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C.1. M. E. lectures 

by 
P. C. KENDALL 

(University of Sheffield) 

This set of lectures is not intended to be a comprehensive survey 

of the ionosphere. It is intended to lead the student with great speed to cer­

tain specialized research areas of possible interest to applied mathemati­

cians . I apologise to the many ionospheric physic ists (both exper imental 

and theoretical) whose work is not mentioned here; the short list of refe­

rences included at the end reflects current theory. Present day achieve­

ments have only been made possible through the patient experimental 

work and international collaboration of many scientists over decades. 
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Lecture 1 

In his lectures Professor Ferraro will show how dif-

fusion of a plasma (a gas composed of equal numbers of ions and elec­

trons) takes place through a neutral atmosphere. The electrons ar p often 

very mobile and would in absffice of electrostatic forces disperse to 

infinity in a very short time. The ions are bigger and heavier and so 

cannot move as quickly through the neutral atmosphere. Thus, the tenden­

cy of the electrons to "boil off" is prevented by the electrostatic forces 

between ions and electrons, and an electric field is set up. This has the 

effect of increasing by a factor of two the pressure gradient which cau­

ses diffusion; thus causing faster diffusion, known as ambipolar diffusion 

The purpose of this lecture is to establish the equations of the problem 

including the effects of a uniform magnetic field H . In general these 
o 

equations have not yet been fully solved. I will describe what can be done, 

and also mention the difficulti es. Practical application of the equations 

may be made in the upper ionosphere, in diffusion of meteor trains and 

in the laboratory, wherever the plasma is a minot constituent. 

Solution of the problem (ion-neutral collisions only) 

The main problem is how to work out the electric field arising from 

attempted charge separation. In the case when the electrons are perfectly 

mobile (i. e. we c?n ignore collisions of electrons with both ions and neutral 

atoms) this can be done in full (provided that certain other minor simpli­

fications are made) . In particular, it will be seen that the ex1ernal electric 

field gives rise to complicated drift motions of the joint ion-electron 

gas. 
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The equation of motion of the electrons is 

dV 
-e 

N m dt '" - V p - e N (E + V It ~) e - e --e 

m '" mass of electron 
e 

p e '" electron pre ssure 

N '" electron density '" ion density 

e '" electronic charge 

V :: electron velocity 
-e 

d/ dt = mobile operator ;)/at + (V .V) 
-e -

E = total electric field in fixed axes 

The magnetic field is assumed constant and uniform (Le. the number of 

ions and electrons is so small that their associated electric currents 

may be neglected) . Thus the electric field is a potential field, i. e. 

(2) curl E = 0 E = - V n -
Neglecting terms which involve m (which is small) 

e 

o = - V p - e N (E+ V X B), 
- e - -e -

(3) i. e. 
Vp -e NVn=-Ne V)( B ... e _ -e-

So, in an atmosphere at uniform temperature T, if k is Boltzmann 

constant such that 

p =Nk T, 
e 
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equation (3) becomes 

,,_ (keT \ (4) log N - rl} = - ::::e X B 

Write 

(5) rl = ~ log N + rl 
e H 

Then 

(6) ~. ~ ~ = 0, 

showing that the potential rlH is constant along a magnetic field 

line. Further, if 

we obtain 

(7) 

E -V 11 
-H - H 

v = E )( B /B2 
-e -H 

This is known as the Hall drift or Hall motion of electrons. The 

electric field ~H is at right angles to the magnetic field and if pre­

sent must be regarded as an applied electric field, external in origin. 

The electric potential kT (log N) / e is internal in origin. One might 

well ask what happens when N ~ 0; apparently the electric field beco-

mes infinitely large. The answer lies in our assumption of electrical 

neutrality, which becomes invalid for s mall values of N. 

Here, 

The equation of motion of the ions is 

dV 
-i 

N ml' -dt + N m.». (V. - V ) 
1 la -1 -a 

= - V p. + e N (E + V,lC B) 
-1 --1-
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m = mass of ion 
i 

p, = ion pressure 
1 
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N = ion density = electron density 

V, = ion velocity 
-1 

V = neutral air velocity 
-a 

~ = collision frequency ions - neutral atoms 
ia 

In the diffusion approximation it is usual to neglect the acreleration. 

(The student should find out why). Then 

(8) N m, ~,(V, - V ) = - V p, + e N (E + V,)( B) 
1 1a-l -a - 1 - -1 -

Adding (3) and (8) to eliminate E. 

(9) 

Writing 

(10) 

8.nd 

(11 ) 

we see that 

(12) 

N m, Y, (V, - V ) = - V (p. + P ) + e N V. X B - e N V X B 
1 1a -1 -a 1 e -1 - -e -

p. = p = N k T , 
1 e 

2kT 
F = V -
- -a N m, ~. 

1 1a 

V + 
-i 

e 

m. ", 1 1a 

e V N----
- m i )I ia 

=F 

V X B 
-e 

This must be solved for V .. Then the diffusion equation is formed 
-1 

by using the continuity equation, which in absence of production and 

loss is 

(13 ) .N V -;;;-t = - div (N V.) = - ,(N V,) 
v -1 - -1 
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Denote by" and J. components parallel to and perpendicular to B. 

Then 

(14) " = F" V. 
-1 

and 

(15) = F J. 

There are many ways of solving this equation. A quick convenient me-

thod is to introduce coordinates x, y ,:or with the z-axis parallel 

to B (Fig. 1). z 

y 

x 
Fig. 1 

Then if 
J. 

V. = (V , V2, 0) 
-1 1 

we have 

It follows that if we introduce 

j=J(-I) 

and write 
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J. 
V = V + J'V 
-i 1 2 

we obtain 

So equation (15) becomes 

(16) J. Jot B V = F 1 + e 
-i - {1 m. 11. 

1 la 

where 

(17) 
.L .L 

F=V 
-a 

2kT 
Nm.». 

.L e B V N+ ---
J. 

'V J-e - m.v. 
1 1a 1 1a 

Equations (14) (16) and (17) describe the motion completely and with (13) w. 
give an equation governing N. First"discuss two special cases. These will 

help to clarify the general problem. 

Special case I B = 0 (no magnetic field) 

Equation (12) gives at once 

V. = V -
-1 -a 

2 k T 
N m.». 

1 1a 

VN -
This is the case of ordinary ambipolar diffusion. We define the coeffi­

cient of ambipolar diffusion in this case· to be 

D = 
a 

so from (13) if T and 

2kT 2 
cm /sec 

~ are constants, 
la 



-- 90-

P.e.Kendall 

(18 ) 
~N 2 
- " - div (N V ) + D V N at -a a 

This is the isotropic diffusion equation. The term div (N V ) is cal­
-a 

led a transport term. Its presence indicates that all diffusion takes 

place relative to the wind V in the neutral air. Note the factor 2 in 
-a 

D 
a 

Special case II eB/m. )) . .., co 
1 la 

Physically 

~. = collision frequency 
la 

e B = Larmor frequency (*) 
1tm. 

1 

(*)In absence of electric fields the motion of a single ion is given 

by 
dV 

m. 
dt 

=eV)(' B 
1 

i. e. 
dV -
dt 

w )t V 

where 

w = - eB/m. 
- - 1 

Thus in absence of other forces the velocity vector rotates with angular 
velocity w = eB/m. in a certain sense. The motion is one of spiralling 

1 
about the magnetic field lines. 
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Thus case II corresponds to many spirals between collisions 

and magnetic effects dominate. 

Clearly V lI is unchanged from (14); but from (16) and (17) 
-i 

The diffusion equation then becomes 

( 19) 
a N I J. a2N - = - div (N V' ) - div (N V ) + D -
ih -a -e aaz2 ' 

where z is the coordinate along the magnetic field. Note that (a) 

the only effective neutral wind component is along a field line (b) the 

Hall drift, caused by electric fields is at right angles to a field line. 

In general 

Rearranging equation (17) , 

.a. .a. 4. Da ... eB J. 
F = V - V - - V N + ( 1 + j) V 

-a -e N - mi Via -e 

Thus from (16) 

-1'" .a. D ... 
j) (V - V -2., N) 

-a -e N-

Also from (14) 

II " 
D II 

So, letting 

V. = V _2 V N 
N "'" -1 -a 

s = e B/m. )/. we have 
1 1a 
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aN . II 1 .L s l. - = . dlV (N V ). -- div (N V ) + --2 div (N k Ie V ) 
at -a l+s2 -a l+s - -a 

.t. 1 . .L s .1. 
• div (N V ) +--2 dlV (N V ) - --2 div (N kI' V ) -e -e --e 

1 + S 1 + S 

+ D 
a 

where ~ = (0, 0, 1) . 

Thus as ~~ (!. !,I.N) = !.n~ ,,! N) i. 0, we have 

eN II 1 J. s .1. - = . div (N V ) .-- div (N V ) + --2 div (N k X V ) 
ch -a l+s2 -a l+s - -a 

2 
s ~ s ~ 

- --2 div (N V ) - --2 div (N l( lrV ) 
l+s -e l+s - -e 

(20) 
D 2 2 2 

+ _a_CaN + aN )+D aN 
2 2 2 a ".!I. 2 

1 + s ax ay vZ 

Note how on putting s = 0 this equation reduces to (18) and how it reduces 

to (19) on putting s = IX) • The terms in V J. disappear when s = 0 and the 
-e 

first one remains when s .. IX) • They might be called RHall terms" . No-

te also how complicated the effects of electric fields EH (such that V = 
- -e 

'" ~HX Ji/B2) and winds Ya become when s ..... 1 . The effective wind is 

not V but is 
-a 

~ffective 
II 

=V 
-a 

.L J. 
V - s kXV 

+ -a --a 

1 + s2 
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Asymptotic solutions of the ambipolar diffusion problem 

Consider equation (20) in the case when E = 0 and V = 0 
=II -a 

i. e. diffusion in a stationary atmosphere with no electric fields present 

other than internal ones. Then 

(21 ) 
aN D 2 = __ a_ (aN 
~t 2---'2" 
.. 1 + s ax 

Write 

= z/JD 
a 

'If) 
Thenl\ becomes 

(22) 

Suppose that diffusion takes place over a region of infinite extent in all 

directions, a liven cloud of plasma being released at time t = O. If the 

plasma is released as a point source such that if r = /(X,2 + y,2+z ,2), 

then it may be shown that 

N(r , t} = 3/2 
(4,t) 

2 2 2 
x' +y' +z' 

exp-
4t 

It follows that for a general cloud of plasma such that 

N = N(x', y', z', t) 

(*)G(r) ~ 0 if r 1= 0 and is so defined that IIf &' (r) dx' dy' dz' = 1 
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we have 

2 2 2 

N(x', y', z', t) 1ff N(x ,y ,Z ,0) l (x'-x) +(y'-y) +(z'-z) J o 0 0 0 0 a 
3/2 exp - 4 

( 4'1't) t 

So the asymptotic shape of any 

N I 
0 

N= 
(4Wt)3/2 

dx dy dz . 
000 

plasma cloud as 

,2 2 2 
x + y' + z, 

exp -
4t 

t ~ao is 

where N' = total electron content 
o 

= Iff N dx' dy' dz' . Converting 

back we see that if 

No = ~i~ N dx dy dz • 

as t.., ao the asymptotic forom is obtained, namely. 

(23) 
(1 + S2) N r 

N = 3t exp -
(41fD t) 2 

a 

2 2 2 2] (l+s){x +y)+z 

4 D t 
a 

This shows that in a uniform magnetic field a discrete plasma 

cloud will take up the shape of an ellipsoid of revolution, elongated in 

the direction of the field. 

,. " Dispersion of meteor trails 

A" meteor trail" is an infinitely long cloud of plasma left behind 

as the meteor passes through the ionosphere. ~see Fig. 2 for notation) . At 

time t =0 one might suppose the trail to be of small cross-section. 



meteor 
- 9S-

z 
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z* B -(earth's magnetic 
field) 

y 
~--""y. 

Fig. 2 

Clearly the problem is in two dimensions, at right angles to the 

meteor train . Assuming that an equation of type (21) hplds we may put 

~.. 'rI 
x = x y = y cos at + z sin. z = - y sin fI. + z COS" 

and 
It w 

N= N(x ,y ,t) 

giving 

(24) 
2 ",,2 

. 2 cos ot Q N 
( sm Q( + --) --

2 ~2 
1 + s ay 

Unfortunately we have omitted electron collisions. Nevertheless, this serves 

as useful illustrative problem. 

Exercise Show that a solution of the equation 

is 

Hence obtain 

a N _ ~2N 
"it -~~2 

2 
n a 2 2 

O (Xl + yl ) 
N = --::;:""""-- -2 exp - 2 

(a + 4t) (a + 4t) 

a solution of equation (24) and discuss its nature. 
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Note . When electron-ion collisions and electron -neutral atom collisions 

are included the ambipolar diffusion equation can not be solved. A re­

cent paper by Uolway (1965) J. G. R. 70 3635 is knuwn to be incorrect 

as curl ~ F 0 
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Lecture 2 

Diffusion in a plane stratified atmosphere 

The diffusion equation 

z 
Figurt 3 

L - -horizontal 

I • anglt of dip 
= angle bttween B and horizontal -

All variables are assumed to be functions of z only, where 

z = height above some fixed reference level (Fig. 3) . Roughly speaking we 

choose 

z = a at base of ionospheric F layer 

The preceding results on ambipolar diffusion may be used to simplify the 

derivation, for in the F2 layer, SOO km above the ground 

Therefore 

giving 

It follows that 

-1 
)I - 1 sec 

ia 

-20 
1.6 It 10 110.3 =:s 200 

-24 
26 !CIa Jt 1 

s » 1 
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(i) The only relevant equation of motion of the ions is that 

along a field line i. e. parallel to "§. 

(ii) The motion V~ at right angles to the field lines is deter­
-1 

mined by the Hall electric field. Thus 

J. 2 
~ " ~H X "§./B 

J. 
For a self consistent model we must take V to be uniform. 

-i 

The physical meaning of (i)'Cii,is that the ions can spiral freely between 

collisions with neutral atoms, and do so many times. Their random 

motions across field lines are therefore considerably reduced (Fig. 4) . 

Figtrt 4 

Schematic view of motion of ion 

However, the Hall drift is <is though the field lines were themselves moving 

with velocity V.J., giving a transverse velocity VJ. to the motion of the 
-1 -i 

ions. 
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Figure 5 

With cL /flJ. = 0 the equation of motion of the plasma along a field line 

is (Fig. 5) 

2NkT (V,II - yll) = _ V· (2NkT) + Nm. gil 
D -1 -a - 1_ 

(The partial pressure of the plasma is p. + P = NkT + NkT) . 
1 e 

We assume that the temperature of all constituents is the same and is 

uniform and constant. Here 

D = 2 D = 2 11' coeff. diff. ions ..... neutrals 
ia 

and from gas theory 

D 0I:1/n (n = neutral air density) 
a a 

The neutral atmosphere is in equilibrium. Thus the neutral air density 

is 

where 

n = n exp(-z/H), 
a 0 

H = scale height = kT / m g 
a 

We shall assume that m =m a i . 

~ 
Thus if T denotes a unit tangent along a field line 
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VII = ~ (t.V) - - --
A 

g" = - g si nIT - -

H \IDA N.) .... 
V. = V - - ( T .V N + - Sin I T 
-1 ct N - - 2H -

P. C. Kendall 

The diffusion equation is formed from the continuity equation 

Here 

iN 
- = Q - L - V (NV ) at -' -i 

Q = rate of electron production (by sun) 

L "loss rate (by recombination) 

The equation could be written 

(1) 

where 

iN 
-= Q - L - W cos at H 

~N 
1- - V cos 

iz a 
I sin 

+ D~ N, 

W H = Hall drift 
r 

.l to field lines 

(assumed uniform) 

I~ 
Iz 

V "Horizontal velocity of neutral air 
a 

(assumed uniform) 

~ = diffusion operator defined by : 

Df)N = Y {D (! . Y N + 2~ sin I) !} 
A { ~ N 

= r:!:.~) D (!.YN+ 2H 
sin 11 
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But in this case 

Thus 

~ ~ 
'!: . ~ ;: sin I ch 

,2 ~ 'lI.N N D«':\ N I D( CI + - ). 
1;1 = sm ~ "'iZ 2H ' 

giving , as D C( exp:(z ! H) 

(2) 

This equation is due to Professor V. C.A. Ferraro. 

We have to solve equation (1) , where i> is given by (2) . The rate of 

production may be taken to be the Chapman function 

(3) Q = qo exp (1 - ~ - e -z!H sec'i. ) , 

where X is the zenith angle of the sun, during daylight hours. At 

night 

Let 

sured 

Q = D. The constant q is the rate of maximum production. 
o 

~ = Northern declination of sun, + I = local time in radians mea-

from noon (ell t = D~ noon). Then spherical trigonometry gives 

(Fig. 6) 

cos X = cos (~- i-l cos e + sin (~ - & ) sin e cos + I 

<fI 

sun 
-- ... e 

Figure 6 
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= sin , cos (J + cos S sin (J cos q,' 

The length of day, \\I is given by the equation 

o = sin & cos (J + cos S sin (J cos t IjI 
Thus time can be measured in radians from sunrise b) writing 

Then we have 

sunrise at ~ = 0 

sunset at 4» = \II 
and 

cos X = sin' cos (J + cosi sin (J cos (; - it) 
(4) 

= function of time, 

The loss rate is proportional to N and is given by 

(5) 

The exact value of ~ for the F2 layer is believed to be 

~ = 1. 75 , 

and numerical calculations are possible in this case, However, a wide 

range of analytic solutions ls available in the case ,,= 1, The constant 
-1 Ii has dimensions sec 

o 

illustrative solutions 

The problem may be formulated in dimensionless variables as 

follows, Note that for simplicity's sake we consider only the case 

W =0 V =0 
H a 
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(6) 

where 

(7) 

(8) 

Then 
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"'r = number of sees 
4 

in a radian = 1.37 X 10 

{)='1'(1 
o 

" H2 . 2 D D z/H 
Q T D S1l1 I ( = 0 e ) 

o 

z 
-z/H 

C)N 
- =T q exp ( 1 
~. 0 

e .. _l-(1Nt-).z/H 
cosX 

- -
H 

Also put 

~ = e- z/ 2H 

Then 

(9) 

and N = "!, V 

1 +-
4~ 

The solution of equation (9) is required under the conditions 

(i) Solution is periodic ~ a 0) ? tr 

(ii) There are no sources at z = 00 (~ = 0) 

(iii) " .. 0 as Z+-oo (~ ... oo) 

Gliddon (l9~)8 a, b) has provided solutions of this equation in full for .. 
the case ~ = 1 following earlier work by Ferraro and Ozdogan for the 

case X = O. There are possible generalizations in the case A = 1 

which appear in the Journal of Atmospheric and Terrestrial Physic 

under the authorship of Gliddon or Gliddon and Kendall. The analysis and 

elegant mathematics are due to Gliddon. 
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Exercise Show by direct substitution that a periodic solution of 

equation (9) with" = 1 and cos X = sin~ is 

where 

and 

1 3 2 

1 -4J' S 1-2 r x r(.,fo)l 
V ( x,, ) = 2 l' q 0 e (~'&) xl A ( " • 0) J e xp ~ - 4A (. ' • 0) J d f> 0 

o 

1 

1 4 
+2'T qo e ((\1S) Z. 

n=l 

00 

1 

f1 (eto'.) = 1(1,,) 2 cosec'" COSh{ 

1 

~ (~o'+) = !(\~)-2 cosec ~ sinh f 

1 1 

(~) '2 (+0 -+1 + Sinhi(t )2('0 -+~ 
1 1 

(~)"2 ('0 -;)) + cos hf! )2(4'0 -.1 

Note This solution does not satisfy condition (ii); however, Gliddon cor­

rected this in his later pape rs. 

There is scope for more analytical work on equation (9) for the ca­

se ~ = 1. 75 (or possibly X = 2) . 

The equilibrium problem 

At noon and in the early afternoon the sun is nearly overhead 

for about 3 hours, so that near-equilibrium may be reached. Then 

and, choosing an overhead sun for convenience, 

cos X ~ 1 . 
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Thus 

(10) 

One boundary condition may be found from the expression for 

If V =0 
-a 

Thus 

and we require 

Also 

N) . +- sm 
2H 

(i) i v / r>!> = 0 at 'S = 0 

(ii) v~ 0 as '!> .... <Xl , 

These are called two point boundary conditions, There are two methods of 

solution (a) the method of binary splitting and (b) the use of lathce 

techniques, In the next lecture I shall give recommended formulae and 

describe the numerical methods used in detail, and briefly, before 

describing how to integrate numerically equation (9) with 8 la + f 0 . 

Note that l' q e is a scaling factor whIch may be omitted 
o 

from the calculations and inserted afterwards. 
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Numerical and analytical methods 

The binary splitting method 

We present two methods of integrating the equation 

(1 ) 

in preparation for the equation 

(2) 

The first is the binary splitting method used by Rishbeth and Barron. 

Briefly, we observe that equation (1) may be integrated under 

the initial conditions 

v = v 
o 

at '!, = 0 , 

where v is a constant,. However, in general we see that the solu-
o 

tion will not satisfy the condition 

v ... 0 as ~.-" 00 

excer)t for a particular value of 

tlOns fall into two types: either 

types of solution are shown in 

v ,say , v = v" . In fact solu-
o 0 0 

v..lt 00 or v.... - 00 • The different 

Fig. 7 . 



v 

v* o 

In practice as 
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Figure 7 

conditions 

N > 0 always we k now that a solution may be dis car-

ded as soon as v becomes -ve i. e. when v < C. We also may 

assume that a solution is such that v -It 00 when v reaches 10. We 

start with two solutions corresponding to v "V and v "V such that 
o 1 0 2 

for v 
1 

for v2 

Then test the solution for 

1 

v.,.-oo 

v3 - (v 
2 I 

+ v ) 
2 

If it is such that v.., -00 we replace 

If it is such that v~ +00 we replace 

In this way we refine the value of v as 
o 

vI 

v2 

by 

by 

v3 

v3 . 

far as the accuracy of 

the computer permits. The two final solutions give an approximation 

to the exact solution, and it is obvious where they fail to give a good 

approximation (Fig. 8); 



v 

1\ 
\ 

4-9ood .... , 
approx. 

, 
\ , 
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Figure 8 

A suitable starting pair is v = 0 and v = 9 (say) . The me-
o 0 

thods recommended are the Runge-Kutta· method for starting the inte­

gration and Hamming's method for continuing it. These two integration 
5 

formulae are equally accurate (of order h) but the Runge-Kutta method 

is unstable when v starts getting large. This can cause convergence: to 

a false value of v~. The reader should note that there are many 
o 

other integration formulae, including Runge-Kutta formulae of diffe-

rent orders. 

Runge-Kutta formula 

To integrate the system of d. e. 's 

dy. 
1 

dx 

we have for n = 2 I 

i = 1,2, ••• , n 
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The Runge-Kutta formula for the increments in y 1 and Y., correspon-
" ding to an increment h in x is 

where 

b. y. 
1 

000 
K . = h f.{X , Y1 , Y2 ) 

01 1 

o 1 0 1 0 1 
K = h f (x + -h Y + - K Y + - K ) 
Ii i 2' 1 2 01' 2 2 02 

o Ih olK 0 1 ) 
K2i ~ h fi (x + '2 ' Y 1 +2' 11' Y 2 + '2 K12 

K hf( o+h o+K o+K) 
3i = iX, Y 1 21' Y 2 22 

To use this in integrating (1) we have 

Then 

n = 2 

dy 
1 

dx 

dy 
2 

= 

-= 
dx 

~ = x 

Y2 

y = v 
1 

(i = I, 2) 

The procedure is quite straightforward, but we only make 5 steps, 

then start using Hamming's method {with same steplength ! . 

Hamming's method {see Ralston and Wilf 

To integrate numerically the d. e. 
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t = f(x, y) 

let x. (i = 1,2, ... ) be a sequence of values of x; spaced at equal 
1 

intervals, h, and such that the values y(x.) (0 ~ i ~ n) are 
1 

known. We require to find 

To simplify the notation, write 

dy 
, ( dx) 

x=x. 
1 

= f 

then Yn+1 is evaluated by the following method: 

(1) 

(2) Modifier 

(3) Corrector: C 1 
n+ 

= .!.[9Y - Y + 3h(m I +2f -f )] 
8 n n-2 n+1 n n-l 

F C + 9( C) (4) inal Value: Yn+l = n+1 W Pn+I - n+1 

Lattice techniques 

Assume that the solution at '!, = 0 is 

at S = 2h is v2 and so on. Then 

V - 2v + V 
n-I n n+I 

2 
h 

v , at S = h is vI' o 

Suppose ~ = '!, at V = v • The finite difference approximation to 
n n 

equation (I) is then 
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2 2~ 
v - (2 + 41l't h ~ )v + vo+ 1 

0-1 '" n n 

(3) 

At '!I = 0 we have av/~'!, = O. The correct procedure here is to 

introduce a spurious 

boundary!, = 0, 

value v outside the boundary. Then on the 
-1 

v 
1 

v - v 
1 -1 

~::-:-- " 0 
2h 

The d. e. is satisfied on the boundary, so we obtain from (4) with 

n "0 in (3) (~ = 0) 
o 

(5) - v + v 
o 1 

o 

There is no easy way of exactly ensuring that v ... 0 as !> .. 00 • Frou 

(1) we observe that for large values of 'S ('S» 1) 

1-2~ _~2/ 
v::::::'!, e (!. 

Thus we choose for n large enough (= N , say) 

(6) of. 1-2>' -~: / v=;) e II. 
N N ,. 

and impose this as a boundary condition. In practice (Jy ~ 30 and 

we could choose ) N = 1 as a remarkably good approximation to 00. 
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Equations (3) (5) and (6) give us the set of N-l equations 

-v + v 
o I 

v-Av+v o I I 1 

v-Av+v 
I , t 3 

= 0 

= F 
I 

= F 
2. 

v -A v +v =F 
N-3 N-2 N-2 N-l N-2 

v -A v 
N-2· N-I 

N-I 

2 2A 
A = 2 + 4A¥h 'S n ,. n 

I-2A - J. 0 = F _W e;N (3 
N-I ~N 

2 _12 
F = -4 "ISh "S e n 

n n 

This system of equations is called a tridiagonal· system. It is 

straightforward enough to solve for v 0 ••• vN_I by using an algorithm 

given by Richtmyer. 

Algorithm for solving tridiagonal system (see Richtmyer) 

Suppose the general form is 

(8) c.: v + B v + A v - K ~ i-I iii i+I - i 

Set (9) v. = r v. 1 + H 
1 i 1+ i 

(10) v =r v +H 
i-I i-I ii-I 
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Then 

Cr v+CH +Bv+Av =K 
i i-I i i i-I iii i+l 

(11 ) or v. C. r. 1 + B. 
1 1 1- 1 

K-CH -Av 
i i i-I i i+l 

Then comparing (9) and (11) 

( 12) 

Now from 

or 

so (14) 

-A 
r = i 

i C.r. 1 + B 
1 1- i 

(13) H 
K - C H 

i i i-I 
C.r. 1+ B. 

1 1- 1 

1 st equation ; i. e, 
st 

1 boundary condition 

Bv+Av =K 
o 0 0 I 0 

(15) H 
o 

K 
o 

B o 

Method of Solution (1) Calculate H., 1'. for i = ', ... ,"-1 using (12) - (1 
1 1 

(2) 

Numerical solution of 

Usinr (10) repeatedly calculate v, 
1 

2 2 aN/at = ~ N/Ch (Note that the methodes given 
--------------------~~~--~~~--

here are only two of many possibilities) 

Well formulated problem (Fi«. 9) 
h = distance between t lattice 
t 

h = distance between x lattice 
x 



t 
x 
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• 
• • 

-,""'--"----'- -------_~J_J ____ ~ _________ _ 

,1~L~-----t~------
~I 

~lLTI------------
I I 

Fig. 9 

In a well formulated problem N will be given at time t = t 
o 

as a function of x and it is required to find N = N(x, t) at all 

later times under given boundar'y conditions: one on 

on x = x • 
n 

x = x and one 
o 

Wrong numerical method (i. e. wrong for slow computers) 

Denote by brackets { - J t the value of any function at time t. 

Then 

and 

giving on substituting into 

+ N - 2NJ 
1 t 

2 2 aNI at = ~ N/ ax 
h 

+ -2t {N + N - 2N ~ -1 1 0 
h 
x 

Note It is common practice to refer suffixes to the central point 

as origin, thus at x we have the situation shown in Fig. 10 
n 
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I 
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i.e. N_I is Nn_I,No is Nn 
and NI is Nn+1 

Fig. 10 

This gives quick and unstable integration from time t to time 

t + h . The method is not recommended (except for very fast compu­
t 

ters where the steplengtn can be made small enough to aChieve stability. 

Crank-Nicolson method (See Smith) 

t+h 
t 

Evaluate all derivatives at a point 0 midway between 

the two lattice points at x = x • 
n 

{NoL+h -{No} t 
aN t 
at 

~ 
ht 

~2N { N_1 + N - 2N } 
1 0 

~~ 
~x h2 

x 

t+.! h 
2 t 

But we have no known values of N at 
1 

t + 2' \' so we use the 

approximation 

f 
t-t.!h 

2 t 
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2 2 
Then, substituting into aNj at " a NI ih using the abbreviation 

gives 

that is 

2 
s = h 12h 

t x 

= s {N 1 + (1 - 2s) {N 1 + s (N \ 
-1 t 01 t II t 

Thus the integration proceeds from time t to t+ht by solving a 

system of tridiagonal equations like (7) . The first and last equations 

of the set are formed by introducing spurious points outside the boundary, 

if necessary, and by assuming that the differential equation is satisfied 

there. 

n 

Consider the operator ~ f.(x l , ... , x ) & lax. 
i=l I n I 

This may be reduced to the form a f /tI.' by suitable transfor-
1 1 

mations given below, thus making soluble the generalised diffusion 

equation 

n 

i = 1 
f. aNI ch. 
I I 

which can then be subjected to automatic numerical procedures. 
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In full ( ... ) becomes 

Consider the system of ordinary differential equations 

with 

f 
_ 2 
-~ 

dx f 
n n 

dX 1 - ~ 

x = x , x = x , ... , x = x at x = 0 . 
2 20 3 30 n no 1 

This defines a series of functions 

x ) 
no 

x ) 
no 
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Consider the transformation from the variables xl' x2' ... xn to 

variables X ~ , x2' •.. x 'n defined by 

X ' = x (x, x2' x ) 
2 20 I n 

x ' = x (x, x , ... x ) 
n no 1 2 n 

Then we know that 

and so ( .. ) becomes 

n 

= ~ f 
i=l 

~ 

ix. 
1 

Note that all the transformations of variables can be carried out 

numerically, even if exact integrals cannet be found. The variables 

x x,. x retain the va:ues of x2' x3 ... xn at the start of 20' 30 . . no 

the integration. At any subsequent point we obtain from (*.) 

N N(x ' 
I ' x20 ' x30' ... x no + other coordinates) 

The values of which this is the solution are obtained 
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by integrating the system of equations. Note that in any case these 

would be needed in the computer at the correct stage of the 

calculation. 

Exercise . Use the above analysis to derive the transformation 

which reduces the operator 

to the form 

Answer t' = t, 

a ~ 
- + W sin w t +! a a 
~t 0 

where w 

W 
a' = a +-.!. cos 

w 

, and Ware constants. 
o 
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Lecture 4 

The diffusion operator with curved magnetic field lines (neutral air at 

We choose to write the diffusion equation in the form 

(1) aN = Q _ L + wt) N + D~ N 
~t 1 2 

where W is a constant with dimensions of velocity. ~ 1 is the 

Hall drift operator defined by 

(2) 

and e 
2 

(3) 

W" N = - V. (NV . .L ) 1 ~-1 

is the diffusion operator defined by 

Dt)2N = - V,(NV.") 
- 1 

Geometry of geomagnetic dipole field lines (Fig, 11) 

e 

, 
\ 
\ 

I 
.,;~ 

I , 
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Field lines are family of curves 

(4) 
2 

r = a sin e 

Thus 

(5) sin I = 2 cos e / A cos I = sin e/ 6 
where 

(6) II = J (l + 3 cos 2 e) 

Also 

(7) tan I = 2 cot e 
A 

Thus the tangent T to a field line is 

1\ 
(8) 1: = (sin I, cos I, O} 

11 " '" V = T (T .'1) - - - -
" I~ +~~) = '!:. ( sin 8r r ae 

Form of £>2 
Thus as 

(10) 
2NkT II 

D ~ 
• - - V_ (2NkT) + Nm.g" 

1. 

we have 

(11) NY II = _ D; (sin I aN + cos I aN + N sin I 
-i - rr r ~ (} 2H 

Hence ~.NV .• =-_(t.V)D(SinI'N+cOSI 'aN +NsinI) 
J. -1 - ... ir r' &e 2 H 

( 12) 
_ D(_VoT_) (sin I aN +~ aN + N sin I) 

ar r To 2H 



-122 -

P. C. Kendall 

Using the fact that D ex exp (z/H). where z = r - rand r = r 
o 0 

is the base of the F2 layer. this gives 

CIt. N '= (sl"n I & cos I a ) ( " I ~ N + cos I 'I N + N sin I) 
1') 2 a; + -r- iB sm a; -r- 18 2H 

(13) 

It may be verified that 

(14) 

Form of i> 1 

We have 

(15) 

~ 3 3 !.! = ( 9 cos e + 15 cos (J) I r 6 

.I. 2 
V. = E )t BIB 
.;..t, 1I -

Also , the electrostatic potential is constant along a field line so 

that 

(16) nH = - F( +, a) , 

where • is the longtitude (t =,.. . where T = number of seconds in 
4 

a radian = 1. 37 X 10 ) . Then 

(17) ~H = - grad flH • 

and so in spherical polar coordinates (r, 9, + ) 
1 2 cos (J 0) ~F ~H = (-2-' - 3 

sin (J sin (J 
cla 

(18) + (0, 
1 aF o , 

r sin (J a+ 



That is 

(19) 

Also if M 

(20) 

Thus 

(21) 

But 

(22) 

So 

(23) 
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A 
- sin I, 

iF E = -3-(cOS I, 0) Ta -H 
sin B 

+ (0, 0 
aF 

, 
r sin e ~+ ) 

" dipole moment, B " M A /r 3 
and 

B MA ( . I I, 0) -3 sm , cos -
r 

MA2 
E )( B ~F 

1) 
3 3 a; (0, 0, -H -

r sin 8 

MA 3F 
- -4-- -- (cos I, - sin I, 0) 

r sin B a+ 
y J~Hl'~) = ~ .(! 1I \) - ~H" (!Jt~ ) 

& 0 

-MIl i.E.. 1 
3 3 a a r sin (J 

r sin (J 

MA aF a sin I a r6 
-+-4-- •• (cos I ar --r- "j9){M2fl2 N) 

r sin 9 v 

2 
And as r = a sin (J 

(24) 

we N 
1 



- 124-

P.e.Kendall 

Finally to make this dimensionless we may substitute 

(25) 
WM 

F = 2 f (a, ~), 
r 

o 

where f is dimensionless giving 

2 
~N= __ a_~ 

1 2 3a 
r 

2 aN + r ~f/~ 

a~ r 2 b sinO 
( cos I ~ _ sin I ..!E) 

&r r U 
o o 

(26) 2 
+ 6r(1 +cos 0) If N 

2 A4 at 
ro 

Finally, we make the substitution 

(27) 

to obtain the dimensionless form of (1), namely, 

-z/H av = 1'Q e exp ( __ z ___ e __ ) _ (?> e- >.z/HV a+ 0 2H cosX 

(28) 
z/H 

+ W' " I V + _e __ ~I V 
1 ~ 2 

f 2 2 
., a f aY r ~f V H i> I V = -- L_ + 2 / •• (cos I L - sin I aV 

1 r 2 ~..~. r A sin 0 c!) r -r- ii) 
o 0 

(29) 



(30) 

where 

(31) 

and (l and '¥ are 
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+ (~~ +v.4 ) (sin I...!.- -'- ~~ ~ ) V 
2 H ... - h r ae 

WI = ,W/H , 

1 
as before, except that a factor sinllI is omitted fro 

'If • We wish to integrate equation (28), which is a partial differen­

tial equation in 3 independent variables. This is now possible, and 

I first outline the difficulties, 

Difficulties 

lines 

_Io-........ __ ....a_"'-..L. __ Z-o 

Fig, 12 

Roughly speaking we are integrating outwards along lines J. r to 

~ (Fig, 12) . The line z = 0 is not a natural boundary in our coordinate 

system (Fig, 13) . 

1. See Lecture 2, equations 7 and 8. 
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Fig. 13 

Also as r .. .., the total length involved a 'ong a field line bec.omes 

infinite and the region of integration becomes infinite. We therefore 

need a coordinate transformation which 

A suitable 

(32) 

(33) 

where 

and 

Ifa»r 

(a) transforms z = 0 into a natural boundary 

(b) transforms z = 0() into a finite point. 

transformation is 

2 -hr/H -ha/H 
e - e 

x "' - -hr !H -ha/H 
e 0 -e 

.hr/H ·hr IH 
_l+ e ·e 0 
- -.:-hr-o""'l H~~-h:-a-"I=H 

e • e 

h = dimensionless constant > 0 

x > 0 in Northern hemisphere 

x < 0 in Southern hemisphere 

-hz/2H 
e 
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On equator r = a , 

x = 0 • 

Also at r :: r , 
o 

x = 1 (Northern ) or -1 (Southern) 

We thus obtain the mapping shown in Fig. 14 

X-I z-OCN> 

X-O ------------ equator 

x··J z-0(5) 

Fig. 14 

Choose as independent variables 

(34) 

and 

Then 

(35) 

(36) 
1 

-hr/H -hr o/H 1 
2 e - e ,,~ 1 

x = 1 + ~-..,--"'::""--- :: 1 + --

a = 

&> 

&r 

-hrjH -haiR .A2 
e -e 

r 
-.-2-
sm (j 

-hr/H =_l_L +(_£ _e __ 
- 2 e H sin (j a A 2 

2 cos (j 
io-

r &9 . 3 
sm 9 

-ha/H 
..!.. _ (£ A_l_e_-:---
aa H A 2 

2 
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(37) 
'!'\ '() 1.\ _ 2h e- hr/ H ":.\ or Sm Q ~ 

2 cos () - + -- ;;; H A 2 cos () 
ir r ~() c»(x2) 

giving 

(38) 
"\ !\ -hr/H ~ 

sin I-~- +~ _~_ = -h sin Ie __ 
) r r f)(). H( -hr /H -ha/H ~ 2 

e 0 - e ) g(x ) 

Similarly 
-ha/H 

a 2 cos () i) ;, A2 ~ hAle .L) sin ()- ~ -,-3- (a;- -
~r r H A2 ~ (x2) sm 8 

2 

h . () -hr/H sm e ~ 

H.I\. 
2 

~(x ) 
2 

giving 

I~ sin I a - A ~ 
cos 

- -r- a() W Sin3() ar 6a 

(39) 

~ {(X2_1)Ae-ha/ H 

H + 
3 A sin () 

t 

Therefore 

(40) 
2 f 2 A -ha/H -hr/H 

_ h r ~f /" (x -1) e + _.....;.s....,in,.....;8_e_--r-_ ~ 
2. A. 3 -hr IH -ha/H 2 

r Asm() sm () C/e 0 - e ) t>(x ) 
o ... \: 
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r cos I 
(40) 

2 ] 

2r2 A sinO 
o 

3f V 

afJ 

and 

i) 'v = 
2 

(41 ) 

which simplifies to (see (14)) 

Check: If a »r and h = 1 , 

then £>2' 
equation 

o 

1 -z/H~2 / 2 
V~4e cVax 

9 (~" x) . 

We shall take 

(43) f = 
2 2 

(r / a ) 
o 

-z/2H • x ~ e J = 90 ~ , , 

in agreement with Lecture 2, 

cos; 

giving a Hall drift which is independent of a at the equator and Q( 

sin Ij) . 

The full diffusion eqrntion is thus 
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(1 _ 2 WI H cos 4> ) aV + WIH sinp.l.Y 
a ~+ &a 

(44) 
-z/H 

+ ,. qo e exp (- 2~ - ecosX ) 

We see from lecture (3) that this can be now integrate 

numerically. 
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Lecture 5 

Equilibrium solutions 

Diffusive equilibrium (and comparison of theoretical and satellite results) 

When the velocity of the ions is zero, i. e. 

(1) v =0 
-i 

we have a situation known as <iiffusive equilibrium. 

You may be surprised that such a simple situation could occur at all; 

however all this means is that the ion gas is in hydrostatic equilibrium. 

Production Q and loss L of electrons could only be occurring if 

Q = L I but this is unlikely to occur simultaneously with (1) . The ion­

electron gas has half the mean molecular weight of the ion gas and so 

if the temperature is uniform 

(2) N CC exp (-z/2H) 

where z is the height above some fixed reference level and H is the 

scale height of the ions. It follows that (2) should satisfy equation (44) 

of the previous lecture. The student should verify this as a.n exercise. 

Note that this is also a useful check of complicated diffusion equations. 

Thus, what we are in fact obtaining when we use (1) is a solution of 

equation (44) of the previous lecture, for the case of no production (night­

time) and no loss ((3 =0) . It follows that in investigating solutions of th 

full diffusion equation we first study diffusive equilibrium. There is another 

reason for doing this. We can include the effects of a height varying tem­

perature field quite easily. Consider a constituent characterised by ionic 

mass m., partial pressures P.I p for ions and electrons, and electric 
1 1 e 

field E . For equilibrium of the ions along a field line where I is thE 

dip angle 



-132-

P. C. Kendall 

dp, 
_1 = ~ N IT! g sin I + Ne E 

ds i s 

where s denotes arc length and E is the component of ~ along 
s 

a field line. For equilibrium of electrons, neglecting the electron 

mass, 

dp 
_e :: ~ Ne E 

ds s 

Thus, as Pi = NkT = P e' where T = T(z) is the temperature, z being 

the height, we have along a field line 

where 

dp, 
1 

p, sin I 
1 

-ds-- ----
2H(z) 

H(z) = kT(z)/m,g 
1 

Fig. 15 

But along a field line (Fig. 15) 

Thus 

dz = ds sin I 

dp, 
1 

dz 

p, 
=-~ 

2H(z) 
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giving 

-J p. OC exp 
dz -

1 2H 

Thus along a field line 

(3) NCX! 
T 

exp -f~~ , 

If ot. is the latitude, the eqUl hon of a field line in spheri­

cal polar coordinates, r, e ,+ (B = colatitude, ~ = longtitude) is 

(4) .22 
r = a sm e = a cos 0( 

we see that 

(5) N = f(a) g(z) 

where f is some function of a only and 

(6) 
1 

g(z) = if exp r dz 
- 2H ' 

On these assumptions, (i. e, ignoring variations of H with respect to lati-

tude) we can compare theory and experiment, 
. if 

SatellIte Aloutte I results appear in the form of Fig. 16 , which 

shows electron density versus latitude, each curve being for a fixed 

height above the ground (shown in Km) , 

~ Taken from a private communication from Dr J.W. King 
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Figure 16 

Figure 17 

A clue as to the procedure is seen when we take K = 

constant and f(a) = any function with a single maximum. Then we 

obtain Fig. 17 (see Goldberg, Kendall and Schmerling, 1964, Journal of 

Geophysicul Research 69 , 417-427) • 

This is so similar to the previous diagram that further investigation 

is worthwhile. Baxter and Kendall, 1965, Journal of Atmpspheric and 
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Terrestrial Physics ~, 129-132 have made quantitative comparisons bet­

ween theory and experiment. Thus, if the lowest of the constant height 

experimental curves is assumed to be given together with the equatorial 

profile, we can deduce all the other curves using this theory. As the ex­

perimental curves are also available this is an interesting comparison 

between theory and experiment. Thus, at fixed height Z = z1 (say) we have 

N = N (z1 ,cc.) = given function, 

where 01.. = latitude . Thus , putting r 1 = r e + Z 1 ' where 

radius and using (4), (5) gives 

giving 

We also know that at the equator 

Thus from (5) 

N = N (z, 0) = given function. 

g(z) = Nez, 01 If (r) 

= N (z, 011f(r + z) 
e 

If follows that at a general point 

N = f(a) g(z) 

N(z1,cos- 1 j(r{os2oC./r~NCz,OJ 

N[zl ' cos- 1 /(r/r}] 

r is the earth's 
e 
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The results of the investigation are shown in Fig. 18 . The solid 

lines are observations, the broken lines are theory . .. 
'e 
u 
• 12 

~ 
¥ 
ii ,,-
'Q 8 . .. 
" i o 
~ 4 

i 
'" 

20 IS 10 o 5 10 
·s 'N 

M.gnelic Lah1ude 

All we can conclude without. further information on the temperature and 

composition is that mathematically the distribution N is almost separable 

in the variables z and a. 

Effects of electrodynamic drift on the topside ionosphere 

By expanding in a power series Baxter, Kendall and Windle, 

Journal of Atmospheric and Terrestrial Physics 1965 27 , 1263-1273 

have studied the disturbance of this type of diffusive equilibrium by an 

upwards and outwards Hall drift. They find that the ionization adjusts 

itself so as to compensate for the Hall motion at ri~t angles to the 

field lines. The diagrams will not be reproduced in these notes. The ad 

hoc methods they used to solve the diffusion equation show that there is 

room for mathematical work in this field. 

Equilibrium solutions and the effects of electrodynamic drift 

Bramley and Peart (1966) and Hanson and Moffett (1966) have both 

integrated the equilibrium equations with realistic production and loss 

terms. The word "equilibrium I is taken to mean a I at! 0 . Thus we take 
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~ = constant and put a /a~. 0 in equation (44) • Then, using obvious 

abbreviations 

where 

av aV 'iv 
- = f (x, a ) + f 2(x, a )V + f (x, a ) -+ f (x, a)-----.. aa 0 1 0 0 3 0 ax 3 0 ~ x" 

a = a/H 
o 

It should be noted that these authors did not use the mathematical transfor­

mations of Lecture 4. The problem is clearly readily tractable numerical­

ly. The calculation is started from the field line a =(6550 km'YH 
o 

and continued as far as may be required. The boundaries of the system are 

shown in Fig. 19 

dipole field lines 
(oaconstant) 

~~~~~~~~~~~~~Ie~velz-o 
N X-I X--I S 

Fig. 19 

The problem in the a ,x plane is straightforward (Fig. 20) 
o 

I I 
I I ~ 00 direction 0 I I I 
I 

, 
-I 

hQ X--I 

h a steplength of numerical process 
a in 00 direction 

Figure 20 
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On the boundaries (which happen also to be 

a ) / f ( x, a ) . The results obtained are 
o 2 0 

• I 
I 
I 

Nm<electron 
density) 

I 
I 

....... e uator 
I SeN 15·5 

latitude 

Observed (Appleton 1947) 

(noon) 

Figure 21 

P. C. Kendall 

z = 0 we put V = - f (x , 1 ' 

sket ched in Fig. 21. 

Theoretical 
(symmetry) 

A drift upwards of about lum/ s is needed, with typical F2 layer 

parameters, to produce a suitable "Appleton anomoly" in the case of sym­

metry. Hanson and Moffett find that a SN wind of 60 m/ s could cause 

the observed asymmetry, but do not claim this as explanation. 
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Lecture 6 

Time dependent solutions of the F2 region diffusion equation (lVl~"" 

Dr. R. G. Baxter) Using obvious abbreviations, the full diffusion equation 

of Leoture 4 (equ.44) becomes approximately, if W'H/a c 1, 

~V tlV 
- +f(;)-

(1) 

The operator on 

the equation 

().p h 

t)V ~ ~2 V 
= f (x, a,.p) + f (x, a,; )V+f3(x, a,4» --;- + f (x, a, )-2 

1 2 'q x 4 Ox 

the right hand side may be reduced by integrating 

da = f(+) d+ 
Thus, as the integral is 

• 
a = ao + J f d~ , 

o 
where a is a constant of integration, the required transformation is 

o 

(2) 

I + =, cia 

a'=a-f f d~ 
o 

That this algorithm works can be seen at once, for 

Also 
- ;) c-

~al 
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Thus 

t)_!) () 
-:a-+f-
at' a~ ~a 

Using variables 

x, aI, ~ ) 

so that 
+' 

f.(x,a,~) = f.{x, a ' + I fd<l", + ') i = 1,2, ... 4, 
1 1 

o 

equat ion (1) becomes 

(3) 

2 
a v = f + f V + f ~V + f i v 
~~ I 1 2 3 ~ x 4 ~x 2 

This is the form of equation dealt with successfully in lecture 3 

by numerical methods. Mathematically we simply choose a value of a', 

then integrate in 4> I as usual, using the Crank-Nicolson method to 

advance 

X.I~-"""---

.. direction of 
x- O~---· --------cquator 

integration 
Xa-I 

4IN' 

Fig. 22 

the integration from.' to 
, , 

~ +S~(Fig. 22) . On the boundaries we put 

v = - f/f2 (boundary condition) 

I 
The integration is started at 4' = helo" where h +" is the step length 

in the ~' direction. This a voids difficulty with the singularity at ~ I =0 . 
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VVe can thus develop the values 

Hence 

, 
V = V(x, a I ,<p ) 

V = V(x, a,cp) 

Then the electron density is 

N= e- z/ 2H V , 

P. C. Kendall 

where z denotes the height ,and If is the constant scale height. 

Physical explanation 

N 5 

Figure 23 
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2 
Fig. 23 shows how the Hall drift ~ l( ~/B combines with the earth's 

rotation so that a magnetic field line moves up and down and also rotates 

about the axis of symmetry. We have simply chosen coordinates moving 

with the field lines. The diagram shows the surface described by a 

movin~ field line as it passes round the earth. 

Processing of results 

The results appear as tables of N, the electron density, against 

x for a given <J>' and a' . This immediately gives us 

4> 
a = a' + f f d;, 

o 

so we then know which field line 

2 
r = a sin () 

we are on. Knowing a, to each value of x equation (33) of lec­

ture 4 gives one value of r. Thus we can make the computer print 

out 
x N r () 

o 

0.1 

(say) 0.2 

1.0 

The problem can thus be readily converted back into the original spheri-

cal polar coordinates r, (), cf> • (of course 4' lIeasures the time, 

because t = '" ~ ) • As a final grace we can make the computer interpolate 
000 

to () = 90 , 89 ,88 ... and also i = 0, 0.5, 1. 0 ... This enables us to 
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draw curves of N at fixed latitutle or fixed height. 

Physical data 

The measurements of electron density in the ionosphere are 

made by ionosonde from either the ground, thus dealing with the 'botto­

mside' of the ionosphere, or from a satellite, thus dealing with the 

'topside' ionosphere. A radio wave travelling into the ionosphere is re­

flected at a point where the electron density has a given value which 

depends on the wave frequency. Thus, in a layer with a single maximum 

of electron density there is a critical frequency f 0 F 2 ( in the ordinary 

mode of propagation) beyond which radio waves pass through without reflec-

t ion. There is another mode of wave propagation, the extraordinary mode, 

with . the critical frequency fEF 2 . [ See Ratcliffe's bOOk] 

Thus an analysis using the critical frequency f F2, from 
o 

many ground based stations gives results such as those of Appleton 

(1947) (Fig. 24) and Marty~ (1959) (Fig. 25) 

Nm (maximum electron 
/I density> 

N 15° 0° ISO S 

Appleton a~!ftOly 
(1\ OOll. ) 

Figure 24 
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Fi~lnJ 2.5 
N 
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Local time, hr 

World (lUl'vell of f.F2 for the equmoJ:. 8unapot minimum year IH~19« 
(after MABTYN). 

In lecture 5 we saw some curves (resulting from a satellit<) of N at 

fixed height as a function of latitude. These may be found in King et 

al (1964). There are now many of these results available as printed 

tables e. g. from the Canadian Defence Telecommunications Laboratory, 

Ottawa. Ground based results have been given by Croom et al for N 

at fixed height. 

Results. Figures 1&. and 2'fshow results for typical F2 region parameters and 

drift amplitudes of 7.3 m/s and 73 m/s respectively. Note the develop­

ment of the Appleton anomaly. These results are only preliminary. 
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PIG 26 Nmax world CUMes - bolines of NIDIlX (100/ 'l'~ .. e) 
drift amplitude = 7.3 m/I 
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FIG 27 Nmax world CUrTes 

- Isolines of NIDIlX (100"'.1) 

drift amplitude .. 73 m/s 
-0 

N M,* 

It- , 1"1 ,.. 'lO tit 

PIG 29 

Diurnal variation of Nmax /-r,.t 
at equater 
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Clearly 73 m/ s is too large, as the trough is too deep. However, the 

results cio show that Martyn (1947) had a good idea as to the real cau­

se of the Appleton anomaly . He proposed that Hall drift would transport 

ionization away from the equator, thus producing the trough. 

Near the dip equator, at stations such as Huancayo • t he diur-

nal variation of N has a double maximum, as sketched in Fig. 28 
m 

('bite out' 

~---

6 12 18246 • 
6 12 18 24 6 

sunrise 
timeChrs) 

sunrISe 

moderate latitUde 
(sketch) 

Fig. 28 

timcChrs) 

Humcayo (say) 
(sketch) 

This is reproduced by our theoretical results for a drift amplitude of 

73 mls as shown in Figure 29. It shoUld be stressed that 73 m/s is too 

large and that these results a'e only preliminary ~ 
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Lecture 7 

Motions of the neutral air induced by ion-drag (Nith Mr. W. M. Picker­

ing) The ion-drag problem Cowling (1945), HirOllO (1953), Baker and Martyn 

(~953), Hirono and Kitamura (1956) and Dougherty (1961) have suggested 

that the motion of the plasma (in the F2 region) could itself set the neutral 

air in motion. Consider the case of moderate latitude, with a horizontally 

stratified atmosphere, as in lecture 2 (see Fig. 30) 

A A 

~1 z 
V 

horizontal 

I. dip angle 

Fig. 30 

Let u be the diffusion velocity ( along a field line) and v be the spe­

cified Hall drift. Then if the neutral air has achieved the same hori-

zontal velocity as the ions, 

v = u cos I - v sin 
a 

But along a field line the plasma equation of motion is 

~{Pi + Pel 
2NkT . - Nm g sin I 
-V-(u - vacos I) = - sin I az i 

But p. = P = NkT ( we assume) and H = kT/m.g. Thus 
1 e 1 
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D aN N 
u = - v cot I - (- + -) 

N sin I ih 2H 

" and if t is the unit tangent Cllong Band n is the unit normal 

shown, the continuity equation becomes 

aN ~ A it = Q - L - y.N(u.! + v~) 

1\ /I. 
= Q - L - t.V(Nu) - v n. V N -- - -

A A 
But!. = (cos I, sin I) and ~ = ( - sin r, cos I) . Thus 

Thus as 

we have 

where 

:~ = Q - L - sin I :z (Nu) - v cos I ~~ 
a t)N N 

= Q - L - a;: D(~ + 2"Hl 

D ex exp (z/H) 

~N c-.* -=Q-L+DcFJN 
() t ' 

fiJ" ~ (~22 + _3_ ~ + _1_) 
~z 2H ~z 2H2 

Looking back to lecture 2 we there obtained 

. 2 
~ sm I 

We also see that the electrodynamic (Hall) drift term v has been 

completely caneelled. The consequences of including neutral air coupling 

may thus be serious. 
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The temperature gradient problem 

Apart from the problem of ion-drag there is another problem. 

King and Kohl (1965) have suggested that as there is a temperature 

gradient in the upper atmosphere (see their references) it might drive a 

neutral wind through the pressure gradient. 1ley showed that in the F-re­

gion the major force on the neutrals, apart from this pressure gradient, 

is due to their collisions with ions. It is clearly of interest to investi­

gate the coupling between the plasma and neutral air motions. A given 

temperature gradient would certainly set the neutral air in motion; howe­

ver, the velocity would be coupled with the ion velocity; giving rise to 

a coupled system of equations. If the ions were at rest, the problem of 

working out the neutral air velocity v would be relatively simple .The 
-a 

ions are, however, free to move along the field lines. In ,he 11 layer, 

for example, diffusion is regarded as unimportant and Geisler (1966) has 

shown how the problem of neutral air motion can be treated. We he-

re consider the F2 layer where Slipping between the moving plasma and 

the neutral atmosphere is believed to occur. The configuration in Fig. 3 

will be used. The magnetic field .II is taken to be horizontal. The x­

axis is also horizontal. The y-axis is vertical. All variables are functions 

of x and y only, being, in particular, independent of lime. The plane 

x = 0 is taken to be the equatorial plane, and there is supposed to be 

symmetry about this plane. 

y 

__ --~~?--------x 
f. 

equator 

Fig. 31 
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n = equilibrium neutral air density 
a 

= n exp(-y/H) 
o 

p.e.Kendall 

T = equilibrium temperature , assumed uniform 

H = scale height = kT/m.g 
1 

m. = mass of ion ( = mass of neutral atom) 
1 

k = Boltzmann constant 

g = acceleration due to gravity 

v = velocity of neutral air 
-a 

v = horizontal velocity of neutral air 
al 

va2 = vertical velocity of neutral air 

v. = ion velocity 
-1 

u 

v 

= ion velocity along a field line 

= Hall drift .l r to a field line = constant 

T' = artifiCially maintained small temperature perturbation 

D = twice coefficient of diffusion ions through neutrals 

n' = perturbation in. neutral air density 
a 

Q = rate of production of electrons 

L = rate of loss cf electrons 

In the model we assume that all temperature gradients, velocities 

and their effects are small. 

We also ignore the self viscosity of the neutral air. 
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Equations of the problem 

The horizontal and vertical linearized equations of motion for 

the neutral air are 

(1) 
~ (v - u) = • ~(n' kT) - -?- (n kT') 

D ai crX a crX a 

and 

(2) 
2NkT ~ ~ 
--(v -v) = - -(n 'kT)- - (n kT') -m,n 'g 

D a2 a y a ely a 1 a 

The linearized horizontal equation of motion of the plasma is 

(3) 
2NkT ~ 
-- (u-v ) = - - (2NkT) 

D al ax 

We no te that there is no vertical equation of motion of the 

plasma, as it moves vertically with the given Hall drift v, assumed 

constant. Adding (i) and (3) gives 

Thus 

n' + 2N+n T'I T :: F(y) 
a a 

where F is an arbitrary function of y. We shall assume that 

n' ~ 0 N'" 0 and T'-'IIO as x ... oo , 
a 

giving 

(4) n' + 2N + n T'/T = 0 
a a 

Substituting back we obtain 

(5) 
D 

v :: U + -
ai N 

aN 
~x 

D ~N D Dn T' 
(6) v :: V +- +- +_a __ 

a2 N i)y H 2HNT 
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Assuming that N « n , so that production and loss of neutral air 
a 

molecules are negligible, the linearized continuity equation for the 

neutral air iEO 

div n v "0 
a-a 

Thus, substituting for v from (5) and (6) , 
-a 

~ Cl nD d ~ nD~ d nD 
-(n u)+- (_a_~)+ (_a_~)+_(_a_) 
ax a C1x N ~x 1Y N ~y ~y H 

~ Dn: T' d 
+ 1Y ( 2HNT ) + "iY (n a v) " 0 

Whence, under conditions of symmetry (u " 0 at x= ('), and assuming 

that 
-1 

DCXn 
a 

We obtain an expression for the horizontal velocity of the ions, namely, 

(7) f x l. 
u" - D V log N dx + ~ - D( 

o o 

This enables us to form the diffusion equation from the continuity 

equation for electrons, ~ - L "div (Nv.) , Thus 
-1 

a rX l. ~N 1 ~ o " Q - L +- ND 'V log N dx - v (- + - -(xN) ) 
~x 0 ~ Y H ih 

(8) 

Thus, even from a very simple model we have produced a non-linear 

diffusion equation 
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3. Conclusion 

It is of interest to compare equation (8) with the the sim­

pler diffusion equation which might be obtained by making earlier ap­

proximations. For example. if we had argued that for the purpose 

of calculating v the ions might as 
-a 

pressure gradient might as well be 

well be assumed stationary. and the 

assumed to be (~ /~ ~n kT'). we 
a 

would have obtained 

(9) 

Then the diffusion equation would have become 

(10) 
~2N aN~2 Dna T' 

o = Q - L + D -- - v - + - {--} 
~x2 iy~} 2T 

This equation is linear, anti has terms correspondiIg in turn to each 

term in (8). It is, nevertheless, incorrect. We note, however, that 

a temperature which is. higher at the equator than alsewhere would 

give rise to terms of the same sign in (7) and (9) ,corresponding to 

transport of plasma away from the equator. 

We conclude that although current F2 layer theory looks promising 

there are still questions to be answered concerning the coupling 

between the plasma and neutral air motions. 
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