 degrees azimuth.
The bias of the DOA estimator increases as the room reverberation becomes
stronger.
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Fig. 12.1 Ensemble averaged SRP spatial spectra: (a) 0 ms, (b) 100 ms, (c) 200 ms, and
(d) 300 ms.

12.5.2 Minimum Variance Distortionless Response

The SRP method is commonly employed due to its simplicity – the various
PSCMs need to be formed and the elements summed. A more sophisticated
method, proposed by Krolik and Swingler [24], attempts to apply a location-
dependent filter h(θ) to the PSCM in order to minimize the contribution of
Rv(θ) to Ry(θ).

To that end, consider constraining h(θs) to have unity gain in response to
the properly-aligned source vector:
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hT (θs)s(k, θs) = s(k), (12.29)

which is equivalent to

hT (θs)1N = 1, (12.30)

while utilizing the remaining degrees of freedom in h(θs) to minimize the
beamformer output power hT (θs)Ry(θs)h(θs). This brings about the follow-
ing optimization problem, which needs to be solved for every parameter θ:

hmvdr(θ) = arg min
h(θ)

hT (θ)Ry(θ)h(θ) subject to hT (θ)1N = 1. (12.31)

This is an application of the celebrated minimum variance distortionless re-
sponse (MVDR) method [25] to the steered-beamforming problem. Using the
method of Lagrange multipliers, the optimal weights are found as

hmvdr(θ) =
R−1

y (θ)1N

1T
NR−1

y (θ)1N

. (12.32)

Consequently, the location estimate is given by

θ̂s = arg max
θ

hT
mvdr(θ)Ry(θ)hmvdr(θ)

= arg max
θ

[
1T

NR−1
y (θ)1N

]−1
. (12.33)

It is very interesting to see that while SRP sums the elements of the PSCM,
MVDR inverts the sum of the PSCM’s inverse’s elements.

Figure 12.2 depicts the MVDR spatial spectra for the scenario described
in the previous subsection. Notice that the spectra bear a strong resemblance
to that of the SRP method.

12.5.3 Maximum Eigenvalue

In addition to selecting a weight vector that minimizes the contribution of the
noise, one may also attempt to find a weight vector that simply maximizes
the output power of the steered beamformer at each direction in order to
identify the location θ at which the steered power E

[
z2(k, θ)

]
is the largest

[27].
This weight selection may be written as the following constrained opti-

mization problem:

hmaxeig(θ) = arg max
h(θ)

hT (θ)Ry(θ)h(θ) subject to hT (θ)h(θ) = 1.

(12.34)
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Fig. 12.2 Ensemble averaged MVDR spatial spectra: (a) 0 ms, (b) 100 ms, (c) 200 ms,
and (d) 300 ms.

The solution to this optimization problem is the vector that maximizes the
Rayleigh quotient

hT (θ)Ry(θ)h(θ)
hT (θ)h(θ)

.

The solution is well known and given by the principal eigenvector of Ry(θ):

hmaxeig(θ) = u1(θ), (12.35)
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where u1(θ) is the principal eigenvector of Ry(θ). Note again that the princi-
pal eigenvector must be found for all PSCMs. The location estimate follows
as

θ̂s = arg max
θ

hT
maxeig(θ)Ry(θ)hmaxeig(θ)

= arg max
θ

λ1(θ), (12.36)

where λ1(θ) is the maximum eigenvalue of Ry(θ).
Figure 12.3 depicts the maximum eigenvalue spatial spectra. Once again,

the PSCM based adaptive weighting has little impact on the resulting spatial
spectra.

12.5.4 Broadband MUSIC

The multiple signal classification (MUSIC) method is a classical method
for the localization of narrowband signal sources [28], [29]. It is a subspace
method which exploits the distinct eigenstructure of the SCM. In this section,
it is shown that the parametrization of the SCM leads to a similar eigenstruc-
ture in the PSCM, thus allowing for the generalization of the MUSIC method
to broadband signals [30].

Recall that the PSCM’s signal component Rs(θ) is rank-one if θ = θs.
Moreover, since the PSCM is a correlation matrix, it is positive-definite and
thus has a spectral representation. Consider the case when θ = θs; the PSCM
may then be written as

Ry(θs) = σ2
s1N1T

N + Rv(θs), (12.37)

where σ2
s = E

[
s2(k)

]
is the variance of the source signal. For the time being,

assume that the parameterized noise correlation matrix may be written as

Rv(θs) = σ2
vIN×N , (12.38)

where IN×N is the N -by-N identity matrix. It then follows that any vector
u orthogonal to 1N :

1T
Nu = 0 (12.39)

is an eigenvector of Ry(θs), since

Ry(θs)u = σ2
vu. (12.40)

Since the dimensionality of 1N is N , there are N −1 such eigenvectors, which
are termed the noise eigenvectors as their corresponding eigenvalues are all
equal to the noise variance σ2

v . Moreover, the remaining eigenvector must
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Fig. 12.3 Ensemble averaged maximum eigenvalue spatial spectra: (a) 0 ms, (b) 100 ms,
(c) 200 ms, and (d) 300 ms.

necessarily be the principal eigenvector since it is not orthogonal to 1N – this
eigenvector is termed the signal eigenvector, and the spectral representation
of the location-matched PSCM is given by

Ry(θs) = λ1u1(θs)uT
1 (θs) + σ2

v

N∑
i=2

ui(θs)uT
i (θs), (12.41)

where u1(θs) is the principal signal eigenvector of Ry(θs) and ui(θs), i =
2, . . . , N are the noise eigenvectors.
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Notice that when the parameter θ does not match the actual location θs,
the eigenvalue spectrum of the PSCM will effectively be spread out by the
mismatch between θ and θs.

Putting all of this together, one may look for the source by examining
the N − 1 lower eigenvalues of the PSCM and test them for orthogonality
with 1N . At the actual source location θs, these N − 1 lower eigenvalues
theoretically yield

1

1T
N

∑N
i=2 ui(θs)uT

i (θs)1N

= ∞. (12.42)

Thus, the broadband MUSIC location estimate is given by

θ̂s = arg max
θ

[
1T

N

(
N∑

i=2

ui(θ)uT
i (θ)

)
1N

]−1

. (12.43)

Figure 12.4 depicts the broadband MUSIC spatial spectra. It is evident
that the spectra show increased spatial resolution, analogous to the narrow-
band MUSIC method. In the presence of reverberation, the resulting spectra
reveal false peaks corresponding to both multipath components and the au-
tocorrelation of the speech signal.

12.5.5 Minimum Entropy

Given a random variable x with probability density function (pdf) p(x), the
entropy of the random variable is given by [31]

H(x) = −E [ln p(x)]

= −
∫ ∞

−∞
p(x) ln p(x)dx, (12.44)

and quantifies the level of uncertainty associated with the random variable
x. High probability values of x contribute less in the − ln p(x) term but are
weighted more due to the p(x) term. Conversely, low probability values of x
have a large − ln p(x) contribution but these contributions are weighted less
by the low value of p(x). The value of H(x) quantifies the average value of the
uncertainty about x. The measure generalizes in a straightforward manner
to a random vector x with joint pdf p(x); the joint entropy of x is given by

H(x) = −E [ln p(x)]

= −
∫ ∞

−∞
p(x) ln p(x)dx. (12.45)
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Fig. 12.4 Ensemble averaged MUSIC spatial spectra: (a) 0 ms, (b) 100 ms, (c) 200 ms,
and (d) 300 ms.

A measure closely related to entropy is the mutual information, which
quantifies the level of dependence between two random variables x and y:

I(x; y) =
∫ ∞

−∞

∫ ∞

−∞
p(x, y) ln

p(x, y)
p(x)p(y)

dxdy, (12.46)

where p(x, y) is the joint distribution of x and y. One can show that the
mutual information may be written as
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I(x; y) = H(x) − H(x|y)
= H(y) − H(y|x)
= H(x) + H(y) − H(x, y), (12.47)

where H(x|y) is the entropy of x conditioned on y:

H(x|y) = −
∫ ∞

−∞

∫ ∞

−∞
p(x, y) ln p(x|y)dxdy, (12.48)

and H(x, y) is the joint entropy of x and y:

H(x, y) = −
∫ ∞

−∞

∫ ∞

−∞
p(x, y) ln p(x, y)dxdy. (12.49)

Theorem 12.1. The joint entropy of the random variables x and y attains
a minimum when p(x|y) = δ(x − y) = p(y|x). In other words, joint entropy
is minimized when the two random variables are equal at each ensemble.

Proof. Assuming that p(x|y) = δ(x− y), the joint entropy of x and y may be
written as

H(x, y) = −
∫ ∞

−∞

∫ ∞

−∞
p(x, y) ln p(x, y)dxdy

= −
∫ ∞

−∞

∫ ∞

−∞
p(x)p(y|x) ln [p(x)p(y|x)] dxdy

= −
∫ ∞

−∞

∫ ∞

−∞
p(x)δ(x − y) ln [p(x)δ(x − y)] dxdy

= −
∫ ∞

−∞
p(y) ln [p(y)] dy

= H(y)
= H(x)
= H. (12.50)

Since the joint entropy is given by

H(x, y) = H(x) + H(y) − I(x; y), (12.51)

it follows that

I(x; y) = H. (12.52)

To prove that H(x, y) ≥ H(x), suppose that we could find two random
variables x and y such that

H(x, y) < H(x). (12.53)
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This would imply that

H(x) + H(y) − I(x; y) < H(x), (12.54)

or

I(x; y) > H(y). (12.55)

However, since the mutual information is given by

I(x; y) = H(y) − H(y|x) (12.56)

and since H(y|x) = −E [ln p(y|x)] ≥ 0, this implies a contradiction. There-
fore, H(x, y) is minimized when p(x|y) = p(y|x) = δ(x − y).

Applying this result to the problem of source localization, recall that
s(k, θ) = s(k)1N when θ = θs. Thus, when steered to the true location,
the elements of the random vector s(k, θ) are fully dependent and their joint
entropy is minimized. As a result, one can localize the source by scanning
the location space for the location that minimizes the joint entropy of the
y(k, θ). Notice that the noise component is assumed to be incoherent across
the array and thus varying the parameter theoretically does not reduce the
entropy of y(k, θ).

12.5.5.1 Gaussian Signals

In order to compute the minimum entropy estimate of the source location,
one must assume a distribution for the random vector y(k, θ). An obvious
choice is the multivariate Gaussian distribution; the random vector x follows a
multivariate Gaussian distribution with a mean vector of 0N and a covariance
matrix R if its joint pdf is given by

p(x) =
1(√

2π
)N

det1/2(R)
e−1/2xT R−1x, (12.57)

where det(·) denotes the determinant of a matrix. The joint entropy of a
Gaussian random vector is given by [32]

H(x) =
1
2

ln
[
(2πe)N det(R)

]
. (12.58)

Thus, the entropy of a jointly distributed Gaussian vector is proportional
to the determinant of the covariance matrix. Applying this to the source
localization problem, the minimum entropy estimate of the location θs is
given by [32]
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θ̂s = arg min
θ

H [y(k, θ)]

= arg min
θ

det [Ry(θ)] . (12.59)

It is interesting to link the minimum entropy approach to the eigenvalue
methods presented earlier. To that end, notice that the determinant of a
positive definite matrix is given by the product of its eigenvalues; thus, the
minimum entropy approach may also be written as

θ̂s = arg min
θ

N∏
n=1

λn(θ). (12.60)

Figure 12.5 depicts the minimum entropy spatial spectra. The minimum
entropy estimator also shows increased resolution compared to the methods
based on steered beamforming (i.e., SRP, MVDR, and maximum eigenvalue).
However, as the level of reverberation is increased, spurious peaks are intro-
duced into the spectra.

12.5.5.2 Laplacian Signals

The speech signal is commonly modeled by a Laplacian distribution whose
heavier tail models the dynamic nature of speech; the univariate Laplacian
distribution is given by

p(x) =
√

2
2σx

e
−

√
2|x|

σx . (12.61)

An N -dimensional zero-mean random vector is said to follow a jointly Lapla-
cian distribution if its joint PDF is given by

p(x) = 2(2π)−N/2det−1/2(R)
(
xT R−1x

)P/2
KP

(√
2xT R−1x

)
, (12.62)

where P = 2−N
2 and KP (·) is the modified Bessel function of the third kind:

KP (a) =
1
2

(a

2

)P
∫ ∞

0

z−P−1e−z− a2
4z dz, a > 0. (12.63)

It then follows that the joint entropy of a Laplacian distributed random vector
is given by

H(x) =
1
2

ln
[
(2π)N

4
detR

]
− P

2
E [ln(η/2)] − E

[
ln KP

(√
2η
)]

,

(12.64)

where η = xT R−1x and the expectation terms apparently lack closed forms.
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Fig. 12.5 Ensemble averaged minimum entropy spatial spectra (Gaussian assumption):

(a) 0 ms, (b) 100 ms, (c) 200 ms, and (d) 300 ms.

A closed-form minimum entropy location estimator for the Laplacian case
is thus not available; however, in practice, the assumption of ergodicity for
the signals yn(k, θ), n = 1, 2, . . . , N allows us to form an empirical mini-
mum entropy estimator. To that end, consider first forming a time-averaged
estimate of the PSCM:

R̂y(θ) =
1
K

K∑
k′=1

y(k′, θ)yT (k′, θ), (12.65)
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where y(k′, θ) is the k′th parameterized observation vector and there are K
total observations. Next, the two terms lacking closed forms are estimated
according to

E [ln(η/2)] ≈ 1
K

K∑
k′=1

ln
[
1
2
yT (k′, θ) R̂(θ)y (k′, θ)

]
, (12.66)

E
[
ln KP

(√
2η
)]

≈ 1
K

K∑
k′=1

ln KP

√
2yT (k′, θ) R̂(θ)y (k′, θ). (12.67)

The empirical joint entropy is then found by substituting the time-averaged
quantities of (12.65)–(12.67) into the theoretical expression (12.64). As be-
fore, the parameter θ which minimizes the resulting joint entropy is chosen
as the location estimate [32].

Notice that the minimum entropy estimators consider more than just
second-order features of the observation vector y(k, θ). The performance of
this and all previously described algorithms depends ultimately on the sen-
sitivity of the statistical criterion (i.e., joint Laplacian entropy) to the pa-
rameter θ, particularly to parameters which lead to a large noise presence in
y(k, θ).

12.6 Sparse Representation of the PSCM

In real applications, the computational complexity of a particular algorithm
needs to be taken into account. The advantage of the algorithms presented in
this chapter is the utilization of additional microphones to increase robust-
ness to noise and reverberation. On the other hand, all algorithms inherently
require a search of the parameter space to determine the optimal θ. In this
section, we propose a sparse representation of the PSCM in terms of the
observed cross-correlation functions across the array.

In practice, the cross-correlation functions across all microphone pairs
are computed for a frame of incoming data. This is typically performed in
the frequency-domain by taking the inverse Fourier transform of the cross-
spectral density (CSD):

Rynym
(τ) =

1
L

L−1∑
l=0

Y ∗
n (l)Ym(l)ej2π l

L τ , (12.68)

where Y ∗
n (l)Ym(l) is the instantaneous estimate of the CSD between channels

n and m at discrete frequency l
L , superscript ∗ denotes complex conjugate,

and
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Yn(l) =
L−1∑
k=0

yn(k)e−j2π l
L k (12.69)

is the L-point fast Fourier transform of the signal at microphone n evaluated
at discrete frequency l

L . From the N2 cross-correlation functions, the various
PSCMs must be constructed and then evaluated to determine the location
estimate θ̂:

[Ry(θ)]nm = Rynym
[Fnm(θ)] . (12.70)

Thus, the task is to construct Ry(θ) from the cross-correlation functions
Rynym

(τ).
Notice that the cross-correlation functions are computed prior to form-

ing the various PSCMs. Moreover, for a given microphone pair, the cross-
correlation function usually exhibits one or more distinct peaks across the
relative delay space. Instead of taking into account the entire range of τ , it
is proposed in [33] to only take into account the highly-correlated lags when
forming the PSCM.

The conventional search technique relies on the forward mapping between
the parameter θ and the resulting relative delay τ :

τnm = Fnm(θ) (12.71)

is the relative delay experience between microphones n and m if the source
is located at θ. The problem with forming the PSCMs using the forward
mapping is that the entire parameter space must be traversed before the
optimal parameter is selected. Moreover, there is no a priori information
about the parameter that can be utilized in reducing the search. Consider
instead the inverse mapping from the relative delay τ to the set of locations
which experience that relative delay at a given microphone pair:

F−1
nm(τ) = {θ|Fnm(θ) = τ} . (12.72)

For the microphone pair (n,m), define the set Cnm(p) which is composed
of the 2p lags directly adjacent to the peak value of Rynym

(τ):

Cnm(p) = {τ̂nm − p, . . . , τ̂nm − 1, τ̂nm, τ̂nm + 1 . . . , τ̂nm + p} , (12.73)

where

τ̂nm = arg max
τ

Rynym
(τ). (12.74)

The set Cnm(p) hopefully contains the most correlated lags of of the cross-
correlation function between microphones n and m. Consider nonlinearly
processing the cross-correlation functions such that
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Table 12.1 Localization using the sparse PSCM.

Compute:
for all microphone pairs (n, m)

Rynym (τ) = 1
L

∑L−1
l=0 Y ∗

n (l)Ym(l)ej2π l
L

τ

τ̂nm = arg maxτ Rynym (τ)
Cnm(p) = {τ̂nm − p, . . . , τ̂nm − 1, τ̂nm, τ̂nm + 1 . . . , τ̂nm + p}

Initialization:
for all θ, Ry(θ) = 0N×N

Search:
for all microphone pairs (n, m)

for all τ ∈ Cnm(p)

look up F−1
nm (τ)

for all θ ∈ F−1
nm (τ)

update : [Ry(θ)]nm = [Ry(θ)]nm + Rynym (τ)

θ̂ = arg maxθ f [Ry (θ)]

R′
ynym

(τ) =
{

Rynym
(τ), τ ∈ Cnm(p)

0, otherwise . (12.75)

The resulting elements of the PSCM are given by[
R′

y(θ)
]
nm

= R′
ynym

[Fnm(θ)]

=
{

Rynym
[Fnm(θ)] , Fnm(θ) ∈ Cnm(p)
0, otherwise . (12.76)

The modified PSCM R′
y(θ) is now sparse provided that the sets Cnm(p) rep-

resent a small subset of the feasible relative delay space for each microphone
pair.

Table 12.1 describes the general procedure for implementing a localization
algorithm based on the sparse representation of the PSCM. As a comparison,
Table 12.2 describes the corresponding algorithm but this time employing
the forward mapping from location to relative delay. The conventional search
involves iterating across the typically large location space. On the other hand,
the sparse approach introduces a need to identify the peak lag of each cross-
correlation function, albeit avoiding the undesirable location search.
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Table 12.2 Localization using the PSCM.

Compute:
for all microphone pairs (n, m)

Rynym (τ) = 1
L

∑L−1
l=0 Y ∗

n (l)Ym(l)ej2π l
L

τ

Initialization:

for all θ, Ry(θ) = 0N×N

Search:
for all locations θ

for all microphone pairs (n, m)
look up τ = Fnm (θ)

update : [Ry(θ)]nm = [Ry(θ)]nm + Rynym (τ)

θ̂ = arg maxθ f [Ry (θ)]

12.7 Linearly Constrained Minimum Variance

All approaches described thus far have focused on the relationship between
the location of the acoustic source and the resulting relative delays observed
across multiple microphones. Such techniques are purely spatial in nature.
Notice that the resulting algorithms consider a temporally instantaneous
aperture, in that previous samples are not appended to the vector of received
spatial samples.

A truly spatiotemporal approach to acoustic source localization encom-
passes both spatial and temporal discrimination: that is, the aperture con-
sists of a block of temporal samples for each microphone pair. The advantage
of including previous temporal samples in the processing of each microphone
is that the resulting algorithm may distinguish the desired signal from the
additive noise by exploiting any temporal differences between them. This is
the essence of the linearly constrained minimum variance (LCMV) adaptive
beamforming method proposed by Frost in 1972 [34], which is equivalent to
the generalized sidelobe canceller of [35], both of which are nicely summa-
rized in [36]. The application of the LCMV scheme to the source localization
algorithm is presented in [37].

The parameterized spatiotemporal aperture at the array is written as

ȳ(k, θ) =
[
y(k, θ) y(k − 1, θ) · · · y(k − L + 1, θ)

]T
, (12.77)

where we have appended the previous L − 1 time-aligned blocks of length
N to the aperture. With the signal model of (12.1) and assuming uniform
attenuation coefficients, the parameterized spatiotemporal aperture is given
by
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ȳ(k, θ) = s̄(k − τ, θ) + v̄(k, θ), (12.78)

where

s̄(k, θ) =
[
s(k, θ) s(k − 1, θ) · · · s(k − L + 1, θ)

]T
,

v̄(k, θ) =
[
v(k, θ) v(k − 1, θ) · · · v(k − L + 1, θ)

]T
.

A location-parameterized multichannel finite impulse response (FIR) filter is
formed according to

h (θ) =
[
hT

0 (θ) hT
1 (θ) · · · hT

L−1 (θ)
]T

, (12.79)

where

hl (θ) =
[
hl1 (θ) hl2 (θ) · · · hlN (θ)

]T (12.80)

is the spatial filter applied to the block of microphone signals at temporal
sample k − l.

The question remains as to how to choose the multichannel filter coeffi-
cients such that the resulting steered spatiotemporal filter output allows one
to better localize the source. In [37], it is proposed to select the weights such
that the output of the spatiotemporal filter to a plane wave propagating from
location θ is a filtered version of the desired signal:

hT (θ) s (k − τ, θ) =
L−1∑
l=0

fls (k − τ − l) . (12.81)

In order to satisfy the desired criterion of (12.81), the multichannel filter
coefficients should satisfy

cT
l (θ)h (θ) = fl, l = 0, 1, . . . , L − 1, (12.82)

where

cl(θ) =

[
0T

N · · · 0T
N 1T

N︸︷︷︸
lth group

0T
N · · · 0T

N

]T

is a vector of length NL corresponding to the lth constraint, and 0N is a
vector of N zeros. The L constraints of (12.82) may be neatly expressed in
matrix notation as

CT (θ)h (θ) = f , (12.83)

where

C(θ) =
[
c0(θ) c1(θ) · · · cL−1(θ)

]
(12.84)

is the constraint matrix and
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f =
[
f0 f1 · · · fL−1

]T (12.85)

is the constraint vector.
The spatiotemporal filter output is given by

z (k, θ) = hT (θ)ȳ (k, θ) . (12.86)

For each candidate location θ, we seek to find the multichannel weights h(θ)
which minimize the total energy of the beamformer output subject to the N
linear constraints of (12.84):

ĥ (θ) = arg min
h(θ)

hT (θ)Rȳ(θ)h(θ) subject to CT (θ)h(θ) = f , (12.87)

where

Rȳ (θ) = E
{
ȳ(k, θ)ȳT (k, θ)

}
(12.88)

is the parameterized spatiotemporal correlation matrix (PSTCM), which is
given by

Rȳ(θ) =




Ry(θ, 0) Ry(θ,−1) · · · Ry(θ,−L + 1)
Ry(θ, 1) Ry(θ, 0) · · · Ry(θ,−L + 2)

...
...

. . .
...

Ry(θ, L − 1) Ry(θ, L − 2) · · · Ry(θ, 0)


 ,

where it should be pointed out that Ry(θ, 0) is the PSCM.
The solution to the constrained optimization problem of (12.87) can be

found using the method of Lagrange multipliers:

ĥ (θ) = R−1
ȳ (θ)C (θ)

[
CT (θ)R−1

ȳ (θ)C (θ)
]−1

f . (12.89)

Having computed the optimal multichannel filter for each potential source
location θ, the estimate of the source location is given by

θ̂s = arg max
θ

ĥ
T

(θ)Rȳ(θ)ĥ (θ) ,

meaning that the source estimate is given by the location which emits the
most steered (and temporally filtered) energy.

12.7.1 Autoregressive Modeling

It is important to point out that with L = 1 (i.e., a purely spatial aperture),
the LCMV method reduces to the MVDR method if we select f = f0 = 1. In
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this case, the PSTCM and PSCM are equivalent. Moreover, the constraint
imposed on the multichannel filtering is

hT (θ) s (k − τ, θ) = s (k − τ) , (12.90)

meaning that we are attempting to estimate the sample s(k−τ) from a spatial
linear combination of the elements of s(k−τ, θ). Notice that such a procedure
neglects any dependence of s(k) on the previous values s(k−1), s(k−2), . . . of
the signal. A signal whose present value is strongly correlated to its previous
samples is well-modeled by an autoregressive (AR) process:

s(k) =
q∑

l=1

als (k − l) + w(k), (12.91)

where al are the AR coefficients, q is the order of the AR process, and w(k)
is the zero-mean prediction error.

Applying the AR model to the desired signal in the LCMV localization
scheme, the constraint may be written as

hT (θ) s (k − τ, θ) =
L−1∑
l=1

als (k − τ − l) , (12.92)

where we have substituted

f0 = 0,

fl = al, l = 1, 2, . . . , q,

L − 1 = q.

With the inclusion of previous temporal samples in the aperture, the LCMV
scheme is able to temporally focus its steered beam onto the signal with the
AR characteristics embedded by the coefficients in the constraint vector f .
Thus, the discrimination between the desired signal and noise is now both
spatial (i.e., the relative delays differ since the source and interference are
located at disparate locations) and temporal (i.e, the AR coefficients of the
source and interference or noise generally differ).

It is important to point out that in general, the AR coefficients of the
desired signal are not known a priori. Thus, the algorithm must first esti-
mate the coefficients from the observed microphone signals. This can either
be accomplished using conventional single-channel methods [38] or methods
which incorporate the data from multiple channels [39].

Figure 12.6 depicts the ensemble averaged LCMV spatial spectra for the
simulated data described previously. A temporal aperture length of L = 20
is employed. The AR coefficients are estimated from a single microphone by
solving the Yule-Walker equations [38]. The PSTCM is regularized before
performing the matrix inversion necessary in the method. The resulting spa-
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Fig. 12.6 Ensemble averaged LCMV spatial spectra: (a) 0 ms, (b) 100 ms, (c) 200 ms,
and (d) 300 ms.

tial spectra are entirely free of any spurious peaks, albeit at the expense of a
significant bias error.

12.8 Challenges

The techniques described in this chapter have been focused on integrating
the information from multiple microphone in an optimal fashion to arrive
at a robust estimate of the source location. While the algorithms represent
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some of the more sophisticated approaches in acoustic source localization,
the problem remains challenging due to a number of factors.

• Reverberant signal components act as mirror images of the desired signal
but originating from a disparate location. Thus, the additive noise com-
ponent is strongly correlated to the desired signal in this case. Moreover,
the off-diagonal elements of the PSCM at false parameters θ may be large
due to the reverberant signal arriving from θ.

• The desired signal (i.e., speech) is non-stationary, meaning that the esti-
mation of necessary statistics is not straightforward.

• The parameter space is large, and the current solutions to broadband
source localization require an exhaustive search of the location space.

The reverberation issue is particularly problematic. In the worst-case sce-
nario, a reflected component may arrive at the array with an energy greater
than the direct-path. At this point, most localization algorithms will fail,
as the key assumption of localization is clearly violated: the true location
of the source does not emit more energy than all other locations. Unlike
in beamforming, the reverberant signal must be viewed as interference, as
the underlying location of the reverberant path is different from that of the
source.

12.9 Conclusions

This chapter has provided a treatment of steered beamforming approaches to
acoustic source localization. The PSCM and PSTCM were developed as the
fundamental structures of algorithms which attempt to process the observa-
tions of multiple microphones in such a way that the effect of interference
and noise sources is minimized and the estimated source location possesses
minimal error.

Purely spatial methods based on the PSCM focus on the relationship be-
tween the relative delays across the array and the corresponding source lo-
cation. By grouping the various cross-correlation functions into the PSCM,
well-known minimum variance and subspace techniques may be applied to
the source localization problem. Moreover, an information-theoretic approach
rooted in minimizing the joint entropy of the time-aligned sensor signals was
developed for both Gaussian and Laplacian signals incorporating higher-order
statistics in the source localization estimate. While PSCM-based methods are
amenable to real-time operation, additional shielding of the algorithm from
interference and reverberation may be achieved by extending the aperture
to include the previous temporal samples of each microphone. It was shown
that the celebrated LCMV method may be applied to the source localization
problem by modeling the desired signal as an AR process.
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The inclusion of multiple microphones in modern communication devices
is relatively inexpensive. The desire for cleaner and crisper speech quality
necessitates multiple-channel beamforming methods, which in turn require
the localization of the desired acoustic source. By combining the outputs of
the microphones via the PSCM and PSTCM, cleaner estimates of the source
location may be generated using one of the methods detailed in this chapter.

In addition to the algorithms presented in this chapter, the PSCM and
PSTCM provide a neat framework for the development of future localiza-
tion algorithms aimed at solving the challenging problem of acoustic source
localization.
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