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Introduction,
In this series of lectures, we shall deal mainly with the mi-

croscopic theory of brownian motion,

Brownian motion owes its name to an English botanist, Ro-
bert Brown, who noticed in 1827 the fact that small particles suspended in
fluids perform peculiarly erratic movements, The origin of this phenome-
non is of course quite simple: we are dealing with a manifestation of the
molecular motion,

The first satisfactory theory of brownian motion was produced
by Einstein in 1905 who derived the diffusion equation. This result has
been particularly important because the expression he obtained for the
diffusion coefficient D allowed a determination of Avogadro's number N
by Perrin,

Thereafter, the phenomenological theory has been widely develo-
ped. A very good presentation of the ideas used can be found in a re-
view paper by Chandrasekhar 1). We shall give a brief summary of these
ideas n chapter I. The starting point is the Langevin equation which intro-
duces as basic assumption the fact that the interactions of the particle
with the medium have a twofold effect; first, an overall dynamical fric-

tion, then a fluctuating force. Intuitive assumptions about the statistical
properties of this fluctuating force lead to the Fokker-Planck equation

for the time evolution of the probability distribution of finding the particle
at a given point in space with a given velocity. One of the most interesting
features of the Fokker-Planck equation is that it is an irreversible equation;

it predicts an irreversible evolution towards an equilibrium distribution.

The stochastic theory has been widely used and proved success-
ful in the study of a great variety of phenomena. Neverthele , it requires

a good deal of intuition to reach a phenomenological description of the
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effect of the medium on the particle. However, intuition can sometimes
be misleading ;. therefore, there has been much effort to understand this
phenomenon on a microscopic level, Such an effort can be rewarding
in several ways ; it will clarify the conditions under which the phe-
nomenological theory will be valid, it will give us the phenomenological
constants in terms of molecular parameters and finally, it may be ho-
ped that it will show us the path to follow when the conditions
for the validity of the phenomenological theory are not fulfilled.
An understanding of the brownian motion on

a microscopic level necessarily requires the consideration of an
N-body system, It is quite obvious that the detailed description provi-
ded by the laws of mechanics cannot be used directly and that one
must resort to the methods of statistical mechanics. A most useful con-
cept is the idea of an ensemble introduced by Gibbs. In classical sta-
tistical mechanics , such an ensemble is characterized by the
N-particle distribution function which obeys the Liouville equation.

The Liouville equation has been the starting point for the study
of non equilibrium many-body systems by Prigogine and his coworkers.
An extensive presentation of the basic ideas can be found in the mono-

2 3 4
) ) and Résibois )

graphg by Prigogine ', Balescu . This method emphasi-
zes strongly the role played by the correlations in the evolution of the
distribution function. We really deal with a "dynamics of correlations",
This formalism is particularly well suited to take account of the charac-
teristic features of macroscopic systems : large number of degrees of
freedom N, large volume £ , finite concentration; these features

allow the consideration of the asymptotic case :

(1) N =) w; 2= o, N/Q =C (finite
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which brings in several important simplifications,

Moreover, in general, we are interested in the asymptotic beha-
vior in time of the system. Then , it can be shown that in many cases,
the behavior of the system can be correctly described by the so cal-
led kinetic equations., (A simple example of kinetic equation is the Bol-
tzmann equation for dilute gases) . The derivation of the kinetic equation
for the velocity distribution function will be discussed in chaper II.

The kinetic equation is an irreversible equation : systems for
which such an equation holds tend asymptotically to an equilibrium
distribution , which 1is a function of the hamiltonian only.

Once we have equations for the description of the asymptotic
hehavior of the N-body system, we can introduce the special features
of the brownian motion problem, There, we are interested in the motion
of a single particle in a surrounding fluid. The simplest case will of
course be that of a particle moving in a fluid at equilibrium . This is
in fact the problem which , in microscopic theories, is often referred
to as the brownian motion or test particle problem, The assumption
that the fluid is at equilibrium introduces an enormous simplification
in the kinetic equation: all the particles no longer play the same role.
All of them, but one, are in the equilibrium state (strictly speaking,
the fact that one particle is out of equilibrium prevents the others to
stay in the equilibrium state; however, this departure from the equilibrium
state is of order N-1 and can be neglected) .

There are two cases where the kinetic equation, particularized
to the brownian motion problem, can be shown to lead to a Fokker-
Planck equation. The simplest case is that of weakly interacting systems

which will be discussed in chapter III, There, a Fokker-Planck equation
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is obtained whatever the mass of the brownian particle, The other

case is that of brownian motion in systems interacting through short
range forces where the brownian particle is much heavier that the
particles of the fluid. This problem, in the absence of any external for-
ce, will be studied in chapter IV, In chapter V, we shall generalize
it to the case where the brownian particle is charged and acted upon by
a constant external electrical field , The interest of all these problems
not only lie in the fact that they allow us to state the conditions of va-
lidity of the Fokker-Planck equation. They also enable us to obtain
expressions of the diffusion coefficient which enters into the
Fokker-Planck equation in therms of microscopic quantities. Moreover,
they show us the way to obtain corrections to the Fokker-Planck

equation when required . This will be briefly discussed in Chapter V,

So far, we have only considered classical systems. The same
ideas can be extended to quantum mechanics a5 we shall show in
chapter VI . Here contact can be made with the results of recent ex-
periments on the mobility of heavy ions in liquid He4 and He

All the work which will be described in chapters
IIl to VI concerns one special class of brownian motion: that of a par-
ticle moving in a fluid at thermal equilibrium (in chapters IV to
VI, the brownian particle is supposed to be much heavier than the par-
ticles of the fluid) . Less specialized situations could of course be consi-
dered. We could for instance consider the motion of a test particle in
a medium which is not at equilibrium . In this case, the problem is
much less simple; we can no longer obtain a single closed equation

for the distribution function of the test particle . However, in all systems



— 161 —

F. Henin

where the kinetic equation is asymptotically valid, the basic features
are preserved, The distribution function of the particle will obey

an irreversible equation, Whenever, in the brownian motion in a fluid
at equilibrium, we can derive a Fokker-Planck equation, the same kind
of equation can be obtained if the fluid is out of equilibrium but

the coefficients appearing in the equation will be functionals of the state
of the system. A simple example of this is given in chapter III

for the case of weakly coupled systems. More details can be found in a
paper by Balescu and Soulet %) .

However,there are systems where the kinetic equation is not
val:id, even asymptotically. An important case is that of systems inte-
racting through gravitational forces, For such systems, an entirely
new approach seems necessary. We first have to derive an equation whicl
will, in this case, play the same role as the kinetic equation for
systems with short range interactions. In the last chapter (VII) we shall
briefly describe a recent attempt by Prigogine and Severnes) to
obtain such an equation. This equation predicts a behavior which differs in

many important aspects from the behavior predicted by the kinetic
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I. STOCHASTIC THEORY

I.I. Introduction

The stochastic theory does not make any attempt to describe in detail
the interactions between the brownian particle and the particles of the
fluid, Rather, it describes the effect of the medium on the heavy partic-
le in a phenomenological way. From the beginning, one assumes that the
influence of the medium on the particle can be split into two parts.

First, we have a systematic frictinn effect. Secondly, we have
to account for the random motion. This is done by assuming that the me-
dium exerts a fluctuating force on the particle, It is obvious that this for-
ce is not known exactly and that the best thing we can do is to make gues.
ses about its statistical properties. The main question will then be: given
the statistical properties of the fluctuating force, what is the probability
that, if the brownian particle at t = 0 is at the point L, with velocity go,
it will be at timet at the point r with velocity 2? The assumptions
of the stochastic theory lead to the Fokker-Planck equation for this proba-
bility distribution,

We shall first discuss the assumptions which lead to the Lange-
vin's equation of motion for the heavy particle (§ 2) . Then we shall ma-
ke some further assumptions about the statistical properties of the fluc-
tuating force ( § 3) which will enable us to write down the probability
distribution in velocity space (§ 4).

We shall then show how the problem of finding this distribution func~
tion can be reduced to the solutinn of a differential equation (§ 5),
the Fokker-Planck equation in velocity space, The Fokker-Planck equation

for the complete distribution function in phase space, with or without an
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external field acting on the particle , will then be obtained by means of
an easy generalization of the previous problem | §6) . Finally, we shall
consider the case of an inhomogeneous system where the density gradient
is small oer distances of the order of the mean free path, Then, we
shall see that for times much longer than the relaxation time, the spa--
tial distribution obeys a diffusion equation,
All this discussion will follow quite closely the excellent
1)

review paper by Chandrasekhar ' ., An extensive bibliography can be found

there,

1.2, Langevin equation

The first step in the stochastic theory is to write down an e-
quation of motion for the heavy particle., From the beginning , one assu-
mes that the influence of the medium leads :

1. to a systematic slowing down effect ; the friction coefficient /5 is
assumed to be independent of the velocity of the heavy particle . Usual-
ly, one also assumes that it is given by Stokes' law. For a sperical

particle of mass M and radius a, we then have:
6 W
(1.2.1) f- ————Mf—”

where 7 is the viscosity of the fluid.

2. to the random motion of the particle; to account for this, we
assume that, besides the dynamical friction, the medium exerts a
a fluctuating force A (t) on the particle. This fluctuating force is as-

sumed to depend only on the time t. It is of course not known but
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plausible assumtions can be made about its statistical properties
Comparison with experiment will have to decide a posteriori of the
validity of these assumptions.
If we now suppose that these two effects are additive, the motion
of a brownian particle in the absence of an external field of force is

given by the Langevin equation :
du

(1.2.2) = - wH+A(t
a - frrdw

where u is the velocity of the particle

(I.2.3) L re

r being its position,
If an external field of force K (r,t)acts on the particle,
its effect has to be included in the equation of motion. This means

that (I.2.1) has to be replaced by

du

(L.2.4) ~ . N N
=P rEE nraw

We may notice an important feature of the Langevin equation .
The motion of the particle at time t is entirely independent of its
motion at previous times, Whatever happened to the particle in the past
does not matter to determine its future behavior at t+dt. This clearly
corresponds to the assumption that the collisions between the brownian

particle and the particles of the fluid are instantaneous.
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I, 3,8tatistical propertiesd the fluctuating force

Our next problem is now to specify the statistical properties
of the fluctuating force é(t) . Of course, in the framework of a phe-
nomenological theory, this amounts to the introduction of a certain
number of a priori assumptions, These assumptions will be based on
a very intuitive feeling of the phenomenon of brownian motion, Their
justification and limitations certainly require a description on a micros-
copic level of the whole system.

First of all, we know empirically that the characteristic ti-
me for the variation of the macroscopic quantities (i.e. the quantities
which we measure, as for instance the mean velocity) is much longer
than the time interval between two successive collisions of the Brownian
particle with particles of the fluid (which is of the order of 10.21
sec, in a normal liquid) , Therefore, we shall assume that we can
always find time intervals At such that during At macrosco-
pic quantities change by a negligible amount

Qutt+ BYY - {ut))

(1.3.1) << 1

<L ®)

while A (t) undergoes a large number of fluctuations , such that Altt At)
and A (t) are completely uncorrelated. This assumption is quite reasona-
ble if we take into account the fact that the brownian particle is much
heavier thah the particles of the surrounding fluid, Then, during the colli-
sions with the fluid particles, the velocity of the brownian particle chan-
ges by a very small amount. During /A t, the net acceleration suffe-
red by the brownian particle because of the action of the fluctuating

force will be
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t+ Dt

(1.3.2) BAY) = d§ A(¥)
t

We assume that this net acceleration depends only on the
time interval At and not on the time t at which we start
to compute it, i,e, we again neglect memory effects,
We shall now make an assumption about the probability of
occurence of different values for g A t). The net acceleration in
At is due to the superposition of a large number of random
accelerations. This is very much analogous to the situation one encoun-
ters when discussing random flight problems. There, one looks for the
distribution function of the increment Ag during At in the position
of a particle which has performed a large number of random steps.
If each displacement is governed by a probability distribution '|:(|£|2 )

which is spherically symmetric, one shows that . (see appendix I)

(1.3.3) W AR AL) = (4wD At)'s/zexp]'.wi\z/wm\
where D is the diffusion coefficient which depends on the average length of
the step and on the time interval between steps (see A.1,1.17)Using the ana-
logy between these problems, we shall assume that the probability distribu-
tion for B (At) is given by :

(L. 3.4) W[E( AN t)} = (4% th)‘3/2 exp[-\ B( At)\2/4th]

where q is a constant , The specification of this constant requires so-
me additional assumptions about the equilibrium properties of the veloci-

ty distribution function (see § 4)
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1.4, - Velocity distribution function,

Before dealing with the general problem of finding the com-
plete probability distribution in phase space W(_l:,g,ﬂ };0, 4, 0)
to find the particle at r with velocity u at time t given the ini-
tial condition 10, EO, we shall consider a simpler problem ., We
shall try to find the probability W(u, t\BO ) that the particle has a ve-
locity u at time t if its initial velocity is Y

The formal solution of the Langevin's equation is :

~0

(L4.1) u-u o~ P =e'f”ft eﬁsé(g)dg

Both sides  of (I.4.1) have the same probability distribution. Now, if

t
(I.4.5) 4 =e Pt g A('§ d€

we may also write :

1 N

exp\-_ PtJAt]B aty= ) o

= j=1

(1.4.3)

if we divide the interval (0,t)into N intervals At where At is
of the kind defined above (i.e. such that A suffers a large number of
fluctuations while all other quantities , such as e-’st, remain practically
constant) ,

With our assumption (I.3.4) about the probability distribution
of B(At), i.e. of éj’ we can, using the theory of random flights,

obtain the distribution function of & (see appendix A . I. 2):
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t -3/2
W) = [wq[ ag ¢’ (g't)]
[0}

X expi -\f\z 4th a¥ e'zf’(f'g)}

(¢}

(1.4.4)

Therefore, the velocity distribution function is :
-3/2
Wu,t;u )= [211' 1 (1-e'2pt)]
~ o P

(1.4.5) » \R'Eoe-m‘z 5

X exp ‘ - _—
2q l-e-z pt
For long times ( Pt >>1), we obtain asymptotically :
. _ -3/2 2
(1. 4.6) Wit o ) = (2Wa/P) exp (-fu/2q)

Therefore, we have an irreversible evolution towards a gaussian distri-
bution, independent of - The system has forgotten its initial condition.
A priori, nothing implies that this asymptotic distribution is the Maxwell-
Boltzmann equilibrium distribution ,If we add this condition as a further
requirement, we must choose the diffusion coefficient in velocity space

to be:

(1.4.7) q=kTP /M

Therefore, with the following set of assumptions :
1. Langevin equation
2. characteristic time for the variation of A(t) much smaller
that the characteristic time for the variation of macroscopic
quantities
3. net acceleration between t and t+ At depends on At

only
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4, distribution function for the net acceleration during At
is gaussian
5. asymptotic distribution for the velocity is Maxwell-Boltz-
mann distribution
the distribution function in velocity space for the brownian particle is

is completely determined by (I,4.5) and (1.4.7)

1.5, - Fokker-Planck equation in velocity space,.

So far, we have obtained the probability distribution function
corresponding to a well defined initial condition: at t=0, the velocity is
4 - To do this, we have introduced quite specific assumptions about the
statistical properties of the fluctuating force. We shall now show that
the problem of finding the distribution function can be reduced to the
solution of a partial differential equation, the Fokker-Planck equa-
tion, In fact, this method will require less restrictive assumptions
about the properties of the fluctuating force. When the same assumptions
as above are made, the general Fokker-Planck equation takes a simple
form and its solution reduces to (I.4.5). Another interesting feature of
this method is that when further restrictions on the problem are impo-
sed, they can be expressed as boundary conditions for the solution of the
Fokker-Planck equation, Also, this equatien will appear as the most
adequate tool for the comparison with the results of the microscopic
theory.

Again , we assume the existence of time intervals /Mt such that
macroscopic quantities do not vary very much during these time intervals
whereas the fluctuating force has changed several times,

If we consider brownian motion as a Markoff process, i.e, if we
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assume that the course which the brownian particle will take is enti-
rely independent of its past history, we expect that the probability di-
stribution function W(u , t +At) will satisfy the following integral

equation :

(1.5.1) Wi, t+ AY) = jd(Ag)W(g-AE» (- Aus Aw)

where +(}i A u)is the transition probability for a velocity increa-

se Au in At
Let us now expand the 1lhs in a power series of At

and the integrand in the rhs in a power series of A}l

W(E,t)+-§;¥ At‘fO(At)2 =
u u, L 5 u u+
»(1.5.2) fd(A ){W( t) - 3. Ai z 3y A A }X
X{Y(R;AE') - A 3 S‘L‘u Y Au Au +. ]

With the notation :
(L.5.3) o) - JaA 2“*‘2 A

this equation can be rewritten:

%“Z— At +o(AY - - ga—[w Buy]+
: .3:;“3- [¥ <A“1A“>]+ oln Ay 1)),

Taking into account the fact that in the Langevin equation, all syste-

(1.5.4 )

matic effects are accounted for in the friction term and that the flucua-
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ting force is random, we have:

Ot
(1.5.5) ( ‘0 at jl(t)> -
Ot
< L dtLAt aT A (¥) Aj(t')>

at At
(1.5.6) ~ I dtl de! S(T-r') ~ Bt
(0]

o

r=4

Therefore, if we take the limit [\ t-»0, we obtain the general

Fokker-Planck equation for the velocity distribution function :

W, D {(Aui) W] Y [(Auiﬁuj) w

Y A Y *3 XD Bt

(1.5.7)

From the Langevin equation, we have:
(1.5.8) Ay -- [52 Dt + B(AY

If we further assume that the probability distribution for the net accele-
ration E(At) due to the fluctuating force is given by (I.3.4) and that
the asymptotic distribution must be the Maxwell-Boltzmann distribution

the transition probability becomes :

Py = ewper v ®? x
(L.5.9)

X exp [-M‘Bg_ +Pu At\2/4[5kT l.\tl
Then , we have:

<A u>= - Pui Dt

(1.5.10) g 0
(AuiAuj) = (Z‘SkT/M) iy +0(Qt)

and we obtain the special form of the Fokker-Planck equation :
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PY 2
P i i kT 9 w)
(I.5.11) LA T
It P '}ui M -)ui2

One verifies easily that its fundamental solution, i.e. the solution which

reduces at t=0 to a delta function

(I1.5.12) Wu, 0;20) =S(u-u )

~ ~0

is given by (I.4.5) . From it , it is of course trivial to derive the

solution corresponding to an arbitrary initial distribution.

1.6, -Fokker-Planck equation in phase space,

The above procedire can be generalized to find an equation for
the complete distribution funetion W(r, u, t) in phase space . Instead of

(I.5.1), we have now :

wie .t +80 = [fwee- Ara- Ay, OY(z- Bz u-Bu; Br, Bu)

(1.6.1) dAr)d (Au)

From the Langevin equation (we directly consider the case where an ex-

ternal force is present ), we obtain:

Ar - u Bt
(t.6.2) Ay--(By -K)At +B(AY
Therefore, we have :
(1.6.3) Y u:Br , Bu)- ~y<g;ug)3m£ -u Q)

We shall take for the transition probability “’(,‘l ;A}l ) the assumption
(I.5.9), in which we add a term -K Dtin the exponential to take

into account the effect of the external field. This assumption will lead
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us to a generalization for the complete phase space of equation (I.
5.11) . If we do not make a special choice for ?(E;A}i) , We can
follow the arguments of the previous paragraph and obtain a genera-
lization of (I.5.7).

Integrating over A r and expanding again in a power series

of At, A,‘i , one obtains

WA Y
2w YW 2 ? i
(?t—+ui 31‘1 yOt+0 (At _..._1?1:__+

. dhwlen, auy
= et 0 ((Auihuj Auk7)

2 qu. Du,
! J
If one computes the various averages and then takes the
limit A t-»0, one obtains the Fokker-Planck equation :
W, w dw

Y ar, K D

(1,6.5) .Wui 32 .
+ (kT/M)
P Y P

u,
1

I.7. - Diffusion equation,

Let us now consider a spatially inhomogeneous system in which
we have a certain number n of brownian particles, We assume that
the dilution is such that we may neglect all interactions between these par-
ticles, Therefore, the probability distribution function W( {£ [} Au },t)

factorizes into a product of n factors:

n

(1.7.1) w Y quy.0)=TT Wy upt)

i=1
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where Wi is the one particle distribution function which satisfies the
Fokker-Planck equation .

We shall also assume that the density gradient is small,

In such a system, we have two kinds of processes : first, we
have collisions with the particles of the surrounding fluid which insure
that the velocity distribution function approaches the Maxwellian distribu-
tion ; next, we have a diffusion of the particles which will lead to spa-
tial uniformization of the system, The time scale for the first process is
given by the relaxation time P-l ; this is much smaller than the ti-
me scale for the diffusion process . As a consequence, if we are
interested in times long with respect to the relaxation time, we may
expect that the distribution function for one particle will be of the form:
-M.u.2/2kT
Wit u.b)en(.yM/2WkT) 12 ¢ 11

i~ ~ i~i i
(1.7.2)
+ SW (r., u,t)

i~ ™~

The first term describes the local equilibrium distribution which is
reached for times much longer than the relaxation time,
The second term is a small correction which takes into account the
existence of the diffusion process; it is of the order of the density
gradient .

We shall now show that, under these circumstances, the fun-
ction n i(i v t) obeys a diffusion equation .

If we integrate the Fokker-Planck equation (I.6.5) over the ve-
locity, we obtain
’b dB*i Wi 2

dt AT

(1.7.3) ‘dgig;wi =0
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If we first multiply both sides of the Fokker-Planck equation

by u,.‘ (® =x ,y,z) and then integrate over the velocity, we get:
1

(1.7.4) Y o,

'}‘du'W, u. 3
~11 .’du_u_W.u_ =-PIdu,W,u
r

~i~io1 1

If we combine these two equations, we obtain:

D [( 1 9 s 1 Dz
175 -5 dgiWi-ﬁ 3, Jdu, W "‘; 3r oz PRt W

Now , using (I.7.2) and keeping only lowest order terms, we easily,

obtain the diffusion equation :

Iz 72
(1.7.6) T_= D r, ni(ii,t)
with
(L7.7) D=kT/PM
The density of the particles at a given point x of space will
be :
n
(.7.8) et L P(z-si) Wiy Az 0 drdu

Again, if we keep only lowest order terms, i.e. if we take :

n

(1.7.9) C(x,t) = : n,(x,1t)

i=1

we verify easily that this also obeys the diffusion equation

(1.7.10) }—C{%i -p V2 C(xs 1)
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Appendix 1,1 - Proof of (I, 3, 3)

In the problem of random flights, one considers a particle
which performs a sequence of steps Lo Lgeee The magnitude and
direction of all the different steps are independent of the preceding
ones. One chooses a priori a distribution function Ti(ii) which gives
the probability distribution that a given step L, lies between E'i and
Lt dii . The problem is then to find the probability W(AR; Ot) that
the particle has travelled a distance & Rin the time interval Dt

We shall give a proof of (I.3.3) for the simple case of
one dimensional random walk with all steps of the same length and with
equal a priori probability for a step to the left or to the right. There-
fore, if the particle is at the origin at t=0, the probability that it

will be at the point m after N steps (-N< m<N), is given by :

1.,
(Al.1.1) W(m, N) = 3 W(m-1, N-1) +% W(m+1,N-1) (N >1)
(AL.1.2) W(1,1) = W(-1,1) = 1/2
Using Fourier transforms :
+ 1
(AL 1.3) p -3 W(m, Nje =™

m = = o

we obtain from (AL 1.1) and (AL 1.2):

D) = cosl PN_I(,{) N >1

(AL 1.4)
Py =cos 1

Therefore,

N
(AL 1.5) P (d) = (cos )
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and hence inverting (AI.1.3):
+W
-1 N il
(AL 1;6) W(m, N) = (2T) (cosl) e T dl
-®
Now, with
N .
N -N ' -1(N-
(AL 1.7) (cosl) =27 § = olN-ZR)
=0 p-(N-p).
p_
we obtain easily :
N N!  sinw(N-m-2p)
AL1.9 W(m, N) = 2 :
( ) . §=:0 pY(N-p)!  w(N-m-2p)

The last factor vanishes unless N-m-2p = 0, Therefore :

W(m,N) =0 if Nevenand m odd or vice versa (Al.1.9)
-N -1
W(m, N) = 2 N!{[(N-m)/z]'.ﬁNm)/z]!} if both N and m
even or odd (AL 1.10)

The first result is of course obvious. The second could have been
obtained using combinatorial analysis. However, the method involving
Fourier transforms can be generalized to more complicated problems and
although exact results for arbitrary values of N cannot always be obtained,
expressions such as (AL 1.6) are often useful to obtain an asymptotic
result.

For our present problem , for N~y and m finite , using

Stirling's formula :
1
(AL 1.11) log nY =(n +%) log n-n '+E log 2W (n =)

we obtain :
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1 1 N
log W(m, N)=(N+75 )Jlog N -o(N+m +1)log (3 *m

1 N _
(AL 1,12) --2-(N -m + 1) log (5 - m)-% log 2W - Nlog 2

=~ log (2/Nw) 1/2 - m2/2N

and hence the asymptotic expression:
1/2 2
(AL 1,13) W(m, N) ~ (2/wN) exp (-m"/2N)

If each stephas a length 1 and if € is the time lapse between

two steps, introducing the variables :

(AL 1.14) x = ml At = Nt

the probability W(x, A t)Ax that the particle lies between x and
x+ Dx after Ot is (Am = Ax/d):

Wix, At)Ox = > W(m, N)

me€ QAm

(AL 1.15) =(1/2) W(x/4, At/T) 2 _ 1
me€ Am

= (1/21) W(x/}, At/ T)

where the factor (1/2)takes into account the fact that for N given
(odd or even), only one half of the values of m contribute (those which
are odd or even).

Therefore, we obtain :

(AL1.16)W(x, O&t) = (4 WD At)'l
with
(AL 1,17) D =12/zt

/2 exp (-xz/ 4D At)
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(AL 1;16) is nothing else than (I.3.3) for this simple one dimensio-
nal problem. This asymptotic formula can be generalized for several
three dimensional random flight problems. For instance, for a gaussian

th
probability distribution for the j step:

/2

(AL 1.18) -cj(;;j) = (oW 1?/3)'3 exp (-3 \Lj\2 /21 J?)

one obtains:

(A.1.1.19) WN(g)=(21rN<1?)/3)'3/2 exp (-3|5\2/2N(12))

with

(AL 1.20) (12)=N'1 T ?
=1 ]

The same expression is obtained if the probability distribution
2
is identical for each step and spherically symmetric, Then {1 )
is the average displacement in each step (the 1j 's are independent

of the index j).

Appendix 1.2, - Proof of (l.4.4)

We want the probability distribution of the quantity o

5 )3
(AL 2.1) d - Q= . B(AY
with

(AL 2,2) \‘Jj = exp [- P(t-j o t)]

when the distribution function for B ( Dt)is given by (I.3.4). This
is again a random flight problem , the gieps being the 11, 's, The

probability distribution for each ij is a gaussian and corresponds
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to the function tj given in (AL, 18) with :

2 2
(AL 2.3) fj = 6q ‘|"j Ot

Therefore, for a large number of steps , using (AILI 19), wehave

N N
(AL 2.4) W(R) =| 2 2_ 1j2/3 ]'3/2 exp[-3|5\2/2 ) 112.]
=1 j=1

With
AL 2.5 2 2Bt 2pjot
(AL2.5) :1,=6qﬁte Z'e J
=l ] =1
If we use the same approximation that led wus from (I.4.2)to
(I.4.3), we may write :
N t
2 -
(AL 2.6) = Z 1j2 - 4q 2B ] af P2

izl o

Inserting (AI.2.6) into (Al.2.4) , we readily obtain (I.4.4)
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II, KINETIC EQUATIONS

II.LI - Introduction,

In this chapter , we shall consider the microscopic descrip-
tion of an N-body system from the point of view of statistical mecha-
nics, We shall restrict ourselves to classical systems which are homo-
geneous in space, although the formalism can be extended to include
quantum systems and inhomogeneous situations, As this will be the
most -useful for us, we shall consider the case of a gas interacting
through binary central forces. On the microscopic level, a complete de-

scription of the system is given by its hamiltonian , i,e, here:

p.
(II.1.1) H= ZE ﬁj + N 124:3' Vij (lgi-gj\) =H_ +\V
where m, is the mass of the jth particle , gq. and P. its posi-
tion and momentum. A is a dimensionless codpling chmstant.

Once we have the hamiltonian and the initial conditions, the
evolution of the system is of course completely determined by
Hamilton's equations of motion,

However, for a large system , a set of 6N differential equa-
tfons is not very practical, Moreover, we can only measure a few
macroscopic quantities and we never have, even at t =0, a detailed
information about the positions and moménta of all the particles. There~-
fore, we shall wuse the idea of a representative ensemble in phase spa-
ce, We imagine a large number of similar systems, with the same hamil-~
tonian but differing by their initial states. If we take a sufficiently
large set of equivalent systems, the ensemble will be characterized by

a continuous density in phase space f ( ‘E\ ,LqJ, t) . As all points in
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the ensemble move in time according to Hamilton's equations, the fun-

ction r satisfies the Liouville equation :

(IL1.2) ?—‘tfd[ﬂ,p\:-mf

where [H , P.l is the Poisson bracket of the Hamiltonian and P

and, hence, the Liouville operator L is

N dH 2 L) g
(I, 1,3) --lzj\‘)pj ‘;qj ) ‘qu ij\

From this equation, one verifies easily that :

N
(I.1.4) ’P(lR\'lﬂ.\' t\dpdg} = = constant

If we choose this normalization constant to be equal to unity :

(I 1.5) “’(iai Agy. tdpag | !

then , P (A P} A4 t)‘deg‘ N is the probability of finding at time t
a representative point in the volume element {dgdg\N of phase
space,

A basic postulate in statistical mechanics is that all macros-
copic quantities may be computed by taking the average value of the corre-
sponding microscopic dynamical quantity over the distribution function

of a suitable ensemble :

N
mre  Cam) =fageraay paey. 1ay ojeay
This description has the advantage that the whole mechanical
behavior is given by a single linear equation the Liouville equation

(I1.1.2) .
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To the decomposition (II.1.1) of the hamiltonian into un
unperturbed part H0 (kinetic term) and a perturbed part /\ V (inte~

raction) corresponds a similar decomposition of the Liouville operator :
(IL.1.7) L=L_ + %L

This feature , as well as the strong analogy between the Liouville
equation (II.1,2) and the Schrgdinger equation in quantum mechanics
will enable us to develop easily a perturbation technique to study the
time evolution of the distribution function. In this chapter, we shall con-

centrate ourselves on the evolution of the velocity distribution function :

(IL.1.8) Poiry. b ={\dq\Nf(lR\'lﬂ}’t)

Essentially, we shall solve formally the Liouville equation and write the
formal solution as a power series of the perturbation. The introduction
of a diagram technique to represent the various contributions will enable
us to rearrange the terms and to write the equation of evolution in a
form suitable for further discussions :

'DP t
o
ol ) de G(t -t)f’o(t) +@( \h,lf,\(O)" t)

(11.1.9)

First, we have a non-markovian term which relates Pb(t) to its value

at an earlier time ¢ . G(t) is an operator which describes the effect
of the collisions which occur in the system on the evolution of the ve-
locity - distribution function. The non-markovian character of the first con-
tribution is due to the fact that the collisions last over a finite time
interval < . The second term gives the contribution to the evolu-

coll
tion of ro(t) due to the existence of initial correlations in the



— 185 —

F. Henin

system , these being described by the functions ﬂk} (0) .
We shall then show that, for systems int';racting through
short range forces and such that the initial correlations present

at t=0 are over molecular distances, in the limit of a large system;

(IL. 1, 10) Nyo, 2-9«, N/Q =C finite

(Q2: volume of the system)

and for long times :

(I 1. 11) t>>T

the second term in the rhs of (II.1.9) may be neglected and that
ro(t) satisfies a closed equation , which may be written in a

pseudomarkovian form :

1.1.12 2F =Q Yo
(IL.1.12) iy yo P,

where \‘/(z) is the Laplace transform of the collision operator Gt)

and \')(0) its limit when z =90, Q is a functional of \|l and its
derivatives for z-»0 and takes into account the finite duration of
the collision,

In this chapter, we shall show in detail how the kinetic
equation (II.1.12) can be derived. We shall then sketch briefly how
the same formalism can be extended to discuss the evolution of space
correlations in the system. We shall also indicate the necessary modifi-
cations when an external force is present . The equations so obtained will
be our basic tools for the next chapters.

We shall be able to give here only a very short outline of the

theory. More details , as well as references,to the original papers can
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2 3
be found in the monographs by Prigogine h , Balescu )and Résibois ).

1.2, Fourier analysis of the disf{ribution function.

Let us expand the distribution function in a Fourier series with

respect to the position variables :

P({Rl=iﬂ),t)=Q-N : fgl...liN({g},t) x

.ok
l'5'1 ~N

(IL.2.1) N

x exp|i

k..q
1 i

The factor Q-N is introduced to allow the normalization of f to unity:

N
(IL. 2. 2) Iideg}Nr(’c) =I{dg} o) = 1)

The formal expansion (II;2,1) is very interesting. Indeed, it is

easily verified that the Fourier coefficients r K K have a very sim-
~1. * ~N
ple physical meaning , First of all, we notice that, in a system which

is homogeneous in space, i,e. such that the distribution function is inva-

riant with respect to space translations :

+ =
(I1.2.3) ')({qj gugj}, t) f({gj\ ARy t)
only those coefficients such that :
(II.2.4 ) IZ:I? k. =0

are different from zero. Therefore, Fourier coefficients such that
(II.2.4) is not fulfilled are closely connected with the existence of spatial

inhomogeneities in the system,
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Also, we shall,most of the time,be interested in the average va-
lue of microscopic quantities which depend only on a small , finite num-
ber s of degrees of freedom. To compute these, all we need are the re-

duced distribution functions :

LRI AL ] k] = LY d DU
(1.2.5) fS(R'l Esgl gs t) ﬁgsﬂ d'g'N Rs+1 dRNf“R' ’tﬂ)'t)

In such reduced distribution functions, the only Fourier coefficients
which play a role are obviously those which have at most s wave vectors
different from zero.

One of the most important coefficients is that w:th all wave vec-

tors equal to zero. It is the velocity distribution function :

(11. 2.6) Po(m‘ ,t) = f{dg'; Nf(lg}.igl »t)

From (II,2,2), we notice that this function is normalized to unity.
To find out the meaning of the other Fourier coefficients, let
us consider for instance the averagedensity.
{n(x. t)) = ‘idads.\ N 7:_5(5:3]-) PURY Aat.t)
(II.2.7) !

. N
=N/n[1+ l; elk"[{dﬂ Py "Q{RM]

In this way , we see that the Fourier coefficients with one wave vector
different from zero are connected with the local deviations from the
mean density N/Q.

As another example, let us consider the binary correlation func-

tion :
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,x't) = d - . dp dp f _
B x'Y li;(dgi RISREE sﬂf R R )8R R 0

(I1. 2. 8) -‘dRifl(giRit) sdp~j fl('(ljgj t)}

~1 F\-J

«frey" Py, -0 e 2 ¢,

In an homogeneous system, this reduces to:

(IL. 2.9) gx. X', 1) = 7:. z“dR‘ka, O ok (%)
ij ‘15 ~~

Correlations among s particles therefore depend on the Fourier coef-
ficients with at most s indices different from zero, For a large system,
the spectrum of k becomes continuous and the rhs of (I 2.9) vanishes
for|x-x'|-ye if f’k,-k is sufficiently regular,

Another interesting feature of (II.2.1) is that this is in fact an
expansion in terms of the eigenfunctions of the unperturbed Liouville

operator. Indeed, from (II.1.7), (II.1.3)and (II.1.1), we have:

R;
(1L 2. 10) ==j Z
7™ ')gJ

If we use the same notation for eigenfunctions as in quantum mechanics:

(IL.2.11) “g}m -N/2 exp[ Z k; ~J]

we have

(I1.2.12) LOHE‘) = [Z (ij-ﬂj /mﬂ “‘i‘)
i
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These eigenfunctions are orthogonal and normalized to unity :

(IL. 2. 13) ’\dg} exp[ Z Kok ](ud\&k'i) T‘S .

'”J ~j

From these properties,the time dependence of the Fourier coefficients

hkk in a system of non interacting particles (X= 0) is easily found :

(IL. 2. 14) fw(lg},t) Ry (tp}) exp[i E(}ij.gj/mj)t]( A=0)

When the particles are interacting , the time dependence of the f{k(t)

is of course much more complex., Besides the oscillating exponen-
tial factor corresponding to the free propagation of the particles, we hav
a further time dependence in the coefficients F”‘N\HM) in the rhs of

(I, 2,14) because of the collisions occuring in the system.

1I.3. Formal solution of the Liouville equation.

Resolvent operator

The formal solution of the Liouville equation is of course very

easily written :

-iLt
(II. 3. 1) f(t) =e f(O)
From this, we obtain for the various Fourier coefficients of the distri-

bution function :
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f\}g'; (t) =5}<‘£3\ e-iuhk' )] hl‘" (0)

(11.3.2 - L sldgsN o[- Tk, 0]

x exp[i z K. 'gi}fik' 0

J

As L is an operator in the complete phase space, the matrix
elements in the rhs of (II.3.2) are still operators in velocity space.
The operator e-1Lt can be expanded formally in a power

series of the interaction :

. ALt gt -iL (t-t.) -iL t
oLt _ °-1{ dt e o 1§ ©°f
(o]
(1L 3. 3) 5 (1 t AL (t-t)  -iL (t.-t) -l t
+(-iX)I dt ldtz e © l8§Le 1 281 °2
(o] 0
+...

This equality is most easily verified if one takes the time derivative
of both sides of (I1.3.3).

However, the behavior of the system can be discussed much more easily
if, rather than the operator e-iLt , one considers its Laplace transform,

the resolvent operator R(z):

0 N
s izt -iLt 1 +
(IL.3.4) R(z) = J dte e = T (z€S)
0

From (II.3.2) and (II.3.4) , we obtain after an inverse Laplace transform :
1

(II.3.5) f{k‘(t) e e'iZt<{§\|R(Z)HE' ))fw}(o)
- C
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where the contour C is a parallel to the real axis in the upper half
plane, above all singularities of the integrand, (II. 3.5) can be easily ve-
rified for a finite system . Indeed, then, the operator L is a hermitian
operator and all its eigenvalues, although unknown , are real, For an
infinite system (2 —%w), the properties of the Liouville operator are
not known, We shall however assume that (II.3.5) remains valid when we
perform the limiting procedure (II.1.10).

The resolvent operator can be expanded in a power series of the

perturbation

0 n
(IL. 3. 6) R(z) = 2 *‘—Z_IL (5LZ.IL)
n=0 o} Y

This result.can also be obtained from (II.3.3) through a Laplace tran-
sform, using the convolution theorem.

(II. 3.5) and (II.3.6) will be our basic equationsfor the following
discussion, Of course this means that we assume that perturbation theory
up to an infinite order is valid. Whether this is true or not is an unans-
wered question and we shall not discuss it.

The unperturbed resolvent ope rator is diagonal in the ﬂ}ﬂ)

representation. Its matrix elements are very simple :

KA R @RS ¢t | =)

(I1.3.7)
_ 1
“n LAY
i
where
(11.3.8) v.=p [m,
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th .
is the velocity of the |  particle.

As to the operator SL, we obtain from (II.1.7),(II.1.3) and (II.1.1):

AV 9 .. D
(1. 3.9) -iSL=Z_(—1-J-.-—— e
i<j 24, R, 'ng "’Bj

If we expand the potential in a Fourier series :

ik.(q.-q.)
) . 3 ~ o~ R
M3.10) V. (g~ g (81'/9)% v, e
we have: 5
. 3 P
-LSL=(8W1/Q)Z:Z_V k. (g=—-2"—) %
g kK R IRy
(11, 3. 11) ik .(q.-q)

It is easy to verify that the only non vanishing matrix elements are tho-
se where the initial and final states have only two different wave vectors,
the total wave vector being conserved :

ok k| OL ]l KR
(II. 3. 12)

2 L)

3
8w /Q)V, k k'), (m -
BT Y 7K G Taj)

k +k , k' tk'

~] ~J ~] -\.J

The fact that only two wave vectors are modified and that the total wave
vector is conserved is of course due to our choice of binary central
forces. An interesting consequence of the condition of conservation of the
total wave vector is that the Fourier coefficients are divided into subsets
corresponding to the different values of the total wave vector. Each subset
evolves in time independently of all the others. Therefore, for instance,

a system which is initially homogeneous in space will remain so in the

course of time,
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II.4 - Diagram representation of the formal solu-

tion of the Liouville equation.

The classification of the various terms in the series (II.3.6) is
best performed if one uses a diagram technique . Let us associate with
each state “;ﬂ) =llil e kN’ with n non vanishing wave vectors a
set of n lines running from the right to the left, Each line is label-
led with an index corresponding to the particle; when necessary, we

shall also indicate the wave vector An example is given in fig, 1. 4.1,

i

J
1

Diagrammatic representation of the state
k k
HoYk, kS kY
Fig. 11.4.1

The matrix elements of SL provoke a modification of two wave
vectors Kk, kr)k'i k' . Taking into account the fact that among these,
none, one or two may correspond to the wave vector 0., we have 6

basic diagrams (see fig, I1.4,2) . N

‘ .
.
4 ; }

Gl V3L k) kb |30 )

k+k]-k'+k' k tk =k’

~] ~i~j ~1 ~) ~i

(a) (b)
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(--,‘ii-~2--\3L\-'E}--E'j‘-§ ..51..¥.\5L|..Q..g..>
k = k'+k' k +k =0

~ ~1~j

(c)

QIR IR 1 BT S S Y (..g..g..\SL\..g..gj..) |

0 -k *k! k=K
(e) 6]

Basic interaction vertices .

Fig. I1.4.2.

Taking into account the fact that the states \Ui‘) describe
well defined correlations in the system, the diagramsindicate very
clearly what changes in these correlations occur as a consequence of
the interactions, The present formalism thus appear as a description of
mechanics in terms of a dynamics of correlations.

With the diagrams, it is easy to represent any contribution

h

4+
to the formal solution of the Liouville equation. To obtain the n" order

contribution to the evolution of hk}(t) , we first draw the final state

Hg}) Then, we go to the right through n vertices, using all possible
combinations of the six basic vertices which conserve the total wave vec-
tor. As an example , the second order contributions to the evolution of

fk(t) are given in fig, II.4.3.
~
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. . . N
‘ . \ . .
¢

(o) (b) )

. , (n) to)
L .
» .

e :
(q)

(b) Second order cogtributions to rk (t)

~i

Fig. 4.3

Also, it is very easy, once we have a given diagram, to write down its

analytic contribution . Let us for instance consider diagram (g) in fig, I1.43.
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Reading the diagram from the left to the right, we obtain (we do not

write explicitly wave vector equal to 0):

<k‘ 1 3L-——-1--2hk'7 G | = ke x ffxt, k) ¢
tid z-LO( z-Lo) k' g z-L PSR
II41)<k' kl_ ~ v1> <k' Lk" E-“j‘liil) %

" n Il ]
x QE1Ky ~1| R j’kl)Sk.,k'.+k'sk.,k'!+k'!+k'
~T~M T A~~~

In other words, we write a sequence of matrix elements of SL, each
corresponding in a well defined order to the vertices; in between these
matrix elements, we sandwich propagators (see II.3,7), which are matrix
elements of R(z) for the corresponding intermediate state; we also have
such a propagator forthe initial and final states,

II5.Classification of diagrams,
We shall now discuss the topological structure of the diagrams

which appear in the solution of the Liouville equation,

In the most general diagram, we may distinguish three different

regions. Let us denote by |} g"})the initial state of correlation
(at the right ), by l“ﬁ") the intermediate state where we have the mini-
mum number of lines,(which may of course appear several times in the dia-
gram and b)ﬂggthe final state, If s is the minimum number of lines in the
diagram, it may of course happen that we have several different states
with that number of lines., We then choose as “,li' })the last one starting
from the right . As an example, in fig, II,5,1b we have two different
states with one line : llic( ,\9-\7 and\};:j, {3}) As the latter is the second
one when we start from the right, we choose it as our state “'li'})

Another example (with two lines ) can be found in fig.IL 5. le.
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In the most general case where “5"\) f-“l:'\) #"5» we

have :

1. a destruction region, i.e. a region where we go from the sta-

te |§k"}) to the state |{k'flin such a way that no intermediate sta-
te is identical to |{k'}); in such a region, we go from a state
with given correlations to a state where we have less correlations,
2. a diagonal region, i.e. a region where we go from the state
I{k'Y) back to the state k') ; in general such a region contains
a succession of irreducible diagonal fragments. By definition, an irredu-
cible diagonal fragment is such that we go from a given state back to
that state through a path such that no intermediate state is identical to
the initial state.

3. a creation region, , i.e. a region where we go from the state

“lg}) to the final state [{lﬁj) in such a way that no intermediate
state is identical to “}g'\) ; in this region, we go from the sta-
te of correlations “}S'}) to a state of higher correlations,
Examples of this decomposition are given in fig, IL.5.1
(diagrams (a) and (b) contain the three different types of regions while

diagrams (c), (d) and (e) have only one or two of them) .
)
1
v :
|
P | (
!
l
]
]
|
]
1
]

IRD destruction region

N

creation region| diagonal region

(A= 18 &e-b) WA= e U DI Y008 W AL DY
()
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; LN\,
2 /R 'dﬁ
L 0 T
3 N N

(
d

IRD
creation region diagonal region destruction region

WA= R4 R bt = 1855 5 1R 21, kb

(b)

O
>

IRD

OO

IRD IRD

- e T e e g e e ew we e we e e
ey e mE o Em e e oemmm e e am o=

diagonal diagram

HAD = LiA'D) = 1k = Hetd)
(¢}
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diagonal region destruction region
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IRD = irreducible diagonal fragment
Examples of decomposition of diagrams in creation,
diagonal and destruction regions,

Fig, 1I.5.1

As we shall see later on, the time dependence of the various contribu-

tions will be closely related to this decomposition,

1I.6 - Initial conditions.

We shall always consider initial conditions such that macrosco-
pic properties like the pressure, density etc.. are finite at every point
of the system, even when the limiting case of an infinite system is consi-
dered. The interest of this class of initial conditions is obvious from the
physical point of view; it can be shown that once the existence and
finiteness of the reduced distribution functions for a finite number of de-
grees of freedom is imposed at t=0, it will remain so at an arbitra-
ry later time,

This choice of initial conditions introduces mathematical restrictions
on the class of functions P we consider, It can be shown that this initial
condition requires the following volume dependence for the various Fourier

coefficients :

3 v
= (8TW/Q)
fgl...k

(I.6. 1) fk
~N

..k
217

N

where ¥ is the number of independent non vanishing wave vectors which
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appear in the set kl...kN.(By this, we mean the total number of non
vanishing wave vectors minus the number of relations of the form

ki+' ..tk =0 which they satisfy) . For instance :
~ ~j o~

3, 2
P e/ p (k F-k,)
51’}22 .131’52

(I1. 6. 2) -8 3 r~
r,lg,-k (8w /9Q) rg,-g

The coefficients do no longer depend explicitly on

~
Py
or N, although they migIl\"{t still depend on the ratio N/Q.

With these assumptions, although in the formal solution of the
Liouville equation, we find terms growing more and more rapidly
(N, N2...) , all contributions to the reduced distribution functionsfor a fi-
nite number of degrees of freedom remain finite, The proof of these
theorems is rather lengthy and cannot be given here . However, we shall
illustrate them with two examples. We shall consider the contribution
of the two diagrams of fig, II.6.1 to the one particle veloeity distribu-

tion function :

(I1. 6. 3) \fl(x,t) = idgz...dRN fo({ E* 1)

C

(o) (b)
Lowest order diagonal and destruction

tributionst t
contributionsto P 0( )
Fig. 1.6.1

The contribution of the cycle (fig. II.6.1a) to the evolution of PO (t)
is (see equ. (I11.3.5), (IL.3.7), (II.3.12) and (II.4.1)
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pely e o I D0l -
KR R T el BN 2 -5) .
(11.6,4)«<5i=5,5j,_,=-£ \8L| 0><0 Z_ILO o)FO (0)
-zt
Yen'ia? I Z 1/21:1)’ e A

i<j

2 ) 1 ’D
X k. - k.
tag A T & B ,RJ ),

In the limit of a large system (see II.1.10), the summation over k

becomes an integral :

(II. 6. 5) (811'3/9) 2--9 sdak
k
Hence
3 e-izt
[P (t)] X(Sﬂ /) z:_ ‘dk (1/2:1)[ dz 5 %
© i<j C z
(I1.6.6)

1 ? )
'Vk| (?a aj ) () * ST Ty 1P

= O(NC)
if we take into account the fact that the sum over the particles contains
N2 terms.
Similarily, using (IL.3.11), the contribution of the destruction

diagram (fig.IL. 6.1b) is :
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[Po(t)]c= - 1|'3/Q)2 Z Z dz & 1% (““)-l .

i<j k

KL Pend DIARIC IS SRR

For large systems, this becomes :

[F (t)] -\’ Sd k (1/2W i) [ dz £ v,
° C i<j C z

(11. 6. 8) ) 2 1 ~ (
(’)R ‘)R ) k.(v -v) P.lii_E’ ,lf.j_'.lf.

= O(NC)

Let us now introduce these two results in (II.6.3) . Because of the
integrations over the velocities, all contributions vanish except if i =1 .
This means, that, among the N(N-1)diagrams a or b of fig. II.6.1,
we only keep the (N-1)diagrams such that i=1. Therefore we
obtain

[ﬁfl(ll,t)]o \(811 /) Z‘d k 1/2m)I dz ‘l:t x

i>1 z

2 ? 1
v k. ld..d ————
¥ l k‘ ~ sl’z Ry z-}g.(xl-xj)
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? 2
II. 6.9 X k . - 0
(IL.6.9) T T T
= 0{C)

[\fl <1yt>] - Newha Z |k ni)/ e
C C

i>1 z
Vv k,— ...d ———————— =k = .k
(1.6.10)  * “k~"p (dg? REESRIED ik

= 0(C)

The general mechanism which insures convergence at an
arbitrary time for the reduced distribution function of a finite num-
ber of degrees of freedom is thus twofold ; first , our assumption
(II. 6. 1) (which for instance introduced a factor 9-1 in (II.6.7)), then
the suppression of the contributions of many diagrams once we perform
the integrations over all but a finite number of degrees of freedom.

In many problems we shall further reduce the class of initial
conditions we consider ., For instance we shall often restrict oursel-
ves to the class of initial conditions where the correlations are
over distances of the order of molecular distances, This will be discus-
sed when necessary.

The property of finiteness of the reduced distribution
functions plays a very important role in the obtention of irreversible
equations for the macroscopic quantities. Indeed, once finiteness is
ascertained with respect to N and £, we can further look at the time
behavior of the system and find out that in the long time limit, some
terms may become negligible, This is not the case for the complet distri-

bution function because of the divergenccs with respect to Nin the
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limit of a large system. However, for the sake of simplicity it
appears often convenient not to worry about this‘ N divergence
and to write down asymptotic equations for the complete distribu-
tion function (kinetic equations, see ﬁ 9) ,. This procedure is perfectly
legitimate provided we keep in mind the fact that all asymptotic equa-
tions we shall derive are valid only when, they are used for the
computation of average quantities which depend on a finite number of

degrees of freedom.

II,7- Time dependence

In order to get some feeling about the simplifications which muy
arise when we discuss the long time behavior of the system, let us con-
sider in detail some simple and typical contributions which we meet in
the evolution of homogeneous systems. To make things even clearer, let
us choose a special form of a repulsive potential which will enable us

to perform all calculations completely :

(IL.7.1) Vir)=V_ e

K = is here the range of the intermolecular force. The Fourier tran-

sform of this potential is:

8 WK
(I1.7.2) Vk = Vo (—k2-—+—;2—)2-

Let us now first investigate the time dependence of the contri-
bution of the simplest diagonal fragment to the evolution of the veloci-
ty distribution function : the cycle (fig, II.6.1a) . Using (II.3.6) ,{IL.3.11)
and (II.7.2), we have:
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-izt
_ . e
(11.7.3) [fo (ti’cyde— -(l/zm)IC dz — "/2(2) fo(O)
with :
(IL7.4) Yz(z) X (ol - _lL 3.0
o]

X(swum 8 W°/0) Z‘dk oy

i<]j
A N g LS A R
~ ')Ri ’)R. z -5.(}{‘1-1.) ~ ‘Jgi ')R.
- -).2 Z: l (8‘“’3/9)2:(— -
xy,2 px,y,z i Jct
11.7.5 1+ ) L )
(IL.7.9) ap'“RiE; ‘qpip' N
where
+ 3 kd kP

2
I (z,p.,P..k) = (8WKV ) ‘d k
d{xZE,l'\—J ] (k2+K2)4[-}E.(V.'V)]

+
(I1.7.6) (z € S)
Using cylindrical coordinates with the z axis along the relative veloci-
ty
(I1.7.7) E:Ki-lj

one obtains easily:

+ 2
Jdp(z,gi,gj,w-m/wstrkvo> S«./s x
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+oo
X (3 ) ) (1/4) dk, -1
4 v - (Z'kng)(ki + KAz)z
+o0 ki
(IL.7.8) +$“,z dk | .

(z-k, )2 + )

“00

+
As can be easily seen when performing the k, integration, Id/i(z) is

+ -
regular in S and has poles in S at

(1.7.9) =-iKg

. -1 . . . .
The quantity (Kg) represents the time during which the two parti-

cles 1 and j are interacting, i.e. the collision time ‘L’CO v Using

1
this result, we can easily perform the z integration in (II.7.3).

We ohtain :

(11.7.10) [fo(t)]cycle =-it\y2(0)+ Y'Z(O) + Res

e-iZt‘rz(Z)
2
z

z=-ikg

Therefore, we have three types of contributions: one proportional tot, a

second one which is of order Tcoll/t when compared to the first and

finally an exponentially decaying contribution proportional to exp(-t/t

).

coll
This last term becomes quite negligible for times much longer than the

collision time,
If we do not make a special choice of the intermolecular poten-
tial, it is easily verified (see an example in chapter III, § 2) that the

+
function I a P has the form of a Cauchy integral :

+o0
+ _ f((,)! +
I‘p(z)- dwz-w (z€5)

-0

(IL.7.11)
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Provided f(w) satisfies some general conditions 1) , this function is
regular in SJr and can be continued analytically in S . lts singulari-
ties in s are at a finite distance of the real axis, of the order
of t(-‘clﬂl . If we assume these singularities to be simple poles
(a]thoﬁgh other types of singularities can also be discussed 3)

), the
veneral result (I.7.10)1is valid (instead of a single residue , we must
take a sum over the residues at all poles in S-) .

Let us now consider the contribution of the simplest destruc-
tion fragment to the evolution of Po(t) (fig. II.6.1b) . In the limit of

an infinite svstem, we have (see (II.6.8)):

-1zt
-(1/2 iI z
(11.7.12) [? ] w . .(l)()

with
@1(2) = (81[3/9) E(dsk Vk 5(3.__ _3_) x

~
(11.7.13) X kv fki =K,k 0

In contrast with the operator \l/z(z) , the singularities of the destruc-
tion operator wl(z) depend not only on the type of intermolecular po-
tential we choose, but also on the 5 dependence of the function
-1
? , i.e; on the initial conditions. Let us denote by K the
k, -k . ’ corr
range of the initial correlations. We may for instance suppose that the

binary correlation function g(x,x) 0)(see Il.2.9) is of the form

K (x-x')
(I1.7.14) gx,x',0) =g (|x-x'| 0= e 7

Then we have :
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~ corr
(11.7.15) f 0 ~ ————s
K, -k 2 2
(ko * l‘2corr)

Therefore, besides the pole at 2z =-iKg due to the Fourier coeffi~

cient of the potential , we now have poles at:

(11.7. 16) z=-1 Kyopp &

in the rhs of (II.7.12) . We thus obtain:

-izt
_ e
[fo(t)]c = %1(0) + ReS [——"z—ﬁl (Z)] , = _IKg
-izt
+ Res [e . @1(2)]
z=-1 K g

corr

(IL.7.17)

As for  the diagonal fragment, taking into account the fact
that $1(Z) is of the form of a Cauchy integral, one generalizes
this result very easily for the case where one does not assume a par-
ticular form of the interaction and the correlation function.

For times t which are much longer than both the colijsion

time and the characteristic time (Kcorrg) , only the first ferrn remain
in the rhs of (II.7.17). In what follows we shall restrict ourseiveses
situations where the initial correlations are due to molecular interaction
tions, Then the range of the correlations is of the vrder of the range

the interaction and both characteristic times are .denticai .

Let us now consider the simplest creation fragment;

(fig. 11.7.1) >

Simplest creation fragment

Fig. I1.7.1
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It is a contribution to the evolution of fk _k(t) . Analytically, we have:

~

-izt
(I1.7.18) [rk,_k(t)l =-(1/21n)[ dz 2 — C,( rO(O)
~ ~ D C

with
(I.7.19)  C (2) = (81\'3/9) v,

1 k(’a 0]
2ok (70) ~R '52

)

The main difference with the two preceding cases is that we have no
longer a summation over the wave vector, However, our aim is to com-
pute average values of dynamical quantities in phase space.If we compute

the contribution of (I1,7,17)to the complete phase space distribution function

f({g‘,ig&,t), we have :

-izt

(11.7. 20) [f(la\:{ﬂ\' t)]D= (12 Wi dz = l"l(z) fo(O)

C
where

- 3 s -
(IL.7.21) M - [d Kk exp [15.(gi gj)] c, (@)

1

With our assumption (II,7,1) for the potential , we obtain:

e-izt z
(I.7.22) [f TARAE ]3 r1(0)+Res [__Z_raﬁ_)-] ik

The last term is proportional to  exp [- K(h; - g_tl)] where
r= g-i-gj' It will become negligible for times t such that :
(IL7.23) t>> rf/g

Later on, we shall only be interested in the value of the distribution
function for relative distances of the order of the range of the intermo-

lecular forces. Then the characteristic time r/g will be of the order
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of the collision time and for t >> tcoll , the asymptotic contribution
will reduce to rl(O) . This means that, for the computation of the

quantities defined above, we may take the asymptotic expression :

(IL.7.24) [ K"E(t)]:) = C,(0)p, ()

The contribution of other types of diagrams (diagonal fragments
inserted on a line , free propagating lines, destruction diagrams
involving exchange vertices (fig.Il, 4.2 a, f) can be discussed in a similar

1)

way but shall not be considered here (see ref. °)

1.8 - Evolution of the velocity distribution

function,
From (II.3.5) and (II.3.6) , we have:
fo(t) ={1/2T® i)f Y Z <o ——(SL—) liki)
C {k\ n=0
(I1.8.1) x hk‘(O)

If we separate out the diagonal part, we obtain:

P 0 /2w (C dz (o _(sL b) [op,@

(11,8, 2)

ol (ot Z.(O (8 gy

K} A0}

It is quite obvious that all contributions to the first term in the rhs
of (11.8.2) will be successions of irreducible diagonal fragments (see fig.

11.8.1) . As to the second term, we shall start from the right with a
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destruction region until we reach the vacuum of correlations \0} Then

we can again go on towards the left with a succession of irreducible

diagonal fragments (see fig, II. 8.2)

O

n=3 *©+©+<>?+
Oé*OOO*@*@*O*OO

First diagonal contributions to fo(t)
Fig. 11.8.1

- OC =

oSc. o
O

S
-
- O - OOC -
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< &

First non diagonal contributions to O('t)

Fig. 11.8.2

If we use the diagrams of fig,(I1.8.3) to denote
(a) the sum of all irreducible diagonal fragments whose initial
(and final state ) is the vacuum of correlations
(b) the sum af all destruction fragments whose final state is
the vacuum of correlations
we easily obtain a regrouping of all terms in the rhs of (II.8.2)in

terms of diagrams (fig.Il. 8.4)

@y -+~ OO+
q-C- -oc-C&

Diagrammatic representations of diagonal and
destruction operators.

Fig.11.8.3
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Py = L@ I @"

Diagrammatic representation of the evolution equation
for the velocity distribution function

Fig.1I. 8.4

Let us introduce the following operators :

1 ) ?°_°—_ "
s (2 m=z<°\<5L“z.‘1:;> | )

irr

z

o0
(1. 8. 3) -1 () P—lL)mSLl 0.
0

(IL 8. 4) D“E‘z) - ;;1 Q \(SL —Z-_lfo) hm) irr

where the index irr.means that only terms such that all intermediate
states are different from the vacuum of correlations “Ot)must be taken
into account, This condition means that all propagators in \‘I(z) and

1)

D (z) are different from z.

With these operators (II.8.2) may now easily be written as :

fo(t) = -(1/2 W 1) [C dz f(:) [% ‘VZ) ] “{fo(m

n=
(I1.8.5)

-izt

s 2 ,
VTR MO)}

Differentiating with respect to time , we obtain :

0

D o(t) -iz B
_f_= (1/21!')‘ dz e Z[%*(Z)] {fo(o)

M C n=0
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+1i {%—Q‘ D‘li‘(z) r’,lﬁi(O)}

~izt o0 n
: (1/21r)f iz ) -’—7[1 <z>] (0)
c 4 * n=0 z‘r {fo
v 2o, )y )
MEHRENE }
+(1/2W) j dz e’mr (0) + (1/2Ww )‘ dz e
C ° C

l_ oo Phej”

(11.8.6)  {ix}#{0} {5‘

-izt

The second term vanishes because its integrand has no singulari-
ties, As to the remaining terms, let us perform the =z integration.
Introducing time dependent operators ) and 51) ) which are respec-

tively the inverse Laplace transforms of s.\l and D{k§z):

(11.8.7) G(t) = - (1/2W i) f dz e-th *’(Z)
C

(IL. £ 8) :‘D{ki(t) =-(1/21r1)‘ dz e D’k‘(z)

C

and using the convolution theorem as well as (II.8.5), we obtain:

’bpo(t) t
Y =!0 dT G(t- ‘l')fo(t)
(11.8.9)
; fik (0)

k)
fi t#M ’
This generalized "master equation", which has been obtained in a

straightforward way from a rearrangement of the terms in the formal so-
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lution of the Liouville equation describes the exact behavior of the ve-
locity distribution function for any time. It may seem much more com-
plicated than the original Liouville equation. However, asit will appear
below, it has the great advantage that for a very wide class of initial
states, it has simple properties in the long time limit,

Let us first notice that we have decomposed the time variation
of fo(t) in two contributions of a very different kind. First of all,
we have a non-markovian contribution which is expressed in terms of
PO only ; this contribution describes scattering processes; the inte-
gration over the past corresponds to the physical fact that the scattering
processes have a finite duration (collision time) . On contrast with the
first term, the second term in the rhs of (Il.8.9) does not depend
on Fo but on the initial correlations present in the system. This

term describes the destruction of these initial correlations,

1,9 - Kinetic equation,

Let us now consider the case of systems interacting through
short range forces and such that the initial correlations are over a mo-
lecular range ., For such systems, the duration of a collision is very short
and many simplifying features appear if we consider the asymptotic beha-
vior of the system, i.,e, its behavior for times t such that

(11. 9.1) t>T
coll

Generalizing our discussion of § 7 , we shall assume that

the operators \}/(z) and Z, D
LY

1. they are analytical functions of 2z in the whole complex plane except

z 0 have the followin
it Pricy® :
properties :
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for a finite discontinuity along the real axis . These operators are ana-
lytical in S+ and can be continued analytically in the lower half pla-
ne,

These properties are consequences of the definition of these operators
provided perturbation calculus converges, They have been verified in

detail for the lowest order contribution to \r(z) and Z: D k‘z )f‘k‘(z)

in §7 ;  there it has been shown that both these contributions are Cau-
chy integrals, A detailled discussion of the operator \{l(z) at higher
orders has been recently done for the problem of anharmonic solids and
some quantum field theory problems %) .
2. The singularities of the analytical continuation in S are poles at a
finite distance from the real axis., This assumptinn must be conside-
red as a sufficient condition for the validity of the kimetic equation we
shall derive, We have seen how it can be realized for a simple type of
interaction potential and a simple initial condition in §7_ For more
complicated interactions or initial conditions, singularities other than po-
les could appear and the following proofs mustbe amended but we shall
not consider such cases here,

With these properties of the diagonal and destruction operator in
the z plane, our results of § 7 can be easily generalized for the di-
scussion of the twokinds of contributions in (II.8.9).

Let us first consider the destruction term. Using (II.8.8) , we
obtain :

lim ﬁ'_‘ SK(t) ﬂk\w‘ o

>>
t rcoll

'
e
%
)

o z: . -izt
m ZR s[ D *()e ﬁﬁ((’)]g:z

coll j 13 1k
(I1.9. 2) =9

where the (,'S are the poles in the lower half plane of the function
J
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Z D, (2) (0) . (I1.9.2) corresponds to our result of 7 that the lo-
i e figy i

west order destruction contribution to the evolution Off (t) is asym-
0
ptotically constant; upon time differentiation, we obtain zero, Therefore,
once (1I.9.1) 1is fulfilled and the initial correlations are short range,
the master equation becomes :
9

0 t
(I1. 9. 3) i—=x——=1lim dTG(t-T)e (T)
ot t>>T fo
coll Jo

while (II.8.5) reduces to

i e-izt oot 1 n] — (o)
ro(t) = Res | — e l;Y(Z)) o fo(o) + fo

(I 9. 4) i_o: R of & pta]
= (1/p- @Y (-it) { [ (Z)] (0) (9)
p=0 q=0 dzP Y Pl + o

z=0

where the function *)(z) which has to be used for z -0 is the analy-
tical continuation of the function defined in S+ . 2

It can be shown ,through some lengthy algebraic manipulations

that this gives rise to the kinetic equation:

. ')Po(t)
(I1.9.5) T 2 (0) f)o(t)

where Q 1is a complicated functional of \l.l and its derivatives for

z =0

o0
(I1.9. 6) e-=2" q
‘:D.
(I1,9.7) Qs 1
(11 9. 8) 94=h‘m Q. (2) d>1
z30 o

T) p_(0)isa modified initial creation and is given by the expression between
0
in the rhs of (11, 8.5)
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The Q‘ (z) are given by a recursion formula :

o-1 2
(11.9. 8) Qu(z) =(1/d) Z {W Qu o _P(Z)Y(z)} Q

p-o
The operator 2 takes into account the finite duration of the collision.
We shall not give this derivation here but rather use some simple
considerations which will emphasize the meaning of both the operator \‘J
and Q

The operator \Il has the dimension of the inverse of a time

(see 1I.8.3) . As this operator describes the collisions occuring in the
system, this time is of the order of the relaxation time. (for instance, in
dilute gases (Boltzmann equation), the relaxation time is connected with
binary collisions, 1i.e, those terms in \ywhich involve only two particles).
Derivation with respect to z of +' increases by one the power of one
of the unperturbed propagators, In our simple example of § 7, we have
seen that this amounts to bring an extra factor tcoll' Therefore, any
contribution to rhe rhs of (II.9.4) corresponding to a given value of
p and q is of the order :
P )q

(IL 9. 9) /T (Teon' © rel

rel

re
instantaneous events. Then, we may restrict ourselves in (II.9.4) to the

Let us first neglect tcoll/t pi-e. let us consider the collisions as

term ¢ =0 and we obtain:

(II. 9. 10) r (t) 'Z (1/pY) (-itg () P T O (T, o1t/ Cret

This leads us to
0

- T

(IL.9.11) iy p M FO(T /T )
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This equation is a very simple generalization of Boltzmann's equation;
besides two-body collisions, it includes collisions between an arbitra-
ry number of particles. However, if we do not neglect collisions betwe-
en more than two particles ,it is not consistent. Indeed, for a dilute
gas of hard spheres for instance, where we can restrict ourselves to
two-body collisions, it can be shown that the relaxation time is given

by :

-1 2"
(I1.9.12) T CCav

where a is the diameter of the particles and v their average velocity,
3
As the only dimensionless parameter we have is a C, we must expect
that, when we take into account higher order collision processes, we
shall have an expansion analogous to the virial expansion
-1 L 2- 3.2
(1L 9. 13) T Ca’y [1 rda’CH ﬁ(a c)” + ]

Now, we also have :

(119, 14) T =a/v
coll
and thus
.3
(I1.9. 15) T/ Tpe “0@0

Therefore, the procedure we have followed is certainly not consistent:

we cannot keep higher order collision processes (i.e, corrections of

coll/trel n
the rhs of (I1.9.4) . In order to understand the general evolution equa-

order a3C in trel) and neglect terms of the order of T

tion (II.9.5) , let us keep in (II.9.4) the first correction, that which

is proportional to /T (i.e. the contribution q =1) ., Then we ha-
P tcoll rel

ve !

[+0]
Pl = T (l/p.‘)(-itqa(onpfo(O)
p=0
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00 0
v+ 2o 2 (et y-it Y () )p\|/'(0)(-it1-'(0))qfo(0)

p=0 q=0
II. 9. 16)
( 2
* 0'(":.colllrrel)

Upon differentiation with respect to t, it is easy to show that one ob-

tains :

V () 2
(1L.9.17) '-,%0?—= i \r'(O)) Y(O)ro(t) ¥ 0(‘ccoll/-l:rel)

The operator \}I'(O) , which takes into account, in first order , the fi-
nite duration of the collision, is precisely identical to the operator Q )

in (I1.9.6) .

1I.10-Evolution of the correlations in an homogeneous

system,

As all derivations are very similar to the derivation of the gene-
ralized master equation for the velocity distribution function, we shall
only indicate how they proceed and what are the final results .

The most general diagram contributing to the evolution of a given
correlation contains all three types of regions defined in § 5. We shall

now write :

(IL.10.3) Prcy @7 Pag® " Fgiy

where, by definition :

ﬂl‘;t (t) contains all diagrams without creation region
ﬂii (t) contains all diagrams which end by a creation region
This decom;osition is performed in detail for all second order diagrams

contributing to the evolution of rk -k in fig;I1.10. 1.
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— =0 2f

Second order contributions to 1’; K

Second order contributions to the

evolution of the binary correlation fk )
Fig.I1.10.1

To discuss the evolution of fll (t), one decomposes the relevant
diagrams into those which are diagonal and those which contain a destru-
ction region (see fig.I1.10.1) . In this way, one verifies easily that these
functions obey an evolution equation very similar to the general master

equation for the velocity distribution function :

’)ﬁ;&‘t) t
iT = L dfG‘k‘(t -r)f'li\(r)

(I1. 10, 2) + %%‘&.‘ {t, ftk' (0) )

where G K (t) is the inverse Laplace transform of the diagonal operator:
- 1
(1. 10.3) ﬁk (z) = ZGE“U" (z—-T;L)n“iD irr
~ n=1 0

while (t, (0)) is the inverse Laplace transform of the
s Pre'

destruction operator :

dest.

(1L 10, 4) D’M,(z) Pcy®” 2 (ik\\(SL —) |\k'}> ﬁk,'w)

The dash on the summation over {l(" in (IL, 10, 2) means that only those

states “}g»which are such that the transitionlk\(—{l&' ‘ describes a
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destruction of correlations must be taken into account.

The evolution of Pl'l,li (t) is due to the dissipation of the ini-
tial correlations through the collision processes. For long times, a pseu-
domarkovian equation similar to (II.9.5) can also be derived from
(11,10, 2) .

As to the evolution of P’i.lﬁ (t), the main point is to notice that
if we have at the left a given creation diagram, corresponding to a
transition {k\(—-‘k'\ , we may have at the right of this creation diagram
any of the diagramswhich contribute to the evolution of P{k'\(t)
(Tf{k'k iO} , we may have all the diagrams which contribute to the
evolution of the velocity distribution function), if < is the time corre-
sponding to the first creation vertex. This remark makes it possible to

show rigorously that one has:

l

- t - 1
(11.10.5) Ph\() ik't[ C‘k\‘h'i(t r)?i!i'\(t) dt

where the dash on the summation over ‘K'tmeans that only tho-
se stateshi‘ ‘)corresponding to a lower state of correlations than H}g}
must be taken into account.

C{ k“ﬁ"‘t) is the inverse Laplace transform of the creation

operator :
(010.6)  Cpppnl®) = ;1(\9&)&\ l‘k'D

Equation (II.10.5) describes the continuous creation of fresh correla-

tions by direct mechanical interactions from less excited states,
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II,11 - Approach to equilibrium of the velocity

distribution function,

For weakly coupled or dilute systems, the approach to equili-
brium is usually discussed by means of an }e-theorem. More precise-

ly , one shows that the quantity

(I1. 11.1) P =S{dR\N‘>oln ro

decreases monotonically in time and that the stationary solution (which
is unique) corresponds to the equilibrium distribution.

Unfortunately, this theorem cannot be completely generalized
when higher order contributions are taken intc account. We shall only
consider the case of systems where there exists a parameter such that a
perturbation expansion in powers of that parameter has a meaning (cou-
pling constant )\ for weakly coupled systems, concentration C for dilute
systems) . As an example, we shall consider the case where an expansion

in powers of >\ has a meaning . Then , with the following expansions :

(I.11,2) Po(t) =P(Z) (t) +\‘>c()l)(t) + XZ f(i) (t) +...
(1. 11. 3) Y(O) = \2«}’2(0) +\ \{'3(0) + \4'-,/4(0) +...

(1. 11. 4) Q - 1+\2\fl2' (0)+...

the kinetic equation (II.9.5) gives us a set of equations:

dp0)

o (0)
e O o o
2,

. (1) , (0)
II,11.6 _— - (0) (t) - iy, (0) (t)
( ) AN iy, f 0 Ys f 0

(1. 11.5)
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2¢?
(IL 11.7) _é_= -i YZ(O) P (t) - IYB 0) P - iY4(0) P(g) (t)
- iy 04,0 p') )

ete...
Thex -theorem for the lowest order approximation (for wea-
0
kly coupled systems, see chapter III,§§2 and 3) shows us that r(o)(t)

decreases monotonically towards its equilibrium value :
(0) (0)

II.11.8 t =f H

(IL.11.8) Po (1) (H)

For times much longer than the relaxation time for f(o)(t) , the next
0

approximation is then given by :

mf’ (0)
(IL.11.9) ——— = -1\\/2(0)‘9 (t) - 14,0 7 (H )

X
The interesting feature is now that one can show that :

(1. 11. 10) \‘IH(O) gH) =

where g is an arbitrary function of the unperturbed hamiltonian, A
general method to verify this property can be found in 3) . This method
is based on the discussion of an integrél equation and rather formal,

1) 6)

A more cumbersome method consists in the splitting of each \lln
in a number of operators according to the number of particles which

appear in the diagram . For instance, in the operator N|/3(0) , we have

¥This is valid for gases where the interaction is velocity independent, For anha-
rmonic solids for instance, the situationis more complicated because of the ac-
tion dependence of the potential and this property is not valid, This makes it very
difficult to study the approach to equilibrium at higher orders than Xl 1)5)7)
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two diagrams (fig.II.11,1) : one with three particles (a) which we call
Y(g) , the next one (b) with two particles which we call*(g) .

<5<£>®

Contributions to \rs

Fig. II.11.1
One then shows that :
(IL 11.11) «{/ " (o) g = 0
As an example, let us verify this for n=3 ,¥ =3 (diagram a, fig.I.11,1)
We have :
Y(B)(O) gH )< lim ) Z(O\SL Lkl kr-k)

z90 ijl k

@11, 12)(15-k k. k\ = l~1~~—-k k <k k. —-k‘SL‘k =k, k --k)
o oot o | [k ) o ke B o) )

Using (II.1,1) ,(11.2.12) and (IL. 3.11) as well as :

(I1. 11, 13) lim - = -
23 0 a/ (z - a) 1
we easily obtain :
3 I
(0)g(H)~11m deV Vk e
Y z30  ijl ‘ \ R 'DR
(II.11.14)

k(roy) %)

z-k.(v -v ) 2
~ (~1 ~] gHo
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Now, let : i=3j, j=di, k=) 'li and take half sum of the rhs of
(II. 11, 14) and the term obtained through this interchange of dummy
variables, We obtain :
2 Sg(H)
3 2
(IL 11. 15) ‘3’ (0) g(H ) ~ lim Z\d vl v By =3
230 ijl 1™ VH
=0
because tte integrand is an odd function of k
Let us now go back to the discussion of the set of equations
(II.11.5), (II.11.6), (II.11.7), etc... for long times, Using (II.11.10),
we notice that (II.11.9) reduces to :
1
W'
0 _ (1)
(IL. 11. 16) — =-uy2(0)fo (t)
Wt
As only the lowest order operator remains in this equation , we again

obtain the result :

(1)

1)
(1111, 17) fo

(H

(t9 ) = f
o]

It is then trivial , wusing again (II.11.10) to show by a recurrence pro-

cedure that :

(n)

(IL 11.18) fo ty ) = 1 m)

0

Therefore, we obtain:

(I 11. 19) fo(t = ) = 1(H)

which is the equilibrium distribution . The function f(H ) is arbitrary
[¢]

(normalized to unity) as far as this proof is concerned but is comple-

1))'

tely determined from the initial condition (see ref,
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Let us stress the fact that this generalized x-theorem is
not so powerful as the x-theorem for the lowest order approximation.
Indeed, the x -theorem for the lowest order approximation actually
amounts to proof that all eigenvalues of the hermitian operator - ifz
are either negative or zero and that there is a unique eigenfunction
(the equilibrium distribution) corresponding to the eigenvalue zero. In the
case of stronger coupling, what we have actually done here is to verify
that there exists one zero eigenvalue for the complete evolution operator,
with the equilibrium distribution as eigenfunction. A true x-theorem
would require a proof that the eigenvalue zero is unique and that all
other eigenvalues are negative, This is of course very likely, at least
for systems where a perturbation expansion has a meaning, i.e. when the
lowest order terms give the dominant features of the behaviour of the

system.

11.12 - Approach to equilibrium of the correlations

in an homogeneous system,

The asymptotic solution for the equation (II,10,2) for the part
P'{ k\Of the correlation can be discussed in a way similar to the above
discussion for the equation for the velocity distribution function. The main

result is :
(I1.12. 1) Hk\ (tdw) = 0

As a result, in the equation for f“{k\(t)’ we only keep those creation

fragments which start from the vacuum of correlations :

t
.12, n = dTtC -
(I1.12. 2) P{ k\(t) IO T *KﬁiQ\(t T) fo ()
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These results mean that the initial correlations tend to dissipate, In
the long time limit, only the fresh correlations which are continuous-
ly created from the velocity distribution function remain.
For times such that the velocity distribution function has reached
its equilibrium value, we have ;

t
11,12.3 = o" = dt C f(H
W23 P = P f oy 1)

or, using the Laplace transform of the creation operator (see II.10.6):

t .
ﬁﬁ\(thf"\&{t) =.(1/21r)l0 d-:/c dz e o C{K“QE(Z) f(HO)

(IL. 12, 4)

= (1/2Wi) ‘ dz (e'i”- 1) 2t (z) f(H )
C (o]

{ :HY
Now , as in our discussion of § 7, we take into account the
fact that we shall always be interested in average values of dynamical
quantities, i,e. in expressions which involve a sum over the wave vector.
In such quantities, the oper:;tor C‘ K440 t(z) is replaced by an operator
r(z) which is a Cauchy integral (sge Tor instance I1.7.21) . We then

have :

(l/mi){dz AR

(IL. 12.5) c . .
T
j j

where the g'J s are the poles in S of r(z) .

For long times, this becomes :

(II.12,6)  lim. Z res {(e-iZt - 1) z-lr(1J=- Zres (z-.1 r(z) )
ty o ] 28 5j=2
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This result allows us take
P B3l T ot @ D
(I1.12.7) m
=1im )| 22 (ZIL 3L) lo)ux )
z=3 0 m=1 )

If we denote hy

(11.12. 8) F‘(‘;\ = lim {{k\\( o)f(H)
~ z-’

the set of all to kz,contributions involving m vertices we have:

m
= )

where V is the intermolecular potential (see (IL.1.1)). (II.12,9) can

R
(I1.12.9) (m) (M\ (0)

be proven , using a recurrence procedure. For m =1, we have, using

(I1.3.9) :

- x| LS| 0 f(H )

(Eli)zk"l% RN TR L
3 1 0]
= (8W/Q) 21310 Z'E'(Ki'lj) " .(3—5 -%R;—)f(HO)
(IL. 12. 10) ] (81‘_3/9) . '.)f(HO)
kM
(H )

¥ Some care has always to he taken in the use of (II,12,7). The use of such
an expression does not lead to difficulties when one is interested in average quan
tities which are linear functionals of the correlations. When non linear functio
nals must be considered, one must ﬁo back to (II. 12, 4) as has been shown in
receni work on anharmonic solids
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Assuming (II%12.9) to hold for a given value of m, we have:

SRR \(;{;&)m“ Loy )

~

=lim Tdiy| 8 Lhk'i)h

< 04k

(I1. 12, 11) m
—hin) Z{m] L 5L\\k‘ﬁ)(ik'i\ - Yns 19)
= lim { - 9 v
Z.a 0 ‘ ~ Z-LO m

Now, if iiicontains ¥ non vanishing wave vectors kl'“Ev’ we obtain :

(m+1) 1 v M
| slim e — —= o>
~17TTRY 230 z - k.,.v © DH
i1 1
=-i(81|'3/9-)N+1 lim —1;———— x
z=9 0 zZ - lz::'i ‘kv1 Y
A N m 3y f(H )
X{dq‘N exp[-] E kq ZBX 3_ _\L. 3 o
=l ~ T Y ‘DE’I m 'bHI:
] N >
= i8N/ Q) lim 9 {d&} exp[-1 Zkl q,
z=30 ’- Z }i}i i=1
=g TP
m+]
X ZI\-T-_ AV lm‘a f(Ho)
o1 1o m oy Mt
=1(8n3/$z) lim ! X
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v m+1 m+1
N , N P 1 07 (M)
"]?“"U EXP[‘I ;1 l»f-i'gi] Z % Tag (et y g

=i(81|'3/9) ML im f,
0 1T &

(1. 12.12) v v 3 m+1 -)m+1 )

: N , ' 1 f(H,

X “di} exp [' ! Z‘ lii‘.'.ﬂi] Z R 24, (@t - o+
1=1 0

i=]

Integrating by parts over q,° one obtains easily (II.12.9) with m re-
placed by m+1 .
Combining (II.12.9) and (II.12.7) , we easily obtain:

) %mf(Ho) ™
N TP M (] R O)= Gk} i o
(0]

which is the correct value of the equilibrium correlation,

Therefore, once the velocity distribution function has reached
its equilibrium value, the fresh correlations which are continuously crea-
ted from fo are the equilibrium correlations. (II. 12.7) gives us a dynami-
cal description of the equilibrium correlations., A comparison with Mayer's

cluster formalism can be done but will not be oonsidered here.

11.13, Response to an external constraint,

As an example, let us consider a system of charged particles
which is at equilibrium at t=0: at.t=0, we switch on a spatially homogeneous

external electrical field E~ (t) .

To the hamiltonian (II,1.1) , we now have to add a term descri-

bing the effect of the external field :
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~i

(I1,13.1) Hp = Zl e E@®).q

th
where e is the the carge of the i particle.

i
The Lipuville operator corresponding to this problem is then:

(11, 13, 2) iL =iL +1i S L +iL
‘ 0 E
with
P
11.13.3 e P
e WLyt

As we have assumed the system to be at equilibrium at t=0,

the initial condition is:
exp [- (1 + 2v)/ur]
(0) =
f feq“ ;{deq‘ exp[ (H +)V)/kT]

(11 13. 4)

If the external field is sufficiently weak, we can restrict oursel-

ves to a linear theory in E; therefore, we have:
(I1. 13.5) PO = Poqu. * Af(t)
where Af is linear in E. Using

(IL. 13, 6) © +9L) P equ.

(I1.13.7) ‘bfequ/ ot = 0

the Liouville equation reduces to :

QAP g
(11, 13, 8) — =-i(L L)Ap - iL,
At 0+ )Af ' E requ
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2
when terms of order E and higher are neglected.

This equation can be solved formally very easily:

t
(I1. 13, 9) A l)(t) = - ‘ dt' exp [—i(LO+ SL)(t-t')] LE(t‘) fr equ.
0

This solution takes into account the initial condition(Il.13.9)) (Af(0)=0)'
Let us again expand the distribution function in a Fourier se-
ries of the position variables. Then, for the velocity distribution function
[Jo(t) (which is the only coefficient we require if we want for instance,to

compute the current in the system), we obtain:

(1L 13, 10) ro(t) - rgqu'(t) + Aro(t)

Taking into account the fact that E is spatially constant, we have:

(1. 13.11) A k“LE(t)“E"y gt 8{ kYik'}

and therefore :

t
Dp =-iL |
(11.13,12) fo i ] at' o ‘ exp[-l(Lo+ SL) (t-ﬂ)]"ﬂ) x
equ.
X ]
L) Py
Any time dependent field can be represented by a superposition

of oscillating fields with various frequencies. Therefore, we shall

restrict ourselves to the case of an external oscillating field :

(I 13. 12) Et)=E e W
~ ~0

Using the convolution theorem and (II.13.13) , we easily can write :
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(1. 13. 14) Afo(t) = -(1/2W i) ) f dz e (O\R(ZH
C

14
equ.

"2561 o bg Piiy

where R(z) is the resolvent operator defined by (II.3.6) , in the
absence of external field, The matrix elements of this operator have
been discussed in detail in § 8, where we established the generalized
master equation for the evolution of the velocity distribution function in

the absence of external field, Using these results, we obtain :

-1zt
Afo(t)=-(1/2u'i){ dz & [ \‘1( )] _ Z¢ E __Pequ.

C I 1~0 3E
(II. 13, 15)

. — equ.
P Tt

where the operators \V(z} and D{k‘(z) are given by (1.8, 3)and
(II. 8.4) respectively.
Differentiating with respect to t and using (II.8.7), (I1I.8.8), we
obtain :
4 (t equ, t
_ar +uLE‘>O +i {ij . dv ﬂfk! (t-t)LE(t)fiq;‘
(II. 13. 6)

t
=I dT G(t- 'I:)Aro('t)

)
This transport equation is valid at any order in the cou-
pling constant and the concentration,

equ.
The term iLE f oq in the lhs is the usual flow term
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which describes the effect of the field on the unperturbed particles
(i. e. between successive collisions) .

As to the non markovian term in the lhs of (IL. 13.16) it descri-
bes the effect of the external field on the particles during the collisions.
To see this, let us consider the static case (w=0) . Then, for times long

with respect to the collision time, we have (see (II.8.8.))

equ, equ.
man L[ e d Z o, o

k E k k EY{k
5 R T i T e (14
As we have seen, the equilibrium correlations are created from the

equilibrium velocity distribution (see (II.12.7)) and we can write :

equ, equ,
Z 21 Mo %ﬁmmL i fo

- lim 2 Zof_ f(o‘(SL—-—-—) '{k\)L ({klx——ﬁl) l>efw

230 {k} m=1 n=1

(I1. 13.18)
5 (ol § P Lot Vg

= 1i — — L_ —— (oL —

lim 2 Z_: Z____(o\ L{Z‘_L L) — Ly~ —) L|0> x

230 {13 p=0 q=0 o o 0 0

equ.
Po

If we compare the operator n the rhs with the operator \‘/(z) given by
(11.8.3) , we notice that they differ  only through the replacement of one

the unperturbed propagator S 1/(z-LO) in *(z) by

1 1 1 1 2
= - + 0(E
z-L LE z-L z-L -L z-L (£7)
o 0 o E 0

(L. 13. 19)

In other words, the operator in the lhs of (II. 13.16) describes the corre-
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ction to a collision process which.one obtains when one takes into ac-
count (to first order in E)the effect of the external field on one of the

intermediate state.

II.14 - Stationary transport equation in the static

case,

After a long time, we may expect that a system submitted to
an external, spatially homogeneous, constant, electrical field will reach

a stationary state :
st
(I 14, 1) A fo(t) —Ap

where AF Sot‘ is time independent. As the contributions to the rhs of

(II. 13, 16) come from times € such that:

11. 14, -
(1. 14.2) t tstcou

we also have, for t very long:
t.
(II. 14. 3) Afo(r) = A Pt = Arso

Taking also into account (II. 8.8), the general transport equation becomes :

. ) e [t t.
(IL. 14. 4) iLEfequ+ZD (0)1LEﬁq£=l1m{ er(t-r)Ari

" beael,
o equ. Z equ, st
II.14.5) iL D (0)iL = Sig(0)A
( )i EQO +i§\ 1kt )i Er&m 11/( ) fo

In chapter V, we shall use this equation as a starting pointhn a
discussion of brownian motion of a heavy charged particle submitted to the
action of an external constant electrical field and moving in a medium of

light particles,
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I1I, BROWNIAN MOTION IN AN HOMOGENEOQOUS , WEAKLY COUPLED
SYSTEM

III, 1 - Introduction

We shall consider here a weakly coupled gas, i.e. a system such

that the coupling constant is very small :

(I 1.1) PRET

-2
The relaxation time of such a system is proportional to X (see the Born

approximation) :

)‘-2
(1. 1. 2) T

We shall consider the evolution of such a system for times of the order

of the relaxation time, i,e. we shall take the following limit :

2
(II.1. 3) >\'30 , > o, Xt finite

As the collision time is independent of the strength of the interaction, we

clearly have :

< -
(IL.1.4) rcoll / rel 0

and the evolution of the system will be described by a markovian equa-
tion,

The weak coupling condition implies that we exclude all forceg
with  a strong repulsive core, Strictly speaking, there are no known
intermolecular forces for which the theory of weakly coupled systems may
be applied.

In all physical cases, the interaction becomes too strong at very short
distances to be handled in a weak coupling theory . Nevertheless, we shall

consider it here because it is the simplest example where the brownian
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motion problem can be discussed starting from a microscopic basis.

1)2
)2) and will

This model has been discussed by Prigogine and Balescu
already show up interesting features when compared with the phenomeno-
logical theory of chapter I, and in any ease , we can expect that it will
give us a good description of the effect of the collisions which are not
too close,

We shall first find the equation for the reduced distribution fun-
ction for one particle assuming that initially there are no long range cor-
relations. Then, we shall specialize to the problem of browhnian motion
where the particle moves in a fluid at equilibrium. The equation so obta-
ined for the one particle velocity distribution function will be of the
Fokker-Planck type. However, in contrast with the assumptions of the
stochastic theory, the friction coefficient will appear as velocity depen-

dent, In fact, this dependence will be important only for velocities equal to

or higher than the mean thermal velocity of the fluid.

I1I.2 - Equation of evolution of the velocity distri -

bution function for weakly ooupled systems,

From the discussion of chapter II, § 9 , it is quite clear
that if we take into account (III.1,4), we must neglect all non marko-

vian corrections to the kinetic equation, i,e. take

(1L, 2,1) Q=1
in (I11,9.5) .

When we do this, to be consistent, we must keep in the ope-
rator \y only the lowest order contribution, of order Xz . The only
diagram which we have therefore to keep in the operator \lJ is the

cycle (fig. II.6 1a) . The evolution equation then becomes :
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V. (t)
(11,2, 2) —fﬁ-— =-1 )\z*zfo(t)

ot

where \|/2 is the operator associated with the cycle. We have already
discussed this operator in ch, II, § 7, using the simple case of an ex-
ponential interaction law, If we do not make any special choice of the
potential, we have (see II.7.4) ;

. 3, .2 Z 2'_ )

-1 z = 8 Q 3

AR AL \\~aR )

(I1. 2. 3)
b ¢ __1—_ k(l ___0__) ~(ZES+)

We have now to find out the limiting value of \‘/2(2) when z -§0+, i,e
the analytical continuation of this operator when z approaches the

real axis, As we have already said this can be done easily, in the limit
of a large system , using the theory of Cauchy integrals, Indeed, when the
limit

(11.2.4) Now , Q-»w, N/Q =C finite

in taken , the spectrum of values of k becomes continuous and the sum-

mation over k in (IlI.2.3) becomes an integral :

(Il12, 5) (8 1\'3/9) Z.,s d3k
k

Then we have :

3 9

Sy o) = ey 2 (ol k(v |k ) x
Y i ‘ \ ag -’bgj
1 9

(111 2. 6) X —— 5-(——— "

2k (470) R, oy

If we take as one of the integration variable the variable :
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(IL.2.7) X = K'Qi-lj)
the dependence on z is of the form:
(IIL. 2. 8) F(z) = +“c>ix ) (zes")
) ‘ Z - X
-0

This is precisely a Cauchy integral, Its analytical continuation is :
+o0 +00
+
(II1. 2.9) F(0 )= g dx @(l/x)f(x) - 1‘ dx S(x) f(x)
-0 =00

The rhs of (III.2.6) is an even function of k . Therefore, the contri-
bution involving the principal part vanishes and we are left with the

following kinetic equation fer a weakly coupled gas :

P
f’ - e\ 2 ‘d k |vk\ ke -2 x

i< Bp bp

9 P
x & [k [~ v ~J 5(3_31_ _'b_g;)ro(t)

Let us notice that with this equation it is very easy to verify

(I11. 2, 10)

Boltzmann's X -theorem. Indeed, with Boltzmann's )C -quantity defined

as @

N
(IIL 2.11) % =‘{du fo In fo
the kinetic equation allows us to write :

ﬁ: e\ de|v\25p<< ~] ftt) x

t
? l(J

(IIL. 2. 12) . {k 22 P, ] <o

op, ')gJ

The function )C(which is related to the entropy) decreases monotonically
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to its equilibrium value, The rhs of (IIl. 2.12) vanishes once ro

has reached its equilibrium value :
(111. 2. 13) fo “=1(H)

The function f cannot be determined by (III. 2.12) but is determined by
the initial conditions. We shall see in the next paragraph that the
assumption of initial molecular chaos leads to the Maxwell-Boltzmann

distribution,

III.3 - Kinetic equation for the one particle velo-

city distribution function,.

Let us call Ys the reduced distribution function for s momenta:

(I1.3.1) ‘Fs(xl""xs’t) =IdBS+1...dRN Po py.t)

Integrating (III. 2, 10) with respect to all momenta except Y and taking

into account the fact that the distribution function vanishes at infinity,

we obtain :
’b\p (v..t)
1'~1
____a_t__. /Qm) Z‘dv sdklvk\ k. x
i3
(II. 3. 2) 2

l
Rl ) av “m Ty Y

This equation gives us the evolution of the one-particle velocity
distribution function in terms of the two-particle distribution function,
Therefore , it is not a closed equation and if we do not make any
further assumptions, we have actually to deal with an infinite hierarchy

of equations.
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According to our basic assumption (Ch, II. §9) we consi-
der a system where all correlations are of finite extension, Now, the
velocity distribution function is an average over the positions of all
particles of the complete distribution function. When we do this, if we
consider two given particles, it is quite clear that the contribution of
those configurations where the particles are correlated is much smailer
than that of those configurations where they are uncorrelated. This
allows us to neglect the effect of these correlations on the velocity
distribution function, i.e. to make the assumption of molecular chaos at

t=0:

(111, 3, 3) fo(t=0) = T;"fi(xj» t)

Once molecular chaos is taken as an initial condition, it can
be shown to persist for all times in the limit of infinite systems 2 ?f)
We shall not give the proof here.

With the initial condition (IIL.3.3), we may write in the rhs

of (II1.3.2)

(I11. 3. 4) ‘f)z Ly 1) "Fl ~1 ‘fl Xt

and we obtain :

b‘f“l st N/ m’ Zde ‘d k|v

'bt

(IIL. 3. 5)

P SR
xs[k v -V ] k.( -— v 1)@ (v .t
7, S BXJ)ﬂ(q ), (2
A similar equation can of course be easily obtained for the re-
duced distribution function of any particle of the system, Therefore, we

are now dealing with a closed set of equations.
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Let us now verify that the equilibrium distribution correspon-
ding to the initial condition (III.3.3) is indeed the Maxwell-Boltzmann
distribution, Using (III. 2.12) and the assumption of molecular chaos,

at equilibrium, we must have :

9 D)
(IIL. 3. 6) k. (.—DE - —B—RJ) tﬁ(zi,t) fl(gj,t) =0

whenever k is such that:

(IIL. 3.7) k.(v.-v)=0

~ '~] ~j
We verify easily that (III.3.6) implies :
1
VMnep, (v, 1) ] lne,(y 1)

1II.3.8 k. =0
( ) K (— 3L 3%, )
~ J
Whenever (III, 3.8) and (III.3.7) are simultaneously satisfied, we must
have :
RET AR ()
op. dp.
Ri = SIS o
E..i- Ro RJ - E,O
m; mj

where o and Ro are constants .,

Integratimg (II1. 3.9), we obtain

2
(III. 3. 10) 1“‘?1(11) ='((gi - p~0) /2mi+1nx

i
where x . 1s a constant .
i

This gives :

(III. 3. 11) ¢, =Y exp[d ’Ri'RoJZ/zmi]
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The normatlization condition requires :
3/2
(111, 3. 12) oo X = 4T (-m. o /27)
i

We also consider systems where the average velocity is zero ; hence

(1I1. 3.13) R, ° g
Defining the temperature through :

(I111. 3. 14) kT =<m;v2/2) = ‘dzi (viZ/Z)‘Pl(xi)mi

one obtains easily the usual Maxwell - Boltzmann law ;

3/2

(IMI. 3. 15) \fl(x) = 4 (m/2WkT) exp(-mv2/2 kT)

In this way, we have verified our statement at the end of the previous

paragraph.

1II.4 - Brownian motion in a fluid at equilibrium,

We shall now consider the simple case where the particle
1 moves in a fluid at equilibrium . We then have :
3/2 2
Kfl(x.,t) =4 (m /2W KkT) / exp(-m, v ,/2kT)
(4. ] 1
jfl
Then, equ.(IIl, 3.5) becomes (assuming the masses of all fluid particles
to be equal to m):
P
P, 0

= - (321!5 ch/mzl)(m/zn KT)3/2 deexp (-mv2/_2kT) x

1. 4.2
( ) 5

3 2 [ISLS!
% Sd k \Vk‘ k . 3115[15'(11-1)]5(3_)11+T P Y
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In this way, we have obtained a closed equation for YI(Kl’t) .
The k integration is easily performed in a reference frame where

the relative velocity
(1I1. 4. 3) g =v,-V

is along the z axis:

3 2 1 1
k o(k.g)b, =WB@a =b +a = b
a, {d k\Vk\ k. J,S(~ g) ; (aXg  te y)

y e
(IIL 4. 4) . .
"WB(a .o h-a.g5 g-b)
where g
0
3 2
(IIL. 4. 5) B=$ Kk |v |
. k

depends only on the intermolecular potential ,
The last expression in (IIl. 4.4) is valid in an arbitrary reference

frame . Using dimensionlessquantities :

m m
1. 4. V_ .
(L. 4.6) 2% L et &

we obtain :
Y. (u,t)
—ﬁs}— = (8 iz w2 )\2CB/m?) (m/kT)3/2 x
2
9 '(%'3)2 ) my ? (W -y)
(I14.7) X ‘,3—% ‘dvi e < (_aui +2—u) -ﬁ;‘d% e x
19 ™

LA (’buj N uj)}'ﬁ(li’t)

In a reference frame where u is along the =z axis, we have:
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2 ®©

dcos 8 e

+1
1 =’dw J~(¥-u) e w ’ -(whtu?-2wucos 6)
1 ~

(1/w) = 2“[
0 -1

0

(IIL. 4. 8) 2 2
- (‘l'/u)] dwie'(w'“) A ‘= (u3/2/u) ¢(v)

o

where u 5

(I11. 4.9) ¢(u) -2 /f® )‘ dx e ¥
0
is the error function .
We also have : 9
(w-u) -3 1

d ~~ =(1/2)a.l b-a. I

.b
u lg~)

(II1. 4. 10) X

-(1/2)(1 b-3a.u—p Lu.b)

'\.. u ~

0 +1
(w2 + g2
I = 21!] dw w’ dcos @ 00829 e (W + u® wucos 6)
o) -1

+
-(w2+u2) ﬁ_ [ ! deos 0 e2wucos 6
2

= (lr/zuz)’ dw w e
o

(I11. 4. 11) 2 i d2 -(W2+u2 +1 2wucos6 -u2
= (W/2u )ﬁ dwj— we ) dcos 6 e + 2e
-1

0 dw

w32 {u'z ci)' () -u (1-u2)¢(u)}
where

(L.4.12) ¢'(u)- e SR -2/l e

dw -1

Introducing (IIl. 4.8) and (III. 4. 10) into (III.4.7) , one can finally write
(IIL.4.7) as :

'B\f (u,t) '32

L3 - 0l

’;t v AN [(u '?u )2 "%,
d i

u,
1
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m m
(IIL. 4. 13) -2(1 -—El)[u-3¢(u) -u-z*' (u)]ui% +4 —n-ll-b'(u)}-fl(g’t) ‘
1

where
(IIL 4. 14) a(u) = W+ (20 - 1)?(11)]
(1114, 15) b(u) = 't %

and where T has the dimension of a time:

(I11. 4. 16) Tl s2ntc W/ m?) (m/2kT)3/2

III.5. Link with stochastic theory .

Equation (III, 4.13) can be easily written in the form of the ge-

neral Fokker - Planck equation (I.5.7) :

')"P ) (Aui\ ) 2 (Auuu)
'a_t?tf{ At ‘f]+§ 'aui'auj[ ?

(IIL.5. 1)
with
Bud Y, i -1
(IIL. 5. 2) X T4 (1) gu)T
(Au Bu )
(II1.5. 3) { rg(u - —4)(“)] -—Sl J[?(u) - g(u]}
u
where

1 -1f -
(IIL. 5.4) glu) = 5 u [u 1{>(u) ~1"(U)]

This equation has been obtained from first principles as an asym-
ptotic equation describing the motion of a particle of mass m ] in a gas

at thermal equilibrium , with the assumption of weak coupling. The avera-
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rage values (A ui),(AuiA uJ) are such that the velocity distribu-
tion function reaches monotonically the Maxwell-Boltzmann distribution
after a long time, No other assumption than the hypothesis of initial
molecular chaos has been necessary to obtain this result,

The relaxation time, i.e; the characteristic time for the evolu-

tion of gf(g, t) is given by (IIL 4. 16) :

-1 3/2

(IIL.5.5) T ..

= (32W 6)\ZBC) /mf)(m/ZkT)

As expected, it decreases when the concentration increases.
It is also a functign of the temperature and the intermolecular forces
(see III. 4.5 for B) ; it depends upon the ratio of the interaction energy
and the mean thermal energy of the particles of the fluid, It decreases
whenever this ratio increases,

If we compare (III.5.2) with the corresponding expression derived
from the Langevin equation, we notice that the microscopic theory

introduces a coefficient of dynamical friction 1’ which is velocity

dependent :
m

gyl 1) 8(u)
(IIL 5. 6) M-4t (1+ m) ;
Let us introduce the following dimensionless quantities :

1/2

(II1.5.7) Y- (m/m )
(I11.5. 8) x = (m, /2kT) = u/y

Y is the ratio of the masses of the fluid particle and the brownian
particle ; x is the ratio of the velocity of the brownian particle and

its thermal velocity. With these quantities, we have:
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-1
. 2y gYx) T
(II1, 5.9) ') -(4(1+y ) oF 5
For x <1, (andxs 1) we have
2

(IIL 5. 10) N> (8/3 fw ) (1+ Yz)t-ly ’

In this case, the dynamical friction coefficient is approximately constant:
If XX >>1,i,e, if the particle has a high velocity, the dynamical fric-

tion coefficient is very small :

- -1
(Ls.az) M 4(1+x2}Tl3—t'1 2 —%-1—:3-
X X

/
M

= x‘b e U"/\ll_‘.

Dependence of dynamical friction
coefficient on velocity

Fig. 1II.5.1

For XX <<'1, we also have:

Au Au
(1I1.5.13) ( i J) =$ (8/3 ﬁ )1’-1
<at) L]
For‘«l and x :l’i.e. for a heavy particle moving with thermal ve-
locity in a medium of light particles at equilibrium , the .Fokker
Planck equation takes the simple form :

L, 2 2
(III.6.14)—,{'{P— = (4/3%m) (1/~cY2)—,3—Xi(,')—xi +2x) (f
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analogous to (I.5.11) .

The expressions (III, 5., 2) and (III, 5. 3) for the average value
of the velocity and square of the velocity have been obtained first by
Chandrasekhar 1) .
In an analysis of tine dynamical friction in systems of stars, Chandrasekhar
first considered single stellar encounters idealized as two-body problems,
If a star of mass m, and velocity Kl collides with a star of
mass m and velocity v, the intrements parallel (sxl”)and
perpendicular (8 xl_L) to its direction of motion can be easily writ-
ten. The net increments A'Klll and A VoL due to a large number
of successive encounters with field stars during a time interval At

such that Y, does not change appreciably, are easily computed. Assu-

ming the velocity distribution for field stars to be a gaussian, one

obtains :
(I11. 6. 15) A Yyt 1) v)
(111, 6. 1B) Av = 0

~11

(for more details, see Prof. Ferraro's notes in this volume)

JII.6. Application.

These results have been used to discuss transport processas
in fully ionized gases. A good account of this can be found in Spitzer's

5)

book ' . However, the application is not straightforward. Indeed , the

interaction law in this case is the Coulomb potential :

(II1. 6. 1) V(r) = ez/r

which Fourier transform is :
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(II1. 6. 2) v, = e2/21|’2 K

Therefore the coefficient B which appears in the Fokker-Planck equa-
tion is:

0
(111 6. 3) B-= (e4/41\'4) dk(1/k)

We notice that B diverges logarithmically both at the upper and lower li-
mits of integration, This is due to the fact that the Coulomb potential

has an infinite repulsive core at small distances (hence the upper limit
divergence) and has a long range (hence the lower limit divergence) .
The long distance divergence is well known and appears also in the equi-
librium properties. In fact, because of the long range of the potential , the
interactions in such a medium have a collective character : configurations
involving many particles play a dominant role, Both in equilibrium

618) and non equilibrium properties, this problem can be settled by
a summation over a well defined class of diagrams. The result of this
summation is to introduce a screening effect : in simple cases, the

effective interaction vanishes exponentially for distances greater than the

Debye radius K-I :

(IIL. 6. 4) V=€ e [r
with
(111, 6.5) K2 = 41|'e2C/kT‘

One way to take into account these effects semi-empirically is
to introduce a cut-off at both limits of integration :
1/a
(II1. 6. 6) B-= (e4/41'|‘4) dk(1/k)
K
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The lower cut-off K takes into account the screening effect whi-
le the upper one eliminates the effect of the very clese collisions.
The theory of weakly coupled gases may then be used.

However, this approach is not very satisfactory and the true
way to solve this problem, although we shall not discuss it here, is,
within a perturbation theory, to sum first all relevant contributions.
From (III,6.4) , it is quite apparent that the adequate procedure is not
to limit ourselves to first power in the coupling constant 92 or the con-
centration C, but to retain all terms proportional to any power of K,
i.e, of e2C, in the expansions. This summation introduces a dynamical
screening effect, i.e. a screening which depends on the velocity of the
brownian particleg, However, if the velocity of the particle is such that
(kT/m )1/%(|,the dynamical effects may be neglected and the Debye po-
tential is a good approximation. For more rapid particles, one can still
write a Fokker-Planck equation but there appears a further velocity de-
pendence of the coefficients due to the collective effects (excitation of pla-

sma oscillations) .

III.7 - Brownian motion in a fluid which is not at equilibrium.

In this case, we must relax assumption (III.4.1) and use equation
(III3.5) . The main feature is that, whereas, in the equilibrium case,
we have a single closed equation for the distribution function of the
brownian particle, in the non equilibrium case, we have a whole set of
equations for the velocity distribution functions of the Brownian particle
and the fluid particles.

Following the same procedure as above for the integration over
the wave vector, we easily obtain :

) (Z. , 1)
‘Pl’atl = (8‘\\'5 XZ CB/mf)sdx{

o —

2
2’8}
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(IIL.7. 1)

0, 1 ? (] vt .
TR L S TR T £ (RS e
~1 g 1
This second order differential equation can be easily recast in the form

of a generalized Fokker-Planck equation :

DY (D 1 2
Y ={1V1 (-Avli/At)+'2' _'BVI—’AVI_(MI.AVI./At)}x
(IIL.7.2) i ' o

x ‘f‘ (‘-’:ut)

where the transition moments are given by:
MW(v.,t)
5 2 - "\" -
Av /Ot -sw A CB/mz) dv gl ——-2g¢ 3 (v.,t)
L T W S

3 *

- gigjg ’QVJ.

(II1.7.3)  =- (16W5)‘2C3/mf) idz g g'3 ;f(x,t)
—_— 5\ 2 2 -3 -1
(IL7;4) A vliAvlj/At=—(161l )Y CB/ml)idx{gigjg -Sijg }‘f(!,t)

The transition moments are now functionals of the state of the fluid .
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IV. MICROSCOPIC THEORY OF BROWNIAN MOTIONOF A HEAVY PAR-
TICLE IN THE ABSENCE OF EXTERNAL FORCES,

IV.1 - Introduction

In the preceding chapter, we- have discussed the brownian motion
of a particle which is weakly coupled to a fluid at thermal equilibrium,
However, as we have seen, there are no known intermolecular forces cor-
responding to the weak coupling approximation, Therefore, that problem
was rather academic and we shall now consider a more realistic situation,
The discussion which will follow will be valid for all cases where the
forces are of short range (Coulomb forces can also be included provided
the screening effects are taken into account in a phenomenological way).
The case of long range forces with no screening (gravitational forces)
will be dealt with in chapter VII,

For this model we can use as a starting point the kinetic equation
(11.9.3) or (I1.9.5) . We shall consider the case where the brownian par-
ticle is much heavier than the fluid pzrticles. For the case of a brownian
particle moving with thermal velocity in a fluid at equilibrium at tem-
perature T, we shall show that an equation of the Fokker -Planck type
is indeed obtained for the velocity distribution function of that particle
if one retains only the lowest order terms in the expansion of the kinetic
equation in the ratio of the masses of the light and heavy particles .
The method we shall follow enables us also to compute the corrections
to the Fokker-Planck equation. However , we shall not consider this
problem here but we shall rather discuss it in the next chapter where we
consider the same problem but with an external force acting on the

particle .
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IV.2 - Equation for the reduced velocity distribu-

tion function of the brownian particle.

Let us start with the kinetic equation in the form (IL.9.3).

Assuming the fluid to be at equilibrium, we have

Pl = QTP ) eau.
N

= ’f(‘i’ t) TT ew kT/m)3/24zre

i=1

(Iv.2;1) -mviz/ZkT

where V is the velocity of the brownian particle (mass:M) while Xi
is the velocity of the ith fluid particle (all fluid particles have the sa-
me mass m) .

Integrating both sides of (IV.2,1) with respect to the velocities
of all the fluid particles, we readily obtain an equation for the redu-

ced velocity distribution function \f(V~, t) of the browhnian particle :

P
T =

t
2

(1V.2.2) dtsxdx\ Y 6pt-1) 'f(‘i’t ) (fo equ.

0
which is valid only asymptotically,

Let us introduce the operator .
(IV.2.3) -1 - ‘dv‘N G- T) (p)
~ f o'equ,

This operator is of course a differential operator with respect to the

velocity V of the brownian particle. (IV.2.2) now becomes :

DYV, 1)t
(Iv.2.4) L: dtnt-t) (V.,T)
At o Y ~

From thevery definition of G(t) and (IV.2.3) , the Laplace transform of
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the operator r (t) is obviously :

(IV. 2.5) (i?(Z) : ‘{ dﬂN‘{’(z) (fi) equ.

Following the same procedure as that used to go from (IL. 9.3) to
(I1.9.5) , the equation (IV,2,4) may be written in the pseudomarkovian

form :

RIS
(IV. 2. 6) _iat_ :-ivé(o)\f(\i,t)

where the operator ® is given in terms of ¢(0) and its de-

rivatives #'(0) by the same relation that holds between € and Y
(see (I1.9.6) to (IL.9.8) ):

W.2.n) T =1+ ¢0)+(1/2) 1; (M(O) +{q'(0)]2+...

The equation (IV.2.6) will be our basic equation for a dynamical
study of brownian motion, We shall now show how it reduces to an
equation of the Fokker-Planck type when only the lowest order terms

in the mass ratio m/M are retained .

IV.3 - Expansion in powers of the mass ratio.

As the fluid is at equilibrium at temperature T, we have:

1
(IV.3.1) (vi) = (2kT/m) /2
: 1/2
= (2mk
(IV.3.2) (pi) (2mkT)
If the brownian particle moves with thermal velocity , we have:
(Iv.3.3) V= 0(2kT/M)1/2 = oq(vi))

(iv.3.4) P = 0(2MkT)1/2 = O(x'1 v, ))
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with
1/2
(IV. 3.5) K=(m/M) 12 4
The unperturbed and perturbed Liouville operators may be written in

a way which exhibits their dependence on ¥ . We have:

f A
=L+
(IV. 3. 6) Lol YL,

f
where LO is the unperturbed Liouville operator for the fluid :

N
(IV.3.7) -z C

: V..
o i%f1 ~i" Jr,
L.

A
while XLO is that for the brownian particle A:

(IV.3.8) xLAO=\L.—?—R
Similarily, we may write :
(1V.3.9) L-9Lf +¥SLA
with
S - T Wilz ) 9 g
bos r AT
i<y Y Ri  9R;
(IV. 3.10) i
53 Wil RD 9
i ey o
Wl -R))
A Atb~i ~ 0]
(IV.3.11) XSL -2;. AT =

With these expressions, we can easily expand the rhs of (IV,2,6)

in powers of 8 . Using (1I.8.7) , we have

(IV.3.12) (1)(2) =g{d1§N QL) zof} (ih)n IO)irr(fi dequ.
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f
Taking into account the fact that SL is a differential operator with

respect to the velocities of the fluid particles, we have:

do- fie " ol (80f ) B 80 Bt
(1V.3.13) =yi§Ni Z o0t fxx —-K)‘{dv K, 51--1(')0_3; L
~ n=1 o]

( fo)equ.

Using (IV,3.6) and (IV.3.9) , we then immediately obtain the expansion:

(IV. 3. 14) cp(z) - ¥<{>1(z)+xz¢2(z)+

with

n=0 z-L z-Li m=0 z-L0
(1V.3. 16); .
Z({)‘SL [k =K, K)hdv}(k K2 __Lllt_st)n x
i=1 K n=0 0
1 A -
X — L 2 " 1o )m. fo equ.

z-L m=0 z-L
o)

In principle, in the first term in the rhs of (IV,3.16), the sum over
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m shuld go from 1 to infinity instead of from zero to infinity, Ho-
wever, taking into account the fact that Li has no non diagonal
elements and irreducible contributions only have to be kept (no inter-
mediate state equal to the vacuum of correlations), we may add the
term m=0.

To the expansion (IV.3,14) of +(z) corresponds the following
expansion of the operator < as given by (IV.2.7):

(IV.3.17)  w(z)=1+ X'P; (2) +!2[f;(z) +2l¢';’(2)4’1(2) * H’;(Z)} 2]

+...
Hence, if we do not retain terms of higher order than xz, we have:

QQ(V t)

(IV.3,18) —— = - 1x§1(0)tf(v t)-iY [4) (0)4) (0) +§ (0)]({;(\7 t)

We shall now discuss in details the various terms which appear in
the rhs of (IV.3.18) and show how this equation reduces to a Fokker-

Planck equation,

IV.4 - Study of the operator 4)1(0)

This operator is the analytic continuation of the operator +1(z)
given by (IV.3.1) for z-)0 . Using (IL 12.14), for the canonical

distribution for the fluid, we have :

,lim, Z'_({ K\(——f—SLfml)(foequ

0
SKR
av.a.1) =W /@) |ar X “21_1’“6 §='1 G -'iikuz_llj fo)m ‘O)Yi)
¢}

equ,
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- (8T /9) ‘dri e KR

equ,
Pl
~1
where flk is the Fourier coefficient of the complete equilibrium

dlstr1but1on funct1on for the fluid:

fiqufexr)[-ﬁi 5t Z Vi; (.t il +ZV1A(|R r ‘ }]
-1
(IV.4.2) ]{drdR\ exp[ ———IZ( v/ )+ Z V. (|r .-r D*ZV ‘£1 R} )}]]

i< o1jit~io~j

oo [ it et o kT(z__ )

(Iv.4.3) r‘ i{dr\ exp ['1 Z 51 I~'1] fequ

Introducing (IV.4.1) into (IV.3,6) for z-30, we obtain:

Vo~ T Zhat Gl | -5 k)
i=1 K

-iK.R _equ,
x Idg e ,lii=-K

(IV. 4. 4)

Now, we have :

OIS k=& K)Sdz TES PR

~i
(IV.4.5) ) Kr f
= ——1\d ~° T~ ~'~i
V )y R e ’1d € 1fequ
Taking into account the fact that VK is the Fourier transform of ViA’
we have :
. A, (|R-r.))
(IV. 4.6) Yv, ok B 1A~ T
K &7 CRY

Therefore, we obtain:
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ALV, (IR -1x.1)
4’(0)~ dvdr"N dR it N
A¢l & By Pea 3P
(IV.4.7) ’ahdvdr\ P
I R TP

and the equation of evolution for the velocity distribution function of

the brownian particle (IV.3.19) takes the simple form :

(IV.4.8) 1"’;,(;%— = - ixchz(o) o.f(y,t)

The first non vanishing effects are proportional to the mass ratio

m/M .

IV.5 - Study of the operator 4)2(0)

From (IV.3.1) and (IV.4.2), we obtain:

Now, using

(IV.5.2;1§ o KNR rz‘i‘}g et x| ps[oy o™ x

o0
n
(IV.5.3)% & ( fXLf) 1f= fl .
n=0 z-L_ z-L z-LO-SL

and performing the summations over{g"}, K', K, we obtain

x2¢2(0) =¥2%f.’;’ S.\dr dRPL I‘dv —_ﬁz
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IV.5.4 vt e SLh) ot
(Iv.5.4) 0 ) fequ.

A A
Using the explicit forms of LO andSL this becomes :

Zv, 0k 1) 9

- N
x2¢2(0) =@ zli_f,no“di\ dR \) Y " 3P
S\dl\ f [ "R P wary- "9P -]req“'
2L, St R £

Using the explicit form of f(fequ (see IV ,2.2) , we obtain easily:
'BT-VA (R-r. 1)

§2 0 2 him s\d" 28 P
(IV.5.6)

] 1 3? Viall Bz, 0) '«)

“"} L_st 2R ST kT ~fequ

Let us introducing the diffusion coefficient :

N
p, -0 ffaar} B TEAZD X
(IV.5.7) N -
1
X li ———F(R )
A T )

where

R AAUEENY
(1V.5.8) PR L)) A\

R,

is the total force exerted by the fluid on the Brownian particle; the

operator ?2(0) becomes :

2 . 0 1
(IV.5.9) x {;2(0)-Dij 2%, (ij o vj)

The evolution equation (IV.4.8) may thus be written :
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RAVAA) 209

(1V.5. 10) oF =D, T ('DPJ. +

T P

This is indeed an equation of the Fokker-Planck type. An explicit
expression in terms of microscopic quantities is now obtained for the

diffusion coefficient,

IV.6 - Diffusion coefficient,

Taking into account :

0
- 4 ot f
(Iv.6.1) -1 Zl_l’rrb 'zl.;"b ‘0 dt exp [- L+ L -z)t]

z-Lf- SLf
o

the diffusion coefficient may be written as :

. -1 N
Dij =Zl-1,m0 \°° dt () ‘\didﬂ dR Fi (5,\“) x

(IV.6.2)

X exp [-i (L(I; LS50, t]F(R \ b fequ

Taking into account :

(IV.6.3) L f‘? - (L, feSLh ': -0
equ,
and the fact that the integrand is a function of relative distances only,
we obtain :
0
D = lim dv dr F @,‘r ) %
dfl z-30 \ ‘ 'I f equ. ‘
S |
(IV.6.4) x exp|-i (L -z)t] FP (B,{i})

= lim ‘: dt <Fd (R.{r}) exp [—i (Lf-z) t] Fp(g, \3\))

z4 0

The diffusion coefficient is thus the average value over the fluid equili-
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brium distribution of the time autocorrelation function of the force ac-
ting on the brownian particle for a fixed position of the brownian par-
ticle,

As an example, let us compute this coefficient in the case of

a weakly coupled system, Then we have :

(IV.6.5) Lf—)Li
2

mvl -N

f 3N
(4w exp { 2KT

(IV.6.6) f’equ. = (m/2WkT) 3N/2

Expanding the interaction potential in a Fourier series, we obtain:

N o
2 =N . N 3N/2
D, =-\ (2 lim I dt Iidrdv (m/2WkT)

“p Fl Aol "

3N 2 3 {3 . ik.(r -R)
(IV.6.7) (4m ) eXp[.- 71:mv1/2kT“d k(d k' v Vklkdk/se i

f
-i(L - ik'.(r.-R
e i( o z)t el'li Qj ~)

Now, we have :

£
-1 ik! ik! -
(IV.6.8) e R R L
With :
ik
(IV.6.9) [dii el g 8(3)

we verify easily that the only terms which contribute are those for
which 1i=j . This result is of course quite obvious . Indeed, the only
contributions to the evolution equation are those of diagonal diagrams,
in which each particle must appear at least at two vertices, In the

weakly coupled case, we only have to consider the cycle and have the-



— 269 —
F. Henin

refore only one fluid particle involved.

i(k+k'), r . 3
Therefore, with gdsi el(lf. <) i ) 5(‘1&+1‘Q) (IV.w. 10)

we have : ®
4\2 3/2 2
D,p=32W >Cm/21tkT 1i dt Ydv exp (-mv /2kT) X
up ( ) Z-émoL ‘ v ( / 2kT)

(IV.6. 11)
3 2 ik.vt izt
xgdklvk\ kdk{se~ e

We also have :
© i(k.v + z)t
(IV. 6. 12) lim ‘ dt e KX wS(k.v)+i P(1/k.v)
z=501Jo
As the remaining part of the integrand in (IV.6.11) is an even fun-
ction of k, the contribution involving the principal part vanishes and
we are left with :

2 3/2 2
[‘?‘P= 32“5X C(m/2WkT) / ‘dx exp (-mv’ [2kT) ’d3k \vk \2 k‘k/! x

(IV.6.13)
x S(}S.x)
One verifies easily that one has:
(L.v)?
3 2 - 8 ~-~
(IV.6.14) sd k ‘Vk\ k, kpS(g.sL) “Yp (1|'B/v)[1 - g

where 1 =(1,1,1)is the unit vector and B 1is given by (III.4.5) .
~ X y z

Performing the v integration, one obtains

(IV.6.15) D =§" 3218 W/ 2er) V2 4/3 )

One verifies easily that with this value of the diffusion coefficient, the
evolution equation (IV.5.10) is indeed jdentical with the particular
Fokker-Planck equation (III. 6.14) we obtained for a heavy particle moving

with thermal velocity and weakly coupled to the fluid.
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V. BROWNIAN MOTION OF A HEAVY PARTICLE IN AN EXTERNAL
FIELD

V.l - Introduction .

We shall again consider the problem of a heavy particle moving
in a fluid at thermal equilibrium. However, now we shall assume that
the brownian particle is charged and that at t =0, we switch on an
external constant electrical field. The fluid particles are neutral and are
not influenced by that field, After a long time, we shall reach a statio-
nary state for the velocity distribution function of the brownian particle,
corresponding to a balance between the effect of the external acceleration
and the scattering by the fluid particles,

Our starting point for the discussion of this stationary state will
be the transport equation (II.14.5)., Here again, we shall show that,
when only lowest order terms in the mass ratio are kept, the equation
for the stationary state is in agreément with that of the stochastic
theory. The calculations which have been performed originally by Rési-
bois and Davisl) will be closely parallel to that of the preceding
chapter and we shall go over them very briefly and rather concentrate
ourselves on a discussion of higher order corrections. First, we have cor-
rections to the collision terms which are independent of the external
field and introduce fourth order differential operators in the equation of
evolution, Then , we also have corrections which take into account the
effect of the field during a collision, We shall show that these correc-
tions may formally be incorporated in the Fokker-Planck collision
operator.

Theseresults are in agreement with those obtained through a rather
different method by Lebowitz and Rubin 2) . In order to make connection

with this work , we shall show how the transport equation for this parti-
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cular problem can be recast in another form, which is precisely that
used as a starting point for the m/M expansion in Lebowitz and Rubin.
This point has been discussed in great detail in a paper by Lebowitz

and Résibois3) .

V.2 -~ Steady state equation for the velocity di-

stribution function of the brownian particle,

In chapter II,é 14, we have obtained the linearized steady state
equation (II.14.5) for the velocity distribution function of a system of
charged particles submitied to the action of an external electrical field.
We have assumed that at t=0 the system was in equilibrium and that
the field was switched on only at t=0, Keeping only terms linear in E

and restricting ourselves to the static case, we obtain:

st
(v.2.1) iL Z D (0) iLg c (0) Y- ig0)D
where we have used (II.13,18) to rewrite the second term in the
lhs of (II.14.5) as an operator acting on ?0

As the brownian particle is the only charged particle we have

here :
?

. iLp =eE |
(V.2.2) iLp E )

iy

instead of (11.13.3).
In(V.2.1), ?zq“

the whole system :fluid and brownian particle

is the velocity equilibrium distribution for

] N
(V.2.3) S N IRAL
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(V.2.4) \feq“(xi) - amm/2wkn) 2 exp (-mviz/BkT)
?
equ, . _ 3/2 2
(V.2.5) 'f (V) = 4W(M/2WkT)™" " exp (-MV"/2kT)

e
APSt is the linear ( in E) correction to p a
) )

. As previously, we
assume molecular chaos for the velocity distribution function, Therefore,

we have :
N equ
g2 BT
+ S‘f( )TF'Qeq(v)xg )

(V.2.6)

Therefore, (V.2.1) becomes :

N
n.fequ(xi) eE_ﬁL_ ZD {0)11, ‘k‘(o) Tl'? (xi).fequ

oz i!si
(V.8.7)

= 10 d4(v) Tl'\f (v)+ syw)&f( )TW Py

Integrating this equation, first over the velocities of all the fluid particles,
secondly over the velocity of the brownian particle and the velocities of

all but one of the fluid particles, one obtains easily a set of coupled equa-
tions for the twol;mknown functions %\9(!) and S‘f(-‘i i) . However, it

can be proved that, once terms of order 1/N are neglected the
velocity distribution function of a fluid particle remains at equilibrium in

the stationary case :

(V.2.8) W(X-i) = 0(1/N) 30

We shall not prove this here but it is a consequence of the fact that

the probability of a given particle to interact with the single heavy par-
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cle is quite negligible in the limit of an infinite system, This allows

us to neglect all vertices involving A and a fluid particle in the ope-

rators D{k\ ga Vo ¥y *
The equation for g? (v )then simplifies a great deal and using argu-

nd \{J once we integrate over  V,v

ments similar to those whlch allowed us to establish the')‘ -theorem in
chapter II, é 11 it is easy to show that (V.2.8)is its only
solution.

Taking into account (V.2.8) , the evolution equation (V.2.7)

becomes :
N equ ')fequ!u)
Te we2—37
(V.2.9) + L p (0) eE. 2 (O)T\' iy (g W
PRI C R T T

_1\‘/(0 S\Y(V) TT\fequ

After integration over the velocities of the fluid particles, we

obtain :

WY equ
(V. 2.10) B+ O g (V) = i§lo)dy()
where

N
N
(V.2.11) 4)(0) - hdﬁ .‘40) T!'.feq“(xl)

(V.2.12) (= (0) Z!{dv* {k}(O)eE gp {40)

equ

The operator*(ﬂ) is identical to the operator +(0) given by (IV.2.5)
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V.3 - Expansion in the mass ratio .

Here again, we write:

. A
(V.3.1) L, =L, YL
(V.3.2) oL = 9L +x§LA
v.3.3 B vy
(V.3.3) eE. ,)E—x .

fef
where the fluid operators LO,SL are given by (IV.3.7) and (IV.3.10)
A A
respectively while the particle operators YLO and xSL are given
by (IV.3.8) and (IV.3.11).

We also expand the operators ¢(0) and E'_‘ (0) :

(V.3.4) ¢(0) =Y#1)(0) n xz 4) (2)

(v.3.5) Co-ys o e

0 . .
The zero order term (x ) of 4) vanishes as we have seen in

chapter IV, The zero order term of E‘(O) vanishes because this

operator involves the external field operator which is of order X .

Up to order X ‘*, we therefore obtain the following equation of evolu-

tion :
iLE‘?equ(K) + [XB(I)(O) +y2 :_1_' Y3 ~ (3)
+X (0)] My [Y¢(” 0) + x2¢(2) (0) +
VORI A R +x4¢(4’ (0)]81’(\1)
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In chapter IV,§§4 and 5, we have shown :
(V.3.7) #(1)(0) =0
(@), I C S U
(V.3.8) H ¢ Dy 'aP Y J+kT v

where the diffusion coefficient is given by (IV.5.7) . An alternative ex-
pression in terms of the average autocorrelation function of the force ex-
erted by the fluid over the fixed brownian particle is given in (IV.6.4) .
As to the interference term between the flow and the collision, it is again

easy to show that :

o

(V.3.9) = ()

0) = =, (0)=0

Indeed the term of order X in the rhs of (V.2,12)is

(V.3. 10)x

N
0
‘ki s{dJ D 0 1LE C;£)§(0) Tl\' ‘?equ
where D 0) ) and C( )

1 1k}

ction and creation operators :

(V.3.11) {2{)‘ nZ <0| z-Llf )l{g})

(0) are the terms independent of Y of the destru-

o)

(V.3.12)

‘k\ r.<m|[

Taking into account :
(V.3.13) ‘\duN i =0

we easily verify (V.3.9) for the operator E‘ @) .
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(2
As to the operator .;,( )(0) , we have:

2 l""(2 N (1) (0) equ
X ) 0) X‘Zk__\[(dz D{M(O) iL C{k‘(()) “"Q

(V.3.14) oo
+Y Zgi v} iﬁ"m iLg !k}(o’ Tl'\( e
(0)

Using the same argument as ahove on the structure of D k‘(0) , it is
easy to show that the second term in the rhs vanishes ~ As to the

first term, we have :

Yoo - Z st

(V.3.15)

7 -

lf(“f iy e
+i t(o\(SLf ) (8L +LA) 5 (SL—Lf Iikj)

n=1 m=0 z- L

Again the second term giveg a vanishing contribution when we integrate

over the velocities. Therefore, we have :

2M2) 2 e= o . y
Yooy L gﬂd\ (o) 81 Lf

n=0 m=1

(V.3.16)

x (SL ) l{M)lLE M\ {——fSLf] IO)IT iy

Now, using (IV.4.1) , (IV.5.2)and (IV.5.3) , we easily obtain:
1 f .
(V.3.17) x ‘__' ‘.\dv‘ (0\& -Li-fof equ Y iLg

From (IV,3.11), (IV.6.3) and (IV.4.2) , we easily obtain:
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)IV Allz;-RY)
2 2
(V.3.18) x B @ (z) = (1/2}‘{ drdv‘ 2R "J_g?equ
=0

(see (IV.4.7)).
Therefore, if we restrict ourselves to terms of order m/M , we easily
recover the stationary Fokker-Planck equation in presence of an exter-

nal field acting on the heavy particle :

? i
(V319 eE.=5p (V=D =5 o ,)P S?(V)

The diffusion coefficient is not affected by the presence of the external

field.

V.4—Higher order corrections to the collision

operator.Role of the irreducibility condition.

The X‘s and x4 contributions are respectively :

3 4(3 , 3 S R 2 N A
V40 myt BEE [l 15

t A g A
(V.41) — ( L z_Lf) + 34 —_lLf)(SL Pl Lt

z-L z-L
(o)

(o]

1 f g equ
(:_-—-LfSL) |9)... The o)

VB & ) = Jip oy r = fOZwZ’{dQN(OHLA

Lo L) A+ 8h 2 (SL
z-L z=L ° z-Lo

) o 1-8'.‘) b
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1
(V.4.2) X (dut - 0) X
z-L z-L z- irr

The first point we want to discuss here is the role played
by the irreducibility condition, To do this, we will need a theorem
first established by Balescu 1),
If we hcve a succession of diagonal fragments, the only contributions
to the reduced distribution function of particle & which do not vanish
at the limit of an infinite system are those where the diagonal fragments
are semi-connected, i.e, where they have a single particle in common
with the preceding diagonal fragments,

We shall not prove this theorem in full generality but illustrate
it on an example ., Let us consider a succession of two cycles:

we have three cases (see fig. V.4.1)

<>®

S om <°‘><'> )
< d

oo

Possible connections in a succession of two cycles,
Fig, V.4.1
1) they are disconnected : no particle in common (a)

2) they are semi-connected : one particle in common (b), (b').

3) they have two particles in common (c) .
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Because of the integration over the velocities of all particles but & , f must

necessarily appear at the first vertex on the left, We obtain :
(a) = z‘jdv OlSqujk«, =k Xk, ,k,=-kd|,(L°(1] 0>
(V.4.1) i1 J
L7 [k =30 ey = §L7] 02f 0
Now, the integrations over v and ) commute with the first two matrix ele-
~J ~
ments, Therefore, we have : 1
@ ~ Jagan &7 e
This argument may easily be generalized to more complicated fragments and
successions of more than two fragments; whenever there is at least two discon-
nected fragments, the contribution to the reduced distribution function vanishes,
Let us now consider the case of the semi-connected diagrams (b) and

(b') . We have:

- Z[dv N-I(O\JLinkF-kd X7

Ly ==k o 00 201617 e =
(v.4.3 &;,k;-k'.léL J( 0> +£0] 6L°”f£',‘ KT Ky?

(kL k=K L o

It is easily vemfled that none of these contributions vanishes;indeed, in the first
case, the integral over % does no longer commute with the first two matrix
elements; in the second case the contribution proportional to d /dv 4 of $1¥ J
in the third matrix element is non vanishing,As we have already seen ((II. 6, 6)),
the contribution of each cycle is proportional to Q-l;because of the double
summation over i and j, we obtain a contribution proportional to Cz.Such diagrams
correspond indeed to those described by the above theorem,

As to (c), we may repeat the arguments for (b) or (b'); each cycle is
proportional to 9-1; however, we only have one summation over i;hence we obtain

a contribution proportional to C/§, which vanishes for Q@ —sw ,
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Let us now suppress the irreducibility condition in the operator
4)(0) and discuss the error introduced in this way. We consider a

given contribution to ¢ (0) with m vertices :
A m
sty 0 =foe) "R e 07 oy, TRy
o i

and suppress the irreducibility condition on a given intermediate state
m)
(say after r vertices). In this way, we add to ¢( " the following con-

tribution :

o =X“dK\N(O\8LA(j In™ | o) o X

Qo) 1), T )

As we have seen such a contribution will be different from zero in the

(V.4.5)

limit of a large system only if the two diagonal fragments are semi-conne-
cted. We have two cases :

a) the semi-connection is through one fluid particle; but then , A does

not appear in the last fragment on the right and we have:

(0\( L sty 1) “quu(vi)

z-L
0

(V.4.6)

-0} =3 8L 1oy TV g*¥g =0

z-L0
if we take into account (II.11.10),
b) the semi connection is through particle A, Then , all the fluid parti-
cles in the first fragment are different from those in the last and becau-
se of the integration over the velocities of the fluid particles, the first

vertex in the second fragment must necessarily involve A ; hence :
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N

2 X\\d,zsN‘%o\sLA(ﬁo S\,
T e 8t e B e, T

if ‘{dv* ’dv v, , Where il...is are the fluid particles involved
in the second fragments . W e easily recognize that the second contribu-
tion is a contribution to the operator ¢ given by (IV.3.13) . As we have

2
seen, the first non-vanishing contribution is of order x and we have:

o =¥s‘dz\ N"S(O\S e (;_—i— 3 L)m_r\o)irr [‘(equ(x)‘N’s
TR ey ol o S0 ) 0 W)

With the same kind of arguments, it is again easy to convince oneself

x

2 .
that the fragement on the left is also of order y at least, Thus, if we supress
the irreducibility condition in the operator q (0) , we add a contribution
of at least order four in x . The contribution of order x 4 which we

add is:

zL?)m X

|‘L —(SL ) ¥

(V.4.9)x(§LA+LOA)—1— f
z-

irr

irr

x (Su? +ij {——- SL) Io) equ(vi)

As a conclusion, we may suppress the irreducibility condition in ¢( )
If we suppress it (Whlch will appear convenient below) in ¢( ) (0) , we
have to subtract the contribution (V.4.9). Because of the factor 1/z ,

we easily notice that this contribution will diverge at the limit z=30.
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This is easy to understand. Indeed, a product of two irreducible dia-
2 .
gonal fragments brings a factor t in the formal solution of the

Liouville equation as compared with the single t factor brought by one
irreducible fragment, In the long time limit, the
first one diverges. The role of the irreducibility condition in Y(z)

is precisely to suppress such contributions, This is wellsknown in the
discussion of the three-body problem %) . The operator \‘J (z) brings

in the evolution equation only the contributions of genuine three-body col-
lisions, i.e. of those collisions where the three particles interact almost
simultaneously (i e, on a time scale of the order of the binary colli-
sion time) . The suppression of the irreducibility condition would amount
to the inclusion of those three body processes which are a succession

of 2 two binary collisions and would introduce a divergence, However, it

is often convenient to write \Y(z) as a difference between the reduci-
ble contribution (which includes all three-body processes, whatever

the time ordering of events) and the reducible term (which describe tho-
se processes which are the result of succession of collisions). Both terms

diverge but the difference is finite ; the cancellation occurs only for the

diverging parts. We shall see an example of this procedure below,.

V.5 - Higher order corrections to the collision operator.

Explicit evaluation,

The above discussion shows us that we may forget the irreduci-
bility condition in the third order operator ; it is then a simple matter,
with the arguments we used in chapter IV, é 5 to compute ¢(3)(0).

We obtain :
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3¢(3)(0)= hm I{dv <O‘SL < SL +LA) X

X —L (SLA+ LA) f 0
z-Li -SLf ° Pequ ‘ 7
L+3L -2t -to)

1 ® k A

= Q@ lim ‘ dt [1 dt Iidvdq dROL e ° x

1
z->0 o

3 ) -i(Li+5Lf-z)t2
(V.5.1) x[y "R +E~3£]e [ _i'ﬁ ~ ’.)P]?equ

-i(L0+ Loy oty

)
) t
1 N P
= 1im dt dt_Wdvdry F (Rir})— e
z-)O‘o 1‘0 2‘ ~~‘ 1~‘~ 'DPl

o N -1(]_,0 + SL—z) 9 £
x[vj ’D_Rj +FRAD %Pj\e FRAD) Pegu ¥

? 1
X 1
l:ap *%T Vl]

where the force F acting on the fixed brownian particle is given by
(1v.5.8).

As the potential is spherically symmetric, one verifies easily that all
contributions to the rhs of (V.5.1) vanish for symmetry reasons, There-

fore :

(V.5.2) 4)‘3)(0) =0

Let us now consider the fourth order contribution. If we denote by ¢( )
the operator ¢ 4) in which we suppress the irreducibility condition, we

obtain :

~
(V.5.3) ' 44)“’ (0) =x4 4)‘4)(0) -
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where @ is given by (V.4.9).

2 3
Following the same procedure as that used to compute ¢( ) and ¢( ),
we have :

~ ®© t t

44(4) 4 1 2 N 3

B il af; sfetteod
(o]

X e

f o1
Si(L+ QLz)(t, -t,) 2 2
[Vj A RE
(V.5.4)

Lof g f
-1(L0+§L -z)(tz-tS)[ ? «

X e 1 R

ot oot
<t +8Lap
o 3 £ ? 1
X e FRALYPeqy Fﬁk T Vk]

This is a fourth order differential operator with respect to the veloci-
ty of the brownian particle . It diverges as can be easily verified if
one keeps only lowest order terms in the coupling constant.

As to the operator Pk , we easily obtain :

0 2]

ooyt T2 eyt A st »
z90 p=0 qg=0 z-L ~dL

(V 5. 5)

) 0>1r 1<0\§L f(§L+LA)‘——JL’ [0S »

xTI\f

which we can easily rewrite as:

irr

1
o - x lim ;\dv <0|SL —L—:-s-ljf(SL +L0 )—:_SL—‘ 0 .
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(V.5. Gan (v )“dv* (0181“ LA+LS)?£qu \O>irr

-L-SL

Using

f _ equ
Pl - kZ%w,zgxm, KlpS 10y

(V.5.7) D
iy, KXk, KpS 10 + |4 Tleq“
BTl GACAR A
we have :
Z K equ
{kt’K' « b Kl Lf flo)n
(V.5.8)= Z:—_—.(ugg,ﬂ
LK A0y z- L

Z:. («\k ' .l Pfequ \07irr

&'}K' £ Ao - z-Li-SLf

3 fequ )

Therefore, we obtain:
(V.5.9) o{=ol1+°l
with

L ot

o, =x4 th‘dv\ (O\SL st ——@L +LA)-— oqu [o 0

(V.5.10)
" ]idx&N@lSL “‘f_g“f et 0o 197
o e O s
(V.5.11)

ﬁdv‘ <0‘SL —_Ef (SL +L0A)efequ|0>irr
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Using (IV.6.1) and the convolution theorem we easily obtain :

o o0 'c1 ’c2 N 2
o Zl;rr:) Io dtl‘o dtzgo dt3$§dzd£\ F(RAz) X
£ogf
A ditgy -t 3
o 1 2 1 f
X e Fj@'{ii” ‘ij+kT V) Pequ X

(V.5.12) I
Si(L +8L -zt
X S‘ dzd;;‘N F| (E,{l)) % e ° 3 9

1

1
AR e i ¥

K Peqy
Again this is a fourth order differential operator with diverging coeffi-
cients (this is again easily verified if one takes into account only lowest
order terms in the coupling constant ) .
In the contribution & Y because of the irreducibility condition
in the diagonal fragment on the left,none of the propagators is identi-
cal to z and this contribution is perfectly finite at the limit z -0 .

Introducing the operator :

21(2), . 2; N oISt L A A1

(z) = v oL” ————— (3L
{ ¢ ¥ jedh < z-Lfo-SLf Oz-Li-SLf
(V.5.13)

xfequw) irr
we have -

4 4(2) (2)
(V.5.14) of =- (0)" (0)
e op

if we take into account (IV.5.6)
4 .
The irreducible operator ¢( ), which does not diverge at the
limit z<%0, may thus be written (see (V.5.3)):

(V.5.15) (P“) (0) =P‘4) XL
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~
4
The infinite parts in ¢( )and o(l cancel each other. Introducing

the fourth order differential operator :

T4 T4
¢ - ¢Yo v,
-i(Li+8Lf-z)(t1-t

By 'Ll t2 N ")
=11m‘ dtl' dtZL dt3{£d£d¥'} Fi(B’{ﬂ)'.)—Pie b'Y

z301o 0

f e f
3 A . -.1(LO+SL -2)(t,t,) ., _?_+
R, I~ P 1 3R
-i(Lf+SLf-z)t3 9 .

9
Az 55 | FRASY P o, 57 F T

(V.5.16)

s f f_ . £
_S{drdv\ F (B U) 1(L0+XL z) (t)-ty) FJ.(E, {g;)fequ

f f
? N R IR )
+—V d R —_
Ar, ’({di 4 RS R YA F Rz
-— V
X fequ ( ’)P k ) }
we see that the fourth order correction to the collision operator 18

a sum of two finite terms:
4 ng T2 2

wsm §U0dw Foigur §Y0 ¢ i

The advantage of this form will appear once we calculate the corrections

to the flow term, Then shall see thatthese exactly compensate the effect

of the contribution o 9
4
One verifies easily that the operator 4>( )(0) may be written :
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—_ 2
4)(4)(0)=3 a_ _9 +b,. —?—-——V ‘e, V—E—-
"aPi ijkl }Pj'a?l ijkl '3PJ 1 ijkl 1 'aPJ

(V.5.18) + v 2 s Ly
g 1V P, KT k
where

o t t, -i(L£+3Lf-z)(tl-t2)
=i dt at_ | %t 4(F
%k lmg 1‘ z(o 3k- e Fx

z-y0Jo 0 . !
(V.5.19 ;
-i(L}+ 3L -2)(t, -t,) St LAy
X e ) 2 3 F. e o BF
1 k
-i(L£+ SLf-z)(tl-tz) TR YR

o} 3
.(Fi e FJ)(Fle Fk) }
oo f
t t (L + QL -z)(t, -t.)

b = lim |7 dtl‘ L gt (2 dt3<F, e © 12 p x
g z-» 010 o 2 o ! J
(V.5.20)

f £ f e f

(L + L' -zt - -i L.
i, oL 2)(t,ty) 9 i(L_+d 2t

e F
R1 k

X e

o)

. f f
+ - -
0t ( 4L oL 2t 9
C"kl = lim dt1 dt2 dt3 (F e ——R— X
1] 230 o) o 1 ) 1

RN Lf e f
-i(L_+dL -2)(t,"t,) (L o+ SL -2ty

(v.5.21) % e F.e F
AL Sy -

] . k
£ ¢ f
t) (L + 8Lzt
1 2 - o 3
-(Fi e F (kT) )@je Flb}

£ oo f
@ b ~i(L +8L-z)(t.-t2) x
d. = lim [ dtl‘ dt ‘ dt, CF; e °
J 2-30 o] 2 1
(V.5.22) .
f £ ¢ f

-i(L- +dL'- - -i(L" +oL'-

R iy il gyt o (L, +8L

e e F
RJ. R, k

X

o
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where
(V.5.23) <A)= {drdv!,N ap!
.5, rdv fequ
The form (V.5.18) may be compared to the results of Lebowitz and

Rubin ; it is in complete agreement with their only correction to the

lowest order Fokker-Planck equation,

V.6 - Higher order corrections to the flow term,

The first correction due to the effect of the field during a colli-

sion is given by :

372%3) (0)
Y EN o - fery” il Poleuf ™

equ

(1) f
(V.6.1)  +¥ hd } {Zk\D o)L C{k‘(o)(fo)equ\‘ (v)

+B l‘dv z mopL coy (fo)equ Y

The third term vanishes because of the integration over the velocities
of the fluid particles.

As to the second term, one verifies easily that one has :

(1), f A . A 1
(0) (p.) = Qi (L + S ——
(ik\ fo eq“‘f ‘Iz L b z-LZ‘SLf

equ
(V.6.2) ! O)lrr o equ\f ()
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In the flrst term, we take into account the fact that L commutes

with ? . We then obtain easily :

(BE'.(B)(O)'-(equ(z) TH I <0{5L ———(SL ) X
O

L

1 ) f equ
(v.6.5) X _Zf__st_f g Pequ ‘0>irrY oy

Z-

- x 3%‘2)(0) L t"equ(\i)

if we take (V.5,13) into account,

The fourth order correction vanishes for symmetry reasons.

V.7 - Stationary transport equation up to order Yy
[4

Summarizing the results of the previous paragraphs, we have:

(V.7.1) E(O)quu(!) =33$(2)(0) iLElfequ(y)
(V.7.2) @o) 124’(2)(0) *X4$(4)“’3 +X4 ‘MO) $90)

where the Fokker-Planik operator ¢(2)(0) is given by (V.3.8) while the
operators $(4)(0) and ¢(2)(0) are given by (V.5.18) and (V.5.13) respe-
ctively.

Therefore , up to order x4, the stationary transport equation

becomes :

5[1 +x 4) ] equ(‘i) 125*Uz$(2)<°)]¢(2)(0)sf(2')
V.(.3) x 1) er
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Expanding %\?(Y') in powers of x , we have:

v S =y Pgw], +yPew]

which leads to:

(V.7.5) iLE\tequ(l/') = (}(2)(0)[5?(\1)]0
vae 0= ew], +§(4)(°)[xf‘i’]o

which we may rewrite as:

(V.7.7) iLE\?equ(Y) =[¥24>(2)(0) +X4 &74)(0)]SY(V)

which shows that the corrections due to the action of the field during

a collision can be formally incorporated in a modification of the colli-
sion operator, The corrections to the lowest order Fokker-Planck
equation are thus entirely given by the operator .&(4)(0) . Part of the-
se corrections may of course be incorporated in a modification of the
diffusion coefficient D which appears in the lowest order equation. Equa-

tion (V.7.7) agrees exactly with the transport equation derived by Lebo-

witz and Rubin,

V.8 - Alternative form of the transport equation

for the brownian motion problem,

Through a rather different method, Lebowitz and Rubin have obtai-
ned the following transport equation for the velocity distribution function

of the heavy particle :

V1)
(V.8.1) —%T—-

t
+ iL E'feq“(y) ‘ dt]((t-'c)S?(Y,t)

[¢]
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The collision operator’}c is given hy :

(V.8.2) 'J((t) -ewi) Idz e 2% ()

. Ne A 1 f
(V.8.3) K(z)=-1xyd£d\d $L PR L)(1-6’)(LO+8L)requ
where@is a projection operator :

(V.8.4) Pequs{dr dv

The remarkable feature is that, except for the trivial flow term, all
the dynamics of the problem has been incorporated in the collision ope-
rator?( ; at first sight this seems to be in contradiction with our ge-
neral result of chapter II. However, we have already seen that, up to
fourth order inx , in this brownian motion problem, the corrections to
the flow term in (V.2.,9) can indeed be taken formally as a modification
of the collision operator,

We shall not give here the original derivation of (V.8.1) which

2)

can be found in ref, , but rather concentrate ourselves on the equiva-
lence between the two transport equations for this problem,
First of all, we shall show that the solutionsof (V. 8.1) are iden-
tical to the solutions of the following equation :
Y Q.1

t
equ NN, equ
—T.—.+ iL, W) +[0 dr A t-¢ )1LE‘f (V)

(V.8.5) t 5
= ary-T)d¢Q (V. T)
| oeeidg

where {\ (t) andX(t) are the inverse Laplace transforms of the operators:
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— , Ne A 1 f
(V.S,S)X(Z) = -1[{d£dx‘* SL Z-(T)(—L?_S_L-)- (1-1)(L0+SL)I fequ

n N¢. A f
(V-8-7>A<Z>=hdadﬂ oL —_(T_I_)(ITI_SE) 1DP equ
(o]

where I is a projection operator :

(v.8.8) (f)o equ‘idrdv

(I involves the fluid velocity equilibrium distribution function while 6)
involves the complete fluid equilibrium distribution function for a fixed
position of the brownian particle) .

Using Laplace transforms, one easily obtains the formal solutions of
(v.8.1):

equ

(V.8.9) %«f(z) - [ iz- K(z)] i(zt) E.V¢ W
and of (V.8.5):
(V.8.10) {.}(z [1z-x z)] [—1+A i) B VW)

(We consider here the case of an oscillating field as given by (II.13,

12) )
In order to establish the identity of these two functions, we have

to show that the rhs are identical, or equivalently,that we have :

(V.8.11) [i(z)-izK(z)]f(X)=[l +K(z)]K(z) 5(V)

where f(V) is an arbitrary function of V;

Now , using the identity, valid for an arbitrary function

MY A} fep)
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f
(G'I)A(X’{,ﬂ AT =[Pequ )’ (fo equ S‘d
(V.8.12)
=(1-1) fiqu‘{dndx\ A
as well as :

1 1
z-(1- 6’)(L FSL)  z-(1-I)(L +3L)+d‘-1) L +5L

1 §1+ (G’-I)L +§L‘ 1 ‘

i z-(1-I)(L_*3L) S(I-(L_F SL)H@-D(L_*8L)

(V.8.13)

_ 1 f N 1
’ z-(l-I)(L;&L){l o CEIORE (PRTE I 3 }

- 1 f N_A A 1
we easily obtain:
> N¢ A 1
1+ A )|KE@)HY) =-i “didl vt — (1-6") x
[ ] x * z-(1-1)(LO+$L)

f
* (L * SL)fequ (V)

(V.8,14)

1 LA
iy ‘{drdv\ si.h PRIBIRT§ (1- I)fequ oox

N 1 f
*flozee g 00 30 By, 0

Now, if :

) 1 1
v.s.15 [ = ZREE TR (1-(?)(LO+SL)[>equ

we dlso have :
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(V.8.16) {z-0-@) @ +SLAf=-CyL + SL)fiqu

Applying the operator G‘ to both sides , we have:

(V.8.17) s zriqu81d£dﬂNl‘= 0

which shows us that the second term in the rhs of (V.8,14) vanishes,

Hence ,
- Ne. A
tl +A(z)]K(z)f(lf) = -iﬁ‘d£dz\ SL m (l-@) x
0

(V.8.18) f
X (L 8Lp (V)

The lhs of (V.8.11) can be written , with the definitions (V.8.6) and
(V.8.7) :

— I o N¢ A 1

[X(z) -iz (z)] f(V) = -wdidxk L _—z-(l-l)(Lo+5L) (1-1) %
(V.8.19) ¢
x iz +(L +SL)I“>equ £(V)
In order to prove identity (V.8.11) , we thus have to show that the quan-
tity & given by :

Ne¢ A 1
« - [1dxd£\ L ST reE) {0 @ ran

(v.8.20) _ (1..1‘,)(L0+$L) I- Z(I-I)}()iqu f(V)
vanishes .
Now, using again (V.8.12), we have:

{(1-@ L, 3L)-(1-1)(L0+ S L)I—z(l-I)}riqu 1(V) =

(V.8.21) ;
(1-h {(Lo+ 8L)(I-I)fiqu ) riqu “d{dx‘N(LJSL) fiqu-zrequ‘f(z)
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We also have :

flozach " e S1p ., 1 flazack Nfiqu Ao 51 peg,
(V.8.22)
A.
-y tfpmay Metp
(V.8.23) xLA f(v) = 0
o L
If we combine (V.8.20),(V.8.21),(V.8.22) and (V.8.23), we obtain

Ne A f Ne A 1
* [ o} 8 a-np, g, feary” S 2 (I(E_3L) -

(V.8.24) . (I-I)?uns\didﬁNSLAfiqu] fv)
Now, we have :

’id’EdX‘NéLAfiqu (V) =0
(see 1V.4,7)

and:

(V.8.25) “d{dx‘N SLA Iriqu =‘&d£d1}N5LA(fi) equ(n)‘N =0

Therefore, we indeed obtain :

(V.8.26) o =0

and the identity of the solutions of (V.8.1) and (V.8.5) is thus established.
Equation (V.8.5) has the same structure as the transport equation we

obtained in Chapter II, é 13, In the steady state, we obtain :

- equ A equ by
+ = V
(V.8.27) 1LEOY W)+ A 1LELf (V) X(O) SQP(N)
To establish the equivalence with (V.2.10), we have to show :

equ( -

~

(v.8.28) A (0)iL equ(y)=ZD (0) iL_C, (0
2 PURLY R B 1
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(V.8.29) i (0)8\9(2)=ﬁ>(0) S\Y(Y)

Let us first consider the lhs of (V.8.29) . We have:

X g0 -flee " ol81* ——L {1 v

_LO-(l-I)(LO +3L)

(V.8.30)
DI Do PPT)

if we take into account :

V(8.31) ILf) =0
-N
(V.8.32) ‘fiquxf‘“ - Q (Pf)) equ&f([)
Through a straightforward expansion, we obtain:
X z)X\f(V) = Z:’{d"} (olSL {[1 -9 L-IL ]—— } X

(V.8.33)
X {L + (1)L +§L)H0) (F

0 equ

However, we have :

<.' } K\I(L +8L)Hk" K')F({ \ V)sl'.k+K Ostk""K' 0

~] o~ ~

Jrg e ew [ Tier [ R N, flmary [l 0
1

+$L(R v, {r" {v'}]exp[ Zk' r']e""~ Fqv'} V)SZk +K, 0 X

T Ri
(V.8.34) 8
szK'

f N A
LSRR ‘fo)equf ey oy (O SLOLALY)
i
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e, ) Q' 0
. . . . . A
As a consequence all irreducible contributions involving ILo or
ISL in (V.8.33) vanish (see the product of Kronecker's deltas in the

rhs of (V.8.34)).

Let us now consider a reducible contribution made of a product of two

irreducible contributions :

P s{dv\ (olSL — i[1 L -1L ] ‘ o) x
" igzonﬁ HOL-IL, ] = ‘ iL H1-I)(L +3L)No) Py equ&r(V)

(V.8.34) shows us that we may drop the operator I every where in the second
fragment except at the left. (combine the Kronecker's deltas in (V. 8. 34) and
the irreducibility condition). Let us first consider the case q=0 . Then , using
(V.8.34), we have :

+ + dg(v) -
(V.8. 36) (oIL a-net +oL)| 0) (fo e P = 0

If q is different from zero, we have :
q
(0[{[(1-1)3L-1L‘:]—Z%‘ {L£+(1-I)(L£+3L)H ). (fo e f )
DR {fa-ndL-iL “k} Ky K\(—S ) l 0). r(ff))e . ¥
{3k Aoy e

(V.8.37)

q
(OISL (_—SL) lO) H‘l‘ 0 equ Y( )

- Pequfiie} "CISL G 8110, () g, S0

and we obtain :
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P = hdxiN <0|5LA ;_ITO‘[(l-I)SL-ILOA] ;_LL)plo)(o[SL(-z_—IlJo sy’

t
lo)irr (Po)equs‘r(!)
(V.8.38)
’(dv‘ b = {[-ndr-n ] sp 0)(r0)equ X

X hdx‘N<0‘8L (z-L SL) lo)lrr (fo equ 'f ~

If no fluid particle is common to both fragments, the rhs vani-
shes trivially; now, in our discussion of the role of the irreducibility
condition, we have seen that when such a product of fragments has a
single semi-connection, it is through particle A; if we have more than
a semiconnection, we obtain a contribution of order N-l. Therefore, at

the limit of a large system :

(V.8.39) [5 =0
This means that all reducible contributions to (V. 8.33) vanish, Taking also

into account the remark following (V.8.34), we obtain:

m+1
X 8gen - gs‘dK}N(o\SLA (—Z_I—LOSL) \°>irr(|’fo’ eqn X

(V.8.40)

x390) =t{>(z)57<z)

which establishes (V.8,29) .

(V.8.28) can be established in a similar way, if one takes into account:
Ay Kfa-np fopig =0 i WEY. K)= o)
f .
A K (i
equ

iLE({'li" [Slfiqu I 0>

(V.8.41)
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) iLEC{kpg(f(fa)equ ik, K9 £10)

This completes the proof of the equivalente between our starting point
and that of Lebowitz and Rubin, This equivalence shows us that quite
generally all corrections dueto the effect of the field during a collision
can, in this brownian motion problem, be incorporated formally in a mo-

dification of the collision operator (*-)'K) .
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V1, BROWNIAN MOTION IN AN EXTERNAL FIELD,
QUANTUM CASE

VI, - Introduction

We shall now consider the problem of brownian motion of
of a heavy particle in a quantum system. Our starting point for a
microscopic discussion of the evolution equation of quantum systems
will be the Von Neuman equation for the density matrix. As we shall
see, provided we choose suitable variables, this equation can be‘written
in a form which is very similar to the Liouville equation. The main
difference will be the replacement of differential operators by displace-
ment operators, This corresponds to the physical fact that energy trans-
fers are infinitesimal in the classical case while they are finite in the
quantum case, The similarity between the quantum equation for the den-
sity matrix and the Liouville equation for the distribution function ena-
bles us to extend the whole formalism very easily to quantum systems.

However, the problem of brownian motion in quantum systems
presents features which are quite different from those of the classical
problem, In the classical case, we performed an expansion in powers
of the mass ratio and showed that, to lowest order, the velocity distri-
bution function of the heavy particle obeysa Fokker-Planck equation.
At first sight, we might expect this to be true also for the quantum
case, the quantum effects appearing in the diffusion coefficient,
However, if we go back for a while to the classical problem, we easi-
ly notice that, what we did, was to assume that we were dealing with
a particle moving with thermal velocity (i.e. a velocity of the order of

its equilibrium velocity) in a fluid at equilibrium. We then had:

(VL.1.1) &Y /P ol m/m)' /2 - o(y) <1
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Our expansion in a power series of x was actually an expansion
in {p}) /P.

It is easy to convince oneself that (VI. 1.1.) does not neces-
sarily hold in the quantum case, Let us for instance consider the case
of a heavy particle noving in a weakly coupled Fermi fluid. At very
low temperature, the particle collides with fermions whose energy is

very close to the Fermi energy £F' Then we have:

{py /P = O meF/MkT)l/2 = 0(x§) (VL 1. 2.)
where

§=(eFmTﬂ“ (VL 3. 3)

and we may expect to find a Fokker-plank equation only in the region

where

X§<<1 (VL 1.4)

This condition is much more restrictive than the condition we met in
the classical problem.

With this example, one might think that such difficulties will
appear only if we consider fermions, because of the exclusion prin-
ciple and the existence of the Fermi energy. However, we shall see
that it is not the case and that the difficulty is more general. At very
low temperatures, we must always expect that the Fokker-Planck equation
will not be valid.

We shall first show how the Von Neumann equation may be written
in a form very similar to the Liouville equationl) . Then assuming that
an expansion in {p) /P is valid, we shall easily obtain a Fokker-Planck

equation. We shall discuss the quantum corrections to the diffusion
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2)3
coefficient in some simple cases )3) and compare briefly the theoreti-

cal results with the results obtained in experiments on heavy ions mo-
ving in liquid helium, Finally , we shall discuss on somewhat more ge-

4
neral grounds than above the validity of expansions in powers of(p)/P. )

VL, 2- Von Neumann - Liouville equation,

Let us consider one heavy charged particle acted upon by a con-
stant external field moving in a fluid of light neutral particles. If we
use a second quantization representation for free fluid particles and a
plane wave representation for the heavy particle, the hamiltonian opera-

tor is (we take 4 = 1):
=H + +
(VL.2.1) H=H \v H

The unperturbed hamiltonian is a sum over the kinetic energies of the

fluid particles and the brownian particles :

2
(V1.2.2) H = Z (k2/2m) at 5 +K'/2M
° k%

+
where ::1k ak are the creation and destruction operators for a fluid par-

ticle of ?nome;tum k .
As in the classical case, the interaction is a sum of two terms : one
which describes the interactions of the fluid particles among themselves

and a second one which describes the interactions of the heavy particle

with the fluid particles :

+ 4 S
Va(M 2Q) Z: v(k,1,p,r) a a. a a
Klpr LRRY) k'lpr kilpr

~ ~ ~
~Ancauas

(V1.2.3)
HN/R) L uk-1) e DR g, @
K x A

~
~e~
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The contribution due to the action of the external field on the heavy

particle is:

(V1.2,4) Hp = eE.

3=

L. the mixed representation \ K ,{n\) of the eigenstates of Ho

(.2 Z 2
(V1. 2.4) Ho\g,{rlh -&K [2M + A (k /2m)n£\\g ,\n\>
the Von Neumann equation for the density matrix is :

VK Antlpl KL A0t

(V.2.5) i ~ (kAR | K )

where [H, F] is the commutator of the two operators H and f

Let us now perform the following change of variables: for the

heavy particle :

'R

KoK

(V1. 2.6)
P - (K+K)/2

for the fluid particles :

= -n!
Vi Tt
(VL.2.7) N, = (o, +nt)/2

We also write any matrix element of an operator A in the following
form :
(K nfafxr . An'i)= AL K- n"( (K+KY/2, {n+n')/2})
(VI.2.8)
(P, ‘N})
£ A
To tle operator A, we associate an operator cf , which we define through

the relation :
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% T, -x
e s ie 4] % vty - § "ﬁ"‘ Ay i (BINDS

(VL. 2.9) -Zv A

A S |
x/’) -'§ | —‘.Vh A*'\V&(E.‘an 7®

where theg and 1) 's are displacement operators acting on the varia-

bles P and N respectively :

® D ¥
(V1.2.10) §’ "(P) = exp[ )P] ) =R+ )
v

~ 2
(V1.2.11) ") 3 £({N)) = exp [iiz Z N ]f(\N\) =f({nv+ 3}
k
One can then easily write the Von Neumann equation as:
VP vy BAND
i b # - Z:(&,MP((E ANy )hﬁ_'\y'}> X
ot ®rivih
VI.2.12
( ) X r!“¢“g,{N})

which is formally analogous to the classical Liouville equation. The Von

Neumann-Liouville operator % can be split into three terms :
(VI.2.13) x =)‘o' +W+x

The unperturbed operator )‘0 is given by :

<?5 ""\pto| ’.‘J ’\"‘) ; SL‘ %! TJS" v X

k4
¥ .p
~ ~ 2
(VL. 2.14) X + 2 (k"/2m) ¥
M : k
k
The interaction operator is given by :

PP - T im0 g

klpr
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'y-(“L vy v 1. .1 TR B

-Y «¥Y¥ -V -Y _Vi_vl_vl_vl

X’Y) k 1 pr_’)kl rp[(N+_)(N+_)

1 4 +v1 tv +y

)]1/2 k P r}%,Vk-lg §

1,V'1
Yo

(V.z,ls)xv"v+1 R ” xv v, g,
X pp

ifklpr i

T

v'tv! l‘ 1/2
e T w18 [ov, + b x
k

X EE Y e ) x
. lgfr v vl' v H e, x

lﬁlh 1 1

The external hamiltonian is given by :

Q8 AN vy < e o

P
(V.2.16) X ‘w T”

~t

The algebra which leads to these results is very simple, We give exam-
ples in Appendix VI, 1,

The equation (VI.2,12) can be treated in the same way as the
Liouville equation, Whenever we had a matrix element of the classical
Liouville opefa'tor, we must now replace it by a matrix element of the

Von Neumann Liouville operator . If we compare those matrix elements,
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we notice that the main difference between quantum and classical ma-
trix elements is the appearance of displacements operators in the
former while we had differential operators in the latter. This is specia-
1ly striking for the operators acting on the heavy particle variables:

the classical operator 'D/'DP is now replaced by the displacement
operator g‘! ~ ; this is due to the fact that we used a plane wave repre-
sentation in the quantum case which is the analog of the Fourier expan-
sion in the position variables in the cldssical case. For the fluid particles,
the similarity is also very striking when one compares the quantum
equation to the Liouville equation for a system of oscillators in action
(J) - angle (& ) variables). The displacement operators acting on the N
variables are the analog of the differential operators acting on the action

5)8)

variables in the classical problem (for more details see ).

VI.3 - Stationary transport equation,

The quantum analog of the stationary transport equation (II. 14,5)

in a static field will be:

(VL. 3.1) i)‘E Yegu(P, Anp +i 2 p

% "\"\
(V.3.1)
- i\‘/(O)A fo(g AN

Here ?O(P, {N}) represents the diagonal elements of the Von

O ¢ £ Cpn® feiu (P.AN)

Neumann matrix, At equilibrium, we have in the “n} K)representation:
-(H_ +\V)/kT
(ot 59 ot €) =Gy x| e ot )

(V1. 3.2) -(H + )V)/kT
[‘Z ({n'} K" e ° {n' K'»]

'}K
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Because of the non commutativity of Ho and V, this expression is

much less simple, if all orders in X\ are kept, than the correspon-
ding classical expression. It is only in the weak coupling case, whe-
re we can neglect the interaction that we obtain:

Anyx | e;glo“n‘,l{)= eXp%-[ —k—z n + ?KME]/k T i X

~

(VL.3.3) X Z_ expi [Z 2m k / \
v}

{nyK

S

P e I 9 9 -1
P
M k|3 el N, /“T}\
\Ny P X S
This will play an important role in our discussion of the validity of

the Fokker-Planck equation in the quantum case .

The collision operator\\l is given by :

(V1. 3.5) Y(O) I;rn (0[1{2:(_%;‘111 |0) o
z=30 0

while for the operators of creation or destruction of correlations we

have :

(VL. 3.7) D

(VL. 3.6) C*'"\(O) =Z1_i)m0(:,llvi=zl (Z—)T:‘)n lo)irr
'vat = llm(o‘z

®ivy
2=30 'n=1 \l >1rr

The index irr means that only irreducible contributions have to be kept,

i, e, contributions such that no intermediate state is identical to the

vacuum of correlations (diagonal elements of the Von Neumann matrix).
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As in the classical problem , we assume molecular chaos ; hence:
f

(VI.3.8) fe(lu (E "\N}) s Requ (E)§Yo (N)} equ

(V1.3.9) Afo (PANY) = S\Y(E B ¢ Z(N)‘ equ

if we take into account the fact that the modification of the density ma-
-1 ’
trix of a fluid particle is of order N ", hence negligible in the limit

of a large system,

VI.4 - Expansion in the mass ratio,.

Whenever the ratio (p)/P satisfies the relation
1/2
(VL.4.1)  {p)/P =0 (m/M) / = oy

we easily obtain an expansion in the mass ratio if we follow the same

procedure as in the classical case. We decompose the unperturbed ope-

ratorxo
RY 2 A
(VI.4.2) xo —)CO +¥Xo

with (V1.4.3 (M"]xf \'\")—Z %) 2m)" ]Tsvk "k ,‘ %'

Al o 1y ,
(V144 (ot %] Y)co\;v,,g)- ®.P)/M T}S.ﬂ,}yvl£ S'S.’i'
Similarily :
(VL. 4.5) \'W' = waYU‘f‘ +x2'lr}; +
where

(VL 4.6) W Y +v‘i

where .Y represents the fluid-fluid interaction (first term in the rhs
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A
of (VI. 2. 15) U is the fluid-particle interaction (second term al the
*

rhs of (VI.2,15), If one expands the displacement operators g in a
. A
power series, one easily obtains an expansion of ‘U in a power se-

A
ries ofx . For instance, ‘U.o is obtained by the mere replacement of

the displacementoperators by unity :

»® no% Z;_(V;‘vh)
(s 2O Che ) 5 Ty V-5 92
(VL. 4.7) (v
Ay vy Fe i e
while Y
b g ey - v Tyt x

/2 -y -v¥ -v! 1/2
*FN sL(N +1)] m &l k ~[}Nk+%)(N1+1§)] x

"] ~ l} Svl‘{ ,vk-ls\q,vlﬂ H sv'. ,v.gg-L,t,s-E,' x
(VI.4.8)
x 1 ¢-%) i
5 )

]
Lo

~ ~

P
x 1
A2 Slolte 3 15
(v, -v))
% }E. }E}l xr-‘

v . ' v * )
P R 1 [ _:>~ = 2
The external field contribution is, as in the classical case, of order:
Y . The main difference with the classical case is the appearance of

A
higher order terms in the expansion of V . However, one verifies easily

again , that, to, lowest order in Y , the equation may be written ;
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equ -1 x -z
VO - ey s R

(VL. 4.9) R
x (U7 +200,,, (Mg

where

(VL 4. 10) . =)Li+ W

Moreover, at this order, we can restrictourselves to the lowest order
equ . L Y .
term oq (P) in the equilibrium distribution function.

Hence , we have:
JO g™ @ - nmﬂ o TGV x
7= 0

Xy Ny4v
(VL4 ot
A A f
x e U ¥l E) P )oqu WD

where . f
) ‘g}j e"E'B(iN +v/2}|e'H /kT“N- v/2t)
(V1. 4,12) (‘) e e
RIS BP0 | S )
ANy
where
H - H? + Y

is the fluid hamiltonian operator

VI.5 - Fokker-Planck equation.

Let us consider the rhs of (VI.4.11) at t=0 (the calculation of
the contribution involving tw1ce“ at a time t different from zero is
given in appendix VI.2). For the contr1but1on involving twice \f
we have':

$ o LT ) VR iy dan U P X

{N ‘ vi|v') % %'
(VL.5.1) ({N\)]
X [? w' Ay equ

When no confusion is possible , we do no longer use a special notation
for vectors.
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Using (VI.4.8) , we obtain:

PPN i )

equ

= (\/Q) Z “(k")ﬂ(NkJr"L/z) (N1+1 + vl'/z)} 1/2 X

Pyl - ' ' (4N}, N -1 N+1) +(N+1-u 2) X
(v152x[h‘v LLwiHl % et ANY ] lj

\ 1/ 2 f '
x -y | V¥p v+ 0 L 1) x

(1/2)(1-k) -%—P'

Going back to the occupation number-plane wave representation we

obtain :

Z(*xvnvﬂuvt)h, Y

equ

(v1.5.3) 2 Z(\N+ v/z}] F (K) Px e F(K)“N-v/z\)-—

'X, y,z

where the force operator is given by :

_ +
(VL.5.4) F (K) = Zk uK) K a a,

Therefore, we have :

o - ‘Z_.‘ ?-i Z(O\UA\’HV\)Z Z({N+V/2“F (K) Q ® -K
v

. ?f,‘ LF -y /2})(1/2) 57,
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] ﬁ_‘ 21; ZZ{QNﬂU\{N Vb evilE ey o E(H)\\Ni)

r@-v %[O G F 0 Pl kT B (K)\{N_‘E’\)} X

132
X (1/4) ————— ¥,
P, ’BP]. ]
(V1.5.5)
f + f
%\ ;J.tZK Clfoom 0By 100 PP 9

2
f + f + 1 ?
FE P )0+ TR Toofid)g P, 9P,

Taking into account the fact that we can interchange XK and i and j,
and that the trace of a product of operators the invariance for cyclic
permutations of the operators , as well asthe hermiticity properties

o f the operators, we obtain :

o€ - L ZZ({N\lF (K) F%) Pt 2

INyij K% ')P gP

(VL.5.6) 52
) (Fi F, PP,

As in the classical case, we see that we have here the average over

the fluid equilibrium distribution of the tensor operator FF,
As to the second term, at t=0, we have:

- T Z L (oI e ] [,

%NH

(VI.5.7

{Z]%z.({nﬂrﬂ (“”‘jfi +a¢jff‘ F:'(x)l{Ni);)T (Py/ M)
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Now we have ,performing an integration by parts in the second step,
f
-H/kT
sl pioty fon g ot oty
f -1
X [Z(in\\e AT 1)

. , _ _ f
(VL.5.8) ZM{Z SdR Ty P (k)4 fer) o™ “Tlny) x
Ak

[\ns e e ‘HQ

] %qn'ﬂFj (k')rlfwk'\‘no

and therefore :

(VL 5.9) %}(O\UA )CA f 10)- <F F) 2%, (Pj/kTM)

equ

Therefore, at t =0, the integrand in the rhs of (VI.4.11) becomes :

+ () ? 1 ]
(VL.5.10) <Fi FD-—?pi{ P, T b

In appendix VI.2, we show that the first term, at a time t different

from zero, is identical to (VI.5.6) but with Fi replaced by Fi(t)

where Fi(t) is the Heisenberg representation of the force operator:
ook, ok

(VL 5.11) F (1) = eI F, ol

A similar proof can be given for the second term and we obtain finally

the Fokker-Planck form of (VI.4.11):

(VL5.12) x(o\x lo)\?eq“( ) f [ +Mk1T le (P)




— 315 —

F. Henin

where the diffusion coefficient in terms of microscopic quantities is gi-

ven by

(VL 5.13) gij - r at (F. (1 FJ+>
o]

As it canalso be shown that, to first order in bl , we have*:

equ

(V1.5.14) (P) = (M/Z‘l‘kT)3/24‘\T' exp(-Pz/ZMkT)

o}
we have :

, ]
(VL.5.15)  -(1/MKT) E.P ‘fe%u(P“ i 2? ["iP ' MiT Php)
i i

This completes our outline of the derivation of the Fokker-Planck equa-

tion in the quantum case. Let us stress that this equation is valid

whenever the condition :

(VL 5. 16) (P)/P «< 1

is satisfied.

VI.6 - Diffusion coefficient for a heavy ion in a

slightly imperfect Bose fluid,.

In a weakly coupled Bose gas, the condition (VI.5.16) for the
validity of the Fokker-Planck equation would always be fulfilled. When
strong interactions are present, the zero point motion of both kind of par-
ticles starts to play a role and it is difficult to make general assertions,

We shall assume that the interaction between the fluid and the

. . equ |
One can for instance use an expansion of q 4 in powers of x . As we

must have : cP(O)(fequ =0, we have 4)(2)(0) 'fe?)u

2
just seen, 4?‘ )(0) is the Fokker - Planck operator : hence cfe(lu must

= 0. But as we have

be the Boltzmann distribution.
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heavy ion is very weak and that we can neglect it in Hf . We shall
also restrict ourselves to a slightly imperfect Bose fluid and assume
that the temperature is sufficiently low to insure that the Bose-Ein-
stein condensation has already occurred to a large extend. Then most of

the bosons are in the ground state and we have :

(VL.6.1) N >N

where n, is the number of particles in the ground state. Then we

can apply the well-known assumption

(VL.6.2) a_ ~ al ~ (n)

(VL.6.3)

-1 +
+ kY
o' 2 k ulkya’ a

while , if we use a pseudopotential (see ref. 4))with u ~ 4w a/m

(a: radius of the particles ):

+ +
ve/eey(al +2m Y 2" a +a'a )
o o 2P PP
pFo
(VL. 6.4) s
+n Z (aa +ata )}
o o5 PP B P

We shall use the Bogoliubov transformation to phonons operators bk

+
and b, . (see for instance ref 4):

k
VI.6.5 =gb +f b
(VL.6.5) 4 "Bk T Nk Pk
V1.6.6 b 4t
(V1.6.6) & T8 TNk
(V1.6.7) g *(1 -dz)l/z
-0 k k
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(VL17.8) fod(1-d )'1/
(VL. 6.9) oA =1+ < - x(x2+2)
(VL 6. 10) $ = 1 2/8wan_= K2/ 2

This transformation does not change the commutation rules and we

have

+ -
(VL.6.11) b, \nk\,J n 1 n41y 5 b iy =n (o -1
f +
(VL 6.12) H - B+ gwkbk b,

(V1.6.13) W, = (k/2M) (k2 +16Wan_ Q )1/2

Similarly, the force operator can be written in the phonon represen-
tation bk bk In this representation, it is a matter of algebra to
compute the diffusion coefficient (see an example of computation in the

2
next paragraph for Fermi systems) . One obtains ), if one restricts
oneself to small wave numbers (i.e. to the linear term in the dispersion

relation (VI.6.13)):
- Z k 0. ° 4
; /) & (llk glglk) my (g
(VL 6. 14) B(11-K] -1
m;) is the distribution function in a slightly imperfect Bose gas in the
limit of small momentum :

(VL. 6. 15) m;) = lexp (4 /KT) - 1]'1 =[exp (cl/kT) - 1] )

The integrations can be performed and one obtains , if one reintroduces
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explicitly Planck's constant :

(VL.6.16) §= 23/ 45(kT)° 2t ot

3),

The mobility of a heavy ion is given by
(V1. 6,18) r‘ = eD/kT

where D is the diffusion coefficient in ordinary space. As we have

seen in chapter I, we have:
2 22
(VL. 6. 19) D= (kT/MP) = (kT/M) (M/kTp ) =(kT/M)" (M /g)
(note that D is the coefficient appearing in the diffusion equation in
-1
ordinary space, (M/kT ‘3) that appearing in the Fokker-Planck equa-
tion in velocity space . g that appearing in the Fokker-Planck equation

in momentum space) .

Therefore we obtain :
(V1.6.20) = @s/2d)e 80 * a7 ikt ~ 77

+
In a measure of the static mobility of (He )n in liquid He4 at low

temperature, Meyer and Reif 5) have found :
(VL 6. 21) P~ ™ with k =- 3.3 +0.3

which is in good agreement with the above result if one takes into

account the fact that our model is quite rough .

VI.7 - Diffusion of a heavy ion in a weakly cou-

pled Fermi fluid.

We have seen in the introduction that in a Fermi fluid, at low
temperature, the Fokker-Planck equation is valid only if the condition
(VI.1.4) is satisfied. We shall discuss again this problem in the next

1

paragraph but presently we consider a situation where this condition is
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satisfied and compute the diffusion coefficient, assuming the fluid to
be weakly coupled,
As well known, in a Fermi system, the creation and destruc-

tion operators anticommute

(VI.7.1) [a; ,ak.‘ , 7!

and the only possible values of the occupation numbers are :
(VI.7.2) nk =0 or 1

In order to avoid difficulties with the subsidiary condition
(VI.7.2) an =N

we shall consider the grand canonical ensemble . Then the equilibrium

distribution for a weakly coupled system is given by :

G“ilfi_xl\n'i) TII S"k’“i{ exp[-zk nk(k2/2m-€F)/kT] x

(VL.7.4

) X Tl!'{1 + exp [- (k2/2m -SF)/kT]l-lj‘x,K

where € F is the Fermi energy .

Thus, going back to the occupation number representation we

For)-LL L Z 2 ZZ7 | x
) {n‘{n'i {n"Hn"”{n““) k1 1

X kikj (\MI exp ['i % (k2/2m) a;; akt]kn'D({n'”alak_l Hn"}) X

have :
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(VL.17.5) X(*n"}lexp [i E (kz/2m)a;akt]“n"'\)({n'"}laka;_ll l{n""’) x

xGamlp! ot

Using

+
(VL.7.6) a |ny=ln+1) Xnk 0
(VL.7.7) ak|n}>= -1 Sn .

k)
one easily verifies that one must have :
(V1.7.8) 1 =1

and one obtains :

(romy N Z L w8 S, o x

Ang k 1 k k-1
2 2 2
X -idk -(k-1 - Ln(x%2m -€ )/kT| K
exp [ 1{k (k-1) tt/Zm] exp[ g k( /2 P ]
X 11{1 exp [- (k2/2m-EF) /an'1

(VL.7.9)
- W) T Z o ;e[ 6" - 'y /2m] x
k k!

X ex [_ (k2/2m ) tF)/kTHI + exp [_ (k2/zm - tF)/kT]}-l x

2 -1

X il + exp [-(k/2m -EF)/kT]}
At the limit of a large system, the summations over k and 1 become
integrals. If we also perform the asymptotic time integration in (VL5.
13) , we obtain

2(3 (.3 2 2 2 B
= ] k! -
§ij am TN [d k(d k' u(i)| kikjS(k k )expl_+ (2m (F)/kT]X

(VI'7';0){1 +exp [(kZ/ om - tF)/kT_]}'1 {1 +exp [(k'z/ 2m - £)/ kT]; !
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One easily verifies that this tensor is diagonal and that one has :

(VL7.11) 5 -1 €

with
3 0
€ -uew m/3)§

o

(VL7.12) expt(k,z/m i EF)/kT]{l + exp[(kZ/zm -iF)/kT]}-l

o0
ki’ s dk'k'zlu(k)‘zp(k-k')-i-8(k+k')] X
(]

-1
x§.1 + exp[(k'z/zm-z )/k'f“
F
We integrate over k' and approximate the potential by a constant; we

then have :

5

n

2 2
(128/3)T° kT)3m4u2‘ ae 2f°5) {1+ KCRLY) }
(0]

(VI.7.13) 128/31\' mu(kT) ( ag €2 ilue‘ § i

~(256/3)Wom (k1) 2( dst[1+ e(‘-g |
(o}

where

(VL7.14) |- £ L /KT) 1/2
At sufficiently low T, we have :
(VL.17.15) § >

and we may write :

0 2 1 (o
so age |1 +el® -5 )] =g§2 dy (y+§2)(1+ ey)’1
0 A
§ s (1Y) 1+‘ , dyy +2V> dy y(14e¥)”

[¢]

(VI.7,16)
- ‘ dyy(1+ey) !
2

§
3 §4/2 + nz/s
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where we have neglected exponentially decreasing contributions in the
first integral as well as the last one whose integrand is exponentially
small,

Therefore, we obtain:

(VI.7.17) §=(123/3)1\'3 m? kT u2§£2 +(112/3)(kT)2}

F

From this, we easily obtain the mobility (see VI.6,18), Introducing f
and the collision cross section @ in the Born approximation (@ =
=2m 1w u2) , we obtain:
3w efl3
2 (2 2 2
8m r\tF +(w’/3) (k1) }
1)

(VI.7.18) rx =
Davis and Dagonnier ' compared this result with the experimental mo-
bility for a heavy ion in liquid He3 at 1. 2% measured by Meyer and
al. 6) . However, the comparison is not very easy because of the lack
of information about the collision cross section (radius of the ion) and

the effective mass of the ion. With reasonable estimates for these

quantities, they find a good agreement.

VI.8 - Validity of the Fokker-Planck equation for brownian

motion in quantum systems.

Let us first consider again the case of motion in a weakly
coupled Fermi fluid. We may distinguish three temperature regions:
a) the temperature is so high that both the fluid and theparticle behave

classically, Then, if the particle moves with thermal velocity, we have:

(V1.8.1) (p)/P =0(m/M)1/2 = O(X)

and the classical Fokker-Planck equation is valid.
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At lower temperature, quantum effects become important
for the fluid. Only those fluid particles near the Fermi surface interact

with the particle and we obtain :
. /2
(VL8.2y  (pY /P -0(maF/MHD -O(Xg)

We may now distinguish two cases :

b) an intermediate temperature range where the more restrictive condi-
tion :

(V. 8.3) x};« 1

is satisfied and the quantum Fokker-Planck equation (VI.4.11) is valid .

c) the case of very low temperature where

xg > 1
and where the Fokker-Planck description does no longer hold.

In a discussion of the possibility of convergence of the (p)/P
development presented here, Résibois and Dagonnier 3)8) have shown
that, in general, one must not expect this convergence to be
realized at very low temperature, whatever the statistics. A very sim-
ple argument is the fact that at very low temperature, the average mo-
mentum P is independent of the mass ratio, It is essentially determined
by the interactions with the fluid molecules and momentum transfers
can become very large; the Fokker-Planck description is then no longer
valid,

Let us show briefly how this conclusion about the independence of
the average momentum at very low temperature can be obtained. For

simplicity, we consider the case of Boltzmann statistics. The equilibrium

distribution function for the brownian particle is :
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Tr
equ fluid | equ
1? (P) = Peq
Tr f
fluid, A | equ
(VI.8.5) E_ foPey +
Ty o P +H +v 0]
f A ]
- +H + V+
tr‘ﬂuid,A exp[p(Ho Ho v+
where
(VI.8.6) [5= kT)"!

Let us write :

(VI.8.7) f(p) - e-pHW(p) P

Then:

(V1.8.8) U(p) - exp.[P(H(f) + H‘z)] exp [- P(H‘ﬁ+ Hi +V+ U)]

One verifies easily that this quentity satisfies the Bloch equation :

(V1.8.9) %—%’é@ ={exp[p(Hi ¥ HP; |7+ 0 exp [-p(Hfz + Hf))]] W (p)

Taking into account the commutation relations

-%Hﬁ
(VI. 8.10) [V, e ] =0
A
(VI.8.11) [Hf , H ]: 0
) o
and introducing
~ £ f
(V1. 8.12) V = exp (ﬁ H)) Vexp( -ﬂHO)
(VL. 8.13) U = exp (pr) U exp (-pr)
0 0

this equation can be rewritten:

(VL. 8. 14) —(DT“;)@ ={\7 +exp(pr)ﬁ exp | /}Hf)}&)(p)

Expanding the rhs in powers of HoA , we obtain:
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(VL. 8.15) 2’:”4‘5&) v +TJ+[5[H‘2 L T) ¥ [Hf,[l{,ﬁ]]t..}k)(p)
B)

After a rather lengthy calculation ', one can finally obtain the xz

equ
(=m/M) correction to the maxwellian ‘roq (P):

(VL. 8. 16) aeequ(P) =|f§qu(P) + xz EPz/szT)(kTQ/kT) +4]?zq“(P)+ 0 (Y4)

. e
where of is a factor which guarantees the normalization of tf au to

unity, T, is a characteristic quantum temperature which expression

Q

is quite compicated but can be shown to have the following properties:

(V1.8.17) lim TQ(‘h', T) = constant
T30
(VL. 8.18) " 1—1;110 TQ | T)=0
Ted 0

From the above equilibrium distribution, we obtain easily

(VL. 8.19) <P2> = 3m X—ZEkT +xszQ)+ 0 (x4il

At sufficiently high temperature, we have

(VL. 8.19) KT »x 2 KT,

2 3m
~ —k
(VL. 8, 20) (P )_ Xz T
However, at sufficiently low temperature, we may reach a regime where:
(V1.8.21) 26T JxT )1
.8, X KT %
In that case:
2
(VI.8.22) (P) ~ 3m kT

does no longer dependen Y
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A more rigorous mathematical analysis is of course quite diffi-
cult in general because of the complexity of dense systems. A more
3
elaborate discussion can be found in ) .

Appendix VI.1 - Examples of the algebra leading

to the Von Neumann - Liouville equation (VI.,2,12)

In the mixed occupation numbers-plane wave representation the

Von Neumann equation is

cnslpl oy -2 Ty nplr K" K" \n"yK’ 4n'y)
11: Kll ‘n"s

(AVI 1.1)

-(K ‘ n“ﬂ K" \n"})(K"{n"HH\K' ‘m*) }
Let us consider in the first term in the rhs one contribution to the

fluid-fluid interaction :

(AVI.1.2) & = z Z(K‘nt\-\;lK"{n"fXK"{n"}lr\ K! {n't)

Kll \nll‘

with
+ o+

a. a a

(AV1,1.3) v =v(k,1,p,r)$k+l_p_r’0 a, a2 a

We perform the following change of variables:

K-K' = R =
K ® n, hk \)k
AVI, 1.4 "K' = ! Non! = Y1
(AV ) K"-K X nf-n', v .
KiK' o ey x
2 2 - k

Then, we haye
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A = ZZ(P +- {N+i“v —P- g {N-— v })x

%! {v 2

Sl %Rt 8 Ay

Using the notation (VI.2,8) , this becomes :

%! v
%= %wk‘ ¥-% v - v'\(P+T’{N+ 2})
(AVL 1.6) x X' 2N A
xft'\v'\(P' 2 T2 AN 7 T3 1)

Introducing the displacement operators defined by (VI.2.10) and (VI.2,11)

we may write :

x Ty -,‘.Tv
«-ZT CnfVk g .
ot o T geyyP G " x
(AVL.1.7)

X fur 41

(the displacement operators act on everything that stands at their
right.)
Now, using again (VI.2.8) and (AVI.1.3), we have:

oy N kl >
Vt-x',‘w— v i PANp) = P )Skﬂ-P-l‘,O
x<P+""" N+v-vk +a+aalp_\¢-)c' N+v-v'i>
2 { 2 kM % 2 { 2
_ T §
(AVL 1.8) V(l’lp’r)gk'ﬂ-p-r,os‘, ! Sv , vy -1 X

ifklpr Yi' Ti 'k’ k

A v by ad,y o [N v X
1 1 p P rr

1/2
X (Np+1/2)(Nr + 1/2)]
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If we combine (AVI.1.7) and (AVI. 1.8), we readily obtain the first term
in the rhs of (VI.2.12) .

As another example, let us consider the external field term,
One can also very easily obtain the following contribution to the Von

Neumann - Liouville equation :

T Lok, W'“)f,‘. yory (B AN

* & } I"k

% )c \('\V vl‘ ‘N}Y ’)

. vk
6 ! Hi-t'.\v-v'i‘P“Nhg")E e o AN

0 [ _'!' v -y
: = v! ——‘l P+ A
by ‘v',{exp (2 ’iP) exp zk N < \ 2

- v - o °
EE P - Zx ,{N- > v! ))exp (-l;- -,-a-l;)exp [-%{vkﬁkl
(AVI.1.9) 5 .
X! _ .
-eXP(-T ’)—P)EXp[-%Zkvll 'BNk‘<P+*2‘ ,{N+v2y}\
AR v v! 1 2
) X
ER \P 2 t)exp ,aP)exp[zgk‘aNk-u
X f’ P,{N})
-z Z T\' 5, ‘dR Bp, pl(®'-%)-R
%' kv‘} k k’vk A~
X'-x
?
E\Zv:'s-‘l:rs AL )
“w \v t(P ' le 2 iy} g‘ \v'} (F- x v

1
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Z Z. WJ V *I % Y‘I‘VI,(P {N’

‘l ‘vls k Vk
which agrees with (VI, 2. 16)

Appendix VI, 2 - Equivalence between (VI.4.11) and (VL 5, 6)

A
Let us discuss the contribution involving twice U‘l

L2 ) ) il x

ANJAVER potpaet qvepae

(AVL 2. )X (3% | exp [ - i N4 )|y ieav |\ff|u."sv"v) x

f N
X e ‘" ‘V"‘(‘ ‘)

Using (VI.5.6) , we have (see ¢ 5) :

Z 2 G, {t"\v"s)rf % gy AND)

"’ x“
(AVIL. 2.2) -§ 2;:‘ (&N + —2—” i(K) f‘f_K+ ﬁ,f_k' F R)RN - é“)%l
TG el rwog” ¢ rmlii -5

where the force operator is given by (VI.5. 4). Hence , we obtain:

o =ZXL 2 2 (O\UA\\"") X

i K N} ivyae Avihw'

(AVL 2. 3P exp (- kT [vix) (v + % } ,)C'lFi(K)rf

f ' ?
+p FEN - 3} € =¥,

Now, let us differentiate with respect to t the quantity :
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/5\, % -K (ANf. 1) = Z Z(\vtx[eXp (-i% t)“th) x

ls*l

(AVL.2. 4) y
A +—“F ) “N - —2—} KD
with
avizs) B, (ANE O - (g + L4 (x) H{N -1k
hence
(AVI. 2. 6) ’3(0) - Fi(K)?f
We have :
AN} )
(AVL 2.7) Py --1ZZ<W|" ) Y’v x ANE.t)

2t My

or , going back to the oeccupation numbers-plane wave representation;

W Spfpol - 35,

g A, o)

? t
(AVI. 2. 8) v
s T
where
f
= +
(AVI. 2.9) Hf Ho \%

(To obtain this result, we take into account the fact that, in the

A
term involving U , we have:

deﬂ 'I(K"‘H'w) R ‘dR' e YRR Al b

(AVL. 2. 10) de IXR ei(k'l)'R{Sf(R,t) JKR =<glei(k-1).RﬂflK>

Therefore, we have
_ 'Hft

f £ £
_ -iH't iHt -i iHy f £
(AVL2.11) B(t)=e Brye " =e F (K e P -Fi(l(,t)f’

where Fi (K,t) is the force operator in Heisenberg representation.
1

Therefore :
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«y LT YT Z__(O\U? [Aviay(aqn + "T}IFi(K,t) [,f

i K {Npivx
(AVIL, 2,12)
f v D
+ - = Ky
fFi(K’t)“N 2 l >‘3Pi
From now, on , the derivation goes on as in the text and leads to

the second order differential contribution in (VI, 6. 12) .,
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VII, GRAVITATIONAL PLASMAS.

VII.1 - Introduction,

In all the preceding chapters on brownian motion, we have used
the kinetic equation (II.9,5) as the starting point . However, when we
derived this equation, we stressed the importance of time scales, This
equation fails to describe correctly the asymptotic behavior of a system
where there is no net separation between the collision time and the rela-
xation time, or where the initial correlations are over long distances.
Now, long collision times or long range correlations must obviously be
expected in systems interacting through long range forces. As examples
of such systems, we have immediatly in mind, on the one hand, systems
interacting through electrostatic forces and, on the other hand, systems
interacting through gravitational forces. In both cases, the interaction
between two particles is inversely proportional to their relative distance.

A great deal of effort has been done to understand the situation
in the case of electrostatic forces. If we consider a charged test particle
moving in a plasma, it polarizes the medium : the charge ‘distribution
around the particle is no longer uniform, The medium screens the interac-
tion between two particles and we are no longer dealing with a pure
Coulomb force. This idea, in its simplest form leads to the Debye
Huckel theory. Out of equilibrium, it has been shown that, if one sums
in the operator Y all contributions proportional to (ezc)m, the result
of this summation is to introduce a dynamical screening. This scree-

ning introduces a short time scale :

- 2 ,1/2 -1
(VIL1.1) t, = (m/e” ©) -t V)
and a long time scale
1 _ 1 )
(VIL1.2) t = et o) lm /2(kT)3/2 <!



— 333 —

F.Henin

We are again in the conditions where an asymptotic kinetic equation may
be written (Balescu-Lenard equation),

What is now the situation with gravitational forces? The essential
feature is that the interaction is now purely, attractive, whereas when
we deal with electrostatic forces we have a mixture of attractive and
repulsive forces (with a condition of overall neutrality). In a discussion
of equilibrium properties in the framework of Mayer's cluster integrals,
one notices very easily the importance of this difference. Indeed, there
it appears clearly that the most divergent contributions can be eliminated
because of the electroneutrality condition; the next dominant terms (which
diverge also) can then be summed and lead to the screening, This pro-
blem arises always as soon as one computes average quantities, but, in
the derivation of the Balescu-Lenard equation, one can restrict oneself
to an electron plasma with a positive background; one notices then that
the background plays no role in the derivation. In this case , we are
dealing with purely repulsive forces. The first idea is then to perform
in the case of purely attractive gravitational forces, the same summation
that worked for purely electrostatic repulsive forces, or for a mixture
of both attractive and repulsive electrostatic forces, In simple models,

which leads for electrostatic potentials to the Debye potential :

r

(VIL1.3) vD = e "r/
one obtains, for gravitational systems an effective potential of the
form :

iKr

(VIL 1.4) = r

A
G
This partial summation does not lead to a screening; the "effective

interaction " has the same range as the gravitational interaction.

The intuitive ideas which lead to the Debye potential for an elec-
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trostatic plasma can obviously not be extended to the gravitational
systems, As we have seen, more elaborate techniques did not succeed
to bring anything which ressembles whatsoever to an effective short
range interaction, In view of the failure of all those attemps to
justify the use of the kinetic equatinn for such systems, one may try to
use a completely different starting point . If we cannot use the kinetic
equation, we must go back to the exact equation, the generalized ma-
ster equation (II.8.9) . One can then try to discuss the new features
introduced by the long range character of the interaction. This is what
Prigogine and Severne 2 attempted very recently. T hey considered a very
idealized model of a gravitational system: a weakly coupled, homogeneous
system, with no correlations at t=0. Although the first condition can
be justified with the conditions prevailing at present in our galaxy 1)2),
the other conditions of the model are certainly not realistic. A real gra-
vitational system is an inhomogeneous system.However, the finding
of a proper treatment for this idealized model , which is the simplest
model of a gravitational system one can find, is certainly the first ob-
vious step one has to take if one wants to achieve an understanding of
the much more complex actual systems (or at least of realistic simplifi-
catiors of the actual systems) .

We shall first show on a very simplified collision operator what
is the basic difference between systems with a very short collision time
(as compared to the relaxation time ) and systems where the collision
time is infinite . This will enable wus to convince ourselves that, even
if we require only an understanding of the asymptotic behavior of the
latter systems, it is necessary to start with the generalized master equa-

tion ., We shall then discuss the characteristics of the long time evolu-
t

tion as described by this equation in the limit of infinite collision times,
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More details as well as general considerations about the following di-

1)

scussion can be found in the paper by Prigogine and Severne ’ as

5)

well as in a paper by Prigogine

VII.,2 - Simple model for the collision operator.

In order to see what are the difficulties which arise when one

deals with long range forces, i.e. long collision times, let us investigate

3)4) |

a simple model for the collision operator

(VI1, 2. 1) o.l;(z) - " (u,ﬂ 20
z +i

-1
The collision time in this model is given by P.s while the relaxation
-1
time is given by & '3
The non markovian equation for this case , if we do not take

into account the destruction term, is :

2 t
—:ﬁ-‘)— [ deGit-T) p (0

o]
(VIL2.2)

t
-1 -iz(t- =)
=(2wi) ; de (dz e ()
o ¢ (Z)‘aO T

Provided that we can neglect terms of the form exp(-t/<C an ex-

coll) ’

pansion of (VII,2.3) in powers of ('Cc /Tt )=GF2 , leads to the

oll' "rel
pseudo-markovian equation (see chapter II, § 9):

2
gfi 120§ 0 py) -1 L) oo +[yomo

(VIL 2.3) + Y’Z(OM'(O) +...h>o(t)
- ‘1 +.\(3'2+2 (¢{5"2) 2+...}(4 /P )fo(t)
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This expansion has a simple meaning for small values of tcoll/rrel'
On the other hand, if we take the extreme case of infinite collision
times (p -» 0), it is meaningless; the operator 1/(0) is no longer de-
fined. However, in any case the non markovian equation predicts a well
defined behavior of the distribution function.I ndeed, from (VII.2.1) and
(VII.2.2) we have
) t
0 -P(t-
(VIL 2. 4) l{' c.al are BT )?0(1:)
3 0
and we easily obtain the second order differential equation :
2
P} ?
(VIL 2.5) P, p Po
—_— + = 0
2 ot « fo
o
The solution of this equation is very simple and perfectly well defined

whatever P (note that [ﬁfo/ ? t]t=0 = 0):

fo(t) =(1/2)r0(0)[1 i sz_m;l/z]exp{_ (§B+ (322_4.‘ 1/2’ t]

(VIL 2. 6) m T
gl ppa o £

When

(viL2.n Teott /T rel 4P

we have a monotonic decay of Po(t) . .
-2 -t/ € -
If dp <<1, neglecting terms proportional to e [Teon (e P t),

we obtain :
(vIL 2.8) o= PO e (- 4B 1)

which is the behavior that is given by the pseudomarkovian equation if

we restrict ourselves to the first term in the rhs of (VII. 2.3)
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For
-2
(VIL 2.9) Afy™ >4

i,e. for large collision times, we obtain damped oscillations . In the
extreme case of infinite collision time, we obtain a purely oscillating

behavior :

BE MR T
+ e

(VIL 2. 10) fo(t) = (1/2) PO(O)(e )

In other words, for long range interactions (small P ), the corrections

due to the non markovian character of the equation are quite impor-

tant,
VII.3 - Non markovian equation in the weak coupling
approximation,
Let us consider a gravitational plasma :
N
2 -1
(VIL.3.1) H:= L (1/2)mvi +\ Z ‘ri—g_.
i=1 i<j J
where
(VIL 3.2) X = - sz

where G is the constant of gravitation .
The characteristic parameters of such a system are (numerical

values correspond to conditions prevailing now in our galaxy and in the

2)):

vicinity of the sun

G=6,17. 10-8 cgs (constant of gravitation)

m = 1033 g (average mass)

(VIL. 3.3) T3 108 cm/sec (mean star velocity)

57

C=3,4. 10 cm-3 (number density)
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With these parameters we can form one non dimensional quantity pro-

portional to G:
3 -2 "1 "6
(VIL. 3.4) r-c/ Mm% = 0(107)

The smallness of this parameter justifies a weak coupling appro-
ximation,

In our discussion in chapter III, § 6, we have seen that the
asymptotic weak coupling operator \‘/(0) for a potential in 1/r
presents a double divergence, We shall show here that the non-mar-
kovian corrections, even in the weak coupling approximation pepmits to
remove the long distance divergence, The short distance divergence, due
to the close collisions cannot be removed in this way; however as clo-
se encounters are not very frequent, we shall neglect them in the evo-
lution equation; in other words, we shall cut-off the potential at some
short distance R,

In the following analysis, we shall find-two time scales: :

the "nominal" relaxation time :

(VIL 3.5) T - ol )\'2 5 - C'I/BF'ZV'I ~1. 10'® years
the duration of close encounters :

(VIL 3. 6) T, - POIRRLY ~ . 1072 years

if one takes for R the distance corresponding to a mean 90° deflection
in the two body scattering problem,

We shall, as usual , consider the limiting case

(VIL. 3.7) N o, 2«9, C finite
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We shall also neglect all time variations occuring on the close collisions
time scale t'c .

We shall assume that we are dealing with an homogeneous system
in which there are no spatial correlations at t=0, Ben , the destruction
term in the non markovian equation vanishes identically and this equation
has the form (VII.2.2) .

In the weak coupling approximation, the collision operator s{/(z)

is given by (see II[2.3):

a3 N2. 2 [ 3 2 (J C 1
Yo - @iw Nc/m )gd V) ke o VY, 312)5'(K1'12)'Z "
(VIL 3.8)
X k. 2” - 2v )
~1 ~2

In order to treat in a proper way the divergence, we shall consider the

gravific potential as the limit of a screened potential:

(VIL3.9) V =lim (zwz)'l(k2+xz)'1
K=30

Following the technique of chapter III, §4 , one obtains easily :

9 9

3\2., 2
(VIL 3. 10) \.Y(z)‘= (320 ®° X\ °C/m?) %, Trs’jgs
with
(VIL 3.11) T T grgsg—z + T_L(gzsmS - grgs)g'z
where
(VIL 3. 12) =Y,V

is the relative velocity. Tl and T.L are the parallel and transver-

se components :

. 2.-1 K * ‘
.3 Tpy= 1 iw —_— . —
(VIL.3.13) il Kglo ( ) ; z+iKg z+1rg
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z+iKg 1 1 1 }
2

2.-1¢i
(VIL.3.14) T,= lim (4w ) {—ln - -
g z+1'~g t‘-RZ ztipa g

'LK-so

where R is the short distance cut-off and

-2 1/2
(VII. 3. 15) r- =(R + K2) /
For instance, in a reference frame where the z axis is along g,
using cylindrical coordinates, we have:

= @F)7 lim & dkzs dkey ky K (k) +IZHK) (K g2) !
K30 0

=00
(VIL 3. 16) ) +0 ) ) o
= (41(2) ! lim s dk k2 (k g-z) 1{(kzﬂ{z) 1-(k2+K2+R 2) 1}
Z Z Z A z
K20}-0
The last integration is easily performed by the method of residues
+
(z€ S) and leads to (VIL.3.13).
Also :
+o0 R
3.-1 3 2 2 2.-2 -1
= 1 + + -
T.L (4mw) lim s dkz‘ dk.l.k-l-(kz k_‘. K") (kzg 1)
K= 0 0
VIL. 3. 17 + k2 + @2
(VIL.3.17) 3.1 ™ S 1 -1
= (8% ) lim dk In 7 3 5 % zg-z)'
K30)-0 * kKT R(CHP

The second term is easily computed, using, the method of resi-

-0

dues and gives the second contribution in the rhs of (VII.3.14). As
to the first contribution, we complete the real axis with a half circle
at infinity in S  and avoid the two branch points at -i r. and

-iK ‘by making a cut.(see fig. VII.3.1)



— 341 —

AIM z F. Henin

3
Re 2

Integration contour for log, term in (VII. 3, 17)

Fig, VIL3.1

One can then easily obtain the first contribution in the rhs of (VIL 3. 14).
The most important feature of the operator %(z) is that, at
the limit K —~>0 , the transverse part T.L has a logarithmic singu-

larity at z = 0 , The collision operator may be rewritten :

A
z+1Kg
(VIL 2.18) - 1‘{’(2 #( z) ‘{21 K ‘Z”rg 5l Zhl“g * ‘V

with

- 2., 2 9 82T ko p ?
(VII.3.19)Q(Z) = (8'\ C/m )?E ?E{mk—g-;:ii—g ,‘—g-s

2
2 9 £ sr,_s g8 9

'B g3 Ve,

if one takes into account the fact that any function of g commutes with

A
(VIL3.20) Y = (BRNC/m?)

the differential operator :P .

We have singularities both at z = -iKg and z = -ir g. The singula-
rities at z = -i rg are related to the close collisions and are at a
finite distance from the real axis. As the time scale for the close colli-
sions is much shorter than any time scale we shall meet, we treat the
close collisions as instantaneous. This means that we consider values of

z such that:

(VIL 3. 21) z{{ -ipe

We then obtain the approximate form
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(VIL3.22) -1 §(2) 92+ {R—z- Fln (o + )]:l;
0 2};2 ‘~ 1rg

2., 2 9 88Tk 10
(VIL 3. 23) *(z)=(81lx c/m),agr 3 e %

Now, in the case of electrostatic plasmas , K 1is finite and if we ne-

glect effects proportional to (Kgt) , we obtain the asymptotic form :

1 KA ~
(VIL.3.24) -ig(0) = - +1n ]
Y [2(1+K232) (1+K2R2)1/ 2 Y

R 3 2 2.2
(VIL 3. 24) = dkk~ (k" +K") ‘{/

o
which is easily verified to be identical to (III.3.5) when one takes as the

interaction the screened Coulomb potential, However, in the limit

K = 0, this procedure is meaningless and we obtain :

(VIL 3, 25) - (2) =*>-{(1/2) + In (-izRg'l)}¢

with

g8 7
(VIL 3. 26) - 6¥Noc/m?) 0 &%

3
‘}gr p 'Dgs

The solution of the non markovian equation (VII, 2,2) may be written
(see 1I1.9.4):
0
ey -1 -izt 1 n
Pl -@w Idz L {Y(z)] rO(O)

(VIL 3.27)

soewit ‘dz oIt ;—q:(—z) ro(o)
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VII.4 - Time evolution of the velocity distribution

function.

~
The operators \r and 4) do not commute; hence they do not

have a common set of eigenfunctions and the analysis of the time evolu-
tion is not very easy, However, the problem will be considerably sim-
plified if one of the contributions turns out to be dominant. Let us first
investigate the type of behavior determined by the second term,

The characteristic time involved in ,\P is thﬁ\nominal relaxa-
tion time t’r given by (VIL. 3.5) . The operator - i\'/ , as we have
already seen (see the discussion of the bﬂ -theorem, chapter III, § 2)
has real, negative or zero eigenvalues which define a spectrum of rela-

xation times. We may in a qualitative discussion introduce the following

approximation :

(VIL 4. 1) - i:{)ro = - fo/tr

-1
Also , we replace Rg = by its average value, the collision time for

close encounters 'cc . Then , we obtain:

-1 -izt -1
VIL 4.2 SR ; ] °
( ) Polt) == 2D {dz e [ X p, ()
where

-1

(VI 4.3) X(z) - - *(1/2) + In(+iz/ T) &(i‘cr)
In order to understand the evolution of Fo(t) , we have to discuss
the singularities of the integrand; i,e. find out the roots of the equa-
tion :
(VII.4.4) z-X(z) =0
Let us introduce :

(VII. 4.5) z= -w - i¥
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Then (VIIL 4.4) and (VII. 4.4) give us:
(VIL 4. 6) —xHy = (1/2) +1n @ " (-x+iy)
with
18
(VIL.4,7) x=dT y=uT T-t /T =10
r r r c

A detailed discussion of the dispersion equation (VIL. 4. 6) can be found
in ref.l) . The main point is that the equation can be very much sim-
plified if one takes into account the largeness of ¢ . A whole spec-
trum of solutions is found . For consistency, the range of the spectrum

is restricted to frequencies such that:

-1
(VIL 4.8) W << W =T
max [

-1
The frequencies Wy 2re essentially the odd harmonics of w0='Cr

(VIL 4.9) b= (2nt)W /T r

-2
In the useful part of the spectrum (frequencies less than 10 w ),
max

the damping is such that:

-1

(V1L 4. 10) un)4 T.
In fact, in the major part of the spectrum, the damping is found to be

of order:

-1 -3 -1
=T =
(VIL 4. 11) & =T i 40T

The time scale for the oscillations is of the order of the nominal rela-
xation time T r-l while for the damping it is much shorter (at least

by a factor 4). The essential feature is that we have now an oscillato-
ry relaxation qf PO(t) on a time scale much shorter than the nominal

relaxation time and given by :
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(VIL 4.12) t ol 'cr/In(‘rr/rc)

The consideration of the complete spectrum of eigenfunctions and eigen-
values of \y , avoided in the approximation ( VII.4.1), would only
lead to further complications of detail,

However, we still have to examine the effect of the operator ¢
which appears in the complete equation (VII.3.27) . The time scale for
the effects due to 4) is again the nominal relaxation time T,
while the term involving \‘J has a much shorter time scale trel'
Therefore, the system will first reach a quasiequilibrium distribution,
which will be further modified by the action of the Cb contribution .
One verifies easily that, if the :.P contribution conserves the kinetic

energy, this is not true for the*contribution .One obtains easily for

the variation of the kinetic energy per star:

E N
ki -1 N 2
__?1_’1 =N ‘{dx\ E_ (mvi/2) (‘Dfo/at)

re(d .-lN-l d NZN 2/2 d -izt
)N ey Z (] oo Rty

(VIL 4. 13) g Ny )
se2®i) N fdv} 2 (mv /2) (t)
=1 ! 1, fo
= awhem’! ’dgdvi g} fo(zl'xz;t) >0
where
(VIL 4.14) £°Y, "V,
(VIL 4, 15) w = (v1+v2)/2

are respectively the relative and center of mass velocities,

Therefore, the ? contribution plays the role of a source term
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and leads to a continuous increase of the kinetic energy. In other words,
we have the following picture of the time evolution of ro: first , a qua-
siequilibrium distribution will be reached on a time scale trel; the
aged system then remains in the quasiequilibrium state but with a time

dependent temperature,

VII. 5 - Role of the initial correlations

In this whole discussion, we have assumed that there were no
initial correlations. Then, we have seen that there is a continuous in-
crease of kinetic energy. Because of total energy conservation, we have
at the same time a decrease of potential energy (the complete energy
balance can be verified in detail but requires the evaluation of binary
correlation Fourier coefficient and will not be considered here) ., This
continuous exchange between kinetic and potential energy of course occurs
for any system when the non markovian description is retained . The
particularity of the gravitational plasma is that it occurs at lowest order,
which finally is due to the fact that there exists no approximation corre-
sponding to instantaneous collisions, However, we may wonder whether
this picture could not be affected if initial correlations were present, As
we are dealing with long range forces, once initial correlations are
present, there is no mechanism by which the system can loose the me-
mory of these conditions in a short time as it happens for systems inte=
rvacting through short range forces. The fact that the true collision ti-
me for such a system is very long on the time scale over which we
discuss the behavior of the system, has the consequence that neither can
we consider the collisions as complete not can we assume that the
system has for'gotten its initial conditions. Therefore, we have to retain

both the non markovian character of the collisim term and the destruc-
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tion term in the master equation.
We can easily see that the presence of initial correlations will
indeed modify our results, Let us take as the initial condition a func-

tion of the hamiltonian :

(VIL5.1) f(O) = 1(H)

If one adds to (VIL.2.2), the destruction term and computes it
for this initial situation with the same assumptions as the collision term,
one verifies easily that the increase of the kinetic energy which results
from the ? contribution is completely cancelled by the destruction
contribution,

This example clearly shows us the important role played by the
initial correlations in the description of systems interacting tkrough
long range forces, It would therefore be of great importance to have rea-

listic models of non equilibrium correlations.
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