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1. Introductory remarks. 

There is a very great bibliography concerning the mathematical 

theory of slowing down and diffusion of the neutrons within the modera

ting medium of an atomic fission pile. The methods used for such study 

must allow for the differences in the reactivity that take place in the 

reactors chiefly during the starting and because of the sinking and the 

prising of the control bars, so doing a quantitative scheme of the behaviour 

of the fast neutrons produced in the nuclear fission, to reach, by slowing 

in the moderating medium, the thermal energy. 

The neutrons, endowed with such energy, are "trapped" :h turn, by the 

uranium nuclei producing new nuclear fissions, and so on, by the well 

known chain reaction. 

The methods used for the study of the neutron diffusion in a moderator 

recall or upon the research, in opportune conditions , of the solution of 

the Maxwell-Boltzmann integro-differential equation of the transport 

theory, or on the research of opportune supplementary conditions of 

solutions of the partial differential equations, of diffusion, derived from 

the application of these so called .. phenomenological theory". 

This lecture is concerning the transport theory point of view and, in parti

cular, the application of transformational methods to some one-dimensio

nal problems. 

As well known, a neutron is a heavy uncharged elementary particle. 

Of the forces which act upon it the nuclear forces are by far the most 

important and they are only one that need be taken into a account under 

the conditions in which one is interested in the diffusion of neutrons. 
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Since these forces have an extremely short range, it follows that: 

1) the motion of a neutron can be described in terms of it collisions 

with atomic nuclei and with other freely moving neutrons; 

2) these collisions are well-defined events; 

3) between such collisions a neutron moves with a constant velocity, 

that is in a straight line with a constant speed; 

4) the mutual collisions of freely moving neutrons may safely be neglec

ted and only the collision of neutron with atomic nuclei with a surroun

ding medium need be taken into account; 

5) for a neutron travelling at a given speed through a given medium the 

probability of neutron collision per unit path lenght is a constant; 

6) the neutron or neutrons emerging from a collision do so at the point 

of space where the collision took place. 

We will indicate with N the neutron density in a medium (the neutron 

density N in a medium is a function of the position, denoted by the 
... 

vector 1, the direction of the neutron o , its velocity v and the 

time t). 

Let !: (v) be the total macroscopic cross section for all processes; r (v) 

is the inverse mean free path. Let c(v) be the mean number of secondary 

neutrons produced per collision. The quantity c(v) E (v) is the mean 

number of secondary of unit path. Let C(V') f (v', n L. v, 0) dv dO be 

the mean number of neutrons produced in the velocity range dv and cone 

dO when a neutron of velocity v' and direction 
.... a undergoes 

a collision with a stationary nucleus. Let S(it, v, n, t) be the source 

strenght of neutrons in the particular volume element. The rate of change 
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of N(r ,v, n, t) with time is equal to the number of neutrons scatte

red to the velocity v and direction n from other directions and ve

locity less the loss due to leakage and scattering out of v and n 
The transport equation is therefore : 

1) 

... .. 
~N(r ,v, n, t) = _ v n • grad N _ v E(v) N + 

at 
(( ..... .. ... 

+ ) JV'c(v') E(v') f (v', 12' - v, n) N (r , v', 0', t) dv' dO' + 

... ... + 8 (r ,v, 0, t) , 

The physical meaning of this equation is the following. The rate of 

change a~N is equal to the neutrons scattering to v and n plus 
.... 

sources minus the leakage and the scattering out of v and n . 

In the case of the isotropic scattering, the density of the neutrons at 

r is 

and the following integral equation is obtained 

v N (r 
1 eKpl- ,EI [8 (~, , P (2) , v) = 

41T f2 
v, t - -) + 

0 v 

+ ~ v' Ls (v') f (v'_ v) . N/!', v', t- ~)dV'] dV 

(dV = volume element) , 

If the neutron distribution does not vary with time, then 

N(; ,v, n) satisfies the equation: 

(3) v~ , grad N + v r (v) N = 

= ~~Vl(C(V') L(v') f(v', n'_v, n) N(? ,v', n') dv' dn' + 8(r, !i,V) . 
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This equation does not have, generally,. a solution and the following mo

dified equation is considered : 

(4) vn • grad N + (ex + v E ) N = 

= ~ ~ v'c(v') E (v') f(v', n' -v, 0) N (r ,v', n') dv' dO', 

(0( is a constant) . 

This equation has solutions for certain eigenvalues C\I .• The eigen-
1 

functions of the equation satisfy to the following conditions: 

a) Continuity at the boundary between two media; 

b) N. = 0 at the free surface for all incoming directions. 
1 

A gene ral solution of (1) is : 

(5) 
... -.. L .. ...... 

N(r ,v, 0, t) = a. N.(r, v, 0) exp 
. 1 1 

( at. t) 
1 

1 

(We assume that the N. are a complete set). 
1 

For large t, it is : 

(6) 
... 
n, v, t) = N (r. v, 

o 

where ex is the maximum of the 
o 

-+ 
0) exp (01 t) , 

o 

I 
01. S • 

1 

( Cl < 0 ) subcritical system, 01, =0 critical system, 
o 0 

0( > 0 supercritical system) . 
o 

The coefficients a. of the series are determined from the boundary 
1 

conditions which may be specified at some particular time. 



- 509-

A. Pignedoli 

2. The one group theory. 

Consider the time-dependent equation (1) . If all neutrons have the sa-

me velocity v , then it is: 
0, 

(7 ) 

Let: 

(

N(i'" -a, v, t) = ~(v-v 0) N (r, ff, t) , 
~ r ...... 

f(v', 0' --.. v,O) = 0 (v'-v ) f (0' _ O) , 
o 

.... --- t .... -.. 
S(r, 0, v, t) = o(v-v ) S(r ,0, t). 

o 

(8) f(n'_n) = ~ f(v', n' -v, n ) dv , { 

N(r, n, t) = f N(r, n, v, t) dv , 

~ .... r ..... ---
S(r, 0, t) = J S(r , 0, v, t) dv . 

Integrating the transport equation over v, results in the following one 

velocity group equation: 

(9) 

[VON = 't' (r , n, t) = angular distribution of the neutron flux. 

If we assume : 

A} time independence of N ; 

B} No variation of E and c with neutron velocity; 

C} f (n' --- n) independent of v; and integrate (1) without the term 

-a N b . Tt, we 0 tam : 
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(10) n . grad 'I" (r, S1) + 

where 

(11 ) 

'r(r, .. fl) : F~ (r, v,_ fl) dv , { 
.. - r .. ... 

S(r, n) -r S(r • v, fl) dv . 

3. Solution of the one group transport equation in an infinite uniform 

medium in the case of the time-independence and with a plane source 

at x = 0 . 

We consider now the one group time indipendent transport equation for an 

infinite uniform medium with a plane source at x • 0 . 

That is the equation: 

(1 ) 

where J (x) is the Dirac "Delta distribution " 

d(x) 
41T' ' 

We apply to this equation the method of the Fourier transform. We 

indicate with 'IT (t, y.) the Fourier transformation of '¥ (x'.J-) , that 

is we put: 

+00 

) y(x'.r) exp (-i t' x) dx . 

-00 

We have 

~ cL 
(2) i 'r Y. 11 ('t' • Y' ) + L.. 11 ( t ,yl = -2-

+1 f 1'l' (t' • .)I-) dy. + 41'1' 

-1 

Now we indicate with Tro( 't') the y. indipendent quantity at the second 

member of (2); and we have : 
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(3) 

Substituting back in the equation (2) we have: 

(4) f( (t') = [_ ~ 1:' 
o 4 1T 1 't arctg T 

From the Fourier inversion fourmula we obtain : 

(5) [ c r 1: +i t' ]-1. 
1 - -2.-1g (~. ) d't. 

1 t' L,-l't' 

The total flux is obtainErl by integration over )A

+1 

that is 

(6) 

!(x) = 2rr ~ "'f(x,,;.} dr' 
-1 

1 =--
41'1' r -co 

'(' -1 
ei T x [1 _ ~ L..- it'] log (~ 

2it L.+lt 

. -1 r +it 
(1 t) log (-~-.- ) d~ 

" -It 

The integral can be evaluated by the method of residues. 

The integrand has a simple pole where the term in the denominator 

vanishes , i. e. where: 

(7) 
(" E+i't. 

C l.. log -~-. - = 21 t . ,,-It 
If c < 1 the poles are at t' = ± i K, where K is given by 

(S) 
K 

KIf.. = tgh (7t ) . 
(The principal rooth of this equation is real). An examination of the 



- 512-

A. Pignedoli 

integrand reveals a singularity at t' = +i I. . This is of the form 

log z for z -4' 0 • To avoid this singularity the plane is cut and 

the deformed contour is taken along the imaginary axis to i r. and 

back again . We have: 

I) an asymptotic part of the solution that is arising from the residue 

at T = i 1< 

II) a transient part which is only important near to the source; that 

arises from the contributions of the integral around the cut (fig. 1) . 

Deformed 
path 

original path 

Fig. 1 . 
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For x < 0, the integral can be e.lIaluated by taking a path of inte

gration in the lower half of the complex plane. A contribution then 

arises from the pole 't' = - it( • 

We have therefore a first part of the solution, that is : 

~ = 2(1-c) • 
t2 2 K 

(9) 
-K 

(-K Ixl ) . 2 2 . 2(1-c)r 
exp 

1 c 
K - E (I-c) 

This part dominates in T at large values of x. 

A second part of the solution corresponds to c > 1 , that is 

(10) r. -1 ]2 2 2 2 l2L('1.+1)-C!: log (2"l +1) +'1l'c E 

When x is small, the major contribution to the integral comes from 

large values of "l i. e. the integral is given approximately by : 

(11) exp (-(,+1) IxlI: ) d, =.!. Fl (LjXI ) . 
2(1.+1) 2 

o 
This is important near the source x = 0 and decreases rapidly 

as exp (- r. x) when x tends to co 

4. Solution of the time-dependent transport equation without sources in 

a semi-infinite medium. 

Now we consider the time-dependent Boltzmann integro-differential 

equation for the case of the neutron transport in a semi-infinite me

dium without sources and for the one-group theory with non-isotropic 

collisions . That is we consider the integra-differential equation: 

(1) v 
oN(x,},-, t) + ". iN(x,,,..., t) = 

'dt h 
+1 1+3 p I 

= 1'l0's L N(x'l' t) 2 .}J:.JL d.r I - ( 0' S + O'/lt N(x,.f' t) , 
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where 'tl. = number per unit of volume of collision c.enters for the 

neutron; 

o-e = cross section of capture of the neutron; 

0'. = cross section of scattering. 

P = constant 

and 

(1+3P ~ r')/2 . 

Putting 

11. -t -1 
()'o=!\.. ,1IllOC:'t , 

we obtain the equation: 

(2) aN(x,}\-. t) +VJA dN(x,).I., t) = (_:::.. + l) N(x t) + 
ot J ax A t 'JA' 

v +-
A 

r1 ,1+3P ~;i J N(x", t) 2 dj, (A, v, t , P constants) 

-1 

We have the following boundary condit ion: 

(I) N(x, J-' t) = 0 for x = 0 , "u.<O. 

We put now: 

(3) 

Writ ing 

(4) N(x'.f,t) = exp (-wt) F(x'JA,t) I 

we obtain: 

(5) 
8F(x,.l':' t) cF(x,)L, t) 

= at +V)J- ax 
+1 

1+3Pe~ 
= w t F(x,i,t) df'l 

0 2 
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with 

F(x'.fL,t) = ° for x = 0, /,<0. 

We apply a J: £ (double ! -transformation) and we put: 
t, p x, q 

+0() 

<f(p,y.) =} exp (-pt) F(O,.!.t) dt, 
-0() 

o 

'I'(q,y.) = ~ exp (qx) N(x,y., 0) dx, 
-0() 

4> (p, q, 1oL) = oLt.L [N(X~, t)] = 
./ ,p x, q 

We obtain the integral equation: 

(6) -V(q,y.) + pq>(p, q'jl) + vy
+1 

= Wo ~-1 ~ (p,qj) 

with 

1 +3P)oLJt' 
2 

(7) c.p(P,j.l) = ° for .J-< 0. 

o 

~ e<fX dx 
-0() 

+0() 

) e -ptN(X l' t)dt} 

o 

One considers F(O)'-, t) as a given function and cf (p,y.) is a known 

function. The function 'l"(q, y.) is dependent from the initial values of 

F(x, )A. ,t) and will be determined when the function If is given. 

In order to solve the integral equation (6) we write: 

0() 
Ifmff)' 

(8) Cf = L (9) 
m 

m=l p 

~ =[ ~mn(JL) 
(11'11 n n 

1 
mn p q 

and we observe that we shall have: 
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(11) for .r < 0 • (m=l. 2. 3 ....... ) . 

Substituting in the integral equation (6) • we obtain: 

(12) L ~mn(y.) 0() 'I'n(y.) 

vr [~1 'fro!)'} L Pmnr,.}] - L -- + ---m-- ~-1 m-l n n 
m, n=l p q n-1 q p m. n=l p q 

0() +1 
1+3P.l~ 

w L J1 
<Pm, n tf) ~. 0 mn 2 

m,n=1 p q 

Therefore we have necessarily: 

(13) cFm1 = 'fm(!) , (m = 1,2,3, ...... ) 

(14) <PIn = 'Y)J)' (n = 1,2,3, ...... ) 

(15) <Pmtl n (.f) - vy. <Pm n+l (r) = . , 

tl 

= W 
o ) <Pmn '!) 1+3PJA:JA: 

2 
dJA-'. (m.n=1.2,3, ..... ). 

-1 

The equations (13) give the coefficients <Pm 1 of the double series <p in 

terms of the <.f m . The equation (15) is recurrent and gives <Pm, 2' 

<P 3" ••• , <P ' . . . . in terms of the c.D m . m, m, n -, 

When we have p. ,we have also <p.. and the equation (14) gives 
m,n m 

the functions 't': in terms of the functions If . 
n m 

Applying the theorems on the i, -transformation of the series. we 

obtain , after the calculations: 

(-Xt -1 ] 
(n-l)! ' 
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that is (unicity of the L-transformation): 

m-I n-I 

(17) 

00 

F(x, Y. . t) = L mn 
1 

,h t ~ 
'±'mn (r) (m-I)l' (n-I)! 

One demonstrates immediately that it is 

F (x.Jl.t) = r: for x = O. y.< 0 • 

It is easily possible to demostrate also that for F(x, y. , t) exists an 

exponential majorant series x 
w w(t-- ) 
o v 

H (1 + 3P - ) e 
w 

Finally we obtain the density function: 

For y.> 0: 
00 m-l { oc Vm+n(f) n 

( 18) N(x,.f' t) 
-wt [ (~-l)! [ 

J.::.:L = e 
n nl m=l m=O (v)'-) 

00 
<xm+2n-2,2n-2 

+ 3Pwo L 2n-l 
m=l v 

+ 

2n-l I 
~2n-l)' 

For y.< 0 : 

-wt 00 C:Xm+2n-2,2n-2 
m-I 2n-1 

(19) N = 3P Wo e L t x 
2n-l (m-I)! (2n-I)~ 

mn=l v 

And it is 

N(O, Y ,t) = 0 for y < 0 

So our problem is solved . 
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