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Abstract. One major drawback with using Sakai–Kasahara based
identity-based secret keys is that it appears hard to distribute the trust
of the key generation centre. For other types of identity based key this
distribution can be done using non-interactive and simple techniques. In
this short note we explain how this can be done for Sakai–Kasahara style
keys using a simple application of a general technique from multi-party
computation. The self-checking property of the resulting private key we
show can be used to insulate the protocol from malicious adversaries for
many practical parameter sizes.

1 Introduction

Distributing the trust placed in trusted third parties is an important problem
in the real world, for example one can distribute the signing key for a certificate
authority. This is not only an important issue from the point of view of security,
but it also helps maintain resilience against network outages or to allow a form
of disaster planing. Many of the techniques in this area are based on the method
of threshold secret sharing introduced by Shamir in [20]. The techniques used
can be applied in many discrete logarithm based situations, and have even been
applied to the more complex area of RSA style signature generation [22]. In 1984,
Shamir [21] also invented a form of cryptography based on identities as opposed
to public keys. There is a similar need for the trusted centre to be distributed
in IBE schemes, just as the CA should be in certificate based systems.

Currently, there are three main types of identity based secret key in use, all of
which are based on pairings on elliptic curves, namely full-domain hash, commu-
tative blinding and exponent inversion. A classification which was first proposed
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in [9]. The first set of full-domain hash style keys, is typified by the systems
of Boneh–Franklin [8] and Sakai et al [17]. In this construction distribution of
the key generation centre is easily performed using many of the ideas which
have been used in the traditional discrete logarithm based public key setting.
The second set, denoted by the term commutative blinding, is typified by the
Boneh–Boyen encryption scheme [6] (BB-1). Here modifications can be applied
to the techniques applied in the full-domain hash case to obtain a distributed
key generation centre based on threshold cryptography [7].

The third type of keys are those introduced by Sakai and Kasahara in [18],
which are often referred to as those of exponent inversion type. These provide the
most efficient, in the random oracle model, ID-based encryption scheme known.
A basic ID-based scheme was using this concept was proved secure in [11], then
a more efficient and conceptually simpler hybrid ID-based encryption scheme
was presented in [12]. This key construction can also be used to construct iden-
tity based signatures and signcryption [2], and a related construction (also of
exponent inversion type) underlies the second Boneh–Boyen encryption scheme
(BB-2). Both the schemes in [2] and [12] are in the current IEEE 1363.3 draft.

The problem that this paper investigates is that the exponent inversion type
keys currently have no efficient distributed key generation solution. In this paper
we present a solution, which requires for each ID-based key a secure multi-party
computation to be performed amongst the servers. This is not ideal, for the
other types of ID-based keys one does not require a complex distributed key
extraction protocol in the distributed generation setting. However, the protocol
we require is very simple and requires only one execution of a distributed dis-
tributed multiplication protocol modulo q, where q is the size of the underlying
groups, followed by each server executing some simple local group computations.
We focus on the Sakai–Kasahara type keys, since these are the most relevant for
practice (due to the above mentioned standardisation effort), however we will
also note the changes which are needed for the BB-2 type keys as well.

The multi-party computation protocol we shall use is in the information the-
oretic model. The basic ideas in this setting can be traced back to the papers of
Ben-Or et al [4] and Chaum et al [10]. The protocol we shall use, using Shamir
secret sharing and the evaluation of what is in effect a trivial arithmetic circuit,
was presented in [16] and then extended to any linear secret sharing scheme
in [13]. The simple technique for deriving modular inverses in this setting, which
we use, was first introduced in [1]. The exact protocol details we propose to
use can be found explicitly described in the survey by Cramer et al [14]. We
present some experimental data on our protocol which makes use of the VIFF
system [24].

We end this introduction by pointing out that our protocol is neither deep, nor
very high-tech. It is simply applying a known technique from multi-party com-
putation to the problem situation, and then noticing that the resulting protocol
is not as inefficient as one usually obtains for multi-party computation protocols
for real world problems. What is surprising is that no-one has noticed this before
in the community looking at Sakai–Kasahara based pairing protocols.
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2 Notation and Problem Statement

Let G1, G2 and GT denote groups of large prime order q, which are equipped
with a bilinear pairing,

t̂ : G1 × G2 −→ GT .

We assume that G1 and G2 are generated by P1 and P2. We will write G1 and
G2 additively and GT multiplicatively.

We assume there is some global master secret x and we define master public
key for the scheme by R = [x]P1. The user secret key extraction algorithm for
Sakai–Kasahara keys is to represent an identity ID as an element in Fq and then
compute the public key QID and the private key SID via the equations

QID = R + [ID]P1,

SID =
[

1
x + ID

]
P2.

The problem with constructing keys as above is that there is a single point of
failure, in that the person who holds the master secret key x is able to compute
all secret keys. Hence, any compromise of the computer which holds x leads to
a break of the entire system. A standard solution to this problem is to share x
amongst a number of computers in such a way that no-one computer can recover
x, but that a coalition of the computers can still compute SID. It is how this
calculation is performed that we treat in this paper.

We first define explicitly the parameters of our problem. We let 1 < t ≤ m
denote integers; the value m denotes the number of computers which will share
the value of x, whilst t denotes the threshold value, i.e., the maximum number
of colluding parties the protocol can tolerate without compromising the privacy.
On the other hand t + 1 colluding computers will be able to recover the secret
x. We will develop a protocol, in the honest-but-curious case, that succeeds as
long as more than 2t computers are honest-but-curious. For the malicious case
we require that more than 3t parties take part in the computation. The number
of parties which take part in an interaction will be denoted by n, hence n ≤ m.

We need to define the following three algorithms, each of which take as input
the group descriptions (G1, G2, GT ).

Setup(): This is a distributed protocol which runs between the m servers and
results in each server obtaining a share xi of the master secret x. The public
output of this protocol is the value R = [x]P1. Note, that a coalition of upto t
entities should not be able to determine any information about x.

Extract(ID): This is a distributed protocol run between a set of n servers, where
t ≤ n ≤ m. It produces n outputs S

(i)
ID which are the shares of the secret value

SID. In the case of honest-but-curious parties we require that n > 2t, whilst in
the case of malicious parties we require that n > 3t.

Combine(S(1)
ID , . . . , S

(n)
ID ): This is algorithm is run by the user. It takes the shares

produced by the Extract(ID) protocol and produces the valid user secret key SID.
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We assume without loss of generality that the n servers returning a value of S
(i)
ID ,

are numbered 1 to n.

The goal in the case of honest-but-curious adversaries is that as long as the
number of colluding servers is less than or equal to t, then no information leaks
about the underlying master secret x due to any run of the protocol. In the
case of malicious adversaries we also wish to ensure that colluding malicious
adversaries, not only cannot learn any extra information, they should also not
be able to make the user accept an invalid secret key in the combine stage.

One should note that, unlike the Boneh-Franklin or Boneh-Boyen key situ-
ation, the Extract(ID) method for Sakai–Kasahara keys which we present is a
relatively complicated protocol and not a simple algorithm run independently
by each server. We leave it as an open problem to construct a more efficient
method to perform the distributed Extract(ID) method.

3 Basic Protocol

In this section we detail exactly how the three protocols above are executed
in the case of honest-but-curious adversaries. Our protocol makes use of the t-
out-of-n secret sharing scheme of Shamir [20], and the multi-party computation
protocol described in [13,14].

Setup(): Using the property that Shamir secret sharing is a PRSS (Pseudo-
Random Secret Sharing) scheme the m servers produce a t-out-of-m secret shar-
ing of a random number x modulo q. Underlying this sharing is a polynomial
Q(X) modulo q of degree t and each server i obtains the value xi = Q(i).
The servers compute the value Ri = [xi]P1, and then the master public key is
computed by

R =
m∑

i=1

[ci]Ri

where

ci =
m∏

j=1,j �=i

−j

i − j
.

Extract(ID): Assume n > 2t servers are active, they execute the following proto-
col which applies a technique of [1] to our problem.

– Locally the servers compute a sharing (zi) of the value of z = x + ID. This
can be computed by simply adding the shares (xi) of x with the public
constant ID.

– Again using the PRSS the servers obtain a sharing (ri) of a random integer r.
– Using a single invocation of the honest-but-curious multiplication protocol

from [13,14] the servers compute a sharing (si) of s = z · r (mod q).
– The servers recover s by revealing their shares si.
– Locally the servers then compute wi = ri/s (mod q).
– The servers locally compute S

(i)
ID = [wi]P2, and send this value securely to

the requesting user. The servers then terminate.
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Note that the values wi computed by the servers are a sharing of the w =
1/(x + ID) (mod q). Note, that we cannot reveal wi directly since that would
allow the parties to recover x, hence w is revealed indirectly via the values of
S

(i)
ID . This does not cause a problem due to our Combine method.

Combine(S(1)
ID , . . . , S

(n)
ID ): The user secret key is then recovered via

SID =
n∑

i=1

[c′i]S
(i)
ID

where

c′i =
n∏

j=1,j �=i

−j

i − j
.

The above protocol assumes, due to the multiplication protocol used in the
Extract(ID) stage, that 2t + 1 ≤ n. So for the minimal value of t = 1, we have
that n must be at least three. From general results on multi-party computation
such a bound is the best possible [4,10].

3.1 Security Analysis

We argue that the above protocol provides a secure distributed key generation
process in the presence of honest-but-curious adversaries. Firstly, note that the
distribution of keys (both master keys and user secret keys) is identical to the
situation where we have a single authority. Secondly, note that the underly-
ing multi-party computation protocol is information theoretically secure against
honest-but-curious adversaries (assuming at most t dishonest servers).

Each user in the combine stage obtains their secret key, yet the shares they
obtain of this key reveal no other information, due to the properties of the
underlying secret sharing scheme. To see this we note there is a trival reduction
from a the view of the user in the distributed key generation situation to one
in the non-distributed key generation situation: In the distributed game the
simulator simply extracts the private key SID from the non-distributed game,
and then generates at random a Shamir secret sharing (si) of zero. The random
shares in the distributed game are then given by

S
(i)
ID = [si]P2 + SID.

Note that the discrete logarithms of the S
(i)
ID form a random Shamir secret sharing

of the discrete logarithm of SID, thus the simulation is perfect.

4 Security against Malicious Adversaries

In moving to the case of malicious adversaries one needs to deal with two issues.
Firstly the servers could behave maliciously in the multiplication protocol step.
Secondly, they may carry out this step correctly, yet attempt to subvert the key
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generation protocol by passing an incorrect share back to the user. We deal with
these two issues in two distinct ways.

The first issue simply requires that we replace the honest-but-curious multi-
plication protocol with one which is secure against malicious adversaries. This
requires that we must have n > 3t, and the number of honest participants is
equal to at most n− t, (since t + 1 dishonest participants can trivially break the
protocol). This ensures that at least n− t parties at the end of the protocol run
obtain a valid sharing of the w. All parties then produce S

(i)
ID = [wi]P2 as before.

Except, we are only guaranteed that n− t of these values are correct, since up to
only at least n − t parties are honest and hence will validly follow the protocol,
this is the our second issue.

Solving this seems to pose a major stumbling block, however, we side-step
this issue by using the fact that Sakai–Kasahara keys are self checking. Namely,
for a valid pair of public/private keys (QID, SID) we have that

t̂(QID, SID) = t̂(P1, P2).

We also use that fact that in practice the values of t and n will not be that
large, typical examples could indeed be t = 1 and n = 4. We thus present a
different Combine algorithm for our protocol which runs in time O(nCn−t). This
is clearly inefficient for large values of n, yet for the values one could consider in
a practical application it is very manageable.

Hence, we can execute the following version of the Combine algorithm. The
combiner goes through each of the nCn−t subsets of {S(1)

ID , . . . , S
(l)
ID} of size n− t,

and performs the recombination step with this subset only. The recombined key
is then verified to be correct. If it is correct then we terminate, otherwise the
next subset of size n − t is taken. As long as at least n − t of the servers are
honest the above protocol will output the correct secret key.

If we examine the situation where we keep n to be as small as possible, i.e.
n = 3t + 1, then the workload of this step is equal to

Wt =
(3t + 1)!

(2t + 1)! · t!
applications of the combining algorithm. For small values of t we find that this
work-effort is given by the values in the following table.

t 1 2 3 4 5
Wt 4 21 120 715 4368

We note that this operation is not performed by the servers, but is performed by
the client on receipt of the shares from the servers. Hence, the increased time may
not be considered too much of a burden as it is only performed once per secret
key request, and is performed by the requestor. Additionally, the requestor can
trade space for time when recombining different S

(i)
ID subsets. Firstly, the [c′i]S

(i)
ID

values can computed only once and reused, and secondly, having computed SID

from the subset {S(1)
ID , . . . , S

(l)
ID} it is easy to compute SID from {S(2)

ID , . . . , S
(l+1)
ID }
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by subtracting [c′1]S
(1)
ID and adding [c′l+1]S

(l+1)
ID . All subsets can be computed in

this fashion using only a field subtraction and addition for each subset.
We note that whilst this might not be a polynomial time solution, it is very

efficient for the type of values which would be used in practice. Also it is pro-
tecting against a denial-of-service attack by the malicious servers against the
clients, as opposed to the malicious servers trying to recover the underlying
master secret key. We also note that most key centre distribution techniques for
certificate based schemes are only secure in the honest-but-curious model, since
key distribution is used more for resilience and the servers are themselves heavily
protected.

5 Implementation Results

The question arises as to whether the above protocol will be suitable in a practi-
cal situation. A key generation centre for an identity based cryptographic system
will need to produce a large number of keys for distinct identities ID. Hence,
if the protocol is too slow then the protocol will not be suitable in real life
situation.

Recently a number of practical systems for performing secure multi-party
computation have been developed. Of specific interest in our situation if the
VIFF (Virtual Ideal Functionality Framework) system [24,15], which itself grew
out of the SIMAP [23] and SCET [19] systems. The SIMAP system has been used
very successfully in practice, most notably for the Danish sugar beat auction [5].

VIFF is a fully asynchronous framework for specifying secure multi-party com-
putations. It is implemented as a Python library. Each player executes a Python
program, and the programs communicate using standard SSL connections. VIFF
provides the communication infrastructure and computations primitives.

The implementation of the basic protocol from Section 3 is shown below as a
function called extract. The function references a global variable runtime, which
is an instance of the central Runtime class provided by VIFF. Among other
things, this class provides methods for generating Shamir shares using PRSS
(prss share random) and for reconstructing such shares (open). Due to exten-
sive use of operator overloading, the addition (x i + ID) and the multiplication
(z i ∗ r i) are in fact done on secret shared values, the latter invoking a secure
multiplication protocol.

def extract(ID, x i):
z i = x i + ID
r i = runtime.prss share random(Zq)
s i = z i ∗ r i
s = runtime.open(s i)
w i = gather shares([r i, s])
w i.addCallback(lambda (r i, s): r i / s)
return w i
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After opening s i the players wait until until r i and s are ready. The result w i is
prepared and an anonymous function is added to a list of callbacks; this function
is executed to make the local division.

The Zq variable represents a finite field with a 256 bit prime modulus. The
modulus used is

q = 0x80AE401A5230143EFC6ADD72979CAEADB078F3F2EFD3EE07C901B94BC45C61F5.

This is the group order of a Barreto-Naehrig curve [3], and is typical of a group
order which would be used in practice.

Using a value of t = 1, the minimum value of n for the honest-but-curious
case is n = 3, whilst the minimum value of n for the malicious case is n = 4.
We found the following run-times for the above protocol. We ignore the time
for the point multiplication step of the protocol as this is done outside the
VIFF system and is essentially the cost of a non-distributed key generation
centre. Hence, the following times denote the extra cost required for performing
distributed key generation as opposed to centralised generation. All times are
given in milli-seconds and count wall-time, hence it includes the time needed for
data transmission etc.

Semi-Honest Semi-Honest Malicious
n = 3 n = 4 n = 4
3 ms 4 ms 6 ms

The machines used in the benchmarks were equipped with hyper-threaded Intel
Xeon CPUs (3.06 GHz clock speed) and 1 GiB of RAM. They were connected
with a fast LAN, which is not typical of a real world installation but does give a
lower bound on the resources required. Our computation time does not include
the final local elliptic curve point multiplication. Hence the times represent the
minimum extra time per key generation that are required by the servers to deal
with a key generation request, compared with the case where a single centralised
server is used.

All results are the average time for one inversion when executing a bulk com-
putation with 100 inversions in parallel. Doing many operations in parallel is
important in order to minimise the impact of network latencies, otherwise the
latency will dominate the time. If only a single inversion is done, the time per
inversion roughly doubles.

As can be seen from our timings the overall extra time needed to compute each
identity based secret key is relatively small and would be easily accommodated in
a deployed system, for example one could easily accommodate upto one million
key extraction requests per day. We conclude that distributed key generation for
Sakai–Kasahara style keys requires a relatively straight forward application of
standard techniques from multi-party computation.

6 Extensions

We end the paper by outlining two extensions to the methods introduced in this
paper.
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6.1 Interactive Threshold Signature Scheme

We note that our techniques allow one to distribute the signing phase of the
Zhang et al. signature scheme [25]. The public key of this scheme is R = xP2,
and to sign a message one computes

S =
[

1
x + H(m)

]
P1

for some hash function H : {0, 1}∗ → Fq. Verification is performed by checking
whether

t̂(S, R + [H(m)]P2) = t̂(P1, P2).

Note, that we have reversed the groups in this scheme compared to the Sakai–
Kasahara scheme so as to obtain shorter signatures. Each signature is thus given
by an element of G1, and verification requires only one pairing computation. It is
clear that our techniques for distributed key generation of Sakai–Kasahara keys
also apply to distributing the signing operation for this signature scheme.

6.2 Distributed BB-2 Key Generation

Our techniques apply to many exponent-inversion key generation procedures, the
most notable other system in this family is the BB-2 scheme from [6]. The BB-2
key generation procedure is as follows: For a master public key of (P1, Rx, Ry) =
(P1, xP1, yP1), with master secret key (x, y) ∈ Fq ×Fq, the key extraction phase
is given by SID = (r, KID), where r ∈ Fq is chosen at random and

KID =
[

1
ID + x + r · y

]
P2.

We note that our techniques easily extend to this situation by the following
distributed extraction algorithm:

– Using the PRSS property the servers obtain a sharing (ri) of a random
integer r.

– The servers compute a sharing (si) of s = r · y using the distributed multi-
plication protocol.

– The servers locally compute a sharing (zi) of z = ID + x + s.
– The servers then invert z using the inversion method of [1], to obtain a

sharing (wi).
– The servers then output (ri) and [wi]P2.

This clearly requires two multiplication protocols, as opposed to one for the
Sakai–Kasahara keys. The requesting user can recover r from (ri) using the
standard recovery method for Shamir secret sharing, and the value of KID from
[wi]P2 via the method described previously. Note, that BB-2 keys are also self-
checking since we must have

t̂([ID]P1 + Rx + [r]Ry , KID) = t̂(P1, P2).

Hence, our self-checking procedure for preventing malicious servers responding
with invalid keys will still apply.
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