
Deciding Query Entailment for Fuzzy SHIN
Ontologies

Jingwei Cheng, Z.M. Ma, Fu Zhang, and Xing Wang

Northeastern University, Shenyang, 110004, China
cjingwei@gmail.com, mazongmin@ise.neu.edu.cn

Abstract. Significant research efforts in the Semantic Web community
are recently directed toward the representation and reasoning with fuzzy
ontologies. As the theoretical counterpart of fuzzy ontology languages,
fuzzy Description Logics (DLs) have attracted a wide range of concerns.
With the emergence of a great number of large-scale domain ontolo-
gies, the basic reasoning services cannot meet the need of dealing with
complex queries (mainly conjunctive queries), which are indispensable in
data-intensive applications. Conjunctive queries (CQs), originated from
relational databases, play an important role as an expressive reasoning
service for ontologies. Since, however, the negation of a role atom in a
CQ is not expressible as a part of a knowledge base, existing tableau al-
gorithms cannot be used directly to deal with the issue. In this paper, we
thus present a tableau-based algorithm for deciding query entailment of
fuzzy conjunctive queries w.r.t. fuzzy SHIN ontologies. Moreover, the
data complexity problem was still open for answering CQs in expressive
fuzzy DLs. We tackle this issue by proving a tight coNP upper bound
for the problem in f -SHIN , as long as only simple roles occur in the
query. Regarding combined complexity, we prove that the algorithm for
query entailment is co3NExpTime in the size of the knowledge base and
the query.

1 Introduction

In order to achieve reusability and a high level of interoperability of knowledge,
ontologies are commonly used to express domain knowledge in the context of the
Semantic Web. A key component of the Semantic Web is thus the representation
and reasoning of ontologies. Description logics (DLs, for short) [1] are the logical
foundation of the Semantic Web, which support knowledge representation and
reasoning by means of the concepts and roles. As the logic underpinnings of Web
Ontology Languages (OWLs)1, DLs have attracted much more attentions due
to their inherently built reasoning services.

In the real world, there exists a great deal of uncertainty and imprecision
which is likely the rule than an exception. Based on Zadeh’s fuzzy set theory[2],
there have been substantial amounts of work carried out in the context of fuzzy
DLs [3][4], and fuzzy ontology knowledge bases [5] are thus established.
1 http://www.w3.org/submission/owl11-overview/

A. Gómez-Pérez, Y. Yu, and Y. Ding (Eds.): ASWC 2009, LNCS 5926, pp. 120–134, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Deciding Query Entailment for Fuzzy SHIN Ontologies 121

Conjunctive queries originated from research in relational databases, and,
more recently, have also been identified as a desirable form of querying DL
knowledge bases. Conjunctive queries provide an expressive query language with
capabilities that go beyond standard instance retrieval. There are close ties
among conjunctive query answering, conjunctive query entailment and conjunc-
tive query containment in the sense that they can be transformed into one an-
other. The first conjunctive query algorithm [6] over DLs was actually specified
for the purpose of deciding conjunctive query containment for DLRreg. Recently,
query entailment and answering have been extensively studied for tractable DLs,
i.e., DLs that have reasoning problems of at most polynomial complexity. For
example, the constructors provided by DL-Lite family [7] are elaborately cho-
sen such that the standard reasoning tasks are PTime-complete and query
entailment is in LogSpace with respect to data complexity. Moreover, in DL-
Lite family, as TBox reasoning can usually be done independently of the ABox,
ABox storage can be transformed into database storage, thus knowledge base
users can achieve efficient queries by means of well-established DBMS query en-
gines. Another tractable DL comes from EL with PTime-complete reasoning
complexity. It was shown that union of conjunctive queries (UCQs) entailment in
EL and in its extensions with role hierarchies is NP-complete regarding the com-
bined complexity [8]. The data complexity of UCQ entailment in EL is PTime-
complete [9]. Allowing, additionally, role composition in the logic as in EL++,
leads to undecidability [10]. Query answering algorithms for expressive DLs are
being tracked with equal intensity. CARIN system [11], the first framework for
combining a description logic knowledge base with rules, provided a decision pro-
cedure for conjunctive query entailment in the description logic ALCNR, where
R stands for role conjunction. The conjunctive query entailment algorithms for
more expressive DLs, e.g., SHIQ and SHOQ, are presented in [12][13].

When querying over fuzzy DL KBs, as in the crisp case, same difficulties
emerged in that existing fuzzy DL reasoners, such as fuzzyDL2 and FiRE3,
are not capable of dealing with CQs either. Some work has been done in a
relative narrow range, mainly focused on lightweight fuzzy ontology languages,
e.g. [14] and [15] on f -DL-Lite, [16] on f -ALC and [17] on f -ALCN . In [18], A
fuzzy extension of CARIN is provided, along with an fuzzy version of existential
entailment algorithm for answering conjunctive queries.

In this paper, we extend the results obtained in [18] for fuzzy ALCNR and
in [19] for crisp SHIN to fuzzy SHIN . This paper makes the following major
contributions:

– It presents a tableau-based algorithm for deciding query entailment over
f -SHIN KBs.

– It provides complexity upper bounds w.r.t both combined complexity and
data complexity.

The remainder of this paper is organized as follows. Section 2 briefly reviews
the necessary background knowledge of fuzzy sets, fuzzy logics, the syntax and
2 http://gaia.isti.cnr.it/∼ straccia/software/fuzzyDL/fuzzyDL.html
3 http://www.image.ece.ntua.gr/∼nsimou

122 J. Cheng et al.

semantics of f -SHIN , and the formal definition of a fuzzy query language.
Section 3 presents the conjunctive query entailment algorithm for f -SHIN along
with complexity analysis. Section 4 concludes this paper.

For the lack of the space, we omit most of the proofs, which can be found in
a accompanying technical report [20].

2 Preliminaries

2.1 Fuzzy Set and Fuzzy Logic

In classical set theory, an element in a set either belongs or0 does not belong to
the set. By contrast, in fuzzy set theory, an element belongs to a set with certain
degree, which is described with the aid of a membership function valued in the
real unit interval [0,1].

A fuzzy set A with regard to a universe U is characterized by a member-
ship function μA : U → [0, 1] (or simply A(x) ∈ [0, 1]), which assigns a mem-
bership degree to each element u in U , denoted by μA(u). μA(u) gives us an
assessment of the degree that u belongs to A. Typically, if μA(u) = 1 then u
definitely belongs to A, whereas μA(u) ≥ 0.8 means that u is “likely” to be an el-
ement of A. In addition, when using Gödel T-norm, T-conorm and Lukasiewicz
negation for interpreting conjunctions, disjunctions and complements respec-
tively, we have: for all u ∈ U and for all fuzzy sets A1, A2 with respect to
U , μA1∩A2(u) = min{μA1(u), μA2(u)}, μA1∪A2(u) = max{μA1(u), μA2(u)}, and
μĀ(u) = 1− μA(u), where Ā is the complement of A in U .

As for fuzzy logics, the degree of membership μA(u) of an element u ∈ U
w.r.t. the fuzzy set A over U is regarded as the truth-value of the statement “u
is in A”. Accordingly, in fuzzy DL, (i) a concept C, rather than being interpreted
as a classical set, will be interpreted as a fuzzy set and, thus, concepts become
imprecise; and, consequently, (ii) the statement “o is in C”, i.e. o : C, will have
a truth-value in [0,1] given by the degree of membership of being the individual
o a member of the fuzzy set C.

2.2 Fuzzy SHIN
We introduce the basic terms and notations used throughout this paper. In
particular, we introduce the syntax and semantics for fuzzy DL f -SHIN [4].

LetNC , NR, andNI be countable infinite and pairwise disjoint sets of concept,
role and individual names, respectively. We assume that the set of role names NR

can be divided into two disjoint subsets, NtR and NnR, where the former stands
for the subset of transitive role names, and the latter stands for the subset of
non-transitive role names. This assumption can be written as NR = NtR ∪NnR

and NtR ∩NnR = ∅.
f -SHIN roles (or roles for short) are defined as R ::= RN |R−, where RN ∈

NR, R− is called the inverse role of R.
A role inclusion axiom is of the form R � S, with R, S roles. A role hierarchy

(also called a RBox) R is a finite set of role inclusion axioms.
For the sake of brevity and clarity, we use following notations:

Deciding Query Entailment for Fuzzy SHIN Ontologies 123

1. To avoid using verbose role expressions of the form R−− or even R−−−, we
use an abbreviation Inv(R) to denote inverse role of R, i.e. Inv(R) = R− if
R ∈ NR, and Inv(R) = S if R = S− with S ∈ NR.

2. For a RBox R, we define �∗
R as the reflexive transitive closure of � over

R ∪ {Inv(R) � Inv(S)|R � S ∈ R}. We use R ≡∗
R S as an abbreviation for

R �∗
R S and S �∗

R R.
3. For a RBox R and a role S, we define the set TransR of transitive roles as
{S| there is a role R with R ≡∗

R S and R ∈ NtR or Inv(R) ∈ NtR}.
4. A role S is called simple w.r.t. a RBoxR if, for each roleR such thatR �∗

R S,
R /∈ TransR.

The subscript R of �∗
R and TransR is dropped if clear from the context.

f -SHIN concepts (or concepts for short) are formed out of concept names
according to the following abstract syntax, where A ∈ NC , R ∈ NR, p ∈ IN , and
S a simple role:

C,D ::=
|⊥|A|¬A|C �D|C D|∀R.C|∃R.C| ≤ pS| ≥ pS

A TBox is a finite set of concept definition axioms of the form A ≡ D and
general concept inclusion axioms (GCIs) of the form C � D.

An ABox consists of fuzzy assertions of the form C(o) �� n, R(o, o′) � n, or
o ≈/ o′, where o, o′ ∈ NI , �� stands for any type of inequality, i.e., ��∈ {≥, >,
≤, <}. We use � to denote ≥ or >, and � to denote ≤ or <. We call ABox
assertions defined by � positive assertions, while those defined by � negative
assertions. Note that, we consider only positive fuzzy role assertions, since nega-
tive role assertions would imply the existence of role negation, which would lead
to undecidability [18].

An f -SHIN knowledge base (KB) K is a triple (T ,R,A) with T a TBox, R
a RBox and A an ABox.

Let C be a fuzzy concept, R a RBox, we denote by sub(C,R) the set of sub-
concepts of C. We define sub(A,R) =

⋃

C(o)��n∈A
sub(C,R). R is dropped if clear

from the context.
The semantics of f -SHIN are provided by a fuzzy interpretation, which is

a pair I = (ΔI ,.I). Here ΔI is a non-empty set of objects, called the domain
of interpretation, and .I is an interpretation function which maps different in-
dividual names into different elements in ΔI , concept name A into membership
function AI : ΔI → [0,1], role R into membership function RI :ΔI ×ΔI → [0,1].
The semantics of f -SHIN concepts and roles are depicted as follows.

–
I(o) = 1
– ⊥I(o) = 0
– (C �D)I(o) = min{CI(o), DI(o)}
– (C D)I(o) = max{CI(o), DI(o)}
– (¬C)I(o) = 1− CI(o)
– (∀R.C)I(o) = info′∈ΔI{max{1−RI(o, o′), CI(o′)}}
– (∃R.C)I(o) = supo′∈ΔI{min{RI(o, o′), CI(o′)}}

124 J. Cheng et al.

– (≥ pS)I(o) = supo1,...,op∈ΔI{minp
i=1{RI(o, oi)}}

– (≤ pS)I(o) = info1,...,op+1∈ΔI maxp+1
i=1 {1−RI(o, oi)}

– Inv(R)I(o, o′) = RI(o′, o)

Given an interpretation I and an inclusion axiom C � D, I is a model of
C � D, if CI(o) ≤ DI(o) for any o ∈ ΔI , written as I |= C � D. Similarly,
for ABox assertions, I |= B(o) �� n (resp. I |= R(o, o′) �� n), iff BI(oI) �� n
(resp. RI(oI , o′I) �� n), and I |= o ≈/ o′ iff oI �= o

′I . As for RBox, I |= R � S iff
∀〈o, o′〉 ∈ ΔI × ΔI , RI〈o, o′〉 ≤ SI〈o, o′〉, and I |= Trans(R), iff ∀o, o′, o′′ ∈ ΔI ,
RI(o, o′′) ≥ supo′∈ΔI{min(RI(o, o′), RI(o′, o′′))}. Note that the semantics of
transitive roles result from the definition of sup-min transitive relation in fuzzy
set theory.

If an interpretation I is a model of all the axioms and assertions in a KB K,
we call it a model of K. A KB is satisfiable iff it has at least one model. A KB
K entails (logically implies) a fuzzy assertion ϕ, written as K |= ϕ, iff all the
models of K are also models of ϕ.

Given a KB K, we can w.l.o.g assume that the following conditions hold.

1. All concepts are in their negative normal forms (NNFs), i.e. negation occurs
only in front of concept names. Through de Morgan law, the duality between
existential restriction (∃R.C) and universal restriction (∀R.C), and the du-
ality between atmost restriction (≤ pS) and atleast restriction (≥ pS), each
concept can be transformed into its equivalent NNF by pushing negation
inwards.

2. All fuzzy concept assertions are in their positive inequality normal forms
(PINFs). A negative concept assertion can be transformed into its equivalent
PINF by applying fuzzy complement operation on it. For example, C(o) < n
is converted to ¬C(o) > 1− n.

3. All fuzzy assertions are in their normalized forms (NFs). As is shown in [21],
by introducing a positive, infinite small value ε, a fuzzy assertion of the form
C(o) > n can be normalized to C(o) ≥ n+ ε. The model equivalence of KB
K and K’s normalized form is also proved in [21].

4. There are only fuzzy GCIs in the TBox. A fuzzy concept definition axiom
A ≡ D can be eliminated by replacing every occurrence of A with D. The
elimination is also known as knowledge base expansion. Note that the size
of the expansion can be exponential in the size of the TBox. But if we follow
the principle of “Expansion is done on demand” [22], the expansion will have
no impact on the algorithm complexity of deciding fuzzy query entailment.

2.3 Fuzzy Conjunctive Queries

In general, existing fuzzy DL reasoners can provide most of the basic fuzzy
inference services [3], such as checking of fuzzy concept satisfiability, fuzzy con-
cept subsumption, and ABox consistency. In addition, some fuzzy DL reasoners
support different kinds of simple queries over a KB K for obtaining assertional
knowledge. These queries include

Deciding Query Entailment for Fuzzy SHIN Ontologies 125

– retrieval given a fuzzy KB K, a fuzzy concept C, and n ∈ (0, 1], to retrieve
all instances o occurring in the ABox, such that K| = C(o) ≥ n holds,

– realisation given a fuzzy KB K, a individual name o, and n ∈ (0, 1], to
determine the most specific concept C, such that K| = C(o) ≥ n holds. In
other words, for any fuzzy concept D, K| = D(o) ≥ n implies K| = C � D.

– instantiation given a fuzzy KB K, a fuzzy concept assertion C(o) ≥ n, to
decide whether or not K| = C(o) ≥ n.

In fact, fuzzy DL reasoners deal with these queries by transferring them into
basic inference tasks. For example, the instantiation problem K| = C(o) ≥ n
can be reduced to the (un)satisfiability problem of the KB K ∪ {¬C(o) < n},
while the latter one is a basic inference problem. There is, however, no support
for queries that ask for n-tuples of related individuals or for the use of variables
to formulate a query, just as conjunctive queries do.

Conjunctive queries stemmed from the domain of relational databases, and
have attracted much attention recently in Semantic Web. With the emergence
of a good number of large-scale domain ontologies, it is of particular importance
to provide users with expressive querying service.

Recently there have been quite a lot of work on answering Conjunctive queries
over fuzzy DLs. In [14], Straccia defined a conjunctive query language over fuzzy
KBs. Conjunctive queries over a fuzzy KB K are expressions of the form q(x)←
∃y.conj(x,y), where vector x is constituted by distinguished variables (also
known as answer variables), which can be bound with individual names in a
given knowledge base to answer the conjunctive queries, y is constituted by
non-distinguished variables, which are treated as existential quantified, i.e., we
just require the existence of a suitable element in the model, but this element
does not have to correspond to an individual explicitly named in the ABox.
conj(x,y) is a conjunction of atoms of the form B(z) or R(z1, z2), where B and
R are basic concept and role in K respectively. The concept and role atoms are
syntactically equal to concept and role assertions except that z, z1 and z2 may
be variables in x or y, besides constants in K.

The query language in [14] has the same syntax as that of crisp DLs, and
thus cannot express queries such as “find me hotels that are very close to the
conference venue (with membership degree at lest 0.9) and offer inexpensive
(with membership degree at lest 0.7) rooms”. For this reason, a query language,
which allows a threshold for every query atom, was proposed in [23]. Clearly,
threshold queries give users more flexibility in that users can specify different
thresholds for different atoms.

In this study, we mainly deal with conjunctive query entailment problem. As
is generally believed in database community, however, there is a tight connec-
tion among the problems of conjunctive query containment, conjunctive query
answering, and query entailment [24].

2.4 Fuzzy Query Language

Following [18], we provide the formal definition of the syntax and semantics of
the fuzzy querying language used in this paper.

126 J. Cheng et al.

Let NV be a countable infinite set of variables and is disjoint from NC , NR,
and NI . A term t is either an individual name from NI or a variable name from
NV . A fuzzy query atom is an expression of the form 〈C(t) ≥ n〉 or 〈R(t, t′) ≥ m〉
with C a concept, R a simple role, and t, t′ terms. As with fuzzy assertions, we
refer to these two different types of atoms as fuzzy concept atoms and fuzzy role
atoms, respectively. We also w.l.o.g. assume all the query atoms are in their
NNFs, PINFs, and NFs.

Definition 1. (Fuzzy Boolean Conjunctive Queries) A fuzzy boolean conjunctive
query q is a non-empty set of fuzzy query atoms of the form q= {〈at1 ≥ n1〉,
. . . , 〈atk ≥ nk〉}. Then for every fuzzy query atom, we can say 〈ati ≥ ni〉 ∈ q.

We use Var(q) to denote the set of variables occurring in q, Ind(q) to denote the
set of individual names occurring in q, and Term(q) for the set of terms in q, i.e.
Term(q) = Var(q) ∪ Ind(q).

The semantics of a fuzzy query is given in the same way as for the related
fuzzy DL by means of fuzzy interpretation consisting of an interpretation domain
and a fuzzy interpretation function.

Definition 2. (Models of Fuzzy Queries) Let I = (ΔI ,.I) be a fuzzy interpre-
tation of an f -SHIN KB, q a fuzzy boolean conjunctive query, and t, t′ terms
in q. We say I is a model of q, if there exists a mapping π : Term(q)→ ΔI such
that π(a) = aI for each a ∈ Ind(q), CI(π(t)) ≥ n for each fuzzy concept atom
C(t) ≥ n ∈ q, RI(π(t), π(t′)) ≥ n for each fuzzy role atom R(t, t′) ≥ n ∈ q.

If I |=π at for every atom at ∈ q, we write I |=π q. If there is a π, such that
I |=π q, we say I satisfies q, written as I |= q. We call such a π a match of q
in I. If I |= q for each model I of a KB K, then we say K entails q, written as
K |= q. The query entailment problem is defined as follows: given a knowledge
base K and a query q, decide whether K |= q.

3 Query Entailment Algorithm

As for basic inference services and simple queries, our algorithm for deciding
fuzzy query entailment is also based on tableau algorithms. The query entailment
problem is, however, not reducible to the knowledge base satisfiability problem,
since the negation of a fuzzy conjunctive query is not expressible with existing
constructors provided by an f -SHIN knowledge base. For this reason, tableau
algorithms for reasoning over knowledge bases is not sufficient. A knowledge base
K may have infinitely many possibly infinite models, whereas tableau algorithms
construct only a subset of finite models of the knowledge base. As is defined in
Section 2.4, the query entailment holds only if the query is true in all models of
the knowledge base, we thus have to show that inspecting only a subset of the
models, namely the canonical ones, suffices to decide query entailment.

As with the tableau algorithm for f -SHIN [4], our algorithm works on a
data structure called completion forest. A completion forests is a finite relational
structure capturing sets of models of a KB K. Roughly speaking, models of K

Deciding Query Entailment for Fuzzy SHIN Ontologies 127

are represented by an initial completion forest FK. Then, by applying expansion
rules repeatedly, new completion forests are generated. Since every model of K
is preserved in some completion forest that results from the expansion, K |= q
can be decided by considering a set FK of sufficiently expanded forests. From
each such F a single canonical model is constructed. Semantically, the finite set
of these canonical models is sufficient for answering all queries q of bounded size.
Furthermore, we prove that entailment in the canonical model obtained from F
can be checked effectively via a syntactic mapping of the terms in q to the nodes
in F .

3.1 Completion Forests

Definition 3. (Completion Forest) A completion tree T for a f -SHIN KB is
a tree all whose nodes are generated by expansion rules, except for the root node
which might correspond to a individual name in NI. A completion forest F for
a f -SHIN KB consists of a set of completion trees whose nodes correspond to
individual names in the ABox, an equivalent relation ≈ among nodes, and an
inequivalent relation ≈/ among nodes.

Each node x in a completion forest (which is either a root node or a node in a
completion tree) is labelled with a set L(x) = {〈C,≥, n〉}, where C ∈ sub(A),
n ∈ (0,1]. Each edge 〈x, y〉 (which is either one between root nodes or one inside
a completion tree) is labelled with a set L(〈x, y〉) = {〈R,≥, n〉}.

If 〈x, y〉 is an edge in a completion forest with 〈R′,≥, n〉 ∈ L(〈x, y〉) and
R′ �∗ R ∈ R, then y is called an R≥,n-successor of x and x is called an R≥,n-
predecessor of y. Ignoring the inequality and membership degree, we can also
call y an R-successor of x and x an R-predecessor of y. Ancestor and descendant
are the transitive closure of predecessor and successor, respectively. The union
of the successor and predecessor relation is the neighbor relation. The distance
between two nodes x, y in a completion forest is the shortest path between them.

Starting with an f -SHIN KB K = 〈T ,R,A〉, the completion forest FK is
initialized such that it contains a root node o, with L(o) = {〈C,≥, n〉 | C(o) ≥
n ∈ A}, for each individual name o occurring in A, and an edge 〈o, o′〉 with
L(〈o, o′〉) = {〈R,≥, n〉 | 〈R(o, o′) ≥ n〉 ∈ A}, for each pair 〈o, o′〉 of individual
names for which the set {R | R(o, o′) ≥ n ∈ A} is non-empty. We initialize the
relation ≈/ as {〈o, o′〉|o ≈/ o′ ∈ A}, and the relation ≈ to be empty.

Now we can formally define a new blocking condition, called k-blocking, for
fuzzy query entailment depending on a depth parameter k ≥ 0.

Definition 4. (k-tree equivalence) The k-tree of a node v in T , denoted as T k
v ,

is the subtree of T rooted at v with all the descendants of v within distance k.
We use Nodes(T k

v) to denote the set of nodes in T k
v . Two nodes v and w in T

are said to be k-tree equivalent in T , if T k
v and T k

w are isomorphic, i.e., there
exists a bijection ψ : Nodes(T k

v) → Nodes(T k
w) such that (i) ψ(v) = w, (ii) for

every node o ∈ Nodes(T k
v), L(o) = L(ψ(o)), (iii) for every edge connecting two

nodes o and o′ in T k
v , L(〈o, o′〉) = L(〈ψ(o), ψ(o′)〉).

128 J. Cheng et al.

Definition 5. (k-witness) A node w is a k-witness of a node v, if v and w are k-
tree equivalent in T , w is an ancestor of v in T and v is not in T k

w. Furthermore,
T k

w tree-blocks T k
v and each node o in T k

w tree-blocks node ψ−1(o) in T k
v .

Definition 6. (k-blocking) A node o is k-blocked in a completion forest F iff
it is not a root node and it is either directly or indirectly k-blocked. Node o is
directly k-blocked iff none of its ancestors is k-blocked, and o is a leaf of a tree-
blocked k-tree. Node o is indirectly k-blocked iff one of its ancestors is k-blocked
or it is a successor of a node o′ and L(〈o′, o〉) = ∅.

An initial completion forest is expanded according to a set of expansion rules
that reflect the constructors allowed in f -SHIN . The expansion rules, which
syntactically decompose the concepts in node labels, either infer new constraints
for a given node, or extend the tree according to these constraints (see Table
1). Termination is guaranteed by k-blocking. We denote by FK the set of all
completion forests obtained this way.

There should be some explanation for the �-rule, which is applicable for fuzzy
GCIs in the TBox. In the context of crisp DLs, the solution to GCIs is, for each
C � D, to construct an universal concept ¬CD and let the label of every node
within the completion forests contain this universal concept, thus ensuring the
model satisfies the TBox. In fuzzy cases, however, this solution is not feasible in
that ¬C D cannot capture the semantics of C � D. Li et al. [25] and Stoilos
et al. [21] proposed two similar methods for dealing with fuzzy GCIs in parallel.
In the �-rule, NA and N q denotes the sets of membership degrees in the ABox
A and in CQ q, respectively, i.e., NA = XA ∪ {1 − n|n ∈ XA}, where XA =
{0, 0.5, 1} ∪ {n|C(o) ≥ n ∈ A, or R(o, o′) ≥ n ∈ A}, N q = {n|C(t) ≥ n ∈ q,
or R(t, t′) ≥ n ∈ q}. In addition, for each fuzzy concept C occurring in q, we
augment the TBox with a fuzzy GCI C � C. This clearly has no logical impact
on the knowledge base, but it ensures that, for each node o in the completion
forest, a decision is made as to whether C(o) ≥ n or ¬C(o) ≥ 1−n+ε (C(o) < n)
holds, according to the �-rule in Table 1.

For a node o, L(o) is said to contain a clash, if it contain one of the following:
(i) a pair of triples 〈C,≥, n〉 and 〈¬C,≥,m〉 with n + m > 1, (ii) one of the
triples: 〈⊥,≥, n〉 with n > 0, 〈C,≥, n〉 with n > 1, (iii) some triple 〈≤ pR,≥, n〉,
and o has p+1 R≥,n′-neighbors o1, . . . , op+1, with oi ≈/ oj for all 1 ≤ i < j ≤ p+1
and n′ = 1− n+ ε.

Definition 7. (clash-free completion forest) A completion forest F is called
clash free if none of its nodes and edges contains a clash.

Definition 8. (k-complete completion forest) A completion forest is called k-
complete if (under k-blocking) no rule can be applied to it. We denote by ccfk

(FK) the set of k-complete and class-free completion forests in FK.

Example 1. Let K = (T ,R,A) be an f -SHIN KB with T = {C � ∃R.C}, A =
{C(a) ≥ n} and R = ∅. Figure 1 shows a 1-complete and clash-free completion
forest F for K. The node x4 in T 1

x3
-tree is directly blocked by x2 in T 1

x1
-tree,

indicated by the dashed line.

Deciding Query Entailment for Fuzzy SHIN Ontologies 129

Table 1. Expansion rules

Rule Description

�≥
if 1. 〈C � D,≥, n〉 ∈ L(x), x is not indirectly k-blocked, and

2. {〈C,≥, n〉, 〈D,≥, n〉} � L(x)
then L(x) → L(x) ∪ {〈C,≥, n〉, 〈D,≥, n〉}

≥
if 1. 〈C
 D,≥, n〉 ∈ L(x), x is not indirectly k-blocked, and

2. {〈C,≥, n〉, 〈D,≥, n〉} ∩ L(x) = ∅
then L(x) → L(x) ∪ {C′}, where C′ ∈ {〈C,≥, n〉, 〈D,≥, n〉}

∃≥
if 1. 〈∃R.C,≥, n〉 ∈ L(x), x is not k-blocked.

2. x has no R≥,n-neighbor y s.t. 〈C,≥, n〉 ∈ L(y),
then create a new node y with L(x, y) = {〈R,≥, n〉} and L(y) = {〈C,≥, n〉}

∀≥
if 1. 〈∀R.C,≥, n〉 ∈ L(x), x is not indirectly k-blocked.

2. x has an R≥,n′ -neighbor y with 〈C,≥, n〉 /∈ L(y), where n′ = 1 − n + ε,
then L(y) → L(y ∪ {〈C,≥, n〉}

∀+

if 1. 〈∀R.C,≥, n〉 ∈ L(x) with Trans(R), x is not indirectly k-blocked, and
2. x has an R≥,n′ -neighbor y with 〈∀R.C,≥, n〉 /∈ L(y), where n′ = 1 − n + ε,

then L(y) → L(y ∪ {〈∀R.C,≥, n〉}

∀′
+

if 1. 〈∀S.C,≥, n〉 ∈ L(x), x is not indirectly k-blocked, and
2. there is some R, with Trans(R) and R �∗ S,
3. x has an R≥,n′ -neighbor y with 〈∀R.C,≥, n〉 /∈ L(y), where n′ = 1 − n + ε,

then L(y) → L(y ∪ {〈∀R.C,≥, n〉}

≥≥
if 1. 〈≥ pR,≥, n〉 ∈ L(x), x is not k-blocked,
�{xi ∈ NI |〈R,≥, n〉 ∈ L(x, xi)} < p,
then introduce new nodes, s.t. �{xi ∈ NI | 〈R,≥, n〉 ∈ L(x, xi)} ≥ p

≤≥

if 1. 〈≤ pR,≥, n〉 ∈ L(x), x is not indirectly k-blocked,
2. �{xi ∈ NI |〈R,≥, 1 − n + ε〉 ∈ L(x, xi)} > p and
3. there exist xl and xk, with no xl ≈/ xk,
4. xl is neither a root node nor an ancestor of xk.

then (i) L(xk) → L(xk) ∪ L(xl)
(ii) L(x, xk) → L(x, xk) ∪ L(x, xl)
(iii) L(x, xl) → ∅, L(xl) → ∅
(iv) set xi ≈/ xk for all xi with xi ≈/ xl

≤r≥

if 1. 〈≤ pR,≥, n〉 ∈ L(x),
2. �{xi ∈ NI |〈R,≥−, 1 − n〉 ∈ L(x, xi)} > p and
3. there exist xl and xk, both root nodes, with no xl ≈/ xk,

then 1. L(xk) → L(xk) ∪ L(xl)
2. For all edges 〈xl, x

′〉,
i. if the edge 〈xk, x′〉 does not exist, create it with L(〈xk, x′〉) = ∅,
ii. L(〈xk, x′〉) → L(〈xk, x′〉) ∪ L(〈xl, x

′〉).
3. For all edges 〈x′, xl〉,
i. if the edge 〈x′, xk〉 does not exist, create it with L(〈x′, xk〉) = ∅,
ii. L(〈x′, xk〉) → L(〈x′, xk〉) ∪ L(〈x′, xl〉).
4. Set L(xl) = ∅ and remove all edges to/from xl.
5. Set x′′ ≈/ xk for all x′′ with x′′ ≈/ xl and set xl ≈ xk

.

�
if 1. C � D ∈ T and

2. {〈¬C,≥, 1 − n + ε〉, 〈D,≥, n〉} ∩ L(x) = ∅ for n ∈ NA ∪ Nq ,
then L(x) → L(x) ∪ {C′} for some C′ ∈ {〈¬C,≥, 1 − n + ε〉, 〈D,≥, n〉}

130 J. Cheng et al.

a 〈C,≥, n〉, 〈∃R.C,≥, n〉

x1 〈C,≥, n〉, 〈∃R.C,≥, n〉

x2 〈C,≥, n〉, 〈∃R.C,≥, n〉

x3 〈C,≥, n〉, 〈∃R.C,≥, n〉

x4 〈C,≥, n〉, 〈∃R.C,≥, n〉

〈R,≥, n〉

〈R,≥, n〉

〈R,≥, n〉

〈R,≥, n〉

Fig. 1. A 1-complete and clash-free completion forest F for K

3.2 Models of a Completion Forest

We now show that every model of a KB K is preserved in some complete and
clash-free completion tree F . We first define models of F , then prove that, for
each model I of K, there exists some F , such that a extended model I′ of I is
a model of F .

If we view all the nodes (either root nodes or generated nodes) in a completion
forest F as individual names, we can define models of F in terms of models of
K over an extended vocabulary.

Definition 9. (Models of completion forests) An interpretation I is a model of
a completion forest F for K, denoted I |= F , if I |= K and for all nodes v, w in
F it holds that (i) CI(vI) ≥ n if 〈C,≥, n〉 ∈ L(v), (ii) RI(vI , wI) ≥ n if there
exists an edge 〈v, w〉 in F and 〈R,≥, n〉 ∈ L(〈v, w〉), (iii) vI �= wI if v ≈/ w ∈ F .

Apparently, the initial completion forest FK and K share the same models in
that there are only root nodes in FK, which correspond individual names in K.
Then, each time an expansion rule is applied, every model of K is preserved
in some expanded completion forest [4]. It thus holds that for each model I of
K, there exists some F ∈ ccfk(FK) and a model of F which extends I (for
any k > 0). Since the set of k-complete and clash-free completion forests for K
semantically captures K (modulo new generated nodes), query entailment K |= q
can be transferred to logical consequence of q from completion forests as follows.
For any completion forest F and CQ q, let F |= q denote that I |= q for every
model I of F .

Proposition 1. Let k > 0 be arbitrary. Then K |= q iff F |= q for each F ∈
ccfk(FK).

3.3 Checking Query Entailment within Completion Forest

Now we will show that, if k is large enough, we can decide F |= q for each
F ∈ ccfk(FK) by syntactically mapping the query q into F .

Definition 10. (Query mapping) A fuzzy query q can be mapped into F ,
denoted q ↪→ F , if there is a mapping μ : Terms(q)→ Nodes(F), such that

Deciding Query Entailment for Fuzzy SHIN Ontologies 131

– μ(a) = a for every individual name a,
– for each fuzzy concept atom C(x) ≥ n in q, 〈C(x),≥, n〉 ∈ L(μ(x)),
– for each fuzzy role atom 〈R(x, y) ≥ n〉 in q, μ(y) is a R≥n-neighbor of μ(x).

We use nq to denote the number of fuzzy role atoms in a fuzzy query q.

Theorem 1. Let k ≥ nq, where nq denote the number of fuzzy role atoms in a
fuzzy query q. Then K |= q iff for each F ∈ ccfk(FK), it holds that q ↪→ F .

The if direction is easy. If q can be mapped to F via μ, then q is satisfied in each
model I of F by assigning to each variable x in q the value of its image μI(x).
By Proposition 1, K |= q.

To prove that the converse also holds, we have to show that if k is large enough,
a mapping of q into F ∈ ccfk(FK) can be constructed from a distinguished
canonical model of F . The canonical model IF of F is constructed by unravelling
the forest F in the standard way , where the blocked nodes act like ‘loops’ [4].
Its domain comprises the set of all paths from some root in F to some node of
F (thus, it can be infinite). Note that in order for IF to be a model, F must be
in ccfk(FK) for some n ≥ 1. For the complexity of the formal definition of IF ,
we provide an example.

Example 2. By unravelling F in Figure 1, we obtain a model IF that has as
domain the infinite set of paths from a to each xi. Note that a path actually
comprises a sequence of pairs of nodes, in order to witness the loops introduced
by the blocked variables. When a node is not blocked, like x1, the pair x1

x1
is

added to the path. Since T 1
x1

tree-blocks T 1
x3

, every time a path reaches x4,
which is a leaf of a blocked tree, we add x2

x4
to the path and loop back to the

successors of x2. In this way, we obtain the following infinite set of paths:

p0 =
[a
a

]
, p1 =

[a
a
,
x1

x1

]
, p2 =

[a
a
,
x1

x1
,
x2

x2

]
,

p3 =
[a
a
,
x1

x1
,
x2

x2
,
x3

x3

]
, p4 =

[a
a
,
x1

x1
,
x2

x2
,
x3

x3
,
x2

x4

]
,

p5 =
[a
a
,
x1

x1
,
x2

x2
,
x3

x3
,
x2

x4
, ,
x3

x3

]
, . . .

This set of paths constitute the domain ΔIF . For each concept name A, we
have AIF (pi) ≥ n, if 〈A,≥, n〉 occurs in the label of the last node in pi. For
each role R, R(pi, pj) ≥ n if the last node in pj is an R successor of pi. If role
R ∈ Tran, the extension of R is expanded according to the sup-min transitive
semantics. In the following, let nq denote the number of fuzzy role atoms in q,
and let k ≥ nq. Since IF |= q, there exists a mapping σ : Nodes → ΔIF s.t. for
each fuzzy concept atom〈C(x) ≥ n〉 in q, CIF (σ(x)) ≥ n, and for each fuzzy
role atom R(x, y) ≥ n in q, RIF (σ(x), σ(y)) ≥ n. For any k-complete and clash
free completion forest F , a mapping μ of q into F can be obtained from σ. We
use GIF to denote the graph that has as nodes the domain of IF , and as arcs the

132 J. Cheng et al.

R-successor edges of IF for each role occurring inq. For any two nodes qi and qj
in IF , let d(qi, qj) denote the distance between qi and qj in GIF . Let the image
of q under σ as a graph Gq, then the length of a path in Gq connecting the
images σ(x) and σ(y) of any two variables x and y in q will be at most nq. If F
is k-complete with k ≥ nq, then for every path in Gq there will be an isomorphic
one in F . Therefore, a k-complete completion forest is large enough to find a
mapping whose image is isomorphic to Gq.

We can, from the only if direction of Theorem 1, establish our key result,
which reduce query entailment K |= q to finding a mapping of q into every F in
ccfk(FK).

Example 3. Given F and q = 〈R(〈x, y〉) ≥ n〉∧C(x) ≥ n, we can easily recognize
a mapping q ↪→ F .

3.4 Complexity Analysis

For the standard reasoning tasks, e.g., knowledge base consistency, the combined
complexity is measured in the size of the input knowledge base. For query en-
tailment, the size of the query is additionally taken into account. The size of
a knowledge base K or a query q is simply the number of symbols needed to
write it over the alphabet of constructors, concept, role, individual, and variable
names that occur in K or q, where numbers are encoded in binary.

Theorem 2. Given an f -SHIN KB K and a fuzzy conjunctive query q all of
whose roles are simple, deciding whether K |= q is in co-3NexpTime.

Proof. (sketch) The proof is quite similar with the one presented in[26]. We use
||K, q|| to denote the total size of the string encoding the knowledge base K and
the query q in a query entailment K |= q. The branches in each completion tree
within a completion forest F ∈ FK is polynomially bounded in ||K, q||, and the
maximal height of a non-isomorphic k-tree is double exponential in ||K, q||, if k
is polynomial in ||K, q||. F thus has at most triple exponentially many nodes.
Since each expansion rule can be applied only polynomially often to a node, the
expansion of the initial completion forest FK into some F ∈ FK terminates in
nondeterministic triple exponential time in ||K, q|| for k = nq. Checking whether
q ↪→ F is thus in triple exponential time in ||K, q||.

As for data complexity, we consider the ABox as the only input for the al-
gorithm, i.e., the size of the TBox, the role hierarchy, and the query is fixed.
Therefore, each completion forest F ∈ FK has linearly many nodes in |A| and
any expansion of FK terminates in polynomial time. Deciding whether q ↪→ F
is thus polynomial in the size of F .

Theorem 3. Given an f -SHIN KB K and a fuzzy conjunctive query q all
of whose roles are simple, deciding whether K |= q is in co-NP w.r.t. data
complexity.

Deciding Query Entailment for Fuzzy SHIN Ontologies 133

4 Conclusion

Fuzzy Description Logics-based knowledge bases are envisioned to be useful in
the Semantic Web. Existing fuzzy DL reasoners either are not capable of answer-
ing complex queries (mainly conjunctive queries), or only apply to DLs with less
expressivity. We thus present an algorithm for answering expressive fuzzy con-
junctive queries, which allow the occurrence of both lower bound and the upper
bound of threshold in a query atom, over the relative expressive DL, namely
fuzzy SHIN . The algorithm we suggest here can easily be adapted to exist-
ing (and future) DL implementations. Future direction concern applying the
proposed technique to even more expressive logics, for example fuzzy DLs addi-
tionally extended with nominals and datatype groups [27], or to more expressive
fuzzy query language as suggested in [15].

Acknowledgments. This work was supported by the National Natural Science
Foundation of China (60873010).

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The description logic handbook: theory, implementation, and applications.
Cambridge University Press, New York (2003)

2. Zadeh, L.A.: Fuzzy sets. Information and Control 8(3), 338–353 (1965)
3. Straccia, U.: Reasoning within fuzzy description logics. J. Artif. Intell. Res.

(JAIR) 14, 137–166 (2001)
4. Stoilos, G., Stamou, G., Pan, J., Tzouvaras, V., Horrocks, I.: Reasoning with very

expressive fuzzy description logics. Journal of Artificial Intelligence Research 30(8),
273–320 (2007)

5. Stoilos, G., Simou, N., Stamou, G.B., Kollias, S.D.: Uncertainty and the semantic
web. IEEE Intelligent Systems 21(5), 84–87 (2006)

6. Calvanese, D., De Giacomo, G., Lenzerini, M.: On the decidability of query contain-
ment under constraints. In: Proc. of the 17th ACM SIGACT SIGMOD SIGART
Sym. on Principles of Database Systems (PODS 1998), pp. 149–158 (1998)

7. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: The dl-lite family. J.
of Automated Reasoning 39(3), 385–429 (2007)

8. Rosati, R.: On conjunctive query answering in EL. In: Proceedings of the 2007
International Workshop on Description Logic (DL 2007), CEUR Electronic Work-
shop Proceedings (2007)

9. Rosati, R.: The limits of querying ontologies. In: Schwentick, T., Suciu, D. (eds.)
ICDT 2007. LNCS, vol. 4353, pp. 164–178. Springer, Heidelberg (2006)

10. Krotzsch, M., Rudolph, S., Hitzler, P.: Conjunctive queries for a tractable fragment
of OWL 1.1. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon,
L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-
Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 310–323.
Springer, Heidelberg (2007)

11. Levy, A.Y., Rousset, M.C.: Combining horn rules and description logics in carin.
Artif. Intell. 104(1-2), 165–209 (1998)

134 J. Cheng et al.

12. Glimm, B., Horrocks, I., Lutz, C., Sattler, U.: Conjunctive query answering for the
description logic shiq. In: IJCAI, pp. 399–404 (2007)

13. Glimm, B., Horrocks, I., Sattler, U.: Conjunctive query entailment for shoq. In:
Proceedings of the 2007 International Workshop on Description Logic, DL 2007
(2007)

14. Straccia, U.: Answering vague queries in fuzzy dl-lite. In: Proceedings of the 11th
International Conference on Information Processing and Management of Uncer-
tainty in Knowledge-Based Systems (IPMU 2006), pp. 2238–2245 (2006)

15. Pan, J.Z., Stamou, G., Stoilos, G., Thomas, E.: Expressive Querying over Fuzzy
DL-Lite Ontologies. In: Proc. of 2007 International Workshop on Description Log-
ics, DL 2007 (2007)

16. Cheng, J.W., Ma, Z.M., Zhang, F., Wang, X.: Conjunctive query answering over
an f-alc knowledge base. In: Web Intelligence/IAT Workshops, pp. 279–282 (2008)

17. Cheng, J.W., Ma, Z.M., Zhang, F., Wang, X.: Deciding query entailment in fuzzy
description logic knowledge bases. In: Bhowmick, S., Küng, J., Wagner, R. (eds.)
DEXA 2009. LNCS, vol. 5690, pp. 830–837. Springer, Heidelberg (2009)

18. Mailis, T.P., Stoilos, G., Stamou, G.B.: Expressive reasoning with horn rules and
fuzzy description logics. In: Marchiori, M., Pan, J.Z., Marie, C.d.S. (eds.) RR 2007.
LNCS, vol. 4524, pp. 43–57. Springer, Heidelberg (2007)

19. Ortiz, M., Calvanese, D., Eiter, T.: Data complexity of query answering in expres-
sive description logics via tableaux. J. Autom. Reasoning 41(1), 61–98 (2008)

20. Cheng, J.W., Ma, Z.M., Zhang, F., Wang, X.: Deciding query entailment
for fuzzy shin ontologies. Technical report, Northeastern University (2009),
ftp://202.118.18.134/

21. Stoilos, G., Straccia, U., Stamou, G.B., Pan, J.Z.: General concept inclusions in
fuzzy description logics. In: ECAI, pp. 457–461 (2006)

22. Baader, F., Nutt, W.: Basic description logics. In: Description Logic Handbook,
pp. 43–95 (2003)

23. Lukasiewicz, T., Straccia, U.: Top-k retrieval in description logic programs under
vagueness for the semantic web. In: Prade, H., Subrahmanian, V.S. (eds.) SUM
2007. LNCS (LNAI), vol. 4772, pp. 16–30. Springer, Heidelberg (2007)

24. Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in
relational data bases. In: STOC 1977: Proceedings of the ninth annual ACM sym-
posium on Theory of computing, pp. 77–90. ACM, New York (1977)

25. Li, Y., Xu, B., Lu, J., Kang, D.: Discrete tableau algorithms for shi. In: Description
Logics (2006)

26. Ortiz, M., Calvanese, D., Eiter, T.: Data complexity of answering unions of con-
junctive queries in shiq. In: Description Logics (2006)

27. Wang, H., Ma, Z.M.: A decidable fuzzy description logic f-alc(g). In: Bhowmick,
S.S., Küng, J., Wagner, R. (eds.) DEXA 2008. LNCS, vol. 5181, pp. 116–123.
Springer, Heidelberg (2008)

ftp://202.118.18.134/

	Deciding Query Entailment for Fuzzy \mathcal{SHIN} Ontologies
	Introduction
	Preliminaries
	Fuzzy Set and Fuzzy Logic
	Fuzzy \mathcal{SHIN}
	Fuzzy Conjunctive Queries
	Fuzzy Query Language

	Query Entailment Algorithm
	Completion Forests
	Models of a Completion Forest
	Checking Query Entailment within Completion Forest
	Complexity Analysis

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

