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Introduction. 

In this series of lectures, we shall deal mainly with the mi

croscopic theory of brownian motion. 

Brownian motion owes its name to an English botanist, Ro

bert Brown, who noticed in 1827 the fact that small particles suspended in 

fluids perform peculiarly erratic movements. The origin of this phenome

non is of course quite simple: we are dealing with a manifestation of the 

molecular motion. 

The first satisfactory theory of brownian motion was produced 

by Einstein in 1905 who derived the diffusion equation. This result has 

been particularly important because the expression he obtained for the 

diffusion coefficient D allowed a determination of Avogadro's number N 

by Perrin. 

Thereafter, the phenomenological theory has been widely develo

ped. A very good presentation of the ideas used can be found in a re

view paper by Chandrasekhar 1). We shall give a brief summary of these 

ideas i:t chapter I. The starting point is the Langevin equation which intro

duces as basic assumption the fact that the interactions of the particle 

with the medium have a twofold effect; first, an overall dynamical fric

tum, then a fluctuatin.r! force. Intuitive assumptions about the statistical 

properties of this fluctuating force lead to the Fokker-Planck equation 

for the time evolution of the probability distribution of finding the particle 

at a given point in space with a given velocity. One of the most interesting 

features of the Fokker-Planck equation is that it is an irreversible equation; 

it predicts an irreversible evolution towards an equilibrium distribution. 

The stochastic theory has been widely used and proved success

ful in the study of a great variety of phenomena. Neverthele , it requires 

a good deal of intuition to reach a phenomenological description of the 
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effect of the medium on the particle. However, intuition can sometimes 

be misleading; therefore, there has been much effort to understand this 

phenomenon on a microscopic level. Such an effort can be rewarding 

in several ways; it will clarify the conditions under, which the phe

nomenological theory will be valid, it will give us the phenomenological 

constants in terms of molecular parameters and finally, it may be ho

ped that it will show us the path to follow when the conditions 

for the validity of the phenomenological theory are not fulfilled. 

An understanding of the brownian motion on 

a microscopic level necessarily requires the consideration of an 

N-body system. It is quite obvious that the detailed description provi

ded by the laws of mechanics cannot be used directly and that one 

must resort to the methods of statistical Il!echanics. A most useful con-

cept is the idea of an ensemble introduced by Gibbs. In classical sta-

tistical mechanics such an ensemble is characterized by the 

N-particle distribution function which obeys the Liouville equation. 

The Liouville equation has been the starting point for the study 

of non equilibrium many-body systems by Prigogine and his coworkers. 

An extensive presentation of the basic ideas can be found in the mono

graphs by Prigogine 2) , Balescu 3) and Rl!sibois 4) . This method emphasi

zes strongly the role played by the correlations in the evolution of the 

distribution function. We really deal with a "dynamics of correlations". 

This formalism is particularly well suited to take account of the charac

teristic features of macroscopic systems: large number of degrees of 

freedom N, large volume n, finite concentration; these features 

allow the consideration of the asymptotic case: 

(1) N ~ 00; n 4 00, N/n = C finite 
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which brings in several important simplifications. 

Moreover, in general, we are interested in the asymptotic beha

vior in time of the system. Then , it can be shown that in many cases, 

the behavior of the system can be correctly described by the so cal

led kinetic equations. (A simple example of kinetic equation is the Bol

tzmann equation for dilute gases) . The derivation of the kinetic equation 

for the velocity distribution function will be discussed in chaper II. 

The kinetic equation is an irreversible equation : systems for 

which such an equation holds tend asymptotically to an equilibrium 

distribution which is a function of the hamiltonian only. 

Once we have equations for the description of the asymptotic 

behavior of the N-body system, we can introduce the special features 

of the brownian motion problem. There, we are interested in the motion 

of a single particle in a surrounding fluid. The simplest case will of 

course be that of a particle moving in a fluid at equilibrium . This is 

in fact the problem which , in microscopic theories, is often referred 

to as the brownian motion or test particle problem. The assumption 

that the fluid is at equilibrium introduces an enormous simplification 

in the kinetic equation: all the particles no longer play the same role. 

All of them, but one, are in the eqUilibrium state (strictly speaking, 

the fact that one particle is out of equilibrium prevents the others to 

stay in the equilibrium state; however, this departure from the equilibrium 
-1 

state is of order N and can be neglected). 

There are two cases where the kinetic equation, particularized 

to the brownian motion problem, can be shown to lead to a Fokker

Planck equation. The simplest case is that of weakly interacting systems 

which will be discussed in chapter III. There, a Fokker-Planck equation 
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is obtained whatever the mass of the brownian particle. The other 

case is that of brownian motion in systems interacting through short 

range forces where the brownian particle is much heavier that the 

particles of the fluid. This problem, in the absence of any external for

ce, will be studied in chapter IV . In chapter V, we shall generalize 

it to the case where the brownian particle is charged and acted upon by 

a constant external electrical field. The interest of all these problems 

not only lie in the fact that they allow us to state the conditions of va

lidity of the Fokker-Planck equation. They also enable us to obtain 

expressions of the diffusion coefficient which enters into the 

Fokker-Planck equation in therms of microscopic quantities. Moreover, 

they show us the way to obtain corrections to the Fokker-Planck 

equation when required. This will be briefly discussed in Chapter V. 

So far, we have only considered classical systems. The same 

ideas can be extended to quantum mechanics, as we shall show in 

chapter VI. Here contact can be made with the results of recent ex-
4 3 

periments on the mobility of heavy ions in liquid He and He 

All the work which will be described in chapters 

III to VI concerns one special class of brownian motion: that of a par

ticle moving in a fluid at thermal equilibrium (in chapters IV to 

VI, the brownian particle is supposed to be much heavier than the par

ticles of the fluid) . Less specialized situations could of course be consi

dered. We could for instance consider the motion of a test particle in 

a medium which is not at equilibrium . In this case, the problem is 

much less simple; we can no longer obtain a single closed equatio.l 

for the distribution function of the test particle . However, in all systems 



- 161-

F. Henin 

where the kinetic equation is asymptotically valid, the basic features 

are preserved. The distribution function of the particle will obey 

an irreversible equation. Whenever, in the brownian motion in a fluid 

at equilibrium, we can derive a Fokker-Planck equation, the same kind 

of equation can be obtained if the fluid is out of equilibrium but 

the coefficients appearing in the equation will be functionals of the state 

pf the system. A simple example of this is given in chapter III 

for the case of weakly coupled systems. More details can be found in a 

paper by Balescu and Soulet 5) . 

However, there are systems where the kinetic equation is not 

val :d, even asymptotically. An important case is that of systems inte-

racting through gravitational forces. For such systems, an entirely 

new approach seems necessary. We first have to derive an equation whid 

will, in this case, play the same role as the kinetic equation for 

systems with short range interactions. In the last chapter (VII) we shall 

briefly describe a recent attempt by Prigogine and Severne 6) to 

obtain such an equation. This equation predicts a behavior which differs in 

many important aspects from the behavior predicted by the kinetic 
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1. STOCHASTIC THEORY 

1.1. Introduction 

The stochastic theory does not make any attempt to describe in detail 

the interactions between the brownian particle and the particles of the 

fluid. Rather, it describes the effect of the medium on the heavy partic

le in a phenomenological way. From the beginning, one assumes that the 

influence of the medium on the particle can be split into two parts. 

First, we have a systematic friction effect. Secondly, we have 

to account for the random motion. This is done by assuming that the me

dium exerts a fluctuating force on the particle. It is obvious that this for

ce is not known exactly and that the best thing we can do is to make gues_ 

ses about its statistical properties. The main question will then be: given 

the statistical properties of the fluctuating force, what is the probability 

that, if the brownian particle at t = 0 is at the point r with velocity u , 
~o ~o 

it will be at time t at the ·point!:. with velocity ~? The assumptions 

of the stochastic theory lead to the Fokker-Planck equation for this proba

bility distribution. 

We shall first discuss the assumptions which lead to the Lange

vin's equation of motion for the heavy particle (~ 2) . Then we shall ma

ke some further assumptions about the statistical properties of the fluc

tuating force ( ~ 3\ which will enable us to write down the probability 

distribution in velocity space (& 4) . 

We shall then show how the problem of finding this distribution func

tion can be reduced to the solution of a differential equation (§ 5) , 

the Fokker-Planck equation in velocity space. The Fokker-Planck equation 

for the complete distribution function in phase space, with or without an 
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external field acting on the particle, will then be obtained by means of 

an easy generalization of the previous problem ( § 6) . Finally, we shall 

consider the case of an inhomogeneous system where the density gradient 

is small <Yer distances of the order of the mean free path. Then, we 

shall see that for times much longer than the relaxation time, the spa-

tial distribution obeys a diffusion equation. 

All this discussion will follow quite closely the excellent 

review paper by Chandrasekhar 1) . An extensive bibliography can be found 

there. 

L 2. Langevin equation 

The first step in the stochastic theory is to write do wn an e

quation of motion for the heavy particle. From the beginning , one assu

mes that the influence of the medium leads: 

1. to a systematic slowing down effect ; the friction coefficient ~ is 

assumed to be independent of the velocity of the heavy particle . Usual

ly, one also assumes that it is given by Stokes I law. For a sperical 

particle of mass M and radius a, we then have: 

(1. 2. 1) ~= 6 T a"J 
M 

where 'YJ is the viscosity of the fluid. 

2. to the random motion of the particle; to account for this, we 

assume that, besides the dynamical friction, the medium exerts a 

a fluctuating force ~ (t) on the particle. This fluctuating force is as

sumed to depend only on the time t. It is of course not known hut 
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plausible assumtions can be made about its statistical properties 

Comparison with experiment will have to decide a posteriori of the 

validity of these assumptions. 

If we now suppose that these two effects are additive, the motion 

of a brownian particle in the absence of an external field of force is 

given by the Langevin equation: 

(1. 2. 2) 
dJ,L 

dt 

where ~ is the velocity of the particle 

(1. 2.3) u = 
dt 

! being its position. 

If an external field of force!S (£, t) acts on the particle, 

its effect has to be included in the equat ion of motion. This means 

that (1. 2.1) has to be replaced by 

du 
(1. 2.4) ..:::. = - {\ u + K (r , t) + A (t) dt jr ~ ~ ~ ~ 

We may notice an important feature of the Langevin equation. 

The motion of the particle at time t is entirely independent of its 

motion at previous times. Whatever happened to the particle in the past 

does not matter to determine its future behavior at ttdt. This clearly 

corresponds to the assumption that the collisions between the brownian 

particle and the particles of the fluid are instantaneous. 



- 166-

F, Henin 

I. 3, S tat i s tic alp r 0 per tie s d the fl u c t u a tin g for c e 

Our next problem is now to specify the statistical properties 

of the fluctuating force ~(t). Of course, in the framework of a phe

nomenological theory, this amounts to the introduction of a certain 

number of a priori assumptions, These assumptions will be based on 

a very intuitive feeling of the phenomenon of brownian motion. Their 

justification and limitations certainly require a description on a micros

copic level of the whole system, 

First of all, we know empirically that the characteristic ti

me for the variation of the macroscopic quantities (i. e. the quantities 

which we measure, as for instance the mean velocity) is much longer 

than the time interval between two successive collisions of the Brownian 

particle with particles of the fluid (which is 
-21 

of the order of 10 

sec, in a normal liquid), Therefore, we shall assume that we -can 

always find time intervals ~ t such that during 6 t macrosco-

pic quantities change by a negligible amount 

<~(t + o.t)) - <~(t) 
(1.3,1) 

<'~ (t) 
«< 1 

while ~ (t) undergoes a large number of fluctuations , such that ~(t+ 6 t) 

and ~ (t) are completely uncorrelated. This assumption is quite reasona

ble if we take into account the fact that the brownian particle is much 

heavier than the particles of the sunounding fluid. Then, during the colli

sions with the fluid particles, the ,elo, ily of the brownian particle chan-

ges by a very small amount. During fl. t, the net acceleration suffe-

red by the brownian particle because of the action of the fluctuating 

force will be : 
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(1. 3.2) 

We assume that this net acceleration depends only on the 

time interval /.l t and not on the time t at which we start 

to compute it, i, e, we again neglect memory effects, 

We shall now make an assumption about the probability of 

occurence of different values for ~ A. t) . The net acceleration in 

Il. t is due to the superposition of a large number of random 

accelerations. This is very much analogous to the situation one encoun-

ters when discussing random flight problems. There, one looks for the 

distribution function of the increment /:!). ~ during At in the pos ition 

of a particle which has performed a large number of random steps. 

If each displacement is governed by a probability distribution ~ (I r\ 2 ) 

which is spherically symmetric, one shows that : (see appendix J) 

(1. 3.3) 

where D is the diffusion coefficient which depends on the average length of 

the step and on the time interval between steps (see A. 1.1. 17)Using the ana

logy between these problems, we shall assume that the probability distribu

tion for ~(At) is given by : 

(1. 3.4) W [,12 ( (l t)1 = (h qb t)-3/2 expl- ~ ~( ~ t)\ 2/ 4qAt1 

where q is a constant . The specification of this constant requires so

me additional assumptions about the equilibrium properties of the veloci

ty distribution function (see ~ 4) 
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1.4. - Velocity distribution function. 

Before dealing with the general problem of finding the com-

plete probability distribution in phase space W(r , u, t l r , u , 0) 
....... '" ""wO ""0 

to find the particle at r with velocity ~ at time t given the ini-

tial condition r , u , we shall consider a simpler problem. We 
....... 0 ""0 

shall try to find the probability W~, t \ ~o ) that the particle has a ve-

locity u at time t 

The formal 

if its initial velocity is u . 
~o 

solution of the Langevin's equation is : 

(1.4.1) u - u e - ~t = e - P t ( t e~~ ~ ( ~ ) d ~ - -0 

Both sides of (1. 4.1) have the same probability distribution. Now, if 

(1.4.5) CI. = e -ft 

we may also write: 

(1. 4. 3) 

N 
~ = L 

j=l 

L' e(\~ ~( ~) d ~ 

N 

eXPl-r(t-jdt~~(At)= L ~j 
j=l 

if we divide the interval (0, t) into N intervals II t where b. t is 

of the kind defined above (i. e. such that A suffers a large number of 

fluctuations while all other quantities , such as e - ,.,t, remain practically 

constant) . 

With our assumption (1. 3.4) about the probability distribution 

of ~( At) , i. e. of d..." we can, using the theory of random flights, 
..... J 

obtain the distribution function of ~ (see appendix A . 1. 2) : 
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( f t dt e 2 (~~t)1~3/2 
W(~) = 411' q 0 '> 

(1. 4. 4) 

Therefore, the velocity distribution function is : 

(1. 4. 5) 

x exp \ -

For long times (~t» 1), we obtain asymptotically: 

(1. 4. 6) 
-3/2 

W(u, t ~ oo;u ):: (211' q/A) 
-- ..... 0 " 

2 
exp (-/h /2q) 

Therefore, we have an irreversible evolution towards a gaussian distri

bution, independent of u . The system has forgotten its initial condition . 
..... 0 

A priori, nothing implies that this asymptotic distribution is the Maxwell-

Boltzmann equilibrium distribution . If we add this condition as a further 

requirement, we must choose the diffusion coefficient in velocity space 

to be: 

(I. 4. 7) q = kT ~ /M 

Therefore, with the following set of assumptions 

1. Langevin equation 

2. characteristic time for the variation of ~(t) much smaller 

that the characteristic time for the variation of macroscopic 

quantities 

3. net acceleration between t and t+ A t depends on II t 

only 
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4. distribution function for the net acceleration during 11 t 

is gaussian 

5. asymptotic distribution for the velocity is Maxwell-Boltz

mann distribution 

the distribution function in velocity space for the brownian particle is 

is completelY determined by (I. 4. 5) and (1. 4. 7) 

1.5. - Fokker-Planck equation in velocity space. 

So far, we have obtained the probabil ity distribution function 

corresponding to a well defined initial condition: at t=O, the velocity is 

u . To do this, we have introduced quite specific assumptions about the 
~o 

statistical properties of the fluctuating force. We shall now show that 

the problem of finding the distribution function can be reduced to the 

solution of a partial differential equation, the Fo kker-Planck equa

tion. In fact, this method will require less restrictive assumptions 

about the properties of the fluctuating force. When the same assumptions 

as above are made, the general Fokker-Planck equation takes a simple 

form and its solution reduces to (I. 4. 5) . Another interesting feature of 

this method is that when further restrictions on the problem are impo

sed, they can be expressed as boundary conditions for the solution of the 

Fokker-Planck equation. Also, this equation will appear as the most 

adequate tool for the comparison with the results of the microscopic 

theory. 

Again , we assume the existence of time intervals Il t such that 

macroscopic quantities do not vary very much during these time int ervals 

whereas tte fluctuating force has changed several times. 

If we consider brownian motion as a Markoff process, i. e. if we 
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assume that the course which the brownian particle will take is enti-

rely independent of its past history, we expect that the probability di

stribution function W(~, t + A t) will satisfy the following integral 

equation: 

(1.5. I) W(!C.I+ At! " }(A!C)W(!C - A!C. I) 't'(~ -A~; A~) 
where i'(~;A~) is the transition probability for a velocity increa

se ~~ in At. 
Let us now expand the Ihs in a power series of /J. t 

and the integrand in the rhs in a po'Wer series of A ~ 

With the notation : 

(I. 5. 3 ) <o(} " Id(.6 ~.(j'(~ ; A ~) 
this equation can be rewritten: 

~~ At + 0 (At)2 = - ~~i [w <Aui)] + 
(I. 5.4 ) 

~ ~U,~~Uj [w <Au'AU~+ • «Au,Au; A "k»)' 
Taking into account the fact that in the Langevin equation, all syste

matic effects are accounted for in the friction term and that the flucua-
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ting force is random, we have: 

(1. 5.5) <'oAt J d'C1.('C)= 0 

< fOot dop 10 At .. d orr A. (~) A.('t r)' 
1 J '/ 

(1. 5.6) 

Therefore, if we take the limit b. t -i'D, we obtain the general 

Fokker-Planck equation for the velocity distribution function: 

(1.5.7) ~w = _ -L{ (A u) _ w' + ~ 
~t ")u. A t fJ 2 

1 

,,2 f<AU. Au.) __ ~___ 1 J 
'lu.i)u. At 

1 J 

From the Langevin equation, we have: 

(1.5.8) A ~ = - ~ ~ II t + ~ ( A t) 

If we further assume that the probability distribution for the net accele

ration ~(At) due to the fluctuating force is given by (1. 3. 4) and that 

the asymptotic distribution must be the Maxwell-Boltzmann distribution 

the transition probability becomes : 

t(~ ; A~) = (41rPkT At/M)-3/2 )( 

(1. 5. 9) 

X exp [-M , A ~ + ~ ~ A t \ 2 / 4 ~ kT 6 t 1 
Then, we have: 

(A u)= - pUi At 
(1.5.10) 

(A u. 6 u.) = (2 A kT/M) S .. + 0 ( A t)2 
1 J 1- 1, J 

and we obtain the special form of the Fokker-Planck equation: 
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One verifies easily that its fundamental solution, i. e. the solution which 

reduces at t=O to a delta function : 

(1.5.12) W(u, 0; u ) = S ( u -u ) 
....... ........0 ...... ""'0 

is given by (1. 4. 5) . From it , it is of course trivial to derive the 

solution corresponding to an arbitrary initial distribution. 

1. 6. -Fokker-Planck equation in phase space. 

The above procedtlre can be generalized to find an equation for 

the complete distribution function Wet,~, t) in phase space. Instead of 

(1.5.1), we have now: 

(1.6.1) 

Wet,~, t + A t) = H W(!:. - 6 !:., ~ - 4~, t) f(!:. - A!:., ~ - A~; a:., 6~) 
d(£1 £ ) d (A!!) 

From the Langevin equation (we directly' consider the case where an ex

ternal force is present ), we obtain: 

Ilr = u At 

(1.6.2) 

Therefore, we have : 

(1. 6. 3) 

We shall take for the transition probability '" (~ ; A~) the assumption 

(1. 5.9), in wh ich we add a term -K A t in the exponential to take 

into account the effect of the external field. This assumption will lead 
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us to a generalization for the complete phase space of equation (1. 

5. 11) . If we do not make a special cho'ice for t (~; d~) , we can 

follow the arguments of the previous paragraph and obtain a genera

lization of (1. 5. 7) . 

Integrating over A r and expanding again in a power series 

of Il t, t:. ~ , one obtains 

( ~W + u ';)W )Ot+0(6t)2 
~t i i)r. 

= -

~W<Au.) 
_---:-_--=1_ + 

1u. 
1 

(1.6.4) 
1 
2 

1 
2 

~ W (flu. Au.) 
1 J + 

~u. 't)u. 
1 J 

If one computes the various averages and then takes the 

limit II t ..., 0, one obtains the Fokker-Planck equation: 

(I; 6. 5) 

";)W +u 
')t 

[ ~W u "\.2) 1\ __ i + (kT/M) _,,_W_ 
,. ') u. " 2 

1 uu. 
1 

1.7. - Diffusion equation. 

Let us now consider a spatially inhomogeneous system in which 

we have a certain number n of brownian particles. We assume that 

the dilution is such that we may neglect all interactions between these par

ticles. Therefore, the probability distribution function W(lr\ ,I~J, t} 

factorizes into a product of n factors: 

n 
(1.7.1) W (\r\, \~\ ,t)=TI W (!:., u.,t) 

i=l i 1 ~1 
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where W. is the one particle distribution function which satisfies the 
1 

Fokker-Planck equation. 

We shall also assume that the density gradient is small. 

In such a system, we have two kinds of processes : first, we 

have collisions with the particles of the surrounding fluid which insure 

that the velocity distribution function approaches the Maxwellian distribu

tion ; next, we have a diffusion of the particles which will lead to spa

tial uniformization of the system. The time scale for the first process is 
1\ -1 

given by the relaxation time ," ; this is much smaller than the ti-

me scale for the diffusion process. As a consequence, if we are 

interested in times long with respect to the relaxation time, we may 

expect that the distribution function for one particle will be of the form: 

2 
3/2 -MiUi /2kT 

W.(r., u., t) = n.(r., t) (M../21r kT) e 
1 "'1 "'1 1 -1 1 

(I. 7. 2) 
+ ~ W (r., u .. t) 

i "'1 -1 

The first term describes the local equilibrium distribution which is 

reached for times much longer than the relaxation time. 

The second term is a small correction which takes into account the 

existence of the diffusion process~ it is of the order of the density 

gradient. 

We shall now show that, under these circumstances, the fun-

ction n .(r .' t) obeys a diffusjon equation. 
1 ..... 1 

If we integrate the Fokker-Planck equation (I. 6. 5) over the ve-

locity, we obtain 

(1.7.3) 

)(du. W. 
) ..... 1 1 

~t 
+ ~ .{dll1·tI..w. = 0 ,,1:.i } ........ 1 
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If we first multiply both sides of the Fokker- Planck equation 

by uil( (II( "X • y, z) and then integrate over the velocity, we get: 

(1.7.4) 

~'dU .W. u. ';) J 
-1 1 Ie w + -- du u W u = - du u 

') t f)r . . .... i-i i ie ~ J -i i iC 
-1 

If we combine these two equations, we obtain: 

(1 7.5) 

Now , using (1. 7.2) and keeping only lowest order terms, we easily, 

obtain the diffusion equation: 

(1. 7.6) 

with 

(I. 7.7) 

be : 

(I. 7.8) 

)n.(r .. t) 
1 -1 

')t 
D v2 n.(r. t) 

r. 1 -1, 
-1 

D = kT/ ~ M 

The density of the particles at a given point ~ of space will 

Again, if we keep only lowest order terms, 1. e. if we take 

(1.7.9) n.(x, t) 
1-

we verify easily that this also obeys the diffusion equation 

(1.7.10) 
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Appendix I. 1 - Proof of (1. 3. 3) 

In the problem of random flights, one considers a particle 

which performs a sequence of steps r .... r .... The magnitude and 
......... 1 """ 1 

direction of all the different steps are independent of the preceding 

ones. One chooses a priori a distribution function "C .(r .) which gives 
1 ~l 

the probability distribution that a given step r. lies between rand 
........ 1 .......... i 

r. + dr .. The problem is then to find the p;robability W( A~; .6 t) that 
~l ~l-

the particle has travelled a distance b. ~ in the time interval A t. 

We shall give a proof of (1. 3. 3) for the simple case of 

one dimensional random walk with all steps of the same length and with 

equal a priori probability for a step to the left or to the right. There

fore, if the particle is at the origin at t=O, the probability that it 

will be at the point m after N steps (-N.::: m'::: N) , is given by: 

(AI. 1. 1) 1 W' 1 W(m,N)=2 (m-1,N-1)+2 W(m+1,N-I) (N)l) 

(ALI.2) W(l, 1) = W(-I, 1) = 1/2 

Using Fourier transforms: 

(AI. 1 .. 3) 

+00 

r::= W(m, N)e -ilm 

m = - 00 

we obtain from (AI. 1.1) and (Al.l. 2) : 

(AI. 1. 4) 

Therefore, 

(ALL 5) 

p (t) "COS 1 
1 

N 
P N(l) = (cos 1) 

N >1 
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and hence inverting (AI. 1. 3) : 

r -1 
(coslt (AI. 1;6) W(m, N) = (2 TT) 

-If 
Now, with 

N N -N N! 
(AI. 1. 7) (cosl) = 2 r:. p!(N-p)! 

we obtain easily: 

(AI. 1. 9) 
-N 

W(m, N) = 2 

p=O 

N 

L 
p=O 

p!(N-p) ! 

F. Henin 

e ilm dl 

e 
-1(N-2p)~ 

sin T (N-m- 2p )) 
1f(N-m-2p) 

The last factor v'lnishes unless N-rn-2p = O. Therefore: 

W(m, N) = 0 if N even and m odd or vice versa (AI. 1.9) 

W(m, N) = 2- N N!\[(N-m)/2) !~N+m)/21! \ -1 if both Nand m 

even or odd (AI. 1. 10) 

The first result is of course obvious. The second could have been 

obtained using combinatorial analysis. However, the nlethod involving 

Fourier transforms can be generalized to more complicated problems and 

although exact results for arbitrary values of N cannot always be obtained, 

expressions such as (AI. 1. 6) are often useful to obtain an asymptotic 

result. 

For our present problem, for N4 <Xl and m finite, using 

Stirling's formula: 

(AI. l. 11) 
1 1 

log n ~ = (n +"2) log n - n + '2 log 2'D' (n ~ <Xl) 

we obtain: 
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lIN 
log W(m, N) = (N + '2 ) log N - 2" (N + m + 1) log (2 + m) 

1 N - 1 
(AI. 1. 12) - 2(N -m + 1) log (2" - m) - 2" log 21f - Nlog 2 

::::e log (2/N'I') 1/2 _ m2 /2N 

and hence the asymptotic expression: 

(AI. 1. 13) 
1/2 2 

W(m, N) ~ (2/lfN) exp (-m /2N) 

If each step has a length 1 and if ~ is the time lapse between 

two steps, introducing the variables: 

(AI. 1.14) x = ml At = N"l; 

the probability W(x, A t)4x that the particle lies between x and 

x + A x after A t is :( Am = Axil) : 

(AI. 1. 15) 

W(x, btl Ax = C W(m, N) 
mt. Am 

= (1/2) W(xll, A tiT:) L::.. 1 
mE Am 

= (1121) W(x/1" Atl T ) 

where the factor (1/2) takes into account the fact that for N given 

(odd or even), only one half of the values of m contribute (those which 

are odd or even). 

Therefore, we obtain: 

-1/2 2 
(ALL 16)W(x, At) = (HJ D ~ t) exp (-x I 4DAt) 

with 

(AI. 1. 17) 
2 

D=J/2"C 
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(AI. 1;16) is nothing else than (I. 3. 3) for this simple onedimensio

nal problem. This asymptotic formula can be generalized for several 

three dimensional random flight problems. For instance, for a gaussian 
th 

probability distribution for th~ j step: 

(AI. 1. 18) 
2 -3/2 2 2-

T .(r.) = (21f 1. /3) exp (-3 \ r.\ /21.J 
J ~J J "'J J 

one obtains: 

(A.I.1.19) 

with 

(AI. 1. 20) 
2 -1 < 1 )= N 

N 
L. 12 

j=1 j 

The same expression is obtained if the probability distribution 
2 

is identical for each step and spherically symmetric. Then (.1 ) 

is the average displacement in each step (the 

of the index j). 

Appendix I. 2. - Proof of (1. 4. 4) 

1. ·s are independent 
J 

We want the probability distribution of the quantity 

N 
(AI. 2. 1) - L ~. 

-J 
j=1 

with 

(AI. 2. 2) 

when the distribution function for ~ ( 0. t) is given by (I. 3.4) . This 

is again a random flight problem, the steps being the 

probability distribution for each c:Jt is a gaUSSian and corresponds 
-j 
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to the function "t j given in (AI. I. 18) with : 

(AI. 2. 3) .r ,2 = 6q W ~ 6 t 
J T J 

Therefore, for a large number of steps , using (AI. I. 19) , we have 

(AI. 2. 4) 

With 

(AI.2.5) Ji 2 -2 A. t N A. A ~ I, = 6q Ate ,.. I:. e 2 ,- j t 
J=1 J j=1 

If we use the same approximation that led us from (I. 4. 2) to 

(1. 4. 3) ,we may write: 

(AI. 2. 6) 
2 
3 

Inserting (AI. 2. 6) into (AI. 2. 4) , we readily obtain (I. 4. 4) 
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II. KINETIC EQUATIONS 

II. 1 ~ I n t rod u c t ion. 

In this chapter, we shall consider the microscopic descrip~ 

tion of an N~body system from the point of view of statistical mecha

nics. We shall restrict ourselves to classical systems which ar!,! homo

geneous in space, although the formalism can be extended to include 

quantum systems and inhomogeneous situations, As this will be the 

most useful for us, we shall consider the case of a gas interacting 

through binary central forces. On the microscopic level, a complete de

scription of the system is given by its hamiltonian, i. e. here: 

(II. 1. 1) H= 

2 

~+ 
2m, 

J 

v (Iq, - q.\) = H +~V 
ij "'l .... J 0 

,th , 
where m, is the mass of the J partIcle 

J 
a, and p, its posi-
-<l.J "'J 

tion and momentum. ~ is a dimensionless coupling constant. 

Once we have the hamiltonian and the initial conditions, the 

evolution of the system is of course completely determined by 

Hamilton IS equations of motion. 

However, for a large system, a set of 6N differential equa~ 

trons is not very practical. Moreover, we can only measure a few 

macroscopic quantities and we never have, even at t = 0 , a detailed 

information about the positions and momenta of all the particles. There~ 

fore, we shall use the idea of a representative ensemble in phase spa

ce. We imagine a large number of similar systems, with the same hamilM 

tonian but differing by their initial states. If we take a sufficiently 

large set of equivalent systems, the ensemble will be characterized by 

a continuous density in phase space f ( \ ~ \ ,is. \' t) . As all points in 
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the ensemble move in time according to Hamilton's equations, the fun

ction f satisfies the Liouville equation: 

(11.1. 2) ~ = (H ,,1 = - iL f 

where [H , p 1 is the Poisson bracket of the Hamiltonian and P' 
and, hence, the Liouville operator L is 

(II. I. 3) 

From this equation, one verifies easily that : 

(II. 1. 4) 

If we choose this normalization constant to be equal to unity: 

(11.1.5) 

then, f (\ g,\, \2,\. t~dl!.d!l. \ N is the probability of findin~ at time t 

a representative point in the volume element \ dg, d!l, \ of phase 

space, 

A basic postulate in statistical mechanics is that all macros

copic quantities may be computed by taking the average value of the corre

sponding microscopic dynamical quantity over the distribution function 

of a suitable ensemble : 

(11.1.6) 

This description has the advantage that the whole mechanical 

behavior is given by a single linear equation ,the Liouville equation 

(II. 1. 2) . 
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To the decomposition (II. 1. 1) of the hamiltonian into un 

unperturbed part H (kinetic term) and a perturbed part 
o 

,\ V (inte-

raction) corresponds a similar decomposition of the Liouville operator: 

(II. 1.7) L=L + ~iL 
o 

This feature, as well as the strong analogy between the Liouville 

equation (II. 1.2) 
., 

and the Schrodinger equation in quantum mechanics 

will enable us to develop easily a perturbation technique to study the 

time evolution of the distribution function. In this chapter, we shall con

centrate ourselves on the evolution of the velocity distribution function: 

(II. 1. 8) 

Essentially, we shall solve formally the Liouville equation and write the 

formal solution as a power series of the perturbation. The introduction 

of a diagram technique to represent the various contributions will enable 

us to rearrange the terms and to write the equation of evolution in a 

form suitable for further discussions: 

(II.).9) 

First, we have a non-markovian term which relates feY) to its value 

at an earlier time t' . G(t) is an operator which describes the effect 

of the collisions which occur in the system on the evolution of the ve

locity distribution function. The non-markovian character of the first con

tribution is due to the fact that the collisions last over a finite time 

interval "C l' The second 
col 

term gives the contribution to the evolu-

tion of r ott) due to the existence of initial correlations in the 
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system , these being described by the functions r: k (0). L} 
We shall then show that, for systems interacting through 

short range forces and such that the initial correlations present 

at t=O are over molecular distances, in the limit of a large system; 

(II. 1. 10) N ~ ao, 0 ~oc', N/O = C finite 

(0 : volume of the system) 

and for long times 

(II. 1.11) t » 't' 
colI 

the second term in the rhs of (II. 1. 9) may be neglected and that 

f 0 (t) satisfies a closed equation, which may be written in a 

pseudomarkovian form: 

(II. 1. 12) 
~f . 0 

1---
')t = 0 ,\,(0) f 0 

where '\' (z) is the Laplace transform of the collision operator G{t) 

and 'I' (0) its limit when z ~O. 0 is a functional of f and its 

derivatives for z ~ 0 and takes into account the finite duration of 

the collision. 

In this chapter, Wf' shall show in detail how the kinetic 

equation (II. I. 12) can be derived. We shall the n sketch briefly how 

the same formalism can be extended to discuss the evolution of space 

correlations in the system. We shall also indicate the necessary modifi

cations when an external force is present . The equations so obtained will 

be our basic tools for the next chapters. 

We shall be able to give here only a very short outline of the 

theory. More details, as well as references,to the original papers can 
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be found in the monographs by Prigogine 1) Balescu 2) and R~sibois 3). 

II. 2. Fourier analysis of the distr-ibution function. 

Let us expand the distribution function in a Fourier series with 

respect to the position variables: 

(II. 2.1) 

The factor g-N is introduced to allow the normalization of f to unity: 

(II. 2.2) f lded 9.1 N ret) "ft<lI!J N f oCt) " I) 

The formal expansion (IL 2.1) is very interesting. Indeed, it is 

easily verified that the Fourier coefficients r k k have a very sim-
-1"'-N 

pIe physical meaning. First of all, we notice that, in a system which 

is homogeneous in space, i. e. such that the distribution function is invQ

riant with respect to space translations : 

(II. 2. 3) 

only those coefficients such that: 

(II. 2.4 ) ~ k 
i=1 -i 

= 0 

are different from zero. Therefore, Fourier coefficients such that 

(II. 2. 4) is not fulfilled are closely connected with the existence of spatial 

inhomogeneit~s in the system. 
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Also, we shall,most of the time,be interested in the average va

lue of microscopic quantities which depend only on a small, finite num

ber s of degrees of freedom. To compute these, all we need are the re

duced distribution functions: 

(II. 2, 5) 

In such reduced distribution functions, the only Fourier coefficients 

which play a role are obviously those which have at most s wave vectors 

a'ifferent from zero, 

One of the most important coefficients is that w:th all wave vec

tors equal to zero. It is the velocity distribution function: 

(II. 2. 6) P o({gJ ,t) = {td~ \ N f( tg,t,t~\, t) . 

From (II. 2. 2), we notice that this function is normalized to umty. 

To find out the meaning of the other Fourier coefficients, let 

us consider for instance the average rlens ity, 

(II.2.7) 

<n(~, t) = ~\dg, ds.\ N L.S(~ -~} fHg,\ "S,\ ,t) 
J 

= N/n[l + L ei}t ·;It({dg,\ Np (\g,i, t)l 
~ J' i '\2.\ 

In this way, we see that the Fourier coefficients with one wave vector 

different from zero are connected with the local deviations from the 

mean density N/ n , 
As another example, let us consider the binary correlation func-

tion 
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g(x, x', t) = rfdq ,dq, S (x -q ,)~(x' -q J\fdP ,dp ,f2(q ,q ,p ,p ,t) - - ,.1' -1 -J - -1 - -J J -1 -J -1-J-1-J 
1J 

-JdD ,f1(q ,p, t) (dP, f1(q ,p, t)} 
"'1 -1-1 J -J -J-J 

In an homogeneous system, this reduces to : 

(II. 2. 9) 

Correlations among s particles therefore depend on the Fourier coef

ficients with at most s indices different from zero. For a large system, 

the spectrum of ~ becomes continuous and the rhs of (II. 2. 9) vanishes 

forl~-~'I-3JCO if r~, _~ is sufficiently regular. 

Another interesting feature of (II. 2. 1) is that this is in fact an 

expansion in terms of the eigenfunctions of the unperturbed Liouville 

operator. Indeed, from (II. 1. 7), (ILL 3) and (II. 1. 1), we have: 

(II. 2.10) L =--i 1: ~ . ~ 
o ,m, ')~. 

J J J 

If we use the same notation for eigenfunctions as in quantum mechanics: 

(II. 2. 11) 

we have 

(II. 2. 12) 
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These eigenfunctions are orthogonal and normalized to unity: 

(II. 2. 13) 

From these properties I the time dependence of the Fourier coefficients 

r \ ~, in a system of non interacting particles (~= 0) is easily found: 

When the particles are interacting , the time dependence of the ft ~~t) 
is of course much more complex. Besides the oscillating exponen

tial factor corresponding to the free propagation of the particles, we havi 

a further time dependence in the coefficients r l~\( \ ~\) in the rhs of 

(II. 2.14) because of the collisions occuring in the system. 

II. 3. For mal sol uti 0 n 0 f the r.: i 0 u v i 11 e e qua t ion. 

Resolvent operator 

The formal solution of the Liouville equation is of course very 

easily written: 

(II. 3.1) 
-iLt 

= e f(O) 

From this, we obtain for the various Fourier coefficients of the distri

bution function : 
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(II. 3. 2) ( ~ l-iLt exp -i ~ k.,q. e 
. "-J -J 
J 

It 

As L is an operator in the complete phase space, the matrix 

elements in the rhs of (II. 3. 2) are still operators in velocity space. 
-iLt 

The operator e can be expanded formally in a power 

series of the interaction: 

-iL t ft -iL (t-t ) -iL t 
e -iLt = e 0 -IX dt e 0 1 SL e 0 1 

1 
o 

(II. 3. 3) 2 ft It -iL (t-t ) -iL (t -t) -LL t 
+ (-I).) 0 dt1 01 dt2 e 0 1 ~L e 0 1 2 ~L e 02 

+ ... 

This equality Is most easily verified if one takes the time derivative 

of both sides of (II. 3. 3) • 

However, the behavior of the system can be discussed much more easily 
-ILt 

if, rather than the operator e ,one considers its Laplace transform, 

the resolvent operatoF R(z): 

(II. 3_ 4) 
JOO izt 

R(z) = -.)0 dt e 
-ILt 

e 
1 + 
~ (z~S ) 

From (II. 3, 2) and (II. 3,4) , we obtain after an inverse Laplace transform: 
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where the contour C is a parallel to the real axis in the upper half 

plane, above all singularities of the integrand. (11.3.5) can be easily ve

rified for a finite system. Indeed, then, the operator L is a hermitian 

operator and all its eigenvalues, although unknown, are real. For an 

infinite system (Q -!I) 00) , the properties of the Liouville operator are 

not known. We shall however assume that (II. 3.5) remains valid when we 

perform the limiting procedure (II. 1. 10) . 

The resolvent operator can be expanded in a power series of the 

perturbation 

(II. 3. 6) 
00 lIn 

R(z) = r:. z _ L (~L;-:--L) 
n=O 0 0 

This result. can also be obtained from (II. 3.3) through a Laplace tran

sform, using the convolution theorem. 

(II. 3. 5) and (II. 3. 6) will be our basic equations for the following 

discussion. Of course this means that we assume that perturbation theory 

up to an infinite order is valid. Whether this is true or not is an unans

wered question and we shall not discuss it. 

The unperturbed resolvent ore rator is diagonal in the ,\~ l) 
representation. Its matrix elements are very simple: 

(II, 3, 7) 

where 

(II. 3, 8) 

<\~t I Ro(z) \ \ ~J) ::<i~.\ \ z _lL \\~tl 
o 

= 
1 

z- Tk .. v. 
~""J -J 

J 

v.=p./m. 
-J .... J J 
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is the velocity of the 

As to the operator 

.th . 
J partIcle. 

S L, we obtain from (II. 1. 7), (11.1. 3) and (II.I.I): 

(II. 3. 9) 
S ' ~V.. ~ ';jV .. 

- i L = L- (---2l. + ---..!l 
i < j 4 Sli . j) £.i C)~j 

~ 
.~) 

".E. 
J 

If we expand the potential in a Fourier series 

(II. 3. 10) 

we have: 

-i S L = (8V3i/O) L. Lk Vk ~. (~D. - ~D.) )( 
i<j "--1 II "--J 

(II. 3. 11) ik • (q . -q .l 
-1 -J 

)t. e 

It is easy to verify that the only non vanishing matrix elements are tho

se where the initial and final states have only two different wave vectors, 

the total wave vector being conserved: 

( k ... k .... k ..... k N I ~Llkl···kl .... k~ ••• k ~ 
-1 -1 -J - - -1 'J 'N :/ 

(II. 3.12) 

The fact that only two wave vectors are modified and that the total wave 

vector is conserved is of course due to our choice of binary central 

forces. An interesting consequence of the condition of conservation of the 

total wave vector is that the Fourier coefficients are divided into subsets 

corresponding to the different values of the total wave vector. Each subset 

evolves in time independently of all the others. Therefore, for instance, 

a system which is initially homogeneous in space will remain so in the 

course of time. 



-193 -

F. Henin 

II. 4 - D i a g ram rep res e n tat ion 0 f the for mal sol u -

tion of the Liouville equation. 

The classification of the various terms in the series (II. 3.6) is 

best performed if one uses a diagram technique. Let us associate with 

each state j \ ~ \) =l!!.l ... !. N} with n non vanishing wave vectors a 

set of n lines running from the right to the left. Each line is label-

1ed with an index corresponding to the particle; when necessary, we 

shall also indicate the wave vector An example is given in fig. II. 4. 1. 

1 

Diagrammatic representation of the state 

"
O\k k k' 
- -i -j -1 f 

Fig. II.4.1 

The matrix elements of S L provoke a modification of two wave 

vectors k. k ~ k'. k' .. Taking into account the fact that among these, 
..... 1 -J -1 -J 

none, one or two may correspond to the wave vector Q., we have 6 

basic diagrams (see fig. II. 4.2) . 

~~ 
/ •. k ... k. \ S L' .. k' ... k' ... ) 
, -1 -J -1 -J 

k + k· = k'+k' 
-i -l ..... i-j 

(a) 

i .. k .•• k ... , ~ q .. k' ... o .. ) 
, ....... 1 ""'J --1 ...... 

k +k = k' 
-i -j -i 

(b) 



< .. k , .• 0 • • \iL \ .. k', .• k""J 
"'1 ""'" --1 ""J 

k = k'+k' 
""i -i ..... j 

(c) 

o =k'+k' 
- -i -j 

(e) 
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( .. k ... 1.<". .\~L\ .. 0 .. 0 .. ' 
-1 J - - '/ 

k +k =0 
...;. -j -

(d) 

.. 
9 d 

I .. k, .. 0 .. \ iL\ .. O .. k', .. ) '"'1- _._J 

k = k' 
""i -j 

(f) 

Basic interaction vertices. 

Fig. II. 4. 2. 

Taking into account the fact that the states \ \ ~ \) describe 

well defined correlations in the system, the diagrams indicate very 

clearly what changes in these correlations occur as a consequence of 

the interactions. The present formalism thus appear as a description of 

mechanics in terms of a dynamics of correlations. 

With the diagrams, it is easy to represent any contribution 

to the formal solution of the Liouville equation. To obtain 
·h the n' order 

contribution to the evolution of r t ~t (t) , we first draw the final state 

I \ ~ \). Then, we go to the right through n vertices, using all possible 

combinations of the six basic vertices which conserve the total wave vec-

tor. As an example, the second order contributions to the evolution of 

r ~ (t) are given in fig. II. 4. 3). 
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Second order contributions to 

Fig. 4.3 
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l':) 
i.. o "" 

c:= 
(.t) 

t 

'" ~ 

C ~ 
to) 

r k _ (t) 
-1 

Also, it is very easy, once we have a given diagram, to write down its 

analytic contribution . Let us for instance consider diagram (g) in fig. II_ 4.3. 
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Reading the diagram from the left to the right, we obtain (we do not 

write explicitly wave vector equal to 0) : 

<lk\l-l- (~L_l_)2 hk'~t =(k~\~L I k~k.lklk~, k'l) '( 
'" z-L z-L - 'II -1 z- -i~1 -1-

o 0 g) 0 

(II. 4. 1)(~~, ~'I z-~ I ~'i ,~~) (~'i' ~ I ~ LI~'i '~"j ,~) • 
o 

"<k~"k".,k,,_l_lk'~' k" k')~ ~ 
"'1 -J "1 z-L -1 j' 1 k .. k'.+k' k .. k~+k'!+k' 

o -1 -1 1 -1 -1 -J -1 

In other words, we write a sequence of matrix elements of $L, each 

corresponding in a well defined order to the vertices; in between these 

matrix elements, we sandwich propagators (see II. 3.7), which are matrix 

elements of Ro(z) for the corresponding intermediate state; we also have 

such a propagator for the initial and final states. 

II.5.Classification of diagrams. 
We shall now discuss the topological structure of the diagrams 

which appear in the solution of the Liouville equation. 

In the most general diagram, we may distingUish three different 

regions. Let us denote by 1\ ~ "l) the initial state of correlation 

(at the right) , by It ~'t) the intermediate state where we have the mini

mum number of lines .(which may of course appear several times in the dia

gram and b~/~~) the final state. If s is the minimum number of lines in the 

diagram, it may of course happen that we have several different states 

with that number of lines. We then choose as I\!' ~he last one starting 

from the right . As an example, in fig. II.5.1b we have two different 

states with one line : ,~~ ,\ £. \) and \ ~j' \.£ \). As the latter is the second 

one when we start from the right. we choose it as our state "~' \). 

Another example (with two lines) can be found in fig. II. 5. Ie. 
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In the most general case where \\~" \) F\\~ '\) f U~ \) we 

have: 

1. a destruction region, i. e. a region where we go from the sta-

te H.t"~) to the state \l~ 't)in such a way that no intermediate sta

te is identical to \\~'n; in such a region, we go from a state 

with given correlations to a state where we have less correlations. 

2. a diagonal region, i. e. a region where we go from the state 

\\ ~ '\) back to the state ,\~ I t) ; in general such a region contains 

a succession of irreducible diagonal fragments. By definition, an irredu

cible diagonal fragment is such that we go from a given state back to 

that state through a path such that no intermediate state is identical to 

the initial state. 

3. a creation region, , i. e. a region where we go from the state 

lt~~) to the final state H~') in such a way that no intermediate 

state is identical to '\~'t) in this region, we go from the sta

te of correlations I\.t' t) to a state of higher correlations. 

Examples of this decomposition are given in fig. II. 5.1 

(diagrams (a) and (b) contain the three different types of regions while 

diagrams (c), (d) and (e) have only one or two of them) . 

IRD IRD 

creation region diagonal region 

H!l)::. l!, '!J .-~.) \\~'t):ll\!f> 
,01. ) 

destruction region 



creation region 

IRD 
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IRD 
diagonal region 

(b) 

<S> 
o 

IRD 

diagonal diagr'3.ffi 

(c) 

F, Henin 

destruction region 

IRD 
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. 
" 

creation diagram 

(d) 

IRD 
diagonal region destruction region 

(e) 
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IRD =: irreducible diagonal fragment 

Examples of decomposition of diagrams in creation, 

diagonal and destruction regions. 

Fig. II. 5. 1 

As we shall see later on, the time dependence of the various contribu N 

tions will be closely related to this decomposition. 

II. 6 N In i t i a 1 con d it ion s . 

We shall always consider initial conditions such that macrosco

pic properties like the pressure, density etc.. are finite at every point 

of the system, even when the limiting case of an infinite system is consi

dered. The interest of this class of initial conditions is obvious from the 

physical point of view; it can be shown that once the existence and 

finiteness of the reduced distribution functions for a finite number of de-

grees of freedom is imposed at t=:O , it will remain so at an arbitra

ry later time. 

This choice of initial conditions introduct>s mathematical restrictions 

on the class of functions r we consider. It can be shown that this initial 

condition requires the following volume dependence for the various Fourier 

coefficients: 

(II. 6. 1) 

where V is the number of independent non vanishing wave vectors which 
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appear in the set k ... k • (By this, we mean the total number of non 
"'1 ",N 

vanishing wave vectors minus the number of relations of the form 

k .+ ... +k. = 0 which they satisfy) . For instance: 
"'1 "'J '" 

3 2,.. 
= (811" In) r 

~1'~2 
31 ,... 

= (8lf n) f 
!E ,-~ 

(II. 6.2) 

r !E.-~ 
-The coefficients f k do no longer depend explicitly on n 

k 1 .. · N 
or N. althoug h t~y might still depend on the ratio NI n . 

With these assumptions, although in the formal solution of the 

Liouville equation, we find terms growirg more and more rapidly 
2 

(N. N .•• ) , all contributions to the reduced distribution functions for a fi-

nite number of degrees of freedom remain finite. The proof of these 

theorems is rather lengthy and cannot be given here . However, we shall 

illustrate them with two examples. We shall consider the contribution 

of the two diagrams of fig. II. 6.1 to the one particle velocity distribu

tion function : 

(II. 6.3) 

o 
(a.) 

Lowest order diagonal and destruction 

contributionsto r ott) 

Fig. II. 6.1 

The contribution of the cycle (fig. II. 6. la) to the evolution of fo (t) 

is (see equ. (n. 3.5) • (II. 3.7), (II. 3.12) and (II. 4. 1)) 
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r Q (t)l = __ 1. ~ 2 f dz e -izt 
II 0 'jo 211 1 C 

1:. L.<O\z_lL '0) It 

i < j ~ 0 

" /Ol~L'k.=k,k.=-k)<k.=k,k.=-k \ _1 Ik.=k,k.= -k > " 
~ ~l - -J - -1 '" -J - z-L -1 - -J -

o 

e - iz t V. 2 
-2-( k) k 

z 

I) ') 1 'C) C) 
" k.(~ --) k. (- -- )0(0) 

- .,0 1, ')P. z-k. (v .-v.l ")n. ')0. 10 
~ -J - -1 -J ~1 ""'J 

In the limit of a large system (see 11.1.10) ,1he summation over ~ 

becomes an integral : 

(II. 6. 5) 

Rence 

fr o(t)Jo = ~2(8lf3 In) 

(II. 6. 6) 

= O(NC) 

L I d3k (1/2" i)/C dz 
i < j 

~izt 
e 

2 
z 

if we take into account the fact that the sum over the particles contains 

N2 terms. 

Similarily, using (11.3.11) , the contribution of the deJEitruction 

diagram (fig. II. 6. Ib) is : 
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rfo(t~C' -A (81r'jn)' L I I dze- izt 

i < j ~ C 

" (o!z _lL 10)(01 S q~i::~' ~j:: - ~ > )c 

o -,,< k.=k, k.::-k 1-1-lk::k,k,::-k")rk::k,k,::-k(O) 
(II. 6. 7) ~1 '" ~J ~ z - L -, - ~J ::..t -1"'" ~J ...., 

o 1 

" 1 z-k. (v ,-v.l 
...., -l-J 

r- k,::k, k. :: - k (0) 
........ 1 -- ....... J ........ 

- izt 
dz e 

z 
V k (:L_l) X 

k -' le., ~~. 
1 J 

For large systems, this becomes: 

(II. 6.8) 

L (ik (1/211' i) ( 
i<j ) C 

-izt 
dz e 

z 

') l 
k.(- --) - ') °1, '}OJ' z-k. (v . -v J 

"" .... ...., -l ...... J 

:: D(NC) 

-" k, '" k, k, :: _k(O) 
, ........ 1 -. --J ....... 

Let us now introduce these two results in (II. 6. 3) . Because of the 

integrations over the velocities, all contributions vanish except if i :: 1 . 

This means, that, amongthe N(N-1)diagrams a or b of fig. II.6.1, 

we only keep the (N-1) diagrams such that i:: 1 . Therefore we 

obtain: 
-izt 

dz ~ " 
z 

y lVk 12 k . ~ \dP ' .. dp ) - ., 01 -2 -N z-k. (v -v, 
hw ...... -1 -J " 



(II. B. 9) 

= O(C) 

(II.B.IO) 

= O(C} 
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r.. \d 3k (1/2 tr i)1 dz 
j> 1 C 

-izt 
e 

z 

1 -rk =k k " _k(O) 
z-k.{v -v,) -1 -'-j ..... 

..... ..... 1 -J 

If 

The general mechanism which insures convergence at an 

arbitrary time for the reduced distribution fuhction of a finite num

ber of degrees of freedom is thus twofold; first , our assumption 
-1 

(II. B. 1) (which for instance introduced a factor 0 in (II. 6. 7)), then 

the suppression of the contributions of many diagrams once we perform 

the integrations over all but a finite nUlmber of degrees of freedom. 

In many problems we shall further reduce the class of initial 

conditions we consider . For instance we shall often restrict oursel-

ves to the class of initial conditions where the correlations are 

over distances of the order of molecular distances. This will be discus-

sed when necessary. 

The property of finiteness of the reduced distribution 

functions plays a very important role in the obtention of irreversible 

equations for the macroscopic quantities. Indeed, once finiteness is 

ascertained with respect to Nand 0, we can further look at the time 

behavior of the system and find out that in the long time limit, some 

terms may become negligible. This is not the case for the complet distri

bution function because of the divergencl's with respect to N in the 
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limit of a large system. However, for the sake of simplicity it 

appears often convenient not to worry about this N divergence 

and to write down asymptotic equations for the complete distribu-

tion function (kinetic equations, see § 9) ,. This procedure is perfectly 

legitimate provided we keep in mind the fact that all asymptotic equa

tions we shall derive are valid only when. they are used for the 

computation of average quantities which depend on a finite number of 

degrees of freedom. 

II. 7 - Tim e d e pen den c e 

In order to get some feeling about the simplifications \\!t;,'h llI~,y 

arise when we discuss the long time behavior of the system, let UI; (, T,' 

sider in detail some simple and typical contributions which we meet In 

the evolution of homogeneous systems. To make things even c]eart::l', let 

us choose a special form of a repulsive potential which will enable us 

to perform all calculations completely : 

(II. 7.1) V(r) = V 
o 

-Itr 
e 

-1 
l( is here the range of the intermolecular force. The Fourier tran-

sform of this potential is: 

(II.7.2) V 
k 

= V 
o 

811'1( 
2 2 2 

(k +f( ) 

Let us now first investigate the time dependence of the contri

bution of the simplest diagonal fragment to the evolution of the veloci

ty distribution function: the cycle (fig. II. 6. la) . Using (II. 3. 6) ,ilL:3. 11) 

and (II. 7.2), we have: 
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(II. 7.3) r.f (t~ = -( 1/ 2tr i)l dz e -i;t i' 2(z) r (o) II 0 Jcycle c z 0 

with: 

(II.7.4) 

(II. 7. 5) 

where 

~2(o'lLZ_\ "LlO) 
o 

= _ ~2(8"" Vo}2(81J 3/0} z:::..ld\ (k2+ tC}-4 
i < J , 

~ ~ 1 ~ ~ 
k (- - -) k (- - - ) 
~. ,)0. ';)n. z-k.(v.-v.} ~·~o. ')0. 

"-1 "-J ..... ~1 -J J...1 "-

+ k- 2J3 ktlk~ 
I (z, £.i' ~., ) - (81I'1(V o) d k -2-.--24-(2-----1 4/\ J (k + K ) z - k . (v. - v.) I· ..... .....1 "'J 

+ 
(II. 7.6) (z t S ) 

Using cylindrical coordinates with the z axis along the relative veloci-

ty: 

(II. 7. 7) 

one obtain!': easily: 

+ 2 (' 
1 A(Z.D .• £..,~=(U"/3)(81tkV) cJ 'Ie 
.,_ "-1 J 0 111.. f! 
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J( ~ S + i ) (1/4) L( cC,x fIl,y 
J 

+00 

dk" 

-00 

(II. 7.8) +~ 
", z 

(+00 

) -00 

dk 
" 

As ca.n be easily seen when performing the kIf integration, 
+ 

regular in S and has poles in S at 

(11.7.9) z=-il(g 

The quantity (I(g) -1 represents the time during which the two parti-

des i and are interacting, i. e. the collision time 1; l' Using 
co 1 

this result, we can easily perform the z integration in (II. 7.3) . 

We obtain: 

(II. 7.10) fir (t] =-it "'2(0)+ "'1(0) + Res [ e -iztt/ z
) j 

o cycle 1 T 2 - . kg Z Z--l 

Therefore, we have three types of contributions: one proportional to 1;, a 

second one which is of order Tcoll/ t when compared to the first and 

finally an exponentially decaying contribution proportional to exp( -t/t= coll)' 

This last term becomes quite negligible for times much longer than the 

collision time. 

If we do not make a special choice of the intermolecu Jar poten-

hal, it is 

function 

(II. 7.11) 

eas ily verified 
+ 

I d.~ has the 

(see an example in chapter III J § 2) that the 

form of a Cauchy integral : 

t '" ~ I'} " \:: d" ,'~"~ + 
(z t S ) 



Provided f(w) 
+ 

regular in S 
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satisfies 
4) 

some general conditions , this function is 

and can be continued analytically in S . Its singulari-

ties in 
-1 

of 't' 11 co 

S are at a finite distance of the real axis, of the order 

. If we assume these smgularities to be simple poles 

(a lthough other types of singularities can also be discussed 3)), the 

!eneral result (1.7.10) is valid (instead of a single residue, we must 

,,,ke a sum over the residues at all poles in S). 

Let us now consider the contribution of the simplest destruc~ 

lion fragment to the evolution of r ott) (fig. II. 6.1b) . In the limit of 

'e'l il1fin;te system, we have (see (II. 6. 8) ) : 

[fO(t~C=41/2" ille d, 

-izt 
(11.7.12) _e -~1 (z) 

z 

\1 ith 

~l(Z) (811 3/11) L{3 ';)";) dkV k.(---) )( 

.. k - '}12.. ~~, 
1 < J 1 J 

-(11.7.13) oX 
z-k.(v.- v,) r k. rk,k.=_k(O) 
~ :--1 -J -1 ~ -J ~ 

Ir; C'llntrast with the operator t 2(z), the Singularities of the destruc

tion operator ~ l(z) depend not only on the type of intermolecular po-

tential we choose, but also on the k dependence of the function r ~,-~ , i. e: on the initial co~ditions. Let us denote by lC~~rr the 

range of the initial correlations. We may for instance suppose that the 

binary correlation function g(~: ~', 0) (see II. 2. 9) is of the form 

(II. 7. 14) g(~, ~' ,0) = g q ~ -~' I ,0) = 

Then we have 

-I( (Ix -x'l) 
corr ~ -

e 
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(11.7.15) "" fb _t(O) 

l( 
carr 

2 .2 2 
(k + I( ) 

carr 

Therefore, besides the pole at z = -i Kg due to the Fourier coeffi-

cient of the potential, we now have poles at: 

(II.7.16) z = - i I(corr g 

in the rhs of (II. 7.12) . We thus obtain: 

~ (0) + Res [_e-_izt_~ (Z)1 . 
1 z 1 z = -lKg 

(II.7.17) 

( 
-izt '" ] + Res _e __ d.) (z) 

z 1 . " Z=-l g 
carr 

As for the diagonal fragment, taking into account the fact 

that ~ (z) 
1 

is of the form of a Cauchy integral, one generaliles 

this result very easily for the case where one does not aSSU1M" !':U" 

ticular form of the interaction and the correlation function. 

For times which are much longer than both the cu 1lh i:m 
-1 

time and the characteristic time (t( g) ,olll,v the first reJ:'l:~ remain 
corr-

in the rhs of (11.7.17). In what follows we shall restrict ')Uffet"·:,;,,, 

situations where the initial correlations are due to mule cula]!' interaction 

tions. Then the range Df the correlations is of the urder' of the range 

the interaction and both characteristic times are .cll:rl'.lC'L 

Let us now cons:der the simplest creaLor; fl'agment; 

(fig, II. 7. 1) ==:=> 
Simplest creation fragment 

Fig. II. 7. 1 
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It is a contribution to the evolution of f~, _~ (t) . Analytically, we have: 

-izt 

dz e Z C1(z) ro(O) 

with 

(II. 7.19) C1(z) = (S .... 3/ rl ) Vk k (~-~) 
" z-k.(v.-v.l -' .,0. ";lg". 

- -1 -1 ~1 J 

The main difference with the two preceding cases is that we have no 

longer a summation over the wave vector. However, our aim is to com

pute average values of dynamical quantities in phase space. If we compute 

the contribution of (II. 7 .17) to the complete phase space distribution function 

f ({g,,\ ,ls} t), we have: 

(11.7.20) rr(t~\'I1I' t)].J' -(I/'1\' it d, ,-:'t r I (,) foro) 

where 

(II.7.21) = fd\ exp rik.(q.-q.)] C (z) L ~ -1 ~J 1 

With our assumption (II. 7. 1) for the potential , we obtain: 

(II. 7.22) [r (\ ~ H~ I . t)]:> r 1 (0) + Roo (' -i:t((,) 1 ' ~ik g 

The last term is proportional to exp [- k( I!:, - ~tl)] where 

r = a . -q .' It will become negligible fo,r times t such that : 
- 'l.l-J 

(II. 7. 23) t» r/ g 

Later on, we shall only be interested in the value of the distribution 

function for relative distances of the order of the range of the intermo

lecular forces. Then the characteristic time r/ g will be of the order 
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of the collision time and for t » "C ,the asymptotic contribution 
coll 

will reduce to r 1 (0) . This means that, for the computation of the 

quantities defined above, we may take the asymptotic express ion: 

The contribution of other types of diagrams (diagonal fragments 

inserted on a line , free propagating lines, destruction diagrams 

involving exchange vertices (fig. II, 4. 2 a, f) can be discussed in a similar 

way but shall not be considered here (see ref. 1)) 

II.S - Evolution of the velocity distribution 

function. 

From (II. 3. 5) and (II. 3. 6) , we have: 

fo(l) ~-{1/2lf i) fe d, 

(II.8.1) 

. 00 n 
e -lzt '[ L. <0 _1 (i L _1 ) Ilkt) '" 

z-L z-L ~ 
{~\ n=O 0 0 

" fiU(O) 

If we separate out the diagonal part, we obtain: 

f 0 (I) ~ -(1/21i) Ie d, 

(II. 8. 2) 

-(1/2 lfi) ~c dz 
-izt 

e 

-izt e t <0 _1 (SL _1 )n lO)f (0) 
z-L z-L 0 

n=O 0 0 

It is quite obvious that all contributions to the first term in the rhs 

of (II. 8. 2) will be successions of irreducible diagonal fragments (see fig. 

II. 8. 1) . As to the second term, we shall start from the right with a 
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destruction region until we reach the vacuum of correlations to t. Then 

we can again go on towards the left with a succession of irreducible 

diagonal fragm.ents (see fig. II. 8. 2) 

n=1 0 
n=2 6 -+ CX) 

n=3 OC> -t C> +0 + C:x:::J + 

~ -+ c:J:)() ~ 0 · <S> + 0+00 

n = 1 

n = 2 

n = 3 

C 
CYC-

First diagonal contributions to fo (t) 
Fig. 11.8.1 

+ c= -t ~ 
OC -+ C -+ c= 

0 C> 

+~ 
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+~ + 

+ 

+ 

First. non diagonal contributions to f 0 (t) 

Fig. II. 8.2 

If we use the diagrams of fig.(II. 8. 3) to denote 

(a) the sum of all irreducible diagonal fragments whose initial 

(and final state ) is the vacuum of correlations 

(b) the sum af all destruction fragments whose final state :s 

the vacuum of correlations 

we easily obtain a regrouping of all terms in the rhs of (II. 8. 2) in 

terms of diagrams (fig. II. 8. 4) 

(a) 

(b) 

<QJJj) ~ 0 + 6 + OO-t 
<IJ]j : C ~L ~CC ~ c= 

Diagrammatic representations of diagonal and 

destruction ope rators. 

Fig. II. 8. 3 

-+ ... 



(II. 8. 3) 

(11.8.4) 
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Diagrammatic representation of the evolution equation 

for the velocity distribution function 

Fig.II.8.4 

Let us introduce the following operators 

co m 

:;72 (0 \ (IL z_1L ) I O)irr 

z 

o 

z-L 
o 

m 

) 'i~') irr 

where the index irr. means that only terms such that all intermediate 

states are different from the vacuum of correlations ,\ 0 l) must be taken 

into account. This condition means that all propagators in f(Z) and 

D\~~ (z) are different from z. 

With these operators (II. 8.2) may now eaSily be written as ; 

fo(t) = -(1/2 11' i) f e -izt 
dz --

C z 

(II. 8. 5) 

Differentiating with respect to time • we obtain; 

~ fo(t) = 
'It 
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+(1/2") Ie dz e- izt fo(O) + (1/211") Ie dz 

)( L... DJ~'(Z) rtU(O) 
(11.8.6) lttfl2.t 1 

-izt 
e x 

The second term vanishes because -its integrand has no singulari-

ties. As to the remaining terms, let us perform the z integration. 

Introducing time dependent operators G(t) and ~, ~\(t) which are respec-

tively the inverse Laplace transforms of t (z) and D l ~~Z) : 

(II. 8. 7) f -izt '" G(t) = - (1/211 i) e dz e 1 (z) 

(II. ~ .. 8) 

and using the convolution theorem as well as (II. 8. 5) , we obtain: 

(II. 8. 9) 

This generalized "master equation", which has been obtained in a 

straightforward way from a rearrangement of the terms in the formal so-
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lution of the Liouville equation describes the exact behavior of the ve

locity distribution function for any time. It may seem much more com

plicated than the original Liouville equation. However, as it will appear 

below, it has the great advantage that for a very wide class of initial 

states, it has simple properties in the long time limit. 

Let us first notice that we have decomposed the time variation 

of f 0 (t) in two contributions of a very different kind. First of all, 

we have a non-markovian contribution which is expre&sed in terms of 

f 0 only ; this contribution describes scattering processes; the inte

gration over the past corresponds to the physical fact that the scattering 

processes have a finite duration (collision time) . On contrast with the 

first term, the second term in the rhs of (II. 8. 9) does not depend 

on r 0 but on the initial correlations present in the system. This 

term describes the destruction of these initial correlations. 

II. 9 - Kin e tic e qua t ion. 

Let us now consider the case of systems interacting through 

short range forces and such that the initial correlations are over a mo

lecular range . For such systems, the duration of a collision is very short 

and many simplifying features appear if we consider the asymptotic beha-

vior of the system, i. e. its behavior for times 

(II. 9. 1) t»'t' 
colI 

such that 

Generalizing our discussion of § 7 , we shall assume that 

the operators t(Z) and 1: DJkt(z) fikl(O) 
\~\'~ ~J 

have the following 

properties: 

1. they are analytical functions of z in the whole complex plane except 
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for a finite discontinuity along the real axis . These operators are ana

lytical in S + and can be continued analytically in the lower half pla-

ne. 

These properties are consequences of the definition of these operators 

provided perturbation calculus converges. They have been verified in 

detail for the lowest order contribution to \lI (z) and r.. D k (z ) f. kJz) 
1 tk\ tJ ,_t 

in ~ 7; there it has been shown that both these contMbutions are Cau-

chy integrals. A detailled discussion of the operator 'f'(z) at higher 

orders has been recently done for the problem of anharmonic solids and 

some quantum field theory problems 5) • 

2. The singularities of the analytical continuation in S- are poles at a 

finite distance from the real axis. This assumption must be conside-

red as a sufficient condition for the validity of the kinetic equation we 

shall derive. We have seen how it can be realized for a simple type of 

interaction potential and a simple initial condition in §7. For more 

complicated interactions or initial conditions, singularities other than po-

les could appear and the following proofs must he amended but we shall 

not consider such cases here. 

With these properties of the diagonal and destruction operator in 

the z plane, our results of t 7 can be easily generalized for the di

scussion of the two kinds of contributions in (II. 8. 9) . 

Let us first consider the destruction term. Using (II. 8. 8) , we 

obtain: 

L.. Res r L D\k t(Z) e -iz~ k1(0)1 
J l~ k\ "" I~ -' 1 f·d 

- J 

(II. 9. 2) = 0 

where the ~j 's are the poles in the lower half plane of the function 
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~ D\!E\{z) rt~\ (O) . (II. 9~ 2) corresponds to our result of 7 that the lo

west order destruction contribution to the evolution of f 0 (t) is asym

ptotically constant; upon time differentiation, we obtain zero. Therefore, 

once (II. 9.1) is fulfilled and the initial correlations are short range, 

the master equation becomes: 

(II.9.3) 

while (II. B. 5) reduces to 

folt) . R" [, ~i't ~ ttl'» tJoIO) 

(II. 9.4) t. t (1/p~ q~) (-it) p\1ry(z) 1 
p=O q=O dzP L' 

where the function '¥(z) which has to be used for z....., 0 is the analy

tical continuation of the function defined in S + 1) 

It can be shown, through some lengthy algebrliic manipulations 

that this gives rise to the kinetic equatlon: 

(II. 9. 5) 
~~ (t) 

i -a°t = n '1'(0) r o(t) 

where n is a complicated functional of t and its derivatives for 

z ~O 
00 

(II. 9. 6) n = L-
"'=:0-

nG( 

(II. 9. 7) n = 1 

° 
(II.9.B) Q = lim 

1/ 
z""O 

net (z) ~ > 1 

1) Po (0) is a modified initial creation and is given by the expression between 

in the rhs of (II. B. 5) 
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The 0 cl (z) are given by a recursion formula: 

(IT. 9. 8) 
at-I ';) 

= (lie() 1:: \ 'ilz 
~ =0 

o c( -1 _ ~(z) t(Z)} Of' (z) 

The operator 0 takes into account the finite duration of the collision. 

We shall not give this derivation here but rather use some simple 

consid~rations which will emphasize the meaning of both the operator f 
and 0 

The operator t has the dimension of the inverse of a time 

(see II. 8. 3) . As this operator describes the collisions occuring in the 

system, this time is of the order of tre relaxation time. (for instance, in 

dilute gases (Boltzmann equation), the relaxation time is connected with 

binary collisions, i. e. those terms in '¥ which involve only two particles). 

Derivation with respect to z of t increases by one the power of one 

of the unperturbed propagators. In our simple example of + 7, we have 

seen that this amounts to bring an extra factor ~ . Therefore, any 
colI 

contribution to rhe rhs of (II. 9. 4) corresponding to a given value of 

p and q is of the order 

(II. 9. 9) (t/'C ) P (1: l-c )q 
reI coll reI 

Let us first neglect 't' 1/"C l' i. e. let us cons ider the collis ions as 
col re 

instantaneous events. Then, we may restrict ourselves in (II. 9. 4) to the 

term q = 0 and we obtain: 

00 

(II. 9.10) f ott) = ~ (l/p~) (-itt(O))p fo(C) + 0 (Tcolll'rrel) 

This leads us to 

(II. 9.11) 
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This equation is a very simple generalization of Boltzmann IS equation; 

besides two-body collisions, it includes collisions between an arbitra

ry number of particles. However, if we do not neglect collisions betwe

en more than two particles ,it is not consistent. Indeed, for a dilute 

gas of hard spheres for instance, where we can restrict ourselves to 

two-body cOllisions, it can be shown that the relaxation time is given 

by: 

(II. 9. 12) 
-1 2 -

't'1=Cav 
re 

where a is the diameter of the partiCles and ~ their average velocity. 

As the only dimensionless parameter we have is a 3C , we must expect 

that, when we take into account higher order collision processes, we 

shall have an expansion analogous to the virial expansion : 

(II. 9. 13) 
-1 

T 
reI 

- 2- [ 3 A 3 2 1 - Ca v 1 + G( a C + ,.(a C) + ... 

Now, we also have : 

(H. 9.14) -r = al v 
coIl 

and thus 

(II. 9.15) 
3 

1: III r 1 = 0 (a C) co re 

Therefore, the procedure we have followed is certainly not consistent: 

we cannot keep higher order collision processes (i. e. corrections of 
3 

order a C in 't' 1) and neglect terms of the order of 't' liT 1 in 
re col re 

the rhs of (II. 9. 4) . In order to understand the general evolution equa-

tion (11.9.5) let us keep in (11.9.4) the fira correction, that which 

is proportional to 1: lIlT: 1 (i. e. the contribution q =1) . Then we ha-
co re 

ve : 
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OQ OQ 

+ L L. (l/(p+q)! )(-it ,\",(0) )p i' I(O)(-itf(O))q fo(O) 
p=O q=O 

(II. 9.16) 
2 

+ O'('t'cOll/ r reI) 

Upon differentiation with respect to t, it is easy to show that one ob

tains : 

The operator '1'1(0), which takes into account, in first order • the fi

nite duration of the collision, is precisely identical to the operator r2l 

in (II. 9. 6) . 

II.IO-Evolution of the correlations in an homogeneous 

system. 

As all derivations are very similar to the derivation of the gene

ralized master equation for the velocity distribution function, we shall 

only indicate how they proceed and what are the final results . 

The most general diagram contributing to the evolution of a given 

correlation contains all three types of regions defined in ~ 5. We shall 

now write: 

(II. 10. 1) 

where, by definition : 

Hi, (t) contains all diagrams without creation region 

D.ic (t) contains all diagrams which end by a creation region 
If-t 

This decomposition is performe.d in detail for all second order diagrams 

contributing to the evolution of f~, _! in fig;Il. 10. 1. 
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o 

--) 
Second order contributions to r" k -k -' -

Second order contributions to the 

evolution of the binary correlation f!, _! 

Fig. II. 10. 1 

To discuss the evolution of r~k (t). one decomposes the relevant 
1_\ 

diagrams into those which are diagonal and those which contain a destru-

ction region (see fig. II.lO.l) . In this way, one verifies easily that these 

functions obey an evolution equation very similar to the general master 

equation for the velocity distribution function: 

-[ d1: G \!dt -T)r UP') 

(II. 10. 2) + ~:~\I!'l (t, fl!!.'1 (0) ) 

where G \!\(t) is the in verse Laplace transform of the diagonal operator: 

(II. 10. 3) 
IlO 1 

ftU(Z) = ~~!'ISL (z -L!44t!\)irr 

while ~~I!') (t, rf!" (0» is the inverse Laplace transform of the 

destruction operator : 

The dash on the summation over t ~" in (II. 10.2) means that only those 

states 1t!'~whiCh are such that the transition 1 !\~' I describes a 
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destruction of correlations must be taken into account. 

The evolution of ft~ \(t) is due to the dissipation of the ini

tial correlations through the collision processes. For long times, a pseu

domarkovian equation similar to (II. 9. 5) can also be derived from 

(II. 10.2) . 

As to the evolution of Plf t \(t), the main point is to notice that 

if we have at the left a given creation diagram, corresponding to a 

transition \ t \t-\~" ' we may have at the right of this creation diagram 

any of the diagrams which contribute to the evolution of Pit, \("1: ) 

Iff tt'\=I.Q.\ ' we may have all the diagrams which contribute to the 

evolution of the velocity distribution function), if or is the time corre

sponding to the first creation vertex. This remark makes it possible to 

show rigorously that one has: 

(II. 10.5) 

where the dash on the summation over \ t' t means that only tho-

se states I \ t' \)c0rresponding to a lower state of correlations than B~t) 

must be taken into account. 

Ct tH~'rt) is the inverse Laplace transform of the creation 

operator: 

(II. 10. 6) 

Equation (II. 10.5) describes the continuous creation of fresh correla

tions by direct mechanical interactions from less excited states. 
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II. 11 w A P pro a c h toe qui Ii b r i u m 0 f the vel 0 cit y 

distribution function. 

For weakly coupled or dilute systems, the approach to equili

brium is usually discussed by means of an l£ -theorem. More precise

ly , one shows that the quantity 

(II. 11. 1) 

decreases monotonically in time and that the stationary solution (which 

is unique) corresponds to the equilibrium distribution. 

Unfortunately, this theorem cannot be completely generalized 

when higher order contributions are taken into account. We shall only 

consider the case of systems where there exists a parameter such that a 

perturbation expansion in powers of that parameter has a meaning (cou

pling constant ~ for weakly coupled systems, concentration C for dilute 

systems) . As an example, we shall consider the case where an expansion 

in powers of ~ has a meaning . Then, with the following expansions: 

(II. 11. 2) fort) = r(~) (t) +~f 2) (t) + ).2 pi!) (t) + ... 

(II. 11. 3) 1'(0) = }. 2 'l'2{O) + \3 'l'3(0) + \.\1'4(0) + ... 

(II. 11. 4) r2 = 1 + ~2'1'2 (0) + ... 

the kinetic equation (II.9:5) gives us a set of equations: 

{II. 11.5) 

(II. 11. 6) 
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~~2) ... 

(II. II. 7) ~ ~ - , t ,(0) f (:) (t) - ''\'3(0) r (!)(t) - ''1'4(0) r (~) (t) 

- i'l'2 (0)'\'2(0) f (~) (t) 

etc ... 

The ~ -theorem for the lowest order approximation (for wea

kly coupled systems, see chapter III, If 2 and 3) shows us that r(~)(t) 
decreases mo,10tonically towards its equilibrium value 

(II. 11. 8) r(O) (t ~ co) = f(O) (H ) 
o 0 

For times much longer than the relaxation time for f(~)(t), the next 

approximation is then given by: 

(II. 11. 9) 

7»O(I)(t) 
I 0 = _ i-" (0) r(l) (t) _ i'" (0) f(O) (H ) 
~ ~2t \ 2 0 13 0 

The interesting feature 
)( 

is now that one can show that 

(II. 11. 10) '" (0) g (H ) = 0 'n 0 

where g is an aTbitrary function of the unperturbed hamiltonian. A 

general method to verify this property can be 'found in 3). This method 

is based on the discussion of an integral equation and rather formal. 

A more cumbersome method 1) 6) consists in the splitting of each 'I' n 

in a number of operators according to the number of particles which 

appear in the diagram. For instance, in the operator t 3(0) , we have 

J[ThiS is valid for gases where the interaction is velocity independent. For anha
rmonic solids for instance, the situation is more complicated because of the ac
tion dependence of the potential and this property is not valid. This makes it very 
difficult to study the approach to equilibrium at higher orders than ~. 1) 5) 7) 
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two diagrams (fig. IL11.1) : one with three particles (a) which we call 

t(~) , the next one (b) with two particles which we callt(!) . 

o <b6 
A 

Contributions to t 3 

Fig. II. 11. 1 

One then shows that : 

(II. 11. 11) 

As an example, let us verify this for n=3, ~ = 3 (diagram a, fig. II. 11. 1) 

We have: 

d/(33)(O) g(R ) = lim L !(O\~L \ !!..=~, !EJ.= - !!.) " 
1 0 z:., 0 ijl ~ 1 

(i. 1.1. 12 'Ilk .=k, k. = -k ,_1 ·lk .=k, k .=-kVk .=k, k. = -k\SL\k =k, k .=-k) IC 'rl .... -J ..... z - L -1 ......... J -N-1 - -J - -1 ..... -J -
o 

• <k =k,k.=_k\_l_lk =k,k.=-kXk =k,k.=-klIL\ O)g(H) 
-1 - -J - z-L -1 -. -J -1 - -J - 0 o 

Using (II. 1. 1) ,(11.2.12) and (11.3.11) as well as : 

(II. 11. 13) lim a/ (z - a) = - 1 
z~ 0 

we easily obtain 

,\,Ii (0) glH r .~~ ;. {d 'k tv. \ 2 
V k ~ • I !I<i -:1</ • 

Ill. 11. 14) 

x 
k. (v .-v l ) 
"" ""1 "'" 

z-k.(v ,-v J 
- -l-J 
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Now, let : i ~ j, j ~ i, ~ ~ -~ and take half sum of the rhs of 

(II. 11.14) and the term obtained through this interchange of dummy 

variables. We obtain: 

= 0 

because tre integrand is an odd function of k 

Let us now go back to the discussion of the s~t of equations 

(11.11. 5) , (II. II. 6) J (II. II. 7) , etc ... for long times. Using (II. 11. 10), 

we notice that (II. 11. 9) reduces to: 

(11.11.16) 

~ (1) (t) 
fo =_idl(O)O(l)(t) 
~~2t 12, 0 

As only the lowest order operator remains in this equation , we again 

obtain the result : 

(II. 11. 17) r~l) (toi (0) = P) (H ) 
o 

It is then trivial using again (II. 11. 10) to show by a recurrence pro-

cedure that: 

(I1.11.18) in) (H ) 
o 

Therefore, we obtain: 

(II.11.19) 

which is the equilibrium distribution . The function f(H) is arbitrary 
o 

(normalized to unity) as far as this proof is concerned but is comple-

tely determined from the initial condition (see ref. 1) ) . 
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Let us stress the fact that this generalized ~-theorem is 

not so powerful as the t -theorem for the lowest order approximation. 

Indeed, the g -theorem for the lowest order approximation actually 

amounts to proof that all eigenvalues of the hermitian operator - it 2 

are either negative or zero and that there is a unique eigenfunction 

(the equilibrium distribution) corresponding to the eigenvalue zero. In the 

case of stronger coupling, what we have actually done here is to verify 

that there exists one zero eigenvalue for the complete evolution operator, 

with the equilibrium distribution as eigenfunction. A true )C -theorem 

would require a proof that the eigenvalue zero is unique and that all 

other eigenvalues are negative. This is of course very likely, at least 

for systems where a perturbation expansion h8s a meaning, i. e. when the 

lowest order terms give the dominant features of the behaviour of the 

system. 

II. 12 - A P pro a c h toe qui Ii b r i u m 0 f the cor reI a t ion s 

in an homogeneous system. 

The asymptotic solution for the equation (11.10.2) for the part 

r'~ ~ \ of the correlation can be discussed in a way similar to the above 

discussion for the equation for the velocity distribution function. The main 

result is : 

(II. 12.1) 

As a result, in the equation for f"h. \ (t). we only keep those creation 

fragments which start from the vacuum of correlations: 

(II. 12.2) P" (t) 
\ k\ 



.- 23U-

F. Henin 

These results mean that the initial correlations tend to dissipate. In 

the long time limit, only the fresh correlations which are continuous· 

ly created from the velocity distribution function remain. 

For times such that the velocity distribution function has reached 

its equilibrium value, we have j 

(II. 12.3) 

or, using the Laplace transform of the creation operator (see II. 10. 6): 

(II. 12.4) 
( -izt -1 

:; (1/211'i) }C dz (e - 1) z Ct ~W2.~Z) f(H 0) 

Now , as in our discussion of t 7, we take into account the 

fact that we shall always be interested in average values of dynamical 

quantities, i. e. in expressions which involve a sum over the wave vector. 

In such quantities, the operator Ct ~"2..\(Z) is replaced by an operator 

r(z) which is a Cauchy integral (see for instance 11.7.21). We then 

have: 
-izt -1 r 

(e - 1) z (z) (1/2'1f i) {dZ 
(II. 12.5) e 

where the ~j s are the poles in S· of r(z) . 

For long times, this becomes: 

(II. 12.6) z: r -izt 
lim. res l (e 
t~ 0() j 

) 
f·:1 
J 
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This result allows us take 

(II. 12. 7) m 

= lim (OJ\ L:. ( z-~ k) IO)f(Ho) 
z"" 0 m= 1 0 

If we denote by 

(11.12.8) p (m) = lim (f k \\ (_1 ~ L) m \ 0'\ f(H ) 
I \ k \ '- z-L '/ 0 

- z~ 0 0 

the set of all to f !IE! ,contributions involving m vertices we have: 

m 
(II. 12.9) (m) 

FtU 
J::...lo) 

m! 

where V is the intermolecular potential (see (II. 1. 1) ) . (II. 12.9) can 

be provep. , using a recurrence procedure. For m == I, we have, using 

(II. 3.9) : 

O(1)=k,k,=-k 
I k. ..... ..... J ..... 

..... 1 

(II. 12.10) 

"lim<k. =k,k,=-k\-l_~Llo) f(H) 
z~o -1 - -J '" z - L 0 

o 

'i) '0 
z-k.(v ,-v.) Vk k.(~ ---U-)f(H ) 

"- ..... 1 ..... J - £.j tj 0 

3 , 
= (81r / fl) hm 

z~o 

';)f(H ) 

(8v3/fl) Vk C)Ho 

o 

~f(H } 
=(k,=k,k.=-klv-o lo' 

-1 - -J"'" d~ / 

x , 
Some care has always to be taken m the use of (II. 12, 7). The use of such 

an expression does not lead to difficulties when one is interested in average qunn 
tities which are linear functionals of the correlations. When non linear functio 
nals must be considered, one must~o back to (II. 12.4) as has been shown in 
recent work on anharmonic I,>olids . 



- 232-

F. Henin 

Assuming (11'.12.9) to hold for a given value of m, we have: 

( +1) ( 1 ,m+1 r t~\ = ~i~ 0 <t~\ h z-Lo 6lJ 'O)f(Ho) 

= lim [~~\\ z _1 L 0 L\\~I\)r~~)'t z.., O\~I 0 ~ 

(II. 12.11) 

\ 
~ mf(H ) 

;,row, 

= lim r<1~\ I z 1_ L ~ L\\~I\)({~I\ ~ 
z~ O\~'t 0 ~H 

o 
m 

l 1 Vm d f(H) 
= lim (\ k\ -L ~ L - 0, 0) 

~ z- m m 
z~ 0 0 ;)H 

o 

if I k \ contains v non vanishing wave vectors k .•• k , we obtain: 
l~ -1 ~ 

(m+1) , Vm ~mf(Ho) > r = hm " < i ~ ~SL I 0 
~1'''~\J z~O z - r: k,.v, m! ";)H m 

i = 1 "'1 ....... 1 0 

3 N+1 
= - i( 81{' I Q-) lim 

z~O k " Y 
-1 1 

i=1 

f N [ t k .qJ ~ -;)v ~ ~m ~mf(Ho) 
X {ds. \ exp - i i = 1 -i -i '- .... a ." 0 m • " Hm 

1=1 "~l ""'-1 . fJ 
o 

3 N+1 
= i(81t ! rl.) lim ~ fidQ.! N exp [_ i t ~i' S.i] l( 

N 

1: :(,1 
1=1 

3 N+1 
= i(8 n In) 

z~ 0 or i=1 
z- L- k " v, 

........ 1 ....... 1 
i=1 

m+1 
Vm d f(Ho) 

m! dH m+l 
o 

lim 
z~ 0 z- L ~i' :(, 

i= 1 1 
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= i(81T 3/f2) N+1 lim 
z~O 

z -

(II.12.12) 

" ~ { ds.} N exp 
" II 

[ - i L. ~ ... ~.l ~ 
i=] 1 .• iJ t"i 

F. Henin 

_1_ ~m+1f(H.) 
(m+1)! ;) H m+1 

o 

,,\m+1 
1 d f(Ho) 

(m+1)l m+1 . dH 
o 

Integrating by parts over ~1' one obtains easily (II. 12. 9) with m re

placed by m+1 . 

Combining (II. 12.9) and (II. 12. 7) , we easily obtain: 

(II. 12. 13) 

which is the cQrrect value of the equilibrium correlation. 

Therefore, once the velocity distribution function has reached 

its equilibrium value, the fresh correlations which are continuously crea

ted from f 0 are the equilibrium correlations. (II. 12.7) gives us a dynami

cal description of the equilibrium correlations. A comparison with Mayer's 

cluster formalism can be done but will not be oonsidered here. 

11.13. Response to an external constraint, 

As an example, let us consider a system of charged particles 

which is at equilibrium at t=O: at .t=O, we switch on a spatially homogeneous 

extern'll electrical field ~ (t) . 

To the hamiltonian (II, 1. 1) , we now have to add a term descri

bing the effect of the external field: 



(II.13.1) 

where e 
i 

(IL 13. 2) 

with 

ell. 13. 3) 
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HE = L e. E (t).q. 
. 1"'" -1 
1 

is the the carge of the ith particle. 

The Lbuville operator corresponding to this problem is then: 

iL = iL + i ~ L + iL 

iL = 
E 

o E 

L e. E.~ 
i 1"'" .~i 

As we have assumed the system to be at equilibrium at t=O, 

the initial condition is : 

(II. 13.4) 
exp [- (H + ~ V)/k1f ] 

= 0 

If the external field is sufficiently weak, we can restrict oursel

ves to a linear theory in E; therefore, we have: 

(II. 13. 5) f (t) =f· + Ap(t) equ. 

where At is linear in E. Using : 

(II. 13. 6) (L +SL) r = 0 
G equ. 

(II.I3.7) 'r /';)t = 0 
equ 

the Liouville equation reduces to 

(II. 13.8) 
jAr 
't = -i (L + SL)4r -iL r 
dOE equ. 
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when terms of order E2 and higher are neglected. 

This equation can be solved formally very easily: 

(11.13. 9) 4 fIt) • -i [ dt' exp [i(L + ~L)(t-t')J LE(t') f 
o equ. 

This solution takes into account the initial condition(II. 13.9 )) (6r(O)=O), 

Let us again expand the distribution function in a Fourier se

ries of the position variables. Then, for the velocity distribution function 

r 0 (t) (which is the only coefficient we require if we want I for instance I to 

compute the current in the system), we obtain: 

(II. 13. 10) 

Taking into account the fact that E is spatially constant, we have: 

(II. 13. 11) 

and therefore : 

(II. 13. 12) 

)( L (t') r equ. 
E n.\ 

Any time dependent field can be represented by a superposition 

of oscillating fields with various frequencies. Therefore, we shall 

restrict ourselves to the case of an external oscillating field: 

(II. 13. 12) 
-iwt 

E(t) = E e 
- -0 

Using the convolution theorem and (II. 13. 13) , we easily can write: 
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where R(z) is the resolvent operator defined by (II. 3. 6) in the 

absence of external field. The matrix elements of this operator have 

been discussed in detail in , 8, where we established the generalized 

master equation for the evolution of the velocity distrihution function in 

the absence of external field. Using these results, we obtain: 

{ -izt [1 ] nl '" ~ Il P (t)=-( 1/ 21f i) dz _e - L -"'(z) _1 4-(, E ,-requ. 
o c z n=O z 1 z-w I 1""'0 Cl E-i 0 

(II.13.15) 

where the operators 'Y (z) and D. ~-,(z) are given by (II. 8, 3) a nd 

(II. 8. 4) respectively. 

Differentiating with respect to t and using (II. 8. 7), (II. 8, 8) , we 

obtain: 

(II. 13.6) 

This transport equation is valid at any order in the cou

pling constant' and the concentration. 

, f equ. The term lLE 0 in the lhs is the usual flow term 
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which describes the effect of the field on the unperturbed particles 

(i. e. between successive collisions) . 

As to the non markovian term in the lhs of (I1.13. 16) it descri

bes the effect of the external field on the particles during the collisions. 

To see this, let us consider the static case (w=O) . Then, for times long 

with respect to the collision time, we have (see (II. 8. 8.)) 

(II. 13.17) L [t 
n.' 0 

As we have seen, the equilibrium correlations are created from the 

equilibrium velocity distribution (see (II. 12.7)) and we can write: 

L D\k \(0) 
L p'equ. T c equ. 

EltU = {~\ D I ~\(O) LE ·h. ,(0) f 0 
U~l ~ 

(II. 13. 18) 

" lim 
z~O 

equ. " r 0 

If we compare the operator in the rhs 

(II. 8. 3) , we notice that they differ 

the unperturbed propagator S 1/ (z-L ) 
o 

z-L 
o 

L _1_ (h _1 )' J L I 0) ~ 
E z-L z-L 

o 0 

with the operator t(z) given by 

only through the replacE'ment of one 

in t(z) by : 

(II. 13. 19) 
1 

z-L 
o 

LE z-L = z-L -L 
o 0 E 

1 
z-L 

o 

2 
+ O(E ) 

In other words, the operator in the Ihs of (II. 13. 16) describes the corre-
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ction to a collision process which. one obtains when one takes into ac

count (to first order in E) the effect of the external field on one of the 

intermediate state. 

11.14 - Stationary transport equation in the static 

case. 

After a long time, we may expect that a system submitted to 

an external, spatially homogeneous, constant, electrical field will reach 

a stationary state : 

(II. 14. 1) 

where fl r :t. is time independent. As the contributions to the rhs of 

(II. 13.16) come from times"C such that: 

(II. 14.2) t - "t' ~"[ colI 

we also have, for very long: 

Taking also into account (II. 8~ 8), the general transport equation becomes: 

(II. 14. 4) iL r equ~ r. D (O)iL f~qu.= lim f t d't' G(t- 't' )Arsot . 
E 0 I!\t!\ El!\t~aoO 

or 
equ. 

(II. 14. 5) iLEV 0 + r. D (0) iL P equ·. = -it(O)A r at 
f!' {t\' E H!l 0 

In chapter V, we shall use this equation as ~ starting point i1 a 

discussion of brownian motion of a heavy charged particle submitted to the 

action of an external constant electrical field and moving in a medium of 

light particles. 
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III. BROWNIAN MOTION IN AN HOMOGENEOUS, 'WEAKLY COUPLED 

SYSTEM 

Ill. 1 - Introduction 

We shall consider here a weakly coupled gas, i. e. a system such 

that the coupling constant is very small : 

(III. 1. 1) 

\-2 
The relaxation time of such a system is proportional to A (see the Born 

approximation) : 

(III. 1. 2) 
\ -2 

"t' ~ J\ 
reI 

We shall consider the evolution of such a system for times of the order 

of the relaxation time, i. e. we shall take the following limit: 

(II.l.3) 

As the collision time is independent of the strength of the interaction, we 

clearly have : 

(II. 1. 4) 1:' /~ ~O 
colI reI 

and the evolution of the system will be described by a markovian equa

tion. 

The weak coupling condition implies that we exclude all forces 

with a strong repulsive core. Strictly speaking, there are no known 

intermolecular forces for which the theory of 'weakly coupled systems may 

be applied. 

In all physical cases, the interaction becomes too strong at very short 

distances to be handled in a weak coupling theory . Nevertheless, we shall 

consider it here because it is the simplest example where the brownian 
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motion problem can be discussed starting from a microscopic basis. 

This model has been discussed by Prigogine and Balescu 1)2) and will 

already show up interesting features when compared with the phenomeno

logical theory of chapter I, and in any ease, we can expect that it will 

give us a good description of the effect of the collisions which are not 

too close. 

We shall first find the equation for the reduced distributi on fun

ction for one particle assuming that initially there are no long range cor

relations. Then, we shall specialize to the problem of brownian motion 

where the particle moves in a fluid at equilibrium. The equation so obta

ined for the one particle velocity distribution function will be of the 

Fokker·Planck type. Roweveir» in contrast with the assumptions of the 

stochastic theory, the friction coefficient will appear as velocity depen. 

dent. In fact, this dependence will be important only for velocities equal to 

or higher than the mean thermal velocity of the fluid. 

1II.·2 - Equation of evolution of the velocity distri

but ion function for weakly ooupled systems. 

From the discussion of chapter II.. ~ 9 , it is quite clear 

that if we take into account (III. 1.4), we must neglect all non marko

vian corrections to the kinetic equation, i. e. take 

(III. 2. 1) n = 1 

in (II.9.5) 

When we do this, to be consistent, we must keep in the ope

rator t only the lowest order contribution, of order A 2 . The only 

diagram which we have therefore to keep in the operator 'I' 
cycle (fig. II. 6 ta) . The evolution equation then becomes: 

is the 
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(III. 2. 2) 

where t 2 is the operator associated with the cycle. We have already 

discussed this operator in ch. II. ~ 7, using the simple case of an ex

ponential interaction law. If we do not make any special choice of the 

potential, We have (see II. 7.4) 

(II. 2. 3) 

We have nvw to find out the limiting value of i' 2(z) when 
+ 

z~O,i.e. 

the analytical continuation of this operator when z approaches the 

real axis. As we have already said this can be done easily, in the limit 

of a large system, using the theory of Cauchy integrals. Indeed, when the 

limit 

(Ill. 2. 4) N..., 00 , 11 -') 00, N/11 = C finite 

in taken, the spectrum of values of t becomes continuous and the sum

mation over k in (III. 2.3) bec'Omes an integral: 

(IIl2.5) (811"3/ 11) ~ ~ \ d
3
k 

Then we have: 

- it 2(z) (81t 3/ I1 )i L. , 3 2 &) d 
d k tv \ k .(- --) x 

i(j k ~ 'i) ~i ,--~~, 
J 

d ~ 
(III. 2. 6) X k.(- --) 

z-k. (v ,-v .l ~ () p , C)p, 
~ -1 ~J ~1 ~J 

If we take as one of the integration variable the variable: 
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(II. 2. 7) x = k . (v . -v.) 
..... .....l .... J 

the dependence on z is of the form: 

F(z) = J+:x ..B&.. 
z - x 

-00 

(Ill. 2. 8) 

This is precisely a Cauchy integral. Its analytical continuation is : 

(III. 2.9) 
'+00 I +00 

F(O'+) = - )-00 dx (((1/x)f(x) - 11 i -00 dx a(X) f(x) 

The rhs of (III. 2. 6) is an even function of ~ . Therefore, the contri

bution involving the principal part vanishes and we are left with the 

following kinetic equation for a weakly coupled gas: 

~p (t) 4 2 [ i 3 2 d ;) 
_0_ = (81f X / n) d k 'V \ k. (- --) )C. 
~t .<. k ..... i)P. ;)P. 

1 J -1 -J 

(III. 2. 10) 
)( ~ [k. (v .-v.)l k. (_d_ -~)p (t) 

..... .....1 -J ..... ~ 0 . oP. ,. 
""1 .... J 

Let us notice that with this equation it is very easy to verify 

Boltzmann's }t! -theorem. Indeed, with Boltzmann's )f -quantity defined 

as : 

(III. 2. 11) 

the kinetic equation allows us to write : 

(III. 2. 12) 

;~ ~ - (8ll '}.2/Ql ?i Id\ IvS Sr~· (~;-:::)\ 
" [k. (L -:L)r (t)1 2 (0 

..... ~ £.i ~£.j 0 J 
The function )f (which is related to the entropy) decreases monotonically 
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to its equilibrium value. The rhs of (III. 2.12) vanishes once r 0 

has reached its equilibrium value : 

equ. = f(H ) 
(III. 2.13) f 0 0 

The function f cannot be determined by (III. 2.12) but is determined by 

the initial conditions. We shall see in the next paragraph that the 

assumption of initial molecular chaos leads to the Maxwell-Boltzmann 

distribution. 

III.S - Kinetic equation for the one particle velo

city distribution function. 

Let us call f s the reduced distribution function for s momenta: 

(IlL 3. 1) 'fs(;::,I.· .. ;::,s.tl =fd.ES+1 .. ·d~N fori ~'.t) 
Integrating (III. 2. 10) with respect to all momenta except;::, 1 and taking 

into account the fact that the distribution function vanishes at infinity. 

we obtain: 

(III. 3.2) 

This equation gives us the evolution of the one-particle velocity 

distribution function in terms of the two-particle distribution function. 

Therefore • it is not a closed equation and if we do not make any 

further assumptions. we have actually to deal with an infinite hierarchy 

of equations. 
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According to our basic assumption (Ch. II. ,t 9), we consi

der a system where all correlations are of finite extension. Now, the 

velocity distribution function is an average over the positions of all 

particles of the complete distribution function. When we do this, if we 

consider two given particles, it is quite clear that the contribution of 

those configurations where the particles are correlated is much smaller 

than that of those configurations where they are uncorrelated. This 

allows us to neglect the effect of these correlations on the velocity 

distribution function, i. e. to make the assumption of molecular chaos at 

t = 0 : 

(III. 3. 3) f (t=O) = nUl (v., t) 
o J 1'1 ~J 

Once molecular chaos is taken as an initial condition, it can 

be shown to persist for all times in the limit of infinite systems 1) 3) 

We shall not give the proof here. 

With the initial condition (III. 3. 3) , we may write in the rhs 

of (III. 3. 2) : 

(III. 3.4) 

and we obtain: 

I> lD (v ,t) 
1 1 ~ 1 = (8 tJ 4 A 2( \1 m 2) I idV , \ d \ \v \2 k .: )I o t 1 ,~J k ~ "v 

J -1 

(III. 3.5) 
't S r k . (v -v.)1 

L '" '" 1 '" J 

m 
1 t> 
~)18 (v ,t)'f (v" t) 

m, uV,Tl"'l l"'J 
J '" J 

A similar equation can of course be eas:ly obtained for the re

duced distribution function of any particle of the system. Therefore, we 

are now dealing with a closed set of equations. 
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Let us now verify that the equilibrium distribution correspon

ding to the initial condition (III. 3. 3) is indeed the Maxwell-Boltzmann 

distribution. Using (III. 2.12) and the assumption of molecular chaos, 

at equilibrium, we must have : 

(III. 3. 6) 
~ C> 

k . (~ - -:::;- )CD 1 (v ., t) 1,{)1(v ., t) = 0 
'" U I!..i U I!..J I· "'I , I "'J 

whenever k is such that: 

(III. 3. 7) k . (v . -v .l = 0 
'" "'I "'J 

We verify easily that (III. 3. 6) implies: 

~lp'f1(~i't) ~lnf1(~j't) 
(III. 3.8) ~.( • ~p. - i)D. )=0 

"'I ""J 

Whenever (III. 3. 8) and (III. 3. 7) are simultaneously satisfied, we must 

have: 

)lnfl(~i) ~1~(V .) 
"'J 

~I!..i 'Sp. 
= "'] 

I!..i - I!.. 0 
P. - I!..o ""J 

mi m. 
J 

where al and I!.. are constants . 
o 

Integratfug (III. 3.9) , we obtain : 

= ol 

2 . 
(III. 3.10) In 'f (v .l = "(P. - P ) 12m. + In V . 

1 "'I "'I "'0 1 01 

where ~ i is a constant. 

This gives: 

(nI. 3.11) ~l(v.) = v. exlel jp .-P 12/2m.] 
, "'I • 1 L' "'I ",crI 1 
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The normalization condition requires: 

3/2 
(III. 3. 12) 

We also consider systems where the average velocity is zero; hence 

(III. 3. 13) D = 0 
~o ~ 

Defining the temperature through: 

(III. 3. 14) 

one obtains eas ily the usual Maxwell - Boltzmann law;: 

(rII.3.15) 
3/2 2 

\D (v) = 41f(m/21fkT) exp(-mv /2 kT) 
11~ 

In this way, we have verified our statement at the end of the previous 

paragraph. 

III. 4 - B row n ian mot ion ina fl u ida t e qui 1 i b r i u m . 

We shall now consider the simple case where the particle 

1 moves in a fluid at equilibrium. We then have: 

'" (v., t) = 41f (m./21f kT)3/2 
(III. 4. 1) 11 ~J J 

jf1 

Then, equ. (III. 3. 5) becomes (assuming the masses of all fluid particles 

to be equal to m) : 

(III. 4. 2) 
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In this way, we have obtained a closed equation for ~ 1{~1' t) . 

The ~ integration is easily performed in a reference frame where 

the relative velocity 

(III. 4. 3) [ = ~ 1 - v 

is along the z axis: 

n, (d3k \V \2 k,k.S(k.g) b, = lfB(a lb + a ! b ) 
1) k 1J "'''' J xg x yg y 

(III. 4.4) 
1 1 

=1JB( ~ . g b - a . [3" f'~) 
g 

where 

(III. 4. 5) 10() 3 2 

B = 0 dk k 'V k I 

depends only on the intermolecular potential . 

The last expression in (III. 4. 4) is valid in an arbitrary reference 

frame . Using dimensionless quantities : 

(III. 4. 6) 

we obtain: 

2 

(III4.7) 
4> m l ~ ( -(~-~ 

(-- + 2- u.l- - dw e l( 
w UU, m 1 i)u. '" 

x 1 
w w ~ 

i j woJ 

1 1 

In a reference frame where ~ is along the z axis, we have: 
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-(w -u) d 0 -(w +u -2wucos 0) f 2 roo ,+1 2 2 
II = d~ e -,... (l/w) = 211 0 dw w -1 cos e 

(Ill. 4. 8) 
- w-u - w+u 3 2 Joo 2 2 / 

= ~ /u) 0 dW\ e ( ) - e ( ) 1= (If lu) 4>l"'-) 

where 

(III. 4. 9) 

2 
-x 

e 

is the error fUnction . 

We also have: 2 

I -(w-u) -3 1 
a. dw e ,... - w.w. w b. = (1/2)(a.I b-a.u -n I u.b) 

~ - 1 j J ,... 1- '" '" u 4 1 - '" 

(III. 4. 10) 
- (1/2) (a. I2b - 3 a. u ~ I u . b) 

....... ....... "'''''U 2 ............. 

, +1 2 -(w2 + u2 wucos 8) 
dw w dcos 0 cos (J e 

-1 
I = 2111co 
2 10 

2 fCO _(w 2+u2) d2 
= err/2u) dw w e 2 r +1 

2wucos (J 
dcos (J e 

o dw -1 

(III. 4. 11) fCO [2 2 2~1+1 2 ) d -(w +u ) 2wucos(J 
= (If /2u) dw -2 w e dcos (J e 

o dw -1 

-u 
+ 2e 

..r 3/2 { -2 ~ -3 2 + l =" U,.' (u) - u (l-u) (U)j 

where 

(II. 4. 12) .lI(U) = d.(U) = (2/ f1r ) e _u2 
'f du 

Introducing (III. 4. 8) and (III. 4.10) into (III. 4. 7) , one can finally write 

(III. 4. 7) as : 

_-=-__ = 't- 1 a(u) ~"l(!!.,t) \ 

'It 
12 [~2 'I) 1 -:- + b(u) (u. --) - u. --
"' 2 1 f)u. 1 ~u. uu. 1 1 

1 

2 } 



where 

(III. 4.14) 

(III.4.15) 
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b(u) = u -1 da(u) 
du 

F. Henin 

a nd where 't' has the dimension of a time : 

(III. 4.16) 
-1 6 \2 ' 2 3/2 

'C = (3211 CAB/ m ) (m/2kT) 
1 

III. 5. Link with stochastic theory. 

Equation (III. 4; 13) can be easily written in the form of the ge

neral Fokker - Planck equation (I. 5.7) : 

(III. 5.1) 

with 

(III. 5. 2) 

where 

(III. 5. 4) 

';) 'f = ~_ (4 ui) 1 + .!. 
1) t ~u. At 'f 2 

1 

4t 

u m 
i 1 -1 = - 4 - ( 1 f-.-: ) g(ul ~ 
u m 

1 -1 [ -1 + t ~ g(u) = '2 u u (u) - I (u) J 

This equation has been obtained from first principles as an asym

ptotic equation describing the motion of a particle of mass m1 in a gas 

at thermal equ ilibrium , with the assumption of weak coupling. The avera-
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rage values (4 u.) ,(6 u. t. u.) are such that the velocity distribu-
1 1 J 

tion function reaches monotonically the Maxwell-Boltzmann distribution 

after a long time. No other assumption than the hypothesis of initial 

molecular chaos has been necessary to obtain this result. 

The relaxation time, i. e; the characteristic time for the evolu-

tion of 'fC~.' t) is given by (III. 4.16) : 

(1II.5.5) 

As expected, it decreases when the concentration increases. 

It is also a function of the temperature and the intermolecular forces 

(seem. 4.5 for B) ; it depends upon the ratio of the interaction energy 

and the mean thermal energy of the particles of the fluid. It decreases 

whenever this ratio increases. 

If we compare (III. 5. 2) with the corresponding expression derives 

from the Langevin equation, we notice that the microscopic theory 

introduces a coefficient of dynamical friction"y} which is velocity 

dependent: 

(III. 5.6) 
-1 "J = 4 't" 

Let us introduce the following dimensionless quantities 

(1II.5.7) Y= (m/m l ) 
1/2 

(III. 5. 8) 
1/2 

x = (m/2kT) VI = u/r 

'( is the ratio of the masses of the fluid particle and the brownian 

particle ; x is the ratio of the velocity of the brownian particle and 

its thermal velocity. With these quantities, we have: 



- 252-

F. Renin 

(1II.5.9) 

For x «1, (and r.::: 1) we have: 

(III. 5. 10) 

fu this case, the dynamical friction coefficient is approximately constant: 

If 1 x» 1, i. e. if the rarticle has a high velocity, the dynamical fric

tion coefficient is very small : 

(III. 5.12) 

Dependence of dynamical friction 

coefficient on velocity 

Fig. III. 5. 1 

For tx «1, we also have: 

(III. 5. 13) (Aui fl. UJ.) = r 
' . . (8/3 Ii )T- 1 

<at> 1,J 

For "«1 and x -I i. e. for a heavy particle moving with therlI\al, ve-o -, 
locity in a medium of light particles at equilibrium, the .Fokkep 

Planck equatioll takes the simple form: 

')1' 
(III. 6.14) ~ 
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analogous to (I. 5. 11) . 

The expressions (III. 5.2) and (III. 5. 3) for the average value 

of the velocity and square of the velocity have been obtained first by 

Chandrasekhar 4) • 

In an analysis of t<le dynamical friction in systems of stars, Chandrasekhar 

first considered single stellar encounters idealized as two-body problems. 

If a star of mass m l and velocity v collides with a star of 
~l 

mass m and velocity ~, the increments parallel ( ~ ~111 ) and 

perpendicular (~v 1.) to its direction of motion can be easily writ
~1 

ten. The net increments 6. v II and fl v I , due to a large number 
~1 ~1 .. 

of successive encounters with field stars during a time interval t:::.. t 

such that v does not change appreciably, are easily computed. Assu
~1 

ming the velocity distribution for field stars to be a gaussian, one 

obtains: 

(III. 6.15) A ~111 =, vI 

(Ill. 6. 16) l\.~I.L 0 

(for more details, see Prof. Ferraro's notes in this volume) 

III. 6. A p P li cat ion. 

These results have been used to discuss transport processes 

in fully ionized gases. A good account of this can be found in Spitzer's 

book 5) . However, the application is not straightforward. Indeed, the 

interaction law in this case is the Coulomb potential: 

(III. 6. 1) 
2 

V(r) = e / r 

which Fourier transform is : 
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(III. 6. 2) 

Th8refore the coefficient B which appears in the Fokker-Planck equa-

tion is : 

(III. 6.3) 
4 4 

B '" (e /41t ) ! 0
00 

dk(1/k) 

We notice that B diverges logarithmically both at the upper and lower li

mits of integration. This is due to the fact that the Coulomb potential 

has an infinite repulsive core at small distances (hence the upper limit 

divergence) and has a long range (hence the lower limit divergence) . 

The long distance divergence is well known and appears also in the equi

librium properties. In fact, because of the long range of the potential, thE 

interactions in such a medium have a collective character: configurations 

involving many particles playa dominant role. Both in equilibrium 

6)7)8) and non equilibrium properties, this problem can be settled by 

a summation over a well defined class of diagrams. The result of this 

summation is to introduce a screening effect : in simple cases, the 

effective interaction vanishes exponentially for distances greater than the 

Debye radius 

(III. 6.4) 

with 

(III. 6. 5) 

-1 
I( : 

2 -I(r 
Veff '" e e /r 

One way to take into account these effects semi-empirically is 

to introduce a cut-off at both limits of integration: 

(III. 6. 6) 
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The lower cut-off K takes irito account the screening effect whi-

Ie the upper one eliminates the effect of the very close collisions. 

The theory of weakly coupled gases may then be used. 

However, this approach is not very satisfactory and the true 

way to solve this problem, although we shall not discuss it here, is, 

within a perturbation theory, to sum first all relevant contributions. 

From (III. 6. 4) , it is quite apparent that the adequate procedure is not 

to limit ourselves to first power in the coupling constant e 2 or the con

centration C, but to retain all terms proportional to any power of 1(., 
2 

i. e. of e C, in the expansions. This summation introduces a dynamical 

screening effect, i. e. a screening which depends on the velocity of the 

brownian particle 9~However, if the velocity of the particle is such that 

(kT / m ) tJ ~< I) the dynamical effects may be neglected and the Debye po

tential is a good approximation. For more rapid particles, one can still 

write a Fokker-Planck equation but there appears a further velodty de

pendence of the coefficients due to the collective effects (excitation of pla

sma oscillations) . 

III. 7 - Brownia n motion in a fluid which is not at equilibrium. 

In this case, we must relax assumption (III. 4. 1) and use equation 

(III. 3.5) . The main feature is that, whereas, in the equilibrium case, 

we have a single closed equation for the distribution function of the 

brownian particle, in the non equilibrium case, we have a whole set of 

equations for the velocity distribution functions of the Brownian particle 

and the fluid particles. 

Following the same procedure as above for the integrati'on over 

the wave vector, we easily obtain: 

5\2 21 \'i = (8'" 1\ (B/m l ) dv -
- ~X.l g 
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(III. 7. 1) 

This second order differential equation can be easily recast in the form 

of a generalized Fokker-Planck equation: 

(III. 7.2) 

where the transition moments are given by: 

~f( ~,t) -3 
-2g.g fI (v, t) 

')V. 1 I "-
I 

(III. 7.3) 

(III. 7;4) 

The transition moments are now functionals of the state of the fluid . 
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IV. MICROSCOPIC THEORY OF BROWNIAN MOTION OF A HEAVY PAR

TICLE IN THE ABSENCE OF E4TERNAL FORCES. 

IV. 1 - In t rod u c t ion 

In the preceding chapter, we· have discussed the brownian motion 

of a particle which is weakly coupled to a fluid at thermal equilibrium. 

However, as we have seen, there are no known intermolecular forces cor

responding to the weak coupling approximation. Therefore, that problem 

was rather academic and we shall now consider a more realistic situation. 

The discussion which will follow will be valid for all cases where the 

forces are of short range (Coulomb forces can also be included provided 

the screening effects are taken into account in a phenomenological way). 

The case of long range forces with no screening (gravitational forces) 

will be dealt with in chapter VII. 

For this model we can use as a starting point the kinetic equation 

(II. 9. 3) or (II. 9. 5) . We shall consider the case where the brownian par

ticle is much heavier than the fluid pc:rticles. For the case of a brownian 

particle moving with thermal velocity in a fluid at equilibrium at tem

perature T, we shall show that an equation of the Fokker -Planck type 

is indeed obtained for the velocity distribution function of that particle 

if one retains only the lowest order terms in the expansion of the kinetic 

equation in the ratio of the masses of the light and heavy particles • 

The method we shall follow enables us also to compute the corrections 

to the Fokker-Planck equation. However, we shall not consider this 

problem here but we shall rather discuss it in the next chapter where we 

consider the same problem but with an external force acting on the 

particle. 
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IV. 2 - E qua t ion for the red u c e d vel 0 cit Y dis t rib u -

tion function of the brownian particle. 

Let us start with the kinetic equation in the form (II. 9. 3) . 

Assuming the fluid to be at equilibrium. we have 

f r 0 (t) = f (y. t) (P 0 ) equ. 2 

(IV.2;1) N 3/2 -mv. /2kT 
= f cy. t) ~ (21f kT/m) 41'e 1 

where V is the velocity of the brownian particle (mass: M) while v. 
- -1 

is the velocity of the ith fluid particle (all fluid particles have the sa-

me mass m) . 

Integrating both sides of (IV. 2.1) with respect to the velocities 

of all the fluid particles, we readily obtain an equation for the redu

ced velocity distribution function "rY' t) of the brownian particle: 

')~v, t) It L f 
(IV. 2. 2) ;t = 0 d"C rd~' N G(t-'t) 1(Y' 1: ) (f 0) equ. 

which is valid only asymptotically. 

Let us introduce the operator r 

(IV.2.3) r (t-"t') = ~\d! \ N G{t- "C) (f ~)equ. 

This operator is of course a differential operator with respect to the 

velocity y of the brownian particle. (IV. 2. 2) now becomes: 

(IV.2.4) 

From the very definition of G{t) and (IV. 2.3) • the Laplace transform of 
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the operator r (t) is obviously: 

(IV. 2. 5) 

Following the same procedure as that used to go from (II. 9. 3) to 

(II. 9. 5) , the equation (IV. 2. 4) may be written in the pseudomarkovian 

form: 

")d)(Y, t) 
(IV. 2. 6) 1 ,,~i'1:l' + (0) 'f (Y" t) 

where the operator 'tj is given in terms of + (0) and its de

rivatives ~I(O) by the same relation that holds between fl and t 
(see (II.9.6) to (II.9.B)): 

The equation (IV. 2. 6) will be our basic equation for a dynamical 

study of brownian motion. We shall now show how it reduces to an 

equation of the Fokker-Planck type when only the lowest order terms 

in the mass ratio m/ M are retained . 

IV.3 - Expansion in powers of the mass ratio. 

As the fluid is at equilibrium at temperature T, we have: 

(IV. 3.1) 

(IV. 3. 2) 

(v.) " (2kT/m) 1/2 
1 

1/2 < P.) " (2mkT) 
1 

If the brownian particle moves with thermal velocity, we have: 

(IV. 3. 3) 

(iv. 3.4) 

V" 0(2kT/M)I/2" O(¥(vi )) 

1/2 -1 
P " 0(2MkT) "O(r <vi») 
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with 

(IV. 3.5) 
1/2 't =(m/ M) « 1 

The unperturbed and perturbed Liouville operators may be written in 

a way which exhibits their dependence on ¥ . We have: 

(IV. 3. 6) 

f 
where L is the unperturbed Liouville operator for the fluid: 

o 

(IV. 3.7) 
f N 'i) 

L =2: v --
o i ~ 1 -i· 'i)!:.; 

A 
while r Lois that for the browni an particle A: 

(IV.3.8) 

Similarily, we may write: 

(IV. 3. 9) 

with 

(IV.3.10) 

(IV.3.11) 

With these expressions, we can easily expand the rhs of (IV. 2. 6) 

in powers of ~ . Using (II. 8. 7) , we have : 
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Taking into account the fact that SLf is a differential operator with 

respect to the velocities of the fluid particles, we have: 

t(Z) " {\d! \N (0 \ (3Lf +r~L A) ~ (z_lLo SL)n1o)irr(f!)equ. 

(IV. 3. 13) "Yi~ tr (0 \ h A 11';' !ci ". !.'')f¥::l (1';. ~; ".!.' I ~ (,: L ~SL)n 10/;" k 

f 
'X (fo)equ. 

Using (IV. 3. 6) and (IV. 3. 9) , we then immediately obtain the expansion: 

(IV. 3. 14) 

with 

(IV.3.15) 
00 } _1_ SLf n ° f L. (z-L )' ~ irr (fo )equ. 

n=1 0 

2T N or A f N Y (z) =?: L-1o\iL \ k. = - KK) Jdv\ (k." -K,Kl o 2 Fl K ~ "'1 - - 1 - -1 '" '" -

00 f f 1: (~~L,m '0)' (f) 
m=O z-L 1rr 0 equ. 

o 

In principle, in the first term in the rhs of (IV. 3,16), the sum over 
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m shuld go from 1 to infinity instead of from zero to infinity. Ho
A 

wever, taking into account the fact that L has no non diagonal 
o 

elements and ir:reducible contributions only have to be kept (no inter-

mediate state equal to the vacuum of correlations), we may add the 

term m = 0 . 

To the expansion (IV. 3.14) of + (z) corresponds the following 

expansion of the operator V as given by (IV. 2.7) : 

(IV. 3.17) 

+ ... 

Hence, if we do not retain terms of higher order than r 2, we have: 

We shall now discuss in details the various terms which appear in 

the rhs of (IV. 3. 18) and show how this equation reduces to a Fokker

Planck equation. 

IV.4 - Stu d Y 0 f the 0 per at 0 r + 1 ( 0 ) 

This operator is the analytic continuation of the operator + 1 (z) 

given by (IV. 3.1) for z ~ 0 . Using (II. 12. 14), for the canonical 

distribution for the fluid, we have: 

lim 
z ~O 

3 I -iK. R . (IV.4.1) =(8'" If'l) d~ e ........ 11m 
z~O 
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where fle~~, is the Fourier coefficient of the complete equilibrium 

distribution function for the fluid: 
2 

rf =exp[ __ 11~ mVi t [ V .. (lr,-r,l) tLV, ~R-r'llll1( 
equ. kT 11 2 '<' 1J "'1 "'J ,1A '" "'1 J 

1 J 1 _I 

(IV. 4. 'I~\d!:."~ \ N exp r -k; \2:(mv ~/21 + ~ V ij((!".(!".jll+ Z> iA (I !".il' I II]] 
[ 1 1 2 

, exp [- k~{~(rov~/'1 + VfJ]trd~N expF k~ (f ~vi + VIJl'" 
(IV. 4. 3) r\~~u, ;; fiddN exp [-i ~ ~i' ~i] f :qu. 

Introducing (IV. 4.1) into (IV. 3. 6) for z,O, we obtain: 

(IV. 4. 4) 

Now, we have : 

(01 s LA , k, = - K, K)'dR e -~ ~ te~~. 
""1 ................ J........ ........1 

(IV, 4. 5) 
= V K . ~(dR e-i~'IlJldr IN 

K '" ?t J '" 1 '" I 
iK.r, f 

e '" "'If equ. 

Taking into account the fact that V K is the Fourier transform of ViA' 

we have: 

(IV.4.6) K iK. (R-r,) e ........ .............. ] ...... 
'" 

'lV'A( , R -r, \) 
1 ................ 1 

Therefore, we obtain: 
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ol-ViA(\~ - £'i P 
l 

(IV.4.7) 1) 
. d,E = 0 

f ~ 
f equ . ~,E 

and the equation of evolution for the velocity distribution function of 

the brownian particle (IV. 3.19) takes the simple form: 

(IV. 4. 8) ')f(V,t) = _ iy2~ (0) U)(V,t) 
')t • 12 \ ~ 

The first non vanishing effects are proportional to the mass ratio 

m/M. 

IV. 5 - Stu d Y 0 f the 0 per at 0 r + 2 ( 0 ) 

From (IV. 3.1) and (IV. 4. 2) , we obtain: 

N r2 t2(O)=tzl2,nu E ~ ~,tr.~'tLA\~i=-!S'~) k 

N OG (1 t f)n 1 A A 
(IV. 5.1~\w:d <~i = - .5!Sl ~ z_Lf cJ L -f (L 0 +~L )\i~' \ E') )( 

)1 0 z-L 

01 _1 \dR -iK'. R f equ .. n ~ e ........ {.tl} 

Now, using : 

o 

(IV.5.2f~ e-i~I.~ r [~~! i~'t KI\ r~qUlo) nN+1 )< 

00 1 f)n 1 1 
(IV.5.3)) L (-f lL -f = f f 

n=O z-L z-L z-L - I L 
000 

and performing the summations over i ~,t, E, ~ , we obtain : 
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(IV.5.4) 

A r A 
Using the explicit forms of Land f) L ,this becomes: 

o 

1 (N ')~ V'A(lR-r,1l ~ 
t2+2(0) = (0)- i!.;OJ\d~t d!!~ 1 1')!!'" "'1 . 'i)t 1C 

(IV.5.5) 1~V. (iR-r,l) 

J N 1 [ ').\. 1 1A '" "'1 "\dr\ f f - Y . ~ R +"-')-R---
z-L -IL '" '" 

~~ 
. ~fequ. 

o 
f 

Using the explicit form of r (see IV .2.2) , we obtain easily: 
equ. 

~ t.V, (IR-r. II ';) 
y 2 ..1-.2(0) = 0- 1 lim \\d~\ N d!! 1 1A ; "'1 . lP ')( 
• T z~ 0 'f) '" '" 

(IV. 5.6) 

" \d~ \ f f ~ N 1 

z-L -SL 
o 

~ ~ V'A(' R-r. ') 1 1 - -1 
'l~ 

C) 1 f 
(-+- v)r . 'i~ kT '" equ. 

Let us introducing the diffusion coeffiCient: 

1 j \ N dR fl (!t, \ E )) 'X DO' = 0- J dvdr "'--
IJ 1 '" .... 

(IV. 5. 7) 

where 

(IV.5.8) 

is the total force exerted by the fluid on the Brownian particle; the 

operator t 2(0) becomes: 

2 'i) r f2(0) = Dij ~Pi (IV.5.9) 
~ 1 

(--+-V) 
'itp. kT j 

J 

The evolution equation (IV. 4. 8) may thus be written: 
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(IV.5.10) 

This is indeed an equation of the Fokker-Planck type. An explicit 

expression in terms of microscopic quantities is now obtained for the 

diffusion coefficient. 

IV.6 - Diffusion coefficient. 

Taking into account: 

(IV.6.1) 

the diffusion coefficient may be written as : 

Dij = lim \00 dt (S1)-l \\dtd~ \N dg Fi (~, \t}) )r 

z..., 0 0 

(IV. 6. 2) 
'" exp f_i (Lf +SLf -z)t}F.(R,\r l ) rf l 0 J ~ ~ I equ. 

Taking into account: 

(IV. 6. 3) Lfp~ =(Lf+~Lf)rf =0 
I~. 0 equ. 

and the fact that the integrand is a function of relative distances only, 

we obtain: 

(IV.6.4) 

0<l.( !': 0 \: <It lId! "!: \ N f ~qu. Fe @. Ir I) • 

" exp [-i (Lf -Z)t] F~ (g. l!:i) 

= lim \: dt (Fat (g ,\t\) exp [- i (Lf_z) t1 FA(!!· h.\) 
z",O r 

The diffusion coefficient is thus the average value over the fluid equili-
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brium distribution of the time autocorrelation function of the force ac

ting on the brownian particle for a fixed position of the brownian par

ticle. 

As an example, let us compute this coefficient in the case of 

a weakly coupled system. Then we have : 

(IV. 6. 5) 

(IV.6.6) r~qu. = (m/21fkT) 3N!2 
3N mV l _N 2 ] 

(4111 exp [- ~ 2kT Q 

Expanding the interaction' potential in a Fourier series, we obtain: 

\ 2 -N 
D = -" (n) 
oI~ 

N 

L: 
i, j =1 

lim f 00 dt (tdrdv l N (m/2WkT)3N!2 z"" 0 0 JI ~ ~I 

'( f -1 L -z) t 
e 0 

ikl.(r,-R) 
e ~ ~J ..... 

Now, we have: 

'~ ik I. r , ikl . (r ,-v ,t) 
(IV.6.8) e -1 t e- ..... J = e..... .....J-J 

With: 

(IV.6.9) {dr, 
ik. r. = 8lf3 S (!l e .............. 1 

~1 

we verify easily that the only terms which contribute are those for 

which i = j . This result is of course quite obvious . Indeed, the only 

contributions to the evolution equation are those of diagonal diagrams, 

in which each particle must appear at least at two vertices. In the 

weakly coupled case, we only have to consider the cycle and have the-
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refore only one fluid particle involved. 

Therefore, with (dr. ei(~+k":')' ~i = 81T3 ~ (k+k') (IV. w.1D) J ~l ~ ~ 

we have: 

D.~ = 321T4~2C(m/21fkT)3/2 z~nu ,: dt 

(IV.6.11) 

lC \d\lvk \2 

We also have: 

(IV.6.12) 

ik. vt 
k k e - -

J. (!> 
izt 

e 

2 
exp (-mv /2kT) )( 

As the remaining part of the integrand in (IV. 6. 11) is an even fun-

ction of !, the contribution involving the principal. part vanishes and 

we are left with: 

5 \ 2 3/2 , 2 J 3 2 D,.f> = 3211' A C(m/211' kT) ) d~ exp (-mv /2kT) d k \V k \ kJ. kp 11 

(IV. 6.13) (' 
x b(~.!.) 

One verifies 

(IV.6.14) 

where 1 = (1 • 1 • 1 ) is the unit vector and B is given by (III. 4. 5) . 
,.., x y z 

Performing the ::! integration, one obtains : 

(IV.6.15) 

One verifies easily that with this value of the diffusion coefficient, the 

evolution equation (IV. 5. 10) is indeed identical with the particular 

Fokker-Planck equation (III. 6. 14) we obtained for a heavy particle moving 

with thermal velocity and weakly coupled to the fluid. 
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V. BROWNIAN MOTION OF A HEAVY PARTICLE IN AN EXTERNAL 

FIELD 

V.I - Introduction. 

We shall again consider the problem of a heavy particle moving 

in a fluid at thermal equilibrium. However, now we shall assume that 

the brownian particle is charged and that at t = 0 , we switch on an 

external constant electrical field. The fluid particles are neutral and are 

not influenced by that field. After a long time, we shall reach a statio

nary state for the velocity distribution function of the brownian particle, 

corresponding to a balance between the effect of the external acceleration 

and the scattering by the fluid particles. 

Our starting point for the discussion of this stationary state will 

be the transport equation (11.14.5). Here again, we shall show that, 

when only lowest order terms in the mass ratio are kept, the equation 

for the stationary state is in agrel!ment with that of the stochastic 

theory. The calculations which have been performed originally by Rl!si

bois and Davis 1) will be closely parallel to that of the preceding 

-chapter and we shall go over them very briefly and rather concentrate 

ourselves on a discussion of higher order corrections. First, we have cor

rections to the collision terms which are independent of the external 

field and introduce fourth order differential operators in the equation of 

evolution. Then, we also have corrections which take into account the 

effect of the field during a collision. We shall show that these correc

tions may formally be incorporated in the Fokker-Planck collision 

operator. 

These results are in agreement with those obtained through a rather 

different method by Lebowitz and Rubin 2) . In order to make connection 

with this work. we shall show how the transport equation for this parti-
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cular problem can be recast in another form, which is precisely that 

used as a starting point for the m/ M expansion in Lebowitz and Rubin. 

This point has been discussed in great detail in a paper by Lebowitz 

and Resibois 3) • 

V. 2 ~ Steady state equation for the velocity di~ 

s t rib uti 0 n fun c t ion 0 f the b row n'i a n par tic 1 e . 

In chapter II, ~ 14, we have obtained the linearized steady state 

equation (II. 14. 5) for the velocity distribution function of a system of 

charged particles submitted to the action of an external electrical field. 

We have assumed that at t=O the system was in equilibrium and that 

the field was switched on only at t=O. Keeping only terms linear in E 

and restricting ourselves to the static case, we obtain: 

equ. ,.. equ st 
(V.2.1) iLE r + '- D (0) iLE C(k(O) f = i ""(O)Ar . 

o ,~\ l!s\ ~ 0 1 0 

where we have used (II. 13. 18) to rewrite the second term in the 

1hs of (II. 14. 5) as an operator acting on po' 

As the brownian particle is the only charged particle we have 

here: 

(V. 2.2) 

instead of (II. 13.3) . 
equ 

In (V. 2. 1) , f 0 is the velocity equilibrium distribution for 

the whole system :fluid and brownian particle 

N 
(V. 2. 3) equ = ..;equ V) rr d)equ (v.) r 0 1 C... l' -1 
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(V. 2. 4) 

(V.2.5) 

A st u r 0 is the linear ( in E) correction to 
equ 

Po' As previously, we 

assume molecular chaos for the velocity distribution function. Therefore, 

we have: 
N equ 

6 st= ~ 'f(V) Tf t{} Q:i) f 0 - 1 \ 

(V. 2. 6) 
N 

+ f:. ~\D(~.) Tf \D equ(~.) ",equ(Yl 
i = 1 , 1 jf=i 1 J \ 

Therefore, (V. 2.1) becomes: 

Integrating this equation, first over the velocities of all the fluid particles, 

secondly over the velocity of the brownian particle and the velocities of 

all but one of the fluid particles, one obtains 

tions for the two unknown functions \ 'frv 
can be proved l) that, once terms of order 

easily a set of coupled equa

and ~'f(v.) . However. it 
~l 

lIN are neglected the 

velocity distribution function of a fluid particle remains at equilibrium in 

the stationary case: 

(V. 2. 8) ~(v.) = O(l/N) ~O 
,~l 

We shall not prove this here but it is a consequence of the fact that 

the probability of a given particle to interact w·ith the single heavy par-
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cle is quite negligible in the limit of an infinite system. This allows 

us to neglect all vertices involving A and a fluid particle in the ope-

rators D \ k\' C\k\and f once we integrate over y. :(2' .. :( N . 

The equation for &" 'il(:( 1) then simplifies a great deal and using argu

ments similar to those which allowed us to establish the')( -theorem in 

chapter II, ~ 11 it is easy to show that (V. 2. 8) is its only 

solution. 

Taking into account (V. 2. 8) , the evolution equation (V. 2. 7) 

becomes: 

(V. 2. 9) 

After integration over the velocities of the fluid particles, we 

obtain: 

(V.2.10) 

where 

(V. 2.11) 

N 
,..... .,- I. N f'j) "IT equ 
~(O) = ~\)id!\ D t!l (0) e~ . u~ C\,M0) 'tf (:(i) (V.2.12) 

The operator +(0) is identical to the operator +(0) given by (IV. 2. 5) 
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V.3- - Expans ion in the mass ratio . 

Here again, we wri te : 

~L=~Lf+¥SLA 

Ii) 

e~. ') f = ¥ L E 

F. Henin 

f (' f 
where the fluid operators L ,iL are given by (IV. 3.7) and (IV.3.10) 

a A (' A 
respectively while the particle operators ~ L 0 and r j) L are given 

by (IV. 3. 8) and (IV. 3.11) . 

(V. 3. 4) 

(V. 3.5) 

We also expand the operators ~ (0) and Z (0) 

+(0) = yc¥l)(O) + t 2 ~ (2) (0) + ... 

2(0) = ¥ 2(1) (0) +¥ 2 Z (2)(0) + ... 

The zero order term (¥ 0) of ; vanishes as we have seen in 

chapter IV. The zero order term of 2,(0) vanishes because this 

h · h' f order operator involves the external field operator w le IS 0 

'± 
Up to order ~ ,we therefore obtain the following equation 

tion: 

i LE~equ(~) + [¥2(1)(0) 

+~ 4 2. (4) (0)) 'fequ (V) = 

~2 ,-, (2) 3 ,..., (3) 
+ , &.:-a (0) + Y ..:." (0) 

i [y<t(l)(O) + r2+(2) (0) + 

't' 

of evolu-
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In chapter IV,t~ 4 and 5, we have shown: 

(V. 3.7) ,(1)(0) = 0 

(V. 3. 8) 
. 2 ",,(2) ~ 'i) 1 11 T (0) = Dij 'lP. ( "P. + kT Vj ) 

1 J 

where the diffusion coefficient is given by (IV. 5. 7) . An alternative ex-

pression in terms of the average autocorrelation function of the force ex

erted by the fluid over the fixed brownian particle is given in (IV. 6. 4) . 

As to the interference term between the flow and the collision, it is again 

easy 10 show that: 

(V. 3.9) 2 (1)(0) = 2,(2) (0) = 0 

Indeed the term of order ~ in the rhs 

(V. 3.10) \' 2,(1)(0) = V L. (id~\N D(~\)(O) 
• 0 \k\) t ~ 

of (V. 2.12) is 

N 
(0) 1T equ 

iLE Cf U(O) i 'f (~i) 

(0) (0) 
where Di~J(O) and C1~\(0) are the terms independent of y of the destru-

ction and creation operators: 

(V. 3.11) 

(V. 3. 12) 

o 
Taking into account 

we easily verify (V. 3. 9) for the operator 

.. 
-~ )Ii~t) 
z-L 

o 
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As to the operator 2(2)(0), we have: 

V 2 2 (2) (0) =y2 [.~dV' N D(l) (0) iL e(O) (0) Tf "equ(v.) 
o ,~\II ~ \U E i~' i \ "'1 

(V. 3.14) 2.,.{£ N (0) (1) TT 
+ ¥ lt~l Di~\(O) iLEe,~}(o) I ~ ~equ(~i) 

Using the same argume~t as above on the structure of ~(~\ (0) , it is 

easy to show that the second term in the rhs vanishes . As to the 

first term, we have: 

y D~~~Z) = to (O\XL A z_lLf(IL f z_~~f\i~') 
o 

(V.3.15) +f.. t<O\(~Lf 
n=l m=O 

Again the second term gives a vanishing contribution when we integrate 

over the velocities. Therefore, we have: 

Y 2 2(2) (z) =V 2 ttL ~\d~\ N (0\ ~ LA 

• n=O m=li~\\ f 
z-L 

o 

Now, using (IV. 4.1) , (IV. 5. 2) and (IV. 5.3) , we easily obtain: 

(V.3.17) Y 2 2(2)(Z) =~2 ~\d~\ N(O\dLA Z_L/_1Lf fequ \0) iLE 

o 

From (IV. 3.11), (IV. 6.3) and (IV. 4. 2) , we easily obtain: 
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(V.3.18) 

,tViA(\ (.i-~l) 
2. (2)(Z) = J 2 (1/z~\~ d!d~ \ N 1 "a~ . ;£r~qU 

= 0 

(see (IV. 4. 7)) . 

Therefore, if we restrict ourselves to terms of order mlM, we easily 

recover the stationary Fokker- Planck equation in presence of an exter

nal field acting on the heavy particle: 

(V. 3.19) 

The diffusion coefficient is not affected by the presence of the external 

field. 

V.4 - Higher order corrections to the collision 

operator. Role of the irreducibility condition. 

contributions are respectively: 



(V.4.2) X 

x 

1 
f 

z-L 
o 

n" equ(v.) 
, ~l 

i 
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The first point we want to discuss here is the role played 

by the irreducibility condition. To do this, we will need a theorem 

first established by Balescu 4) : 

If we hrve a succession of diagonal fragments, the only contributions 

to the reduced distribution function of particle 0( which do not vanish 

at the limit of an infinite system are those where the diagonal fragments 

are semi-connected, i. e. wher e they have a single particle in common 

with the preceding diagonal fragments. 

We shall not prove this theorem in full generality but illustrate 

it on an example. Let us consider a succession of two cycles: 

we have three cases (see fig. V.4.1) 
Q( • 

06 (a.) 

\. .e. 
'I ~ o Ol~) 
~ d 

el ., 

00 (e) 
" ~ 

-6 C> . 
\ d 

lb') 

Possible connections in a succession of two cycles. 

Fig. V. 4.1 

1) they are disconnected: no particle in common (a) 

2) they are semi-connected: one particle in common (b) ,(b') • 

3) they have two particles in common (c) . 
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Because of the integration over the velocities of all particles but c( , o(must 

necessarily appear at the first vertex on the left. We obtain: 

(al = trJld~~N-l<olaLQ(~~I('~{-~((){~at'~i=-~"IJLG(il 0> 
(V.4.1) iol&Ljllk.,k =-k)(k.,4: =_k.I~Ljll O>fr(O) 

"'J "'1 "'J -J -1 -J 0 

Now, the integrations over v. and v commute with the first two matrix ele-
-J -1 

ments. Therefore, we have: f ·1 
(a) - dv. dV l dLJ ... = 0 

-J -

This argument may easily be generalized to more complicated fragments and 

successions of more than two fragments; whenever there is at least two discon

nected fragments, the contribution to the reduced distribution function vanishes. 

Let us now consider the case of the semi-connected diagrams (b) and 

(b ') • We have: 

(b)+(b~ = ~(i{dvltl-l(OIILic:(lk.=_k.J ,k;.' 
1JJl _\ -1 -", -

i« { ij Lk.=-k ... ,k 1 \bL ,\O?.(oIJL I k'.,k.=-k'."/ 
....... 1 ....... ~ ...... "" ....... 1 ....... J ........ 1 

(v.4.3)~k!,k.=_k'.IJLijl 0>+LoI6LO(j(k' ,k.=-k l ) 
-1 -J -1 -c( -J -0( 

I.. k' ,k. = -k l IJLO(j 10 > 
-0( "'J -01 

It is easily verified that none of these contributions vanishes;indeed, in the first 

case, the integral over v. does no longer commute with the first two matrix 
-1 . 

elements; in the second case the contribution proportional to d / a x'd. of J L C{ J 

in the third matrix element is non vanishing. As we have already seen «II. 6. 6)), 
-1 

the contribution of each cycle is proportional to n ;because of the double 

summation over i and j, we obtain a contribution proportional to C2. Such <diagrams 

correspond indeed to those described by the above theorem. 

As to (c), we may repeat the arguments for (b) or (b l ); each cycle is 
-1 

proportional to n ; however, we only have one summation over i;hence we obtain 

a contribution proportional to C/ n , which vanishes for n ~ 00 • 
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Let us now suppress the irreducibility condition in the operator + (0) and discuss the error introduced in this way. We consider a 

given contributiQn to 4> (0) with m vertices: 

and suppress the irreducibility condition on a given intermediate state 

(say after r vertices) . In thi.s way, we add to '" (m ) the following con

tribution : 

(V. 4. 5) 

0( =}'\d~,N(O\XLA(z_~o 3L)m-r '0) irr )( 

" (0 ,(2-L iL)r '0). rr"equ (v.) 
z- lrr . 1 1 

o 1 

As we have seen such a contribution will be different from zero in the 

limit of a large system only if the two diagonal fragments are semi-conne

cted. We have two cases: 

a) the semi-connection is through one fluid particle; but. then ,A does 

not appear in the last fragment on the right and we have: 

(0 \ (z-~o ~L{ \0) ~~equ(Vi) 
(V.4.6) 

if we take into 

= (0 \ (~~Lf{ \0) ~ 'fequ(~i) =0 
z-L 

o 
account (II. 11. 10). 

b) the semi connection is through particle A. Then, all the fluid parti

cles in the first fragment are different from those in the last and becau

se of the integration over the velocities of the fluid particles, the first 

vertex in the second fragment must necessarily involve A ; hence: 
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ot = ~\{d!\N-S(a'&LA(z_lL S L)m-r \a)irr ~ " 
o 

(V. 4. 7) 

)(~id~\S (a'~LA(z_~ ~L{-l \a)irr TI''fequ(~i) 
o 1 

if {l dv l s J dv .... dv. ,where i ... i are the fluid particles involved Jl "" l "'1 "'lIs 

in the second fr1 gment s . W e easily recognize that the second contribu-

tion is a contribution to the operator + given by (IV. 3.13) . As we have 
2 

seen, the first non-vanishing contribution is of order r and we have: 

a( = Yhd~ \ N-s (a, ~ LA {z-~ J L)m-r \ a)irr ['tequ(~)1 N-s )c 

o 

(V.4.S),,¥2 ~\\d~\s<a'~LA(z_~ ~L{-l\ a)irrl,equ(;(l1 s 
o 

With the same kind of arguments, it is again easy to convince oneself 
2 

that the fragement on the left is also of order 0 at least. Thus, if we supress 

the irreducibility condition in the operator ; (a) , we add a contribution 

of at least order four in l . The contribution of order r 4 which we 

add is: 
00 

L 
m=a 

~ A A 1 
(V.4.9) X (dL +Lo )-f 

z-L 
o 

J[ (SL A + LJ (_~f iLr 10) irr 

o 

As a conclusion, we may suppress the irreducibility condition in 4> (3)(0). 

If we suppress it (which will appear convenient below) in +(4)(0), we 

have to subtract the contribution (V. 4. 9) . Because of the factor 1/ z , 

we easily notice th at this f'ontribution will diverge at the limit z ~.O. 



- 282-

F. Henin 

This is easy to understand. Indeed, a product of two irreducible dia-
2 

gonal fragments brings a factor t in the formal solution of the 

Liouville equation as compared with the single t factor brought by one 

irreducible fragment. In the long time limit, the 

first one diverges. The role of the irreducibility condition in t(z) 

is precisely to suppress such contributions. This is well~known in the 

discussion of the three-body problem 5) . The operator f (z) brings 

in the evolution equation only the contributions of genuine three-body col

lisions, i. e. of those collisions where the three particles interact almost 

simultaneously (i e. on a time scale of the order of the binary colli

sion time) . The suppression of the irreducibility condition would amount 

to the inclusion of those three body processes which are a succession 

of 2 two binary collisions and would introduce a divergence. However, it 

is often convenient to write ,\,(Z) as a difference between the reduci

ble contribution (which includes all three-body processes, whatever 

the time ordering of events) and the reducible term (which describe tho

se processes which are the result of succession of collisions). Both terms 

diverge but the difference is finite; the cancellation occurs only for the 

diverging parts. We shall see an example of this procedure below. 

V.5 - Higher order corrections to the collision operator. 

Explicit evaluation. 

The above discussion shows us that we may forget the irreduci

bility condition in the third order operator; it is then a simple matter, 

with the arguments we used in chapter IV, t 5 to compute ;(3)(0). 

We obtain: 
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where the force ~ acting on the fixed brownian particle is given by 

(IV.5.8). 

As the potential is spherically symmetric, one verifies easily that all 

contributions to the rhs of (V. 5.1) vanish for symmetry reasons. There

fore: 

(V. 5. 2) ~ 3 +(3)(0) = 0 

Let us now cOl1sider the fourth order contribution. If we denote by ¥4)(0) 

the operator +(4) in which we suppress the irreducibility condition, we 

obtain: 

(V. 5. 3) 
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where 01. is given by (V. 4. 9) . 

Following the same procedure as that used to compute +(2) and ~(3), 
we have: 

~ I> 1 - + F,(R, \r \) -- 'X 
~R, J- - ,}P. 

J J 

C) '"a 1 -- + F (R ,t r L ) -- )( 
~R 1- _l 'i)P 
u 1 1 

This is a fourth order differential operator with respect to the veloci

ty of the brownian particle . It diverges as can be easily verified if 

one keeps only lowest order terms in the coupling constant. 

As to the operator cI. ,we easily obtain: 

~ =" 4 lim t o z~ 0 p=O 

TJ'f equ (~i ) 
1 

which we can easily rewrite as : 
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n equ )~d \N/, It A 1 (~LA+LA)rf \0) (V. 5. 6)X i'" (~l' ~ ,0 ,L f II 
, z_Lf_ ~L 0 equ irr 

Using 

(V. 5. 7) 

we have: 

o 

r~qU' 0) = L.1nJ,~)(i~\' ~I f7U 10) 

\t~ ~ 

= C I\~\ ,~~~" ~lrefqUlo)+ lo)il~equ(~.) 
{t\, ~ f{ 2-\ i 1 

L <~k~\,~11 ; f 10)TT"equ(vi) 

{t'}~~\ z-Lf- ~L i 

(V. 5. 8) = 2 < ~ t' \ ,~' I : f r flo) 
{~'\~' fl2-\ z-Lo-~L equ 

_) l~k 't, KII----':-l- f \o~ 
J. ~ ~ f '- f f equ ' I irr 

U'\~' r \0\ z-Lo-"L 

Therefore, we obtain: 

(V. 5. 9) 
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Using (IV. 6. 1) and the convolution theorem we easily obtain: 

'It =V lim dt 1 4 roo it 
1 • z"" 0 0 1 0 

f 

K requ 

Again this is a fourth order differential operator with diverging coeffi

cients (this is again easily verified if one takes into account only lowest 

order terms in the coupling constant) . 

In the contribution ol 2' because of the irreducibility condition 

in the diagonal fragment on the left, none of the propagators is identi

cal to z and this contribution is perfectly finite at the limit z ~ 0 . 

Introducing the operator: 

(V. 5. 13) f 

X r '0) . equ lrr 

we have 

(V.5.14) 

1 
f t f 

z-L -elL 
o 

if we take into account (IV. 5. 6) 

t A A 1 
(OL +L 0) f f X 

z-L - ~L 
o 

The irreducible operator +(4), which does not diverge at the 

limit z~ 0, may thus be written (see (V. 5. 3) ) : 

(V. 5.15) 
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,.., 
The infinite parts in + (4) and 0( 1 cancel each other .. Introducing 

the fourth order differential operator: 

a sum of two finite terms: 

The advantage of this form will appear once we calculate the corrections 

to the now term, Then shall see thatthese exactly compensate the effect 

of the contribution ~ 2 . _ 

One verifies easily that the operator ,(4)(0) may be written: 
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(V,5.IS) 
t dijkl VI vjH ~Pk t k~ Vk , 

_i(Lft ~Lf_Z)(t -t ) 
e 0 I 2 f: 

J 
x 

:here = lim 100 dt I tl dt I t2 dt {IF 
ijkl ~ 0 1 2 31' i z-, 0 0 0 

(V.5.19\ f f (' f 
-i(Lo

f t ~L -z)(t2-t3) -i(L ten-Z)t 
Xe Fie 0 3 Fk ) 

_i(Lft ~Lf_z)(t -t ) .i(Lf t~Lf_z)t } 
_IF e 0 1 2 F'\k e 0 3 F ) 

\ i jr\ 1 k 

t t _i(Lft SLf -z)(t -t ) 

b lim I <Xl dt 11 dt r 2 dt IF" e 0 1 2 F" v 
iJ"kl 1 2 3:~ ,. z-=t 0 0 0 0 1 J 

(V.5.29) f f 
-i(L +~L-z)(t -t) 

X e 0 2 3 

(V.5.22) f f f f 
'" -i(L +SL -z) (t -t ) r;) -i(L +k -z)t 

" u 0 2 3 0 3 F > "--e --e 
~~ ~~ k 
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where 

(V. 5. 23) 

The form (V. 5.18) may be compared to the results of Lebowitz and 

Rubin ; it i.S in complete agreement with their only correction to the 

lowest order Fokker-Planck equation. 

V.6 - Higher order corrections to the flow term. 

The first correction due to the effect of the field during a colli

sion is given by: 

¥ 3 8(31(01.(QU CD ~ N 3 ~d! IN ?E D\~~(OIH 'E'j~ I(O)(f ~I 'qu 'f,q\YI 

(V. 6.1) +~ 3 (\dV\ N L.. D(:)(O)iLEC(~) (0) (ff) ~equ(V) 
,~ \~\ \~\ t_\ 0 equ ~ 

The third term vanishes because of the integration over the velocities 

of the fluid particles. 

As to the second term, one verifies easily that one has: 

(V. 6. 2) I ~ f) \fequ) 
01 irr (r 0 equ I CY 

= 1k lj / f P f 12. (~I.:'. + kTl y) 1 0' ",equ(y) = 0 
'1~1 z-L -AL I equ- 41 ._- 'I 1-

o 
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In the first term, we take into account the fact that L commutes 
E 

with "f . We then obtain easily: 
I equ 

1 
(V. 6. 3) )l f Lf 

z-L -~ 

f 
'L r 1 E equ 

o 

if we take (V. 5.13) into account. 

The fourth order correctIOn vanishes for symmetry reasons. 

(V. 7.1) 

(V. 7.2) 

4 
V.7 - Stationary transport equation up to order ¥ . 

Summarizing the results of the previous paragraphs, we have: 

where the Fokker-Planck operator ~ (2)(0) is given by (V. 3. 8) while the 
--(4) --(2) 11 

operators cp (0) and f (0) are given by (V. 5.18) and (V. 5.13) respe-

ctively. 

Therefore , up to 
4 

order ~ , the stationary transport equation 

becomes: 

(V. (. 3) 
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Expanding ~~(y) in powers of ¥ ' we have: 

(V. 7. 4) ~~y) =Y -1 [~f(Y)l 0 + ~ [~(y)] 1 

which leads to : 

(V. 7.5) 

(V.7.6) 

which we may rewrite as : 

(V. 7.7) iLE1eQu(y) ,,[y2+(2)(O) +t ¥4)(o)1Sf(V) 
which shows that the corrections due to the action of the field during 

a collision can be formally incorporated in a modification of the colli

sion operator. The corrections to the lowest order Fokker-Planck 

equation are thus entirely given by the operator 't(4)(O) . Part of the

se corrections may of course be incorporated in a modification of the 

diffusion coefficient D which appears in the lowest order equation. Equa

tion (V. 7.7) agrees exactly with the transport equation derived by Lebo

witz and Rubin. 

V.S - Alternative form of the transport equation 

for the brownian motion problem. 

Through a rather different method, Lebowitz and Rubin have obtai

ned the following transport equation for the velocity distribution function 

of the heavy particle: 

(V. S. 1) 
~ ~J, t) r "rr 

() t + iLETeq\y) =) 0 d't'J\(t-'t )~cry,~) 
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The collision operator X is given by : 

(V. 8. 2) )\(t) = -(21f i) dz e K(z) ..., -If -izt 

where f is a projection operator: 

(V. 8. 4) /.) ... = r f Ctdr dv l N 
U equll - -J 

The remarkable feature is that, except for the trivial flow term, all 

the dynamics of the problem has been incorporated in the collision ope

rator 1( ; at first sight this seems to be in contradiction with our ge

neral result of chapter II. However, we have already seen that, up to 

fourth order in ~ , in this brownian motion problem, the corrections to 

the flow term in (V. 2. 9) can indeed be taken formally as a modification 

of the collision operator. 

We shall not give here the original derivation of (V.8.1) which 

can be· found in ref. 2) , but rather concentrate ourselves on the equiva

lence between the two transport equations for this problem. 

First of all, we shall show that the solutionsof (V. 8.1) are iden

tica] to the solutions of the following equation: 

~8 'f (V, t) rt 
------+1 iL .,equ(V) + d 'C ~ (t- "r )iL "equ(V) 

1)t E 1 - 0 E I .... 

(V. 8. 5) 

where A (t) and X (t) are the inverse Laplace transforms of the operators: 
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- Jl L Nt A I (l-I)(L + t L)I f f (V.8.6)X(z) = -i ldr..d~1 tiL Z-(1-I)(Lo+~L) 0 0 equ 

where I is a projection operator: 

(V.8.8) 1. .. = (r2) . (Q) tdrdv -N f i \ N 
, 0 equ ~-

(I involves the fluid velocity equilibrium distribution function while ~ 
involves the complete fluid equilibrium distribution function for a fixed 

position of the brownian particle) . 

Using Laplace transforms, one easily obtains the formal solutions of 

(V.B.I): -
(V. 8. 9) ~ [ ] -1 -1 equ) 

0'f(z) = - iz-K(z) i(z+w) ~. y 1 (y 

and of (V. B. 5) : 

(V. 8. 10) ~ ~ (z) = [-iZ-X (z) ] -1 [1 + li (Z)) i(z+w) -1lf.. Y Teq\y) 

(We consider here the case of an oscillating field as given by (II. 13. 

12) ) 

In order to establish tre identity of these two functions, we have 

to show that the rhs are identical, or equivalently,that we have: 

where f(}~") is an arbitrary function of Y ; 
Now , using the identity, valid for an arbitrary function 
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t:> I f ~N f l~ N (U ~1)A(V,j rl,lvt) = r. -(n) (f) r dv l A .... 1 .... J l.:. equ 0 equ ........ J 

(V.8.12) 
=(1-1) rf (\d:td~ \ N A 

equ) 

as well as : 

1 1 
-z--(l--6''X')-(L---'-+'''''~L''''''') = z~(l~I)(L +~L)+(r~I)(L +JL) 

o 0 0 

(V.8.13) 

= 1+1~I drdv L+dL 1 I f, N ~ 1 \ z-(l~I)(L +1tL) ( )f equ t .... -\ (0 ) z-(l-Ii')(L + ~L) 
o 0 

= 1+ 1~1 drdv L +"L 1 I f~ NAtA 1 } 
z-(l-I)(Lo+iL) ( )fequ .... J ( 0 ) z-(l-f)(Lo+IL) 

we easily obtain: 

)C (L + 1.L)~f fLY) 
o I equ 

(V.8.l4) 

+ i" 2tJd.Fdy\N~L A 1 (l-I)ff LA)c 
I p-"- z~( 1 ~I)(L + I L) equ 0 

o 

X f\drdy'\N Z-(l-~)(Lo+'L) (l-ij') (Lo+ 3L) f~qu f(~) 
Now, if : 

(v. 8. 15) 

we also have: 
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Applying the operator f to both siges , we have: 

(V.8.17) Jlr.zOf (J.drdvlNr=O 
I equ)' .... _I 

F. Henin 

which shows us that the second term in the rhs of (V.8.14) vanishes. 

Hence, 

(V.8.18) 
X(L +SL)ff f(V) 

o equ-

The Ihs of (V. 8.11) can be written, with the definitions (V. 8. 6) and 

(V. 8. 7) : 

[X (z) -izA (Z)] f(~") = -i~dr.d~ \NlL A Z-(l-I)tL +SL) (1-1) )( 
o 

(V.8.19) 
1C \ z + (L +SL)Ilr f f(V) 

o I equ .... 

In order to prove identity (V.B.ll) , we thus have to show that the quan

tity 0( given by : 

~ = f~d~~At\N~LA Z-(l-I)~L +~L) \(1~) (Lo+&L) 
o 

" (l-l):L + S L) I - Z(l-I)} f f f(V) 
o equ -

(v. 8. 20) 

vanishes. 

N ow, using again (V. 8. 12) , we have: 

1(l-<P)(L +~L)-(l-I)(L +SL)I-Z(l-I)}r f f(V) = 1 0 0 equ .... 

(v. 8.21) { f f ~ N f f 
(1-1) (L+'L)(l-I)f -r Idrdvl (L+SL)f -zr If(V) 

o equ equ I .... -I 0 equ equJ '" 
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We also have: 

f N . f A~ N f * N A f Jdrdv l (L t~L)r "'YL drdv\ f + rdv\ ~L r 
1 - -I 0 equ 0 0 - - equ - - equ 

(V. 8. 22) 

A ~ N A f = V L til r dv l !L r o a • - -J equ 

A 
(V. 8. 23) vL f(V) = 0 

1\ 0 '" 

If we combine (V. 8. 20) ,(V. 8. 21), (V. 8. 22) and (V. 8. 23), we obtain 

_ [ (J N (' A f ( N ~ A 1 lC 
Q. - - J1drd~d uL (l-I)r equ - J \d£. d~ \ cl L z- (l-I)(L + cl L) 

o 

(V. 8. 24) f, N A f 1 
)C (1-1) 0 dr d v l 1 L f. f( V ) 

I equ - -I equ '" 

Now, we have: 

~ N A f 
J dr dv l A L f f( V) = 0 
1 - ---1 equ-

(see IV. 4. 7) 

Therefore, we indeed obtain: 

(V. 8. 26) 0( = 0 

and the identity of the solutions of (V. 8.1) and (V>.8. 5) is thus established. 

Equation (V.8.5) has the same structure as the transport equation we 

obtained in Chapter II, ~ 13. In the steady state, we obtain: 

(V.8.27) iLE'feq\~) + £\(0) iLE~eq\V =XiO) ~'fCy) 

To establish the equivalence with (V. 2.10) , we have to show: 

(V. 8. 28) 
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(V. 8. 29) x (0) ~~(~) = f (0) ~'fC~~) 

Let us first consider the lhs of (V. 8. 29) . We have: 

(V. 8. 30) 

if we take into account : 

V(8.31) 

(V. 8. 32) 

f IL = 0 
o 

Through a straightforward expansion, we obtain: 

However, we have: 

< ~!t, 'f\I(L: + &L)H !'~,!S ')F( \~ \' y)Sl,: k .+K, 0 SF t'tI£, Q. 
1 ""1 ....... 

j" L N [ . r 1 -iK. R -N· f ~ l N~ A = Idr l dR exp -1 k .• r. e --- --- n (rd dr'dv'. L (R,V) 
.............. i ...... 1 --1 equ "" '" 0 ........ ....... 

(V. 8. 34) S 
" T k!+K' ,0 ' ...................... 

i 

= "VS!i' Q. ~!S' Q. S ~ t'i+!S', Q. (f:)equ~\d~"N<o IL:( Y)+~LC{'l,(') 
1 
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A 
As a consequence all irreducible contributions involving ILo or 

I ~L in (V. 8. 33) vanish (see the product of Kronecker's deltas in the 

rhs of (V. 8. 34). 

Let us now consider a reducible contribution made of a product of two 

irreducible contributions : 

(V. 8. 35) q 

'Ie < Ol\lil-I)~L-IL Al--&\ (Lf +(I-I)(L A+~L)"O). (rf) S,,(V) 
o z- 0 '0 0 lrr 0 equ I .... 

(V. 8. 34) shows us that we may drop the operator I every where in the second 

fragment except at the left. (combine the Kronecker's deltas in (V. 8. 34) and 

the irreducibility condition). Let us first consider the case q=O . Then, using 

(V. 8. 34), we have: 

(V. 8.36) 

If q is different from zero, we have: 

(0 H [(1-1) SL-IL A]_l_ \q, Lf +(l-I)(L A+SL)\l~. (rf) \f(v) 
o z-L 1 0 0 'Ilrr 0 equ .... 

o 

= C <OI(1-I)~L-ILA'tk"K~k\ ,K'(+~L)qlo). (ff) (Y) 
~~\l5 =I~\ 0 ................ z- 0 lrr oequ 

(V. 8. 37) 1 f 
= (OISL (I:: SL)q 10). (P) lu»(V) 

z- 0 lrr \ 0 equ I .... 

and we obtain: 
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~=(\dvlN<01~LA-1 \1(1-I)~L-ILA1-1 \P lO)(OlSL(_l ~L)q '" J ~ I· z-L L' 0 z-L z-L 
000 

10) irr (r~)equ1(Y) 
(V. 8. 38) ~ N A 1 A) 1 f 

- d~\ (olh z-L m1-I)~L-ILo z-L \Plo)(ro)equ "Ie 
o 0 

X {\d~ \ N <ol~L ~_~oJL)ql O)irr (r:)equ~1(Y) 
If no fluid particle is common to both fragments, the rhs vani

shes trivially; now, in our discussion of the role of the irreducibility 

condition, we have seen that when such a product of fragments has a 

single semi-connection, it is through particle A; if we have more than 
-1 

a semiconnection, we obtain a contribution of order N . Therefore, at 

the limit of a large system: 

(V. 8. 39) p = 0 

This means that all reducible contributions to (V. 8. 33) vanish. Taking a-lso 

into accour:t the remark following (V. 8. 34) , we obtain: 

N A 1 m+l f 
i(z)~1rv= EoJ\d~\ (O\~L (Z_L o

SL ) \O)irr(fo)equ X 

(V.8.40) 

which establishes (V. 8.29) . 

(V. 8. 28) can be established in a similar way, if one takes into account: 

(V. 8. 41} 

<\~\, ~1(1-I)r~qJO)iLE: 0 if l\~\, Ii): 10) 

:(~" Ii\rf \ 0) iLE 
equ 

: iLE ({~ \' I.tlf~qu I 0> 
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This completes tre proof of the equivalence between our starting point 

and that of Lebowitz and Rubin~ This equivalence shows us that quite 

generally all corrections due to the effect of the field during a collision 

can, in this brownian motion problem, be incorporated formally in a mo

dification of the collision operator (+~1C). 
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VI. BROWNIAN MOTION IN AN EXTERNAL FIELD. 

QUANTUM CASE 

VI. - In t rod u c t ion 

We shall now consider the problem of brownian motion of 

of a heavy particle in a quantum system. Our starting point for a 

microscopic discussion of the evolution equation of quantum systems 

will be the Von Neuman equation for the density matrix. As we shall 

see, provided we choose suitable variables, this equation can be written 

in a form which is very similar to the Liouville equation. The main 

difference will be the replacement of differential operators by displace

ment operators. This corresponds to the physical fact that energ'y trans

fers are infinitesimal in the classical case while they are finite in the 

quantum case. The similarity between the quantum equation for the den

sity matrix and the Liouville equation for the distribution function ena

bles us to extend the whole formalism very easily to quantum systems. 

However, the problem of brownian motion in quantum systems 

presents features which are quite different from those of the classical 

problem. In the classical case, we performed an expansion in powers 

of the mass ratio and showed that, to lowest order, the velocity distri

bution function of the heavy particle obeys a Fokker-Planck equation. 

At first sight, we might expect this to be true also for the quantum 

case, the quantum effects appearing in the diffusion coefficient. 

However, if we go back fora while to the classical problem, we easi

ly notice that, what we did, was to assume that we were dealing with 

a particle moving with thermal velocity (i, e. a velocity of the order of 

its equilibrium velocity) in a fluid at equilibrium. We then had: 

(VI. 1.1) 
1/2 (p) IP "O( m/M} 
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Our expansion in a power series of , was actually an expansion 

in (p) /p . 
It is easy to convince oneself that (VI. 1. 1.) does not neces

sarily hold in the quantum case. Let us for instance consider the case 

of a heavy particle rmving in a weakly coupled Fermi fluid. At very 

low temperature, the particle collides with fermions whose energy is 

very close to the Fermi energy £ F' Then we have: 

where 

((: /kT)1/2 
F 

(VI. I, 2. ) 

(VI. 3, 3) 

and we may expect to find a Fokker-plank equation only in the region 

where 

~ S« 1 (VI. 1. 4) 

This condition is much more restrictive than the condition we met in 

the classical problem. 

With this example, one might think that such difficulties will 

appear only if we consider fermions, because of the exclusion prin

ciple and the existence of the Fermi energy. However, we shall see 

that it is not the case and that the difficulty is more general. At very 

low temperatures, we must always expect that the Fokker-Planck equation 

will not be valid. 

We shall first show how the Von Neumann equation may be written 

in a form very similar to the Liouville equation 1) . Then, assupling that 

an expansion in (p) Ip is valid, we shall easily obtain a Fokker-Planck 

equation. We shall discuss the quantum corrections to th e diffusion 
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coefficient in some simple cases 2)3) and compare briefly the theoreti

cal results with the results obtained in experiments on heavy ions mo

vin g in liquid helium. Finally, we shall discuss on somewhat more ge

neral grounds than above the validity of expansions in powers of(p}/P.4) 

VI.. 2- Von Neumann - Liouville equation. 

Let us consider one heavy charged particle acted upon by a con

stant external field moving in a fluid of light neutral particles. If we 

use a second quantization representation for free fluid particles and a 

plane wave representation for the heavy particle, the hamiltonian opera

tor is (we take" = 1): 

(VI. 2.1) H=H +}.V+H 
o E 

The unperturbed hamiltonian is a sum over the kinetic energies of the 

fluid particles and the brownian particles: 

~ 2 2 
(VI. 2. 2) Ho = L; (k 12m) at a~ + K /2M 

+ 
where ak a k are the creation and destruction operators for a fluid par-

ticle of momentum k . 

As in the classical case, the interaction is a sum of two terms: one 

which describes the interactions of the fluid particles among themselves 

and a second one which describes the interactions of the heavy particle 

with the fluid particles: 

V,.(~/2n) r= v(~ h£: £) 
klpr 

(VI. 2. 3) 

............................ 

+(~/n) L 
kl 

(k 1) -i(k-l).R + 
u",,--.e ................... \a1 -
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The contribution due to the action of the external field on the heavy 

particle is: 

(VI. 2. 4) HE = e ~. ~ 

1.1 the mixed representation \!5 ,\n\) of the eigenstates of Ho: 

(VI. 2. 4) 

the Von Neumann equation for the density matrix is : 

where [H, rl is the commutator of the two operators Hand r 
Let us now perform the following change of variables: for the 

heavy particle: 

(VI. 2. 6) 

for the fluid particles 

(VI. 2. 7) 

~ = K - K' 
"" '" 

"k = n - n' k k 
'" '" '" 

N = (n +n' )/2 
k k k 
'" '" '" 

We also write any matrix element of an operator A in the following 

form: 

(VI. 2. 8) 

= A 1f .\.,{E, \ Nt) 

To tm operator A, 'We associate an operator iC", which we define throu-gh 

the relation : 
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(VI. 2.9) 

where the ~ and '? IS are displacement operators acting on the varia

bles P and N respectively: 

(VI. 2.10) +It [+)( ~ 1 (! at ) 'P --f(P) = exp -'::".- f(P) = f P +:::. 
).... 2 ~~.... .... - '2 

(VI. 2.11) 

+ LV 
- k ~. [+ 1,... ~ 1 1"'} 1\ .... f(\Ni) = exp -- L v ~ f(\N\) = f(lN~- ) 
12k ! oNk 2 .... ...,. 

One can then easily write the Von Neumann equation as: 

(VI. 2.12) 

which is formally analogous to the classical Liouville equation. The Von 

Neumann-Liouville operator n can be split into three terms: 

(VI. 2.13) 

The unperturbed operator)t is given by: 
o 

<~ '\"'\)(01 ~' ,\v',) = S ~ ,~I -r:r cr"k'Yi )( 
.... ....-

(VI.2.14) X [~ ~!Z + ~ (.',2m)" k] 

.... 
The interaction operator is given by : 
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1 v.'.'+V'+yl 1/2 
~ , P r ~N + .!.)(N ~) (N + .!.)(N ~) 1 )( I II k 2 I 2 P 2 r 2 

(V.2.15)f I +1 S., I ,<>I +1 

"
V, V 10' 

P P r r 

x 

The external hamiltonian is given by: 

<~ ,\Yq1CE\~" \v't) = ie~ . ~E )( 

(v. 2.16) 

The algebra which leads to these results is very simple. We give exam

ples in Appendix VI. 1. 

The equation (VI. 2.12) can be treated in the same way as the 

Liouville equation. Whenever we had a matrix element of the classical 

Liouville opera~or, we must now replace it by a matrix element of the 

Von Neumann Liouville operator . If we compare those matrix elements, 
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we notice that the main difference between quantum and classical ma

trix elements is the appearance of displacements operators in the 

former while we had differential operators in the latter. This is specia

lly striking for the operators acting on the heavy particle variables: 

the classical operator ~ / ";)P is now replaced by the displacement 
f"'''' operator,,) - - ; this is due to the fact that we used a plane wave repre-

sentation in the quantum case which is the analog of the Fourier expan

sion in the position variables in the classical case. For the fluid particles, 

the similarity is also very striking when one compares the quantum 

equation to th e Liouville equation for a system of oscillators in action 

(J) - angle ( c( ) variables). The displacement operators acting on the N 

variables are the analog of the differential operators acting on the action 

variables in the classical problem (for more details see 5 )6) ). 

VI. 3 - S tat ion a r y t ran s p 0 r t e qua t ion. 

The quantum analog of the stationary transport equation (II.14.5) 

in a static field will be : 

(VI. 3. I) 

(V. 3. I) 

itE pequ(p,~N') + i L. D~, L(O))( Ct. \~(O) "equ (P,\Nt) 
J 0 ~ \." ~ ,v, E,v ~ \ 0 '" 

= i ,\,(O)~ r 0(£ '\ N\) 

Here ~ o(P, ~Nt) represents the diagonal elements of the Von 

Neumann matrix. At equilibrium, we have in the I \ nt, IS)representation: 

-(H +).V)/kT 

<ln~, ISlfqUhnLIS)=Qn\,lde 0 hn\,IS) X 

(VI. 3. 2) 
[ 

-(H + ). V)/kT 1 

X :£:::. <~n't ,IS' \ e 0 Hn'tIS~l-
\n't,,!5' J rl 
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Because of the non commutativity of H and V, this expression is 
o 

much less simple, if all orders in >. are kept, than the correspon-

ding classical expression. It is only in the weak coupling case, whe

re we can neglect the interaction that we obtain: 

<~"\~lf~~o~n\,K)' exHt 2~ "t + ~~1/k T \-
(VI. 3. 3) )( r L exp \ - [r -::, n k + 2~J/k TIY' 

\n\!5 ~ ~ 

2 2 I } 
or re~u(~'lN\) = exp \ -ff :m Nk + :M] kT ~ 

~~o - 2 2 ~1 
(VI. 3. 4) X (L:. exp \ -[f ~ N + ~J/ltTr 

\NH~ l! 2m ~ 2M 

This will play an important role in our discussion of the validity of 

the Fokker-Planck equation in the quantum case. 

The collision operator t is given by : 

(VI.3.5) lim <0f1{ t(z _ ~ 'W)n 10) irr 
z~o n=l 0 

while for the operators of creation or destruction of correlations we 

have: 

(VI.3.6) 

(VI. 3.7) D~ "",(0) = lim <0\ i: tv: z-Jt )n I ~IV~rr 
~ z~ 0 n=l r- 0 

The index irr means that only irreducible contributions have to be kept, 

i. e. contributions such that no intermediate state is identical to the 

vacuum of correlations (diagonal elements of the Von Neumann matrix). 
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As in the classical problem , we assume molecular chaos ; hence: 

(VI. 3.8) 

(VI. 3. 9) 

f e~u (~,\Nt) = f qU (E)\r: (N)} equ 

6fo (~,\N\) = ~~(E) \ f :(N)\equ 

if we take into account the fact that the mo.dification of the density ma
-1 

trix of a fluid particle is of order N , hence negligible in the limit 

of a large system. 

VI. 4 - Expansion in the mass ratio. 

Whenever the ratio (p)/ P satisfies the relation 

1/2 
(VI. 4. 1) <p)/P=O(mjM) =O(t) 

we easily obtain an expansion in the mass ratio if we follow the same 

procedure as in the classical case. We decompose the unperturbed ope

rator 1t : 
o 

(VI. 4. 2) 

Similarily : 

(VI. 4. 5) 

where 

(VI. 4. 6) 

where Y represents the fluid-fluid interaction (first term in the rhs 
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of (VI. 2.15) . \fA is the f1uid~partic1e interaction (second term in the 
", .. ae 

rhs of (VI. 2.15) . If one expands the displacement operators ~ -- in a 

power series, one easily obtains an expansion of \T A in a power se

ries of r . For instance, 'If: is obtained by the mere replacement of 

the displacement operators by unity: 

(VI. 4. 7) 

(VI. 4. 8) 

The external field contribution i,s, as in the classical case, of order' 

i . The main difference with the classical case is the appearance of 

higher order terms in the expansion of '\fA . However, one verifies easily 

again , that, to, lowest order in ¥ ' the equation may be written; 
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. .J f 
-I(A> -z)t 

e x 

Moreover, at this order, we can restrict ourselves to the lowest order 

term", equiP) in the equilibrium distribution function. 
1 0 ~ 

Hence , we have: 

where 

f 
(VI. 4.12) (p. .I) 

Uvte equ 

where 

~ e -~'~N +"/2~\e -Hf/kTI\N_ v/2\) 

L ({N\le -Hlj kT I~N\) 
\N\ 

Hf = HO + V 
f 

is the fluid hamiltonian operator 

VI. 5 - Fokker-Planck equation. 

Let us consider the rhs of (VI. 4.11) at t=O (the calculation of 

the contribution involving twice "U ~ at a time t different from zero is 
. ~~A 

given in appendix VI. 2). For the contribution involving twice \) 1 ' 
~ we have: 

"'When no confusion is possible , we do no longer use a special notation 
for vectors. 
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Using (VI. 4, 8) • we obtain: 

= ('>./n) ~ u(k-f) ~ DNk + Y~/2) (NI+1 + ,,; /2) ) 1/2 )( 

(VI.5'2))(rr\v't"~k-l '''{ +1 • ~r-k+r ({Nt'· Nk-l .Nl+1)~qU+ (Nk+l-"U 2))( 

)C (N1 - ~ 1/2) ] 1/2[ff \"',', ~~-1 ,\I { +1, lC' -k+l (tN\' ,Nk+l, N1-l )] \ X 

') 
(1/2)(I-k) , '} P 

!ilOing back to the occupation number-plane wave representation we 

obtain: 

where the force operator is given by : 

(VI. 5. 4) 

Therefore, we have: 

ot = 2: r. L(ollf A \ltlyt)r I:<\N +" /2\\F. (K) ~f l( -K 
IN' ,vt lC 1 i K 1 

+ f~ _KFi(K)\\ N- -I /2\)(1/2) ~ P, 
1 



-313-

F. Henin 

+({N-"t.-xluHNI)(iNt\Fi (K) rfae. -K+ y~ _KFi (K)"N_~\)})c 

'6 2 
')( (1/4) 

~P. ,P. 
1 J 

\C. 
J 

(VI. 5. 5) 

= L r [. <~N~F~¥)F.(K)f~ _K+F~(lC)r~ _KF . (K) 
\ N\ ij 1t K J 1 J 'It 1 

+F.(K)f~ F:t~ +P~ F.(K)F~(lC)\\N~.!. 
1 AI -K J , .. -K 1 J 1/4 

Taking into account the fact that we can interchange ~.K and i and j J 

and that the trace of a product of operators the invariance for cyclic 

permutations of the operators , as well as the hermiticity properties 

o f the operators, we obtain: 

As in the classical case, we see that we have here the average over 

the fluid equilibrium distribution of the tensor operator FF. 

As to the second term, at t = 0, we have: 

~ = r. r. 2: <ol\l~IJI~tltXI&~~~~l)&~1 r~~ u 
\~t~ g q . 

(VI. 5. 7) 

= L. ~ L (iN\ IF~)() ~. p! + ¥. f~ F:(g)I~N')~; (P/M) i N\ .. t If 1 J I J 1 CJ i 
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Now we have , performing an integration by parts in the second step, 

= "' (In'i\F (k')r f 'tnt) ~ 1 j k+k' 

and therefore : 

(VI. 5. 9) L(O\'\fAl It A rf 10) = (F ~ F.) 'C>p (P /kTM) t Ni 0 equ 1 J 'i) i j 

Therefore, at t = 0, the integrand in the rhs of (VI. 4.11) becomes: 

( F+ F'~r~ 1 P 1 
i j I () p. 'l P. + kTM j 

1 J 

(VI. 5. 10) 

In appendix VI. 2, we show that the first term, at a time t different 

from zero, is identical to (VI. 5. 6) but with F. replaced by F.(t) 
1 1 

where F .(t) is the Heisenberg representation of the force operator: 
1 

(VI. 5.11) 
'Hf l'Hft 

F.(t) = e-1 t F. e 
1 1 

A similar proof can be given for the second term and we obtain finally 

the Fokker-Planck form of (VI. 4.11) : 
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where the diffusion coefficient in terms of microscopic quantities is gi-

ven by 

(VI. 5.13) 

.t
As it can also be shown that, to first order in ~' we have : 

(VI. 5. 14) 'fe:u(p) = (M/'ZrkT)3/2 4lf' exp(-p2/2MkT) 

we have: 

(VI. 5.15) 

This completes our outline of the derivation of the Fokker-Planck equa

tion in the quantum case. Let us stress that this equation is valid 

whenever the condition: 

(VI. 5.16) (p)/p «1 

is satisfied. 

VI. 6 - Diffusion coefficient for a heavy ion in a 

slightly imperfect Bose fluid. 

In a weakly coupled Bose gas, the condition (VI. 5.16) for the 

validity of the Fokker-Planck equation would always be fulfilled. When 

strong interactions are present, the zero point motion of both kind of par

ticles starts to play a role and it is difficult to make general assertions. 

We shall assume that the interaction between the fluid and the 

• One can for instance use an expansion of ~equ in powers of r. As we 

must have : +(O)~equ = 0 , we have ,(2)(0) 'fe~u= O. But as we have 

just seen, ;(2)(0) is the Fokker - Planck operator: hence f e~u must 

be the Boltzmann distribution. 
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heavy ion is very weak and that we can neglect it in Hf . We shall 

also restrict ourselves to a slightly imperfect Bose fluid and assume 

that the temperature is sufficiently low to insure that the Bose-Ein

stein condensation has already occurred to a large extend. Then most of 

the bosons are in the ground state and we have: 

(VI. 6.1) 1\ ~ N 
o 

where n is the number of particles in the ground state. Then we 
o 

can apply the well-known assumption : 

+ 
(VI. 6. 2) a '" a 

o 0 

The force operator becomes: 

(VI. 6. 3) 

[ (k) = 11- 1 k u(k) rno (a: -ak) 

+ 11- 1 L. k u(k)' a; al _k 
I/O 

while , if we use a pseudopotential (see ref. 4,with U '" 41f' a/ m 

(a.: radius of the particles) : 

(VI. 6.4) 

We shall 
+ 

and bk 

(VI. 6. 5) 

(VI. 6. 6) 

(VI. 6.7) 

V = (Uj211) rn! + 2no L.. (/ a + a \ ) l p/O -p p p-p 

+n 
o 

L. (/a+ +a+ a )1 
p -p p-p 

p=o 

use the Bogoliubov transformation to phonons operators bk 

(see for instance ref 4) : 

+ 
a=gb+fb k k k k k-
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o 
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This transformation does not change the commutation rules and we 

have 

(VI. 6. 11) 

(VI. 6. 12) Hf=E +Lwb+b 
o k k k k 

(VI.6.13) 
2 -1 1/2 

wk = (k/2M) (k + 161fano 0 ) 

Similarly, the force operator can be written in the phonon represen-
+ 

tation bk, bk . In this representation, it is a matter of algebra to 

compute the diffusion coefficient (see an example of computation in the 

next paragraph for Fermi systems) . One obtains 2) , if one restricts 

oneself to small wave numbers (i. e. to the linear term in the dispersion 

relation (VI. 6. 13)) : 

f' _ nr/o2 I. k k (f2 f2 + 2 2 ) 0 (mo +1) 
"ij - ) kl i j 1 l-k gl gl-k m l l-k 

(VI. 6. 14) ~( \l-k\ -1) 

m~ is the distribution function in a slightly imperfect Bose gas in the 

limit of small momentum: 

(VI. 6. 15) Or] 1 ~ =lexp (wl/kT)-1- = fexp (cl/kT) - 11-1 

The integrations can be performed and one obtains, if one reintroduces 
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(VI. 6.16) ~ = (21r3/45(kT)5 a2 1'r- 3 -4 
c 

The mobility of a heavy ion is given by 5), 

(VI. 6. 18) t" = eD/kT 

1'". Henm 

where D is the diffusion coefficient in ordinary space. As we have 

seen in chapter I, we have: 

(VI. 6. 19) 

(note that D is the coefficient appearing in the diffusion equation in 
-1 

ordinary space, (M/kT~) that appearing in the Fokker-Planck equa-

tion in velocity space " ; that appearing in the Fokker-Planck equation 

in momentum space) . 

Therefore we obtain: 

(VI. 6. 20) 
3 3 4 -2 -4 

(45/2tt' ) e 11. c a (KT) 
-4 

T 

+ , 4 
In a measure of the static mobility of (He ) m liquid He at low 

n 
temperature, Meyer and Reif 5) have found: 

(VI.6.21) r '" Tk with k = - 3.3 + 0.3 

which is in good agreement with the above result if one takes into 

account the fact that our model is quite rough . 

VI. 7 - D i ff us ion 0 f a he a v y ion ina we a k I Y co u-

pled Fermi fluid. 

We have seen in the introduction that in a Fermi fluid, at low 

temperature, the Fokker-Planck equation is valid only if the condition 

(VI. 1. 4) is satisfied. We shall discuss again this problem in the next , 
paragraph but presently we consider a situation where this condition is 
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satisfied and compute the diffusion coefficient, assuming the fluid to 

be weakly coupled. 

As well known, in a Fermi system, the creation and destruc-

tion operators anticommute 

(VI. 7.1) ,a 1 = 1 
k + 

and the only possible values of the occupation numbers are 

(VI. 7.2) 

In order 

(VI. 7.2) 

we shall 

n = 0 or 
k 

to avoid difficulties with the subsidiary condition 

Ln = N 
k k 

consider the grand canonical ensemble . Then the equilibrium 

distribution for a weakly coupled system is given by : 

(VI.7.4) 

where f F is the Fermi energy . 

Thus, going back to the occupation number representation we 

have: 
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(VI.7.6) 

(VI. 7. 7) 
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one easily verifies that one must have: 

(VI. 7. 8) 1 = 11 

and one obtains: 

X exp [_i{k2 _(k_l)2 tt/2m)expt ~ nk(k2/2m - EF)/kTl ~ 

)( 1[ \1 exp [- (k2/2m -fF) /kTl}-l 

(VI. 7.9) 
\2 2,..Z 2 [. 2 2 ] 

= (" /n ) L. iu (k)\ k.k. exp -1 (k - k' ) t/2m X 
k kl 1 J 

X exp (- (k2/2m-EF)/kTl\l+exP[-(k2/2m-tF)/kTl}-I)( 

)i \1 + exp [-lk,2/2m - t:F)/kTl}-1 

At the limit of a large system, the summations over k and 1 become 

integrals. If we also perform the asymptotic time integration in (VI. 5. 

13) , we obtain 

~ ij = 2m 11'~2 (ik(d\' IU(k)12 kik j ~(k2_kI2) exp[+ (l42m- tF)/kT J X 

(VI. 7. 10) 2 l-l J 2 1 )( {I + exp [(k /2m - tF)/kTjJ 11 + exp ~kl /2m - fF)/kTJ}-
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One easily verifies that this tensor is diagonal and that one has: 

(VI. 7.11) 

with 

~ =(1611'3m/3) C dkk3 [ dk'k,2IU(k) \ 2[~(k_k') + S(k+k' )] l( 

(VI.7.12))C expDk,2/2m - t: F )/ kTl\l+ eXP[(k2/2m-fF )/kT]}-1 X 

X ~ 1 + exp [tk12 /2m - f F)/kT1Y 1 

We integrate over k' and approximate the potential by a constant; we 

then have: 

3 4 2 3 (<Xl 2 d \ (t: S 2 l -1 
(VI. 7.13) = - (128/3)1f m U (kT) '0 dE f 'dE 1 + e - ) J 

where 

(VI. 7.14) 

~(256/3)l!3m 4(kT)3u2 I: dII[1 + ,( t -~2)rl 

~ =( E /kT) 1/2 
F 

At sufficiently low T, we have: 

(VI.7.15) ~ »1 

(VI. 7 .16) 

, <Xl y-l 
dyy (1+e ) 

t2 2 
= ~4/2 +1T /6 
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where we have neglected exponentially decreasing contributions in the 

first integral as well as the last one whose integrand is exponentially 

small. 

Therefore, we obtain: 

From this, we easily obtain the mobility (see VI. 6. IS). Introducing 11 

and the collision cross section cr in the Born approximation (a- = 
2 

= 2m Tf u ) , we obtain: 

(VI. 7. IS) 
311' eii3 

Davis and Da gonnier I } compared this result with the experimental mo

bility for a heavy ion in liquid He 3 at 1. 2 oK measured by Meyer and 

al. 6} • HoweV'er, the comparison is not very easy because of the lack 

of information about the collision cross section (radius of the ion) and 

the effective mass of the ion. With reasonable estim8tes for these 

quantities, they find a good agreement. 

VI. S - Validity of the Fokker-Planck equation for brownian 

motion in quantum systems. 

Let us first consider again the case of motion in a weakly 

coupled Fermi fluid. We may distinguish three temperature regions: 

a) the temperature is so high that both the fluid and the particle behave 

classically. Then, if the particle moves with thermal velocity, we have: 

(VI. 8.1) 
1/2 

= 0 (m/M) 

and the classical Fokker-Planck equation is valid. 
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At lower temperature, quantum effects become important 

for the fluid. Only those fluid particles near the Fermi surface interact 

with the particle and we obtain: 

(VI. 8. 2-} 1/2 't <.P) /p = 0 (m IF/ MkT) = 0 (~~) 

We may now distinguish two cases : 

b) an intermediate temperature range where the more restrictive condi

tion : 

(VI. 8. 3) ~~ < < 1 

is satisfied and the quantum Fokker-Planck equation (VI. 4. 11) is valid. 

c) the case of very low temperature where 

~ ~ > 1 

and where the Fokker-Planck description does no longer hold. 

In a discussion of the possibility of convergence of the {p) /P 
development presented here, R~sibois and Dagonnier 3)8) have shown 

that, in general, one must not expect this convergence to be 

realized at very low temperature, whatever the statistics. A very sim

ple argument is the fact that at very low temperature, the average mo

mentum P is independent of the mass ratio. It is essentially determined 

by the interactions with the fluid molecules and momentum transfers 

can become very large; the Fokker-Planck description is then no longer 

valid. 

Let us show briefly how this conclusion about the independence of 

the average momentum at very low temperature can be obtained. For 

simplicity, we consider the case of Boltzmann statistics. The equilibrium 

distribution function for the brownian particle is : 



f equIP) 

(VI. 8. 5) 

where 

(VI. 8. 6) 

Let us write: 

(VI. 8.7) 

Then: 
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Tr f fluid, A equ 
... f A 

trfluid expL.- ~(Ho + Ho + V 

_AH 
= e ,-
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+ U)] 

One verifies easily that this quantity satisfies the Bloch equation: 

(VI. 8.9) ~~f) =\exp[~H~ +' H:)JV + U) exp (-P(H~ + H~)n (.) (~) 
Taking into account the commutation relations 

_~HA] 
(VI. 8.10) [V, e 0 = 0 

(VI.8.11) 

and introducing 

(VI. 8.12) 

(VI. 8.13) 

'" f f 
V = exp (~Ho) V exp ( -PHo) 

'" f f 
U = exp (~Ho) U exp ( -~Ho) 

this equation can be rewritten: 

(VI. 8.14) 

Expanding the rhs in powers of HA , we obtain: 
o 
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(VI. 8. 15) ')o~(~) = \v + U +~IH~ , U 1 + ~2 [H:,[I(,ul]+ ... \ w (~) 

After a rather lengthy calculation 8) , one can finally obtain the ,2 
equ 

(=m/M) correction to the maxwellian ~o (P); 

equ equ 2 r, 2 ~ equ 4 
(VI. 8.16) ~ (P) =~o (P) + ¥ ~P /2MkT)(kTQ/kT) +~'fo (P)+ 0 (t ) 

where Q/, is a factor which guarantees the normalization of 'f equ to 

unity. T Q is a characteristic quantum temperature which expression 

is quite compicated but can be shown to have the following properties; 

(VI. §..17) lim T Q(tl, T) = constant 
T~O 

(VI. 8.18) 
lim 

TQ (t;, T) = 0 11 ~ 0 

From the above equilibrium distribution, we obtain easily ; 

(VI. 8. 19) / 2) -2(; 2 4\1 ,p = 3m ~ ikT + r kTQ) + 0 (¥ l 
At sufficiently high temperature, we have 

(VI. 8.19) 

(VI. 8. 20) < p2) :: ;; kT 

However, at sufficiently low temperature, we may reach a regime where; 

(VI.8.21) 

In that case; 

does no longer dependon r . 
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A more rigorous mathematical analysis is of course quite diffi

cult in general because of the complexity of dense systems. A more 

elaborate discussion can be found in 3)8) 

Appendix VI. 1 - Examples of the algebra leading 

to the Von Neumann - Liouville equation (VI. 2.12) 

In the mixed occupation numbers-plane wave representation the 

Von Neumann equation is 

(A VI. 1. 1) 

Let us consider in the first term in the rhs one contribution to the 

fluid-fluid interaction: 

(A VI. 1. 2) aI. 

with 

(A VI. 1. 3) V=V(k,l,p,r)~kl oat + -p-r, k 

We perform the following change of variables: 

K-K' =)t n -h' 
k k 

= -J 
k 

(A VI. 1. 4) K"-K' = )(' n"-n' 
k k 

V' 
k 

K+K' 
= P 

2 

n tn' 
k k 

= N 
2 k 

Then, we ha'(e 
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Using the notation (VI. 2.8) , this becomes: 

.,.. r- - ~I VI ~ 
0( = L- .I. I ~ Vlj; _~' I V _ V I" (P + -2-' {N + -2-1) )( 

lC,1 IV kl " I 

(A VI. 1. 6) X P (P _ ~ + ~ {N _ ~ + ~ \ } 
'~I ~ V 1\ 2 2' 2 2 

Introducing the displacement operators defined by (VI. 2.10) and (VI. 2.11) 

we may write : 

x' r~' -)( ~I " 
d. = L. I". ~ ') k k V" _ ')(.1 I" _ .. ,,(P,\Nf) ~ 11} K k )( 

~1\Vlk\ ...,' "J 

(A VI. 1. 7) 

(the displacement operators act on everything that stands at their 

right. ) 

Now, using again (VI. 2. 8) and (AVI.1. 3), we have: 

V I l I, (P, ~Nf) = v ( k, 1, p, r) S )C 
~ - 'l(. , ,v - v , k+l-p-r,O 

(A VI. 1. 8) =V(l,lp,r)~k+l_p_r OS~ ~I V i... "I~.,.I .. -1 X 
, , i,hlpr" i'" i k' "k 

X (N H/2)(N + 1/2)] 1/2 
P r 
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If we combine (A VI. 1. 7) and (A VI. 1. 8), we readily obtain the first term 

in the rhs of (VI. 2. 12) . 

As another example, let us consider the external field term. 

One can also very easily obtain the following contribution to the Von 

Neumann - Liouville equation: 

z: L.,,,\vt!)CE l~vI\xI) r~, \ v I ~ (P, \ N~) 
1(, I \v It J 

", r", -r .. k 
~ T" \ 'f' k k E _ -lC k 

= Lt- ) "l H}(_1I.Il"'_~ll(p,\t'rt)~-} 
~I \vl! " I 

-11:1 - r"k E " f~k 
-~ ., k HlG_~,,\V_Ylt(P,~Nt)~' ~rlt'~v't(P,\Nt) 

= r. L {exp (~I ~p) exp[~ 2>~' 4(P + l( _~I ,\NI v - .,1 II 
~I ,",vlt k k '1 Nk\ 2 2 

E. R' P - lC - lC ' iN - ~t\exp (- " 2...) exp [- l r" L 1 
'" ... 2" 2 ~ 2 'j)P 2 k k "i) Nk 

(AYI. 1. 9) 

- exp (-~ ~) exp [_l rv' ~1/p+ 'I(_~I I N +'' -Vl t\ 
2 ';>P 2 k k C) Nk \: 2 '1 2 

~.~. \p - X-2}(' IN-~f)exp (~2 )exp[!.[~ 2-1l X 
- ' 1 2 I 2 Q P 2 k k () Nk I 

x rX., \"I~ (P,\Nt) 

=l:!:TTcl , 
~I ~VlJ k v k' '\ 

{ dR -,<, R ,i( lC. I - ~ ). R 
.... ~. I.. .12 

~ '" ... x 

JC.I - It 
2 
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= i E. ~P z:. L. 1f. , i I ,'" P~'lv'~ (P ,\Nt) 
g ~,\",\ k "k'''k ~ ... ,: , J 

which agrees with (VI. 2.16) 

Appendix VI. 2 - Equivalence between (VI. 4.11) and (VI. 5. 6) 

Let us discuss the contribution involving twice 

0( (t) = L L L L (o,\J~ \ \"he) 'X 
~N) \,,\~ \"')~' \""t~" 

lfA . 
1 . 

(AVI.2.1)lc'(~"'~1 exp [- i (I.f -z)tll1&'\v")(¥'\Y't I \ftllC.n~"n\) ')( 

)( ~f~" \Y"i( \N\) 
Usinf (VI. 5. 6) , we have \ (see § 5) : 

where the force operator is given by (VI. 5. 4) . Rence , we obtain: 

~ (t) = r L!. L L (o\ut \ \Y\ 'aC) X 
i K \N~ \ ... , X \".'t-' 

(AVI.2.3)"<\~tl(exp (-itftll\v'\X') (\N+ T } ,}C' 1 Fi(K) f 
+ rf F/K)I\N - v2' 1, K) ~P. 

1 

Now, let us differentiate with respect to t the quantity 
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with 

(AVI. 2. 5) 

hence 

(A VI. 2. 6) 

We have: 

or , going back to the occupation numbers-plane wave representation; 

where 

(AVI. 2. 9) H = Hf + V 
f 0 

(To obtain this result, we take into account the fact that, in the 

term invol ving 11' A , we' have; 
o 

~ felH e-i(~-k+l-~').R {dR' e-i('\oC'-K).R' ('Jf(R,t) 

(AVI.2.10) = JdR e-i)(R ei(k-l).R~f(R,t) eiKR =(,,(ei(k-l).RPf/K> 
Therefore, we have 

where F. (K, t) is the force operator in Heisenberg representation. 
1 , 

Therefore; 
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(AVI. 2.12) 

+ ffF.(K, tll\ N ~ f-l' K) P 
1 1) . 

1 

From now, on , t~e derivation goes on as in the text and leads to 

the second order differential contribution in (VI. 6.12) . 
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VII. GRA VITA TIONAL PLASMAS. 

VII.l- Introduction. 

In all the preceding chapters on brownian motion, we have used 

the kinetic equation (II. 9. 5) as the starting point. However, when we 

derived this equation, we stressed the importance of time scales. This 

equation fails to describe correctly the asymptotic behavior of a system 

where there is no net separation between the collision time and the rela

xation time, or where the initial correlations are over long distances. 

Now, long collision times or long range correlations must obviously be 

expected in systems interacting through long range forces. As examples 

of such systems, we have immediatly in mind, on the one hand, systems 

interacting through electrostatic forces and, on the other hand, systems 

interacting through gravitational forces. In both cases, the interaction 

between two particles is inversely proportional to their relative distance. 

A great deal of effort has been done to understand the situation 

in the case of electrostatic forces. If we consider a charged test particle 

moving in a plasma, it polarizes the medium: the charge 'distribution 

around the particle is no longer uniform. The medium screens the interac

tion between two particles and we are no longer dealing with a pure 

Coulomb force. This idea, in its simplest form leads to the Debye 

Huckel theory. Out of equilibrium, it has been shown that, if one sums 

in the operator '\' all contributions proportional to (e 2 C) m, the result 

of this summation is to introduce a dynamkal screening. This scree

ning introduces a short time sc ale : 

and a long time 

(VII. 1. 2) 

scale 
4 -1 1/2 3/2 

t = (e c) m (kT) 
r 

-1 
c 
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We are again in the conditions where an asymptotic kinetic equation may 

be written (Balescu~Lenard equation). 

What is now the situation with gravitational forces? The essential 

feature is that the interaction is now purely, attractive, whereas when 

we deal with electrostatic forces we have a mixture of attractive and 

repulsive forces (with a condition of overall neutrality). In a discussion 

of equilibrium properties in the framework of Mayer's cluster integrals, 

one notices very easily the importance of this difference. Indeed, there 

it appears clearly that the most divergent contributions can be eliminated 

because of the electroneutrality condition; the next dominant terms (which 

diverge also) can then be summed and lead to the screening. This pro~ 

blem arises always as soon as one computes average quantities, but, in 

the derivation of the Balescu~Lenard equation, one can restrict oneself 

to an electron plasma with a positive background; one notices then that 

the background plays no role in the derivation. In this case , we are 

dealing with purely repulsive forces. The first idea is then to perform 

in the case of purely attractive gravitational forces, the same summation 

that worked for purely electrostatic repulsive forces, or for a mixture 

of both attractive and repulsive electrostatic forces. In simple models, 

which leads for electrostatic potentials to the Oebye potential: 

(VII. 1. 3) -1Cr/ e r 

one obtains, for gravitational systems an effective potential of the 

form: 

(VII. 1. 4) 

This partial 

iKr 
V = e /r 

G 

summation does not lead to a screening; the "effective 

interactinn " has the same range as the gravitational interaction. 

The intuitive ideas which lead to the Oebye potential for an elec~ 
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trostatic plasma can obviously not be extended to the gravitational 

systems. As we have seen, more elaborate techniques did not succeed 

to bring anything which ressembles whatsoever to an effective short 

range interaction. In view of the failure of all those attemps to 

justify the use of the kinetic equation for such systems, one may try to 

use a completely different starting pOint . If we cannot use the kinetic 

equation, we must go back to the exact equation, the generalized ma

ster equation (II. 8. 9) . One can then try to discuss the new features 

introduced by the long range character of the interaction. This is what 

Prigogine and Severne 1) attempted very recently. T hey considered a very 

idealized model of a gravitational system: a weakly coupled, homogeneous 

system, with no correlations at t=O. Although the first condition c:m 

be justified with the conditions p.revailing at present in our galaxy 
1 )2) 

the other conditions of the model are certainly not realistic. A real gra

vitational system is an inhomogeneous system. However, the findirg 

of a proper treatment for this idealized model , which is the simplest 

model of a gravitational system one can find, is certainly the first ob

vious step one has to take if one wants to achieve an understanding of 

the much more complex actual systems (or at least of realistic simplifi

cations of the actual systems) . 

We shall first show on a very simplified collision operator what 

is the basic difference between systems with a very short collision time 

(as compared to the relaxation time ) and systems where the collision 

time is infinite . This will enable us to convince ourselves that, even 

if we require only an understanding of the asymptotic behavior of the 

latter systems, it is necessary to start with the generalized master equa

tion We shall then discuss the characteristics of the long time evolu

tion as described by this equation in the limit of infinite collision times. 
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More details as well as general considerations about the following di

scussion can be found in the paper by Prigogine and Severne 1) as 

well as in a paper by Prigogine 
5) 

VII. 2 - Simple model for the collision operator. 

In order to see what are the difficulties which arise when one 

deals with long range forces, i. e. long collision times, let us investigate 

a simple model for the collision operator 3)4) : 

(VII.2.1) 
c( 

'I'(z) =-
z +i ~ 

( II( ,~ ) 0) 

The collision time in this model is given by j\ -1 while the relaxation 

AI -1 A . time is given by '" J" 

The non markovian equation for this case , if we do not take 

into account the destruction term, is 

(VII. 2. 2) 
-1 r t 

= (2 1f i) J 0 

Provided that we can neglect terms of the form exp(-t/"t 11)' an ex-
2 co 

pansion of (VII.2.3) in powers of ('"t"coll/"t"rel) =cl~- ,leads to the 

pseudo-markovian equation (see chapter II, t 9) : 

~ r 0 = -i !"l(0) '1'(0) r~) = -i \ t(O) + ,\,'(0)'1'(0) + H'I'''(01f0 ) 

(VII. 2. 3) + t,2(0~t(0) + .. ·\r ott) 

= - \1 +,~ - 2 + 2 (cl ~ - 2) 2+ ... 1 (" / ~ ) f 0 (t) 
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This expansion has a simple meaning for small values of "I: IT: l' 
eoll re 

On the other hand, if we take the extrerre case of infinite collision 

times (p ... 0) , it is meaningless; the operator t(O) is no longer de

fined. However, in any case the non markovian equation predicts a well 

defined behavior of the distribution function. I ndeed, from (VII. 2.1) and 

(VII. 2.2) we have 

(VII. 2. 4) 

and we easily obtain the second order differential equation: 

(VII.2.5) 

The solution of this equation is very simple and perfectly well defined 

whatever J\ (note that [if 01 u t]t=o = 0) : 

fo(t) =(l/2)fo(O{1 - , (f\ 2 -411()-1/21 exp r- (f + (~2;4,,)1/2J t] 
(VII. 2. ') +(1/2) f 0 (O{1+ ~(I' 2 -4~)-1/21 exp r -If -(i _~.)1/2J t] 
When 

(VII.2.7) 
A,-2 

't / T: ='" -, 4 coIl reI 

we have a monotonic decay of 0 (t). 
-2 I 0 

If"~ «1, neglecting terms proportional to 

we obtain: 

(VII. 2.8) 
-1 

fo(t):: flO) exp (- -1\ t) 

-t/ i: coIl - ft t 
e (e r ), 

which is the I behavior that is given by the pseudomarkovian equation if 

we restrict ourselves to the first term in the rhs of (VII. 2.3) 



- 337-

F. Henin 

For 

(VII. 2.9) 

i. e. for large collision times, we obtain damped oscillations. In the 

extreme case of infinite collision time, we obtain a purely oscillating 

behavior: 

(VII. 2. 10) 

In other words, for long range interactions (small 1\ ). the corrections 

due to the non markovian character of the equation are quite impor-

tanto 

VII. a - Non mar k 0 v ian e qua t ion i nth ewe a k c 0 u pI i n g 

approximation. 

Let us consider a gravitational plasma: 

N 2"" 1 
(VII.3.1) H= 1: {l/2)mv. + ~ L. , r.-r .1-

i=l 1 i<j -1 "'"J 

where 

(VII. 3. 2) ~ = _ Gm2 

where G is the constant of gravitation. 

The characteri.stic parameters of such a system are (numerical 

values correspond to conditions prevailing now in our galaxy and in the 

vicinity of the sun 2)): 

-8 
G=6,7.10 cgs 

33 
m = 10 g 

{VII. 3. 3) v= 3.106 cm/sec 

(constant of gravitation) 

(average mass) 

(mean star velocity) 

-57 -3 
C = 3,4.10 cm (number density) 
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With these parameters we can form one non dimensional quantity prow 

portional to G: 

(VII. 3. 4) r 1/3\ _2~1 ~6 
= C ,,(mv) = 0 (10 ) 

The smallness of this parameter justifies a weak coupling appro~ 

ximation. 

In our discussion in chapter III, t 6, we have seen that the 

asymptotic weak coupling operator '1'(0) for a potential in 1/ r 

presents a double divergence. We shall show here that the non~mar~ 

kovian corrections, even in the weak coupling approximation ,permits to 

remove the long distance divergence. The short distance divergence, due 

to the close collisions cannot be removed in this way; however as clo-

se encounters are not very frequent, we shall neglect them in the evo

lution equation; in other words, we shall cut-off the potential at some 

short distance R. 

In the following analysis, we shall find -two time scale;; : 

the "nominal" relaxation time: 

(VII. 3.5) 
-1 \-2 

t" =C " r 

2.3 -1/3 r -2_-1 16 
m v = C v:: 7 .10 years 

the duration of close encounters: 

(VII.3.6) 
_-1 -1/3 r --1 

't' = Rv = C v 
c 

-2 
7.10 years 

if one takes for R the distance corresponding to a mean 90 Q deflection 

in the two body scattering problem. 

We shall, as usual, consider the limiting case 

(VII. 3. 7) N ~ 00 , n ~ 00, C finite 
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We shall also neglect all time variations occuring on the close collisions 

time scale t:" • 
c 

We shall assume that we are dealing with an homogeneous system 

in which there are no spatial correlations at t=O. 'Ben, the destruction 

term in the non markovian equation vanishes identically and this equation 

has the form (VII. 2. 2) . 

In the weak coupling approximation, the collision operator f (z) 

is given by (see IIJ.2. 3) : 

, 3 \ 2 2 I 3, 2 ~ C) 1 \v(z) = (8111' 1\ elm) d k V \ k. (-- - -) -~-- )( I k - ~v lv k.(v -v )-z 
-1 -2 - -1 -2 

(VII. 3, 8) () ~ 

" k.(-----) 
- ')~1 'i.'(,2 

In order to treat in a proper way the divergence, we shall consider the 

gravific potential as the limit of a screened potential: 

(VII. 3,9) 

Following the technique of chapter III, ~ 4 , one obtains easily: 

(VII. 3, 10) 

with 

(VII. 3, 11) 

where 

(VII. 3, 12) 

,3\2 2 'C) ~ 
U1(z) = (32111 It. elm ) ~ T ~ 
I tJ gr rs "gs 

-2 2t' -2 
T = Til g g g + T.L(g c) - g g )g 

rs II r s r, s r s 

iJ' = V -v 
R. -1-2 

is the relative velocity. T,l and T.1,. are the parallel and transver

se components: 

(VII. 3. 13) T = 11m 4" -- - ---, 20 1\ K r \ 
It K.., 0 ( ) z+iKg z+i r g 
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2 -If i z+iKg 1 II} (VII.3.14) T.= lim (4,,) -In -, - - - --2 -,-
... K-,) 0 g z+lr-g 2 ta-R z+l .... g 

where R is the short distance cut-off and 

(VII. 3. 15) 

For instance, in a reference frame where the z axis is along [, 

using cylindrical coordinates, we have: 

(VII. 3.16) 

\
+00 } 2 -1 2 -1 2 2 -1 2 2 -2-1 

" (41') lim dk k (k g-z) \ (k +K) -(k +K +R ) 
KO zZZ z z 
~ -00 

The last integration is easily performed by the method of residues 
+ 

(z £ S) and leads to (VII. 3.13) . 

Also: 

\
+00 IR 3 -1 3 2 2 2 -2 -1 

= (411" ) lim dkz dk.1. k.1. (k z + k.,L +K) (kzg-1) 
K.., 0 -00 0 

(VII. 3. 17) +00 k2 + r2 

3 -1 \ \ z ~ -1 = (811 ) lim dk In 2 2 - 2 2 2 g-z) 
K':'O -00 z k +K R (k +f" z 

z z 
The second term is easily computed, using, the method of resi

dues and gives the second contribution in the rhs of (VII. 3.14) . As 

to the first contribution, we complete the real axis with a half circle 

at infinity in S and avoid the two branch points at -i t" 
-iKby making a cut. (see fig. VII. 3.1) 

and 
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Integration contour for log. term in (VII. 3. 17) 

Fig. VII.3.1 

One can then easily obtain the first contribution in the rhs of (VII. 3. 14). 

The most important feature of the operator t (z) is that, at 

the limit K -) 0 , the transverse part T.L has a logarithmic singu-

larity at z = 0 The collision operator may be rewritten: 

(VII. 2. 18) 

with 

if one takes into account the fact that any function of g commutes with 
A 

the differential operator '" . 

We have singularities both at z = -iKg and z = -ir g. The singula

rities at z = -i r g are related to the close collisions and are at a 

finite distance from the real axis. As the time scale for the close colli-

sions is much shorter than any time scale we shall meet, we treat the 

close collisions as instantaneous. This means that we consider values of 

z such that: 

(VII. 3. 21) 

We then obtain the approximate form 
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(VII. 3.22) 

(VII. 3. 23) 

Now, in the case of electrostatic plasmas, K is finite and if we ne
-1 

glect effects proportional to (Kgt) ,we obtain the asymptotic form: 

(VII. 3.24) 

(VII. 3. 24) JR-
1 

3 2 2 -2 "'" 
= 0 dkk (k + K) r 

which is eaSily verified to be identical to (III. 3.5) when one takes as the 

interaction the screened Coulomb potential. However, in the limit 

K .., 0 , this procedure is meaningless and we obtain: 

(VII. 3, 25) 

with 

(VII. 3. 26) 

The solution of the non markovian equation (VII. 2. 2) may be written 

(see II. 9. 4) : 

r ott) = - (2'0' i)-l fdZ 
-izt 

e 

(VII. 3. 27) 

1 ( -izt 
=-(2l1'i)- )dZ e _-:-1--:- r (0) 

z- t(z) 0 
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VII. 4 - Tim e e vol uti 0 n 0 f the vel 0 cit Y d is t rib uti 0 n 

function. 

"'" The operators t and + do not commute; hence they do not 

have a common set of eigenfunctions and the analysis of the time evolu

tion is not very easy. However, the problem will be considerably sim

plified if one of the contributions turns out to be dominant. Let us first 

investigate the type of behavior determined by the second term. 
A 

The characteristic time involved in f is the nominal 

" 
relaxa-

hon time 1:' given by (VII. 3.5) 
r 

. The operator - i 'Y ' as we have 

already seen (see the discussion of the )(, -theorem, chapter III, f 2) 

has real, negative or zero eigenvalues which define a spectrum of rela

xation times. We may in a qualitative discussion introduce the following 

approximation: 

(VII. 4.1) 

Also , we replace 
-1 

Rg by its average value, the collision time for 

close encounters -r . Then we obtain: 
c 

(VII. 4. 2) -1 f -izt [ 1- 1 r o(t) = - (2 1f i) dz e z-x (z) 

where 

(VII. 4.3) X(Z) = -\(1/2) + In (-iz/rc) i(i"tr )-l 

In order to understand the evolution of r 0 (t), we have to discuss 

the singularities of the integrand; i. e. find out the roots of the equa-

tion : 

(VII. 4. 4) o 

Let us introduce : 

(VII. 4. 5) z=-w-i'< 



- 344-

F. Henin 

Then (VII. 4. 4) and (VII. 4. 4) give us: 

(VII. 4.6) 

with 

(VII. 4.7) 

-xtiy = (1/2) + In r-1(_x+iy) 

x =ct"t 
r 

y =wt' 
r 

18 
fI'=~/-r =10 

r c 

A detailed discussion of the dispersion equation (VII. 4.6) can be found 

in ref. 1) . The main point is that the equation can be very much sim

plified if one takes into account the largeness of ... . A whole spec

trum of solutions is found. For consistency, the range of the spectrum 

is restricted to frequencies such that: 

(VII. 4. 8) 

The frequencies 

(VII. 4. 9) 

w «w ."L" 
-1 

max c 

W"", are essentially the odd harmonics 

w ~ (2n+1)11' /1: 
n - r 

-1 
of w = "C 

o r 

In the useful part of the spectrum 

the damping is such that: 

-2 
(frequencies less than 10 w ), 

(VII. 4.10) 
-1 

0( )4"C" 
n r 

max 

In fact, in the major part of the spectrum, the damping is found to be 

of order: 

(VII. 4.11) 
-1 r- 3 -1 

0(0 =t' In = 40t' 
r r 

The time scale for the oscillations is of the order of the nominal rela
-1 

xation time 't' while for the dampi.ng it is much shorter (at least 
r 

by a factor 4). The essential feature is that we hi ve now an oscillato-

ry relaxation of po (t) on a time scale much shorter than the nominal 

relaxation time and given by : 
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(VII. 4.12) t 1 = 'C /In('C' /7: ) re r r c 

The consideration of the complete spectrum of eigenfunctions and eigen

values of i" avoided in the approximation ( VII. 4.1), would only 

lead to further complications of detail. 

However, we still have to examine the effect of the operator f 
which appears in the complete equation (VII. 3. 27) • The time scale for 

the effects due to ~ is again the nominal relaxation time "C' , 
T "'" r 

while the term involving w has a much shorter time scale t . 
T reI 

Therefore, the system will first reach a quasiequilibrium distribution, 

which will be further modified by the action of the <\> contribution. 

" One verifies easily that, if the 'Y contribution conserves the kinetic 

energy, this is not true for the + contribution . One obtains easily for 

the variation of the kinetic energy per star: 

(VII. 4.13) 

where 

(VII. 4.14) 

(VII. 4.15) 

'C>E 
kin 

';)t 
-1( N 

= N )\d~ \ 
N 2 r:. (mv.!2)(~f lot) 

i=1 1 0 

-1 -1 ~ N ~ 2 ( izt 
"-(211' i) N l'd~\ ti (mvJ2),dZ e - f(Z)z-'f;:lo(O) 

-1 -1~ N ~ 2 f • - (21fi) N d~\ L.. (mv, /2) r (t) 
i=1 1 0 

41f~2Cm-l (dl1d~ g-1 f (v v ,t) > 0 J R._ 0 ~1'~2' 

It = ~ 1 - ::'2 

w = (v + v )/2 
~1 ~2 

are respectively the relative and center of mass velocities. 

Therefore, the t contribution plays the role of a source term 
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and leads to a continuous 'increase of the kinetic energy. In other words, 

we have the following picture of the time evolution of r 0: first , a qua-

siequilibrium distribution will be reached on a time scale t ; the 
reI 

aged system then remains in the quasiequilibrium state but with a time 

dependent temperature. 

VII. 5 - R ole 0 f the in it i ale 0 r reI a t ion s . 

In this whole discussion, we have assumed that there were no 

initial correlations. Then, we have seen that there is a continuous in-

crease of Kinetic energy. Because of total energy conservation, we have 

at the same time a decrease of potential energy (the complete energy 

balance can be verified in detail but requires the evaluation of binary 

correlation Fourier coefficient and will not be considered here) . This 

continuous exchange between kinetic and potential energy of course occurs 

for any system when the non markovian description is retained . The 

particularity of the gravitational plasma is that it occurs at lowest order, 

which finally is due to the fact that there exists no approximation corre

sponding to instantaneous collisions. However, we may wonder whether 

this picture could not be affected if initial correlations were present. As 

we are dealing with long range forces, once initial correlations are 

present, there is no mechanism by which the system can loose the me

mory of these conditions in a short time as it happens for systems inte;,

racting through short range forces. The fact that the true collision ti

me for such a system is very long on the time scale over which we 

discuss the behavior of the system, has the consequence that neither can 

we consider the collisions as complete not· can we assume that the 

system has forgotten its initial conditions. Therefore, we have to retain 
f 

both the non markovian character of the collisim term and the destruc-
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tion term in the master equation. 

We can easily see that the presence of initial correlations will 

indeed modify our results. Let us take as the initial condition a func

tion of the hamiltonian: 

(VII. 5. 1) f(O) = f(H) 

If one adds to (VII. 2.2), the destruction term and computes it 

for this initial situation with the same assumptions as the collision term, 

one verifies easily that the increase of the kinetic energy which results 

from the f contribution is completely cancelled by the destruction 

contribution. 

This example clearly shows us the important role played by the 

initial correlations in the description of systems interacting through 

long range forces. It would therefore be of great importance to have rea

listic models of non equilibrium correlations. 
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