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Preface

The 12th in the series of IMA Conferences on Cryptography and Coding was held
at the Royal Agricultural College, Cirencester, December 15–17, 2009. The pro-
gram comprised 3 invited talks and 26 contributed talks. The contributed talks
were chosen by a thorough reviewing process from 53 submissions. Of the invited
and contributed talks, 28 are represented as papers in this volume. These papers
are grouped loosely under the headings: Coding Theory, Symmetric Cryptog-
raphy, Security Protocols, Asymmetric Cryptography, Boolean Functions, and
Side Channels and Implementations.

Numerous people helped to make this conference a success. To begin with
I would like to thank all members of the Technical Program Committee who
put a great deal of effort into the reviewing process so as to ensure a high-
quality program. Moreover, I wish to thank a number of people, external to the
committee, who also contributed reviews on the submitted papers. Thanks, of
course, must also go to all authors who submitted papers to the conference, both
those rejected and accepted. The review process was also greatly facilitated by
the use of the Web-submission-and-review software, written by Shai Halevi of
IBM Research, and I would like to thank him for making this package available
to the community.

The invited talks were given by Frank Kschischang, Ronald Cramer, and
Alexander Pott, and two of these invited talks appear as papers in this volume.
A particular thanks goes to these invited speakers, each of whom is well-known,
not only for being a world-leader in their field, but also for their particular ability
to communicate their expertise in an enjoyable and stimulating manner.

I would like to thank Amy Marsh and all those at the IMA. In particular
I would like to thank Amy for her cheerful efficiency in dealing with the many
administrative aspects of the conference and gently reminding me of things that
needed to be done. It was a pleasure to work with her. We are grateful for the
sponsorship provided by Vodafone for the conference, and I would also like to
thank all at Springer for their hard work in publishing these proceedings.

December 2009 Matthew G. Parker
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Subspace Codes

Azadeh Khaleghi, Danilo Silva, and Frank R. Kschischang

Department of Electrical and Computer Engineering
University of Toronto

Toronto, Ontario M5S 3G4, Canada
{azalea,danilo,frank}@comm.utoronto.ca

Abstract. This paper is a survey of bounds and constructions for sub-
space codes designed for the injection metric, a distance measure that
arises in the context of correcting adversarial packet insertions in lin-
ear network coding. The construction of lifted rank-metric codes is re-
viewed, along with improved constructions leading to codes with strictly
more codewords. Algorithms for encoding and decoding are also briefly
described.

1 Introduction

Let Fq be the finite field of size q, and let Fnq denote the vector space of n-
tuples over Fq. The set of all subspaces of Fnq , called the projective space of
order n over Fq, is denoted Pq(n). The set of all k-dimensional subspaces of
Fnq , called a Grassmannian, is denoted Gq(n, k), where 0 ≤ k ≤ n. Obviously
Pq(n) =

⋃n
k=0 Gq(n, k).

A (subspace) code C is a nonempty collection of subspaces of Fnq , i.e., a non-
empty subset of Pq(n). Unlike classical coding theory, where each codeword is
a vector, here each codeword of C is itself an entire space of vectors. A code in
which each codeword has the same dimension, i.e., a code contained within a
single Grassmannian, is called a constant-dimension code.

As in classical coding theory, it is important to define a distance measure
between codewords. One possible distance measure between two spaces U and
V in Pq(n)—though not the metric of main interest in this paper—is the so-
called subspace metric

dS(U, V ) � dim(U) + dim(V ) − 2 dim(U ∩ V ),

introduced in the context of error- and erasure-correction in linear network cod-
ing [1]. The measure that will be of main interest here, however, is the injection
distance d(U, V ), introduced in the later paper [2], and given by

d(U, V ) � max{dim(U), dim(V )} − dim(U ∩ V ).

This function is indeed a metric on Pq(n) [2]. The injection distance and the
subspace distance are closely related, as

d(U, V ) =
1
2
dS(U, V ) +

1
2

| dim(V ) − dim(U)|, ∀U, V ∈ Pq(n). (1)

M.G. Parker (Ed.): Cryptography and Coding 2009, LNCS 5921, pp. 1–21, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



2 A. Khaleghi, D. Silva, and F.R. Kschischang

In fact, the two metrics are equivalent when U and V have the same dimension,
i.e., if dim(U) = dim(V ) then dS(U, V ) = 2 d(U, V ). Denote by U + V the sum
of U and V , i.e., let U +V = {u+ v : u ∈ U, v ∈ V }. The relation dim(U +V ) =
dim(U) + dim(V ) − dim(U ∩ V ) gives the alternative expressions

d(U, V ) = dim(U + V ) − min{dim(U), dim(V )} and
dS(U, V ) = 2 dim(U + V ) − dim(U) − dim(V )

= dim(U + V ) − dim(U ∩ V )

for two metrics.
The minimum distance between distinct codewords in a code C is denoted as

d(C) if the injection metric is used and as dS(C) if the subspace metric is used,
i.e.,

d(C) � minU,V ∈C : U �=V d(U, V ) and dS(C) � minU,V ∈C : U �=V dS(U, V ).

It follows from (1) that

d(C) ≥ 1
2
dS(C), (2)

with equality if (but not only if) C is a constant dimension code.
A code C ⊆ Pq(n) is called an (n, d)q code if d(C) = d, and is called an

(n, d, k)q code if, additionally, C ⊆ Gq(n, k). Similarly, C is called an (n, d)Sq code
if dS(C) = d. The latter notation follows the convention, used throughout this
paper, that if a concept is defined for the injection metric, then the analogous
concept for the subspace metric is denoted by a superscript S. We will, however,
have no occasion to refer to an (n, d, k)Sq code, since such a code is an (n, d/2, k)q
code. We denote by Aq(n, d) and Aq(n, d, k) the sizes of a largest (n, d)q code
and a largest (n, d, k)q code, respectively.

Subspace codes turn out to be the natural objects in several applications, such
as noncoherent linear network coding [1, 2, 3, 4, 5] and linear authentication
[6, 7]. For linear authentication, it is shown in [6, Theorem 4.1] that every
(n, d, k)q code C is an [n, |C|, n − k, d] linear authentication code over Fq, and
vice-versa. For network coding, it is shown in [2, Theorem 20] that an (n, d)q
code can correct any t corrupt packets injected in a noncoherent linear network
coding system with rank deficiency ρ if and only if d > 2t+ ρ. Thus, the packet-
error correction capability of a subspace code for network coding is completely
characterized in terms of the injection distance. Historically, the subspace dis-
tance appeared earlier in this context [1], but it can only provide a correction
guarantee (not the converse), which can be seen from (2).

This paper surveys the existing literature on constructions of (n, d)q and
(n, d, k)q codes, as well as upper and lower bounds on Aq(n, d) and Aq(n, d, k).
Usually, results for general subspace codes are based on previous results for
constant-dimension codes. In view of (2), results for the subspace metric may
also be useful and are reviewed as well.

The remainder of the paper is organized as follows. Section 2 establishes some
useful notation and reviews properties of rank metric codes. Section 3 discusses
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bounds on Aq(n, d), Aq(n, d, k) and AS
q (n, d). Section 4 reviews existing con-

structions of general and constant-dimension subspace codes. Section 5 briefly
describes encoding and decoding methods for subspace codes. The paper ends
in Section 6 with some concluding remarks and a list of open problems.

2 Preliminaries

2.1 Notation and Basic Facts

Let N = {0, 1, 2, . . .}. If A is a finite set, let |A| denote its cardinality.
We will often need to refer to vectors and matrices with components from Fq.

If v = (v1, . . . , vn) is a vector Fnq , let supp(v) = {i ∈ {1, . . . , n} : vi �= 0} denote
its support and let wt(v) = | supp(v)| denote its Hamming weight.

Let Fm×n
q denote the set of all m × n matrices over Fq. For concreteness, a

vector in Fnq will be considered as an element of F1×n
q , i.e., as a row vector. The

m × n all-zero matrix and the n × n identity matrix are denoted by 0m×n and
In×n, respectively, where the subscripts may be omitted when there is no risk
of confusion.

Let X ∈ Fm×n
q be an m× n matrix. If S is a nonempty subset of {1, . . . ,m},

then XS is the submatrix of X consisting of the rows indexed by S (in increasing
order). If X is nonzero, then its reduced row echelon form (RREF) is denoted as
rref(X). Associated with a nonzero X is a vector prof(X) ∈ {0, 1}n, called the
profile vector of X , in which supp(prof(X)) is the set of column positions of the
leading ones in the rows of rref(X). If X = 0, then we set prof(X) to the zero
vector.

The row space of a matrix X is denoted as 〈X〉. If X ∈ Fm×n
q then 〈X〉 ∈

Pq(n). The rank of X is denoted as rank(X) and, of course, rank(X) = dim (〈X〉).
More generally, if X ∈ Fn×mq and Y ∈ FN×m

q , then〈[
X
Y

]〉
= 〈X〉 + 〈Y 〉 ;

therefore,

rank

[
X
Y

]
= dim(〈X〉 + 〈Y 〉).

Note that wt(prof(X)) = rank(X).
Associated with a vector space U ∈ Gq(n, k), k > 0, is a unique k × n matrix

XU in RREF (i.e., with XU = rref(XU )) having the property that 〈XU 〉 = U .
With a slight abuse of notation we extend the prof function to vector spaces by
defining

prof(U) � prof(XU ),

where prof(U) is the zero vector if dim(U) = 0. Given any binary profile vector
b ∈ {0, 1}n, the so-called Schubert cell [8] in Pq(n) corresponding to b is the set

Sq(b) = prof−1(b) = {U ∈ Pq(n) : prof(U) = b}.
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If wt(b) = k, then Sq(b) ⊆ Gq(n, k). Thus binary profile vectors (in general)
induce a partition of Pq(n) into 2n distinct Schubert cells, while binary profile
vectors of weight k (in particular) induce a partition of Gq(n, k) into

(
n
k

)
Schubert

cells. These partitions will become useful in Section 4.
Associated with Gq(n, k) is a distance-regular graph (called a Grassmann

graph) whose vertices correspond to the elements of Gq(n, k) and where two
vertices are adjacent if the corresponding subspaces intersect in a space of di-
mension k− 1 [9]. The Grassmannian Gq(n, k) also forms an association scheme,
the so-called q-Johnson scheme [10, Ch. 30], in which two spaces are ith asso-
ciates if they intersect in a space of dimension k − i, or, equivalently, if they
are separated by graph distance i in the Grassmann graph. When restricted to
Gq(n, k), the injection distance d(·, ·) corresponds to the graph distance in the
corresponding Grassmann graph.

It is well known that the cardinality of the Grassmannian Gq(n, k) is given by
the Gaussian coefficient [

n

k

]
q

=
k−1∏
i=0

(qn − qi)
(qk − qi)

.

The subscript q will be omitted when there is no possibility of confusion. Note
that

[
n
k

]
=
[
n

n−k
]

and
[
n
0

]
=
[
n
n

]
= 1.

Let V ∈ Gq(n, k) be a fixed vector space of dimension k, and let Nq(n, k, j, �)
denote the number of elements W ∈ Gq(n, j) with the property that V ∩ W ∈
Gq(n, �). We have

Nq(n, k, j, �) = q(k−�)(j−�)
[
k

�

][
n − k

j − �

]
. (3)

To see this, observe that the space U of intersection can be chosen in
[
k
�

]
ways.

This subspace can be extended to a j-dimensional subspace in

(qn − qk)(qn − qk+1)(qn − qk+2) · · · (qn − qk+j−�−1)
(qj − q�)(qj − q�+1)(qj − q�+2) · · · (qj − qj−1)

= q(j−�)(k−�)
[
n − k

j − l

]
ways, since we can extend U by adjoining any of the qn − qk vectors not in V ,
then adjoining any of the qn−qk+1 vectors not in the resulting (k+1)-space, etc.,
but any specific choice is in an equivalent class of size (qj−q�)(qj−q�+1) · · · (qj−
qj−1).

The quantityNq(n, k, j, �) is very useful. For example,Nq(n, n, k, k) =
[
n
k

]
(the

number of k-subspaces of an n-space, i.e., |Gq(n, k)|), Nq(n, k, j, k) =
[
n−k
j−k

]
(the

number of j-dimensional spaces containing the k-space V ), Nq(n, k, k, k − i) =
qi

2[k
i

][
n−k
i

]
(the number of k-spaces at injection distance i from the k-space V ),

etc.
Let us also mention here two additional properties of the Gaussian

coefficient [11] [
m

n

][
n

t

]
=
[
m

t

][
m − t

n − t

]
, t ≤ n ≤ m, (4)
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and [1, Lemma 5]

qi(n−i) ≤
[
n

i

]
≤ h(q)qi(n−i), (5)

where h(q) =
∞∏
j=0

1
1 − q−j

. It is shown in [1] that h(q) decreases monotonically

with q, approaching q/(q − 1) for large q. The series for h(q) converges rapidly;
the following table lists h(q) for various values of q.

q 2 3 4 5 7 8 9 11 16 32 64 128 256
h(q) 3.46 1.79 1.45 1.32 1.20 1.16 1.14 1.11 1.07 1.03 1.02 1.01 1.004

2.2 Rank-Metric Codes

For matrices X,Y ∈ Fn×mq , the rank distance is defined as

dR(X,Y ) � rank(Y − X).

As observed in [11], the rank distance is indeed a metric. A rank-metric code
C ⊆ Fn×mq is a matrix code (i.e., a nonempty set of matrices) used in the context
of the rank metric. We use dR(C) to denote the minimum rank distance of C.
The Singleton bound for the rank metric [11, 12] (see also [3, 13, 14]) states that

|C| ≤ qmax{n,m}(min{n,m}−d+1)

for every code C ⊆ Fn×mq with dR(C) = d. Codes that achieve this bound are
called maximum-rank-distance (MRD) codes and linear MRD codes are known
to exist for all choices of parameters q, n, m and d ≤ min{n,m} [11].

Gabidulin codes [11] are an important class of MRD codes, described as fol-
lows. Without loss of generality, assume n ≤ m (otherwise consider the trans-
posed version of the following argument). Let Fqm be an extension field of Fq,
and let θ : Fqm → Fmq be a vector space isomorphism, where the elements in Fmq
are regarded as row vectors. Let Fnq,m[x] denote the set of linearized polynomi-
als, i.e., all polynomials of the form f(x) =

∑n−1
i=0 fix

qi

, where fi ∈ Fqm . Let
α1, . . . , αn ∈ Fqm be elements that are linearly independent when regarded as
vectors in Fmq , and let 0 ≤ d ≤ n.

A Gabidulin code C ⊆ Fn×mq is defined as

C =
{
c ∈ Fn×mq : c = [θ(f(α1)), . . . , θ(f(αn))]T , f(x) ∈ F(n−d+1)

q,m [x]
}

.

It is shown in [11] that such a code has dR(C) = d, so it is indeed an MRD code.
Given a rank-metric code C ⊆ Fn×mq , a minimum-rank-distance decoder for C

takes a matrix r ∈ Fn×mq and returns a codeword c ∈ C that minimizes the rank
distance dR(c, r). It is easy to see that, if dR(c, r) < dR(C)/2 for some c ∈ C, then
c is the unique solution to the above problem. A bounded-distance decoder for C
returns c ∈ C if dR(c, r) < dR(C)/2, or declares a failure if no such codeword can
be found. For Gabidulin codes, very efficient bounded-distance decoders exist;
see, e.g., [3, 11].
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3 Bounds

In this section, we consider bounds on Aq(n, d, k), Aq(n, d), and AS
q (n, d). Since

Aq(n, d, k) = Aq(n, d, n − k), (6)

when dealing with Aq(n, d, k), we may safely assume k ≤ n/2.

3.1 Upper Bounds on Aq(n, d, k)

Sphere-Packing Bound: The simplest upper bound that can be obtained for
Aq(n, d, k) is the sphere-packing bound, which follows from the fact that the
Grassmann graph corresponding to Gq(n, k) is distance-regular. First, we need
the concept of a sphere in Gq(n, k).

For V ∈ Gq(n, k), let BV (t, k) � {U ∈ Gq(n, k) : d(V, U) ≤ t} be the set of all
subspaces of dimension k at injection distance at most t from V , a set that we
regard as a sphere in Gq(n, k) of radius t with center V . For any V ∈ Gq(n, k),
the size of BV (t, k) is [1]

|BV (t, k)| =
t∑
i=0

qi
2
[
k

i

][
n − k

i

]
, (7)

which follows easily from (3). Note that the size of a sphere in Gq(n, k) is inde-
pendent of its center. For convenience, define B(t, k) � |BV (t, k)|.

The following sphere-packing bound for Aq(n, d, k) is given in [1].

Theorem 1 (Sphere-packing bound)

Aq(n, d, k) ≤
[
n
k

]
B(�(d − 1)/2�, k) .

Singleton Bound. In [1] a puncturing operation in Gq(n, k) is defined that
reduces by one the dimension of the ambient space and the dimension of each
subspace in Gq(n, k). According to this puncturing operation, a punctured code
obtained by puncturing an (n, d, k)q code is itself an (n − 1, d′, k − 1)q code,
where d′ ≥ d − 1. If an (n, d, k)q code is punctured d − 1 times repeatedly, an
(n−d+1, d′′, k−d+1)q code (with d′′ ≥ 1) is obtained, which may have size no
greater than |Gq(n− d+ 1, k− d+ 1)|. Thus the following Singleton-type bound
is established [1].

Theorem 2 (Singleton bound)

Aq(n, d, k) ≤ |Gq(n − d+ 1, k − d+ 1)| =
[
n − d+ 1
k − d+ 1

]
=
[
n − d+ 1
n − k

]
.

We note that from (5) it follows that

Aq(n, d, k) ≤ h(q)q(n−k)(k−d+1). (8)

It is observed in [1] that this bound is always stronger than the sphere-packing
bound of Theorem 1 for nontrivial codes.
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Anticode Bound. Since Gq(n, k) is an association scheme, the anticode bound
of Delsarte [15] can be applied. Let C be an (n, d, k)q code. Then Delsarte’s
bound implies that

|C| ≤ |Gq(n, k)|
|A| ,

where A ⊆ Gq(n, k) is any set with maximum distance d−1 (called an anticode).
Note that, for all U, V ∈ Gq(n, k), d(U, V ) ≤ d− 1 if and only if dim(U ∩V ) ≥

k− d+ 1. Thus, we can take A as a set in which any two elements intersect in a
space of dimension at least k−d+1. From the results of Frankl and Wilson [16],
it follows that, for k ≤ n/2, the maximum value of |A| is equal to

[
n−k+d−1

d−1

]
.

Hence, we have the following bound.

Theorem 3 (Anticode bound)

Aq(n, d, k) ≤
[
n
k

][
n−k+d−1

d−1

] =

[
n

k−d+1

][
k

k−d+1

] .
The equality in this theorem follows by observing from (4) that

[
n
k

][
k

k−d+1

]
=[

n
k−d+1

][
n−k+d−1

d−1

]
. Applying (5) yields (8).

It is easy to observe that Delsarte’s bound also implies the sphere-packing
bound as a special case, since a sphere BV (�(d − 1)/2�, k) is (by the triangle
inequality) an anticode of maximum distance d− 1. However, a sphere is not an
optimal anticode in Gq(n, k), and therefore the bound of Theorem 3 is always
tighter for nontrivial codes.

The bound in Theorem 3 was first obtained by Wang, Xing and Safavi-Naini in
[6] using a different argument. The proof that Theorem 3 follows from Delsarte’s
bound is due to Etzion and Vardy [17].

As observed in [7], the anticode bound is always stronger than the Singleton
bound for non-trivial codes in Gq(n, k).

Johnson-Type Bounds. Associated with an (n, d, k)q code C is a binary con-
stant weight code of length qn−1, weight qk−1, and minimum Hamming distance
2qk(1 − q−d), having |C| codewords. This binary code has codewords that form
the rows of the |C| × (qn − 1) incidence matrix between codewords of C and the
nonzero vectors of Fnq . The classical Johnson bound on binary constant weight
codes (e.g., see [18]) immediately implies the following bound on Aq(n, d, k).

Theorem 4 ([7])

Aq(n, d, k) ≤ qk(1 − q−d)(qn − 1)
(qk − 1)2 − (qn − 1)(qk − 1) + qk(1 − q−d)(qn − 1)

.

Now let C be an (n, d, k)q code with Aq(n, d, k) codewords. For any subspace
U ∈ Gq(n, n−1) of dimension n−1, let CU be the set of codewords of C contained
entirely in U . Clearly CU is an (n−1, d, k)q code, and so cannot have cardinality
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greater than Aq(n−1, d, k). If we now form the summation of such cardinalities,
ranging over all possible U , we obtain∑

U∈Gq(n,n−1)

|CU | =
(
qn−k − 1
q − 1

)
Aq(n, d, k) ≤

(
qn−1 − 1
q − 1

)
Aq(n − 1, d, k),

where the first equality follows from the fact that each codeword of C will appear
as a codeword in exactly (qn−k − 1)/(q − 1) of the CU ’s. This argument yields
the following theorem [17].

Theorem 5 ([17])

Aq(n, d, k) ≤ qn − 1
qn−k − 1

Aq(n − 1, d, k)

Applying (6) results in the following.

Theorem 6 ([7, 17])

Aq(n, d, k) ≤ qn − 1
qk − 1

Aq(n − 1, d, k − 1)

Theorems 5 and 6 may be iterated to give an upper bound for Aq(n, d, k). How-
ever, as in the classical case of the Johnson space, the order in which the two
bounds should be iterated in order to get the tightest bound is unclear. By
iterating Theorem 6 with itself, the following bound is established in [7, 17].

Theorem 7 ([7, 17])

Aq(n, d, k) ≤
⌊
qn − 1
qk − 1

⌊
qn−1 − 1
qk−1 − 1

· · ·
⌊
qn−k+d − 1
qd − 1

⌋
· · ·
⌋⌋

.

It is shown in [7] that Theorem 5 improves on the anticode bound.

Ahlswede and Aydinian Bound. Let D be a nonempty subset of {1, . . . , n}
and let C ⊆ Gq(n, k) be a code. If, for all U, V ∈ C, with U �= V , we have
d(U, V ) ∈ D, then we say that C is a code with distances in D. The following
Lemma is given in [19].

Lemma 1 ([19]). Let CD ⊆ Gq(n, k) be a code with distances from a set D.
Then, for a nonempty subset B ⊆ Gq(n, k) there exists a code C∗

D(B) ⊆ B with
distances from D such that

|C∗
D(B)|
|B| ≥ |CD|[

n
k

] ,
where, if |C∗

D| = 1, then C∗
D is a code with distances from D by convention.

In particular when CD is an (n, d, k)q code and B is an anticode of maximum
distance d − 1, then |C∗

D(B)| = 1 and Delsarte’s anticode bound on Gq(n, k) is
obtained.
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Using Lemma 1 Ahlswede and Aydinian obtain the following bound:

Theorem 8 ([19]). For integers 0 ≤ t ≤ d ≤ k, k − t ≤ m ≤ n,

Aq(n, d, k) ≤
[
n
k

]
Aq(m, d − t, k − t)

t∑
i=0

qi(m−i)
[
m

k − i

][
n − m

i

]
It is shown in [19] that for t = 0 and m = n − 1, Theorem 8 gives Theorem 5.

3.2 Upper Bounds on Aq(n, d) and AS
q(n, d)

A Simple Bound. The simplest upper bound in Aq(n, d) follows immediately
from the observation that every subspace code is a union of constant-dimension
codes, and hence

Aq(n, d) ≤
n∑
k=0

Aq(n, d, k)

Etzion-Vardy LP Bound. Etzion and Vardy derive in [17] the following linear
programming bound for AS

q (n, 3).

Theorem 9 ([17]). Let f∗ = max(
n∑
i=0

Di) subject to the following linear

constraints:
qn−i+1 − 1

q − 1
Di−1 +Di +

qi+1 − 1
q − 1

Di+1 ≤
[
n

i

]
(9)

and Di ≤ Aq(n, 2, i), for all i = 0, 1, · · · , n, where D−1 = Dn+1 = 0 by conven-
tion. Then

AS
q (n, 3) ≤ f∗.

Ahlswede-Aydinian LP Bound. Ahlswede and Aydinian establish the fol-
lowing linear programming bound for Aq(n, d) in [19].

Theorem 10 ([19]). For integers 1 ≤ d ≤ n
2 , let

f(n, d, q) = max(
n∑
i=0

fi)

subject to the following linear constraints:

fi ∈ N for i = 0, 1, . . . , n.

f0 = fn = 1, fk = fn−k = 0 for k = 1, . . . , d
f−j = fn+j = 0 for j = 1, . . . , d (by convention)

fk +
1

d+ 1

d∑
i=1

(d+ 1 − i)
(
fk−i

[
n − k + i

n − k

]
+ fk+i

[
k + i

k

])
≤
[
n

k

]
and,

fk ≤ Aq(n, d+ 1, k) for k = 0, . . . , n.
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Then,
Aq(n, d) ≤ f(n, d, q).

3.3 Lower Bounds

In this section, we give the counterparts of the Gilbert-Varshamov lower bound
for Aq(n, d, k), Aq(n, d) and AS

q (n, d). We start with the sizes of spheres in Pq(n).
Recall that the size of a sphere in Gq(n, k) was given in (7).

For V ∈ Pq(n), let BV (t) � {U ∈ Pq(n) : d(V, U) ≤ t} be the sphere of radius
t centered at V in Pq(n). For any V ∈ Pq(n), the size of BV (t) can be computed
using (3) as [20]

|BV (t)| =
t∑

r=0

qr
2
[
k

r

][
n − k

r

]
+

r∑
j=1

qr(r−j)
([

k

r

][
n − k

r − j

]
+
[
n − k

r

][
k

r − j

])
(10)

where k = dim(V ). Note that the size of a sphere in Pq(n) does not depend
on the specific subspace at its center, but does depend on its dimension. For
convenience, we use the notation Bk(t) � |BV (t)|, where k = dim(V ).

We can also define the analogous concept of a sphere under the subspace
distance, which is denoted as BS

V (t) for V ∈ Pq(n). It is shown in [17] that

|BS
V (t)| =

t∑
r=0

r∑
j=0

qj(r−j)
[
n − k

r − j

][
k

j

][
n

k

]
(11)

where k = dim(V ). Similarly as above, we use the notation BS
k (t) � |BS

V (t)|.
Let Ω be a general metric space with distance metric denoted by δ. Let

Bα(t) � {β ∈ Ω : δ(α, β) ≤ t} be a sphere of radius t centered at α in Ω.
Every maximal code C of minimum distance d must satisfy∑

c∈C
|Bc(d − 1)| ≥ |Ω|. (12)

Since the size B(t, k) of a sphere BV (t, k) in Gq(n, k) is independent of V , when
Ω is replaced with Gq(n, k) and δ(·, ·) with the injection metric, (12) results in
the following Gilbert-Varshamov bound on Aq(n, d, k).

Theorem 11 ([1])

Aq(n, d, k) ≥ |Gq(n, k)|
B(d − 1, k)

. (13)

Since by (11), the size of a sphere BV (t) in Pq(n) depends on dim(V ), the ap-
proach of Theorem 11 is not suitable for the derivation of a Gilbert-Varshamov
bound in Pq(n).

As pointed out in [17], the appropriate framework for a Gilbert-Varshamov
bound in spaces where the size of a sphere depends upon the location of its center
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is given by Tolhuizen [21]. Let B(t) � 1
|Ω|

∑
α∈Ω

|Bα(t)| denote the “average size”

of a sphere of radius t in Ω. Tolhuizen showed in [21] that the maximum size

of a code C ⊆ Ω of minimum distance d is at least
|Ω|

B(d − 1)
. Using this result

along with (10), Khaleghi and Kschischang [20] and independently Gadouleau
and Yan [14] obtain the following Gilbert-Varshamov bound for Aq(n, d):

Theorem 12 ([14, 20]). Aq(n, d) ≥ |Pq(n)|2
n∑
k=0

[
n

k

]
Bk(d − 1)

.

Earlier, Etzion and Vardy [17] had already established the following Gilbert-
Varshamov bound on AS

q (n, d):

Theorem 13 ([17]). AS
q (n, d) ≥ |Pq(n)|2

n∑
k=0

[
n

k

]
BS
k (d − 1)

where BS
k (d − 1) is given by (11).

Unlike the case of classical coding theory in the Hamming metric, the best
lower bounds on Aq(n, d) and Aq(n, k, k) result from code constructions, the
subject of the next section.

4 Constructions

4.1 Lifted Rank-Metric Codes

In this section, we describe the simplest construction of asymptotically good sub-
space codes, which uses rank-metric codes as building blocks. This construction
was first proposed in [6], and then rediscovered in [1] for the special case where
the rank-metric code is a Gabidulin code. The construction was later explained
in [3, 22] in the context of the subspace/injection distance. The latter description
is reviewed below.

For a matrix X ∈ Fk×mq , let the subspace Λ(X) �
〈[
Ik×k X

]〉
∈ Gq(k+m, k)

be called the lifting of X . Similarly, for a matrix code C ⊆ Fk×mq , let the subspace
code Λ(C) � {Λ(X), X ∈ C} be called the lifting of C. Since every subspace
corresponds to a unique matrix in RREF, we have that the mapping X → Λ(X)
is injective, and therefore |Λ(C)| = |C|. Note that Λ(C) is a constant-dimension
code, i.e., Λ(C) ⊆ Gq(k +m, k).

Lemma 2 (Lifting Lemma [3]). For all X,X ′ ∈ Fk×mq and all C ⊆ Fk×mq ,

d(Λ(X), Λ(X ′)) = dR(X,X ′),
d(Λ(C)) = dR(C).
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Proof. We have

d(Λ(X), Λ(X ′)) = dim(Λ(X) + Λ(X ′)) − min{dim(Λ(X)), dim(Λ(X ′))}

= rank

[
I X
I X ′

]
− k

= rank

[
I X
0 X ′ − X

]
− k

= rank(X ′ − X).

The second statement immediately follows from the first.

Lemma 2 shows that a subspace code constructed by lifting inherits the distance
properties of its underlying rank-metric code.

In particular, let C ⊆ Fk×(n−k)
q be an MRD code with dR(C) = d and, without

loss of generality, let k ≤ n − k. Then Λ(C) is an (n, d, k) code with cardinality

|Λ(C)| = q(n−k)(k−d+1). (14)

Note that (14) gives a lower bound on Aq(n, d, k). Comparing with the upper
bound of (8), we see that the ratio of the upper and lower bounds is a constant
depending only on q, thus demonstrating that this construction yields asymp-
totically optimal codes.

Optimizing k in (14), we obtain

Aq(n, d) ≥ q�
n
2 �(	n

2 
−d+1).

We now mention a particular way of constructing lifted rank-metric codes. When
m ≥ 2k it is convenient to construct an MRD code C ⊆ Fk×mq as a Cartesian
product of simpler MRD codes. Let m1, . . . ,mr ≥ k be such that

∑r
i=1 mi = m,

and let Ci ⊆ Fk×mi
q , i = 1, . . . , r, be MRD codes with minimum rank distance

d. Then, it is easy to see that the Cartesian product C = C1 × · · · × Cr is also
an MRD code with dR(C) = d, where a specific element (X1, . . . , Xr) in the
Cartesian product is interpreted as the k × m matrix [X1 X2 · · · Xr]. Clearly,
we have |C| =

∏r
i=1 q

mi(k−d+1) = qm(k−d+1). Note the importance of choosing
mi ≥ k for the resulting code to be MRD. Now, since dR(C) = d, it follows that
Λ(C) is a (k +m, k, d)q code.

4.2 Padded Codes

Padded codes are a set of subspace codes in Gq(n, k) obtained as a union of lifted
product rank-metric codes. Let n = (r + 1)k + s, where r, s ∈ N and s < k. Let
C ⊆ Fk×kq , and C′ ⊆ Fk×(k+s)

q be rank-metric codes of minimum rank-distance

d. Define a padded code as Ω =
r−1⋃
i=0

Ωi, where

Ωi = {〈[
i︷ ︸︸ ︷

0k×k · · · 0k×k Ik×k ci+1 · · · cr]〉}
with cj ∈ C for j = 1, · · · r − 1, and cr ∈ C′.
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It is clear that d(Ωi) = d. Now, let j < i ≤ r − 1, and consider U = 〈X〉 ∈

Ωi and V = 〈Y 〉 ∈ Ωj , where X = [

i︷ ︸︸ ︷
0k×k · · · 0k×k Ik×k ci+1 · · · cr] and Y =

[

j︷ ︸︸ ︷
0k×k · · · 0k×k Ik×k ci+1 · · · cr]. Since j < i, Ik×k in X and Y are not aligned.
Therefore,

dim(U + V ) = rank

[
X
Y

]
= 2k,

and d(U, V ) = dim(U + V ) − k = k ≥ d. Thus we obtain d(Ω) = d.
When C = C′ are Gabidulin codes, we obtain a special case of the construction

in [23]. If in addition dR(C) = k, then the construction above results in the
“spread codes” of [24] and [25].

4.3 Lifted FD Codes

In [26], Etzion and Silberstein provide a multi-level construction for codes in
Pq(n). The basic idea of this construction is to generalize the lifting construction
to Schubert cells (as defined in Section 2) so that a lifted rank-metric code is
contained completely within any given cell. A code can then be constructed
by taking a union of such lifted rank-metric codes in suitably well-separated
Schubert cells. We now give a detailed description of this construction.

For a subspace V ∈ Pq(n) and a nonsingular matrix T ∈ Fn×nq , define V T �
{vT, v ∈ V } (which is a subspace isomorphic to V ). Given any binary vector
b of length n and weight k, define P (b) as the n × n permutation matrix such
that P (b)supp(b) =

[
Ik×k 0k×(n−k)

]
and P (b)supp(b̄) =

[
0(n−k)×k I(n−k)×(n−k)

]
.

Multiplication of a matrix
[
X Y

]
, where X is k×k and Y is k×(n−k), by P (b)−1

on the right results in a matrix in which the columns are permuted. Specifically,
the columns of X appear in columns indexed by supp(b), and columns of Y
appear in columns indexed by supp(b̄), and the order of the columns within each
submatrix is preserved.

Now, let b be a binary vector of length n and weight k. For a matrix X ∈
Fk×(n−k)
q , define the generalized lifting, Λb(X), of X with respect to b as

Λb(X) � Λ(X)P (b)−1 =
〈[
I X

]
P (b)−1〉 .

Since rank
([
I X

]
P (b)−1

)
= k, we observe that Λb(X) is a k-dimensional sub-

space of Fnq . Similarly, for a matrix code C ⊆ Fk×(n−k)
q , let

Λb(C) � {Λb(c), c ∈ C}.

Note that the lifting Λ(·) defined in Section 4.1 is a special case of Λb(·), namely,
Λ(X) = Λb(X) where b = (1, . . . , 1, 0, . . . , 0).

The generalized lifting of a matrix code does not generally lead to a subspace
code confined to a single Schubert cell. However, if the matrix code is suitably
constrained in a manner depending on b, then its image will indeed be confined
to the Schubert cell Sq(b) corresponding to b. The particular constraints are
described as follows.
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Let Q = [Qij ] be the n × n upper triangular matrix with Qij = 1 if j ≥ i
and Qij = 0 otherwise. Given a binary profile vector b of length n and weight k,
regarded as an element of Z1×n, define the vector c(b) ∈ Z1×n via

c(b) � bQP (b).

Then, the generalized lifting Λb(X) of a matrix X = [xij ] ∈ Fk×(n−k)
q is guaran-

teed to be in the Schubert cell corresponding to b provided that

for 1 ≤ i ≤ k, 1 ≤ j ≤ n − k, i > c(b)j+k implies that xij = 0. (15)

For example, suppose n = 8 and k = 3, and let b = (0, 0, 1, 0, 1, 0, 0, 1). Then,

P (b) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and c(b) = (1, 2, 3, 0, 0, 1, 2, 2).

Let X ∈ F3×5
q = [xij ]. Observe that

[
I X

]
P (b)−1 =

⎡⎣x11 x12 1 x13 0 x14 x15 0
x21 x22 0 x23 1 x24 x25 0
x31 x32 0 x33 0 x34 x35 1

⎤⎦ .

Clearly this matrix is in RREF and hence prof(
[
I X

]
P (b)−1) = b if

x11 = x21 = x31 = x12 = x22 = x32 = x23 = x33 = x34 = x35 = 0.

These conditions are precisely those implied by (15).
Now let b be a binary vector of length n and weight k. Let C ⊆ Fk×(n−k)

q be a
rank-metric code with dR(C) = d in which each codeword satisfies (15). We refer
to such a code as an FD(b) code, where FD stands for “Ferrers’ Diagram” [26].
Clearly, Λb(C) consists of subspaces in the Schubert-cell corresponding to b, and
by Lemma 2 we have that d(Λb(C)) = d, and dS(Λb(C)) = 2d. The code Λb(C) is
referred to as a lifted FD(b) code.

In [20, 27] a construction for FD(b) codes is presented, where a code Cb is ob-
tained as a subcode of a linear MRD code with a further set of linear constraints
ensuring that each codeword in Cb satisfies (15). The following theorem gives a
lower bound on the cardinality of these codes.

Theorem 14 ([20, 27]). For a binary vector b of length n with wt(b) = k > 0,
let Cb be an FD(b) code of minimum rank-distance d, obtained via the construc-
tion presented in [20, 27]. We have

|Cb| ≥ qw(b)−max{µ(b),η(b)}(d−1),

where w(b) =
∑

i>k c(b)i, µ(b) = max{c(b)i : i > k} and η(b) = wt(c(b)) − k.
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We now consider the minimum distance between elements in distinct Schubert
cells. Let u and v be two distinct binary vectors of length n and having weights
k and k′ respectively, and let u ∧ v denote the logical and of u and v, i.e., the
binary vector in which (u ∧ v)i = uivi. Let U and V be arbitrary vector spaces
in the Schubert cells Sq(u) and Sq(v), respectively. The following lower bound
on d(U, V ) is given in [20]:

Theorem 15 ([20]). d(U, V ) ≥ da(u, v), where da(u, v) = max{wt(u),wt(v)} −
wt(u ∧ v) is a metric known as the asymmetric distance between u and v.

Proof. Clearly dim(U) = wt(u) and dim(V ) = wt(v). Let w = u ∧ v and observe
that dim(U ∩ V ) ≤ wt(w). Thus,

dim(U) − dim(U ∩ V ) ≥ wt(u) − wt(w).

Similarly,
dim(V ) − dim(U ∩ V ) ≥ wt(v) − wt(w).

Taking the max{·, ·} of both equations we obtain

d(U, V ) ≥ max{wt(u),wt(v)} − wt(w)
= da(u, v).

Earlier, Etzion and Silberstein [26] had given the following theorem:

Theorem 16 ([26]). dS(U, V ) ≥ dH(u, v)

Proof. Let N(u, v) = wt(u) − wt(v), and N(v, u) = wt(v) − wt(u). In a manner
similar to the proof of Theorem 15 we have,

N(u, v) = wt(u) − wt(w)
= dim(U) − wt(w)
≤ dim(U) − dim(U ∩ V )

Similarly N(v, u) ≤ dim(V ) − dim(U ∩ V ), thus we have

dH(u, v) = N(u, v) +N(v, u) ≤ dim(U) + dim(V ) − 2 dim(U ∩ V ) = dS(U, V ).

Note that both lower bounds are achieved with equality when U and V corre-
spond to lifted all-zero codewords.

Finally let A be a binary code of length n. For every element b ∈ A, let Cb be
a FD(b) code. Then

Ω =
⋃
b∈A

Λb(Cb)

is a subspace code.
If A has minimum asymmetric distance d and each FD(b) code is designed to

have minimum rank-distance d, then Ω is guaranteed to have minimum injection
distance d. Similarly, if A has minimum Hamming distance 2d and each FD(b)
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code is designed to have minimum rank-distance d, then Ω is guaranteed to
have minimum subspace distance 2d. These codes are the lifted Ferrer’s diagram
rank-metric codes of [20, 26] designed for the injection and subspace distance
respectively. We refer to such codes as lifted FD codes.

It is interesting to observe that this construction included the padded codes of
Section 4.2 as a special case. In particular, let P ⊆ {0, 1}n be a set of constant-
weight binary vectors of weight k ≤ n such that,

for all v ∈ P , v = (

i︷ ︸︸ ︷
0, 0, · · · , 0

k︷ ︸︸ ︷
1, 1, · · · , 1

n−k−i︷ ︸︸ ︷
0, 0, · · · , 0).

Let C ⊆ Fk×kq be a rank-metric code of minimum rank-distance d. Then {Λv(C) :
v ∈ P} is a padded code in Gq(n, k) with minimum injection distance d.

Notice that in this construction a naive choice for A would be one with a high
information rate. However, a high information rate would only result in a large
number of selected Schubert cells, and does not necessarily guarantee a high
overall rate for the resulting (n, d)q code. This is due to the fact that the rate
of a lifted FD code depends on the rate of its underlying FD(b) codes, which in
turn by Theorem 14 depend on the particular choices of b.

In [26] constant-weight lexicodes are used to select well-separated Schubert
cells in the Grassmannian. In [20, 27] a scoring function is defined, which given a
minimum distance d, calculates for every b ∈ {0, 1}n the bound of Theorem 14.
In order to construct A, a standard greedy algorithm is used that maintains a
list of available profile vectors A ⊆ {0, 1}n, (with A initialized to {0, 1}n). At
each step an available vector with the highest score is added to A, and vectors
within asymmetric distance d of b are made unavailable. The algorithm proceeds
until A = ∅. Results obtained from this algorithm are tabulated in [27].

4.4 Codes Obtained by Integer Linear Programming

In [28] Kohnert and Kurtz view the construction of constant-dimension subspace
codes as an optimization problem involving integer variables.

Let C be an (n, d, k)q code so that for all U, V ∈ C we have d(U, V ) = k −
dim(U ∩ V ) ≥ d. The code construction problem is equivalent to finding a set of
N subspaces C = {V1, V2, · · · , VN} ∈ Gq(n, k) such that for all i, j ∈ {1, 2, · · ·N},
Vi, Vj ∈ C, we have dim(Vi∩Vj) ≤ k−d. This means that no pair of subspaces in

C intersect in a (k− d+1)-space in Pq(n). Let M ∈ F
[ n
k−d+1]×[nk]

2 be an incidence
matrix defined as follows:

MW,V :=
{

1 if W ⊆ V,
0 otherwise.

Let x be a binary vector of length
[
n
k

]
. The code construction problem may be

viewed as the following optimization problem:

maximize
[nk]∑
i=1

xi, subject to Mx ≤

⎛⎜⎝1
...
1

⎞⎟⎠ .
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Let S be an ordered set obtained by taking the subspaces in Gq(n, k) in some
arbitrary order. Then, if x is the solution to the above optimization problem, we
may construct a subspace code C ⊆ Gq(n, k) of minimum distance d, by taking
the subspaces in S indexed by supp(x).

It is possible to significantly reduce the size of the problem by prescribing a
group of automorphisms for the code, and then using the induced symmetry to
reduce the number of equations. See [28] for details.

5 Encoding and Decoding

Let Ω ∈ Pq(n) be a subspace code with d(Ω) = d. Throughout this section, let
t = �(d−1)/2�. In this section, we consider two problems related to the use of Ω
for error control in noncoherent linear network coding. The encoding problem is
how to efficiently map an integer in {0, . . . , |Ω| − 1} into a codeword of Ω (and
back). The decoding problem is how to efficiently find a codeword of Ω that is
closest (in injection distance) to a given subspace U ∈ Pq(n). More specifically,
we focus on a bounded-distance decoder, which returns a codeword V ∈ Ω if V is
the unique codeword that satisfies d(V, U) ≤ t and returns a failure otherwise.

5.1 Encoding Lifted FD Codes

Let Ω =
⋃
b∈A

Λb(Cb) be an (n, d)q lifted FD-code constructed as described in

Section 4.3, and suppose that A is given {b1, b2, . . . , b|A|}. Let c1 = 0, and, for
2 ≤ i ≤ |A|, let ci =

∑i−1
j=1 |Cbi |.

Codewords are numbered starting at zero. To map an integer m in the range
{0, . . . , |Ω| − 1} to a codeword: (a) find the largest index i such that ci ≤ m, (b)
map the integerm−i to a codeword of Cbi (using an encoder for the corresponding
rank-metric code), which can then be lifted to the corresponding subspace. Note
that 0 ≤ mi < |Cbi |. Conversely, the jth codeword of Cbi maps back to the
message m = ci + j. Assuming efficient encoding of the underlying rank-metric
codes, the main complexity of the encoding algorithm, given m, is to determine
the corresponding ci, which can be done using a binary search in time at worst
proportional to log |A|.

5.2 Decoding Lifted Gabidulin Codes

Let C ⊆ Fk×mq be a Gabidulin code with dR(C) = d. Recall that Λ(C) is a
(k +m, d, k)q code.

A bounded-distance decoder for Λ(C) is a function dec : Pq(n) → C ∪ {ε} such
that dec(U) = c for all U ∈ BΛ(c)(t) and all c ∈ C, and such that dec(U) = ε for
all other U .

Let us first point out that decoding of Λ(C) is not a straightforward application
of rank-distance decoding. To see this, let A ∈ F�×kq , y ∈ F�×(n−k)

q and Y =
[
A y

]
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be such that 〈Y 〉 = U is the received subspace. If � = k and A is nonsingular,
then

d(Λ(c), U) = dR(c, A−1y)

and therefore decoding of Ω reduces to rank-distance decoding of C. In general,
however, A may not be invertible, in which case the argument above does not
hold.

Several algorithms have been proposed for implementing the function dec(·).
The first such algorithm was proposed by Kötter and Kschischang in [1] and is a
version of Sudan’s “list-of-1” decoding for Gabidulin codes. The time complex-
ity of the algorithm is O((k +m)2m2) operations in Fq. A faster algorithm was
proposed in [3] which is a generalization of the standard (“time-domain”) decod-
ing algorithm for Gabidulin codes. The complexity of this algorithm is O(dm3)
operations in Fq. As shown in [29], the algorithm in [3] can significantly benefit
from the use of optimal (or low-complexity) normal bases, further reducing the
decoding complexity to (11t2 + 13t+m)m2/2 multiplications in Fq (and a sim-
ilar number of additions). Finally, a transform-domain decoding algorithm was
proposed in [22, 29], which is slightly faster than that of [3] for low-rate codes.

As we will see, a bounded-distance decoder for a lifted Gabidulin code can
be used as a black box for decoding many other subspace codes. For instance,
consider Cr = C×· · ·×C, the rth Cartesian power of a Gabidulin code C ⊆ Fk×mq .
Recall that Λ(Cr) is a (k + rm, d, k)q code, where d = dR(C). Let dec(·) be a
bounded-distance decoder for Λ(C). Then a bounded-distance decoder for Λ(Cr)
can be obtained as the map Pq(k + rm) → Cr ∪ {ε} given by

U �→
{[

ĉ1 · · · ĉr
]

= ĉ if ĉi �= ε, i = 1, . . . , r, and d(Λ(ĉ), U) ≤ t

ε otherwise

where ĉi = dec(
〈[
A yi

]〉
), i = 1, . . . , r, and A ∈ F�×kq and y1, . . . , yr ∈ F�×mq

are such that
〈[
A y1 · · · yr

]〉
= U . In other words, we can decode Λ(Cr) by

decoding each Cartesian component individually (using the same matrix A on
the left) and then checking whether the resulting subspace codeword is within
the bounded distance from U .

5.3 Decoding Lifted FD Codes

Let A be a binary code with da(A) ≥ d. For all b ∈ A, let Cb be a b-FD code
with dR(Cb) ≥ d. Let

Ω =
⋃
b∈A

Λb(Cb).

Recall that Ω is an (n, d)q code.
A bounded-distance decoder for Ω is a function dec : Pq(n) → (A×∪b∈B Cb)∪

{ε} such that dec(U) = (b, c) for all U ∈ BΛb(c)(t), all c ∈ Cb, and all b ∈ A, and
such that dec(U) = ε for all other U .

We will show that we can efficiently decode Ω, provided that we have efficient
decoders for A and for each Cb, b ∈ A. The basic procedure was proposed in
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[26] for the decoding in the subspace metric. Here we adapt it for the injection
metric.

Let us first consider the decoding of Λb(Cb), for some b ∈ A. Let c ∈ Cb and
U ∈ Pq(n). Recall that Λb(c) = Λ(c)P (b)−1. Since P (b) is a nonsingular linear
transformation, and therefore preserves dimensions, we have

d(Λb(c), U) = d(Λb(c)P (b), UP (b)) = d(Λ(c), UP (b)).

It follows that bounded-distance decoding of Λb(Cb) can be performed by first
computing ĉ = dec(UP (b)), and then returning (b, ĉ) unless ĉ = ε.

Now, consider the decoding of Ω. Let U ∈ Pq(n) be such that d(V, U) ≤ t,
for some (unique) V ∈ Ω. The first step is to compute the profile vector b
corresponding to the Schubert cell containing V . Let b′ denote the profile vector
corresponding to the Schubert cell containing U . Since by Theorem 15

da(b, b′) ≤ d(V, U) ≤ t,

it follows that b can be found by inputting b′ to a bounded-asymmetric-distance
decoder for A. Then the actual c ∈ Cb such that V = Λb(c) can be found by
using the decoder for Cb described above.

6 Conclusions and Open Questions

Subspace codes represent an intriguing domain in which to carry out basic in-
vestigations of coding theory.

From a practical standpoint, at least for applications in network coding, the
main problems appear to be solved, as constant-dimension lifted rank-metric
codes contain close to the maximum possible number of codewords (at least
on a logarithmic scale), and efficient encoding and decoding algorithms have
been developed. It is unlikely that codes with marginally larger codebooks (even
though they exist) will justify the additional complexity needed to process them.

From a mathematical standpoint, however, much remains open. For example,
what are the optimal codes of minimum distance 2 or 3? Can existing construc-
tions be improved? For example, the construction of lifted FD codes, which relies
on a partitioning of Pq(n) into Schubert cells, can be regarded as a form of gen-
eralized concatenation. Are there other partitioning schemes that, for example,
result in subsets of increasing minimum distance? Are there interesting subspace
codes that can be constructed as orbits of a group action on vector spaces? Fi-
nally, are there additional applications of subspace codes beyond those of network
coding and linear authentication?
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France (May 2001)

14. Gadouleau, M., Yan, Z.: Packing and covering properties of cdcs and subspace
codes. IEEE Trans. on Inform. Theory (2008) (Submitted)

15. Delsarte, P.: An algebraic approach to association schemes of coding theory. Philips
J. Res., 1–97 (1973)

16. Frankl, P., Wilson, R.: The Erdös-Ko-Rado Theorem for Vector Spaces. Journal of
Combinatorial Theory 43, 228–236 (1986)

17. Etzion, T., Vardy, A.: Error-correcting codes in projective space. In: Proc. IEEE
Int. Symp. Information Theory, Toronto, Canada, July 6-11, pp. 871–875 (2008)

18. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-
Holland, Amsterdam (1977)

19. Ahlswede, R., Aydinian, H.: On error control for random network coding. In: IEEE
Workshop on Network Coding, Theory and Applications (2009)

20. Khaleghi, A., Kschischang, F.R.: Projective space codes for the injection metric.
In: Proc. 11th Canadian Workshop Inform. Theory, Ottawa, May 13-15, pp. 9–12
(2009)

21. Tolhuizen, L.M.G.M.: The generalized Gilbert-Varshamov bound is implied by
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Abstract. In this work, we consider the pairwise error probability
(PEP) of a linear programming (LP) decoder for a general binary linear
code as formulated by Feldman et al. (IEEE Trans. Inf. Theory, March
2005) on a quantized additive white Gaussian noise (AWGN) channel.
With a quantized AWGN (QAWGN) channel, we mean a channel where
we first compute log-likelihood ratios as for an AWGN channel and then
quantize them. Let H be a parity-check matrix of a binary linear code
and consider LP decoding based on H. The output of the LP decoder
is always a pseudo-codeword, of some pseudo-weight, where the defini-
tion of pseudo-weight is specific to the underlying channel model. In this
work, we give a definition of pseudo-weight for a QAWGN channel based
on an asymptotic (high signal-to-noise ratio) analysis of the PEP. Note
that with maximum-likelihood decoding, the parameters of the quanti-
zation scheme, i.e., the quantization levels and the corresponding quan-
tization region thresholds, that minimize the PEP of wrongly decoding
to a non-zero codeword c when the all-zero codeword is transmitted is
independent of the specific codeword c. However, this is not the case
with LP decoding based on a parity-check matrix H, which means that
the quantization scheme needs to be optimized for the given H. As a
case study, we consider the well-known (3, 5)-regular (155, 64, 20) Tan-
ner code and estimate its minimum QAWGN pseudo-weight with 3 and
5 levels of quantization, in which the quantization scheme is optimized
to maximize the minimum QAWGN pseudo-weight.

1 Introduction

From the mid 1990’s major research efforts have been devoted to the construction
and performance analysis of capacity-approaching low-complexity codes, in par-
ticular turbo and low-density parity-check (LDPC) codes [1,2, 3]. The existence
of computationally efficient decoding algorithms for these capacity-approaching
codes is the number one reason for their popularity. The performance of many
of the most efficient graph-based algorithms, e.g., message-passing algorithms
and decoding based on linear programming (LP) is crucially dependent on the
existence of an efficient representation of the code in terms of a graphical model.

M.G. Parker (Ed.): Cryptography and Coding 2009, LNCS 5921, pp. 22–37, 2009.
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For the binary erasure channel (BEC), it is well-known that iterative belief-
propagation (BP) decoding of LDPC codes can be characterized exactly in terms
of stopping sets [4] in the chosen Tanner graph representation of the code. Thus,
finding a Tanner graph containing no non-empty stopping sets of size less than
the minimum distance of the code is important for improved performance un-
der iterative BP decoding. Note that a binary linear code has many different
parity-check matrices and hence many different Tanner graphs [5]. This reflects
the property of message-passing algorithms that both the complexity and the
performance are functions of the structure of the chosen parity-check matrix for
the code.

Feldman et al. [6] recently considered the use of LP to decode binary linear
codes. The obvious polytope for LP decoding is the convex hull of all codewords,
in which case LP decoding is equivalent to maximum-likelihood (ML) decoding.
However, the convex hull has a description complexity that is exponential in
the codeword length for a general binary linear code. Thus, Feldman et al. [6]
proposed a relaxed polytope which contains all valid codewords as vertices, but
also additional non-codeword vertices. The vertices of the relaxed polytope are
basically what the authors called pseudo-codewords in [6].

Recently, expressions for the pseudo-weight on the BEC, the binary symmetric
channel (BSC), and the additive white Gaussian noise (AWGN) channel have
been derived [7,8]. The pseudo-weight is the equivalent of the Hamming weight on
the BEC and the BSC, and the equivalent of one quarter of the squared Euclidean
distance on the AWGN channel when LP decoding and not ML decoding is
performed. In a recent work [9], the pairwise error probability (PEP) of LP
decoding on the independent Rayleigh flat-fading channel was considered, and
it was shown that the PEP of wrongly decoding to a non-zero pseudo-codeword
ω when the all-zero codeword is transmitted, behaves asymptotically as K(ω) ·
(Es/N0)−|χ(ω)|, where χ(ω) is the support set of ω, i.e., the set of non-zero
coordinates, Es/N0 is the average signal-to-noise ratio (SNR), and K(ω) is a
constant independent of the SNR.

In this work, however, we consider a quantized AWGN (QAWGN) channel.
With a QAWGN channel, we mean a channel where we first computed log-
likelihood ratios (LLRs) as for an AWGN channel and then quantize them. In
particular, we give a definition of pseudo-weight for a QAWGN channel based on
an asymptotic (high SNR) analysis of the PEP. Note that the effect of quanti-
zation and thresholding on the performance of the LP decoder has been treated
in [10]. In fact, in [10], it was shown that for certain classes of LDPC codes (in
particular, the Tanner graph of the LDPC code should be a good expander) and
large enough SNR, it is advantageous to truncate the LLRs before passing them
to the LP decoder.

2 Preliminaries

A binary linear code C of length n and dimension k is a k-dimensional subspace
of {0, 1}n. The code can be specified as the null space of a rank (n − k), r × n
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binary parity-check matrix H where r ≥ n − k. The Tanner graph T = T (H)
of H is a bipartite graph composed of left (bit or variable) and right (check)
vertices (or nodes) corresponding to codeword bits and parity-check constraints,
respectively. All edges in T are incident on a left vertex and a right vertex, and
there is an edge between the ith bit vertex and the jth check vertex if and only
if the ith entry in the jth row of H is equal to one.

A stopping set is a subset of the codeword positions such that the subgraph
of the Tanner graph induced by the corresponding bit vertices has no check
nodes of degree one. It is well-known that on the BEC iterative BP decoding is
successful if and only if the set of erased positions does not contain a non-empty
stopping set [4].

To construct a degree-q cover of T (H), denoted by T (q)(H), we first make q
identical copies of T (H). Any permutation of the edges of the q copies of the
Tanner graph T (H) such that any edge e with left vertex v = v(e) and right
vertex c = c(e) before the permutation, is incident on the left to one distinct
vertex of the q copies of v, and on the right to one distinct vertex of the q copies of
c after the permutation, will give a valid cover of T (H). The corresponding cover
code is denoted by C(q) and is a function of both H and the edge permutations.
Define

ωl(c(q)) =
|{j : c(j)l = 1}|

q
, l = 0, . . . , n − 1

where c(q) = (c(0)0 , . . . , c
(0)
n−1, . . . , c

(q−1)
0 , . . . , c

(q−1)
n−1 ) is a codeword from C(q). In

this notation, c(j)l corresponds to the jth copy of the lth bit vertex in the Tanner
graph. Then, ω = ω(c(q)) = (ω0(c(q)), . . . , ωn−1(c(q))) is a (graph-cover) pseudo-
codeword [7]. We remark that a different definition of pseudo-codewords based
on computation trees appeared in [8]. In this work, however, we will use the
definition based on finite graph covers. The support set of a pseudo-codeword,
as defined above, is a stopping set, and for any stopping set there is at least
one pseudo-codeword (derived from a codeword in a suitable finite graph cover)
with support set equal to the given stopping set [7,11,12]. Finally, note that the
AWGN pseudo-weight of a non-zero pseudo-codeword ω is defined as [7,8]

wAWGN(ω) =

(∑n−1
l=0 ωl

)2

∑n−1
l=0 ω2

l

. (1)

Also, in the following, let κ = κ(ω) be the number of different non-zero values
in the non-zero coordinates of the pseudo-codeword ω.

2.1 LP Decoding Based on the Parity-Check Matrix

Let the indices of the neighboring bit vertices of the jth check vertex in T (H)
constitute the set Nj and let

Ej = {S : S ⊆ Nj and |S| is even}.
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Define the polytope

Qj =

{
(y,γj) ∈ [0, 1]n × [0, 1]2

|Nj|−1
:

∑
S∈Ej

γj,S = 1 and yi =
∑

S∈Ej :i∈S
γj,S , ∀i ∈ Nj

}

for all j, j = 0, . . . , r−1. Next, define the following projection onto the y variables

Q̇j =
{
y ∈ [0, 1]n : ∃ γj ∈ [0, 1]2

|Nj|−1
and (y,γj) ∈ Qj

}
and the polytope

Q̇ = Q̇0 ∩ Q̇1 ∩ · · · ∩ Q̇r−1. (2)

LP decoding (on a binary-input memoryless channel) of binary linear codes as
formulated by Feldman et al. [6, 13] can be described by the linear program

minimize
n−1∑
l=0

λlyl subject to y ∈ Q̇ (3)

where

λl = log
(

Pr{rl|cl = 0}
Pr{rl|cl = 1}

)
, l = 0, . . . , n − 1,

cl is the lth codeword bit, and rl is the lth component of the received vector. If
instead of Q̇ we use the convex hull of C, then solving the linear program in (3)
is equivalent to ML decoding.

The notion of a proper and C-symmetric polytope was introduced in [6, 13],
where the authors proved that the probability of error of LP decoding is inde-
pendent of the transmitted codeword on a binary-input output-symmetric mem-
oryless channel when the underlying code is linear1 and the polytope is proper
and C-symmetric. A polytope Q̇ is proper if Q̇ ∩ {0, 1}n = C, and C-symmetric
if for any y ∈ Q̇ and c ∈ C it holds that |y − c| ∈ Q̇, where the notation | · | with
a vector argument means the component-wise absolute value.

The set of points from the relaxed polytope Q̇, as defined in (2), where all en-
tries in all points are rational numbers is equal to the set of all pseudo-codewords
of all finite graph covers of the Tanner graph. Furthermore, all vertices of Q̇ have
rational entries [7].

In a practical communication system, the LLRs are quantized. Let λ̃l be the
quantized version of λl. Then, the decoding problem in (3) is modified to

minimize
n−1∑
l=0

λ̃lyl subject to y ∈ Q̇. (4)

1 We remark that the way the polytope Q̇ is defined in (2) the code is assumed to be
linear in the setup.
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3 PEP of LP Decoding on a QAWGN Channel

The PEP Pr{c → ω} of decoding to the pseudo-codeword ω (within Q̇) when c
is transmitted (assuming LP decoding on a quantized binary-input memoryless
channel) is

Pr{c → ω} = Pr

{
n−1∑
l=0

(ωl − cl) λ̃l ≤ 0

}
.

We will assume that the quantization scheme is symmetric, i.e., if λl is quantized
to L, then −λl is quantized to −L, where L is some real number. This implies that
the corresponding binary-input memoryless channel with the quantized LLRs as
output is output-symmetric. Thus, we can assume (without loss of generality,
since the polytope in (2) is proper and C-symmetric, and the channel is output-
symmetric) the transmission of the all-zero codeword. When transmitting the
all-zero codeword, the PEP Pr{0 → ω} becomes

Pr{0 → ω} = Pr

{
n−1∑
l=0

ωlλ̃l ≤ 0

}
.

With two levels of quantization, we get the BSC. A pseudo-weight definition
for the BSC appeared in [8]. Let t be the minimum number of coordinates in
a pseudo-codeword ω such that the sum of any t largest components in ω is
at least (

∑n
l=0 ωl)/2. Then, the BSC pseudo-weight of ω is 2t if this sum of

any t largest components in ω is exactly (
∑n

l=0 ωl)/2, and 2t − 1, otherwise,
i.e., if the sum exceeds (

∑n
l=0 ωl)/2 [8]. In the following, we will generalize the

BSC definition of pseudo-weight to a QAWGN channel with 2M + 1 levels of
quantization, where M is a positive integer. The approach considers the PEP at
high SNR and is an extension of the derivation from the BSC case.

3.1 Three Levels of Quantization

With three levels of quantization, we get what is commonly referred to as a
binary symmetric error and erasure channel (BSEC). In particular, we have

λ̃l =

⎧⎪⎨⎪⎩
L, if Γ ≤ λl

0, if −Γ ≤ λl < Γ

−L, otherwise

for some non-negative real values Γ and L that may depend on the SNR and
the underlying code. When the all-zero codeword is transmitted, the LLR λl is
Gaussian distributed with mean 2/σ2 and variance 4/σ2 independently of the
binary modulation, i.e., we have the same distribution both with binary anti-
podal signaling (0 → 1 and 1 → −1) and with the mapping 0 → −1 and 1 → 1,
from which it follows that
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p+ = Pr{λl ≥ Γ | 0 sent} = 1 − Q

(
−Γσ2 + 2

2σ

)
≥ 1 − 1

2
exp

(
−
(
−Γσ2 + 2

)2
8σ2

)

p− = Pr{λl < −Γ | 0 sent} = Q

(
Γσ2 + 2

2σ

)
≤ 1

2
exp

(
−
(
Γσ2 + 2

)2
8σ2

)
assuming that −Γσ2 + 2 ≥ 0 in the first inequality, where

Q(x) =
1√
2π

∫ ∞

x

exp
(
−t2/2

)
dt

is the Gaussian Q-function, and σ is the standard deviation of the AWGN.
Setting Γ = α/σ2, we get

p+ = 1 − Q

(
−α+ 2

2σ

)
≥ 1 − 1

2
exp

(
−α2 − 4α+ 4

4
· Es/N0

)
p− = Q

(
α+ 2
2σ

)
≤ 1

2
exp

(
−α2 + 4α+ 4

4
· Es/N0

)
where Es/N0 = 1/(2σ2) is the SNR.

Let ω′ = (ω′
0, . . . , ω

′
n−1) be a vector of length n with the same components as

ω, but in non-increasing order. Define

f(ε) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ω′

0, if ε ∈ (0, 1]
ω′

1, if ε ∈ (1, 2]
...
ω′
n−1, if ε ∈ (n − 1, n]

and F (ε) =
∫ ε
ε′=0 f(ε′)dε′. Now, let

S =
{(d−1, d0) : F (d−1) ≥ F (m) − F (d−1 + d0), 0 ≤ d−1, d0 ≤ m and d−1 + d0 ≤ m}

where m = |χ(ω)| and χ(·) denotes the support set of its vector argument.
Furthermore, define S̃ as the maximum subset of S with the property that if
(d−1, d0) ∈ S̃, then (d, d0) �∈ S ∀d < d−1 and (d−1, d) �∈ S ∀d < d0. With these
definitions, a necessary condition for a non-zero probability for the event{

n−1∑
l=0

ωlλ̃l ≤ 0

}

is that S̃ is non-empty. Since (0,m) ∈ S̃ and
(⌈
F−1(F (m)/2)

⌉
, 0
)

∈ S̃, S̃ is
always non-empty. Now, the PEP of decoding to the pseudo-codeword ω when
the all-zero codeword is transmitted can be written as

Pr{0 → ω} =
∑

(d−1,d0)∈S
K(ω, d−1, d0) · (p−)d−1(1 − p− − p+)d0(p+)m−d−1−d0
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where K(ω, d−1, d0) is upper-bounded by the multinomial coefficient(
m

d−1, d0,m − d−1 − d0

)
=

m!
d−1!d0!(m − d−1 − d0)!

. (5)

The exact value of the constantK(ω, d−1, d0) depends on the number of times we
can select d−1 non-zero coordinates i0, . . . , id−1−1 from ω, and then an additional
m − d−1 − d0 non-zero coordinates id−1 , . . . , im−d0−1 such that

d−1−1∑
l=0

ωil −
m−d0−1∑
l=d−1

ωil ≥ 0

assuming that (d−1, d0) ∈ S. In general, this number depends on ω and is upper-
bounded by the multinomial coefficient in (5) with equality when κ = 1. Since
p+ → 1 as Es/N0 tends to infinity, we can define, based on the expressions
above, a BSEC pseudo-weight as follows.

Definition 1. The BSEC pseudo-weight of a pseudo-codeword ω (for a given
α) is defined as

w(1)(ω;α) = min
(d−1,d0)∈S̃

1
4
(
(α2 + 4α+ 4)d−1 + (α2 − 4α+ 4)d0

)
(6)

where 0 ≤ α ≤ 2, since −Γσ2 + 2 ≥ 0 and Γ is non-negative.

We remark that the minimization in (6) can be restricted to S̃ (instead of S),
since the coefficients of d−1 and d0 both are non-negative. In Definition 1, the
upper index (1) on the BSEC pseudo-weight is related to the number of quan-
tization levels. In the general case, an upper index of (M) is used with 2M + 1
quantization levels. Note that Definition 1 is based on an asymptotic (high
SNR) argument. In fact, as the SNR tends to infinity, the PEP will approach
K(ω) · exp

(
−w(1)(ω;α) · Es/N0

)
, where K(ω) is a constant independent of the

SNR, and the BSEC pseudo-weight is defined such that the exponent in the
expression for the asymptotic PEP matches the exponent in the corresponding
expression for the PEP for the AWGN channel. In the special case of α = 0, we
have two quantization levels and the BSEC pseudo-weight reduces to

w(1)(ω; 0) = min
(d−1,d0)∈S̃

(d−1 + d0) =
⌈
F−1(F (m)/2)

⌉
which is about half the BSC pseudo-weight wBSC(ω), as defined in [8], where

wBSC(ω) =

{
2 ·
⌈
F−1(F (m)/2)

⌉
, if F−1(F (m)/2) is an integer value

2 ·
⌈
F−1(F (m)/2)

⌉
− 1, otherwise.

The reason for this factor of two is that we consider a definition of pseudo-weight
based on the PEP at high SNRs, while the BSC pseudo-weight definition in [8] is
based on the ability to correct all error patterns with at most

⌈
wBSC

min /2
⌉

−1 flips,
where wBSC

min is the minimum BSC pseudo-weight, i.e., the minimum of wBSC(ω)
over all pseudo-codewords ω different from the all-zero codeword.
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Lemma 1. The BSEC pseudo-weight w(1)(ω;α) with an optimal value for α is
lower-bounded by half the BSC pseudo-weight, where an optimal value for α is
an α-value that maximizes w(1)(ω;α).

Proof. Let α = α̂ denote an optimal value for α. Now,

w(1)(ω; α̂) ≥ w(1)(ω; 0) =
⌈
F−1(F (m)/2)

⌉
=
⌈
wBSC(ω)/2

⌉
≥ wBSC(ω)/2

from which the result follows.

We remark that from the proof of Lemma 1, it follows that the minimum BSEC
pseudo-weight (over all pseudo-codewords different from the all-zero codeword)
optimized over α is lower-bounded by half the minimum BSC pseudo-weight.
Also, analogous to the BSC case, one can make statements on the number of
correctable errors and erasures with LP decoding on the BSEC. In fact, with
LP decoding on the BSEC, one can correct t errors and e erasures if F (t) <
F (m) − F (t + e) for all non-zero pseudo-codewords ω, where m = |χ(ω)|. In
particular, with e = 0 erasures, this statement reduces to the statement above
for the BSC.
Example 1. When κ = 1, i.e., when the number of different non-zero values in
the non-zero coordinates of the pseudo-codeword is one, S̃ = {(m/2, 0), (m/2 −
1, 2), . . . , (1,m − 2), (0,m)} when m is even, and S̃ = {((m + 1)/2, 0), ((m −
1)/2, 1), ((m− 3)/2, 3), . . . , (1,m− 2), (0,m)} when m is odd. In Fig. 1, we have
plotted

g(α; d−1, d0) = (α2 + 4α+ 4)d−1 + (α2 − 4α+ 4)d0 (7)
as a function of α for all (d−1, d0) ∈ S̃ when κ = 1 and m = 10. From the figure,
we observe that the optimal value for α (the α-value that maximizes the BSEC
pseudo-weight w(1)(ω;α)) is where all the curves intersect. Since (m/2, 0) ∈ S̃
and (0,m) ∈ S̃, it follows that an optimal value for α is a solution to the equation

(α2 + 4α+ 4)m/2 = (α2 − 4α+ 4)m

which reduces to α2 − 12α+ 4 = 0. The unique solution to this equation within
the range [0, 2] is α = 6 − 4

√
2. In fact, this result holds in general for any m

(both even and odd). The corresponding BSEC pseudo-weight is (12−8
√

2)m ≈
0.6863m.

Example 2. Consider the pseudo-codeword ω=(1, 1/2, 1/10, 1, 1/2, 1/10, 1, 1/2).
For this pseudo-codeword, S̃ = {(0, 8), (1, 4), (2, 1), (3, 0)} and the BSEC pseudo-
weight with the optimal choice of quantization is 3.7513. Note that the four
functions g(α; d−1, d0) with (d−1, d0) ∈ S̃ (see (7) in Example 1 for a definition),
do not all intersect for a specific α-value, which means that the picture is not as
clear as when κ = 1. In fact, the optimal α-value is 4−2

√
3 which corresponds to

the intersection of g(α; 1, 4) and g(α; 2, 1). The AWGN pseudo-weight (computed
using (1)) is 5.8594, and the BSEC pseudo-weight with two levels of quantization
(α = 0) is 3.

From Examples 1 and 2, we observe that the optimal value for α depends on
the actual pseudo-codeword. However, when κ = 1, the optimal value for α is
independent of the pseudo-codeword, as shown in Example 1.
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Fig. 1. The function g(α; d−1, d0) = (α2 + 4α + 4)d−1 + (α2 − 4α + 4)d0 versus α for
all (d−1, d0) ∈ S̃ when κ = 1 and m = 10

3.2 2M + 1 Levels of Quantization

With 2M + 1 levels of quantization, we have

λ̃l =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

LM , if ΓM ≤ λl
...
L1, if Γ1 ≤ λl < Γ2

0, if −Γ1 ≤ λl < Γ1

−L1, if −Γ2 ≤ λl < −Γ1
...
−LM , if λl < −ΓM

for some non-negative real values Γ1, . . . , ΓM and L1, . . . , LM , where M ≥ 1,
ΓM ≥ ΓM−1 ≥ · · · ≥ Γ1 ≥ 0, and LM ≥ LM−1 ≥ · · · ≥ L1 ≥ 0, that may
depend on the SNR and the underlying code. Define

SM =

{
(d−M , . . . , d−1, d1, . . . , dM ) : LM

d−M−1∑
l=0

ω′
l + · · · + L1

∑M
i=1 d−i−1∑

l=
∑M

i=2 d−i

ω′
l

≥ LM

dM−1∑
l=0

ω′′
l + · · · + L1

∑M
i=1 di−1∑

l=
∑

M
i=2 di

ω′′
l

}
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under the conditions that 0 ≤ d−i, di ≤ m, i = 1, . . . ,M , and
∑M

i=1 d−i +∑M
i=1 di ≤ m, where ω′′ = (ω′′

0 , . . . , ω
′′
m−1) is a vector of length m with the non-

zero components of ω in a non-decreasing order. With this definition, a necessary
condition for a non-zero probability for the event{

n−1∑
l=0

ωlλ̃l ≤ 0

}

is that SM is non-empty. Since (0, . . . , 0, 0, . . . , 0) ∈ SM , SM is always non-
empty. The probability that we have d−i, i = 1, . . . ,M − 1, events of type
{−Γi+1 ≤ λl < −Γi} is pd−i

−i , di, i = 1, . . . ,M−1, events of type {Γi ≤ λl < Γi+1}
is pdi

i , d−M events of type {λl < −ΓM} is pd−M

−M , dM events of type {ΓM ≤ λl}
is pdM

M , and finally, m −
∑M
i=1 d−i −

∑M
i=1 di events of type {−Γ1 ≤ λl < Γ1} is

p
m−∑M

i=1 d−i−
∑M

i=1 di

0 , where

pi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q
(
ΓMσ2+2

2σ

)
, i = −M

Q
(
Γ−iσ

2+2
2σ

)
− Q

(
Γ−i+1σ

2+2
2σ

)
, i = −M + 1, . . . ,−1

Q
(

−Γ1σ
2+2

2σ

)
− Q

(
Γ1σ

2+2
2σ

)
, i = 0

Q
(

−Γi+1σ
2+2

2σ

)
− Q

(
−Γiσ

2+2
2σ

)
, i = 1, . . . ,M − 1

1 − Q
(

−ΓMσ2+2
2σ

)
, i = M.

(8)

Define S̃M as the maximum subset of SM with the property that if

(d−M , . . . , d−j , . . . , d−1, d1, . . . , dM−1, dM ) ∈ S̃M

then
(d−M , . . . , d, . . . , d−1, d1, . . . , dM−1, d̂) �∈ SM

for any d̂ > dM and d < d−j such that d+ d̂ = d−j + dM , where j = 1, . . . ,M , if

(d−M , . . . , d−1, d1, . . . , dj , . . . , dM−1, dM ) ∈ S̃M

then
(d−M , . . . , d−1, d1, . . . , d, . . . , dM−1, d̂) �∈ SM

for any d̂ > dM and d < dj such that d+ d̂ = dj + dM , where j = 1, . . . ,M − 1,
and finally, if

(d−M , . . . , d−1, d1, . . . , dM−1, dM ) ∈ S̃M

then
(d−M , . . . , d−1, d1, . . . , dM−1, d) �∈ SM

for any d > dM . Setting Γi = αi/σ
2, i = 1, . . . ,M , we can define (in the same

way as for the special case of M = 1), based on the probabilities in (8), a
QAWGN pseudo-weight as follows.
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Definition 2. The QAWGN pseudo-weight of a pseudo-codeword ω (for given
values of L1, . . . , LM−1 and α1, . . . , αM ) is defined as

w(M)(ω;L1, . . . , LM−1, α1, . . . , αM )

= min
(d−M ,...,d−1,d1,...,dM)∈S̃M

1
4

(
M∑
i=1

(α2
i + 4αi + 4)d−i +

M∑
i=1

(α2
i − 4αi + 4)di−1

)
(9)

where d0 = m −
∑M

i=1 d−i −
∑M

i=1 di and 0 ≤ αi ≤ 2, i = 1, . . . ,M , since
−Γiσ2 + 2 ≥ 0 and Γi is non-negative. Also, αM ≥ αM−1 ≥ · · · ≥ α1 and
LM ≥ LM−1 ≥ · · · ≥ L1 ≥ 0.

We remark that the minimization in (9) can be restricted to S̃M (instead of
SM ), since the coefficients of d−M , . . . , d−1, d0, . . . , dM−1 are all non-negative.
Furthermore, the value of LM can be fixed to a real number greater than or
equal to LM−1 due to scaling-invariance, i.e., the solution to the linear program
in (4) remains the same even if the LLRs are scaled by any positive real constant.
We remark that Definition 2 (as Definition 1 for three levels of quantization, i.e.,
for M = 1) is based on an asymptotic (high SNR) argument. In fact, as the SNR
tends to infinity, the PEP will approach

K(ω) · exp
(

−w(M)(ω;L1, . . . , LM−1, α1, . . . , αM ) · Es/N0

)
where K(ω) is a constant independent of the SNR. Note that the QAWGN
pseudo-weight is defined such that the exponent in the expression for the asymp-
totic PEP matches the exponent in the corresponding expression for the PEP
for the AWGN channel, which implies that the QAWGN pseudo-weight will ap-
proach the AWGN pseudo-weight as the number of quantization levels tends to
infinity.

Lemma 2. The QAWGN pseudo-weight with optimal quantization
levels and quantization thresholds is non-decreasing in the number of quanti-
zation levels, i.e., maxL1,...,LM−1,α1,...,αM w(M)(ω;L1, . . . , LM−1, α1, . . . , αM ) is
non-decreasing in M ≥ 1.

Proof. Assume that Li = L̂
(M)
i , i = 1, . . . ,M − 1, and αi = α̂

(M)
i , i = 1, . . . ,M ,

are optimal with the QAWGN pseudo-weightw(M)(ω;L1, . . . , LM−1, α1, . . . , αM )
with 2M + 1 levels of quantization. It follows that

w(M+1)(ω; L̂(M+1)
1 , . . . , L̂

(M+1)
M , α̂

(M+1)
1 , . . . , α̂

(M+1)
M+1 )

≥ w(M+1)(ω; L̂(M)
1 , . . . , L̂

(M)
M−1, L̂

(M)
M−1, α̂

(M)
1 , . . . , α̂

(M)
M , α̂

(M)
M )

= w(M)(ω; L̂(M)
1 , . . . , L̂

(M)
M−1, α̂

(M)
1 , . . . , α̂

(M)
M )

from which the result follows.
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From the proof of Lemma 2, it follows that the minimum QAWGN pseudo-
weight (over all pseudo-codewords different from the all-zero codeword) with
2M + 1 levels of quantization, optimized over the quantization parameters, is
non-decreasing in M ≥ 1.

Lemma 3. The QAWGN pseudo-weight for any M ≥ 1 with optimal quanti-
zation levels and quantization thresholds is upper-bounded by the BEC pseudo-
weight.

Proof. Since (0, . . . , 0, 0, . . . , 0) ∈ S̃M , it follows from Definition 2 that the
QAWGN pseudo-weight w(M)(ω;L1, . . . , LM−1, α1, . . . , αM ) is upper-bounded
by 1/4(α2

1 − 4α1 + 4)d0 = 1/4(α2
1 − 4α1 + 4)m. Optimizing over α1 (α1 = 0 is

an optimal α1-value) gives m, which is the BEC pseudo-weight.

Example 3. When κ = 1 and M = 2, the optimal value for α1 can be shown to
be a solution to the equation

x4 + 8x3 − 72x2 + 672x− 112 = 0. (10)

This equation results from the common intersection of the functions

g(α1, α2; d−2, d−1, d1, d2) =
2∑
i=1

(α2
i + 4αi + 4)d−i +

2∑
i=1

(α2
i − 4αi + 4)di−1

with (d−2, d−1, d1, d2) = (0, 0, 0, 0), (m/2, 0, 0,m/2), and (m/2−1, 1, 1,m/2−1),
where d0 = m−d−2 −d−1 −d1 −d2 and m = |χ(ω)| is even. Note that (0, 0, 0, 0),
(m/2, 0, 0,m/2), and (m/2 − 1, 1, 1,m/2 − 1) are always in S̃M , independently
of the values for L1, . . . , LM . In more detail, setting g(α1, α2;m/2, 0, 0,m/2) =
g(α1, α2;m/2−1, 1, 1,m/2−1) and g(α1, α2; 0, 0, 0, 0)=g(α1, α2;m/2, 0, 0,m/2),
results in

α2
1 + 4α1 + 4 = 8α2 and α2

2 + 4α2 + 4 = 2α2
1 − 8α1 + 8

respectively. Now, setting α2 = (α2
1+4α1+4)/8 (from the first equation) into the

second equation, yields the equation in (10). The only solution of (10) between
0 and 2 is x = 0.1697, which means that the optimal value for α1 is 0.1697.
Furthermore, the optimal value for α2 is α2 = (α2

1 + 4α1 + 4)/8 = 0.5884. An
optimal value for L1 with L2 = 1 is 0.4, and the corresponding QAWGN pseudo-
weight is 0.8375m. Note that different values for L1 will give different sets S̃M ,
and for the (α1, α2) pair corresponding to the intersection of the three functions
g(α1, α2; 0, 0, 0, 0), g(α1, α2;m/2, 0, 0,m/2), and g(α1, α2;m/2−1, 1, 1,m/2−1)
to be the optimal pair (in terms of maximizing the QAWGN pseudo-weight), L1
should be appropriately chosen.

Example 4. Consider the pseudo-codeword ω=(1, 1/2, 1/10, 1, 1/2, 1/10, 1, 1/2).
For this pseudo-codeword, the QAWGN pseudo-weight with the optimal choice
of quantization with M = 2 (α1, α2, and L1 need to be optimized) is 4.633. The
AWGN pseudo-weight (computed using (1)) is 5.8594, and the BSEC pseudo-
weight with the optimal choice of quantization is 3.7513 (see Example 2).
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4 Case Study

In this section, we present a case study of the (3, 5)-regular (155, 64, 20) Tanner
code from [14]. The minimum BSC pseudo-weight for this code is 9 (which means
that the minimum QAWGN pseudo-weight with two levels of quantization is 5)
[15], and the minimum AWGN pseudo-weight is upper-bounded by 16.4037 [16].
The exact value for the minimum AWGN pseudo-weight is not known, but the
upper bound is believed to be close to the true value. Also, the first few terms
of the stopping set enumerator is known exactly for this code [17]. On the BEC,
the BEC pseudo-weight is the size of the support set of the pseudo-codeword,
which is a stopping set. Thus, the minimum BEC pseudo-weight is equal to the
minimum stopping set size, or the stopping distance [5].

We have modified the pseudo-codeword/instanton search algorithm outlined
in [15], developed for the BSC, to a QAWGN channel with 2M+1 levels of quan-
tization. For instance, for the BSC, the search algorithm from [15] is initialized
with a random LLR vector λ̃ containing the values 1 and −1. The number of
coordinates with value −1 in λ̃ should be large enough to make the LP decoder
decode it into a pseudo-codeword different from the all-zero codeword. However,
in the case with 2M + 1 quantization levels, the coordinates of the initial LLR
vector λ̃ should be initialized with the different possible quantization levels in a
random fashion. As for the BSC, the number of coordinates with value different
from LM = 1 in λ̃ should be large enough to make the LP decoder decode it
into a pseudo-codeword different from the all-zero codeword. Also, the concept
of a median of a pseudo-codeword ω, as defined in [15], needs to be redefined.
Let

(d̂−M , . . . , d̂−1, d̂1, . . . , d̂M )

= arg min
(d−M ,...,d−1,d1,...,dM )∈S̃M

1
4

(
M∑
i=1

(α2
i + 4αi + 4)d−i +

M∑
i=1

(α2
i − 4αi + 4)di−1

)
.

Furthermore, let π be a coordinate permutation induced by the ordering of
the components in ω from the highest to the lowest value, i.e., ωπ(i) = ω′

i,
i = 0, . . . , n − 1. A median ψ = ψ(ω) of a non-zero pseudo-codeword ω is a
(2M + 1)-ary vector of length n with the property that

– ψπ(i) = −Lj, i =
∑M−j−1

l=0 d̂−M+l, . . . ,
∑M−j
l=0 d̂−M+l − 1 and j = 1, . . . ,M ,

– ψπ(i) = 0, i =
∑M−1
l=0 d̂−M+l, . . . ,

∑M
l=0 d̂−M+l − 1,

– ψπ(i) = Lj−M+1, i =
∑j

l=0 d̂−M+l, . . . ,
∑j+1

l=0 d̂−M+l − 1 and j = M, . . . ,
2M − 2, and

– ψi = LM = 1 for all other values of i.

Note that the LP decoder will fail to decode to the all-zero codeword when
the quantized LLR vector λ̃ is equal to the median ψ(ω) of a non-zero pseudo-
codeword ω, since

∑n
l=0 ωlλ̃l ≤ 0. Now, the algorithm proceeds as described in

[15] by running the LP decoder several times in a row with an input that depends
on the output at the previous iteration. With an input to the LP decoder, we
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mean a quantized LLR vector. In general, the input at the current iteration is
either the median of the pseudo-codeword at the output at the previous iteration,
or a subset of it. The algorithm is initialized with a random LLR vector as
described above, which makes it a random algorithm. We have run the algorithm
a large number of times to increase the accuracy of the minimum QAWGN
pseudo-weight estimation.

In Fig. 2, we have plotted the minimum BSEC pseudo-weight (estimated by
the modified algorithm from [15]) as a function of the quantization parameter
α. For small values of α (i.e., for values of α smaller than the optimal α-value),
pseudo-codewords of support set size 44 and with κ = 18 have minimum BSEC
pseudo-weight, while for larger values of α (i.e., for values of α larger than
the optimal α-value), pseudo-codewords of support set size 18 and with κ = 1
have minimum BSEC pseudo-weight. We remark that the support sets of these
pseudo-codewords with κ = 1 are minimum-size stopping sets [17]. This is due
to the fact that when α increases, the BSEC looks more like an erasure channel,
and the minimum BEC pseudo-weight is equal to the stopping distance.
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Fig. 2. Estimated minimum BSEC pseudo-weight for the (3, 5)-regular (155, 64, 20)
Tanner code from [14] as a function of the quantization parameter α.

With 5 levels of quantization, the minimum QAWGN pseudo-weight is 11.33
(estimated by the modified algorithm from [15]) when optimal quantization pa-
rameters are used. The optimization is carried out over the parameters α1, α2,
and L1. As stated above, the value of L2 can be fixed to any real number greater
than or equal to L1 due to scaling-invariance. Note that when using the optimal
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parameters for κ = 1, i.e., α1 = 0.1697, α2 = 0.5884, L1 = 0.4, and L2 = 1 (see
Example 3), the minimum QAWGN pseudo-weight is as small as 8.37 (estimated
by the modified algorithm from [15]).

5 Conclusion

In this work, we have analyzed the PEP of LP decoding for a general binary
linear code on a QAWGN channel and given a definition of pseudo-weight for
this channel based on an asymptotic (high SNR) analysis of the PEP. With ML
decoding, the parameters of the quantization scheme, i.e., the quantization levels
and the corresponding quantization region thresholds, that minimize the PEP
of wrongly decoding to a non-zero codeword c when the all-zero codeword is
transmitted is independent of the specific codeword c. With LP decoding based
on a parity-check matrix H, this is not true, and the quantization scheme needs
to be optimized for the given H. As an example, we studied the well-known
(3, 5)-regular (155, 64, 20) Tanner code and estimated its minimum QAWGN
pseudo-weight with 3 and 5 levels of quantization, in which the quantization
scheme was optimized to maximize the minimum QAWGN pseudo-weight.
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Abstract. In previous works we considered codes defined as ideals of
quotients of skew polynomial rings, so called Ore rings of automorphism
type. In this paper we consider codes defined as modules over skew poly-
nomial rings, removing therefore some of the constraints on the length
of the skew codes defined as ideals. The notion of BCH codes can be
extended to this new approach and the skew codes whose duals are also
defined as modules can be characterized. We conjecture that self-dual
skew codes defined as modules must be constacyclic and prove this con-
jecture for the Hermitian scalar product and under some assumptions
for the Euclidean scalar product. We found new [56, 28, 15], [60, 30, 16],
[62, 31, 17], [66, 33, 17] Euclidean self-dual skew codes and new [50, 25, 14],
[58, 29, 16] Hermitian self-dual skew codes over F4, improving the best
known distances for self-dual codes of these lengths over F4.

1 Introduction

Starting from the finite field Fq and an automorphism θ of Fq, one defines a
ring structure on the set:

R = Fq[X, θ] = {anXn + . . . + a1X + a0 | ai ∈ Fq and n ∈ N} .

The addition in R is defined to be the usual addition of polynomials and the
multiplication is defined by the basic rule X a = θ(a)X (a ∈ Fq) and extended
to all elements of R by associativity and distributivity (cf. [1,9,10]). The ring R
is a left and right Euclidean ring whose left and right ideals are principal [10].

In [3,5] we studied codes (g)/(f) ⊂ R/(f) that are ideals of quotient rings.
Those skew codes are completely defined by g and the degree of f , but the fact
that the code has the structure of an R-ideal is linked to arithmetic properties of
g. In particular g is a right divisor in R of a polynomial f which generates a two-
sided ideal in R. This puts restrictions on the length of the code generated by g.
In section 2 we will define skew codes Rg/Rf ⊂ R/Rf that are R-submodules
of a quotient module. Here f can be any left multiple of g and therefore any g
is a valid generator. In section 3, we will show that these skew codes defined as
modules enable to improve distances of skew codes defined as ideals and that
the BCH approach can be generalized to skew codes defined as modules with
prescribed distances. As there is no more restriction on the length of the code,
we can construct BCH skew codes whose lengths could not be reached by BCH
skew codes defined as ideals. Lastly, we will focus on self-dual skew codes defined

M.G. Parker (Ed.): Cryptography and Coding 2009, LNCS 5921, pp. 38–55, 2009.
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as modules. In [5] we showed that the (Euclidean and Hermitian) dual of a skew
cyclic code defined as an ideal of the quotient ring R/(Xn − 1) with generator
polynomial g is again a skew cyclic code defined as an ideal of the quotient
ring R/(Xn − 1) and that the generator g⊥ of the dual code is determined
by the factor h of the decomposition hg = gh = Xn − 1. This allows to use
polynomial systems to compute self-dual codes over Fq. In section 4, under the
minor assumption that the constant term of g is �= 0, we show that the dual
of a skew code Rg/Rf is again a skew code defined as a module if and only if
g is a left factor in R of some Xn − c (c ∈ Fq − {0}) and that the generator
g⊥ of the dual code is determined by the right factor h̄ of the decomposition
gh̄ = Xn−c (here g is on the left). Using this result we are able to characterize all
the skew codes defined as ideals (not necessarily cyclic) whose duals are again
defined as ideals. We conjecture that self-dual skew codes defined as modules
must be constacyclic and prove this conjecture for the Hermitian scalar product
and under some assumptions for the Euclidean scalar product. Following [5], we
use polynomial systems to compute self-dual skew codes over F4 and we find new
[56, 28, 15], [60, 30, 16], [62, 31, 17], [66, 33, 17] Euclidean self-dual skew codes and
new [50, 25, 14], [58, 29, 16] Hermitian self-dual skew codes over F4, improving
the best known distances for self-dual codes of these lengths over F4.

2 Coding with Skew Polynomial Rings

2.1 Ideal θ-Codes

In [5] we defined codes as ideals of quotient rings of R. If I = (f) is a two-sided
ideal of R, then, in analogy to classical cyclic codes, we associate to an element
a(X) =

∑n−1
i=0 aiX

i in R/(f) the ‘word‘ a = (a0, a1, . . . , an−1) ∈ Fqn.

Definition 1 (cf. [5]). Let f ∈ R be of degree n. If I = (f) is a two-sided ideal
of R, then an ideal1 θ-code C is a left ideal (g)/(f) ⊂ R/(f), where g ∈ R is a
right divisor of f in R. Let us assume that the order of θ divides n, then

1. if f = Xn − c with c ∈ Fθq, we call the ideal θ-code corresponding to the left
ideal (g)/(Xn − c) ⊂ R/(Xn − c) an ideal θ-constacyclic code;

2. if f = Xn − 1, we call the ideal θ-code corresponding to the left ideal
(g)/(Xn − 1) ⊂ R/(Xn − 1) an ideal θ-cyclic code.

The length of the code is n = deg(f) and its dimension is k = deg(f) − deg(g),
we say that the code C is of type [n, k]q. If the distance of the code is d, then we
say that the code C is of type [n, k, d]q.

An ideal θ-cyclic code C has the following property ([3], Theorem 1)

(a0, a1, . . . , an−1) ∈ C ⇒ (θ(an−1), θ(a0), θ(a1), . . . , θ(an−2)) ∈ C.

1 In previous work we called those codes simply θ-codes, but we added ideal in the
definition in order to distinguish those codes from the module codes which we will
introduce in the next section.
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If θ is not the identity, then the non commutative ring R is not a unique fac-
torization ring and there are much more right factors of f ∈ R than in the
commutative case, leading to a huge number of linear codes that are not cyclic
codes (cf. [3,5]).

Example. Let α be a generator of the multiplicative group of F4 and θ the
Frobenius automorphism given by θ(a) = a2. The polynomial X2 + α2 X + α is
a right divisor of X4 − 1 ∈ F4[X, θ] so it generates a [4, 2]4 ideal θ-cyclic code.
Note that there are seven different monic right factors of degree two of X4 − 1
in F4[X, θ] ([3], Example 2).

In the following we denote Fθq ⊂ Fq the fixed field of θ. In order to generate a
two-sided ideal of R, a monic polynomial f must be of the form Xt f̃ where f̃ is
a monic polynomial belonging to the center Fθq [X

m] of R, where m is the order
of θ. If f is in the center of R, then we call the ideal θ-code, corresponding to
the left ideal (g)/(f) ⊂ R/(f), an ideal θ-central code (cf [5]).

The length of an ideal θ-code is determined by the degree of f , while the code
itself is given by the generator matrix

G =

⎛⎜⎜⎜⎜⎜⎝
g0 . . . gr−1 gr 0 . . . 0
0 θ(g0) . . . θ(gr−1) θ(gr) . . . 0

0
. . . . . . . . . . . . . . .

...
0
0 . . . 0 θn−r−1(g0) . . . θn−r−1(gr−1) θn−r−1(gr)

⎞⎟⎟⎟⎟⎟⎠
depending only on g and n.

The restriction on the length is that f has to be a multiple of the bound g:

Definition 2 [8]. An element P ∈ Fq[X, θ] is bounded if the left ideal (P )
contains a two-sided ideal (P ∗). The monic polynomial P ∗ of minimal degree is
the bound of P .

The degree of the bound g∗ of g can be bounded in terms of the degree of g and
the order of θ ([5], Lemma 10) namely deg(g∗) ≤ λ · deg(g) where λ is at most
m · [Fq : Fθq]. Over F4, we proved that λ = 2 when θ �= id (lemma 11 of [5]).

Any polynomial g ∈ R of degree r always generates an ideal θ-code of length
n if n ≥ λ ·r. But if n < λ ·r, then those polynomials g ∈ R of degree r for which
n < deg(g∗) do not generate an ideal θ-code of length n. This restriction is the
motivation in the following section to generalize the notion of ideal θ-codes to
module θ-codes.

Example. Consider g = X3+α2 X2+αX+1 ∈ F4[X, θ]. Its bound g∗ = X6+1
is of degree 6. Therefore the above matrix G obtained from the coefficients of
g will generate an ideal θ-code only if the length of the code is at least 6, i.e.
if there are at least 3 rows in the above matrix. The use of modules instead of
ideals will allow to consider also generator matrices with fewer rows.
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However, the bound of g ∈ F4[X, θ] can also be of degree < 2 · deg(g):

Example. Consider g = X4 + X3 + α2X2 + X + α ∈ F4[X, θ]. Its bound
g∗ = X6 + X4 + X2 + 1 is of degree 6 < 2 · 4. Therefore from the above
matrix G obtained from the coefficients of g we can generate an ideal θ-code
(g)/(X g∗) ⊂ R/(X g∗) of length 7 whose minimum distance 4 is the best known
distance for [7, 3]4 linear codes.

2.2 Module θ-Codes

The goal of this section is to define skew codes as modules instead of ideals.
In the following we will consider left R-modules RM , where RM is an additive

group with a left scalar multiplication RM ×R → RM given by (m, r) �→ r · m.
Since R is left and right Euclidean, all left ideals of R are principal of the form
Rf and are examples of left R-modules as well as the quotients R/Rf . The fact
that R is a left and right Euclidean ring also implies a similar structure theorem
than for finitely generated abelian groups. From ([1], Theorem 3.3.6) we get:

Theorem 1. A finitely generated right R-module is isomorphic to

R/Rf1 ⊕ R/Rf2 ⊕ . . . ⊕ R/Rfs ⊕ Rr

where s and r are non negative integers and the fi are non units of R with the
property that fi is a right divisor of fi+1 for i ∈ {1, . . . , s − 1}.

In particular a left R-module is irreducible if and only if the module is isomorphic
to R/Rf where f is irreducible in R. Note that Rf ⊂ Rg if and only if g is a
right factor of f . If f = hg, then Rg/Rf is a submodule of R/Rf which is cyclic
and generated as a left R-module by g +Rf .

If f = hg ∈ R, then Rg/Rf and R/Rh are isomorphic as R-modules. For
� ∈ R the module R/R� can be identified with the set of possible remainders
of a right division by � in R and is therefore a Fq-vector space of dimension
deg(�). Therefore the left R-submodule Rg/Rf ⊂ R/Rf is a Fq-vector subspace
of dimension deg(h) = deg(f)−deg(g) of the Fq-vector space R/Rf of dimension
deg(f). Since a vector subspace of a finite dimensional Fq-vector space is a linear
code over Fq, we obtain the following generalization of ideal θ-codes (cf. [5]) :

Definition 3. Let f ∈ R be of degree n. A module θ-code C is a left R-
submodule Rg/Rf ⊂ R/Rf where g is a right divisor of f in R. Furthermore,

1. if f = Xn − c, with c ∈ Fq, we call the module θ-code corresponding to the
left R-module Rg/Rf ⊂ R/Rf a module θ-constacyclic code;

2. if f = Xn − 1, we call the module θ-code corresponding to the left module
Rg/Rf ⊂ R/Rf a module θ-cyclic code.

The length of the code is n = deg(f) and its dimension is k = deg(f) − deg(g),
we say that the code C is of type [n, k]q. If the distance of the code is d, then we
say that the code C is of type [n, k, d]q.
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As usual, we identify codewords with the list of coefficients of the remainder of
a right division by f in R. The elements of Rg/Rf are then all left multiples of
g = grX

r + · · · + g1X + g0 and are of the form⎛⎝deg(f)−deg(g)−1∑
i=0

biX
i

⎞⎠ · g

This shows that the generator matrix of the corresponding module θ-code of
length n = deg(f) is given by the matrix G in the previous section.

Note that the code is defined uniquely by the generator polynomial g whose
leading coefficient can be supposed to be one. Therefore a module θ-code of type
[n, k] = [n, n − deg(g)] is defined by the deg(g) − 1 coefficients of the monic
polynomial g, and there are qdeg(g)−1 such codes.

Since the restriction linked to the degree of the bound g∗ of g no longer exists,
there are more module θ-codes than ideal θ-codes. In particular any polynomial
g ∈ R is a right divisor of some polynomial f of degree n ≥ deg(g), so for any
g ∈ R and any n ≥ deg(g) the matrix G generates a module θ-code.

Example. The previous polynomial g = X3 + α2 X2 +αX + 1 ∈ F4[X, θ] with
bound g∗ = X6 + 1 generates, via the matrix

G =
(

1 α α2 1 0
0 1 α2 α 1

)
a [5, 2]4 module θ-code Rg/Rf over F4 where f is a left multiple of g with degree
5. This module θ-code is not an ideal θ-code and its minimum distance 4 matches
the best known distance for [5, 2]4 linear codes.

3 Distance Improvements by Using Modules versus
Ideals

The table 1 illustrates the gain of using module θ-codes instead of just ideal
θ-codes. In the table, n is the length of the module θ-codes over F4 = F2(α) and
corresponds to the degree of f . The integer r is the degree of g (therefore n− r
is the dimension of the code). An entry Cd indicates that the best known linear
[n, n − r]4 code is of minimal distance d and can be found within the family of
cyclic codes. An entry Cθd indicates that the best known linear [n, n − r]4 code
is of minimal distance d and can be found within the family of ideal θ-cyclic
codes (the entry Cθds indicates that there exists such a code which is Euclidean
self-dual). An entry θd indicates that the best known linear [n, n − r]4 code is
of minimal distance d and can be found within the family of ideal θ-codes. An
entry Md indicates that the best known linear [n, n − r]4 code is of minimal
distance d and can be found within the family of module θ-codes. A negative
entry −j indicates that the best module θ-code has a distance d − j, where d is
the distance of the best known linear [n, n − r]4 code.
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Table 1. Codes over F4 constructed using R = F4[X, θ], where id �= θ ∈ Aut(F4)

n \ r 2 3 4 5 6 7 8 9 10 11
3 M3

4 Cθ3s C4

5 −1 M4 M5

6 C2 C4 Cθ4 C6

7 θ2 θ3 θ4 M5 M7

8 C2 Cθ3 Cθ4s C
θ
5 Cθ6 C8

9 θ2 θ3 θ4 M5 M6 M7 M9

10 C2 θ3 Cθ4 Cθ5 Cθ6 θ6 θ8 C10

11 θ2 θ3 θ4 θ4 M6 M6 M7 M8 M11

12 C2 θ3 θ4 C4 Cθ6s Cθ6 Cθ7 Cθ8 Cθ9 C12

13 θ2 θ3 θ4 θ4 θ5 M6 M7 M8 M9 M10

14 C2 Cθ3 Cθ4 C4 Cθ5 Cθ6s C
θ
7 M8 M9 Cθ10

15 θ2 −1 −1 θ4 θ5 −1 −1 M8 M8 −1
16 C2 −1 −1 Cθ4 −1 −1 −1 −1 Cθ8 M9

17 θ2 −1 −1 θ4 −1 −1 −1 −1 M8 M9

18 C2 −1 θ3 θ4 −1 −1 Cθ6 −1 Cθ8 −1
19 θ2 −1 θ3 θ4 −1 −1 θ6 θ7 M8 θ8
20 C2 −1 θ3 θ4 −1 −1 θ6 Cθ7 Cθ8 Cθ8
21 θ2 −1 θ3 θ4 −1 θ5 −1 −1 θ7 θ8
22 C2 θ2 θ3 θ4 θ4 θ5 −1 Cθ6 Cθ7 C8

In the part of the table below the diagonal staircase, there is no restriction on
the generators of an ideal θ-code due to the bound. Therefore module θ-codes
will not improve ideal θ-codes in this lower part of the table.

Example. The polynomial g = X9 + αX8 +X7 +X5 + α2 X4 + αX2 +X + 1
generates a module θ-code of any length ≥ 9. As its bound is X18 +X16 +X14 +
X12 + X10 + X6 + 1, the module θ-code of length 14 generated by g is not an
ideal θ-code. Its minimum distance is 8, which is the best known distance for
[14, 5]4 linear codes. Furthermore there is no [14, 5]4 ideal θ-code reaching this
best distance. In the table this code corresponds to the entry M8 at row 14 and
column 9 = 14 − 5.

In [3,6] the BCH approach is generalized to the non-commutative case to con-
struct codes of arbitrary length and prescribed distance. In the following, we
show that this approach can be extended to the module θ-codes. The difference
with the work in [3,6] is that the use of module θ-codes allows to remove the
restriction on the length of the codes in terms of the bound of g ([5], Definition
9). We get the following definition derived from definition 5 of [6]:
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Definition 4. Let θ ∈ Aut(Fq) be given by a �→ aq0 , δ be a positive integer,
q = qt0 and β belong to a field extension Fqs

0
of Fq = Fqt

0
. A BCH module θ-

code over Fq with parameters δ and β of length n is a module θ-code of length
n generated by the monic skew polynomial g ∈ Fq[X, θ] of smallest degree such
that g is right divisible in Fqs

0
[X, θ] by X − βi for i ∈ {0, . . . , δ − 1}.

For the construction of the generator polynomial g of a BCH module θ-code we
can use the algorithm given in [6] Section 4. The decoding algorithm described
in [3,6] also allows to decode skew BCH module codes. The proof of Proposition
2 of [6] can be adapted word for word in order to obtain

Proposition 1. Let C be a BCH module θ-code with the notations of the above
definition. If n ≤ (q0−1)·s and β is of order qs0 −1 then C has minimum distance
at least δ.

The next proposition improves the previous one for codes defined over Fq = F2t ,
showing that β does not need to be a generator of the field extension F2s :

Proposition 2. Let C be a BCH module θ-code with the notations of definition
(cf. 4) and q0 = 2. If the order of β is at least 2n − 1 then C has a minimum
distance at least δ.

Proof. Let m be the order of β. Following the proof of proposition 2 of [6] or
the proposition 2 of [3], the minimum distance of C is at least δ if and only if for
all j < i < n, β(2i−2j)/(2−1) �= 1. Let us assume β2i−2j

= 1, then the order m of
β divides 2i − 2j ; as m divides 2s − 1, it cannot divide 2j , so there exists l < n
such that m divides 2l − 1. As l < n we get m < 2n − 1. So if m ≥ 2n − 1 then
the minimum distance of C is at least δ.

The following examples show that there are more BCH module θ-codes than
BCH ideal θ-codes.

Example. Using modules we construct a [10, 4, 6]4 BCH module θ-code (best
possible distance). This code is obtained using the element β = a11 ∈ F212 of
order 212 − 1 (where a is a generator of the multiplicative group of F212 used
by Magma) by imposing a distance 2. The resulting generator polynomial is
g = X6 +α2X5 +αX4 +αX2 +X +α2 (where F4 = F2(α)). The bound of g is
g∗ = X12 +1, showing that the smallest length of an ideal θ-code with generator
polynomial g is 12. This code improves the BCH ideal θ-codes as there exists no
[10, 4] BCH ideal θ-code constructed from F212 ([6]).

Example. Using modules we construct the module θ-codes [8, 3, 5]4 and [8, 2, 6]4
respectively (best possible distances) obtained from F212 = F2(a) (where a is a
generator of the multiplicative group of F212 used by Magma) by imposing a
distance 2. No code with such length and dimension can be constructed using
ideal θ-codes ([6])

1. In order to construct a [8, 3, 5]4 module θ-code we used β = a25 ∈ F212 of
order 819 �= 212−1, 819 ≥ 28−1 to obtain g = X5+α2X4+α2X2+αX+α2 ∈
F4[X, θ] whose bound is g∗ = X10 +X8 +X6 +X4 +X2 + 1.
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2. In order to construct a [8, 2, 6]4 module θ-code, we used β = a ∈ F212 to
obtain g = X6 + X5 + α2X4 + X3 + αX2 + α2X + α2 ∈ F4[X, θ] whose
bound is g∗ = X12 + 1.

4 Self-dual Module θ-Codes

The Euclidean and Hermitian dual of an ideal θ-cyclic code (g)/(Xn − 1) is
an ideal θ-cyclic code whose generator polynomial is determined by the factor
h in the decomposition Xn − 1 = hg = gh (cf. [5]). This allowed us in [5] to
characterize self-dual codes by polynomial equations satisfied by the coefficients
of g. However, if an ideal θ-code is not θ-cyclic then its dual may not be an ideal
θ-code and until now we were not able to characterize those ideal θ-central codes
who are not ideal θ-cyclic and whose duals are ideal θ-central codes.

In the following we give a characterization of the module θ-codes whose duals
are module θ-codes for the Euclidean and Hermitian scalar products. It enables
us to characterize those ideal θ-central codes whose duals are ideal θ-central
codes. We also conjecture that a self-dual θ-code is necessarily a module θ-
constacyclic code and prove this conjecture for the Euclidean scalar product
under some assumptions and for the Hermitian scalar product. In particular,
the self-dual module θ-codes are not necessarily ideal θ-codes.

Like in [5] we derive polynomial equations which characterize self-dual mod-
ule θ-codes for both scalar products. Thanks to a refinement in the resolution of
these polynomial equations we were able to find new [56, 28, 15]4, [60, 30, 16]4,
[62, 31, 17]4, [66, 33, 17]4 Euclidean self-dual codes and new [50, 25, 14]4,
[58, 29, 16]4 Hermitian self-dual codes which improve the best previously known
distances for these codes. It turns out that all these codes are ideal θ-cyclic codes.

4.1 Dual for the Euclidean Scalar Product

The Euclidean dual C⊥ of a code C of Fqn is the set of words which are or-
thogonal to the code’s words relatively to the Euclidean scalar product. We
characterize those module θ-codes whose duals are module θ-codes, extending
the corresponding result of [5] for ideal θ-cyclic codes.

In the following we will assume that the constant term of the generator poly-
nomial g is �= 0. This is not a strong restriction since if g is right divisible by
Xs, then the resulting ideal θ-code has s coordinates which are always zeros and
the resulting code is of little interest if s > 0 (cf. [5], Proposition 13).

Theorem 2 : Euclidean dual of a module θ-code. Let k ≤ n be integers,
g ∈ Fq[X, θ] of degree n − k with constant term �= 0 and C be the module θ-
code of length n generated by g.The Euclidean dual C⊥ of C is a module θ-code
generated by a polynomial of degree k with constant term �= 0 if and only if there
exist h̄ ∈ Fq[X, θ] and c in Fq − {0} such that g h̄ = Xn − c (here g is on the
left).

In this case the generator polynomial of C⊥ is given by : g⊥ =
∑k

i=0 θ
i(h̄k−i)X i

and g⊥ is a left divisor of Xn − θk−n
( 1
c

)
∈ Fq[X, θ].
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Note: In the examples we will test the existence of the above h̄ ∈ Fq[X, θ] and c
in Fq − {0} by verifying that the remainder of the left division of Xn ∈ Fq[X, θ]
by g is a non zero constant.

Proof. Suppose that Xn − gh̄ = c �= 0 in Fq[X, θ] and define g⊥ :=
∑k

i=0
θi(h̄k−i)X i. As g0h̄0 = c �= 0 and g0 �= 0, we must have h̄0 �= 0. Therefore g⊥

is a polynomial of degree k and generates a module θ-code C̃ of length n and
dimension n − k. We now prove that C̃ = C⊥ by showing that the words of C
and C̃ are orthogonal:

For i0 ∈ {0, . . . , k − 1}, i1 ∈ {0, . . . , n − k − 1} we have < X i0g,X i1g⊥ >

= <

n−k∑
i=0

θi0 (gi)X i+i0 ,

k∑
i=0

θi1(θi(h̄k−i))X i+i1 >

= <

n−k∑
i=0

θi0 (gi)X i+i0 ,

i1−i0+k∑
i=i1−i0

θi+i0 (h̄k−i+i1−i0)X
i+i0 >

=
min(n−k,i1−i0+k)∑
i=max(0,i1−i0)

θi0(gi)θi+i0 (h̄k−i+i1−i0)

= θi0

⎛⎝ min(n−k,l)∑
i=max(0,l−k)

giθ
i(h̄l−i)

⎞⎠ (where l = k + i1 − i0 ∈ {1, . . . , n − 1})

= θi0 ((gh̄)l) (here (gh̄)l denotes the coefficient of X l in gh̄)
= 0 (because gh̄ = Xn − c)

Conversely, suppose that C⊥ is a module θ-code generated by a polynomial g̃
with constant term �= 0. Define h̄ as h̄ =

∑k
i=0 θ

i−k(g̃k−i)X i ∈ Fq[X, θ]. Since
the constant term of g̃ is �= 0, the polynomial h̄ is of degree k. Then for all
i0 ∈ {0, . . . , k}, i1 ∈ {0, . . . , n − k},

0 = < X i0g,X i1 g̃ >

= <

n−k∑
i=0

θi0(gi)X i+i0 ,

k∑
i=0

θi1(g̃i)X i+i1 >

= <

n−k∑
i=0

θi0(gi)X i+i0 ,

k+i1−i0∑
i=i1−i0

θi1 (g̃i−i1+i0)X
i+i0 >

=
min(n−k,i1−i0+k)∑
i=max(0,i1−i0)

θi0 (gi)θi1 (g̃i−i1+i0)

So for all l ∈ {1, . . . , n − 1} (l = i1 − i0 + k)

0 = θi0

⎛⎝ min(n−k,l)∑
i=max(0,l−k)

giθ
l−k(g̃i+k−l)

⎞⎠ = θi0

⎛⎝ min(n−k,l)∑
i=max(0,l−k)

giθ
i(h̄l−i)

⎞⎠
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0 =
min(n−k,l)∑
i=max(0,l−k)

giθ
i(h̄l−i) (the coefficient of X l in gh̄)

This shows that gh̄ is of the form Xn−c with c ∈ Fq. Since g0h̄0 = g0θ
−k(g̃k) �= 0

we have c �= 0.
For the last assertion, denote Fq(X, θ) the right field of fractions of Fq[X, θ]

and X−1 the inverse of X . We have aX−1 = X−1θ(a) and
∑n

i=0 aiX
i �→∑n

i=0 X
−iai is an anti-morphism of Fq(X, θ) (cf. proof of Lemma 17 in [5]).

If gh̄ = Xn − c then

Xkϕ(h̄)ϕ(g)Xn−k = Xk(1/Xn − c)Xn−k = 1 − θk(c)Xn ∈ Fq[X, θ].

As g⊥ = Xkϕ(h̄), we obtain that g⊥ is a left divisor of 1 − θk(c)Xn ∈ Fq[X, θ]
so it is a left divisor of −(1 − θk(c)Xn)θ−n+k(1

c ) = Xn − θk−n(1
c ).

When a module θ-code is generated by a polynomial satisfying the conditions
of the theorem, one can deduce a nice expression for the parity check matrix of
the code.

Corollary 1 : Parity check matrix. Let k ≤ n be integers, let g ∈ Fq[X, θ]
be of degree n − k with constant term �= 0 . If there exist c ∈ Fq − {0} and
h̄ ∈ Fq[X, θ] such that gh̄ = Xn − c, then the parity check matrix of the module
θ-code C of length n generated by g is:

H =

⎛⎜⎜⎜⎜⎜⎜⎝

h̄k . . . θk−1(h̄1) θk(h̄0) 0 . . . 0
0 θ(h̄k) . . . . . . θk+1(h̄0) . . . 0

0
. . . . . . . . .

...
...

. . . . . . . . .
. . . 0

0 . . . 0 θn−k−1(h̄k) . . . θn−2(h̄1) θn−1(h̄0)

⎞⎟⎟⎟⎟⎟⎟⎠
Proof. The parity check matrix of C is the matrix of the dual C⊥. As g satisfies
the conditions of theorem 2, C⊥ is a module θ-code with generator polynomial
h̄k + · · · + θk−1(h̄1)Xk−1 + θk(h̄0)Xk.

Example

1. Consider the polynomial g = X2 + αX + 1 ∈ F4[X, θ], where F4 = F2(α).
Since X3 − g(X + α) = α �= 0 (the remainder of the left division of X3 by g
is a constant �= 0), the proposition shows that the dual of the [3, 1]4 module
θ-code C generated by g is a module θ-code generated by g⊥ = 1 + α2 X .
The parity check matrix of C is:

H =
(

1 α2 0
0 1 α

)
2. Consider the polynomial g = X4 + α3 ∈ F8[X, θ], where F8 = F2(α), α3 +

α+1 = 0 and θ is the Frobenius automorphism. The polynomial g generates
a [8, 4]8 module θ-code C which is not an ideal θ-code as the degree of its
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bound, X12 + 1, is greater than 8. Since X8 − g(X4 +α5) = α �= 0, the dual
of the code C is a module θ-code generated by : 1 + θ4(α5)X4 = 1 + α3X4

and the parity check matrix of C is deduced from it.

In [5], we prove that the dual of an ideal θ-cyclic code is θ-cyclic. Using the
previous theorem, we will now extend this result to ideal θ-constacyclic code (see
also [4], Theorem 4.4 for skew codes defined as quotient ideals of GR(4, 2)[X, θ]).
In the proof we use that for a central element Xn − c the right factor g in
hg = Xn − c also give a left factor gh = Xn − c as needed in the theorem :

Corollary 2 : Euclidean dual of an ideal θ-cyclic code. The dual code of
an ideal θ-constacyclic code (with constant term of the generator �= 0) is an ideal
θ-constacyclic code.

Proof. The generator polynomial g of an ideal θ-constacyclic code of length n
is a right divisor of Xn − c ∈ R = Fq[X, θ], where c ∈ Fθq and n is a multiple of
the order of θ. Since Xn − c belongs to the center of R, the polynomial g is also
a left divisor of Xn− c ∈ R. According to theorem 2, the code C⊥ is a module θ-
code whose generator polynomial g⊥ is a left divisor of Xn−θk−n(1

c ) = Xn− 1
c .

Since Xn−1/c belongs to the center of R, g⊥ is also a right divisor of Xn−1/c.
The central polynomial Xn − 1

c generates a two-sided ideal of R, showing that
C⊥ is an ideal θ-constacyclic code.

The dual of an ideal θ-central code is not always an ideal θ-central code (examples
5 and 20 of [5]). The above proposition allows to characterize the ideal θ-central
codes whose duals are again θ-central codes.

Corollary 3 : Euclidean dual of an ideal θ-central code. Let k ≤ n be
integers, let C be an ideal θ-central code of length n generated by a polynomial g
of degree n− k and constant term �= 0. The code C⊥ is an ideal θ-central code if
and only if

1. ∃h̄ ∈ Fq[X, θ] and a non zero constant c such that Xn − c = gh̄ (here g is a
left factor and c may not belong to Fθq);

2. the degree of the bound (g⊥)∗ of g⊥ =
∑k

i=0 θ
i(h̄k−i)X i is ≤ n.

In this case the ideal θ-central code C⊥ is generated by g⊥.

Proof. A module θ-code with generator g⊥ and length n is a central θ-code if
and only if the degree of the bound of g⊥ is ≤ n. The result now follows from
theorem 2.

Example

1. The polynomial g = X3 +X2+X+α ∈ F4[X, θ] generates an ideal θ-central
code (which is not θ-cyclic) of length 12 (examples 5 and 20 in [5]). Since the
remainder X2 + α2X + α of the left division of X12 by g is not a constant,
the code C⊥ is not a module θ-code and therefore also not an ideal θ-central
code.
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2. The polynomial g = X2 + α ∈ F4[X, θ] generates a module θ-code C of
length 4. The bound of g is g∗ = X4 + X2 + 1, showing that this code is
an ideal θ-central code which is not θ-cyclic. Since the remainder α2 of the
left (and right in this case) division of X4 by g is a non zero constant, the
above proposition shows that the dual code is a module θ-code generated by
g⊥ = X2 +α2. As the bound of g⊥ is X4 +X2 +1 is of degree ≤ 4, the code
C⊥ is an ideal θ-central code.

3. The polynomial g = X2 + α ∈ F4[X, θ] also generates an ideal θ-central
code of length 8 which is not θ-cyclic. Since the remainder α of the left
(and right in this case) division of X8 by g is a non zero constant, the
above proposition shows that the dual code is a module θ-code generated by
g⊥ = X6+α2 X4+αX2+1. As the bound of g⊥ = X12+X10+X6+X2+1 is
of degree > 8, the code C⊥ is a module θ-code which is not an ideal θ-central
code.

A code is said to be self-dual if it is equal to its dual. Following [5], we characterize
Euclidean self-dual module θ-codes with a system of polynomial equations.

Corollary 4 : Euclidean self-dual module θ-codes. Let k be an integer and
g =

∑k
i=0 giX

i ∈ Fq[X, θ] be monic of degree k and g0 �= 0. Denote C the module
θ-code of length 2k generated by g. The code C is Euclidean self-dual if and only
if

∀l ∈ {1, . . . , k},
l∑
i=0

θk−l(gi) gi+k−l = 0 (1)

Proof. The module θ-code C is self-dual if, and only if, C⊥ is a module θ-code
whose (monic) generator polynomial g⊥ is equal to g. According to theorem
2, C⊥ is a module θ-code if and only if there exist c ∈ Fq − {0} and h̄ ∈
Fq[X, θ] such that gh̄ = X2k − c and its (monic) generator polynomial is g⊥ =∑k

i=0 θ
i(h̄k−i)/θk(h̄0)X i. So the code C is self-dual if, and only if, there exist h̄

and c such that gh̄ = X2k − c where ∀i ∈ {0, . . . , k}, θi(h̄k−i)/θk(h̄0) = gi i.e.
h̄i = θi(c/g0) θi−k(gk−i). This is equivalent to :

∃c ∈ Fq − {0},
(

k∑
i=0

giX
i

)(
k∑
i=0

θi
(
c

g0

)
θi−k(gk−i)X i

)
= X2k − c

⇔ ∀l ∈ {1, . . . , 2k − 1},
∑min(k,l)

i=max(0,l−k) giθ
i
(
θl−i

(
c
g0

)
θl−i−k(gk−l+i)

)
= 0

⇔ ∀l ∈ {1, . . . , 2k − 1},
∑min(k,l)

i=max(0,l−k) giθ
l
(
c
g0

)
θl−k(gk−l+i) = 0

⇔ ∀l ∈ {1, . . . , 2k − 1},
min(k,l)∑

i=max(0,l−k)
θk(gi) θl(gi−(l−k)) = 0

To conclude, it suffices to notice a symmetry in this system of equations, which
enables to consider only the k first equations.
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Example. Over F4 the (Euclidean) self-dual module θ-codes of length 4 are
generated by the polynomials X2+g1X+g0 where g0 and g1 satisfy the equations{

θ(g0)g1 + θ(g1) = 0
g2
0 + g2

1 + 1 = 0

i.e. g1(g2
0+g1) = 0 and g2

0+g2
1 = 1. We get three polynomialsX2+1,X2+α2X+α

and X2 + αX + α2. It turns out that the codes they generate are ideal θ-cyclic
codes.

In [5] we computed self-dual ideal θ-codes over F4 with length ≤ 40 using Groeb-
ner bases. Thanks to a further simplification of the system (1) and, following a
suggestion of F. Chyzak and B. Salvy, an exhaustive search instead of Gröbner
bases, we could perform the computation of Euclidean self-dual codes over F4 of
length ≤ 66. We found two non equivalent (with respect to the monomial action)
Euclidean self-dual [56, 28, 15]4 codes which improve the best known distance (14,
[7]) for self-dual codes of this length over F4; five non equivalent (with respect
to the monomial action) Euclidean self-dual [60, 30, 16]4 codes (improving the
previous distance 15); one (up to equivalence with respect to the monomial ac-
tion) Euclidean self-dual [62, 31, 17]4 code (improving the distance 16) and one
(up to equivalence with respect to the monomial action) [66, 33, 17]4 Euclidean
self-dual code (improving the distance 16). We give a generator polynomial for
each of these cases in the table 2.

It turns out that all these Euclidean self-dual module θ-codes we have com-
puted are ideal θ-cyclic codes and that we found no self-dual module θ-code
which is not θ-constacyclic . We conjecture that an Euclidean self-dual module

Table 2. Euclidean self-dual module codes over F4 of lengths > 40 improving minimum
distances

Length A generator polynomial Minimum Number
Distance of codes

X28 + X26 + α X24 + α2 X22 + α X21 + X20 + X19+
56 α2 X18 + α X17 + α2 X16 + α X15 + X13 + α2 X12 + X11+ 15 2

α2 X10 + α X9 + α X8 + X7 + α2 X6 + X4 + α X2 + α

X30 + X29 + α X28 + α X27 + X26 + X25 + X23 + X22+
60 X21 + α2 X20 + X16 + X15 + X14 + α X10+ 16 5

X9 + X8 + X7 + X5 + X4 + α2 X3 + α2 X2 + X + 1

X31 + X29 + α X27 + α X26 + α X25 + α2 X24 + X23+
62 α2 X21 + α X20 + α X18 + α X17 + α X16 + α X15+ 17 1

α X14 + α X13 + α X11 + α2 X10 + X8 + α2 X7+
α X6 + α X5 + α X4 + X2 + 1

X33 + X31 + α2 X29 + α2 X27 + X25 + X24+
66 X23 + α X20 + X19 + X18 + X17 + X16 + X15 + X14+ 17 1

α X13 + X10 + X9 + X8 + α2 X6 + α2 X4 + X2 + 1
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θ-code is a module θ-constacyclic code and prove this conjecture below when the
order of θ divides the length of the code.

Proposition 3. Let θ be an automorphism of order m of Fq. Let C be an Eu-
clidean self-dual module θ-code over Fq generated by a polynomial g of degree k
with constant term �= 0. If the length 2k of C is a multiple of m then C is an
ideal θ-constacyclic code (g)/(X2k − c) with c ∈ {−1, 1}.

Over F4 all Euclidean self-dual module θ-codes are ideal θ-constacyclic codes.

Proof. Let the polynomial g of degree k be the generator of the Euclidean self-
dual module θ-code C. According to theorem 2, there exist a constant c �= 0 and
a polynomial h̄ ∈ R such that gh̄ = X2k − c. Since X2k belongs to the center of
R we obtain from (gh̄)g = X2kg − cg that g(X2k − h̄g) = cg. We deduce that g
is a left divisor of cg, showing that cg = gc̃ for some c̃ ∈ Fq. Since the constant
term of g is �= 0, comparing the constant terms on both sides shows that c = c̃
and we obtain cg = gc. Therefore ∀i ∈ {0, . . . , k} we have c gi = giθ

i(c) and as
g has degree k we get θk(c) = c.

From theorem 2 we obtain that the polynomial g⊥ is a left divisor of X2k −
θk−2k(1/c) = X2k − θ−k(1/c). Since C is Euclidean self-dual, the polynomial g⊥

is equal to θk(h̄0)g. As X2k − θ−k(1/c) commutes with θk(h̄0) we get that g is
a left divisor of X2k − θ−k(1/c). Since g is also a left divisor of X2k − c, the
polynomial g is a left divisor of the difference of the two polynomials θ−k(1

c ) − c
which must therefore be zero. As θk(c) = c, we get θ−k(1

c ) − θk(c) = 0 and as
the order of θ divides 2k, we deduce from this equality that c = 1

c and in the
finite field Fq we obtain c = 1 or −1.

Therefore g is a left and right divisor of the central polynomial X2k − c with
θ(c) = c ∈ {−1, 1}, which implies that C is an ideal θ-constacyclic code.

Lastly, over F4, m = 2 divides the length 2k of the code, which implies the
result.

Example. Over F9 = F3(α) with α2 −α−1 = 0 and θ : a �→ a3 the (Euclidean)
self-dual module θ-codes of length 12 are generated by the polynomials X6 +
g5X

5 + · · · + g1X + g0 where g0, . . . , g5 satisfy the equations⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

g3
0 g5 + g3

1 = 0
g0 g4 + g1 g5 + g2 = 0
g3
0 g3 + g3

1 g4 + g3
2 g5 + g3

3 = 0
g0 g2 + g1 g3 + g2 g4 + g3 g5 + g4 = 0
g3
0 g1 + g3

1 g2 + g3
2 g3 + g3

3 g4 + g3
4 g5 + g3

5 = 0
g2
0 + g2

1 + g2
2 + g2

3 + g2
4 + g2

5 + 1 = 0

Solving the corresponding polynomial system, we find 40 solutions in F9
6; one

of these gives the polynomial X6 + 2X5 + α3X4 + α2X3 + αX2 +X + 1 which
divides on the right the polynomial X12 + 1. It generates an Euclidean self-dual
[12, 6, 6]9 ideal θ-constacyclic code.

We conjecture that an Euclidean self-dual module θ-code of length 2k is always
a module (not ideal) θ-constacyclic code (g)/(X2k − c) with c2 = 1 when the
order of θ does not divide 2k. Here is an example over F16.
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Example. Over F16[X, θ] with F16 = F2(α) where α4 +α+ 1 = 0 and with the
Frobenius automorphism θ : a �→ a2 of order 4, the Euclidean self-dual module
θ-codes of length 10 are generated by the polynomials

X5 + α10 X4 + α10 X3 + α10 X2 + α10 X + 1,
X5 + α5 X4 + α5 X3 + α5 X2 + α5 X + 1,
X5 +X4 + α10 X3 + α10 X2 +X + 1,
X5 +X4 + α5 X3 + α5 X2 +X + 1,
X5 + 1

These polynomials all divide X10 − 1 on the right, so the module θ-codes they
generate are module θ-constacyclic codes. They are not ideal θ-codes because
the order of θ does not divide the length of the code.

In the next section, we consider Hermitian duals of module θ-codes. We will see
that they all are θ-constacyclic but that there exist Hermitian self-dual module
θ-codes over F4 which are not ideal θ-constacyclic.

4.2 Dual for the Hermitian Scalar Product

Let q be an even power of a prime number and let θ be the automorphism of
order 2 over Fq: a �→ a

√
q. The Hermitian scalar product is defined over Fqn by

∀x, y ∈ Fqn, < x, y >H=
n∑
i=1

xi · θ(yi), i.e. < x, y >H=< x, θ(y) > .

The Hermitian dual of a code of Fqn is the set of words which are orthogonal to
the code’s words relatively to the Hermitian scalar product.

Proposition 4 : Hermitian dual of a module θ-code. Let k ≤ n be integers,
g ∈ Fq[X, θ] of degree n− k with constant term �= 0 and C be the module θ-code
of length n generated by g. The Hermitian dual CH of C is a module θ-code
generated by a polynomial of degree k with constant term �= 0 if and only if there
exist h̄ ∈ Fq[X, θ] and c in Fq − {0} such that g h̄ = Xn − c (here g is on the
left).

In this case the generator polynomial of CH is given by :

gH =
k∑
i=0

θi+1(h̄k−i)X i = φ(g⊥)

where φ(
∑n

i=0 aiX
i) =

∑n
i=0 θ(ai)X

i. Lastly, gH divides the polynomial Xn −
θk−n+1(1/c) on the left.

Proof. The proof follows from the theorem 2 using that ∀i0 ∈ {0, . . . , k},
∀i1 ∈ {0, . . . , n − k},

< X i0g,X i1gH >H=< X i0g,X i1φ(gH) >=< X i0g,X i1g⊥ >
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Corollary 5 : Hermitian self-dual module θ-codes. Let k ∈ N and g ∈
Fq[X, θ] be a monic polynomial of degree k and constant term �= 0. Let C be the
module θ-code of length 2k generated by g. The code C is Hermitian self-dual if,
and only if,

∀l ∈ {1, . . . , k},
l∑
i=0

θk−l−1(gi) gi+k−l = 0 (2)

Proof. We use the same techniques as in the lemma for Euclidean self-dual
codes.

Example. Over F4 the (Hermitian) self-dual module θ-codes of length 4 are
generated by the polynomials X2+g1X+g0 where g0 and g1 satisfy the equations{

g0g1 + g1 = 0
g0 θ(g0) + g1 θ(g1) + 1 = 0

i.e g1(g0 +1) = 0 and g3
0 + g3

1 = 1. We get three polynomials X2 +1, X2 +α and
X2 + α2. The bound of the polynomials X2 + α and X2 + α2 is X4 + X2 + 1,
so these two polynomials generate Hermitian self-dual central θ-codes which are
not ideal θ-cyclic. One can notice that the remainder in the left division of X4

by X2 + α (resp. X2 + α2) is equal to α2 (resp. α).

Like for the Euclidean scalar product, using the corollary 5, we constructed all
Hermitian self-dual module θ-codes of length ≤ 66. We found 14 (up to equiva-
lence with respect to the monomial action) new [50, 25, 14]4 Hermitian self-dual
codes, which improve the best known distance (12) by 2 and 20 (up to equiv-
alence with respect to the monomial action) new [58, 29, 16]4 codes which also
improve the best distance (14) by 2 (see table 3).

Table 3. Hermitian self-dual module codes over F4 of lengths > 40 improving minimum
distances

Length A generator polynomial Minimum Number
Distance of codes

X25 + X21 + α X20 + X19 + α2 X17 + α X16+
50 α X15 + α2 X14 + X11 + α X10 + α X9+ 14 14

X8 + α2 X6 + α X5 + α2 X4 + α2

X29 + X25 + α X24 + X23 + α2 X21 + α2 X19+
58 α X18 + X17 + α2 X16 + X13 + α2 X12 + α X11 + X10+ 16 20

X8 + α2 X6 + α X5 + α2 X4 + α2

It turns out that all these new codes are ideal θ-cyclic, however there exist
Hermitian self-dual module θ-codes over F4 which are not ideal θ-constacyclic.
The following lemma enables to give a more accurate description of Hermitian
self-dual module θ-codes.
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Lemma 1. Let C be a Hermitian self-dual module θ-code with generator poly-
nomial g of degree k and constant term �= 0. Then

– C is a module θ-constacyclic code : there exist a non zero constant c and
h ∈ Fq[X, θ] such that gh = X2k − c = hg;

– if k is odd then C is an ideal θ-constacyclic code with c2 = 1;
– if k is even then θ(c) c = 1 and all odd terms of g cancel.

Proof. Let us assume that C is a Hermitian self-dual module θ-code of length
2k and let g be its generator polynomial. Then there exist c in Fq − {0} and h̄
in Fq[X, θ] such that gh̄ = X2k − c. So (gh̄)g = X2kg − cg = gX2k − cg because
X2k is in the center of Fq[X, θ]. We deduce from this that g divides cg on the
left and as g0 �= 0, we get gc = cg. So g(h̄g) = gX2k − gc and h̄g = X2k − c.

The polynomial gH divides on the left X2k−θk+1(1/c) and as the leading term
θk+1(h̄0) of gH commutes with X2k, the polynomial 1/θk+1(h̄0)gH divides also
X2k − θk+1(1/c). Therefore g and 1/θk+1(h̄0)gH are both monic and generate
the same code, they must be equal. So X2k − c = X2k − θk+1(1/c) and if k is
odd c = 1/c; if k is even, c = θ(1/c).

Lastly, as gh̄ = h̄g = X2k − c, we have (X2k − c)g = g(X2k − c) so ∀i ∈
{0, . . . , k}, (c − θi(c)) gi = 0. For odd integers i, we get (c − θ(c)) gi = 0. So if
θ(c) �= c then all odd terms of g cancel.

The last point of this lemma implies that any Hermitian self-dual module θ-
code which is not an ideal θ-constacylic code (i.e. θ(c) �= c) has a generator
polynomial which is quite ”sparse”. The minimum distances of these codes are
worse than the minimum distances of the self-dual θ-constacyclic codes previ-
ously obtained in [5]. This may be explained by the ”sparsity” of this generator
polynomial.

Example. There are six Hermitian self-dual module θ-codes over F4 of length
20 which are central but not θ-cyclic. They give two non equivalent Hermitian
self-dual module θ-codes over F4. The polynomial X10 + α2 divides on the left
and on the right X20−α and its bound is X20+X10+1. It generates a [20, 10, 2]4
Hermitian self-dual module θ-code which is θ-central and not θ-cyclic. The poly-
nomial X10 + αX8 + X6 + αX4 + αX2 + α2 also divides on the left and on
the right X20 − α and its bound is X20 + X18 + X16 + X8 + X6 + X2 + 1.
It generates an [20, 10, 4]4 Hermitian self-dual module θ-code which is θ-central
and not θ-cyclic. The best distance for ideal θ-cyclic codes of the same length is
6 ([5]). One can notice the sparsity of these generator polynomials which may
explain the bad distances of the codes they generate.

Acknowledgments. We would like to thank Bas Edixhoven and Antoine
Chambert-Loir for suggesting the use of modules for skew codes and Frédéric
Chyzak and Bruno Salvy for suggesting an exhaustive search instead of Gröbner
Bases in order to compute self-dual codes.
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Abstract. Several open questions in coding theory relate to non-
existence or construction of certain optimal codes. Many previous
problems of this kind have been solved by studying possible weight enu-
merators. A couple of authors in this decade have proposed using higher
weights (generalised Hamming weights) to a similar effect. In this paper
we suggest one approach based on the weight hierarchy, and it allows
us to conduct an extremely rapid computer search to prove that there
are exactly two inequivalent [36, 8, 16] codes. The technique can also be
used to gain new information about the weight hierarchy of the putative
[72, 36, 16] code, but not yet enough to say if it exists or not.

1 Introduction

Higher Weights, that is, parameters describing the support weight of subcodes
of dimension higher than one, was a very hot topic during the 1990-s. Helleseth,
Kløve, and Mykkeltveit [6] had already in 1977 introduced the support weight
distributions. From the support weight distribution for a single binary code, they
could determine the weight distribution for an infinite class of non-binary codes.

Victor Wei [13] introduced the weight hierarchy, that is, the sequence of min-
imal support weights of any r-dimensional subcode, which he used to analyse
information-theoretic security on the Wire-Tap Channel of Type II [10].

Later it has been suggested to use higher weights to limit searches for putative
optimal codes. Dougherty, Gulliver, and Oura [4] showed that the second support
weight distribution of the putative [72, 36, 16] code could be calculated by using
the MacWilliams-Kløve-Simonis identities [7,12]. Another work [11] found a way
to calculate some of the high-order support weight distributions for this code.

More recently Luo, Mitrpant, Han Vinck, and Chen [8] introduced the concept
of relative generalised Hamming weights. Their application was analysis of a
two-party Wire-Tap Channel of Type II, and the work has drawn little attention
in the subsequent literature. Could it help us solve some of the long-standing
problems in coding theory?

In the present paper, we discuss the idea of using the weight hieararchy to
constrain code searches. We show that the weight hierarchy of any [36, 8, 16]
code can be uniquely determined, and that this gives us enough information to
run an exhaustive search in less than 2 minutes.

M.G. Parker (Ed.): Cryptography and Coding 2009, LNCS 5921, pp. 56–64, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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2 Preliminaries

For any vector c = (c1, . . . , cn) ∈ Fn (where F is a field), the support of c is
defined as

χ(c) = {i : ci �= 0}.

The (support) weight of c is w(c) = #χ(c). For a set D ⊂ Fn, the support is
defined as

χ(D) = ∪c∈Dχ(c),

and the (support) weight, as before, is w(D) = #χ(D).
Let C be an [n, k] code over F . The weight hierarchy (d1, d2, . . . , dk) is defined

by
di = min

D≤C,dimD=i
w(D),

i.e. di is the minimal weight of an i-dimensional subcode. Clearly, d1 = d is the
regular minimal distance, and d0 = 0 for completeness.

The support weight distribution is the set of parametersA(r)
i for r = 0, 1, . . . , k

and i = 0, 1, . . . , n, where A(r)
i is the number of r-dimensional subcodes D ≤ C

of weight w(D) = i. Like the traditional weigh enumerator, we can form support
weight enumerators

Wr(Z) =
n∑
i=0

A
(r)
i Zi.

Obviosuly the weight enumerator W (Z) is W (Z) = W1(Z) + 1.
Two binary codes are said to be equivalent if one can be obtained from the

other by a combination of permutations of the columns (coordinate positions).

3 The [36, 8, 16] Code

The first binary [36, 8, 16] code was discovered by Helleseth and Ytrehus [2], using
a computer search detailed in [15]. It had been a long-standing open question
whether the optimal minimal distance for a [36, 8] code would be 15 or 16. An
exhaustive search was not feasible, and until now, it has not been known whether
the code they found is unique. Our technique gives us the following proposition
in few minutes on any personal computer.

Proposition 1. There are exactly two distinct [36, 8, 16] codes up to equivalence.

3.1 The Weight Hiearchy

Lemma 1 (Ytrehus). Every binary [36, 8, 16] code has weight enumerator

A(Z) = 1 + 153Z16 + 72Z20 + 30Z24.
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The weight enumerator was found in [15], showing clearly that the code is doubly-
even and consequently self-orthogonal.

Using the MacWilliams-Kløve-Simonis identities [7,12], and using the gener-
alised Griesmer bound to fix some zero coefficients for small weights, we can get
most of the coefficients in the support weight distribution as well, as seen in
Tables 1 and 2.

Table 1. The second through the fourth support weight distribution of a [36, 8, 16]
binary code

A
(2)
24 = 2420 + A

(2)
36

A
(2)
26 = 3228 − 6A

(2)
36

A
(2)
28 = 2640 + 15A

(2)
36

A
(2)
30 = −20A

(2)
36 + 1832

A
(2)
32 = 615 + 15A

(2)
36

A
(2)
34 = 60 − 6A

(2)
36

A
(2)
36 = A

(2)
36

A
(3)
28 = A

(3)
28

A
(3)
29 = 48A

(2)
36 + 36240 − 8A

(3)
28

A
(3)
30 = 28A

(3)
28 − 288A

(2)
36 − 77040

A
(3)
31 = 720A

(2)
36 + 203184 − 56A

(3)
28

A
(3)
32 = 70A

(3)
28 − 960A

(2)
36 − 213645

A
(3)
33 = 720A

(2)
36 + 201840 − 56A

(3)
28

A
(3)
34 = 28A

(3)
28 − 288A

(2)
36 − 82080

A
(3)
35 = −8A

(3)
28 + 48A

(2)
36 + 31056

A
(3)
36 = A

(3)
28 − 2400

A
(4)
30 = 320 + 4A

(2)
36

A
(4)
31 = 7008 − 24A

(2)
36

A
(4)
32 = 25815 + 60A

(2)
36

A
(4)
33 = 41600 − 80A

(2)
36

A
(4)
34 = 55560 + 60A

(2)
36

A
(4)
35 = 49056 − 24A

(2)
36

A
(4)
36 = 21428 + 4A

(2)
36
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Table 2. The fifth through the eighth support weight distribution for a [36, 8, 16]
binary code are uniquely determined by the MacWilliams-Kløve identities

5 6 7 8
32 225 — — —
33 6240 — — —
34 19620 630 — —
35 37152 3312 36 —
36 33918 6853 219 1

Lemma 2. Every binary [36, 8, 16] code has weight hierarchy

(16, 24, 28, 30, 32, 34, 35, 36).

Proof. Note in particular that A(2)
24 and A(4)

30 are positive, so d2 = 24 and d4 = 30.
It follows from the generalised Griesmer bound that d3 = 28.

The values for d5, d6, d7, and d8 may be read directly from Table 2.

The chain condition, introduced by Wei and Yang [14], states that there exists
a sequence of subcodes

{0} < D1 < D2 < . . . < Dk−1 < C

such that w(Dr) = dr for each r, where < denotes a proper subgroup (subspace).
Note that it follows that dimDr = r.

Lemma 3. Every binary [36, 8, 16] code satisfies the chain condition.

Proof. Consider a subcode D4
30 of dimension 4 and weight 30. Any [30, 4, 16]

code is equivalent to the two-fold replication of the [15, 4, 8] simplex code. All
the codewords in such a subcode has weight zero or 16, and in particular, every
three-dimensional subcode D3 < D4

30 contains seven words of weight 16, and
thus w(D3) = 28. Hence there are 15A4

30 ≥ 4800 pairs (D3
28 < D4

30).
Solving the system of inequalities A(r)

i ≥ 0 for r = 2, 3 and all i, we get that
A3

28 ≤ 3732, and consequently there must be two four-dimensional subcodes E1
and E2 of weight 30 that intersect in a three-dimensional subcode D3

28 of weight
28. The span D5

32 = 〈E1, E2〉 must be a five-dimensional subcode of weight 32.
Hence we have a chain of subcodes

{0} < D1
16 < D2

24 < D3
28 < D4

30 < D5
32 < D8

36 = C.

By puncturing C on an arbitrary coordinate not in χ(D5
32) we obtain a seven-

dimensional subcodeD7
35 of weight 35, and by puncturing on a second coordinate,

also a six-dimensional subcode D6
34 of weight 34, completing the chain

{0} < D1
16 < D2

24 < D3
28 < D4

30 < D5
32 < D6

34 < D7
35 < D8

36 = C. (1)

Ergo, any [36, 8, 16] binary code satisfies the chain condition.
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Table 3. Two inequivalent [36, 8, 16] codes, where GY is equivalent to Ytrehus’ code,
and Gnew is new

GY =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

111111111111111100000000000000000000
111111110000000011111111000000000000
111100001111000011110000111100000000
110011001100110011001100110011000000
101110111011101110111011101110110000
000000000001110100011101110011111100
000100010000001101110111100110010110
000000000110100101011010111111000011

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Gnew =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

111111111111111100000000000000000000
111111110000000011111111000000000000
111100001111000011110000111100000000
110011001100110011001100110011000000
101110111011101110111011101110110000
000000000001110100011101110011111100
000100010000010111101011010101010110
000000000100011101110100001100111111

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3.2 The Code Search

The [30, 4, 16] subcode is clearly unique, where all non-zero codewords have
weight 16. It may be possible to construct the possible [32, 5, 16] codes analyti-
cally as well, but there is little point as a computer search can be made in less
than a minute.

Suppose we have constructed a [N,K]subcode D, and need a [N + t,K + 1]
subcode. We construct candidates for Row K + 1, as the set

S := {x ∈ D⊥ : ∀c ∈ c, w := w(x + c) + t, d ≤ w ≤ m ∧ w mod 4 ∼= 0},

where d and m are the minimal and maximal weights (16 and 24 for the [36, 8, 16]
code). Obviously, the conditions can be modified to allow for singly-even codes,
or even codes which are not self-orthogonal.

All possible codes are constructed by appending t zero columns, and all pos-
sible rows x||(1 . . . 1) for x ∈ S to the generator matrix of D.

In order to rule out equivalent codes, we use the nauty library of Brendan
McKay [9]. Nauty works on coloured graphs, so we use a standard technique
to represent codes as graphs. We need a set S of codewords which is invariant
under all automorphisms, and which spans the code. Usually, the set of minimal
weight codewords will do, but if this does not span the code, we add codewords
of the next higher weight, until we span the code.

Each codeword in S corresponds to a black vertex in the graph. There is a
white vertex for each coordinate position, and there is an edge between a black
vertex B and a white vertex W , if the codeword corresponding to B is one in
the position corresponding to W .
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The graphs are represented by incidence matrices, and every graph corre-
sponding to a linear code C has an incidence matrix of the form

I =
[

0 MT

M 0

]
,

where the rows of M are the necessary low weight codewords of C.
From an incidence matrix I, nauty can produce a canonical incidence matrix

which is common for all isomorphic graphs (equivalent codes). We can form a
canonical generator matrix for the corresponding code by Gaussian elimination
on the matrix M . Since this algorithm is deterministic, the same canonical graph
will always give the same canonical generator matrix.

When we want to reject equivalent codes, we keep a hash table using the
canonical generator matrix as a key. For each code we generate, we try to insert
it in the hash table. If it is already there, we have already searched this code and
proceed immediately to the next one. If it is successfully inserted, we continue
by searching this code.

Using this search algorithm, we find two inequivalent [32, 5, 16] codes, in half
a minute on a mid-range laptop. Growing the code from [32, 5] to [36, 8] it is
advantageous to use the same candidate set S for all the three rows required.
Because we know that the d7 = 35, we know that the [36, 8, 16] code is equivalent
to one with generator matrix on the form

G =

⎡⎢⎢⎣
G′ 0
s1 1100
s1 1010
s1 1001

⎤⎥⎥⎦ , (2)

where G′ is a generator matrix of a [32, 5, 16] code. This search takes 70-80
seconds, yielding two inequivalent codes as shown in Table 3.

4 Partial Results on the [72, 36, 16] Code

Inspired by our success with the relatively small [36, 8] code, we give some pre-
liminary results for the [72, 36, 16] code. In this section, we let C denote an
arbitrary [72, 36, 16] Type II code. We know from [3] that d1 = 16 and d2 = 24.

4.1 Further Preliminaries

We need the well-known Johnson bounds for some of the proofs. Let A(n, d, w)
denote the maximum size of a (non-linear) code with constant weight w and
minimum distance d.
Lemma 4 (Johnson bounds). We have

A(n, 2w,w) = � n
w

�,

A(n, d, w) ≤ � n
w
A(n − 1, d, w − 1)�,

A(n, d, w) ≤ � n

n − w
A(n − 1, d, w)�.
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Forney [5] discussed a series of duality results for higher weights, some of which
could be traced back to Wei [13]. We summarise a few key points which we will
use. Let I = {1, . . . , n} be the co-ordinate index set. For any J ⊂ I, let CJ
denote code C shortened on I\J , i.e.

CJ = {c ∈ C : ∀i �∈ J, ci = 0}.

It is known that if dimCJ = r, then dim(C⊥)I\J = r+ n− k − #J . Clearly, for
each r, there is J ⊂ I such that w(CJ ) = dr. Then, w((C⊥)I\J ) = d⊥r+n−k−dr

.
Let PJ (C) be the code punctured on I\J , i.e. the code

PJ(C) = {(c1, . . . , cn) : ∃(c′1, . . . , c
′
n) ∈ C, ∀i ∈ I\J, ci = c′i; ∀i ∈ J, ci = 0}.

Clearly dimPJ(C) + dimCJ = dimC.
We define the past subcode Pi = C1,...,i and the future subcode Fi = Ci+1,...,n.

4.2 The Third, Fourth, and Fifth Weight

Lemma 5. Any [72, 36, 16] code has d3 = 28 or d3 = 29.

Proof. We get d3 ≥ 28 from the Griesmer bound. Consider a shortened code CJ
of weight w(CJ ) = 24 and dimension 2. Then PI\J(C) would be a [48, 34] code,
which has minimum distance 6 or less by Brouwer’s tables [1]. Hence d3 ≤ 30.

Suppose for a contradiction that d3 = 30.
Assume a coordinate ordering such that P16 has dimension one and P24 di-

mension two. Now F16 is a doubly-even [56, 21, 16] code containing the all-one
word, and thus F⊥

16 is a [56, 35, 8] even code. Solving the MacWilliams identities,
we find that F⊥

16 has 1155 words of weight 8.
Since C has d3 = 30, F⊥

16 has d2 ≥ 14, and thus two words of weight 8 must
have distance at least 12. This results in a (56, 1155, 12) constant weight code
with w = 8. However, this is impossible because

A(56, 12, 8) ≤ �56
8
A(55, 12, 7)� ≤ �56

8
�55

7
A(54, 12, 6)��

≤ �56
8

�55
7

�54
6

��� = 490,

by Lemma 4.

Lemma 6. If C has d3 = 28, then 30 ≤ d4 ≤ 32.

Proof. We have d4 ≥ 30 by the Griesmer bound, and d4 ≤ 33 because d(44, 33) ≤
5. Suppose d4 = 33 for a contradiction. Assume a coordinate ordering such that
P28 has dimension 3. Now F⊥

28 is a [44, 33, 5] code containing the all-one word,
and F28 is doubly-even without the all-one word. The MacWilliams identities
for this code pair has no integer solutions, so the codes cannot exist.
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Lemma 7. If C has d3 = 29, then 32 ≤ d4 ≤ 33.

Proof. The lower bound follows from Griesmer and the upper bound follows
from the fact that d(43, 33) = 4.

Lemma 8. We have d5 < 37.

Proof. We know that d4 ≤ 33, so d5 ≤ 37 follows from Brouwer’s tables. Suppose
for a contradiction that d5 = 37. Then d6 ≥ 39 by Griesmer, and d6 ≤ 39 by
Brouwer’s tables. Thus we get top-down greedy weights ẽ4 = 35 and ẽ3 = 33.
We know that ẽ2 is even, so it must be 30 or 32, but then there is no possible
choice for ẽ1 and we therefore conclude that d5 < 37.

5 Conclusion

We have presented a novel approach to constraining code searches. This approach
proved very effective in the case of [36, 8, 16] where an exhaustive search can be
done in less than two CPU-minutes, and show exactly two distinct codes up to
equivalence.

Hopefully, this can inspire renewed interest in some of the legendary problems
of coding theory, and combining the present techniques with others, one might
just see some solutions in the foreseeable future.

References

1. Ore, O.: Theory of non-commutative polynomials. Ann. of Math. 34 (1933)
2. Dodunekov, S.M., Helleseth, T., Manev, N., Ytrehus, Ø.: New bounds on binary

linear codes of dimension eight. IEEE Trans. Inform. Theory 33(6), 917–919 (1987)
3. Dougherty, S., Gulliver, A.: Higher weights of self-dual codes. In: Augot, D. (ed.)

Workshop on Coding and Cryptography, pp. 177–188 (January 2001)
4. Dougherty, S., Gulliver, A., Oura, M.: Higher weights and graded rings for binary

self-dual codes. Discrete Applied Mathematics 128, 251–261 (2003); Special issue
for WCC 2001

5. David Forney Jr., G.: Dimension/length profiles and trellis complexity of linear
block codes. IEEE Trans. Inform. Theory 40(6), 1741–1752 (1994)

6. Helleseth, T., Kløve, T., Mykkeltveit, J.: The weight distribution of irreducible
cyclic codes with block lengths n1((ql − 1)/n). Discrete Math. 18, 179–211 (1977)

7. Kløve, T.: Support weight distribution of linear codes. Discrete Math. 106/107,
311–316 (1992)

8. Luo, Y., Mitrpant, C., Vinck, A.J.H., Chen, K.: Some new characters on the wire-
tap channel of type II. IEEE Transactions on Information Theory 51(3), 1222–1229
(2005)

9. McKay, B.D.: The nauty page (2002), http://cs.anu.edu.au/people/bdm/nauty/
10. Ozarow, L.H., Wyner, A.D.: Wire-tap channel II. AT&T Bell Laboratories Tech-

nical Journal 63(10), 2135–2157 (1984)
11. Schaathun, H.G.: Duality and support weight distributions. IEEE Transactions on

Information Theory 50(5), 862–867 (2004)

http://cs.anu.edu.au/people/bdm/nauty/


64 H.G. Schaathun

12. Simonis, J.: The effective length of subcodes. Appl. Algebra Engrg. Comm. Com-
put. 5(6), 371–377 (1994)

13. Wei, V.K.: Generalized Hamming weights for linear codes. IEEE Trans. Inform.
Theory 37(5), 1412–1418 (1991)

14. Wei, V.K., Yang, K.: On the generalized Hamming weights of product codes. IEEE
Trans. Inform. Theory 39(5), 1709–1713 (1993)

15. Ytrehus, Ø.: Code-buster: A software tool for characterizing abstract codes. Tech-
nical report, Dept. of Informatics, University of Bergen (March 1987)



Mass Formula for Even Codes over ZZ8

Koichi Betsumiya1, Rowena Alma L. Betty2,�, and Akihiro Munemasa2

1 Graduate School of Science and Technology,
Hirosaki University, Hirosaki 036-8561, Japan

2 Graduate School of Information Sciences, Tohoku University,
Sendai 980–8579, Japan

Abstract. In this paper, we establish a mass formula for even codes over
ZZ8. In particular, a formula giving the total number of distinct Type II
self-dual codes over ZZ8 of length n is established for each positive integer
n divisible by 8.

1 Introduction

In this paper, we establish a mass formula for even codes over ZZ8. An even code
is a self-orthogonal code having Euclidean weights divisible by 16, or equivalently,
a code such that the lattice constructed by Construction A is even. Self-dual
codes which are even are also known as Type II codes, and we will establish a
formula for the number of distinct Type II codes of a given length. This means
finding a formula for ∑

C

2n · n!
| Aut C|

where C runs through the equivalence classes of Type II codes of length n over
ZZ8 and Aut C is the automorphism group of C. The formula is a special case of
a mass formula for even codes of given type, and the proof requires an analogous
formula for codes over ZZ4, extending our previous work [2].

Like the mass formula given in [2], our mass formula for even codes over ZZ8
is given as the sum of mass formulas over some finer classes of codes. This is
because codes over ZZ8 have an invariant called a type, denoted by {k0, k1, k2}.
The type of a code over ZZ8 is determined by the type of its 4-residue and
dimension of the torsion. We shall determine the number of even codes over ZZ8
with given 4-residue and torsion, and this number depends only on the type of
the 4-residue and dimension of the torsion.

To conclude the paper, we demonstrate that our theoretical count of Type II
codes of length 8 over ZZ8 agrees with a recent computer enumeration of these
codes given by [6].
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2 Preliminaries

For a positive integer m, we denote by ZZm the ring of integers modulo m. A
code C of length n over ZZm is a submodule of ZZnm. For a matrix G ∈ Mk×n(ZZ),
we denote by ZZkmG the code {aG mod m | a ∈ ZZk} of length n over ZZm. A
generator matrix of a code C of length n over ZZm is a matrix G ∈ Mk×n(ZZ)
such that C = ZZkmG. Usually, entries of a generator matrix of a code over ZZm
are taken to be in ZZm. However, since we deal with codes over ZZp and ZZp2
at the same time, we adopt this non-standard convention to avoid cumbersome
notation.

We denote by x·y the standard inner product of vectors x, y in ZZnm, and by C⊥

the dual code of a code C over ZZm with respect to this inner product. A code
C is said to be self-orthogonal (respectively self-dual) if C ⊂ C⊥ (respectively
C = C⊥) holds.

Let C be a code of length n over ZZ8. For i = 0, 1, 2, we define the torsion
codes of C (see [4]) as follows:

tori(C) = {v mod 2 | v ∈ ZZn8 , 2iv ∈ C} .

The code tor0(C) is also called the residue code of C, which we will denote by
res(C). Observe

tor0(C) ⊂ tor1(C) ⊂ tor2(C) . (1)

Every code of length n over ZZ8 is equivalent to a code C with generator matrix⎡⎣Ik0 A0,1 A0,2 A0,3
0 2Ik1 2A1,2 2A1,3
0 0 4Ik2 4A2,3

⎤⎦
where Ai,j are matrices of appropriate sizes with integer entries. Observe that
tori(C) is an [n,

∑i
j=0 kj ] binary code. In fact, generator matrices of tor0(C),

tor1(C), tor2(C) are given by

[
Ik0 A0,1 A0,2 A0,3

]
,

[
Ik0 A0,1 A0,2 A0,3
0 Ik1 A1,2 A1,3

]
,

⎡⎣Ik0 A0,1 A0,2 A0,3
0 Ik1 A1,2 A1,3
0 0 Ik2 A2,3

⎤⎦ ,

respectively. We say that the code C has type {k0, k1, k2} and then C contains
8k04k12k2 codewords.

If C is self-orthogonal, then it is easy to prove that

tor0(C) ⊂ tor2(C)⊥ , (2)

and
tor1(C) ⊂ tor1(C)⊥ . (3)

The Euclidean weight wte(x) of an element x ∈ ZZ8 is defined by wte(0) = 0,
wte(1) = wte(7) = 1, wte(2) = wte(6) = 4, wte(3) = wte(5) = 9, and wte(4) =
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16. The Euclidean weight of a vector in ZZn8 is the sum of the Euclidean weights
of its components. A code over ZZ8 whose codewords have Euclidean weights
divisible by 16 is said to be an even code. Every even code is self-orthogonal.
A self-orthogonal code over ZZ8 with generator matrix all of whose row vectors
have Euclidean weight divisible by 16 is even by [1, Lemma 2.2]. An even self-
dual code is also called a Type II code. It is known that a Type II code of length
n over ZZ8 exists if and only if n is a multiple of 8 [1, Proposition 3.4].

Lemma 1. Let C be an even code over ZZ8. Then tor1(C) is doubly even.

Proof. If 2v ∈ C, then 2v ·2v ≡ 0 (mod 16). Thus wt(v mod 2) ≡ 0 (mod 4). ��

Analogously, we can define torsion codes tor0(C) and tor1(C) for a code C over
ZZ4. It is known that if C is a a self-orthogonal code over ZZ4, then tor0(C)
is doubly even and tor0(C) ⊂ tor1(C) ⊂ tor0(C)⊥ (see [3]). The code over ZZ4
obtained from a code C over ZZ8 by modulo 4 reduction is called the 4-residue
of C which we will denote by Res(C). Then we have

tori(Res(C)) = tori(C), for i = 0, 1. (4)

The Euclidean weights of 0, 1, 2, 3 ∈ ZZ4 are 0, 1, 4, 1, respectively, and the Eu-
clidean weight of a vector in ZZn4 is the sum of the Euclidean weights of its
components. A code over ZZ4 is even if the Euclidean weight of every codeword
is divisible by 8 (see [2]). The proof of the following lemma is analogous to that
of Lemma 1.

Lemma 2. If C is an even code over ZZ4, then every codeword in tor1(C) has
an even weight.

3 Results on Binary Codes

In this section, we collect results concerning binary codes which will be needed in
later sections. Let σ1(n, k) be the number of distinct doubly even binary codes
of length n and dimension k containing 1, and let σ′

1(n, k) be the number of
distinct doubly even binary codes of length n and dimension k not containing 1.
The values of σ1(n, k) and σ′

1(n, k1) are given in [5].

Lemma 3. Let C be an [n,m] doubly even binary code.

(i) If 1 ∈ C, then C is contained in τ1(n,m, k) doubly even [n,m + k] binary
codes, where

τ1(n,m, k) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

k−1∏
i=0

2n−2i−2m−1 + 2
n
2 −i−m−1 − 1

2i+1 − 1
, if n ≡ 0 (mod 8),

k−1∏
i=0

2n−2i−2m−1 − 2
n
2 −i−m−1 − 1

2i+1 − 1
, if n ≡ 4 (mod 8).
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(ii) If 1 /∈ C, then C is contained in τ ′1(n,m, k) doubly even [n,m + k] binary
codes, where

τ ′1(n,m, k) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

k−1∏
i=0

2n−2i−2m−2 − 1
2i+1 − 1

, if n ≡ 2 (mod 4),

τ1(n,m+ 1, k − 1)
+2kτ1(n,m+ 1, k), if n ≡ 0 (mod 4).

Proof. Computations of τ1(n,m, k) for n ≡ 0 (mod 4) and τ ′1(n,m, k) for n ≡ 2
(mod 4) follow the line of the proof of [7, Theorem 9.5.5(ii)]. Suppose 1 /∈ C and
n ≡ 0 (mod 4). Then there are τ1(n,m+ 1, k − 1) doubly even [n,m+ k] codes
containing 〈C,1〉. In order to count the number of doubly even [n,m+ k] codes
D with C ⊂ D and 1 /∈ D, observe that there are τ1(n,m + 1, k) doubly even
[n,m + k + 1] codes D̃ containing 〈C,1〉. Each such D̃ contains 2k doubly even
[n,m+ k] codes D with C ⊂ D and 1 /∈ D. The result follows by adding the two
cases. ��

Lemma 4. Let C be a binary self-orthogonal code of length n and dimension k
with generator matrix

[
I A

]
. Then 1n belongs to C if and only if 1n−k belongs

to the row space of A.

Proof. Clearly, if 1n belongs to C, then 1n−k belongs to the row space of A.
Conversely, suppose 1n−k = uA for some u ∈ ZZk2 . Since C is self-orthogonal,
we have A1tn−k = 1tk. Thus

u =
[
u 1n−k

] [
I A

]t + (A1tn−k)
t

= u
[
I A

] [
I A

]t + 1k
= 1k.

This implies 1n = 1k
[
I A

]
∈ C. ��

To conclude this section, we give a lemma which will be useful when counting
the number of generator matrices of codes. Since this lemma holds in greater
generality, we formulate it for an arbitrary field of characteristic 2.

Let K be a field, m a positive integer. We denote by Symm(K) the set of
m × m symmetric matrices over K. For a square matrix A of order n and a
vector v of length n, we denote by diag(A) the n-dimensional vector composed
by the diagonal entries of A, Diag(A) the diagonal matrix whose diagonal entries
are those of A, and by Diag(v) the diagonal matrix whose diagonal entries are
those of v.

Lemma 5. Let K be a field of characteritic 2, A ∈ Mm×n(K), and rankA = m.
Let α : Mm×n(K) → Km be the mapping defined by αN = 1N t. Define a
mapping

ΦA : Mm×n(K) → Symm(K)
N �→ AN t +NAt + Diag(AN t) .

(5)
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If the vector 1 does not belong to the row space of A, then the mappings

ΦA ⊕ α : Mm×n(K) → Symm(K) ⊕ Km

N �→ (AN t +NAt + Diag(AN t),1N t)

and
ΘA : Mm×n(K) → Symm(K)

N �→ AN t +NAt + Diag((A+ J)N t) (6)

are surjective.

Proof. The surjectivity of ΦA ⊕ α has been established in [2, Lemma 3.2]. Since
the mapping γ : Symm(K) ⊕Km → Symm(K) defined by γ(S, v) = S+Diag(v)
is surjective, the surjectivity of ΘA follows from that of ΦA ⊕ α since ΘA =
γ ◦ (ΦA ⊕ α). ��

4 Quaternary Even Codes

The number of even quaternary codes whose residue contains 1 can be found in
[2]. We will be concerned with the enumeration of even quaternary codes whose
residue does not contain 1. Let C1, C2 be binary codes of length n such that
1 /∈ C1, C1 is doubly even, and has generator matrix[

Ik0 A
]
, (7)

C2 has generator matrix [
Ik0 A
0 B

]
, (8)

A ∈ Mk0×(n−k0)(ZZ), B ∈ Mk1×(n−k0)(ZZ) and dim C1 = k0, dim C2 = k0 + k1.
Moreover, we assume that C1 ⊂ C2 ⊂ C⊥

1 , and the rows of the matrix B mod 2
have even weights. Then the matrices A and B satisfy

Ik0 +AAt ≡ 0 (mod 2) , (9)

ABt ≡ 0 (mod 2) , (10)

1Bt ≡ 0 (mod 2) , (11)

diag(Ik0 +AAt) ≡ 0 (mod 4) . (12)

Lemma 6. For N ∈ Mk0×(n−k0)(ZZ), the code C = ZZk04

[
Ik0 A+ 2N

]
is an

even code if and only if

ΘA(N mod 2) =
1
2
(Ik0 +AAt) +

1
4

Diag(Ik0 +AAt) mod 2 , (13)

where ΘA : Mm×n(ZZ2) → Symm(ZZ2) is the mapping defined in (6).
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Proof. Note that the right-hand side of (13) makes sense by (9). Moreover, the
diagonal entries of 1

2 (Ik0 +AAt) mod 2 are zero. The code C is self-orthogonal if
and only if

Ik0 +AAt + 2(AN t +NAt) ≡ 0 (mod 4) ,

which is equivalent to

AN t +NAt ≡ 1
2
(Ik0 +AAt) (mod 2) . (14)

Moreover, when C is self-orthogonal, C is even if and only if

Diag(Ik0 +AAt + 2(AN t +NAt) + 4NN t) ≡ 0 (mod 8) . (15)

Since Diag(AN t) = Diag(NAt) and diagNN t ≡ 1N t (mod 2), this is equivalent
to

Diag((A+ J)N t) ≡ 1
4

Diag(Ik0 +AAt) (mod 2) . (16)

Since (16) and (14) equate the diagonal entries, the off-diagonal entries, respec-
tively, of (13), we obtain the desired result. ��

Let us consider the sets

X = {C | C is quaternary even, res(C) = tor1(C) = C1} ,

X ′ = {C′ | C′ is quaternary even, res(C′) = C1, tor1(C′) = C2} .

Lemma 7. We have |X | = 2k0(2n−3k0−1)/2.

Proof. Since 1 /∈ C1, Lemma 4 implies that 1 does not belong to the row space
of A over ZZ2. Thus, the mapping ΘA is surjective by Lemma 5. By Lemma 6,
we have

|X | =
∣∣∣∣Θ−1

A

(
1
2
(I +AAt) +

1
4

Diag(I +AAt) mod 2
)∣∣∣∣

= | KerΘA|
= |Mk0×(n−k0)(ZZ2)|/| Symk0(ZZ2)|,

and this gives the desired result. ��

Lemma 8. If C ∈ X, then there exists a unique C′ ∈ X ′ containing C.

Proof. Let
[
I A+ 2N

]
be a generator matrix of C, where N ∈ Mk0×(n−k0)(ZZ).

Then the code C′ with generator matrix[
Ik0 A+ 2N
0 2B

]
(17)

is even, since the rows of the matrix B mod 2 has even weights. ��
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Lemma 9. Let C′ ∈ X ′. Then |{C ∈ X | C ⊂ C′}| = 2k0k1 .

Proof. Let (17) be a generator matrix of C′. Consider a mapping

ϕ : Mk0×k1(ZZ2) → {C ∈ X | C ⊂ C′}

M mod 2 �→ ZZk04

[
Ik0 A+ 2(N +MB)

]
.

Suppose M1,M2 ∈ Mk0×k1(ZZ). Since rank(B mod 2) = k1, M1 ≡ M2 (mod 2)
if and only if M1B ≡ M2B (mod 2). The latter is easily seen to be equivalent to
ϕ(M1 mod 2) = ϕ(M2 mod 2). This shows that ϕ is well-defined and injective.
Next we show that ϕ is surjective. Suppose C ∈ X and C ⊂ C′. Then C =
ZZk04

[
Ik0 A+ 2F

]
for some matrix F . Since C ⊂ C′, A + 2F ≡ A + 2N + 2MB

(mod 4) for some matrix M . Then we have F ≡ N + MB (mod 2), so we
conclude that ϕ is surjective. Therefore, the mapping ϕ is bijective, and the
result follows. ��

Theorem 1. Let C1 and C2 be binary codes of length n. Suppose

C1 is doubly even, dim C1 = k0,1 /∈ C1 and (18)

C1 ⊂ C2 ⊂ C⊥
1 , dim C2 = k0 + k1, C2 ⊂ 1⊥. (19)

Then the number of quaternary even codes C′ such that res(C′) = C1 and
tor1(C′) = C2 is 2k0(2n−3k0−2k1−1)/2.

Proof. We may assume without lost of generality that C1 and C2 are codes with
generator matrices given by (7) and (8), respectively. By Lemma 8 and Lemma 9,
we have

2k0k1 |X ′| =
∑

C′∈X′
|{C ∈ X | C ⊂ C′}|

=
∑
C∈X

|{C′ ∈ X ′ | C ⊂ C′}|

= |X |.

The result then follows from Lemma 7. ��

Corollary 1. Let Ď4(n; k0, k1) (resp. Ď′
4(n; k0, k1)) denote the number of dis-

tinct even codes C of length n over ZZ4 of type {k0, k1} such that tor1(C) is doubly
even and 1 ∈ res(C) (resp. 1 /∈ res(C)). Then

Ď4(n; k0, k1) = σ1(n, k0)τ1(n, k0, k1) · 2(n−k0−k1)+(k0−1)(2n−3k0−2k1−2)/2 , (20)

Ď′
4(n; k0, k1) = σ′

1(n, k0)τ ′1(n, k0, k1) · 2k0(2n−3k0−2k1−1)/2 . (21)
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Proof. If C is an even code of length n over ZZ4 of type {k0, k1}, with residue
code not containing 1, then by setting C1 = res(C) and C2 = tor1(C), we see that
C1 and C2 satisfy (18)–(19) by [3] and Lemma 2. Thus Theorem 1 implies

Ď′
4(n; k0, k1)2−k0(2n−3k0−1−2k1)/2

=
∑

C1 satisfies (18)

|{C2 | C2 satisfies (19) and C2 is doubly even}|

= τ ′1(n, k0, k1)σ′
1(n, k0).

This proves (21). Similarly, using [2, Theorem 5.7], we obtain (20). ��

5 Even Codes over ZZ8 with Prescribed 4-Residue and
Torsion

Lemma 10. Let C be an even code over ZZ8 of type {k0, k1, k2}, and let C1 =
Res(C) and C2 = tor2(C). Then

C1 is even, of type {k0, k1}, tor1(C1) is doubly even, and (22)

tor1(C1) ⊂ C2 ⊂ res(C1)⊥, dim C2 = k0 + k1 + k2. (23)

Proof. We see that (22) holds by [4, Lemma 4.5] and Lemma 1. Also, (23) holds
by (1), (2) and (4). ��

For the remainder of this section, we let C1 be an even code of length n over ZZ4
of type {k0, k1} and C2 be a binary code of length n with dim C2 = k0 + k1 + k2.
Then we may assume without loss of generality that C1 has generator matrix[

Ik0 A0,1 A0,2
0 2Ik1 2A1,2

]
, (24)

and C2 has generator matrix ⎡⎣Ik0 A0,1 A0,2
0 Ik1 A1,2
0 0 A2,2

⎤⎦ . (25)

We assume that the matrix A2,2 has k2 rows and rank(A2,2 mod 2) = k2. Then
the matrices A0,1, A0,2, A1,2 and A2,2 satisfy

Ik0 +A0,1A
t
0,1 +A0,2A

t
0,2 ≡ 0 (mod 4) , (26)

A0,1 +A0,2A
t
1,2 ≡ 0 (mod 2) , (27)

A0,2A
t
2,2 ≡ 0 (mod 2) , (28)

Ik1 +A1,2A
t
1,2 ≡ 0 (mod 2) , (29)

Diag(Ik0 +A0,1A
t
0,1 +A0,2A

t
0,2) ≡ 0 (mod 8) , (30)

Diag(Ik1 +A1,2A
t
1,2) ≡ 0 (mod 4) . (31)
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Lemma 11. If C is of type {k0, k1, 0} and Res(C) = C1, then there exist matrices
N0, N1 such that [

Ik0 A0,1 A0,2 + 4N0
0 2Ik1 2A1,2 + 4N1

]
(32)

is a generator matrix of C. Such matrices N0 and N1 are unique modulo 2.

Proof. By the assumption,

C = ZZk0+k18

[
Ik0 + 4M1 A0,1 + 4M2 A0,2 + 4M3

0 2Ik1 + 4M4 2A1,2 + 4M5

]
for some matrices M1, . . . ,M5. Taking N0 = M3−M1A0,2−M2A1,2+M1A0,1A1,2
and N1 = M5 − M4A1,2, we see that C has a generator matrix (32). Since the
matrices 4N0, 4N1 are unique modulo 8, N0, N1 are unique modulo 2. ��
Lemma 12. Let C be a code with generator matrix (32). Define mappings

β : Mk1×(n−k0−k1)(ZZ2) → Mk0×k1(ZZ2)
N1 mod 2 �→ A0,2N

t
1 mod 2

and ΦA0,2 as in (5). Then C is an even code if and only if

ΦA0,2(N0 mod 2) =
(

1
4
(Ik0 +A0,1A

t
0,1 +A0,2A

t
0,2)

+
1
8

Diag(Ik0 +A0,1A
t
0,1 +A0,2A

t
0,2)

)
mod 2 , (33)

and
β(N1 mod 2) =

1
2
(A0,1 +A0,2A

t
1,2) mod 2 . (34)

Proof. Note that the right-hand side of (33) makes sense by (26). Moreover the
diagonal entries of 1

4 (Ik0 +A0,1A
t
0,1 +A0,2A

t
0,2) mod 2 are zero. In view of (29),

the code C is self-orthogonal if and only if

Ik0 +A0,1A
t
0,1 +A0,2A

t
0,2 + 4(A0,2N

t
0 +N0A

t
0,2) ≡ 0 (mod 8) , (35)

A0,1 +A0,2A
t
1,2 + 2A0,2N

t
1 ≡ 0 (mod 4) . (36)

Observe that (36) is equivalent to (34), while (35) is equivalent to

A0,2N
t
0 +N0A

t
0,2 =

1
4
(Ik0 +A0,1A

t
0,1 +A0,2A

t
0,2) mod 2 . (37)

Moreover, when C is self-orthogonal, C is even if and only if

Diag(Ik0 +A0,1A
t
0,1 +A0,2A

t
0,2 + 4(A0,2N

t
0 +N0A

t
0,2)) ≡ 0 (mod 16) , (38)

Diag(Ik1 +A1,2A
t
1,2 + 2(A1,2N

t
1 +N1A

t
1,2)) ≡ 0 (mod 4) . (39)

Since DiagA1,2N
t
1 = DiagN1A

t
1,2, (39) is equivalent to (31). In view of (30),

(38) can be written as

Diag(A0,2N
t
0) ≡ 1

8
Diag(Ik0 +A0,1A

t
0,1 +A0,2A

t
0,2) (mod 2) . (40)
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Since (40), (37) equate the diagonal entries, off diagonal entries, respectively of
(33), we obtain the desired result. ��

Let us consider the sets

Y = {C | C is even, of type {k0, k1, 0}, Res(C) = C1} ,

Y ′ = {C′ | C′ is even, of type {k0, k1, k2}, Res(C′) = C1, tor2(C′) = C2} .

Lemma 13. We have |Y | = 2(k0+k1)(n−k0−k1)−k0(k0+1)/2−k0k1 .

Proof. Note that β is surjective since A0,2 is of full row rank. By Lemma 12, we
have

|Y | = | KerΦA0,2 | · | Kerβ|

=
|Mk0×(n−k0−k1)(ZZ2)|

| Symk0(ZZ2)|
·

|Mk1×(n−k0−k1)(ZZ2)|
|Mk0×k1(ZZ2)|

= 2k0(n−k0−k1)−k0(k0+1)/2 · 2k1(n−k0−k1)−k0k1 .

��

Lemma 14. If C ∈ Y , then there exists a unique C′ ∈ Y ′ containing C.

Proof. By Lemma 11, C has a generator matrix (32) for some matrices N0, N1.
Then the code C′ with generator matrix⎡⎣I A0,1 A0,2 + 4N0

0 2I 2A1,2 + 4N1
0 0 4A2,2

⎤⎦ (41)

satisfies Res(C′) = C1 and tor2(C′) = C2. Since C ∈ Y , (28) implies that C′

is self-orthogonal. Observe that
[
0 0 4A2,2

]
has rows with Euclidean weights

divisible by 16, so C′ is even, hence C′ ∈ Y ′. If C′′ ∈ Y ′ and C ⊂ C′′, then
ZZk28

[
0 0 4A2,2

]
⊂ C′′. This forces C′ = C′′. ��

Lemma 15. Let C′ ∈ Y ′. Then |{C ∈ Y | C ⊂ C′}| = 2(k0+k1)k2 .

Proof. Suppose that C′ ∈ Y ′ has generator matrix (41). Consider the mapping
ϕ : Mk0×k2(ZZ2) × Mk1×k2(ZZ2) → {C ∈ Y | C ⊂ C′} defined by

ϕ(M mod 2,M ′ mod 2) = ZZk0+k1
8

[
I A0,1 A0,2 + 4(N0 +MA2,2)
0 2I 2A1,2 + 4(N1 +M ′A2,2)

]
.

We claim that ϕ is bijective. Indeed, ϕ is injective since A2,2 mod 2 has full row
rank. Next we show that ϕ is surjective. Suppose C ∈ Y and C ⊂ C′. Then by
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Lemma 11, C = ZZk0+k1
8

[
I A0,1 A0,2 + 4F1
0 2I 2A1,2 + 4F2

]
for some matrices F1, F2. Since

C ⊂ C′,[
I A0,1 A0,2 + 4F1
0 2I 2A1,2 + 4F2

]
≡
[
I 0 M
0 I M ′

]⎡⎣I A0,1 A0,2 + 4N0
0 2I 2A1,2 + 4N1
0 0 4A2,2

⎤⎦ (mod 8)

for some matricesM andM ′. Then we have F1 ≡ N0+MA2,2 (mod 2), and F2 ≡
N1 +M ′A2,2 (mod 2), so we conclude ϕ is surjective. Therefore, ϕ is bijective. It
follows that the number of codes C ∈ Y contained in C′ is 2(k0+k1)k2 . ��

Theorem 2. Let C1 be an even code of length n over ZZ4 of type {k0, k1}, and
let C2 be a binary code of length n. Suppose C1 and C2 satisfy (22)–(23). Then
the number of even codes C′ of length n over ZZ8 such that Res(C′) = C1 and
tor2(C′) = C2 is 2k0(2n−3k0−6k1−2k2−1)/2+k1(n−k1−k2).

Proof. We may assume without loss of generality that C1 and C2 are codes with
generator matrices given by (24) and (25), respectively. Then |Y ′| is the number
we need to compute. By Lemmas 14–15, we have

2(k0+k1)k2 |Y ′| =
∑

C′∈Y ′
|{C ∈ Y | C ⊂ C′}|

=
∑
C∈Y

|{C′ ∈ Y ′ | C ⊂ C′}|

= |Y |.

The result then follows from Lemma 13. ��

For k ≤ n, we define the Gaussian 2-binomial coefficient
[
n
k

]
2 as[

n

k

]
2

=
(2n − 1)(2n − 2) · · · (2n − 2k−1)
(2k − 1)(2k − 2) · · · (2k − 2k−1)

.

This is the number of k-dimensional subspaces in an n-dimensional vector space
over ZZ2.

Corollary 2. Let D8(n; k0, k1, k2) (resp. D′
8(n; k0, k1, k2)) denote the number of

distinct even codes C over ZZ8 of length n of type {k0, k1, k2} such that 1 ∈ res(C)
(resp. 1 /∈ res(C)). Then

D8(n; k0, k1, k2) = σ1(n, k0)τ1(n, k0, k1)
[
n − 2k0 − k1

k2

]
2

× 21+k0(2n−3k0−4k1−k2−1)+k1(n−k1−k2), (42)

D′
8(n; k0, k1, k2) = σ′

1(n, k0)τ ′1(n, k0, k1)
[
n − 2k0 − k1

k2

]
2

× 2k0(2n−3k0−4k1−k2−1)+k1(n−k1−k2) . (43)
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Proof. If C is an even code of length n over ZZ8 of type {k0, k1, k2}, then by
setting C1 = Res(C) and C2 = tor2(C), we see that C1 and C2 satisfy (22)–(23)
by Lemma 10. Thus Theorem 2 implies

D8(n; k0, k1, k2)2−k0(2n−3k0−6k1−2k2−1)/2−k1(n−k1−k2)

=
∑

C1 satisfies (22)
1∈res(C1)

|{C2 | C2 satisfies (23)}|

=
[
n − 2k0 − k1

k2

]
2
|{C1 | C1 satisfies (22), 1 ∈ res(C1)}|

=
[
n − 2k0 − k1

k2

]
2
σ1(n, k0)τ1(n, k0, k1) · 2(n−k0−k1)+(k0−1)(2n−3k0−2k1−2)/2,

by (20). This proves (42). Similarly, using Theorem 2 and (21), we obtain (43).
��

Corollary 3. Let n be a positive integer divisible by 8. Then the number of dis-
tinct Type II codes C of length n over ZZ8 such that dim res(C) = k0 and 1 ∈
res(C) (resp. 1 /∈ res(C)) is σ1(n, k0)τ1(n, k0,

n
2 − k0) · 23k0+1 (resp.

σ′
1(n, k0)τ ′1(n, k0,

n
2 − k0) · 23k0).

Proof. Let C be a Type II code of length n over ZZ8 of type {k0, k1, k2}. Then
C is self-dual, so 3n = 2(3k0 + 2k1 + k2). By (2)–(3), we have n ≥ 2k0 + k1 + k2
and n ≥ 2(k0 + k1). Thus we have n = 2(k0 + k1) and k1 = k2, and the result
follows from Corollary 2. ��

As an example, we consider Type II codes over ZZ8 of length n = 8. By [5], we
have

σ1(8, k0) =
k0−2∏
i=0

25−2i + 22−i − 1
2i+1 − 1

,

σ′
1(8, k0) =

k0−1∏
i=0

26−2i + 23−i − 2
2i+1 − 1

.

The numbers given in Corollary 3 are tabulated in Table 1.
Therefore, there are 668190 Type II codes over ZZ8 of length 8, which agrees

with the result in [6].

Table 1. Type II Codes of Length 8

dim res C The number of C with
1 ∈ res C 1 /∈ res C

0 0 30
1 480 3360
2 26880 53760
3 215040 122880
4 245760 0
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Abstract. A classification of self-dual ZZk-codes of modest lengths is
known for small k. For k = 4, 6, 8, 9 and 10, the classification of self-dual
ZZk-codes is extended to lengths 19, 12, 12, 12 and 10, respectively, by
considering k-frames of unimodular lattices.

1 Introduction

Let ZZk be the ring of integers modulo k, where k is a positive integer greater
than 1. A ZZk-code C of length n (or a code C of length n over ZZk) is a ZZk-
submodule of ZZnk . A code C is self-dual if C = C⊥ where the dual code C⊥ of C
is defined as C⊥ = {x ∈ ZZnk | x · y = 0 for all y ∈ C} under the standard inner
product x · y. Two ZZk-codes C and C′ are equivalent if there exists a monomial
(±1, 0)-matrix P with C′ = C · P = {xP | x ∈ C}. A Type II ZZ2k-code was
defined in [2] as a self-dual code with the property that all Euclidean weights
are divisible by 4k (see [2] for the definition of Euclidean weights). It is known
that a Type II ZZ2k-code of length n exists if and only if n is divisible by eight
[2]. A self-dual code which is not Type II is called Type I.

As described in [18], self-dual codes are an important class of linear codes for
both theoretical and practical reasons. It is a fundamental problem to classify
self-dual codes of modest lengths and much work has been done towards clas-
sifying self-dual ZZk-codes for k = 2 and 3 (see [18]). Self-dual ZZ4-codes have
also been widely studied because such codes have applications to unimodular
lattices and nonlinear binary codes. The classification of self-dual ZZ4-codes was
done for lengths n ≤ 9 in [5] and for lengths n = 10, . . . , 15 in [9]. At length 16,
the classification of Type II codes was done in [16]. For k = 4, 6, 8, 9 and 10, the
lengths for which a classification of self-dual ZZk-codes is complete are listed in
the second column of Table 1.

Recently, a classification method of self-dual ZZk-codes based on a classifi-
cation of k-frames of unimodular lattices have been given by the authors and
Venkov [12]. In this paper, using this method, we give a classification of Type I
ZZ4-codes of lengths 16, 17, 18 and 19 (Section 3). For self-dual ZZ8-codes, the
classification was done in [7] for lengths n ≤ 8. As pointed out in [14], the classi-
fication of self-dual codes of length 6 given in [7] misses some codes. In Section 4,
we give a revised list of self-dual ZZ8-codes of lengths 6 and 8 which are marked

M.G. Parker (Ed.): Cryptography and Coding 2009, LNCS 5921, pp. 78–90, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Table 1. Classification of self-dual ZZk-codes

ZZk Known classification New classification

ZZ4 (Type II) 8, 16 [5], [16] -
(Type I) 1, 2, . . . , 15 [5], [9] 16, 17, 18, 19

ZZ6 (Type II) 8 [13] -
(Type I) 4 [8], [15] 8, 12

ZZ8 (Type II) 8 [7] 8∗

(Type I) 2, 4, 6, 8 [7] 6∗, 8∗, 10, 12

ZZ9 1, 2, . . . , 8 [1] 9, 10, 11, 12

ZZ10 (Type II) 8
(Type I) 2, 4, 6, 8, 10

by ∗ in Table 1. We also extend the classification to length 12. For other k, we
give a classification of self-dual ZZk-codes of length n for (k, n) = (6, 8), (6, 12),
(9, 9), . . . , (9, 12), (10, 2), (10, 4), . . . , (10, 10) (see the last column of Table 1). In
Table 13, as a summary, we give the number of inequivalent self-dual ZZk-codes
whose lengths are listed in the last column of Table 1.

In order to save space, we list generator matrices of the inequivalent self-
dual codes for small lengths only. Generator matrices of those codes which are
not listed in this paper can be obtained electronically from [11]. All computer
calculations in this paper were done by Magma [4].

2 Preliminaries

2.1 Unimodular Lattices

A (Euclidean) lattice L in dimension n is integral if L ⊆ L∗, where the dual lattice
L∗ is defined as L∗ = {x ∈ IRn|(x, y) ∈ ZZ for all y ∈ L} under the standard inner
product (x, y). An integral lattice withL = L∗ is called unimodular. The norm of a
vector x is (x, x). The minimum norm of L is the smallest norm among all nonzero
vectors ofL. A unimodular lattice L is even if all vectors ofL have even norms, and
odd if some vector has an odd norm. Two latticesL andL′ are isomorphic, denoted
L � L′, if there exists an orthogonal matrix A with L′ = L ·A. An automorphism
ofL is an orthogonalmatrixAwithL = L·A, and the automorphism group Aut(L)
of L is the group consisting of all automorphisms.

Our classification method of self-dual codes of length n (see Subsection 2.2)
requires a classification of n-dimensional unimodular lattices. A set {Ln,i | i =
1, 2, . . . , l(n)} of representatives of isomorphism classes of n-dimensional uni-
modular lattices used in our classification is listed in Table 2, where l(n) denotes
the number of non-isomorphic n-dimensional unimodular lattices. All unimod-
ular lattices with minimum norm ≥ 2 for dimensions up to 23 can be found in
Table 16.7 of [6]. We denote the unimodular lattices with minimum norm ≥ 2
by their components listed in that table.
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Table 2. List of unimodular lattices

n l(n) Unimodular lattices Ln,1, . . . , Ln,l(n)

2, 4, 6 1 ZZn

8 2 ZZ8, E8

9 2 ZZ9, E8 ⊕ ZZ
10 2 ZZ10, E8 ⊕ ZZ2

11 2 ZZ11, E8 ⊕ ZZ3

12 3 D12, ZZ
12, E8 ⊕ ZZ4

16 (odd) 6 D2
8 , ZZ16, E8 ⊕ ZZ8, D12 ⊕ ZZ4, E2

7 ⊕ ZZ2, A15 ⊕ ZZ
17 9 A11E6, E

2
8 ⊕ ZZ, D16 ⊕ ZZ, L16,1 ⊕ ZZ, . . . , L16,6 ⊕ ZZ

18 13 A17A1, D10E7A1, D
3
6 , A2

9, L17,1 ⊕ ZZ, . . . , L17,9 ⊕ ZZ

2.2 Classification Method

A set {f1, . . . , fn} of n vectors f1, . . . , fn in an n-dimensional lattice L with
(fi, fj) = kδi,j is called a k-frame of L, where δi,j is the Kronecker delta. The
following construction of lattices from codes is called Construction A. If C is a
ZZk-code of length n then

Ak(C) =
1√
k

{(x1, . . . , xn) ∈ ZZn | (x1 mod k, . . . , xn mod k) ∈ C}

is an n-dimensional lattice. In particular, C is Type I (resp. Type II) if and
only if Ak(C) is odd (resp. even) unimodular. Clearly, Ak(C) has the k-frame
{
√
ke1,

√
ke2, . . . ,

√
ken} where ei denotes the i-th unit vector (δi,1, δi,2, . . . , δi,n)

(i = 1, 2, . . . , n). Let F = {f1, . . . , fn} be a k-frame of L. Consider the mapping

πF :
1
k

⊕n
i=1 ZZfi → ZZnk

πF(x) = ((x, fi) mod k)1≤i≤n .

Then KerπF = ⊕n
i=1ZZfi ⊂ L, so the code C = πF (L) satisfies π−1

F (C) = L.
This implies Ak(C) � L, and every code C with Ak(C) � L is obtained as πF (L)
for some k-frame F of L. Moreover, every Type I (resp. Type II) ZZk-code of
length n can be obtained from a certain k-frame in some n-dimensional odd
(resp. even) unimodular lattice.

Lemma 1 ([12]). Let L be an n-dimensional integral lattice, and let F =
{f1, . . . , fn}, F ′ = {f ′

1, . . . , f
′
n} be k-frames of L. Then the codes πF (L) and

πF ′(L) are equivalent if and only if there exists an automorphism P of L such
that {±f1, . . . ,±fn} · P = {±f ′

1, . . . ,±f ′
n}.

We describe how to classify self-dual ZZk-codes of length n explicitly by Lemma 1.
Let L be an n-dimensional unimodular lattice and let V be the set of pairs {v,−v}
with (v, v) = k, v ∈ L. We define the undirected simple graph Γ , whose set of ver-
tices is the set V and two vertices {v,−v}, {w,−w} ∈ V are adjacent if (v, w) = 0.
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It follows that the k-frames are precisely then-cliques in the graphΓ . It is clear that
the groupAut(L) acts on the graphΓ as an automorphismgroup, andLemma 1 im-
plies that the Aut(L)-orbits on the set ofn-cliques ofΓ are in one-to-one correspon-
dence with the equivalence classes of codesC satisfyingAk(C) � L. Therefore, the
classification of such codes reduces to finding a set of representatives of n-cliques
of Γ up to the action of Aut(L). This computation was performed in Magma [4],
the results were then converted to k-frames, and then to self-dual codes of length
n. In principle, such a computation can be done by enumerating cliques by the
Magma function AllCliques, then by classifying them up to Aut(L)-action by
IsConjugate. In some cases, we also tried to minimize memory usagewhen Aut(L)
is large. In this way, by considering k-frames of all non-isomorphic n-dimensional
unimodular lattices, we have all inequivalent self-dualZZk-codes of length n for the
cases (k, n) listed in the last column of Table 1.

2.3 Automorphism Groups of Codes

An automorphism of C is a monomial (±1, 0)-matrix P with C = C ·P , and the
automorphism group Aut(C) of C is the group consisting of all automorphisms.
In this subsection, we describe how to determine the order of the automorphism
group Aut(C) of a self-dual ZZk-code C by modifying the computation in the
previous subsection.

Let X be a generating subset of the Euclidean space IRn satisfying X = −X .
Define X by

X = {{x,−x} | x ∈ X} .

Let G be a subgroup of the orthogonal group O(n, IR) leaving X invariant. Let
G denote the permutation group induced by G on X.

Lemma 2. Let
X = X1 ∪X2 ∪ · · · ∪ Xm

be the decomposition of X into pairwise orthogonal subsets such that none of
Xi’s are decomposable any further. Then the kernel of the canonical homomor-
phism G → G is the elementary abelian subgroup of order 2m consisting of the
multiplications by −1 on some of Xi’s.

Proof. Let K denote the kernel of the canonical homomorphism G → G. Since

IRn = 〈X1〉 ⊥ 〈X2〉 ⊥ · · · ⊥ 〈Xm〉 ,

it is clear that the multiplication by −1 on some of Xi’s is in O(n, IR), and hence
in K.

Conversely, suppose g ∈ K. If x, y ∈ X , (x, y) �= 0, g(x) = x and g(y) = −y,
then (x, y) = (g(x), g(y)) = (x,−y) = −(x, y). This is a contradiction. Therefore,
g is either 1 or −1 on each of the subspaces 〈Xi〉. ��

Lemma 3. Let F = {f1, . . . , fn} be a k-frame of an integral lattice L, and let
C = πF (L). Then every automorphism of C is induced by an automorphism
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of L which is represented by a monomial (±1, 0)-matrix with respect to F . In
other words, there is a surjective homomorphism from StabAut(L)(F) to Aut(C).
Moreover, this homomorphism is injective if and only if k > 2.

Proof. Let F denote the n×n matrix whose row vectors consist of the elements
of F . Then Ak(C) · 1√

k
F = L. Let P ∈ StabAut(L)(F). Then, as 1

kFPF
T is

a monomial (±1, 0)-matrix, we can define a mapping φ from StabAut(L)(F) to
Aut(C) by P �→ 1

kFPF
T mod k. Clearly this mapping φ is a homomorphism.

We claim that φ is surjective. Indeed, let Q be a monomial (±1, 0)-matrix rep-
resenting an automorphism of C, regarded as a matrix with integer entries.
Since Ak(C) · Q = Ak(C · (Q mod k)), we obtain 1

kF
TQF ∈ Aut(L). Setting

P = 1
kF

TQF , we obtain φ(P ) = Q mod k. Therefore, φ is surjective.
The kernel of φ is the set of elements P in StabAut(L)(F) such that the mono-

mial matrix 1
kFPF

T reduces to the identity matrix modulo k. If k > 2, then the
only such monomial matrix is the identity matrix itself. If k = 2, then −I is in
the kernel, hence φ is not injective. ��
Lemma 4. Suppose k > 2. Let F = {f1, . . . , fn} be a k-frame of an integral
lattice L. Then the automorphism group Aut(C) of the code C = πF (L) has
order

2m · # StabAut(L)(F) ,

where m is the number of components in the orthogonal decomposition of the set
X of vectors of norm k in L, and Aut(L) is the permutation group on X induced
by Aut(L).

Proof. By Lemma 3, Aut(C) is isomorphic to StabAut(L)(F), and the latter
contains the kernel of the action of Aut(L) on X. The result then follows from
Lemma 2. ��

As we described in Subsection 2.2, it is the permutation group Aut(L) on X
that is processed by computer to compute the stabilizer StabAut(L)(F). Since
the number of components in the orthogonal decomposition of X can be easily
computed separately, Lemma 4 then allows us to find the order of Aut(C) from
that of StabAut(L)(F).

2.4 Mass Formulas

LetNk(n) andNk,II(n) be the numbers of distinct self-dualZZk-codes and Type II
ZZk-codes of length n, respectively. The numbers N4(n) and N4,II(n) are given in
[10]. The number Nk(n) is given in [1] for k = p2 when p is an odd prime and [14]
for k = p3 when p is a prime. The number N8,II(n) is also given in [3].

Suppose that p is an odd prime. Since any self-dual (resp. Type II) ZZ2p-code
can be obtained from a pair of a binary self-dual (resp. Type II) code and a
self-dual IFp-code [8], it is easy to see that

N2p(n) = N2(n) · Np(n) and N2p,II(n) = N2,II(n) · Np(n)

(see [18] for the number Np(n)).
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Mass formulas are useful when attempting to complete the classification of
self-dual codes. Let Ck(n) and Ck,II(n) be the sets of inequivalent self-dual ZZk-
codes and Type II ZZk-codes of length n, respectively. In order to check that our
classification is complete, the following mass formulas are used∑

C∈Ck(n)

2n · n!
# Aut(C)

= Nk(n) (1)

and ∑
C∈Ck,II(n)

2n · n!
# Aut(C)

= Nk,II(n) . (2)

In all of the classification results below, we have computed the sum in (1) or
(2) where # Aut(C) are calculated by Lemma 4, and checked against the known
formula for Nk(n) or Nk,II(n).

3 Self-dual ZZ4-Codes

A self-dual ZZ4-code exists for every length. The classification of self-dual ZZ4-
codes was done for lengths n ≤ 9 in [5] and for lengths n = 10, . . . , 15 in [9]. At
length 16, the classification of Type II codes was done in [16]. In this section, we

Table 3. Number of Type I ZZ4-codes of length 16

L \ l 0 1 2 3 4 5 6 7 8 Total

D2
8 0 0 2 8 31 86 160 168 85 540

ZZ16 1 1 2 4 7 8 8 3 1 35
E8 ⊕ ZZ8 0 1 3 9 22 34 35 20 5 129
D12 ⊕ ZZ4 0 1 4 13 34 68 82 53 15 270
E2

7 ⊕ ZZ2 0 0 1 6 23 57 94 74 25 280
A15 ⊕ ZZ 0 0 0 1 5 16 34 43 19 118

Table 4. Number of self-dual ZZ4-codes of length 17

L \ l 0 1 2 3 4 5 6 7 8 Total

A11E6 0 0 0 1 5 20 45 48 17 136
E2

8 ⊕ ZZ 0 0 1 2 6 12 17 18 8 64
D16 ⊕ ZZ 0 1 1 3 7 13 19 16 9 69
D2

8 ⊕ ZZ 0 0 2 9 36 107 206 220 107 687
ZZ17 1 1 2 4 7 8 9 4 1 37

E8 ⊕ ZZ9 0 1 3 9 22 37 41 25 6 144
D12 ⊕ ZZ5 0 1 4 13 36 76 100 69 19 318
E2

7 ⊕ ZZ3 0 0 1 6 25 68 119 102 33 354
A15 ⊕ ZZ2 0 0 0 1 6 21 50 64 29 171
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Table 5. Number of self-dual ZZ4-codes of length 18

L \ l 0 1 2 3 4 5 6 7 8 Total

A17A1 0 0 0 0 1 3 11 19 13 47
D10E7A1 0 0 1 5 22 74 177 250 149 678

D3
6 0 0 1 5 31 142 453 805 599 2036

A2
9 0 0 0 0 2 15 80 197 198 492

A11E6 ⊕ ZZ 0 0 0 1 8 43 140 234 143 569
E2

8 ⊕ ZZ2 0 0 1 3 10 23 40 45 28 150
D16 ⊕ ZZ2 0 1 2 5 12 25 41 43 24 153
D2

8 ⊕ ZZ2 0 0 2 12 58 207 511 723 452 1965
ZZ18 1 1 2 4 7 9 12 9 3 48

E8 ⊕ ZZ10 0 1 3 9 24 46 65 56 20 224
D12 ⊕ ZZ6 0 1 4 15 44 106 176 176 72 594
E2

7 ⊕ ZZ4 0 0 1 7 33 106 231 278 138 794
A15 ⊕ ZZ3 0 0 0 1 6 25 69 107 60 268

Table 6. Number of self-dual ZZ4-codes of length 19

L \ l 0 1 2 3 4 5 6 7 8 9 Total

E3
6O1 0 0 0 1 5 25 84 166 142 0 423

A11D7O1 0 0 0 1 6 36 139 308 287 0 777
A2

7D5 0 0 0 1 11 79 386 1083 1191 0 2751
A17A1 ⊕ ZZ 0 0 0 0 1 4 15 29 23 0 72

D10E7A1 ⊕ ZZ 0 0 1 6 29 102 259 397 263 0 1057
D3

6 ⊕ ZZ 0 0 1 6 40 206 732 1467 1220 0 3672
A2

9 ⊕ ZZ 0 0 0 0 2 18 115 343 395 0 873
A11E6 ⊕ ZZ2 0 0 0 1 10 65 253 524 404 0 1257

E2
8 ⊕ ZZ3 0 0 1 3 11 26 46 55 35 0 177

D16 ⊕ ZZ3 0 1 2 6 14 29 50 55 35 0 192
D2

8 ⊕ ZZ3 0 0 2 12 63 240 638 1005 690 0 2650
ZZ19 1 1 2 4 7 9 13 11 5 0 53

E8 ⊕ ZZ11 0 1 3 9 24 48 73 74 34 0 266
D12 ⊕ ZZ7 0 1 4 15 46 115 207 239 122 0 749
E2

7 ⊕ ZZ5 0 0 1 7 34 116 277 378 220 0 1033
A15 ⊕ ZZ4 0 0 0 1 7 30 90 154 107 0 389

give a classification of Type I codes of length 16 and self-dual codes of lengths
17, 18 and 19.

In Tables 3, 4, 5 and 6, we list the numbers of inequivalent Type I ZZ4-
codes C of length 16, inequivalent self-dual ZZ4-codes C of lengths 17, 18 and
19, respectively, with A4(C) � L for each unimodular lattice L and for each
dimension l of the residue codes C(1) = {c mod 2 | c ∈ C}. Table 3 together
with the result in [16] gives the total number of inequivalent self-dual ZZ4-codes
of length 16.



On the Classification of Self-dual ZZk-Codes 85

Proposition 1. There are 1, 372 inequivalent Type I ZZ4-codes of length 16.
There are 1, 980 inequivalent self-dual ZZ4-codes of length 17. There are 8, 018
inequivalent self-dual ZZ4-codes of length 18. There are 16, 391 inequivalent self-
dual ZZ4-codes of length 19.

4 Self-dual ZZ8-Codes

A self-dual ZZ8-code of length n exists if and only if n is even. The classification
of self-dual ZZ8-codes was done in [7] for lengths n ≤ 8. As pointed out in [14], the
classification of self-dual codes of length 6 given in [7] misses some codes. It turns
out that the classification of self-dual codes of length 8 in [7] is also incomplete.
In this section, we give a revised list of self-dual ZZ8-codes of lengths 6 and 8.
We also extend the classification to length 12.

4.1 Length 6

Let C8,6,1, C8,6,2 and C8,6,3 be the ZZ8-codes of length 6 with generator matrices⎛⎜⎜⎜⎜⎜⎜⎝
200002
020020
002200
000400
000040
000004

⎞⎟⎟⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎝
101776
011653
002024
000444

⎞⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎝
110211
020024
002204
000400
000044

⎞⎟⎟⎟⎟⎠ ,

respectively. These codes are self-dual codes which have automorphism groups of
orders 2 · 1536, 2 · 24 and 2 · 64, respectively. These three codes make a complete
list of inequivalent self-dual ZZ8-codes of length 6. Two codes C8,6,2 and C8,6,3
are missing in the classification given in [7].

4.2 Length 8

There are 9 inequivalent Type II ZZ8-codes and there are 20 inequivalent Type
I ZZ8-codes of length 8. The orders of their automorphism groups are listed in
Tables 7 and 8, respectively.

Let Di denote the code with generator matrix G8,i in [7]. We note that
the codes D12 and D15 are equivalent, since D15 is obtained from D12 by the

Table 7. Type II ZZ8-codes of length 8

i # Aut(C8,8,i) i # Aut(C8,8,i) i # Aut(C8,8,i)

1 2 · 168 4 2 · 24 7 2 · 1536
2 2 · 24 5 2 · 96 8 2 · 172032
3 2 · 10752 6 2 · 192 9 2 · 42
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Table 8. Type I ZZ8-codes of length 8

i #Aut(D8,8,i) i # Aut(D8,8,i) i # Aut(D8,8,i) i # Aut(D8,8,i)

1 2 · 6 6 2 · 8 11 2 · 96 16 2 · 6
2 2 · 32 7 2 · 64 12 2 · 6 17 2 · 49152
3 2 · 1536 8 2 · 24 13 2 · 32 18 2 · 512
4 2 · 192 9 2 · 8 14 2 · 1536 19 2 · 6
5 2 · 21 10 2 · 192 15 2 · 10752 20 2 · 3

permutation (1, 8, 2, 6, 7, 3) and by changing the signs of the 6th and 8th coor-
dinates. Moreover, we have the following pairs of equivalent codes:

(D1, C8,8,8), (D2, D8,8,17), (D3, C8,8,7), (D4, D8,8,14), (D5, D8,8,15) ,

(D6, C8,8,3), (D7, D8,8,3), (D8, C8,8,6), (D9, D8,8,11), (D10, D8,8,1) ,

(D11, D8,8,6), (D12, D8,8,5), (D13, D8,8,16), (D14, D8,8,20), (D16, D8,8,9) ,

(D17, D8,8,8), (D18, C8,8,2), (D19, C8,8,1) ,

where (X,Y ) means that X,Y are equivalent. Hence C8,8,i (i = 4, 5, 9) and D8,8,i
(i = 2, 4, 7, 10, 12, 13, 18, 19) are missing in the classification given in [7].

The codes C8,8,i (i = 4, 5, 9) have the following generator matrices:

⎛⎜⎜⎜⎜⎝
10003633
01013476
00103716
00022646
00004040

⎞⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎜⎝
10003277
01011234
00202264
00022202
00004040
00000400

⎞⎟⎟⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎝
10010125
01002151
00112574
00022426
00004000

⎞⎟⎟⎟⎟⎠ ,

respectively. The codes D8,8,i (i = 2, 4, 7, 10, 18, 19) have the following generator
matrices:

⎛⎜⎜⎜⎜⎜⎜⎝
10103214
01010127
00202000
00020244
00004040
00000404

⎞⎟⎟⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎜⎝
10010172
01103025
00200262
00022202
00004004
00000440

⎞⎟⎟⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎜⎝
10102330
01102103
00200204
00022044
00004000
00000444

⎞⎟⎟⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎜⎝
10010327
01010275
00202000
00020042
00004000
00000444

⎞⎟⎟⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

10012103
02002004
00200020
00020204
00004000
00000404
00000040

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎝
10010653
01010572
00111670
00020024
00004444

⎞⎟⎟⎟⎟⎠ ,
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respectively. Generator matrices of codes D8,8,12, D8,8,13 can be obtained from
those of C8,8,9, C8,8,5, respectively, since D8,8,12 = C8,8,9 · M and D8,8,13 =
C8,8,5 · M , where M is the diagonal matrix diag(3, 1, 1, 1, 1, 1, 1, 1).

4.3 Lengths 10 and 12

For lengths 10 and 12, we give the number N of inequivalent self-dual codes C
with A8(C) � L in Table 9 for each unimodular lattice L.

Table 9. Numbers of self-dual ZZ8-codes of lengths 10, 12

n 10 12

L ZZ10 E8 ⊕ ZZ2 D12 ZZ12 E8 ⊕ ZZ4

N 50 42 250 194 571

Proposition 2. There are three inequivalent self-dual ZZ8-codes of length 6.
There are 20 (resp. 9) inequivalent Type I (resp. Type II) ZZ8-codes of length
8. There are 92 inequivalent self-dual ZZ8-codes of length 10. There are 1, 015
inequivalent self-dual ZZ8-codes of length 12.

4.4 A Weaker Equivalence

In this paper, we employ monomial (±1, 0)-matrices as the definition of equiv-
alence of codes. For self-dual ZZ8-codes, one could use monomial (±1,±3, 0)-
matrices to define a weaker equivalence. We note that there are codes C,C′

which are equivalent in this weak sense, such that A8(C) �� A8(C′). Indeed, C′

could be Type I even if C is Type II.
For each of lengths 2, 4 and 6, the equivalence classes are the same under both

definitions. For length 8, there are 15 classes under the weak equivalence. More
specifically, the following codes are equivalent in the weak sense:

(D8,8,1, D8,8,6, C8,8,4), (D8,8,4, D8,8,11, C8,8,6) ,

(D8,8,i (i = 5, 8, 9, 16, 20), C8,8,1, C8,8,2), (D8,8,12, C8,8,9), (D8,8,13, C8,8,5) ,

(D8,8,14, C8,8,7), (D8,8,15, C8,8,3) .

For length 10, we have verified that there are 37 classes under the weak equiva-
lence. Due to the computational complexity, we were unable to find equivalence
classes for length 12. However, from the number of different weight distributions,
it follows that there are at least 198 equivalence classes.

5 Self-dual ZZk-Codes (k = 6, 9, 10)

In this section, we give a summary of our classification of self-dual ZZk-codes
(k = 6, 9, 10) of lengths which are listed in the last column of Table 1.
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A self-dual ZZ9-code exists for every length. A self-dual ZZ6-code of length n
exists if and only if n is divisible by four and a self-dual ZZ10-code of length n
exists if and only if n is even. The classification of self-dual ZZ6-codes of length
4 was done in [8] incorrectly and there is a unique such code up to equivalence
[15, Example 6.5]. We remark that Kitazume and Ooi [13] classified Type II ZZ6-
codes of length 8, and there are two such codes up to equivalence. This result,
together with Table 10 gives the total number of inequivalent self-dual ZZ6-codes
of lengths 8 and 12. Tables 11 and 12 give the numbers N of inequivalent self-
dual ZZ9-codes C of lengths 9, 10, 11, 12 with A9(C) � L, and of self-dual ZZ10-
codes C of lengths up to 10 with A10(C) � L, respectively, for each unimodular
lattice L.

Table 10. Numbers of self-dual ZZ6-codes of lengths 8, 12

n 8 12

L ZZ8 D12 ZZ12 E8 ⊕ ZZ4

N 3 (Type I) 25 18 35

Table 11. Numbers of self-dual ZZ9-codes of lengths 9, 10, 11, 12

n 9 10 11 12

L ZZ9 E8 ⊕ ZZ ZZ10 E8 ⊕ ZZ2 ZZ11 E8 ⊕ ZZ3 D12 ZZ12 E8 ⊕ ZZ4

N 28 7 56 27 118 153 501 425 1564

Table 12. Numbers of self-dual ZZ10-codes of lengths 2, 4, 6, 8, 10

n 2 4 6 8 10

L ZZ2 ZZ4 ZZ6 ZZ8 E8 ZZ10 E8 ⊕ ZZ2

N 1 2 5 16 (Type I) 11 (Type II) 96 79

We give generator matrices of the three Type I ZZ6-codes of length 8:⎛⎜⎜⎝
10000432
01001020
00100502
00012023

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
10004320
01004043
00100434
00013402

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
10000504
01002010
00101040
00010401

⎞⎟⎟⎠ .
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We give generator matrices of the self-dual ZZ10-codes of lengths 2, 4, 6:

– n = 2: ( 1 3 ).

– n = 4:
(

1052
0125

)
,

(
1030
0103

)
.

– n = 6:⎛⎝100520
010205
001058

⎞⎠ ,

⎛⎝100726
010632
001243

⎞⎠ ,

⎛⎝100182
010834
001243

⎞⎠ ,

⎛⎝100300
010030
001003

⎞⎠ ,

⎛⎝100508
010070
001805

⎞⎠ .

6 Largest Minimum Weights

For k = 4, 6, 8, 9 and 10, let dk,H , dk,L and dk,E be the largest minimum Ham-
ming, Lee and Euclidean weights among self-dual ZZk-codes of length n, respec-
tively, and let Nk,H , Nk,L and Nk,E be the numbers of inequivalent self-dual ZZk-
codes with the minimum Hamming, Lee and Euclidean weights dk,H , dk,L and
dk,E , respectively. In Table 13, we list the total number # of codes, dk,H , dk,L,
dk,E , Nk,H , Nk,L and Nk,E (k = 4, 6, 8, 9 and 10) for lengths which are listed in

Table 13. Largest minimum weights of self-dual ZZk-codes (k = 4, 6, 8, 9, 10)

Length # dk,H Nk,H dk,L Nk,L dk,E Nk,E

ZZ4 16 (Type I) 1,372 4 215 8 19 8 540
17 1,980 4 62 6 29 8 136
18 8,018 4 66 8 7 8 3253
19 16,391 3 81 6 61 8 3951

ZZ6 8 (Type I) 3 2 3 6 1 6 3
12 78 4 10 8 5 12 25

ZZ8 6 3 2 1 6 1 8 3
8 (Type I) 20 4 5 8 1 8 20
8 (Type II) 9 4 2 8 5 16 9

10 92 2 25 8 4 8 92
12 1,015 2 388 8 172 16 250

ZZ9 9 35 3 7 9 1 9 35
10 83 4 7 9 1 9 83
11 271 5 13 9 1 9 271
12 2,490 6 259 10 72 18 501

ZZ10 2 1 2 1 4 1 10 1
4 2 2 2 6 1 10 2
6 5 2 5 6 3 10 5

8 (Type I) 16 2 16 8 3 10 16
8 (Type II) 11 4 6 8 6 20 11

10 175 2 175 10 4 10 175
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the last column of Table 1. We remark that d4,H , d4,L, d4,E were determined in
[17] for lengths n ≤ 24, and N4,H for lengths 17, 18 and N4,L for length 18 were
already determined in [17] without full classification.
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Abstract. Some linear codes associated to maximal algebraic curves
via Feng-Rao construction are investigated. In several case, these codes
have better minimum distance with respect to the previously known
linear codes with same length and dimension.

Keywords: linear codes, algebraic geometric codes, maximal curves.

1 Introduction

The idea of constructing linear codes from algebraic curves defined over a fi-
nite field Fq goes back to Goppa [10]. These codes are usually called Algebraic
Geometric Codes, AG codes for short. Typically, AG codes with good parame-
ters arise from curves with a large number N of Fq-rational points with respect
to their genus g. In fact, for an [N, k]q AG code code associated to a curve of
genus g, the sum of its transmission rate plus its relative minimum distance is
at least 1 − g−1

N . An upper bound on N is given by the Hasse-Weil estimate
N ≤ q + 1 + 2g

√
q.

In 1995 Feng and Rao [3] introduced the so-called Improved AG Codes, see
Section 2.2. The parameters of these codes depend on the pattern of the Weier-
strass semigroup at the points of the underlying curve, and it has emerged that
they can be significantly better than those of the ordinary AG codes, see [3] and
[12, Section 4.3].

The aim of this paper is to investigate the parameters of the Improved AG
Codes associated to some classes of maximal curves, that is, curves for which
the Hasse-Weil upper bound is attained. Since maximal curves with positive
genus exist only for square q, henceforth we assume that q = q20 . The main
achievement of the paper is the discovery of several linear codes that apparently
have better parameters with respect to the previously known ones, see Appendix.
Our method is based on the explicit description of the Weierstrass semigroup at
some Fq-rational points of the curves under investigation.

The maximal curves that will be considered are the following.

(A) Curves with equation X2m +Xm + Y q0+1 = 0, where m > 2 is a divisor of
q0 + 1, and ∆ = q0+1

m > 3 is a prime [7].
(B) Curves with equation X2i+2 + X2i + Y q0+1 = 0, where ∆ = q0+1

2 > 3 is a
prime, and 1 ≤ i ≤ ∆ − 2 [8].

M.G. Parker (Ed.): Cryptography and Coding 2009, LNCS 5921, pp. 91–111, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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(C) Quotient curves of the Hermitian curve Y q0+1 = Xq0 + X with respect to
the additive subgroups of H = {c ∈ Fq | cq0 + c = 0} [5].

(D) Curves with equation Y m = Xq0 +X , where m is a proper divisor of q0 +1
[1].

(E) Curves with equation Y
q−1
m = X(X + 1)q0−1, where m is a divisor of q − 1

[5].

2 Notation and Preliminaries

2.1 Curves

Throughout the paper, by a curve we mean a projective, geometrically irre-
ducible, non-singular algebraic curve defined over a finite field. Let q0 be a prime
power, q = q20 , and let X be a curve defined over the finite field Fq of order q.
Let g be the genus of X . Henceforth, the following notation is used:

• X (Fq) (resp. Fq(X )) denotes the set of Fq-rational points (resp. the field of
Fq-rational functions) of X .

• H is the Hermitian curve over Fq with affine equation

Y q0+1 = Xq0 +X. (1)

• For f ∈ Fq(X ), (f) (resp. (f)∞) denotes the divisor (resp. the pole divisor)
of f .

• Let P be a point of X . Then ordP (resp. H(P )) stands for the valuation
(resp. for the Weierstrass non-gap semigroup) associated to P . The ith non-
gap at P is denoted as mi(P ).

2.2 One-Point AG Codes and Improved AG Codes

Let X be a curve, let P1, P2, . . . , Pn be Fq-rational points of X , and let D be the
divisor P1 + P2 + . . . + Pn. Furthermore, let G be some other divisor that has
support disjoint from D. The AG code C(D,G) of length n over Fq is the image
of the linear map α : L(G) → Fnq defined by α(f) = (f(P1), f(P2), . . . , f(Pn)). If
n is bigger than deg(G), then α is an embedding, and the dimension k of C(D,G)
is equal to �(G). The Riemann-Roch theorem makes it possible to estimate the
parameters of C(D,G). In particular, if 2g− 2 < deg(G) < n, then C(D,G) has
dimension k = deg(G) − g + 1 and minimum distance d ≥ n − deg(G), see e.g.
[12, Theorem 2.65]. A generator matrix M of C(D,G) is

M =

⎛⎜⎝ f1(P1) . . . f1(Pn)
... . . .

...
fk(P1) . . . fk(Pn)

⎞⎟⎠ ,

where f1, f2, . . . , fk is an Fq-basis of L(G). The dual code C⊥(D,G) of C(D,G)
is an AG code with dimension n − k and minimum distance greater than or
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equal to deg(G) − 2g+ 2. When G = γP for an Fq-rational P point of X , and a
positive integer γ, AG codes C(D,G) and C⊥(D,G) are referred to as one-point
AG codes. We recall some results on the minimum distance of one-point AG
codes. By [9, Theorem 3], we can assume that γ is a non-gap at P . Let

H(P ) = {ρ1 = 0 < ρ2 < . . .} ,

and set ρ0 = 0. Let f� be a rational function such that div∞(f�) = ρ�P , for any
� ≥ 1. Let D = P1 + P2 + . . . + Pn. Let also

h� = (f�(P1), f�(P2), . . . , f�(Pn)) ∈ Fnq . (2)

Set
ν� := #

{
(i, j) ∈ N2 : ρi + ρj = ρ�+1

}
for any � ≥ 0. Denote with C�(P ) the dual of the AG code C(D,G), where
D = P1 + P2 + . . . + Pn, and G = ρ�P .

Definition 1. Let d be an integer greater than 1. The Improved AG code C̃d(P )
is the code

C̃d(P ) :=
{
x ∈ Fnq : 〈x, hi+1〉 = 0 for all i such that νi < d

}
,

see [12, Def. 4.22].

Theorem 1 (Proposition 4.23 in [12]). Let

rd := # {i ≥ 0 : νi < d} .

Then C̃d(P ) is an [n, k, d′]-code, where k ≥ n − rd, and d′ ≥ d.

2.3 Maximal Curves

A curve X is called Fq-maximal if the number of its Fq-rational points attains
the Hasse-Weil upper bound, that is,

#X (Fq) = q + 1 + 2gq0,

where g is the genus of X .
We recall a result on Weierstrass semigroups of maximal curves that will be

used in the sequel of the paper.

Proposition 1 ([4]). Let X be a maximal curve over Fq. If P ∈ X (Fq), then
both q0 and q0 + 1 belongs to H(P ).

2.4 Numerical Semigroups

A numerical semigroup is a subset of the set N of nonnegative integers that is
closed under addition, contains 0 and whose complement in N is finite. A gap
of a numerical semigroup Θ is a nonnegative integer not belonging to Θ. The
genus of a numerical semigroup is the number of its gaps.

For a point P of a curve X , the Weierstrass semigroup H(P ) is a numerical
semigroup whose genus coincides with the genus g of X .
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3 Weierstrass Semigroups for Curves (A)

Let m > 2 be a divisor of q0 +1, and suppose that ∆ = q0+1
m > 3 is a prime. Let

Xm be the non-singular model of the plane curve over Fq with affine equation

X2m +Xm + Y q0+1 = 0.

Proposition 2 (Section 3 in [7]). The curve Xm has the following properties.

(i) The genus of Xm is g = 1
2m(q0 − 2) + 1.

(ii) Xm is a maximal curve with

q + 1 +m(q0 − 2)q0 + 2q0 ≥ 1 + qm

Fq-rational points.
(iii) If ω is a primitive m-th root of −1, then there exists an Fq-rational point P

such that
– ( 1

x̄−ω )∞ = (q0 + 1)P ;

– ( x̄
−1ȳ∆

x̄−ω )∞ = (q0 + 1 − ∆)P ;
– for all n = 1, . . . , ∆−1

2 , ( ȳn

x̄−ω )∞ = (q0 + 1 − n)P .

Let P be as (iii) of Proposition 2. Then the Weierstrass semigroupH(P ) contains
the following numerical semigroup

Θ =
〈
q0 + 1 − ∆, q0 + 1 − ∆ − 1

2
, q0 + 1 − ∆ − 1

2
+ 1, . . . , q0 + 1

〉
.

We show that actually H(P ) coincides with Θ.

Proposition 3. H(P ) = Θ.

Proof. To prove the assertion we show that the number of gaps in Θ,
that is, the number of integers in N \ Θ, is equal to the genus g of
Xm. Let G =

{
q0 + 1 − ∆, q0 + 1 − ∆−1

2 , q0 + 1 − ∆−1
2 + 1, q0 + 1 − ∆−1

2 + 2,
. . . , q0 + 1}, and for s ∈ N0 let G(s) = {ig1 + jg2|gk ∈ G, i+ j = s}. Note that,
if s < m, then the intersection of two of these sets is always empty. In fact, the
largest integer of G(s − 1) is (s − 1)(q0 + 1), and it is smaller than the smallest
integer of G(s), that is s(q0 + 1 −∆). So, the number of gaps between G(s − 1)
and G(s) is exactly s(q0 + 1 −∆) − (s− 1)(q0 + 1) − 1 = q0 − s∆. Now we show
that the number of gaps in G(s) is at most ∆−1

2 . Let v ∈ G(s). It is easily seen
that G(s) contains each v such that s(q0 + 1 − ∆−1

2 ) ≤ v ≤ s(q0 + 1). Moreover,
if s(q0 + 1) − s∆+ r∆ − r∆−1

2 ≤ v ≤ s(q0 + 1) − s∆+ r∆, then

v = (s − r)(q0 + 1 − ∆) + (q0 + 1 − ∆ − 1
2

+ h) + (q0 + 1 − ∆ − 1
2

+ k),

where h, k ∈ {0, . . . ,m − 1}, and r ∈ {0, . . . , s − 1}. Hence, G(s) contains every
integer greater than (s − 1)(q0 + 1 − ∆) + (q0 + 1 − ∆−1

2 ), and less than s(q0 +
1 − ∆−1

2 ). For the same reason, the number of gaps in G(m) is at most ∆−1
2 . In
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particular, the greatest gap in G(m) is less than (m− 1)(q0 + 1 −∆)+ (q0 + 1 −
∆−1

2 ) < 2g, and the greatest v ∈ G(m) is such that v > 2g. Therefore, we have
at most

m
∆ − 1

2
+
m−1∑
i=1

(q0 − i∆) = m
∆ − 1

2
+ q0(m − 1) − ∆

m(m − 1)
2

= g

gaps less than 2g. This shows that Θ ∩ [0, 2g] = H(γ) ∩ [0, 2g]. To complete
the proof, we need to show that Θ contains every integer greater than 2g. This
follows from the fact that if s ≥ m, then G(s) ∩ G(s + 1) �= ∅; moreover, G(s)
contains the gaps of G(s+ 1), being s(q0 + 1) > (s+ 1)(q0 + 1) −∆− ∆−1

2 . This
completes the proof.

4 Weierstrass Semigroups for Curves (B)

Let q0 be a prime power such that ∆ = q0+1
2 is a prime greater than 3. Let Xi

be the non-singular model of the curve over Fq with affine equation

X2i+2 +X2i + Y q0+1 = 0,

where 1 ≤ i ≤ ∆ − 2.

Proposition 4 ([8]). The curve Xi has the following properties.

(i) Xi is maximal.
(ii) The genus of Xi is g = q0 − 1.

(iii) Let n1, n2, . . . , n∆−1
2

be the integers such that 0 < nj < ∆, and

nj(i+ 1) ≤
(⌊

nji

∆

⌋
+ 1

)
∆,

for j ∈
{
1, 2, . . . , ∆−1

2

}
.

• There exists an Fq-rational point P1 of Xi such that the Weierstrass
semigroup H(P1) contains the following integers

q0 + 1, q0 + 1 − n1, q0 + 1 − n2, . . . , q0 + 1 − n∆−1
2
, q0 + 1 − ∆;

• there exists an Fq-rational point P2 of Xi such that the Weierstrass semi-
group H(P2) contains the following integers

q0 + 1, q0 + 1 − m1, q0 + 1 − m2, . . . , q0 + 1 − m∆−1
2
, q0 + 1 − ∆,

where mj = nji − ∆
⌊
nji
∆

⌋
;

• there exists an Fq-rational point P3 of Xi such that the Weierstrass semi-
group H(P3) contains the following integers

q0 + 1, q0 + 1 − k1, q0 + 1 − k2, . . . , q0 + 1 − k∆−1
2
, q0 + 1 − ∆,

where kj = ∆
(⌊

nji
∆

⌋
+ 1

)
− nj(i+ 1).
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It is easily seen that, if i = 1, then nj = mj = j, and kj = ∆ − 2j, for
j ∈

{
1, 2, . . . , ∆−1

2

}
. So, from the above Proposition we have just two different

Weierstrass semigroup of X1, namely H(P1) and H(P3).

Proposition 5. Assume that i = 1, and let

Θ =
〈
q0 + 1, (q0 + 1) − 1, (q0 + 1) − 2, . . . , (q0 + 1) − ∆ − 1

2
, q0 + 1 − ∆

〉
.

Then H(P1) = Θ.

Proof. To prove the assertion we show that the number
of gaps in Θ is equal to the genus g of X1. Let G ={
q0 + 1, (q0 + 1) − 1, (q0 + 1) − 2, . . . , (q0 + 1) − ∆−1

2 , q0 + 1 − ∆
}
, and

for s ∈ {0, 1, 2} let G(s) = {ig1 + jg2|gk ∈ G, i+ j = s}. Note that
G(0) = {0}, G(1) = G, and that the number of gaps in G(1) is at
most ∆−1

2 . Moreover, G(1) ∩ G(2) = ∅. In fact, the largest integer of
G(1) is q0 + 1, and it is smaller than the smallest integer of G(2), that is
(q0 + 1 − ∆) + (q0 + 1 − ∆−1

2 ) = 5(q0+1)
4 + 1

2 . So, the number of gaps between
G(1) andG(2) is exactly (q0 +1 −∆)+ (q0 + 1 − ∆−1

2 ) − (q0 + 1) − 1 = q0+1
4 − 1

2 .

Now we show that
(
N ∩

[
5(q0+1)

4 + 1
2 , 2(q0 + 1)

])
\ G(2) = ∅. Let v ∈ G(2).

• If 5(q0+1)
4 + 1

2 ≤ v ≤ 3(q0+1)
2 , then v = q0 +1−∆+(q0 +1− ∆−1

2 +h), where
h ∈

{
0, . . . , ∆−1

2

}
;

• if 3(q0+1)
2 +1 ≤ v ≤ 2(q0+1), then v = (q0+1−∆−1

2 +h)+(q0+1−∆−1
2 +k),

where h, k ∈
{
0, . . . , ∆−1

2

}
.

Moreover, since that the largest integer in G(2), that is 2(q0 +1), is smaller than
2g = 2(q0 − 1), we have at most

(q0 + 1 − ∆ − 1) +
∆ − 1

2
+ (

q0 + 1
4

− 1
2
) = q0 − 1 = g

gaps less than 2g. This shows that Θ ∩ [0, 2g] = H(γ1) ∩ [0, 2g]. To complete the
proof, we need to show that Θ contains every integer greater than 2g. Consider
now G(s), for s ≥ 3. We can observe that in G(s) there is no gap, and that
between G(2) and G(3) there is no integer. Also, it is easily seen that for s > 2,
G(s) ∩ G(s + 1) �= ∅ holds. This completes the proof.

Proposition 6. Assume that i = 1, and let

Γ = 〈q0 + 1 − ∆, q0 + 1 − (∆ − 2), q0 + 1 − (∆ − 4), . . . , q0, q0 + 1〉 .

Then H(P3) = Γ .

Proof. We show that the number of gaps in Γ is equal to the genus g of X1.
Let h = q0 + 1 − ∆, and let G = {h, h+ 2, h+ 4, . . . , 2h− 1, 2h}. Clearly, Γ
is generated by G. The number of gaps less than the first non-zero nongap
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is h − 1, and the number of gaps in G is at most h−1
2 . For s ∈ {0, 1, 2} let

G(s) = {ig1 + jg2|gk ∈ G, i+ j = s}. Note that G(0) = {0}, G(1) = G, and
that the number of gaps in G(2) is at most h−1

2 . In fact, for v ∈ G(2), we
have that if v ≤ 3h, then v = h + (h + 2i) for some i ∈

{
1, . . . , h−1

2

}
, and if

3h − 1 < v ≤ 4h, then v = (h + 2i) + (h + 2j) for some i, j ∈
{
0, 1, . . . h−1

2

}
.

Since that 4h = 2(q0 + 1) > 2g, we have at most

2(h − 1) = g

gaps less than 2g. Moreover, it is easily seen that Γ contains every integer greater
than 2g.

Consider the curve Xi, when q0 = 9, and ∆ = 5. We limit ourselves to the
the case i = 1, since for i = 2 and i = 3 the same Weierstrass semigroups are
obtained. The curve X1 has equation

X4 +X2 + Y 10 = 0, (3)

its genus is g = 8, and the number of its F81-rational points is 226. By
Propositions 5 and 6 there exist two Fq-rational points P1 and P3 such that
H(P1) = 〈5, 8, 9〉 and H(P3) = 〈5, 7, 9〉.

In Appendix, the Improved AG codes associated to the curve (3) with respect
to P3 will be referred to as codes (B1).

5 Weierstrass Semigroups for Curves (C)

Let s be a divisor of q0. Consider H = {c ∈ Fq| cq0 + c = 0} < (Fq,+), and let
Hs be any additive subgroup of H with s elements. Let X be the curve obtained
as the image of the Hermitian curve by the following rational map

ϕ : H → X , (x, y) �→ (t, z) = (
∏
a∈Hs

(x+ a), y). (4)

Proposition 7 ([5]). The genus g of X is equal to 1
2q0(

q0
s − 1).

Let P̄∞ be the only point at infinity of X . This point is the image of the only
infinite point P∞ in H by ϕ. Hence, the ramification index εP∞ of P∞ is equal
to deg(ϕ) = s. Moreover, it is easily seen that

ordP̄∞(t) =
1
s

∑
a∈Hs

ordP∞(x+ a) = −(q0 + 1),

and
ordP̄∞(z) =

1
s
ordP∞(y) = −q0

s
.

Hence, 〈q0
s
, q0 + 1

〉
⊆ H(P̄∞). (5)
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Proposition 8
H(P̄∞) =

〈q0
s
, q0 + 1

〉
.

Proof. Note that q0
s and q0 + 1 are coprime. Then by [12, Proposition 5.33] the

genus of the semigroup generated by q0
s and q0 +1 is 1

2 ( q0s −1)(q0 +1−1). Then
the assertion follows from (5), together with Proposition 7.

Now some special cases for curves (C) are considered in greater detail.

5.1 q0 = 2h, s = 2, Hs = {0, 1}
Let q0 be a power of 2, and s = 2. Since that q0 is even, then H = Fq0 . Let
Hs = {0, 1}. Therefore, the rational map ϕ : H → X defined as in (4) is

ϕ(x, y) = (x2 + x, y).

Proposition 9. X has affine equation

Y q0+1 = X
q0
2 +X

q0
4 + . . . +X2 +X. (6)

Proof. Let (X,Y ) ∈ H. We need to prove that ϕ(X,Y ) satisfies (6) for every
point (X,Y ) ∈ H. To do this it is enough to observe that

(X2 +X)
q0
2 + (X2 +X)

q0
4 + . . . + (X2 +X)2 + (X2 +X) = Xq0 +X,

and take into account that (X,Y ) satisfies (1).

The curve with equation 6 was investigated in [6].

Proposition 10 ([6]). There exists a point P ∈ X such that the Weierstrass
semigroup at P is

H(P ) = 〈q0 − 1, q0, q0 + 1〉 .

Therefore, taking into account Proposition 8, the curve X has at least two dif-
ferent Weierstrass semigroups.

q0 = 8. In this case the curve X has equation

Y 9 = X4 +X2 +X,

its genus is g = 12, and the number of its F64-rational points is 257. In Ap-
pendix, we will denote by (C1a) the Improved AG codes constructed from
the Weierstrass semigroup of Proposition 8, that is H(P̄∞) = 〈4, 9〉, and by
(C1b) those constructed from the Weierstrass semigroup of Proposition 10,
H(P ) = 〈7, 8, 9〉.
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5.2 q0 = 2h, s = q0

2 , Hs = {a ∈ H| Tr(a) = 0}
Let q0 be a power of 2, and s = q0

2 . Since that q0 is even, then H = Fq0 . Let
Hs = {a ∈ H |Tr(a) = 0}, where Tr(a) = a + a2 + . . . + a

q0
4 + a

q0
2 . Therefore,

the rational map ϕ : H → X defined as in (4) is

ϕ(x, y) = (
∏

a∈Fq0 :Tr(a)=0

(x+ a), y) = (Tr(x), y).

Proposition 11. The curve X has affine equation

Y q0+1 = X2 +X. (7)

Proof. Let (X,Y ) ∈ H. The assertion follows from the equation

(Tr(X))2 + (Tr(X)) = Xq0 +X.

Proposition 12 ([6]). There exists a point P ∈ X such that the Weierstrass
semigroup at P is

H(P ) =
〈
q0 + 1 − q0

2
, q0 + 1 − (

q0
2

− 1), . . . , q0, q0 + 1
〉

.

q0 = 16. The curve X has equation

Y 17 = X2 +X,

its genus is g = 8, and the number of its F256-rational points is 513. In Ap-
pendix, the Improved AG codes constructed from the Weierstrass semigroup of
Proposition 8, that is H(P̄∞) = 〈2, 17〉, will be referred to as codes (C2).

5.3 q0 = 16, s = 4, Hs = F4

Let q0 = 16, and s = 4. Since that q0 is even, then H = F16. So, we can consider
the case Hs = F4. The rational map ϕ : H → X defined as in (4) is

ϕ(x, y) = (x4 + x, y).

Proposition 13. The curve X has affine equation

Y 17 = X4 +X. (8)

Moreover, X has genus g = 24, and the number of its F256-rational points is
1025.

Proof. Let (X,Y ) ∈ H. We need to prove that ϕ(X,Y ) satisfies (8). To do this
it is enough to observe that

(X4 +X)4 + (X4 +X) = X16 +X,

and take into account that (X,Y ) satisfies (1) for q0 = 16. The second part of
the assertion follows from Proposition 7.

In Appendix, the Improved AG codes constructed from the Weierstrass semi-
group of Proposition 8, that is H(P̄∞) = 〈4, 17〉, will be referred to as codes
(C3).
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5.4 q0 = 9, s = 3, Hs =
{
x ∈ H| x3 = αx

}
, α primitive element of

F9

Let q0 = 9, s = 3. Also, let α be a primitive element of F9. Note that α4 = −1.
Let Hs =

{
x ∈ H |x3 = αx

}
. It is a straightforward computation to check that

Hs ⊂ H . In fact, for x ∈ Hs,

x9 + x = (αx)3 + x = α3x3 + x = α4x+ x = −x+ x = 0.

The rational map ϕ : H → X defined as in (4) is

ϕ(x, y) = (x3 − αx, y).

Proposition 14. The curve X has affine equation

Y 10 = X3 + α3X. (9)

Moreover, X has genus g = 9, and the number of its F81-rational points is 244.

Proof. Let (X,Y ) ∈ H. We need to prove that ϕ(X,Y ) satisfies (9). To do this
it is enough to observe that

(X3 − αX)3 + α3(X3 − αX) = X9 − α4X = X9 +X,

and take into account that (X,Y ) satisfies (1) for q0 = 9. The second part of
the assertion follows from Proposition 7.

In Appendix, the improved AG codes constructed from the Weierstrass semi-
group H(P̄∞) = 〈3, 10〉 will be referred to as codes (C4).

6 Weierstrass Semigroups for Curves (D)

Let m be a divisor of q0 + 1, and let Xm be the non-singular model of the curve
over Fq with affine equation

Y m = Xq0 +X.

Proposition 15. The curve Xm has the following properties.

(i) Xm is maximal.
(ii) The genus of Xm is g = 1

2 (q0 − 1)(m − 1).
(iii) There exists precisely one Fq-rational point of Xm centred at the only point

at infinity of the plane curve Y m = Xq0 +X, and

ordP̄∞ (x) = −m, ordP̄∞ (y) = −q0

hold.
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Proof. Assertion (i) and (ii) follows from [1, (IV) of Proposition 2.1]. It is
straightforward to check that Xm is the image of the Hermitian curve by the
rational map

ϕ : H → Xm, (x, y) �→ (x, yh),

where h = q0+1
m . The only point at infinity P̄∞ of Xm is the image of P∞ ∈ H by

ϕ, and it is easily seen that eP∞ is equal to deg(ϕ) = h. Let f ∈ F̄q(x, yh), and
let ϕ∗ be the pull-back of ϕ. Then ordP∞(ϕ∗(f)) = eP∞ordP̄∞(f). Therefore,

q0 + 1
m

ordP̄∞(x) = ordP∞(x) = −(q0 + 1),

and

q0 + 1
m

ordP̄∞(y) = ordP∞ (y
q0+1

m ) =
q0 + 1
m

ordP∞ (y) = −q0 + 1
m

q0.

Hence,
ordP̄∞(x) = −m, and ordP̄∞ (y) = −q0.

Proposition 16. H(P̄∞) = 〈m, q0〉.

Proof. Note that q0 and m are coprime. Then by [12, Proposition 5.33] the genus
of the semigroup generated by q0 and m is 1

2 (q0 − 1)(m− 1). Then the assertion
follows from Proposition 15.

Proposition 17 ([6]). There exists a point P ∈ Xm such that

H(P ) =
〈
q0 + 1 − q0 + 1

m
, q0 + 1 − (

q0 + 1
m

− 1), . . . , q0 + 1
〉

.

Now we consider the curve Xm for particular values of q0 and m.

6.1 q0 = 7, m = 4

The curve Xm has equation
Y 4 = X7 +X,

its genus is g = 9, and the number of its F49-rational points is 176. In Appendix,
(D1a) will denote the Improved AG codes constructed from the Weierstrass semi-
group of Proposition 16, that is H(P̄∞) = 〈4, 7〉, and (D1b) those constructed
from the Weierstrass semigroup of Proposition 17, H(P ) = 〈6, 7, 8〉.

6.2 q0 = 7, m = 2

The curve Xm has equation
Y 2 = X7 +X,

its genus is g = 3, and the number of its F49-rational points is 92. In Appendix,
(D2a) will denote the Improved AG codes constructed from the Weierstrass semi-
group of Proposition 16, that is H(P̄∞) = 〈2, 7〉, and (D2b) those constructed
from the Weierstrass semigroup of Proposition 17, H(P ) = 〈4, 5, 6, 7〉.
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6.3 q0 = 8, m = 3

The curve Xm has equation
Y 3 = X8 +X,

its genus is g = 7, and the number of its F64-rational points is 177. In Appendix,
(D3a) will denote the improved AG codes constructed from the Weierstrass semi-
group of Proposition 16, that is H(P̄∞) = 〈3, 8〉, and (D3b) those constructed
from the Weierstrass semigroup of Proposition 17, H(P ) = 〈6, 7, 8, 9〉.

6.4 q0 = 9, m = 5

The curve Xm has equation
Y 5 = X9 +X,

its genus is g = 16, and the number of its F81-rational points is 370. In Appendix,
(D4a) will denote the Improved AG codes constructed from the Weierstrass semi-
group of Proposition 16, that is H(P̄∞) = 〈5, 9〉, and (D4b) those constructed
from the Weierstrass semigroup of Proposition 17, H(P ) = 〈8, 9, 10〉.

7 Weierstrass Semigroups for Curves (E)

Let m be a divisor of q − 1 and let Xm be the non-singular model of the plane
curve

Y
q−1
m = X(X + 1)q0−1. (10)

Proposition 18. The curve Xm is the image of the Hermitian curve by the
rational map

ϕ : H → Xm, (x, y) �→ (t, z) = (xq0−1, ym). (11)

Proof. Let (X,Y ) be a point in H. We need to prove that ϕ(X,Y ) satisfies (10).
This follows from

Xq0−1(Xq0−1 + 1)q0−1 = (Xq0 +X)q0−1 = (Y q0+1)q0−1 = (Y m)
q−1
m .

It is easily seen that the rational functions t = xq0−1, and z = ym have just a
pole P̄∞, which is the image by ϕ of the only infinite point P∞ of H. Therefore,
the ramification index eP∞ is equal to deg(ϕ).

Some properties of the curve Xm were investigated in [5, Corollary 4.9 and
Example 6.3].

Proposition 19 ([5]). The genus of Xm is equal to

1
2m

(q0 − 1)(q0 + 1 − d),

where d = (m, q0 + 1). The degree deg(ϕ) of the rational map ϕ is equal to m.
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Proposition 20 ([5]). Let α be a primitive m-th root of unity in Fq, and let

Gm =
〈
φ : H → H | (X,Y ) �→ (αq0+1, αY )

〉
.

Then Xm can be seen as the quotient curve of H by the group Gm.

Note that a point (a, b) of the plane curve (10) is non-singular provided that
b �= 0. Let P(a,b) be the only point of Xm lying over at (a, b).

Proposition 21. Let b �= 0. Then the size of ϕ−1(P(a,b)) is equal to m.

Proof. Clearly, ϕ−1(P(a,b)) =
{
(X,Y ) ∈ H|Xq0−1 = a, Y m = b

}
. The number of

roots of Y m − b is m, for all b �= 0, since that char(F̄q) � m. Hence, #ϕ−1(a, b) ≥
m, when b �= 0. Now taking into account Proposition 19, we have also that
#ϕ−1(a, b) ≤ m. Then the assertion follows.

Let (a, 0) be a point of the plane curve (10). If a = 0, then (a, 0) is non-singular.
Let P(0,0) be the only point of Xm lying over (0, 0). Clearly, ϕ−1(P(0,0)) =
{P0 = (0, 0) ∈ H}. Hence, eP0 = deg(ϕ) = m. Assume now that a �= 0. Then
a = −1. We consider the set L of points of H whose image by ϕ is a point
of Xm lying over (−1, 0). Clearly, L =

{
(X,Y ) ∈ H|Xq0−1 = −1, Ym = 0

}
={

(X, 0) ∈ H|Xq0−1 + 1 = 0
}
. Let {P1, P2, . . . , Pq0−1} be the points in H such

that Y = 0 and Xq0−1 + 1 = 0.

Lemma 1. Let ϕ be as in (11). The ramification points of ϕ are
P0, P∞, P1, P2, . . . , Pq0−1. In particular, eP0 = eP∞ = m, and ePi = d, for
1 ≤ i ≤ q0 − 1, where d = (m, q0 + 1).

Proof. By the previous results, we only need to calculate ePi . Being X ∼= H/Gm,
the integer eP represents the stabilizer of Gm at P , for P ∈ H; i.e. eP =
#StabP (Gm). Note that #Stab(X,0)(Gm) = #

{
0 ≤ i < m|αi(q0+1) = 1

}
=

(m, q0 + 1). Hence,
ePi = d,

where d = (m, q0 + 1).

A straightforward corollary to Lemma 1 is that there are exactly d(q0−1)
m points

of Xm, say P̄1, P̄2, . . . , P̄ d(q0−1)
m

, lying over (−1, 0).

Proposition 22. Let D = P̄1 + P̄2 + . . . + P̄ d(q0+1)
m

. Then

(z) =
m

d
D + P̄0 − q0P̄∞, (t + 1) =

q0 + 1
d

D − q − 1
m

P̄∞.

Proof. The assertion follows from the following straightforward computation:

•
ordP̄0

(z) =
1
m
ordP0 (y

m) = ordP0 (y) = 1;

ordP̄0
(t+ 1) =

1
m
ordP0 (x

q0−1 + 1) = 0;
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•
ordP̄∞(z) =

1
m
ordP∞(ym) = −q0;

ordP̄∞(t + 1) =
1
m
ordP∞(xq0−1 + 1) =

q0 − 1
m

ordP∞(x) = −q0 − 1
m

;

• for 1 ≤ i ≤ d(q0−1)
m ,

ordP̄i
(z) =

1
d
ordPi (y

m) =
m

d
;

ordP̄i
(t+ 1) =

1
d
ordPi (x

q0−1 + 1) =
q0 + 1
d

.

Proposition 23. Let i, j ∈ N0 such that

i ≥ j
q0 + 1
m

.

Then iq0 − j q−1
m ∈ H(P̄∞).

Proof. Let γ = zi(t + 1)−j and D = P̄1 + P̄2 + . . . + P̄ d(q0+1)
m

. Then

(γ) =
im

d
D + P̄0 − iq0P̄∞ − j(q0 + 1)

d
D +

j(q − 1)
m

P̄∞.

Therefore,

(γ)∞ = (iq0 − j
q − 1
m

)P̄∞.

7.1 q0 = 7, m = 3

The curve Xm has equation

Y 16 = X(X + 1)6,

its genus is g = 7, and the number of its F49-rational points is 148. By Propo-
sition 23 we have that 5, 7, 8 are non-gaps at P̄∞. Moreover, the genus of the
numerical semigroup generated by these integers is equal to the genus of Xm.
Hence, H(P̄∞) = 〈5, 7, 8〉. In Appendix, (E1) will denote the Improved AG codes
constructed from H(P̄∞).

7.2 q0 = 9, m = 4

The curve Xm has equation

Y 20 = X(X + 1)8,

its genus is g = 8, and the number of its F81-rational points is 226. By
Proposition 23 we have that 5, 7, 9 are non-gaps at P̄∞. Moreover, the genus of
the numerical semigroup generated by these integers is equal to the genus of Xm.



On Linear Codes from Maximal Curves 105

Hence, H(P̄∞) = 〈5, 7, 9〉. In Appendix, (E2) will denote the Improved AG codes
constructed from H(P̄∞).

7.3 q0 = 16, m = 5

The curve Xm has equation

Y 51 = X(X + 1)15,

its genus is g = 24, and the number of its F256-rational points is 1025. By
Proposition 23 we have that 10, 13, 16, 17 are non-gaps at P̄∞. Moreover, the
genus of the numerical semigroup generated by these integers is equal to the
genus of Xm. Hence, H(P̄∞) = 〈10, 13, 16, 17〉. In Appendix, (E3) will denote
the Improved AG codes constructed from H(P̄∞).
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Appendix: Improvements on MinT’s Tables

In this Appendix, we consider the parameters of some of the codes C̃d(P ) (see
Definition 1), where P is a point of a curve X belonging to one of the families
(A)-(E).

We recall the following propagation rules.

Proposition 24 (see Exercise 7 in [14])

(i) If there exists a q-ary linear code of lenght n, dimension k and minimum
distance d, then for each non-negative integer s < d there exists a q-ary
linear code of length n, dimension k and minimum distance d − s.

Table 1. Improvements on [13] - q = 49

n k d Prop.24(iii) n − s k − s d Code n k d Prop.24(iii) n − s k − s d Code

91 80 9 s=10 81 70 9 (D2a)(D2b) 91 50 39 s=10 81 40 39 (D2a)(D2b)

91 79 10 s=10 81 69 10 (D2a)(D2b) 91 49 40 s=10 81 39 40 (D2a)(D2b)

91 78 11 s=10 81 68 11 (D2a)(D2b) 91 48 41 s=10 81 38 41 (D2a)(D2b)

91 77 12 s=10 81 67 12 (D2a)(D2b) 91 47 42 s=10 81 37 42 (D2a)(D2b)

91 76 13 s=10 81 66 13 (D2a)(D2b) 91 46 43 s=10 81 36 43 (D2a)(D2b)

91 75 14 s=10 81 65 14 (D2a)(D2b) 91 45 44 s=10 81 35 44 (D2a)(D2b)

91 74 15 s=10 81 64 15 (D2a)(D2b) 91 44 45 s=10 81 34 45 (D2a)(D2b)

91 73 16 s=10 81 63 16 (D2a)(D2b) 91 43 46 s=10 81 33 46 (D2a)(D2b)

91 72 17 s=10 81 62 17 (D2a)(D2b) 91 42 47 s=10 81 32 47 (D2a)(D2b)

91 71 18 s=10 81 61 18 (D2a)(D2b) 91 41 48 s=10 81 31 48 (D2a)(D2b)

91 70 19 s=10 81 60 19 (D2a)(D2b) 91 40 49 s=10 81 30 49 (D2a)(D2b)

91 69 20 s=10 81 59 20 (D2a)(D2b) 91 39 50 s=10 81 29 50 (D2a)(D2b)

91 68 21 s=10 81 58 21 (D2a)(D2b) 91 38 51 s=10 81 28 51 (D2a)(D2b)

91 67 22 s=10 81 57 22 (D2a)(D2b) 91 37 52 s=10 81 27 52 (D2a)(D2b)

91 66 23 s=10 81 56 23 (D2a)(D2b) 91 36 53 s=10 81 26 53 (D2a)(D2b)

91 65 24 s=10 81 55 24 (D2a)(D2b) 147 129 12 s=18 129 111 12 (E1)

91 64 25 s=10 81 54 25 (D2a)(D2b) 147 128 13 s=32 115 96 13 (E1)

91 63 26 s=10 81 53 26 (D2a)(D2b) 147 127 14 s=32 115 95 14 (E1)

91 62 27 s=10 81 52 27 (D2a)(D2b) 147 126 15 s=44 103 82 15 (E1)

91 61 28 s=10 81 51 28 (D2a)(D2b) 147 125 16 s=46 101 79 16 (E1)

91 60 29 s=10 81 50 29 (D2a)(D2b) 147 124 17 s=58 89 66 17 (E1)

91 59 30 s=10 81 49 30 (D2a)(D2b) 147 123 18 s=58 89 65 18 (E1)

91 58 31 s=10 81 48 31 (D2a)(D2b) 147 122 19 s=58 89 64 19 (E1)

91 57 32 s=10 81 47 32 (D2a)(D2b) 147 121 20 s=58 89 63 20 (E1)

91 56 33 s=10 81 46 33 (D2a)(D2b) 147 120 21 s=58 89 62 21 (E1)

91 55 34 s=10 81 45 34 (D2a)(D2b) 147 119 22 s=58 89 61 22 (E1)

91 54 35 s=10 81 44 35 (D2a)(D2b) 147 118 23 s=58 89 60 23 (E1)

91 53 36 s=10 81 43 36 (D2a)(D2b) 147 117 24 s=58 89 59 24 (E1)

91 52 37 s=10 81 42 37 (D2a)(D2b) 147 116 25 s=58 89 58 25 (E1)

91 51 38 s=10 81 41 38 (D2a)(D2b) 147 115 26 s=58 89 57 26 (E1)
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(ii) If there exists a q-ary linear code of lenght n, dimension k and minimum
distance d, then for each non-negative integer s < k there exists a q-ary
linear code of length n, dimension k − s and minimum distance d.

(iii) If there exists a q-ary linear code of lenght n, dimension k and minimum
distance d, then for each non-negative integer s < k there exists a q-ary
linear code of length n − s, dimension k − s and minimum distance d.

The notation of Section 2 is kept. By Theorem 1, together with both (i) and
(ii) of Proposition 24, a code C̃d(P ) can be assumed to be an [n, k, d]q code
with n = #X (Fq) − 1 and k = n − rd. Note that rd can be obtained from the
Weierstrass semigroup H(P ) by straightforward computation.

Table 2. Improvements on [13] - q = 49

n k d Prop.24(iii) n − s k − s d Code n k d Prop.24(iii) n − s k − s d Code

147 114 27 s=58 89 56 27 (E1) 175 148 19 s=72 103 76 19 (D1a)(D1b)

147 113 28 s=58 89 55 28 (E1) 175 147 20 s=74 101 73 20 (D1a)(D1b)

147 112 29 s=58 89 54 29 (E1) 175 146 21 s=82 93 64 21 (D1a)(D1b)

147 111 30 s=58 89 53 30 (E1) 175 145 22 s=82 93 63 22 (D1a)(D1b)

147 110 31 s=58 89 52 31 (E1) 175 144 23 s=82 93 62 23 (D1a)(D1b)

147 109 32 s=58 89 51 32 (E1) 175 143 24 s=82 93 61 24 (D1a)(D1b)

147 108 33 s=58 89 50 33 (E1) 175 142 25 s=82 93 60 25 (D1a)(D1b)

147 107 34 s=58 89 49 34 (E1) 175 141 26 s=82 93 59 26 (D1a)(D1b)

147 106 35 s=58 89 48 35 (E1) 175 140 27 s=82 93 58 27 (D1a)(D1b)

147 105 36 s=58 89 47 36 (E1) 175 139 28 s=82 93 57 28 (D1a)(D1b)

147 104 37 s=58 89 46 37 (E1) 175 138 29 s=82 93 56 29 (D1a)(D1b)

147 103 38 s=58 89 45 38 (E1) 175 137 30 s=82 93 55 30 (D1a)(D1b)

147 102 39 s=58 89 44 39 (E1) 175 136 31 s=82 93 54 31 (D1a)(D1b)

147 101 40 s=58 89 43 40 (E1) 175 135 32 s=82 93 53 32 (D1a)(D1b)

147 100 41 s=58 89 42 41 (E1) 175 134 33 s=82 93 52 33 (D1a)(D1b)

147 99 42 s=58 89 41 42 (E1) 175 133 34 s=82 93 51 34 (D1a)(D1b)

147 98 43 s=58 89 40 43 (E1) 175 132 35 s=82 93 50 35 (D1a)(D1b)

147 97 44 s=58 89 39 44 (E1) 175 131 36 s=82 93 49 36 (D1a)(D1b)

147 96 45 s=58 89 38 45 (E1) 175 130 37 s=82 93 48 37 (D1a)(D1b)

147 95 46 s=58 89 37 46 (E1) 175 129 38 s=82 93 47 38 (D1a)(D1b)

147 94 47 s=58 89 36 47 (E1) 175 128 39 s=82 93 46 39 (D1a)(D1b)

147 93 48 s=58 89 35 48 (E1) 175 127 40 s=82 93 45 40 (D1a)(D1b)

147 92 49 s=58 89 34 49 (E1) 175 126 41 s=82 93 44 41 (D1a)(D1b)

175 157 12 s=46 129 111 12 (D1a)(D1b) 175 125 42 s=82 93 43 42 (D1a)(D1b)

175 155 13 s=25 150 130 13 (D1b) 175 124 43 s=82 93 42 43 (D1a)(D1b)

175 154 14 s=24 151 130 14 (D1a) 175 123 44 s=82 93 41 44 (D1a)(D1b)

175 153 15 s=60 115 93 15 (D1a) 175 122 45 s=82 93 40 45 (D1a)(D1b)

175 152 15 s=22 153 130 15 (D1b) 175 121 46 s=82 93 39 46 (D1a)(D1b)

175 151 16 s=46 129 105 16 (D1a)(D1b) 175 120 47 s=82 93 38 47 (D1a)(D1b)

175 150 18 s=74 101 76 18 (D1a)(D1b)
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Table 3. Improvements on [13] - q = 64

n k d Prop.24(iii) n − s k − s d Code

176 162 10 s=29 147 133 10 (D3b)

176 159 12 s=14 162 145 12 (D3a)

176 157 14 s=14 162 143 14 (D3a)

256 232 15 s=30 226 202 15 (C1a)

256 231 16 s=30 226 201 16 (C1a)

256 230 16 s=19 237 211 16 (C1b)

256 229 18 s=30 226 199 18 (C1b)

256 228 18 s=28 228 200 18 (C1a)

256 226 20 s=28 228 198 20 (C1a)

256 225 21 s=28 228 197 21 (C1a)

256 222 24 s=28 228 194 24 (C1a)

Table 4. Improvements on [13] - q = 81

n k d Prop.24(iii) n − s k − s d Code

225 207 12 s=24 201 183 12 (B1)(E2)

243 225 12 s=42 201 183 12 (C4)

243 223 13 s=16 227 207 13 (C4)

243 222 14 s=16 227 206 14 (C4)

243 221 15 s=16 227 205 15 (C4)

243 220 16 s=16 227 204 16 (C4)

243 218 18 s=16 227 202 18 (C4)

369 339 18 s=25 344 314 18 (D4a)(D4b)

369 337 19 s=4 365 333 19 (D4a)

369 336 20 s=36 333 300 20 (D4a)

369 334 21 s=28 341 306 21 (D4a)

369 333 23 s=66 303 267 23 (D4a)(D4b)

369 332 24 s=66 303 266 24 (D4a)(D4b)

369 330 25 s=64 305 266 25 (D4b)

369 328 27 s=64 305 264 27 (D4a)

369 327 28 s=64 305 263 28 (D4a)

369 323 32 s=64 305 259 32 (D4a)(D4b)
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Table 5. Improvements on [13] - q = 256

n k d Prop.24(iii) n − s k − s d Code

512 495 14 s=186 326 309 14 (C2)

512 494 16 s=188 324 306 16 (C2)

512 493 17 s=188 324 305 17 (C2)

512 492 18 s=188 324 304 18 (C2)

512 491 19 s=188 324 303 19 (C2)

512 490 20 s=188 324 302 20 (C2)

512 489 21 s=188 324 301 21 (C2)

512 488 22 s=188 324 300 22 (C2)

512 487 23 s=188 324 299 23 (C2)

512 486 24 s=188 324 298 24 (C2)

512 485 25 s=188 324 297 25 (C2)

512 484 26 s=188 324 296 26 (C2)

512 483 27 s=188 324 295 27 (C2)

512 482 28 s=188 324 294 28 (C2)

512 481 29 s=188 324 293 29 (C2)

512 480 30 s=188 324 292 30 (C2)

512 479 31 s=188 324 291 31 (C2)

512 478 32 s=188 324 290 32 (C2)

512 477 33 s=188 324 289 33 (C2)

512 476 34 s=188 324 288 34 (C2)

512 475 35 s=188 324 287 35 (C2)

512 474 36 s=188 324 286 36 (C2)

512 473 37 s=188 324 285 37 (C2)

512 472 38 s=188 324 284 38 (C2)

512 471 39 s=188 324 283 39 (C2)

512 470 40 s=188 324 282 40 (C2)

512 469 41 s=188 324 281 41 (C2)

512 468 42 s=188 324 280 42 (C2)

512 467 43 s=188 324 279 43 (C2)

512 466 44 s=188 324 278 44 (C2)

512 465 45 s=188 324 277 45 (C2)

512 464 46 s=188 324 276 46 (C2)

512 463 47 s=188 324 275 47 (C2)

512 462 48 s=188 324 274 48 (C2)

512 461 49 s=188 324 273 49 (C2)

512 460 50 s=188 324 272 50 (C2)

512 459 51 s=188 324 271 51 (C2)

512 458 52 s=188 324 270 52 (C2)
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Table 6. Improvements on [13] - q = 256

n k d Prop.24(iii) n − s k − s d Code

512 457 53 s=188 324 269 53 (C2)

512 456 54 s=188 324 268 54 (C2)

512 455 55 s=188 324 267 55 (C2)

512 454 56 s=188 324 266 56 (C2)

512 453 57 s=188 324 265 57 (C2)

512 452 58 s=188 324 264 58 (C2)

512 451 59 s=188 324 263 59 (C2)

512 450 60 s=188 324 262 60 (C2)

512 449 61 s=188 324 261 61 (C2)

512 448 62 s=188 324 260 62 (C2)

512 447 63 s=188 324 259 63 (C2)

512 446 64 s=188 324 258 64 (C2)

512 445 65 s=188 324 257 65 (C2)

512 444 66 s=188 324 256 66 (C2)

1024 980 27 s=247 777 733 27 (C3)

1024 979 28 s=248 776 731 28 (C3)

1024 978 30 s=413 611 565 30 (C3)

1024 976 32 s=445 579 531 32 (C3)

1024 975 33 s=477 547 498 33 (C3)

1024 974 35 s=494 530 480 35 (C3)

1024 973 36 s=494 530 479 36 (C3)

1024 972 40 s=500 524 472 40 (C3)

1024 970 41 s=498 526 472 41 (C3)

1024 969 42 s=498 526 471 42 (C3)

1024 968 43 s=498 526 470 43 (C3)

1024 967 44 s=498 526 469 44 (C3)

1024 966 45 s=498 526 468 45 (C3)

1024 965 46 s=498 526 467 46 (C3)

1024 964 47 s=498 526 466 47 (C3)

1024 963 48 s=498 526 465 48 (C3)

1024 962 49 s=498 526 464 49 (C3)

1024 961 50 s=498 526 463 50 (C3)

1024 960 51 s=498 526 462 51 (C3)

1024 959 52 s=498 526 461 52 (C3)

1024 958 53 s=498 526 460 53 (C3)

1024 957 54 s=498 526 459 54 (C3)

1024 956 55 s=498 526 458 55 (C3)
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The following tables provide a list of the codes obtained in this paper which,
according to the online database MinT [13], have larger minimum distance with
respect to the previously known codes with same dimension and same length.
The value of s in each entry means that, for each i ≤ s, the [n− i, k− i, d]q code
obtained from C̃d(P ) by (iii) of Proposition 24 has better parameters that the
known codes as well. For the sake of completeness, the parameters [n−s, k−s, d]
appear in the tables.
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Abstract. In this paper we present a theoretical framework to quan-
tify the information brought by several linear approximations of a block-
cipher without putting any restriction on these approximations. We
quantify here the entropy of the key given the plaintext-ciphertext pairs
statistics which is a much more accurate measure than the ones studied
earlier. The techniques which are developed here apply to various ways
of performing the linear attack and can also been used to measure the
entropy of the key for other statistical attacks. Moreover, we present
a realistic attack on the full DES with a time complexity of 248 for
241 pairs what is a big improvement comparing to Matsui’s algorithm 2
(251.9).

Keywords: linear cryptanalysis, multiple linear approximations, infor-
mation theory.

1 Introduction

Related work
Linear cryptanalysis is probably one of the most powerful tools available for
attacking symmetric cryptosystems. It was invented by Matsui [1,2] to break the
DES cipher building upon ideas put forward in [3,4]. It was quickly discovered
that other ciphers can be attacked in this way, for instance FEAL [5], LOKI [6],
SAFER [7]. It is a known plaintext attack which takes advantage of probabilistic
linear equations that involve bits of the plaintext P, the ciphertext C and the
key K

Pr(< π,P > ⊕ < γ,C > ⊕ < κ,K >= b) =
1
2

+ ε. (1)

Usually, ε is called the bias of the equation, π, γ and κ are linear masks and
< π,P > denotes the following inner product between π = (πi)1≤i≤m and

P = (Pi)1≤i≤m, < π,P >
def=

⊕m
i=1 πiPi. There might be several different lin-

ear approximations of this kind we have at our disposal and we let n be their
number. We denote the corresponding key masks by κi = (κji )1≤j≤k and the
corresponding biases by εi for i ∈ {1, . . . , n}.

M.G. Parker (Ed.): Cryptography and Coding 2009, LNCS 5921, pp. 112–132, 2009.
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Such an attack can be divided in three parts:

- Distillation phase: It consists in extracting from the available plaintext-ciphertext
pairs the relevant parts of the data. Basically, for each linear approximation, the
attacker counts how many times < π,P > ⊕ < γ,C > evaluates to zero.
- Analysis phase: It consists in extracting from the values taken by the counters
some information on the key and testing whether some key guesses are correct
or not by using the linear approximation(s) (1) as a distinguisher. Typically, the
output of this phase is a list of all possible subkey guesses sorted relatively to
their likelihood.
- Search phase: It typically consists in finding the remaining key bits by exhaus-
tive search.

In [1] Matsui used only one approximation to distinguish wrong last round keys
from the right one. One year later, he refined his attack by using a second approx-
imation obtained by symmetry [2] and by also distinguishing with them the first
round key. Later Vaudenay [8] has presented a framework for statistical crypt-
analysis where Matsui’s attack is presented as a particular case. With Junod,
he has also studied the optimal way of merging information from two (or more)
approximations [9]. This kind of attack can use several approximations but the
key masks must have disjoint supports. A second approach of using multiple
equations is given by Kaliski and Robshaw [10]. They improved Matsui’s first
attack using several approximations which have the same key mask κ. Biryukov
and al. suggest in [11] a way of using multiple linear approximations without
putting any restriction on them. They present a theoretical framework to com-
pute the expected rank of the good subkey guess. This framework has been used
for SERPENT cryptanalysis [12,13]. Recent works by Hermelin and al. [14] give
a way to compute the good subkey ranking probability law in the case of mul-
tidimensional linear cryptanalysis. More details on this work are given later to
compare it to ours.

All these improvements have a common goal: reducing the amount of mes-
sages needed for the attack. Clearly, using several approximations should give
more information than a single one.

Our contribution
The purpose of this paper is to study how much multiple linear approximations
may benefit linear cryptanalysis. We aim at quantifying accurately how much
information is gained on the key from the knowledge of statistical data derived
from linear characteristics of type (1).

Several statistics have been proposed to study how many plaintext-ciphertext
pairs we need in order to carry out successfully a linear cryptanalysis. This
includes for instance the probability of guessing incorrectly a linear combination
of key bits by Matsui’s Algorithm 1 [2], the ranking of the right subkey in the
ordered list of candidates [15,16] or the expected size of the number of keys which
are more likely than the right key [11]. Some of these statistics are either not
relevant for multilinear cryptanalysis or are extremely difficult to compute (such
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as for instance the ranking statistics of [15,16] when we do not allow restrictions
on the approximations used). This is not the case of the expected size of the
number L of keys which are more likely than the right key considered in [11].
However, this kind of statistics also leads to pessimistic predictions concerning
the number of plaintext-ciphertexts which are needed. To be more specific, it
turns out that its prediction of the number of plaintext/ciphertext pairs ensuring
that the most likely key is indeed the right key is in many cases twice the number
of plaintext/ciphertexts which are really needed ! This is detailed in Proposition
3.1. We obtain the right amount by our analysis. It consists in studying instead
of the expectation of L, the entropy H(K|Y) of the key K (or more generally
H(K′|Y), where K′ is a certain subkey of K- for instance it can be the part of
the key involved in a distinguisher attack) given the statistics Y we have derived
from the plaintext-ciphertext pairs.

The fact that the entropy is a much better statistic than the expecation of
L is is related to the following probabilistic phenomenon : this expectation is
in a rather wide range of amount of plaintext-ciphertext pairs exponential in
the key size k, while for most plaintext-ciphertext pairs the most likely key is
the right one. This comes from the fact that rare events (of exponentially small
probability) yield values of L which are exponentially large in k. In other words,
while for typical plaintext-ciphertext pairs L is equal to zero, for some rare
occurrences of the plaintext-ciphertext pairs L is very large, and this accounts
quite heavily in the expectation of L. The entropy behaves here much better.
In a certain sense, it is related to the expectation of the logarithm log2(L). The
logarithm of L varies much less than L and this why the typical size of logL
coincides quite well with the expectation.

Despite the fact that it is much more desirable to estimate the entropy than
the expectation of L, it might seem that this quantity is much harder to calculate.
Our main result is to give here a lower bound on this quantity (see Subsections
3.1 and 3.2) which is quite sharp. The sharpness of the bound is illustrated by
the results of Subsection 3.3. We apply this bound in three different scenarios: (i)
the linear attack which recovers only the linear combination of the key bits, (ii)
the usual linear distinguishing attack which recovers some linear combinations of
the key bits of the first (and/or) last round, and (iii) the algorithm MK2 in [11].
We wish to emphasize the fact that the technique to derive the lower bound is
quite general and applies in a very wide range of situations, and not only in the
case where Y corresponds to a function of the counters of linear approximations
(see Subsection 3.1). A second useful property of this lower bound on the entropy
is that it gives an upper bound on the information we gain on the K when we
know Y which is independent of the algorithm we use afterwards to extract this
information.

Complementarity with [14]
The work of Hermelin, Nyberg and Cho gives a framework for multidimensional
linear cryptanalysis that does not require statistical independence between the
approximations used. A set of m linearly independent approximations is cho-
sen and the correlations of the linear combinations of those approximations are
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computed. For each plaintext/ciphertext pair, the m bits vector corresponding
to the m base approximation evaluations is extracted. Hence, the attacker gets
an empirical probability distribution for the m bits vector. Actually, this distri-
bution depends on the key used for encryption (usually it depends on m bits
of this key). Using the correlations of the 2m approximations, the probability
distribution of the m bits vector can be computed for each possible key. Using
enough pairs, the empirical distribution is likely to be the closest to the distribu-
tion provided by the correct key. The guessed key is the one with the maximum
log-likelihood ratio (LLR) to the uniform distribution.

As the statistical independence hypothesis for linear approximations may not
hold for many ciphers, this is an important theoretic improvement. Nevertheless,
some of the results are not tight because of some other conjectures or simplifica-
tions. For instance, saying that the LLR of a wrong keys has a mean of 0 gives
very pessimistic results as supposing statistical independence of LLRs does (for
8-round DES at least). Moreover, this method may not apply to some cryptanal-
yses (the one presented in this paper for instance). Using m base approximations
leads to a time complexity of 2m2d in the analysis phase (where d is the num-
ber of information bits to recover). In the case of the presented attack, 32968
approximations are used to recover 42 key bits. This set of approximation has a
dimension of 54. Hence, the analysis time complexity is about 296 what is much
greater that exhaustive search. The approach presented in this paper is based
on a statistical independence hypothesis. Thus, it is an orthogonal and comple-
mentary approach to the one of [14]. This approach leads to an attack with a
better complexity than Matsui’s algorithm 2 as soon as less than 242 pairs are
available (see Section 4). Using the same approximations in the framework of
Hermelin and al. leads to an attack with higher complexity.

Actually, our method is based on some decoding techniques that are easily
practicable in case of statistical independence of the approximations. That is
why our theoretical framework seems to be the more suitable in that case. In
the other hand, the work of Hermelin and al. is the more suitable when no
assumption is made on statistical independence up to now.

2 The Probabilistic Model

It will be convenient to denote by K̃ def= (K̃i)1≤i≤n the vector of linear combina-
tions of the key bits induced by the key masks, that is

K̃i
def=

k⊕
j=1

κjiKj .

A quantity will play a fundamental role in this setting : the dimension (what
we will denote by d) of the vector space generated by the κi’s. It can be much
smaller than the number n of different key masks.

We denote by Σ the set of N plaintext-ciphertext pairs. The information
available after the distillation phase is modeled by



116 B. Gérard and J.-P. Tillich

Model 1 — The attacker receives a vector Y = (Yi)1≤i≤n such that:

∀ i ∈ {1, . . . , n}, Yi = (−1)K̃i +Ni , Ni ∼ N (0, σ2
i ), (2)

where σ2
i

def
= 1

4Nε2i
(N is the number of available plaintext/ciphertext pairs).

We denote by f(Y|K̃) the density function of the variable Y conditioned by
the value taken by K̃ and fi(Yi | K̃i) denotes the density of the variable Yi
conditioned by K̃i.
These conditional densities satisfy the independence relation

f(Y | K̃) =
n∏
i=1

f(Yi | K̃i) (3)

The vector Y is derived from Σ as follows. We first define for every i in {1, . . . , n}
and every j in {1, . . . , N} the following quantity

Dj
i

def=< πi,Pj > ⊕ < γi,Cj > ⊕bi,

where the plaintext-ciphertext pairs in Σ are indexed by (Pj ,Cj) and bi is the
constant appearing in the i-th linear approximation. Then for all i in {1, . . . , n}
we set up the counters Di with Di

def=
∑N

j=1 D
j
i from which we build the vector

of counters D = (Di)1≤i≤n. Di is a binomial random variable which is approx-
imately distributed as a normal law N ((1/2 − εi(−1)K̃i)N, (1/4 − ε2i )N). This
explains why the vector Y = (Yi)1≤i≤n is defined as:

Yi
def=

N − 2Di

2Nεi
(4)

and why Equation (2) holds. There is some debate about the independence re-
lation (3). This point is discussed by Murphy in [17] where he proves that even
if some key masks are linearly dependent, the independence relation (3) holds
asymptotically if for a fixed key the covariances cov(Dj

i1
, Dj

i2
) are negligible. We

have checked whether this holds in our experimental study. We had 129 linear
approximations on 8-round DES with biases in the range [1.45.10−4, 5.96.10−4]
and we found empirical covariances in the range [−2.10−7, 2.10−7] for 1012 sam-
ples. This corroborates the fact that the covariances are negligible and that the
independence relation (3) approximately holds.

3 Bounds on the Required Amount of
Plaintext-Ciphertext Pairs

3.1 An Information-Theoretic Lower Bound

The purpose of this subsection is to derive a general lower bound on the amount
of uncertainty H(K|Y) we have on the key given the statistics Y derived from
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the plaintext-ciphertext pairs. We recall that the (binary) entropy H(X) of a
random variable X is given by the expression:

H(X) def= −
∑
x

Pr(X = x) log2 Pr(X = x) (for discrete X)

def= −
∫

f(x) log2 f(x)dx (for continuous X of density f) (5)

For a couple of random variables (X,Y ) we denote by H(X |Y ) the conditional
entropy of X given Y . It is defined by

H(X |Y ) def=
∑
y

Pr(Y = y)H(X |Y = y),

where H(X |Y = y) def= −
∑
xPr(X = x|Y = y) log2 Pr(X = x|Y = y) when X

and Y are discrete variables and when Y is a continuous random variable taking
its values over Rn it is given by

H(X |Y) =
∫

Rn

H(X |Y = y)f(y)dy,

where f(y) is the density of the distribution of Y at the point y. A related
quantity is the mutual information I(X ;Y ) between X and Y which is defined
by

I(X ;Y ) def= H(X) − H(X |Y ). (6)

It is straightforward to check [18] that this quantity is symmetric and that

I(X ;Y ) = I(Y ;X) = H(Y ) − H(Y |X). (7)

Since K is a discrete random variable and Y is a continuous one, it will be
convenient to use the following formula for the mutual information where the
conditional distributions of Y given K has density f(Y |K).

I(K;Y ) =
∑
k

Pr(K = k)
∫

f(y|k) log
f(y|k)∑
k f(y|k)dy. (8)

We will be interested in deriving a lower bound on H(K′|Y) when
K′ = (K ′

1, . . . ,K
′
n) is a subkey derived from K which satisfies:

(i)(conditional independence assumption)

f(Y | K′) =
n∏
i=1

f(Yi | K ′
i), (9)

where f(Y|K′) is the density function of the variable Y conditioned by the value
taken by K′ and fi(Yi | K ′

i) denotes the density of the variable Yi conditioned
by K ′

i.
(ii) The subkey K′ may take 2k

′
values and all are equally likely.

With these assumptions we have the following result
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Lemma 1

I(K′;Y) ≤
n∑
i=1

I(K ′
i;Yi) (10)

H(K′|Y) ≥ k′ −
n∑
i=1

I(K ′
i;Yi). (11)

The proof of this lemma can be found in the appendix. It will be used in what
follows in various scenarios for linear attacks, but it can obviously be used to
cover many other cryptographic attacks. This lower bound is in general quite
sharp as long as it is non-trivial, i.e when k′ ≥

∑n
i=1 I(K ′

i;Yi). We will prove
this for Attack 1 in what follows but this can also be done for the other cases.

3.2 Application to Various Scenarios

Attack 1: In this case, we do not use the linear equations as distinguishers but
only want to recover the < κi,K >’s. This corresponds in the case of a single
equation to Matsui’s attack 1 and in the case of multiple equations to the attack
MK1 in [11]. We have here

K ′
i = K̃i =< κi,K >

Yi =
N − 2Di

2Nεi
.

Variables K′ and Y satisfy the required conditional independence assumption
(see Equation 3) and a straightforward calculation using Formula (8) yields

I(K ′
i;Yi) = Cap(σ2

i )

where

Cap(σ2) def= 1 − σe−
1

2σ2

√
8π

∫ ∞

−∞
e−

u2σ2
8 e

u
2 log2

(
1 + e−u

)
du.

and therefore by applying Lemma 1 we obtain

H(K′|Y) ≥ d −
n∑
i=1

Cap(σ2
i ) (12)

Attack 2: This attack corresponds to cryptanalyses using a distinguisher such
as [12,19]. Approximations of the form (1) are applied to a reduced cipher say
the cipher peeled off by the first and the last round what is usually the case.
Here, we focus on the subkeys used for the first (Kfirst) and the last rounds
(Klast). The idea is to encrypt and decrypt the pairs with each possible value
for Kfirst and Klast and then to observe the bias obtained. The candidate that
gives the greater bias is then choosen. Notice that we do not take care of the
information given by the < κi,K >. This may be the case when cryptanalyzing
ciphers for which it is difficult to find the key masks of linear approximations.
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The < πi,P >’s and the < γi,C >’s might not depend on all the bits of Kfirst
and Klast. We denote by K̂i the vector composed of the bits of Kfirst and Klast
on which the < πi,P >’s and the < γi,C >’s depend on. We define K′ by the
vector (K̂i)ni=1 and assume that it may take 2k̂ values. The aim is to recover K′

based on the values of the counters Dz
i for i in {1, . . . , n} and z ranging over

all possible values for K′. These counters are defined similarly as in Section 2
with the difference being that we use the value K′ = z for deriving the relevant
couples (P,C). The statistics Y = (Yi)1≤i≤n we consider in this case is given by

Yi
def= (Y z

i )z with

Y z
i =

|N − 2Dz
i |

2Nεi
.

The conditional independence relation (3) is also satisfied in this case. With
the help of Lemma 1, we can write H(K′|Y) ≥ k̂ −

∑n
i=1 I(K ′;Yi). We can

again use Lemma 1 and obtain I(K ′;Yi) ≤
∑

z I(K ′;Y z
i ). The variable Y z

i

has density ri if z corresponds to the right choice for K ′ and wi otherwise,
where ri(t) = ϕ1

i (t) + ϕ−1
i (t), wi(t) = 2ϕ0

i (t) for nonnegative t with ϕαi (t) =
1√
2πσ2

i

exp
[
− (t−α)2

2σ2
i

]
being the density of a normal variable of expectation α

and variance σ2
i . A straightforward application of Formula (8) gives

I(K ′
i;Y

z
i ) =

∫ ∞

0

ri(t)

2k̂
log

(
ri(t)
si(t)

)
dt+

∫ ∞

0
(1−2−k̂)wi(t) log

(
wi(t)
si(t)

)
dt, (13)

with si(t)
def= 2−k̂ri(t) + (1 − 2−k̂)wi(t). We denote this quantity by Ii and we

finally obtain

H(K′|Y) ≥ k̂ − 2k̂
n∑
i=1

Ii.

Attack 3: This corresponds to the attack MK2 in [11] which is a variation of the
previously seen distinguisher attack. In this case, we wish to find simultaneously
the K̂i’s defined in Attack 2 and the vector K̃ defined in Attack 1. In this case, we
let K′

i = (K̂i, K̃i) and define K′ def= (K′
i)1≤i≤n. We assume that 2k

′
is the number

of all possible values for K′ and that 2k̂ is the number of all possible values for
K̂. Here, we define the relevant statistics Y = (Yi)1≤i≤n by Yi = (Y z

i )z where
z ranges over all possible values for K̂ and where

Y zi =
N − 2Dz

i

2Nεi
.

We have again the desired independence relation (3) and as in the previous
example we can use Lemma 1 twice to obtain

H(K′|Y) ≥ k′ −
n∑
i=1

I(K′
i;Yi) ≥ k′ − 2k̂

n∑
i=1

I(K′
i;Y

z
i )
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A straightforward application of Formula (8) yields

I(K′
i;Y

z
i ) =

∫ ∞

−∞

ϕ1
i (t)

2k̂
log

(
ϕ1
i (t)

ψi(t)

)
dt+

∫ ∞

−∞
(1 − 2−k̂)ϕ0

i (t) log
(
ϕ0
i (t)

ψi(t)

)
dt,

with ψi(t)
def= (1 − 2−k̂)ϕ0

i (t) + 2−k̂−1[ϕ−1
i (t) + ϕ1

i (t)] and ϕαi (t) defined as in
Attack 2.

3.3 An Upper Bound

One might wonder whether or not the bounds given in the previous subsection
are sharp or not. It is clear that these lower bounds become negative when the
number of pairs is large enough and that they are worthless in this case (since
entropy is always nonnegative). However in all three cases it can be proved that
as long the bound is non trivial it is quite sharp. We will prove this for the
lower-bound (12). Similar techniques can be used for the other bounds but it
would be too long to include them in this paper. To prove that (12) is sharp we
will consider the case when

n∑
i=1

Cap(σ2
i ) ≈ d

If the lower-bound is sharp, one might be tempted to say that the conditional
entropy of K′ given Y should be close to 0 which would mean that K′ is deter-
mined from Y with probability close to 1. This is of course not always true, but
it is the case for most choices of the coefficients κji . To give a precise meaning
to this statement we will first consider what happens when the κji ’s are chosen
at random.

Theorem 1. Assume that the κji are chosen chosen uniformly at random and
that

∑n
i=1 Cap(σ2

i ) ≥ d+ δn for some constant δ > 0. Let Perr be the probability
that the most likely value for K′ given Y is not the right one. There exists a
constant A such that

Perr ≤ A

δ2n
+ 2−δn/2.

The probability Perr is taken over Y but also over the choices of the κji ’s. It
says nothing about a particular choice of the κji ’s. However it implies the afore-
mentioned assertion about most choices of the κi’s. Let us be more specific by
bringing in Perr(C) which is the probability that the most likely key given Y is
not the right one when the subspace of dimension d of the possible values for K̃
is C. A bound on Perr implies that for most choices of the κi’s (and hence of C)
Perr(C) is small by using the following lemma

Lemma 2. Assume that Perr ≤ ε. Then for any t > 0:

PrC (Perr(C) ≥ tε) ≤ 1
t
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Proof. Let us define P
def= PrC (Perr(C) ≥ tε). Then, we observe that Perr =∑

C Perr(C)Pr(C) ≥ Ptε. This implies that P ≤ 1
t .

Remark: The notation PrC means here that the probability is taken over the
choices for C. It actually denotes the proportion of choices for C which lead to
the specified event inside the probability.

3.4 Entropy vs. Expected Number of K̃’s More Likely Than the
Right One

The aim of this subsection is to emphasize the fact that in a certain range of
values of N (which is the number of plaintext-ciphertext pairs) the expected size
E of the list of the K̃’s which are more likely than the right one gives pessimistic
estimates of the amount of plaintext-ciphertext pairs we need to mount an attack.
Actually, the gain g of a type 1 attack defined in [11] relies on this statistic
E . Here, we compare this gain with the capacity defined in Subsection 3.2. In
order to achieve top ranking for a d-bits key (that is the correct key is at the
top of the list), the gain has to be equal to d and Theorem 1 shows that for∑n

i=1 Cap(σ2
i ) ≈ d the probability of top ranking is close to 1. The comparison

shows that the estimate derived from E is twice bigger than the one derived
from our entropy approach, as stated in Proposition 3.1. Proposition 3.1 holds
for N · ε2i = o(1). This is often the case in multiple linear cryptanalysis where
many approximations are used to drop the data complexity below the value
required for a single approximation, that is N = O(ε−2).

Proposition 3.1 — Suppose that N is in a range where ∀i, Nε2i = o(1).
Using our entropy approach, the estimate for the data complexity required to
achieve top ranking on a d-bit key is

N ≈ d ln(2)
2
∑n
i=1 ε

2
i

(1 + o(1)) .

The one obtained using the formula derived from the gain in [11] is

N ≈ d ln(2)∑n
i=1 ε

2
i

(1 + o(1)) .

Proof.
It can be found in [20, ex. 4.12] that

∑n
i=1 Cap(σ2

i ) = 2N
∑n

i=1 ε
2
i

ln(2) (1+o(1)), if for

all i, N ·ε2i = o(1). The corresponding estimate for N is N ≈ d ln(2)
2
∑n

i=1 ε
2
i

(1 + o(1)) .

The formula for the gain in [11] is:

g ≈ − log2

⎡⎣2 · Φ

⎛⎝−

√√√√2N ·
n∑
i=1

ε2i

⎞⎠⎤⎦ . (14)
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The following estimate can be found in [21, p. 175]. For large x,
ln(Φ(−x)) = −x2/2(1 + o(1)). We can apply this to (14) and find
N ≈ d ln(2)∑

n
i=1 ε

2
i
(1 + o(1)) .

4 Experimental Results

To corroborate the theoretical results presented in this paper, we performed
some experiments. First, we confirm the tightness of the bound on entropy by
comparing it to the empirical entropy computed for a toy example (namely a
type 1 attack on the 8-round DES). Then, we performed a realistic type 1 attack
on the full 16-round DES, ranked the subkeys with respect to their likelihoods
and checked whether or not the rank of the right subkey is among the 2H(K′|Y)

most likely subkeys. The results we obtained confirmed that choosing lists of
this size is indeed relevant. Finally, in order to emphasize the power of multiple
linear cryptanalysis, we compare this type 1 attack using many approximations
to Matsui’s type 3 attack using the optimal ranking statistic suggested by Junod
[15]. This is first time that such an attack is performed.

Accuracy of the bound on entropy
Concerning the bound on entropy given in 1, we checked our results on 8-round
DES. For those simulations, we used a group of 76 linear approximations in-
volving 13 key bits to perform a type 1 attack. The quality of the lower-bound
(12) can be verified by estimating empirically the entropy. Figure 1 displays the
empirical conditional entropy of K′ given Y for these equations as a function of
log2(N), where N is the number of available plaintext-ciphertext pairs. There is
an excellent agreement between the lower bound and the empirical entropies up
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Fig. 1. Comparison between lower bound and empirical value of entropy
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to when we approach the critical value of N for which the lower bound is equal
to zero. This kind of lower bound is really suited to the case when the amount of
plaintext/ciphertext pairs is some order of magnitude below this critical value.
This is typically the case when we want to decrease the amount of data needed
at the expense of keeping a list of possible candidates for K′.

A realistic type 1 attack on the full 16-round DES
Our aim in this experiment was to confirm that most of the time the right value
of K′ = (< κi,K >)1≤i≤n belongs to the list of 2H(K′|Y) most likely candidates.
We performed here the whole type 1 attack, with the exception of the search
phase which is not relevant for our purpose. In [22], the analysis phase uses a soft
decision decoding algorithm for Reed Muller codes over the Gaussian channel
with erasures. This decoding algorithm can be efficiently performed using a fast
Walsh-Hadamard transform. Generating the list and sorting it are thus two
operations with the same complexity O(d2d) where d is the dimension of the
space spanned by κ’s. This implies that to speed up the analysis phase, we
have to use approximations that lead to a small d. In the case when the set of
approximations does not have any structure, the analysis phase can be efficiently
performed using a general decoding algorithm for random linear codes such as
for instance the stochastic resonance decoding algorithm from Valembois [23].
There is still no proof of its complexity but it is quite simple to implement and
actually efficient. The study of this decoding algorithm is out of the scope of this
article but is a nice subject we wish to work on.

Using a Branch & Bound Algorithm, we found 74086 linear approximations
on the 16-round DES with biases higher than 2−28.84 (the biases are obtained by
using the piling-up lemma). The space spanned by these κ’s turned out to be 56.
This is too much to use directly the fast Walsh-Hadamard transform. We choose
to consider a subset of these approximations (32968 out of 74086 spanning a
vector space of dimension 42) which can be divided in 4 groups, each of them
consisting of key masks κi spanning a vector space of small dimension d. We
sum-up information about these groups in Figure 2.

Group N Nb. input masks Nb. output masks d

G1 12384 1500 82 19
G2 12384 82 1500 19
G3 4100 64 82 13
G4 4100 82 64 13

Fig. 2. Characteristics of the groups of approximations

The symmetry comes from the fact that enciphering or deciphering with the
DES is the same algorithm (using subkeys in reverse order). We observe that
the number of different masks in a group is much lower than the number of
approximations. This will help us in speeding up the distillation phase using a
trick similar to the one mentioned in [24]. Notice that some key bits are common



124 B. Gérard and J.-P. Tillich

to some groups. We performed a fast Walsh Hadamard transformation on each
group separately and use a heuristic to combine the information for each group
to compute the rank of the correct key inside the list of candidates sorted with
respect to their likelihood. This is detailed in the Appendix of [26].

The number N of available pairs was chosen to be small enough so that we
can generate the data and perform the distillation phase in reasonable time. On
the other hand, if we want our experiments to be relevant, we must get at least 1
bit of information about the key. These considerations lead us to choose N = 239

for which we get 2 bit of information out of 42 on the subkey.
We performed the attack 19 times. This attack recovers 42 bits of the key. For

239 pairs, the information on the key is of 2 bits. The entropy on the key is thus
40 bits. Our theoretical work suggests to take a list of size 2H(K′|Y) = 240 to have
a good success probability. Our experiments corroborate this. The worst rank
over the 19 experiments is 240.88 and the rank exceeded 240 in only 3 experiments
out of 19. The (ordered) list of ranks for the 19 experiments is:

231.34, 233.39, 234.65, 235.24, 236.56, 237.32, 237.72, 237.99, 238.11, 238.52, 238.97,

239.04, 239.19, 239.27, 239.53, 239.85, 240.28, 240.82, 240.88.

Comparison with Matsui’s attack
The attack from [2] uses two approximations on 14-round DES with biases
1.19.2−21 in a type 3 attack. This kind of attack uses approximations with much
better biases than a type 1 attack because they involve only 14 rounds instead
of the full 16 rounds.

Despite this fact, we show here that the gap between 14-round approximations
and 16-round approximations can be filled by using many approximations in
type 1 attack. We demonstrate here that for a rather large range of number of
plaintext/ciphertext pairs N , a type 1 attack has a better complexity than the
best version Matsui’s type 3 attack [15]. This is first time that such a result is
shown on the full DES.

Figure 3 gives the formulas used to compute the complexity of the two attacks.
Due to space constraints, we do not detail how we obtained the distillation and
analysis phase complexities but they are essentially a direct application of the
tricks of [24] and the work of [19]. We denote by ν the XOR operation complexity
and θ the DES enciphering complexity (including key schedule). From the same
amount of data, our attack obtains more information on the key. It improves the
final search complexity at the cost of increasing the distillation phase complexity.
To measure the gain of using a type 1 attack, we have to estimate the ratio ν/θ.

Attack Distillation Analysis Search

Matsui’s [15] N · 2 · 46 · ν 12 · 212 · ν 2H(K′|Y) · θ
Our N · (82 + 82 + 64 + 64) · 44 · ν 226 · ν 2H(K′|Y) · θ

Fig. 3. Complexities of the different steps



On Linear Cryptanalysis with Many Linear Approximations 125

42

44

46

48

50

52

54

56

58

60

36 37 38 39 40 41 42

lo
g 2

(c
om

pl
ex

it
y
)

log2(N)

Type 3 (2 approximations)
Type 1 θ = 600 · ν
Type 1 θ = 400 · ν
Type 1 θ = 200 · ν

Fig. 4. Complexities of Matsui’s type 3 attack and our type 1 attack in terms of DES
evaluations

The lower this ratio is, the more we gain using multilinear type 1 attack. For
a standard implementation, 600 · ν is a good estimate of θ. We computed the
complexities of the two attacks in terms of DES evaluations (θ) and plotted it
as functions of the number of pairs in Figure 4. We restrict the plot to the value
of N where type 1 attack competes with type 3 and we can see that this attack
is better for N less than 242. We also plotted the complexities of the type attack
for θ = 400 · ν and θ = 200 · ν to show that type 1 attack still competes with
type 3 whenever enciphering is very efficient. Notice that with these estimates
of θ the complexity for Matsui’s attack remains the same as long as N is less
than 242.5.

Remark on Matsui’s attack complexity
In [15], the author points out the fact that his Theorem 1 is pessimistic regarding
the expected average rank of the good key. For 243 pairs, the empirical complexity
seems to be less than 241 with high probability. Actually, the bound (12) suggests
a complexity of precisely 241 in this case (see Figure 4). This is a good illustration
of the phenomenon mentioned in Section 3.4. The average rank of the good key
is pessimistic because in some extremely rare cases the rank is sufficiently high to
influence the mean. This observation, together with the complexity of computing
multidimensional probability laws in a general case, may confirm the interest of
the approach presented in this paper.

5 Conclusion and Further Work

We have presented here a rather general technique in Lemma 1 to derive a sharp
lower bound on the entropy of a key given (independent) statistics.
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We have applied it here to various linear cryptanalytic attacks, but the scope
of this tool is much broader and it would be interesting to apply it for other
classes of statistical attacks.

We performed a realistic type 1 attack on full 16-round DES using 32968
approximations and 239 plaintext/ciphertext pairs that confirmed our theoretical
results.

Moreover, theoretical results predict that for 241 pairs, the DES can be broken
with high probability with complexity close to 248 while Matsui’s attack 2 needs
251.9 DES computations.

This work entails some further research interests.
It would be interesting to compare our theoretical results with some others

[11,25] for some particular type 3 attack.
Another interesting thing would be to perform a type 1 attack on another

cipher (SERPENT for instance) to see if, for recent ciphers, type 1 attacks still
can compete type 3 attacks.

A deep study of different decoding algorithms for the analysis phase is nec-
essary as much as a precise complexity analysis of distillation phase complexity
for type 1 attack (maybe using ideas from [19]).
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24. Biham, E., Dunkelman, O., Keller, N.: Linear Cryptanalysis of Reduced Round
Serpent. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 219–238. Springer,
Heidelberg (2002)

25. Hermelin, M., Cho, J.Y., Nyberg, K.: Multidimensional Extension of Matsui’s Al-
gorithm 2. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 260–276.
Springer, Heidelberg (2009)

26. Gérard, B., Tillich, J.-P.: On Linear Cryptanalysis with Many Linear Approxima-
tions (full version). Cryptology ePrint Archive, Report 2009/463 (2009),
http://eprint.iacr.org/

A Proofs

A.1 Proof of Lemma 1

Let us use Equation (7) and write in two different ways the mutual information
between K′ and Y: I(K′;Y) = H(K′) − H(K′|Y) = H(Y) − H(Y|K′). From
this we deduce that

I(K′;Y) = H(Y) − H(Y|K′)
= H(Y1, . . . , Yn) − H(Y1, . . . , Yn|K′). (15)

http://eprint.iacr.org/
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Here Equation (15) is a consequence of the fact that the a priori distribution
over K′ is the uniform distribution and the entropy of a discrete random variable
which is uniformly distributed is obviously nothing but the logarithm of the
number of values it can take. Moreover (see [18, Theorem 2.6.6])

H(Y1, . . . , Yn) ≤ H(Y1) + · · · + H(Yn). (16)

On the other hand, by the chain rule for entropy [18, Theorem 2.5.1]:

H(Y1, . . . , Yn|K′) = H(Y1|K′)+H(Y2|Y1, K
′)+ · · ·+H(Yn|Y1, Y2, . . . , Yn−1,K

′). (17)

We notice now that H(Yi|K′, Y1 . . .Yi−1) can be written as

∑
k

∫
Ri−1 H(Yi|K′=k,Y1=y1,...,Yi−1=yi−1)f(y1,...,yi−1|K′=k)Pr(K′=k)dy1...dyi−1, (18)

where the sum is taken over all possible values k of K′ and
f(y1, . . . , yi−1|K′ = k)Pr(K′ = k) is the density of the distribu-
tion of the vector (Y1, . . . , Yi−1) given the value k of K′ at the point
(y1, . . . , yi−1). From conditional independence assumption (9) we de-
duce that H(Yi|K′ = k, Y1 = y1, . . . , Yi−1 = yi−1) = H(Yi|K ′

i). By
summing in Expression (18) over y1, . . . , yi−1 and all possible values of
K ′

1, . . . ,K
′
i−1,K

′
i+1, . . . ,K

′
n we obtain that

H(Yi|K′, Y1, . . . , Yi−1) =
1
2
H(Yi|K′

i = 0) +
1
2
H(Yi|K′

i = 1) = H(Yi|K′
i = ki) (19)

Plugging in this last expression in Expression (17) we obtain that

H(Y1, . . . , Yn|K ′
1, . . . ,K

′
n) = H(Y1|K ′

1) + · · · + H(Yn|K ′
n). (20)

Using this last equation and Inequality (16) in (15) we finally deduce that

I(K′;Y) ≤ H(Y1) + · · · + H(Yn) − H(Y1|K ′
1) − · · · − H(Yn|K ′

n)

≤
n∑
i=1

H(Yi) − H(Yi|K ′
i) ≤

n∑
i=1

I(K ′
i;Yi). (21)

The lower bound on the entropy follows from equality (7) that can be written
as H(K′|Y) = H(K′) − I(K′;Y) = k′ − I(K′;Y).

A.2 Proof of Theorem 1

The proof of this theorem follows closely standard proofs of the direct part of
Shannon’s channel capacity theorem [18], however most of the proofs given for
this theorem are asymptotic in nature and are not suited to our case. There are
proofs which are not asymptotic, but they are tailored for the case where all the
σi’s are equal and are rather involved. We prefer to follow a slightly different
path here. The first argument we will use is an explicit form of the joint AEP
(Asymptotic Equipartition Property) theorem.

For this purpose, we denote by (X,Y) a couple of random variables where
X = (Xi)1≤i≤n is uniformly distributed over {0, 1}n and Y = (Yi)1≤i≤n is the
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output of the Gaussian channel described in Section 2 when X is sent through
it. This means that

Yi = (−1)Xi +Ni, (22)

where the Ni are independent centered normal variables of variance σ2
i .

Let us first bring in the following definition.

Definition 1. For ε > 0, we define the set Tε of ε-jointly typical sequences of
{0, 1}n × Rn by Tε

def
=
⋃

x∈{0,1}n{x} × Tε(x) with

Tε(x)
def
= {y ∈ Rn : |− log2(f(y)) − H(Y)| < nε (23)∣∣− log2

(
f(y|x)2−n

)
− H(X,Y)

∣∣ < nε
}

(24)

where f(y) is the density distribution of Y and f(y|x) is the density distribution
of Y given that X is equal to x.

The entropies of Y and (X,Y) are given by the following expressions

Lemma 3

H(Y) =
n∑
i=1

Cap(σ2
i ) +

1
2

log2(2πeσ
2
i )

H(X,Y) = n+
n∑
i=1

1
2

log2(2πeσ
2
i )

Proof. Notice that with our model the Yi’s are independent. Therefore H(Y) =∑n
i=1 H(Yi). Moreover, by the very definitions of entropy and mutual information:

H(Yi) = H(Yi|Xi) + I(Xi;Yi); Xi is uniformly distributed over {0, 1} and there-
fore by the definition of the capacity of a Gaussian channel and the fact that the
capacity attains its maximum for a binary input which is uniformly distributed we
have I(Xi;Yi) = Cap(σ2

i ). On the other hand H(Yi|Xi) is obviously the same as
H(Ni). The calculation of this entropy is standard (see [18]) and gives

H(Ni) =
1
2

log2(2πeσ
2
i ) (25)

By putting all these facts together we obtain the expression for H(Y). Concern-
ing the other entropy, with similar arguments we obtain

H(X,Y) = H(X) + H(Y|X)

= n+
∑

x∈{0,1}n

1
2n

H(Y|X = x)

= n+
∑

x∈{0,1}n

1
2n

H(N1, . . . , Nn)

= n+
n∑
i=1

1
2

log2(2πeσ
2
i )
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“Tε” stands for “typical set” since it is highly unlikely that (X,Y) does not
belong to Tε:

Lemma 4. There exists a constant A such that

Pr ((X,Y) /∈ Tε) ≤ A

ε2n
.

Before giving the proof of this lemma we will first give an interpretation of
entropy which provides an explanation of why the probability of falling outside
the typical set becomes smaller as n increases.

Lemma 5. Let Ui
def
= − log2 fi(Yi) where fi is given by

fi(y)
def
=

1
2
√

2πσ2
i

(
e
− (y−1)2

2σ2
i + e

− (y+1)2

2σ2
i

)
.

We also denote by Vi
def
= − log2

(
gi(Yi−(−1)Xi )

2

)
where gi is the density distribu-

tion of a centered Gaussian variable of variance σ2
i .

− log2(f(Y)) − H(Y) =
n∑
i=1

Ui − E

(
n∑
i=1

Ui

)

− log2(f(Y|X)2−n) − H(X,Y) =
n∑
i=1

Vi − E

(
n∑
i=1

Vi

)

Proof. For the first equation we just have to notice that

− log2(f(Y)) = − log2 (Πn
i=1fi(Yi)) = −

n∑
i=1

log2(fi(Yi)) =
n∑
i=1

Ui

and that H(Y) = E(− log2 f(Y)), which follows directly from the definition
of the entropy given in (5). The second equation can be obtained in a similar
way.

This implies that in order to estimate the probability that a point falls outside
the typical set we have to estimate the probability that the deviation between a
sum of n independent random variables and its expectation is at least of order
εn. In our case, it can be proven that for fixed ε, this probability is exponentially
small in n. However, we prefer to give a much weaker statement which is also
easier to prove and which uses only Chebyschev’s inequality, which we recall here

Lemma 6. Consider a real random variable X of variance var(X). We have
for any t > 0:

Pr (|X − E(X)| ≥ t) ≤ var(X)
t2

. (26)
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To use this inequality we have to estimate the variances of the Ui’s and the Vi’s.
It can be checked that

Lemma 7. There exists a constant A such that for any i we have

var(Vi) ≤ A and var(Ui) ≤ A.

Proof. Can be found in [26].

We are ready now to prove Lemma 4:
Proof. We start the proof by writing

Pr((X,Y)/∈Tε) = Pr({|− log2(f(Y))−H(Y)|≥nε}∪{|− log2(f(Y|X)2−n)−H(X,Y)|≥nε}
≤ Pr(|− log2(f(Y))−H(Y)|≥nε)+Pr(|− log2(f(Y|X)2−n)−H(X,Y)|≥nε)
= Pr(|U−E(U)|≥nε)+Pr(|V−E(V )|≥nε)

with U
def=

∑n
i=1 Ui and V

def=
∑n

i=1 Vi. We use now Chebyschev’s inequality
(Lemma 26) together with the upper-bounds var(U) =

∑n
i=1 var(Ui) ≤ nA and

var(V ) =
∑n

i=1 var(Vi) ≤ nA to obtain Pr ((X,Y) /∈ Tε) ≤ 2A
nε2 .

Moreover, not only is it unlikely that (X,Y) does not fall in Tε, but the Euclidean
volume (which we denote by “Vol”) of this set is not too large:

Lemma 8 ∑
x∈{0,1}n

Vol(Tε(x)) ≤ 2H(X,Y)+εn

Proof. Let us notice that

1 =
∑

x∈{0,1}n

1
2n

∫
Rn

f(y|x)dy ≥
∑

x∈{0,1}n

1
2n

∫
Tε(x)

f(y|x)dy

≥
∑

x∈{0,1}n

Vol(Tε(x))2−H(X,Y)−εn

where the last inequality follows from (24)

We will use this result to show that

Proposition 1. If (X̃, Ỹ) is a couple of independent random variables, where
X̃ is uniformly distributed and Ỹ has the same distribution as Y, then
Pr

(
(X̃, Ỹ) ∈ Tε

)
≤ 2−C+2nε with C

def
=
∑n
i=1 Cap(σ2

i ).

Proof. We evaluate Pr
(
(X̃, Ỹ) ∈ Tε

)
as follows

Pr((X̃,Ỹ)∈Tε)=
∑

x∈{0,1}n
1

2n

∫
Tx(ε) f(y)≤∑x∈{0,1}n

1
2n Vol(Tx(ε))2−H(Y)+εn

The last inequality follows from (23) in the definition of the typical set. We use
now Lemma 8 to obtain

Pr
(
(X̃, Ỹ) ∈ Tε

)
≤ 1

2n
2H(X,Y)+εn2−H(Y)+εn ≤ 2−n+H(X;Y)−H(Y)+2εn
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By using the expressions for H(X,Y) and H(Y) given in Lemma 3 we deduce
−n+ H(X,Y) − H(Y) = −

∑n
i=1 Cap(σ2

i ). This finishes the proof.

These results can be used to analyze the following typical set decoder, which
takes as inputs a vector y in Rn which is the output of the Gaussian channel
described in Section 2 and a real parameter ε, and outputs either “Failure” or a
possible key K̃ ∈ {0, 1}n.

Typical set decoder(y, ε)
1 counter ← 0
2 for all possible values k of K̃
3 do if y ∈ Tk(ε)
4 then counter ← counter + 1
5 result ← k
6 if counter = 1
7 then return result
8 else return failure

This algorithm is therefore successful if and only if y is in the typical set of
the right key and if there is no other value k for K̃ for which y belongs to the
typical set associated to k. Let us now finish the proof of Theorem 1.

Proof. Let k be right value of K̃ and let C be the set of possible values of K̃.
The probability Perr that the typical decoder fails is clearly upper-bounded by

Perr ≤ Pry,C(Tk(ε)) +
∑

k′∈C,k′ �=k

Pry,C (Tk′(ε)) (27)

where Tk(ε) denotes the complementary set of Tk(ε). On the one hand

Pry,C(Tk(ε)) = Pr((X,Y) /∈ Tε) ≤ A

ε2n
.

by Lemma 4, and on the other hand for k′ �= k:∑
k′∈C,k′ �=k

Pry,C (Tk′(ε)) ≤
∑
k′∈C

Pry,C (Tk′(ε)) = 2rPr
(
(X̃, Ỹ) ∈ Tε

)
≤ 2r−

∑n
i=1 Cap(σ2

i )+2εn

by Proposition 1. By plugging in these two upper bounds in the union bound
(27) we obtain Perr ≤ A

ε2n +2r−
∑n

i=1 Cap(σ2
i )+2εn ≤ A

ε2n +2−δn+2εn. We finish the
proof by choosing ε = δ

4 .
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Abstract. Trivium is a stream cipher proposed for the eSTREAM
project. Raddum introduced some reduced versions of Trivium, named
Bivium A and Bivium B. In this article we present a numerical attack
on the Biviums. The main idea is to transform the problem of solving
a sparse system of quadratic equations over GF (2) into a combinatorial
optimization problem. We convert the Boolean equation system into an
equation system over R and formulate the problem of finding a 0-1-valued
solution for the system as a mixed-integer programming problem. This
enables us to make use of several algorithms in the field of combinatorial
optimization in order to find a solution for the problem and recover the
initial state of Bivium. In particular this gives us an attack on Bivium
B in estimated time complexity of 263.7 seconds. But this kind of attack
is also applicable to other cryptographic algorithms.

1 Introduction

In 2004 the eSTREAM project within ECRYPT called for secure and fast stream
ciphers. There were two categories: one for software oriented ciphers and one for
hardware oriented ciphers. In the hardware category the focus was on stream
ciphers for hardware applications with restricted resources such as limited stor-
age, gate count or power consumption. In 2008 the eSTREAM project ended
and amongst the recommended hardware oriented stream ciphers was Trivium.
Due to its elegant design and simple structure (see Section 2 for details) Triv-
ium has been a target for many cryptanalysts but so far no attack faster than
exhaustive key search is known. In order to understand the structure of Trivium
better and to invent possible attacks, Raddum introduced two reduced versions
of Trivium called Bivium A and Bivium B [8]. These variants have been success-
fully attacked by an approach using SAT-solvers [3] and by an approach using
special graphs [8]. One possible way to recover the initial state of Bivium is to
solve a sparse system of quadratic and linear equations over GF (2). It is known
that solving a system of non-linear Boolean equations is an NP-hard problem.
In this paper we introduce an new approach for solving this system of equations.
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We convert the Boolean equations into equations which hold over the reals or
respectively over the integers. Starting from this system we generate a system
of linear equalities and inequalities which describes the initial state of Bivium.
These constraints yield together with an arbitrary objective function a mixed-
integer programming (MIP) problem and we can use methods of combinatorial
optimization to solve the problem. Unfortunately it is difficult to give an esti-
mate of the running time of these algorithms and it is hard to predict whether
a problem is solvable in reasonable time or not because the running time might
be exponential in the worst case [7]. For that reason it is necessary to ascertain
the running times by experiments.

2 Description of Bivium

Trivium [4] is one of the hardware-oriented stream ciphers which are recom-
mended by the eSTREAM project. Trivium has a 288 bit initial state which is
divided into three nonlinear feedback shift registers (NFSR). The 80-bit key is
loaded into the first register and an 80 bit IV into the second. After 4 ·288 clock-
ings (steps) of the algorithm which do not produce any output, a key stream bit
is produced by an XOR of six state bits (two from each register). Raddum [8] in-
troduces two small-scale variants of Trivium called Bivium A and Bivium B (the
latter is often referred to as Bivium). Both variants are obtained by removing
the last NFSR which yields an internal state of size 177. The following pseudo
code specifies how to generate one bit z of the key stream for Bivium B where
si denotes the ith state bit:

t1 ← s66 + s93

t2 ← s162 + s177

z ← t1 + t2

t1 ← t1 + s91s92 + s171

t2 ← t2 + s175s176 + s69

(s1, s2, . . . , s93) ← (t2, s1, . . . , s92)
(s94, s95, . . . , s177) ← (t1, s94, . . . , s176)

Bivium A only differs in the key stream bit equation from Bivium B. In Bivium A
the key stream bit z = t2 which means that the key stream bit only depends
directly on the second register. It is important to note that not only is the state
size smaller for Bivium compared to Trivium but also the linear equation or the
key stream equation is simpler because it only depends on respectively four and
two bits for Bivium B respectively Bivium A.

By introducing a new variable for each update of the NFSRs [8] we obtain
a full description of an internal state after observing 177 key stream bits by
equations of the form:

s66 ⊕ s93 ⊕ s162 ⊕ s177 = z (1)
s66 ⊕ s93 ⊕ (s91 ∧ s92) ⊕ s171 ⊕ s178 = 0 (2)

s162 ⊕ s177 ⊕ (s175 ∧ s176) ⊕ s69 ⊕ s179 = 0. (3)
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177 key stream bits yield a fully determined system of 399 equations in 399
unknowns. By using more than 177 key stream bits we can easily obtain an
overdetermined system.

Solving a system of random quadratic equation over GF(2) is known to be an
NP-hard problem. In order to find a solution despite this fact we will convert
the problem into a problem over the reals or respectively the integers and use a
method from the field of combinatorial optimization in order to solve the system.
Here the small number of monomials per equation will be an advantage as we
will see later.

3 Mixed-Integer Programming

Combinatorial and integer optimization deals with the problem of minimizing
(or maximizing) a function of several variables subject to equality and inequality
constraints and integrality restrictions on some or all of the variables. A linear
mixed-integer programming problem (MIP) is a problem of the form

min
x

{cTx|Ax ≤ b, x ∈ Zk × Rl}

where c is an n-vector, A is an m × n-matrix (n = k + l) and b is an m-
vector. This means that we minimize a linear function subject to linear equality
and inequality constraints. Additionally some of the variables are restricted to
integer values while the other variables are real-valued.

The set S of all x ∈ Zk × Rl which satisfies the linear constraints Ax ≤ b

S = {x ∈ Zk × Rl, Ax ≤ b}

is called a feasible set. An element x ∈ S is called a feasible point. The MIP
is called feasible if S �= ∅ and infeasible if S = ∅. The function z = cTx is the
objective function that we want to minimize.

An MIP has either an optimal solution, is unbounded, or is infeasible. If there
exists for any w ∈ R an x ∈ S such that cTx < w, the MIP is unbounded. A
solution for a MIP is optimal if a feasible point xS ∈ S exists with cTxS ≤ cTx
for all x ∈ S.

Special cases of MIP are the linear programming problem (LP)

min
x

{cTx|Ax ≤ b, x ∈ Rl}

where all variables are continuous and the pure integer programming problem
(IP)

min
x

{cTx|Ax ≤ b, x ∈ Zk}

where all variables are integer-valued. We are mainly interested in another special
case of MIP called 0-1-MIP where the integer variables are replaced by binary
variables.
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3.1 Modeling

Usually there is more than one way to model an MIP or an IP. In integer pro-
gramming, formulating a ’good’ model is of crucial importance for solving the
problem [10]. The first question in formulating a model is usually defining vari-
ables but in the case of Bivium the obvious choice is to take the internal state
bits as variables. We will also introduce some additional variables depending
on the model we use. The second question is finding a good objective function.
As we will see later we are interested in a feasible point and not in an op-
timal solution for our problem. Hence, we have at lot of freedom to choose
the objective function. The main problem is to find a good formulation for
S = {x ∈ Zk × Rl, Ax ≤ b}. Here it is often easy to find A and b which yield
a valid formulation for S but this description of the feasible set might not be
the best one for actually solving the problem. The reason for this is that integer
optimization algorithms such as branch-and-cut need a lower bound on the ob-
jective function and they determine this bound often by using relaxations. One
possible relaxation of the problem is to solve the corresponding linear program
zLP = minx{cTx : Ax ≤ b, x ∈ Rn}. The feasible set S of the MIP is a subset
of the feasible set P of the LP (S ⊂ P = {x ∈ Rn : Ax ≤ b}). The smaller the
set P is, the more precise are the bounds for the MIP and the efficiency of most
algorithms is dependent on these bounds.

4 Conversion Methods

We are interested in using mixed-integer linear programming problems and the
corresponding algorithms to solve the systems of equations we get from encryp-
tion schemes. These systems of equations usually describe the secret key or the
internal state of the encryption scheme, that is, if we are able to solve the sys-
tem of equations we have recovered the secret key or an internal state. But the
equations we get are defined over GF (2). The algorithms which are used to solve
integer or mixed-integer linear programming problems work over the reals us-
ing some integrality restrictions. Therefore we want to represent the Boolean
functions as polynomials over the reals. One method to do this is the Standard
Conversion Method [2]:

Definition 1 (Standard Conversion)
The Standard Conversion is defined by a mapping t : {FALSE, TRUE} →
{0, 1} with

t(s) =

{
0 if s = FALSE

1 if s = TRUE

and

s1 ∧ s2 ⇒ x1 · x2

s1 ⊕ s2 ⇒ x1 + x2 − 2x1x2

where xi = t(si) for i = 1, 2.
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A second approach is not to convert each operation but the equation as whole.
This is called the Adapted Standard Conversion (ASC) [6]. We map
{FALSE, TRUE} → {0, 1} and evaluate the equations over the reals with-
out changing their structure (we just replace XOR by addition over the reals
and AND by multiplication) for all values for which the Boolean equation holds.
We will get different results and for each result we get an equation over the reals
by subtracting the evaluation result from the left-hand side of the equation. It
follows that only one of these new real-valued equations can be true. We multiply
each equation by an exclusion variable and add the constraint that the sum of
the exclusion variables is 1 to achieve this.

Example 1. We consider the equation

x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5 = 0.

This equation holds for all (x1, x2, x3, x4, x5) ∈ {0, 1}5 with even Hamming
weight. By evaluating the function as a function over the reals we get as re-
sults 0, 2, 4. This means one of the following equations is true over the
reals:

x1 + x2 + x3 + x4 + x5 = 0,
x1 + x2 + x3 + x4 + x5 − 2 = 0,
x1 + x2 + x3 + x4 + x5 − 4 = 0.

It is obvious that not all equations can be true at the same time, therefore we
introduce exclusion variables xe1 , xe2 and xe3 .

xe1 (x1 + x2 + x3 + x4 + x5) = 0
xe2 (x1 + x2 + x3 + x4 + x5 − 2) = 0
xe3 (x1 + x2 + x3 + x4 + x5 − 4) = 0

xe1 + xe2 + xe3 = 1

Using the ASC the basis structure of the equations can be kept, the degree in-
creases by only one, but the number of variables and equations is increased by
three in our example.

In the next section we will show how we can use the Standard Conversion method
and the basic idea of the ASC method to convert the Boolean equation system
of Bivium A into a system of linear real or integer equations respectively.

5 Bivium A as a Mixed-Integer Linear Programming
Problem

In this section we will explain step by step how to model Bivium A as a mixed-
integer linear programming problem. We will use the equations which describe
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the initial state [8] to define the feasible set of the mixed-integer problem. This
means that we formulate the problem of finding the internal state of Bivium A
given a sufficiently long part of the key stream as a feasibility problem rather than
as an optimization problem. As mentioned in Section 3.1 it is very important
how to model the MIP. In the following subsections we will describe two different
ideas how to model Bivium A as an MIP, one model is based on the Standard
Conversion Method and the other one uses the idea of the Adapted Standard
Conversion Method. Afterwards we will compare the results of these different
models.

The starting point for both linearisations is the system of Boolean equations
which describe Bivium A. For each clocking of the algorithm we get three equa-
tions of the form

s162 ⊕ s177 = z (4)
s66 ⊕ s93 ⊕ (s91 ∧ s92) ⊕ s171 ⊕ s178 = 0 (5)

s162 ⊕ s177 ⊕ (s175 ∧ s176) ⊕ s69 ⊕ s179 = 0 (6)

After 177 clockings of the algorithm we have a fully determined system of 399
equations in 399 unknowns. (For the last 66 clockings we do not need to introduce
new variables, thus we do not need the quadratic equations). For each further
clocking we get an overdetermined system because we get three equations and
introduce two new variables [8].

We want to use this fully or overdetermined system to describe the feasible
set of an MIP. We will show two ways to do this.

5.1 Linearisation Using the Standard Conversion Method

Using the Standard Conversion Method the degree of the real equation is equal
to the number of variables involved in the Boolean equation. We want to keep
the degree of the equation as small as possible because later we have to replace
terms of higher order by new variables in order to get linear constraints. We
also want to keep the number of monomials per equation small because the less
complex the constraints are, the more likely it is that we can solve the MIP.
Therefore the first step is to split up the equations by introducing some new
auxiliary variables.

Splitting. First we replace s162 ⊕ s177 by the key stream bit z in the quadratic
equation. This is a good opportunity to reduce the number of variables in this
equation and the complexity of the resulting constraint. This is different from
the case of Bivium B and Trivium because of the more complex key stream equa-
tion. Then we introduce new variables in such a way that there are not more
than four variables per equation. Using a small trick of rewriting the equations we
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can achieve that the real equations have at most degree two after applying the
Standard Conversion Method. We split the system in the following way:

s162 ⊕ s177 = z

r1 = s66 ⊕ s93

r2 = s91 ∧ s92

r1 ⊕ r2 = s171 ⊕ s178

r3 = s175 ∧ s176

z ⊕ r3 = s69 ⊕ s179

This means we introduce three splitting variables for each clocking (except for the
last 66 clockings). Starting from a fully determined system with 399 equations
this splitting yields a system of 732 equations in 732 unknowns. These are still
Boolean equations. Hence the next step is to convert the system of Boolean
equations into a system over the reals.

Conversion Using the Standard Conversion Method. The only require-
ment we have is that the solution of the Boolean system is also a solution of the real
system. We can ignore the additional non-binary solutions of the real system. Thus
it does notmatter whether we convert each side of the equation and subtract the re-
sulting terms afterwards or write the equation of the form p(x) = TRUE/FALSE
and convert the Boolean polynomial p(x) as a whole using the Standard Conver-
sion Method into a polynomial over the reals. The advantage of splitting the equa-
tion into two parts is that the degree of the resulting polynomial is at most two.
This yields equations over the reals of the following form:

x162 + x177 − 2x162x177 = z

r̃1 − x66 − x93 + 2x66x93 = 0
r̃2 − x91x92 = 0

r̃1 + r̃2 − 2r̃1r̃2 − x171 − x178 + 2x171x178 = 0
r̃3 − x175x176 = 0

(1 − 2z)r̃3 − x69 − x179 + 2x69x179 = −z
where xi = t(si) and r̃i = t(ri).

We still have equations of degree 2. All these constraints are equality con-
straints. The last step is to replace the quadratic terms by new variables which
will be forced to take the correct values by additional constraints.

Linearisation. In order to linearise the equations we introduce a new binary
variable y for each quadratic term xixj . We want this new variable to be zero
if xi or xj is zero and to be one if and only if xi and xj are both one. We can
achieve this by adding the following inequalities to the system of constraints:

y ≤ xi (7)
y ≤ xj (8)

xi + xj − 1 ≤ y (9)
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The inequality constraints (7) and (8) make sure that y = 0 if xi = 0 or xj = 0
and (9) ensures that y = 1 if xi = 1 and xj = 1. We introduce one new variable
and three inequality constraints for each quadratic term. The equality constraints
are of the form

x162 + x177 − 2y1 = z

r̃1 − x66 − x93 + 2y2 = 0
r̃2 − y3 = 0

r̃1 + r̃2 − 2y4 − x171 − x178 + 2y5 = 0
r̃3 − y6 = 0

(1 − 2z)r̃3 − x69 − x179 + 2y7 = −z

This linearisation yields a system of 732 equality and 2529 inequality constraints
in 1575 variables (again starting from a fully determined system with 399 vari-
ables in 399 unknowns).

5.2 Linearisation Using the Basic Idea of the ASC

In this linearisation method we use the fact that we want to use the resulting
system of equalities and inequalities in a mixed-integer programming problem.
This means that we can restrict some (or all) variables to be integers. Conse-
quently we do not have to ensure that the equation holds over the reals but over
the integers if we convert a Boolean equation.

The main idea how to convert a Boolean equation into an equation over the in-
tegers is taken from the Adapted Standard Conversion. We interpret the Boolean
equation as an equation over the integers by replacing XOR by addition and
AND by multiplication. Then we evaluate the integer equation for all solutions
of the Boolean equation as we did in the ASC method (Here we map TRUE to 1
and FALSE to 0). Afterwards we subtract these results from the left-hand side
of the equation. We observe that all results are multiples of 2. That means in-
stead of generating several equations and introducing exclusion variables we just
introduce one new integer-valued variable in a linear term and get one equation.

Example 2. Consider the Boolean equation

s1 ⊕ s2 ⊕ (s3 ∧ s4) ⊕ s5 ⊕ s6 = 0 (10)

If we evaluate the corresponding real polynomial x1 + x2 + x3x4 + x5 + x6 for
all solutions of (10) we get 0, 2, 4 as results. That means that a solution of (10)
is a solution to the following equation over the integers

x1 + x2 + x3x4 + x5 + x6 − 2y = 0 where y ∈ {0, 1, 2}.

The degree is the same and the number of monomials per equation is increased
only by one. We call this conversion method Integer Adapted Standard
Conversion (IASC).
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It is assumed that the smaller the number of monomial per equation is, the
easier it is to solve the resulting mixed-integer problem. For this reason we
start by splitting the equations by introducing auxiliary variables. We introduce
t1 = s66 ⊕ s93 and also replace s162 ⊕ s177 by the key stream bit z in (6).
We apply the Standard Conversion Method to equations with no more than
three monomials. In this case the number of monomials per equation and the
number of new variables is the same as when using the IASC. But by replacing
a quadratic term by a new variable we get three constraints instead of only the
restriction that the variable is binary. That means we get stronger constraints
by using the Standard Conversion in these cases. For equations with more than
three monomials we use the IASC. This yields equations of the form:

x162 + x177 − 2x162x177 = z

t1 − x66 − x93 + 2x66x93 = 0
t1 + x91x92 + x171 + x178 − 2y1 = 0

x175x176 + x69 + x179 − 2y2 = z

where y1 ∈ {0, 1, 2} and y2 ∈ {0, 1}. Finally we replace the quadratic terms
by new variables and add the corresponding inequality constraints (7)-(9) (as
in Section 5.1.) Starting from a fully determined Boolean system this yields a
system of 2040 equalities and inequalities in 1020 variables.

5.3 Bivium A as a Feasibility Problem

From the linearisation we obtain a system of linear equalities and inequalities
over the reals respectively over the integers which describes the internal state of
Bivium A. Since the number of variables exceeds the number of equality con-
straints we cannot use Gauss elimination to solve the system. Therefore we use
these constraints to describe the feasible set of a linear mixed-integer program-
ming problem. Let

min
x

{cTx : Ax ≤ b, x ∈ {0, 1}k1 × Zk2 × Rl} (11)

be the mixed-integer programming problem describing Bivium A where A and b
are given by the constraints obtained from converting and linearising the Boolean
equations of Bivium A and by the upper and lower bounds on the variables. If we
can find a feasible binary/integer-valued solution for this MIP for an arbitrary
objective function, this solution can be converted into a solution for the Boolean
system. Hence it is not important to find a minimal solution but a feasible
point. It is possible that more than one feasible point exists, it is also possible
that the Boolean system does not have a unique solution. But it is likely that
an overdetermined Boolean system has a unique solution and the corresponding
feasible region contains only one element.

Furthermore we can observe that most of the variables are dependent on the
initial state variables (all except the variables introduced by IASC in
Section 5.2). This means that we do not have to restrict all variables to be
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integers nor binary. It is sufficient to force the initial state variable to be binary
(and the IASC-variables to be integers).

In the next section we will discuss which function might be a good objective
function, how many additional key stream equations we should generate to obtain
an overdetermined system and which variables should be restricted to be binary
or integers. Furthermore we will compare the two different linearisation methods.

6 Results

In this section we present our observations and results from experiments with
various variants of Bivium A and Bivium B as a mixed-integer programming
problems. We mainly focus on MIPs which use the constraints obtained using the
Standard Conversion Method and linearisation. Here we consider some variants
of Bivium A with a smaller state size, see Table 1, to compare the increase of
the solution time to the number of variables. We also tried to find the optimal
number of additional key stream equations, a good objective function and the
variables which should be restricted to be binary. Later we will compare this
approach to MIPs using constraints obtained by using the IASC.

For all experiments we use the commercial linear optimization tool CPLEX by
ILOG [1]. CPLEX has a user’s choice for emphasis on feasibility or optimality.
We choose emphasis on feasibility because we are not interested in optimality
and stop after we found the first solution because we assume that there is only
one solution. We use CPLEX version 9.130 on a Sun Fire E25K SF 12K with
shared processors. On this machine 224 Bivium simulations over 5 × 177 steps
take 214.5 seconds. This means we can approximately search through 29.5 keys
per second.

Table 1. Variants of Bivium A with smaller state size

Name Step 1 Step 2 Step 3 Bivium A
state size 118 133 147 177
key stream bits
required

158 177 196 236

variables 1530 1718 1894 2283
equalities 728 817 901 1086
constraints 3254 3652 4027 4854

6.1 Using Standard Conversion

For finding the right parameter (objective function, binary variables, additional
equations) we ran most of the tests for the smallest variant Bivium A Step 1.
This variant has internal state size 118 and keeps the structure of Bivium A as
much as possible. We confirmed these parameters for the variants with larger
state size by running some spot tests.
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t1 ← s44 + s62

t2 ← s108 + s118

z ← t1 + t2

t1 ← t1 + s60s61 + s114

t2 ← t2 + s116s117 + s46

(s1, s2, . . . , s62) ← (t2, s1, . . . , s61)

(s63, s64, . . . , s118) ← (t1, s63, . . . , s117)

Fig. 1. Pseudo code Bivium A Step 1

Binary vs. Continuous. As mentioned before using the Standard Conversion
Method to convert the Boolean equations into real equations, all new introduced
variables (the new introduced state variables, as well as the auxiliary variables
and the linearisation variables) are dependent on the initial state variables. This
means that forcing the initial variables to take binary values will also force
all other variables to take binary values. This raises the question, whether it
is an advantage to have binary restrictions only for the initial state variables
instead of for all? A branch-and-bound algorithm has to determine a variable
for branching in each step. In the binary case this variable will be assigned to
0 and 1 to grow the search tree further in one node. Intuition tells us that it is
better to choose variables for branching which automatically force many other

Table 2. Comparison of running time in seconds for Bivium A Step 1 between the MIP
with binary restriction on the initial state and on all variables. The two last rows of the
upper table contain the average running time in seconds and the standard deviation for
a sample using a fully determined system. The lower table contains the average running
time and the standard deviation for a sample using an overdetermined system.

No. mixed binary
1 385 1583
2 550 890
3 170 478
4 157 277
5 629 1297
6 42 27
7 1209 620
8 213 1011
9 256 286
10 484 1979

average 548 783
std 393 563

mixed binary
average 493 930

std 272 289
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variables to take binary values. This can be achieved by only restricting these
variables to be binary or by giving the algorithm an order in which it should
consider the variables. We can confirm our intuition by experiments, see Table 2.
Table 2 shows the running time for 10 typical instances of the problem. An 80 bit
key is chosen at random to generate a fully determined Boolean equation system.
This system is used to formulate a linear mixed-integer programming problem as
explained before. As an objective function the sum over all variables is used. The
both last rows of the upper table in Table 2 give the average and the standard
deviation taken over a larger sample. The lower table contains the average and
standard deviation over a sample where the Boolean system is overdetermined.
We can see that the average running time is cut by 30% to almost 50% when we
compare the case where all variables are restricted to be binary to the case where
only the initial state variables have binary restrictions. Even though the running
times vary a lot for both cases the standard deviation is smaller for the mixed
problems. Furthermore we can note a decrease of the standard deviation when
we consider overdetermined problems. Considering these improvements it seems
to be a good strategy to restrict only the initial state variables to be binary. All
other variables are continuous variables.

Objective Function. As mentioned before, Bivium A is formulated as a fea-
sibility problem and the objective function does not influence the solution in a
way that matters for us. That means we can choose an arbitrary objective func-
tion. Even if the objective function is not important to get the correct solution
of the problem it is important for the performance of many mixed-integer al-
gorithms. In branch-and-bound algorithms the bounding function estimates the
best value of the objective function obtainable by growing the tree one node
further. This value is an important factor in the process of choosing the next
node in the search tree. The closer the value of the bounding function to the ob-
jective function the better. Mixed-integer programming algorithms often use the
corresponding linear programming problem (LP) as bounding function but we
do not go into detail here. In the corresponding LP all variables are continuous
i.e., we have no integrality or binary restrictions.

The only restriction for the objective function we have is that it must be
linear. Natural choices are

1. the zero-function
2. the sum over the initial state variables
3. the sum over all variables which are introduced by the original Boolean

system i.e. the sum over all state variables
4. the sum over all variables
5. the sum over all but the initial state variables1

Already a few tests showed that the zero-function is not a good objective func-
tion in practice. This is not surprising because the constant zero-function gives

1 Suggested by one of the reviewers.
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Table 3. MIP Bivium A Step 1 with different objective function (fully determined
system). The rows labeled with numbers 1 to 9 contain the run time in seconds cor-
responding to the chosen objective function. The row labeled with average show the
average run time in seconds and the last row gives us the standard deviation.

No.
∑118

i=1 xi

∑270
i=1 xi

∑#variables
i=1 xi

∑#variables
i=118 xi

1 510 365 262 202
2 477 635 198 270
3 180 1325 791 723
4 495 931 621 512
5 627 1151 411 168
6 145 506 244 180
7 544 342 939 394
8 387 1057 416 542
9 613 527 641 493
10 972 779 136 382

average 573 678 449 463
std 290 320 232 286

the algorithm no information and does not show any improvement. We focused
on the four remaining candidates for the objective function. Our experiments
show, see Table 3, that we achieve the best running times if we use the sum over
all variables as the objective function. Here again the first 10 rows contain the
running times of 10 typical instances of the mixed integer programming prob-
lem we get from a randomly chosen keys and a corresponding overdetermined
Boolean system. In our formulation of the MIP only the initial state variables
are restricted to be binary. The last two rows contain the average running time
and standard deviation taken over a larger sample. As mentioned before the
sum over all variables turns out to be the best objective function in this sample
and is used in all further experiments. But the 5th candidate, the sum over all
non-state variables, is almost as good and we expect that these two functions
will yield similar results because the functions have similar properties.

For a key chosen at random approximately one third of the variables take the
value one, while if we only look at the initial state variables or the variables
introduce by the original Boolean system approximately half of them take the
value one. Using the sum of certain variables as objective function means looking
for a solution where the Hamming weight of these variables is minimal. For the
second and third candidates the expected value of the objective function for the
correct point is the same as for a random point. But for the fourth candidate,
the sum over all variables, the expected value for the correct solution is only one
third of the number of variables which is significantly less than half of the number
of variables which is the expected value for a random point. Here minimizing
the objective function leads us in the right direction. Also the last candidate has
the property that minimizing it leads to the correct solution.

The observation that the sum over all variables is the best objective function
raises the question if the MIP is solved faster if the Hamming weight of the
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solution is low. We tested this on an overdetermined system of Bivium A (59
additional key stream equations and the corresponding quadratic equations) and
our tests show that problems with a low weight solution are in average solved
much faster, see Table 4. The hypothesis of our experiments is:

Table 4. Running time Bivium A for low weight solution (All values are averages over
a small samples.)

HW initial state HW solution time in sec
10 209,4 0,2
20 346,8 17,2
40 496,8 780,3
60 617,0 9113,6
80 657,4 9342,0
100 770,9 29135,7
120 868,8 27777,7

The sum over all variables
∑m
i=1 xi where m is the number of variables, is a good

choice for the objective function.
We use this objective function in the remaining experiments.

Overdetermined System. The fully determined or quadratic Boolean system
(means n equations in n unknowns where n = 399 in the case of Bivium A) has
possibly more than one solution. For an overdetermined system it is likely that
the solution is unique. Fortunately it is very easy to generate an overdetermined
Boolean system. After we have generated a fully determined system each addi-
tional key stream bit gives us three equations and two new variables. Then 5 to
10 additional key stream bits are already sufficient to get a unique solution in
most cases. The advantage of adding even more equations is that the feasible set
will get smaller and hence the algorithm will become faster. On the other hand
more constraints come into play which will slow down the algorithm. The ques-
tion is how many additional key stream equations and corresponding quadratic

Table 5. Average running times for overdetermined systems

Bivium A Step 1
add. key stream bits +5 +10 +20 +40 +59
average time in sec 743 548 719 438 2063

Bivium A Step 2
add. key stream bits +10 +40 +44 +67
average time in sec 3493 2446 2209 3767

Bivium A
add. key stream bits +10 +59 +89
average time in sec 25759 15309 21950
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Boolean equations we should add. Here the hypothesis of our experiments is, see
Table 5:

Generate one third more key stream equations and the corresponding quadratic
equations to define the system.

Results on Bivium A Using Standard Conversion. We ran tests for all
variants of Bivium A where the key was chosen at random. We used the following
settings which are good according to our experiments before:

– objective function: the sum over all variables;
– generate an overdetermined system by generating one third additional key

stream equations;
– restrict the initial state variables to be binary, all other variables are

continuous.

We summarize the results in Table 6.

Table 6. Overview over Bivium A with different state size

Name Step 1 Step 2 Step 3 Bivium A
state size 118 133 147 177
key stream bits
require

158 177 196 236

variables 1530 1718 1894 2283
equalities 728 817 901 1086
constraints 3254 3652 4027 4854
time in sec. 555 2110 2535 15267

We are able to break Bivium A in less than 4.5 hours on average. This shows
us that our approach is faster than Raddum’s [8] (about a day) but slower than
using MiniSAT [3] (reported to be 21 sec).

Results on Bivium B Using the Standard Conversion

In the same manner as we for Bivium A we can convert Bivium B into a
mixed-integer programming problem. We use the same parameters as we did
for Bivium A, i.e. the objective function is the sum over all variables, we gen-
erate an overdetermined system by adding 59 additional key stream and cor-
responding state update equations and we restrict only the first 177 variables
to be binary. This yields an MIP in 2821 variables and 5865 constraints, 1388
of these are equality constraints. We start by considering variants of Bivium B
with smaller state size (59 and 118 bits). Furthermore we reduce the complexity
of the problem by guessing bits. When we run all experiments in parallel the
expected running time of the algorithm is the time it needs to find the solution
for the correct guess times 2n where n is the number of guessed bits. Inspired by
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Fig. 2. Running time for Bivium A with different state sizes (exponential compensating
curve)

[9] we tried two different guessing strategies. We guessed bits at the beginning or
at the end of the initial state. It turned out that guessing the last bit is a better
strategy. For the variant of Bivium B with internal state size 118 the average
time to find the solution after we guessed the first 30 bits correct is 31635 sec
while the average time for guessing the last 30 bits correct is just 6334 sec. Here
we have an improvement by a factor of five. For that reason we will guess the
last bits of the initial state in all further experiments. Here we can also see that
for a variant of Bivium B with state size 118 we have to guess 30 variables. This
means the problem has a high complexity. One way to simplify the problem is to
reduce the size of the feasible region by adding additional constraints. We tried
two different kinds of additional constraints

– The AND-gate constraints
The quadratic Boolean update functions contain a quadratic term (an AND-
gate) which we replace by a new variable later. These AND-gates contain
successive variables. This means if one AND-gate or one of the variables
which replace the AND-gate is zero than also the following or the prior
AND-gate/variable has to be zero. This leads to the following deterministic
constraint:

r1 + r3 − r2 ≤ 1

where r1 = x1x2, r2 = x2x3 and r3 = x3x4 are variables which replace
AND-gates.

– Probabilistic constraints
The initial state of Bivium B is produced by the key setup. Thus we can
assume that it behaves like a random bit stream. This means that 10 con-
secutive bits contain at least one ”1” and one ”0” with high probability.
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Therefore we can add the probabilistic constraints

i+9∑
k=i

xi ≤ 9

and

−
i+9∑
k=i

xi ≤ −1.

If these constraints are not true we won’t find a integer feasible solution.

Table 7 lists the running times for 10 instances of the problem as well as the
average running time which is taken over an larger sample. As we can see here
the additional constraints do not improve the running time, actually they impair
it. One reason could be that we increase the number of constraints too much,
maybe adding just a few new constraints would improve the running time (no
tests on that so far). Furthermore we can see that the variance for the results
on Bivium B with 50 bits guessed is quite high. So far there is no explanation
for the big differences in the running time but a general observation is that the
more variables we have the higher is the standard deviation.

We can determine the initial state for Bivium B in 263.7 seconds (assuming
that we run the tests for all guesses in parallel). Our simulations showed that we
can search through 224 keys in 214.5 seconds. That means that the complexity
of our approach corresponds to searching through 273.2 keys. This is not a very
impressive result compared to the result using Raddum splitting algorithm [8]
which takes 256 seconds, this corresponds to 269.3 keys or the even better result

Table 7. Timing results on Bivium B in seconds (*including cost for bit guessing).
The numbers in the first row indicate how many bits are preassigned, ’Prob’ means
we added the Probabilistic constraints, ’AND-Gate’ means we added the AND-Gate
constraints, ’All’ means we added the probabilistic and the AND-Gate constraints. The
rows labeled with 1 to 10 contain the run time in seconds excluding the cost for bit
guessing.

50 given 55 given 55+All 55 + prob 55+ And-gate
1 1073 104 378 295 382
2 1325 550 670 272 591
3 213 27 777 1422 1711
4 97592 3818 230 1150 742
5 79935 213 4579 999 2194
6 31311 1308 2333 1834 1667
7 7642 452 336 1280 2623
8 486 949 339 890 566
9 745 364 1303 1060 1734

10 8434 434 802 445 851

average * 263.7 265.2 265.2 265.06 265.5
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using MiniSAT [3] which takes 242.7 seconds to attack Bivium or correspondingly
a search through 256 keys.

6.2 Using IASC

We describe the feasible set of the MIP by the constraints we get from using
the conversion and linearisation described in Section 5.2. As objective function
we use the sum over all but the variables introduced by IASC, i.e. we sum over
all binary variables. We restrict the initial state variables to be binary and the
variables introduced by IASC to their integer values. From Table 8 we can see
that the running time for this approach is worse than for the first one. This
means that even if the approach using IASC has less variables and constraints
than the approach using Standard Conversion the running time is worse. One
reason for that might be that parameters which yield good results in our first
approach are not good for the second one. Another more likely reason is that
we have more variables with restrictions in the approach using IASC, nearly
three times as many as using the Standard Conversion approach. This means
that the algorithm has to consider more variables when it chooses the next
branching variable. Some of these variables are not binary but integer-valued.
That means here are even more possibilities to fulfill this equation and therefore
the constraint is weaker. However, this approach might still be interesting if we
consider Bivium B. Here the lower complexity of the resulting constraints could

Table 8. Running time in seconds for some test on Bivium A using IASC

no. +10 key stream bits +59 key stream bits
1 243241 50395
2 211305 27853
3 6572 8912
4 35296 12545
5 9966 6760
6 29650 39950
7 52230 10596
8 183083 1050
9 130254 111693
av 100180 27652

Table 9. Parameter of the two approaches for Bivium A

Method IASC SC
state size 177 177
variables 1773 2283
equalities 746 1086
constraints 2984 4854
variables with restrictions 517 177
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be an advantage even if we get more variables with restrictions. There are no
tests on Bivium B so far.

7 Conclusion

We showed two ways of transforming Bivium into a mixed-integer linear pro-
gramming problem. One way uses the Standard Conversion Method to convert
Boolean equations into equations over R, the other way uses the Integer Adapted
Standard Conversion to convert the Boolean equations into equations over Z.
These two methods are also applicable to any other Boolean equation system.
The best results for Bivium A are achieved by using the Standard Conversion
method with an estimated time complexity of 213.9 seconds or approximately 4.5
hours. Using the Integer Adapted Standard Conversion we get an attack with
running time of 214.76 seconds or approximately 8 hours. Solving the MIP which
corresponds to Bivium B converted using the Standard Conversion has an aver-
age time complexity of 264.5 seconds which corresponds to a search through 273.2

keys. Comparing the results on variants of Bivium B with a smaller state size to
Bivium A shows that not only the increased number of variables in Bivium B
but also the more complex structure of the equations are responsible for the in-
crease of the running time. Moving from Bivium B to Trivium would double the
number of variables in the corresponding MIP. Also, the key stream equation of
Trivium involves 6 variables and is hence more complicated than the key stream
equation of Bivium B. Therefore the mixed-integer programming problem as
presented in this article can not in its current form be considered as a threat for
Trivium.
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Abstract. We provide a proof of security for a huge class of double block
length hash function that we will call Cyclic-DM. Using this result, we
are able to give a collision resistance bound for Abreast-DM, one of the
oldest and most well-known constructions for turning a block cipher with
n-bit block length and 2n-bit key length into a 2n-bit cryptographic hash
function. In particular, we show that when Abreast-DM is instantiated
using a block cipher with 128-bit block length and 256-bit key length, any
adversary that asks less than 2124.42 queries cannot find a collision with
success probability greater than 1/2. Surprisingly, this about 15 years
old construction is one of the few constructions that have the desirable
feature of a near-optimal collision resistance guarantee.

We are also able to derive several DBL constructions that lead to com-
pression functions offering an even higher security guarantee and more
efficiency than Abreast-DM (e.g. share a common key). Furthermore
we give a practical DBL construction that has the highest security guar-
antee of all DBL compression functions currently known in literature.
We also provide a (relatively weak) analysis of preimage resistance for
Cyclic-DM.

Keywords: cryptographic hash function, block cipher based, proof of
security, double-block length, ideal cipher model, Cyclic-DM, Abreast-
DM.

1 Introduction

A cryptographic hash function is a function which maps an input of arbitrary
length to an output of fixed length. It should satisfy at least collision-, preimage-
and second-preimage resistance and is is one of the most important primitives
in cryptography [25].

Block Cipher-Based Hash Functions. Since their initial design by Rivest, MD4-
family hash functions (e.g. MD4, MD5, RIPEMD, SHA-1, SHA2 [3,28,29,31,32])
have dominated cryptographic practice. But in recent years, a sequence of attacks
on these type of functions [8,12,40,41] has led to a generalized sense of concern
about the MD4-approach. The most natural place to look for an alternative is in
block cipher-based constructions, which in fact predate the MD4-approach [24].

M.G. Parker (Ed.): Cryptography and Coding 2009, LNCS 5921, pp. 153–175, 2009.
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Another reason for the resurgence of interest in block cipher-based hash functions
is due to the rise of size restricted devices such as RFID tags or smart cards: A
hardware designer has to implement only a block cipher in order to obtain an
encryption function as well as a hash function. But since the output length of
most practical encryption functions is far too short for a collision resistant hash
function, e.g. 128-bit for AES, one is mainly interested in sound design principles
for double block length (DBL) hash functions [2]. A DBL hash-function uses a
block cipher with n-bit output as the building block by which it maps possibly
long strings to 2n-bit ones.

Our Contribution. Four, somewhat ’classical’ DBL hash functions are known:
MDC-2, MDC-4, Abreast-DM and Tandem-DM [4,5,23]. Security bounds
for MDC-2 and Tandem-DM had been shown [38,10] at EUROCRYPT’07
and FSE’09. In [18], Lee and Kwon independently provided a proof of security
of Abreast-DM and discussed some generalizations (without stating proofs).
Since our results are tighter (both preimage and collision resistance) and far
more general, we will give them here in full detail. We also provide a rigorous
formal analysis of our security bounds. Using our generalization, Cyclic-DM,
we are able to derive a DBL compression function that offers the highest security
guarantee of all compression functions currently known in literature.

Outline. The paper is organized as follows: Section 2 includes formal notations
and definitions as well as a review of related work. In Section 3, we discuss
Abreast-DM as a special case of Cyclic-DM: we show that any adversary
asking less than 2124.42 oracle queries has negligible advantage in finding a colli-
sion for the Abreast-DM compression function. The proof for this special case
is given in the full version of the paper [11]. Section 4 now defines the compression
function Cyclic-DM and gives security bounds in terms of collision resistance
and preimage resistance. Section 5 discusses how we can use the results from the
previous section to derive new DBL compression functions that have the highest
security guarantee of all currently known DBL compression functions. In Section
6 we discuss our results and conclude.

2 Preliminaries

2.1 Iterated DBL Hash Function Based on Block Ciphers

Ideal Cipher Model. A block cipher is a keyed family of permutations consisting
of two paired algorithms E : Ω×K → Ω and E−1 : Ω×K → Ω where Ω is the set
of plaintexts/ciphertexts, and K the set of keys. If Ω = {0, 1}n and K = {0, 1}k,
we will call it an (n, k)-block cipher. Let BC(Ω,K) be the set of all such block
ciphers. Now, for any one fixed key K ∈ K, decryption E−1

K = E−1(·,K) is the
inverse function of encryption EK = E(·,K), so that E−1

K (EK(X)) = X holds
for any input X ∈ Ω.

Most of the attacks on hash functions based on block ciphers do not utilize
the internal structure of the block ciphers. The security of such hash functions
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is usually analyzed in the ideal cipher model [2,9,20]. In the ideal cipher model
the underlying primitive, the block cipher E, is modeled as a family of random
permutations {EK} whereas the random permutations are chosen independently
for each key K, i.e. formally E is selected randomly from BC(X ,K).

DBL Compression Functions. Iterated DBL hash functions with two block ci-
pher calls in their compression function are discussed in this article. A hash
function H : {0, 1}∗ → X 2 can be built by iterating a compression function
F : Ω2 × {0, 1}b → Ω2 as follows: Split the padded message M into b-bit blocks
M1, . . . ,Ml, fix (G0, H0), apply (Gi, Hi) = F (Gi−1, Hi−1,Mi) for i = 1, . . . , l
and finally set H(M) := (Gl, Hl). Let the compression function F be such that

(Gi, Hi) = F (Gi−1, Hi−1,Mi),

where Gi−1, Hi−1, Gi, Hi ∈ Ω andMi ∈ {0, 1}b. We assume that the compression
function F consists of FT , the top row, and FB , the bottom row. Each of the
component functions FB and FT performs exactly one call to the block cipher
and can be defined as follows:

Gi = FT (Gi−1, Hi−1,Mi) = E(XT ,KT ) ⊕ ZT ,

Hi = FB(Gi−1, Hi−1,Mi) = E(XB,KB) ⊕ ZB,

where XT ,KT , ZT and XB,KB, ZB are uniquely determined by Gi−1, Hi−1,Mi.
We define the rate r of a block cipher based compression/hash function F by

r =
|Mi|

(number of block cipher calls in F) × n
.

The key scheduler rate rkey is defined as

rkey =
1

number of key scheduler operations per compression function
.

It follows that rkey = 1 if KT = KB and rkey = 1/2 otherwise. They both are a
measure of efficiency for such block cipher based constructions. Note that there is
currently a discussion in literature on how to measure this efficiency ’correctly’.

2.2 Defining Security – Collision Resistance of a Compression
Function

Insecurity is quantified by the success probability of an optimal resource-bounded
adversary. The resource is the number of queries to the ideal cipher oracles E
or E−1. For a set S, let z R← S represent random sampling from S under the
uniform distribution. For a probabilistic algorithm M, let z R← M mean that z
is an output of M and its distribution is based on the random choices of M.

An adversary is a computationally unbounded but always-halting collision-
finding algorithm A with access to an oracle E ∈ BC(X ,K). We can assume
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(by standard arguments) that A is deterministic. The adversary may make a
forward query (X,K, ?)fwd to discover the corresponding value Y = EK(X),
or the adversary may make a backward query (?,K, Y )bwd, so as to learn the
corresponding value X = E−1

K (Y ) for which EK(X) = Y . Either way the result
of the query is stored in a triple (Xi,Ki, Yi) and the query history, denoted Q,
is the tuple (Q1, . . . , Qq) where Qi = (Xi,Ki, Yi) is the result of the i-th query
made by the adversary and where q is the total number of queries made by the
adversary. Without loss of generality, it is assumed that A asks at most only
once on a triplet of a key Ki, a plaintext Xi and a ciphertext Yi obtained by a
query and the corresponding reply.

The goal of the adversary is to output two different triplets (G,H,M) and
(G′, H ′,M ′) such that F (G,H,M) = F (G′, H ′,M ′). Since E is assumed to be
an ideal cipher, we impose the reasonable condition that the adversary must have
made all queries necessary to compute F (G,H,M) and F (G′, H ′,M ′). We will in
fact dispense the adversary from having to output these two triplets, and simply
determine whether the adversary has been successful or not by examining its
query history Q. Formally, we say that Coll(Q) holds if there is such a collision
and Q contains all the queries necessary to compute it.

Definition 1. (Collision resistance of a compression function) Let F
be a blockcipher based compression function, F : Ω2 × {0, 1}b → Ω2. Fix an
adversary A. Then the advantage of A in finding collisions in F is the real
number

AdvColl

F (A) = Pr[E R← BC(X ,K); ((G,H,M), (G′, H ′,M ′)) R← AE,E−1
:

((G,H,M) �= (G′, H ′,M ′)) ∧ F (G,H,M) = F (G′, H ′,M ′)].

For q ≥ 1 we write

AdvColl

F (q) = max
A

{AdvColl

F (A)}

where the maximum is taken over all adversaries that ask at most q oracle queries
(i.e. E and E−1 queries).

2.3 Related Work

Schemes with non-optimal or unknown collision resistance. Preneel et al. [30]
discussed the security of SBL hash functions against several generic attacks.
They concluded that 12 out of 64 hash functions are secure against the attacks.
However, formal proofs were first given by Black et al. [2] about 10 years later.
Their most important result is that 20 hash functions – including the 12 men-
tioned above – are optimally collision resistant. Knudsen et al. [21] discussed
the insecurity of DBL hash functions with rate 1 composed of (n, n)-block ci-
phers. Hohl et al. [16] analyzed the security of DBL compression functions with
rate 1 and 1/2. Satoh et al. [36] and Hattoris et al. [13] discussed DBL hash
functions with rate 1 composed of (n, 2n)-block ciphers. MDC-2 and MDC-4
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[17,1,5] are (n, n)-block cipher based DBL hash functions with rates 1/2 and
1/4, respectively. Steinberger [38] proved that for MDC-2 instantiated with, e.g.,
AES-128 no adversary asking less than 274.9 can usually find a collision. Nandi
et al. [27] proposed a construction with rate 2/3 but it is not optimally colli-
sion resistant. In [22], Knudsen and Muller presented some attacks against it.
At EUROCRYPT’08 and CRYPTO’08, Steinberger [34,35] proved some security
bounds for fixed-key (n, n)-block cipher based hash functions, i.e. permutation
based hash functions, that all have small rates and low security guarantees. None
of these schemes/techniques mentioned so far are known to have birthday-type
collision resistance.

Schemes with Birthday-Type Collision Resistance. Merkle [26] presented three
DBL hash functions composed of DES with rates of at most 0.276. They are
optimally collision resistant in the ideal cipher model. Hirose [14] presented a
class of DBL hash functions with rate 1/2 which are composed of two differ-
ent and independent (n, 2n)-block ciphers that have birthday-type collision re-
sistance. At FSE’06, Hirose [15] presented a rate 1/2 and (n, 2n)-block cipher
based DBL hash function that has birthday-type collision resistance. He essen-
tially stated that for his compression function, no adversary can find a collision
with probability greater than 1/2 if no more than 2124.55 queries are asked (see
[10, App. B] for details on this). At FSE’09, Fleischmann et. al. [10] showed that
for Tandem-DM, no adversary asking less than 2120.4 queries can find a collision
with probabilty greater than 1/2. In [18], Lee and Kwon independently provided
a security bound for Abreast-DM (numerically slightly weaker compared to
our result in this article, 2124.42). They also stated a generalized Theorem (with-
out proof) and gave a compression function with a security guarantee of up to
2125 queries which does not have the desirable feature of a common key for both
encryption functions. Our results will be formally tighter in all cases compared
to [18].

3 Security of Abreast-DM

3.1 Compression Function

The Abreast-DM hash function was proposed at EUROCRYPT ’92 by Xuejia
Lai and James L. Massey [23]. It incorporates two Davies-Meyer (DM) single
block length compression functions [25] which are used side-by-side. The com-
pression function is illustrated in Figure 1 and is formally given in Definition 2.

Definition 2. Let F
ADM : {0, 1}2n × {0, 1}n → {0, 1}2n be a compression func-

tion such that (Gi, Hi) = F ADM(Gi−1, Hi−1,Mi) where Gi, Hi,Mi, Gi−1, Hi−1 ∈
{0, 1}n. F

ADM consists of a (n, 2n)-block cipher E as follows:

Gi = Gi−1 ⊕ EHi−1|Mi
(Gi−1)

Hi = Hi−1 ⊕ EMi|Gi−1(Hi−1),

where H denotes the bit-by-bit complement of H.
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E

E

Gi−1

Hi−1

Gi

Hi

Mi

Fig. 1. The compression function F ADM of Abreast-DM, the small circle ’◦’ denotes
a bit-by-bit complement

The compression function F
ADM requires two invocations of the block cipher E

to produce an output. Note that these two block cipher invocations can be com-
puted in parallel. Normally, E would be assumed to be AES-256 and therefore
n = 128.

3.2 Security Results

Our discussion will result in proofs for the following bounds as given by Theorems
1 and 2.

Theorem 1. (Collision Resistance) Let F := F ADM as in Definition 2 and n, q
be natural numbers with q < 2n−2.58. Then

AdvColl

F (q) ≤ 18
( q

2n−1

)2
.

The following corollary explicitly states what this Theorem means for n = 128.

Corollary 1. For the compression function Abreast-DM, instantiated with
AES-2561 any adversary asking less than q = 2124.42 (backward or forward)
oracle queries cannot usually find a collision.

Theorem 2. (Preimage Resistance) Let F := F ADM be as in Definition 2. For
every N ′ = 2n − q and q > 1

AdvInv

F (q) ≤ 2q/(N ′)2.

The proof of Theorem 1 is a special case of Theorem 4 and will be omitted here.
It is given in the full version of the paper [11], the proof of Theorem 2 is a simple
corollary of Theorem 5 and will also be omitted. Using Theorem 1 and simple
calculus, it is easy to see that the compression function is asymptotically optimal
for n → ∞ since

lim
n→∞AdvColl

F (q) =
q2

22n .

1 Formally, we model the AES-256 block cipher as an ideal block cipher.
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This bound is not meaningful even for q ≈ 2n−2.58 since 18q2/22n−2 would
be larger than one. Note that the power of the arguments stems from the fact
that we can tightly upper bound the number of compression functions that
an adversary can compute given an upper bound of queries mounted by an
adversary.

4 Security of Cyclic Hash Functions

In this section, we will generalize the definitions and techniques of the previous
section.

4.1 Cyclic Compression Functions

We will now define the notion of a cyclic compression function F CYC.

Definition 3. Let (Ω, ∗) be a group, N = |Ω|. Let F CYC : Ω2 × {0, 1}b −→
Ω2 be a compression function such that (Gi, Hi) = F CYC(Gi−1, Hi−1,Mi) where
Gi−1, Hi−1, Gi, Hi ∈ Ω and Mi ∈ {0, 1}b, b > 0. Let E ∈ BC(Ω,Ω × {0, 1}b)
be a block cipher; ρ and σ permutations on the set Ω2 × {0, 1}b and πT , πB

permutations on Ω. Let Z := (Gi−1, Hi−1,Mi) ∈ Ω2 × {0, 1}b. Then XT , XB ∈
Ω, KT ,KB ∈ Ω×{0, 1}b such that (XT ,KT ) = ρ(Z) and (XB,KB) = σ(ρ(Z)).
Now F CYC consists of a E as follows:{

Gi = EKT (MT ) ∗ πT (XT )
Hi = EKB (MB) ∗ πB(XB)

where the computation leading to Gi is informally called the ’top row’, and for
Hi called ’bottom row’.

The compression function F CYC is visualized in Figure 2.

Fig. 2. Cyclic Compression Function (Gi, Hi) = F CYC(Z), Z = (Gi−1, Hi−1, Mi)

Since the properties of the permutation σ are highly relevant for the proof, we
will discuss them now. The following Definitions 4, 5 are in some way the heart of
this discussion. They lay the groundwork for defining cyclic double block length
compression functions in the first place and provide for a main notion that we
will use, the order of an element and the order of a mapping.
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Definition 4. Let σ be a bijective mapping on a set S where S := Ω2 × {0, 1}b.
Let ID be the identity mapping on S. The function σk is defined as σk := σ◦σk−1

for k > 0 and σ0 := ID.

(i) Fix some element s ∈ S. The order of s is defined to be |s| = minr≥1(σr(s) =
s), i.e. |s| is minimal (but > 0) such that σ|s|(s) = s.

(ii) If there is a c ∈ N≥1 such that ∀s̃ ∈ S : |s̃| = c, we say the order of the
mapping σ, denoted by |σ|, is equal to c, i.e. |σ| = c. If there is no such c,
then |σ| := 0.

Definition 5. Let F CYC, ρ and σ be as in Definition 3. If |σ| ≥ 2, then F CYC

is called a cyclic double block length (CDBL) compression function with cycle
length |σ|.

Properties of CDBL Compression Functions. Now we will discuss the
main properties of F CYC. It is easy to see that a CDBL compression function with
cycle length 1 is not reasonable as this would essentially F CYC render a single
block length compression function. A cycle length of 1 would imply σ = ID and
therefore Gi = Hi for all i ≥ 1. The values of the initial vector (G0, H0) are
nonetheless free to be different. Single block length hash functions have already
been thoroughly analyzed in [2,30,37].

Lemma 1. Let F CYC be as in Definition 5.

(i) Any oracle query for the top- or bottom row of F CYC uniquely determines the
oracle query in the bottom- or top row.

(ii) The queries used in F CYC for the bottom- and top row are always different,
i.e. there are no fixed-points.

Proof. The proof of (i) is trivial and (ii) is a consequence of |σ| > 1. (�)

(Counter-)Examples. In the following, we will give some examples of known
DBL constructions and discuss how they match Definition 3.

Abreast-DM. To match Definition 3, we choose Ω = {0, 1}n, b = n, πT = id,
πB(X) = X , ρ(G,H,M) = id = (G,H,M) and σ(G,H,M) = (H,M,G). It is
easy to see that Abreast-DM has a cycle length of |σ| = c = 6.

Hirose’s FSE’06 Proposal. A description of FHirose is given in Appendix A.
In this case we choose Ω = {0, 1}n, b = n, πT = πB = ID, ρ = ID and
σ(Gi−1, Hi−1,Mi) = (Gi−1 ⊕ const,Hi−1,Mi) in order to map with the defi-
nition of F CYC. It is easy to see that |σ| = 2. In [10, Appendix B] it is shown
that for FHirose no adversary asking less than 2124.55 queries cannot find a col-
lision probability greater than 1/2 given that FHirose was instantiated with a
(128, 256) cipher as, e.g., AES-256.
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Tandem-DM. This compression function can be seen as a counter-example. A
description of the compression function F TDM is given in Appendix B. Its security
was analyzed by Fleischmann et al. at FSE’09 [10] where it was shown that no
adversary asking less than 2120.4 queries can find a collision with probability
greater than 1/2, given that F TDM was instantiated with a (128, 256) cipher as,
e.g., AES-256. As the compression function feeds in the ciphertext of the top
row into the bottom row, it cannot be represented as an instantiation of F CYC

since the definition does not allow any ciphertext feedback.

4.2 Security Results

Our discussion will result in proofs for the following bounds as given by Theorems
3, 4 and 5.

Theorem 3. (Collision Resistance for |σ| = 2) Let F := F CYC be a cyclic com-
pression function with cycle length c = |σ| = 2 as in Definition 5. If πT = πB,
then a = 1, else a = 2. Then, for any q > 1 and 2q < N ,

AdvColl

F (q) ≤ 2aq2

(N − 2q)2
+

2q
N − 2q

.

Theorem 4. (Collision Resistance for |σ| > 2) Let F := F CYC be a cyclic com-
pression function with cycle length c = |σ| > 2 as in Definition 5. Then, for any
q > 1 and cq < N ,

AdvColl

F (q) ≤ c2

2

(
q

N − cq

)2

.

Theorem 5. (Preimage Resistance) Let F := F CYC be a cyclic compression
function as in Definition 5. Then, for any q > 1 and q < N ,

AdvInv

F (q) ≤ 2q/(N − q)2.

Applications and examples of these Theorems will be discussed in Section 5. The
proof of Theorem 3 is given in Appendix C. The proof of Theorem 5 is essentially
due to Fleischmann et. al. [10, Thm. 2] and can be found in Appendix D. The
proof of Theorem 4 is given in Section 4.3.

Remarks. Naturally, the question arises what to conclude if only a ’generaliza-
tion’ of Definition 4 is applicable, i.e. if not all elements s share the same order.
In theory, one can imagine a case where some elements have an order of 2, some
of 3 and some have an order of 4. Since for any |σ| > 2, Theorem 4 states a
monotonically decreasing upper bound, we can easily assume the ’worst case’
bound and apply this theorem for this maximum cycle length if all elements
have a minimum order of 3. If some elements also have an order of 2, one has to
take into account the result given in Theorem 3. The final bound for the advan-
tage can be finally obtained by taking the maximum of all bounds that result
from the order of the elements. Simply, this is due to the fact that a query that
results in a ’query cycle’ of length a cannot be used in any other query cycle
since any query cycle is a closed set.
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4.3 Collision Resistance – Proof of Theorem 4

Overview. In this section we will generalize the proof of Theorem 1. We will
analyze if the queries made by the adversary contain the means for constructing
a collision of the compression function F CYC. We upper bound the probability of
the adversary making a query that can be used as the final query to complete a
collision.

Fig. 3. Notations used for a collision of Cyclic-DM: Coll
CYC(Q), in this case W = W̃

and V = Ṽ but Z �= Z̃

The cycle in Cyclic-DM. Assume that the adversary mounts a query Qci =
(Xci,Kci, Yci), where Xci, Yci ∈ Ω, Kci ∈ Ω × {0, 1}b, Yci = EKci(Xci). The
query index c · i for the i-th query of the adversary is – similar as in the case
of Abreast-DM – due the the c − 1 free queries the adversary is given for any
mounted query. First assume that the query is used in the top row. Let U1 =
(Xci,Kci) ∈ Ω × (Ω × {0, 1}b) = Ω2 × {0, 1}b and U2 = (Xci+1,Kci+1) = σ(U1)
where Xci+1 ∈ Ω and Kci+1 ∈ Ω × {0, 1}b. The adversary is given for free the
corresponding query in the bottom row Qci+1 = (Xci+1,Kci+1, Yci+1), Yci+1 =
EKci+1(Xci+1). Given these two queries, the adversary is able to compute one
output of the compression function (W1, V1) = F CYC(ρ−1(U1)). The adversary
can ’reuse’ the query Qci+1 in the top row as a starting point to compute a new
result of F CYC. We now give the adversary for free the corresponding bottom row
query, Qci+2, assuming that Qci+1 is used in the top row. For this query Qci+2,
we have U3 = (Xci+2,Kci+2) = σ(U2) where Xci+2 ∈ Ω and Kci+2 ∈ Ω× {0, 1}b
and Yci+2 = EKci+2(Xci+2). Our main observation is that U3 = σ(U2) = σ2(U1).

Let c = |σ| denote the cycle length of F CYC. This process can be continued. The
adversary is given for free the queries Qci+3, . . . , Qci+c−1 as is shown in Table 1
in more detail. A cycle is formed since Uc = σ(Uc−1) = . . . = σc(U1) = U1 and
therefore Qci+c = Qci. The queries forming the cycle are visualized in Figure 4.

Details. Fix a set Ω, numbers b, q and an adversary A asking q backward and
forward queries to its oracle in total. Let Coll

CYC(Q) be the event that the
adversary is able to construct a collision of F CYC using the queries in Q. The
term ’last query’ means the latest query made by the adversary and is always
given index c · i and denoted as Qci. We will examine the adversary mounted
queries (d = 0) and the free queries (d = 1, 2, . . . , c− 1), (Xci+d,Kci+d, ?)fwd or
(?,Kci+d, Yci+d)bwd one at a time as the adversary gets hold of them. A query
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Table 1. Starting with query ci, (Xci, Kci, ?)fwd or (?, Kci, Yci)bwd, the adversary is
given c − 1 forward queries ci + 1, ci + 2, . . . , ci + c − 1 for free. In total, he is able to
compute c results of F CYC by using these c queries. The notations used in the table are
given in the text.

F CYC(·) Query # Plaintext Chaining Value

ρ−1(U1)
ci (*) Xci W1 = Yci ∗ πT (Xci)
ci + 1 Xci+1 V1 = Yci+1 ∗ πB(Xci+1)

ρ−1(σ(U1))
(ci + 1) Xci+1 W2 = Yci+1 ∗ πT (Xci+1)
ci + 2 Xci+2 V2 = Yci+2 ∗ πB(Xci+2)

ρ−1(σ2(U1))
(ci + 2) Xci+2 W3 = Yci+2 ∗ πT (Xci+2)
ci + 3 Xci+3 V3 = Yci+3 ∗ πB(Xci+3)

...
...

...
...

ρ−1(σc−2(U1))
(ci + c − 2) Xci+c−2 Wc−1 = Yci+c−2 ∗ πT (Xci+c−2)
ci + c − 1 Xci+c−1 Vc−1 = Yci+c−1 ∗ πB(Xci+c−1)

ρ−1(σc−1(U1))
(ci + c − 1) Xci+c−1 Wc = Yci+c−1 ∗ πT (Xci+c−1)

(ci) Xci Vc = Yci ∗ πB(Xci)

Qm = (Xm,Km, Ym) is successful, if it can be used to form a collision using
other queries contained in the query history Qm as indicated in Figure 3.

We now upper bound Pr[Coll
CYC(Q)] by exhibiting predicates Win0(Q),

. . ., Winq−1(Q) such that Coll
CYC =⇒ Win0(Q) ∨ . . . ∨ Winq−1(Q). Then,

Pr[Coll
CYC(Q)] ≤ Win0(Q) + . . . + Winq−1(Q). Since the adversary mounts

q queries in total we informally say that Wini(Q), 0 ≤ i ≤ q − 1 holds if the
adversary finds a collision after mounting the i-th query, 0 ≤ i ≤ q − 1, using at
least two of the following queries Qci, . . . , Qci+c−1 conditioned on the fact that
the adversary has not been successful before. For simplicity, we assume again
that the free queries are always given in ’ascending’ order as given in Table 1.

Definition 6. We say that a pair of queries (a, b) is successful in Qc, if the
query Qa is used in the top row, Qb in the bottom row in the computation of a
compression function F CYC and there exists a pair of queries Qj , Qk ∈ Qc such
that a collision of F CYC can be computed:

πT (Xa) ⊕ Ya = πT (Xj) ⊕ Yj and πB(Xb) ⊕ Yb = πB(Xk) ⊕ Yk.

Definition 7. Let d = 0, . . . , c − 1, d′ = d + 1 mod c, d̃ = max(d, d′). We say
CollFit

d
i (Q) if (i) the pair of queries (ci+d, ci+d′) is successful in Qci+d̃ and

(ii) the adversary had not been successful for 0 ≤ t ≤ d − 1: ¬CollFit
t
i(Q).

The predicates Wini(Q) are defined as follows:

Definition 8

Wini(Q) = ¬

⎛⎝ ∨
0≤j≤i−1

Winj(Q)

⎞⎠ ∧
(
CollFit

1
i (Q) ∨ . . . ∨ CollFit

c
i (Q)

)
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Fig. 4. A Cycle: An adversary uses the c queries to compute the complete output of c
compression functions F CYC

We now show that our case analysis is complete.

Lemma 2. Coll
CYC(Q) =⇒ Win0(Q) ∨ . . . ∨ Winq−1(Q).

This proof is omitted. It is given in the full version of the paper.
Since Pr[Coll

CYC(Q)] ≤
∑q−1
j=0 Winj(Q) it follows that

Pr[Coll
CYC(Q)] ≤

q−1∑
i=0

c−1∑
d=0

CollFit
d
i (Q). (1)

We will now upper bound Pr[CollFit
d
i (Q)].

Lemma 3. Let 0 ≤ i ≤ q − 1 and 0 ≤ d ≤ c − 1. Then

Pr[CollFit
d
i (Q)] ≤ ci

(N − ci)2
.

Proof. Let d′ = d + 1 mod c. The output of the compression function F CYC,
(W,V ), is uniquely determined by the queries Qci+d = (Xci+d,Kci+d, Yci+d)
and Q6i+d′ = (Xci+d′ ,Kci+d′, Yci+d′),

W = Yci+d ∗ πT (Xci+d) and V = Yci+d′ ∗ πB(Xci+d′).

Note that both W and V are randomly determined by the answer of the oracle
as in discussed in the full version of the paper. The use of permutations πT and
πB do not change these arguments.

To form a collision, two queries Qj, Qk are needed that can be chosen from
at most c(i + 1) queries in Qc(i+1)−1. The adversary can use them to compute
the output of < c(i+ 1) compression functions F CYC. Therefore,

Pr[CollFit
d
i (Q)] ≤ c(i+ 1)

(N − c(i+ 1))2
.

(�)
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Using (1) we get the following upper bound for any q ≥ 1 and N > cq

Pr[Coll
CYC(Q)] ≤

q−1∑
i=0

c−1∑
d=0

c(i+ 1)
(N − c(i+ 1))2

≤
q∑
i=1

c−1∑
d=0

ci

(N − ci)2

≤
q∑
i=1

c2i

(N − ci)2
≤

c2 · q2 · 1
2

(N − cq)2
≤ c2

2

(
q

N − cq

)2

.

This completes our proof of Theorem 4. �

5 Building More Efficient and Secure DBL Compression
Functions

Table 2 contains all efficient double block length compression functions known
from literature that have provably birthday-type collision resistance. Except for
Tandem-DM, they are all in the class of Cyclic-DM. The threshold value ’α’
gives the least amount of queries any adversary must ask in order to have more
than a chance of 0.5 in finding a collision for the compression function assuming
a plain-/ciphertext length of 128 bit of the block cipher.

5.1 Add/k-DM (Cycle Length 2k)

Luckily, there does exist a very elegant and efficient method to instantiate a
compression function with cycle length c = 2k for any k ≥ 1. This construction
is very similar to Hirose’s FSE’06 proposal. It is shown in Figure 5 and formally
given in Definition 9.

Table 2. List of all known efficient double block length compression functions.
’Common Key’ indicates whether both block cipher calls use the same key for their
encryption operations, ’Parallel’ indicates whether both encryption operations are in-
dependent of each other and can therefore be computed in parallel.

Cycle length Threshold α Example(s) Common Key Parallel

2 2124.55
Hirose FSE’06 [15] yes yes

Add/1-DM, Section 5.1 yes yes

3 2125.42 Section 5.2 yes yes

4 2125.0
Add/2-DM, Section 5.1 yes yes

4 1 2125.0 Lee/Kwon, [18] no yes

6 2124.42
Abreast-DM, Section 3.2 no yes

2k (k ≥ 2) 2127−k
Add/k-DM, Section 5.1 yes yes

− 2120.4
Tandem-DM, FSE’09 [10] no no
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Fig. 5. Left: Cyclic Compression Function with cycle length 2k, k > 1. Right: (for
comparison) Hirose’s FSE’06 proposal with a cycle length of 2.

Definition 9. Let FAdd/k : {0, 1}2n×{0, 1}n → {0, 1}2n be a compression func-
tion such that (Gi, Hi) = FAdd/k(Gi−1, Hi−1,Mi) where Gi, Hi,Mi ∈ {0, 1}n
and let k ∈ N such that 1 ≤ k < n. FAdd/k is built upon a (n, 2n)-block cipher
E as follows:

Gi = E(Gi−1, Hi−1|Mi) ⊕ Gi−1

Hi = E(Gi−1 � 2n−k, Hi−1|Mi) ⊕ (Gi−1 � 2n−k),

where | represents concatenation. The symbol ′�′ denotes an addition
modulo 2n.

Lemma 4. The compression function FAdd/k is in Cyclic-DM and has a cycle
length of 2k.

Proof. To map with Definition 5 we let Ω = {0, 1}n, b = n, πT = πB = ID,
ρ = ID and σ : {0, 1}n × {0, 1}2n → {0, 1}n × {0, 1}2n is chosen as σ(M,K) =
(M � 2n−k,K). The claim follows since

(σ ◦ . . . ◦ σ)︸ ︷︷ ︸
2k times

(M,K) = (M � 2k · 2n−k,K) = (M,K).

�
Therefore we can apply Theorem 3 for k = 1 or Theorem 4 if k ≥ 2.

Corollary 2. No adversary asking less than 2n−k−1 queries can have more than
a chance of 0.5 in finding a collision for the compression function F := FAdd/k

for any 1 < k < n.

Proof. This result can be obtained by using a simple calculation. As the cycle
length c is equal to 2k (Lemma 4), it follows using Theorem 4
1 The bounds given in [18] are slightly weaker (but numerically comparable) than we

would have received by our Theorem 4. Also, for this construction, we can easily use
Theorem 4 and result in the stated bound of 2125.
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AdvCOLL

F (q) =
22k

2

( q

2n−1

)2
.

By applying AdvCOLL

F (q) = 0.5 and solving after q one obtains q(k) =
√

22n−2k−2

= 2n−k−1. �

Using n = 128, as for AES-256, we can derive without effort that no adversary
asking less than 2122 queries can have more than a chance of 0.5 in finding a
collision for the compression function FAdd/5. The compression function FAdd/5

has a cycle length of 25 = 32.

5.2 Cube-DM (Cycle Length = 3)

The ’most optimal’ result in terms of security – at least in the class Cyclic-DM

– can be achieved by using a compression function that has a cycle length 3.
The approach is slightly different compared to Add/k-DM as neither additions
modulo 2n nor XOR can be used to create a permutation σ with |σ| = 3. The
guiding idea to use a message space Ω such that |Ω| is evenly divisible by three.
This construction is visualized in Figure 6 and given in Definition 11.

E′

E′

Gi−1

Hi−1

Gi

Hi

Mi

(2n − 1)/3

Fig. 6. Cube-DM, a compression function with cycle length |σ| = 3, the symbol ′�′
denotes an addition modulo 2n − 1

Definition 10. Let E : {0, 1}n× {0, 1}2n → {0, 1}n be a block cipher with n-bit
plain-/ciphertext and 2n-bit key. Let Ω = {0, 1}n − {1n}, i.e. |Ω| = 2n − 1. The
block cipher E′ : Ω × (Ω × {0, 1}n) → Ω, where Ω × {0, 1}n is the key space is
defined as

E′
K(X) =

{
EK(X), if EK(X) �= 1n,
EK(EK(X)), else.

This definition of the block cipher E′ ensures that that E′
K(X) ∈ Ω for any

value of X ∈ Ω: since E is a permutation, it follows that E′ is a permutation.
It is easy to see that, for n even, |Ω| is divisible by three since

|Ω| mod 3 = 2n − 1 mod 3 = (2 · 2)n
′
− 1 mod 3 = 0 mod 3. (2)



168 E. Fleischmann, M. Gorski, and S. Lucks

Definition 11. Let Ω = {0, 1}n − {1n}, N = |Ω| = 2n − 1. Let FCube :
Ω2 × {0, 1}n → Ω2 be a compression function such that (Gi, Hi) = FCube

(Gi−1, Hi−1,Mi) where Gi−1, Hi−1, Gi, Hi ∈ Ω and Mi ∈ {0, 1}b. Furthermore,
let const = (2n − 1)/3 and ′$′ be the addition modulo 2n − 1. Now FCube is built
upon a block cipher E′ as in Definition 10:

Gi = EHi−1|Mi
(Gi−1) $ Gi−1

Hi = EHi−1|Mi
(Gi−1 $ const) $ (Gi−1 $ const),

where ′|′ represents concatenation.

Lemma 5. The compression function FCube is in Cyclic-DM and has a cycle
length of 3.

Proof. To map with Definition 5, we choose ρ = ID, πT = πB = ID, b = n and
σ : Ω2 × {0, 1}n → Ω2 × {0, 1}n is chosen to be σ(M,K) = (M $ (2n − 1)/3,K).
The claim follows using (2) and

(σ ◦ σ ◦ σ)(M,K) = (M $ 3 · 2n − 1
3

mod 2n − 1,K) = (M,K).

�
The threshold value of α = 2125.42 as given in Table 2 follows with Theorem 4.
Note that the operation ’$’ is trivially efficient since a simple ’if’ and an ’addition’
suffice for implementation. Also, the implementation of E′ is not assumed to cost
any measurable performance.

6 Discussion and Conclusion

In this paper, we have investigated the security of Abreast-DM, a DBL com-
pression function based on a (n, 2n) block cipher that was presented at EU-
ROCRYPT’92. In the ideal cipher model, we showed that this construction has
birthday type collision resistance: any adversary asking less than 2124.42 queries
cannot find a collision with probability greater than 1/2. The proof technique was
generalized to a class of double block length compression functions Cyclic-DM

and rigorous security bounds in terms of collision resistance and preimage resis-
tance were given for this construction. The security of such constructions mainly
depends on a parameter, the cycle length. Several new double block length com-
pression functions were presented, some of them (Cube-DM and Add/4-DM)
both have a higher security guarantee in terms of collision resistance than the
best known DBL compression functions known in literature today.

Our work not only adds to the understanding of block cipher based compres-
sion functions but also introduces generic construction principles for them. For
these constructions we also have provided a rigorous security analysis in terms of
collision resistance and a (relatively weak) bound for preimage resistance. Some-
what interestingly, one of the implicit results seems to be that, given the right
construction, the security does not depend on whether the two block ciphers are
fed in with different keys – at least in the case for (n, 2n) block ciphers.
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It is clear that there still needs to be a lot of research done in the field
of block cipher based hash functions. There do not exist completely satisfying
constructions and/or security proofs for, e.g., MDC-2/4. More generally, there
has to be added a lot to our understanding, especially for constructions that are
more efficient, e.g. have rate 1, or use other building blocks such as, e.g., (n, n)
block ciphers.
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A Hirose’s FSE’06 Proposal of a DBL Compression
Function

At FSE’06, Hirose [15] proposed the DBL compression function FHirose (Defini-
tion 12 and Figure 7). He proved that when FHirose is employed in an iterated
hash function H , then no adversary asking less than 2125.7 queries can have more
than a chance of 0.5 in finding a collision for n = 128.

Definition 12. Let FHirose : {0, 1}2n × {0, 1}n → {0, 1}2n be a compression
function such that (Gi, Hi) = FHirose(Gi−1, Hi−1,Mi) whereGi, Hi,Mi ∈ {0, 1}n.
FHirose is built upon a (n, 2n) block cipher E as follows:

Gi = FT (Gi−1, Hi−1,Mi) = E(Gi−1, Hi−1|Mi) ⊕ Gi−1

Hi = FB(Gi−1, Hi−1,Mi) = E(Gi−1 ⊕ const,Hi−1|Mi) ⊕ Gi−1 ⊕ const,

where ′|′ represents concatenation and const ∈ {0, 1}n − {0n} is a constant.

A visualization of this compression function is given in Figure 7.

Fig. 7. The compression function F Hirose, E is an (n, 2n) block cipher
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B A Non-cyclic Compression Function: Tandem-DM

The Tandem-DM compression function was proposed by Lai and Massey at
EUROCRYPT’92 [23]. It uses two cascaded Davies-Meyer [2] schemes. The com-
pression function is illustrated in Figure 8 and is formally given in Definition 13.

Fig. 8. The compression function Tandem-DM F TDM where E is an (n, 2n) block
cipher, the black rectangle inside the cipher rectangle indicates the key input

Definition 13. Let FTDM : {0, 1}2n×{0, 1}n → {0, 1}2n be a compression func-
tion such that (Gi, Hi) = FTDM (Gi−1, Hi−1,Mi) where Gi, Hi,Mi ∈ {0, 1}n.
FTDM is built upon an (n, 2n) block cipher E as follows:

Wi = E(Gi−1, Hi−1|Mi)
Gi = FT (Gi−1, Hi−1,Mi) = Wi ⊕ Gi−1

Hi = FB(Gi−1, Hi−1,Mi) = E(Hi−1,Mi|Wi) ⊕ Hi−1.

C Collision Resistance – Proof of Theorem 3

Due to the special structure of the compression function in the case of c = |σ| =
2, the following definition is useful for the proof.

Definition 14. A pair of distinct inputs (Gi−1, Hi−1,Mi), (G′
i−1, H

′
i−1,M

′
i) to

F CYC is called a matching pair if (G′
i−1, H

′
i−1,M

′
i) = (ρ−1 ◦ σ ◦ ρ)(Gi−1, Hi−1,Mi).

Otherwise they are called a non-matching pair.

Fix numbers n, q and an adversary A asking q backward and forward queries to
its oracle E in total. Note that we will assume throughout this proof that the
cycle length c = |σ| = 2. All queries to the oracle are saved in a query history Q.
Let Coll

CYC−2 be the event that the adversary is able to construct a collision of
F CYC in this case. We will examine the queries one at a time as they come in; the
latest query made by the adversary, his i-th query, will always be given index
2i, and is denoted as Q2i. Say the query Q2i = (X2i,K2i, Y2i) is a forward or
backward query mounted by the adversary and assume that Q2i is used in the
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top row. As two queries are required for the computation of F CYC we will give
the adversary the bottom row query for free. This query is uniquely determined
by its plaintext X2i+1 and key K2i+1 component as follows:

(X2i+1,K2i+1) = ρ(σ(ρ−1(X2i,K2i)))

and the adversary is given the ciphertext Y2i+1 = EK2i+1(X2i+1). If the adversary
uses the query Q2i in the bottom row, we give him the top row query for free:

(X2i+1,K2i+1) = ρ(σ−1(ρ−1(X2i,K2i)))

and the adversary is given the ciphertext Y2i+1 = EK2i+1(X2i+1) in this case.
Since σ2 = ID it follows that σ = σ−1 it follows that in either case, the adversary
is given the same free query, i.e. the input to the other query is always uniquely
determined using one and the same computation.

Now assume for the simplicity of the following argument that the query Q2i is
used in the top row and Q2i+1 in the bottom row. As Gi = Y2i⊕πT (X2i) depends
both on the plaintext and the ciphertext of E and one of them is fixed by query
and the other is determined randomly by the oracle it follows that Gi is randomly
determined by that answer. Using the same argument, Hi = Y2i+1 ⊕ πT (X2i+1)
is also randomly determined by the other answer.

For any 2 ≤ i ≤ q let Ci be the event that a colliding pair of non-matching
inputs are found for F CYC with the i-th pair of queries. Namely, it is the event
that for some i′ < i

F CYC(ρ−1(X2i,K2i)) ∈ {F CYC(ρ−1(X2i′ ,K2i′)), F CYC(ρ−1(X2i′+1,K2i′+1))}

or

F CYC(ρ−1(X2i+1,K2i+1)) ∈ {F CYC(ρ−1(X2i′ ,K2i′)), F CYC(ρ−1(X2i′+1,K2i′+1))}

This condition is equivalent to

(Y2i ∗ πT (X2i), Y2i+1 ∗ πB(X2i+1)) = (Y2i′ ∗ πT (X2i′), Y2i+1 ∗ πB(X2i′+1)) or
(3)

(Y2i ∗ πT (X2i), Y2i+1 ∗ πB(X2i+1)) = (Y2i′+1 ∗ πT (X2i′+1), Y2i ∗ πB(X2i′)) or
(4)

(Y2i+1 ∗ πT (X2i+1), Y2i ∗ πB(X2i)) = (Y2i′ ∗ πT (X2i′), Y2i+1 ∗ πB(X2i′+1)) or
(5)

(Y2i+1 ∗ πT (X2i+1), Y2i ∗ πB(X2i)) = (Y2i′+1 ∗ πT (X2i′+1), Y2i ∗ πB(X2i′)). (6)

Note that (3) is equal to (6) and (4) is equal to (5) if πT = πB . In this case, it
follows that for 2q < N

Pr[Ci] ≤ 2(i − 1)
(N − (2i − 2))(N − (2i− 1))

≤ 2q
(N − 2q)2

. (7)
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Assuming πT �= πB we obtain

Pr[Ci] ≤ 4(i − 1)
(N − (2i − 2))(N − (2i− 1))

≤ 4q
(N − 2q)2

. (8)

For unifying the treatment of these two cases, we set a = 1 if πT = πB and a = 2
otherwise. Let C be the event that a colliding pair of non-matching inputs are
found for F CYC with q (pairs) of queries. Then,

Pr[C] ≤
q∑
i=2

Pr[Cj ] ≤
q∑
i=2

2q · a
(N − 2q)2

≤ 2aq2

(N − 2q)2
.

Now, let with the i-th query be Ĉi the event such that a colliding pair of matching
inputs is found for F CYC. It follows, that

Pr[Ĉi] ≤ 2
N − 2i

.

Let Ĉ be the event that a colliding pair of matching inputs are found for F CYC

with q (pairs) of queries. Then,

Pr[Ĉ] ≤
q∑
i=2

Pr[Ĉi] ≤ 2q
N − 2q

.

Since AdvColl

F (q) = Pr[C ∨ Ĉ] ≤ Pr[C] + Pr[Ĉ], the claim follows. �

D Preimage Resistance – Proof of Theorem 5

Although, the main focus is on collision resistance, we are also interested in
the difficulty of inverting the compression function of F CYC. Generally speaking,
second-preimage resistance is a stronger security requirement than preimage re-
sistance. A preimage may have some information of another preimage which
produces the same output. However, in the ideal cipher model, for the compres-
sion function F CYC, a second-preimage has no information useful to find another
preimage. Thus, only preimage resistance is analyzed. Note, that there have been
various results that discuss attacks on iterated hash functions in terms of pre-
and second-preimage, e.g. long-message second-preimage attacks [7,19], in such
a way that the preimage-resistance level of a compression function cannot easily
be transferred to an iterated hash function built on it.

The adversary’s goal is to output a preimage (G,H,M) for a given ζ, where ζ
is taken randomly from the output domain, such as F CYC(G,H,M) = ζ. We will
again dispense the adversary from having to output such a preimage. Instead, we
will determine whether the adversary has been successful or not by examining
its query history Q. We say, that PreImg(Q) holds if there is such a preimage
and Q contains all the queries necessary to compute it.
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Definition 15. (Inverting random points of a compression function)
Let F CYC be as in Definition 3. Fix an adversary A that has access to oracles
E,E−1. The advantage of A of inverting F := F CYC is the real number

AdvInv

F (A) = Pr[E R← BC(n, k); ζ R← Ω2;

(G,H,M) R← AE,E−1
(ζ) | F CYC(G,H,M) = ζ].

Again, for q ≥ 1, we write

AdvInv

F (q) = max
A

{AdvInv

F (A)}

where the maximum is taken over all adversaries that ask at most q oracle
queries.

Note, that there has been a discussion on formalizations of preimage resis-
tance. For details we refer to [2, Section 2, Appendix B].

The preimage resistance of the compression function F is given in the following
Theorem.

Theorem 6. Let F := F CYC be as in Definition 3. For any N ′ = N − q and q > 1

AdvInv

F (q) ≤ 2q/(N ′)2.

Proof. Fix ζ = (σ1, σ2) ∈ Ω2 where σ1, σ2 ∈ Ω and an adversary A asking q
queries to its oracles. We upper bound the probability that A finds a preimage
for a given ζ by examining the oracle queries as they come in and upper bound
the probability that the last query can be used to create a preimage, i.e. we
upper bound Pr[PreImg(Q)]. Let Qi denote the first i queries made by the
adversary. The term ’last query’ means the latest query made by the adversary
since we examine again the adversary’s queries (Xi,Ki)fwd or (Ki, Yi)bwd one
at a time as they come in. The last query is always given index i.

Case 1: The last query (Xi,Ki, Yi) is used in the top row. Either Xi or Yi was
randomly assigned by the oracle from a set of at least the size N ′ := N − q.
The query is successful in the top row if PTM (Xi) ⊕ Yi = σ1 and thus has a
chance of success of ≤ 1/N ′. In Qi there is at most one query Qj , j ≤ i that
can be used in the bottom row. This ’bottom’ query is successful if such a
query is in the query history Q and PBM (Xj) ⊕ Yj = σ2 and therefore has a
chance of success of ≤ 1/N ′. So the total chance of success is ≤ q/(N ′)2 as
the adversary mounts at most q queries.

Case 2: The last query (Xi,Ki, Yi) is used in the bottom row. The analysis is
essentially the same as in case 1. The total chance of success is ≤ q/(N ′)2,
too.

As any query can be either used in the top or the bottom row, the claim
follows. �
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Abstract. We propose a novel framework for blockcipher-based double-length
hash functions by extending the recent generalization presented by Stam at FSE
’09 for single-call hash functions. We focus on compression functions compress-
ing 3n bits to 2n bits that use one or two calls to a 2n-bit key, n-bit block block-
cipher. In case of a single call, we concentrate on security in the iteration. In case
of two calls, we restrict ourselves to two parallel calls (initially to distinct and
independent blockciphers). We analyse the kind of pre- and postprocessing func-
tions that are sufficient to obtain close to optimal collision resistance, either in
the compression function or in the iteration. Our framework can be used to get
a clearer understanding of a large class of double-length hash functions of this
type.

1 Introduction

Ever since the initial design of cryptographic hash functions, one of the most popular
and best-known methods to create a hash function revolves around blockciphers. First a
compression function is created using the blockcipher (e.g. using the Davies-Meyer
method) and subsequently a full-blown hash function is created using the Merkle-
Damgård transform [5, 20]. Many of the designers of the SHA-3 candidates follow this
paradigm by instantiating their designs using blockciphers, in particular with (compo-
nents of) the Advanced Encryption Standard (AES). This approach is particularly useful
for resource constrained environments as one only needs to implement one blockcipher
to obtain an encryption scheme and a hash function on a given platform.

Of the many methods, the most common approach is to use a single call to a blockci-
pher operating on n-bit blocks with k-bit keys, which typically results in a compression
function from n + k bits to n bits. This category is often referred to as rate-1 single-
length. Here the rate is a measure of efficiency, usually defined as the ratio of the number
of message blocks being hashed over the number of blockcipher calls (thus higher rates
are considered more efficient). More recently this category has been called classical
rate-1 single call, to emphasize that only a single call to the blockcipher is made per
compression function (this is not evident from being rate-1).

Unfortunately, compression functions whose output length matches the block-length
of the blockcipher historically face one major problem: existing blockciphers seldom
have sufficiently large block-lengths. For instance, to meet the basic requirements of
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NIST, one would need a blockcipher operating on more than 256 bits. This rules out
most existing blockciphers, including AES, which operates on 128 bits blocks only.

To counter this discrepancy in required security levels, so called double-length com-
pression functions (and corresponding hash functions) were introduced: these are
compression functions having 2n-bit output while being based on a blockcipher with
only n-bit blocks. Thus, one can hope to achieve for instance collision resistance up
to roughly 2n blockcipher evaluations. Double block-length compression functions can
also be useful for wide-pipe designs [18].

Double block-length hash functions come in various guises, depending on the num-
ber of blockcipher calls per compression function and the (bit)length of the key (to the
blockcipher). The three most important variants are: (i) one call to a 2n-bit key block-
cipher; (ii) two calls to a 2n-bit key blockcipher; and (iii) two calls to an n-bit key
blockcipher. In this work, we will largely ignore (iii) and concentrate on double-key
blockciphers. Our aim is to give a general, unifying framework by providing sufficient
conditions to gain optimal collision resistance for these hash functions.

Our starting point will be the recent framework by Stam [27] for single call m + s-
to-s bit compression functions consisting of three simple steps:

1. Prepare key and plaintext: (K,X) ← Cpre(M,V );
2. Make the call: Y ← E(K,X);
3. Output the digest: W ← Cpost(M,V, Y ).

Here, E is a blockcipher with key size k and block size n and Cpre and Cpost can be
arbitrary functions given their respective domain and codomain (where |K| = k, |X | =
|Y | = n, |M | = m, |W | = |V | = s). For suitable parameters (k = m = s = n) and
�2-‘block’-linear instances of Cpre and Cpost this leads to the PGV-schemes [23]. Yet
our interest goes to the supercharged scenario, where s > n (but still n + k = m + s)
and then in particular the rate-1 double-length scenario with s = 2n and m = n.

Stam [27] gave a general theory of collision-resistant supercharged compression
functions plus a specific construction for the double-length case with almost optimal
collision resistance. However, his framework does not include the earlier work by Lucks
[19], who gave a rate-1 double-length hash function that is almost optimally collision
resistant, but in the iteration only. We extend the original framework so it includes
schemes that only become secure in the iteration.

One of the main reasons to look at security in the iteration—and possibly foregoing
security of the compression function itself—is that it potentially leads to more efficient
schemes. For example, for collision resistance of a classical, single-length compression
function it is hard to avoid a feedforward from the input to the blockcipher to the output
of the compression function (as in the Davies-Meyer construction). When considering
security in the iteration only, this feedforward is no longer required. It has recently been
shown [2] that the feedforward can contribute significantly to the cost of implementing
the hash function.

Although efficiency of blockcipher-based compression functions is usually measured
by the rate (the number of blockcipher calls required per message block), this met-
ric does not always give accurate efficiency estimates. In particular, both Lucks’s and
Stam’s rate-1 construction require two �2n finite field multiplications. In practical situ-
ations, these field multiplications might actually cost more than a blockcipher call. For
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this reason, we will also look at schemes using two calls to the underlying blockcipher.
For this, we extend the above framework as follows:

1. Prepare key and plaintext: (K1, X1) ← Cpre

1 (M,V ), (K2, X2) ← Cpre

2 (M,V );
2. Make the calls: Y1 ← E1(K1, X1), Y2 ← E2(K2, X2);
3. Output the digest: W ← Cpost(M,V, Y1, Y2).

HereE1 andE2 are both blockciphers with key size k and block size n, andCpre

1 , Cpre

2 ,
and Cpost can be arbitrary functions given their respective domain and codomain. Note
that this scheme makes blockcipher calls in parallel. (One could generalize even further
by allowing even more calls, and sequentially). We investigate particularly the case
where |K1| = |K2| = |V | = 2n and |M | = |X1| = |X2| = n. There are plenty
of designs known that adhere to this framework (and even more that do not; see the
Appendix for a summary of related work).

We further group the schemes according to two important characteristics. Firstly, we
will distinguish between collision resistance in the compression function (Type-I) and
collision resistance in the (MD) iteration (Type-II), just as was done in the classical
case by Black et al. [1]. Secondly, for secure compression functions only, we will dif-
ferentiate between schemes where the two blockciphers E1 and E2 are distinct (and
independent in the ideal cipher model) and schemes where only a single blockcipher is
used, so E1 = E2.

Each type is defined by a set of conditions on pre- and postprocessing functions
(cf. [27]). For Type-I schemes with distinct blockciphers, the requirements are a rather
straightforward generalization of those by Stam for single-call constructions. For Type-
I schemes with only a single blockcipher, we follow Hirose’s [12] and Nandi’s [22]
approach for implicit domain separation based on some extra conditions on
Cpre

2 (C−pre

1 (·)) (in particular, this being an involution without fixed points).
We show that Type-I schemes enjoy near optimal collision resistance in the ideal

cipher model. We believe preimage resistance to be close to optimal as well, but like
other works in this area, we were only able to prove preimage resistance up to the
birthday bound. The ramifications of our framework for �2-‘block’-linear instances of
Cpre and Cpost for Type-I schemes are investigated and compared to earlier work.

For Type-II schemes, the generalization from the classical single-call case is less
straightforward. (Type-II schemes are investigated only under the assumption that two
independent blockciphers are called.) In fact, we can only prove collision resistance up
to roughly 2n/n queries, although we do believe that our conditions suffice for optimal
collision resistance. We note that for the classical single-call case no loss occurs.

2 Preliminaries

General notation. For a positive integer n, we write {0, 1}n for the set of all bitstrings
of length n. When X and Y are strings we write X ||Y to mean their concatenation and
X ⊕ Y to mean their bitwise exclusive-or (xor).

For positive integers k and n, we let Block(k, n) denote the set of all blockciphers
with k-bit key and operating on n-bit blocks. That is E ∈ Block(k, n) is a collection
of 2k permutations on the set {0, 1}n. Given that E(K, ·) is a permutation for all K ∈
{0, 1}k, we write D(K, ·) for its inverse.
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Unless otherwise specified, all finite sets are equipped with a uniform distribution
for random sampling. For example, E

$← Block(k, n) denotes random sampling from
the set Block(k, n) and assignment to E. We use the convention to write oracles that
are provided to an algorithm as superscripts, for example AE would be an adversary
with black box access to some function E.

We write B[Q; p] for random variable counting the number of successes in Q inde-
pendent Bernoulli trials, each with success probability p. It is binomially distributed,
for integer 0 ≤ κ ≤ Q:

Pr [B[Q; p] = κ] =
(
Q

κ

)
pκ(1 − p)Q−κ.

A Chernoff bound can be used to bound the tail probability for any κ > Qp, namely

Pr [B[Q; p] > κ] <
(
epQ

κ

)κ
.

Compression functions. A compression function is a mapping H from {0, 1}m ×
{0, 1}s to {0, 1}s for some m, s > 0. A blockcipher-based compression function is a
mappingH : {0, 1}m×{0, 1}s → {0, 1}s given by a program that, given (M,V ), com-
putes HE1,...,Er(M,V ) via access to a finite number of specified oracles E1, . . . , Er,
whereE1, . . . , Er : {0, 1}k×{0, 1}n → {0, 1}n are (ideal) blockciphers with k-bit key
and operating on n-bit blocks.1 A single-layer blockcipher-based compression function
calls all its encryption oracles in parallel. That is, let Cpre

i : {0, 1}m × {0, 1}s →
{0, 1}k × {0, 1}n, for i = 1, . . . , r, and Cpost : {0, 1}m × {0, 1}s × ({0, 1}n)r →
{0, 1}s, be pre- and postprocessing functions respectively. Compression of a message
block then proceeds as follows (see Fig. 1). Given an s-bit state V and m-bit message
M , compute digest W = HE1,...,Er(M,V ) by

(Ki, Xi) ← Cpre

i (M,V ) ;
Yi ← Ei(Ki, Xi)

for i = 1, . . . , r and finally output

W ← Cpost(M,V, Yi, . . . , Yr) .

Hash functions. A compression function can be made into a hash function by iterating
it. We briefly recall the standard Merkle-Damgård iteration [5, 21], where we assume
that there is already some injective padding from {0, 1}∗ → ({0, 1}m)∗\∅ in place
(note that we disallow the empty message M = ∅, corresponding to � = 0, as output of
the injective padding). Given an initial vector V0 ∈ {0, 1}s define HH : ({0, 1}m)∗ →
{0, 1}s as follows for M = (M1, . . . ,M�):

1. Set Vi ← HE1,...,Er(Mi, Vi−1) for i = 1, . . . , �;
2. Output HH(M) = V�.

1 It is customary not to use decryptions for the actual computations, though there are a few
exceptions to this rule.
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Fig. 1. General form of an m + s-to-s bit single layer blockcipher based compression function
based on r calls to underlying blockciphers with k-bit keys and n-bit blocks

(Bearing this iteration in mind, given a compression function H : {0, 1}m ×{0, 1}s →
{0, 1}s we will refer to the {0, 1}m part of the input as ‘message’ and the {0, 1}s as the
‘state’.)

Security notions. A collision-finding adversary is an algorithm with access to one
or more oracles, whose goal is to find collisions in some specified compression or hash
function. It is standard practice to consider information-theoretic adversaries only: these
adversaries are computationally unbounded and their complexity is measured only by
the number of queries made to their oracles. Without loss of generality, such adversaries
are assumed not to repeat queries to oracles nor to query an oracle outside of its specified
domain.

Definition 1. Let n, k, m, s > 0 be integer parameters, and fix an integer r > 0.
Let H : {0, 1}m × {0, 1}s → {0, 1}s be a compression function taking r oracles
E1, . . . , Er ∈ Block(k, n). The collision-finding advantage of adversary A is defined
to be

Advcoll
H (A) = Pr

[
E1..Er

$← Block(k, n), ((M, V ), (M ′, V ′)) ← AE1..Er,D1..Dr :

(M, V ) �= (M ′, V ′) and HE1..Er(M, V ) = HE1..Er(M ′, V ′)
]

.

Define Advcoll
H (q) as the maximum advantage over all adversaries making at most q

queries to each of their oracles.

A preimage-finding adversary is an algorithm with access to one or more oracles, whose
goal is to find preimages in some specified compression. There exist several definitions
depending on the distribution of the element of which a preimage needs to be found. The
strongest notion is that preimage resistance should hold with respect to any distribution,
which can be formalized as everywhere preimage resistance [24].

Definition 2. Let n, k, m, s > 0 be integer parameters, and fix an integer r > 0.
Let H : {0, 1}m × {0, 1}s → {0, 1}s be a compression function taking r oracles
E1, . . . , Er ∈ Block(k, n). The preimage-finding advantage of adversary A is defined
to be
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Advepre
H (A)= max

W∈{0,1}s
Pr

[
E1..Er

$← Block(k, n), (M ′, V ′) ← AE1..Er,D1..Dr (W ) :

W = HE1..Er(M ′, V ′)
]

.

Define Advepre
H (q) as the maximum advantage over all adversaries making at most q

queries to each of their oracles.

The quantities Advcoll
H (q) and Advepre

H (q), denoting collision resp. (everywhere) preim-
age resistance for the iterated hash function HH are defined similarly (in this case the
advantage of A is the maximum success probability taken over the choice of possible
initial values V0, which is input to A).

Although the standard Merkle-Damgård transform does not preserve collision resis-
tance on its own, it does preserve the combination of collision resistance and every-
where preimage resistance. Formally,

Theorem 1. Let H be a blockcipher based compression function and let H be the iter-
ated hash function based on H . Then

Advcoll
H (q) ≤ Advcoll

H (q) + Advepre
H (q), Advepre

H (q) ≤ Advepre
H (q) .

3 Double-Length Single-Call Compression Functions

In this section, we deal with the possibility of building a rate-1 double-length
blockcipher-based hash function. That is, given a blockcipher with 2n-bit keys and
n-bit blocks, we create a 3n-to-2n bit compression function that provides (almost) op-
timal collision resistance when iterated. Promising results were previously given by
Lucks [19], who gave a scheme secure in the iteration, and Stam [27], who gave a
general framework for security of the compression function.

Our goal is to extend this framework to schemes secure only in the iteration. Thus,
it includes Lucks’s construction and gives a better understanding of that scheme, also
in the hope to be able to improve upon it. After all, for Lucks’s scheme, which is only
secure in the iteration, the overhead is dominated by two finite field multiplications.
This is a similar overhead to Stam’s scheme, which in contrast is already secure as
compression function. Curiously, it seems hard to improve the efficiency of Lucks’s
scheme. However, with our analysis it does become easier to extend the scheme to
blockciphers with longer key lengths (taking in more message bits per call at only a
slight loss of collision resistance). We also uncover a minor flaw in Lucks’s original
proof.

Stam’s collision-resistant compression functions. We briefly recap the result from
Stam [27] for collision-resistant compression functions. In fact, the results are not just
for double-length compression functions. Namely, given a single call to a blockcipher
with n-bit blocks and k-bit keys, a compression function is considered taking in m-
bit message and s-bit state (and outputting s-bit again). The following definition and
theorem are given:
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Definition 3. [27, Definition 19] A single-call blockcipher-based compression function
HE is called supercharged single-call Type-I with overlap γ iff s ≥ n, m + s = n + k
and the following three hold:

1. The preprocessing Cpre is bijective.
2. For all M, V the postprocessing Cpost(M, V, ·) is injective, with effective range

Rpost,(M,V ).
3. For all K, Y the modified postprocessing Caux(K, ·, Y ) is injective, with effective

range Raux,(K,Y ).

Where the overlap γ is defined as:

γ = max
{
|RZ ∩ RZ′ | : Z, Z ′ ∈ {post,aux} × {0, 1}k+n, Z �= Z ′} .

Theorem 2. [27, Theorem 20] Let HE be a supercharged single-call Type-I compres-
sion function with overlap γ. Then the advantage of an adversary in finding a collision
after q ≤ 2n−1 queries can be upper bounded by

Advcoll
H (q) ≤ qκ/2n−1 + 2m+s+1

(
eγq

(κ − 1)2n−1

)κ−1

for arbitrary positive integer κ > qγ/2n−1.

For double-length compression functions (so s = k = 2n and m = n) Stam gives a
construction with γ = 3 based on polynomial evaluation. Concretely, this leads to a
compression function with Advcoll

H (q) ≤ (n + 1/2)q/2n−3 and Advepre
H (q) ≤ q/2n−1.

Security in the iteration. For classical single-length compression functions Black et
al. [1] discovered a class of compression functions that lead to collision-resistant hash
functions when iterated (using the plain Merkle-Damgård transform), even though the
compression function itself might not be collision resistant.

For supercharged compression functions, the security in the iteration has not been
studied in its full generality. Lucks [19] gave a fairly wide class, but we provide a
comprehensive generalization of his class based on the framework referred to in the
previous section. Moreover, as we will see there is a technical flaw in Lucks’s proof. Our
proof for security in the iteration can therefore be seen as either a refinement of Stam’s
(and Duo and Li’s) approach based on ideas from Lucks, or as a correction of Lucks’s
approach based on ideas from Duo and Li, and Stam. For instance, in the definition
below, the first three requirements are inspired by Stam’s supercharged compression
function and the classical Type-II schemes, whereas the fourth requirement is strongly
inspired by Lucks’s work.

Definition 4. A single-call blockcipher-based compression function HE is called su-
percharged single-call Type-II iff s ≥ n, m + s = n + k and the following four hold:

1. The preprocessing Cpre is bijective.
2. For all M, V the postprocessing Cpost(M, V, ·) is injective, with effective range

Rpost,(M,V ).
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3. For all K the inverse preprocessing C−pre(K, ·) restricted to V is injective, with
effective range R−pre,(K).

4. For allK, X, X ′ the functionsCpost(C−pre(K, X), ·)and Cpost(C−pre(K, X ′), ·)
are equal.

Given bijectivity of Cpre, there is a unique correspondence between pairs (M, V ) and
pairs (K, X) defining a forward query. Hence we can regard Rpost,(M,V ) as the set
of possible outcomes W for a particular forward query, which we could make explicit
by writing Rpost,(K,X) instead. However, as we will assume that Cpost is independent
of X we will simply write Rpost,(K). Similarly, for an inverse query (K, Y ) the set
R−pre,(K) gives the possible chaining variables V .

Let Z = {−pre, post} × {0, 1}k. For each Z ∈ {post} × {0, 1}k define the
overlap function γZ : {0, . . . , 2n} → � as

γZ(i) =
∣∣{Z ′ ∈ {−pre, post} × {0, 1}k ∧ Z �= Z ′ : |RZ ∩ RZ′ | = i}

∣∣ ,

and for each Z ∈ {−pre} × {0, 1}k as

γZ(i) =
∣∣{Z ′ ∈ {post} × {0, 1}k : |RZ ∩ RZ′ | = i}

∣∣ .

Furthermore, let overlap γ be defined as the smallest integer such that for all Z ∈
{−pre, post} × {0, 1}k and all i > γ it holds that γZ(i) = 0.

Theorem 3. Let HE be a supercharged single-call Type-II compression function with
overlap γ as defined above. Then the advantage of an adversary in finding a collision
after q ≤ 2n−1 queries can be upper bounded by

Advcoll
H (q) ≤ qκ/2n−1 + 2m+s+1

(
eγq

(κ − 1)2n−1

)κ−1

for arbitrary positive integer κ > qγ/2n−1.

Proof. We first recall the general framework to prove collision resistance in the itera-
tion [7, 27], adapted to the current setting. Let V0 ∈ {0, 1}s be H’s initial vector. We
define a directed graph G = (VG, EG) with vertex set VG = {0, 1}s—corresponding to
all 2s possible chaining values—and initially an empty edge set EG = ∅. Edges are dy-
namically added based on the queries to E and D. In particular, we add an arc (V, W ),
labeled by M , if we know a message M such that W = HE(M, V ) and the relevant
query to either E or D has been made. Finding a collision would require constructing a
ρ-shape containing the initial vector V0.

The graph we use is similar to the one used by Duo and Li [7]; the proof of [27,
Theorem 9] uses an undirected graph. The proof of [19, Theorem 1] uses a directed
graph but the direction relates to E or D being used to generate arc, so typically the
adversary has full control over the start edge but not over the endpoint. With this modi-
fied direction, Lucks argues that to find a collision in the iterated hash, either a natural
collision (two arcs pointing to the same node) or a natural preimage (an arc pointing
to the initial vector V0) have to occur. Indeed this also follows from the ρ-shape: any
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way of assigning directions to the edges in the ρ will invariably lead to one of Lucks’s
events.

In fact, we can refine this analysis even further. In order for a collision to occur, one
of the following three events needs to occur (on the i’th query, for some i):

1. A forward query leads to a digest that previously resulted as digest of a forward
query, or equals the initial value.

2. A forward query leads to a digest that previously resulted as chaining variable of
an inverse query.

3. An inverse query leads to a chaining variable that previously resulted as digest of a
forward query, or equals the initial value.

In particular, unlike previous work, we can ignore the event that two inverse queries
both lead to the same chaining variable V .

We will now bound the probability of the i’th forward query (K, X) leading to one
of these bad events. For Z = (post, K) let TZ(i − 1) be the set containing the initial
vector, all chaining variables that resulted so far from inverse queries, and all digests
that resulted so far from forward queries using keys different from K . Then for a bad
event to occur, the resulting digest should be in TZ(i − 1). Note that we can safely
ignore forward queries with the same key. Queries (K, X) and (K, X ′) (with X �= X ′)
are guaranteed to lead to different answers Y and Y ′ since E(K, ·) is a permutation.
Moreover, both Y and Y ′ are fed into the same injection (due to properties 2 and 4 of
the compression function) and can therefore never produce colliding digests.

We also know that the digest will certainly be in the set RZ corresponding to the
query (K, X) made to E. Moreover, the digest will be uniformly distributed over RZ ,
up to the usual correction taking care of previous queries to E or D using the same key.
For a bad event to occur on the i’th forward query, the digest therefore needs to be in
RZ ∩ TZ(i − 1), which happens with probability at most |RZ ∩ TZ(i − 1)|/(2n − i).

Next consider the third possible bad event occurring on the i’th inverse query (K, Y ).
For Z = (−pre, K) let TZ(i − 1) be the set containing the initial vector and all digests
that resulted so far from forward queries. This time the chaining variable will be uni-
formly distributed over RZ (up to the usual correction) and, for the bad event to occur,
the chaining variable should be in TZ(i − 1). Again this happens with probability at
most |RZ ∩ TZ(i − 1)|/(2n − i).

For any given positive integer κ, let pκ be the probability that maxZ |RZ ∩TZ(q)| >
κ. Then the total probability of finding a collision can be upper bounded by pκ +∑q

i=1 κ/(2n − i), where as usual we can upper bound the second term by qκ/2n−1

(or get a vacuous bound).
What remains is bounding pκ. Here we need to use a slightly more sophisticated

approach then originally used [19, 27]. Fix Z , then the probability that some other query
Z ′ �= Z gives an answer that will lie in RZ ∩ TZ is upper bounded by γ/(2n − i) <
γ/2n−1, where TZ is essentially used to screen out queries Z ′ that are irrelevant (such as
inverse queries when Z itself is an inverse query). Since the answer to Z ′ will certainly
lie in RZ′ , we can upper bound the probability that the answer lies in RZ ∩ RZ′ . Note
that |RZ ∩ RZ′ | ≤ γ by construction (and definition). Thus the probability that any
query adds to |RZ ∩ TZ(q)| is at most γ/2n−1 (assuming q < 2n−1). Assume that
V0 ∈ RZ we can then upper bound the probability that |RZ ∩ TZ(q)| exceeds κ by a
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binomial distribution with q repetitions and probability γ/2n−1. For κ > qγ/2n−1 this
is allowed. A Chernoff bound followed by a union bound then allows us to bound by:

Pr
[
max

Z
|RZ ∩ TZ(q)| ≥ κ

]
≤

∑
Z

Pr [|RZ ∩ TZ(q)| ≥ κ]

≤ 2m+s+1Pr
[
B[q; γ/2n−1] ≥ κ − 1

]
≤ 2m+s+1

(
eγq

(κ − 1)2n

)κ−1

.

Collecting the two terms gives the stated upper bound. �

Comparison with Lucks’s construction. It is worthwhile to compare our work with
that of Lucks, who develops a theory and proposes some constructions for what he
calls rate-1 double-length hash functions (collision resistant in the iteration). Below we
reproduce his definition and theorem adapted to our notation.

Definition 5. [19] Let f : {0, 1}n × {0, 1}2n → {0, 1}2n be a function satisfying

Invertibility. For all M , the function f(M, ·) is invertible.
Uniqueness. For all V, K there is at most one M such that f(M, V ) = K .
Collision universality. For all distinct pairs (V, V ′), the number of pairs (M, M ′) for

which f(M, V ) = f(M ′, V ′) is at most γ.

Define a Lucks-style compression function with overlap γ by setting Cpre(M, V ) =
(f(M, V ), M) and Cpost(M, V, Y ) = f(Y, f(M, V )).

Theorem 4. [19, Theorem 1] Let a Lucks-style compression function with overlap γ be
given. Then for any positive integer κ, the collision advantage of an adversary against
the iterated hash function can be bounded by

Advcoll
H (q) ≤ qκ/(2n − q) + 22n

( γq

2n−q

)κ

/κ!

Our bound is strikingly similar to Lucks’s bound, which raises the question how the
two results compare. It turns out that Lucks’s construction satisfies the requirements of
a supercharged single-call Type-II compression function with m = n and k = s = 2n,
provided we add one more constraint, namely

Collision universality II. For all distinct pairs (V, V ′), the number of pairs (M, M ′)
for which f−1(M, V ) = f(M ′, V ′) is at most γ.

In fact, without this extra condition the proof given by Lucks appears incomplete (see
elaboration below). It is interesting to note that, given our general framework and the
morphology of Lucks’s compression function, it is possible to derive the conditions
Lucks poses on his function f (although in fairness we did steer our framework partly
based on Lucks’s work).

Lemma 1. Any amended Lucks-style compression function with overlap γ (based on
f ) is a supercharged single-call Type-II compression function (with overlap γ).
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Proof. We will first tick off the three requirements given in Definition 4, before bound-
ing the overlap.

1. Firstly, by definition Cpre is bijective iff Cpre(M, V ) = (f(M, V ), M) is bijec-
tive. Since the domain and range are finite (and identical) bijectivity is equivalent to
injectivity. It is clear that, regardless of f , different messages M �= M ′ will never
cause a collision under Cpre. For any given M , Cpre will be injective iff f(M, ·) is
injective. Hence, Cpre is bijective iff f(M, ·) is bijective for all M , corresponding
to Lucks’s invertibility.

2. Secondly, Cpost(M, V, ·) = f(·, f(M, V )) is injective iff f(·, S) injective for
S = f(M, V ). Since we need Cpost(M, V, ·) to be injective for all (M, V ) and
f is invertible, this is equivalent to f(·, S) injective for all S. By definition (of
injectivity) this corresponds to Lucks’s uniqueness.

3. Thirdly, C−pre(K, ·) when restricted to V should be injective. Since
C−pre(K, X) = (X, f−1(X, K)), we have that C−pre(K, ·) restricted to V is
f−1(·, K). In order f−1(·, K) to be injective for all K is equivalent to Lucks’s
uniqueness.

4. Finally, for all K, X, X ′ the function Cpost(C−pre(K, X), ·) = f(·, K) should be
independent of X , which is clearly the case.

What remains to show is that the overlap γ as defined for supercharged single-
call Type-II compression functions matches the one as defined for the amended Lucks
scheme. In other words, we want to put bounds on γZ for all Z ∈ Z using the collision
universality for f . Let Z, Z ′ ∈ Z with Z �= Z ′. We will consider two cases, depending
on whether Z and Z ′ both correspond to a forward query or to distinct types (w.l.o.g.,
Z a forward query and Z ′ an inverse query).

Suppose Z = (post, K) and Z ′ = (post, K ′) for K, K ′ ∈ {0, 1}k with K �= K ′

and consider RZ ∩ RZ′ . Then W ∈ RZ ∩ RZ′ iff there exist Y and Y ′ such that
f(Z, Y ) = W = f(Z ′, Y ′). Since by assumption (collision universality) there exist at
most γ pairs (Y, Y ′) such that f(Z, Y ) = f(Z ′, Y ′) it follows that |RZ ∩ RZ′ | ≤ γ.

Finally, suppose that Z = (post, K) and Z ′ = (−pre, K ′). Then V ∈ RZ ∩ RZ′

iff there exist X and Y such that f(V, X) = K and f(K, Y ) = V . By our amend-
ment (collision universality II) there exist at most γ pairs (X, Y ) for which f(K, Y ) =
f−1(K, X); it follows that |RZ ∩ RZ′ | ≤ γ. �

Note that the last case is missed by Lucks in his proof. Essentially, in his bounding
of ‘natural collisions’ he only deals with the forward-forward scenario (so he also
misses the inverse-inverse case, which as we showed can be ignored). As Lucks already
points out, his compression function cannot be collision resistant (assuming an adver-
sary can invert f , which it always can in the information theoretic setting). Indeed, if
we look at the third requirement from Definition 3, we see that for collision resistance
of the compression function we require Caux(K, ·, Y ) to be injective. Although this
is strictly speaking only (part of) a sufficient condition—not a necessary one—here
Caux(K, ·, Y ) = f(Y, K) is a constant function and thus as far removed from injective
as possible (showing that Lucks’s construction can never be a supercharged single-call
Type-Icompression function).
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Lucks’s instantiation. Lucks also presents an explicit construction based on finite field
arithmetic, identifying {0, 1}n with �2n , by defining f : �3

2n → �
2
2n as

f(M, V1, V2) =

{
(V1 + M, V2 · M) if M �= 0,

(V1, V2) if M = 0.

Because of our amendment, we need to recheck the computations of the overlap γ.
Without the amendment and disallowing V2 = 0 leads to γ = 3, additionally disallow-
ing M = 0 even reduces this to γ = 1 (note that if the initial vector has V2 �= 0, then
V2 = 0 cannot occur later on in the iteration either). With the amendment in the second
case we get γ = 2 instead.

4 Collision-Resistant Double-Call Compression Functions

Although reasonably collision-resistant single-call compression and hash functions ex-
ist, the overhead is quite large. As a consequence, double-call constructions might well
be more efficient in practice (either existing ones or new ones). In this section, we will
consider collision-resistant compression functions and see how existing double-length
proposals fit in. We will first discuss the scenario where the two blockciphers are in-
dependently sampled, before discussing the case of one blockcipher called twice. In
Section 5, we discuss security in the iteration, an hitherto unstudied problem for the
types of constructions we consider.

Common setup. Let us consider the specific case of a double-length compression func-
tion that compresses (only) n bits per two parallel calls to 2n-bit key n-bit block block-
ciphers E1 and E2 (so r = 2, k = s = 2n and m = n). The input to the compression
function consists of 2n bits chaining input V and n bit message input M . The prepro-
cessing function Cpre takes these 3n bits as input and outputs 6n bits, being 2n-bit key
K1 and n-bit plaintext X1 to E1 as well as 2n-bit key K2 and n-bit plaintext X2 to
E2. For convenience, we will separate Cpre into two, being Cpre

1 and Cpre

2 , as illus-
trated in Fig. 2. Following the evaluation of E1 and E2, the postprocessing Cpost takes
(M, V, Y1, Y2) (the latter two are the outputs from E1 and E2 respectively) and outputs
2n bits output W .

M Cpre

1 E1

V Cpost W

Cpre

2 E2

2n

n

n n

n n

2n

2n

2n

Fig. 2. The overall view of a double-length Type-I compression function
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4.1 Distinct and Independent Blockciphers

Definition 6. A double-length blockcipher-based compression function is called
double-length Type-I iff the following three hold:

1. Cpre

1 (the map that takes M ,V to K1 and X1) and Cpre

2 (the map that takes M ,V
to K2 and X2) are both bijections;

2. Cpost(M, V, ·, ·) is a bijection (from 2n to 2n bits, for all (M, V ));
3. Caux

1 = Cpost(C−pre

1 (K1, ·), Y1, ·) is a bijection (for all K1, Y1) and
Caux

2 = Cpost(C−pre

2 (K2, ·), ·, Y2) as well (for all K2, Y2).

Collision resistance. The following result gives close to optimal collision resistance
for double-length Type-I compression functions. Note that we count the total number
of queries q the adversary makes to either of its four oracles (E1, E2, D1, D2). Since
a compression function evaluation itself takes two queries, this means we lose a factor
of at most four in the bound below compared to the lower bound based on a generic
(birthday) collision attack against the compression function.

Theorem 5. Let HE1,E2 be a double-length Type-I compression function (based on
blockciphers with block-length n). Then the advantage of an adversary in finding a
collision in HE1,E2 after q queries can be upper bounded by

Advcoll
H (q) ≤ 1

2
q(q − 1)/(2n − q)2 .

Proof. A collision consists of two pairs (M, V ) and (M ′, V ′) satisfying HE1,E2(M, V )
= HE1,E2(M ′, V ′) yet (M, V ) �= (M ′, V ′). We construct a list of triples (M, V, W )
such that W = HE1,E2(M, V ) and the adversary has made the relevant queries to
E1, E2 and/or D1, D2. We will bound the probability of a collision occurring in this
list.

Bijectivity of Cpre

1 ensures that any query to E1 (or D1) will add at most one triple
(M, V, W ) to the list of computable inputs (with their output). Moreover, any query
to E1 corresponds uniquely to a forward query (X2, K2) to E2, by the bijectivity of
Cpre

2 . (In case of a query to D1, the relevant value of (X2, K2) is only known after
the D1-query has been answered.) The case for queries made to E2 is similar due to
symmetry. We will assume that an adversary asks a query to E1 and the corresponding
query to E2 in conjunction—or rather, we consider a derived adversary obeying this
rule—and henceforth refer to these tuples as query pairs. Note that after q queries by
the original adversary, there are at most q query pairs for the derived adversary and that
the advantage of the derived adversary is at least that of the original one.

As a result, after i − 1 query pairs the list of computable values contains exactly
i − 1 triples (M, V, W ). We claim that the probability of the i’th query pair causing a
collision with any of these triples is at most (i−1)/(2n− i+1)2. Using a union bound,
the probability of a collision after q queries can then be upper bounded by

∑q
i=1(i −

1)/(2n − i + 1)2 ≤ 1
2q(q− 1)/(2n − q)2. What remains is our claim for success on the

i’th query pair. Let us distinguish depending on the first query of the pair.
Consider a forward query (K1, X1) to E1. By the bijectivity of Cpre

1 and Cpre

2 , the
corresponding values (M, V ) and (K2, X2) are uniquely determined. Suppose that so
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far t1 ≤ i − 1 queries to E1 have been made involving key K1 and t2 ≤ i − 1 to E2
involving key K2. The answer to a fresh query to E1(K1, ·) will therefore be distributed
uniformly over a set of 2n − t1 possible outcomes and, similarly, the answer to a fresh
query to E2(K2, ·) will be distributed uniformly over a set of at least 2n − t2 possible
outcomes. Each possible answer (Y ∗

1 , Y ∗
2 ) will be combined under Cpost with the pair

(M, V ) consistent with the (K1, X1) and (K2, X2) queries being made, leading to a
possible compression function outcome W ∗. Because Cpost is bijective when the pair
(M, V ) is fixed, distinct (Y ∗

1 , Y ∗
2 ) lead to distinct W ∗, so there are at least (2n−(i−1))2

possible outcomes W ∗, all equally likely. The probability of hitting a set of size (i− 1)
is therefore at most (i− 1)/(2n − i + 1)2, as claimed. As the situation is symmetric for
a forward query made to E2, the number of possible outcomes is the same.

Similarly, consider an inverse query (K1, Y1). This yields a unique X1 and hence by
the bijectivity of Cpre

1 , there is a unique pair (M, V ) corresponding to this query once
answered. Thus, each inverse query will add one triple (M, V, W ) to the adversary’s
list of computable values. Again, the unique pair (M, V ) fully determines (K2, X2)
and obviously Y2 by the bijectivity of Cpre

2 and E2. Now, suppose that so far t1 queries
to E1 (or D1) have been made involving key K1, resulting in t1 plaintext-ciphertext
pairs. The answer to a fresh query to D1(K1, ·) will therefore be different from the
previous plaintexts. Moreover, each of the 2n − t1 answers is equally likely if E1 is an
ideal cipher. Each possible answer X∗

1 will be combined under C−pre

1 and produce a
unique (M, V ) pair which also determines the forward query to E2. Assuming E2 is an
ideal cipher, the output Y ∗

2 of this query will be distributed uniformly over a set of at
least 2n − (i− 1) possible outcomes. This time, the bijectivity of Caux

1 implies that the
uncertainty in X∗

1 and Y ∗
2 is fully inherited by W , that is W is uniform over a set of

size at least (2n − (i− 1))2. Again the probability of hitting any of the i− 1 previously
computed digests is as claimed. The result for the inverse query made to D2 follows
similarly using that Caux

2 is bijective. �

Preimage resistance. The following result gives an upper bound for Advepre
H (q), which

implies a bound by Hirose [11]. However, this expression is far from optimal and vacu-
ous for q � 2n. Nevertheless, it states that the success probability of finding a preimage
is negligible if q ≤ 2n−1. As far as we are aware, proving preimage resistance beyond
the birthday bound is still an open problem for double-length constructions.

Theorem 6. Let HE1,E2 be a double-length Type-I compression function (based block-
ciphers with block-length n). Then the advantage of an adversary in finding a preimage
in HE1,E2 after q ≤ 2n−1 queries can be upper bounded by

Advepre
H (q) ≤ q/(2n − q)2 .

Proof. Let A be an adversary trying to find a preimage for its input σ, asking a total
of q queries to (E1, D1, E2, D2). As done in the proof of Theorem 5, we will only
consider a derived adversary that makes its queries to E1 and E2 in pairs, allowing it to
construct triples (M, V, W ) such that W = HE1,E2(M, V ). A preimage of σ is found
iff σ occurs as W in the list of triples constructed this way, so it suffices to bound that
probability instead.
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As before, the i’th query pair will add one triple (M, V, W ) to the list of computable
values where W is uniform over a set of size at least (2n − i + 1)2 (by the bijectivity
of Cpost for forward-forward queries and Caux

j for backward-forward queries for j =
1, 2). Thus, the probability that the i’th query pair finds a preimage is at most 1/(2n −
i + 1)2. Using a union bound, the probability of finding a preimage after q queries can
then be upper bounded by

∑q
i=1 1/(2n − i + 1)2 ≤ q/(2n − q)2. �

4.2 Using a Single Blockcipher: Implicit Domain Separation

Previously, we assumed two independently sampled blockciphers. In practice, it is more
realistic if only one blockcipher is used, twice in this case per compression function.
From a theoretical point of view, this can easily be enforced by using explicit domain
separation at only a small cost. In particular, if E is a blockcipher with key length
K+1, we can define E1(K, X) = E(0||K, X) and E2(K, X) = E(1||K, X). It is well
known (and easy to verify) that if E is a randomly selected blockcipher, then (and only
then) E1 and E2 are essentially two independently sampled blockciphers. Although
the cost of this explicit separation is only one key bit, it is not an entirely satisfactory
situation. For one, many existing constructions do not use this explicit separation and
would consequently fall outside any framework that relies upon it.

Recently Nandi [22] and Hirose [12] showed how implicit domain separation can
be achieved based on an involution without fixed points. In particular, define p =
Cpre

2 (C−pre

1 (·)), then p is an involution without fixed points iff p(x) �= x yet p2(x) = x
for all x ∈ {0, 1}k+2n. (Note that Nandi and Hirose always assume Cpre

1 to be the iden-
tity function.) We incorporate this approach into our general framework.

In the definition below, we first repeat the first three requirements from Definition 6
(where the domain separation was still explicit). New requirement 4 captures the notion
of p = Cpre

2 (C−pre

1 (·)) being an involution without fixed points. The advantage of
using involutions is that, as in the case for explicit domain separation, relevant queries
to E still come in pairs. That is, for (K, X) ∈ {0, 1}k+2n we call (K ′, X ′) = p(K, X)
its conjugate (and note that (K, X) = p(K ′, X ′)). Queries E(K, X) and E(K ′, X ′)
are similarly called conjugate queries. An inverse query D(K, Y ), once answered, has
a uniquely defined conjugate (forward) query as well. Finally (M, V ) ∈ {0, 1}m+2n

has conjugate (M ′, V ′) = C−pre

2 (Cpre

1 (M, V )).
Fixed points in p are prohibited. They would correspond to the situation where

Cpre

1 (M, V ) = Cpre

2 (M, V ), so a single query would suffice to evaluate the compres-
sion function (for that particular input (M, V )). If p would consist of only fixed points
(i.e. equal the identity function), then the construction is essentially a supercharged
single call compression function in disguise. Since it is known that even in that case
almost optimal collision resistance can be achieved, in principle a smaller number of
fixed points in p could theoretically also be dealt with.

Similarly, the new requirement 5, stating that two conjugate message-state pairs
never collide with each other, could be relaxed to a situation where conjugate message-
state pairs only cause a collision (with each other) with a certain probability. The
theorem statement below can be amended by adding the sum of the q largest such
‘conjugate-internal’ collision probabilities to the upper bound on the advantage. A natu-
ral example of such a situation might be the occurrence of a conjugate-internal collision
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iff the conjugate queries give identical answers (in the absence of fixed points this is im-
possible if conjugate queries have identical keys).

Definition 7. A double-length blockcipher-based compression function is called IDS
double-length Type-I iff the following five hold:

1. Cpre

1 (the map that takes M ,V to K1 and X1) and Cpre

2 (the map that takes M ,V
to K2 and X2) are both bijections;

2. Cpost(M, V, ·, ·) is a bijection (from 2n to 2n bits, for all (M, V ));
3. Caux

1 = Cpost(C−pre

1 (K1, ·), Y1, ·) is a bijection (for all K1, Y1) and
Caux

2 = Cpost(C−pre

2 (K2, ·), ·, Y2) as well (for all K2, Y2).
4. For all M, V, M ′, V ′, If Cpre

1 (M, V ) = Cpre

2 (M ′, V ′) then (M, V ) �= (M ′, V ′)
and Cpre

1 (M ′, V ′) = Cpre

2 (M, V ).
5. For all (M, V ) �= (M ′, V ′) with Cpre

1 (M, V ) = Cpre

2 (M ′, V ′) and all Y1, Y2, it
holds that Cpost(M, V, Y1, Y2) �= Cpost(M ′, V ′, Y2, Y1).

Collision resistance. As in the proof of Theorem 5 (and of course the original proofs
[12, 22]) we will only consider a derived adversary that always asks conjugate queries
in conjunction. However, in contrast to the scenario with two distinct blockciphers, in
this case such a query pair will yield two compression function evaluations (for some
(M, V ) and its conjugate). Consequently, the bound here is less tight (roughly by a
factor of two) compared to that of Theorem 5.

Finally, looking at involutions only for p is not fully general. In particular, it does
not include the well-known Abreast-DM scheme. In that case, one can generalize by
regarding longer cycles in p as well. This has recently been worked out (independently)
by Lee and Kwon [17] and Fleischmann et al. [9]. Roughly speaking, they prove that if
pc = 1 for some (smallest) c > 2 and given certain natural restrictions on the postpro-
cessing, then the collision finding advantage can be upper bounded by 1

2 (cq/(2n−cq))2.
(For Abreast-DM it holds that c = 6.)

Theorem 7. Let HE be an IDS double-length Type-I compression function (based on
a blockcipher with block-length n). Then the advantage of an adversary in finding a
collision in HE after q queries can be upper bounded by

Advcoll
H (q) ≤ 2q(q − 1)/(2n − 2q)2 .

where q < 2n−1.

Proof. Let A be a collision-finding adversary asking its oracles E and D a total of
q queries. We will consider the derived adversary A′ that asks conjugate queries in
pairs: i.e. if A queries (K, X) to E, then A′ queries both (K, X) and its conjugate
(K ′, X ′) = p(K, X). We will bound the probability of the i’th query pair causing a
collision.

Our claim is that the probability that the i’th query pair causing a collision is upper
bounded by 4(i−1)/(2n−(2i−2))(2n−(2i−1)). First note that the new query pair will
add two tuples (M, V, W ) and (M ′, V ′, W ′) to the list of computable digests, where
(M, V ) and (M ′, V ′) are conjugate. Moreover (by requirement 5) we are guaranteed
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that W �= W ′, so we only need to worry about either W or W ′ being in the list of
digests already known.

Since each query pair adds two tuples to the list, there are 2(i − 1) possible digest
values to hit, either by (M, V, W ) or by (M ′, V ′, W ′). We proceed similar to the proof
of Theorem 5. Although the two distributions are strongly dependent, individually each
of W and W ′ will be distributed over a set of size at least (2n−(2i−2))(2n−(2i−1))
(see below). Using a union bound, the probability of a collision on the i’th query can
therefore be upper bounded by 4(i−1)/(2n−2i+1)2 and using a further union bound,
the probability of a collision after q queries can be upper bounded by 2q(q − 1)/(2n −
2q)2. We still need to prove our claim on the distribution of W and W ′.

For a forward-forward pair, Y1 is distributed uniformly random over a set of size
at least (2n − (2i − 2)) and Y2 over a set of size at least 2n − (2i − 1)) (assuming
Y1 is queried first, otherwise the roles change). Because Cpost is bijective the claim
follows.

For a mixed inverse-forward pair first X1 is returned by a query (K1, Y1) to D. It
is distributed uniformly over a set of size at least (2n − (2i − 2)). Subsequently Y2 is
returned by the conjugate query (K2, X2) to E; it is distributed uniformly over a set of
size at least (2n−(2i−1)). This query pair leads to W = Cpost(C−pre

1 (K1, X1), Y1, Y2)
and W ′ = Cpost(C−pre

2 (K1, X1), Y2, Y1). Bijectivity of Caux

1 and Caux

2 does the
rest. �

Preimage resistance. The following result gives an upper bound for Advepre
H (q) for

IDS-double-length Type-I compression functions. Similar to the one given in Theorem
6, it is vacuous for q � 2n and only concludes that the success probability of finding a
preimage is negligible for q ≤ 2n−1.

Theorem 8. Let HE be a double-length compression function of IDS-double-length
Type-I (based on a blockcipher with block-length n). Then the advantage of an adver-
sary in finding a preimage in HE after q queries can be upper bounded by

Advepre
H (q) ≤ 2q/(2n − 2q)2 .

Proof. Let A be an adversary trying to find a preimage for its input σ. We will assume
that A asks each of its oracles E and D a total of q queries. Similar to the proof of
Theorem 7, we will consider the derived adversary A′ that asks conjugate queries in
pairs. We want to bound the probability that the i’th query pair leads to a preimage
for σ.

After i−1 queries, we know that the list of computable values contains exactly 2(i−
1) triples (M, V, W ). The i’th query will add the pair (M, V, W ) and (M ′, V ′, W ′)
to the list of computable digests, where (M, V ) and (M ′, V ′) are conjugates. Our
claim is that the probability that the i’th query pair leads to a preimage for σ is upper
bounded by 2/(2n− (2i−2))(2n − (2i−1)): By the same reasoning from the proof of
Theorem 7, W and W ′ are distributed over a set of size at least (2n − (2i − 2))(2n −
(2i − 1)). As we have only one value to hit, the probability of finding a preimage for
each conjugate queries is at most 1/(2n − (2i − 2))(2n − (2i − 1)); hence twice this
probability for the i’th pair. Union bound gives the desired result. �
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5 Collision Resistance in the Iteration

We have seen how to construct collision-resistant compression functions using two
blockcipher calls and how to achieve collision resistance in the iteration using just one
blockcipher call (per compression function). In this section, we consider security in the
iteration for two blockcipher calls. The hope is that this will lead to new schemes with
less overhead then existing options.

In the definition below, we explicitly disallow a feedforward from the input of the
compression function to the postprocessing (thus making the Type-II schemes disjunct
from the Type-I schemes). From a practical point of view, not having a feedforward is
certainly good news. From a theoretical point of view, it allows us to obtain a tighter
bound. If we would allow the usual postprocessing, we can only prove Advcoll

H (q) ≤
q3/(2n − q)2, which only gives a collision resistance guarantee up to roughly 22n/3

queries.
The bound we give on the collision resistance is still somewhat removed from op-

timal: it only provides collision resistance up to roughly 2n/n queries. Moreover, for
smaller number of queries the advantage is roughly the square root of what it should be
(i.e. too big). We do not believe that this is a problem inherent with the scheme at hand,
but rather a shortcoming of the current proof and testament to the complications that
arise when looking at security in the iteration.

Definition 8. A 2-call blockcipher-based compression function is called double-length
Type-II iff s = k = 2n, m = n, and the following three hold:

1. Cpre

1 and Cpre

2 are both bijections;
2. Cpost(Y1, Y2) is a bijection (from 2n to 2n bits; for all (Y1, Y2)) and independent

of V and M ;
3. C−pre

1 (K1, ·) and C−pre

2 (K2, ·) are injections when restricted to V with effective
ranges R−pre,(K1) respectively R−pre,(K2). Assume that there are at most 2n dif-
ferent effective ranges (when considering different keys).

Theorem 9. Let HE1,E2 be a double-length Type-II compression function. Then the
advantage of an adversary in finding a collision in the iterated hash function HH after
q queries is upper bounded by

Advcoll
H (q) ≤ 2κq/(2n − q) + q2/(2n − q)2 + 2n+1

(
e2nq

κ(2n − q)2

)κ

for any positive integer κ.

Proof. We follow the idea of the proof of Theorem 3 to prove the desired result and as
in the proof of Theorem 5 we will consider a derived adversary only that makes corre-
sponding queries to E1 and E2 in conjunction (since Cpre

1 and Cpre

2 are bijections as
usual). Thus, the derived adversary either makes a query pair consisting of two forward
queries, or a mixed pair consisting of an inverse query followed by a forward query.

We define a directed graph G = (VG, EG) with vertex set VG = {0, 1}s, corre-
sponding to all 2s possible chaining values, and initially an empty edge set EG = ∅.
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We will dynamically add edges based on the queries to E1,E2 and/or D1, D2. In par-
ticular, we add an arc (V, W ), labeled by M , if we know a message M such that
W = HE1,E2(M, V ) and the relevant queries to E1,E2 and/or D1, D2 have been
made. If an arc is added as a consequence of a forward query pair, then the node corre-
sponding to W becomes a forward node. If an arc is added as a consequence of a mixed
query pair, both nodes become mixed nodes. Initially none of the nodes has a status
except for the initial vector, which is treated as a forward node.

Our claim is that in order to find a collision, one of the following three (bad) events
needs to occur (on the i’th query pair, for some i):

1. A forward query pair leads to a digest that is already a forward node (i.e. previously
resulted as digest of a forward query pair, or equals the initial value).

2. A forward query pair leads to a digest that is already a mixed node (i.e. previously
resulted as digest or chaining variable of a mixed query pair).

3. A mixed query pair leads to a digest or chaining variable that is already a forward
node (i.e. previously resulted as digest of a forward query pair, or equals the initial
value).

In particular, we can ignore the event that a mixed query pair leads to a digest or chain-
ing variable that is already a mixed node. To see this, first observe that these are all
the four possibilities to construct longer chains within the graph. Secondly, by allowing
an arbitrary number of occurrences of only the fourth (discarded) event a collision can
never be found for the simple reason that the initial vector will not be part of the chain
(since hitting the initial vector with a mixed query would have triggered the third event).

We will now bound the probability of any of the bad events occurring on the i’th
query pair.

1. Consider a forward query pair to E1 and E2, corresponding to a unique pair (M, V ).
Suppose that so far t1 ≤ i queries to E1 have been made involving key K1. The
answer Y1 to a fresh query to E1(K1, ·) will therefore be distributed uniformly over
a set of 2n − t1 possible outcomes. Similarly, suppose that t2 ≤ i queries to E2
have been made involving key K2, so that the answer Y2 to E2(K2, ·) is uniform
over a set of 2n − t2. Moreover, Y1 and Y2 are independent, so that the probabil-
ity that (Y1, Y2) hits any particular value in {0, 1}2n is at most 1/(2n − i)2. Since
Cpost is bijective when the pair (M, V ) is fixed, the probability that any particular
digest W is hit is at most 1/(2n − i)2. There are at most i possible W ’s labeled as
a forward node, therefore, the probability of i’th forward pair prompting this bad
event at most i/(2n − i)2.

2. Again, consider a forward query pair to E1 and E2, corresponding to a unique
pair (M, V ). Since there are at most 2(i − 1) nodes labeled as mixed node at this
point, the probability of the i’th forward pair prompting this bad event is at most
2(i − 1)/(2n − i)2.

3. Finally consider a mixed query pair. We will assume it consists of a D1-query
followed by an E2-query, the other case is analogous. This time we can argue that
X1 and Y2 are both distributed uniformly and independently over sets of cardinality
at least 2n− i. Consequently, the same holds for chaining variable V and digest W .
Since there are at most i forward nodes that can be hit, this gives (with a union



Another Glance at Double-Length Hashing 195

bound) a probability of success upper bounded by 2i/(2n − i). Unfortunately, this
upper bound is too lose to be useful.

Although there are up to i forward nodes, not all of them are relevant. Indeed, the
query to D1 essentially fixes K1 and Y1. Since Cpost is bijective, this leaves only
2n possible digests. Similarly, since C−pre

1 is injective, it leaves only 2n possible
chaining variables. Thus, we only need to consider the number of forward nodes
in the effective range (of Cpost and C−pre

1 resp.) after fixing (K1, Y1). Let this
number be κ (maximum for Cpost or C−pre

1 ), then the probability of the bad event
occurring (on the i’th mixed query) is at most 2κ/(2n − i).

The question is whether good bounds on the number κ of relevant forward nodes
can be found. Let us fix some K1 and consider the probability a forward query
lands in R−pre,(K1). We have already seen that a forward query leads to an almost
uniform distribution of the resulting digest and we know that R−pre,(K1) has car-
dinality 2n. Hence if the total number of forward query pairs is q, then each query
pair has a probability at most (2n)/(2n − q)2 to hit our set (effective range), so
using a Chernoff bound we have that for any given set the probability it is hit more
than κ times is at most (

e2nq

κ(2n − q)2

)κ

.

Since there are at most 2n+1 different sets of size 2n to consider we can apply a
union bound, resulting in an extra factor 2n+1.

Picking up the various probabilities proves the theorem statement. �

6 Implications for Linear Schemes

Here we investigate the implications of our results for rate-1/2 double-length compres-
sion functions with �2-‘block’-linear pre- and postprocessing functions. (The condi-
tions for the supercharged, rate-1 construction cannot be met by a purely �2-‘block’-
linear construction.)

Compression function security with two independent blockciphers. Hirose [11]
suggested a method to construct double-length Type-I compression functions that are
optimally collision resistant with �2-‘block’-linear instances of Cpre and Cpost and
based on two different blockciphers with 2n-bit keys and n-bit blocks. Our construc-
tions are a generalization of his work and indeed, when we restrict ourselves to �2-
‘block’-linear constructions without output mixing (T1 = (10) and T2 = (01) in the
notation below), we get exactly the same set of schemes as Hirose did before us.

Let us first set up some notation. We will treat V and W as V = (V1||V2) and
W = (W1||W2) and, as is customary [13] for schemes with linear processing Cpre and
Cpost, we will represent the schemes using matrices.

We will use �3×3
2 to express the way (Ki, Xi) are functions of M and (V1, V2) for

i ∈ {1, 2}. Thus Cpre

1 is represented by matrix
(K1
X1

)
with K1 ∈ �2×3

2 and X1 ∈ �1×3
2 .

The vector X1 ∈ �
3
2 corresponds to X1 = X1 · (M, V1, V2)T , making a distinction

between the linear map X1 ∈ �
2
2 and the value X1 ∈ {0, 1}n. (Similarly Cpre

2 is



196 O. Özen and M. Stam

represented by K2 and X2.) Postprocessing Cpost is represented by matrices
(T1
T2

)
∈

�
2×2
2 and

(U1
U2

)
∈ �2×3

2 , where

(
W1

W2

)
=

(
T1

T2

)
·
(

Y1

Y2

)
+

(
U1

U2

)
·

⎛⎝V1
V2
M

⎞⎠ .

We are now ready to see what the requirements from Definition 6 mean in terms of
Ki,Xi,Ui, and Ti and hence for the classification and security of existing schemes.

Lemma 2. A�2-‘block’-linear double-length blockcipher-based compression function
is double-length Type-I iff

1.
(K1
X1

)
and

(K2
X2

)
are both invertible matrices.

2.
(T1
T2

)
is an invertible matrix.

3.
(U1
U2

)
·
(K1
X1

)−1(K1
X1

)
+

(T1
T2

)
·
(

Y1
Y2

)
is bijective as a function of X1 and Y2 for all K1

and Y1.
4.

(U1
U2

)
·
(K2
X2

)−1(K2
X2

)
+

(T1
T2

)
·
(

Y1
Y2

)
is bijective as a function of X2 and Y1 for all K2

and Y2.

Proof. We will check the three conditions in Definition 6. Firstly, Cpre

1 and Cpre

2 are
bijections. This is equivalent to

(K1
X1

)
and

(K2
X2

)
being invertible. Second condition is

Cpost(M, V, ·, ·)‘s being a bijection (from 2n to 2n bits, for all (M, V )) which is the
case iff

(T1
T2

)
is invertible. Finally, we should have Caux

1 and Caux

2 are bijections for all
K1, Y1 and K2, Y2 respectively, which is simply rephrased to the linear case in the third
and fourth requirements from the lemma.

For the single-length PGV schemes it is possible to give a much cleaner description of
what corresponds to the third and fourth requirement, stating it as a condition on the
binary vectors X,K, and U alone. Here it would be possible to derive such statements,
for instance for the third requirement by symbolically inverting the 3-by-3 matrix

(K1
X1

)
,

isolating its third column and multiplying by
(U1
U2

)
to obtain a vector in �2

2, which

should be linearly independent from the second column of
(T1
T2

)
(this column is typically

equal to (01), simplifying the statement further). A derivation for the fourth requirement
is similar. We also note that enumerating all possibilities (as PGV did for the single-
length case) is becoming rather laborous: there are a total of 224 schemes (compared to
64) of which a large number satisfy the requirements just laid out.

To make the discussion above more concrete, we will consider a tweaked version
of Abreast-DM, dubbed Abreast-DM-t, that can be proven collision resistant using our
framework (it was also considered by Hirose [11]). Abreast-DM itself, designed by
Lai and Massey [16], is one of the early double-length blockcipher-based compression
function proposals. Lai and Massey conjectured it to be optimally collision and preim-
age resistant as they could not mount a successful attack on the design. Abreast-DM is
defined as follows

W1 = V1 ⊕ E(V2 ||M, V1)
W2 = V2 ⊕ E(M ||V1, V2 ⊕ 1n) .
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As it stands, Abreast-DM does not fit the framework above since it uses the same block-
cipher twice and the bitwise complement V2 ⊕ 1n is not covered by linear transforma-
tions (it would require a generalization to affine transformations). Let us therefore define
the tweaked version Abreast-DM-t as follows:

W1 = V1 ⊕ E1(V2 ||M, V1)
W2 = V2 ⊕ E2(M ||V1, V2).

According to the notation introduced above, we have

K1 =
(

0 1 0
0 0 1

)
,X1 =

(
1 0 0

)
,U1 =

(
1 0 0

)
,T1 =

(
1 0

)
,

K2 =
(

0 0 1
1 0 0

)
,X2 =

(
0 1 0

)
,U2 =

(
0 1 0

)
,T2 =

(
0 1

)
.

So,
(K1
X1

)
,
(K2
X2

)
, and

(T1
T2

)
are all invertible matrices. Since the latter is the identity ma-

trix, we can slightly simplify our check for the third and fourth requirement. For the
third condition, we then need that

U1 ·
(
K1

X1

)−1(
K1

X1

)
=

(
1 0 0

)
·

⎛⎝0 0 1
1 0 0
0 1 0

⎞⎠ ·

⎛⎝K1
1

K2
1

X1

⎞⎠ = X1,

depends on X1 (which it clearly does). Similarly, the fourth condition verifies since

U2 ·
(
K2

X2

)−1(
K2

X2

)
=

(
0 1 0

)
·

⎛⎝0 1 0
0 0 1
1 0 0

⎞⎠ ·

⎛⎝K1
2

K2
2

X2

⎞⎠ = X2.

depends on X2. Therefore, Abreast-DM-t satisfies the requirements of Lemma 2 and
the bounds from Theorems 5 and 6 apply.

It should be noted that recently ‘untweaked’ Abreast-DM was shown optimally colli-
sion resistant up to a small constant factor as well [9, 17]: the collision finding advantage
can be upper bounded by 1

2 (6q/(2n − 6q))2 for 6q < 2n.

Compression function security with a single blockcipher. Hirose’s [12] blockcipher-
based double-length compression function is one of the existing schemes having opti-
mal collision resistance which is covered by Definition 7 (and a suitable adaptation of
Lemma 2). Recall the scheme:

W1 = V1 ⊕ E(V2 ||M, V1)
W2 = V1 ⊕ c ⊕ E(V2 ||M, V1 ⊕ c) where c is a nonzero constant.

Let us check the requirements given in Definition 7.

p(V2 ||M, V1) = (V2 ||M, V1 ⊕ c) where c is a nonzero constant,

K1 =
(

0 1 0
0 0 1

)
, X1 =

(
1 0 0

)
,U1 =

(
1 0 0

)
,
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Clearly, p is an involution without fixed points and
(K1
X1

)
is invertible. For Cpre

2 , we
have Cpre

2 (M, V1 ||V2) = (M, V1 ⊕ c ||V2) which is indeed a bijection. What is left
to check or the bijectivity requirements for Caux

1 and Caux

2 . The requirement for Caux

1
follows from

Y1 ⊕ U1 ·
(
K1

X1

)−1(
K1

X1

)
= Y1 ⊕

(
1 0 0

)
·

⎛⎝0 0 1
1 0 0
0 1 0

⎞⎠ ·

⎛⎝K1
1

K2
1

X1

⎞⎠ = Y1 ⊕ X1,

being a bijection as a function of X1 for all K1 and Y1. Finally, Caux

2 is defined as
Caux

2 = Cpost(C−pre

2 (K2, ·), Y2) = Y2 ⊕ X2 which is also a bijection as a function of
X2 for all Y2. Therefore, Hirose’s scheme satisfies the requirements of Theorem 7.

7 Conclusion

We have presented a general framework for double-length blockcipher-based hash func-
tions by extending the recent generalization of Stam [27] for single-call blockcipher-
based hash functions. We analysed sufficient conditions for the pre- and postprocessing
functions to obtain close to optimal collision resistance, either in the compression func-
tion or in the iteration.

We mainly targeted compression functions compressing 3n-bits to 2n-bits that use
one or two calls to a 2n-bit key, n-bit block blockcipher. In case of a single call, we
restricted ourselves to security in the iteration, updating prior work by Lucks [19]. For
two calls, we restricted ourselves to parallel calls, either to two distinct and indepen-
dent blockciphers or to a single blockcipher. Optimal collision resistance (up to a small
multiplicative factor in the advantage) was shown for compression functions. For the
iterated case, we gave conditions that we believe are sufficient for a similar bound, but
we only showed collision resistance up to about 2n/n queries, leaving open the problem
of finding a tighter bound.
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A Related Work

Classical single-call hash functions. Preneel et al. [23] studied the security of the
general blockcipher-based compression function H(M, V ) = E(K, X) ⊕ U where
U ∈ {0, M, V, M⊕V } (plus affine offsets thereof). The resulting 64 schemes are called
the the PGV-schemes (and include Davies-Meyer, Matyas-Meyer-Oseas, and Preneel-
Miyaguchi). Preneel et al.’s approach was attack oriented: they successfully mounted
attacks on 52 of the compression functions and concluded that the remaining, unbroken
12 were collision resistant. This work was later validated by Black et al. [1] who proved
collision resistance of these 12 schemes up to the birthday bound (in the ideal cipher
model). Additionally, they showed that another 8 PGV-schemes are secure when prop-
erly iterated, even though collisions in the respective compression functions can easily
be found. Duo and Li [7] later gave slightly tighter bounds by providing an alternative
proof technique.

A deeper understanding of the main result provided by Black et al. has recently been
given by Stam [27], who generalizes to any pre- and postprocessing functions. This
provides a clearer understanding of which properties of the pre- and postprocessing
are sufficient for optimal security (in particular the 12 + 8 secure PGV-schemes can
be derived from this framework) and it eases the study of compression functions with
deviating input and output lengths.

Double-call hash functions from double-key blockciphers. The two classical hash
functions of this type are Tandem-DM and Abreast-DM [16]. Both schemes employ a
single blockcipher called twice, where for Tandem-DM the calls are made in sequence
and for Abreast-DM they are made in parallel. Although both are widely believed to
be (close to) optimally collision resistant, for a long time no security proof of this was
known for either construction. Only recently Fleischmann et al. [8] gave a proof of
collision resistance up to (almost) the birthday bound for Tandem-DM; a proof for
the collision resistance up to (almost) the birthday bound for Abreast-DM is even more
recent [9, 17]. For both schemes proving preimage resistance beyond the birthday bound
is still an open problem.

There are some other double-length hash functions based on two calls to a double-
key blockcipher that enjoy collision resistance up to the birthday bound. Hirose [11]
proposed several conditions to achieve optimal security for the linear instances of pre-
and postprocessing functions for rate-1/2 in this category. In a way, these schemes can
be regarded for this class what the PGV schemes are for the classical, single-length
setting. In his constructions, the only drawback is that two independent blockciphers
are called which is sometimes considered a disadvantage. Later, taking inspiration from
earlier work by Nandi [22], Hirose [12] presented a rate-1/2 scheme with optimal col-
lision resistance using only one blockcipher.

Satoh et al. [26] mounted several collision and preimage attacks on the compression
functions of double-call hash functions from double-key blockciphers where only one
blockcipher is used. They also provided a set of conditions for the case where the mes-
sage length is equal to digest length which may be optimally collision resistant and left
its investigation as a future work. This work has been further analysed by Hattori et
al. [10]. They first investigated a case uncovered by the analysis of Satoh et al., then
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showed that the compression functions which were not attacked by Satoh et al. are at
most as secure as those of single-length hash functions.

Other double-length hash functions. There are two classical double-length compres-
sion functions based on a blockcipher with key size equaling the block size n, namely
MDC-2 and MDC-4 [3], where MDC-2 makes two calls and MDC-4 four calls to com-
press a single message block.2 The compression function of MDC-2 is known to be
collision resistant only up to 2n/2 (thus offering no improvement over single-length
constructions), but the iterated hash was widely believed to provide near optimal colli-
sion resistance. Steinberger [28] gave the first nontrivial result in the ideal cipher model
for the collision resistance of MDC-2 by showing that an adversary asking fewer than
23n/5 queries has only a negligible chance of finding a collision in the iteration. Knud-
sen et al. [15] recently gave a a collision attack of complexity approximately 2n/n,
nibbling a logarithmic factor of the optimal birthday bound (they also gave a preim-
age attack on MDC-2). Thus, there remains a large gap with respect to the security of
MDC-2. For a more complicated (yet less efficient) scheme like MDC-4 even less is
known.

Knudsen et al. [14] studied the security of double-length hash functions that com-
press two blocks of message for two calls to an underlying blockcipher with key size
corresponding to the block size. They show that for all �2-‘block’-linear schemes col-
lisions can be found (with high probability) in time 3 × 23n/4 and preimages in time
4 × 2n.

Rogaway and Steinberger [25] investigated the collision and preimage resistance
of compression functions built from fixed-key blockciphers. They demonstrated com-
pression functions compressing 3n bits to 2n bits using five, respectively six permuta-
tion calls with collision resistance up to at least 20.55n, respectively 20.63n queries and
preimage resistance up to at least 20.8n (for both constructions).

2 MDC-2 and MDC-4 were originally designed for use with DES (Data Encryption Standard)
which supports 56 bits key and 64 bits block; the generalization allowing key size equal to the
block size is immediate.
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Abstract. The GeometricXL algorithm is a geometrically invariant ver-
sion of the XL algorithm that uses polynomials of a much smaller degree
than either a standard Groebner basis algorithm or an XL algorithm for
certain multivariate equation systems. However, the GeometricXL algo-
rithm as originally described is not well-suited to fields of even charac-
teristic. This paper discusses adaptations of the GeometricXL algorithm
to even characteristic, in which the solution to a multivariate system is
found by finding a matrix of low rank in the linear span of a collection of
matrices. These adaptations of the GeometricXL algorithm, termed the
EGHAM process, also use polynomials of a much smaller degree than a
Groebner basis or an XL algorithm for certain equation systems. Fur-
thermore, the paper gives a criterion which generally makes a Groebner
basis or standard XL algorithm more efficient in many cryptographic
situations.
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1 Introduction

The solution of a system of multivariate equations over a field is a problem
that has recently attracted much attention in cryptology. The classical method
for analysing such an equation system is to calculate its Gröbner basis by
using Buchberger’s algorithm or a related method [2,6,7]. Furthermore, other
techniques have been proposed for solving a multivariate equation system in a
cryptographic context, such as the XL algorithm [5]. However, a Gröbner basis
algorithm with the lexicographic ordering and an XL algorithm are closely
related [1].

The geometric properties of the XL algorithm are discussed in [12]. In particu-
lar, the XL algorithm is not a geometrically invariant algorithm, that is a simple
change of co-ordinate system can vastly increase or decrease the running time of
the XL algorithm. The GeometricXL algorithm, proposed in [12], is a geometri-
cally invariant algorithm which can solve certain multivariate equation systems
using polynomials of a much smaller degree than a Gröbner basis algorithm or
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an XL algorithm. However, the GeometricXL algorithm as described in [12] can-
not easily be used in a field of even characteristic, which is of course a situation
of great cryptographic importance. The main contribution of this paper is to
give an adaptation of the GeometricXL algorithm that is specifically tailored
for use in a field of even characteristic. This adaptation of the GeometricXL
algorithm, like the original GeometricXL algorithm, is one that attempts to find
a linear combination of a collection of matrices that has low rank, a problem
sometimes termed MinRank. We note that some related issues concerning the
MinRank problem in cryptology are considered in [8]. We term the adaptation
of the GeometricXL algorithm given in this paper the EGHAM process, and we
note that the EGHAM process can solve certain multivariate equation systems in
even characteristic using polynomials of a much smaller degree than a Gröbner
basis algorithm or an XL algorithm. Furthermore, a criterion (the LS-criterion)
used by the EGHAM process generally greatly reduces the number of equations
under consideration. This reduction criterion can also be applied directly to a
standard Gröbner basis or XL algorithm in many cryptographic situations, so
directly making these algorithms far more efficient.

2 The XL Algorithm

We consider the polynomial ring F[x0, . . . , xn] of polynomials in n+ 1 variables
over a field F. An XL algorithm transforms a homogeneous (without loss of gen-
erality) equation system into a homogeneous equation system f1 = . . . = fm = 0
of degree D by multiplying the original polynomials by selected monomials [5].
We generally suppose that this equation system has a unique (projective) solu-
tion, a common situation in cryptology, though most of our comments are more
generally applicable. The aim of an XL algorithm is to solve this new system
by linearisation [5], that is by regarding each monomial of degree D as an in-
dependent variable and then applying basic linear algebra. The GeometricXL
algorithm [12] exploits the geometrical properties of the new equation system
to give a solution method that is most applicable when the field characteris-
tic is either zero or exceeds D. We discuss the GeometricXL algorithm in this
case in this section and give an alternative description of the GeometricXL
algorithm.

2.1 The GeometricXL Algorithm

The critical step of the XL algorithm [12] is an attempt to solve a system of ho-
mogeneous equations f1 = . . . = fm = 0 of degree D in a field of characteristic p
by finding a bivariate polynomial in 〈f1, . . . , fm〉. However, the set of bivariate
polynomials is not invariant under collineation (change of co-ordinates), so the
XL algorithm is not geometrically invariant. The GeometricXL algorithm is a geo-
metric invariant generalisation of the XL algorithm. The GeometricXL algorithm
focusses on rank-2 product polynomials (Definition 1), an invariant generalisa-
tion of the bivariate polynomial, and the GeometricXL algorithm is motivated
by Lemma 1, the geometric invariance result of [12].
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Definition 1. A rank-2 product polynomial is a homogeneous polynomial of
degree D in the polynomial ring F[x0, . . . , xn] of the form

D∏
i=1

(θiL − θ′iL
′) ,

where L and L′ are homogeneous linear polynomials and θi, θ
′
i are constants in

some extension field F of F. We let RD
F,n denote the set of all such rank-2 product

polynomials of degree D in F[x0, . . . , xn].

Lemma 1. The set RD
F,n of all rank-2 product polynomials of degree D in the

polynomial ring F[x0, . . . , xn] is invariant under collineation.

The GeometricXL algorithm requires us to find a linear combination g of f1, . . . ,
fm such that g =

∑m
l=1 λlfl is a rank-2 product polynomial, that is g ∈ RD

F,n. If
such a rank-2 product polynomial can be found, then we know that any solution
to the original system f1 = . . . = fm = 0 satisfies θiL−θ′iL

′ = 0 for some value of
i. This gives us linear expressions in x0, x1, . . . , xn, which provides information
about the solution and potentially allows us to eliminate one variable from the
equation system, giving us a smaller equation system and so on.

For any homogeneous polynomial h of degree d and any monomial x =
xe00 . . .xen

n of degree k ≤ d (so e0 + . . . + en = k), we denote the kth order
partial derivative of h with respect to x by Dk

xh, so Dk
xh = ∂kh

∂x . We can now
represent all the possible kth order partial derivatives of h as a matrix in which
each row is the polynomial Dk

xh of degree d − k represented as a vector of its
coefficients. There are

(
n+k
k

)
monomials of degree k in n+1 variables, so we can

define an
(
n+k
k

)
×
(
n+d−k
d−k

)
partial derivatives matrix

C
(k)
h =

(
Dk

xh
)
.

The GeometricXL algorithm works as a rank-2 product polynomial can be iden-
tified using Lemma 2 (given by results of [12]) from its partial derivatives of
order D − 1 in fields of certain characteristics.

Lemma 2. Suppose g is a homogeneous polynomial of degreeD in F[x0, . . . , xn],
where the field F has characteristic zero or characteristic exceeding D. The poly-
nomial g is a rank-2 product polynomial if and only if the partial derivatives
matrix C

(D−1)
g satisfies

C(D−1)
g =

(
DD−1

x g
)

= (axL+ a′xL
′)

for some homogeneous linear polynomials L and L′ and constants ax and a′x. An
equivalent condition is that for a field F with charateristic zero or characteristic
exceeding D, then g ∈ RD

F,n if and only if C(D−1)
g has rank at most 2. Moreover,

if g ∈ RD
F,n then C

(D−1)
g has rank at most 2 in a field F of any characteristic.
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The GeometricXL algorithm attempts to find some linear combination of f1, . . . ,
fm such that g =

∑m
l=1 λlfl ∈ RD

F,n. The same linear combination of partial
derivatives matrices of f1, . . . , fm satisfies

C(D−1)
g =

(
DD−1

x g
)

=
m∑
l=1

λl
(
DD−1

x fl
)

=
m∑
l=1

λlC
(D−1)
fl

.

This matrix C
(D−1)
g has rank 2 by Lemma 2, so all of the 3-minors (3×3 sub-

determinants) of C(D−1)
g =

∑m
l=1 λlC

(D−1)
fl

vanish. This gives a system of cubic
equations in λ1, . . . , λm. For some equation systems and choices of m and n,
this cubic system is easily soluble, for example by linearisation. This process
is in essence the GeometricXL algorithm, and it uses polynomials of a much
smaller degree for certain equation systems than either a Gröbner basis or XL
algorithm [12].

It is a consequence of Lemma 2 that the performance of the GeometricXL al-
gorithm as originally described in [12] depends greatly on the field characteristic.
When the characteristic p of the field F satisfies p = 0 or p > D, then identifying
a partial derivatives matrix of rank at most 2 gives a rank-2 product polynomial
(Lemma 2) and so gives information about the solution to the original system.
However, when the characteristic p satisfies 0 < p ≤ D, then a partial derivatives
matrix of rank at most 2 may or may not give a rank-2 product polynomial. In
particular, the GeometricXL algorithm of [12] is not well-suited for fields of even
characteristic.

2.2 An Alternative Description of the GeometricXL Algorithm

The GeometricXL algorithm as described in [12] requires the use of (D − 1)th-
order partial derivatives matrices in order to solve a homogeneous multivariate
polynomial system of degree D. However, we now give an equivalent description
of the GeometricXL algorithm in terms of first order partial derivatives matrices
when the field characteristic is either zero or it exceeds the degree D.

Definition 2. Let h be a homogeneous polynomial of degree D in the polyno-
mial ring F[x0, . . . , xn], where the field has characteristic p and either p > D
or p = 0. Furthermore let x = xe00 . . .xen

n denote a monomial of degree k
(0 ≤ k ≤ D), so e0 + . . . + en = k. The kth-order catalecticant matrix [11]
of h is

C̃
(k)
h =

(
1

e0! . . . en!
· ∂kh

∂xe00 . . . ∂xen
n

)
=
(

1
e0! . . . en!

Dxh

)
.

Lemma 3. The catalecticant matrix C̃
(k)
h satisfies

(
C̃

(k)
g

)T
= C̃

(d−k)
g [11], and

the catalecticant and partial derivatives matrices of order k, C̃(k)
h and C(k)

h , share
the same row space and have the same rank, with in particular C̃(1)

h = C
(1)
h .

The GeometricXL algorithm tries to find a rank-2 product polynomial g.
Lemma 3 shows that the column space of first order partial derivatives
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matrix C(1)
g is identical to the row space of the (D−1)th order partial derivatives

matrix C
(D−1)
g , so giving Lemma 4.

Lemma 4. If the characteristic of F is either zero or exceeds D, then a multi-
variate polynomial g over F of degree D is a rank-2 product polynomial, that is
g ∈ RD

F,n, if and only if its first partial derivatives matrix C
(1)
g has rank 2.

Lemma 4 means that the GeometricXL algorithm could be carried out by using
the cubic system derived from the first order partial derivatives matrix rather
than the (D− 1)th order partial derivatives matrix. Furthermore, a basis for the
column space of C(1)

g gives a pair of homogeneous linear polynomials L and L′

of use in the product form of g. We give an example of an application of this
alternative GeometricXL algorithm in Appendix A.

3 A Rank-2 Product Polynomial in Even Characteristic

We now suppose in this and subsequent sections that the field F is of even charac-
teristic, and we wish to find solutions to f1 = . . . = fm = 0, where f1, . . . , fm are
homogeneous polynomials of degree D in F[x1, . . . , xm]. For a GeometricXL al-
gorithm in even characteristic, we wish to find a linear combination of f1, . . . , fm
that is a rank-2 product polynomial, that is we wish to find g such that

g =
m∑
l=1

λlfl =
D∏
i=1

(θiL+ θ′iL
′) =

D∑
i=0

α2
i L

i (L′)D−i
,

for some αi ∈ F (as F has even characteristic), θi, θ′i ∈ F (some extension field
of F) and homogeneous linear polynomials L,L′ ∈ F[x0, . . . , xn]. These homoge-
neous linear polynomials L and L′ can be written as

L =
n∑
j=0

ajxj and L′ =
n∑
j=0

a′jxj .

The alternative description of the GeometricXL algorithm given in Section 2.2
finds a rank-2 product polynomial by finding a first order partial derivatives
matrix of rank 2 in the case that the field characteristic p satisfies p = 0 or
p > D. However, this property still holds in even characteristic, though the
converse is not true, as the irreducible polynomial x2

0 + x1x2 over GF(2) with a
partial derivatives matrix of rank 2 demonstrates.

We now discuss the properties of the partial derivatives matrix of a rank-2
product polynomial in even characteristic. We let WD denote the vector space
of homogeneous polynomials over F of degree D in n + 1 variables, so WD has
dimension

(
n+D
D

)
[9]. In the terminology of [12], WD is SD(V ∗), the Dth sym-

metric power of the dual space V ∗ of the standard vector space V of dimension
n + 1 over F. We now define certain subspaces of WD that we consider in the
development of a GeometricXL algorithm for even characteristic.
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Definition 3. The L2S-subspace of WD for even degree D = 2s + 2 is the
subspace Us = 〈xixjx2|x ∈ Ws〉 < W2s+2.

Definition 4. The L1S-subspace of WD for odd degree D = 2s+ 1 is the sub-
space U ′

s = 〈xix2|x ∈ Ws〉 < W2s+1.

Definition 5. The L0S-subspace of WD for even degree D = 2s is the subspace
U ′′
s = 〈x2|x ∈ Ws〉 < W2s.

Lemma 5. Any L2S-subspace Us, L1S-subspace U ′
s and L0S-subspace U ′′

s is
invariant under collineation. The dimensions of these subspaces are given by:

Dim(Us) =
(
n+1

2

)(
n+s
s

)
+
(
n+s+1
s+1

)
,

Dim(U ′
s) =

(
n+1

1

)(
n+s
s

)
,

Dim(U ′′
s ) =

(
n+s
s

)
.

The partial derivative mapping is a linear mapping, so any series of partial
derivatives defines linear transformations W2s+2 → W2s+1 → W2s → W2s−1.
Thus any series of repeated partial differentiation in even characteristic gives
rise to a series of linear transformations Us → U ′

s → U ′′
s → {0} or informally

L2S → L1S → L0S → 0. Our analysis of rank-2 product polynomials in even
characteristic now proceeds by considering even and odd degree polynomials as
separate cases.

3.1 A Rank-2 Product Polynomial of Even Degree

We can write the even degree D as D = 2s+ 2, so a rank-2 product polynomial
g ∈ R2s+2

F,n can be expressed as

g =
2s+2∑
i=0

α2
i L

i(L′)2s+2−i =
s+1∑
i=0

α2
2i L

2i(L′)2(s+1−i) +
s∑
i=0

α2
2i+1 L

2i+1(L′)2s+1−2i.

Thus we can express a rank-2 product polynomial g of even degree as

g =

(
s+1∑
i=0

α2i L
i(L′)(s+1−i)

)2

+ LL′
(

s∑
i=0

α2i+1 L
i(L′)s−i

)2

.

We denote the first square of degree 2(s + 1) by S∗ and the second square of
degree 2s by S, so g is given by

g = LL′S + S∗.

As F has even characteristic, any partial derivative of S or S∗ vanishes, so a
partial derivative of g ∈ R2s+2

F,n is given by

∂g

∂xl
=

∂ (LL′)
∂xl

S =
∂L

∂xl
L′S +

∂L′

∂xl
LS = al (L′S) + a′l (LS) .

We have therefore shown that the partial derivative of a rank-2 product polyno-
mial of even degree with respect to any variable is a linear combination of L′S
and LS. The above comments are summarised in Lemma 6.
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Lemma 6. Let g ∈ F[x0, . . . , xn] be a rank-2 product polynomial of even degree
2s + 2. If the field F has even characteristic, then g ∈ R2s+2

F,n has the following
properties:

1. g ∈ Us, the L2S-subspace;
2. ∂g

∂xl
∈ U ′

s, the L1S-subspace;

3. the partial derivatives matrix C
(1)
g has rank at most 2.

3.2 A Rank-2 Product Polynomial of Odd Degree

We can write the odd degree D as D = 2s+ 1, so a rank-2 product polynomial
g ∈ R2s+1

F,n can be expressed as

g =
2s+1∑
i=0

α2
i L

i(L′)2s+1−i =
s∑
i=0

α2
2i L

2i(L′)2s+1−2i +
s∑
i=0

α2
2i+1 L

2i+1(L′)2s−2i.

We can thus express a rank-2 product polynomial g of odd degree as

g = L′
(

s∑
i=0

α2iL
iL′s−i

)2

+ L

(
s∑
i=0

α2i+1L
iL′s−i

)2

The above expression for g consists of two squares of degree 2s, which we denote
by S′ and S respectively. We can thus express g as

g = LS + L′S′.

As S and S′ are square polynomials over a field of even characteristic, any
partial derivative of S or S′ is zero. Thus a partial derivative of g ∈ R2s+1

F,n is
given by

∂g

∂xl
=

∂L

∂xl
S +

∂L′

∂xl
S′ = alS + a′lS

′.

We have therefore shown that the partial derivative of a rank-2 product polyno-
mial of odd degree with respect to any variable is a linear combination of S and
S′. The above comments are summarised by Lemma 7.

Lemma 7. Let g ∈ F[x0, . . . , xn] be a rank-2 product polynomial of odd degree
2s + 1. If the field F has even characteristic, then g ∈ R2s+1

F,n has the following
properties:

1. g ∈ U ′
s, the L1S-subspace,

2. ∂g
∂xl

∈ U ′′
s , that is any partial derivative of g is a square;

3. the partial derivatives matrix C
(1)
g has rank at most 2.
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3.3 A Necessary Criterion for a Rank-2 Product Polynomial

Definition 6. The LS-criterion for a homogeneous multivariate polynomial g
is that g is an element either of the L2S-subspace (even degree) or the L1S-
subspace (odd degree).

Lemmas 6 and 7 show that for a polynomial g =
∑m
l=1 λlfl to be a rank-2

product polynomial, g has to satisfy the LS-criterion. For equation systems of
cubic or higher degree, Lemma 5 shows that the dimension of the L2S-subspace
or the L1S-subspace is generally far smaller than the dimension of WD. For such
equation systems, we can therefore obtain many linear constraints on λ1, . . . , λm
for g =

∑m
l=1 λlfl to be a rank-2 product polynomial. These linear constraints

can be processed very efficiently using basic linear algebra. Thus this criterion
alone can easily greatly reduce the size of or even solve the equation system.

We give an example of solving a cubic system over a field of even characteristic
by considering membership of the L1S-subspace U ′

1 in Appendix B. However,
both the L1S-subspace and and L2S-subspace contain many polynomials that
are not rank-2 product polynomials, so there may be a requirement for further
processing after this preliminary linear filtering. Furthermore, this criterion can-
not be applied to quadratic systems as U0 = W2. We discuss further techniques
to identify rank-2 product polynomials in Section 4.

4 Identification of a Rank-2 Product Polynomial

The basic idea of the GeometricXL algorithm to solve the homogeneous system
f1 = . . . = fm = 0 of degree D in n + 1 variables is to find a linear combina-
tion such that g =

∑m
l=1 λlfl is a rank-2 product polynomial, that is g ∈ RD

F,n.
However, in even characteristic we can use the properties of rank-2 product poly-
nomials in even characteristic given by Lemma 6 and Lemma 7 to help identify
such polynomials. This should enable us subsequently to develop a method for
fields of even characteristic based on the GeometricXL algorithm. However, we
note that such an algorithm still has the potential problem discussed in Section
7.5 of [12], namely the possibility of nested multiple linear factors only one of
which corresponds to a solution.

4.1 Multivariate Quadratic Systems

We consider a field F of even characteristic and a homogeneous quadratic equa-
tion system f1 = . . . = fm = 0 over F. We need to find a linear combination
g =

∑m
l=1 λlfl such that g is a rank-2 product polynomial of degree 2. However,

any such g ∈ R2
F,n can be regarded as the product of the two homogeneous linear

polynomials L and L′ (Section 3.1), that is g is of the form

(a0x0 + . . . + a0x0)(a′0x0 + . . . + a′nxn) =
n∑
i=0

aia
′
ix

2
i +

n∑
i=1

i−1∑
j=0

(aia′j + a′iaj)xixj .
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We can write ∆ij = aia
′
j + aja

′
i, so the product of two homogeneous linear

polynomials can be expressed as

g = LL′ = (a0x0 + . . .anxn)(a′0x0 + . . . a′nxn) =
n∑
i=0

aia
′
ix

2
i +

n∑
i=1

i−1∑
j=0

∆ijxixj .

We can write the homogeneous quadratic polynomial fl (1 ≤ l ≤ m) as

fl =
n∑
i=0

d
(l)
ii x

2
i +

n∑
i=1

i−1∑
j=0

d
(l)
ij xixj

for coefficients d(l)
ij , so a rank-2 product polynomial g =

∑m
l=1 λlfl satisfies

g =
∑n

i=0

(∑m
l=1 λld

(l)
ii

)
x2
i +

∑n
i=1

∑i−1
j=0

(∑m
l=1 λld

(l)
ij

)
xixj

=
∑n

i=0 aia
′
i x2

i +
∑n
i=1

∑i−1
j=0 ∆ij xixj .

Thus for g to be a rank-2 product polynomial, we can see by equating coefficients
of xixj (j < i) that we require λ1, . . . , λm such that ∆ij =

∑m
l=1 d

(l)
ij λl.

Let A be the 2× (n+1) matrix with rows given by the (unknown) coefficients
of the linear polynomials L and L′, so

A =
(
a0 . . . ai . . . aj . . . an
a′0 . . . a′i . . . a′j . . . a′n

)
,

then the ∆ij are the 2-minors (2×2 sub-determinants) of A. Now, there are
(
n+1

4

)
4-minors of the 4 × (n + 1) matrix A =

(
A
A

)
, and these are given by

Ai1,i2,i3,i4 = ∆i1,i2∆i3,i4 +∆i1,i3∆i2,i4 + ∆i1,i4∆i2,i3 .

However, the matrix A clearly has rank at most 2, so every 4-minor of A is
identically 0. Thus we obtain

(
n+1

4

)
identities Ai1,i2,i3,i4 = 0. As each 4-minor

Ai1,i2,i3,i4 of A gives rise to a homogeneous quadratic expression in ∆ij , so each
4-minor identity Ai1,i2,i3,i4 = 0 gives a homogeneous quadratic identity in ∆ij .

We saw above that for g =
∑m
l=1 λlfl to be a rank-2 product polynomial, we

require that ∆ij =
∑m

l=1 d
(l)
ij λl. Thus the

(
n+1

4

)
identities Ai1,i2,i3,i4 = 0 give

rise to a homogeneous quadratic system with
(
n+1

4

)
∼ 1

24n
4 equations satisfied

by λ1, . . . , λm. We can potentially solve this system using linearisation or some
other simple technique. If there is a unique solution to this quadratic system in
λ1, . . . , λm, then this can directly determine the solution of the original equation
system. More generally, an analysis of this quadratic system gives much informa-
tion about the original quadratic system, which could then be used with other
techniques to provide a solution to the original system.

We make some comments about geometric aspects of this process in
Section 5.2, and demonstrate the use of this process in finding a solution to
a quadratic system in Appendix C.
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4.2 Multivariate Systems of Quartic or Higher Even Degree

We consider a field F of even characteristic and a homogeneous equation system
f1 = . . . = fm′ = 0 of degree D = 2s + 2 (s > 0) over F, where without loss of
generality this equation system may have been obtained by applying the L2S
criterion of Section 3.3 to a larger system f1 = . . . = fm = 0 (so m′ ≤ m). We
need to find a linear combination g =

∑m′

l=1 λlfl such that g is a rank-2 product
polynomial, that is g ∈ R2s+2

F,n . In the quadratic case (s = 0), we consider the
coefficients of the non-square monomials xixj (so i �= j) to give conditions for a
rank-2 product polynomial (Section 4.1). In the case of quartic and higher even
degree, we first consider the coefficients Γij of x2s+1

i xj (for i �= j) in g, a natural
generalisation of this idea.

If g is a rank-2 product polynomial of degree 2s + 2, so g ∈ R2s+2
F,n , then

g = LL′S + S∗, where L and L′ are the homogeneous linear polynomials of
Section 3 and S and S∗ are homogeneous square polynomials of degree 2s and
2s + 2 respectively (Section 3.1). Thus if we let si denote the coefficient of x2s

i

in S we have

g = (aixi + ajxj + . . .)(a′ixi + a′jxj + . . .)(six2s
i + . . .) + S∗

= Γijx
2s+1
i xj + . . . = si∆ijx

2s+1
i xj + . . . = (bia′j + b′iaj)x

2s+1
i xj + . . . ,

where ∆ij = aia
′
j+a′iaj is a 2-minor of the matrix A of Section 4.1 and bi = siai

and b′i = sia
′
i. Thus we have Γij = si∆ij = bia

′
j+b

′
iaj for i �= j. For completeness,

we set Γii = bia
′
i + b′iai = siaia

′
i + siaia

′
i = 0. The matrix Γ = (Γij) can be

expressed as Γ = B + B′, where B = ba′T and B′ = b′aT for appropriate
column vectors of coefficients b, a, b′ and a′, so B and B′ are both matrices of
rank 1. Thus the matrix Γ of coefficients of x2s+1

i xj (for i �= j with Γii = 0) of
a rank-2 product polynomial has rank at most 2 as it is the sum Γ = B +B′ of
two matrices of rank 1. There are

(
n+1

3

)2
3-minors of Γ , and they are given by

Bi1,i2,i3,j1,j2,j3 = Γi1,j1Γi2,j2Γi3,j3 + Γi1,j1Γi2,j3Γi3,j2 + Γi2,j1Γi1,j2Γi3,j3
+Γi2,j1Γi1,j3Γi3,j2 + Γi3,j1Γi1,j2Γi2,j3 + Γi3,j1Γi1,j3Γi2,j2 .

However, every 3-minor of the matrix Γ of rank 2 vanishes, so we obtain
(
n+1

3

)2
identities Bi1,i2,i3,j1,j2,j3 = 0.

For g to be a rank-2 product polynomial, we can see by equating coefficients
of x2s+1

i xj (i �= j) that we require λ1, . . . , λm′ such that ∆ij =
∑m′

l=1 d
(l)
ij λl,

where d
(l)
ij denote the coefficient of x2s+1

i xj in fl. Thus the
(
n+1

3

)2
identities

Bi1,i2,i3,j1,j2,j3 = 0 give rise to a homogeneous cubic system with
(
n+1

3

)2 ∼ 1
36n

6

equations satisfied by λ1, . . . , λm′ . It may now be possible to solve this resulting
cubic system in λ1, . . . , λm′ by linearisation or some other method, so providing
a solution to the original equation system. We provide an example of this process
to solve a homogeneous quartic system in Appendix D.

We also note that it is very easy to produce further homogeneous cubic equa-
tions in λ1, . . . , λm′ if required, as Γ is far from being the only matrix of coef-
ficients having rank 2. For example, a similar argument to that given above for
Γ shows that the matrix of coefficients of x2

0x
2s−1
i xj also has rank 2 and so on.
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4.3 Multivariate Systems of Odd Degree

We consider a field F of even characteristic and a homogeneous equation system
f1 = . . . = fm′ = 0 of odd degree D = 2s + 1 over F, where without loss of
generality this equation system may have been obtained by applying the L1S
criterion of Section 3.3 to a larger system f1 = . . . = fm = 0 (so m′ ≤ m). We
need to find a linear combination g =

∑m′

l=1 λlfl such that g is a rank-2 product
polynomial, that is g ∈ R2s+1

F,n . In a similar way to the case for even degree, we
consider the coefficients Λij of x2s

i xj in g, including the coefficients Λii of x2s+1
i .

If g is a rank-2 product polynomial of degree 2s+1, so g ∈ R2s+1
F,n , then we can

express g as g = LS+L′S′, where L and L′ are homogeneous linear polynomials
and S and S′ are homogeneous square polynomials of degree 2s (Section 3.2).
We can thus express a summand of g as

LS = cijx
2s
i xj + . . . = (six2s

i + . . .)(ajxj + . . .) = siajx
2s
i xj + . . . ,

so the matrix C = (cij) has rank 1 as C = saT for appropriate column vectors
of coefficients s and a. This means we can express g as

g = Λijx
2s
i xj + . . . = LS + L′S′ = (cij + c′ij)x

2s
i xj + . . . .

Thus the matrix Λ = (Λij) of coefficients of x2s
i xj of a rank-2 product polynomial

has rank at most 2 as it is the sum Λ = C +C′ of two matrices of rank 1. There
are

(
n+1

3

)2
3-minors of Λ, and they are given by

Ci1,i2,i3,j1,j2,j3 = Λi1,j1Λi2,j2Λi3,j3 + Λi1,j1Λi2,j3Λi3,j2 + Λi2,j1Λi1,j2Λi3,j3
+Λi2,j1Λi1,j3Λi3,j2 + Λi3,j1Λi1,j2Λi2,j3 + Λi3,j1Λi1,j3Λi2,j2 .

However, every 3-minor of Λ vanishes as Λ has rank 2, so we obtain
(
n+1

3

)2
identities Ci1,i2,i3,j1,j2,j3 = 0.

For g to be a rank-2 product polynomial, we can see by equating coefficients of
x2s
i xj (i �= j) that we require λ1, . . . , λm′ such that ∆ij =

∑m′

l=1 d
(l)
ij λl, where d(l)

ij

denote the coefficient of x2s
i xj in fl. Thus the

(
n+1

3

)2
identities Ci1,i2,i3,j1,j2,j3 = 0

give rise to a homogeneous cubic system with
(
n+1

3

)2 ∼ 1
36n

6 equations satisfied
by λ1, . . . , λm′ . It may now be possible to solve this resulting cubic system in
λ1, . . . , λm′ by linearisation or some other method, so providing a solution to
the original equation system. We provide an example of this process to solve
a quintic system in Appendix E. Furthermore, as in Section 4.2, we note that
is very easy to produce further homogeneous cubic equations in λ1, . . . , λm′ if
required as there are many other coefficient matrices having rank 2, for example
the matrix of coefficients of x2

0x
2s−2
i xj .

5 A Geometrical Interpretation

The geometric techniques of Section 4 can be interpreted using the Grassmannian
variety [3,9,10]. We give some basic properties of the Grassmannian variety in
Section 5.1 and discuss their application in Section 5.2.
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5.1 The Grassmannian Variety and Exterior Algebra

We recall that W1 denotes the vector space of homogeneous linear polynomials
over F of degree D in n+1 variables (Section 3). Thus the two linear polynomials
L and L′ at the heart of Definition 1 are elements ofW1, so the pair (L,L′) defines
a (projective) line in the projective space P(W1). The Grassmannian Gr2(W1)
is the set of all 2-dimensional subspaces of W1 or equivalently the set of all
projective lines in this projective space P(W1) [9,10].

The tensor product W1
⊗

W1 is the (n + 1)2-dimensional vector space with
basis vectors the set of formal symbols xi⊗xj and a bilinear inclusion map from
W1 ×W1 to W1

⊗
W1 [4,12]. The symmetric square S2(W1) is the subspace of all

symmetric tensors ({tij ∈ W1
⊗

W1 | tij = tji}), a subspace of dimension 1
2 (n+

1)(n+2) [9,12]. In even characteristic, the symmetric square can be decomposed
as

S2(W1) ∼= 〈(xi ⊗ xi)i〉 ⊕ S2(W1)
〈(xi ⊗ xi)i〉

,

where the second (quotient) summand is the degree-2 part of the exterior algebra,
a space of dimension 1

2n(n + 1), which we denote by E2(W1). Thus we have
S2(W1) ∼= 〈(xi ⊗ xi)i〉 ⊕ E2(W1). The Grassmannian or Plücker embedding of
the Grassmannian Gr2(W1) in the degree-2 part of the exterior algebra is an
injective mapping ψ : Gr2(W1) → P(E2(W1)) defined by (L,L′) �→ L ∧ L′ or
equivalently

(L,L′) =

(
n∑
i=0

aixi,

n∑
i=0

a′ixi

)
�→

n∑
i=0

i−1∑
j=0

(aia′j + a′iaj)(xi ∧ xj).

This vector of co-ordinates (aiaj+a′iaj) is known as the Grassmannian or Plücker
co-ordinates of the (projective) line defined by L and L′. Thus the Grassmannian
co-ordinates of the line defined by L and L′ are given by the 2-minors of the
matrix A of Section 4.1, with rows given by L and L′.

The Grassmannian embedding allows the representation of (projective) lines
in P(W1) as distinct points in the projective space P(E2(W1)), which is isomor-
phic to PG(1

2n(n+ 1) − 1,F). The Grassmannian variety G of P(E2(W1)) is the
set of all such embedded lines [3,9]. Thus the Grassmannian variety G is simply
ψ(Gr2(W1)), the image of the Grassmannian Gr2(W1), so G is defined by

G =
{ 〈

(∆21, ∆31, . . . , ∆n+1,n−1, ∆n+1,n)
T
〉

∈ P(E2(W1))
∣∣∣ Ai1,i2,i3,i4 = 0

}
,

where Ai1,i2,i3,i4 is the quadratic identity of Section 4.1. Thus the Grassmannian
variety G can be defined by the intersection of quadrics in P(E2(W1)).

5.2 The Grassmannian Variety and the GeometricXL Algorithm

We consider first a GeometricXL algorithm for homogeneous quadratic systems
in even characteristic, discussed in Section 4.1. We need to find g =

∑m
i=1 λlfl

such that g is the product of two homogeneous linear polynomials L and L′. We
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can think of g in the natural and obvious way as an element of S2(W1). Thus we
can define the canonical projection π(g) of g onto the exterior algebra E2(W1),
so π(g) is the square-free part of g. However, g is a product of linear polynomials
if and only if π(g) ∈ G, the Grassmannian variety. Thus the geometrical inter-
pretation of the process of Section 4.1 is that it is a process that first attempts
to find polynomials with no square terms in the variety

G
⋂

〈π(f1), . . . , π(fm)〉 ,

and then analyses these polynomials to find rank-2 product polynomials.
There are some further obvious geometric comments that can be made about

higher degree equations systems. For example, for odd degree systems any so-
lution lies on the secant variety of the variety of all polynomials which are the
product of a linear polynomial and a square polynomial, and such secant vari-
eties are the basis of the GeometricXL algorithm when the characteristic exceeds
D or is zero [12]. However, a full geometric interpretation is still needed for cu-
bic and higher degree equation systems, and could provide interesting ideas for
solution methods. Such an interpretation is very likely to depend on the Grass-
mannian variety G as any rank-2 product polynomial depends fundamentally on
the linear polynomials L and L′, or equivalently such an interpretation depends
fundamentally on a point of the Grassmannian variety G.

6 The EGHAM Process

In the common cryptographic situation of attempting to find a unique solution to
a homogeneous equation system f1 = . . . = fm = 0 over a field of even character-
istic, the goal of the XL algorithm is to find a bivariate polynomial g =

∑m
i=1 λifi,

and the goal of the Gröbner basis algorithm (under lexicographic ordering) is
to find such a bivariate polynomial g in the reduced Gröbner basis. However,
we have shown that any such linear combination of homogeneous polynomials
generating such a bivariate polynomial g must satisfy the LS-criterion. Thus
the LS-criterion (Definition 6) can be applied as part of a standard Gröbner
basis or XL algorithm in this situation. Applying the LS-criterion generally
greatly reduces the number of polynomials under consideration by an XL al-
gorithm or Gröbner basis algorithm. Furthermore, the reduced set of equations
obtained by applying the LS-criterion can be considered for any order of the
variables, as the LS-criterion is independent of the order of the variables. This
means that the XL algorithm or Gröbner basis algorithm with the LS-criterion
is far more efficient at finding an appropriate bivariate polynomial or concluding
that no such bivariate polynomial exists for a given degree (under any variable
order).

We can therefore include the LS-criterion as part of an adaptation, using the
ideas of Section 4, of the GeometricXL algorithm [12] for use in fields of even
characteristic. This gives us a process for implementing an even (characteristic)
GeometricXL heuristic algorithmic method, which we term the EGHAM process
and which we describe in Figure 1.
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– Generate a homogeneous system f1 = . . . = fm = 0 of degree D from an original
equation system in even characteristic.

– Apply the LS-criterion (Definition 6), that is consider only linear combinations
of f1, . . . , fm in the L2S-subspace or L1S-subspace for systems of cubic or higher
degrees, so generally reducing the size of the problem from m equations to m′

equations.
– Construct a quadratic or cubic equation system in the coefficients λ1, . . . , λm′

for
∑m′

i=1 λifi to be a rank-2 product polynomial, for example by considering the
matrix of coefficients of xD−1

i xj (Section 4).
– Analyse this quadratic or cubic system, perhaps by linearisation, to find a rank-2

product polynomial in 〈f1, . . . , fm′〉, which can then be factored to provide infor-
mation about the solution of (or even solve) f1 = . . . = fm = 0.

– Apply this solution information directly to the original equation system.

Fig. 1. Basic Description of the EGHAM Process

The EGHAM process is an adaptation of the GeometricXL algorithm to fields of
even characteristic, and so is a geometric generalisation of an XL algorithm for
such fields. Thus the EGHAM process generates equations of at worst the same de-
gree as either a Gröbner basis (with lexicographic ordering) or an XL algorithm,
though usually by processing a far smaller equation system through the appli-
cation of the LS-criterion. However, as is clearly demonstrated by the examples
in the Appendices, the EGHAM process can use polynomials of a much smaller
degree for many equation systems in even characteristic than a Gröbner basis
algorithm or an XL algorithm.

7 Conclusions

A major contribution of this paper is the development of the LS-criterion (Def-
inition 6) in the solution of homogeneous cryptographic equation systems in
fields of even characteristic. We have used the LS-criterion to develop the EGHAM
process, an adaptation of the GeometricXL algorithm [12] which is suitable for
use in fields of even characteristic. The EGHAM process can find the solution of a
cryptographic equation system in even characteristic much more efficiently than
a standard Gröbner basis or XL algorithm in many cases.
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A The Alternative GeometricXL Algorithm

We demonstrate the alternative GeometricXL algorithm (Section 2.2) on a ho-
mogeneous cubic system f1 = f2 = f3 = 0 of three equations in three variables
over GF(37). We give the coefficents of f1, f2, f3 below with respect to the lexi-
cographic monomial ordering x3

0, x
2
0x1, . . . , x

3
2.

23 27 15 25 11 24 26 7 21 36
21 35 2 18 4 1 29 5 32 33
32 13 28 10 8 13 24 10 19 15

We need to find a linear combination λ1C
(1)
f1

+ λ2C
(1)
f2

+ λ3C
(1)
f3

of these first

order partial derivatives matrices C(1)
f1

, C(1)
f2

and C
(1)
f3

that has rank 2. Thus we
need to find λ1, λ2, λ3 such that

λ1

⎛⎝32 17 30 25 11 24
27 13 11 4 14 21
15 11 11 7 5 34

⎞⎠
+ λ2

⎛⎝26 33 4 18 4 1
35 36 4 13 10 32
2 4 2 5 27 25

⎞⎠
+ λ3

⎛⎝22 26 19 10 8 13
13 20 8 35 20 19
28 8 26 10 1 8

⎞⎠
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has rank 2. We can identify a matrix of rank 2 by considering its 3-minors, and,
as an example, the first 3-minor of the above matrix is given by

34λ3
1+22λ2

1λ2+30λ2
1λ3+19λ1λ

2
2+9λ1λ2λ3+9λ1λ

2
3+22λ3

2+20λ2
2λ3+27λ2λ

2
3+5λ3

3.

There are 15 3-minors of the above 3×6 matrix, and we require them all to vanish
for this matrix to have rank 2. This gives a system of 15 homogeneous cubic
equations in λ1, λ2, λ3. However, there are only 10 cubic monomials in 3 variables,
so we can solve this system by direct linearisation to obtain λ1 = λ3 and λ2 =
26λ3 as the unique solution. We thus consider the polynomial g = f1 +26f2 + f3
which has a vector of coefficients given by (9, 25, 21, 22, 12, 26, 27, 36, 21, 21) (with
respect to lexicographic ordering) and partial derivatives matrix of rank 2

C(1)
g = C

(1)
f1

+ 26C(1)
f2

+ C
(1)
f3

=

⎛⎝27 13 5 22 12 26
25 7 12 7 35 21
21 12 15 36 5 26

⎞⎠ .

We can now either factor g directly or by noting that any factor of g is a linear
combination (possibly over an extension field) of 27x0 + 25x1 + 21x2 and 13x0 +
7x1 + 12x2, which are given by a basis for the column space of C(1)

g . Thus we
obtain a factorisation over GF(37) of a linear combination of f1, f2, f3 as

f1 +26f2 +f3 = 9(x0 +32x1 +3x2)(x2
0 +16x0x1 +24x0x2 +29x2

1 +24x1x2 +9x2
2)

For a solution in GF(37), we obtain x0 = −(32x1 + 3x2), which on substitution
into f1 gives (over GF(37))

0 = x3
1 + x2

1x2 + 9x1x
2
2 + 33x3

2 = (x1 + 24x2)(x2
1 + 14x1x2 + 6x2

2).

Thus over GF(37) we obtain x1 = −24x2 = 13x2, so x0 = −(32.13+3)x2 = 25x2.
This gives x1 = 2x0 and x2 = 3x0, so the solution to the homogeneous cubic
system f1 = f2 = f3 = 0 is given by (x1, x2, x3) = µ(1, 2, 3) for µ ∈ GF(37). For
comparison, calculating this solution using a Gröbner basis or an XL algorithm
requires the generation of polynomials of degree 6.

B The LS-Criterion

We let F = GF(2)(θ), where θ4 + θ + 1 = 0, be a field with 24 elements, and we
represent elements of this field in hexadecimal, so, for example, C denotes θ3+θ2.
We consider the solution of the homogeneous cubic system f1 = f2 = f3 = 0
over F by applying the LS-criterion (Definition 6), where f1, f2 and f3 are given
below.

6x3
0 + 7x2

0x1 + 9x2
0x2 + 2x0x

2
1 + Cx0x1x2 + 5x0x

2
2 + Fx3

1 + 0x2
1x2 + Dx1x

2
2 + 6x3

2

Bx3
0 + Bx2

0x1 + Dx2
0x2 + 0x0x

2
1 + 8x0x1x2 + 4x0x

2
2 + 5x3

1 + 6x2
1x2 + 3x1x

2
2 + Ax3

2

Ex3
0 + 9x2

0x1 + Dx2
0x2 + Dx0x

2
1 + 1x0x1x2 + Ax0x

2
2 + 1x3

1 + 3x2
1x2 + Cx1x

2
2 + 5x3

2

We wish to to find a linear combination g = λ1f1 + λ2f2 + λ3f3 ∈ R3
F,n. The

LS-criterion for a cubic system is the L1S condition (Lemma 7 Part 1), that is
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g ∈ U ′
1 < W3. However, a polynomial in three variables in W3 is in U ′

1 if and
only if the coefficient of x0x1x2 is zero, so we need to find λ1, λ2, λ3 such that
Cλ1 + 8λ2 + 1λ3 = 0. Thus we have (λ1, λ2, λ3)T ∈

〈
(1, 0, C)T , (0, 1, 8)T

〉
. We

can now define f ′
1 = f1 + Cf3 and f ′

2 = f2 + 8f3, and find a linear combination
of f ′

1 and f ′
2 which factors either by direct search or by some other technique.

We thus obtain

f ′
1+9f ′

2 = f1+9f2+8f3 = 3(x0+x1+2x2)(x2
0+4x0x1+9x0x2+4x2

1+Ax1x2+Bx2
2).

This gives x0 = x1 + 2x2 as the unique solution over F, and upon substitution
into f1, f2 and f3, we obtain the following two linearly independent equations:

Cx3
1 + 6x2

1x2 + Ex1x
2
2 + 7x3

2 = C(x1 + 7x2)2(x1 + 9x2);
5x3

1 + 5x2
1x2 + 1x1x

2
2 + 0x3

2 = 5x1(x1 + 5x2)(x1 + 9x2).

We thus deduce that x1 = 9x2 and x0 = (9 + 2)x2 = Bx2, so the solution to
f1 = f2 = f3 = 0 is given by (x0, x1, x2) = µ(4, 2, 1) for µ ∈ F. For comparison,
calculating this solution using a Gröbner basis or an XL algorithm requires the
generation of polynomials of degree 6.

C A Quadratic System in Even Characteristic

We use the field F ∼= GF(24) of Appendix B. We consider the solution of the
homogeneous quadratic system f1 = . . . = f7 = 0 using the method of Sec-
tion 4.1, where f1, . . . , f7 ∈ F[x0, . . . , x6]. The coefficients of f1, . . . , f7 are given
with respect to the lexicographic ordering x2

0, x0x1, . . . , x
2
6 by the array below.

2 3 B A 9 D 3 F C F B 4 5 3 A 0 E 6 6 D C 9 F 5 E D 2 E
7 B F E 2 8 6 D 5 7 3 5 E 4 3 3 E 3 D 1 6 E B 4 A 5 E C
3 2 D A E 0 9 4 C 4 F 5 B C B 3 9 D 2 0 6 E 3 5 1 6 8 6
3 6 E F 2 B 2 B C 2 2 D 9 3 3 5 9 5 6 8 C 6 3 8 6 8 B 8
6 1 0 7 0 4 6 B 7 4 E 7 D 3 6 8 D 9 C A F 9 4 1 3 6 D E
8 A 0 4 0 2 D 1 6 8 4 0 0 B 7 1 2 6 8 C 3 9 F B 5 8 4 2
8 0 8 7 D F 0 4 F F E 9 2 5 F 0 2 D 4 9 6 6 B E 0 5 F D

We wish to find λ1, . . . , λ7 such that g = λ1f1 + . . .λ7f7 ∈ R2
F,n, so g is given

by
g = (2λ1 + 7λ2 + 3λ3 + 3λ4 + 6λ5 + 8λ6 + 8λ7)x2

0
+(3λ1 + Bλ2 + 2λ3 + 6λ4 + 1λ5 + Aλ6 + 0λ7)x0x1
+(Bλ1 + Fλ2 + Dλ3 + Eλ4 + 0λ5 + 0λ6 + 8λ7)x0x2 + . . .

= ∆01x0x1 +∆02x0x2 + . . . .

We can now use the 2-minor identity (Section 4.1)

A0,1,2,3 = ∆01∆23 + ∆02∆13 +∆03∆12 = 0

to obtain a quadratic expression Q(λ1, . . . , λ7) = 0, where the coefficients of Q
are given with respect to the lexicographic ordering λ2

1, λ1λ2, . . . , λ
2
7 by the array

F 9 4 5 B A E 6 3 7 1 D 9 5 4 7 2 2 D 0 4 A 0 0 4 8 8 A.
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There are
(7
4

)
= 35 such 2-minor identities giving rise to 35 quadratic expressions

in λ1, . . . , λ7 in total. As there are only 28 quadratic monomials in 7 variables,
we can express this quadratic system as a linear system in 28 variables using a
35×28 matrix. This matrix has rank 27 and reducing it to echelon form gives
the unique (up to multiplication) solution

(λ1, λ2, λ3, λ4, λ5, λ6, λ7) = (2, C, 7, 2, F, 2, 1).

We can therefore obtain a linear combination of f1, . . . , f7 which is a rank-2
product polynomial and so which factors to give

0 = 2f1 + Cf2 + 7f3 + 2f4 + Ff5 + 2f6 + f7
= 6 (x0 + Ex1 + 6x2 + 6x3 + Bx4 + Fx5 + 6x6) (x0 + 9x1 + Dx2 + Cx3 + 2x6) .

Thus we know that either x0 + Ex1 + 6x2 + 6x3 + Bx4 + Fx5 + 6x6 = 0 or
x0 + 9x1 + Dx2 + Cx3 + 2x6 = 0. We can make these two substitutions to reduce
the original problem in seven variables to one of two problems in six variables and
so on. We thus find that the unique (projective) solution is (1, 2, 4, 8, 3, 6, C). For
comparison, calculating this solution using a Gröbner basis or an XL algorithm
requires the generation of polynomials of degree 7.

D A Quartic System in Even Characteristic

We use the field F ∼= GF(24) of Appendix B. We consider the solution of the
homogeneous quartic system f1 = f2 = f3 = f4 = f5 = 0 using the method
of Section 4.2, where f1, . . . , f5 ∈ F[x0, x1, x2, x3, x4] satisfy the LS-Criterion
(without loss of generality). The coefficients of f1, . . . , f5 are given below with
respect to the lexicographic ordering x4

0, x
3
0x1, . . . , x

4
4.

49D32B5BD3D4AD69932C00A0A47A008C971A54E967A6950BB086D2FF0D95D8583B6103

2D68B5EC0F085974058900407984F0A59C80E7924EBA6B03A069D8B9E4DC2A2E7634EB

6E03B1E544DF3352E19D00C082A850CFED40169539B0259520FD730402F6C18FCBDC6D

475365A26C3E7F0CC9EC00E030E8301361A220DCAA9EC573D00D369E441F2A9701149E

D943065F4D8DB2F9629E00303CB9E0EDA6DF00E28151E25960567B58E1AB1441A76B8C

A rank-2 product polynomial in even degree is an element of the L2S-subspace
(Definition 3), and we note without loss of generality that f1, . . . , f5 ∈ U1, the
L2S-subspace of W4.

A linear combination g = λ1f1 + λ2f2 + λ3f3 + λ4f4 + λ5f5 is given by

g = (4λ1 + 2λ2 + 6λ3 + 4λ4 + Dλ5)x4
0

+(9λ1 + Dλ2 + Eλ3 + 7λ4 + 9λ5)x3
0x1

+(Dλ1 + 6λ2 + 0λ3 + 5λ4 + 4λ5)x3
0x2 + . . .

= Γ01x
3
0x1 + Γ02x

3
0x2 + . . . .

We can now use the cubic identities B for g to be a rank-2 product polyno-
mial to obtain

(5
3

)
×
(5
3

)
= 100 homogeneous cubic equations in λ1, . . . , λ5 (Sec-

tion 4.2). For example, the coefficients with respect to the lexicographic ordering
λ3

1, λ
2
1λ2, . . . , λ

3
5 of the cubic expression given by B0,1,2,0,1,2 is given below.

09CF5757921C325CC9D45345AC71F6C7A21
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Thus we obtain 100 cubic expressions in the 35 cubic monomials in the variables
λ1, . . . , λ5, so we can express this cubic system as using a 100×35 matrix. This
matrix has rank 34 and reducing it to echelon form gives the unique (projective)
solution

(λ1, λ2, λ3, λ4, λ5) = (5, 2, 9, B, 1) .

Thus we construct the linear polynomial g = 5f1 + 2f2 + 9f3 + Bf4 + 1f5, with
coefficents given below, which is a rank-2 product polynomial.

18DABAA51A9A5379A68200304EB690F755CD63ED76419BCD705A2B95FBB4017D5E6587

We can indeed factor this linear combination of f1, . . . , f5 to obtain

0 = g = (x0 + Dx1 + 9x2 + 5x3 + Bx4)
2 × Irreducible Quadratic.

A solution over F therefore satisfies x0 +Dx1 +9x2 +5x3 +Bx4 = 0. We can thus
make a substitution to reduce the original problem in five variables to a problem
in four variables. We can continue using this techniques on the smaller system to
give (1, E, 4, 6, 7) as the unique (projective) solution to the original system. For
comparison, calculating this solution using a Gröbner basis or an XL algorithm
requires the generation of polynomials of degree 15.

E A Quintic System in Even Characteristic

We use the field F ∼= GF(24) of Appendix B. We consider the solution of the
homogeneous quintic system f1 = f2 = f3 = f4 = f5 = 0 using the method
of Section 4.2, where f1, . . . , f5 ∈ F[x0, x1, x2, x3, x4] satisfy the LS-Criterion
(without loss of generality). The coefficients of f1, . . . , f5 are given below with
respect to the lexicographic ordering x5

0, x
4
0x1, . . . , x

5
4.

63DAD00009001040B6DB008048BE3078F167000C007030000000000200C0300

0070103023E90040612D405CC4ED007070000E0B074B30010421B010BD32D7A

0A2B2D000A0060B25D010010178D50FE5700000A00C030000000000F0010D00

006070909CAF0040552CD0EE87A900C030000C060E0F7407869930F0C078736

4BC09900030050E4933F00A0ECE25004F66700010080D0000000000B00B0300

0070A0E1FDC100E07D8A2050625300D0D000090C0251130D947EF030FCF0B16

8A0D52000A00505FD51800B0324DC0200F39000B009090000000000700B0B00

0010F0AB1A4C0070DC90D0B8CBFA00907000040C0E00DD07C0E790F03EFEE84

2416BD00050060FCC4FA00D078973004AFF50004003040000000000200D0900

0010D09EAB24008004FB104FBA2E008050000C070664130C76D58080812CDDF

A rank-2 product polynomial in odd degree is an element of the L1S-subspace
(Definition 4), and we note without loss of generality that f1, . . . , f5 ∈ U ′

2, the
L1S-subspace of W5.
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A linear combination g = λ1f1 + λ2f2 + λ3f3 + λ4f4 + λ5f5 is given by

g = (6λ1 + 0λ2 + 4λ3 + 8λ4 + 2λ5)x5
0

+(3λ1 + Aλ2 + Bλ3 + Aλ4 + 4λ5)x4
0x1

+(Dλ1 + 2λ2 + Cλ3 + 0λ4 + 1λ5)x4
0x2 + . . .

= Γ00x
5
0 + Γ01x

4
0x1 + Γ02x

4
0x2 + . . . .

We can now use the cubic identities C for g to be a rank-2 product polyno-
mial to obtain

(5
3

)
×
(5
3

)
= 100 homogeneous cubic equations in λ1, . . . , λ5 (Sec-

tion 4.2). For example, the coefficients with respect to the lexicographic ordering
λ3

1, λ
2
1λ2, . . . , λ

3
5 of the cubic expression given by C0,1,2,0,1,2 is given below.

16785F34B6C6BAC6AF0B48FA8D2CD5BCADA

Thus we obtain 100 cubic expressions in the 35 cubic monomials in the variables
λ1, . . . , λ5, so we can express this cubic system as using a 100×35 matrix. This
matrix has rank 30 and reducing it to echelon form gives the following relations
(amongst others):

0 = λ2
1λ5 + Aλ3

5 = λ2
2λ5 + 1λ3

5 = λ2
3λ5 + Eλ3

5 = λ2
4λ5 + 7λ3

5.

Thus analysing this equation system quickly shows that the unique (projective)
solution is given by

(λ1, λ2, λ3, λ4, λ5) = (F, 1, D, 6, 1) .

Thus we construct the linear polynomial g = Ff1 + 1f2 + Df3 + 6f4 + 1f5, with
coefficents given below, which is a rank-2 product polynomial.

2379C3000C00E0ABD4AA0090F13E608A2B980004005080000000000700D0D00

00F0A01CF25600E0CE1B40FCD25D00202000010F08351B0BE8E8C080A74B9D6

This linear combination of f1, . . . , f5 factors to give

0 = g = (x0 + 8x1 + Ax2 + Dx3 + 6x4) × (Irreducible Quadratic)2 .

A solution over F therefore satisfies x0 +8x1 +Ax2 +Dx3 +6x4 = 0. We can thus
make a substitution to reduce the original problem in five variables to a problem
in four variables. We can continue using this techniques on the smaller system to
give (1, 4, 4, A, E) as the unique (projective) solution to the original system. For
comparison, calculating this solution using a Gröbner basis or an XL algorithm
requires the generation of polynomials of degree 20.
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Abstract. A threshold ring signature scheme enables a set of users to
sign a message such that a finite set of possible signers (the ring) is
identified, without revealing which subset of ring members actually pro-
duced the signature. A recent proposal of Aguillar et al. introduced the
first code-based threshold ring signature scheme which large signatures
(about 20KBytes per member of the ring for 80-bit security).

We propose a new code-based threshold ring signature scheme that
achieves small signature size of 675N −228� bits, where N is the number
of members in the ring and � is the number of signers, for a security
level of 80 bits. We give a security proof of our scheme whose security
relies — in both random oracle and ideal cipher models — on two coding
theory problems, making our scheme the first provably secure code-based
threshold ring signature scheme. Unfortunately, as often in code-based
cryptography, the presented scheme leads to very large public keys.

1 Introduction

A ring signature enables a user to sign a message so that a finite set of pos-
sible signers (of which the user is a member) is identified, without revealing
which member of that ring actually produced the signature. We propose a new
code-based threshold ring signature scheme (i.e. where at least � parties are re-
quired for creating a signature) that achieves small signature size. We analyse
our scheme in the random oracle model and the ideal cipher model to prove that
its security relies on two classical coding theory problems.

1.1 Ring Signatures

The concept of group signatures was first introduced by Chaum and van Heyst
in 1991 [CvH92]; it is a method for allowing a member of a group to anony-
mously sign a message on behalf of the group. Essential to a group signature
scheme is a group manager, who is in charge of adding group members and has
the ability to reveal the original signer in the event of disputes. Ring signa-
tures — first formalised in 2001 by Rivest, Shamir, and Tauman [RST01] — are

M.G. Parker (Ed.): Cryptography and Coding 2009, LNCS 5921, pp. 222–235, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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similar to group signatures but differ in two key ways: the anonymity of an
individual signature cannot be removed, and any set of users can be used as
a group without additional setup (i.e. the signer has to be a member of the
ring but the other users do not need to cooperate and may be unaware that
they are included in a ring signature), rings may be formed completely “on
the fly”. Ring signature schemes have been studied extensively since 2001 (e.g.
[BKM06, RST01, SW07, CGS07]) and a variety of applications have been sug-
gested (e.g. [RST01, Nao02, DKNS04, AHR05]).

The original application was anonymous leaking of secrets. For example, a
high-ranking official in the government wishes to leak some important informa-
tion to a journalist. Ring signatures give a way to achieve this task, wherein the
journalist can verify that some government official signed the message but cannot
ascertain which member actually leaked the secret: the journalist — who knows
the public keys of all the ministers — can be sure that one of the ministers signed
it, without knowing who is the mole in the cabinet. Another popular applica-
tion is designated verifier signatures [JSI96]: by signing a message with respect
to a ring that contains only the sender and the receiver, the sender can ensure
the receiver of the origin of the message, but the later is unable to transmit his
conviction to anyone else.

In 2002, Bresson, Stern and Szydlo extended the concept of ring signatures
to threshold ring signatures [BSS02]. In this context, a group of � users wants
to cooperate to produce a signature without revealing their identities among
the ring. Simply produce � ring signature clearly not reaches this goal since a
receiver cannot ensure that the � signers are different.

1.2 Code-Based Cryptography

Most popular public key cryptographic schemes rely either on the integer fac-
torization or on the discrete logarithm problem. As they are used in most nowa-
days’s applications of public key cryptography, the later are thus vulnerable to a
single breakthrough in algorithms or in hardware (for example, a quantum com-
puter can break all those schemes). Diversity is a way to dilute that risk, and
it is the duty of the cryptographic research community to prepare and propose
alternatives to the number theory based systems. The most serious tracks today
are euclidean lattices, multivariate cryptography and code-based cryptography.

Code-based cryptography was introduced by McEliece [McE78], two years af-
ter the introduction of public key cryptography by Diffie and Hellman [DH76]
in 1976. In 1989, Stern proposed a code-based zero knowledge identification
scheme [Ste90, Ste96] but the first native practical code-based signature scheme
was proposed in 2001 by Courtois, Finiasz and Sendrier [CFS01]. Recent years
saw a renewed interest in code-based cryptography with the proposal of several
cryptographic primitives based on coding theory (e.g. a NIST hash function pro-
posal [AFG+08], a provably secure encryption scheme [KI01], special signatures
[AMCG08]).

In [ZLC07], Zheng, Li and Chen proposed the first code-based ring signature
scheme and achieved a small signature size (144 + 126N bits where N is the
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size of the ring for a security level of now about 263.3 [FS09]). A recent proposal
of Aguillar, Cayrel and Gaborit introduced the first threshold ring signature
scheme [AMCG08]. This scheme uses public keys of small size (347 bits for a
security level of 280) but produces large signatures (about 20KBytes per member
of the ring).

1.3 Contributions of the Paper

Short Code-based Threshold Ring Signature. We propose a new code-
based threshold ring signature scheme that combines both techniques used by
Bresson and al. in [BSS02] and Courtois and al. in [CFS01]. It achieves small
signature size of 414N − 144� and 579N − 198� bits for respective security levels
of 263.3 and 281.7 where N is the number of members in the ring and � is the
number of signers but requires keys of large size (the public keys respectively
need 1.2Mbytes and 99Mbytes to be stored).

Reductionist Security. In cryptography, a system has reductionist security (or
provable security) — as opposed to heuristic security — if its security require-
ments can be stated formally in an adversarial model with clear assumptions
that the adversary has access to the system as well as computational resources.
Provable security is an important research area in cryptography: cryptographic
primitives or protocols without a rigorous proof cannot be regarded as secure in
practice. There are many schemes that were originally thought as secure being
successfully cryptanalyzed, which clearly indicates the need of formal security as-
surance (e.g. [COV07, OTD08] for examples in code-based cryptography). With
reductionist security, we are confident in using cryptographic applications to re-
place the traditional way in physical world. In this approach, the security of a
cryptographic scheme is based on algorithmic problems that are supposed to
be hard to solve. The scheme is secure as long as the underlying algorithmic
problems are difficult.

Code-based cryptography typically uses two difficult problems from coding
theory: the Bounded Distance Decoding problem (BDD) — which is N P-hard
[BMvT78] — and the Goppa Code Distinguishing — considered as difficult
[Sen02]. Confidence into asymptotic difficulty of the Bounded Distance Decoding
problem is strengthened by the recently proven [LM09] equivalence between a
latice version of BDD and the two central problems used in lattice based public
key cryptography, namely the unique Shortest Vector Problem (uSVP) and the
decisional version GapSVP of the Shortest Vector Problem.

However, to obtain reductionist security of a scheme, it is sometimes necessary
to work in an idealized model of computing — as opposed to the standard model.
The random oracle model (ROM) formalized by Bellare and Rogaway [BR93] is
one of those; in this model, a hash function is considered to be given by the
public access to a random oracle, which output for any new queried message a
random value uniformly distributed over the output space. Another model of
computation, which has been proven to be equivalent to the ROM by Coron,
Patarin and Seurin [CPS08], is the ideal cipher model (ICM): a publicly accessi-
ble random function is replaced by a public access in encryption and decryption
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to a random block cipher (the ideal cipher). A proof in one of those model does
not offer full satisfaction since such a proof does not imply that the scheme will
remain secure when idealized functions will be replaced by concrete functions
(e.g. [CGH04, LN09]). Despite of this, the ROM and ICM still are useful tools for
proving the security of cryptosystem and, for some functionalities, these models
provides the only known constructions.

In this paper, we present the first explicit reductionist security proof (in
both the ideal cipher and random oracle models) of a code-based ring signa-
ture scheme, relating unforgeability of our scheme to the difficulty of the two
problems above; while anonymity of the signers is unconditionally preserved.

2 Threshold Ring Signatures

2.1 Definition

We present a formal definition of an �-out-of-N threshold ring signature scheme.
We refer to a set of users N = {1, . . . , N} where each user u has a public and
private keys pair (PKu, SKu) as a ring. For any set L ⊂ N , we denote by SKL
the set {SK�i | i ∈ L} of the private keys of users in L.

Definition 1 (�-out-of-N threshold Ring Signature Scheme). An �-out-
of-N threshold ring signature scheme is defined by four (polynomial time) algo-
rithms Setup, Gen, Sign and Verify that respectively sets up parameters, generates
keys for a user, signs a message and verifies a signature:

– Setup(1κ), where κ is a security parameter, outputs a set P of parameters;
– Gen(P), where P is a set of parameters, outputs a pair of public and secret

keys (PK,SK);
– Sign(P ,M,N ,SKL), where P is a set of parameters and L ⊂ N are two sets

of users such that |L| = � and |N | = N , signs a message M with respect to
the public keys of the members of the ring N ;

– Verify(P ,M, σ,N ), where P is a set of parameters, outputs valid if the pro-
posed signature σ of a message M is valid with respect to the public keys of
the members of the ring N and outputs invalid otherwise;

such that for all security parameters κ > 0, for all parameters
P ← Setup(1κ), for all sets N and L such that L ⊂ N , |L| = �, |N | = N
and for all member i ∈ N in the ring (PKi, SKi) ← Gen(P), we have:

∀M ∈ {0, 1}∗, ∀σ ← Sign(P ,M,N ,SKL),Verify(P ,M, σ,N ) = valid.

Remark 1. The later assertion, deemed consistency, formalizes that a properly
formed signature has to be accepted as valid.

2.2 Security Model

Anonymity. The anonymity condition requires, informally, that an adversary
should not be able to tell which members of a ring took part in the generation
of a given signature, even if some of the private keys are corrupted.
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More formally, we consider a simulation (i.e. a probabilist polynomial time
Turing machine) Simulate(P ,M,N ,L,SKN\{i}) where P is a set of parameters,
i ∈ L, that outputs a bit-string which simulates a signature of a message M with
respect to the public keys of the members of the ring N . An �-out-of-N threshold
ring signature scheme is anonymous if for all security parameters κ > 0, for all
parameters P ← Setup(1κ), any ring N such that for all member i ∈ N in the
ring (PKi, SKi) ← Gen(P), any subset L ⊂ N of users, any messageM ∈ {0, 1}∗
and any user u ∈ L, there exists a random sequence such that

Simulate(P ,M,N ,L,SKN\{u}) = Sign(P ,M,N ,SKL).

Unforgeability. Unforgeability of a threshold signature scheme is defined by
the following attack model: an �-adversary A, who obviously knows public keys
of the members of a ring N of size N , tries to output an �-out-of-N valid ring
signature σ∗ for a message M∗ of its choice, after having corrupted at most �−1
user’s private keys. He accesses a signature oracle Σ (qΣ queries), a corruption
oracle Υ and possibly a random oracle H (qH queries) and/or an ideal cipher
oracle E (qE queries). A can adaptively query the corruption oracle Υ to obtain
private keys of some of the members of the ring. He also can query Σ which pro-
vides threshold ring signatures for message and signers chosen by A; obviously,
A is not allowed to output as signature σ∗ an answer to one of the queries he
made to Σ. We call success of an �-adversary A, denoted by SuccCMA

τ,qΣ(qH,qE )(A)
the probability that he outputs a valid forgery. An �-out-of-N ring signature
scheme is said to be t-CMA-secure if for any adversary A, SuccCMA

τ,qΣ(qH,qE)(A) is
negligible.

2.3 Bresson, Stern and Szydlo’s Generic Construction

In [BSS02] Bresson, Stern and Szydlo proposed a generic construction in the ideal
cypher model for �-out-of-N threshold ring signature scheme from a trapdoor
one-way function. This scheme uses Lagrange’s polynomial interpolation formula
(Theorem 1), as proposed by Shamir in [Sha79] for secret sharing.

Theorem 1 (Lagrange Interpolation). Let F be a finite field and N pairs
(x1, y1), . . . , (xN , yN ) in F2 such that all xi are distinct. There exists a unique
polynomial p of degree N − 1 in F[X ] such that for all index i, p(xi) = yi. This
polynomial is:

p(x) =
N∑
i=1

yi

N∏
j=1,j �=i

x − xj
xi − xj

.

The � signers of a message can cooperate to build an interpolation on N−� values
obtained by a one-way function and compute the � missing values by using their
secret keys. Let N be the set of the N users in the ring, fPK/SK : {0, 1}p →
{0, 1}q be a one-way function, H : {0, 1}∗ → {0, 1}q be a hash function and
(Ek,i) be a family of random permutations that cipher messages of q bits with
keys of length q0. For each user i ∈ N , the generation algorithm generates a key
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pair (SKi, PKi) for f according to the security parameter κ. In the following,
(·‖·) denotes the concatenation of two bit-strings and R← S denotes the random
selection of a uniformly distributed value in the set S. A set L of � users signs a
message M as follows:

1. Set a key k ← H(M) and an initial value y0 ← H(M‖N )
2. For all user i ∈ N \L do

(a) Randomly pick xi
R← {0, 1}p

(b) Compute yi ← fPKi(xi)
3. Compute an interpolation polynomial

P ∈ F2q [X ] such that

⎧⎨⎩
d(P ) = N − �
P (0) = y0
P (i) = Ek,i(yi) for all i ∈ N \L

4. For all user i ∈ L do
xi ← f−1

SKi
(E−1

k,i (P (i)))
5. Output (N , x1, . . . , xN , P ) as a ring signature of the message M

The signature verification consists in verifying that P (0) = H(M‖N ) and the
equality P (i) = EH(M),i(fPKi(xi)) for all user i ∈ N .

3 Courtois, Finiasz and Sendrier’s Code-Based Signature
Scheme

In 2001, Courtois, Finiasz and Sendrier proposed the first practical signature
scheme based on coding theory [CFS01]. We present here a slightly modified
version presented in [Dal08] that admits a reductionist security proof.

Recall that an [n, k]-binary linear code C is a linear subspace of dimension k
of Fn2 , where F2 is the field with 2 elements. Elements of Fn2 are called words
while elements of C are called codewords. An [n, k]-binary linear code is entirely
defined by a (n − k) × n binary matrix H : codewords are words x ∈ Fn2 that
satisfy HxT = 0. We call syndrome of a word x ∈ Fn2 the quantity s = HxT .
The Hamming weight of a word x denoted by hw(x) is the number of its non-
zero positions. The Hamming distance between two words x and y, denoted by
dH(x, y) is the number of positions where they differ. The minimal distance of
a code C is d = minx,y∈C dH(x, y); by linearity d = minx∈C hw(x).

If t ≤ �d−1
2 �, for any syndrome s ∈ Fn−k2 , there is at most one word x ∈ Fn2

such that hw(x) ≤ t and HxT = s. A vector s of Fn−k2 is said to be t-decodable
(or simply decodable) in the code defined by H if there is such a word x, called
t-decoding of s. Knowing if a random syndrome s ∈ Fn−k2 is t-decodable in
the code defined by a random matrix H has been proven to be N P-complete
[BMvT78] and the cost of the best decoding algorithm [BLP08] is exponential in
the length and the rate of the code. But for more structured code, the decoding
can be easily performed.
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Goppa codes are subfield subcodes of particular alternant codes. For given
integers m and t, binary Goppa codes are of length n = 2m, of dimension k = n−
mt. Let us denote Gm,t the family of such Goppa codes; we have |Gm,t| = 2tm/t.
Their algebraic structure, which can be efficiently hidden [Sen02], provides a
good t-decoding algorithm. Thus, they are good candidates for a cryptographic
use. Moreover, as discussed in [CFS01], a random vector randomly distributed
over Fmt2 has probability 1/t! to be t-decodable in a Goppa code of parameters
m and t.

Courtois, Finiasz and Sendrier signature scheme maps a message to a t-
decodable syndrome in a public code by random sampling, using properties of
hash functions in the random oracle model. The knowledge of the algebraic
structure of the code, which has been previously hidden, is used to decode this
syndrome, providing the signature. The modified version of Courtois, Finias’z
and Sendrier signature scheme mCFS is given by the following algorithms:

– mCFS.Setup(1κ) : Select parameters m and t such that the t-decoding in a
Goppa code of length 2m, of dimension 2m − mt has complexity at least 2κ

and a hash function H : {0, 1}∗ −→ {0, 1}mt. Output the set of parameters
P = (m, t,H).

– mCFS.Gen(P) : Pick a random binary Goppa code C0 in Gm,t. Let H0 be a
parity check matrix of C0 and ∆H0 be a t-decoding algorithm in C0. Pick a
random non singular mt × mt binary matrix U and a random permutation
matrix P of size 2m × 2m. The public key is PK = H = UH0P and the
secret key is SK = (∆H0 , U, P ).

– mCFS.Sign(P ,M, SK = (∆H0 , U, P )) : Pick a random value r in
{1, . . . , 2mt} and compute s = H(M‖r). Test if U−1s is t-decodable in C0.
If not, repeat previous operations. Then, compute x′ = PxT = ∆H0(U

−1s),
the t-decoding of U−1s in C0. Since permutation does not alter the weight
of a word, x = x′P−1 is a t-decoding of s in the code defined by the parity
check matrix H . Output σ = (x, r) as a signature of m relatively to the
public key H .

– mCFS.Verify(P ,M, PK = H,σ = (x, r)) : Test if H(M‖r) = HxT and
hw(x) ≤ t.

4 Our Code-Based Threshold Ring Signature Scheme

We present a new code-based threshold ring signature scheme based on coding
theory. This scheme combines both techniques used by Bresson and al. presented
Sec. 2.3 and Courtois and al. presented Sec 3.

4.1 Description of the Scheme

Our scheme is described by the four following algorithms:

– Setup and Gen that are almost identical to those of mCFS signature scheme but
Setup fixes two new parameters: an indexed family (Ek,i) (i ∈ {1, . . . , N}) of
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random permutations that encrypt messages of mt bits with keys k of length
κ and an additional hash function Hκ : {0, 1}∗ → Fκ2 . In the following,
each user i of a ring N is associated to a key pair (PKi, SKi) where SKi =
(∆

H
(i)
0
, U (i), P (i)) and PKi = H(i) = U (i)H

(i)
0 P (i).

– Sign(P ,M,N ,SKL) that proceeds as follows:
1. Initialization:

(a) Compute a key k ← Hκ(M).
(b) Compute an initial value y0 ← H(M‖N )

2. For all user i ∈ N \L do
(a) randomly pick xi

R← {x ∈ F2m

2 |hw(x) ≤ t}
(b) randomly pick ri

R← {1, . . . , 2mt}
(c) compute yi ← H(i)xTi + H(M‖ri)

3. Compute an interpolation polynomial

P ∈ F2mt [X ] such that

⎧⎨⎩d(P ) = |N | − |L|
P (0) = y0
P (i) = Ek,i(yi) for all i ∈ N\L

4. For all users i ∈ L do
(a) xi ← ∅
(b) While xi = ∅ do

i. ri
R← {1, . . . , 2mt}

ii. x0
i ← ∆

H
(i)
0

(
U−1
i ·

(
E−1
k,i (P (i)) + H(M‖ri)

))
iii. If x0

i �= ∅ then xi ← x0
iP

−1
i

5. Output σ = (N, x1, . . . , xn, r1, . . . , rn, P ) as a ring signature.
Note that Step 4b proceeds to �(t!) decodings in average.

– Verify(P ,M, σ,N ) where σ = (N, x1, . . . , xn, r1, . . . , rn, P ) that outputs valid
if P (0) = H(M‖N ) and for all user i ∈ N , hw(xi) ≤ t and P (i) =
EHκ(M),i(H(i)xTi + H(M‖ri)) or outputs invalid otherwise.

4.2 Security Analysis

Consistency is straight forward and anonymity is easy to verify. Every polyno-
mial of degree N − � can be obtained by interpolation of N − �+ 1 values. The
threshold ring signature scheme interpolates some values yi given by an ideal
cipher Ek,i and then uniformly distributed. Thus, the signers set is perfectly
hidden by the algorithm: for given κ > 0, N , L ∈ N , M ∈ {0, 1}∗, where N
is a ring such that for all member i ∈ N in the ring (PKi, SKi) ← Gen(P),
the signature algorithm produces a signature σ = (N , x1, . . . , xn, r1, . . . , rn, P ).
For any user u ∈ L, a simulation Simulate(P ,M,N ,L,SKN\{u}) first picks a
random user j ∈ N , and “swap” the role of u and j: it performs the same initial-
ization step than Sign and computes for any member i ∈ (N ∪ {u})\(L ∪ {j}) a
syndrome y′i in the same way than Sign. It is easy to see that there is a random
sequence such that for all i ∈ (N ∪ {u})\(L ∪ {j}), (x′i, r

′
i) = (xi, ri). Then, the

simulation computes an interpolation polynomial P ′ ∈ F2mt from the N − �+ 1
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values y′i; since we consider that there is a random sequence such that y′i = yi
for all i, then P ′ = P . For any signer i ∈ L\{u}, the simulation computes cou-
ples (x′i, r

′
i) of words of F2m

2 of weight at most t and random values by using its
private key, in the same way Sign does; thus, there is a random sequence such
that, for all i ∈ L\{u}, (x′i, r

′
i) = (xi, ri). Finally, the simulation uses the private

key of j to compute a couple (xj , rj) such that rj
R← {1, . . . , 2mt}, hw(xu) ≤ t

and P (j) = EHκ,j(H
(j)xTj + H(m‖rj). Thus there is a random sequence such

that Simulate(P ,m,N ,L,SKN\{u}) = Sign(P ,m,N ,SKL).

Unforgeability requires a little more attention. We rely its difficulty to those of
two problems issued from coding theory. First, we shall consider the following
problem:

Definition 2 (Goppa Parameterized Bounded Decoding problem)

Input: A (n − k) × n binary matrix H and a syndrome s ∈ F2
n−k

Ouput: A word e ∈ Fn2 such that hw(e) ≤ n−k
log2 n

and HeT = s

Note that GPBD problem is stated for random codes but our scheme uses
Goppa codes. Thus we shall also consider the Goppa Code Distinguishing prob-
lem (GD).

Definition 3 (Goppa Code Distinguisher). A distinguisher D for a per-
muted Goppa Code is an algorithm which takes as input a parity check matrix
H and outputs a bit. D outputs 1 with probability Pr[H R← G(n, k) : D(H) = 1] if
H is a random binary parity check matrix of a Goppa code G(n, k) and outputs
1 with probability Pr[H R← B(n, k) : D(H) = 1] if H is a random binary matrix.
We call the advantage of a distinguisher D, denoted by AdvGDn,k (D), the following
quantity:∣∣∣Pr[H R← G(n, k) : D(H) = 1] − Pr[H R← B(n, k) : D(H) = 1]

∣∣∣ .
Denote by SuccGPBDn,k (τ) the probability of success of the best algorithm that
solves the Goppa Parameterized Bounded Decoding problem in time τ and de-
note by AdvGDn,k (τ) the advantage of the best distinguisher for a permuted Goppa
code in time τ .

Theorem 2 (Unforgeability). Let A be an �-adversary against the scheme
presented Section 4.1 that outputs a forgery in time τ with probability ε. A makes
qH queries to a hash oracle H, qE queries to a cipher oracle Eand qΣ queries to
a signing oracle Σ. A also can corrupt the private keys of �− 1 users. We have:

ε ≤ qEqH(N − t+ 1)
(
N

t

)
SuccGPBDn,k (τ ′) +AdvGDn,k (τ ′)

− qE
2mt

(
N

�

)(
qE

N − �

)N−�

where n = 2m, k = 2m − mt and τ ′ = Nmt2qΣ.
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Proof. Let ε be the probability of success in time τ of A. We describe how to use
it to build an algorithm D that inverses GPBD problem. D receives as inputs a
random mt × 2m binary matrix H∗ and a random vector s∗ of Fmt2 . Its goal is
to output x∗ such that hw(x∗) ≤ t and H∗(x∗)T = s∗.

D randomly picks a user i0 in the set of users in the ring N and a subset
I0 ⊂ N of �− 1 elements such that i0 �∈ I0. D hopes that all corrupted users are
in I0. It sets i0’s public key PKi0 to H∗ and for all users i ∈ I0, sets key pair
(PKi, SKi) by running the generation algorithm. For all other users, D uses a
parity check matrix of random permuted Goppa as public key: their private keys
will never be used. D also randomly picks two indexes qE,0 and qH,0 respectively
in [1, . . . , qE ] and [1, . . . , qH] where qH is the total number of queries to the hash
oracle H and qE is the total number of queries (E or E−1) to the cipher oracle.
Finally, it picks a random vector s̃ in Fmt2 . Then, A is initialised with the set of
public keys {PKi}i∈N .

D classically simulates the oracle H by answering a random value in Fmt2 for
each new query and maintaining a list of queries. It also simulates the oracle E
according to a permutation by answering a random value for each new query.
But to the qH,0-th query to the hash oracle, it answers by s̃ and to the qE,0-th
query E−1 to the cipher oracle, it answers by s∗ + s̃. Note that D must maintain
a list of the queries such that it remembers whether x is the answer to a query
E−1(y) or y is the answer to a query E(x). A may corrupt up to �− 1 users by
querying its private key. D trivially answers the queries but fails if A queries the
key of user i0.

D simulates the signing oracle Σ for any set of signers by picking at random el-
ements of the signature and adapting the answers of the oracle E . More precisely,
for a query (M,L), D simulates the queries Hκ(M) and H(M‖N ) that fixes k
and y0, picks a random polynomial P of degree N − � such that P (0) = y0 and
picks N random vectors x1, . . . , xn of Fn2 of weight less than t and N random val-
ues r1, . . . , rn. Then, D simulates H, fixes the values for Ek,i(H(i)xTi +H(M‖ri))
to P (i) and answers (m,x1, . . . , xn, r1, . . . , rn, P ) as signature. With probabil-
ity ε, A outputs a forgery σ∗ = (M∗, x1, . . . , xn, r1, . . . , rn, P

∗). By definition,
P ∗(0) = H(M∗‖N ) and for all i ∈ N , P ∗(i) = EH(M),i(H(i)xTi ). If H∗xTi0 = s∗

and hw(xi0 ) ≤ t, then D outputs xi0 .

Bresson and al. showed that, with probability at least ε+ qE
2mt

(
N
�

)(
qE
N−�

)N−�
,

A produces a forgery such that there are at most N − � cipher queries to E for
P ∗(i). Thus there are at least � indexes i such that A made a decrypt query
to E for P ∗(i); let I∗ be the set of those indexes. Since A can corrupt up to �
users, there are at least an index i∗ such that A did not corrupt its private key.
Let q∗ be the index of the query to E for P ∗(i∗). With probability at least 1/qE ,
q∗ = qE,0; with probability at least 1/(n− �+1), i∗ = i0 and with probability at
least 1/qH the qH,0-th query to the hash oracle was (M‖ri0). Then xi0 has weight
less that t and satisfies HxTi0 = E−1

H(M),i(P (i0)) + H(M‖ri0) = s∗ + s̃ + s̃ = s∗.
Thus, xi0 is a t-decoding of s∗.

The running time τ ′ of D is essentially the running time τ of A and the cost of
NqΣ syndrome computation, whose cost is mt2. Note that replacing the public
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key of user i0 does not alter the probability of success of the simulation more than
the advantage AdvGD2m,2m−mt(τ

′) of the best adversary at solving the permuted
Goppa code distinguishing: otherwise D would provide a better distinguisher. We
denote εGPBD = SuccGPBD2m,2m−mt(τ

′) and εGD = AdvGD2m,2m−mt(τ
′); we obtain:(

ε+
qE
2mt

(
N

�

)(
qE

N − �

)N−�
+ εGD

)
1

qEqH(N − t+ 1)
(
N
t

) ≤ εGPBD

this concludes the proof.

4.3 Efficiency of the Proposed Scheme

In these section, we give some secure parameters for our scheme and the resulting
efficiency of the protocol.

Choice of Parameters. As seen in the security proof, our scheme will be un-
forgeable w.r.t. insider corruption if both GD and GPBD problems are difficult
for the public code. The best known algorithm that solves GPBD problem are
[BLP08] and an unpublished generalized birthday attack stated by Bleichen-
bacher. They work exponentially in the length and rate of the code. Very few is
known about the distinguishability of Goppa codes. In practice, the only struc-
tural attack [LS01] consists in enumerating all Goppa codes and then testing
equivalence with the public key. The code equivalence problem can be solved
efficiently thanks to Sendrier’s algorithm [Sen00]. They are 2tm/t binary t-errors
correcting Goppa codes of length n = 2m. Due to properties of Goppa codes,
only one out of mn3 must be tested and finally, the cost of equivalence testing
cannot be lower than n(tm)2 (a Gaussian elimination) [CFS01]. Then a distin-
guisher for permuted Goppa codes has a cost not less than tm2m(t−2) elementary
operations.

In order to reduce the number of decoding needed to sign a message, the
parameter t has to be as small as possible, say no more than t = 10. Originally,
the authors of [CFS01] proposed to use parameters m = 16 and t = 9 but this
set of parameters is subject to attacks via generalized birthday attack. Choosing
parameters m = 22 and t = 9 prevents this attack, reaching its time complexity
to 281.4 [FS09].

Performances. Each public key H(u) is a 2m × mt matrix which takes about
1.2MBytes to be stored for parameters m = 16 and t = 9 and 99MBytes for
parametersm = 22 and t = 9. For a ring ofN users, signature generation requires
N − � syndrome computing (whose cost is mt2), n polynomial evaluations and
�(t!) decodings, each of them requiring t2m3 operations. Verification requires
N + 1 polynomial evaluations and N syndrome computations.

For a ring of N users, the signature is composed of N vectors xi of F2m

2 of
weight less than t, N random values ri in {0, . . . , 2mt − 1} and an interpolation
polynomial of degree N − � where � is the number of signers. As mentioned in
[CFS01], there is no need to store the full vector xi but only an index character-
izing the vector from the

∑t
j=1

(2m

j

)
vectors of weight less than t. The storage
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of the polynomial of F2mt of degree N − � requires (N − �) × mt bits. Thus the
size of the signature is⎛⎝⎢⎢⎢⎣log2

t∑
j=1

(
2m

j

)⎥⎥⎥⎦+ 2mt+ 1

⎞⎠× N − mt�.

With parameters (m, t) = (16, 9), this quantity is equal to 414N − 144� bits but
achieve a security level of 263.3. With parameters (m, t) = (22, 9) that reach a
security level of 281.7, the size of a signature is 579N − 198� bits.

5 Conclusion

We have proposed a new �-out-of-N threshold ring signature scheme which is
provably secure in both (equivalent) random oracle and ideal cipher models and
which achieves a small signature size (414N − 144� and 579N − 198� bits for
respective security levels of 263.3 and 281.7). However, the large size of public
keys and the relative slowness of signature generation are prohibitive for a short
term practical use of our scheme. Many efforts are actually made to reduce the
size of the keys used in code-based cryptography (see [BCGO09, MB09] for a
recent proposal and a work in progress) and a significant advance should greatly
improve the performances of our scheme.
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Abstract. The question of location privacy has gained a special signif-
icance in the context of location-based services for mobile devices. The
challenge is to allow the users to benefit from location-based services
without disclosing their private location information unless necessary
and that too only to the party eligible to receive that information. In
this work, we investigate the so-called nearby friend problem. The prob-
lem has emerged in the context of location-based services such as social
networking and is closely related to the issue of location privacy. In par-
ticular, we are interested in the question of how Alice can efficiently
determine whether a friend Bob is at a nearby location or not. This has
to be achieved without a third party and where Alice neither reveals any
information about her own location nor can she extract any informa-
tion about Bob’s actual location when they are not nearby. Similarly, no
eavesdropper should be able to gain any information about their actual
locations, whether they are actually nearby or not. The problem becomes
more challenging as both Alice and Bob are restricted in computational
power and communication bandwidth. Starting from an earlier work by
Zhong et al., we formalize the protocol definition and the security model
and then propose a new protocol that solves the problem in the proposed
security model. An interesting feature of the protocol is that it does not
depend on any other cryptographic primitive, thus providing a new ap-
proach to solve the nearby friend problem. Our basic protocol and its
extensions compare favorably with the earlier solutions for this problem.
The protocol might be of use in other privacy-preserving applications.

1 Introduction

The rapid advent of mobile computing and consequent introduction of new tech-
nologies like smart phones and GPS together with the ever increasing mobility
of the human populace have opened up the possibility of a plethora of services
that could not even be conceived of a decade earlier. Different kinds of location-
based services are increasingly becoming popular among the users of mobile
devices [20]. However, this also calls forth a concern about the privacy of the
location information of the users of such devices. So one is confronted with two
contradictory goals – users would like to take advantage of different services
that cater to their needs based on a particular location while at the same time
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protecting the very privacy of that location information. How to meet these ap-
parently contradictory goals, or in other words to get the best of both worlds, is
a major technological challenge.

In this work we focus our attention on the following scenario. Suppose a
user Alice, in a distributed mobile computing environment, wants to determine
whether one of her friends, Bob, is in a nearby location or not. This is the so-
called nearby friend problem and is relevant in the context of social networking
and buddy tracking applications [2]. The trivial solution for Alice is to contact
Bob and either reveal her own location to him or ask Bob to do so. But this comes
at the cost of compromising one of the friend’s location privacy altogether even
when they are not actually nearby. Instead the users would like to have some
control over their private location information so that Alice can learn Bob’s
location only if they are actually nearby and Bob is willing to reveal his location
to Alice. The problem might be solved in a privacy-preserving way if we assume
the existence of an ideal trusted third party with whom each party maintains a
secret communication channel. Parties send their private location information to
that trusted party who then decides whether they are nearby or not and informs
them accordingly.

Based on the above discussion one may notice that the nearby friend prob-
lem is somewhat akin to the socialist millionaires’ problem [15] in cryptology
where the two participants learn whether they both have the same wealth or
not without first disclosing their wealth. This can also be viewed as a concrete
instantiation of the privacy-preserving set operations problem [16] or the two-
party private matching problem [11]. However, the challenge here is to solve it
in the resource-constrained environment of mobile devices.

We would like to solve the problem in a distributed setting without taking
recourse to any trusted party and moreover solve it in such a way that the
computational requirement, communication bandwidth, and number of commu-
nication rounds can be kept to a minimum. This, of course, has to be achieved
in a secure way in an adversarial environment, i.e., the participants need the as-
surance that neither its communicating partner receives any information other
than what (s)he is entitled to nor should it be possible for an eavesdropper to
infringe upon their privacy.

Some initial attempts to solve the above problem can be found in the works
of Atallah and Du [3] and Køien and Oleshchuk [17]. However, the solutions are
less than satisfactory as the former requires a semi-trusted third party and sev-
eral rounds of communications while the latter has some security vulnerabilities
(see [22]). In a pioneering paper, Zhong, Goldberg and Hengartner [22] proposed
three protocols to solve the above problem based on a cryptographic primitive
called homomorphic encryption [12]. They assume that Alice and Bob establish
a secure channel that provides both confidentiality and authentication prior to
running the protocols. Such a communication channel can be established, for
example, through a TLS connection [8]. Their first protocol, called Louis, re-
quires the service of an online semi-trusted third party. The second protocol,
called Lester, does not require any third party but has the disadvantage that,
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with some additional work, Alice might be able to determine Bob’s location
even if they are not considered to be in nearby locations. The third protocol,
called Pierre, does not suffer from any of the above deficiencies. It is quite effi-
cient, in particular when one uses the homomorphic encryption scheme due to
Cramer, Genarro and Schoenmakers [7] in the elliptic curve setting. Zhong [21]
later proposed another protocol, called Wilfrid, based on the idea of private
set intersection of [11]. This too makes use of homomorphic encryption and a
communication channel that is both confidential and authenticated.

Our Contribution. We take the work of Zhong et al. [22] as our point of de-
parture by formalizing the statement of the nearby friend problem as well as
its security model. We then proceed to propose a new protocol, called N FP-I,
in the line of Diffie-Hellman type of simple password exponential key exchange
(SPEKE) [14]. An advantage of our protocol is that it only assumes the existence
of an authenticated channel between the two parties, not a confidential one. Also
note that we do not require any other cryptographic primitive such as homomor-
phic encryption that was used in [22] and [21]. The protocol is quite simple and
we propose it as a new primitive that might serve as a building block for more
complex privacy-preserving applications such as private matching [11]. We pro-
vide a security analysis to show that the protocol meets its desired objectives in
the security model under the decision Diffie-Hellman assumption and a variant
of it. We also discuss several extensions of this basic protocol. Our protocol is
quite efficient and compares favorably with the currently best protocol known,
Wilfrid, that achieves the same functionality (see Table 1).

Table 1. Performance comparison between Wilfrid and NFP-I when implemented in
a group G where the discrete log problem is assumed to be hard. Both protocols require
two communication steps. The message size is the number of elements of G.

Alice → Bob Bob → Alice decide whether nearby:
# exps message size # exps message size # exps by Alice

Wilfrid 4 4 3 2 1
NFP-I 1 1 2 2 1

The remainder of this paper is organized as follows. In Section 2 we introduce a
formal definition of the nearby friend problem and its security model. In Section 3
we propose the basic protocol N FP-I and discuss its security. In Section 4 we
discuss some extensions of the basic primitive. Finally we conclude in Section 5
with some open problems in this emerging area.

2 Problem Definition and Security Model

In this section we propose a formal definition and security model for the nearby
friend problem. The protocol definition is developed from the informal descrip-
tion of the problem in [22].
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2.1 Nearby Friend Problem

Let L be the publicly known set of all possible locations. The elements of L can
be expressed in two-dimensional coordinates such as floating point numbers or
integers to represent some geographical location or block on the surface of the
earth. Alternatively, they can be some description of a location such as the ZIP
code or the street address. We assume there exists a natural notion of nearbyness
for the elements of L such that given L1, L2 ∈ L it is easy to decide whether
they are nearby or not. For example, when locations are represented by Cartesian
coordinates, given two such elements L1, L2 ∈ L one can compute the Euclidean
distance between them. In this context, we say two location points L1, L2 ∈ L
are nearby (denoted as L1 ≡ L2) if the Euclidean distance between L1 and L2
is less than or equal to some threshold distance d.

A scheme to solve the nearby friend problem is a two-party protocol N FP
between an initiator I and a responder R. It is assumed that both parties agree
upon a description of L (and the corresponding notion of nearbyness) before run-
ning the protocol. It is also assumed that the parties establish a communication
link which is authenticated, but not necessarily confidential, before executing
the protocol. Such an authenticated link can be established, for example, by de-
riving a session key using a standard key agreement protocol and then MACing
all messages using that session key. I’s input to N FP is her secret location
information LI ∈ L while R’s input is his secret location information LR ∈ L.
Both parties exchange some messages based on their secret input and what they
receive from the other party. At the end, the protocol generates an output for
the initiator, namely the initiator will learn whether LI ≡ LR or not. (The
responder does not learn any information about the initiator’s location LI .)

2.2 Security Model

To model (all) possible leakage of information, we consider two different kinds of
computationally-bounded adversaries – passive and active. In the former case,
the target of an eavesdropper who observes the exchanged messages in a protocol
run is either to extract any information about I or R’s true location or to just
decide whether they are actually nearby or not. The case of a passive adversary
is relevant in our context as we only assume the existence of an authenticated
link between I and R. The work of Zhong et al., in contrast, assumes the ex-
istence of a communication channel (such as TLS connection) which provides
both confidentiality and authentication. To prevent active attacks, on the other
hand, one of I or R is treated as the adversary where the goal is to extract
any information about the other party’s location. In the following description,
a protocol transcript stands for the collection of all the messages transmitted
between the two parties during a typical protocol run.

Passive Adversary. We would like to provide the adversary with as much
power as possible while limiting its task to the minimum. Intuitively the goal is
to show that even if the adversary has some a priori information about I’s (or
R’s) possible locations it should not be able to distinguish the protocol transcript
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for one location of I (or R) from any other. We also want the assurance that
after observing the protocol messages the adversary should not be able to infer
whether the participants are actually nearby or not. In other words, the protocol
transcript when I and R are actually nearby should not be distinguishable from
a protocol transcript when they are not. This is formally modeled through the
following two games between an adversary A and a challenger C. In the following
and all the subsequent games between A and C it is assumed that the set of
location points L and the measure of nearbyness are publicly known and hence
available to A.

The initiator’s privacy. This is modelled by the following game.
G1: A chooses two distinct locations LI,0, LI,1 ∈ L for I and one location LR ∈ L
for R.1 The challenger C selects b ∈R {0, 1} and provides A with a protocol
transcript corresponding to LI,b as I’s location and LR as R’s location. A
outputs a guess b′ and wins if b = b′. We define the advantage of the adversary
A in attacking the scheme N FP with respect to I’s location as

AdvINFP,A =
∣∣∣∣Pr[b = b′] − 1

2

∣∣∣∣ .
We say that N FP preserves location privacy for I against a passive adversary
if AdvINFP,A is negligible for all possible A.

The responder’s privacy. The aim of the adversary in this case is similar to that
in the former. Formally we have:
G2: A chooses one location LI ∈ L for I and two distinct locations LR,0, LR,1 ∈
L for R. C selects b ∈R {0, 1} and provides A with a protocol transcript corre-
sponding to LI as I’s location and LR,b as R’s location. A outputs a guess b′

and wins if b = b′. We define the advantage of the adversary A in attacking the
scheme N FP with respect to R’s location as

AdvRNFP,A =
∣∣∣∣Pr[b = b′] − 1

2

∣∣∣∣ .
We say that N FP preserves location privacy for R against a passive adversary
if AdvRNFP,A is negligible for all possible A.

A protocol secure against a passive adversary in terms of the above two games
gives the assurance that after observing a protocol transcript neither can the
adversary distinguish between two locations of I (or R) nor would it be possible
to decide whether the participants are actually nearby or not.

Active Adversary. The aim here is to model the case of malicious participants.
In particular, we are interested in formulating the security assurance of I vis-a-
vis R and vice versa. Since one of the participants in the protocol is now treated
as the adversary, (s)he is allowed to behave arbitrarily in the protocol run.
1 It should be understood that there are no further restrictions on A’s choices for

LI,0, LI,1 and LR. For example, A can choose LR to be nearby to LI,0 or LI,1 (or
both).
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Initiator’s privacy wrt the responder. This is stronger than the case of G1.
Namely, we have the following:
G3: A plays the role of R and chooses two distinct locations L0, L1 ∈ L for I. C
picks Lb where b ∈R {0, 1} as I’s location point and executes the protocol with
A. A’s task is to output a guess b′ of b and it wins if b = b′. The advantage of
the adversary A in the role of the responder in attacking the scheme N FP with
respect to I’s location is defined as

AdvINFP,R =
∣∣∣∣Pr[b = b′] − 1

2

∣∣∣∣ .
We say that N FP preserves location privacy for I against an active adversary
if AdvINFP,R is negligible for all possible A.

Responder’s privacy wrt the initiator. Note that it is easy for a malicious I to
verify a guess L′

R of R’s location by choosing her own location as nearby to L′
R.

This kind of probing attack cannot be prevented because of the very nature of
the problem. The only safeguard for R is not to participate in the protocol if he
has some reason to believe that I is behaving suspiciously. The aim here is rather
to ensure that a malicious I does not learn any information (other than what
the protocol entitles her) about R’s location LR when the latter is uniformly
distributed in L. This is captured in the following game.
G4: A initiates the protocol and provides the challenger with a message as in a
valid protocol run. In response C chooses a location point LR for R uniformly
at random from the set of all possible locations L and completes the protocol
with A based on that location. A’s task is to output a guess L′

R of R’s location
and it wins if L′

R ≡ LR. Suppose there are (at most) k locations in L which are
considered as nearby to a particular location. The advantage of the adversary
A in the role of the initiator in attacking the scheme N FP with respect to R’s
location is defined as

AdvRNFP,I =
∣∣∣∣Pr[L′

R ≡ LR] − k + 1
|L|

∣∣∣∣ .
For a justification of the threshold probability (k+ 1)/|L|, see the argument for
Claim 3 in Section 3. We say that N FP preserves location privacy for R against
an active adversary if AdvRNFP,I is negligible for all possible A.

3 The Protocol

We introduce our protocol to solve the nearby friend problem. The protocol,
which we call N FP-I, can also be viewed as a basic primitive to solve more
complex private matching problems as we discuss later. The protocol resembles
a Diffie-Hellman type of key exchange [9], and enjoys some attractive features
in terms of performance and security.
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3.1 Construction

A location corresponds to some point on a surface area such as the surface of
the earth. In the protocol we assume that the set of locations consists of some
distinct areas which are disjoint. Each such area defines a cell and each cell is
identified by a unique description. This cell identifier can be the name of a city
or the ZIP code of an area or some other description such as the name of an
institution. For example, “Cirencester-Royal Agricultural College” (the venue of
the IMA Conference on Cryptography and Coding) or “London-Royal Holloway
College” can serve as the identifier of two different cells. Such a description
should be fixed a priori and two parties are said to be nearby if and only if they
belong to the same cell. Zhong has proposed a similar strategy for the Wilfrid
protocol [21].

N FP-I protocol. In the protocol description, L is the set of locations, G is a
multiplicative group of prime order p, and g is a publicly known generator of G.
More concretely, we will take G to be the group E(Fq) of points on a randomly
selected elliptic curve E of prime order p defined over a finite field of prime
order q ≈ 2256. For example, E could be the curve P-256 specified in NIST’s
FIPS 186-3 standard [10]. Furthermore, we will assume that 3 ≤ |L| ≤ 240, and
that the adversary’s running time is bounded by 280. Under these conditions,
the adversary is unable to compute discrete logarithms in G. Moreover, since
the discrete logarithm problem in G is random self-reducible, the adversary is
also unable to solve a single instance given up to 240 instances of the problem.

Before executing the protocol, the parties need to establish an authenticated
channel between them. We also need an injective function f that, given the
description of a cell L ∈ L, maps it to a unique non-identity element of G. Such
a map-to-point function can be obtained in a way as suggested in [5,6,13] in the
case where G is an elliptic curve group. For such an instantiation, f behaves
like a random function in the sense that the discrete logarithm of f(L) to the
base g is presumably hard to compute; f is treated as a random oracle in the
security argument of [5,6]. We assume that f is public. The protocol is presented
in Figure 1.

Public information: A set of locations L, a multiplicative group G = 〈g〉 of prime
order p, and an injective function f : L → G∗.
Input: The initiator I’s input is her secret location LI and the responder R’s input
is his secret location LR.

1. I computes gI = f(LI), chooses α ∈R Z∗
p, and computes a = gα

I . I sends a to R.
2. Upon receiving a from I, R first computes gR = f(LR), chooses β ∈R Z∗

p, and
computes b1 = gβ

R and b2 = aβ. R sends (b1, b2) to I.
3. Upon receiving (b1, b2) from R, I computes b′2 = bα

1 . I outputs nearby if b′2 = b2;
otherwise it outputs notnearby.

Fig. 1. The NFP-I protocol
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The protocol N FP-I is quite efficient in terms of computation and communi-
cation bandwidth. After the execution of the protocol I will find R to be nearby
if they belong to the same cell.

3.2 Security

We show that the protocol N FP-I maintains all the security attributes de-
fined in Section 2. In particular, I’s location privacy is preserved information
theoretically while that of R is based on the hardness of the decision Diffie-
Hellman problem for a passive adversary and a variant of it in case of an active
adversary.

Claim 1. The initiator’s privacy is information theoretically secure with respect
to a passive as well as an active adversary. That is, no adversary can win the
game G1 or G3 with nonzero advantage even when it has unbounded computa-
tional power.

Argument. We establish the claim wrt G1; the case for G3 is analogous. A picks
two distinct locations LI0, LI1 for I and one location LR for R. Suppose that
f(LI0) = gI0, f(LI1) = gI1 , and f(LR) = gR. Suppose that C selects b = 0;
the case b = 1 is similar. Then C provides A with a transcript of the form
〈gαI0

, gβR, g
αβ
I0

〉 where α and β are randomly selected from Z∗
p. But G is a cyclic

group and hence gI0 = gkI1
for some k ∈ Z∗

p. So the transcript can also be
viewed as 〈gkαI1

, gβR, g
kαβ
I1

〉. Hence A cannot determine whether this transcript
corresponds to (LI0 , LR) where the randomizer for I is α or to (LI1 , LR) where
the randomizer for I is kα. �
Recall that the decision Diffie-Hellman (DDH) problem in G is to decide, given
〈g, gα, gβ, h〉, whether h is equal to gαβ , where α, β ∈R Zp, and h is either gαβ

or a random element of G. The decision Diffie-Hellman assumption in G asserts
that the DDH problem is hard in G.

Claim 2. The location privacy of R is preserved with respect to a passive ad-
versary under the decision Diffie-Hellman assumption in G where f is treated
as a random oracle.

Reductionist argument. Given an adversary A with a non-negligible advantage ε
in game G2 we show how to construct a DDH solver. The challenger is provided
with a DDH problem instance 〈g, gα, gβ, h〉. A selects one location LI for I and
two distinct locations LR0 and LR1 for R. At any point during the game A can
ask for an evaluation of f on any location in L. For each such distinct query C
chooses a distinct random x ∈ Z∗

p and returns gx as the output of f . Let’s suppose
f(LI) = gxI , f(LR0) = gy0 and f(LR1) = gy1 . C chooses a random b ∈ {0, 1}
and returns the transcript 〈(gα)xI , (gβ)yb , hxI 〉. If h = gαβ then this is a proper
protocol transcript for LI , LRb

. Otherwise, the transcript is independent of b.
Thus, A’s probability of success in the former case will be 1/2 ± ε and that in
the latter case will be 1/2. Hence, C has an advantage ε/2 in solving the DDH
problem. On the other hand, if DDH problem is easy in G then one can trivially
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break the protocol. Hence the security of N FP-I in terms of G2 is equivalent to
the hardness of DDH problem in G. �

Claim 3. No computationally bounded malicious initiator will be able to find
the location of the responder with a probability of success greater than 2/|L|.

Heuristic argument. We first consider a probing attack. A guesses some location
L1 ∈ L, computes f(L1) ∈ G∗, and sets g̃ = f(L1)α for some α ∈ Z∗

p as
its message. As a response the challenger chooses a location LB uniformly at
random from L, computes h = f(LB) ∈ G∗, chooses β ∈R Z∗

p, and provides
(b1, b2) = (hβ , g̃β) as the message coming from the responder. If bα1 = b2 A
returns L1, otherwise it returns L2 ∈R L \ {L1}. The probability of success for
A in this game is 2/|L|. Since we cannot prevent this kind of probing attack we
want the assurance that this is the best A can do.

Let S = {h1, h2, . . . , hn} be the (random) subset of G which corresponds to
the range of f . A knows S because A has access to f . Note that for any g̃ ∈ G∗

and i ∈ {1, . . . , n} we have hi = g̃ki for some ki ∈ Z∗
p. But the randomness

property of f assures that no computationally bounded A can find two distinct
elements hi, hj ∈ S so that A knows the discrete log of both hi, hj to the base
g̃ ∈ G∗ of its choice. If A can successfully find LB given (hβ , g̃β) then that
amounts to finding h = f(LB) where LB ∈R L and where g̃ is chosen by A. Let
h = g̃γ for some γ ∈ Z∗

p. We consider two mutually exclusive cases: (i) A knows
γ and (ii) A does not know γ.

(i) A knows γ. In this case A can easily obtain h as h = g̃γ . But h = f(LB)
is chosen from S after A has output g̃. So the best A can do is to use a plug-
and-pray strategy – choose a random h′ ∈ S and then set g̃ = (h′)k for some
known k. The probability that h = h′ in this case is 1/|L| and this corresponds
to L1 = LB in the probing attack discussed above.

(ii) A does not know γ. If A can successfully predict LB then that amounts to
finding h ∈ S given 〈g̃γβ , g̃β〉 where g̃ ∈ G is first chosen by A after which β ∈R
Z∗
p and h = g̃γ ∈R S are chosen by the responder. This is a hard problem when

A has no role in the choice of g̃ and h = g̃γ comes from the whole group G. (This
is the so-called divisible computational Diffie-Hellman (DCDH) problem where
the task is to find gx/y given 〈g, gx, gy〉 for randomly selected x, y ∈ Z∗

p. In [4]
it has been shown that the DCDH problem is equivalent to the computational
Diffie-Hellman problem.) We assume that DCDH remains hard even when the
adversary is allowed to choose the base g̃ and g̃γ comes from the random subset
S. So it would appear that the best strategy for A is to return a random guess
h′ ∈ S of h. The probability of success in this case is again 1/|L| and this
corresponds to the case L2 = LB in the probing attack. �

This heuristic argument can be further formalized in terms of a reduction to
a non-standard version of the decision Diffie-Hellman problem as shown below.
Abdalla and Pointcheval introduced several such interactive assumptions in [1].
These are termed by the authors as chosen-basis decisional Diffie-Hellman as-
sumptions (CDDH1 and CDDH2) and password-based chosen-basis decisional
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Diffie-Hellman assumptions (PCDDH1 and PCDDH2). They showed how one
can use a PCDDH1 solver (resp. PCDDH2 solver) to solve the CDDH1 prob-
lem (resp. CDDH2 problem). They also provided lower bounds for CDDH1 and
CDDH2 problem in the generic group model of Shoup [18]. However, Szydlo [19]
observed that one can easily break the CDDH1 and CDDH2 problem. No such at-
tack is yet known for the other two assumptions, namely PCDDH1 and
PCDDH2.

Here we show how an adversary in terms of the game G4 against N FP-I can
be used to construct a PCDDH2 solver. Note that the reduction only goes in
one way and it is not known whether an efficient adversary against PCDDH2
will also make N FP-I vulnerable.

Password-based chosen-basis decisional Diffie-Hellman assumption (PCDDH2).
Let G = 〈g〉 be a cyclic group of some prime order p, and let P be a random
function from {1, . . . , n} into G. The problem is defined in terms of the following
interactive game between an adversary B and a challenger C.

B, given oracle access to P , chooses two elements g1, g2 ∈ G and gives them
to C. C chooses a random k ∈ {1, . . . , n}, a random r ∈ Z∗

p, and a random
b ∈ {0, 1}. C then obtains u = P(k) and computes (g1/u)r. If b = 0, it outputs
〈gr2, (g1/u)r, k〉, otherwise it outputs 〈gr2 , h, k〉, where h is a random element of
G. The task of B is to guess the value of b. The PCDDH2 assumption asserts
that this problem is hard in G.

Reductionist argument. Given an adversary A with a non-negligible advantage
against N FP-I in G4, we show how one can construct an algorithm B to solve
the PCDDH2 problem. B sets |L| = n and then uses P to simulate f . When
A sends some g̃ as a message from the initiator it sets g1 = 1, where 1 is
the identity element of G and g2 = g̃ and sends them to C. When it receives
the challenge 〈g3, g4, k〉 from C, B sends 〈g−1

4 , g3〉 as the corresponding message
in N FP-I. If g4 = (g1/u)r then this corresponds to 〈ur, g̃r〉, which is a valid
protocol transcript for a location LB such that f(LB) = P(k). Otherwise the
transcript is independent of LB. Hence, any advantage of A in finding LB can
be converted to an advantage of B to solve the PCDDH2 problem. �

4 Extensions

In this section we consider several extensions of the basic primitive. So far we have
treated locations as detached cells and two parties are considerednearby if and only
if they are in the same cell. This is perfectly acceptable for some applications where
cells are few and far between (say the large cities of the world). In such a scenario
if the protocol informs I that R is not nearby then with overwhelming probability
they are not in geographically close locations. However, this might not be the case
if cells are dense. As an illustrative example consider the following situation. I’s
location identifier is “London-Royal Holloway College-Founder’s Building” and
that of R is “London-Royal Holloway College-Windsor Building”. Since these two
buildings are represented as different cells, N FP-I will return them as not nearby
even though they are physically quite close.



246 S. Chatterjee, K. Karabina, and A. Menezes

One way to model such scenarios is to allow a hierarchy of cells, where cells
in the lowest level represent smallest areas (say a building), which are contained
in the next level cells (say a street), and so on. Such a granular description
was first proposed by Zhong in [21]. Returning to our previous example, using
a two-level description I’s location will be {“London-Royal Holloway College”,
“London-Royal Holloway College-Founder’s Building”} and that of R {“London-
Royal Holloway College”, “London-Royal Holloway College-Windsor Building”}.
I and R may first run the protocol on the higher-level set and if they are in
the same cell then on the lower level. However, they can easily send all the
information in a single run.

We have described the situation with � = 2 level hierarchy. However it is easy
to extend it to any � > 2 depending upon the application. The modified version
maintains all the security attributes of the original protocol because both I and
R use different randomizers for different levels. The protocol will also maintain
its better performance over Wilfrid.

For still some other applications it might be more useful to consider a con-
tiguous area. Suppose I is at some geographical location on the surface of the
earth and is interested to know whether R is within a disc of radius d centered
at her own location. In other words, I should be able to find R as nearby as long
as the Euclidean distance between the two does not exceed d.

The Lester protocol in [22] provides a solution to this problem. However, the
solution is not fully satisfactory. To determine whether R is within a distance
d, I needs to solve a discrete log problem in the range of [0, d · 2t], where t is
some safety factor chosen by R. On the other side, R has no knowledge (and
control) on d. In fact, the protocol allows I to extract some information about
R’s location even when the distance between them is greater than d. For example,
with twice (resp. three times) as much work I can determine whether R is within
a distance 2d (resp. 3d).

In the Pierre protocol [22], instead of considering a disc around I, a contiguous
surface area is divided into square grid cells of side length d and the coordinates
of each party is expressed in integral units of d. After execution of the protocol, I
will find R if they are in the same cell or R is in one of the eight adjacent cells.

In the following we use a slightly different discretization technique. Instead
of using square grid cells we tile the surface by regular hexagons (see Figure 2).
This gives a better approximation of a circle around I’s location. We note that
Pierre will also benefit from this kind of discretization strategy.

Assume that the locations are expressed in integer coordinates (X,Y ), with
the positive X and Y axes making an angle of 60 degrees and each hexagonal
cell has side length d. With this representation, the centers of the cells will be at
the points (dx, dy) with x, y integers and x − y ≡ 0 (mod 3). Given a location
(XA, YA) we can find the center of the corresponding cell (xA, yA) as follows.
Let x0 = �XA/d� and y0 = �YA/d�. If x0 − y0 ≡ 1 (mod 3) then (xA, yA) =
(x0, y0 + 1); else if x0 − y0 ≡ 2 (mod 3) then (xA, yA) = (x0 + 1, y0); else if
XA+YA ≤ d(x0+y0+1) then (xA, yA) = (x0, y0); else (xA, yA) = (x0+1, y0+1).
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Fig. 2. Discretization of the surface into hexagonal cells

In the protocol, I first finds the center of the cell she is in (labelled I0) and
then the center of the six adjacent cells (labelled I1, . . . , I6 as shown in Figure 2).
After executing the protocol I will find R to be nearby if and only if he is in
one of these seven cells. She will also learn exactly in which cell he is. Let M
be the set of the hexagonal cells where each cell is identified by its center point.
Note that M depends upon d and I and R must agree upon this value prior to
running the protocol.

Let G be a multiplicative group of prime order p and let g be a publicly known
generator of G. In the protocol description, f : M → G∗ is an injective function
that takes as input a center point of a cell and outputs a random element in
G∗. Such a map-to-point function can be constructed in an analogous way as
described in Section 3.1. Before executing the protocol, the parties establish an
authenticated channel between them. The protocol is presented in Figure 3.

Security. In the protocol N FP-II, I uses a separate randomizer αj for each Ij ,
hence the argument in Claim 1 for N FP-I can be trivially extended to N FP-
II. So the location privacy of the initiator is information theoretically preserved
with respect to a passive as well as an active adversary. Similarly, for a passive
adversary we can extend the argument in Claim 2 to show that breaking the
location privacy of R is equivalent to solving the DDH problem in G. Thus
N FP-II provides the same assurances as N FP-I in terms of the security games
G1, G2 and G3.

However, the situation is a little different when we consider the location pri-
vacy of the responder with respect to a malicious initiator. I can now deviate
from the protocol and choose seven different cells (not necessarily adjacent) as
her input. If R happens to be in one of these cells then I can easily detect that
in the verification step (i.e., Step 3) of N FP-II. If not it returns a random cell
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Public information: A description of the set of locations M, a multiplicative group
G = 〈g〉 of prime order p, and an injective function f : M → G∗.
Input: The initiator I’s input is her secret cell and the six adjacent cells LI =
(I0, I1, I2, I3, I4, I5, I6) and the responder R’s input is his secret cell LR.

1. For 0 ≤ j ≤ 6, I computes gI,j = f(Ij), chooses αj ∈R Z∗
p, and computes aj = g

αj

I,j .
I sends (a0, a1, a2, a3, a4, a5, a6) to R.

2. Upon receiving (a0, a1, a2, a3, a4, a5, a6) from I, R first computes gR = f(LR),
chooses β ∈R Z∗

p, and then computes b = gβ
R and hj = aβ

j for 0 ≤ j ≤ 6. R sends
to I the tuple (b, h0, h1, h2, h3, h4, h5, h6).

3. Upon receiving (b, h0, h1, h2, h3, h4, h5, h6) from R, I computes h′
j = bαj for 0 ≤

j ≤ 6. I outputs nearby if hj = h′
j for some 0 ≤ j ≤ 6. Otherwise it outputs

notnearby.

Fig. 3. The NFP-II protocol

from the rest. So its probability of success in the probing attack will be 8/|L| (it
is 2/|L| in N FP-I). In Claim 3 we argued that the probing attack is the best
strategy for a malicious initiator in N FP-I. A similar argument can be put forth
for N FP-II also based on related but stronger complexity assumptions.

Performance. In N FP-II, I performs seven group exponentiations to compute
her message while R performs eight exponentiations to generate his message. I
needs at most seven more exponentiations to decide whether R is nearby or not.
The message from I to R consists of seven elements of G and that from R to I
consists of eight elements of G. After executing the protocol I will find R to be
nearby if they belong to the same cell or if R is in one of the six cells adjacent
to I’s. I will also learn that R is in the jth cell wrt I if h′j = hj , 0 ≤ j ≤ 6.

In Table 2 we give a rough performance comparison of Pierre, the Pierre
protocol modified to use hexagonal tiling (which we call Pierre∗), Wilfrid using
hexagonal tiling, and N FP-II. We assume that the protocols are implemented
in a multiplicative group in the discrete log setting. We only count exponenti-
ation in the underlying group G as that is the most computationally intensive
part. All the protocols require two communication steps and the messages are
elements of G. Note that Pierre and Wilfrid both require that the parties estab-
lish a communication channel that is both confidential and authenticated prior
to running the protocol and uses homomorphic encryption, while N FP-II only
requires an authenticated channel and does not use any other cryptographic
primitive.

In terms of overall performance, Pierre is currently the best choice in this
case, while N FP-II is marginally better than Wilfrid. In N FP-II we can further
reduce the message size from R to I by individually hashing the group elements
h0, . . . , h6 using a standard hash function and sending the hash digests. Such an
optimization is not possible for the other protocols as the messages consist of
ciphertexts of the underlying homomorphic encryption scheme.
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Table 2. Performance comparison between Pierre, Wilfrid and NFP-II

I → R R → I decide whether nearby:
# exps message size # exps message size # exps by I

Pierre 6 6 8 6 ≤ 3
Pierre∗ 6 6 6 4 ≤ 2
Wilfrid 16 16 5 2 1
NFP-II 7 7 8 8 ≤ 7

Remark 1. In Pierre, a malicious responder can always fool the initiator into
believing that they are in nearby locations. This may not be a problem as long
as I can physically check that R is not actually in the location where she is
supposed to be. Nor is this an issue for the security of I as R cannot gain any
information about her location. In fact our security model does not account for
this kind of dishonest responder. However, our protocol and Wilfrid appear to
resist such behavior.

5 Concluding Remarks

We formulated a definition and security model of the nearby friend problem in
the context of location-based services. We proposed a protocol that efficiently
solves the problem in the proposed security model. Our approach is distinct
from the previous solutions to this problem as it does not depend on any other
cryptographic primitive and requires only an authenticated link. We believe that
the basic primitive we proposed will be useful in other contexts.

The nearby friend problem can be viewed as a concrete instantiation of the
more abstract private matching problem. In the latter a client having secret input
set X interacts with a server having secret input set Y to determine X∩Y . This
problem has been solved earlier using homomorphic encryption and the solution
further specialized for the nearby friend problem.

As in the nearby friend problem, our basic primitive may act as a distinct (and
perhaps efficient) alternative to the homomorphic encryption based approach to
private matching. For example, N FP-I can be used to determine whether two
singleton sets are equal or not. Similarly, its hierarchical version discussed in
Section 4 can be used to find the intersection of two ordered lists. It would be
interesting to investigate whether this approach can be extended to solve the
general private matching problem or whether it is applicable in the multi-party
setting.
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Abstract. One major drawback with using Sakai–Kasahara based
identity-based secret keys is that it appears hard to distribute the trust
of the key generation centre. For other types of identity based key this
distribution can be done using non-interactive and simple techniques. In
this short note we explain how this can be done for Sakai–Kasahara style
keys using a simple application of a general technique from multi-party
computation. The self-checking property of the resulting private key we
show can be used to insulate the protocol from malicious adversaries for
many practical parameter sizes.

1 Introduction

Distributing the trust placed in trusted third parties is an important problem
in the real world, for example one can distribute the signing key for a certificate
authority. This is not only an important issue from the point of view of security,
but it also helps maintain resilience against network outages or to allow a form
of disaster planing. Many of the techniques in this area are based on the method
of threshold secret sharing introduced by Shamir in [20]. The techniques used
can be applied in many discrete logarithm based situations, and have even been
applied to the more complex area of RSA style signature generation [22]. In 1984,
Shamir [21] also invented a form of cryptography based on identities as opposed
to public keys. There is a similar need for the trusted centre to be distributed
in IBE schemes, just as the CA should be in certificate based systems.

Currently, there are three main types of identity based secret key in use, all of
which are based on pairings on elliptic curves, namely full-domain hash, commu-
tative blinding and exponent inversion. A classification which was first proposed

M.G. Parker (Ed.): Cryptography and Coding 2009, LNCS 5921, pp. 252–262, 2009.
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in [9]. The first set of full-domain hash style keys, is typified by the systems
of Boneh–Franklin [8] and Sakai et al [17]. In this construction distribution of
the key generation centre is easily performed using many of the ideas which
have been used in the traditional discrete logarithm based public key setting.
The second set, denoted by the term commutative blinding, is typified by the
Boneh–Boyen encryption scheme [6] (BB-1). Here modifications can be applied
to the techniques applied in the full-domain hash case to obtain a distributed
key generation centre based on threshold cryptography [7].

The third type of keys are those introduced by Sakai and Kasahara in [18],
which are often referred to as those of exponent inversion type. These provide the
most efficient, in the random oracle model, ID-based encryption scheme known.
A basic ID-based scheme was using this concept was proved secure in [11], then
a more efficient and conceptually simpler hybrid ID-based encryption scheme
was presented in [12]. This key construction can also be used to construct iden-
tity based signatures and signcryption [2], and a related construction (also of
exponent inversion type) underlies the second Boneh–Boyen encryption scheme
(BB-2). Both the schemes in [2] and [12] are in the current IEEE 1363.3 draft.

The problem that this paper investigates is that the exponent inversion type
keys currently have no efficient distributed key generation solution. In this paper
we present a solution, which requires for each ID-based key a secure multi-party
computation to be performed amongst the servers. This is not ideal, for the
other types of ID-based keys one does not require a complex distributed key
extraction protocol in the distributed generation setting. However, the protocol
we require is very simple and requires only one execution of a distributed dis-
tributed multiplication protocol modulo q, where q is the size of the underlying
groups, followed by each server executing some simple local group computations.
We focus on the Sakai–Kasahara type keys, since these are the most relevant for
practice (due to the above mentioned standardisation effort), however we will
also note the changes which are needed for the BB-2 type keys as well.

The multi-party computation protocol we shall use is in the information the-
oretic model. The basic ideas in this setting can be traced back to the papers of
Ben-Or et al [4] and Chaum et al [10]. The protocol we shall use, using Shamir
secret sharing and the evaluation of what is in effect a trivial arithmetic circuit,
was presented in [16] and then extended to any linear secret sharing scheme
in [13]. The simple technique for deriving modular inverses in this setting, which
we use, was first introduced in [1]. The exact protocol details we propose to
use can be found explicitly described in the survey by Cramer et al [14]. We
present some experimental data on our protocol which makes use of the VIFF
system [24].

We end this introduction by pointing out that our protocol is neither deep, nor
very high-tech. It is simply applying a known technique from multi-party com-
putation to the problem situation, and then noticing that the resulting protocol
is not as inefficient as one usually obtains for multi-party computation protocols
for real world problems. What is surprising is that no-one has noticed this before
in the community looking at Sakai–Kasahara based pairing protocols.
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2 Notation and Problem Statement

Let G1,G2 and GT denote groups of large prime order q, which are equipped
with a bilinear pairing,

t̂ : G1 × G2 −→ GT .

We assume that G1 and G2 are generated by P1 and P2. We will write G1 and
G2 additively and GT multiplicatively.

We assume there is some global master secret x and we define master public
key for the scheme by R = [x]P1. The user secret key extraction algorithm for
Sakai–Kasahara keys is to represent an identity ID as an element in Fq and then
compute the public key QID and the private key SID via the equations

QID = R + [ID]P1,

SID =
[

1
x+ ID

]
P2.

The problem with constructing keys as above is that there is a single point of
failure, in that the person who holds the master secret key x is able to compute
all secret keys. Hence, any compromise of the computer which holds x leads to
a break of the entire system. A standard solution to this problem is to share x
amongst a number of computers in such a way that no-one computer can recover
x, but that a coalition of the computers can still compute SID. It is how this
calculation is performed that we treat in this paper.

We first define explicitly the parameters of our problem. We let 1 < t ≤ m
denote integers; the value m denotes the number of computers which will share
the value of x, whilst t denotes the threshold value, i.e., the maximum number
of colluding parties the protocol can tolerate without compromising the privacy.
On the other hand t + 1 colluding computers will be able to recover the secret
x. We will develop a protocol, in the honest-but-curious case, that succeeds as
long as more than 2t computers are honest-but-curious. For the malicious case
we require that more than 3t parties take part in the computation. The number
of parties which take part in an interaction will be denoted by n, hence n ≤ m.

We need to define the following three algorithms, each of which take as input
the group descriptions (G1,G2,GT ).

Setup(): This is a distributed protocol which runs between the m servers and
results in each server obtaining a share xi of the master secret x. The public
output of this protocol is the value R = [x]P1. Note, that a coalition of upto t
entities should not be able to determine any information about x.

Extract(ID): This is a distributed protocol run between a set of n servers, where
t ≤ n ≤ m. It produces n outputs S(i)

ID which are the shares of the secret value
SID. In the case of honest-but-curious parties we require that n > 2t, whilst in
the case of malicious parties we require that n > 3t.

Combine(S(1)
ID , . . . , S

(n)
ID ): This is algorithm is run by the user. It takes the shares

produced by the Extract(ID) protocol and produces the valid user secret key SID.
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We assume without loss of generality that the n servers returning a value of S(i)
ID ,

are numbered 1 to n.

The goal in the case of honest-but-curious adversaries is that as long as the
number of colluding servers is less than or equal to t, then no information leaks
about the underlying master secret x due to any run of the protocol. In the
case of malicious adversaries we also wish to ensure that colluding malicious
adversaries, not only cannot learn any extra information, they should also not
be able to make the user accept an invalid secret key in the combine stage.

One should note that, unlike the Boneh-Franklin or Boneh-Boyen key situ-
ation, the Extract(ID) method for Sakai–Kasahara keys which we present is a
relatively complicated protocol and not a simple algorithm run independently
by each server. We leave it as an open problem to construct a more efficient
method to perform the distributed Extract(ID) method.

3 Basic Protocol

In this section we detail exactly how the three protocols above are executed
in the case of honest-but-curious adversaries. Our protocol makes use of the t-
out-of-n secret sharing scheme of Shamir [20], and the multi-party computation
protocol described in [13,14].

Setup(): Using the property that Shamir secret sharing is a PRSS (Pseudo-
Random Secret Sharing) scheme the m servers produce a t-out-of-m secret shar-
ing of a random number x modulo q. Underlying this sharing is a polynomial
Q(X) modulo q of degree t and each server i obtains the value xi = Q(i).
The servers compute the value Ri = [xi]P1, and then the master public key is
computed by

R =
m∑
i=1

[ci]Ri

where

ci =
m∏

j=1,j �=i

−j
i − j

.

Extract(ID): Assume n > 2t servers are active, they execute the following proto-
col which applies a technique of [1] to our problem.

– Locally the servers compute a sharing (zi) of the value of z = x+ ID. This
can be computed by simply adding the shares (xi) of x with the public
constant ID.

– Again using the PRSS the servers obtain a sharing (ri) of a random integer r.
– Using a single invocation of the honest-but-curious multiplication protocol

from [13,14] the servers compute a sharing (si) of s = z · r (mod q).
– The servers recover s by revealing their shares si.
– Locally the servers then compute wi = ri/s (mod q).
– The servers locally compute S

(i)
ID = [wi]P2, and send this value securely to

the requesting user. The servers then terminate.
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Note that the values wi computed by the servers are a sharing of the w =
1/(x + ID) (mod q). Note, that we cannot reveal wi directly since that would
allow the parties to recover x, hence w is revealed indirectly via the values of
S

(i)
ID . This does not cause a problem due to our Combine method.

Combine(S(1)
ID , . . . , S

(n)
ID ): The user secret key is then recovered via

SID =
n∑
i=1

[c′i]S
(i)
ID

where

c′i =
n∏

j=1,j �=i

−j
i − j

.

The above protocol assumes, due to the multiplication protocol used in the
Extract(ID) stage, that 2t + 1 ≤ n. So for the minimal value of t = 1, we have
that n must be at least three. From general results on multi-party computation
such a bound is the best possible [4,10].

3.1 Security Analysis

We argue that the above protocol provides a secure distributed key generation
process in the presence of honest-but-curious adversaries. Firstly, note that the
distribution of keys (both master keys and user secret keys) is identical to the
situation where we have a single authority. Secondly, note that the underly-
ing multi-party computation protocol is information theoretically secure against
honest-but-curious adversaries (assuming at most t dishonest servers).

Each user in the combine stage obtains their secret key, yet the shares they
obtain of this key reveal no other information, due to the properties of the
underlying secret sharing scheme. To see this we note there is a trival reduction
from a the view of the user in the distributed key generation situation to one
in the non-distributed key generation situation: In the distributed game the
simulator simply extracts the private key SID from the non-distributed game,
and then generates at random a Shamir secret sharing (si) of zero. The random
shares in the distributed game are then given by

S
(i)
ID = [si]P2 + SID.

Note that the discrete logarithms of the S(i)
ID form a random Shamir secret sharing

of the discrete logarithm of SID, thus the simulation is perfect.

4 Security against Malicious Adversaries

In moving to the case of malicious adversaries one needs to deal with two issues.
Firstly the servers could behave maliciously in the multiplication protocol step.
Secondly, they may carry out this step correctly, yet attempt to subvert the key
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generation protocol by passing an incorrect share back to the user. We deal with
these two issues in two distinct ways.

The first issue simply requires that we replace the honest-but-curious multi-
plication protocol with one which is secure against malicious adversaries. This
requires that we must have n > 3t, and the number of honest participants is
equal to at most n− t, (since t+ 1 dishonest participants can trivially break the
protocol). This ensures that at least n− t parties at the end of the protocol run
obtain a valid sharing of the w. All parties then produce S(i)

ID = [wi]P2 as before.
Except, we are only guaranteed that n− t of these values are correct, since up to
only at least n − t parties are honest and hence will validly follow the protocol,
this is the our second issue.

Solving this seems to pose a major stumbling block, however, we side-step
this issue by using the fact that Sakai–Kasahara keys are self checking. Namely,
for a valid pair of public/private keys (QID, SID) we have that

t̂(QID, SID) = t̂(P1, P2).

We also use that fact that in practice the values of t and n will not be that
large, typical examples could indeed be t = 1 and n = 4. We thus present a
different Combine algorithm for our protocol which runs in time O(nCn−t). This
is clearly inefficient for large values of n, yet for the values one could consider in
a practical application it is very manageable.

Hence, we can execute the following version of the Combine algorithm. The
combiner goes through each of the nCn−t subsets of {S(1)

ID , . . . , S
(l)
ID} of size n− t,

and performs the recombination step with this subset only. The recombined key
is then verified to be correct. If it is correct then we terminate, otherwise the
next subset of size n − t is taken. As long as at least n − t of the servers are
honest the above protocol will output the correct secret key.

If we examine the situation where we keep n to be as small as possible, i.e.
n = 3t+ 1, then the workload of this step is equal to

Wt =
(3t+ 1)!

(2t + 1)! · t!

applications of the combining algorithm. For small values of t we find that this
work-effort is given by the values in the following table.

t 1 2 3 4 5
Wt 4 21 120 715 4368

We note that this operation is not performed by the servers, but is performed by
the client on receipt of the shares from the servers. Hence, the increased time may
not be considered too much of a burden as it is only performed once per secret
key request, and is performed by the requestor. Additionally, the requestor can
trade space for time when recombining different S(i)

ID subsets. Firstly, the [c′i]S
(i)
ID

values can computed only once and reused, and secondly, having computed SID

from the subset {S(1)
ID , . . . , S

(l)
ID} it is easy to compute SID from {S(2)

ID , . . . , S
(l+1)
ID }
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by subtracting [c′1]S
(1)
ID and adding [c′l+1]S

(l+1)
ID . All subsets can be computed in

this fashion using only a field subtraction and addition for each subset.
We note that whilst this might not be a polynomial time solution, it is very

efficient for the type of values which would be used in practice. Also it is pro-
tecting against a denial-of-service attack by the malicious servers against the
clients, as opposed to the malicious servers trying to recover the underlying
master secret key. We also note that most key centre distribution techniques for
certificate based schemes are only secure in the honest-but-curious model, since
key distribution is used more for resilience and the servers are themselves heavily
protected.

5 Implementation Results

The question arises as to whether the above protocol will be suitable in a practi-
cal situation. A key generation centre for an identity based cryptographic system
will need to produce a large number of keys for distinct identities ID. Hence,
if the protocol is too slow then the protocol will not be suitable in real life
situation.

Recently a number of practical systems for performing secure multi-party
computation have been developed. Of specific interest in our situation if the
VIFF (Virtual Ideal Functionality Framework) system [24,15], which itself grew
out of the SIMAP [23] and SCET [19] systems. The SIMAP system has been used
very successfully in practice, most notably for the Danish sugar beat auction [5].

VIFF is a fully asynchronous framework for specifying secure multi-party com-
putations. It is implemented as a Python library. Each player executes a Python
program, and the programs communicate using standard SSL connections. VIFF
provides the communication infrastructure and computations primitives.

The implementation of the basic protocol from Section 3 is shown below as a
function called extract. The function references a global variable runtime, which
is an instance of the central Runtime class provided by VIFF. Among other
things, this class provides methods for generating Shamir shares using PRSS
(prss share random) and for reconstructing such shares (open). Due to exten-
sive use of operator overloading, the addition (x i + ID) and the multiplication
(z i ∗ r i) are in fact done on secret shared values, the latter invoking a secure
multiplication protocol.

def extract(ID, x i):
z i = x i + ID
r i = runtime.prss share random(Zq)
s i = z i ∗ r i
s = runtime.open(s i)
w i = gather shares([r i, s])
w i.addCallback(lambda (r i, s): r i / s)
return w i
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After opening s i the players wait until until r i and s are ready. The result w i is
prepared and an anonymous function is added to a list of callbacks; this function
is executed to make the local division.

The Zq variable represents a finite field with a 256 bit prime modulus. The
modulus used is

q = 0x80AE401A5230143EFC6ADD72979CAEADB078F3F2EFD3EE07C901B94BC45C61F5.

This is the group order of a Barreto-Naehrig curve [3], and is typical of a group
order which would be used in practice.

Using a value of t = 1, the minimum value of n for the honest-but-curious
case is n = 3, whilst the minimum value of n for the malicious case is n = 4.
We found the following run-times for the above protocol. We ignore the time
for the point multiplication step of the protocol as this is done outside the
VIFF system and is essentially the cost of a non-distributed key generation
centre. Hence, the following times denote the extra cost required for performing
distributed key generation as opposed to centralised generation. All times are
given in milli-seconds and count wall-time, hence it includes the time needed for
data transmission etc.

Semi-Honest Semi-Honest Malicious
n = 3 n = 4 n = 4
3 ms 4 ms 6 ms

The machines used in the benchmarks were equipped with hyper-threaded Intel
Xeon CPUs (3.06 GHz clock speed) and 1 GiB of RAM. They were connected
with a fast LAN, which is not typical of a real world installation but does give a
lower bound on the resources required. Our computation time does not include
the final local elliptic curve point multiplication. Hence the times represent the
minimum extra time per key generation that are required by the servers to deal
with a key generation request, compared with the case where a single centralised
server is used.

All results are the average time for one inversion when executing a bulk com-
putation with 100 inversions in parallel. Doing many operations in parallel is
important in order to minimise the impact of network latencies, otherwise the
latency will dominate the time. If only a single inversion is done, the time per
inversion roughly doubles.

As can be seen from our timings the overall extra time needed to compute each
identity based secret key is relatively small and would be easily accommodated in
a deployed system, for example one could easily accommodate upto one million
key extraction requests per day. We conclude that distributed key generation for
Sakai–Kasahara style keys requires a relatively straight forward application of
standard techniques from multi-party computation.

6 Extensions

We end the paper by outlining two extensions to the methods introduced in this
paper.
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6.1 Interactive Threshold Signature Scheme

We note that our techniques allow one to distribute the signing phase of the
Zhang et al. signature scheme [25]. The public key of this scheme is R = xP2,
and to sign a message one computes

S =
[

1
x+H(m)

]
P1

for some hash function H : {0, 1}∗ → Fq. Verification is performed by checking
whether

t̂(S,R+ [H(m)]P2) = t̂(P1, P2).

Note, that we have reversed the groups in this scheme compared to the Sakai–
Kasahara scheme so as to obtain shorter signatures. Each signature is thus given
by an element of G1, and verification requires only one pairing computation. It is
clear that our techniques for distributed key generation of Sakai–Kasahara keys
also apply to distributing the signing operation for this signature scheme.

6.2 Distributed BB-2 Key Generation

Our techniques apply to many exponent-inversion key generation procedures, the
most notable other system in this family is the BB-2 scheme from [6]. The BB-2
key generation procedure is as follows: For a master public key of (P1, Rx, Ry) =
(P1, xP1, yP1), with master secret key (x, y) ∈ Fq × Fq, the key extraction phase
is given by SID = (r,KID), where r ∈ Fq is chosen at random and

KID =
[

1
ID + x+ r · y

]
P2.

We note that our techniques easily extend to this situation by the following
distributed extraction algorithm:

– Using the PRSS property the servers obtain a sharing (ri) of a random
integer r.

– The servers compute a sharing (si) of s = r · y using the distributed multi-
plication protocol.

– The servers locally compute a sharing (zi) of z = ID + x+ s.
– The servers then invert z using the inversion method of [1], to obtain a

sharing (wi).
– The servers then output (ri) and [wi]P2.

This clearly requires two multiplication protocols, as opposed to one for the
Sakai–Kasahara keys. The requesting user can recover r from (ri) using the
standard recovery method for Shamir secret sharing, and the value of KID from
[wi]P2 via the method described previously. Note, that BB-2 keys are also self-
checking since we must have

t̂([ID]P1 +Rx + [r]Ry ,KID) = t̂(P1, P2).

Hence, our self-checking procedure for preventing malicious servers responding
with invalid keys will still apply.
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Abstract. Key predistribution schemes (KPSs) and one-time broadcast
encryption schemes (OTBESs) are unconditionally secure protocols for
key distribution in networks. The efficiency of these schemes has been
measured in previous works in terms of their information rate, that is, the
ratio between the length of the secret keys and the length of the secret
information that must be stored by every user. Several constructions with
optimal information rate have been proposed, but in them the secret keys
are taken from a finite field with at least as many elements as the number
of users in the network. This can be an important drawback in very large
networks in which the nodes have limited computational resources as, for
instance, wireless sensor networks. Actually, key predistribution schemes
have been applied recently in the design of key distribution protocols for
such networks.

In this paper we present a method to construct key predistribution
schemes from linear codes that provide new families of KPSs and
OTBESs for an arbitrarily large number of users and with secret keys
of constant size. As a consequence of the Gilbert-Varshamov bound, we
can prove that our KPSs are asymptotically more efficient than previous
constructions, specially if we consider KPSs that are secure against coali-
tions formed by a constant fraction of the users. We analyze as well the
KPSs that are obtained from families of algebraic geometry linear codes
that are above the Gilbert-Varshamov bound, as the ones constructed
from the curves of Garcia and Stichtenoth. Finally, we discuss how the
use of KPSs based on algebraic geometry codes can provide more efficient
OTBESs.

1 Introduction

Key predistribution schemes and one-time broadcast encryption schemes are
unconditionally secure protocols for key distribution in networks.

M.G. Parker (Ed.): Cryptography and Coding 2009, LNCS 5921, pp. 263–277, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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A key predistribution scheme (KPS) is a method by which a trusted authority
(TA) distributes secret information among a set of users in such a way that every
user in a group in some specified family of privileged subsets is able to compute a
common key associated with that group. In addition, certain coalitions of users
(forbidden subsets) outside a privileged subset must not be able to find out any
information on the value of the key associated to that subset.

One-time broadcast encryption schemes (OTBES) are closely related to key
predistribution schemes. Such a scheme consists of two phases. In the first one,
the trusted authority privately distributes some secret information to every user.
In the second phase, the TA selects a member in the family of privileged subsets
and broadcasts through an open channel an encrypted common key for that
subset. Every user in the privileged subset must be able to decrypt the common
key by using its secret information, while any forbidden coalition obtains no
information on the common key. Broadcasting some public information in an
OTBES makes it possible, in general, to reduce the amount of secret information
that every user receives in the predistribution phase.

Key predistribution schemes were introduced by Blom [3], while the first one-
time broadcast encryption scheme was proposed by Berkovits [2]. Several other
authors have studied these topics [1,4,5,6,14,18,23,26,27,29,30,31]. The survey by
Stinson [29] contains detailed descriptions of the main proposed constructions.
The complexity of KPSs and OTBESs is evaluated in most of these works in
terms of their information rates, that is, the ratio between the length of the
common keys and the length of the secret information stored by the users or the
length of the broadcast message.

In some recent works [12,13,19,21], the KPSs proposed by Blom [3] and by
Blundo et al. [5] have been used to design key distribution protocols for wireless
sensor networks, in which the nodes have strong limitations in their computing
and communication capabilities.

The KPSs in [3,5] are based on the evaluation of multivariate symmetric
polynomials over a finite field Fq. The common keys are elements in Fq, and
every user receives as its secret information several elements in Fq. According
to the bounds in [4], these schemes have optimal information rate. Nevertheless,
the size of the finite field Fq depends on the number n of users because it is
required that q ≥ n. Therefore, for a network with many nodes, as it is the case
for wireless sensor networks, the bit length of the secret information of every
user is increased by a logn factor (unless otherwise is stated, all logarithms
in this paper are defined to the base 2). The construction of KPSs in which
the size of the common keys is independent from the number of users have
important implications in the design of key distribution protocols for wireless
sensor networks.

Observe that a similar problem occurred in secret sharing. In the threshold
secret sharing scheme by Shamir [28], which is the keystone of many secure multi-
party computation protocols, the secret is an element in a finite field Fq, where
q must be greater than the number of users. By using algebraic geometric error
correcting codes, Chen and Cramer [9] introduced a new family of secret sharing
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schemes that makes it possible to perform secure multi-party computation over
fields whose size is much smaller than the number of users. One of the ingredi-
ents of the construction in [9] is the connection between linear codes and secret
sharing [22], which is based on the generalization by Brickell [7] of Shamir’s
polynomial-based secret sharing scheme to linear secret sharing schemes.

Padró et al. [26,27] observed that most of the proposed key predistribution
schemes and one-time broadcast encryption schemes are linear , that is, all ran-
dom variables involved in those schemes are defined by linear mappings. In this
way, the previous polynomial-based constructions of KPSs and OTBESs [3,5,6]
were generalized to linear KPSs and OTBESs in [26,27].

2 Our Results

Similarly to secret sharing schemes, there exists a connection between linear key
predistribution schemes and linear codes, which is described in this paper for
the first time. This connection is exploited to find new constructions of KPSs
by using linear codes with good properties, specially algebraic geometry codes.
Our techniques provide families of KPSs in which the secret keys have constant
size for an arbitrarily large number of users, while in previous constructions
the length of the secret keys grows with the logarithm of the number of users.
In the case that the KPSs must be secure against a constant fraction of the
users, which is a reasonable assumption in wireless sensor networks, we prove
that our KPSs are asymptotically more efficient than the ones given by Blundo
et al. [5]. The proof is based on the Gilbert-Varshamov bound. We discuss as
well the properties the KPSs that are obtained from algebraic geometry codes
on the explicit family of curves with many rational points given by Garcia and
Stichtenoth [15]. Finally, we apply these new techniques to the construction of
new, more efficient OTBESs.

3 Definitions and Notation

Given a set U of users with |U| = n, consider a family P ⊆ 2U of privileged subsets
and a family F ⊆ 2U of forbidden subsets . In a (P ,F , n)-key predistribution
scheme, or (P ,F , n)-KPS for short, every user i ∈ U receives from a trusted
authority (TA) a fragment ui ∈ Ui such that, for every P ∈ P , a common key
kP ∈ K can be computed from ui by every user i ∈ P , while the coalitions of
users F ∈ F with F ∩ P = ∅ do not obtain any information about kP from
their fragments. Formally, if Ui and KP , for every i ∈ U and P ∈ P , denote
the random variables corresponding, respectively, to the fragment ui and the
common key kP , then for every P ∈ P ,

– H(KP |Ui) = 0 for every i ∈ P , and
– if F ∈ F is such that P ∩ F = ∅, then H(KP |(Uj)j∈F ) = H(KP ).

Observe that all common keys kP are taken from the same set K. Moreover, we
assume that all values of kP are equally probable, that is, H(KP ) = log |K| (all
logarithms in this paper are defined to the base 2).
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Clearly, the family F of forbidden subsets must be monotone decreasing. In a
(P , w, n)-KPS, where 1 ≤ w ≤ n, the family F consists of all subsets of U with
at most w users. In a (t,F , n)-KPS (or a (≤ t,F , n)-KPS), where 2 ≤ t ≤ n,
the family P of privileged subsets consists of all subsets of exactly t users (or,
respectively, at most t users) of U . In this paper, we are interested mainly in
(t, w, n)-KPS.

A (P ,F , n)-one-time broadcast encryption scheme, or (P ,F , n)-OTBES for
short, consists of two phases. In the first one, the key predistribution phase,
the TA privately distributes to every user i ∈ U a fragment ui ∈ Ui. In the
second one, the broadcast phase, for a selected privileged subset P ∈ P and a
secret message key mP ∈ K, the TA publicly broadcasts a broadcast message
bP ∈ BP that is an encryption of mP . Every user i ∈ P can compute mP from its
fragment ui and the broadcast message bP , while, even after seeing the broadcast
message, the users in a forbidden subset F ∈ F with F ∩ P = ∅ do not obtain
any information about kP . As before, we can formally state these properties by
using entropies.

– H(KP |(Ui)i∈U ) = H(KP ) for every P ∈ P . That is, secret message mP is
independent from the fragments distributed in the key predistribution phase.

In addition, for every P ∈ P ,

– H(KP |BP , Ui) = 0 for every i ∈ P , and
– if F ∈ F is such that P ∩ F = ∅, then H(KP |BP , (Uj)j∈F ) = H(KP ).

The information rate of a KPS is defined as ρ =
log |K|

maxi∈U H(Ui)
, that is, the

ratio between the length of the common keys and the maximum length of the
fragments stored by the users. The information rate of an OTBES is defined
analogously, but in this case we need a new parameter because we have to take
into account as well the length of the broadcast message. The broadcast infor-

mation rate of an OTBES is ρB =
log |K|

maxP∈P H(BP )
. Instead of the information

rates, in this paper we will mainly measure the efficiency of KPSs ant OTBESs
by the actual bit-length of the fragments stored by the users and the bit-length
of the broadcast message. This is due to the fact that in the known constructions
that optimize the information rate, the length of the secret keys increases with
the number of users, and hence the same happens with the fragments stored by
the users.

4 Known Constructions of Key Predistribution Schemes
and One-Time Broadcast Encryption Schemes

4.1 Key Predistribution Schemes with Optimal Information Rate

We describe in this section some KPSs proposed in the literature. Their common
feature is that, by the bounds given in [4], they have optimal information rate.
More details about these constructions can be found in [29].



KPSs and OTBESs from Algebraic Geometry Codes 267

A trivial (P , n, n)-KPS is constructed by distributing, for every P ∈ P , a
random common key kP ∈ K to all users in P . For instance, in a trivial (t, n, n)-

KPS, every user receives as its fragment
(
n − 1
t − 1

)
elements in the set K of

possible values of the common keys.
In the (≤ n,F , n)-KPS by Fiat and Naor [14], the set K is assumed to be an

abelian group. For every F ∈ F , a random value sF ∈ K is distributed to all
users in U −F . The common key for a set P ⊆ U is kP =

∑
F∈F ,P∩F=∅ sF . In a

Fiat-Naor (≤ n,w, n)-KPS, the fragment of every user consists of
w∑
j=0

(
n − 1
j

)
elements in K.

Blom [3] presented a (2, w, n)-KPS based on polynomial evaluation. This
scheme was generalized by Blundo et al. [5] to the (t, w, n)-KPS that is de-
scribed in the following. Recall that a polynomial f on t variables is said to
be symmetric if f(x1, . . . , xt) = f(xσ1, . . . , xσt) for every permutation σ. In the
Blundo et al. (t, w, n)-KPS, the set K is a finite field Fq with q ≥ n = |U|.
Consider n distinct elements s1, . . . , sn in the finite field Fq. These values are
known by all users. The TA chooses uniformly at random a symmetric polyno-
mial f(x1, x2, . . . , xt) on t variables and coefficients in Fq with degree at most
w on each variable. Every user i ∈ U receives as its fragment ui the symmetric
polynomial on t− 1 variables that is obtained from f by fixing the first variable
to si, that is,

ui(x2, . . . , xt) = f(si, x2, . . . , xt).

The common key corresponding to a privileged subset P = {i1, i2, . . . , it} is

kP = f(si1 , si2 , . . . , sit) ∈ Fq.

Since the polynomial f is symmetric, this value can be computed by every

user in P . Therefore, the fragment ui of every user consists of
(
t+ w − 1
t − 1

)
elements in the field Fq, because this is the number of coefficients of a sym-
metric polynomial on t − 1 variables with degree at most w on each vari-
able. Therefore, the fragment bit-length of the Blundo et al. (t, w, n)-KPS is(
t+ w − 1
t − 1

)
log q ≥

(
t+ w − 1
t − 1

)
logn.

4.2 Tradeoff between Storage and Communication in One-Time
Broadcast Encryption Schemes

It is not possible to optimize both information rate and broadcast information
rate of OTBESs. A (t, w, n)-OTBES with broadcast information rate equal to 1,
which is the best possible value, is easily constructed from any given (t, w, n)-
KPS. For a privileged set P ⊆ U , the broadcast message is bP = mP+kP , that is,
the message mP is encrypted by using the secret common key kP corresponding
to the set P in the considered KPS. On the other extreme, a (t, w, n)-OTBES
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that optimizes the information rate is trivially constructed. In the key predistri-
bution phase, every user i ∈ U receives a random key ki ∈ K. For a privileged set
P ⊆ U , the broadcast message for mP ∈ K is bP = (bi)i∈P = (mP +ki)i∈P ∈ Kt.
Observe that the amount of secret information stored by the users is decreased
by increasing the length of the broadcast message.

Several constructions providing a good tradeoff between storage and com-
munication have been proposed [1,6,25,29,30,31]. The main problem of some of
these proposals is that the secret message has to be taken from a very large set.
Therefore, even though good values for the information rates are achieved, the
actual lengths of the broadcast message and the secret information stored by the
users are too large.

Blundo, Frota Mattos and Stinson [6] showed how to construct, for a prime
power q ≥ n and for every integer � with 1 ≤ � ≤ t, a (t, w, n)-OTBES whose
information rate and broadcast information rate are, respectively,

ρ =
(
t − 1
� − 1

)/(
t+ w − 1
� − 1

)
and ρB =

�

t
.

Observe that an OTBES with broadcast information rate equal to 1 is obtained
when � = t, while the OTBES with � = 1 optimizes the information rate. These
two schemes coincide with the easy constructions we described at the beginning
of this section. A tradeoff between the information rate and the broadcast infor-
mation rate is provided by the different (t, w, n)-OTBESs that are obtained by
taking the different values of � = 1, . . . , t.

The KIO construction [29] is a method to construct OTBESs by combining
KPSs with secret sharing schemes. This method was applied in [30] using combi-
natorial designs. By using ramp secret sharing schemes instead of perfect ones,
the OTBESs in [29,30] were improved in [31].

5 Linear Key Predistribution Schemes and Linear Codes

We present in this section a new method to construct KPSs. Specifically, we
show how to construct a (t, w, n)-KPS from any given linear error correcting
code. In addition, we analyze how KPSs from error correcting codes improve
the efficiency of the previously proposed (t, w, n)-KPSs, specially when algebraic
geometry codes are considered. Recall that the (t, w, n)-KPSs by Blundo et al [5],
which generalize the (2, w, n)-KPSs by Blom [3], have optimal information rate.
But, since in those schemes the common keys must be taken from a finite field
Fq with q ≥ n, the bit length of the fragments can be improved, specially if the
number n of users is very large.

Padró et al. [26,27] observed that most of the proposed key predistribution
schemes and one-time broadcast encryption schemes were linear , that is all ran-
dom variables involved in those schemes are defined by linear mappings. By
taking that into account, a general framework to study linear KPS and OTBES
was proposed in [26,27]. In addition, new constructions that generalized previous
ones were proposed. In particular, the following result is a direct consequence
of [26, Definition 4.2 and Theorem 4.3].
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Proposition 1 ([26]). Let V be a vector space with dimV = k over a finite
field Fq and let {v1, . . . , vn} be a set of vectors in V such that every subset of
w + 1 vectors is linearly independent. Then, for every t with 2 ≤ t ≤ q, there
exists a (t, w, n)-KPS with common keys in Fq and such that the bit-length of

the fragment of every user is
(
t + k − 2
t − 1

)
log q.

We briefly describe in the following how this (t, w, n)-KPS is constructed. Let
U = {1, . . . , n} be the set of users. The TA selects uniformly at random a sym-
metric t-linear map

T : V t = V × · · · × V → Fq.

The fragment corresponding to user i ∈ U is the symmetric (t − 1)-linear map
Ti : V t−1 → Fq that is obtained by fixing the first variable of T to the vector vi.
That is, Ti(u1, . . . , ut−1) = T (vi, u1, . . . , ut−1) for every (u1, . . . , ut−1) ∈ V t−1.
The common key corresponding to a privileged subset P = {i1, . . . , it} ⊆ U is
kP = T (vi1 , . . . , vit) ∈ Fq. The fragment bit-length of this scheme is deduced
from the dimension of the vector space of the symmetric (t − 1)-linear maps
T : V t−1 → Fq.

Theorem 2. Let C ⊂ Fnq be an [n, k] linear code such that the dual code C⊥

has minimum distance d⊥. Then, for every t with 2 ≤ t ≤ q, there exists a
(t, d⊥ − 2, n)-KPS with common keys in Fq and such that the bit length of the

fragment of every user is
(
t+ k − 2
t − 1

)
log q.

Proof. Apply Theorem 1 to the vectors v1, . . . , vn ∈ Fkq corresponding to the
columns of a generator matrix of C. Since every d⊥ − 1 columns are linearly
independent, the result follows. ��

If C ⊆ Fnq is the Reed-Solomon code, we recover the KPS by Blundo et al [5]. Let
C⊥ be the trivial [n, 1, n] code over Fq, spanned by the vector (1, . . . , 1) ∈ Fnq .
Then C is an [n, n−1] code over Fq. The (2, n−2, n)-KPS that is obtained from
C is almost the same as the one proposed by Matsumoto and Imai [23].

Example 3. If the number n of users is not too large, the many known con-
structions of codes over small fields can be used to construct KPSs. For q =
2, 3, 5, 7, 8, 9 and n ≤ 256, the best known codes can be found in the tables
in [17]. For example, since there exists a [256, 224, 9] linear code over F2, we have

a (2, 7, 256)-KPS over F2 with fragment bit length
(
t + k − 2
t − 1

)
= 32. Observe

that the fragment bit length of Blom’s (2, 7, 256)-KPS is at least (w+ 1) log q =
8 log 256 = 64 because we have to take q ≥ n.

Example 4. Analogously, since there exists a [240, 210, 10] linear code over F3, for

t = 2, 3 we obtain a (t, 8, 240)-KPS over F3 with fragment bit length
(
t+ 30 − 2
t − 1

)
log 3, which is 48 if t = 2 and 738 if t = 3. In the KPS by Blundo et al., the bit



270 H. Chen et al.

length is 72 if t = 2 and 357 if t = 3. In the second case, the bit length of the
Blundo et al. KPS is smaller, but computations must be done in the larger field
F241 instead of F3.

We see in the previous examples that, if the number of users is not too large and
the common keys are taken from very small fields, more efficient KPSs can be
obtained by using some of the best known codes [17] with suitable parameters.

Nevertheless, our main interest is to construct KPSs for an arbitrarily large
number of users, with common secret keys of constant length that are secure
against coalitions formed by a constant fraction of the users. Specifically, we
want to construct infinite families of (t, w, n)-KPSs over a fixed base field Fq
such that t is a constant value with 2 ≤ t ≤ q and w = cn for some constant c
with 0 < c < 1.

By the asymptotic Gilbert-Varshamov Bound, for every prime power q and for
every δ with 0 ≤ δ < (q−1)/q, there exists a sequence (Cn) of linear codes over Fq
such that Cn has length n, minimum distance dn ≥ δn, and dimension kn with
lim kn/n = 1 − Hq(δ), where Hq is the q-ary entropy function. In particular,
there exist a positive integer n0 and a constant α with 0 < α < 1 such that
kn ≥ (1 − α)n for all n ≥ n0.

Consider c < δ < (q − 1)/q. Then δn ≥ cn+ 2 if n is not too small. For these
parameters, the dual code C⊥

n has dimension at most αn and dual minimum
distance at least cn + 2 = w + 2. Therefore, for every large enough n, there
exists a (t, cn, n)-KPS over a fixed base field Fq with fragment bit length at most(
t+ αn − 2

t − 1

)
log q. Asymptotically, the fragment bit length is O(nt−1). Since the

size of the base field depends on the number of users, the fragment bit length for

a Blundo et al. (t, cn, n)-KPS is at least
(
t+ cn − 1
t − 1

)
logn, which asymptotically

is O(nt−1 logn). Therefore, our construction based on error correcting codes is
asymptotically better by a factor of logn.

6 Key Predistribution Schemes from Algebraic Geometry
Codes

The proof of the Gilbert-Varshamov bound is existential. Nevertheless, construc-
tions of codes over this bound have been obtained by using Goppa’s algebraic
geometry codes [16]. We analyze in the following the parameters of the KPSs
that are obtained by considering linear codes from algebraic curves. We need to
recall some basic facts about algebraic geometry codes (see for instance [32] or [9]
for more information). In this paper, a curve over Fq will mean an absolutely
irreducible, projective, and smooth algebraic curve defined over Fq. Let X be
curve over Fq and let g be its genus. Let Q,P1, . . . , Pn be distinct rational points
on X . Consider the divisor G = mQ, where 2g − 1 ≤ m < n, and the set of
rational functions L(G) = {f : (f) + G ≥ 0}, which is a vector space with
dimension deg(G) − g + 1 = m − g + 1. Then

C = {(f(P1), . . . , f(Pn)) : f ∈ L(G)} ⊆ Fnq
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is an [n, k] linear code with k = m − g + 1 and its dual code has minimum
distance d⊥ ≥ deg(G) − 2g + 2 = m − 2g + 2.

Theorem 5. Let X be a curve over Fq, and let g be its genus and N the number
of Fq-rational points on X. Consider positive integers t, w, n with 2 ≤ t ≤ q and
2g + w < n ≤ N − 1. Then there exists a (t, w, n)-KPS with fragment bit length(
t+w+g−1

t−1

)
log q.

Proof. By taking m = 2g+w, a linear code C with dimension k = g+w+1 and
dual minimum distance d⊥ ≥ m − 2g + 2 = w + 2 is obtained. By Theorem 2,
the code C provides a KPS with the required parameters. ��

The case g = 0 corresponds to Reed-Solomon codes, and hence the KPS by
Blundo et al. [5] is obtained. By using curves with higher genus, we can obtain
efficient KPSs over a constant base field for an arbitrarily large number of users.
We analyze in the following the family of KPSs that is obtained from the family
of curves given by Garcia and Stichtenoth [15]. Let q be a prime power. There
exists a family of curves (Cj)j>0 defined over Fq2 such that the number of Fq2 -
rational points on Cj is Nj ≥ (q − 1)q j and its genus is gj ≤ q j . By Theorem 5,
for every positive integers j, t, w with 2 ≤ t ≤ q and 2q j + w < (q − 1)q j − 1,
there exists a (t, w, n)-KPS over the base field Fq2 with n = (q − 1)q j − 1 and
fragment bit-length at most(

t+ w + q j − 1
t − 1

)
2 log q ≤

(
t + w + n

q−1
t − 1

)
2 log q

Only KPSs over fields of the form Fq2 are obtained in this way, but there exist
other families of algebraic geometry codes that provide similar results for general
fields Fq [32].

We proceed to compare this family of KPSs with the ones by Blundo et al. [5].
For simplicity, we consider only the case t = 2. In addition,we consider KPSs that
are secure against coalitions formed by a constant fraction of the users. By using
the curves of Garcia-Stichtenoth, we obtain an infinite family of (2, w, n)-KPSs
over a fixed base field Fq2 with fragment bit-length at most (w+ n

q−1 + 2)2 log q.
The fragment bit-length of the Blundo et al. (2, w, n)-KPS is at least (w+1) logn.
We assume w = cn for some constant c such that 0 < c < 1 − 2/(q − 1). The
upper bound on c guarantees that the condition w < n− 2q j is satisfied. In this
situation, our KPS improves the secret information bit-length of Blundo et al.
KPS if

j ≥ 2
(

1 +
2

c(q − 1)

)
.

In the (t, w, n)-KPS by Blundo et al. [5], every coalition F ⊆ U with |F | = w+1
can compute the secret information of all privileged subsets. In our more general
construction based on error correcting codes, the common keys that a coalition
F ⊆ U with |F | ≥ w+1 can obtain depend on the users involved in it. In a way,
our construction has ramp security. From [26, Definition 4.2 and Theorem 4.3]
a coalition F ⊆ U can obtain the secret key of a privileged subset P ⊆ U if and
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only if one of the vectors vi with i ∈ P is a linear combination of the vectors in
{vj : j ∈ F}. Recall that the vector vi is the i-th column of a generator matrix
of the code C. For instance, in the construction in Theorem 5 the coalitions with
at least w + 2g + 1 users can obtain the common keys of all privileged subsets,
while the coalitions F with w + 1 ≤ |F | ≤ w + 2g will obtain only a part of the
common keys.

By using the known results about the weight distribution of algebraic geo-
metric codes, we can prove some partial results about how many coalitions of
� users, where deg(G) − 2g ≤ � ≤ deg(G), can get the full information of the
common key. Thus the drawback of Blundo et al. KPSs that the adversary can
get the full information if there are w + 1 attackers is not true for our KPSs,
only some special coalitions of w + 1 attackers can get the full information of
the common key.

7 Key Predistribution Schemes from Hermitian Codes

Theorem 5 provides a bound on the fragments bit length for KPSs constructed
from algebraic geometry codes. This bound is derived from general properties
of such codes. In this section, we discuss some cases in which the bound from
Theorem 5 can be improved when considering families of algebraic geometry
codes for which better bounds on the dual minimum distance are known.

Codes from Hermitian curves are an example of this situation. Let X be the
curve over Fq2 defined by yq + y = xq+1, which has q3 + 1 rational points and
genus g = q(q − 1)/2. Let Q be the rational point at the infinity and consider
the divisor G = mQ with 2g − 1 ≤ m < q3. Then we obtain a code with
length n = q3, dimension k = m − q(q − 1)/2 + 1, and dual minimum distance
d⊥ ≥ d⊥∗ = m−q(q−1)+2. By applying Theorem 5, we obtain a (t, w, q3)-KPS
over Fq2 with w = d⊥∗ − 2 = m − q(q − 1) such that the fragment length is
equal to

2
(
t+ w + q(q−1)

2 − 1
t − 1

)
log q. (1)

However, in many cases d⊥ is greater than d⊥∗. Actually the values of the
minimum distances of all Hermitian codes have been determined in [35]. In
particular, if m = 2q2 − q − 2 − aq − b with 0 ≤ b ≤ a ≤ q − 1, then
d⊥ = m − q(q − 1) + 2 + b = q2 − aq. By setting b = a, we obtain from these
codes, for every t = 2, . . . , q2 and a = 0, . . . , q−1, a (t, w, q3)-KPS over Fq2 with
w = d⊥ − 2 = q2 − aq − 2 such that the bit length of every fragment is

2
(
t + 3q2

2 − (2a+1)q
2 − a − 3

t − 1

)
log q,

which is smaller than the value (1) that is obtained from Theorem 5.
In addition, it is proved in [34] that there exist special Fq2 -rational divisors

on the Hermitian curves providing codes with better minimum distances. These
codes have been constructed in [24]. By the results in [34], if q > 5 and
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m ≤ q2 − q − 3
2 + logq e

− 2,

there exist [n, k, d] codes with n = q3, and k = q3 − (q2 − q)/2 − m+ 2, and

d ≥ q2 − q − 3 + 2m
4 + logq e

.

Here e ≈ 2.71 is the basis of the natural logarithm. By using these codes, another
family of algebraic geometry KPSs is obtained.

Proposition 6. If q ≥ 5 and w ≤ (5q2 − 5q − 51)/15, then there exists a
(t, w, q3)-KPS over Fq2 with fragment bit length

2
(
t + q2−q

2 + (w+2)(4+logq e)−(q2−q−3)
2 − 3

t − 1

)
log q.

8 Constructions from Special Divisors on
Garcia-Stichtenoth Towers of Curves

In this section, we apply the results in [8] to find a family of (t, w, n)-KPS over
a constant size field Fq2 and with n arbitrarily large. The fragment bit length
of the improved (2, n/q, n)-KPS from Theorem 7 below is smaller by a factor of
around n/q than the value that is given by Theorem 5.

Consider the family (Cj)j>0 of curves over Fq2 given by Garcia and Stichtenoth
[15]. Then the genus gj = g(Cj) of Cj is (qj/2 − 1)2 if j is even and (q(j+1)/2 −
1)(q(j−1)/2 − 1) if j is odd. The number of the Fq2 -rational points in the curve
Cj is Nj = N(Cj) ≥ qj(q − 1). It is proved in [8] that the minimum distance
d of the residual algebraic geometry codes from the divisor G = (2qj − u)P∞,
where u < min{4qj/2, 2qj−4}, and the set of qj(q − 1) GF (q2) points satisfies
d ≥ qj−1 − 6qj−2 + 4qj/2 when q ≥ 7 and j ≥ 5. Thus we have the following
result.

Theorem 7. For any given prime power satisfying q ≥ 7, positive integers i ≥
5, and t ≤ q, and n = qj(q−1), we have a (t, qj−1 −6qj−2 +4�qj/2� −2, n)-KPS
over Fq2 such that the bit-length of every fragment is

2
(
t+ 2qj − min{�4qj/2�, 2qj−4} − gj − 1

t − 1

)
log q.

Next theorem provides a non-constructive result that further improves the frag-
ment bit length of the KPSs from Garcia-Stichtenoth curves. It follows from [33,
Proposition 2.3] and some computation.

Theorem 8. Consider n ≤ gj(q − 1) − 1 rational points on the curve Cj, and
a positive integer m with 2gj − 1 < m < n. Set r = µgj where µ is such that
0 < µ < 2/(q + 1) and

µ

2
+

2
log q

H2

(µ
2

)
< 1 + (q − 1)

(
logq

(
q

q − 1

)
−
H2(m−2g

n )
log2 q

)
.
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Then, for every large enough j, there exists an algebraic geometry [n, k, d] code
on the curve Cj satisfying k = m−gj+1 and d ≥ n−m+r+1. As a consequence,
there exists a (t, n−m+r−1, n)-KPS over Fq2 such that the fragment bit length is

2
(
t+ n+ gj − m − 3

t − 1

)
log2 q.

9 One-Time Broadcast Encryption Schemes over
Constant Size Fields

In the previous sections, we showed how to construct KPSs over constant size
fields for an arbitrarily large number of users by using algebraic geometry codes.
We present in the following an application of our results to the construction of
OTBESs over constant size fields.

We describe in the following the family of (t, w, n)-OTBESs proposed by
Blundo, Frota Mattos and Stinson [6], which is an improvement of the pro-
posal by Beimel and Chor [1]. Consider a prime power q ≥ n and a positive
integer � that is a divisor of t.

– Let P ⊆ U be a set of users with |P | = t. Consider the collection of subsets
of P with � users. Since � divides t, this

(
�
t

)
blocks can be partitioned into

r =
(
�−1
t−1

)
parallel classes (see, for instance, [20]). Each of these classes

consists of t/� blocks that form a partition of P . We denote these classes by
C1, . . . , Cr and the blocks in Ci are denoted by Bi,j , where j = 1, . . . , t/�.

– The key predistribution phase is done according to the Blundo et al. (�, t+
w−�, n)-KPS over Fq. Therefore, for every set Q ⊆ U with |Q| = �, there is a
common key kQ ∈ Fq that can be computed by the users in Q. In addition, it
can be proved that, if |P | = t, the vector (kQ : Q ⊆ P, |Q| = �) is uniformly

distributed in F
(t

�)
q .

– To encrypt a secret message mP = (m1, . . . ,mr) ∈ Frq, where r =
(
t−1
�−1

)
,

addressed to the users in a set P with |P | = t, the TA computes bi,j =
kBi,j +mi and broadcasts the message (bi,j)1≤i≤r,1≤j≤t/�.

The secret information bit-length is
(
t+w−1
�−1

)
log q, while the broadcast message

length is
(
t
�

)
log q. Observe that we require q ≥ n because a Blundo et al. KPS

is used in the predistribution phase. By using instead KPSs from algebraic ge-
ometry codes, for instance the ones constructed from Garcia-Stichtenoth curves
in Section 6, we can modify the previous OTBES from [6] in order to obtain
OTBESs over constant size fields.

The construction in [6] can be extended to all value of � = 1, . . . , t but, if � does
not divide t, the construction requires a set of

(
t
�

)
vectors in Frq such that every

subset of r =
(
t−1
�−1

)
vectors is a basis, and hence we need that q ≥

(
t
�

)
. This may

be avoided if � is a divisor of t. The general construction is a consequence of [27,
Theorem 11 and Example 12]. We did not find a method to obtain OTBESs over
constant size fields from this general construction.
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Stinson and Wei [31] proposed a construction of OTBESs that combines KPSs,
set systems (like, for instance, combinatorial designs), and ramp secret sharing
schemes. Since they use Shamir-like ramp schemes, the size of the secret keys,
and hence the size of the fragments, depends on the parameters of the set sys-
tem. Constructions of ramp secret sharing schemes over constant size fields based
on algebraic-geometry codes have been recently presented in [9,10,11]. Unfortu-
nately, because of the bounds on the parameters involved in those constructions,
it is not possible to directly apply the algebraic-geometry ramp secret sharing
schemes to the OTBESs in [31] in order to obtain another family of OTBESs
over constant size fields.
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25. Padró, C., Gracia, I., Mart́ın, S.: Improving the trade-off between strorage and
communication in broadcast encryption schemes. Discrete Appl. Math. 143, 213–
220 (2004)
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Abstract. Attribute-based encryption (ABE) enables an access control
mechanism over encrypted data by specifying access policies among pri-
vate keys and ciphertexts. In this paper, we focus on ABE that supports
revocation. Currently, there are two available revocable ABE schemes
in the literature. Their revocation mechanisms, however, differ in the
sense that they can be considered as direct and indirect methods. Direct
revocation enforces revocation directly by the sender who specifies the re-
vocation list while encrypting. Indirect revocation enforces revocation by
the key authority who releases a key update material periodically in such
a way that only non-revoked users can update their keys (hence, revoked
users’ keys are implicitly rendered useless). An advantage of the indirect
method over the direct one is that it does not require senders to know
the revocation list. In contrast, an advantage of the direct method over
the other is that it does not involve key update phase for all non-revoked
users interacting with the key authority. In this paper, we present the
first Hybrid Revocable ABE scheme that allows senders to select on-the-
fly when encrypting whether to use either direct or indirect revocation
mode; therefore, it combines best advantages from both methods.

1 Introduction

Attribute-based encryption (ABE) enables an access control mechanism over en-
crypted data using access policies and ascribed attributes among private keys
and ciphertexts. ABE was introduced first by Sahai and Waters [20] and refined
by many subsequent works [16,5,19,9,15,22,2]. In an ABE system, an encryptor
specifies a set of attributes, which could be any keywords describing the cipher-
text, directly in the encryption algorithm (which can be run by anyone knowing
the universal public key issued priorly by an authority). A user in the system
possesses a key associated with an access policy, stating what kind of cipher-
text that she can decrypt. Users’ keys are priorly given from the key authority.
Such a user can decrypt a ciphertext if the policy associated to her key is satis-
fied by the attribute set associated with the ciphertext. An example application
of ABE is pay-TV system with package policy (called target broadcast system

M.G. Parker (Ed.): Cryptography and Coding 2009, LNCS 5921, pp. 278–300, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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in [16]). There, a ciphertext will be associated with an attribute set, such as
ω = {“title:24”, “genre:suspense”, “season:2”, “episode:13” }, while a
policy such as A = “soccer” ∨ (“title:24” ∧ “season:5”) will be associated
to TV program package keys that user receives when subscribes.

1.1 Motivation

Revocation mechanism is necessary for any encryption schemes that involve
many users, since some private keys might get compromised at some point.
In simpler primitives such as public key infrastructure and ID-based encryption
(IBE), there are many revocation methods proposed in the literature
[17,1,18,7,12,6,4].

In attribute-based setting, Boldyreva et al. [6] only recently proposed a revo-
cable ABE scheme (extended from their main contribution, a revocable IBE).
Their scheme uses a key update approach roughly as follows. The sender will
encrypt with the attribute set ω as usual, and in addition, he also specifies the
present time slot attribute, e.g., “time:2009.week49”. The key authority, who
possesses the current revocation list, periodically announces a key update mate-
rial at each time slot so that only non-revoked users can update their key and use
it to decrypt ciphertexts encrypted at the present time. We call this approach an
indirect revocation, since the authority indirectly enables revocation by forcing
revoked users to be unable to update their keys.

The indirect revocation has an advantage that senders do not need to know
the revocation list. However, it also has a disadvantage that the key update phase
can be a bottleneck since it requires communication from the key authority to all
non-revoked users at all time slots. One of the main motivations for Boldyreva
et al. [6] was also to reduce this cost from a naive approach which would requires
the update key of size O(n − r) group elements. Here n is the number of users,
r is the number of revoked users. Their scheme reduces this to O(r log(nr )), by
using the classic Complete-subtree method [1,18] combined in a non-trivial way
with the fuzzy IBE scheme of [20].

In order to eliminate this bottlenecked key update phase completely, Attra-
padung and Imai [3] recently proposed an ABE system with direct revocation. Such
a system allows senders to specify the revocation list directly when encrypting.
Therefore, revocation can be done instantly and does not require the key update
phase as in the indirect method. Despite this clear advantage, in contrast, its dis-
advantage is that it requires senders to possesses the current revocation list. While
the management of revocation list itself could be already a troublesome task, this
requirement renders the system not being so purely attribute-based. (An ideal
attribute-based setting should allow senders to just create ciphertext based solely
on attributes and not to worry about revocation). The authors in [3] argued that,
however, this setting is still reasonable for some applications such as the Pay-TV
example above, where the sender is the TV program distributor company, who
should possess the pirate key list to be revoked.

This nature of such an exact opposite advantage tradeoff between the direct
and indirect revocation motivates us to look for a more flexible system that
supports both revocation methods so that we could have the best of both worlds.
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1.2 Our Goal and Contributions

In this paper, we propose a new system called Hybrid Revocable Attribute-Based
Encryption (HR-ABE). This system allows a sender Alice to be able to select
whether to use either direct or indirect revocation mode on-the-fly when en-
crypting a message. On the other hand, a user Bob possesses only one key but
will be able to decrypt ciphertexts that were constructed in either modes.

An HR-ABE works as follows. When Alice selects the direct mode, she will
specify the revocation list R directly into the encryption algorithm. On the other
hand, when selecting the indirect mode, she is required only to specify the present
time slot t (besides the usual attribute set input). A user Bob has one private
key. Let A be the access policy associated to Bob’s key. In addition, his key will
be associated with a unique serial number id. If ciphertext was from the direct
mode, he can decrypt solely by his key. Let ω be the attribute set associated with
ciphertext. In this case, he can decrypt if ω satisfies A and id �∈ R. If ciphertext
was from indirect mode, he must obtain an update key uk(R,t) from the authority
at time t. Again, he can decrypt if ω satisfies A, and id �∈ R. Notice that in this
latter case, the key authority specifies R when creating the update key, hence
enforces revocation indirectly.

One trivial construction for HR-ABE is to use two sub-systems: a directly
revocable ABE and an indirectly revocable ABE. A user key then consists of
two keys, one from each sub-system. To encrypt in a desired mode, Alice just
uses the corresponding sub-system. The problem for this approach is that the
key size will be the sum of key sizes from both sub-systems. Therefore, our goal
is to construct an efficient scheme which has the key size being roughly the same
as in either the currently best directly or indirectly revocable ABE.

Another goal in designing a scheme is to base its security to the weakest as-
sumption as possible. Since the currently most efficient (non-revocable) ABE [16]
is based on the Decision Bilinear Diffie-Hellman (DBDH) assumption, we will
also base the security of our scheme on this assumption.

The currently best indirectly revocable ABE that is based on DBDH assump-
tion is the scheme of Boldyreva et al. [6] (given only implicitly in their paper,
though). For the case of directly revocable ABE, to the best of our knowledge,
no such scheme is available yet. However, in this paper, we give a notice that a
variant of Attrapadung-Imai [3] achieves such a property.1 Both the scheme of [6]
and the variant of [3] have the key size of 2� log(n) group elements. Therefore,
the trivial combination yields the key size of 4� log(n). Here � is the number of
attributes appear in the policy.

In this paper, we first formalize the notions of HR-ABE and propose a HR-
ABE scheme with key size 2(� + 1) log(n). This is roughly the same size as the
two above one-mode revocable ABEs (and hence half size of the trivial combined
scheme). The ciphertext size in direct mode is the same as the variant of [3]. The

1 This variant itself is not trivial but we jump a step forward to construct a hybrid
revocable ABE system, instead of only a directly revocable one. We will mention
this variant in Section §6, though.
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Table 1. Simple comparison among encryption primitives supporting revocation

Indirectly Directly Broadcast
revocable ABE revocable ABE encryption

Attribute-based setting � � x
Revocator Authority Sender Sender

No need for key update x � �

ciphertext and update key sizes in indirect mode is the same as that of [6]. See
Table 2 in Section §6 for comparison.

The security of our scheme is based on the DBDH assumption in the standard
model. The security proof is itself quite non-trivial since in the proof, we have
to simulate the key of same structure to be able to handle both attack models
corresponding to two revocation modes.

1.3 Related Works

Broadcast Encryption. Broadcast encryption (BE) schemes [11,18,8,21,13] allow
a sender to specify a receiver group when encrypting. The reader might wonder
whether we can just use a public-key BE system instead of ABE in the case
when the sender knows the revocation list by simply specifying all non-revoked
users as the receiver group. The answer is that we cannot, since we focus on
the attribute-based setting, which means that the sender is supposed not to even
know whose access policy will match the attribute set associated to ciphertext.
We provide a simple comparison in Table 1.

Other ABE Variants. The ABE system we have discussed so far is called Key-
Policy ABE (KP-ABE) [16]. There is another opposite variant called Ciphertext-
Policy ABE (CP-ABE) [5]. In CP-ABE, the roles of an attribute set and an
access policy are swapped from what we described for KP-ABE. Attribute sets
are associated to keys and access policies over these attributes are associated
to ciphertexts. An example application of CP-ABE is secure mailing list system
with access policy. There, a private key will be assigned for an attribute set, such
as {“manager”, “age:30”, “institute:ABC”}, while policies over attributes
such as “manager”∨(“trainee”∧“age:25”) will be associated to ciphertexts.

In this paper, we will consider only the KP-ABE variant. However, the
methodology can be applied to the case of CP-ABE similarly.

Previous Works on ABE. ABE was introduced by Sahai and Waters [20] in
the context of a generalization of IBE called Fuzzy IBE, which is an ABE that
allows only single threshold access structures. The first (and still being state-of-
the-art) KP-ABE that allow any monotone access structures was proposed by
Goyal et al. [16], while the first such CP-ABE, albeit with the security proof
in the generic bilinear group model, was proposed by Bethencourt, Sahai, and
Waters [5]. Ostrovsky, Sahai, and Waters [19] then subsequently extended both
schemes to handle also any non-monotone structures; therefore, negated clauses
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can be specified in policies. Goyal et al. [15] presented bounded CP-ABE in the
standard model. Waters [22] recently proposed the first fully expressive CP-ABE
in the standard model. Chase [9] presented multi-authority KP-ABE. Recently,
Attrapadung and Imai [2] proposed a new ABE variant called Dual-Policy ABE
which is a combination of both KP and CP ABE. Revocable ABE was first
mentioned by Gollé et al. [14], but their scheme was only heuristic.

2 Preliminaries

2.1 Access Structures and Linear Secret Sharing

We first provide the notion of access structure and linear secret sharing scheme
as follows. Such formalization is recapped from [22].

Definition 1 (Access Structures). Let P = {P1, P2, . . . , Pn} be a set of par-
ties. A collection A ⊆ 2P is monotone if for all B,C we have that if B ∈ A and
B ⊆ C then C ∈ A. An access structure (resp., monotonic access structure) is a
collection (resp., monotone collection) A ⊆ 2P \ {∅}.

Definition 2 (Linear Secret Sharing Schemes (LSSS)). Let P be a set of
parties. Let M be a matrix of size � × k. Let π : {1, . . . , �} → P be a function
that maps a row to a party for labeling. A secret sharing scheme Π for access
structure A over a set of parties P is a linear secret-sharing scheme in Zp and
is represented by (M,π) if it consists of two polynomial-time algorithms:
Share(M,π): The algorithm takes as input s ∈ Zp which is to be shared. It ran-

domly chooses y2, . . . , yk ∈ Zp and let v = (s, y2, . . . , yk). It outputs Mv as
the vector of � shares. The share λπ(i) := Mi · v belongs to party π(i), where
we denote Mi as the ith row in M .

Recon(M,π): The algorithm takes as input S ∈ A. Let I = {i| π(i) ∈ S}. It out-
puts reconstruction constants {(i, µi)}i∈I which has a linear reconstruction
property:

∑
i∈I µi · λπ(i) = s.

Lemma 1. ([22]) Let (M,π) be a LSSS for access structure A over a set of
parties P, where M is a matrix of size � × k. For all S �∈ A, there exists a
polynomial time algorithm that outputs a vector w = (w1, . . . , wk) ∈ Zkp such
that w1 = 1 (or w1 can be chosen arbitrarily in Zp) and for all i ∈ [1, �] where
π(i) ∈ S it holds that Mi · w = 0.

2.2 Bilinear Maps and Some Assumptions

Bilinear Maps. We briefly review some facts about bilinear maps. Let G,GT

be multiplicative groups of prime order p. Let g be a generator of G. A bilinear
map is a map e : G × G → GT for which the following hold: (1) e is bilinear;
that is, for all u, v ∈ G, a, b ∈ Z, we have e(ua, vb) = e(u, v)ab. (2) The map is
non-degenerate: e(g, g) �= 1. We say that G is a bilinear group if the group action
in G can be computed efficiently and there exists GT for which the bilinear map
e : G × G → GT is efficiently computable.
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DBDH Assumption. Let G be a bilinear group of prime order p. The DBDH
(Decision Bilinear Diffie-Hellman) problem [7] in G is stated as follows. Given
a tuple (g, ga, gb, gs) ∈ G4 and an element Z ∈ GT as input, determine if Z =
e(g, g)abs. An algorithm A that outputs b ∈ {0, 1} has advantage ε in solving the
DBDH problem in G if | Pr

[
A
(
g, ga, gb, gs, e(g, g)abs

)
= 0

]
−Pr

[
A
(
g, ga, gb, gs, Z

)
= 0

]
| ≥ ε. We refer to the distribution on the left as PBDH and the one on the

right as RBDH . We say that the DBDH assumption holds in G if no polynomial-
time algorithm has a non-negligible advantage in solving the problem.

2.3 Some Terminologies for Binary Tree

We denote some terminology for complete binary tree. Let L = {1, . . . , n} be
the set of leaves. Let X be the set of node names in the tree via some systematic
naming order. For a leaf i ∈ L, let Path(i) ⊂ X be the set of all nodes on the
path from node i to the root (including i and the root).

For R ⊆ L, let Cover(R) ⊂ X be defined as follows. First mark all the nodes in
Path(i) if i ∈ R. Then Cover(R) is the set of all the unmarked children of marked
nodes. It can be shown to be the minimal set that contains no node in Path(i)
if i ∈ R but contains at least one node in Path(i) if i �∈ R. This function was
widely used, e.g., in revocation scheme of [1] and the Complete-Subtree broadcast
encryption [18]. It is known [1,18] that |Cover(R)| ≤ |R|(log(n/|R|) + 1).

2.4 Lagrange Interpolation

For i ∈ Z and S ⊆ Z, the Lagrange basis polynomial is defined as 'i,S(z) =∏
j∈S,j �=i(

z−j
i−j ). Let f(z) ∈ Z[z] be a d-th degree polynomial. If |S| = d+1, from

a set of d+ 1 points
{(
i, f(i)

)}
i∈S , one can reconstruct f(z) as follows.

f(z) =
∑
i∈S

f(i) · 'i,S(z).

In our scheme, we will particularly use the interpolation for a first degree poly-
nomial. In particular, let f(z) be a first degree polynomial, one can obtain f(0)
from two points (i1, f(i1)), (i2, f(i2)) where i1 �= i2 by computing

f(0) = f(i1)
i2

i2 − i1
+ f(i2)

i1
i1 − i2

. (1)

3 Definitions

3.1 Algorithm Definition

In this section, we provide the syntax definition of Hybrid Revocable Attribute-
Based Encryption (HR-ABE). Let N be the universe of attributes for ABE. Let
A denote a collection of access structures over N which are allowed to be used
in the scheme. Let T , M, U be the universes of time periods, messages, and user
key serial numbers, respectively. A HR-ABE scheme consists of five algorithms:
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Setup(n) → (pk,msk). This is a randomized algorithm that takes an input n
which is the size of U . It outputs the public key pk and a master key msk.

Encrypt(mode, a, ω,m, pk) → ct. This is a randomized algorithm that takes as
input mode ∈ {‘dir’, ‘ind’} which representing direct or indirect revocation
mode resp., an auxiliary input a being either

a =

{
a revocation list R ⊆ U if mode = ‘dir’

a present time attribute t ∈ T if mode = ‘ind’,

a set of attributes ω ⊆ N , a message m ∈ M, and public key pk. It outputs
a ciphertext ct.

KeyGen(id,A,msk, pk) → sk(id,A). This is a randomized algorithm that takes as
input a serial number id ∈ U , an access structure A ∈ A, the master key
msk, and the public key pk. It outputs a private decryption key sk(id,A).

KeyUpdate(R, t,msk, pk) → uk(R,t). This is a randomized algorithm that takes
as input a revocation list R ⊆ U , a present time attribute t, the master key
msk, and the public key pk. It outputs a key update material uk(R,t).

Decrypt(ct, (mode, a, ω), sk(id,A), (id,A), pk, b) → m. This algorithm takes as in-
put the ciphertext ct that was encrypted under (mode, a, ω), the decryption
key sk(id,A) for user index id with access control structure A, the public key
pk, and an auxiliary input b being either

b =

{
an empty string if mode = ‘dir’

an update key
(
uk(R,t), (R, t)

)
if mode = ‘ind’.

It outputs the message m or a special symbol ⊥ indicating an unsuccessful
decryption.

We require the standard correctness of decryption, that is, if we let Setup →
(pk,msk) and KeyGen(id,A,msk, pk) → sk(id,A) then for all m ∈ M; id ∈ U ;
R ⊆ U ; A ∈ A; ω ∈ N , t ∈ T :

Direct revocation mode. Let Encrypt(‘dir’, R, ω,m, pk) → ct. If ω ∈ A and
id �∈ R, then Decrypt

(
ct, (‘dir’, R, ω), sk(id,A), (id,A), pk

)
= m.

Indirect revocation mode. Let Encrypt(‘ind’, t, ω,m, pk) → ct, KeyUpdate(R,
t,msk, pk) →uk(R,t). If ω∈A and id �∈ R, then Decrypt

(
ct, (‘ind’, t, ω), sk(id,A),

(id,A), pk, uk(R,t), (R, t)
)

= m.

Augment Definition. In the real usage, as mentioned earlier in Section §1.2, we
will wish to assign id as a unique serial number for each key generated so far
by the key authority. In this case, the authority will maintain the internal state
for recording the set S of assigned id so far. More formally, it will use a simple
stateful KeyGens algorithm defined as follows. Initially, S = ∅.
KeyGens(id,A,msk, pk) → sk(id,A). If id ∈ S then return ⊥. Else, run KeyGen(id,

A,msk, pk) → sk(id,A). Increment the internal state S ← S ∪ {id}. It then
outputs sk(id,A).
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We provide some further discussions on our syntax definition and comparisons
to the previous model from [6] in Appendix §A.1.

3.2 Security Notions

We now give the definitions of security notions for HR-ABE. We consider selective-
target security, where the adversary is required to specify the target mode, aux-
iliary input, and attribute set before seeing the public key. Although we consider
such a static adversary, the queries can still be asked in an adaptive manner. In-
deed, we consider two notions: semi-static and adaptive query model. The
semi-static one is similar to the one considered in [13] (in the context of broad-
cast encryption). Below, we note that the Query phase can be continued after the
Challenge phase. We provide the formal definition first then explain later.

Init. The adversary declares the target (mode�, a�, ω�) of encryption mode, its
corresponding auxiliary input, and the target attribute set ω�. Recall that if
mode� = ‘dir’ then a� = R� (the target revoked set) and if mode� = ‘ind’ then
a� = t� (the target present time).

Setup. The challenger runs the Setup of HR-ABE and hands the public key pk
to the adversary.

Query Phase. The challenger answers the queries as follows.
If mode� = ‘dir’, then for each query:

If A queries for SK(id,A) then
If ω� ∈ A then

If id �∈ R� then return ⊥
KeyGen(id,A,msk, pk) → sk(id,A)
Return sk(id,A)

If A queries for UK(R, t) then
KeyUpdate(R, t,msk, pk) → uk(R,t)
Return uk(R,t)

If mode� = ‘ind’, then we consider two variants of attack models.
1. Semi-static query model. The adversary first announces R̃. Then, for

each query:
If A queries for SK(id,A) then

If ω� ∈ A then
If id �∈ R̃ then return ⊥

KeyGen(id,A,msk, pk) → sk(id,A)
Return sk(id,A)

If A queries for UK(R, t) then
If t = t� then

If R̃ �⊆ R then return ⊥
KeyUpdate(R, t,msk, pk) → uk(R,t)
Return uk(R,t)

2. Adaptive query model. The challenger maintains two sets Rs and Ru.
Set Rs is the set of id for keys corresponding to A such that ω� ∈ A. Set
Ru is the set of id which is revoked via all updated key queries at t = t�.
Initially, Rs = ∅ and Ru = U . For each query:

If A queries for SK(id,A) then
If ω� ∈ A then

If id �∈ Ru then return ⊥
Else Rs ← Rs ∪ {id}

KeyGen(id,A,msk, pk) → sk(id,A)
Return sk(id,A)

If A queries for UK(R, t) then
If t = t� then

If Rs �⊆ R then return ⊥
Else Ru ← Ru ∩ R

KeyUpdate(R, t,msk, pk) → uk(R,t)
Return uk(R,t)
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Challenge. The adversary submits two equal length messages m0 and m1. The
challenger flips a random bit b and computes the challenge ciphertext ct� of mb

on the target (mode�, a�, ω�) and then gives ct� to the adversary.

Guess. The adversary outputs a guess b′ of b.
The advantage of an adversary in this game is defined as Pr[b = b′]− 1

2 . We note
that the above definition can be easily extended to handle chosen-ciphertext
attacks by allowing decryption queries in the Query Phase.

Definition 3. An HR-ABE scheme is secure in the sense of indistinguishability
against selective-target with semi-static (resp., adaptive) query attack if all poly-
nomial time adversaries have at most a negligible advantage in the above game
for respective variants. Denote the two notions by IND-sHRSS and IND-sHRA
respectively.

Intuition for Security Notion. We explain the intuition behind the above notion.
The condition for queries in the direct mode is quite straightforward: the adver-
sary can query secret key only if ω� �∈ A or id �∈ R� but can query any update
key (since it should be useless in this mode).

The condition for the indirect mode is somewhat more complicated. First,
consider the adaptive query model, i.e., the query model in IND-sHRA. Basi-
cally, if skid,A such that ω� ∈ A and ukR,t� such that id �∈ R are known to the
adversary, it can be used to decrypt the challenge ciphertext. The important se-
curity property we wish to capture is that knowing only one of these two should
be useless for any such pairs (á la security against collusion). But we never know
which one of the two will be queried first, so we capture this by doing the house
keeping of both kinds of queries simultaneously and adaptively by using Rs and
Ru defined above. We call a user index id a critical user if SK(id,A) such that
ω� ∈ A is asked. Rs maintains such a set in this adaptive query model.

Next, we consider the semi-static query model, i.e., the query model in IND-
sHRSS. In this notion, the adversary must commit at the beginning of the query
phase the set R̃ of id that could potentially be critical. Eventually even if its
corresponding SK query is not asked, the query UK(R, t�) such that id �∈ R is
not permitted. Such a UK query would have been allowed if the adaptive query
model were considered. Hence, we conclude that the semi-static model is weaker.

We provide some comparisons to the security model of [6] in Appendix §A.2.

4 A Hybrid Revocable ABE Scheme

4.1 Intuition for Our Scheme

We intuitively explain how our scheme works. First recall the approach of the
indirectly revocable IBE and ABE of Boldyreva et al. [6]. It utilizes the binary
tree T with n leaves similarly as in the Complete-Subtree method [1,18]. Each
user will be associated to a leaf which is unassigned yet. Each node x in the
tree is assigned a random secret polynomial fx of first degree in such a way that



Attribute-Based Encryption Supporting Direct/Indirect Revocation Modes 287

fx(0) = α, where α denotes the master key. The scheme uses Y α = e(g, g)sα ∈
GT as a message encapsulation key, where s is the randomness in encryption
(and we denote Y = e(g, g)s).

To indirectly revoke R at time t, the key authority uses the master key to
construct an atomic update key corresponding to each node in Cover(R). Only
user who has an ancestor node in Cover(R), say node x, can compute Y fx(t).
Also, only user whose access structure is satisfied by attribute set associated
with ciphertext can compute Y fx(1). Due to the fact that fx is first degree, from
this two elements, decryption can be done by interpolation in the exponent to
yield Y fx(0).

In our scheme, the indirect mode is done in exactly the same way as above.
The rough idea is that we will enable the direct revocation by letting the sender
herself generate an atomic update key, albeit at a dummy time which is exactly
the name of node x for all x ∈ Cover(R). Similarly, only user who has an ancestor
node in Cover(R), say node x, can compute Y fx(x). From this and usual Y fx(1),
he interpolates to obtain Y fx(0).

The difficulty is how to enable a sender to generate such an atomic update key
herself since she is not the key authority and hence cannot construct as in the
indirect mode. We solve this by providing a partial update key as a part of private
key beforehand. This appears as (D(3)

x , D
(4)
x ) in Eq.(2) below, which indeed has

the same form as the update key in Eq.(3). This partial key is enabled only when
a proper remaining part of update key from sender come with ciphertext.

4.2 The Construction

Some Terminologies. In our scheme, we define the universe set of serial numbers
U as the set of leaves in the complete binary tree L = {1, . . . , n}. Let m be the
maximum size of attribute set allowed to be associated with a ciphertext, i.e.,
we restrict |ω| ≤ m. Let d be the maximum of |Cover(R)| for all R ⊆ U . Our
scheme supports any linear secret-sharing access structure which we denote its
universe as ALSSS. Consequently, we let an access structure in its LSSS matrix
form (M,π) (cf. Definition 2) be input directly to the algorithms in the scheme.
We sometimes denote it as A(M,π). Let the attribute space be N = Z∗

p and the
message space be M = GT .

We assume that T ,X ⊆ Z∗
p\{1} and that T ∩X = ∅. This is wlog since we can

extend to the case where domains are T ′ = X ′ = {0, 1}∗ by using a collision-
resistant hash function H : {0, 1}∗ → Z∗

p \ {1} and then using H(0||x) ∈ X
instead of x ∈ X ′ and H(1||t) ∈ T instead of t ∈ T ′ in the scheme. In this
case, the collision resistance ensures that H(0||x) �= H(1||t) for any x, t, hence
T ∩ X = ∅. We are now ready to describe our scheme.

� Setup(n): The algorithm first picks a random generator g ∈ G and also
randomly chooses u0, . . . , ud, h0, . . . , hm ∈ G and α ∈ Zp. The public key is:
pk =

(
g, e(g, g)α, u0, . . . , ud, h0, . . . , hm

)
. For all node x ∈ X in the tree, it ran-

domly chooses ax ∈ Zp for defining a first degree polynomial fx(z) = axz+α. The
master key is msk = (α, {ax}). It outputs (pk,msk). Define a function P : Zp → G

by P (x) =
∏d
j=0 u

(xj)
j . Define a function F : Zp → G by F (x) =

∏m
j=0 h

(xj)
j .
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� Encrypt(mode, a, ω,m, pk): The algorithm first picks a random s ∈ Zp. It then
computes

C = m · (e(g, g)α)s, C(1) = gs, C
(2)
k = F (k)s,

where the last term is for each k ∈ ω. From this point, two encryption modes
diverge as follows.

Direct revocation mode (mode = ‘dir’). In this case, we have a = R, the
revocation list, as an input. It runs Cover(R) to find a minimal node set
that covers U \R. It then computes for each x ∈ Cover(R): C(3)

x = P (x)s. It
outputs the ciphertext as ct =

(
C,C(1), {C(2)

k }k∈ω, {C(3)
x }x∈Cover(R)

)
.

Indirect revocation mode (mode = ‘ind’). In this case, we have a = t, the
present time attribute, as an input. It computes C(3) = P (t)s. It then outputs
the ciphertext as ct =

(
C,C(1), {C(2)

k }k∈ω, C(3)
)
.

� KeyGen(id, (M,π),msk, pk): The input consists of a serial number id ∈ U
(which is a leaf in the binary tree), a LSSS access structure (M,π) ∈ ALSSS, the
master key and the public key. Let M be �× k matrix. The algorithm computes
a key as follows.

For all x ∈ Path(id), it first shares fx(1) with the LSSS (M,π) as follows. It
chooses zx,2 . . . , zx,k ∈ Zp and lets vx = (fx(1), zx,2, . . . , zx,k). For i = 1 to �, it
calculates the share λx,i = Mi · vx, where Mi is the vector corresponding to ith
row of M . It then randomly chooses rx,1, . . . , rx,�, rx ∈ Zp. It outputs the private
key as sk(id,(M,π)) =

(
(D(1)

x,i , D
(2)
x,i)x∈Path(id),i∈[1,�], (D

(3)
x , D

(4)
x )x∈Path(id)

)
where

D
(1)
x,i = gλx,iF (π(i))rx,i , D

(2)
x,i = grx,i .

D(3)
x = gfx(x)P (x)rx , D(4)

x = grx .
(2)

� KeyUpdate(R, t,msk, pk): The algorithm first runs Cover(R) to find a minimal
node set that covers U \R. For each x ∈ Cover(R), it randomly chooses rx ∈ Zp
and sets the key update material as uk(R,t) = (U (1)

x , U
(2)
x )x∈Cover(R) where

U (1)
x = gfx(t)P (t)rx , U (2)

x = grx . (3)

� Decrypt(ct, (mode, a, ω), sk(id,A), (id,A), pk, b): Suppose that ω satisfies (M,π)
and id �∈ R. (So that the decryption is possible). Let I = {i| π(i) ∈ ω}. It
then calculates the corresponding set of reconstruction constants {(i, νi)}i∈I =
Recon(M,π)(ω). Since id �∈ R, it also finds a node x such that x ∈ Path(id) ∩
Cover(R). Then it computes the following

K ′ =
�∏
i=1

⎛⎝ e(D(1)
x,i , C

(1))

e(C(2)
π(i), D

(2)
x,i)

⎞⎠νi

.
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From this point, two modes diverges as follows.

K =

⎧⎪⎨⎪⎩
(K ′)

x
x−1 ·

(
e(D(3)

x ,C(1))
e(C(3)

x ,D
(4)
x )

) 1
1−x

if mode = ‘dir’

(K ′)
t

t−1 ·
(
e(U(1)

x ,C(1))

e(C(3),U
(2)
x )

) 1
1−t

if mode = ‘ind’

Finally, it obtains message m = C/K.

Correctness. We first claim that K ′ = e(g, g)sfx(1), which can be verified as
follows.

K ′ =
�∏
i=1

(
e(gλx,iF (π(i))rx,i , gs)
e(F (π(i))s, grx,i)

)νi

=
�∏
i=1

e(g, g)sλx,iνi = e(g, g)sfx(1),

where the first equality is due to the construction, the second one is from the
property of bilinear map, and the third one is due to the linear reconstruction
property of linear secret sharing scheme.

Now for direct revocation mode, we can verify its correctness as follows.

K = (K ′)
x

x−1 ·
(
e(gfx(x)P (x)rx , gs)

e(P (x)s, grx)

) 1
1−x

= (e(g, g)sfx(1))
x

x−1 · (e(g, g)sfx(x))
1

1−x = e(g, g)sα,

which is indeed the Lagrange interpolation from two points (1, fx(1)), (x, fx(x))
to evaluate fx(0) = α (in the exponent) as in Eq.(1).

Similarly, for indirect mode, we can verify its correctness as follows.

K = (K ′)
t

t−1 ·
(
e(gfx(t)P (t)rx , gs)

e(P (t)s, grx)

) 1
1−t

= (e(g, g)sfx(1))
t

t−1 · (e(g, g)sfx(t))
1

1−t = e(g, g)sα,

which is indeed the Lagrange interpolation from two points (1, fx(1)), (t, fx(t))
to evaluate fx(0) = α (in the exponent) as in Eq.(1).

Theorem 1. If an adversary can break the above scheme with advantage ε in
the sense of IND-sHRSS, then a simulator with advantage ε in solving the DBDH
problem can be constructed.

Discussion on the Revocable ABE of [6]. The indirectly revocable ABE of
Boldyreva et al. [6] can be derived from our scheme by just neglecting the direct
mode and deleting the term (D(3)

x , D
(4)
x ) from the private key. Note that such a

scheme was not explicitly given in their paper though. We hence try to prove
the security of their implicit scheme by ourselves in the adaptive query model.
We found that by extending their proof from the IBE case to the ABE case,
the security reduction is lost by multiplicative factor of O(1/2q), where q is the
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number of queries to either secret key or update key oracle. Intuitively, this is
due to the fact that the simulator in the proof has to guess whether a user will be
critical user or revoked user at the target time t� (see discussion in Section §3.2),
in order to simulate answers to queries. If only one guess fails, it will abort. The
simulation will thus succeed with only probability 1/2q. Since q is polynomial in
security parameter, this lost is exponential. Therefore, the security in the adap-
tive query model would not hold for their scheme. We conclude here that their
revocable ABE is proved secure only in the semi-static query model. Note that
in their IBE case, the reduction cost is only 1/2 since the simulator only needs
to guess once for the only one critical user candidate, which is the challenge
identity (denoted by ω∗ in their paper).

Some Extensions. Note that n is fixed in our main scheme but can be extended
as suggested in [6] by adding a new root over the old one, hence the universe
becomes of size 2n. The new key at the new root is distributed via key update.
The chosen-ciphertext secure scheme can also be obtained similarly as in [6].

5 Security Proof

In this section, we give the security proof of our scheme as stated in Theorem 1.

Proof. Suppose there exists an adversary, A, that has advantage ε in attacking
the proposed scheme. We build a simulator B that solves the Decision BDH prob-
lem in G. B is given as input a random DBDH challenge Y = (g, ga, gb, gs, Z),
where Z is either e(g, g)abs or a random element in G1. B proceeds as follows.

Init. The selective-target game begins with A first outputting a target (mode�,
a�, ω�) that it intends to attack. The proof for two cases of mode� diverges here.

5.1 When Target Mode Is Direct Revocation

We first consider the case where mode� = ‘dir’. In this case, we have the auxiliary
input a� = R�.

Setup. To generate pk, algorithm B first defines

q(x) = xm−|ω�| ·
∏
k∈ω�

(x − k) =
m∑
j=0

qjx
j .

We note that qj ’s terms can be computed completely from ω�. From this we can
ensure that q(x) = 0 if and only if x ∈ ω�. It then randomly picks a degree m
polynomial in Zp[x] as φ(x) =

∑m
j=0 φjx

j . It lets hj = (ga)qjgφj for j = 0, . . . ,m.

We thus have F (x) =
∏m
j=0 h

(xj)
j = (ga)q(x) · gφ(x).

Similarly, it also defines

p(y) = yd−|Cover(R�)| ·
∏

x∈Cover(R�)

(y − x) =
d∑
j=0

pjy
j.
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From this we can ensure that for all x ∈ X , p(x) = 0 if and only if x ∈ Cover(R�)
and that for all t ∈ T , p(t) �= 0. The latter is since X ∩ T = ∅.

It then randomly picks a degree d polynomial in Zp[x] as ρ(y) =
∑d
j=0 ρjy

j .

It lets uj = (ga)pjgρj for j = 0, . . . , d. We thus have P (y) =
∏d
j=0 u

(yj)
j =

(ga)p(y) · gρ(y).
The algorithm B implicitly defines α = ab. It gives A the public key pk =

(g, e(ga, gb), u0, . . . , ud, h0, . . . , hm). Since g, a, b, φ, ρ are chosen randomly and
independently, pk has an identical distribution to that in the actual construction.

Let XR� = {x ∈ Path(id) | id ∈ R�}. For all node x in the binary tree, it
randomly chooses a′x ∈ Zp and implicitly pre-defines:

ax =

{
a′x − ab if x ∈ XR�

a′x − ab
x if x �∈ XR� .

(4)

Note that the simulator cannot compute these values, since ab is unknown. In-
tuitively, predefining is done so that we can compute

fx(1) = ax(1) + ab = (a′x − ab) + ab = a′x if x ∈ XR� (5)

fx(x) = ax(x) + ab = (a′x − ab

x
)x+ ab = a′xx if x �∈ XR� (6)

Query Phase. The adversary makes requests for private keys corresponding to
user index and access structure pair (id, (M,π)) subjected to condition that ω�

does not satisfy (M,π) or id ∈ R�. As a big picture, the algorithm B simulates
answers as follows.

If A queries for SK(id,A(M,π)) then
If ω� ∈ A(M,π) then

If id �∈ R� then return ⊥
Else do Case S1

If ω� �∈ A(M,π) then
Do Case S2

If A queries for UK(R, t) then
Do Case U

[Case S1: ω� ∈ A(M,π) and id ∈ R�] First we claim that in this case we can
compute fx(1) for all x ∈ Path(id). This is since id ∈ R�, hence for all x ∈ Path(id)
we have x ∈ XR� . Hence fx(1) can be computed by Eq.(5).

To create (D(1)
x,i , D

(2)
x,i)i∈[1,�],x∈Path(id), algorithm B just computes as in the real

construction since it knows fx(1).
To create (D(3)

x , D
(4)
x )x∈Path(id), it does as follows. For all x ∈ Path(id), it

randomly chooses r′x ∈ Zp and computes

D(3)
x = (ga

′
x)x(gb)(−

(1−x)ρ(x)
p(x) )P (x)r

′
x , D(4)

x = (gb)−
(1−x)
p(x) gr

′
x .

Note that these can be computed since, in particular, p(x) �= 0 due to the fact
that for all x ∈ X , p(x) = 0 iff x ∈ Cover(R�) but here since x ∈ XR� we
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have x �∈ Cover(R�). We claim that (D(3)
x , D

(4)
x ) is valid by implicitly letting

rx = r′x − b(1−x)
p(x) and seeing that

D(3)
x = (ga

′
x)x(gb)(−

(1−x)ρ(x)
p(x) )P (x)r

′
x

= (ga
′
xx+(1−x)ab)(gab)−(1−x)(gb)(−

(1−x)ρ(x)
p(x) )P (x)r

′
x

= (gfx(x))((ga)p(x)gρ(x))(−
b(1−x)

p(x) )P (x)r
′
x = gfx(x)P (x)rx .

The validity of D(4)
x is immediate.

[Case S2: ω� �∈ A(M,π)] To create
(
(D(1)

x,i , D
(2)
x,i)i∈[1,�], (D

(3)
x , D

(4)
x )

)
x∈Path(id), we

categorize node x ∈ Path(id) whether it is in XR� or not as follows.

Category 1: x ∈ Path(id) ∩ XR� . The simulator B can create the key in exactly
the same manner as in the case S1, since in this category x ∈ XR� .

Category 2: x ∈ Path(id)\XR� . The simulator B does as follows. Recall that ω� �∈
A(M,π). Hence from Lemma 1, there must exist a vector w = (w1, . . . , wk) ∈ Zkp
such that w1 = 1 and that for all i where π(i) ∈ ω�, it holds that Mi · w = 0.

To create (D(1)
x,i , D

(2)
x,i)i∈[1,�], it randomly chooses z′x,2, . . . , z

′
x,k ∈ Zp and lets

v′
x = (0, z′x,2, . . . , z′x,k). It implicitly defines a vector

vx = (ax + α)w + v′
x

(4)
=
(
a′x + α(1 − 1

x
)
)
w + v′

x,

which will be used for creating shares of fx(1) = ax + α as in the construction.
For simplicity, let A = 1 − 1

x .
For i where π(i) ∈ ω�, it randomly chooses rx,i ∈ Zp and computes

D
(1)
x,i = gMi·v′

xF (π(i))rx,i = gMi·vxF (π(i))rx,i , D
(2)
x,i = grx,i (7)

where the right-hand equality of D(1)
i is due to Mi · w = 0.

For i where π(i) �∈ ω�, it randomly chooses r′x,i ∈ Zp. It then computes

D
(1)
x,i = (ga

′
x)Mi·wgMi·v′

x(gb)
(
−A(Mi·w)φ(π(i))

q(π(i))

)
F (π(i))r

′
x,i ,

D
(2)
x,i = (gb)−

A(Mi·w)
q(π(i)) gr

′
x,i.

(8)

Note that these can be computed since, in particular, q(π(i)) �= 0 due to the
fact that q(x) = 0 iff x ∈ ω� and here π(i) �∈ ω�. We claim that (D(1)

x,i , D
(2)
x,i) is

valid by implicitly letting rx,i = r′x,i − bA(Mi·w)
q(π(i)) and seeing that

D
(1)
x,i = (ga

′
x)Mi·wgMi·v′

x(gb)
(
−A(Mi·w)φ(π(i))

q(π(i))

)
F (π(i))r

′
x,i

= (ga
′
x+abA)Mi·wgMi·v′

x(gab)−A(Mi·w)(gb)
(
−A(Mi·w)φ(π(i))

q(π(i))

)
F (π(i))r

′
x,i

= gMi·vx((ga)q(π(i))gφ(π(i)))−
bA(Mi·w)

q(π(i)) F (π(i))r
′
x,i = gMi·vxF (π(i))rx,i ,

and the term D
(2)
x,i is immediate.
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To create (D(3)
x , D

(4)
x ), it randomly chooses rx ∈ Zp and computes

D(3)
x = (ga

′
xx)P (x)rx , D(4)

x = grx ,

which is valid since fx(x) = a′xx due to Eq.(6).

[Case U] For any R, t, it computes uk(R,t) = (U (1)
x , U

(2)
x )x∈Cover(R) as follows. It

first randomly chooses r′x ∈ Zp and computes

If x ∈ XR�

{
U

(1)
x = (ga

′
x)t(gb)(−

(1−t)ρ(t)
p(t) )P (t)r

′
x ,

U
(2)
x = (gb)−

(1−t)
p(t) gr

′
x .

If x �∈ XR�

{
U

(1)
x = (ga

′
x)t(gb)(−

(x−t)ρ(t)
xp(t) )P (t)r

′
x ,

U
(2)
x = (gb)−

(x−t)
xp(t) gr

′
x .

Note that these can be computed since, in particular, p(t) �= 0 for any t ∈ T .
The term (U (1)

x , U
(2)
x ) can be proved valid with implicit randomness rx =

r′x − b(1−t)
p(t) for the case x ∈ XR� and rx = r′x − (x−t)

xp(t) for the case x �∈ XR� .

Challenge. The adversary gives two message M0,M1 to the simulator. The
simulator flips a coin b and creates C = Mb · Z, C(1) = gs, for k ∈ ω�, C(2)

k =
(gs)φ(k), and for x ∈ Cover(R�), C(3)

x = (gs)ρ(x). We claim that if Z = e(g, g)abs,
then the above ciphertext is a valid challenge. The term C,C(1) is trivial. For
all k ∈ ω�, we have q(k) = 0, hence

C
(2)
k = (gs)φ(k) = ((ga)q(k)gφ(k))s = F (k)s.

Also, for x ∈ Cover(R�) we have p(x) = 0, hence

C(3)
x = (gs)ρ(x) = ((ga)p(x)gρ(x))s = P (x)s,

which concludes our claim.

5.2 When Target Mode Is Indirect Revocation

We now consider the case where mode� = ‘ind’. In this case, we have the auxiliary
input a� = t�.

Setup. To generate pk, algorithm B first defines q(x), φ(x) and corresponding
hj ’s as in the previous mode. Similarly, it also defines

p(y) = yd−1 · (y − t�) =
d∑
j=0

pjy
j.

From this we can ensure that for all t ∈ T , p(t) = 0 if and only if t = t� and
that for x ∈ X , p(x) �= 0. The latter is due to T ∩ X = ∅.



294 N. Attrapadung and H. Imai

It then randomly picks a degree d polynomial in Zp[x] as ρ(y) =
∑d
j=0 ρjy

j .

It lets uj = (ga)pjgρj for j = 0, . . . , d. We thus have P (y) =
∏d
j=0 u

(yj)
j =

(ga)p(y) · gρ(y).
The algorithm B implicitly defines α = ab. It gives A the public key pk =

(g, e(ga, gb), u0, . . . , ud, h0, . . . , hm). Since g, a, b, φ, ρ are chosen randomly and
independently, pk has an identical distribution to that in the actual construction.

Query Phase. Since we deal with the semi-static query notion, at the beginning
of this phase the adversary A announces R̃. Let XR̃ = {x ∈ Path(id) | id ∈ R̃}.
For all node x in the binary tree, it randomly chooses a′x ∈ Zp and implicitly
pre-defines:

ax =

{
a′x − ab if x ∈ XR̃
a′x − ab

t� if x �∈ XR̃.
(9)

Note that the simulator cannot compute these values, since ab is unknown. In-
tuitively, predefining is done so that we can compute

fx(1) = ax(1) + ab = (a′x − ab) + ab = a′x if x ∈ XR̃ (10)

fx(t�) = ax(t�) + ab = (a′x − ab

t�
)t� + ab = a′xt

� if x �∈ XR̃ (11)

The algorithm B then simulates answers to queries as follows.

If A queries for SK(id,A) then
If ω� ∈ A(M,π) then

If id �∈ R̃ then return ⊥
Else do Case S1′

If ω� �∈ A(M,π) then
Do Case S2′

If A queries for UK(R, t) then
If t = t� then

If R̃ �⊆ R then return ⊥
Else do Case U1′

If t �= t� then
Do Case U2′

[Case S1′: ω� ∈ A(M,π) and id ∈ R̃] The algorithm B computes (D(1)
x,i , D

(2)
x,i)i∈[1,�],

D
(3)
x , D

(4)
x for all x ∈ Path(id) in exactly the same manner as in the case S1 albeit

using set R̃ instead of R� and using polynomial p, ρ defined in Setup of this mode
above.

To see why this is valid, notice that in this case for all x ∈ Path(id) we have
x ∈ XR̃, where in such a case we define ax = a′x−ab in Eq.(9), which is unchanged
from the previous mode.

[Case S2′: ω� �∈ A(M,π)] To create
(
(D(1)

x,i , D
(2)
x,i)i∈[1,�], (D

(3)
x , D

(4)
x )

)
x∈Path(id), we

categorize node x ∈ Path(id) whether it is in XR̃ or not as follows.
Category 1: x ∈ Path(id) ∩ XR̃. The simulator B can create the key in exactly
the same manner as in the case S1′, since in this category x ∈ XR̃.
Category 2: x ∈ Path(id)\ XR̃. The simulator B does as follows. Recall that ω� �∈
A(M,π). Hence from Lemma 1, there must exist a vector w = (w1, . . . , wk) ∈ Zkp
such that w1 = 1 and that for all i where π(i) ∈ ω�, it holds that Mi · w = 0.
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To create (D(1)
x,i , D

(2)
x,i)i∈[1,�], similarly to the case S2, the simulator B does as

follows. It randomly chooses z′x,2, . . . , z′x,k ∈ Zp and lets v′
x = (0, z′x,2, . . . , z′x,k).

It implicitly defines a vector

vx = (ax + α)w + v′
x

(9)
=
(
a′x + α(1 − 1

t�
)
)
w + v′

x,

which will be used for creating shares of fx(1) = ax + α as in the construction.
For simplicity, let A = 1− 1

t� . The computation of (D(1)
x,i , D

(2)
x,i)i∈[1,�] can be done

using Eq.(7) and Eq.(8) as in the case S2, here the only difference is the value
of A. The validity thus can be verified similarly.

To create (D(3)
x , D

(4)
x ), it randomly chooses rx ∈ Zp and computes

D(3)
x = (ga

′
x)x(gb)

(
− (t�−x)ρ(x)

t�p(x)

)
P (x)r

′
x , D(4)

x = (gb)−
(t�−x)
t�p(x) gr

′
x ,

Note that these can be computed since, in particular, p(x) �= 0 for any x ∈ X .
This can be proved valid with the implicit randomness rx = r′x − b(t�−x)

t�p(x) .

[Case U1′: t = t� and R̃ ⊆ R.] To create (U (1)
x , U

(2)
x )x∈Cover(R), B randomly

chooses rx ∈ Zp for each x ∈ Cover(R) and computes

U (1)
x = (ga

′
xt

�

)P (t�)rx , U (2)
x = grx .

We prove that this is valid as follows. Since R̃ ⊆ R, hence for all x ∈ Cover(R)
we have x �∈ XR̃. Therefore from Eq.(11), we have fx(t�) = a′xt

�.

[Case U2′: t �= t�.] To create (U (1)
x , U

(2)
x )x∈Cover(R), B randomly chooses r′x ∈ Zp

for each x ∈ Cover(R) and computes

If x ∈ Cover(R) ∩ XR̃

{
U

(1)
x = (ga

′
x)t(gb)(−

(1−t)ρ(t)
p(t) )P (t)r

′
x ,

U
(2)
x = (gb)−

(1−t)
p(t) gr

′
x .

If x ∈ Cover(R) \ XR̃

⎧⎨⎩U (1)
x = (ga

′
x)t(gb)

(
− (t�−t)ρ(t)

t�p(t)

)
P (t)r

′
x ,

U
(2)
x = (gb)−

(t�−t)
t�p(t) gr

′
x .

Note that these can be computed since, in particular, p(t) �= 0 due to the fact
that for t ∈ T , p(t) = 0 iff t = t�.

The term (U (1)
x , U

(2)
x ) can be proved valid with implicit randomness rx =

r′x − b(1−t)
p(t) for the case x ∈ XR� and rx = r′x − (t�−t)

t�p(t) for the case x �∈ XR� .

Challenge. The adversary gives two message M0,M1 to the simulator. The
simulator flips a coin b and creates C = Mb · Z, C(1) = gs, for k ∈ ω�, C(2)

k =
(gs)φ(k), and C(3) = (gs)ρ(t

�). We claim that if Z = e(g, g)abs, then the above
ciphertext is a valid challenge. The term C,C(1) is trivial. For all k ∈ ω�, we
have q(k) = 0, hence

C
(2)
k = (gs)φ(k) = ((ga)q(k)gφ(k))s = F (k)s.
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Also, since p(t�) = 0, hence

C(3) = (gs)ρ(t
�) = ((ga)p(t

�)gρ(t
�))s = P (t�)s,

which concludes our claim.

5.3 The Rest of the Proof

Guess. In either mode, finally, A outputs b′ ∈ {0, 1} for the guess of b. If b = b′

then B outputs 1 (meaning Z = e(g, g)abs). Otherwise, it outputs 0 (meaning Z
is random in GT ).

We see that in both modes, the simulation is perfect. Furthermore, if Y is
sampled from RBDH then Pr[B(Y ) = 0] = 1

2 . On the other hand, if Y is sampled
from PBDH then we have | Pr[B(Y ) = 0]− 1

2 | ≥ ε. It follows that B has advantage
at least ε in solving the DBDH problem in G. This concludes the proof.

6 Efficiency

6.1 Comparison to Schemes Secure under the DBDH Assumption

In this section, we compare efficiency among available revocable ABE schemes
in which security is based on the DBDH assumption. This is shown in Table 2.

Table Description. Denote by |sk|, |ct|, |uk|, |pk| the size of user secret key, cipher-
text overhead, update key, and public key, respectively. The columns Normal,
Direct revoke, and Indirect revoke show the communication cost in the respective
modes. (Normal means no user is revoked). Here r is the number of revoked user.
n is the number of all users. � is the size of rows in the LSSS matrix, which is
equal to the number of attributes presented in the access structure. k is the size
of attribute set. m is maximum size allowed for k. d is maximum size of Cover(R)
for all R ⊆ U . All values in the table show the amount of group elements in G.
Symbol ‘-’ denotes unavailability of that mode.

DBDH-based Directly Revocable ABE. As stated in Section §1.2, there is no avail-
able directly revocable ABE which is proved secure under the DBDH assumption
yet. We briefly show how to construct one here. We use the methodology in [3]
for combining broadcast encryption (BE) and ABE. In their paper, they combine
BE of [8] and [21] to ABE of [16], yielding two efficient directly revocable ABE
systems, albeit they are based on much stronger assumptions (the n-BDHE and
q-MEBDH respectively). If we use this methodology to combine BE of [10], in
which security is based on DBDH, and ABE of [16], it will yield a DBDH-based
directly revocable ABE with parameters in the Table 2 (Variant of [3]).

Comparison. From Table 2, one can see that our HR-ABE scheme has the key size
roughly the same as both one-mode revocable ABEs (and hence half size of the
trivial HR-ABE from their combination). Indeed only 2 log(n) is increased from
both one-mode schemes. The ciphertext size in direct mode is the same as the
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Table 2. Comparison among available (revocable) ABE schemes based on the DBDH
assumption

Scheme |sk| Normal Direct revoke mode Indirect revoke mode |pk||ct| |ct| |ct| |uk|
[16] 2� k + 1 - - - m + 3
[6] 2� log(n) + 1 k + 2 - k + 2 2(r log(n

r
) + r) m + 3

[3](variant) 2� log(n) k + 2 k + r log(n
r
) + r + 1 - - m + d + 3

Ours 2(� + 1) log(n) k + 2 k + r log(n
r
) + r + 1 k + 2 2(r log(n

r
) + r) m + d + 3

Table 3. Efficiency of available directly revocable ABE based on stronger assumptions

Scheme |sk| Normal Direct revoke mode |pk| Assumption
|ct| |ct|

[3](scheme 1) 2� k + 2 k + 2 m + 2n + 2 n-BDHE
[3](scheme 2) 2� + 2 k + 2 k + 2r + 1 m + 7 q-MEBDH

variant of [3]. The ciphertext and update key sizes in indirect mode is the same
as that of [6]. Hence, we can conclude that among revocable ABE systems that
are based on the DBDH assumption, ours is the most flexible since it allows two
revocation modes and has efficiency roughly the same as the one-mode schemes.

6.2 Comparisons to Schemes Secure under Stronger Assumptions

In this section, we compare our HR-ABE to the trivially combined schemes
between Boldyreva et al. [6] and two directly revocable schemes of Attrapadung-
Imai [3], which are based on much stronger assumptions, namely the n-BDHE [8]
and the q-MEBDH [21] assumptions. Both directly revocable ABE schemes have
the private key size about 2�. See Table 3 for their efficiency. Thus, both com-
bined schemes have the private key size about 2� log(n) + 2�. Therefore, our
HR-ABE scheme is still more efficient when log(n) ≤ �. Note also that the first
combined scheme ([6] and the first scheme of [3]) is not so efficient in that its
public key is large as being linear in n.

7 Concluding Remarks

We presented a formalization and a construction of hybrid revocable attribute-
based encryption. An HR-ABE system allows senders to select whether to use
either direct or indirect revocation mode when encrypting a message. With direct
mode, the sender specifies the list of revoked users directly into the encryption
algorithm. With indirect mode, the sender specifies just the encrypt time (besides
a usual attribute set), while receivers obtain a key update material at each time
slot to update their keys from the authority, albeit in such a way that only non-
revoked users are able to update (hence revocation is enforced indirectly). Our
HR-ABE scheme requires each receiver to store only one key, which is nonetheless
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can be used to decrypt ciphertexts in either mode. The key size in our hybrid
scheme is roughly the same as that of the two currently best one-mode revocable
schemes. We proved the security for the selective-target and semi-static query
model under the DBDH assumption.

As for future direction regarding revocable ABE, it would be interesting to
obtain more efficient schemes (e.g., with constant-size keys and/or ciphertexts,
update keys). Another direction could be to obtain revocable ABE schemes (one-
mode or hybrid) which are secure in the adaptive security model.
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A Some Further Discussions

A.1 On the Syntax Definition of HR-ABE

In this section, we provide some comparisons on the syntax definition between
ours and that of Boldyreva et al. [6].

What to Be Revoked: Key vs Attributes. In a normal ABE system, the private
key will be associated with an access structure A. In general, the private key
generation is a randomized algorithm, hence many concrete private keys will
correspond to one A. There are then two approaches for meaningfully defining
revocation: (1) to revoke a specific one of many private keys that corresponds to
A or (2) to revoke the access structure A itself (i.e., to revoke all possible private
keys that correspond to A). Our definition in this paper is of the first type, while
the one defined by Boldyreva et al. [6] seems to be of the second type.2

We feel that the type 1 definition is more useful since in practice, the revo-
cation problem is motivated from the scenario where one specific key is leaked
to some attacker. Indeed, we do not wish to revoke the access structure A itself
from being able to use ever again in the system.

To meaningfully defining syntax of type 1, we must associate another identity
dimension, which we call a serial number (or user index) denoted by id, uniquely
to each possible private key for A. When revoking, a revocator will specify id

2 This is only if we guess correctly, since they did not explicitly define the syntax for
revocable ABE case in their paper. They did only for revocable IBE case and in this
case their formalization is of the second type: to revoke all possible private keys for
an identity.
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instead of A itself to distinguish this specific key among all possible keys for
A. More generally, a revocator will specify a set of serial numbers he wants to
revoke; any of these may or may not correspond to the same access structures.
We capture this type of revocation in our definition in Section §3.1.

On the other hand, Boldyreva et al. [6] provided a definition of the type 2 (for
their indirectly revocable IBE but implicitly for the ABE case). In such a system,
a revocator will specify the access structure A he wants to revoke. This kind of
definition implies that after being revoked, any private keys for A (even with
different randomness) cannot be used for decryption in the system anymore.

Although the notion of serial number is not included in the syntax definition
of [6], it is introduced in their proposed construction and is utilized in a similar
way as our explicit use of id in our syntax definition. Hence, the information on
the serial number in their scheme is maintained internally inside the state of
the key authority. Therefore, to be able to include such kind of schemes in the
syntax definition, they define the algorithms as stateful type ones. We discuss
this issue below.

Algorithms: Stateless vs Stateful. In our main syntax definition of HR-ABE (de-
scribed in Section §3.1), all algorithms are stateless. We also mentioned a simple
augment definition with the stateful KeyGens algorithm in order to maintain the
assignment of unique id to each key in the real usage.

In contrast, Boldyreva et al. [6] formalized their (indirectly revocable) system
as a stateful one in a little bit more complex way. Indeed, their formalization
takes into account the notion of time order. In particular, the revoked set R at
the present time will be depended on the time t and on all previous possible
actions (such as revocation done previously).

We feel that our explicit stateless formalization is more useful in two aspects.
First, since the revoked set R is independent from time, an instant or temporary
revocation is explicitly possible. Second, it does not take into account the notion
of time order, hence t could be any token identity and the scheme will still work.

A.2 On the Security Definition of HR-ABE

We compare our security notion to that of [6] here (for the indirect mode).
First, the query model is essentially the same but since in [6] the order of time
is important, hence their notion has to check the condition for example t ≤ t�

when some queries are asked. In ours, t is an independent attribute, we thus only
care about at the target t�. Second, their notion separates the revocation query
and update key query and links them via the internal state. In ours, the revoke
set is stated explicitly in the update key query, hence ours is simpler. Third,
they only provide an explicit notion for the IBE case but leave the detail for the
ABE case to the reader. Finally, ours seems to capture a stronger notion in the
sense that the serial number id can be chosen by the adversary when query the
SK oracle. (The last one is due to the difference of the syntax definition types
described in Appendix §A.1, though).
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Abstract. In this paper we propose the concept of Certificate-free At-
tribute Authentication (C-AA), which holds a few interesting features,
such as a user can demonstrate (1) he owns sufficient attributes to pass
an attribute verification without showing his full attribute details, (2)
he has been authorized by a number of authorities without revealing his
identity, and (3) no certification of the user’s public key is required, and
his secret key as a whole is not escrowed by any authority. Although
these features have individually been used in various of cryptographic
primitives, in this paper we combine them together and demonstrate a
Certificate-free Attribute Authentication Scheme (C-AAS) is useful in
practice. We provide a formal definition of a C-AAS and four security
notions: full anonymity, full traceability, non-frameability and attribute
unforgeability. We also construct a concrete C-AAS and prove it is cor-
rect and secure under the definition and security notions.

1 Introduction

In lots of applications in practice, people require knowing attributes of their com-
munication partners much more than their communication partners’ identities
and other personal information. Let us consider the following Scenario:

Scenario 1. Bob is a pharmacist. To follow some policies, he only gives a medicine
to a patient if s/he has a national health insurance and a valid prescription signed by
a doctor, who must be registered with the Ministry of Health (MOH) and works in a
known clinic, practice or hospital, etc. Furthermore, Bob is allowed to give a discount
for any student, elder, or employee in a health organization. Alice is entitled to obtain
the medicine and discount. But she does not feel comfortable to tell Bob her name,
age, employment, residential location etc. What they need is a solution to allow Alice
to convince Bob that she is eligible to obtain the medicine with the discount, and this
solution will not reveal any unnecessary private information about Alice to Bob.

Our target in this work is to create such a solution.

1.1 Our Contributions

Our proposed solution is the primitive of Certificate-free Attribute Authentica-
tion (C-AA), in which a user can demonstrate (1) he owns sufficient attributes
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to pass an attribute verification without showing full attribute details, (2) he
has been authorized by a number of authorities without revealing his identity,
and (3) no certificate of the user’s public key is required, and his secret key as a
whole is not escrowed by any authority.

For obvious reasons, we assume that Alice in Scenario 1 is not a sole patient
in the solution; otherwise maintaining privacy is impossible. In order to make
our goal more clear and general, we refer to all potential patients as a group of
users U (or called them signers), and use Ui to denote an individual user, and
we refer to Bob as a verifier V . We also refer to each condition (e.g., national
health insurance, private practice, public practice, student, employee of a health
organization, elder and so on) to an attribute denoted by j, refer a set of at-
tributes requested by V for a particular purpose to an attribute tree Γ , and refer
an attribute proof of Γ by Ui to an attribute signature denoted by σi(Γ ). We
list all the properties held by a C-AAS as follows:

– Unforgeability of an attribute signature: Ui cannot provide σi(Γ ) if he is not
in possession of sufficient attributions required in Γ .

– Coalition Resistant: Two signers, each of which does not own enough at-
tributes to create an attribute signature, cannot jointly provide a valid sig-
nature. For instance, in the above scenario, a student without national health
insurance and another patient who owns all other attributes but is neither a
student, an employee of any health organization nor an elder cannot jointly
claim the discount.

– Anonymity of a signer’s identity: Given an attribute signature σi(Γ ), V can-
not find out who in U has created it, i.e., the index i cannot be retrieved
from σi(Γ ) by V .

– Unlinkability: Given two attribute signatures, V is not able to find out
whether they have been created by the same signer or not.

– Traceability: Given an attribute signature σi(Γ ), an authorized entity can
retrieve the index i. Traceability is required in order to prevent a legitimate
but malicious signer from misusing anonymity.

– Anonymity of Attributes: Given an attribute signature σi(Γ ) and Γ , V can-
not find out which set of attributes has been used in computing σi(Γ ) if the
size of total attributes in Γ is larger than the attribute set required. For in-
stance, in the above scenario, Bob cannot find out whether Alice is an elder,
an employee of a health organisation or a student. The details of attribute
tree will be described in §4.

– Separability: It is possible for Ui to obtain different attributes from different
authorities, and these authorities do not have to maintain any trust relation-
ship between each other. For instance, in the above scenario, Alice can get
a student attribute from her university and get a national health insurance
from the government.

– Non-repudiation: Ui cannot deny a valid attribute signature σi(Γ ) has been
created by him. In particular, Ui’s private signing key should not be escrowed
by any authority.
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These properties have individually been used in various of cryptographic prim-
itives, such as these that will be mentioned in §1.2. In this paper we combine
them together to build a C-AA scheme and demonstrate such a scheme could
be useful in practice. In the scheme a signing key consists of two parts, one of
which is created by a trusted authority and another is created by the signer,
and the whole private signing key is not escrowed by any authority. In addition
it does not require a traditional key certificate to check validation of the key.
These features have some similarity to certificateless cryptography as specified
by Al-Riyami and Paterson in [1]. However, the notion of certificate-free used
in our C-AAS is not exactly the same as certificateless of Al-Riyami and Pa-
terson defined, since we do not use identity-based key construction. Our key
construction is more like an anonymous credential.

We will provide a formal definition and four security notions of C-AAS. The
security notions are full anonymity, full traceability, non-frameability and at-
tribute unforgeability. We will also construct a concrete C-AA scheme and prove
it is correct and secure under the definition and security notions.

1.2 Related and Prior Work

Researchers have realized the importance of attribute oriented cryptography
(e.g. [11,22,17]). There have been a few proposals for attribute based signatures,
such as [16,14,20], which do not hold the properties of traceability and certificate-
free as we require. In [16], the authors proposed a signature scheme based on
mesh signatures [5]. In [14] the authors introduced an attribute based ring signa-
ture. Neither of these papers managed to involve multi-authorities for different
attributes, and adding multiple attributes to the signing key in these schemes
is not straightforward. The authors of [20] proposed a threshold attribute sig-
nature scheme where the signer decides their signing identity, given a signing
key to a set of attributes from some central authority. Their scheme has limited
separation of multiple authorities.

One of the widely studied cryptographic primitive is “anonymous credentials”.
Anonymous credential systems were introduced by Chaum [8] and further stud-
ied in [6,7,15,21]. A credential in such systems is issued and verified on a user
pseudonym, which in turn is bound to the user’s secret identity. Users remain
anonymous and unlinkable in such systems. However, attribute anonymity, and
traceability are not handled in these systems. Furthermore, most “anonymous
credentials” cryptosystems in the literature can not handle multi-credential re-
quirements. More recent proposals are based on ring signatures [14,16], therefore
traceability is not an option.

In 2003, Al-Riyami and Paterson proposed the notion of Certificateless Public
Key Cryptography (CL-PKC) [1], which was intended to respond to a challenge
of key escrow in identity-based cryptography [19]. In CL-PKC, a user has a
public key generated by himself and his private key is determined by two pieces
of secret information: one secret associated with the user’s identity is issued by a
key generation center and the other associated with the public key is generated
by the user himself. As a result, the key generation center cannot compute the
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private key corresponding to the user’s public key. Hence the CL-PKC is key-
escrow-free.

Group signatures [2,3] provide somewhat similar features, in allowing people
to sign as members of a group, but do not meet our needs since they do not have
multiple attribute verification with coalition resistance and attribute anonymity,
as described in [13]. These prior works are related to our target in Scenario 1,
although none of them alone can meet our needs.

1.3 Paper Organization

The remainder of this paper is organized as follows. In §2, we describe a formal
definition of C-AAS and its security model. In §3, we recall the definition of some
well-known theorems, security problems and assumptions, which is used to prove
security of our C-AA scheme. In §4, we introduce an attribute tree technique,
which is a building block of the C-AA scheme. We present the proposed C-AA
scheme in §5 and its security analysis in §6. In §7, we discuss the aspect of
honestly generated attribute keys. Finally we conclude the paper in §8.

2 Definitions and Security Notions of C-AAS

A C-AA system is shown in Figure 1. In this system, there are six types of enti-
ties: a set of Signers (who are also called users Ui where i is an integer to denote
the i-th user of the set), a verifier (V), an attribute authority (AA), a central
authority (CA), an opener (O) and an issuer (I). In a high level description,
a C-AA scheme includes the following nine operation steps (the step numbers
match with the ones in Figure 1):

1. CA creates a general public key known to all other entities, an issuing key
for I and a tracing key for O. The issuing key is used in creating signing
keys. The tracing key is used in tracing signatures. The general public key
is used by different entities for different purposes, e.g., AA uses it to create
an attribute public key while V uses it in the verification process.

2. A join protocol is executed between Ui and I. As a result, a private signing
key and a registration key are created for Ui such that nobody other than
Ui will know the full private key, preventing key escrow, but I holds enough
information to help O to trace the identity of Ui from his signature.

3. I sends the registration key to O, who adds Ui into the list of possible signers.
4. Ui sends his registration key to AA.
5. AA gives Ui a set of attribute private keys, each for a particular attribute

that Ui is legitimate to obtain. V collects all attribute public keys and uses
them together with the general public key to generate a verification key.

6. The verification key is made available to all potential signers.
7. Any user with enough attribute private keys can create an attribute-based

signature, which can be verified by V .
8. If V doubts the signature, he can ask O to trace it.
9. O sends a proof back to V if a legitimate user has signed the signature.
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Fig. 1. The Certificate-free Attribute Authentication (C-AA) Scheme

2.1 Formal Definition of a C-AA Scheme

The certificate-free attribute authentication scheme (C-AAS) is a collection of
algorithms and protocols that are executed by the entities (signer Ui, verifier
V , central authority CA, attribute authority AA, opener O and issuer I). We
define the scheme by explaining these algorithms or protocols as follows:

– KeyGen(k1) : This algorithm run by CA takes the security parameter k1
as input and outputs three keys: the issuing key isk given to I, the tracing
key tk given to O, and the general public key gpk known to all. In the
description of the remaining algorithms and protocols, we will not repeat
that gpk is used as an input.

– U.KeyGen(k2) : This algorithm run by Ui takes the security parameter k2
as input and outputs a user public key upk[i] and its corresponding private
key usk[i]. Note that the security parameters k1 and k2 are not logically
connected, though it might be wise to choose them together. The choice of
k1 will affect the full anonymity and full traceability games defined later in
§2.2. On the other hand, the parameter k2 should be chosen so that the pair
(upk[i], usk[i]) can be used in an unforgeable signature scheme.

– Join(I(isk) : Ui(upk[i], usk[i])) : This protocol is run by I and Ui. Ui uses
(upk[i], usk[i]) as inputs and I uses isk as an input. The result of the protocol
is a private key bsk[i] known to Ui only and a registration key Ai saved in a
database accessible by O.

– A.KeyGenpub(j) : This algorithm run by AA takes an attribute j as an
input and outputs an attribute public key bpkj and its corresponding master
attribute private key tj for j.

– A.KeyGenpri(Ai, j, tj) : This algorithm run by AA takes Ui’s registration
key Ai, an attribute j and its master private key tj as input, and outputs
an attribute private key Ti,j for Ui associated with j. Note that if the size
of total attributes owned by Ui is µ, then the general private key of Ui is
gsk[i] = (bsk[i],Ti,1, ..., Ti,µ).
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– Verifign(Ui(gsk,M) : V(M,B, gpk)) : This protocol is run between V and
Ui. V uses a set of attribute public keys (i.e. B = {bpk1,...,bpkκ}) as input,
creates a tree Γ as described in TCreate of AT in §4, and sends Γ to Ui.
Ui uses gsk[i], Γ and a signed message M as input, computes a signature
σ, by following the procedure described in TVerify of AT in §4, and then
sends σ to V . V checks validity of the signature that proves possession of the
attributes represented in Γ . Note that in the security nations and analysis,
we use the common notation Sign to denote the process of computing σ by
Ui, and V erify to denote the process of verifying σ by V .

– Open(σ, tk) : This algorithm run by O takes tk and σ as inputs and uses
the registration key database (updated in the Join protocol) to trace the
signer’s registration key.

– Judge(V(td) : O(tk)) : This protocol is run between V and O in order to
prove that O does not frame Ui and that the Open algorithm does in fact
trace to this user. The verifier calculates a trapdoor td from the signature
σ and sends it to O, who returns a proof P that shows Ui has been traced.
Finally the correctness of P can be verified by using the trapdoor td.

2.2 Security Notions of the C-AA Scheme

We start this section by defining the correctness of a C-AA scheme:

Definition 1. (Correctness of a C-AA scheme): For all keys gsk generated cor-
rectly, every signature generated by a member i verifies as valid unless the mem-
ber could/did not use sufficient attributes. Every valid signature should trace to
a member of the group. In other words,

V erify(Dv, gpk,M, Sign(M,Ds, gsk)) = valid, where Ds = Dv;
if V erify(...) = valid then Open(Sign(M,Ds, gsk), tk) = i;
otherwise V erify(...) = not valid.

In order to capture the properties required in C-AAS specified in Section 1, we
define four security notions: full traceability, full anonymity, attribute unforge-
ability and non-frameability. We argue these four notions cover all the proper-
ties, except Separability, but this property can be seen clearly. In particular,
if a C-AAS has full traceability and attribute unforgeability then it also has
unforgeability, coalition resistance, non-repudiation and traceability, and if the
scheme has full-anonymity then it also has anonymity and unlinkability.

For each security notion we propose a game between a hypothetical adversary
A and challenger C. C runs certain oracles that A can query. We first introduce
the following oracles, which will be used in every game.

– User Secret Key (USK) Query Qracle: A sends C an index i, and C
returns the triple (bsk[i], Ai, usk[i]), which are Ui’s three parts of secret keys.

– Signature Oracle: A sends C a verification key D, a message M and an
index i all at A’s choice, and C returns σ = Sign(M,D, gsk).

– Open Oracle: A sends C a signature σ, and C replies with an index i of
the signer. They can execute the Judge protocol if it is requested.
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– Corrupt User in Join (CrptJoinUsr) Oracle: A engages with C in a
join protocol where A plays the role of Ui and C is I.

– Corrupt Issuer in Join (CrptJoinIss) Oracle: A engages with C in a
join protocol where A plays the role of I and C is Ui.

– Attribute Private Key (AttPriKey) Query Oracle: A sends a regis-
tration key Ai to C together with an index of the attribute j, and C returns
a private attribute key Ti,j .

– Attribute Master Key (AttMasKey) Query Oracle: A sends an index
j to C, and C returns tj .

In the games of full traceability, full anonymity, and non-frameability, A is al-
lowed to choose the master keys of the universal set of attributes U = {t1,...,tm},
so all attribute authorities in these games are corrupted. But in the game of at-
tribute unforgeability, A is not allowed to do so. We now show these four games
as follows.

C-AAS Full Anonymity: We say that a C-AA Scheme is fully anonymous
under a specific set of attributes, if no polynomially bounded adversary A has a
non-negligible advantage against the challenger C in the following A.AAS game:

– A.AAS.Setup: C sets up the system by creating a tracing key tk, an issuer
key isk and a general public key gpk. He gives gpk and isk to A.

– A.AAS.Phase 1: A queries the following oracles, USK, Signature oracle,
CrptJoinUsr, CrptJoinIss and Open oracle, which are all answered by C.

– A.AAS.Challenge: A provides a message M , two indexes i0,i1, and ver-
ification key D. C responds back with a signature σib , where b ∈R {0, 1}.
Both i0, i1 should not have been queried in the CrptJoinUsr oracle, however
it can be queried in the Signature oracle.

– A.AAS.Phase 2: This stage is similar to Phase 1. The signature σb is not
queried in the open algorithm.

– A.AAS.Output: A outputs a guess b̄ ∈ {0, 1}. If b̄ = b, he wins the game.

In this game we assume the attribute authority is totally corrupted since the
adversary decides the master keys of the attributes (i.e. tj). We also assume
that the issuer is corrupted since the adversary gets the issuer key. The open
manager is not corrupted since the tracing key is not disclosed to the adversary.
We allow the Signature oracle to be queried for the indexes of the challenge in
both phase 1 and 2. This implies that unlinkability is taken into consideration
in this game. We assume in the challenge process that CrptJoinUsr is not used
to query either of i0 or i1. This is a reasonable assumption. In phase 2, we
restrict access to the open oracle such that the challenge signature is not queried
in the open oracle. This is another reasonable assumption. Let the advantage
AdvA.AAS(k1) = Pr[b = b̄] − 1/2, and then the definition of full anonymity is:

Definition 2. Full Anonymity: A C-AA scheme is fully anonymous if for all
polynomial time adversaries, AdvA.AAS(k1) < ε and ε is negligible.



308 D. Khader, L. Chen, and J.H. Davenport

C-AAS Full Traceability: We say that our C-AA scheme is traceable if no
polynomially bounded adversary A has a non-negligible advantage against the
challenger C in the following T .AAS game:

– T.AAS.Setup: C sets up the system and generates the tracing key tk,
issuer key isk and the general public key gpk. He sends A tk and gpk. Both
C and A can calculate attribute public keys since they both have access to
the master keys of all attributes.

– T.AAS.Queries: C runs oracles: USK oracle, Signature oracle, and Crp-
tJoinUsr. A queries them as described earlier.

– T.AAS.Output: A sends a message M to C, who calculates a new D and
sends it back. A replies with a signature σ. C verifies the signature. If it is
not valid C returns 0. If it is valid, C tries tracing it to a signer. If it traces
to a signer in which A did not query before or if it traces to a nonmember
then A wins the game. C returns 1 if A wins else returns 0.

In this game the open manager is totally corrupted by giving the adversary the
tracing key. The attribute authorities are also corrupted since everyone knows the
master keys of all attributes. The issuing key is kept as a secret from the adversary,
otherwise he can easily issue a private key that can not trace to a member of the
user group. The adversary does not need to query the open oracle since he has
the tracing keys. Refer to the output of this game as Exp then the advantage is
AdvT.AAS(k) = Pr[Exp = 1] and definition of traceability is as follows:

Definition 3. Full Traceability: A C-AA scheme is fully traceable if for all poly-
nomial time adversaries, AdvT.AAS(k1) < ε and ε is negligible.

C-AAS Unforgeability of Attributes: We say that our C-AA scheme is
Attribute-Unforgable if no polynomially bounded adversary A has a non-
negligible advantage against the challenger C in the following U.AAS game:

– U.AAS.Setup: C sets up the system and plays the role of all attribute
authorities in the system. He generates the tracing key tk, the issuer key
isk, and the general public key gpk. He creates the universe of attributes
by choosing a list of master keys t1,...,tm. C calculates the attribute public
keys bpk1,...,bpkm which he sends together with tk and gpk to A. C keeps
to himself isk and a list of tj .

– U.AAS.Phase (1): A queries the oracles USK, Signature, CrptJoinUsr,
AttPriKey, and AttMasKey, which are answered by C.

– U.AAS.Challenge: A sends a tree Γ1, user l and attribute z which he
would like to be challenged on to C. C replies with D for a tree Γ2 where Γ2
has two subtrees: the first is Γ1 and the other is based on tz. The threshold
value of the root in Γ2 is 2. The challenge condition is that user l has not
been queried in AttPriKey for the attribute z. Furthermore the challenged
index z should not have been queried in AttMasKey. These two conditions
are reasonable as they contradict with the purpose of the game.



Certificate-Free Attribute Authentication 309

– U.AAS.Phase (2): This phase is similar to Phase 1 as long as the challenge
conditions are not broken.

– U.AAS.Output: A outputs a signature σ for the user l on the verification
key D. If signature is valid, A wins and C outputs 1, else he outputs 0.

We assume the open manager is totally corrupted since the adversary is given
the tracing key tk. The adversary can also corrupt attribute authorities of his
choice by querying the AttMasKey. The only condition is that the attribute he
asks to be challenged upon should not be corrupted as that contradicts with
the purpose of the game. The adversary can also corrupt users by querying USK
oracle or CrptJoinUsr. Furthermore, the adversary can get attribute private keys
for different users and different attributes as long as he does not query the user
l for the attribute z. This is a logical assumption because the idea of the game
is to create a valid signature that proves that a user has an attribute when
he does not really own it. If we refer to the output of this game as Exp then
the advantage of the game is notated as AdvAFDAAS(k1) = Pr[Exp = 1] and
definition of attribute unforgeability is as follows.

Definition 4. Unforgeability of Attributes: A C-AA scheme is attribute un-
forgeable if for all polynomial time adversaries, AdvU.AAS(k1) < ε and ε is
negligible.

C-AAS Non-frameability: The last security notion we require in C-AAS is
non-frameability, which we mean that given the tracing key, the issuing key,
the general public key and private keys of a group of all legitimate users, the
adversary A can not run the Judge protocol with the challenger C and prove
that another user rather than the real signer has signed the given signature. This
notions is defined in the following F.AAS game.

– F.AAS.Setup: C sets up the systems and gives the issuing key isk, tracing
key tk, and general public key gpk to A.

– F.AAS.Queries: In this stage A can query the CrptJoinUsr, CrptJoinIss,
Signature and USK oracles.

– F.AAS.Challenge: A chooses an index i, a signature σ, a verification key
D, and a message M . C verifies the signature. If it is not valid return 0 else
trace the signature. If it traces to a user not from the system then return
0. Otherwise C accepts the challenge on the registration key Ai and lets A
know. A and C then engage in the Judge protocol where A proves to C
that user ∗ rather than user i is the signer. The corresponding (Ai, xi, yi)
and (A∗, x∗, y∗) were not produced in CrpJoinUsr or in a process without
the aid of C, and there was no USK query for neither of these two users.
This implies that A does not know the values yi and y∗ and that yi �= y∗

holds. If (A∗, x∗, y∗) is a valid proof on the challenge, A wins the game.

In the non-frameability game, all authorities are corrupted. We do not need an
Open oracle since the tracing keys are given to the adversary.The rest of the oracles
are used, that allows the adversary to corrupt any legitimate users at his choice
apart from the two users in the Challenge phase. If this experiment is referred to
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as Exp then the advantage of winning the game is defined as AdvF.AAS(n, k) =
Pr[Exp = 1] and the notion of non-frameability is defined as follows.

Definition 5. Non-frameability: A C-AA scheme is non-frameable if for all
polynomial time adversaries, AdvF.AAS(k1) < ε and ε is negligible.

3 Preliminaries

This section defines some pairing-based computational problems used in proving
our construction traceable. Assume e : G1 × G2 → G3 has been created using
parameter k1. Let G1, G2 and G3 be cyclic groups of prime order p, with a
computable isomorphism ψ from G2 to G1 or possibly G1 = G2. Assuming the
generators g1 ∈ G1, and g2 ∈ G2.

Definition 6. (q-Strong Diffie–Hellman Problem (q-SDH) in G1 and G2 [4]):
Given a (q + 2) tuple (g1, g2, g

γ
2 , g

γ2

2 , ..., gγ
q

2 ) as an input where γ ∈ Z∗
p, output

what is called a SDH pair (g1/(γ+x)
1 , x) for an x ∈ Z∗

p.

An algorithm A has a negligible advantage in successfully solving q-SDH in
(G1, G2) if: Adv(p) =

∣∣∣Pr[A(g1, g2, g
γ
2 , g

γ2

2 , ..., gγ
q

2 ) = (g1/(γ+x)
1 , x)] − 1/|G|

∣∣∣ ≤ ε

where the probability is over a random choice of a generator g2 (with g1 = ψ(g2)),
and of random bits of A. The advantage Adv(p) is specific to the prime number p
and is equivalent to the probability of the algorithm A calculating the SDH pair
from the (q+2) tuple. This problem is believed hard to solve in polynomial time
and ε should be negligible [4]. In [9] the author proposes an algorithm that solves
the SDH problem in O(p

1
3+ε). Throughout this paper we will be using q-SDH

where q is roughly an upper bound on the number of users in our proposed C-AA
scheme specified in §5. We note that basic Boneh-Boyen signatures are roughly
equivalent (O(p2/5+ε)) to q-SDH [11]. This proof does not translate directly to
our setting, so equivalence is still open.

Definition 7. Bilinear DH Inversion (k-BDHI) assumption [?]: For an integer
k, and x ∈R Z∗

p, g2 ∈ G2, g1 = ψ(g2), e : G1 × G2 → G3, given (g1, g2, gx2 , gx
2

2 ,
..., gx

k

2 ), computing e(g1, g2)1/x is hard.

The following two theorems will be used to prove our proposed C-AA scheme in
Section 6.

Theorem 2. (Boneh–Boyen SDH Equivalence [4])
Given a q-SDH instance (g̃1, g̃2, g̃

γ
2 , g̃

γ2

2 , ..., g̃γ
q

2 ), by applying the Boneh and
Boyen’s Lemma found in [4] we obtain g1 ∈ G1, g2 ∈ G2, w = gγ2 and (q−1) SDH
pairs (Ai, xi) (such that e(Ai, wgxi

2 ) = e(g1, g2)) for each i. Any SDH pair be-
sides these (q−1) ones can be transformed into a solution to the original q-SDH
instance.
1 k = k1 in §5.
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Assume a signature scheme produces the triple 〈σ0, c, σ1〉 where σ0 takes its
values randomly from a set, c is the result of hashing the message M with σ0,
and σ1 depends only on (σ0, c,M). The Forking Lemma is as follows [18]:

Theorem 3. (The Forking Lemma)
Let A be a Probabilistic Polynomial Time Turing machine, given only pub-
lic data as input. If A can find, with non-negligible probability, a valid signa-
ture (M,σ0, c, σ1) then, with non-negligible probability, a replay of this machine,
with the same random tape but a different oracle, outputs new valid signatures
(M,σ0, c, σ1) and (M,σ0, c̃, σ̃1) such that c �= c̃.

4 Attribute Tree

In our proposed C-AA scheme, an attribute tree is used to present certain at-
tributes requested by a verifier for the purpose of authenticating a user, where
the user must demonstrate to hold sufficient attributes in order to pass authen-
tication. This type of trees was first proposed in [11] to implement an attribute
based encryption scheme. The tree consists of a set of non-leaf nodes (including
a root) that have some child notes, and a set of leaf nodes that do not have
any child. Each interior node is a (m,n) threshold gate that represents m out
of n children branching from the current node which need to be satisfied for the
parent to be considered satisfied. Each leaf node represents an attribute that is
associated with a cryptographic key. Satisfaction of a leaf is achieved by prov-
ing in possession of some secret information of the key. Only a legitimate user
owning the attribute is issued with such a piece of information.

Threshold Value=3

National Health Insurance Threshold Value=1 Threshold Value=1

Private Practice Public Practice Student Employee Elder

Fig. 2. An Example of the Attribute Tree

For further explanation, we show an example in Figure 2, which demonstrates
Scenario 1 specified in §1. Let Γ denote the tree, which is described in a Top-
Down-Left-Right manner. So it can be written as Γ = {(3, 3) : leaf, (1, 2), (1, 3) :
leaf, leaf; leaf, leaf, leaf}. The first note (3, 3) is a root, the next three notes are
the children of the root, and the last five notes are the grandchildren of the root.
As mentioned before, (m,n) represents a non-leaf node which has n children and
which is a threshold gate with the threshold value m. In the above tree, national
health insurance, private practice, public practices, student, employee of health
organisations, and elder are all leaves.

Let Υi be a set of all attributes owned by a user Ui and µ be the size of Υi.
Let κ denote the number of total leaves in the tree Γ . Let (i with the size of τ
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be a subset of Υi, and (i is used for satisfying Γ . Note that the values of µ, κ
and τ do not have to be the same as each other.

When a verifier V wants the user Ui to prove possession of a set of attributes,
e.g. having national health issuance, holding a doctor’s prescription from either
of the two practices, and be either a student, an employee of a health organisation
or an elder. V first builds the tree Γ (κ = 6) and sends it to Ui. Suppose Ui is a
student and also a part-time employee in a clinic and has national health issuance
and a valid prescription from the public practice (µ = 4). Ui has sufficient
attributes to pass every threshold gate of Γ . Ui decides on a set (i including
three of her four attributes, say student, national health issuance and public
practice (τ = 3). She makes a proof P of Γ and sends it back to V .

Formally we define such an attribute tree AT to be a tuple of protocols and
algorithms AT = (TSetup,TCreate,TVerify) where

– TSetup(k) is a p.p.t. system setup and key generation algorithm. Dependent
on applications, this algorithm can be run by a trusted third party T . It takes
as an input a security parameter k, selects a bilinear map e : G1 ×G2 → G3
defined on the three groups of prime order p, and chooses a generatorw ∈ G2.
For each attribute j, T creates a master private key tj ∈ Z∗

p and computes
its public key bpkj = wtj . To each user Ui, T issues a unique base Ai ∈ G1.
If Ui owns the attribute j, T issues him a private key Ti,j = A

1/tj
i .

– TCreate(Γ, α,B) V takes a set of attribute public keys denoted by B =
{bpk1, bpk2, ..., bpkκ} as inputs, and creates a tree Γ by performing the fol-
lowing steps:

• Setup the tree construction, i.e. the parent-child relations of the notes,
randomly assign each node (other than the root) an index and add the
indexes to Γ . We use the notation Index(Node) to represent the index
of a node where Index(Node) ∈ Z∗

p.
• Choose a polynomial qnode over Z∗

p for each note, where the polynomial
is of degree dnode = knode − 1, and knode is the threshold value of the
node. For example, in the tree represented in Figure 2, kroot = 3. Pick
a secret α ∈R Z∗

p as qroot(0); for the rest of the nodes setup qnode(0) =
qparent(Index(Node)).

• calculate Dj = bpk
qj(0)
j for all leaves, setup D = {D1,..., Dκ}.

At the end of the protocol, V sends 〈Γ,D〉 to Ui.
– TVerify(D,(i, T̄) Given the tree Γ , Ui first decides (i, a subset of Υi, which

is sufficient to satisfy Γ , and then computes a proof P by performing the
following steps:

• Choose β ∈R Z∗
p, setup T̄ = {CT1, CT2, ..., CTτ} where CTj = T βi,j .

• For each leaf note, compute a recursive function SignNode as follows:

SignNode(leaf) =
{

If (j ∈ (i); return e(CTj , Dj) = e(Aβi , w)qj(0)

Otherwise return ⊥

• For each non-leaf node ρ, proceed the recursive function SignNode as fol-
lows: For all children z of the node ρ it calls SignNode and stores output
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as Fz. Let Ŝρ be an arbitrary kρ sized set of children nodes z such that
Fz �= ⊥ and if no such set exists return ⊥. Otherwise let
∆Ŝρ,index(z) =

∏
ι∈Ŝρ\{index(z)}

(−ι/(index(z) − ι))

and compute

Fρ=
∏
z∈Ŝρ

F
qz(0)∆Ŝρ,index(z)
z =

∏
z∈Ŝρ

e(T βi,j , Dj)
qz(0).∆Ŝρ,index(z)=

∏
z∈Ŝρ

e(Aβi , w)qz(0).∆Ŝρ,index(z)=
∏
z∈Ŝρ

e(Ai, w)βqparent(z)(index(z)).∆Ŝρ,index(z)

As a result, Fρ=e(Ai, w)qρ(0)β and Froot = e(Aβi , w)α if tree is satisfied.
• Setup td = wβ and P = 〈Froot, td〉.

Ui then sends P to V , who will accept the proof if F 1/α
root = e(Ai, td).

Remarks. This implementation of the attribute tree is a modification of the
attribute-based encryption scheme in [11]. The major difference is that the tree
is not bound with decryption, but with a signature. Each signer Ui has a unique
base Ai. In this implementation, the value Ai is known to V . But in our C-AA
scheme presented in §5, this value is hidden to V and the signature is anonymous.
The value β is introduced here for the purpose of maintaining the randomization
in Froot. This feature is reserved for the anonymity requirement of the C-AA
scheme.

5 The Proposed C-AA Scheme

In this section we present an example of a C-AAS construction. The algorithms
defined in §2.1 are specified as follows:

– KeyGen(k1) : Using the security parameter k1 CA does the following key
and parameter generation: Choose a bilinear map e : G1 × G2 → G3 where
G1, G2 and G3 are three groups of sufficiently large prime order p with a
computable isomorphism from G2 to G1. Suppose that the DDH problem
is hard in G1 and the q-SDH problem is hard to solve in G1 and G2 (See
Definition 6). Choose a hash function H : {0, 1}∗ → Z∗

p. Choose two integers
ξ1 and ξ2 ∈R Z∗

p, two generators g3, and g4 ∈ G1 and compute g1 = gξ14 and
g2 = gξ24 ∈ G1. Choose h ∈R G2 and γ ∈ Z∗

p, and compute w = hγ ∈ G2. Let
the issuing key be isk = γ, the tracing key be tk = {ξ1, ξ2}, and the general
public key be gpk = 〈e, G1, G2, G3, H , g1, g2, g3, g4, h, w〉.

– U.KeyGen(k2) : Ui using security parameter k2 generates a corresponding
public key upk[i] and secret key usk[i] for a digital signature scheme.

– Join(I(isk) : Ui(upk[i], usk[i])) : The protocol runs as follows in a secure
and authentic channel between I and Ui:
1. Ui picks yi ∈R Z∗

p, computes and sends gyi

1 to I.
2. I chooses xi ∈R Z∗

p, computes and sends Ai = (gyi

1 g3)1/(xi+γ) to Ui.
3. Ui checks Ai ∈ G1, calculates S = Sign(Ai, usk[i]) and sends S along

with upk[i] to I. S is a proof of possession of the private key usk[i].
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4. I checksS with respect to upk[i] and saves (upk[i], Ai, xi, S) in a database.
I sends xi to Ui.

5. Ui verifies A(xi+γ)
i = gyi

1 g3 by checking e(Ai, hxiw) = e(gyi

1 g3, h). The
element Ai will be considered as the registration key. The user’s basic
secret key is bsk[i] = 〈Ai, xi, yi〉.

– A.KeyGenpub(j) : For each attribute j, AA chooses tj ∈R Z∗
p as its master

private key and generates an attribute public key bpkj = wtj .
– A.KeyGenpri(Ai, j) : If Ui is legitimate to own the attribute j, AA gen-

erates an attribute private key Ti,j = A
1/tj
i for the user; and if Ui owns µ

attributions, his entire general secret key is gsk = 〈bsk[i], Ti,1,...,Ti,µ〉.
– Verifign(Ui(gsk,M) : V(M,B)) : The protocol runs as follows in an open

channel between Ui and V :
1. Using a set of public attribute keys B = {bpk1,...,bpkκ}, V chooses α ∈R

Z∗
p and decides on an attribute tree Γ . V calculates D = {D1,...,Dκ} by

following TCreate(Γ, α,B), and makes D available to Ui.
2. Ui computes the signature σ by performing the following steps (this

process is call Sign(M,D, gsk) in security notions and proofs):
• Choose β1, β2 ∈R Z∗

p, set β = β1β2, and compute Froot = e(Ai, w)αβ

by following TVerify(D, (i, T̄ ), where T̄ = {T βi,1,...,T
β
i,κ}.

• Choose ζ, δ, rζ , rδ, rx, rz ∈R Z∗
p, compute C1 = gζ4 , C2 = Aig

ζ
1 , C3 =

gδ4, C4 = Aig
δ
2, C5 = e(gδ2A

1−β2
i , w)β1 and C6 = wβ1 .

• Compute R1 = g4, R2 = e(C2, h)rxe(g1, w)−rζe(g1, h)−rz , R3 = grδ
4

and R4 = g
rζ

1 g−rδ
2 .

• Compute c = H(M,C1, C2, C3, C4, C5, C6, R1, R2, R3, R4).
• Compute sζ = rζ + cζ, sδ = rδ + cδ, sx = rx + cxi and sz = rz + cz

where z = xiζ + yi.
• Send σ = (C1, C2, C3, C4, C5, C6, Froot, c, sζ , sδ, sx, sz) to V .

3. V verifies σ as shown below (this process is call V erify(M,σ,D, gpk) in
security notions and proofs):

• Reject the signature if F 1/α
rootC5 = e(C4, C6) does not hold.

• Derive R̄1 = g
sζ

4 C−c
1 , R̄2 =e(C2, h)sxe(g1, w)−sζe(g1, h)−sz ( e(C2,w)

e(g3,h) )c,
R̄3 = gsδ

4 C−c
3 and R̄4 = g

sζ

1 g−sδ
2 /(C2C

−1
4 )c.

• Check if c = H(M , C1, C2, C3, C4, C5, C6, R̄1, R̄2, R̄3, R̄4); if it is
not equal then reject the signature.

– Open(σ, α) : O verifies the signature using α. If the verification passes, he
takes the tracing key tk = {ξ1, ξ2}, derive Ai = (C2/(C1)ξ1) = (C4/(C3)ξ2),
and then compares it with his record to find the owner.

– Judge(V(td, σ) : O(tk)) : To prove that Ai was used in the signature σ a
zero knowledge proof is used between O and V as follows:
1. V picks a random rnd ∈ Z∗

p and sends the pair td = (Crnd1 , Crnd2 ) to O.
2. O calculates P = (Crnd2 /Crndξ11 ) = Arndi and sends it to V . Note that O

does not know rnd.
3. V calculates Ai from P .
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6 Analysis of the C-AA Scheme

This section shows that the the C-AA scheme proposed above is correct and
secure according to the definitions in §2. The four security notions will be proved
by using the relevant games defined in §2.2. Throughout the proofs, we refer to
the adversary as A, the challenger as C and a special entity E plays the role of
an adversary when dealing with C and the role of the challenger when dealing
with A.

6.1 Correctness of the C-AA Scheme

Theorem 4. The construction in §5 is correct according to Definition 1.

To prove correctness we first show that R̄1 = R1, R̄2 = R2, R̄3 = R3, and
R̄4 = R4. The equalities hold as shown:

R̄1 = g
sζ

4 C−c
1 = g

rζ+cζ
4 g−cζ4 = g

rζ

4 = R1,

R̄2 = e(C2, h)sxe(g1, w)−sζe(g1, h)−sz

(
e(C2,w)
e(g3,h)

)c
= e(C2, h)rx+cxie(g1, w)−(rζ+cζ)e(g1, h)−(rz+cz)

(
e(C2,w)
e(g3,h)

)c
= R2(e(Ai, h)cxe(gζ1 , h)cxie(g1, w)−cζe(g1, h)−c(xζ+y))

(
e(C2,w)
e(g3,h)

)c
= R2(e(Ai, h)cxie(Ai, h)cxie(g1, w)−cζe(g1, h)−cy)

(
e(C2,w)
e(g3,h)

)c
= R2

(
e(Ai,h)xie(C2,w)
e(g1,w)ζe(g1,h)y e(g3, h)

)c
= R2

(
e(Ai,h)xie(Ai,w)
e(g1,h)e(g3,h)

)c
= R2

(
e(Ai,h)xi+γ

e(g1g3,h)

)c
= R2,

R̄3 = gsδ
4 C−c

3 = grδ+cδ
4 g−cδ4 = grδ

4 = R3, and
R̄4 = g

sζ

1 g−sδ
2 /(C2C

−1
4 )c

= g
(rζ+cζ)
1 g

−(rδ+cδ)
2 /((Aig

ζ
1)(Aigδ2)

−1)c = g
rζ

1 g−rδ
2 = R4.

The following step is to prove correctness of the attribute verification and the
open algorithm. Given that the Froot = e(Ai, w)αβ then
F

1/α
rootC5 = e(Ai, w)β1β2e(gδ2A

1−β2
i , w)β1 = e(Aigδ2, w)β1 = e(C4, C6).

The correctness of the open algorithm follows from Ai = C2/(C1)ξ1 = C4/(C3)ξ2 ,
since
C2/(C1)ξ1 = (Aig

ζ
1)/g

ζ
1 = Ai, and

C4/(C3)ξ2 = (Aigδ2)/g
δ
2 = Ai.

6.2 Full Anonymity of the C-AA Scheme

Theorem 5. If the ElGamal Encryption Scheme [10] is IND-CPA secure then
the C-AAS construction is fully anonymous under the random oracle model.

A is an adversary that attacks the schemes anonymity, E tries to use A’s capa-
bility in order to break the IND-CPA security of ElGamal encryption scheme.
The following is the game:
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– Init: A decides the universal set of attributes U = {t1,...,tm}, in which he
would like to be challenged upon and gives it to E.

– Setup: C sets up the ElGamal Encryption scheme. The public key is (g1, g4)
∈ G1 where g1 = gξ14 and ξ1 ∈ Z∗

p. ξ1 is kept secret to the challenger while
the rest is public and known to E. E calculates g2 = g1g

rnd1
4 therefore

ξ2 = ξ1 + rnd1 where rnd1 ∈ Z∗
p. E chooses a γ ∈ Z∗

p, and h ∈ G2. E can
calculate gpk and send it to A together with γ.

– Phase 1: In this phase A queries the oracles: USK, a Signature oracle,
CrptJoinUsr, CrptJoinIss, Open and the Hash oracle.

In the Hash oracle E responses with a unique but random c ∈ Z∗
p every

time the query of the tuple (M,C1, C2, C3, C4, C5, C6, R1, R2, R3, R4) takes
place. By unique we mean for the same input response is always the same and
by random we mean the response is different and random for other inputs.
A list of responses is kept for such purposes.

Replies to the rest of the oracles are straightforward except for the Open
oracle. The reason is that E has the issuing key γ, the master keys t1, ..., tm
and the gpk that are needed in the oracles but she does not have the tracing
keys ξ1 and ξ2. Therefore all oracles are run exactly as done in the main
scheme except for the open oracle.

To respond to the open oracle E will use the list of registration keys she
has and rnd1. For every element in the list A∗ check the following equality
and if it holds then A∗ = Ai

F
1/α
rootC5

e(A∗, C6)e(Crnd13 , C6)
= e(

C4

Crnd13 A∗ , C6)

Note that such an equality can not be checked by A even if he has the lists of
all A∗ because the element rnd1 is used and is only known to the challenger.

– Challenge: A decides on a message M , two indexes (i0, i1) and a verification
key D in which he would like to be challenged on. E sends Ai0 , Ai1 as two
messages to challenge C with. C encrypts one of them and returns ciphertext
(C1 = gζ4 , C2 = Abg

ζ
1). Note that E has to guess b. E can simulate a signature

by calculating C4 = C2C
rnd1
1 grnd22 and C3 = C1g

rnd2
4 . Given that δ = ζ +

rnd2, then C4 = Abg
δ
2 and C3 = gδ4. E chooses randomly sζ , sδ, sx, sz and

c from Z∗
p. Note that c should have not been a response to a query to the

Hash oracle.
She calculates R1 = g

sζ

4 C−c
1 , R3 = gsδ

4 C−c
3 , R4 = g

sζ

1 g−sδ
2 /(C2C

−1
4 )c and

R2 = e(C2, h)sxe(g1, w)−sζe(g1, h)−sz ( e(C2,w)
e(g3,h) )c. Finally E creates Froot with

Ti,j = (C2C
rnd1
1 )1/tj therefore Froot = e(C2C

rnd1
1 , wβ)α for some random

β ∈ Z∗
p. C6 = wβ and C5 = e(grnd22 , wβ).

– Phase 2: This phase is similar to Phase 1 except that σb can not be queried
in the open oracle.

– Output: A outputs a guess b̄ ∈ {0, 1}.

E can respond to C with her guess being b̄.
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6.3 Full Traceability of the C-AA Scheme

Theorem 6. If the q-SDH is hard in group G1 and G2 then the C-AAS con-
struction is fully traceable under the random oracle model.

Similar to the previous two sections and traceability games, the security model
will be defined as an interacting framework between C and A as follows:

– Init: A decides on the universal set of attributes U = t1,...,tm from Z∗
p,

where m is the size of the set U . A sends this list to C.
– Setup: C is given a bilinear map e : G1 ×G2 → G3 with generators g1 ∈ G1

and h ∈ G2. He is also given a value w = hγ and n SDH pairs 〈Oi, xi〉 for an
1 ≤ i ≤ n, which he will be using in creating private key bases. Some of those
pairs have xi = # which implies that xi corresponding to Oi is not known;
Other pairs are valid SDH pairs (Definition 6). Assume users i = 1,...,n1 are
the list of honest users that can be corrupted by querying the USK oracle
and i = n1 + 1, ..., n2 are the ones for dishonest user where the adversary
runs the join protocol with C. Note that n = n1 + n2.

C chooses ξ1, ξ2 ∈ Z∗
p and g4, g2 ∈ G1 such that g1 = gξ14 and g2 = gξ24 .

Finally C sets g3 = grnd11 for some random rnd1 ∈ Z∗
p. C sends w, and

gpk = 〈G1, G2, G3, e, g1, g2, g3, g4, h〉. The hash function H is represented
as random oracles. Both C and A can run the A.KeyGenpub to obtain
〈bpk1,...,bpkm〉 where bpkj = w1/tj . A is also given ξ1, and ξ2.

– Queries: A queries the oracles USK, Signature, CrptJoinUser and Hash as
follows:

In the USK Oracle, A asks for a certain private key by sending C an
index 1 ≤ i ≤ n1. If A queries an index where xi = # abort the game
and declare failure; Otherwise he chooses a random yi ∈ Z∗

p and calculates
Ai = Oyi

i O
rnd
i . The private key 〈Ai, xi, yi〉 is sent to the adversary.

The Hash oracle is queried when A asks C for the hash of
(M,C1, C2, C3, C4, C5, C6, R1, R2, R3, R4), C responds with a random ele-
ment in Z∗

p and saves the answer just in case the same query is requested
again. This represents the hash function H .

The CrptJoinUser presents A and C engaging in a join protocol where
A resembles a user i and C the issuer manager. If i = ∗ abort else run the
join protocol. The join protocol is similar to the one in the construction with
one exception where C in the first step sends Ornd2i . This change helps C
to generate private keys from the Oi he has rather than γ since he does not
know it. He can now obtain Oyi

i and calculate from that the key 〈Ai, xi, yi〉
as in the USK oracle. The rest of the protocol runs normally.

In the Signature oracle, A runs the D = TCreate(Γ, α,B) for a random
α ∈ Z∗

p and a set of attribute public keys B. He then sends D to C.
A requests a signature on a message M by the member i. If xi �= # then

C follows the same signing procedure done in Section 5.
If xi = #, C simulates a signature. He chooses the random elements sζ , sδ,

sx, sz, ζ, δ, β1, β2 and c, all belong to Z∗
p. Let β = β1+β2. He calculates C1 =

gζ4 , C2 = Aig
ζ
1 , C3 = gδ4, C4 = Aig

δ
2, C5 = e(gδ2A

1−β2
i , wβ1 ) and finally C6 =
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wβ1 . C also computes R1 = g
sζ

4 , R3 = gsδ
4 C−c

3 , R4 = g
sζ

1 g−sδ
2 /(C2C

−1
4 )−c

and finally R2 = e(C2, h)sxe(g1, w)−sδe(g1, h)−sz( e(C2,w)
e(g3,h) )c. C adds c to the

list of responses in the hash function.
C can calculate Froot as done in the main scheme since he has all master

keys needed. Signature is σ = (C1, C2, C3, C4, C5, C6, Froot, c, sζ , sδ, sx, sz).
– Output: A asks to be challenged and sends C a message M . C responds

with a D for a certain Γ . If A is successful he will output a signature σ =
(r, C1, C2, C3, C4, C5, C6, c, sξ, sx, sδ, Froot) for a message M . Let A∗

i be the
value used in signing the forged signature. For i = 1, ..., n, C checks whether
A∗
i = (C2/(C1)ξ1) = (C4/(C3)ξ2). If the equality holds then this implies

that A∗
i = Ai. In that case check if si∗ = # to output σ or otherwise declare

failure. If the loop goes through all the (Ai)’s and no equality is identified
output σ.

There are two types of forgery. Type-I outputs a signature that can be traced
to some identity which is not part of Oi0 ,...,Oin . Type-II has A∗

i = Oi where
1 ≤ i ≤ n but A did not submit a query of i to the USK oracle nor did he
participate in the join protocol using it. We prove both forgeries are hard.

Type-I. If we consider Theorem 2 for a (n+1) SDH, we can obtain g1,g2 and w.
We can also use the n pairs (Oi, xi) to calculate the private key bases 〈Ai, xi, yi〉.
These values are used when interacting with A. A’s success leads to forgery of
Type-I.

Type-II. Using Theorem 2 once again but for a (n) SDH, we can obtain g1, g2
and w. Then we use the n − 1 pairs (Oi, xi) to calculate the private key bases
〈Ai, xi, yi〉. In a random index i∗, we choose the missing pair randomly where
Oi∗ ∈ G1 and set xi∗ = #. A, in the security model, will fail if he queries the USK
oracle with index i∗ or use it in the corrupted join protocol. In the Signature
oracle (because the hashing oracle is used) it will be hard to distinguish between
signatures with a SDH pair and ones without.

A signature will be represented as 〈M ,σ0,c,σ1,σ2〉, M is the signed message,
σ0 = 〈r,C1,C2,C3,C4,C6, R1, R2, R3, R4〉, c is the value derived from hashing
σ0, and σ1 = 〈sζ ,sδ, sx, sz〉 which are values used to calculate the missing inputs
for the hash function. Finally, σ2 = Froot the value that depends on the set of
attributes in each Signature oracle.

According to the Forking Lemma if we have a replay of this attack with the
same random tape but a different response of the random oracle we can obtain
a signature 〈σ0, c̀, σ̀1, σ2〉.

Finally we show how we can extract from 〈σ0, c, σ1, σ2〉 and 〈σ0, c̃, σ̃1, σ2〉 a
new SDH tuple. Let ∆c = c− c̃, and ∆sζ = sζ − s̃ζ , and similarly for ∆sx, ∆sδ,
∆sx and ∆sz.

Divide two instances of the equations used previously in proving correct-
ness of the scheme. One instance with c̃ and the other with c to obtain the
following:
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– Dividing Cc1/C
c̃
1 = g

sζ

4 /g
s̃ζ

4 we get
gζ̃4 = C1; where ζ̃ = ∆sζ/∆c

– Dividing Csδ
2 /C s̃δ

2 = gsδ
4 /gs̃δ

4 we get
gδ̃4 = C2; where δ̃ = ∆sδ/∆c

– The division of (C2C
−1
4 )∆c = g

∆sζ

1 g∆sδ
4 implies (C2C

−1
4 ) = gζ̃1g

δ̃
4

– The division of e(C2, h)∆sxe(g1, w)−∆sζe(g1, h)−∆sz = ( e(g3,h)
e(C2,w) )

∆c leads to

e(C2, h)x̃e(g1, w)−ζ̃e(g1, h)−z̃ = ( e(g3,h)
e(C2,w) )

∆c for x̃ = ∆sx/∆c and z̃ =
∆sz/∆c

If Ã = C2g
ζ̃
1 and ỹ = z̃− ζ̃x̃ then from the last division we get e(Ã, h)x̃e(Ã, w) =

e(g3, h)e(g1, h)ỹ this implies we have obtained a certificate (Ã, x̃, ỹ) where Ã =
(g3g

ỹ
1)1/(x̃+γ).

This leads to a SDH pair (A, x ) and breaking Boneh and Boyen’s Lemma (See
Theorem 2). Knowing that Ã = (g3g

ỹ
1 )1/(x̃+γ) = (gỹ+rnd11 )1/(x̃+γ).

Calculate (A, x ) = (Ã1/(ỹ+rnd1), xi).

6.4 Unforgeability of Attributes in the C-AA Scheme

Theorem 7. Breaking the Unforgeability of Attributes in the C-AAS construc-
tion is as hard as solving the k-BDHI problem under the random oracle model.

We have a minor issue to prove the above theorem for our C-AAS, so we have
to make a condition in the game, where the adversary A can only generate
the random numbers β1, β2 by using a random oracle, which is controlled by
the challenger C. This obviously makes the model weaker, but we leave a full
proof without this condition as an open issue. C has an example of the 1-BDHI
problem (p1 ∈ G1, p2, p

x
2 ∈ G2) and his goal is to compute e(p1, p2)1/x ∈ G3. For

reasons of limited space, we only give a stretch of the proof for this theorem.
The following shows the game model defined in Section 2.

– U.AAS.Setup: For setting up the system, C takes the three groups G1, G2,
G3 from the 1-BDHI problem, sets g3 = p1, g4 = pr1 for a random r chosen by
C and h = p2, and generates the remaining domain parameters, the tracing
key tk, the issuer key isk, and the general public key gpk by following the C-
AA scheme specification properly. C plays the role of all attribute authorities
in the system. He creates the universal of attributes by choosing a list of
master keys t1,...,tm randomly except one, which is the value x in the 1-
BDHI problem and is not known to him. Without loss generality, we call it
tz. C calculates the attribute public keys bpk1,...,bpkm, in which bpkz = (px2)γ

for a random γ chosen by C. He sends these attribute public keys together
with tk and gpk to A. C keeps to himself isk and list of tj .

– U.AAS.Phase (1): A queries the oracles USK, Signature, CrptJoinUsr,
AttPriKey, and AttMasKey which are answered by C.

– U.AAS.Challenge: A sends a tree Γ1, user l and attribute z in which he
would like to be challenged on. C replies with D for a tree Γ2 where Γ2
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has two subtrees: the first is Γ1 and the other is based on tz. The threshold
value of the root in Γ2 is 2. The challenge condition is that user l has not
been queried in AttPriKey for the attribute z. Furthermore the challenged
index z should not have been queried in AttMasKey. These two conditions
are reasonable as the contradict with the purpose of the game.

– U.AAS.Phase (2): This phase is similar to Phase 1 as long as the challenge
conditions are not broken.

– U.AAS.Output: A outputs a signature σ for the user l on the verification
key D. If signature is valid then the adversary wins and C outputs 1 else A
loses and C outputs 0.

C can reply to most of the oracles without problems since he has most of the
private keys needed in creating the outputs such as tk, isk, and the list of tj
except for tz. So C is not able to answer the AttPriKey and AttMasKey queries
relevant to tz.

Let the root polynomial be qr(x). The subtree Γ1 has a root with the poly-
nomial q1(x) and the other child holding attribute tz has a polynomial q2(x).
Further let qr(0) = α, q1(0) = qr(x1) = y1 and q2(0) = qr(x2) = y2. The root
polynomial is of degree 1 since the threshold gate is 2. C computes Dz = pty22
for a random t chosen by C. Assume at the end of the game A creates a valid
signaure σ = (r, C1, C2, C3, C4, C5, C6, c, sξ, sx, sδ, sz , sδ) without asking any
queries relevant to tz . The validation of σ implies that the following formula
must hold:

Froot = (e(Al, w)y1·x2/(x2−x1) · e(A1/tz
l , Dz)x1/(x1−x2))β ,

where Al = (g3 · gyl

1 )1/(γ+xl). As mentioned before, by controlling a random
oracle, C can retrieve the value β. By using the Forking Lemma as specified
in Section 3, C can retrieve the value yl from two rounds of the signature.
By following the roles of the authorities in the scheme, C knows the values
γ, xl, ξ1 and ξ2. Based on these conditions, C can compute e(p1, p2)1/x =
e(A1/tz

l , Dz)(γ+xl)/(ty2(1+r·ξ1·yl)) from the above equation. Therefore, the the-
orem follows.

6.5 Non-frameability of the C-AA Scheme

Finally we discuss Non-frameability. Given all secret keys of authorities A cannot
show that for a given signature, the signer is someone rather than the real
signer.

Theorem 8. Breaking the Non-frameability of the C-AAS construction is as
hard as solving the DDH problem in G1.

Assume that the challenger C has an example of the DDH problem in G of order
p, where given g, gu, gv, gc ∈ G and his target is to find whether gc = guv or not.
In the following game we assume that neither Ai nor A∗ have been produced
in CrptJoinUsr or in a process without the aid of C. This implies C knows
(Ai, xi, yi) and (A∗, x∗, y∗), A does not know the values yi and y∗, and yi �= y∗

holds.
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– F.AAS.Setup: C sets the group G1 = G, g1 = g and g3 = gu in the DDH
problem, and also sets g4 = g1/ξ1 for a random ξ1 chosen by C. Then C
generates the keys isk, tk, and gpk. He gives all of them to A. Recall that
A initiates the game by choosing the universal set of attributes’ master keys
U = {t1,...,tm}. Therefore both A and C can create attribute keys, create
private keys, and trace signatures. C maintains a list of all the legitimate
user’s three-part private keys (Al, xl, yl).

– F.AAS.Oracles: The oracles responses are computed as done in the con-
struction since all keys are known to both A and C.

– F.AAS.Output: A chooses an index i, a signature σ, a verification key D,
and a message M . He sends them to C. C verifies the signature and if it is
not valid he aborts the game returning 0. He then traces it by calculating
Ai = C2/(C1)ξ1 = C4/(C3)ξ2 . C accepts the challenge on Ai and sends to
A the values Crd2 and Crd1 . As a result, A returns (A∗)rd.

Now let us discuss the following two cases (C randomly chooses one of these two
cases with the probability of 1/2):

Case 1. Ai = A∗. C chooses a random rd. If he receives (A∗)rd = (Al)rd for
any Al in the list of (Al, xl, yl) where l �= i, C computes the value u as follows.
Since g1 = g and g3 = gu, Al = g(u+yl)/(γ+xl) and Ai = g(u+yi)/(γ+xi) hold.
When Al = Ai, (u + yl)/(γ + xl) = (u + yi)/(γ + xi) holds. C knows the value
γ since it is the issuer’s secret key. Therefore C can retrieve the value u. In this
case, by using A as a black box, C actually solves the DL problem instead of
the DDH problem. Since the DL problem is harder than the DDH problem, so
C can compute guv = (gv)u and then check whether it is equal to gc.

Case 2. Ai �= A∗. C selects rd = v although he does not know this value. If the
signature was created by C, he should be able to get the value ζ from his record.
If the signature was created by A, C can retrieve ζ by using the Forking Lemma.
He calculates Crd1 = (gv)ζ/ξ1 and Crd2 = (gv)ζ · (gv)yi/(xi+γ) · (gc)1/(xi+γ).

Note that Crd2 = (Aig
ζ
1)
v if c = uv otherwise it will be just random data.

Adversary returns back (A∗)v where A∗ should belong to the list of possible
signers. This can be tested by testing all honestly generated users (i.e. challenger
will have (A∗, y∗, x∗)). For each element j in the list challenger checks whether
(A∗)v = (gc · (gv)yj )1/(xj+γ) if it is then check (Aj , xj , yj) �= (A∗, y∗, x∗). If an
equality is found the challenger outputs 1 for c = uv else he outputs 0.

Note that in both cases, if their exist an adversary that can break the non-
frameability then the DDH can be solved in G1. Assuming that the adversary
can break the non-frameability game and assuming c = uv then the challenger
should find A∗ in the list of possible signers.

7 Honestly Generated Attribute Keys

Previously, in the games of full anonymity, traceability and none-frameability,
we assumed the attribute authority is dishonest by giving the adversary the
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privilege of creating the master keys in the initialization stage of the games. In
the “Unforgeability of Attribute”, the attributes can be corrupted by querying
the AttMasKey Oracle. However, in real life, we need the signer to be able to
verify that the attribute private keys he obtains are valid. Furthermore, he needs
to verify that the attribute public key is also valid. In this section we add two
further protocols which will help to achieve that. We start with defining what
we mean by “Honestly Generated Attribute Keys”.

Definition 8. (Honestly Generated Attribute Public Keys): The public attribute
key is “generated honestly” if the attribute authority can not produce it or change
it without the knowledge of the central authority.

Definition 9. (Honestly Generated Attribute Private Keys): The private at-
tribute key is “generated honestly” if the member can verify its correctness with
an honestly generated public attribute key and the members’ registration
key.

We add two protocols the APK and the ASK defined as follows:

– APK(CA : AA): This protocol runs between the attribute authority AA and
the central authority CA. At the end of the protocol the central authority
should obtain bpkj and the attribute authority should obtain tj .

– ASK(AA(tj) : Ui(gsk)): This protocol runs between the attribute authority
AA and the user Ui. The inputs are the master key of the attribute tj and
the users private key gsk. AA authenticates Ui and Ui gets Ti,j without
revealing the registration key Ai to AA.

Attribute Public Key Exchange Protocol (APK): This protocol is be-
tween the central authority CA and attribute authority AA. It authenticates the
attribute authority to the central authority. It guarantees that the attribute au-
thorities generate the master key honestly. Therefore we replace theA.KeyGenpub
algorithm with a interactive protocol. This protocol is a 6-move key generation
protocol adopted from [12] and adjusted as follows:

1. AA picks a random a, b ∈ Z∗
p and c ∈ Z∗

p. AA then sends A = wa, B = wb,
and C = wc to CA.

2. CA picks d, e ∈ Z∗
p and sends DE = wdCe to AA.

3. AA picks f ∈ Z∗
p and sends it to CA.

4. CA sends e, d to AA.
5. AA checks DE = wdCe. If the check passes calculate tj = a + d+ f . Then

send z = (d+ f)a + b mod p and c to CA.
6. CA checks C = wc and Ad+fB = wz and output bpkj = Awd+f .

Note that our scheme does not deal with the honesty of the AA but it guaran-
tees honesty when generating the master key. We will assume some form of stan-
dard authentication occurred before the protocol started. Therefore throughout
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this protocol our CA is showing a proof of the master key used by the AA
without revealing the key.

Attribute Private Key Exchange Protocol (ASK): This protocol is exe-
cuted between the attribute authority AA and the user Ui as follows:

1. When AA wants to verify some information about Ui before giving him an at-
tribute, Ui and AA first run the protocol V erifign(Ui(gsk,M),AA(M,B)).

2. From the V erifign protocol AA obtains the signature,
σ = (C1, C2, C3, C4, C5, C6, Froot, c, sζ , sδ, sx, sz).

3. AA verifies the signature and if valid sends E = C
1/tj
2 and F = g

1/tj
1 back.

4. Ui calculates his attribute private key as Ti,j = E/F δ = A
1/tj
i .

5. Ui verifies Ti,j by checking e(Ti,j, bpkj) = e(Ai, w).

The protocols APK and ASK are used to prove respectively that the attribute
public (or private) key is generated honestly. To generate the attribute public
key we used the APK protocol. Security of the APK protocol can be argued
under the assumption that the discrete logarithm problem is hard. The reader
is referred to [12] for the full proof. In the proof of the private attribute key, the
attribute authority can not calculate elements E and F without the knowledge
of the master key tj . The user can verify that the tj used in creating the Ti,j is
the same as the one used in the attribute public key. This implies the attribute
private key is generated honestly, with the condition that the attribute authority
does not have a clue about the value of Ai or Ti,j .

8 Conclusions

In this paper we have proposed the concept and a concrete scheme of C-AA.
The new scheme allows the verifier to choose a set of attributes that he requires
the signer to possess. We have defined four security notions: full anonymity, full
traceability, attribute unforgeability, and non-frameability.

The scheme includes multiple authority’s roles that removes the bottle neck
from the central authority, and the scheme is key escrow free. It also implies
extra security since in the game models we were able to corrupt one authority
while testing the other. One other main contribution is non-frameability where
even the open manager can not validly claim that anyone signed a signature
unless they actually did.

Future work can include revocation of users, and revocation of attributes. It
would also be nice to have the request of the verifier hidden from entities that
do not possess enough attributes.

In the concrete scheme proposed, the number of messages is constant
(and reasonable), and the signature and signing keys are constant in size, while
the verification key’s length is linear in the number of attributes required by
verifier. It would be desirable to reduce the complexity of the computations
involved.
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Abstract. A multi-set (ms) is a set where an element can occur more
than once. ms hash functions (mshfs) map mss of arbitrary cardinality
to fixed-length strings.

This paper introduces a new rsa-based mshf. The new function is
efficient and produces small hashes. We prove that the proposed mshf is
collision-resistant under the assumption of unforgeability of deterministic
rsa signatures.

In many practical applications, programmers need to compare two
(unordered) sets of integers. A trivial solution consists in sorting both
sets (O(n log n)) and comparing them linearly. We show how ms hash
functions can be turned into a quasi-linear-time, quasi-constant-space
integer set equality test.

An interesting advantage of the proposed algorithm is its ability to
compare mss without sorting them. This can prove useful when compar-
ing very large files which are read-only or otherwise hard to sort (e.g. on
tapes, distributed across web-sites etc).

1 Introduction

A multi-set (ms) is a set where elements can occur more than once. ms hash
functions (mshfs) were introduced by Clarke et alii in [5]. While standard hash
functions map arbitrary-length strings to fixed-length strings, mshfs map mss
of arbitrary cardinality to fixed-length strings.

An mshf H is incremental if H(A
⋃
B) can be computed from H(A) in time

proportional to $B.
The MSet-Mu-Hashmshf defined in [5] is ms-collision-resistant, produces small

hashes (typically ∼= q such that solving discrete logarithms modulo q is hard1)
and is computationally efficient. MSet-Mu-Hash is provably secure in the random
oracle model under the discrete logarithm assumption.
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In this work we introduce a new mshf. The proposed function is ms-collision
resistant, produces hashes of the size of an rsa modulus and is computationally
efficient (comparable to MSet-Mu-Hash). However, we prove the new mshf’s
security under an assumption different than [5]’s, namely: the unforgeability of
deterministic rsa signatures.

Moreover, we show that mshfs provide a practical solution to the Set Equality
Problem (sep). sep consists in deciding whether two (unordered) sets of n inte-
gers are equal. Efficient sep solutions allow, for instance, to check that two hard
drives contain the same files, or that two differently indexed databases contain
the same fields. The sep is related to the Set Inclusion Problem (sip) where one
needs to decide whether a set A is a subset of another set B.

In the algebraic computation model where the only allowed operation is com-
parison, the sep can be solved in O(n log n) by sorting both lists; Ben-Or showed
that this is optimal [2]. In 2004, Katriel [9] proposed a linear-time set equality
test in the algebraic computation model where simple algebraic computations
are allowed. Katriel maps the sets into Z[X ] and compares polynomials rather
than integers. In essence, [9] shows that sep is easier when the sets contain in-
tegers. However, [9] is impractical as it requires to evaluate the polynomial of a
huge value.

Using our mshf, we propose a practical quasi-linear-time, quasi-constant-
space integer ms equality test. The algorithm can be used in practice to compare
very large mss and does not yield false negatives. Immunity against false positives
is guaranteed if a specific type of rsa signatures is secure.

This non cryptographic application of rsa is quite unusual as, in general,
cryptography ”borrows” techniques from other fields (such as complexity theory,
number theory or statistics) rather than the other way round.

2 The MSet-Mu-Hash Function

Let B be a set. We consider a ms X = {x1, . . . , xn} ∈ Bn. The MSet-Mu-Hash
function proposed by Clarke et alii [5] is defined as follows: Let q be a large
prime and H : B → GF (q) be a poly-random function2.

MSet-Mu-Hash(X) =
n∏
i=1

H(xi) mod q

This function is proven to be ms-collision resistant in the random oracle model
under the discrete logarithm assumption. It produces small hashes (typically,
the size of a prime q such that solving discrete logarithms modulo q is hard) and
is computationally efficient.

2 H is a poly-random function if no polynomial time (in the logarithm of q)
algorithm with oracle access H can distinguish between values of H and true ran-
dom strings, even when the algorithm is permitted to select the arguments to H . cf.
to [7].
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3 Katriel’s Set Equality Test

Let X = {x1, . . . , xn} ∈ Zn and Y = {y1, . . . , yn} ∈ Zn. Katriel [9] defines the
polynomials:

p(z) =
n∏
i=1

(z − xi), q(z) =
n∏
i=1

(z − yi) and d(z) = p(z) − q(z)

As d(z) ≡ 0 ⇔ X = Y , the test ascertains that d ≡ 0.
A trivial way to do this would be to check that d has n + 1 roots. However,

this would require n + 1 evaluations of d and as an evaluation of d is linear in
n, the test will become quadratic in n.

Katriel evaluates d(z) only once, at a point α which is too large to be a root
of d(z), unless d(z) ≡ 0:

α = 1 + 2(mn)n where m = max{x1, . . . , xn, y1, . . . , yn}

The test is simply:

return(d(α) ?= 0)

Complexity: This test requires the computation of:

n∏
i=1

(α − xi) −
n∏
i=1

(α − yi)

Which can be done in 2(n − 1) multiplications but requires a memory capacity
quadratic in n. Indeed:

n∏
i=1

(α − xi) ∼= αn ∼= ((mn)n)n = (mn)n
2

Storing this value requires n2 log2(mn) bits. e.g., to compare lists of 220 two-byte
integers (m = 216, n = 220), one needs a 36 × 240 bit memory, i.e. ∼ 4 terabytes.
This makes [9] of little practical use.

4 A New rsa-Based mshf

We now describe a new rsa-based mshf and a corresponding ms equality test.

4.1 Digital Signatures

The digital signature of a message m is a string that depends on m and a secret
known only to the signer. Digital signatures are traditionally (e.g. [8]) defined
as follows:



Comparing with RSA 329

Definition 1 (Signature Scheme). A signature scheme {Generate, Sign, Ver-
ify} is a collection of three algorithms:

– The key generation algorithm Generate is a probabilistic algorithm that, given
1k, outputs a pair of matching public and secret keys, {pk, sk}.

– The signing algorithm Sign takes the message m to be signed and the secret
key sk and returns a signature x = Signsk(m). Sign may be probabilistic.

– The verification algorithm Verify takes a message m, a candidate signature
x′ and the public key pk. It returns a bit Verifypk(m,x′), equal to one if the
signature is accepted, and zero otherwise. We require that:

Verifypk(m, Signsk(m)) = 1

The security of signature schemes was formalized in an asymptotic setting by
Goldwasser, Micali and Rivest in [8]. Here we use the definitions of [1] that
provide a framework for a concrete security analysis of digital signatures and
consider resistance against adaptive chosen-message attacks; i.e. a forger F who
dynamically obtains signatures of messages of his choosing and attempts to
output a valid forgery.

A valid forgery is a message/signature pair (m̃, x̃) such that Verifypk(m̃, x̃) = 1
whilst the signature of m̃ was never requested by F .

Definition 2. A forger F is said to (t, qsig , ε)-break the signature scheme if
after at most qsig(k) signature queries and t(k) processing time, F outputs a
valid forgery with probability at least ε(k) for any k > 0.

Definition 3. A signature scheme is euf-cma (t, qsig, ε)-secure if there is no
forger capable of (t, qsig, ε)-breaking the signature scheme.

Definition 4. A signature scheme is euf-cma-secure if for any forger F that
(t(k), qsig(k), ε(k))-breaks the scheme, if t(k) and qsig(k) are polynomial, then
ε(k) is negligible.

4.2 rsa Signatures

rsa [10] is certainly the most famous public-key cryptosystem:

System parameters : Two integers k, � ∈ N and a function µ : {0, 1}� → {0, 1}k.
Generate : On input 1k,

– Randomly select two distinct k/2-bit primes p and q.
– Compute N = pq.
– Pick a random encryption exponent e ∈ Z∗

φ(N)

– Compute the corresponding decryption exponent d = e−1 mod φ(N).
The output of the key generation process is {N, e, d}; the public key is pk =
{N, e} and the private key is sk = {N, d}.

Sign : Return y = µ(m)d mod N .
Verify : If ye mod N = µ(m) then return 1 else return 0.
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4.3 Coron-Koeune-Naccache Long-Message rsa Encoding

Signing long messages with rsa is possible using a construction proposed by
Coron, Koeune and Naccache (ckn) in [6] (and improved in [4]). ckn split a
long message into short blocks, encode each block with µ and multiply all the
encoded blocks modulo N . Before encoding a block, ckn’s procedure appends to
each block a 0 and the block’s index i. Then the product of so-formed encodings
is appended to 1 and re-encoded again with µ.

System parameters : Two integers k > 0 and a ∈ [0, k − 1] and a function

µ : {0, 1}k+1 → {0, 1}k

Generate : As in standard rsa.
Sign : Split the message m into (k−a)-bit blocks such that m = m[1]|| . . . ||m[r].

Let α =
r∏
i=1

µ(0||i||m[i]) mod N where i is an a-bit string representing i.

Let y = µ(1||α) and return yd mod N .

Verify : Let y = xe mod N and recompute α =
r∏
i=1

µ(0||i||m[i]) mod N .

If y = µ(1||α) then return 1 else return 0.

4.4 The New mshf

Let N, e, d be parameters selected as in sub-section 4.3. We additionally require
that e is a prime number and e > n. Let µ : {0, 1}k → {0, 1}k be an encoding
function. We propose the following mshf:

Apply µ to all the elements of X = {x1, . . . , xn} and multiply all the encoded
integers modulo N :

H(X) =
n∏
i=1

µ(xi) mod N

Note that d and e are not used in the function3 and that H is incremental as it
can be updated easily if new elements need to be added to the set.

This construction is very similar to ckn’s long-message rsa encoding. The
difference is that indices are omitted because the order of the elements is not
taken into account. The equality test for two mss X and Y is simply :

return(H(X) ?= H(Y ))

The setup is a slightly modified rsa since we additionally require that e is a
prime number and that e > n. The latter requirement is not a problem as n is
the size of the compared mss (e.g. n < 230).

3 e is only needed in the security reduction, so strictly speaking the only requirement
for the definition of our mshf is that there is some prime between N and n.
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5 ms Collision-Resistance Proof

We now prove the ms collision-resistance of our mshf. We show that computing
a collision in time t with probability ε implies forging µ-encoded rsa signatures
in polynomially-related t′ and ε′.

Let Generate’(k, n) be an algorithm that, given two positive integers k and n,
returns (N, e, d, µ) such that (N, e, d) are rsa parameters, |N | = k and e is a
prime number such that e > n. Moreover, µ : {0, 1}k → {0, 1}k is such that the
deterministic-padding rsa scheme obtained using µ and (N, e, d) is euf-cma

secure.
Given k and n and an output of Generate’(k, n), we consider two different

games.
In the first game Game1, a forger F is given {N, e, µ}. F has access to a signing

oracle S that, when given mi ∈ {0, 1}k, answers µ(mi)d mod N . After q1(k, n)
signature requests to S and t1(k, n) computing time, F outputs with probability
ε1(k, n) a forgery (m, s) such that s = µ(m)d mod N and m was never signed
by S. When n = n(k) is a polynomial in k, the security of the µ-based rsa

deterministic-encoding signatures implies that, for any F , if t1(k) and q1(k) are
polynomial then ε1(k) is negligible.

In the second game Game2, an adversary A is given {N, e, µ, n}. This ad-
versary’s goal is to produce a collision. It wins if it can find two sets X =
{x1, . . . , xn′} and Y = {y1, . . . , yn′′} where xi, yi ∈ [0, 2k[ such that X �= Y ,
n′ ≤ n, n′′ ≤ n and

n′∏
i=1

µ(xi) ≡
n′′∏
i=1

µ(yi) (mod N)

A runs in time t2(k, n) and succeeds with probability ε2(k, n).

Theorem 1. If there exists an adversary A that finds a collision in time t2(k, n)
with probability ε2(k, n), then there exists a forger F that finds a forgery after
q1(k, n) < 2n queries to S and t1(k, n) = t2(k, n) + O(n2) + O(nk2) computing
time, with probability ε1(k, n) = ε2(k, n).

Proof. Let A be an adversary that finds a collision in time t2 with probability
ε2. We construct a forger F as follows.

F first uses A to try to obtain a collision. If, after t2 time units, A does not
succeed, F stops. This happens with probability 1 − ε2.

Otherwise, A returns a collision. This happens with probability ε2 and in this
case F learns X = {x1, . . . , xn′} and Y = {y1, . . . , yn′′} such that X �= Y and:

n′∏
i=1

µ(xi) ≡
n′′∏
i=1

µ(yi) (mod N)

We denote by $X(x) number of occurrences of an element x in a ms X .
Since X �= Y , there exists xi0 such that $X(xi0 ) �= $Y (xi0 ) and without loss

of generality, we assume that $X(xi0) > $Y (xi0 ).



332 J. Cathalo, D. Naccache, and J.-J. Quisquater

Let a = $X(xi0) − $Y (xi0 ) (note that 1 ≤ a ≤ n′).
The forger F finds xi0 and a by sorting and comparing X and Y . We have:∏

i∈V
µ(xi) × µ(xi0 )

�X(xi0 )
≡
∏
i∈W

µ(yi) × µ(xi0 )
�Y (xi0 ) (mod N)

where V is the subset of {1, . . . , n′} corresponding to the indices of the xi not
equal to xi0 and W is the subset of {1, . . . , n′′} corresponding to the indices of
the yi not equal to xi0 .

We get:
µ(xi0 )

a ≡
∏
i∈V

µ(xi)
−1 ×

∏
i∈W

µ(yi) (mod N) (1)

The integer xi0 does not appear on the right side of this equation.
F computes u and λ such that au = λe + 1 (since e is prime and 0 < a ≤

n′ ≤ n < e, a is invertible modulo e). F obtains from the signing oracle S
the signatures si = µ(xi)

d mod N of all xi such that i ∈ V and the signatures
s′i = µ(yi)

d mod N of all yi for i = 1, . . . , n′′. Then F computes:

s =

⎛⎝(∏
i∈V

si

)−1

×
∏
i∈W

s′i

⎞⎠u

× µ(xi0 )
−λ (mod N)

One can show that s = µ(xi0)d mod N using equation (1):

µ(xi0 )
au ≡

∏
i∈V

µ(xi)
−u ×

∏
i∈W

µ(yi)
u (mod N)

µ(xi0 )
λe+1 ≡

∏
i∈V

µ(xi)
−u ×

∏
i∈W

µ(yi)
u (mod N)

µ(xi0 ) ≡
∏
i∈V

µ(xi)
−u ×

∏
i∈W

µ(yi)
u × µ(xi0 )

−λe (mod N)

µ(xi0 )
d ≡

∏
i∈V

µ(xi)
−ud ×

∏
i∈W

µ(yi)
ud × µ(xi0 )

−λ (mod N)

µ(xi0 )
d ≡ s (mod N)

This implies that (xi0 , s) is a valid (message, signature) pair. Since the message
xi0 was never sent to S, F succeeds in finding a forgery. The number of queries
to S is #V + n′′ = (n′ − a) + n′′ < 2n.

We now evaluate F ’s running time. First, F runs A in time t2(k, n). Finding
xi0 and a by sorting and comparing X and Y takes O(n log n) time4. Com-
puting u and λ takes O(n2) time5; s can be computed in 2n modular multipli-
cations (i.e. O(nk2) time), n modular inversions (still O(nk2) time), two modular

4 Dominated by O(n2).
5 Extended Euclidean algorithm.
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exponentiations (O(k2 logn) dominated by O(nk2)) and an evaluation of µ, that
we omit. All in all, the total running time of F is:

t1(k, n) = t2(k, n) + O(n2) + O(nk2) ��

Using Theorem 1 we infer that no algorithm can efficiently find collisions:

Theorem 2. If n = n(k) is polynomial, the success probability of any adversary
that running in polynomial time t2(k) is negligible.

Proof. Assume that n(k) is polynomial and that A finds a collision in polynomial
time t2(k). We want to show that ε2(k) is negligible.

By virtue of Theorem 1, there exists an F that finds a forgery after q1(k) sig-
nature queries in time t1(k). The number of queries q1(k) < 2n(k) is polynomial.
As we have seen that t1(k, n) = t2(k, n) + O(n2) + O(nk2) is also polynomial.
Therefore the attacker’s success probability ε1(k) is negligible. By virtue of The-
orem 1, ε1(k) = ε2(k) and hence ε2(k) is negligible. ��

Theorem 2 validates the mshf’s asymptotic behavior.
In practical terms the above means that if a modulus N and a deterministic

encoding function µ can be safely used to produce rsa signatures, they can
also be used to compute ms hashes. The proposed hash function is comparable
in term of efficiency and security to MSet-Mu-Hash while having the merit of
relying on a weaker assumption.

6 Caveat Lector: Complexity Estimates

In this section we would like to clarify the expressions ”quasi-linear time” and
”quasi-linear space” used throughout this paper.

Formally, time complexity is at least O(n logN) and space complexity is
O(logN). We need N to be bigger than the largest integer in the ms and, to make
the security reduction work, we require that N > e > n. Hence, asymptotically
N is not constant, and time complexity is at least O(n logN).

However, if N is chosen to provide adequate security guarantees (say 2048
bits) then this will suffice to hash mss larger than the known universe (e.g. n
up to 2256) and a random e will present no problems for the security reduction.
In other words, this is a case where we have in any ”practical” terms constant
space, even though not asymptotically.

For a fixed N , the algorithm then takes time linear in n, as long as the integers
are bounded by N , which might be a more serious constraint. Also, with a fixed
upper bound on the size of integers, there exist linear-time sorting algorithms
(such as radix sort). This suggests again that time complexity is not better than
sorting and comparing (though as mentioned above there may well be cases
where sorting before comparing is not feasible.)

Finally, the construction depends on a function µ mapping k-bit strings to
k-bit strings where k = logN . A careful choice of µ is necessary: N and k
are variables hence the complexity of µ must also be factored into the overall
complexity of the algorithm.
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7 Conclusion and Further Research

In this paper, we proposed a new mshf whose collision-resistance is directly
linked to the security of deterministic-encoding rsa signatures.

The function allows to test if two integer sets are equal using moderate mem-
ory and computational resources. The test does not yield false negatives and
with carefully chosen parameters, it does not yield false positives either since we
prove that a single false positive would imply the insecurity of deterministic rsa

signature encoding.
While this gives a practical answer to a theoretical question asked by Katriel,

we still do not know how to generalize the proposed construction to solve the
sip i.e. test if a set A is a subset of a set B.

Another open question is whether a similar construction based on an aggregate
signature scheme (e.g. [3]) could also be used to provide mshf functions. The
idea would be to multiply hashes6 of set elements and prove the resulting mshf’s
collision-resistance under the assumption that the aggregate signature scheme is
secure.
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Abstract. In previous work we showed how to compress certain prime-
order subgroups of the cyclotomic subgroups of orders 22m + 1 of the
multiplicative groups of F∗

24m by a factor of 4. We also showed that single-
exponentiation can be efficiently performed using compressed representa-
tions. In this paper we show that double-exponentiation can be efficiently
performed using factor-4 compressed representation of elements. In ad-
dition to giving a considerable speed up to the previously known fastest
single-exponentiation algorithm for general bases, double-exponentiation
can be used to adapt our compression technique to ElGamal type signa-
ture schemes.

1 Introduction

The Diffie-Hellman key agreement protocol [3] can be used by two parties A and
B to establish a shared secret by communicating over an unsecured channel. Let
G = 〈g〉 be a prime-order subgroup of the multiplicative group F∗

q of a finite
field Fq. Party A selects a private key a and sends ga to B. Similarly, B selects
a private key b and sends gb to A. Both parties can then compute the shared
secret gab. Security of the protocol depends on the intractability of the problem
of computing a from ga; this is called the discrete logarithm problem in G. If q
is prime (say q = p), then the fastest algorithms known for solving the discrete
logarithm problem in G are Pollard’s rho method [17] and the number field sieve
[9]. To achieve a 128-bit security level against these attacks, one needs to select
#G ≈ 2256 and p ≈ 23072 [6, Section 4.2]. Note that even though the order of
G is approximately 2256, the natural representation of elements of G, namely
as integers modulo p, are approximately 3072 bits in length. If q is a power of
2 or 3, then one needs to select #G ≈ 2256 and q ≈ 24800 to achieve 128-bit
security level against Pollard’s rho method and Coppersmith’s index-calculus
attack [2,12]. This brings an overhead both to the efficiency of the protocol and
to the number of bits that need to be stored or transmitted.

In recent years, there have been several proposals for compressing the elements
of certain subgroups of certain finite fields [21,8,1,13,18,5,4,20,11]. The compres-
sion methods in these works fall into two categories. They either use a rational
parametrization of an algebraic torus [18,5,4], or use the trace representation of
elements [21,8,1,13,20,11]. Even though there is a close relation between these
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two methods (see [18]), the trace representation of elements seems to give more
efficient single-exponentiation algorithms. Single-exponentiation in the context
of compressed representations is the operation of computing the compressed
representation of ga given an integer a and the compressed representation of
g. Double-exponentiation in the context of compressed representations is the
operation of computing the compressed representation of gak+bl given integers
a, b, and the compressed representations of gk, gl. It is not clear how to per-
form double-exponentiation efficiently when one uses the trace representation
of elements because the trace function is not multiplicative. On the other hand,
the use of a rational parametrization of a torus enjoys the full functionality of
the group structure, and one can perform double-exponentiation with similar
efficiency to that of a single-exponentiation.

Having efficient double-exponentiation is crucial in cryptographic applica-
tions. For example, in ElGamal type signature schemes the verifier should per-
form a double-exponentiation to verify the signature on the received message.
Moreover, double-exponentiation can be used to speed up single-exponentiation
by representing the exponent τ = ak+b where k is some fixed integer and a, b are
half the bitlength of τ . Then gk can be precomputed and given τ , one can com-
pute gτ = (gk)a · gb using simultaneous exponentiation (Straus-Shamir’s trick ;
see Algorithm 14.88 in [14]) much more efficiently than direct exponentiation by
τ . As mentioned in the previous paragraph, it is not clear if one can favourably
exploit this idea when the trace representation of elements is used.

Lenstra and Stam [22] show that in the case of factor-2 and factor-3 compres-
sion in large-prime characteristic fields one can perform double-exponentiation
very efficiently and they discuss some related applications such as speeding up
the single-exponentiation algorithm for compressed elements.

In this paper, we show that double-exponentiation that works directly with
factor-4 compressed elements can be performed very efficiently in the case of
characteristic two fields, and describe two particular cryptographic applications.
As a first application, we show how to use double-exponentiation to speed up
single-exponentiation thereby obtaining an estimated 20% acceleration over the
previously known fastest single-exponentiation algorithm when the base is gen-
eral. Speeding up the single-exponentiation is important as it speeds up some
cryptographic protocols using the factor-4 compression technique. For example,
as observed in [11], the factor-4 compression technique can be applied to the im-
age of the symmetric bilinear pairing derived from an embedding degree k = 4
supersingular elliptic curve defined over a characteristic two field. If this pairing
is used to implement the identity-based key aggrement protocol of Scott [19],
then the messages exchanged can be compressed by a factor of 4; moreover, the
single-exponentiation in the protocol can be performed using the compressed
representation of elements. As a second application, we give details on deploying
factor-4 compressed representation of elements in the Nyberg-Rueppel signature
scheme [16]; our method also reduces the size of public keys.

The remainder of the paper is organized as follows. Section 2 introduces
some terminology and sets the notation that we will use throughout the paper.
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In Section 3 we review the previous work on factor-4 compression. Section 4
presents our double-exponentiation algorithm and an analysis of the algorithm.
Two cryptographic applications of our double-exponentiation algorithm are
given in Section 5. We make some concluding remarks in Section 6.

2 Preliminaries and Notation

Let q be a prime power and Fq denote a finite field with q elements. Let n be
a prime such that gcd(n, q) = 1, and let k be the smallest positive integer such
that qk ≡ 1 (mod n). Then F∗

qk has a multiplicative subgroup of order n which
cannot be embedded in the multiplicative group of any extension field Fqi for
1 ≤ i < k. For such a triple (q, k, n) we denote the multiplicative group of order
n by µn and call k the embedding degree of µn over Fq. In this setting, we let h
be a positive integer and define th = q + 1 − h · n to be the trace of µn over Fq
with respect to the cofactor h. Throughout the rest of this paper we will assume
that the cofactor h is fixed and we simply denote the trace of µn by t, instead
of th.

Let g ∈ Fqk and let s be a positive divisor of k. We assume that g is not
contained in any proper subfield of Fqk . The conjugates of g over Fqs are gi = gq

is

for 0 ≤ i < k/s. The trace of g over Fqs is the sum of the conjugates of g over
Fqs , i.e.,

Trs(g) =

k
s −1∑
i=0

gi ∈ Fqs . (1)

The minimal polynomial of g over Fqs is the monic polynomial

fg,s(x) =

k
s −1∏
i=0

(x − gi). (2)

Note that fg,s(x) ∈ Fqs [x]. When s = 1 we simply use Tr(g) and fg(x) by abuse
of notation. Also, we will assume that the conjugates of g over Fqs are well
defined for any integer i by setting gi = gi mod k/s.

We fix some notation for finite field operations that will be used in the re-
mainder of the paper. We will denote by Ai, ai, Ci, Fi, Ii,Mi,mi, and Si the
operations of addition, addition by 1 or 2, cubing, exponentiation by a power of
the characteristic of the field, inversion, multiplication, multiplication by 2, and
squaring in Fqi for i ∈ {1, 2}. SRi,j will denote the cost of finding a root of a
degree i irreducible polynomial over Fqj . We use soft-O notation Õ(·) as follows:
a = Õ(b) if and only if a = O(b(log2 b)

c) for some constant c.

3 Review of Factor-4 Compression

We recall some of the facts on factor-4 compression and also review the expo-
nentiation algorithms presented in [11].
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Let r be a positive integer, and let q = 22r+1, t = ±2r+1, T = |t|. The values of r
forwhich q+1−t = hn andn is prime lead to amultiplicative subgroupµn of F∗

q4 of
prime ordernwith embedding degree 4 and trace t. We fix h, n, q, t, T andµn = 〈g〉
in this fashion, and also write cu = Tr(gu). Note that c0 = 0 and cuT = cTu .

The following theorem shows that gu ∈ µn can be uniquely represented (up
to conjugation over Fq) by its trace, thus providing compression by a factor 4.
From now on, we will refer to this group µn ⊂ F∗

q4 as the factor-4 subgroup of
F∗
q4 with trace t.

Theorem 1. [11, Corollary 4.5] Let µn = 〈g〉 be the factor-4 subgroup of F∗
q4

with trace t. Let fgu(x) be the minimal polynomial of gu ∈ µn over Fq. Then

fgu(x) = x4 + cux
3 + cTux

2 + cux+ 1.

Next, we recall some facts from [11] that we will use in Section 4.

Lemma 1. Let µn = 〈g〉 be the factor-4 subgroup of F∗
q4 with trace t. Then for

all integers u and v we have
(i) cu+v = (cu + cu−2v)cv + cu−vcTv + cu−3v [11, Corollary 4.4(i)].
(ii) cu = c−u [11, Lemma 4.2(i)].
(iii) c2u = c2u [11, Corollary 4.4(ii)].
(iv) cucv = cu+v + cu−v + cu+v(t−1) + cv+u(t−1) [11, Lemma 4.2(ii)].

Remark 1. Throughout the remainder of this paper, we will assume without loss
of generality that the trace t is positive. If t is negative then one can replace
the expressions of the form c

p(t)
u , where p is some polynomial, by c

p(T )
u without

changing the validity of the results in this paper.

Let a, b be integers with 0 < a, b < n. Single-exponentiation to the base a in
µn is the operation of computing cab given ca and b. Five single-exponentiation
algorithms were presented in [11]. We concentrate on Algorithm 1 that works
directly with ca, and is the fastest exponentiation algorithm for general bases.
For completeness we present Algorithm 1 and its running time.

Table 1. Cost of Algorithm 1 for factor-4 compression. The exponent is an �-bit integer.

Algorithm Precomputation Main Loop
Algorithm 1 [11] 1I1 + 1M1 (4M1 + 4S1)(� − 1)

Next, we give a generalization of Theorem 4.7 in [11] that will be used in
Section 4 to describe a double-exponentiation algorithm in µn.

Theorem 2. Let µn = 〈g〉 be the factor-4 subgroup of F∗
q4 with trace t. Let

cu = Tr(gu),

A =

⎛⎜⎜⎝
cv cv 0 0
0 cv cv 0
0 1 ctv 1
1 ctv 1 0

⎞⎟⎟⎠ , X =

⎛⎜⎜⎝
c2u−3v
c2u−v
c2u+v
c2u+3v

⎞⎟⎟⎠ , Y =

⎛⎜⎜⎝
(cu + cu−2v)2 + c2u−vc

t
v

(cu+v + cu−v)2 + c2uc
t
v

(cu + cu+v)2cv
(cu−v + cu)2cv

⎞⎟⎟⎠ .
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Algorithm 1. Single-exponentiation
Input: ca and b
Output: cab
1: Write b =

∑�−1
i=0 bi2i where bi ∈ {0, 1} and b�−1 = 1

2: su = [cu−2, cu−1, cu, cu+1] ← [ca, 0, ca, c2
a]

3: m1 ← 1/ct+1
a and m2 ← 1/ca

4: for i from � − 2 down to 0 do
5: c2u−1 ← m1

(
(cu+1 + cu + cu−1 + cu−2)2 + (cu + cu−1)2(ct

a + c2
a)
)

6: c2u ← c2
u

7: c2u+1 ← c2u−1 + m2

(
(cu+1 + cu−1)2 + c2

uct
a

)
8: if bi = 1 then
9: c2u+2 ← c2

u+1

10: su ← [c2u−1, c2u, c2u+1, c2u+2]
11: else
12: c2u−2 ← c2

u−1

13: su ← [c2u−2, c2u−1, c2u, c2u+1]
14: end if
15: end for
16: Return (cu)

Then

(i) A is invertible and AX = Y .
(ii) If cv is given then A and A−1 can be efficiently computed.
(iii) c2u−v = 1

ct+1
v

(
(cu+v + cu + cu−v + cu−2v)2 + (cu + cu−v)2(ctv + c2v)

)
.

Proof. The proof is analogous to the proof of Theorem 4.7 in [11]. ��

Corollary 1. Let µn = 〈g〉 be the factor-4 subgroup of F∗
q4 with trace t. Let

cv, c2u−v and su,v = [cu−2v, cu−v, cu, cu+v] be given. Then

(i) cu+2v = (cu+v + cu−v)cv + cuc
t
v + cu−2v, and can be computed at a cost of

1F1 + 2M1.
(ii) c2u+v = (cu+v + cu−v)cu + cvc

t
u + c2u−v, and can be computed at a cost of

1F1 + 2M1.
(iii) cu−3v = (cu + cu−2v)cv + cu−vctv + cu+v, and can be computed at a cost of
1F1 + 2M1.
(iv) c3u−v = (cv + c2u−v)cu + cu−vctu + cu+v, and can be computed at a cost of
1F1 + 2M1.
(v) cu−4v = cu+2v + (cu+ cu−2v)(c2v + ctv + 1)+ cu−vct+1

v , and (cu+2v, cu−4v) can
be computed at a cost of 1F1 + 5M1 + 1S1.
(vi) c4u−v = c2u+v +(cv + c2u−v)(c2u+ ctu+1)+ cu−vct+1

u , and (c2u+v, c4u−v) can
be computed at a cost of 1F1 + 5M1 + 1S1.
(vii) c3u+v = c3u−v +(cu+v + cu−v)(c2u+ ctu+1)+ cvc

t+1
u , and (c3u−v, c3u+v) can

be computed at a cost of 1F1 + 5M1 + 1S1.
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Proof. (i)–(iv) follow from Lemma 1(i) and (ii).
(v) Using Lemma 1(i) and (ii), we first write

cu+2v = (cu+v + cu−v)cv + cuc
t
v + cu−2v (3)

cu−4v = (cu−v + cu−3v)cv + cu−2vc
t
v + cu. (4)

Now, adding (3) and (4) together and replacing cu−3v = (cu+cu−2v)cv+cu−vctv+
cu+v gives cu−4v = cu+2v + (cu + cu−2v)(c2v + ctv + 1) + cu−vct+1

v . Finally, once
cu+2v is computed as in (i) at a cost of 1F1 + 2M1, it is clear that cu−4v can be
computed at a cost of 3M1 + 1S1, which completes the proof.

(vi) The proof follows as in (v) after interchanging u and v.
(vii) The proof follows as in (v) after replacing (u, v) by (u − v, u). ��

4 Double-Exponentiation in Factor-4 Groups

Definition 1. Let µn = 〈g〉 be the factor-4 subgroup of F∗
q4 with trace t, and as

usual let cu = Tr(gu). Let a, b, k, l be integers with 0 < a, b, k, l < n. Double-
exponentiation to the base (k, l) in µn is the operation of computing cak+bl given
a, b, cl and sk,l = [ck−2l, ck−l, ck, ck+l].

We assume that a, b, k, l are strictly positive as otherwise double-exponentiation
just becomes a single-exponentiation. Note that k and l are not necessarily
known.

A double-exponentiation algorithm was presented by Stam and Lenstra [22]
for second-degree and third-degree recursive sequences. Their algorithm is an
adaptation of Montgomery’s method [15] to compute second-degree recursive
sequences. In this section, we adapt the techniques used in [22,15] and present
a double-exponentiation algorithm for fourth-degree recursive sequences.

Algorithm 2 starts with u = k, v = l, d = a > 0, e = b > 0, from which
it follows that ud + ve = ak + bl = τ , cv and su,v are known, and c2u−v can
be computed at a cost of 1F1 + 1I1 + 3M1 + 3S1 by Theorem 2. The reason
we introduce the term c2u−v in step 2 of Algorithm 2 is to avoid the repeated
computation of c2u−v during the updates. In the main part of the algorithm,
u, v, d, e will be updated so that ud + ve = ak + bl = τ holds, d, e > 0, and
(d + e) decreases until d = e. Also, cv, c2u−v and su,v are updated according
to the new values of u and v. When d = e, we will have τ = d(u + v) and
su,v = [cu−2v, cu−v, cu, cu+v]. Finally, we compute cτ = cd(u+v) using a single-
exponentiation algorithm. Table 2 gives the update rules for u, v, d, e, cv, c2u−v
and su,v. Table 3 gives the cost of each update operation and the factor by which
each update reduces (d+e). The cost analysis as summarized in the third column
of Table 3 follows from Table 2 and Corollary 1.

Correctness. Let m = gcd(a, b), a = ma′, and b = mb′. It is easy to see that
if m = 2rm′, r ≥ 0, and m′ is odd then after step 6 in Algorithm 2 we will have
f = 2r, d = m′a′, e = m′b′. Moreover, after step 9, we will have d = e = m′ and
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Table 2. Update rules for double-exponentiation in factor-4 groups

Rule Condition d e u v cv c2u−v su,v = [cu−2v , cu−v, cu, cu+v]
if d ≥ e

R1 d ≤ 4e d − e e u u + v cu+v cu−v [cu+2v, cv , cu, c2u+v]
R2 d ≡ e (mod 2) (d − e)/2 e 2u u + v cu+v c3u−v [c2

v , cu−v, c2
u, c3u+v]

R3 d ≡ 0 (mod 2) d/2 e 2u v cv c4u−v [c2
u−v, c2u−v , c2

u, c2u+v]
R4 e ≡ 0 (mod 2) d e/2 u 2v c2

v c2
u−v [cu−4v , cu−2v, cu, cu+2v]

else
S e > d e d v u cu cu−2v [c2u−v , cu−v, cv, cu+v]

Table 3. Analysis of update rules for double-exponentiation in factor-4 groups

Rule Condition Cost Reduction factor for (d + e)
if d ≥ e

R1 d ≤ 4e 2F1 + 4M1 ≥ 5/4, < 2
R2 d ≡ e (mod 2) 1F1 + 5M1 + 2S1 2
R3 d ≡ 0 (mod 2) 1F1 + 5M1 + 2S1 ≥ 5/3, < 2
R4 e ≡ 0 (mod 2) 1F1 + 5M1 + 2S1 > 1, < 10/9
else
S e > d 0 1

Algorithm 2. Double-exponentiation
Input: a > 0, b > 0, cl and sk,l = [ck−2l, ck−l, ck, ck+l]
Output: cak+bl
1: u ← k, v ← l, d ← a, e ← b, su,v ← sk,l

2: c2u−v ← 1

c
t+1
v

(
(cu+v + cu + cu−v + cu−2v)2 + (cu + cu−v)2(ct

v + c2
v)
)

3: f ← 1
4: while d and e are both even do
5: d ← d/2, e ← e/2, f ← 2f
6: end while
7: while d 	= e do
8: Execute the first applicable rule in Table 2
9: end while

10: Compute cd(u+v) using Algorithm 1 with input cu+v and d

11: Return cf
d(u+v)

d(u+ v) = m′a′k+m′b′l since ud+ ve is kept invariant while applying the rules
in Table 2. Hence, ak+ bl = 2rm′a′k+ 2rm′b′l = f · d(u+ v), cak+bl = cf ·d(u+v),
and the correctness of the algorithm follows from Lemma 1(iii), as cf ·d(u+v) =
cfd(u+v).

Analysis. The running time analysis of Algorithm 2 is similar to that in [15].
We will ignore the costs F1 and S1. If R4 is never required during the execution
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of Algorithm 2, then it is clear from Table 3 that the cost of the second while
loop in Algorithm 2 never exceeds

max(4 log5/4 (a′ + b′), 5 log2 (a′ + b′), 5 log5/3 (a′+b′))M1 ≈12.4 log2 (a′ + b′)M1.

Now, suppose that R4 is used i > 0 times successively, with the starting (d, e)
value (d1, e1). That is, d1 > 4e1, d1 ≡ 1 (mod 2), and e1 ≡ 0 (mod 2). Let
(d2, e2) be the updated value of (d, e) after i applications of R4. Clearly, d1 = d2
and e1 = e22i. Now, only the rule R2 is applicable, and suppose we apply R2
and R3 (possibly after R2) j times until R1 qualifies (i.e. d ≤ 4e) or j ≤ i;
and suppose that the (d, e) value is updated to (d3, e3). Clearly, e2 = e3 and
d3 ≤ d2/2i. If d3 ≤ 4e3 then

(d1 + e1)
(d3 + e3)

≥ 5e1
5e3

= 2i.

If j = i then
(d1 + e1)
(d3 + e3)

≥ d2 + e22i

d2/2j + e2
= 2i.

In both cases, the value (d + e) value is reduced at least by a factor of 2i at a
cost of 5(i + j)M1 ≤ 10iM1. Hence, the total cost of the second while loop in
Algorithm 2 never exceeds 12.4 log2 (a′ + b′)M1. Using Algorithm 1 for step 10
in Algorithm 2, we can conclude that the total cost of Algorithm 2 never exceeds
12.4 log2 (a+ b)M1.

In our experiments we observed that the performance of Algorithm 2 in prac-
tice is remarkably better than the upper bound 12.4 log2 (a + b)M1. Moreover,
the behavior of Algorithm 2 becomes very stable as (a+b) gets larger. We tested
the performance of Algorithm 2 with 220 randomly chosen pairs (a, b) such that
a ∈ [1, 2609), b ∈ [1, 2612) and a, b ∈ [1, 21221). The intervals ([1, 2609), [1, 2612))
are relevant for obtaining a faster single-exponentiation algorithm at the 128-bit
security level (see Section 5.1), and the interval [1, 21221) is relevant for deploying
our double-exponentiation algorithm in the Nyberg-Rueppel signature scheme
at the 128-bit security level (see Section 5.2). Our experimental evidence sug-
gests that the main loop in steps 7–9 of Algorithm 2 is executed approximately
1.45 log2 (A+B) times on average (where A = a/gcd(a,b), B = b/gcd(a,b)),
and that the average number of multiplications per iteration is 4.39. Moreover,
R1 is used in around 61% of the total number of iterations. In our experiments,
as one might expect, gcd(a, b) is very small and the cost of step 10 is 2.32M1
on average (see Table 4). Note that step 11 can be performed at a negligible
cost. Hence, we may conjecture that the expected running time of Algorithm 2
is (1.45 · (0.61 · 4 + 0.39 · 5)) log2 (a+ b)M1 ≈ 6.37 log2 (a+ b)M1.

5 Applications of Double-Exponentiation in Factor-4
Groups

In this section we discuss two applications of double-exponentiation of compressed
elements in factor-4 groups. We show in Section 5.1 that double-exponentiation
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Table 4. Practical behavior of Algorithm 2 at the 128-bit security level. 220 pairs
(a, b) were randomly chosen such that a ∈ [1, 2609), b ∈ [1, 2612) and a, b ∈ [1, 21221).
A = a/gcd(a, b) and B = b/gcd(a, b).

Average Standard deviation
a ∈ [1, 2609), (a, b) ∈ [1, 21221) a ∈ [1, 2609), (a, b) ∈ [1, 21221)
b ∈ [1, 2612) b ∈ [1, 2612)

log2 (a + b) 611.4 1221 1.058 0.816
log2 (A + B) 611 1221 1.251 1.053

# of iterations (of steps 7–9) 1.451 · log2 (A + B) 1.453 · log2 (a + b) 0.018 0.012
# of multiplications per iteration 4.390 4.390 0.027 0.019

(during steps 7–9)
# of multiplications in step 10 2.320 2.315 5.414 5.412

Rule Average usage Standard deviation
R1 0.610 0.610 0.027 0.019
R2 0.175 0.175 0.013 0.009
R3 0.129 0.129 0.012 0.008
R4 0.085 0.085 0.013 0.009

can be used to obtain faster single-exponentiation of compressed elements in
factor-4 groups. Next, we show in Section 5.2 that double-exponentiation allows
us to use compression techniques in ElGamal type signature schemes and further-
more obtain shorter public keys. As an illustrative example, we provide details for
the Nyberg-Rueppel signature scheme.

Throughout this section we let µn = 〈g〉 be the factor-4 subgroup of F∗
q4 with

trace t, and let T = |t|.

5.1 Speeding Up Single-Exponentiation

Algorithm 2 can be turned into a single-exponentiation algorithm as follows.
Suppose we want to compute crs given cr and 0 ≤ s < n. Clearly, if s = 0 then
crs = 0. Suppose s �= 0, and write s = aT + b where 0 ≤ a ≤ T and 0 ≤ b < T
(this can be done as T =

√
2q and n = q + 1 − t). If a = 0 then crs = crb

can be computed using Algorithm 1. If b = 0 then crs = craT = cTra (recall
that T is a power of 2) can be computed by first computing cra from cr and a
using Algorithm 1, and then raising the result to the T ’th power. Now, suppose
a, b �= 0. Then crs = carT+br = cak+bl, where k = rT and l = r. In other words,
crs can be computed from a, b, cl = cr and sk,l = [cr(T−2), cr(T−1), crT , cr(T+1)]
using Algorithm 2. Note that cl is already given, and sk,l is the last su value
obtained from running Algorithm 1 with input cr and T . Our discussion yields
Algorithm 3 for single exponentiation in µn.

Let C1(i) denote the cost of Algorithm 1 when the input exponent b is ap-
proximately an �i�-bit integer. Similarly, let C2(i) denote the cost of Algorithm 2
when the sum of the two input exponents is approximately an �i�-bit integer.
If s ≈ n and if one uses Algorithm 1 to compute [cr(T−2), cr(T−1), crT , cr(T+1)]
in step 12 of Algorithm 3 then the running time of Algorithm 3 is approxi-
mately C1((log2 n)/2) + C2((log2 n)/2) since T ≈

√
n. Therefore, we can con-

clude from Table 1, and from the running time analysis of Algorithm 2 at
the end of Section 4, that the running time of Algorithm 3 will not exceed
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Algorithm 3. Single-exponentiation
Input: cr and s
Output: crs
1: if s = 0 then
2: crs ← 0
3: else
4: Write s = aT + b, where T = |t|, 0 ≤ a ≤ T , 0 ≤ b < T
5: if a = 0 then
6: Use Algorithm 1 to compute crb from cr and b
7: crs ← crb

8: else if b = 0 then
9: Use Algorithm 1 to compute cra from cr and a

10: crs ← cT
ra

11: else
12: Compute su = [cr(T−2), cr(T−1), crT , cr(T+1)] from cr and T
13: sk,l ← su, cl ← cr

14: Use Algorithm 2 to compute cak+bl from a, b, cl and sk,l

15: crs ← cak+bl

16: end if
17: end if
18: Return crs

(4 log2 n+12.4 log2 n)M1/2 = 8.2(log2 n)M1 and the running time of Algorithm 3
is expected to be (4 log2 n + 6.37 log2 n)M1/2 ≈ 5.19(log2 n)M1. Moreover, in
the case that the base cr is fixed, sk,l in Algorithm 3 can be precomputed,
and the running time of Algorithm 3 is expected to be 6.38(log2 n)M1/2 =
3.19(log2 n)M1. Assuming the base cr is fixed, we may conclude that Algorithm 3
is faster than Algorithm 1. However, for general bases, Algorithm 1 remains the
fastest single exponentiation algorithm in factor-4 groups, unless we can find
a more efficient method for computing [cr(T−2), cr(T−1), crT , cr(T+1)] given cr
and T .

We now argue that [cr(T−2), cr(T−1), crT , cr(T+1)] can be computed at a negli-
gible cost. This will refine Algorithm 3 and give a faster single-exponentiation al-
gorithm than Algorithm 1 for general bases. We first need the following
theorem.

Theorem 3. Let µn = 〈g〉 ⊂ F∗
q4 be a factor-4 group with trace t, and let

cr = Tr(gr). Then

(i) crt = ctr.
(ii) cr(t−1) = cr.
(iii) cr(t−2) = ctr.
(iv) cr(t+1) is a root of F (x) = x2 + ct+1

r x+ (ct+2
r + c3tr + c2r + c4r).

Proof. (i) follows because t is a power of 2 and char(Fq) = 2.
(ii) cr(t−1) = crq = cqr = cr since q ≡ t − 1 (mod n).
(iii) cr(t−2) = crqt = ctr since qt ≡ q2 + q ≡ q − 1 ≡ t − 2 (mod n).
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(iv) First note that

cr(2t−1) =
1

ct+1
r

(
(cr(t+1) + crt + cr(t−1) + cr(t−2))2

)
+

1
ct+1
r

(
(crt + cr(t−1))2(ctr + c2rt)

)
, (5)

by using Theorem 2(iii) with u = rt and v = r. Moreover, using Lemma 1(iv)
with u = rt and v = r together with the fact that cr(t−1) = cr from part (ii), we
can show that

cr(2t−1) = ct+1
r + cr(t+1). (6)

Now, combining (5) and (6) we can write

c2r(t+1) + ct+1
r cr(t+1) + (ct+2

r + c3tr + c2r + c4r) = 0,

which proves the result. ��

Suppose now that cr is known and that t > 0, whence T = t (we can sim-
ilarly argue when t < 0). By Theorem 3(i), (ii), and (iii), we can compute
[cr(T−2), cr(T−1), crT ] at a cost of 2F1. We also know that the roots of F (x) =
x2 + Bx + C, B,C ∈ Fq, B �= 0, are given by {r1, r2} = {B · R(C/B2), B ·
(R(C/B2)+1)}, where R(C/B2) is a root of x2 +x+(C/B2), and if r1, r2 ∈ Fq
then they can be computed at a negligible cost (see [10, Section 3.6.2]). By Theo-
rem 3(iv), the roots of F (x) = x2+ct+1

r x+(ct+2
r +c3tr +c2r+c

4
r) are in Fq, and so can

be computed efficiently. Hence, we can determine [cr(T−2), cr(T−1), crT , cr(T+1)]
at a negligible cost, up to the ambiguity that we cannot differentiate between
the roots cr(T+1) and cr(T+1) + cT+1

r of F (x) (see Theorem 3). This ambigu-
ity problem can be resolved if the sender of cr is also required to compute
cr(T+1) and send one extra bit b ∈ {0, 1} to help the receiver distinguish cr(T+1)
from cr(T+1) + cT+1

r (see Section 5.2 for a similar discussion on how b can be
determined).

Hence, assuming that we have a general base cr and that the distinguisher bit b
is known, the running time of Algorithm 3 does not exceed (12.4 log2 n)M1/2 =
6.2(log2 n)M1. Based on our experiments (see Table 4), the running time of
Algorithm 3 is expected to be (6.37 log2 n)M1/2 ≈ 3.19(log2 n)M1; this is 20%
faster than Algorithm 1 which requires a negligible precomputation and has run-
ning time 4(log2 n)M1 (see Table 1). Note that the Diffie-Hellman key exchange
protocol is an example of the scenario where cr and b can be computed from c1
by one of the communicating parties and sent to the other party.

To be more concrete, we compare the expected running time of our new
single-exponentiation algorithm (Algorithm 3) with the previously known fastest
single-exponentiation algorithm (Algorithm 1) at the 128-bit security level when
general bases are employed. We let q = 21223 and t = 2612. Then q + 1 − t = 5n
where n is a 1221-bit prime, and F∗

q4 has a factor-4 subgroup µn of order n. For
any exponent s ∈ [1, n−1], we can write s = a ·2612 + b where a has bitlength at
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most 609 and b has bitlength at most 612, and compute crs using Algorithm 3
with input cr, s and these a, b values. Based on our experiments, the average
cost of Algorithm 3 is 3895M1 (see Table 4). Note that this is 20% less than the
cost of Algorithm 1, which is 4880M1.

5.2 Nyberg-Rueppel Signature Scheme in Factor-4 Groups

The Nyberg-Rueppel signature scheme [16] can be modified to be used with
compressed representations of elements in µn as follows. We suppose that q,
n and c1 are system-wide parameters; alternately, they may be included in a
party’s public key. Alice chooses a random integer k ∈ [1, n − 1] and computes
sk,1 = [ck−2, ck−1, ck, ck+1]. Alice’s public key is sk,1 and her private key is k. To
sign a message M , Alice chooses a random integer a ∈ [1, n − 1] and computes
ca. Alice extracts a session key K = Ext(ca) from ca, and uses a symmetric-
key encryption function E to encipher M under K: e = EK(M). Moreover, she
computes the hash h = H(e) of the encrypted text and sets s = k · h+ a mod n.
Alice’s signature on M is (e, s).

If Bob wants to verify Alice’s signature (e, s) on M , he first computes h =
H(e), replaces h by −h mod n, and computes chk+s from sk,1 and c1. Note that
this is a double-exponentiation to the base (k, 1). Bob extracts the session key
K ′ = Ext(chk+s) from chk+s and computes e′ = EK′(M). Bob accepts the
signature if and only if e′ = e.

One advantage of using the compressed representation of elements in µn with
the Nyberg-Rueppel signature scheme is that c1 is a system parameter instead
of (the longer) g. We further show that it is possible to have a shorter public
key at the expense of some negligible precomputation. In particular, we show
that ck+1 is a root of a certain quadratic polynomial Pk whose coefficients are
determined by c1, ck−1 and ck. That is, Alice can omit ck+1 from her public
key and instead specify one bit to help Bob distinguish ck+1 from the other root
of Pk.

Consider the matrix

Mu =

⎛⎜⎜⎝
cu cu+1 cu cu+1
cu+1 cu+2 cu+3 cu+4
cu+2 cu+3 cu+4 cu+5
cu+3 cu+4 cu+5 cu+6

⎞⎟⎟⎠ .

Giuliani and Gong [7] showed that the characteristic polynomial of the matrix
M−1
u · Mu+k is equal to the characteristic polynomial of gk over Fq, namely

fgk(x) = x4 + ckx
3 + ctkx

2 + 1. In particular, using Lemma 1(i), we can compute
the characteristic polynomial Pk of M−1

−2 · Mk−2 and find that the coefficient
C2(Pk) of x2 in Pk(x) satisfies

(c1ct)2C2(Pk) = (c21 + c2t )c
2
k+1 + (c1ct((ck−2 + ck) + c1ck−1 + ckct))ck+1

+(c1(ck−2 + ck))2 + c21ct(ck−2ck + (ck−1 + ck)2)
+c1ck−1ct(c21ck + ck−2 + ck) + (ck−1(c1 + c21 + ct))2

+c2k(c
4
1 + c3t ).
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We should note that c1 �= 0 as otherwise fg would not be irreducible over Fq.
Since Pk = fgk , we must have C2(Pk) = ctk yielding the following result.

Theorem 4. ck+1 is a root of the polynomial Pk(x) = Ax2 +Bx+ C where

A = c21 + c2t

B = c1ct((ck−2 + ck) + c1ck−1 + ckct)
C = (c1(ck−2 + ck))2 + c21ct(ck−2ck + (ck−1 + ck)2 + ctkct)

+c1ck−1ct(c21ck + ck−2 + ck) + (ck−1(c1 + c21 + ct))2 + c2k(c
4
1 + c3t ).

First note that A = 0 if and only if c1 = ct, that is, if and only if g and gt are
conjugates over Fq. Using q2 ≡ −1 (mod n) and q ≡ t−1 (mod n), we can show
that this is never the case.

Now, the roots of Pk(x) = Ax2 +Bx + C, B,C ∈ Fq, A,B �= 0, are given by
{r1, r2} = {(B/A) ·R(AC/B2), (B/A) · (R(AC/B2)+1)}, where R(AC/B2) is a
root of x2 +x+(AC/B2). Furthermore, if r1, r2 ∈ Fq then they can be computed
at a negligible cost (see [10, Section 3.6.2]).

If A,B �= 0, then Alice’s public key can be ([ck−2, ck−1, ck], b) where b ∈ {0, 1}
is determined by Alice to help Bob to distinguish ck+1 from the other root of
Pk. For example, Alice can do this as follows. She first computes ck+1 (ck+1
is obtained for free while computing ck from c1 using a single-exponentiation
algorithm) and determines the roots r1, r2 of Pk together with integers corre-
sponding to the bit representations of r1 and r2, say i1 and i2, respectively. We
may assume without loss of generality that i1 < i2. If ck+1 = r1 then Alice sets
b = 0, otherwise she sets b = 1. Given Alice’s public key, Bob can easily recover
sk,1 at a negligible cost and verify Alice’s signatures.

If A �= 0 and B = 0 in Pk(x), then ck+1 can be uniquely computed by taking
the square root of C/A in Fq at a negligible cost.

To be more concrete, we compare the length of public keys when compression
is deployed with the length of public keys in the original scheme at the 128-
bit security level. As in Section 5.1, we let q = 21223 and t = 2612, whence
q+1− t = 5n where n is a 1221-bit prime and F∗

q4 has a factor-4 subgroup µn of
order n. We find that the length of a public key when compression is deployed
is 3669 bits, while the public key length without compression is 4892 bits.

6 Concluding Remarks

We showed that double-exponentiation can be efficiently performed using factor-
4 compressed representation of elements in factor-4 groups. This allowed us
to speed up single-exponentiation and also to use compression techniques in
ElGamal type signature schemes.

A future research goal is to further speed up single-exponentiation and double-
exponentiation algorithms that use compressed representation of elements. One
possibility is that Algorithm 2 can be optimized by taking into account update
rules different from those given in Table 2 (see for example [15] and [22]).
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Another possibility is to search for better parameters. For example, at the 128-bit
security level, generating parameters q, n such that µn ⊂ F∗

q4 is a factor-4 group,
q = 2m ≈ 21200, and n is a 256-bit prime, would result in shorter exponents
and therefore a speed up by a factor of more than 4. Such parameters can be
found by searching for a suitable prime factor n of N1 =gcd(Φ4m(2), q + 1 − t)
or N2 =gcd(Φ4m(2), q + 1 + t), where Φ4m is the (4m)th-cyclotomic polynomial
of degree ϕ(4m), and ϕ is Euler’s totient function. Note that when ϕ(m) is
significantly smaller than m, then factoring Ni is expected to be easier than
factoring q + 1 ± t. For example, when m = 1209, N2 is a 718-bit integer and
has a 271-bit prime factor n.

We expect that our double-exponentiation algorithm can be adapted to the
factor-6 groups that arise as multiplicative subgroups of characteristic three
finite fields [20,11]. However, further analysis would be needed to estimate its
efficiency, and to judge how the resulting single-exponentiation method compares
to previously known algorithms.
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Abstract. This paper extends Joux-Naccache-Thomé’s e-th root algo-
rithm to the static Diffie-Hellman problem (sdhp).

The new algorithm can be adapted to diverse finite fields by customiz-
ing it with an nfs-like core or an ffs-like core.

In both cases, after a number of non-adaptive sdhp oracle queries,
the attacker builds-up the ability to solve new sdhp instances unknown
before the query phase.

While sub-exponential, the algorithm is still significantly faster than
all currently known dlp and sdhp resolution methods.

We explore the applicability of the technique to various cryptosystems.
The attacks were implemented in F21025 and also in Fp, for a 516-bit p.

Keywords: dlp, sdhp, ffs, nfs.

1 Introduction

In [11], Joux, Naccache and Thomé showed that carefully interacting with an
e-th root oracle improves one’s ability to compute e

√
t mod n for arbitrary t after

the communication with the oracle.
In Joux et alii’s game, the attacker can only query the oracle during a learn-

ing phase that takes place before t is known. As this learning phase ends, the
attacker receives the target t and outputs it’s e-th root. In other words, [11]
establishes that the release of certain modular roots leaks information that eases
the calculation of all future roots.
� Work partially supported by dga research grant 05.34.058.
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This is interesting because, while sub-exponential and oracle-assisted, [11] is
still faster than gnfs-factoring.

A recent ePrint publication ([12]) extended [11] to discrete logarithms (dls).
While complexities and details vary, [12]’s overall scenario remains essentially
the same, replacing root extractions by dlp calculations.

This work tackles the static Diffie-Hellman problem (sdhp) on which many
cryptosystems rely (e.g., [2,4,5] – to mention only a few). Namely, we show how
after several carefully crafted non-adaptive sdhp oracle queries, an attacker can
improve his ability to solve arbitrary sdhp instances, unknown before the last
oracle query. The attacker’s workload is significantly lower than [12]1 and all
currently known dlp and sdhp resolution algorithms.

The method can be adapted to diverse finite fields by customizing it either
with an nfs-like core or an ffs-like core.

We assume that the reader is familiar with [1,11,12], whose notations, intro-
ductory descriptions and terminology we extensively borrow and recycle.

Results. Let Q = qn where q is a prime power2 and n an integer.
We present an algorithm A performing, during a learning phase, L non adap-

tive sdhp-oracle queries {x1, . . . , xL} ∈ FLQ to which the oracle responds with
{xd1, . . . , xdL} ∈ FLQ for some secret d ∈ [0, Q− 1].

After the learning phase, A is given a previously unseen challenge z and
outputs zd ∈ FQ.

The LQ(1
3 ,

3
√
x)-complexities of our algorithms are expressed in the following

table:

variant oracle accesses learning phase time post-learning phase time

ffs
4
9 - 4

9

nfs-hd
48
91

384
91

384
91

nfs
4
9

32
9 3

Here, nfs-hd stands for high-degree nfs to emphasize the difference between
this middle case and the regular nfs.

Let us recall that x values of the ffs, nfs-hd and nfs are respectively 32
9 ,

128
9 and 64

9 .
The following sections will detail A’s inner mechanics3, complexity and the

relation between L and {q, n}.
The attacks was implemented in F21025 and also in Fp, for a 516-bit p (details

in the Appendix).

1 Note, however, that [12] addresses a different problem than ours.
2 For simplicity, we assume that q is prime although for some composite degree ex-

tensions it is sometime more efficient to choose a composite subfield as a base field.
3 Note that as the learning phase takes place before z is disclosed, {x1, . . . , xL} and

L only depend on Q.
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2 Conventions

Complexity. We express complexities using the following notations4:

LQ(ν, λ) = exp
(
λ (1 + o(1)) (logQ)ν (log logQ)1−ν

)
,

�Q(ν) = (logQ)ν (log logQ)1−ν and DQ(ν, λ) = �logq(LQ(ν, λ))�.

As LQ(ν, λ) includes an o(1), DQ(ν, λ) inherently stands for DQ(ν, λ+ o(1)).
Following [9,10], we guarantee that the complexity of our algorithms is

L(1
3 , O(1)) by distinguishing the following three cases:

ffs. log q ∈ o(�Q(1
3 ))

� q is asymptotically smaller than all functions in LQ(1
3 , γ).

nfs-hd. log q ∈ [ω(�Q(1
3 )), o(�Q(2

3 ))]
� q is asymptotically between all functions in LQ(1

3 , γ) and LQ(2
3 , γ).

nfs. log q ∈ ω(�Q(2
3 ))

� q is asymptotically greater than all functions in LQ(2
3 , γ).

Assumptions. We rely on the usual heuristic assumptions [3,14,13]:

– The probability that an integer q ∼ LQ(νq, λq + o(1)) is a product of prime
factors of magnitude at most LQ(νp, λp + o(1)) is:

LQ

(
νq − νp,−

λq

λp
(νq − νp) + o(1)

)
despite the fact that integers q might follow non-uniform distributions.

– The probability that a polynomial q ∈ Fq[X ] of degree DQ(νq, λq) � 1 is a
product of irreducible polynomials of degree at most DQ(νp, λp) � 1 is also:

LQ

(
νq − νp,−

λq

λp
(νq − νp) + o(1)

)

3 Function Field Sieve Oracle-Assisted sdh Resolution

3.1 The Algorithm

In this section, we denote by ε the constant ε = 3

√
4
9 and by ϑn+1 = 1

3 (1 + 1
2n ).

Polynomial Construction. Let D = DQ(ϑn+1, ε), D tends to infinity with Q
because log q ∈ o(�Q(1

3 )) and thus D � 1.
Let d1 ∼=

√
nD and d2 ∼=

√
n
D with d1d2 � n.

Choose two univariate polynomials f1, f2 ∈ Fq[x] of respective degrees d1, d2,
such that the resultant of F1(x, y) = y − f1(x) and F2(x, y) = x − f2(y) with
respect to variable y has an irreducible factor of degree n over Fq.
4 Throughout this paper log denotes the natural logarithm.
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Let f(x) denote this irreducible factor of Resy(F1, F2) = x − f2(f1(x)), then
clearly Fqn � Fq[x]/(f(x)). Let α be a root of f(x) in Fqn and let β = f1(α).
Then, by construction, we have α = f2(β) too.

Learning Phase. We let FD be the set of all monic irreducible polynomials
over Fq of degree up to D and define {xi} = {{p(α), p(β)} | p(x) ∈ FD}. After
about 2qD � LQ(1

3 , ε+ o(1)) sdhp-oracle queries, we get {p(α)d, p(β)d}p∈FD .

Descent. The descent phase consists in finding a multiplicative relation between
the target z and the elements of Fα ∪ Fβ. To do so, we use a special-q sieving
subroutine (hereafter SqSS) as a basic building block. SqSS is called iteratively
to steadily decrease the degree of intermediate polynomials.

The SqSS works as follows:
Let q be an irreducible polynomial in x (respectively y) of degree dq.
To ease SqSS’s analysis we write dq as:

dq = DQ(νq, λq) = (λq + o(1))nνq log1−νq
q n

for two constants νq, λq such that 3
√
n � dq � n. Note that the values νq, λq

evolve simultaneously – as will be seen later in further detail.
SqSS’s purpose is to write an element q(α) or q(β) as a product of elements

of the form p(α) and p(β), where the p-polynomials are of degrees smaller than
the degree of q.

Let dε = DQ(1
3 , ε), we consider qdε � LQ(1

3 , ε) polynomials:

H(x, y) =
∑

0 ≤ i ≤ dx

0 ≤ j ≤ dy

hi,jx
iyj ∈ Fq[x, y]

where dy =
⌈
max(

√
(dq + dε)/D − 1, 1)

⌋
and dx =

⌈
dq + dε + 1
dy + 1

⌉
− 1

We only consider polynomials H(x, y) such that q divides Hx =
∑

i,j hi,jx
if1(x)j

(respectively Hy =
∑

i,j hi,jf2(y)iyj).
The complexity analysis (cf. infra) shows that there exists, amongst these

polynomials, polynomials H such that Hx and Hy both admit a factorization of
the form:

∏
p ∈ FDQ(νp,λp)

for p 	= q

p with

⎧⎨⎩νp =
1
6

+
νq

2
and λp =

2
√
λq+ε
3ε if νq > ϑn+1

νp = νq and λp = 3ε+λq

6ε
√
ε

otherwise.

By proceeding so, we can express an element q(α) or q(β) as a product of poly-
nomials p of degrees at most DQ(νp, λp) evaluated at α or β.
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Descending Using SqSS. Define the sequences:

νk+1 =
1
6

+
νk
2

and λk+1 =
2
√
λk + ε

3ε
with ν0 = λ0 = 1

We note that, indeed, νk = ϑk and that the limit at infinity of the sequence λk
is equal to 1+

√
5

3√18
∼= 1.234. As our procedures perform a finite number of steps,

these ad infinitum convergence targets are only approached. However, the limit
at infinity guarantees that during the phase of the descent where ν decreases,
λ remains bounded (smaller than the above limit). After that point ν remains
constant and λ quickly tends to ε.

The descent starts with one polynomial q(x) of maximal degree DQ(ν0, λ0)
with z = q(α). After a first invocation of SqSS we get polynomials p in x and y
of degree at most DQ(ν1, λ1) where ν1 = 2

3 and λ1 =
√
ε(1 + ε).

Again, we hand over each intermediate polynomial p to SqSS to obtain new
polynomials p in x and y of degree at most DQ(ν2, λ2) etc.

After N = O(log n) iterations involving intermediate polynomials of degrees
DQ(νk, λk), we eventually reach polynomials of degree at most DQ(ϑn+1, λN ).

Consider the sequence λ′k+1 = 3ε+λ′
k

6ε
√
ε

starting at λ′0 = λN = 1+
√

5
3√18

+ o(1).
We iterate SqSS O(logn) additional times; thereby generating polynomials of

degree DQ(ϑn+1, λ
′
k). Eventually, we reach polynomials of degree at most D, i.e.

DQ(ϑn+1, ε).
It remains to combine these relations to write z as a fraction of products of

elements of the form p(α) or p(β) with the degrees of p bounded by D. Finally,
we use the oracle’s answer-list {p(α)d, p(β)d}p∈FD , to retrieve zd.

3.2 Complexity

We analyze the complexity of each step:

SqSS For νq > ϑn+1. The sum of the degrees of Hx and Hy is:

(dx + 1)
√

(dq + dε)/D + (dy + 1)
√

(dq + dε)D − 2 � 2
√

(dq + dε)n

As, in addition, q divides one of these two polynomials, our smoothness proba-
bility is identical to that of dp-smooth polynomials of degree 2

√
(dq + dε)n− dq

i.e.:

2
√

(dq + dε)n−dq �2(
√
λq + ε+o(1))n

1+νq
2 log

1−νq
2

q n�DQ

(
1 + νq

2
, 2
√
λq + ε

)
And the probability that polynomials of this degree are DQ(1

6 + νq

2 ,
2
√
λq+ε
3ε )-

smooth is LQ(1
3 ,−ε+ o(1)) (cf. to section 2).

SqSS For νq � ϑn+1. The sum of the degrees of Hx and Hy is:

√
nD +

dq + dε
2

+
dq + dε

2

√
n

D
+ 1 �

√
nD +

dq + dε
2

√
n

D
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Then,

√
nD +

dq + dε
2

√
n

D
− dq �

(√
ε +

λq

2
√
ε

+
√
ε

2
+ o(1)

)
n

2
3+ 1

3 2n log
2
3− 1

3 2n
q n

� DQ

(
2
3

+
1

3 2n
,
3ε+ λq

2
√
ε

)
Again, the odds that polynomials of this degree are DQ(ϑn+1,

3ε+λq

6ε
√
ε

)-smooth is
LQ(1

3 ,−ε+ o(1)).

In both cases, after enumerating LQ(1
3 , ε + o(1)) polynomials, we expect to

find a good polynomial H .

Descent. SqSS calls involve medium-sized p-polynomials of degree larger thanD.

The number of these polynomials is thus bounded by O( nD ), i.e. O( 3

√
n2 log2

q n).
As the whole process involves O(log n) SqSS calls, the total number of

medium-size polynomials p to be considered is:

O

(
n

logq n

) 2
3O(logn)

= eO(log2 n)

Running SqSS on each of these polynomials, costs LQ(1
3 , ε + o(1)), which is far

larger than exp(O(log2 n)); we thus conclude that the descent’s complexity is
LQ(1

3 , ε + o(1)), having pre-computed a table of LQ(ϑn+1, ε + o(1)) elements
{pi(α)d}i ∪ {pi(β)d}i.

Since log±2−n

qn = 1 + o(1)

LQ(ϑn+1, ε+ o(1)) � exp
(
(ε + o(1))(log

1
3+ 1

3 2n qn)(log log
2
3− 1

3 2n qn)
)

� LQ(
1
3
, ε+ o(1))

Total Complexity. The attack’s total complexity is hence LQ(1
3 , ε + o(1)) =

LQ(1
3 ,

3

√
4
9 + o(1)), in time, space and oracle accesses.

4 Number Field Sieve Oracle-Assisted sdh Resolution

4.1 The Algorithm

Due to lack of space, we only sketch the two nfs algorithms covering large
and medium base-field cardinality-values q. As our algorithms preserve, mutatis
mutandis, most ffs features, we will mainly focus on the specificities proper
to these two cases. We also refer the reader to [11], whose arbitrary e-th roots
procedure has to be slightly modified to fit the case under consideration.
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Algebraic Side. In the ffs case, thanks to the existence of an ad-hoc construc-
tion, both sides are rational, i.e. on both side we only encounter polynomials.
With the nfs matters get more complicated. Indeed, all known polynomial con-
structions for nfs procedures involve at least one non-trivial number field.

For example over Fp the base-m construction yields two polynomials f1(x) =
x−m and f2(x), such that p | f2(m). Since f1 is a linear polynomial, it generates
a trivial number field: the corresponding side is rational and can be addressed
using integers. However, f2 defines a number field Q(α) with non trivial unit
and class groups.

Consequently, to deal with f2’s side5, we need to work with factorizations into
ideals: the algebraic factor base consists of ideals of small norm. This change
truly complicates the approach. As the ideals in the factor base are usually non-
principal, we do not know how to construct an oracle query corresponding to a
given ideal.

Instead, we need to find smooth a − bα values which factor into small ideals
and “translate” them to integers a − bm for the oracle.

Linear Algebra. To relate these factorizations back to multiplicative relations
in FQ we must resort to linear algebra, which can be done in two ways:

– Repeating the descent of [11], it is possible (using the oracle’s answers) to
relate the challenge z ∈ FQ to some a− bm ∈ Z such that a− bα factors into
small ideals. By solving a linear system over Z/(Q− 1)Z, this exact factor-
ization can be mapped to a multiplicative combination of oracle answers.

Note that to transform the equality of ideal factorizations into an equality
that makes sense in FQ, one must include additive characters in Z/(Q − 1)Z,
à la Schirokauer [15]. Since this methodology performs a linear algebra step
that depends on the challenge, it therefore yields an algorithm where the
linear algebra step has to be redone for each challenge.

– There is also a second method – very specific to our setting. It is possible
to use linear algebra to compute virtual sdh values that correspond to each
ideal6. From a theoretical standpoint, this can be justified as in [8,16]. Note
that this second method also requires the inclusion of additive characters à
la Schirokauer.

Note that in some cases (nfs-hd), there are two algebraic sides to consider.
We start from a large system of equations, where each equation expresses a

value in FQ – the equation’s generator – as a product of ideals in the number
field. Moreover, we are also given the power of this value returned by the oracle.
Our goal is to associate to each ideal I a number PI such that in each equation,
the substitution of I by PI will yield a product whose value matches the oracle’s
answer for this equation.

5 Called the algebraic side.
6 We assume here that the class number of Q(α) is co-prime with the relevant prime

factors of Q − 1. This assumption is clearly expected to hold.
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If we can achieve this goal, PI can be looked upon as an oracle output for I,
and we are back in a ffs-like scenario. However, this is not completely straight-
forward:

A first (costly) option would be to use linear algebra over the integers and
express each ideal as a product of generators (possibly with rational exponents)
but one may note that the vector of generators and the vector7 of ideals are
related by a matrix multiplication in the exponent. More precisely, if ideals are
indexed from 1 to B, and denoting by Gi the i-th equation generator (1 ≤ i ≤ B),
there exists a B × B matrix A, such that:⎛⎜⎜⎜⎝

G1
G2
...

GB

⎞⎟⎟⎟⎠ = A #

⎛⎜⎜⎜⎝
I1
I2
...
IB

⎞⎟⎟⎟⎠ (1)

where # denotes matrix multiplication in the exponent, i.e. where for all i:

Gi =
B∏
j=1

I
Ai,j

j (2)

Moreover this matrix multiplication in the exponent is defined modulo Q − 1,
the cardinality of F∗

Q. Having observed that, we can use Wiedemann’s algorithm
[17] to obtain the PI values. e.g. if A is invertible, Wiedemann’s algorithm finds
an expression A−1 = F (A) where F is a polynomial.

From this expression, we obtain:⎛⎜⎜⎜⎝
PI1
PI2
...

PIB

⎞⎟⎟⎟⎠ = F (A) #

⎛⎜⎜⎜⎝
O(G1)
O(G2)

...
O(GB)

⎞⎟⎟⎟⎠ (3)

where O(Gi) denotes the oracle’s output for the generator Gi.
This linear algebra step based on [17] has essentially the same complexity as

usual, with the small caveat that additions are replaced by multiplications and
multiplications by constants are replaced by exponentiations.

4.2 Complexity

The LQ(1
3 ,

3
√
x)-complexities of the nfs and nfs-hd oracle-assisted attacks are

expressed in the following table:

variant oracle accesses learning phase time post-learning phase time

nfs-hd
48
91

384
91

384
91

nfs
4
9

32
9 3

These figures stem from the technical analysis found in the Appendix.
7 In this vector, there are also a few additional components corresponding to the

additive characters.
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5 Cryptanalytic Applications

This section follows very closely Brown and Gallant’s [1]. Variable were renamed
to ease the identification of on parameters playing specific roles in our algorithms
(e.g. secret d, oracle queries xi etc).

It is clear that any cryptographic protocol where the secret-owner plays the
role of a sdhp-oracle will succumb to the new attacks. The technique can apply to
primitives as diverse as public-key encryption, digital signature and key retrieval.

5.1 Textbook El-Gamal Encryption

As observed in [1], textbook El-Gamal encryption makes an sdhp oracle avail-
able. El-Gamal encryption of message m to a receiver with public-key gd results
in a ciphertext c = {c1, c2} = {gr,m · gdr}.

In a chosen ciphertext attack against an encryption scheme, an adversary A
can select any ciphertext and obtain its decryption. For El-Gamal encryption, if
A chooses c = {x, c2}, then he obtains m = c2/x

d. A can thus obtain xd = c2/m,
thereby transforming the receiver into an sdhp-oracle for the challenge x.

Textbook El-Gamal is already known to be vulnerable to chosen ciphertext
attacks. The known attacks mainly allow information to be learned about pre-
viously encrypted messages but do not leak anything about d. In the scenario
described here, an attacker use the receiver as an oracle to learn how to decrypt
future traffic sub-exponentially, but still significantly faster than all previously
known sdhp-solving algorithms.

5.2 Ford-Kaliski Key Retrieval

In Ford-Kaliski’s key retrieval protocol [5], a client picks a random exponent b
and computes x = gb.
x is sent to the server who, replies with s = xd. The client computes t = b

√
s

and retrieves the hardened password t = b
√
s = gd.

The protocol’s purpose is to transform a low-entropy secret password g into a
hardened password gd involving a longer secret known only to the server. This
prevents dictionary attacks on the client’s password.

Therefore, the server plays exactly the role of the sdhp oracle considered in
this paper.

Variants of this protocol are currently under discussion in two standardization
groups [6,7].

5.3 Chaum- Van Antwerpen’s Undeniable Signatures

Another protocol in which an sdhp oracle is available is Chaum and van Antwer-
pen’s undeniable signature scheme [2]. The protocol uses a prime modulus p =
2q + 1 such that q is prime.

Let g ∈ Z∗
p be an element of order q and y = gd where d is the signer’s private

key (all other parameters are public). To sign a message x, Alice produces the
signature s = xd mod p. Bob verifies s interactively:
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Bob picks {e1, e2} at random in Zq, and sends c = se1ye2 to Alice.
Alice computes h = d

√
c mod p and sends it to Bob. Bob accepts s as a valid

signature if h = xe1ge2 mod p.
Note that [2], provides sdhp oracles for both d and 1

d mod q.
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A Implementation Details

As our algorithms are sub-exponential, the assessment of their experimental
behavior is essential. We hence implemented the ffs and nfs attacks as described
in sections 3.1 and 4.

A.1 Function Field Sieve Experiments

The ffs-based attack acquired the capability to compute the d-th power of an
arbitrary target in F21025 after a learning phase of only 76,916,368 sdhp-oracle
calls (these requests correspond to irreducible polynomials in α and β of degree
up to 29).

We selected:

f1(x) = x171 + x4 + x3 + x2 + 1 and f2(y) = y6 + y + 1

so that an irreducible polynomial of degree 1025 divides the resultant f(x) of
y − f1(x) and x − f2(y) with respect to the variable y.

Let σ be the mapping sending an integer p to a polynomial σ(p) over F2 such
that the evaluation at 2 of this polynomial yields p. For instance, σ(b) = x3+x+1
where b is the hexadecimal integer 0x0b.

Denoting by π = 3.14159 . . ., the attacked instance is:

π̄(α) = σ(�21023π�)(α) = α1024 + α1023 + α1020 + . . . + α5 + α4 + α2

As the factors of x18π̄(x) mod f(x) have degrees 1, 4, 6, 11, 32, 73, 217, 339 and
341, listing here the entire descent tress would require too much space. Instead,
we opt to zoom on the path of length 12 starting with a special-q equal to the
factor of degree 341 and following recursively, at each node, the highest degree
factor. This yields table 1, where the ai,j stand for the following hexadecimal
values:

a1,0 = 1de914aa624143ee2880268 a1,1 = 5368318d2e945f69775022f

a1,2 = 6b625fb7825342aecdabd80 a1,3 = 1055c12e550f64c6d8bd2e6

a2,0 = 22ac2088c59 a2,1 = 114043dab72 a2,2 = 3e6c922af2e

a3,0 = 3f536e224dd a3,1 = 1077f087dba a4,0 = 000b1a0283e a4,1 =002cce1067f

a5,0 = 0006a24a2be a5,1 = 000164b63c6 a6,0 = 0001bf55bcb a6,1 =0000c949e26

a7,0 = 00026dc2d0b a7,1 = 0000b748064 a8,0 = 003e4818437 a8,1 =0001b3671a7

a9,0 = 000138bc9c0 a9,1 = 000122f0d95 a10,0 = 000052ee9bb a10,1 =0000e82d833

a11,0 = 00003972dfb a11,1 = 00069fc51c5 a12,0 = 0006faf0133 a12,1 =0000d86d785

The special-q degree in x or y is underlined in the corresponding column and
smoothness probabilities are expressed as 2−ψ.

We wrote our software chain in c, relying upon the computer algebra systems
pari-gp and magma for a handful of specific tasks. The whole computation was
run on single Intel Core-2 at 3.6 GHz, with a 16 Gb memory. Each SqSS call
claimed roughly five minutes and the entire attack took less than a week.
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Table 1. An example path in an attack tree for F21025

H(x, y) ψ
↙ ↘

factor degrees of H(x, f1(x)) factor degrees of H(f2(y), y)
σ(a1,0) + σ(a1,1)y + σ(a1,2)y2 + σ(a1,3)y3 3

3, 4, 29, 30, 46, 73, 75, 341 1, 5, 20, 20, 21, 47, 64, 68, 91, 100, 103
σ(a2,0) + σ(a2,1)y + σ(a2,2)y2 16

1, 12, 20, 23, 25, 31, 33, 54, 59, 62, 63 1, 13, 14, 21, 43, 53, 103
σ(a3,0) + σ(a3,1)y 18

2, 12, 13, 15, 27, 33, 46, 63 1, 12, 15, 16, 17, 23, 27, 43, 43, 44
σ(a4,0) + σ(a4,1)y 19

2, 3, 12, 17, 18, 33, 35, 35, 46 2, 6, 10, 11, 12, 13, 29, 35, 38, 39
σ(a5,0) + σ(a5,1)y 21

1, 1, 2, 3, 5, 15, 18, 18, 22, 24, 24, 27, 35 1, 5, 6, 8, 14, 18, 28, 29, 32, 39
σ(a6,0) + σ(a6,1) y 22

5, 12, 12, 18, 19, 31, 32, 34, 35 1, 2, 4, 9, 14, 18, 19, 20, 23, 27, 27
σ(a7,0) + σ(a7,1) y 24

1, 5, 8, 10, 18, 26, 30, 33, 33, 34 1, 2, 5, 6, 6, 9, 10, 16, 17, 22, 23, 25, 30
σ(a8,0) + σ(a8,1) y 26

1, 1, 11, 20, 20, 24, 27, 29, 32, 33 1, 6, 7, 9, 17, 23, 24, 25, 25, 30, 30
σ(a9,0) + σ(a9,1) y 27

2, 9, 13, 18, 19, 20, 26, 27, 31, 32 18, 22, 24, 24, 26, 26, 29
σ(a10,0) + σ(a10,1) y 28

1, 1, 3, 14, 20, 20, 24, 27, 27, 28, 31 1, 4, 7, 16, 21, 25, 27, 28, 30
σ(a11,0) + σ(a11,1) y 28

1, 4, 10, 15, 15, 23, 24, 24, 26, 29, 30 1, 2, 4, 7, 8, 12, 12, 13, 18, 20, 24, 29, 30
σ(a12,0) + σ(a12,1) y 30

1, 1, 14, 16, 18, 18, 18, 25, 28, 29, 30 1, 2, 3, 10, 16, 18, 22, 23, 25, 27, 28

A.2 Number Field Side Experiments

We also experimented the nfs variant in the finite field Fp, where p is the 516-bit
prime

⌊
10155π + 88896

⌋
(p is the smallest prime above 10155π such that p−1

2 is
also prime).

We computed the secret d-th power of an element in FQ after a learning phase
of 140 million sdhp-oracle queries.

We selected the following polynomials for defining respectively the rational
and algebraic sides:

f1 = x − 0x5bd59a8c1dfa4580bbd2cee

f2 = 0xf6841ca54cc1267c · x5 + 0x423b1fc0c94938f26 · x4

− 0x2495d40c188755399c7c · x3 + 0x3b7ed50dd0329dda55051 · x2

− 0x23e3eeb7641a7d13c4b182 · x + 0x1a29246950783fbbb6b7b7c7

Sieving was done using a modified version of J. Franke and T. Kleinjung’s
lattice sieving code as included in the ggnfs software suite. We selected a factor
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base comprising the 43,321 prime ideals of norm smaller than 219 and obtained
generators factoring over this set of ideals after four sieving minutes using 128
Intel Core-2 cpu cores clocked at 1.6 GHz.

We then used the factor base extension step detailed in [11] and sieved again
for 24 minutes, using the same set of processors. This allowed us to relate the
vast majority of ideals of norm smaller than 232 to smaller-norm ideals using
140 million oracle queries.

We postponed linear algebra computations after the descent (cf. to the two
options explained in section 4).

The descent was coded in magma, where the SqSS was performed by a modi-
fied version of J. Franke and T. Kleinjung’s lattice sieving code, including several
modifications pertaining to the descent step (most notably co-factorization of
norms using the gmp-ecm program).

We started from the challenge value τ = 2	log2N
−	log3N
. The first decom-
position step consisted in finding a related finite field element (e.g. 2kτ for some
k, assuming 2 was an oracle query) which factored suitably over the integers.

We searched during a few minutes for a suitable integer k. The corresponding
factorization involved seven primes unlinked to the factor base, the largest of
which having 27 digits. Afterwards, using 164 intermediate descent steps (139
on the algebraic side and 25 on the rational side), we managed to link our initial
challenge to the factor base.

The final link between our challenge and the oracle queries was obtained by
solving a linear system involving the matrix formed by the first set of relations
obtained by sieving; the right hand side formed by the ideal factorization stem-
ming from the descent. After adding character maps, we solved this 43,378 rows
and columns system in eight hours on four Intel Core-2 cpu cores clocked at 2.4
GHz.

B Complexity Analysis – Regular nfs

Here, we work in FQ, with Q = pn and p > LQ(2
3 ).

The polynomial construction is done through lattice reduction. First, choose
an irreducible polynomial f1 of degree n and find another polynomial of degreeD,
multiple of f1 modulo p. The coefficients of f2 have size Q1/(D+1), the coefficients
of f1 are essentially of the same size, just slightly larger.

The main parameter is D = δ 3

√
logQ

log logQ . This implies that the coefficients of

f1 and f2 have size LQ(2
3 ,

1
δ ).

B.1 Sieving and Linear Algebra

There is a small and a large side. The complexity is clearly dominated by the
large side, corresponding to f2. We sieve over elements a + bα, map them into
the number field and compute their norm bDf2(−a

b ). If a and b are bounded in
absolute value by B = LQ(1

3 , β), the norm is LQ(2
3 , βδ + 1

δ ).
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As usual, the smoothness probability over a smoothness basis of ideals of
prime norm up to LQ(1

3 , β) is LQ(1
3 ,−(βδ+ 1

δ )
1
3β ). To ensure that we get enough

relations, we need:

β = −
(
βδ +

1
δ

)
1
3β

⇒ 3β2 − βδ − 1
δ

= 0

which has the positive root: β =
δ +

√
δ2 + 12

δ

6

This is minimized for δ = 3

√
3
2 i.e. β = 3

√
4
9 .

The complexity of the sieving step is thus LQ(1
3 ,

3

√
32
9 ).

B.2 Descent Initialization: The Descent’s Dominating Step

In the initial descent step, we first need to go from norms of size LQ(1) down to
factors of size LQ(2

3 ). Indeed, by opposition to the ffs setting, here smoothness
testing can only be done using ecm factorization. Consequently, this step costs
Lfactor(1

2 ,
√

2) of the bound on the factor size.
With factors of size LQ(2

3 ), this becomes LQ(1
3 ) and we cannot afford more

than that. We use the same strategy as described in [11] and simply randomize
the input challenge until it becomes smooth as an integer. As the complexity of
pulling-out a factor F with ecm costs LF (1

2 ,
√

2), we can analyze the descent
from arbitrary numbers with norm LQ(1, 1) down to factors of size LQ(2

3 , θ).

Smoothness probability is LQ(1
3 ,

θ
3 ) and ecm’s cost is LQ(1

3 ,
√

4θ
3 ). Thus, the

total work-factor per smooth value is LQ(1
3 ,

θ
3 +

√
4θ
3 ).

This is minimized for θ3 = 1
3 and costs LQ(1

3 ,
3
√

3).

B.3 Continuing the Descent

In the middle of the descent, we consider a special-q of size LQ(λ, µ) with 1
3 <

λ < 2
3 . We sieve over polynomials of degree:

T = t

(
logQ

log logQ

)λ− 1
3

2

and with coefficients of size S = LQ((λ + 1
3 )1

2 , s). The size of the sieving space
is LQ(λ, st− µ). Since LQ(1

3 ) freedom should suffice, we can make st tends to µ
from upward.

The f1 norm is LQ(1
2 + λ

2 ,
t
δ ) and the f2 norm is LQ(1

2 + λ
2 ,

t
δ + sδ).

Thus the total norm after dividing by the special-q, which can be ignored is,
LQ(1

2 + λ
2 ,

2t
δ +sδ). Minimizing this under the constraint st = µ yields t = δ

√
µ
2 .

This step is clearly not the dominating task in the descent. In fact, we can adapt
the descent’s speed to the specific problem at hand. The only restriction is that
the descent should be fast enough to only get a relatively small number of values
at the final step of the descent.
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B.4 Concluding the Descent

In the final descent step, we need to express special-q values of size immediately
above LQ(1

3 , β) in the smoothness bases up to LQ(1
3 , β). We sieve over polyno-

mials a+ bx with a and b bounded by LQ(1
3 ,

β+ε
2 ), with a total sieving space size

equal to LQ(1
3 , ε).

At the f2 side, the norm’s size is computed as above and yields LQ(2
3 , (β +

ε) δ2 + 1
δ ).

At the f1 side, only the constants matter and the norm has size LQ(2
3 ,

1
δ ).

Thus the total norm is LQ(2
3 , (β + ε) δ2 + 2

δ ) and is left unchanged when taking
into account the special-q that can be removed. The smoothness probability in
basis LQ(1

3 , β) is:

LQ

(
1
3
,
1
3

(
(β + ε)δ

2β
+

2
βδ

))
This is constrained by the fact that we need enough sieving space, i.e. by the
relation:

3ε =
(β + ε)δ

2β
+

2
βδ

,

which yields ε � 1.27 as in [11], which does not dominate the overall asymptotic
complexity of the descent step.

C Complexity Analysis – High Degree nfs

Here, we work in FQ, with Q = pn and LQ(2
3 ) > p > LQ(1

3 ). We write p =
LQ(λ, 1).

The polynomial construction is as follows. First, choose a parameter 0 < α <
1
2 , which value will be determined later, on and an integer A close to pα. Using
Euclidean division write p = BA+ rp with B � p1−α and 0 ≤ rp < A.

Then, find an irreducible polynomial f1 of degree n, which coefficients are
either small numbers or a small multiples of A. All coefficients of f1 have a size
bounded by pα. Finally, let f2 = Bf1 mod p, all coefficients of f2 are either small
multiples of B or small multiples of rp. Hence, their size is at most of order p1−α.

C.1 Sieving and Linear Algebra

Again, complexity is bounded by the large side, given by f2.
We sieve over polynomials of degree D defined by:

D = δ

(
logQ

log logQ

) 2
3−λ

with coefficients of size LQ(λ − 1
3 , µ). The total sieving space size is LQ(1

3 , δµ).
At the f2 side, the norm is LQ(2

3 , δ(1 − α) + µ). For a given sieving space
size, this is minimized when δ(1 −α) = µ. With a smoothness basis bounded by
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LQ(1
3 , β), the smoothness probability is LQ(1

3 ,−
2µ
3β ). To balance the complexities

of the sieving and the linear algebra we have:

β =
2µ
3β

i.e. 3β2 = 2µ.

In addition, to ensure that we get enough relations, we need:

β +
2µ
3β

= (1 − α)µ2 i.e. 2β = (1 − α)µ2.

Put together, this yields β = 3

√
8
9 (1 − α). And, the complexity of the sieving

step is LQ(1
3 ,

3

√
64
9 (1 − α)).

C.2 Descent Initialization

In the initial descent step, as in the regular nfs case, we first need to go from
norms of size LQ(1) down to factors of size LQ(2

3 ). However, since f1’s coefficients
are of order pα, the norm of a generic element, with degree n and coefficient
modulo p is larger than Q. This norm is in fact, of order LQ(1, 1 + α).

Using the ecm to go to factors of size LQ(2
3 , θ) costs LQ(1

3 ,
1+α
3θ +

√
4θ
3 ).

This is minimized for θ3 = (1 + α)
2
3 and costs LQ(1

3 ,
3
√

3(1 + α)).
Equilibrating the complexities of the sieving and of the descent’s initialization,

we get:

3(1 + α) =
64(1 − α)

9
i.e. α =

37
91

.

For this α the complexities of the sieving and of the descent’s initialization
become:

LQ(
1
3
,

3

√
384
91

) � LQ(
1
3
, 1.62)

C.3 Continuing the Descent

In the middle of the descent, we encounter a special-q of size LQ(λ′, µ′) with
1
3 < λ′ < 2

3 . We sieve over polynomials of degree:

T = t

(
logQ

log logQ

)λt

and with coefficients of size S = LQ(λs, s). The two values λs and λt are related
and sum to λ′. More precisely, we choose:

λt =
λ′ + 1

2
− λ

λs =
λ′ − 1

2
+ λ
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The sieving space size is LQ(λ′, st−µ′). Since LQ(1
3 ) freedom should suffice, we

can make st tends to µ′ from upward. Again, there is enough freedom here and
this step is not limiting.

C.4 Concluding the Descent

In the final descent step, we need to express special-q values of size immediately
above L(1

3 , β) in the smoothness bases up to L(1
3 , β). We sieve over polynomials

of degree D defined by:

D = δ

(
logQ

log logQ

) 2
3−λ

with coefficients of size LQ(λ− 1
3 , µ). The total sieving space has size LQ(1

3 , δµ−
β). Here the total norm does not depend on α and is LQ(2

3 , δ+2µ). Moreover, the
norm’s expression is left unchanged when removing the special-q contribution.

The smoothness probability in basis LQ(1
3 , β) is

LQ

(
1
3
,
δ + 2µ

3β

)
Again, this is constrained by the fact that we need enough sieving space, i.e. by
the relation:

δ + 2µ
3β

= δµ − β

Choosing δ = 2µ, we get:

2µ2 − 4µ
3β

− β = 0.

which yields µ � 1.13. The total complexity LQ(1
3 , 2µ

2 − β) � LQ(1
3 , 0.93) is,

again, not dominating.
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1 Introduction

The discrete logarithm problem (DLP) is: Given a cyclic group G (in additive
notation) of order r and P,Q ∈ G where P is a generator of the group, find a pos-
itive integer n such that Q = [n]P . This is an important computational problem
due to applications in public key cryptography. In a generic group there are stan-
dard algorithms for solving the DLP such as Baby-Step Giant-Step (BSGS) [18]
(see, for example, [19]) and Pollard rho [14]. Van Oorschot and Wiener [21,22]
give a version of Pollard Rho, suitable for distributed computing, based on the
idea of distinguished points. For further works on Pollard rho see [3,20]. BSGS
solves the DLP in O(

√
r) group operations but also requires O(

√
r) group ele-

ments of storage. Pollard rho and van Oorschot-Wiener also solve the DLP in
heuristic expected O(

√
r) group operations but require only constant storage.

We also refer to [10] for a rigorous analysis of the Pollard rho algorithm.
A higher dimensional version of the DLP arises in a number of applications
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Definition 1 (Multidimensional DLP). Let G be an abelian group and let
P1, P2, . . . , Pd, Q ∈ G and N1, . . .Nd ∈ N be given. The d-dimensional discrete
logarithm problem is to find (if they exist) integers ni ∈ [−Ni, Ni], for 1 ≤ i ≤ d,
such that

Q = [n1]P1 + [n2]P2 + . . . + [nd]Pd. (1)

We call (n1, . . . , nd) the exponent vector of Q. We write Ñi = 2Ni + 1 and

N =
d∏
i=1

Ñi. (2)

Note that G may or may not be cyclic. In the case of a cyclic group of prime
order and Ñi = #G this computational problem is the representation problem
introduced by Brands [2] in 1993.

It is easy to adapt the BSGS algorithm to the multidimensional case, as shown
by Matsuo et. al. [12], and this algorithm requires O(

√
N) group operations and

O(
√
N) group elements of storage. Pollard describes his kangaroo method in

[14,15] to solve the 1-dimensional case (i.e., d = 1) also in expected O(
√
N)

group operations but requiring only constant storage. Van Oorschot and Wiener
[21,22] also give a version of the kangaroo method which is suitable for distributed
computing. It seems unlikely that the kangaroo algorithm can be adapted to the
case of dimension d ≥ 2.

Gaudry and Schost [9] present an algorithm to solve the 2-dimensional case
using random walks and distinguished points. Unlike the kangaroo method, their
algorithm is analysed using a variant of the Birthday Paradox. They also analyse
their algorithm in the 1-dimensional case. We give brief details of their algorithm
in Section 2 as well as extending their approach to any dimension. Theorem
2 generalises the result of Gaudry and Schost. Note that the analysis of the
Gaudry-Schost algorithm is only heuristic; to be able to easily state theorems
we consider an idealised model.

In Section 3 we present a simple idea which improves the Gaudry-Schost
algorithm in all dimensions. In Section 4 we give more details about how to
put the improved algorithm into practice by correctly choosing parameters. In
Section 5 we discuss the implementation issues in higher dimensions and then
look at some applications of solving the multidimensional DLP in Section 6.

We thank John Pollard, Pierrick Gaudry and the referees for good advice.

2 The Gaudry-Schost Algorithm

We first recall the Pollard kangaroo algorithm for the 1-dimensional DLP. In
other words, we have Q = [n1]P1 with −N1 ≤ n ≤ N1 (and N = 2N1+1 ≈ 2N1).
The algorithm finds two integers a, b ∈ N such that [a]P1 = Q+ [b]P1 and hence
solves the DLP.

The crucial idea is to use a “deterministic pseudorandom walk”. More pre-
cisely, a selection function S : G → {1, . . . , nS} is chosen, which can be
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interpreted as partitioning the group into nS sets of roughly equal size. Suit-
able integers z1, . . . , znS are chosen (e.g., uniformly chosen from [0, c1

√
N ] for

some constant c1) and, given x1 ∈ G, the deterministic pseudorandom walk
x1, x2, · · · ∈ G proceeds as

xi+1 = xi + [zS(xi)]P1.

Pollard uses a tame walk which starts at x1 = [N1]P and takes n = O(
√
N)

steps before stopping at xn. Pollard also uses a wild walk which starts at y1 = Q
and also takes O(

√
N) steps. If the wild walk lands on a footprint of the tame

walk then the wild walk follows the path of the tame walk and eventually we find
ym = xn. By storing not just the values xn and ym but also the corresponding
integers a and b such that xn = [a]P1 and ym = Q + [b]P1 we can solve for the
DLP.

Van Oorschot and Wiener [21,22] give a version of this algorithm which is not
only distributed but has better expected running time. The idea is to use dis-
tinguished points, so instead of just storing a single end-point (xn, a) one stores
a moderate number of intermediate values. Indeed, van Oorschot and Wiener
showed that the expected running time is heuristically 2

√
N + 1/θ group opera-

tions for storage requirement approximately 2θ
√
N group elements (throughout

the paper, θ denotes the probability that a group element is a distinguished
point).

The Gaudry and Schost algorithm is motivated by the above ideas but the
analysis is very different. Before we describe the Gaudry-Schost algorithm we
must first define the following sets of exponents.

Definition 2. Let notation be as in Definition 1 and suppose Q = [n1]P1+ · · ·+
[nd]Pd for some integers ni ∈ [−Ni, Ni]. Define the Tame set T and the Wild
set W , which are subsets of Zd, by

T =
{
(a1, a2, . . . , ad) ∈ Zd : ai ∈ [−Ni, Ni] for all 1 ≤ i ≤ d

}
,

W =(n1, n2, . . . , nd) + T = {(n1 + a1, . . . , nd + ad) : (a1, . . . , ad) ∈ T }.

The exponent vector of Q lies somewhere in the tame set T . The wild set W is
a translation of T which is centred on the exponent vector of Q. The sets T and
W are orthotopes in Zd (i.e., d-dimensional products of intervals).

The basic idea of the Gaudry-Schost algorithm [9] is the same as the kangaroo
algorithm of Pollard in the van Oorschot and Wiener formulation. Let the mul-
tidimensional DLP problem instance of dimension d be given as in Definition 1.
We run a large number of pseudorandom walks (possibly distributed over a large
number of processors). Half the walks are “tame walks”, which means that every
element in the walk is of the form [a1]P1 +[a2]P2 + . . .+[ad]Pd where the integer
tuple (a1, a2, . . . , ad) ∈ T (though note that with very small probability some
walks will go outside T ). The other half are “wild walks”, which means that ev-
ery element is of the form Q+[b1]P1+[b2]P2+ . . .+[bd]Pd where the integer tuple
(b1, b2, . . . , bd) ∈ T . Each walk proceeds until a distinguished point is hit. This
distinguished point is then stored in an easily searched structure (e.g., a binary
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tree), together with the corresponding d-tuple of exponents. We maintain two
such structures: one to store the points found by tame walks and one for the wild
walks. When the same distinguished point is visited by two different types of walk
we have the collision [a1]P1+[a2]P2+. . .+[ad]Pd = Q+[b1]P1+[b2]P2+. . .+[bd]Pd
and one solves the multidimensional DLP as follows

Q = [a1 − b1]P1 + [a2 − b2]P2 + . . . + [ad − bd]Pd.

A significant difference between the Gaudry-Schost algorithm and the kangaroo
algorithm is that when a distinguished point is hit, Gaudry and Schost restart the
walk from a random starting point in the appropriate set, whereas the kangaroos
keep on running. The theoretical analysis is different too: Gaudry and Schost
use a variant of the birthday paradox whereas Pollard and van Oorschot and
Wiener use a different probabilistic argument (based on the mean step size).

We now present the theoretical analysis of the Gaudry-Schost algorithm. Our
main result in this section is Theorem 2 which generalises the results of Section
3.1 and 4.1 of [9]. We first recall a tool from probability theory which we will
need (this result was also used by Gaudry and Schost) and which we call the
Tame-Wild Birthday Paradox.

Theorem 1. When sampling uniformly at random from a set of size N , with
replacement, and alternately recording the selected elements in two different lists,
then the expected number of selections that need to be made in total before we
have a coincidence between the lists is

√
πN +O(1).

Proof. See Nishimura and Sibuya [13] or [17]. �
Since tame walks lie in T (with high probability) and wild walks lie in W , a
collision between tame and wild walks can only occur in T ∩W . We call this set
the overlap and denote its size by M . We will therefore apply Theorem 1 in T∩W
only. To get a rough idea of the running time of the Gaudry-Schost algorithm we
consider an idealised version of it which includes two simplifying assumptions.
First, we assume that the points in T and W are chosen uniformly at random,
rather than using a pseudorandom walk. Second, we assume that all points are
stored (in other words, all points are distinguished) so that a tame-wild collision
is detected immediately.

Theorem 2. Given the multidimensional discrete logarithm problem as described
in Definition 1 with N the cardinality of the search space as given by equation (2).
Then the expected number of group operations (in the idealised model) in the worst
case of the original Gaudry-Schost algorithm is

2d/2
√
πN, (3)

and the average case expected number of group operations is

((4 − 2
√

2)d + o(1))
√
πN . (4)

When d = 1 the worst and average case running times are approximately 2.51
√
N

and 2.08
√
N group operations. When d = 2 the worst and average case running

times are approximately 3.54
√
N and 2.43

√
N .
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Proof. In the worst case Q lies in a ‘corner’ of the search space and so the overlap
between the original tame and wild sets has cardinality M = N

2d . Therefore we
expect only about 1/2d of the points sampled to be in T ∩W . The running time
is therefore 2d times the expected number of of elements sampled in T ∩ W to
get a collision. Using the Tame-Wild Birthday Paradox given in Theorem 1, the
expected number of group operations in the worst case is therefore given by

2d
√
πM = 2d/2

√
πN

which proves the result presented in equation (3). To find the average case ex-
pected running time we have to average over all possible Q. Without loss of
generality let us consider one of the 2d possible orthonts (i.e., sub-orthotopes
corresponding to one corner of the search space). In other words, suppose that

Q = [x1Ñ1]P1 + [x2Ñ2]P2 + . . . + [xdÑd]Pd

with xi ∈ [0, 1/2]. The cardinality of the overlap between T and W is

M =
(

1
2

+ x1

)
Ñ1 ·

(
1
2

+ x2

)
Ñ2 · · ·

(
1
2

+ xd

)
Ñd =

(
d∏
i=1

(
1
2

+ xi

))
N.

Therefore we expect only about

M/N =
d∏
i=1

(
1
2

+ xi

)
of the walks to be in T ∩ W . So the average case expected running time is
approximately

2d
∫ 1/2

x1=0

∫ 1/2

x2=0
· · ·

∫ 1/2

xd=0

d∏
i=1

(
1
2

+ xi

)−1/2 √
πN dx1 dx2 . . . dxd

= 2d
√
πN

(∫ 1/2

x=0

(
1
2

+ x

)−1/2

dx

)d
= (4 − 2

√
2)d

√
πN

which proves the result presented in equation (4). �

3 The Improved Gaudry-Schost Algorithm

We now give the main result of the paper, which is a version of the Gaudry-
Schost algorithm which has a faster running time. The key observation is that
the running time of the Gaudry-Schost algorithm depends on the size of the
overlap between the tame and wild sets. If it is possible to make the size of
this overlap constant for all possible Q then the expected running time will be
constant for all problem instances. We achieve this by choosing walks which only
cover certain subsets of T and W .
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Precisely, instead of using the sets T and W of the previous section we use
an orthotope T ′ of size (2/3)dN centered in T and a space W ′ of the same size
but split into 2d disjoint sets in the ‘corners’ of W . In the 1-dimensional case we
have T ′ = [−2N1/3, 2N1/3] ∩ Z ⊆ T and W ′ = ([n1 − N1, n1 − N1/3] ∪ [n1 +
N1/3, n1 +N1]) ∩ Z ⊆ W (see Figure 1). The algorithm proceeds in exactly the
same way as before.

Fig. 1. Depiction of T, W,T ′ and W ′ for two extreme cases of Q. The thin horizontal
lines denote T and W while the fatter shaded rectangles denote T ′ and W ′.

For the theoretical analysis we again use the idealised model where we ignore
the issue of pseudorandom walks and assume that we are storing every element
visited.

Theorem 3. Given the multidimensional discrete logarithm problem as described
in Definition 1 with N the cardinality of the search space as given by equation
(2). Then the expected number of group operations (in the idealised model) for the
improved Gaudry-Schost algorithm is(

2d

3d/2
+ o(1)

)√
πN .

This is the expected running time in the best, worst and average cases. When
d = 1 and d = 2 this is approximately 2.05

√
N and 2.36

√
N group operations

respectively.

Proof. We search in an orthotope of size kdN centred in the middle of the tame
set and we search a space of the same size but split into 2d disjoint sets in the
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‘corners’ of the wild set. Each of these disjoint sets of size ((k/2)d + o(1))N . We
now compute the volume of the overlap T ′ ∩W ′ which is a union of orthotopes.
Since the volume of an orthotope is the product of the lengths of its sides our
problem reduces to the 1-dimensional case.

It can be easily shown that to make the overlap constant for all problem
instances one must take k = 2/3 (see Figure 1). Then for all problem instances
the cardinality of the overlap is M ′ = N

3d and the size of the new search space is
given by N ′ = 2dN

3d . Therefore the proportion of steps in T ′∩W ′ is approximately

M ′

N ′ =
1
2d

.

Using the Tame-Wild Birthday Paradox analysis, the expected number of group
operations before a collision is approximately

2d
√
πM ′ = 2d

√
π
N

3d
=

2d

3d/2
√
πN .

This completes the proof. �

Theorem 3 is an improvement on the average and the worst case expected run-
ning time of the Gaudry-Schost algorithm in all dimensions. In the 2-dimensional
case the expected running time falls from 2.43

√
N group operations in the origi-

nal Gaudry-Schost to 2.36
√
N group operations in the improved Gaudry-Schost.

In the worst case the improvement is even bigger from 3.54
√
N to 2.36

√
N . The

benefit of this new approach increases with d.
In the 1-dimensional case the original Gaudry-Schost algorithm was not com-

petitive with the van Oorschot and Wiener variant of the Pollard kangaroo
method. Our improvement is also not competitive.

4 Pseudorandom Walks and Counting Bad Points

In this section we consider some problems which arise in practice and the tech-
niques used by Gaudry and Schost to combat them. Firstly we do not want to
store every point visited, which is where the idea of distinguished points comes
into play. Denote by θ the probability that an element of the group is a distin-
guished point. In practice the value of θ is chosen as a tradeoff between the work
of each client required to find a distinguished point (approximately 1/θ group
operations) and the total storage on the server (proportional to θ

√
N group

elements). To have an algorithm whose expected number of group elements of
storage is constant one would set θ = c/

√
N for some constant c.

The more serious assumption in the idealised model is that elements are se-
lected from the tame and wild sets uniformly at random. The Gaudry-Schost
algorithm uses a deterministic pseudorandom walk. Our experiments suggest
one can choose walks which behave “close enough” (in the sense that the Tame-
Wild Birthday Paradox seems to hold) to selecting uniformly at random. In
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practice, it seems to be impossible to design pseudorandom walks which cover
T or W uniformly but which do not sometimes overstep the boundaries. Steps
outside the regions of interest cannot be included in our probabilistic analysis
and so such steps are “wasted”. We call these “type 2” bad points. Another as-
sumption of the idealised model is that tame-wild collisions are always detected.
In principle it can happen that a walk takes an exceptionally long time to hit a
distinguished point (i.e., that a large number of consecutive steps happen to not
be distinguished; this phenomena can also be caused by cycles, but that is not
our concern in this section). In the parallelised setting we should assume that
individual processors may be relatively slow and so, in principle, it could happen
that some processor never finds a distinguished point. Such steps are therefore
also wasted and we call them “type 1” bad points.

To guard against bad steps of type 1 van Oorschot and Wiener [22] set a
maximum number of steps in a walk. If a processor takes this many steps without
hitting a distinguished point then it restarts on a new random starting point.
They choose this maximum to be 20/θ steps and show that the proportion of
bad points of type 1 is at most 5 × 10−8. This result applies in all dimensions.

We now consider bad points of type 2. This depends on both the pseudoran-
dom walk and the dimension. The main idea is to start walks in proper subsets
of T ′ and W ′ and to set up these regions so that there is good chance to cover
all of T ′ and W ′ but also so that the probability that a walk goes outside T ′ and
W ′ is relatively small.

4.1 1-Dimensional Case

In the 1-dimensional case we use a standard pseudorandom walk as used by
Pollard [15] and van Oorschot and Wiener [22] i.e., small positive jumps in the
exponent. The average distance in the exponent traveled by a walk is m/θ, where
m is the mean step size and θ is the probability that a point is distinguished.
For example, one may have m = c1

√
N and θ = c2/

√
N for some constants

0 < c1 < 1 and 1 < c2. Therefore, to reduce the number of bad steps of type 2
we do not start walks within this distance of the right hand end of the interval.
In other words, we do not start walks in the following subset of T ′.[

2N1

3
− m

θ
,
2N1

3

]
∩ Z (5)

The analogous omitted subsets for W are the following[
n1 − N1

3
− m

θ
, n1 − N1

3

]
∩ Z and

[
n1 +N1 − m

θ
, n1 +N1

]
∩ Z. (6)

Lemma 1. Let m be the mean step size and max the maximum step size. Let
the subsets where walks will not start be given by equations (5) and (6). The
probability that a walk has bad points of type 2 is at most

p =
20 max−m
2N1θ/3 − m

. (7)
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Proof. Let T ′′ = [−2N1/3, 2N1/3−m/θ]∩Z be the set of possible starting points
of tame walks and let W ′′ be the set of possible starts points of wild walks. One
expects there to be at least twice as many wild walks with bad points of type
2 as tame walks. Hence it is sufficient to consider the probability for wild walks
only.

Let
X = [n1 +N1/3, n1 +N1 − m/θ]

be one of the components of W ′′. Note that #X = 2N1/3 − m/θ. Since walks
travel distance at most 20 max/θ the only walks which can possibly have bad
points of type 2 are ones which start in [n1 + N1 − 20 max/θ, n1 + N1 − m/θ].
Hence the probability that a walk starting in X has bad points of type 2 is

20 max/θ − m/θ

#X
.

The result follows. �

For the values m = c1
√
N1, max = 2m and θ = c2/

√
N1 the value of p in

equation (7) is 39c1/(2c2/3−c1) which can be made arbitrarily small by taking c2
sufficiently large (i.e., by storing sufficiently many distinguished points). Hence,
even making the over-cautious assumption that all points are wasted if a walk
contains some bad points of type 2, the expected number of walks in the improved
Gaudry-Schost algorithm can be made arbitrarily close to the desired value when
N is large. In practice it is reasonable to store at least 230 distinguished points,
which is quite sufficient to minimise the number of bad points of type 2.

We stress that the choices of m, max and θ are not completely arbitrary.
Indeed, if one wants to bound the number of bad points of type 2 as a certain
proportion of the total number of steps (e.g., 1%) then for a specific N there
may be limits to how large θ and max can be. For smaller N we cannot have too
small a probability of an element being distinguished or too large a mean step
size.

4.2 2-Dimensional Case

In the 2-dimensional case, Gaudry and Schost [9] use a walk which goes forwards
with respect to one axis and side-to-side in the other. In other words, each step of
the walk adds a group element of the form [a]P1 + [b]P2 where 0 ≤ a is typically
very small (possibly zero sometimes) and b ∈ Z. Our experience suggests that it
is sufficient in practice to use walks of the following form (at least, when N1 ≈ N2
and N1 > N2).

Definition 3. Let S : G → {1, . . . , nS} partition G. Let m2 be a parameter (the
mean absolute step size). Let z1, . . . , znS ∈ Z be chosen uniformly at random in
the interval [−2m2, 2m2]. The pseudorandom walk from a given value xi ∈ G is

xi+1 = xi + [1]P1 + [zS(xi)]P2
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In the P1 component, as every step is of size 1, the size of the subsets of exponents
where walks do not start will be the expected walk length, 1

θ , from the right hand
edge of the interval of exponents. Since m = max = 1 in this case, one can apply
Lemma 1 directly.

Lemma 2. Let notation be as above. The probability that a walk has bad points
of type 2 in the P1 component is at most

19
2N1θ/3 − 1

.

If N1 ≈ N2 then θ = c/N1 and this probability is 19/(2c/3 − 1) which can be
made arbitrarily small by choosing c to be large (i.e., storing many distinguished
points).

The analysis of the bad points of type 2 in the P2 component is different. We
use the following result by Cofman, Flajolet, Flatto and Hofri [4] to address this
problem (Gaudry and Schost [9] use a similar result in their analysis).

Lemma 3. Let y0, y1, . . . , yn be a symmetric random walk that starts at the
origin (y0 = 0) and takes steps uniformly distributed in [−1,+1] then the expected
value of max {|yi| : 0 ≤ i ≤ n} is√

2n
3π

+O(1).

Note that the mean absolute step size in this walk is 1
2 .

We prohibit walks from starting in intervals of length

δ = 2m2

√
2

3πθ
. (8)

at each edge (in the P2 direction) of the tame and wild regions. To be precise,
the region in which tame walks are permitted to start is

T ′′ = ([−2N1/3, 2N1/3 − 1/θ] × [−2N2/3 + δ, 2N2/3 − δ]) ∩ Z2.

Note that #T ′′ = (4N1/3 − 1/θ)(4N2/3 − 2δ).

Lemma 4. Suppose a pseudorandom walk as in Definition 3 is being used. Let
m2 be the mean absolute step size in the P2 component, and max2 the maximum
absolute step size. Let δ be as in equation (8). The probability that a walk has
bad steps of type 2 in the P2 component is at most

40 max2

(2N2/3 − 2δ)θ
. (9)

A sharper version of this result, with a more complicated proof, is given in
Lemma 5.2.11 of [17].
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Proof. As with the earlier results, it suffices to deal with wild walks. Consider
the projection of one component of the wild set W ′′ onto the P2 axis, for example

X = [N2/3 + δ,N2 − δ] ∩ Z.

Note that #X = 2N2/3 − 2δ. Since the maximum distance travelled by a walk
is, in absolute value, 20 max2 /θ, bad points of type 2 can only arise from walks
which start within this distance of the edge (on either side). Hence, the proba-
bility that a walk starting in X has bad points of type 2 is at most

2
20 max2 /θ − δ

#X
≤ 2

20 max2

θ#X
.

This gives the result. �
Suppose N1 ≈ N2 and θ = c/N2. Then δ is small compared with N2 as long as m2
is o(

√
N2). Hence the denominator in equation (9) is essentially constant (which

can be made arbitrarily large by taking c to be large). However, if m2 grows at
all with N2 then so does max2 and the value in equation (9) can become large.
Hence, in practice, it is necessary that m2 and max2 be (rather small) constants.
The random walk therefore covers a distance O(

√
N2) in the P2 component.

Again, even making the over-cautious assumption that all steps in walks which
contain bad points of type 2 are wasted, by choosing θ to be sufficiently large
one can ensure that only a very small proportion of walks can have bad points
of type 2 (at least, this is true when N1 ≈ N2). Hence one may assume that, say,
1% of the walks are wasted (and hence the algorithm runs in about 1.01 times
the theoretical prediction of the time).

We now tabulate the complexity statements we have obtained. We give the
total number of group operations, but note that the algorithm can be easily
parallelised giving linear speedup in the number of processors. The factor 1 + ε
here is not the same as 1+o(1): As mentioned above, there can be a non-negligible
proportion of bad points of types 1 and 2 (even asymptotically as N tends to
infinity). There is also the fact that one never expects a pseudorandom walk of
the type considered in this paper to have exactly the behaviour of a random walk
(and so there is a small correction factor to include in the birthday paradox).
This latter issue is discussed at length by Teske [20]; for example her Table 3
suggests that if nS = 16 then the expected number of trials before finding a
collision is 1.01 times more than that predicted by the birthday paradox for a
random map. Hence, the actual values for ε in practice might be between 0.02
and 0.04.

Conjecture 1. The following table gives the expected total number of group op-
erations for the original and improved Gaudry-Schost algorithms to solve the
2-dimensional DLP in the average and worst cases. Here ε > 0 denotes a small
constant (not necessarily the same value in all places).

Name of Algorithm Average Case Worst Case
Original Gaudry-Schost 2.45(1 + ε)

√
N + 1

θ 3.58(1 + ε)
√
N + 1

θ

Improved Gaudry-Schost 2.38(1 + ε)
√
N + 1

θ 2.38(1 + ε)
√
N + 1

θ
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5 Higher Dimensions

It is clear that the algorithm can be used to solve the multidimensional DLP
in any dimension. The main task is to choose a suitable pseudorandom walk.
Indeed, there is an important issue that occurs with θ as d increases.

Recall that the Gaudry-Schost algorithm expects to store approximately
θ(2d/3d/2)

√
πN distinguished points. Hence, it is usual to assume that θ = c/

√
N

for some large constant c. If using a pseudorandom walk which moves only for-
wards in some component then the walk will cover a distance O(1/θ) = O(

√
N)

steps. When d ≥ 3, if N1 ≈ N2 ≈ N3, then this distance is longer than the sides
of the orthotope in question. Hence, walks would go outside the region in which
the tame-wild birthday paradox is being applied and the complexity of the al-
gorithm would deteriorate. Even when d = 2, as we have seen, it is necessary to
ensure that θ is sufficiently large to have an algorithm which performs well.

As a result, when d ≥ 3 it is necessary to use pseudorandom walks with
‘side-to-side’ steps (i.e., with both positive and negative steps and with average
zero) in every component. If the mean absolute step size is constant then, by
Lemma 3, the expected distance travelled in any component after O(N1/2) steps
is O(N1/4), which is OK when d = 3 and N1 ≈ N2 ≈ N3. When d = 4 and
N1 ≈ N2 ≈ N3 ≈ N4 then the walks are still OK, as long as θ is sufficiently
large (i.e., as long as one can store sufficiently many distinguished points).

However for d ≥ 5 the issue of walks stepping outside the region of interest
re-appears and it cannot be resolved by using ‘side-to-side’ walks. Pollard [16]
has suggested a solution to this problem which we describe in the appendix.

6 Applications

The 2-dimensional DLP arises in algorithms for computing the number of points
on genus 2 curves over finite fields [12]. One uses a Schoof-type algorithm to get
information about the coefficients of the characteristic polynomial of the Frobe-
nius modulo some integer, and then uses a baby-step-giant-step algorithm to
complete the calculation. Gaudry and Schost [9] developed their low-memory al-
gorithm precisely for this application. These ideas have also be used by Weng [23].
Our results will therefore give an improvement to algorithms of this type.

This approach can be used to count points on curves of any genus (though
for curves of sufficiently large genus one might also exploit subexponential al-
gorithms). Depending on the amount of information obtained from the Schoof
part of the algorithm, the remaining computation could be a d-dimensional DLP
with d ≥ 3. Our methods would also give an improvement here.

The multidimensional discrete logarithm problem also arises explicitly in the
work of Brands [2] and in Section 4 of Cramer, Gennaro and Schoenmakers [5].
The latter paper notes that the problem can be solved using a baby-step-giant-
step algorithm but does not mention the possibility of a low-memory or paral-
lelisable algorithm.

The Gallant, Lambert and Vanstone (GLV) method [8] speeds up elliptic curve
arithmetic by rewriting [n]P as [n1]P + [n2]ψ(P ) for some endomorphism ψ and
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where |n1|, |n2| ≈ √
n. The integers n1, n2 are found by solving the closest vector

problem in a lattice. An alternative is to choose “smaller” n1, n2 ∈ Z directly,
rather than choosing a random integer n and rewriting it. Solving the DLP for
points generated by the GLV method can be phrased as a multidimensional DLP.
The methods of this paper imply that n1 and n2 cannot be chosen to be too
small. See Galbraith and Scott [7] and Galbraith, Lin and Scott [6] for examples
of the GLV method with d > 2.

Another approach to efficient elliptic curve cryptography is to use Koblitz
curves [11] (i.e., ordinary elliptic curves E over F2, considering the group
E(F2m)). We rewrite [n]P as

L∑
i=0

niτ
i(P )

where ni = {−1, 0, 1} and τ(P ) = (x(P )2, y(P )2) is the 2-power Frobenius map.
Since

L∑
i=0

niτ
i ≡ a+ bτ in Z[τ ]/(τ2 ± τ + 2)

where |a| < 3
√

2L and |b| < 2
√

2L as shown by Benits [1], solving the DLP can
again be phrased as a multidimensional DLP i.e., Q = [a]P + [b]τ(P ). It follows
that L cannot be chosen to be too small. The same ideas can be applied on genus
2 curves over F2 leading to a 4-dimensional DLP.

7 Conclusion

We have presented an improvement to the algorithm given by Gaudry and Schost
for solving the 2-dimensional DLP as well as extending the algorithm to the
multidimensional DLP. We have also given further depth to the analysis given
by Gaudry and Schost [9] specifically for the cases where d > 2. In Section 6 we
have seen just a smattering of applications of this low-memory algorithm. An
open problem is to investigate how best to exploit the algorithm when the search
space is not an orthotope but a multidimensional ‘arrowhead’ which arises in the
case of point counting on curves of genus 2 and higher.
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A Pollard’s Method for Large Dimensions

As mentioned in Section 5, when d ≥ 5 walks of O(
√
N) steps will usually move

outside the tame and wild regions. This is a major problem for the Gaudry-
Schost algorithm. Pollard [16] has suggested a way to deal with this problem,
and we briefly sketch it here.

We describe a parallel algorithm for the case d = 1. Clearly the algorithm can
be serial or parallel, and applies to all d.

Let G be the group in question and let N1, . . . , Nd be the interval sizes in
the d-dimensional DLP with N1 ≤ N2 ≤ · · · ≤ Nd. Let N =

∏d
i=1(2Ni + 1) as

usual. It is necessary to define two sets D ⊂ S ⊂ G, namely distinguished points
and special points. As usual, the probability that a uniformly chosen x ∈ G is
distinguished should be θ = c/

√
N for some constant c. The probability p that

a uniformly chosen x ∈ G is special should be much higher, certainly p > 1/N2
1 .

If this holds then one expects to find a special point after fewer than N2
1 trials

and a side-to-side random walk will cover distance O(N1) in that many steps
and so still has a chance to be inside the region of interest.

We define a mapping F : G → G as follows. Let x be a point of G.

1. When x is a non-special point, as usual we have F (x) = x+ [r]P where r is
small, and [r]P is taken from a small table.

2. When x is a special point, we start a new walk from a new random point [s]P
or Q + [s]P where s (and the choice tame/wild) are made determinstically
and depending only on x (for example using a hash function). It is necessary
that there are a large range of possible values for s.
The computation of [s]P can be done by exponentiation or by multiplying
elements from k ≥ 3 tables of size N1/k. The second method does not have
constant storage, but we can make the storage as small as we wish.

3. When x is a distinguished point we store x together with: a link to the last
distinguished point on this processor, and the distance (number of steps)
between the current and last points.

When a distinguished point is repeated, two sequences have met at some point
y. If we find y, we have two representations of the same group element as [a]P or
Q+ [b]P . With probability 1/2, we have one of each type and can solve for the
discrete logarithm. Otherwise we continue until a tame-wild collision is found.

We can easily find y by a small storage process. We know the two preceding
distinguished points x1 and x2, on the two processors, and the distances travelled
to the endpoint x. Suppose the distance from x1 to x is longer than from x2 to
x. Advance the point x1 to a point x′1 of the same distance to x as x2. Now
advance the points x′1 and x2 together until they meet at y.

The final part of the algorithm requires an expected 1/θ = O(
√
N) steps and

cannot be parallelised.
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Abstract. Let f : F n
2 → F n

2 be an almost perfect nonlinear function (APN).
The set Df := {(a, b) : f(x + a) − f(x) = b has two solutions} can be used
to distinguish APN functions up to equivalence. We investigate the multiplier
groups of theses sets Df . This extends earlier work done by the authors [1].

1 Introduction

The investigation of highly nonlinear functions is of interest in cryptography. We do not
want to go into details about applications of highly nonlinear functions, but we refer to
the literature, in particular [2,3].

There are several concepts of nonlinearity. Here we focus on differential nonlinearity.
If f : F n

2 → F n
2 is linear, then

f(x+ a) − f(x) = b (1)

has 0 or 2n solutions (we have 2n solutions if b = f(a)). In order to be “as nonlinear as
possible”, the maximum number of solutions to (1) should be small for a �= 0. We have
f(x+ a) − f(x) = f((x+ a) + x) − f(x+ a) (note that the computations are done in
a vector space over F2), hence if x is a solution of (1), then x+ a is a solution, too, so
the number of solutions is always even. This motivates the following definition:

Definition 1. A function f : F n
2 → F n

2 is called almost perfect nonlinear or APN if
the equations

f(x+ a) − f(x) = b

have 0 or 2 solutions for all a, b ∈ F n
2 , a �= 0.

The main goal in the investigation of APN functions are constructions. There are by now
many constructions known (they are summarized in [3]), hence it is necessary to find
powerful methods how to distinguish APN functions. There are several papers which
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survey some possible ways to distinguish functions up to equivalence ([1,4,5,6,7]). Here
we will investigate the sets

Df := {(a, b) : f(x+ a) − f(x) = b has two solutions}. (2)

If f and g are equivalent (we will explain different concepts of equivalence in
Section 2), then the sets Df and Dg are, in a certain sense, equivalent. Hence inequiv-
alence of the sets Df and Dg implies inequivalence of the functions f and g. We will
investigate, in particular, the multiplier group. Together with the so called triple inter-
section numbers, the sets Df seem to be appropriate to distinguish equivalence classes
of f . In Section 4, we summarize our computational results and pose some (what we
think) interesting questions.

If f is an almost bent function (Definition 5), then the set Df is a Hadamard differ-
ence set, equivalently its indicator function F n

2 × F n
2 → C is a bent function. There-

fore, the ideas which we are going to develop in this note may be applied not just to the
sets Df constructed from APN functions but to arbitrary bent functions or Hadamard
difference sets. We expect that it is possible to characterize certain highly symmetric
bent functions by the automorphism or multiplier groups of the corresponding designs
or difference sets. In this context, we refer to the interesting paper [8] which explains
the orders of the multiplier groups M(Df) for the Gold power mappings if n is odd.
Moreover, it shows that the designs Df , hence also the functions f , are not equivalent
for different Gold power mappings (if n is odd), see also [7].

In this paper, we investigate different concepts of equivalence for different types of
structures. Table 1 summarizes our notation.

Table 1. Different types of equivalence

type of equivalence reference remark
graph equivalence of f and g Definition 2 f, g : F n

2 → F n
2

multiplier equivalence of A and B Definition 3 A, B ∈ C[G]
design equivalence of A and B Definition 4 A,B ∈ C(n,n) or A, B ∈ C[G]

If f : F n
2 → F n

2 , then graph equivalence is the same as multiplier equivalence for the
sets Gf and Gg (Remark 3). Multiplier equivalence always implies design equivalence
(5), but not vice versa (Example 1). We note that there is no concept of “multiplier
equivalence” for arbitrary matrices A ∈ C(n,n).

We will discuss these types of equivalence for the sets Gf and Df related to APN
functions f . Table 2 shows the known implications between these equivalences.

Table 2. Dependencies between equivalences of Gf and Df

Gf multiplier equivalent to Gg ⇒ Gf design equivalent to Gg

⇓ ⇓
Df multiplier equivalent to Dg ⇒ Df design equivalent to Dg
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This paper is partly motivated by the question whether the converse of any of these
implications hold. To the best of our knowledge, there is no example of a pair of APN
functions f and g which violates any of the possible converse implications in the dia-
gram Table 1.

2 APN Functions

The most important definition for this paper is Definition 1. In order to investigate APN
functions, group rings are an adequate algebraic tool.

Let K be a field, and let G be a (multiplicatively written) abelian group. In this paper,
K will be almost exclusively the field C of complex numbers, and the group will be in
most cases an elementary abelian group whose order is a power of 2.

The set of formal sums ∑
g∈G

ag · g, ag ∈ K

is called the group algebra K[G], where addition and multiplication on K[G] is defined
as follows: (∑

g∈G
ag · g

)
+
(∑
g∈G

bg · g
)

:=
∑
g∈G

(ag + bg) · g

and (∑
g∈G

ag · g
)

·
(∑
g∈G

bg · g
)

:=
∑
g∈G

(∑
h∈G

ahbgh−1

)
· g.

Moreover,
λ ·
(∑
g∈G

ag · g
)

:=
∑
g∈G

(λag) · g

for λ ∈ K.
A subset A of G can be identified with the group algebra element

∑
g∈A g, which

we denote (by abuse of notation) by A, again. If f : F n
2 → F n

2 is a mapping, then
its associated graph Gf is the set {(x, f(x)) : x ∈ F n

2 } which is a subset of G =
F n

2 ×F n
2 . We denote the corresponding group algebra element in C[G] byGf , too. InG,

we denote the subgroup {(x, 0) : x ∈ F n
2 } by H , and the subgroup {(0, x) : x ∈ F n

2 }
by N . The following proposition is obvious:

Proposition 1. Let f : F n
2 → F n

2 . Then f is APN if and only if there is a subset Df in
G = F n

2 × F n
2 such that

G 2
f = 2n + 2 · Df . (3)

Remark 1. The setDf contains no element of the form (0, x), x ∈ F n
2 , henceDf∩N =

{ }. Therefore, N is sometimes called a forbidden subgroup.

Proposition 1 shows that we may construct many more APN functions from a given one
by applying affine transformations to Gf . Functions which can be constructed from f
in this way are called equivalent to f . More precisely, we have
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Definition 2. Two functions f, g : F n
2 → F n

2 are called graph equivalent if there is an
automorphism ϕ of G = F n

2 × F n
2 and an element g ∈ G such that ϕ(Gf ) = Gg + g.

Here “addition plus g” means that we add g to all elements of Gf , hence it is not
“addition” in the group algebra.

Remark 2. If g = (a, b), a, b ∈ F n
2 , then Gf + g is the graph of the mapping x �→

f(x+ a) + b.

Definition 3. Let G be a multiplicatively written abelian group. We say that two group
algebra elements A and B in C[G] are multiplier equivalent if there is a group auto-
morphism ϕ of G such that ϕ(A) = Bg for some g ∈ G. Note that we have to write
B · g instead of “B + g” since we write G multiplicatively. In Definition 2, the group
was written additively.

Remark 3. The terminology “multiplier equivalence” is motivated by the investigation
of difference sets, see [4] or [9], for instance. Note that graph equivalence for two func-
tions f and g is the same as multiplier equivalence of Gf and Gg .

Remark 4. An automorphism ϕ of G does not fix, in general, the subgroups H and N
setwise. If ϕ(N) �= N , then ϕ(Gf ) is, in general, not the graph of a mapping H → N .
That makes the definition of graph equivalence seemingly less attractive since not all
the elements in the orbit of Gf under group automorphisms are graphs of functions
H → N . We refer to [10] for a thorough discussion of graph equivalence (in that papers,
the term CCZ equivalence was used, since CCZ equivalence was first introduced in a
paper by Carlet, Charpin and Zinoviev [11]).

There is another nice way to interpret graph equivalence via code equivalence. We will
introduce this concept in Section 3.

The group algebra over C (or any algebra over an algebraically closed field) can
be also described as a subalgebra of a matrix algebra: We label the rows and columns
of a matrix with the elements of G. If A =

∑
g∈G ag g ∈ C[G], then we define an

embedding ι of C[G] into C(|G|,|G|) by ι(A) = (ag,h)g,h∈G with ag,h = ag−1h. It is
easy to see and well known that ι is an injective homomorphism (actually independent
from G being abelian or not). Equation (3) becomes

(ι(GF ))2 = 2n + 2 · ι(DF ). (4)

Since the group is elementary abelian, Gf is symmetric, and (4) shows that any two
different rows of ι(Gf ) have inner product 0 or 2. We may think of this property as
the “defining” property of an APN mapping, and this property is preserved by row and
column permutations. This gives rise to another concept of “equivalence”, which we
call design equivalence:

Definition 4. Two matrices A and B in C(n,n) are called design equivalent if there
are permutation matrices P and Q such that B = P · A · Q. If G is a group of oder n,
then we call two group algebra elements A and B design equivalent if ι(A) and ι(B)
have this property.
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Remark 5. If A,B ∈ C[G] are multiplier equivalent, then ι(A) and ι(B) are design
equivalent, but not vice versa, as the following example shows:

Example 1. We define the two sets

A := {x ∈ F 6
2 : x1x2 + x3x4 + x5x6 = 1}

B := {x ∈ F 6
2 : x1x2 + x3x4 + x5x6 + x1x5x3 = 1}

Using Magma [12] it is not very difficult to see that ι(A) and ι(B) are design equiva-
lent. For this purpose, we define two designs using the matrices ι(A) and ι(B) as their
incidence matrices: You may think of a design simply as a matrix with entries 0 and 1,
where the columns correspond to points of the design, and the rows are the incidence
vectors of blocks, see [9] for background from design theory. Magma checks quickly
that the two designs corresponding to A and B are isomorphic which shows that there
are permutation matrices P and Q such that ι(B) = P ·ι(A)·Q. But the two sets are not
multiplier equivalent since the function f(x1, . . . , x6) = x1x2 + x3x4 + x5x6 which
definesA is quadratic, and the function g(x1, . . . , x6) = x1x2 +x3x4 +x5x6 +x1x5x3
is of degree 3.

We note that the two functions f and g are bent functions, and the sets A and B are
(Hadamard) difference sets, see Definition 6.

Two subsets associated with an APN function f are the graph Gf (which is basically
the function) and Df (which is a kind of derivative). In Section 3, we will investigate
Df in more detail. We note that design equivalence of the sets Gf and Gg (or graph
equivalence of f and g) implies design equivalence of Df and Dg. We state a more
general result:

Proposition 2. If A,B ∈ C(n,n) are design equivalent, then A∗ ·A is design equivalent
to B∗ · B, where “ ∗” denotes “complex conjugate transpose”.

Proof. WriteB = PAQ for suitable permutation matricesP andQ. ThenQTA∗AQ =
B∗B. �

Since we may also add a multiple of the identity matrix to design equivalent matrices
and do not destroy equivalence in this way, we obtain the following corollary:

Corollary 1. If Gf and Gg are design equivalent for APN functions f and g, then Df

and Dg are also design equivalent, since ι(Df ) = ι(Gf )∗ι(Gf ) − 2n I .

There is another concept, closely related to APN functions, called “almost bentness”. It
is connected with the Walsh transform, which can be easily described in terms of group
rings.

As before, letG be an abelian group of order v There are v different homomorphisms
χ : G → K∗, provided that K contains a v∗-th root of unity (v∗ is the exponent of G,
i.e. it is the least common multiple of the orders of the elements in G). In our cases, this
condition is trivially satisfied since K will be the field of complex numbers.

The homomorphisms are called characters. The set of characters form a group Ĝ: If
χ1 andχ2 are two characters, thenχ1·χ2 : G → K∗ is the character with (χ1·χ2)(g) :=
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χ1(g) · χ2(g). The identity element in this character group is the so called trivial
character or principal character χ0 : G → K∗ with χ0(g) = 1 for all g ∈ G. The
group Ĝ is isomorphic to G.

If ψ is an automorphism of G, then the mapping χψ defined by χψ(g) := χ(ψ(g))
is a character, again.

We can extend characters (by linearity) to homomorphisms K[G] → K: We define
χ(
∑

g∈G ag · g) :=
∑
g∈G ag · χ(g). Note that these mappings are indeed homomor-

phisms, which means that they satisfy χ(A · B) = χ(A) · χ(B) and χ(A + B) =
χ(A) + χ(B). The element ∑

χ∈Ĝ
χ(A) · χ ∈ K[Ĝ]

is called the Fourier transform of A ∈ K[G]. The following orthogonality relations
are well known and easy to prove:∑

g∈G
χ(g) =

{
0 if χ �= χ0,

|G| if χ = χ0,∑
χ∈Ĝ

χ(g) =

{
0 if g �= 1,

|G| if g = 1.

Moreover,

ag =
1

|G|
∑
χ∈Ĝ

χ(A) · χ(g−1),

where A =
∑
g∈G ag g. This last statement is called the Fourier inversion formula. In

other words: If we know all the character values χ(A) of some group algebra element
A ∈ K[G], then we know A.

The inversion formula implies what is called Parseval’s equation:∑
g∈G

a2
g =

1
|G|

∑
χ∈Ĝ

|χ(A)|2.

Characters in elementary abelian 2-groups F m
2 can be easily described. We take any

nondegenerate symmetric bilinear form (·|·). Then the mapping χu : F m
2 → F m

2 with
χu(v) := (−1)(u|v) is a character.

Quite often, F m
2 is realized as the additive group of Fm2 . In this case, we may take

the trace-bilinear form (u|v) := tr(u · v), where u, v ∈ Fm2 and tr is the usual trace
function tr(x) = x+ x2 + x4 + . . . + x2m−1

.
The multiset of character values of a group algebra element is called the Walsh spec-

trum. It is not invariant under equivalence since adding an element g to Gf gives mul-
tiplication of χ(Gf ) by χ(g). The multiset of absolute values of the character values,
which is called the extended Walsh spectrum, is invariant under graph equivalence. If
f is APN, then Equation (3) gives the following connection between the Walsh coeffi-
cients of Df and Gf :

χ(Gf )2 − 2n

2
= χ(Df ).
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Therefore, the extended Walsh spectrum of f uniquely determines the Walsh spec-
trum of Df and vice versa.

If f is linear then G 2
f = 2nGf , hence the nonzero character values have absolute

value 2n. There must be a nonzero character value χ(Gf ) for some nontrivial character
χ: Otherwise Gf would be a group algebra element with χ0(Gf ) = 2n and χ(Gf ) = 0
for all other characters. Fourier inversion shows that this is possible only if Gf = 1

2nG,
which is absurd since Gf has coefficients 0 and 1. Hence, another nonlinearity criteria
is to minimize the maximum nontrivial Walsh coefficient (in absolute value) ofGf . One
can show that there is at least one character χ with χ(Gf )2 ≥ 2n+1 (apply Parseval’s
equation to G2

f and note that all coefficients in G2
f are even).

Definition 5. A function f : F n
2 → F n

2 is almost bent (AB) if |χ(Gf )| ≤ 2(n+1)/2 for
all nontrivial characters χ.

Remark 6. If f is an AB function, then the nontrivial character values are 0 and
±2(n+1)/2. Moreover, AB functions can exist only for n odd, see [3], for instance.

From the proof that the maximum Walsh coefficient is 2(n+1)/2, the following Proposi-
tion follows almost immediately:

Proposition 3. [13] Any AB function is APN.

Remark 7. The converse of this proposition is not true. First of all, APN functions do
exist also if n is even, where no AB functions can exist. Moreover, there are also APN
functions with n odd which are not AB, for instance the mapping x−1.

We are mainly interested in APN functions rather than AB functions. The following
Theorem is important and justifies that the concept of “design equivalence” is also use-
ful if one investigates the Walsh coefficients of functions:

Theorem 1. Let A and B be elements in C[G], where G is an arbitrary abelian group.
If A and B are design equivalent, then the extended Walsh spectrum of A and B are the
same.

Proof (Compare with the proof of Proposition 2). It is well known that the vectors
(χ(h))h∈G are eigenvectors of ι(A) with eigenvalue χ(A): Note that∑

h∈G
ag−1hχ(h) =

∑
h∈G

ahχ(gh) = χ(A) · χ(g),

hence all the elements in the matrix algebra ι(C[G]) can be diagonalized simultane-
ously, since it is an algebra of commuting matrices.

Let ι(B) = P ·ι(A)·Q for some permutation matrices P andQ. The extended Walsh
spectrum of A is the multiset of eigenvalues of A∗ · A, where A∗ =

∑
g∈G agg

−1

since χ(A∗) = χ(A), the complex conjugate of χ(A). It is not difficult to see that
ι(A∗) = ι(A)∗, where ι(A)∗ is the complex conjugate transpose matrix of ι(A). We
have ι(B)∗ · ι(B) = QT · ι(A)∗ · ι(A) · Q, hence the multisets of eigenvalues of
ι(B)∗ · ι(B) and ι(A)∗ · ι(A) coincide. �
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If f is AB, then χ(Df ) = 2n−1 if χ(Gf ) = 2(n+1)/2 and χ(Df ) = −2n−1 if
χ(Gf ) = 0. Therefore, Df is a subset of F 2n

2 with |χ(Df )|2 = 22n−2 for all non-
trivial characters χ and χ0(Df ) = 22n−1 − 2n−1. Subsets with this property are called
Hadamard difference sets. The indicator function of a Hadamard difference set D, i.e.
the function ind(x) = 1 if x ∈ D and ind(x) = 0 otherwise, is called a bent function.
More precisely:

Definition 6. Let G be an abelian group of order 4u2. A subset D of G, |D| = 2u2 −u,
such that the list of differences d − d′ with d, d′ ∈ D, d �= d′, covers every nonidentity
element of G exactly u2 − u times is called a Hadamard difference set of type −.
The complement D′ of D has the property that every element is covered exactly u2 + u
times, and the order of D′ is 2u2 + u (Hadamard difference sets of type +).

Remark 8. For the general definition of difference sets and many references and exam-
ples and theoretical approaches, we refer to [9].

We summarize the discussion above in the following Proposition:

Proposition 4. [11] If f : F n
2 → F n

2 is AB, then the set Df is a Hadamard difference
set of type −.

Many examples of Hadamard difference sets are known if G is an elementary abelian
2-group. Again, we refer to [2]. The most classical construction is the following:

Example 2. If m = 2n is even, then the set

D := {x ∈ F 2n
2 : x1x2 + x3x4 + · · · + x2n−1x2n = 1}

is a Hadamard difference set of type −.

It seems that only very few of the known Hadamard difference sets can be constructed
as a set Df for some AB function f . For instance, there are, up to affine equivalence,
precisely 4 different Hadamard difference sets in F 6

2 (see [14,15]), but only one of them
occurs as Df , since there is, up to affine equivalence, just one AB function f : F 3

2 →
F 3

2 . The Hadamard difference set in this case is the classical quadratic example in 2.
However, for larger n, the Df ’s are other bent functions. For quadratic functions, they
all belong to the Maiorana-McFarland class, as we will see later. Here we just mention
this important class of Hadamard difference sets:

Example 3 (Maiorana-McFarland construction, see [16]). Let H1, . . . , H2n−1 be
the 2n − 1 different hyperplanes in F n

2 . Let g1, . . . , g2n be arbitrary elements in F n
2 .

Let v1, . . . v2n−1 be different elements of F n
2 . Then the set

2n−1⋃
i=1

(vi, Hi + gi) ⊂ F n
2 × F n

2

is a Hadamard difference set of type −.

Remark 9. The Hadamard difference set in Example 2 is of Maiorana-McFarland type.
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3 APN Functions and Their Groups

If f, g : F n
2 → F n

2 are APN functions (or any functions), then we have called the two
functions graph equivalent if Gf and Gg are multiplier equivalent. The group of affine
transformations v �→ ϕ(v) + g preserves the APN property, but, as explained in the
last Section, may map Gf to some group algebra element which is not the graph of a
function.

Let us describe several groups corresponding to a group algebra element A ∈ C[G]
in general. Then we may apply the definitions both to Gf and Df .

Definition 7. Let G be a multiplicatively written group G, and let A ∈ C[G]. The mul-
tiplier group M(A) of A consists of all automorphisms ϕ of G such that ϕ(A) = A · g
for some g ∈ G. The automorphism group of A consists of all affine transformations
τϕ,g : x �→ ϕ(x) · g such that τϕ,g(A) = A · h for some h ∈ G. The design auto-
morphism group Aut(A) consists of all pairs of permutation matrices (P,Q) such that
P · ι(A) · Q = ι(A).

Remark 10. The automorphism group of A is contained in the design automorphism
group of A, hence the translations x �→ x · g are design automorphisms.

Remark 11. The group generated by M(A) and the translations is the normalizer of
the group of all translations x �→ x · g, g ∈ G, in the design automorphism group.

From now on, G is always an elementary abelian group F m
2 . We are going to describe

how we can determine the multiplier group of A and how we can explain multiplier
equivalence of two subsetsA,B ∈ G via code equivalence. We define an (m+1)×|A|-
matrix Aext over F2 as follows: The columns of the matrix are the vectors (1, v)T with
v ∈ A. The row space of this matrix is called the code A of Aext. We define the
analogous matrix for a subset B. If A and B are equivalent, then obviously |A| = |B|,
and denote this number by a. The two codes A and B are called code equivalent if there
is a permutation matrix P of size a×a and an invertible matrix U of size m+1×m+1
such that

U · Aext = Aext · P,

see [17], for instance. Since both the row space of Aext and of Bext contain the all-
one-vector (1, . . . , 1), we may assume without loss of generality that the first row of U
is (1, 0, . . . , 0). Thus, U is of type ⎛⎜⎜⎜⎝

1 0 · · · 0
v1 ∗ · · · ∗
...

...
. . .

...
vm ∗ · · · ∗

⎞⎟⎟⎟⎠ ,

i.e. there is an invertible matrix W ∈ F(m,m)
2 and v ∈ F m

2 such that

U =
(

1 0
v W

)
.
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This shows that there is an automorphism ϕ (defined by the matrix W ) of F m
2 and

an element v ∈ F m
2 such that ϕ(A) + v = B. We summarize this discussion in the

following Theorem:

Theorem 2. Two subsets A,B of F m
2 are multiplier equivalent (see Definition 3) if

and only if the codes defined by the rows of the extended matrices Aext and Bext are
isomorphic.

Given a permutation matrix P , the corresponding matrix U is, in general, not unique.
However, if the rank of Aext is m+ 1, then U and hence W is uniquely determined by
P . This shows the following:

Corollary 2. Let A be a subset of F m
2 , such that m + 1 is the F2-rank of Aext. Then

the automorphism group of the code A is isomorphic to the automorphism group of A.

The condition in Corollary 2 is satisfied for the sets Gf and Df corresponding to APN
functions f : F n

2 → F n
2 , n > 2:

Proposition 5. Let f : F n
2 → F n

2 be an APN function, n > 2. Then the F2-rank of the
matrices Dext

f and Gext
f is 2n+ 1.

Proof. It is shown in [18], for instance, that the rank of Gext
f is 2n+ 1. In other words,

there is no vector v ∈ F 2n
2 such that (v|w) = 1 for all w ∈ Gf or (v|w) = 0 for all

w ∈ Gf . The matrix Df has the vectors w + w′, w,w′ ∈ Gf , w �= w′, as columns.
If the rank of Dext

f were smaller than 2n + 1, there would be a vector v with (v|w) +
(v|w′) = 1 or = 0 for all w,w′ ∈ Gf , w �= w′. Obviously, it is impossible that
(v|w) + (v|w′) = 1 for all w,w′: We choose three different elements w1, w2 and w3 in
Gf . Then (v|w1) + (v|w2) = 1 and (v|w2) + (v|w3) = 1, hence (v|w1) + (v|w3) = 0.
If (v|w) + (v|w′) = 0 for all w,w′, we had (v|w) = (v|w′) for all w,w′ ∈ Gf , which
contradicts rank(Gext

f ) = 2n+ 1, as indicated at the beginning of this proof. �

Since it is rather easy (using Magma) to determine the automorphism groups of “small”
codes (we can handle the codes associated with Df up to n = 8), Magma provides us
with a powerful tool to determine the automorphism and the multiplier groups of both
sets Gf and Df associated with APN functions. It seems to be harder to determine the
design automorphism groups, see also [8].

4 Computational Results

It seems to be quite difficult to determine invariants like the automorphism groups of
the sets Df and Gf theoretically. Therefore, we do not include a table of all known
infinite families of APN functions here, since we cannot prove any theoretical results
about these series. We refer to [3] for the known families. Here we just mention that by
now many infinite families of so called quadratic APN functions are known: We call f
quadratic if the functions x �→ f(x+ a) + f(x) + f(a) + f(0) are linear.

Many APN’s for small values of n (n ≤ 12) are constructed by computer, which
are not yet members of infinite families of APN functions. With the exception of one
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example in [1], all recently constructed functions are graph equivalent to a quadratic
function.

Besides the many quadratic examples, we think that the classical Kasami family is
one of the most interesting series:

Proposition 6 ([19,20], see also [21]). Let f : F n
2 → F n

2 be the power mapping xd,
where d = 2i + 1 or d = 22i − 2i + 1. If gcd(i, n) = 1 (if n is odd) or n/ gcd(i, n) is
odd (if n is even), then f is APN. The cases d = 2i + 1 are called the Gold cases, the
cases d = 22i − 2i + 1 the Kasami cases.

Remark 12. The Gold power mappings are quadratic.

In the next tables, we determine the orders of the multiplier groups of the sets Df ,
where f is one of the APN functions in [1] with n ≤ 8.

Another question is whether the sets Df or Gf are equivalent. It turns out that in
all known examples with n ≤ 8 so far, the sets Df are not design equivalent if the
functions are not graph equivalent. [In the case n = 9, we did not check so far that the
designs Df corresponding to x3, x5 and x17 are not isomorphic (in that case, the triple
intersection numbers, the ranks and the Walsh spectra are the same!).] This implies, in
view of Corollary 1, that also the Gf are not design equivalent for functions which are
not graph equivalent. So we think that one should try to find criteria to distinguish the
“designs” corresponding to Gf and Df theoretically. The situation with the sets Df is
similar: The sets Df are “weaker”, i.e. when you compute Df from Gf , you “loose”
information about f . There seems to be no reason that a set A can occur as the set
Df for just one APN function f , but for the small examples in our tables, that is the
situation.

Let us summarize this observation in the following proposition:

Proposition 7. The sets Df and therefore also the sets Gf are pairwise design inequiv-
alent for the different APN functions listed in [1].

Proof. The proof relies on computations done with Magma. We have checked some
invariants which are easy to compute (Walsh spectrum, F2-ranks, full (design) auto-
morphism groups). However, this is not sufficient to distinguish all the sets Df . In this
case, we computed the so called triple intersection numbers: We may think of Df as a
0−1 matrix ι(Df ). Given three different rows of ι(Df ), we call the number of columns
where all rows have entry 1 a triple intersection number.

The spectrum, i.e. the multiset of all these triple intersection numbers, is an invariant
under design isomorphism. We used these numbers in order to distinguish the isomor-
phism type of the sets which could not be distinguished otherwise. �

We think that it should be possible to determine some of the invariants which we dis-
cussed here (triple intersection numbers, automorphism groups) as well as some of
the invariants discussed elsewhere (in particular the F2-ranks of the incidence matrices
ι(Df ) and ι(Gf )) theoretically, in particular, if the functions f are quadratic. If f is
quadratic, then the functions x �→ f(x+ a) − f(x) are (affinely) linear for all a ∈ F n

2 .
Hence the sets

Ha := {f(x+ a) − f(x) : x ∈ F n
2 }
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are (affine) hyperplanes of codimension 1. The sets Df are (for quadratic f )

Df =
⋃

a∈F n
2 ,a�=0

(a,Ha).

If f is AB, these are precisely Maiorana-McFarland Hadamard difference sets.
APN functions f for which the sets Ha are always affine hyperplanes are called

crooked, see [22]. There is an interesting conjecture about crooked functions, see [23,24]
for partial results towards this conjecture.

Conjecture 1. A crooked functions must be quadratic.

As mentioned above, we know no example of a set Df such that there exists a function
g which is graph or design inequivalent to f and which satisfies Dg = Df .

Question 1. Do the sets Df determine f up to graph or design equivalence?

We note that the first author of this paper describes an interesting way how to reconstruct
f from Df if f is quadratic (under some additional assumption) [25].

Finally, we know of no example of an APN function f such that the “classical”
example of a Hadamard difference set (Example 2) occurs as the set Df (if n > 3).

Conjecture 2. Show that none of the bent functions Df which occur from APN func-
tions f : F n

2 → F n
2 are quadratic (Example 2).

4.1 Tables of APN Functions, n ≤ 8

In Tables 5–7, we recall the list of APN functions constructed via “switching” in [1].
For the convenience of the reader, we use the same numbering as in [1], which is related
to the switching process that has been used to construct the examples. We emphasize
that this list of APN functions is complete only if n = 5 (see [26]): For n ≥ 6, many

Table 3. Used primitive polynomials p(x)

n p(x)

5 x5 + x2 + 1
6 x6 + x4 + x3 + x + 1
7 x7 + x + 1
8 x8 + x4 + x3 + x2 + 1

Table 4. All graph equivalence classes of APN’s in F 5
2

n = 5
No. F (x)

1.1 x3

1.2 x5

2.1 x−1
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Table 5. Known graph equivalence classes of APN’s in F 6
2

n = 6
No. F (x)

1.1 x3

1.2 x3 + u11x6 + ux9

2.1 x3 + ux24 + x10

2.2 (No. 2.1) +u3(tr(u10x3 + u53x5) + tr8/2(u36x9))
2.3 (No. 2.1) +tr(u34x3 + u48x5) + tr8/2(u9x9)
2.4 (No. 2.1) +u2(tr(u24x3 + u28x5) + tr8/2(x9))
2.5 (No. 2.3) +u42(tr(u10x3 + u51x5) + tr8/2(u9x9))
2.6 (No. 2.3) +u23(tr(u31x3 + u49x5) + tr8/2(u9x9))
2.7 (No. 2.3) +u12(tr(u42x3 + u13x5) + tr8/2(u54x9))
2.8 (No. 2.3) +u(tr(u51x3 + u60x5) + tr8/2(u18x9))
2.9 (No. 2.3) +u14(tr(u18x3 + u61x5) + tr8/2(u18x9))
2.10 (No. 2.3) +u17(tr(u50x3 + u56x5))
2.11 (No. 2.3) +u19(tr(u11x3 + u7x5 + u38x7 + u61x11 + u23x13) + tr8/2(u54x9) + tr4/2(u42x21))
2.12 (No. 2.4) +u(tr(u54x3 + u47x5) + tr8/2(u9x9))

Table 6. Known graph equivalence classes of APN’s in F 7
2

n = 7
No. F (x)

1.1 x3

1.2 x3 + tr(x9)
2.1 x34 + x18 + x5

2.2 x3 + x17 + x33 + x34

3.1 x5

4.1 x9

5.1 x13

6.1 x57

7.1 x−1

8.1 x65 + x10 + x3

9.1 x3 + x9 + x18 + x66

10.1 x3 + x12 + x17 + x33

10.2 x3 + x17 + x20 + x34 + x66

11.1 x3 + x20 + x34 + x66

12.1 x3 + x12 + x40 + x72

13.1 x3 + x5 + x10 + x33 + x34

14.1 x3 + x6 + x34 + x40 + x72

14.2 1 x3 + x5 + x6 + x12 + x33 + x34

14.3 (No. 14.1) +u27(tr(u20x3 + u94x5 + u66x9))

more APN functions may exist. For n ≤ 4, only one APN function exists (up to graph
equivalence), which is x3. The examples listed here are graph inequivalent, and the sets
Gf are pairwise design inequivalent. This follows from [1].

In the tables, u always denotes a primitive element in the respective field.
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Table 7. Known graph equivalence classes of APN’s in F 8
2

n = 8
No. F (x)

1.1 x3

1.2 x3 + tr(x9)
1.3 (No. 1.1) +u(tr(u63x3 + u252x9))
1.4 (No. 1.2) +u38(tr(u84x3 + u213x9))
1.5 (No. 1.2) +u51(tr(u253x3 + u102x9))
1.6 (No. 1.3) +u154(tr(u68x3 + u235x9))
1.7 (No. 1.4) +u69(tr(u147x3 + u20x9))
1.8 (No. 1.5) +u68(tr(u153x3 + u51x9))
1.9 (No. 1.6) +u35(tr(u216x3 + u116x9))
1.10 (No. 1.7) +u22(tr(u232x3 + u195x9))
1.11 (No. 1.8) +u85(tr(u243x3 + u170x9)) (∼ x9 + tr(x3))
1.12 (No. 1.9) +u103(tr(u172x3 + u31x9))
1.13 (No. 1.10) +u90(tr(u87x3 + u141x5 + u20x9) + tr16/2(u51x17 + u102x34))
1.14 (No. 1.11) +u5(tr(u160x3 + u250x9))
1.15 x9

1.16 (No. 1.14) +u64(tr(u133x3 + u30x9))
1.17 (No. 1.16) +u78(tr(u235x3 + u146x9))
2.1 x3 + x17 + u16(x18 + x33) + u15x48

3.1 x3 + u24x6 + u182x132 + u67x192

4.1 x3 + x6 + x68 + x80 + x132 + x160

5.1 x3 + x5 + x18 + x40 + x66

6.1 x3 + x12 + x40 + x66 + x130

7.1 x57

Table 8. Orders of the groups of the sets Gf and Df for n = 5

No. |M(GF )| |Aut(Gf )|
22n|M(Gf )|

|M(Df )|
|M(Gf )|

|Aut(Df )|
22n|M(Df )|

1.1 25 · 5 · 31 1 1 1
1.2 25 · 5 · 31 1 32 1
2.1 2 · 5 · 31 1 1 1

4.2 Tables of Orders of Multiplier Groups

In Tables 9–11, we determine the multiplier groups and automorphism groups of Gf
andDf . This extends the tables in [1], where we did not determine the multiplier groups
of Df .

Moreover, we point out that in [1] there is a misprint in Table 10. The order of the
group M(Gf ) for n = 8, for the function f No. 1.2 is incorrect. The correct value is
contained in Table 11.
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Table 9. Orders of the groups of the sets Gf and Df for n = 6

No. |M(GF )| |Aut(Gf )|
22n|M(Gf )|

|M(Df )|
|M(Gf )|

|Aut(Df )|
22n|M(Df )|

1.1 26 · 6 · 63 1 1 2
1.2 26 · 63 1 1 2
2.1 27 · 7 1 1 1
2.2 26 1 1 1
2.3 26 1 1 1
2.4 26 1 1 1
2.5 26 · 5 1 1 1
2.6 26 · 5 1 1 1
2.7 26 1 1 1
2.8 26 1 1 1
2.9 26 1 1 1
2.10 26 1 1 1
2.11 23 1 1 1
2.12 26 · 7 1 2 1

Table 10. Orders of the groups of the sets Gf and Df for n = 7

No. |M(GF )| |Aut(Gf )|
22n|M(Gf )|

|M(Df )|
|M(Gf )|

|Aut(Df )|
22n|M(Df )|

1.1 27 · 7 · 127 1 1 1
1.2 27 · 7 1 1 1
2.1 27 · 7 1 1 1
2.2 27 · 7 1 1 1
3.1 27 · 7 · 127 1 1 1
4.1 27 · 7 · 127 1 27 1
5.1 7 · 127 1 1 1
6.1 7 · 127 1 1 1
7.1 2 · 7 · 127 1 1 1
8.1 27 · 7 1 1 1
9.1 27 · 7 1 1 1
10.1 27 · 7 1 1 1
10.2 27 · 7 1 1 1
11.1 27 · 7 1 1 1
12.1 27 · 7 1 1 1
13.1 27 · 7 1 1 1
14.1 27 · 7 1 1 1
14.2 27 · 7 1 1 1
14.3 27 1 1 1
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Table 11. Orders of the groups of the sets Gf and Df for n = 8

No. |M(GF )| |M(Df )|
|M(Gf )|

1.1 211 · 255 1
1.2 211 · 3 1
1.3 210 · 3 1
1.4 28 · 3 1
1.5 210 · 3 1
1.6 210 · 3 1
1.7 29 · 3 1
1.8 210 · 3 1
1.9 210 · 3 1
1.10 29 · 3 1
1.11 211 · 3 1
1.12 210 · 3 1
1.13 29 1
1.14 28 · 3 1
1.15 211 · 255 16
1.16 29 · 3 1
1.17 29 · 3 1
2.1 210 · 9 · 5 1
3.1 210 · 3 1
4.1 211 1
5.1 211 1
6.1 211 1
7.1 23 · 255 1

5 Some Recent New Results on APN Functions

In this paper we have discussed the problem how to determine the isomorphism class
of an APN function using the set Df . We think that finding good invariants for the
equivalence classes of designs is a challenging problem.

In this section, we would like to mention three very interesting recent results on APN
functions which are not quite related to the topic of this paper, but which deserves to be
mentioned.

5.1 Nonquadratic APN Functions

We have noted that the many new examples of APN functions which have been con-
structed in the last few years are all graph equivalent to quadratic functions. There is only
one exception: A single example of a new nonquadratic APN function F 6

2 → F 6
2 has

been constructed in [1]. This function (Case 2.11 in our table 5) is also inequivalent to a
power mapping. It is the only nonquadratic example on F 6

2 which is known. It is not yet
a member of an infinite family. The construction uses a “switching” of known quadratic
APN functions (switching means “changing one coordinate function”, see [1]).
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5.2 APN Permutations

Until recently, no APN permutation on F n
2 with n even was known, and it was con-

jectured that none can exist. This conjecture was shattered recently by John F. Dillon
and Adam Wolfe [27]. They constructed an APN permutation on F 6

2 . The function is
graph equivalent to Example 2.1 in Table 5, and it is so far the only one! There is a nice
coding theoretic interpretation for the existence of bijective APN functions, see [27].
Using this interpretation, Dillon was able to show that for small n, none of the other
known APN functions is equivalent to a permutation. This has been also confirmed by
the first author of this paper: He checked that none of the APN functions in [1] is graph
equivalent to a permutation, except the Dillon permutation.

It is now a challenging problem to find more APN permutations or to prove that no
other example may exist.

5.3 Exceptional Exponents

There are several power mappings xd which are APN functions. The Gold and the
Kasami exponents (see example 6) are APN functions for infinitely many fields F n

2 .
An exponent d with the property that there are infinitely many fields where xd is APN
has been called an exceptional exponent. It has been conjectured (see [28]) that the
Gold and Kasami exponents are the only exceptional exponents. This conjecture has
now been proven: A major step towards a proof is contained in [29], and the missing
cases are treated in [30].

6 Conclusions

We have determined the automorphism groups of the sets Df where f is one of the APN
function on F n

2 , n ≤ 8, described in [1]. Surprisingly, all the sets Df are inequivalent.
If n is odd and f is almost bent, the sets Df are Hadamard difference sets (or,

equivalently, bent functions). None of these difference sets is equivalent to the classical
quadratic Hadamard difference sets.

The results of this paper indicate that the setsDf are apparently good “distinguishers”
for APN functions. In the quadratic case, they are quite easy to describe and therefore
they can be used (hopefully) for theoretical (computer free) proofs for the inequivalence
of quadratic APN functions.

Most of the ideas in this paper can be also used to investigate arbitrary Hadamard dif-
ference sets or related objects (like partial difference sets) in elementary abelian groups.
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Abstract. Bent functions are maximally nonlinear Boolean functions
and exist only for functions with even number of inputs. These combi-
natorial objects, with fascinating properties, are rare. The class of bent
functions contains a subclass of functions the so-called hyper-bent func-
tions whose properties are still stronger and whose elements are still
rarer. (Hyper)-bent functions are not classified. A complete classifica-
tion of these functions is elusive and looks hopeless. So, it is important
to design constructions in order to know as many of (hyper)-bent func-
tions as possible. Few constructions of hyper-bent functions defined over
the Galois field F2n (n = 2m) are proposed in the literature. The known
ones are mostly monomial functions.

This paper is devoted to the construction of hyper-bent functions.
We exhibit an infinite class over F2n (n = 2m, m odd) having the form
f(x) = Tr

o(s1)
1 (axs1) +Tr

o(s2)
1 (bxs2) where o(si) denotes the cardinality

of the cyclotomic class of 2 modulo 2n − 1 which contains si and whose
coefficients a and b are, respectively in F2o(s1) and F2o(s2) . We prove that
the exponents s1 = 3(2m − 1) and s2 = 2n−1

3
, where a ∈ F2n (a 	= 0)

and b ∈ F4 provide a construction of hyper-bent functions over F2n with
optimum algebraic degree. We give an explicit characterization of the
bentness of these functions, in terms of the Kloosterman sums and the
cubic sums involving only the coefficient a.

Keywords: Boolean function, Bent functions, Hyper-bent functions,
Maximum nonlinearity, Walsh-Hadamard transformation, Kloosterman
sums, Cubic sums.

1 Introduction

Bent functions, introduced by Rothaus [15] exist only for functions with even
number of inputs n = 2m and are those Boolean functions with Hamming dis-
tance 2n−1 ± 2

n
2 −1 to all affine functions. Youssef and Gong [16] introduced and

studied a subclass of the class of bent functions, that they called hyper-bent
Boolean functions. Hyper-bent functions defined on the Galois field F2n of order
2n are those with Hamming distance to all functions of the form Trn1 (axi) + ε
(where i is an integer co-prime with 2n − 1, a ∈ F2n , ε ∈ F2 and, where Trn1
denotes the absolute trace function from F2n to F2) equals 2n−1 ±2

n
2 −1. Equiva-

lently, they are defined with a property stronger than bentness, that is, functions

M.G. Parker (Ed.): Cryptography and Coding 2009, LNCS 5921, pp. 402–417, 2009.
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which are bent up to a change of primitive roots in the finite field F2n . More
precisely, f is hyper-bent if and only if the function f(xk) is bent for every k, co-
prime with 2n−1. In [16], Youssef and Gong have proved the existence of hyper-
bent functions defined on F2n , for every even n. Further, Carlet and Gaborit [1]
have showed that the hyper-bent functions exhibited in [16] are those, up to a
linear transformation, elements of the PSap class due to Dillon [8,9]. Recall that,
the class PSap consists of all Boolean functions f defined on F2n � F2m × F2m ,
where n = 2m, whose expression are of the form f(x, y) = g(xy2m−2) for every
(x, y) ∈ F2m × F2m , where g is a balanced Boolean function on F2m (that is of
Hamming weight equal 2m−1) which vanishes at 0.

However, the classification of hyper-bent functions remains open. In particu-
lar, as mentioned in [3], it seems difficult to define an infinite class of hyper-bent
functions. In fact, since [16], very few infinite classes of hyper-bent Boolean
functions have been presented in the literature. The known hyper-bent Boolean
functions are mostly monomial functions that were already known to be bent
(and that belong all to the PSap class). Recently, Charpin and Gong [4,3] have
provided new tools to describe hyper-bent Boolean functions with multiple trace
terms by means of Dickson polynomials. They studied precisely Boolean func-
tions defined on F2n whose expression is of the form

∑
r∈E Tr

n
1 (βrxr(2

m−1)),
where E is a subset of the set of representatives of the cyclotomic cosets modulo
2m + 1 of maximal size n = 2m, and the coefficients βr are in F2n . As a con-
sequence of their new approach, a characterization of a new class of binomial
hyper-bent functions has been obtained. But the precise characterization of such
functions which are hyper-bent, by giving explicitly the coefficients βr, is still an
open problem (see [3]). When the positive integer r is a co-prime with 2m + 1,
the Boolean functions considered by Charpin and Gong are the sums of several
Dillon monomial functions, that is, functions whose expression is precisely of the
form Trn1 (arxr(2

m−1)), with r is co-prime with 2m + 1 and which have been in-
troduced by Dillon [8](1974). Dillon monomial hyper-bent functions are related
to the zeros of some Kloosterman sums ( see [8],[3],[12]).

In [14], we have exhibited a new infinite class of hyper-bent functions defined
on F2n whose expression is the sum of a Dillon monomial function and a trace
function whose expression is of the from Trk1 (axd) with k < n. More precisely
of the form Trn1 (ax(2m−1)) + Tr21(bx

2n−1
3 ), where m = n

2 is odd, a ∈ F2n and
b ∈ F4 . We have shown that hyper-bent functions are related to the zeros of some
Kloosterman sums minus 4. In [13], we extend this class of hyper-bent functions
to the one whose functions are of the form Trn1 (axr(2

m−1))+Tr21(bx
2n−1

3 ), where
r is a positive integer co-prime with 2m + 1 and m = n

2 odd.
In this paper, we present another infinite class of Boolean functions that we

denote by Gn, containing hyper-bent functions and whose expression is of the
form:

∀x ∈ F2n , T rn1 (ax3(2m−1)) + Tr21(bx
(2n−1)

3 ) (1)

with m = n
2 odd and where a ∈ F�2n and b ∈ F4 . This infinite class is not

contained in the class presented in [14,13] (since 3 is a divisor of 2m+1 (m being
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odd)) nor in the class studied by Charpin and Gong [3] that we have mentioned
above.

The paper is organized as follows. In Section 2, we fix our main notation
and recall the necessary background. Next, in Section 3, we investigate a precise
characterization of such functions of Gn which are hyper-bent, by giving explicit
conditions on the coefficients a and b. We firstly show that one can restrict
oneself to study the bentness for some particular forms of functions belonging to
Gn (Lemma 11). Afterwards, we show that Gn is a subclass of the well known
Partial Spreads class for which the bentness of its functions can be characterized
by means of the Hamming weight of their restrictions to a certain set (Lemma
13). We show in Proposition 18 that bent functions of the class Gn are also
hyper-bent and more precisely, are (up to a linear transformation) elements of
the PSap class. We prove in Proposition 21 and Proposition 22 that, deciding
whether an element of Gn is bent or not, depends strongly on the Kloosterman
sums and also (in some cases) on the cubic sums involving only the coefficient
a. Theorem 25 recapitulates the results of our study in which we prove that
the class Gn contains hyper-bent functions when m �≡ 3 (mod 6) while, there is
no hyper-bent functions in this class when m ≡ 3 (mod 6); an important point
is that this class does not contains other bent functions except those which are
hyper-bent. Finally, at the end of Section 3, we show that a bent function of the
class Gn is normal and we compute its dual function.

2 Notation and Preliminaries

For any set E, E� = E \ {0} and |E| will denote the cardinality of E.

2.1 Background on Boolean Functions

Let n be a positive integer. A Boolean function f on F2n is an F2-valued function
on the Galois field F2n of order 2n. The weight of f , denoted by wt(f), is the
Hamming weight of the image vector of f , that is, the cardinality of its support
{x ∈ F2n | f(x) = 1}.

We denote the absolute trace over F2 of an element x ∈ F2n by Trn1 (x) =∑n−1
i=0 x2i

. The function Trn1 from F2n to its prime field F2 is F2-linear and
satisfies (Trn1 (x))2 = Trn1 (x) = Trn1 (x2) for every x ∈ F2n . For any positive
integer k, and r dividing k, the trace function from F2k to F2r , denoted by Trkr ,
is the mapping defined as:

∀x ∈ F2k , T rkr (x) :=

k
r −1∑
i=0

x2ir

= x+ x2r

+ x22r

+ · · · + x2k−r

Recall that, for every integer r dividing k, the trace function Trkr satisfies the
transitivity property, that is, Trk1 = Trr1 ◦ Trkr .
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Every non-zero Boolean function f defined on F2n has a (unique) trace ex-
pansion of the form:

∀x ∈ F2n , f(x) =
∑
j∈Γn

Tr
o(j)
1 (ajxj) + ε(1 + x2n−1), aj ∈ F2o(j) (2)

called its polynomial form, where Γn is the set of integers obtained by choosing
one element in each cyclotomic class of 2 modulo 2n − 1, the most usual choice
being the smallest element in each cyclotomic class, called the coset leader of the
class, and o(j) is the size of the cyclotomic coset containing j, ε = wt(f) modulo
2. Recall that, given an integer e, 0 ≤ e ≤ 2n − 1, having the binary expansion:
e =

∑n−1
i=0 ei2i, ei ∈ {0, 1}, the 2-weight of e, denoted by w2(e), is the Hamming

weight of the binary vector (e0, e1, · · · , en−1).
The algebraic degree of f , denoted by deg(f), is equal to the maximum 2-

weight of an exponent j for which aj �= 0 if ε = 0 and to n if ε = 1. Note that
ε = 0 when wt(f) is even, that is, when the algebraic degree of f is less than n.

Let f be a Boolean function on F2n . Its “sign” function is the integer-valued
function χ(f) := (−1)f . The Walsh transform of f is the discrete Fourier trans-
form of χf , whose value at ω ∈ F2n is defined as follows:

∀ω ∈ F2n , χ̂f (ω) =
∑
x∈F2n

(−1)f(x)+Trn
1 (ωx).

The extended Hadamard transform of f is defined as follows:

∀ω ∈ F2n , χ̂f (ω, k) =
∑
x∈F2n

(−1)f(x)+Trn
1 (ωxk),with gcd(k, 2n − 1) = 1.

Bent ( and hyper-bent) functions exist only for even n. They can be defined as
follows:

Definition 1. A Boolean function f : F2n → F2 (n even) is said to be bent if its
Walsh Hadamard transform takes only the values ±2

n
2 , that is, χ̂f (ω) = ±2

n
2 ,

for all ω ∈ F2n .

Youssef and Gong proposed in [16] to strengthen the bent concept by using the
extended Hadamard transform and stated the following.

Definition 2. A Boolean function f : F2n → F2 (n even) is said to be hyper-
bent if its extended Hadamard transform takes only the values ±2

n
2 , that is,

χ̂f (ω, k) = ±2
n
2 , for all ω ∈ F2n and, for all k such that gcd(k, 2n − 1) = 1.

From now on, throughout the whole paper, we assume that n = 2m (m > 1) is
an even integer.

2.2 Some Additional Background

Let x be an element of F2n . The conjugate of x over a subfield F2m of F2n will
be denoted by x̄ = x2m

and the relative norm with respect to the quadratic field
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extension F2n/F2m by norm(x) = xx̄. Also, we denote by U the set {u ∈ F2n |
norm(u) = 1}, which is the group of (2m + 1)-st roots of unity. Note that since
the multiplicative group of the field F2n is cyclic and 2m + 1 divides 2n − 1, the
order of U is 2m+1. Finally, note that the unit 1 is the single element in F2m of
norm one and every non-zero element x of F2n has a unique decomposition as:
x = yu with y ∈ F�2m and u ∈ U .

We also need two classical binary exponential sums on F2m (where m is an
arbitrary positive integer):

Definition 3. The classical binary Kloosterman sums on F2m are:

Km(a) :=
∑
x∈F2m

χ
(
Trm1 (ax+

1
x

)
)
, a ∈ F2m

The Kloosterman sums are generally defined on the multiplicative group F�2m of
F2m . In this paper we extend to 0 assuming that χ(Trm1 ( 1

x )) = 1 for x = 0 (in
fact, Trm1 ( 1

x) = Trm1 (x2m−1−1)).
The following Proposition is directly obtained from the result of Lachaud and

Wolfmann in [11] which is suitable for any m (even or odd).

Proposition 4. [11] Let m be a positive integer. The set {Km(a), a ∈ F2m} , is
the set of all the integers multiple of 4 in the range [−2(m+2)/2 +1, 2(m+2)/2 +1].

Divisibility properties of the Kloosterman sums have been studied in several
recent papers. We recall , in particular, the following result given by Charpin,
Helleseth and Zinoviev in [7] on the divisibility by 3 of Km(a) − 1.

Proposition 5. [7] Let m ≥ 3 be an odd integer, and let a ∈ F�2m . Then

Km(a) − 1 ≡ 0 (mod 3) ⇐⇒ Trm1 (a1/3) = 0

Definition 6. The cubic sums on F2m are:

Cm(a, b) :=
∑
x∈F2m

χ
(
Trm1 (ax3 + bx

)
), a ∈ F�2m , b ∈ F2m

The exact values of the cubic sums Cm(a, a) on F2m can be computed thanks to
Carlitz’s result [2] by means of the Jacobi symbol. Recall that the Jacobi symbol( 2
m

)
is a generalization of the Legendre symbol (which is defined when m is an

odd prime). For m odd,
( 2
m

)
= (−1)

(m2−1)
8 .

Proposition 7. [2] Let m be an odd integer. Recall that the cubic sums on F2m

are the sums Cm(a, c) :=
∑
x∈F2m

χ
(
Trm1 (ax3+cx

)
) where a ∈ F�2m and c ∈ F2m .

Then we have:

1. Cm(1, 1) =
( 2
m

)
2(m+1)/2 where

( 2
m

)
is the Jacobi symbol.

2. If Trm1 (c) = 0, then Cm(1, c) = 0.
3. If Trm1 (c) = 1 (with c �= 1), then Cm(1, c) = χ(Trm1 (γ3 + γ))

( 2
m

)
2(m+1)/2

where c = γ4 + γ + 1 for some γ ∈ F2m .
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Remark 8. Note that when Trm1 (c) = 1 and c �= 1 then, the cubic sums Cm(1, c)
can be computed more precisely thanks to a recent result of Charpin et al. in
[5]. More precisely : If Trm1 (d) = 1 (with d �= 1) then Cm(1, d) = (−1)Tr

m
1 (γ3)( 2

m

)
2(m+1)/2 where γ is the unique element of F2m satisfying d = γ4 +γ+1 and

Trm1 (γ) = 0.

3 The Study of the Bentness of Elements of Gn

Let n = 2m be an positive even integer. Let a ∈ F�2m and b ∈ F�4 . Denote by Gn

the set of the Boolean functions ga,b defined on F2n whose polynomial form is
given by this expression (note that o(3(2m − 1)) = n and o(2n−1

3 ) = 2):

∀x ∈ F2n , ga,b(x) = Trn1

(
ax3(2m−1)

)
+ Tr21

(
bx

2n−1
3

)
. (3)

Proposition 9. The elements ga,b of Gn are all of algebraic degree m.

Proof. Note that the 2-weights of 3(2m−1) and 2n−1
3 are both equal to m (since

3(2m−1) = 1+22+23+ · · ·+2m−1+2m+1 and 2n−1
3 = 1+4+ · · ·+4m−1). Thus,

the two Boolean functions x �→ Trn1 (ax3(2m−1)) and x �→ Tr21(bx
2n−1

3 ) are of al-
gebraic degree equal to m. The trace functions Trn1

(
ax3(2m−1)

)
and Tr21(bx

2n−1
3 )

are two separate parts in the trace representation of ga,b, the algebraic degree of
ga,b is then equal to m.

It is well known that the algebraic degree of any bent Boolean function on F2n

is at most m (in the case that n = 2, the bent functions have degree 2). Bent
functions of Gn are then of maximum algebraic degree.

From now, we assume that n = 2m be an even integer with m odd.

Remark 10. Recall that an integer d is called a bent exponent if there exists a ∈
F�2n for which the function x �→ Trn1 (axd) is bent. Now, recall that if an integer
d is a bent exponent then, either gcd(d, 2m−1) = 1 or gcd(d, 2m+1) = 1, where
m = n/2 ( see for instance [12]). Consequently, unlike the functions presented
in [14,13], the monomial functions of the class Gn (case b = 0) are never bent
since the exponent d = 3(2m − 1) is not co-prime with 2m − 1 nor with 2m + 1
( because when m is odd then 3 divides 2m + 1).

Now, recall that the set of n-variable bent Boolean functions is invariant under
the action of the general affine group of F2n and the addition of n-variable
affine Boolean functions. In particular, if f and f ′ are two n-variable Boolean
functions such that f ′ is linearly equivalent to f (that is, there exists an F2-linear
automorphism L of F2n such that f ′ = f ◦ L) then, f is bent if and only if f ′ is
bent.

Now, let a ∈ F�2m , λ ∈ F�2n and b ∈ F�4 . Set a′ = aλ3(2m−1) and b′ = bλ
2n−1

3 .
Then we remark that, for every x ∈ F2n , we have:

ga′,b′(x) = Trn1 (a(λx)3(2
m−1)) + Tr21(b(λx)

2n−1
3 ) = ga,b(λx) (4)
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This means that ga′,b′ is linearly equivalent to ga,b. Consequently, we are not
obliged to consider all the possible values of a ∈ F2n in our study of the bentness
of an element of Gn. Indeed, recall that every element of x in F�2n admits a unique
polar decomposition x = uy where y ∈ F�2m and u ∈ U := {u ∈ F�2n | u2m+1 = 1}.
Now, m being odd, one can decompose U as follows

U = V ∪ ζV ∪ ζ2V (5)

where V = {u3 | u ∈ U} and ζ = ξ2m−1 where ξ denotes a primitive element of
the field F2n . Thus, every element u ∈ U can be uniquely decomposed as u = ζiv
with i ∈ {0, 1, 2} and v ∈ V . Therefore, one deduces straightforwardly from (4)
the following Lemma.

Lemma 11. Let n = 2m with m odd. Let a′ ∈ F�2n and b′ ∈ F�4 . Suppose
that a′ = aζiv with a ∈ F�2m i ∈ {0, 1, 2}, ζ be a generator of the cyclic group
U := {u ∈ F�2n | u2m+1 = 1} and, v ∈ V := {u3 | u ∈ U}. Then, there exists
b ∈ F�4 such that ga′,b′ is linearly equivalent to gaζi,b.

Every element a′ ∈ F�2n can be ( uniquely) decomposed as a′ = aζiv with
a ∈ F�2m , i ∈ {0, 1, 2}, ζ be a generator of the cyclic group U := {u ∈ F�2n |
u2m+1 = 1} and, v ∈ V := {u3 | u ∈ U}. Therefore, according to the preceding
Lemma, one can restrict oneself to study the bentness of gaζi,b with a ∈ F�2m

b ∈ F�4 .
Now, recall the following well-known result [8] which includes the definition

of the Partial Spreads class PS− introduced by Dillon.

Theorem 12. [8] Let Ei, i = 1, 2, · · · , N , be N subspaces of F2n of dimension
m satisfying Ei ∩ Ej = {0} for all i, j ∈ {1, 2, · · · , N} with i �= j. Let f be
a Boolean function over F2n (n = 2m). Assume that the support of f can be
written as

supp(f) =
N⋃
i=1

E�i , where E�i := Ei \ {0}

Then f is bent if and only if N = 2m−1. In this case f is said to be in the PS−

class.

Lemma 13. Let a ∈ F�2n and b ∈ F�4 . Suppose that m is odd. Then, a function
ga,b of the family Gn is bent if and only if Γ (a, b) :=

∑
u∈U χ(ga,b(u)) = 1.

Moreover, bent functions ga,b of the family Gn belong to the Partial Spreads
class PS−.

Proof. Recall that every element x of F�2n has a unique decomposition as: x = yu,
with y ∈ F�2m and u ∈ U := {u ∈ F�2n | u2m+1 = 1}. Then, since 3 divides 2m+ 1
when m is odd, for every x ∈ F�2n , we have

ga,b(x) = ga,b(uy) = Trn1

(
au3(2m−1)

)
+ Tr21

(
bu

2n−1
3

)
= ga,b(u) (6)
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The function ga,b is then constant on the cosets uF�2m , u ∈ U . Therefore, the
support of ga,b can be decomposed into the disjoint union sets ( with the null
vector, these sets are vector subspaces of dimension 2m) as follows

supp(ga,b) =
⋃

u∈Sa,b

uF�2m where Sa,b := {u ∈ U | ga,b(u) = 1}. (7)

According to Theorem 12, this implies that the bentness of ga,b is equivalent to
the fact that the Hamming weight of the restriction of ga,b to U is equal to 2m−1

and that bent functions ga,b of the class Gn are in the class PS−. To conclude,
it suffices to note that Γ (a, b) = |U | − 2 wt(ga,b|U ) (|U | = 2m + 1).

We have seen that, when m is odd, bent functions ga,b, with a ∈ F�2n and b ∈ F�4
are in the class PS− class. In the following, we will give a more precise statement
of Lemma 13 , in particular, we will see that when m is odd then, bent Boolean
functions of Gn are in the class of hyper-bent Boolean functions.

Let us recall the following result of Youssef and Gong given in [16].

Proposition 14. [16] Let n = 2m be an even integer. Let α be a primitive ele-
ment of F2n. Let f be a Boolean function defined on F2n such that f(α2m+1x) =
f(x) for every x ∈ F2n and f(0) = 0. Then, f is hyper-bent function if and only
if the weight of the vector (f(1), f(α), f(α2), · · · , f(α2m

)) equals 2m−1.

Charpin and Gong [3] have derived a slightly different version of the preceding
Proposition.

Proposition 15. [3] Let n = 2m be an even integer. Let α be a primitive ele-
ment of F2n. Let f be a Boolean function defined on F2n such that f(α2m+1x) =
f(x) for every x ∈ F2n and f(0) = 0. Denote by G the cyclic subgroup of F�2n of
order 2m + 1. Let ζ be a generator of G. Then, f is hyper-bent function if and
only if the cardinality of the set {i | f(ζi) = 1, 0 ≤ i ≤ 2m} equals 2m−1.

Remark 16. It is important to point out that bent Boolean functions f defined
on F2n such that f(α2m+1x) = f(x) for every x ∈ F2n ( where α be a primitive
element of F2n) and f(0) = 0 are hyper-bent ( see proof of Proposition 15 in [3] or
remark that the support supp(f) of such Boolean functions f can be decomposed
as supp(f) =

⋃
i∈S α

iF�2m , where S = {i | f(αi) = 1}, that is, thanks to Theorem
12, they are bent if and only if |S| = 2m−1, proving that these bent functions
are hyper-bent functions, according to Proposition 14) .

Recall that, the class PSap consists of all Boolean functions f defined on F2n �
F2m ×F2m , where n = 2m, whose expression are of the form f(x, y) = g(xy2m−2)
for every (x, y) ∈ F2m × F2m , where g is a balanced Boolean function on F2m

(that is of Hamming weight equal 2m−1) such that g(0) = 0. Carlet and Gaborit
have proved in [1] the following more precise statement of Proposition 14.

Proposition 17. [1] Boolean functions of Proposition 14 such that f(1) = 0
are elements of the class PSap. Those such that f(1) = 1 are the functions of
the form f(x) = g(δx) for some g ∈ PSap and δ ∈ F�2n such that g(δ) = 1.
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Thus, according to Proposition 15, Proposition 17 and Lemma 13, one can
straightforwardly deduce a more precise statement of Lemma 13.

Proposition 18. Let a ∈ F�2n and b ∈ F�4 . Let ga,b be a Boolean function be-
longing to the family Gn,(n = 2m, m odd). Then ga,b is hyper-bent if and only
if Γ (a, b) :=

∑
u∈U χ(ga,b(u)) = 1 ( where U denotes the set of the (2m + 1)-

th roots of unity in F2n). Moreover, ga,b is in the class PSap if and only if
Trn1 (a) + Tr21(b) = 0.

Proof. If α is a primitive element of F2n then, ga,b(α2m+1x) = ga,b(x) for every
x ∈ F2n (since 3 divides 2m + 1 when m is odd ) and 0 is not in the support of
ga,b. The conditions of the bentness given by Proposition 15 are then satisfied
thanks to Lemma 13. The second part of the Proposition is a direct application
of Proposition 17.

According to Lemma 11 and Proposition 18, the question of deciding whether
an element ga,b of Gn is hyper-bent or not can be reduced to computing the
sum Γ (aζi, βj) for (i, j) ∈ {0, 1, 2}2. For that, we need the following important
technical results.

Lemma 19. Let m be an odd integer. Let a ∈ F�2m . U denotes the set of the
(2m + 1)-th roots of unity in F2n. Then, we have∑

u∈U
χ(Trn1 (au3)) = 1 − Km(a) + 2Cm(a, a).

Proof. Using the transitivity rule of trace function, we have

Trn1 (au3)=Trm1 (Trnm(au3)) = Trm1 (au3 + (au3)2
m

).

Hence ∑
u∈U

χ(Trn1 (au3)) =
∑
u∈U

χ(Trm1 (a(u3 + u−3))).

Now, recall that every element 1/c where c ∈ F�2m with Trm1 (c) = 1 can be
uniquely represented as u+u2m

with u ∈ U . Therefore, since 1/c3+1/c = u3+u−3

( indeed, 1/c3 = (u + u2m

)3 = (u + u−1)3 = u3 + u−3 + uu−1(u + u−1) =
u3 + u−3 + 1/c) , we have∑

u∈U
χ(Trn1 (au3)) = 1 +

∑
u∈U\{1}

χ(Trm1 (a(u3 + u−3)))

= 1 + 2
∑
c∈F2m

Trm
1 (c)=1

χ(Trm1 (a/c3 + a/c))

= 1 + 2
∑
c∈F2m

Trm
1 (1/c)=1

χ(Trm1 (ac3 + ac))
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In the last equality, we use the fact that the map c �→ 1/c is a permutation on
F2m . Now, Charpin, Helleseth and Zinoviev have proved in [6] that when m is
odd, we have

2
∑

c∈F2m ,Trm
1 (1/c)=1

χ(Trm1 (ac3 + ac)) = 2Cm(a, a) − Km(a).

from which we deduce the result.

Now, recall that V := {u3 | u ∈ U}. Let ζ be a generator of the cyclic group U .
We introduce the sums

∀a ∈ F�2m , ∀i ∈ {0, 1, 2}, Si(a) =
∑
v∈V

χ(Trn1 (aζiv). (8)

The sums Si(a) can be expressed in terms of Kloosterman sums and cubic sums.
These expressions can be obtained from Proposition 9 in [14]. For completeness,
we include the proof.

Lemma 20. For every a ∈ F�2m , we have:

S0(a) =
1 − Km(a) + 2Cm(a, a)

3
, S2(a) = S1(a) =

1 − Km(a) − Cm(a, a)
3

Proof. Note firstly that the mapping x �→ x3 being 3-to-1 on U , then, thanks to
Lemma 19, one has

∑
v∈V

χ(Trn1 (av) =
1
3

∑
u∈U

χ(Trn1 (au3)) =
1
3
(
1 − Km(a) + 2Cm(a, a)

)
Now, since ζ2m−2 is an element of V (because 3 divides (2m+1)) and the mapping
v �→ ζ2m−2v2m

is a permutation on V , then, we have:

S1(a) =
∑
v∈V

χ(Trn1 (aζv)) =
∑
v∈V

χ(Trn1 (aζ2m

v2m

))

=
∑
v∈V

χ(Trn1 (aζ2(ζ2m−2v2m

))) = S2(a)

Next, using the well-known result:
∑

u∈G χ(Trn1 (au)) = 1 − Km(a), where G is
a cyclic group of order 2m + 1 (different proofs can be found in [5,10,11,12]), we
obtain :

S0(a) + S1(a) + S2(a) =
∑
u∈U

χ(Trn1 (au)) = 1 − Km(a)

Therefore, S1(a) = 1−Km(a)−S0(a)
2 . To conclude, it suffices to note that, the map-

ping x �→ x3 being 3-to-1 from U to itself, one has
∑

u∈U χ(Trn1 (au3)) = 3S0(a)
and that

∑
u∈U χ(Trn1 (au3)) = 1 −Km(a) + 2Cm(a, a) according to Lemma 19.
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At this stage, we have the material to study of the (hyper)-bentness of Boolean
functions belonging to the family Gn.

Proposition 21. Let n = 2m be an even integer with m odd. Let a ∈ F�2m ,
β be a primitive element of F4 and ζ be a generator of the cyclic group U of
(2m + 1)-th of unity. Suppose that Trm1 (a1/3) = 0. For (i, j) ∈ {0, 1, 2}2, let
gaζi,βj be a Boolean function defined on F2n whose expression is of the form (3).
Suppose that m �≡ 3 (mod 6). Then, gaζi,βj is bent if and only if Km(a) = 4.

Proof. Recall that,
Γ (a, b) denotes the sum

∑
u∈U χ(ga,b(u)).

For (i, j) ∈ {0, 1, 2}2 , we have (using the fact that the mapping u �→ u2m−1 is a
permutation of U)

Γ (aζi, βj) :=
∑
u∈U

χ
(
gaζi,βj(u)

)
=
∑
u∈U

χ
(
Trn1 (aζiu3(2m−1)) + Tr21(β

ju
2n−1

3 )
)

=
∑
u∈U

χ
(
Trn1 (aζiu3) + Tr21(β

ju
2m+1

3 )
)

Now, thanks to (5), we have seen that every element u ∈ U can be uniquely
decomposed as u = ζlv with l ∈ {0, 1, 2} and v ∈ V := {u3 | u ∈ U}. Hence, for
(i, j) ∈ {0, 1, 2}2, we have ( in the last equality, we use the fact that v is a cube
of an element of U which is a group of order 2m + 1)

Γ (aζi, βj) =
2∑
l=0

∑
v∈V

χ
(
Trn1 (aζ3l+iv3) + Tr21(β

jζl
2m+1

3 v
2m+1

3 )
)

=
2∑
l=0

∑
v∈V

χ
(
Trn1 (aζ3l+iv3) + Tr21(β

jζl
2m+1

3 )
)

Next, m �≡ 3 (mod 6) then, integers 3 and 2m+1
3 are co-prime. The mapping x �→

x3 is then a permutation of V and thus for (i, j) ∈ {0, 1, 2}2, we have (in the last
equality, we use the fact that the mapping v �→ ζ3lv is a permutation of V )

Γ (aζi, βj) =
2∑
l=0

∑
v∈V

χ(Trn1 (aζ3l+iv) + Tr21(β
jζl

2m+1
3 ))

=
2∑
l=0

∑
v∈V

χ(Trn1 (aζiv) + Tr21(β
jζl

2m+1
3 ))

But, for every j ∈ {0, 1, 2}, the set {βj , βjζ 2m+1
3 βjζ2 2m+1

3 } is equal to F�4 (which
contains two elements of absolute trace 1 on F4 and one element of absolute
trace 0 on F4). We thus conclude that

Γ (aζi, βj) = −
∑
v∈V

χ(Trn1 (aζiv)) =: −Si(a). (9)



A New Family of Hyper-Bent Boolean Functions in Polynomial Form 413

Next, since m is odd, the mapping x �→ x3 is permutation on F2m . Hence, every
element a ∈ F2m can be (uniquely) written as a = c3 with c ∈ F2m . One has

Cm(a, a) :=
∑
x∈F2m

χ(Trm1 (ax3 + ax)) =
∑
x∈F2m

χ(Trm1 ((cx)3 + ax))

=
∑
x∈F2m

χ(Trm1 ((cx)3 + a2/3(cx))) =
∑
x∈F2m

χ(Trm1 (x3 + a2/3x))

= Cm(1, a2/3).

Now, since Trm1 (a2/3) = Trm1 (a1/3) and Trm1 (a1/3) = 0 (by hypothesis), one has
Cm(a, a) = 0, according to Proposition 7. Therefore, thanks to Lemma 20, we
obtain

Γ (aζi, βj) =
Km(a) − 1

3
.

We conclude thanks to Lemma 13.

Proposition 22. Let n = 2m be an even integer with m odd. Let a ∈ F�2m , β be
a primitive element of F4 and, ζ be a generator of the cyclic group U of (2m+1)-
th of unity. Suppose that Trm1 (a1/3) = 1. For (i, j) ∈ {0, 1, 2}2, let gaζi,βj be a
Boolean function on F2n whose expression is of the form (3). Suppose that m �≡ 3
(mod 6). Then

1. The function ga,βj is not bent for every j ∈ {0, 1, 2}.
2. For every i ∈ {1, 2} and j ∈ {0, 1, 2}, the function gaζi,βj is bent if and only

if Km(a) + Cm(a, a) = 4.

Proof. We have seen in the proof of Proposition 21, that Cm(a, a) = Cm(1, a2/3).
Then, according to Proposition 7, one has Cm(a, a) = εa

( 2
m

)
2(m+1)/2 with

εa = ±1 (since Trm1 (a2/3) = Trm1 (a1/3) and Trm1 (a1/3) = 1, by hypothesis).

1. Let j ∈ {0, 1, 2}. According to (9), valid only if m �≡ 3 (mod 6), and thanks

to Lemma 20, we have that Γ (a, βj) =
Km(a)−1−εa( 2

m )2(m+3)/2

3 . Then, accord-
ing to Lemma 13, the Boolean function ga,βj is therefore bent if and only if
Km(a) = 4 ±

( 2
m

)
2(m+3)/2, which is impossible for m > 3, since the Kloost-

erman sums Km(a) take values in the range [−2(m+2)/2 + 1, 2(m+2)/2 + 1],
according to Proposition 4.

2. According to (9) and Lemma 20, for every i ∈ {1, 2} and j ∈ {0, 1, 2}, we
have Γ (aζi, βj) = Km(a)+Cm(a,a)−1

3 . The Boolean function gaζi,βj is therefore
bent if and only if Km(a) + Cm(a, a) = 4, according to Lemma 13.

Remark 23. Since the cubic sums Cm(a, a) equal εa
( 2
m

)
2(m+1)/2 with εa = ±1

(when Trm1 (a1/3) = 1, m odd) and the Jacobi symbol
( 2
m

)
equals (−1)

(m2−1)
8

(when m is odd) then, the condition Km(a)+Cm(a, a) = 4 on a ∈ F�2m says that
the Kloosterman sums Km(a) take the values 4 ± 2(m+1)/2.
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Proposition 24. Let n = 2m. Suppose that m is odd such that m ≡ 3 (mod 6).
Let a ∈ F�2m , b ∈ F4 and, ζ be a generator of the cyclic group U of (2m+1)-th of
unity. For i ∈ {0, 1, 2}, let gaζi,b be a Boolean function on F2n whose expression
is of the form (3). Then, gaζi,b is not bent.

Proof. According to Lemma 11 and Lemma 13, it suffices to compute the value∑
u∈U χ(gaζi,b(u)) to decide whether gaζi,b is bent or not. Note now that (recall

that 9 divides 2m + 1 if m ≡ 3 (mod 6))∑
u∈U

χ(gaζi,b(u)) =
∑
u∈U

χ(Trn1 (aζiu3(2m−1)) + Tr21(bu
3(2m−1)· 2m+1

9 ))

The mapping x �→ x3(2m−1) is 3-to-1 from U to itself. Thus, we get that∑
u∈U

χ(gaζi,b(u)) = 3
∑
v∈V

χ(Trn1 (aζiv) + Tr21(bv
2m+1

9 ))

where V = {u3 | u ∈ U}. The sum
∑
u∈U χ(gaζi,b(u)) is therefore a multiple of

3 and cannot be equal to 1 implying that gaζi,b cannot be bent.

Collecting the results obtained in Proposition 21, Proposition 22 and Proposition
24 we obtain the following characterization of the bentness for Boolean function
of the form (3).

Theorem 25. Let n = 2m. Suppose that m is odd. Let a ∈ F�2m . Let β be a
primitive element of F4 . Let ζ be a generator of the cyclic group U of (2m + 1)-
th of unity. For (i, j) ∈ {0, 1, 2}2, let gaζi,βj be a Boolean function on F2n whose
expression is of the form (3).

1. Assume m �≡ 3 (mod 6). Then, we have:
– If Trm1 (a1/3) = 0 then, for every (i, j) ∈ {0, 1, 2}2, a function gaζi,βj is

(hyper)-bent if and only if Km(a) = 4.

– If Trm1 (a1/3) = 1 then:
(a) ga,βj is not bent for every j ∈ {0, 1, 2}.
(b) For every i ∈ {1, 2}, gaζi,βj is (hyper)-bent if and only if Km(a) +

Cm(a, a) = 4.
2. Assume m ≡ 3 (mod 6). Then, for every i ∈ {0, 1, 2}, gaζi,b is not bent for

every a ∈ F�2m and b ∈ F�4 .

Example 26. Let us describe for example the set of bent Boolean functions ga,b
belonging to the class G10 (with b �= 0), that is, of the form Tr101 (ax93) +
Tr21(bx

341) where a ∈ F�210 and b ∈ F�4 .
Let α be a primitive element of F32 = F2(α) with α5 + α2 + 1 = 0. Let

ξ be a primitive element of F210 . According to table 4 in [5], the set {a ∈
F�25 , T r51(a

1/3) = 0} is equal to {α3, α21, α14} and, the set {a ∈ F�25 , T r51(a
1/3) =

1} is equal to {1, α2, α9, α15}. The elements a of F�25 whose the Kloosterman
sums K5(a) on F25 equals 4 (those elements a satisfy necessary Tr51(a

1/3) = 0)
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are α3 and α21 while, those such that K5(a) + C5(a, a) = 4 are 1 and α9 (more
precisely, we have K5(1) = 12 and K5(α9) = −4).

According to Theorem 25 and Lemma 11 we conclude that there exist 330
hyper-bent Boolean functions defined on the field F210 belonging to the class
G10 (with b �= 0). Such functions are gα3v,b, gα21v,b, gξ31v,b, gα3ξ31v,b, gα9ξ31v,b,
gα21ξ31v,b, gξ62v,b, gα3ξ62v,b, gα9ξ62v,b, gα21ξ62v,b, with b ∈ F�4 and v runs through
the set {u3 | u ∈ U} where U is the cyclic group of 33-rd root of unity of F210 .

Example 27. Let n = 14 then, according to table 4 in [5], we find that there
exist 1935 hyper-bent Boolean functions ga,b (with b �= 0) defined on the field
F16384 belonging to the class G14. Such functions are of the form

– Tr141 (cvx381) + Tr21(bx
5461), c ∈ {α14, α15, α62},

– Tr141 (c′ξ127ivx381) + Tr21(bx
5461), i ∈ {1, 2}, c′ ∈ {1, α14, α15, α21, α62, α93},

where α is a primitive element of F128 satisfying α7 + α3 + 1 = 0, ξ is a primitive
element of F214 , v runs through the set {u3 | u ∈ U} where U is the cyclic group of
129-th root of unity of F214 and b ∈ {1, β, β2} where β is a primitive element of F4 .

Example 28. Let n = 18 then, according to Theorem 25, there exist no bent
Boolean functions in the class G18.

Now recall that bent Boolean functions always occur in pairs. In fact, given a
bent function f on F2n , we define the dual Boolean function f̃ of f by considering
the signs of the values χ̂f (a), a ∈ Fn2 of the Walsh transform of f as follows:

χ̂f (x) = 2
n
2 (−1)f̃(x)

Due to the involution law the Fourier transform is self-inverse. Thus, the dual f̃
of a bent function f is again a bent function and its own dual is f itself.

Dual functions of elements of Gn can be explicitly computed as follows.

Proposition 29. Let n = 2m with m odd. Let (a, b) ∈ F�2n × F�4 . The dual
function of a bent function ga,b of Gn is equal ga2m ,b2 , that is, we have

∀ω ∈ F2n , χ̂ga,b
(ω) = 2mχ(ga2m ,b2(ω)).

Proof. The arguments are for the most part the same as those used in [14].
Nevertheless, for the sake of completeness, we present below a little shorter
proof. Recall that, since the function ga,b is assumed to be bent then, according
to Lemma 13,

∑
u∈U χ(ga,b(u)) = 1. Given, ω ∈ F2n , since every element x of

F�2n has a unique decomposition as : x = yu, with y ∈ F�2m and u ∈ U , one has
( in the last equality, we use (6))

χ̂ga,b(w) :=
∑
x∈F2n

χ(ga,b(x) + Trn1 (wx))

= 1 +
∑
u∈U

∑
y∈F�

2m

χ(ga,b(yu) + Trn1 (wyu))

= 1 +
∑
u∈U

∑
y∈F�

2m

χ(ga,b(u) + Trn1 (wyu))
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Note first that χ̂ga,b
(0) = 2m. Now, if w is an element of F�2n , we have Trnm(wu) =

0 if and only if uw + u2m

w2m

= 0, that is, u2m−1 = w1−2m

. Classical results
about character sums says that∑

y∈F2m

χ(Trn1 (ωuy)) =
∑
y∈F2m

χ(Trm1 (Trnm(ωu)y)) = 2m

if Trnm(ωu) = 0, that is, if u2m−1 = ω1−2m

and, is equal to 0 otherwise. Hence,
using properties of trace functions, we have

χ̂ga,b(w) = 1 +
∑
u∈U

χ(ga,b(u)

⎛⎝ ∑
y∈F2m

χ(Trn1 (wyu)) − 1

⎞⎠
= 1 −

∑
u∈U

χ(ga,b(u)) + 2m
∑
u∈U

Trn
m(wu)=0

χ(ga,b(u))

= 2mχ(Trn1 (aw3(1−2m)) + Tr21(bw
1−2n

3 ))

= 2mχ(Trn1 (a2m

w3(2m−1)) + Tr21(b
2m

w
2n−1

3 ))

= 2mχ(Trn1 (a2m

w3(2m−1)) + Tr21(b
2w

2n−1
3 )) = 2mχ(ga2m ,b2(ω))

( b2
m−2 = 1 because m is being odd then, 3 divides (2m+1) and then divides

(2m − 2)).

Now, recall that a bent function defined on F2n is said to be normal if it is
constant on an n

2 -dimensional flat b+ E where E is a subspace of F2
n
2
.

Proposition 30. The bent functions ga,b of Gn (where n = 2m with m odd)
are normal.

Proof. Recall that ga,b is constant on each set uF�2m , u ∈ U = {x ∈ F�2n |
x2m+1 = 1}. Choose then u such that ga,b(u) = 0. Then ga,b is constant of the
vector space uF2m (of dimension m) proving that ga,b is normal.

Remark 31. By computer experiments, for small values of n (n ≤ 14, because
of the complexity of the problem) we have found that, the family Gn does not
contain bent functions when m = n

2 is even.

4 Conclusion

In this paper, we contribute to the knowledge of the class of hyper-bent Boolean
functions by exhibiting a new infinite family of hyper-bent Boolean functions
defined on F2n whose expression is of the form Trn1 (ax3(2m−1)) + Tr21(bx

2n−1
3 )

when m = n/2 is odd. We thus provide together with the hyper-bent Boolean
functions exhibed recently in [14,13] new families of hyper-bent Boolean func-
tions (that does not belong to the class studied in [3]) in which the property
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to be hyper-bent is strongly related to the Kloosterman sums. In particular, we
extend the known link between Dillon monomial hyper-bent functions and the
zeroes of Kloosterman sums to others values and to others functions. In addi-
tion, it is important to point out that, unlike the family of hyper-bent functions
presented in [14,13], the monomial functions presented in this paper are never
bent (and then are not hyper-bent).
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Abstract. The Rayleigh quotient of a bent function is an invariant un-
der the action of the orthogonal group, and it measures the distance of
the function to its dual. An efficient algorithm is derived that generates
all bent functions of given Rayleigh quotient. The Rayleigh quotient of
some bent functions obtained by primary (Maiorana McFarland, Dillon)
or secondary (direct and indirect sum) constructions is computed.

Keywords: Boolean functions, bent functions, Walsh Hadamard trans-
form, Rayleigh quotient, plateaued functions.

1 Introduction

Ever since its introduction by Rothaus, the main problem with the class of
Boolean functions known as bent has been the classification. In this article we
study a parameter that measures the distance between a function and its dual
and this parameter is invariant under the action of the extended orthogonal
group, a subgroup of the affine group. We introduced this parameter in [4] and
called it the Rayleigh quotient as it is proportional to the Rayleigh quotient (in
the sense of numerical analysis) of the matrix of the Walsh Hadamard transform.
For a bent function in n variables this quantity in the normalization used here,
is an even integer in the range [−2n, 2n]. It was proved in [4] that a bent function
is equal to its dual iff its Rayleigh quotient is 2n, in which case the function is
called self dual. Likewise a bent function is the complement of its dual iff its
Rayleigh quotient is −2n, in which case the function is called anti self dual.
[4] then tabulated the Rayleigh quotient values for all self dual bent Boolean
functions in ≤ 6 variables and all quadratic such functions in 8 variables, up to
the action of the extended orthogonal group.

This article builds on the results of [4], by tabulating the Rayleigh quotient
of all bent Boolean functions of ≤ 6 variables, up to equivalence with respect to
the extended orthogonal group, and is organized as follows. Section 2 contains
the necessary notation. Section 3 develops the linear algebra needed to study the
Rayleigh quotient. Section 4 exploits these ideas to derive an algorithm, more

M.G. Parker (Ed.): Cryptography and Coding 2009, LNCS 5921, pp. 418–432, 2009.
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effective than exhaustive search, to construct all bent functions with prescribed
Rayleigh quotient - this algorithm is a variant on that used in [4]. Along the
way a connection with plateaued functions is pointed out. Section 5 presents
computational results, tabulating the Rayleigh quotients of all bent functions up
to 6 variables. Section 6 studies some properties and symmetries of the Rayleigh
quotient. Section 7 gives evaluations of the Rayleigh quotient for some special
constructions of bent functions: Maiorana McFarland and Dillon, as well as for
secondary constructions like the direct and indirect sum.

We are not aware of much work in the literature pertaining to the Rayleigh
quotient. However, [6] has considered the respective algebraic degree of a Boolean
function and its dual. Moreover, the decompositions of bent functions have been
studied in [1], where a link is made between the Walsh Hadamard spectra of the
restrictions of a function and the decompositions of its dual.

2 Definitions and Notation

A Boolean function f in n variables is any map from Fn2 to F2. Its Walsh
Hadamard Transform (WHT), namely F̂ ∈ R2n

, can be defined as

F̂ (x) :=
∑
y∈Fn

2

(−1)f(y)+x·y,

where x·y denotes the dot product of x with y. The sign function of f is defined
by F := (−1)f . The Boolean function, f , is said to be bent iff |F̂ (x)| = 2n/2,
∀x, which is only possible if n is even. If f is bent then its dual with respect to
the WHT, f̃ , is also a bent Boolean function. Let F̃ be the sign function of f̃
for the case that f is bent. Then the duality of f̃ to f is defined by

F̃ (x) := 2−n/2F̂ (x) ⇔ (−1)f̃(x) := 2−n/2
∑
y∈Fn

2

(−1)f(y)+x·y, f bent.

The matrix of the WHT is the Hadamard matrix Hn of Sylvester type, which
we now define by tensor products. Let

H :=
(

1 1
1 −1

)
.

Let Hn := H⊗n be the n-fold tensor product of H with itself. Thus Hn =
Hn−1 ⊗

(
1 1
1 −1

)
=
(

Hn−1 Hn−1
Hn−1 −Hn−1

)
, where H1 = H . Let Hn := 2−n/2Hn, be its

normalized version. Recall the Hadamard property

HnH
T
n = 2nI2n ,

where we denote by IM the M by M identity matrix. View F as a vector
F = (F0...00, F0...01, . . . , F1...11) ∈ Fn2 , whose elements, Fx, are ordered lexico-
graphically in x. Let F̂ have a similar vector interpretation. Then we can express
the WHT in matrix-vector form as
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F̂ = FHn.

For example, when n = 2 and f(y1, y2) = y1y2, we have F = (1, 1, 1,−1)
and

F̂ = FH2 = ( 1 1 1 −1 )
(

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

)
= ( 2 2 2 −2 ) .

In this case |F̂x| = 2, ∀x, so f is bent and its dual is f̃(x1, x2) = x1x2, where

F̃ = (−1)f̃ = 2−1F̂ = (1, 1, 1,−1).
If f is not only bent but, furthermore, f = f̃ , then f is self dual bent - such

is the case for the example just given. This means that the sign function of f is
an eigenvector of Hn attached to the eigenvalue 1. Similarly, if f = f̃ + 1 then f
is anti self dual bent. For example, f(y1, y2) = y1y2 + y1 + y2 is anti self dual
bent. This means that its sign function is an eigenvector of Hn attached to the
eigenvalue −1. Define the Rayleigh quotient Sf of a Boolean function f in n
variables by the character sum

Sf :=
∑

x,y∈F
n
2

(−1)f(x)+f(y)+x·y =
∑
x∈F

n
2

F (x)F̂ (x).

Define the normalized Rayleigh quotient Nf of a bent Boolean function f
in n variables by the character sum

Nf :=
∑
x∈Fn

2

(−1)f(x)+f̃(x) = 2−n/2Sf .

We see that Nf = 2n if f is self dual bent and Nf = −2n if f is anti self dual
bent.

3 Linear Algebra

We now establish an orthogonal eigen-decomposition of the sign function of a
Boolean function and use it to obtain expressions for the Rayleigh quotient of a
bent Boolean function in terms of this eigen-decomposition. Recall the following
elementary Lemma from [4].

Lemma 1. The spectrum of Hn consists of the two eigenvalues ±1, each with
multiplicity 2n−1. A basis of the eigenspace attached to the eigenvalues 1 (resp.
−1) is formed from the rows of the 2n−1 × 2n matrix (Hn−1 + 2n/2I2n−1 , Hn−1)
(resp. (Hn−1 − 2n/2I2n−1 , Hn−1)). An orthogonal decomposition of R2n

in
eigenspaces of Hn is

R2n

= Ker(Hn + 2n/2I2n) ⊕ Ker(Hn − 2n/2I2n).
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Proof. The basis characterization follows because

(Hn−1 + 2n/2I2n−1 , Hn−1)Hn

= (Hn−1 + 2n/2I2n−1 , Hn−1)2−n/2(Hn−1 ⊗ H1)
= 2−n/2(2Hn−1 + 2n/2I2n−1 , 2n/2I2n−1)(Hn−1 ⊗ I2)
= (2n/2I2n−1 +Hn−1, Hn−1).

Similar arguments show that

(Hn−1 − 2n/2I2n−1 , Hn−1)Hn = −(Hn−1 + 2n/2I2n−1 , Hn−1).

The kernel (i.e. nullspace) of Hn + 2n/2I2n is the row space of a matrix, say
M+, such that (Hn + 2n/2I2n)M+ = 0. From the above basis characterization
we see that one choice is M+ = (Hn−1 − 2n/2I2n−1 , Hn−1). Similarly, Ker(Hn −
2n/2I2n) is the row space of M− = (Hn−1 + 2n/2I2n−1 , Hn−1). The orthogonal
decomposition of R2n

follows because the two kernels are orthogonal, i.e. because
M+M−T = 0. ��

By Lemma 1, the orthogonal decomposition in eigenspaces of Hn yields the
following decomposition for the sign function F of a Boolean function, F =
F+ + F−, with F± ∈ Ker(Hn ± 2n/2I2n), and 〈F, F 〉 = 〈F+, F+〉 + 〈F−, F−〉,
where 〈A,B〉 is the inner product of real vectors A and B. By observing that
F̂ = 2n/2(F+ − F−), and that Sf = 〈F, F̂ 〉, we obtain

Nf = 〈F+, F+〉 − 〈F−, F−〉,

and by the triangle inequality, |Nf | ≤ 2n, with equality if and only if F = F+

or F = F−. If f is bent then the sign function, F̃ , of its dual exists, and

F̃ = F+ − F−.

Thus F ± F̃ = 2F± has entries in {0,±2}, so both F+ and F− have entries in
{0,±1}. Denote by S+ (resp. S−) the set of x ∈ Fn2 such that F+

x = 0 (resp.
F−
x = 0). Because F = F+ + F− has entries in {±1}, it follows that the sets

S+ and S− partition Fn2 . Conversely, given a pair of eigenvectors of Hn, F+

and F−, with entries in {0,±1}, and with corresponding sets S+ and S−, such
that S+ ∪ S− = Fn2 , then the sum of F+ and F− is the sign function of a bent
function. In summary

Proposition 1. Let F be the sign function of a bent Boolean function of n
variables. Then there exist two vectors F+ and F−, and two subsets, S+ and
S−, with the following properties.

1. F = F+ + F−
2. F+ and F− have entries in {0,±1}.
3. the sets S+ and S− partition Fn2 .
4. F±

x = 0 iff x ∈ S±.

Conversely, given eigenvectors, F±, of Hn, and sets S± with the last three prop-
erties, the sum F+ +F− is the sign function of a bent function with normalized
Rayleigh quotient
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Nf = |S−| − |S+| = 2n − 2|S+| = 2|S−| − 2n.

Moreover, |S+| = dH(f, f̃), where dH( , ) denotes the Hamming distance.

Example: Let n = 4 and f = x1x3 +x2x3 +x2x4 +x2. Then F = (1, 1, 1, 1,−1, 1,
1,−1, 1, 1,−1,−1,−1, 1,−1, 1). As f is a bent function it has a dual. By compu-
tation, f̃ = x1x3+x1x4+x2x4+x4 and F̃ = (1,−1, 1,−1, 1, 1, 1, 1, 1, 1,−1,−1, 1,
−1,−1, 1). It follows that F+ = (F + F̃ )/2 = (1, 0, 1, 0, 0, 1, 1, 0, 1, 1,−1,−1, 0, 0,
−1, 1), giving S+ = {0010, 0011, 1000, 1011, 1100, 1110}. Therefore the normal-
ized Rayleigh quotient of f is Nf = 2n − 2|S+| = 4.

4 Search Algorithm

We now describe an algorithm where we construct all bent Boolean functions, F ,
of n variables, given a specified zero set, S+, for F+, where F = F+ + F−. For
an arbitrary n-variable function, A(x1, x2, . . . , xn), with domain Fn2 , let A|x1=0

(resp. A|x1=1) be the restrictions of A to x1 = 0 and x1 = 1 respectively, such
that A(x) = (A|x1=0 , A|x1=1).

Let F+ := (Y, Z), where Y, Z ∈ R2n−1
, such that Y := F+

|x1=0
, and Z := F+

|x1=1
,

i.e. F+ is the concatenation of Y with Z. Let S+ ⊂ Fn2 similarly be decomposed
into SY+ and SZ+ , where

SY+ := {s|x1=0 | s ∈ S+} ⊂ Fn−1
2 , SZ+ := {s|x1=1 | s ∈ S+} ⊂ Fn−1

2 .

We want to construct an F+ with zero set S+.

Theorem 1. Let Z have entries in {0,±1}, with Zx = 0 iff x ∈ SZ+. Define
Y := Z + 2Hn−1

2n/2 Z. If Y has entries in {0,±1}, with Yx = 0 iff x ∈ SY+ , then the
vector F+ = (Y, Z) is in the eigenspace of Hn attached to 1 with zero set S+.

Proof. By Lemma 1, for eigenspace 1, we consider an X such that F+ =
X(Hn−1 + 2n/2I2n−1 , Hn−1) = (Y, Z), from which it follows that Y = Z +
2Hn−1

2n/2 Z. Moreover, we require that Y and Z both have, by Proposition 1, en-
tries in {0,±1}. For each arbitrary choice of Z with entries in {0,±1}, we can
then check whether Y has entries in {0,±1}. ��

A similar result holds for F−, for F− := (Y, Z), Y := F−
|x1=0

and Z := F−
|x1=1

.
The proof is analogous and is omitted.

Theorem 2. Let Z have entries in {0,±1}, with Zx = 0 iff x ∈ SZ−. Define
Y := Z − 2Hn−1

2n/2 Z. If Y has entries in {0,±1}, with Yx = 0 iff x ∈ SY− , then the
vector F− = (Y, Z) is in the eigenspace of Hn attached to −1 with zero set S−.

Based on Proposition 1 and the above two theorems we give an algorithm to gen-
erate all bent functions with given zero set S+, and therefore, from
Proposition 1, with fixed Rayleigh quotient 2n − 2|S+|.
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Algorithm BWS(n, S+)

1. Pick Z with entries in {0,±1}, and Zx = 0 iff x ∈ SZ+
2. Compute all candidate Y as Y := Z + 2Hn−1

2n/2 Z.
3. If Y has entries in {0,±1} and Yx = 0 iff x ∈ SY+ let F+ := (Y, Z), else go

to next Z.
4. Pick Z with entries in {0,±1}, and Zx = 0 iff x /∈ SZ+
5. Compute all candidate Y as Y := Z − 2Hn−1

2n/2 Z.
6. If Y has entries in {0,±1} and Yx = 0 iff x /∈ SY+ let F− := (Y, Z), else go

to next Z.
7. Output F = F+ +F− for all F+ found in step 3 and all F− found in step 6.

It should be noted that, compared to brute force exhaustive search of complexity
22n

this algorithm is of complexity 2R with R ≤ 2n−1, depending on the size of S.
We point out a connection with plateaued functions. Recall that, according

to [9], a Boolean function f in n variables is plateaued of order r if the entries of
its WHT, F̂ , have modulus either zero or 2n−r/2, where r is even and can range
from 0 to n. If r = n then f is bent.

Theorem 3. Keep the notation of Proposition 1. Write
F+ = (Y +, Z+) and F− = (Y −, Z−). If Y + and Z+ (resp. Y − and Z− ) have
the same supports, that is

{x | Y ±
x = 0} = {x | Z±

x = 0},
then both Z+ + Z− and Z+ − Z− (resp. Y + + Y − and Y + − Y − )are sign
functions of plateaued functions of order n − 2 in n − 1 variables.

Proof. By Proposition 1 both Z+ ±Z− and Y + ± Y − have entries in {±1} and
are thus legitimate sign functions of Boolean functions in n − 1 variables. By
hypothesis, Y

+−Z+

2 and Z−−Y −
2 have entries in {0, ±1}. By Proposition 1 their

sum and difference still have entries in {0, ±1}. Like in Theorem 1 and 2 we
have

Hn−1Z
+ = 2n/2(

Y + − Z+

2
) (1)

and, symmetrically,

Hn−1Z
− = 2n/2(

Z− − Y −

2
) (2)

The result follows now by adding and subtracting equations 1 and 2. ��

Note that this result is different from the construction of bent functions from
complementary plateaued functions in [8].

5 Numerical Results

In previous work, we have classified self dual bent functions [4]. We here extend
this result by calculating the Rayleigh quotient of all bent functions of up to six
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Table 1. Number of Bent Functions of Four Variables with given Rayleigh Quotient

Nf Functions

±16 40
±8 192
±4 384
0 280

Total 896

Table 2. Number of Bent Functions of Six Variables with given Rayleigh Quotient

Nf Functions

±64 85,792
±48 814,080
±40 5,225,472
±36 10,813,440
±32 33,686,400
±28 61,931,520
±24 159,169,536
±20 327,155,712
±16 548,066,304
±12 865,075,200
±8 1,194,362,880
±4 1,434,058,752
0 784,985,440

Total 5,425,430,528

Table 3. Number of Quadratic Bent Functions of Six Variables with given Rayleigh
Quotient

Nf Functions

±64 1504
±32 44,160
±16 503,808
±8 737,280
0 490,912

Total 1,777,664

variables. Tables 1 and 2 list the number of bent functions, where no symme-
tries are taken into account, of four and six variables with normalized Rayleigh
quotient Nf . Table 3 gives the Rayleigh quotients of all quadratic bent functions
of six variables. It follows from Theorem 5 that there will always be the same
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number of functions with Nf = −x as there are functions with Nf = x, so these
functions are counted together. (For instance, there are 20 bent functions of four
variables with Nf = 16, and 20 such functions with Nf = −16.)

According to Prop. 3, |Nf | ≤ 60 for a bent function of six variables that is
neither self dual nor anti self dual. We observe that no function meeting this
bound with equality exists. Up to equivalence, where we consider the functions
f and g to be in the same equivalence class if g(x) = f(Lx+ d)+ d ·x+ c, where
LLT = I, d ∈ Zn2 , wt(d) even, and c ∈ Z2, there are seven bent functions of six
variables with Nf = 48. Representatives from each equivalence class are listed
below. The functions with Nf = −48 can be obtained from Theorem 5 (For a
classification of the bent functions of six variables with |Nf | = 64, we refer to
previous work [4].)

1. x1x2x6 +x1x3x6 +x1x4x5 +x1x3x5 +x2x4x6 +x3x4x6 +x2x4x5 +x2x3x5 +
x1x2 + x1x5 + x2x6 + x3x4 + x3x6 + x4x5 + x5x6

2. x2x4x6 + x3x5x6 + x1x4x5 + x1x2x3 + x1x6 + x2x5 + x2x6 + x3x4 + x3x5 +
x3x6 + x4x5 + x4x6 + x5x6 + x2 + x3

3. x2x3x4 +x1x3x4 +x2x3x6 +x2x3x5 +x2x4x6 +x2x4x5 +x2x5x6 +x1x5x6 +
x1x2 + x3x5 + x4x6 + x5x6

4. x1x2x3 + x1x2x5 + x1x3x4 + x1x4x5 + x1x6 + x2x4 + x2x6 + x3x5 + x3x6 +
x4x6 + x5x6 + x1 + x2 + x3

5. x1x2x3 + x1x4x5 + x1x3x5 + x3x5x6 + x1x6 + x2x5 + x3x4 + x3x6 + x4x5 +
x5x6 + x1 + x2 + x3 + x4

6. x1x3x5 + x1x2x5 + x1x3x4 + x1x2x4 + x1x6 + x2x5 + x3x4 + x4x6 + x5x6 +
x1 + x2 + x4

7. x2x3x6 + x2x4x6 + x3x5x6 + x4x5x6 + x1x6 + x2x3 + x4x5

Table 4. Number of Boolean Functions of 4 Variables with given Rayleigh Quotient

Nf Functions

±16 40
±13 416
±12 800
±11 1504
±10 2560
±9 2944
±8 3904
±7 4992
±6 5632
±5 6816
±4 7264
±3 7648
±2 8192
±1 8448
0 4376

Total 65,536
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Table 5. Number of Boolean Functions of 5 Variables with given Non-Normalized
Rayleigh Quotient

Sf Functions

±160 8960
±155 23,040
±150 50,688
±145 150,528
±140 840,320
±135 1,039,360
±130 1,627,392
±125 2,581,792
±120 9,404,480
±115 7,907,840
±110 10,849,152
±105 14,716,416
±100 44,280,000
±95 31,537,920
±90 38,784,320
±85 47,529,984
±80 125,472,000
±75 79,892,480
±70 92,338,176
±65 105,623,232
±60 254,490,560
±55 149,760,000
±50 164,694,016
±45 180,602,112
±40 404,723,200
±35 224,425,920
±30 236,937,728
±25 249,284,160
±20 529,400,320
±15 277,094,400
±10 284,104,704
±5 288,219,136
0 436,572,960

Total 4,294,967,296

We have also calculated the Rayleigh quotients of all Boolean functions of four
and five variables, listed in Tables 4 and 5. For five variables, the non-normalized
values Sf are given, since the values Nf are not integer for odd n.

We observe that for Boolean functions of four variables, the highest value of
|Nf | < 16 is |Nf | = 13. Up to equivalence, the following three functions have
Nf = 13. (For a classification of the functions of four variables with |Nf | = 16,
we refer to previous work [4].)
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1. x1x2x3x4 + x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4 + x1
2. x1x2x3x4 + x1x2 + x1x3 + x2x4 + x3x4
3. x1x2x3x4 + x1x2 + x3x4

For Boolean functions of five variables, the highest obtainable Rayleigh quo-
tient is |Sf | = 160. Up to equivalence there are four functions with Sf = 160,
which are listed below. In general, it is not known what the highest possible
value of |Sf | for odd n is.

1. x1x2x3x4+x1x2x3x5+x1x2x3+x1x2x4+x1x2x5+x1x4x5+x3x4x5+x1x4+
x1x5 + x2x3

2. x1x2x3 + x1x2x4 + x1x2x5 + x1x3 + x1x4 + x1x5 + x3x4 + x3x5 + x4x5 + x1
3. x1x2x3 + x1x2x4 + x1x2x5 + x3x4 + x3x5 + x4x5 + x1 + x2 + x3 + x4
4. x1x2x3 + x1x2 + x1x3 + x4x5

6 Properties of the Rayleigh Quotient

6.1 Elementary Properties

The normalized Rayleigh quotient is the sum of 2n terms ±1. Therefore

Proposition 2. The normalized Rayleigh quotient Nf of a bent
Boolean function f is an even integer (negative or positive).

For bent functions that are neither self dual nor anti self dual we can improve
on the estimate of Nf over [4].

Proposition 3. Let f be a bent function in n variables. If f is neither self dual
nor anti self dual then |Nf | ≤ 2n − 4.

Proof. By the proof of Theorem 1 we see that if Z = 0 then X = 0 and F+ = 0
forcing f to be anti self dual. A similar argument for F− shows that we cannot
have Z = 0 for F−. It follows, to avoid either situation, that S+ cannot have
size 2n − 1. The result follows. ��

6.2 Symmetries

In this section we give symmetries, that is operations, on Boolean functions that
preserve bentness and the Rayleigh quotient. Define, following [7], the orthog-
onal group of index n over F2 as

On := {L ∈ GL(n, 2)&LLt = In}.

Observe that L ∈ On if and only if (In, L) is the generator matrix of a self
dual binary code of length 2n. Thus, for even n, an example is In + Jn with
Jn =all-one matrix.

Theorem 4. Let f denote a bent function in n variables. If L ∈ On and c ∈
{0, 1} then g(x) := f(Lx) + c is also bent, and Ng = Nf .
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Proof. The WHT of g is

Ĝ(x) = (−1)cF̂ (Lx) = 2n/2(−1)f̃(Lx)+c = 2n/2(−1)g̃(x),

where the first equality holds by observing that x.y = L(x).L(y), and by a
change of variable involving L−1 = LT , and the last equality by definition of g̃.
Computing the normalized Rayleigh quotient of g yields

Ng = 〈(−1)g, (−1)g̃〉 =
∑
x

(−1)f(Lx)(−1)f̃(Lx) = Nf . ��

Theorem 5. Let f denote a bent function in n variables. Define g by g(x) :=
f(x+ d) + d · x. If d ∈ Fn2 then g is also bent, and Ng = (−1)d·dNf .

Proof. A change of variables y = x + d in the definition of Ĝ yields Ĝ(y) =
(−1)d·(y+d) × F̂ (y + d). Therefore g is bent with dual function

g̃(y) = d · (y + d) + f̃(y + d).

Adding up yields

g(y) + g̃(y) = d · d+ f(y + d) + f̃(y + d).

The result follows after a change of variables. ��

Theorem 5 explains why, for every function, f , with normalized Rayleigh quo-
tient Nf , there exists a family of functions, {fe} each with normalized Rayleigh
quotient, Nf , and an equal size family of functions, {fo}, each with normalized
Rayleigh quotient, −Nf , as obtained by evaluating g for even and odd weight
values of d, respectively.

We refer, in this and related work, to the combined action of the symmetries
of theorems 4 and 5 as the action of the extended orthogonal group, being
a subgroup of the affine group.

7 Special Constructions

In [4] primary constructions for (anti) self dual bent functions were presented for
the case of Maiorana McFarland, Dillon’s partial spreads, and monomial power
functions. Secondary constructions using both direct and indirect sum were also
presented. We now generalise this work, in the cases of Maiorana McFarland
and partial spreads, and for direct and indirect sum, to the situation where the
Rayleigh quotient can have magnitude less than 2n.

7.1 Maiorana McFarland

A general class of bent functions is the Maiorana McFarland class, that is
functions of the form

x · φ(y) + g(y)

with x, y ∈ Fn/22 , φ : Fn/22 → Fn/22 , a permutation, and g arbitrary Boolean.
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Theorem 6. A Maiorana McFarland function f = x · φ(y) + g(y) with φ(x) =
L(x)+a, L ∈ GL(n/2, 2) and unitary (LT = L−1), and a ∈ Fn/22 , has normalized
Rayleigh quotient

Nf = (−1)a·a × (
∑
x

(−1)g(x)+a·L(x))2.

Proof. The dual of a Maiorana-McFarland bent function x · φ(y) + g(y) is equal
to φ−1(x) · y + g(φ−1(x)) [5]. Computing the normalized Rayleigh quotient of f
yields, after replacing x by φ(x),

Nf = 〈(−1)f , (−1)f̃〉 =
∑
x,y

(−1)φ(x)·φ(y)+x·y+g(x)+g(y),

and, since, for L unitary, L(x) · L(y) = x · y,

Nf =
∑
x,y

(−1)g(x)+a·L(x)+g(y)+a·L(y)+a·a.

The result follows. ��

The proof of the following corollary is omitted.

Corollary 1. If g(x) + a · L(x) is constant, then f is self dual (resp. anti self
dual) if a has even (resp. odd) weight, i.e. Nf = 1 (resp. Nf = −1), and, if
g(x) + a · L(x) is balanced then Nf = 0.

7.2 Dillon Functions

Let x, y ∈ F2n/2 . The class denoted by PSap in [5] consists of so-called Dillon’s
function of the type

f(x, y) = g(x/y)

with the convention that x/y = 0 if y = 0, and where g is a balanced Boolean
function and g(0) = 0. We introduce the character sum

Kg :=
∑
u

(−1)g(u)+g(1/u).

In particular, if g = Tr then Kg is a Kloosterman sum.

Theorem 7. Let f be a bent function constructed from a Dillon g as above. Its
Rayleigh quotient is

Nf = 2n/2 + (2n/2 − 1)Kg.

Proof. The dual of f = g(x/y) is f̃ = g(y/x). Therefore
Nf =

∑
x,y(−1)g(x/y)+g(y/x). Noting when y vanishes and making the change of

variables u = x/y when y �= 0 gives the result. ��



430 L.E. Danielsen, M.G. Parker, and P. Solé

7.3 Direct and Indirect Sums

If f and g are Boolean functions in n and m variables, respectively, define the
direct sum of f and g as the Boolean function on n + m variables given by
f(x) + g(y). The following result is immediate, and its proof is omitted.

Proposition 4. If f and g are bent functions their direct sum is bent of Rayleigh
quotient NfNg.

A more general construction involving four functions can be found in [3]. If a, b
and c, d are two pairs of Boolean functions in n and m variables, respectively,
define the indirect sum of these four functions by

f(x, y) := a(x) + d(y) + (a(x) + b(x))(c(y) + d(y)).

It is shown in [3], and also reviewed in [2], that, if a, b, c, d are bent functions,
then f is a bent function, and

Lemma 2
f̃ = ã+ d̃+ (ã + b̃)(c̃ + d̃).

We further show that,

Proposition 5. If a, b and c, d are two pairs of dual bent functions, i.e. such
that b = ã and d = c̃, then f and g = b + c + (a + b)(c + d) are also dual bent
functions, i.e. g = f̃ . Furthermore the Rayleigh quotient of both f and g is

Nf = NaNc.

Proof. Comes from
f̃ = f + (a+ b) + (c + d),

and the definition of Na and Nb. The result follows. ��

A generalisation on this theme is the following

Proposition 6. If a, b and c, d are two pairs of bent functions satisfying b =
ã + ε, d = c̃ + µ, for ε, µ ∈ {0, 1}, then f = a + d + (a + b)(c + d) and g =
b+ c+ (a+ b)(c+ d) are both bent. Furthermore the Rayleigh quotient of both is

Nf = NaNc.

Proof. A direct computation using Lemma 2 shows that

f + f̃ = (a + b) + (c + d) + (ε+ µ).

The result follows. ��
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Finally,

Proposition 7. Let a and b be self dual or anti self dual bent Boolean functions
over m variables. Let dH(a, b) be the Hamming distance between a and b. Let c
and d both be bent Boolean functions over n variables. Then, f = a + d + (a +
b)(c+ d) and g = b+ c + (a + b)(c+ d) are both bent over n+m variables, and

Nf = (2mNd + dH(a, b)(Nc − Nd)) (−1)ea , ea = eb,
Ng = (2mNc − dH(a, b)(Nc − Nd)) (−1)eb , ′′

Ng = (2mNd + dH(a, b)(Nc − Nd)) (−1)ea , ea �= eb,
Nf = (2mNc − dH(a, b)(Nc − Nd)) (−1)eb , ′′

where ea, eb ∈ F2, ea = 0 (resp. 1) if a is self dual (resp. anti self dual), eb = 0
(resp. 1) if b is self dual (resp. anti self dual).

Proof. From Lemma 2 and the (anti) self dual properties of a and b, we obtain

f̃ = a+ d̃+ (a + b+ ea + eb)(c̃ + d̃) + ea.

Therefore

f + f̃ = d+ d̃+ (a + b+ ea + eb)(c + c̃ + d+ d̃) + ea.

Consider the case where ea = eb. For x ∈ Fm2 such that a(x)+ b(x) = 0 (resp. 1),
the previous equation then reduces to f+ f̃ = d+ d̃+ea (resp. f+ f̃ = c+ c̃+ea).
From Proposition 1. we see that an n-variable bent Boolean function, h, has
Rayleigh quotient given by Nh = 2n − 2dH(h, h̃). Plugging this back into the
previous equations, we obtain

(−1)eaNf = 2n+m − 2
(
(2m − dH(a, b))dH(d, d̃) + dH(a, b)dH(c, c̃)

)
which, after some re-arrangements, gives the expression for Nf when ea = eb in
the Proposition. Similar arguments can be used to obtain the expression for Nf

when ea �= eb, and, likewise, one obtains similar expressions for Ng. ��

It follows immediately from the proposition that, if a+b is balanced, and ea = eb,
then Nf = Ng = (−1)ea2m−1(Nc+Nd). If, further to this, Nc = −Nd, e.g. if c is
self dual and d is anti self dual, then Nf = Ng = 0. Also, from the proposition,

Nf +Ng = 2m(Nc + (−1)ea+ebNd)(−1)eb .
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Abstract. Cache timing attacks are a class of side-channel attacks that
is applicable against certain software implementations. They have gen-
erated significant interest when demonstrated against the Advanced En-
cryption Standard (AES), but have more recently also been applied
against other cryptographic primitives.

In this paper, we give a cache timing cryptanalysis of stream ciphers
using word-based linear feedback shift registers (LFSRs), such as Snow,
Sober, Turing, or Sosemanuk. Fast implementations of such ciphers use
tables that can be the target for a cache timing attack. Assuming that a
small number of noise-free cache timing measurements are possible, we
describe a general framework showing how the LFSR state for any such
cipher can be recovered using very little computational effort. For the
ciphers mentioned above, we show how this knowledge can be turned
into efficient cache-timing attacks against the full ciphers.

1 Introduction

Cache Timing Attacks [24,19,23] are a class of side-channel attacks. They as-
sume that the adversary can use timing measurements to learn something about
the cache accesses of a legitimate party, which turns out to be the case in some
practical applications. In 2005, Bernstein [2] and Osvik, Shamir, and Tromer
[17,18] showed in independent work that the Advanced Encryption Standard
(AES) is particularly vulnerable to this type of side-channel attack, generating
a lot of attention for the field. Subsequent work dealt with verifying the find-
ings [16,15,14,22,7], improving the attack [20,3,13,5], and devising and analyzing
countermeasures [6,4,25].

However, the cryptanalytic attention was mainly focussed on AES, while other
ciphers were treated only handwavingly. For example, the eStream report on
side-channel attacks [10] simply categorizes all stream ciphers that use tables
in their implementations as vulnerable, independent of whether or not a cache
timing attack was actually feasible. The cache timing analysis of the HC-256
stream cipher [26] presented at SAC 2008 was the first paper to actually analyze
the cache timing resistance of a stream cipher. It also provided a model for the
design and analysis of stream ciphers with regards to cache timing attacks.

M.G. Parker (Ed.): Cryptography and Coding 2009, LNCS 5921, pp. 433–445, 2009.
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In this paper, we discuss a different class of stream ciphers, namely those
using tables to speed up software implementations of word-based linear feed-
back shift registers (LFSRs). The technique was introduced around the year
2000 and is used by ciphers such as Snow [8,9], Sober-128 [11], Turing [21], or
Sosemanuk [1].

1.1 Organisation of the Paper

The paper is organized as follows. In Section 2, we review the cache timing
model that is used for the analysis and discuss its goal and practical relevance.
Section 3 gives the general framework for the attack and describes its applica-
bility to a wide range of stream cipher, including but not limited to the concrete
examples being discussed in Section 4. Finally, in Section 5, we summarize our
findings.

1.2 Notation

All ciphers discussed below are word-based, where one word consists of 32 bits.
On a 32-bit value, we denote by ⊕ the bitwise addition in F232 , by � the addition
modulo 232. The notations * n and + n define left and right shifts by n
bits (modulo 232), and n the left rotation by n bits. For any vector x =
(x0, . . . , xn−1) in Fn2 and integers 0 ≤ a < b < n we denote by x(a,...,b) the vector
(xa, . . . , xb).

2 Cache Timing Model

As with all side-channel attacks, cache timing attacks are not inherently at-
tacks against the algorithm, but against its implementation1. Thus, there are
basically two ways of analyzing the cache timing resistance of a cipher. One
can either consider a concrete implementation of the cipher, or do a general
analysis in the framework of a model that gives the adversary certain rights,
which can be modeled as oracle accesses. In the latter case, a “break” within
the model does not necessarily imply a break of all practical implementations,
but it can indicate that extra care has to be taken when implementing the
cipher.

The model that we want to use for our analysis is the one proposed in [26]. It
models a synchronous cache attacker, i.e. an adversary who can only access (and
thus perform measurements on) the cache after certain elementary operations by
the legitimate users have finished. In particular, a synchronous cache adversary
can do cache measurements before and after a full update of the stream cipher’s
inner state, but not while the update is in progress.

1 For readers not familiar with cache timing attacks, Appendix A gives a short
introduction.
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Formally, the adversary uses two oracles:

– Keystream(i): He requests the cipher to return the i-th keystream block
to him.

– SCA Keystream(i): He obtains a noise-free list of all cache accesses made
by Keystream(i), but does not learn anything about their order. These
cache accesses give him information about the actual table entries as de-
scribed in the paragraph on “Handling Cache Line Sizes” below.

Model vs. Real World: Note that the Keystream(i) oracle is considered “stan-
dard” for stream cipher analysis, i.e. it is also available to an adversary in a non-
side-channel setting. The SCA Keystream(i) oracle, on the other hand, gives
the adversary more information than will typically be available in a real-world
side-channel setting, since it assumes that his measurements are undisturbed by
noise. Thus, the results obtained in this paper are for an idealized cache mea-
surement setting. Whether attacks under this model also constitute attacks in
the real world depends on the implementation details and has to be verified on
a case-by-case basis.

In the real world, the adversary usually needs the ability to repeat his mea-
surements several times in order to remove the noise from the list of cache
accesses. This corresponds to running the stream cipher under the same key and
initialization vector (IV) for a given number of times, each time measuring the
cache lines accessed and intersecting the resulting tables. Note that while en-
crypting different plaintexts under the same IV should not be possible for most
implementations, one can imagine applications where the adversary can ask the
system to decrypt the same ciphertext several times under the same IV, thus
forcing the stream cipher to execute an identical sequence of operations.

Also note that there may be “wrong” cache accesses that occur very frequently,
i.e. that do not disappear when repeating the measurement and intersecting
several cache access lists. These accesses may originate with external processes
such as applications or the operating system. In some cases, it may be possible
to identify these wrong accesses by repeatedly running the stream cipher for a
number different IVs – the cache accesses that stay constant are the ones that
are independent of the cipher and can thus be ignored.

In all cases, if the noise can not be eliminated completely, discarding the set of
measurements is always an option. As will be described in Section 3, our attack
technique already works if noise-free measurements are possible only once in a
while.

Handling Cache Line Sizes: In theory, addresses of cache lines translate into
information about the table indices used. However, in real-world cache timing
attacks, a cache line can hold several table entries, i.e. a cache line represents
several table indices. Thus, even if the adversary could do noise-free measure-
ments, he would still not learn the exact table indices used, but only obtain b
bits of partial information about the table index.

Consider the case of the popular Pentium 4 processors as an example. All
LFSR lookup tables used by the ciphers in this paper contain 256 32-bit entries,
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i.e. each table entry fills 4 bytes. A cache line in a Pentium 4 processor is 64
bytes broad, meaning that it can contain 16 table entries. Thus, given the correct
cache line, the adversary learns only a subset of 16 table entries which contains
the right one. Since these table entries are typically aligned2, this corresponds to
learning the b = 4 most significant bits of the table index, while the adversary
obtains no information whatsoever about the 4 least significant ones.

More generally, if a table contains 2c entries of d bytes each, and if the pro-
cessor has a cache line size of λ bytes, then each cache line will hold λ/d table
entries. Thus, even in a completely noise-free scenario, the attacker can not re-
construct more than the uppermost b = c− log2(λ/d) bits of the table index (i.e.
c bits in the best and 0 bits in the worst case).

3 General Framework of the Attack

In this section we present the general framework of our cache timing attack.
All ciphers that make use of a LFSR for which clocking the LFSR involves
table lookups are covered by this framework. This includes the stream ciphers
Sosemanuk, Snow, Sober and Turing, which we will analyze separately below.

3.1 Basic Idea
Observing inner state bits: Given a stream cipher with an LFSR of length n
defined over F2m we denote by

s = (s0, . . . , sn−1) ∈ Fn2m

the initial state of the LFSR after initialization and by

(st, . . . , st+n−1) ∈ Fn2m

its internal state at time t. Our model assumes that for clocking the LFSR the
implementation makes use of table lookups. This is the case for almost all stream
ciphers using an LFSR defined over F2m , the reason being that this usually is the
fastest manner to implement multiplication by one fixed element in F2m . At time
t this table lookup uses some bits of one of the elements st+i for 0 ≤ i < n (in
the case of Sosemanuk, Snow, Sober and Turing it involves 8 bits). Depending on
the cache line size (cf. the discussion above) the cache timing measurements will
reveal b of those bits. The trivial, but important, observation is that all those bits
can be expressed as linear combinations of bits of the initial state s. Moreover,
computing the actual linear combination can easily be done as follows.

Transforming into initial state bits: Elements in F2m can be identified with m-bit
words (i.e. elements of Fm2 ) via a vectorspace isomorphism

ψ : F2m → Fm2 .

2 If they aren’t, the attack gets easier, since certain lines leak more information than
assumed here.
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Using the isomorphism ψ we can consider the state of the LFSR as an element
in Fnm2 instead of an element of Fn2m via

(st, . . . , st+n−1) → (ψ(st), . . . , ψ(st+n−1)).

Then, clocking the LFSR can be described by applying an invertible nm × nm
matrix over F2 to the current state. This is true simply because updating the
LFSR is certainly a F2m-linear operation and therefore in particular F2-linear.
We denote the matrix that corresponds to updating the LFSR by M . Moreover,
the matrix M can be easily computed given the feedback polynomial of the
LFSR.

Each table lookup reveals some bits of st+i, i.e. ψ(st+i)(a..a+b−1) for some
a ∈ {0, . . . ,m − b − 1}. Writing ψ(st+i) as M tψ(s) we see that

ψ(st+i)(a..a+b−1) = [M tψ(s)](a
′..a′+b−1)

for some a′ ∈ {0, . . . , nm − b − 1} and thus linear in the bits of the initial state
as claimed. In this way, each bit observed in a cache timing measurement yields
a linear equation in the initial state bits, and once sufficiently many equations
have been collected, the initial state can be retrieved by solving the equation
system.

3.2 Number of Required Noise-Free Measurements

Practical problems: It remains to discuss the number of measurements that are
required to obtain a solvable equation systems. We start by pointing out that in
practice, we can not expect to obtain all cache measurements that seem possible
in theory. The following problems can occur, but as it turns out, they can be
overcome using the linearity of the above equations:

1. If the cipher clocks the LFSR several (say c) times for each call to
Keystream(i), or if the table is accessed several times for each clock, then
a synchronous adversary can not measure each single table access separately.
Instead, he learns c indices at a time (see e.g. Sosemanuk, where c = 4). This
implies that the attacker gets to know the values

ψ(st+i)(a..a+b−1), . . .ψ(st+i+c−1)(a..a+b−1)

but not the order of those.
This problem can be dealt with by forming a linear equation using the sum
of all the observed values. This way, the adversary obtains only 1 observation
(instead of c) for each round, but otherwise, there is no effect on the overall
effort of the attack.

2. Also in the case where a table is accessed several times for each call to
Keystream(i), there is the problem of collisions. If two or more table ac-
cesses use the same cache line, then above trick no longer works. For example,
if he measures accesses to cache lines L1, L2, L3 for Sosemanuk (4 accesses
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per call), then he does not know which cache line information he has to
use twice. Guessing is usually not a good strategy, since it rapidly increases
the overall work effort for the attack. Instead, if such collisions are not too
frequent, simply discarding the measurements and trying again next round
gives much better results.

3. As described in Section 2, the number of bits available for analysis depends
on the cache line size. In particular, for processors with large cache lines, the
information available decreases. Nonetheless, as long as at least one bit of
information leaks, the attack still works as described above.

Number of Noise-Free Measurements: Assume we are attacking an LFSR with
an internal state of n elements of F2m and the cache measurement reveals only
a fixed linear combination of internal state bits at each k-th iteration. In this
case, nmk iterations suffice to completely reveal the initial state of the LFSR.
The easiest way to see that is to interpret the initial state s of the LFSR as an
element of F2nm (see for example [12, Chapter 8] for details). Clocking the LFSR
corresponds to multiplying the internal state by a fixed element α ∈ F2nm and
the information leaking at time T = tk can be written as uT = Tr(θ(αk)ts) for
an fixed element θ ∈ F2nm depending on the linear combination of bits that are
leaked. Here Tr denotes the trace function

Tr : F2nm → F2

Tr(x) =
nm−1∑
i=0

x2i

.

The usual requirement that the LFSR should have maximal period corresponds
to α being a primitive element in F2nm . Thus, for reasonably small k, the element
αk is not in a proper subfield of F2nm and

(αk)0, (αk)1, . . . , (αk)nm−1

form an F2 basis of F2nm . Therefore, all the linear equations uT = Tr(θ(αk)ts)
for T = tk, t ≤ nm − 1 are linearly independent and the initial state can be
uniquely recovered by solving the corresponding system of linear equations.

Note that this result only holds if all known keystream bits are exactly equidis-
tant. For the ciphers discussed in this paper, this effect can be achieved by mea-
suring only 1 bit for each clocking of the LFSR (where in principle, we could
measure b or even 2b bits). If, however, some measurements have to be discarded
due to collisions or noise, then the result can not be applied. Nonetheless, it is
still very likely that we need only a very small overhead of noise-free measure-
ments to get a uniquely solvable system. Namely, under the assumption that
it behaves like a random system of linear equations, the probability that after
nm+ δ noise-free measurements the resulting system has full rank is given by

p =
nm−1∏
j=0

2nm+δ − 2j

2nm+δ ≈ 1 − 2−δ.
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For example, when using the Sosemanuk parameters n = 10 and m = 32, the
equation system will have rank nm with probability > 0.969 after only δ = 5
additional noise-free measurements.

4 Analyzing Specific Ciphers

In this section we apply our general framework to the ciphers Sosemanuk, Snow,
Sober and Turing. All ciphers are described briefly, giving only the details re-
quired to understand the attack.

For all those ciphers it turns out that once the internal state of the LFSR is
recovered, the remaining bits of the internal state (if any) can be determined
very efficiently. We explain the attack on Sosemanuk in detail; the other ciphers
are discussed much shorter as the general approach is always the same.

In order to simplify notation in this section, we do not explicitly write the
isomorphism operator ψ but assume that the reader is aware of whether a given
vector is in F2m or in Fm2 .

4.1 Analysis of Sosemanuk

The Sosemanuk cipher was proposed by Berbain et al. in 2005 as an eStream
candidate [1]. Sosemanuk consists of a 10-word LFSR over F232 , a finite-state
machine (FSM) with two 32-bit words, and an output function combining LFSR
and FSM output into the keystream. No valid attacks against the cipher have
been proposed so far.

LFSR: The linear recursion of the LFSR is defined by

st+10 = st+9 ⊕ α−1st+3 ⊕ αst,

where α is a fixed element in F232 . An optimized implementation of the mul-
tiplications by α and α−1 uses 8x32-bit lookup tables T1 and T2. Ignoring the
isomorphism operator ψ, the multiplications can be implemented as follows:

x · α =
(
(x * 8) ⊕ T1[x(24..31)]

)
x · α−1 =

(
(x + 8) ⊕ T2[x(0..7)]

)
.

FSM: In addition, we need a simplified description of the FSM. If we denote the
two 32-bit state words by R1 and R2 and the inner state words of the LFSR
by st as above, we can describe the production of an intermediate value ft as
follows:

R1t = Update1(R1t−1, R2t−1, st+1, st+8)
R2t = Update2(R1t−1)
ft = (st+9 �R1t) ⊕ R2t

We don’t need the internals of the functions Update1 and Update2 for the
analysis.
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Output: Before producing output, Sosemanuk will clock the LFSR 4 times and
generate four intermediate values. Then the keystream output is generated as

(zt+3, zt+2, zt+1, zt) = Serpent1(ft+3, ft+2, ft+1, ft) ⊕ (st+3, st+2, st+1, st),

where we don’t have to know more about the Serpent1 function than that it is
a permutation that is easily invertible.

Cache Timing Attack

Cache Measurements: Assume for simplicity that b = 8, i.e. that the adversary
observes all 8 bits of the table indices for T1 and T2 after any output block of
his choice. This means that he obtains 4 measurements of accesses to T1 and T2
each. In the case of T1, he knows that they correspond to inner state bytes

s
(24..31)
t , s

(24..31)
t+1 , s

(24..31)
t+2 , s

(24..31)
t+3 ,

but he does not know the correct order. The same also holds for the accesses to
T2, which give information about

s
(0..7)
t , s

(0..7)
t+1 , s

(0..7)
t+2 , s

(0..7)
t+3

without revealing the proper ordering.

Reconstructing the LFSR State: The attacker knows at each time T = 4t the
values

uT = s
(24..31)
t ⊕ s

(24..31)
t+1 ⊕ s

(24..31)
t+2 ⊕ s

(24..31)
t+3 (1)

and
vT = s

(0..7)
t ⊕ s

(0..7)
t+1 ⊕ s

(0..7)
t+2 ⊕ s

(0..7)
t+3 , (2)

as those sums do not depend on the ordering anymore. As both Eq. 1 and 2 yield
b = 8 linear equations over F2, we get a total of 16 linear equations for the initial
state s at each time T . It turns out that after 20 LFSR clockings the resulting
320 equations already have full rank and therefore the initial state can easily be
computed given uT , . . . , uT+19 and vT , . . . , vT+19. Note that if b < 8, then the
number of LFSR clockings whose timings have to be observed is 320/2b = 160/b.

Reconstructing the FSM State: Given the correct inner state of the LFSR, the
inner state of the FSM is easily reconstructed. To this end, we proceed as follows:

1. Given output words zt, . . . , zt+3, the adversary can subtract st, . . . , st+3 and
obtains the output of the Serpent1 S-box.

2. The S-box is invertible, yielding the values ft, . . . , ft+3.
3. The adversary guesses the state ofR1t (32 bits), which allows him to compute

the state of R2t from the equation ft = (st+9 �R1t) ⊕ R2t.
4. The adversary updates the state of the FSM once to obtain R1t+1 andR2t+1.

He checks whether the output matches the observed ft+1.



Cache Timing Analysis of LFSR-Based Stream Ciphers 441

Normally, after this step, only the correct guess for R1t should have survived. If
more guesses survive, one simply continues updating the inner state and checking
against the output, until the state (R1, R2) is uniquely determined. In total, this
step requires not more than 232 simple guess-and-determine steps. Note that
algorithmically more elegant ways of reconstructing the FSM state might exist,
but since 232 guess-and-determine steps are easily computable on e.g. a standard
PC, we did not search for such attacks.

Resources: The overall effort for the attack is dominated by reconstructing the
FSM state and therefore has an overall complexity of 232 guess-and-determine
steps, and the memory consumption is dominated by the space for storing the
320 × 320-bit equation system. Thus, assuming the availability of noise-free tim-
ing observations for ≈ 160/b LFSR clockings, we have an efficient cache timing
attack against Sosemanuk.

4.2 Analysis of Snow 2.0

Snow 2.0 was proposed by Ekdahl and Johansson in 2002 [9]. It uses an LFSR
over F232 of length 16, an FSM with two 32-bit words, and an output function
combining LFSR and FSM output into the keystream. No valid attacks against
the cipher have been proposed so far.

LFSR: The linear recursion of the LFSR is defined by

st+16 = α−1st+11 ⊕ st+2 ⊕ αst,

where α is a fixed element in F232 . Just as for Sosemanuk, two 8x32-tables T1
and T2 are involved for the multiplication by α and α−1. Each of them is called
exactly once for each state update.

FSM: Snow uses a FSM consisting of two 32-bit words R1t and R2t. The exact
specification is not important for our attack. It suffices to know that given the
internal state, the output stream and one of the two words of the FSM the
remaining word is uniquely determined.

Cache Timing Attack

Cache Measurements: Assuming precise measurements, the adversary obtains
the uppermost b bits of the table indices for T1 and T2. In each round, he
obtains one measurement for T1 and T2 each. In the case of T1, he knows that
they match to inner state bytes s(31−b+1..31)

t and in the case of T2 the attacker
learns s(7−b+1..7)

t . As both observations yield b linear equations over F2, we get a
total of 2b linear equations for the initial state s for each LFSR clocking. Thus,
after approximately 512/2b = 256/b LFSR clockings, the equation system can
be solved.
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Table 1. Attack parameters against various ciphers

Size of Guessing # Cache Measurements Known
eq. system Steps General Pentium 4 Keystream

Sosemanuk 320 232 160/b clks 40 clks 16 bytes
Snow 2.0 512 232 256/b clks 64 clks 8 bytes
Sober-128 544 - 544/b clks 136 clks 4 bytes
Turing 544 - 544/b clks 136 clks -

Reconstructing the FSM State: As mentioned above, the inner state of the FSM
consists of two words. As for Sosemanuk, by guessing one word (e.g R1t), the
adversary can derive the other. He can then update the inner state and verify
whether his guess was correct. Again, the expected workload is not more than
232 simple guess-and-determine steps.

4.3 Analysis of Sober-128

Sober-128 was proposed by Hawkes and Rose in 2003 [11]. It makes use of an
LFSR over F232 of length 17, a key dependent 32-bit constant K, and a nonlinear
output function combining the LFSR and the constant K into the keystream.

LFSR: The linear recursion of the LFSR is defined by

st+17 = st+15 ⊕ st+4 ⊕ αst,

where α is a fixed element in F232 . Just as for Sosemanuk and Snow 2.0, multi-
plication by α is done using a lookup table.

Cache Timing Attack. Assuming precise measurements, the adversary observes
b bits for each round, i.e. s(7−b+1..7)

t . Thus, after ≈ 544/b rounds, we expect to
be able to reconstruct the LFSR state. Given this state, the constant K can
trivially be computed given one keystream word.

4.4 Analysis of Turing

Turing was introduced by Rose and Hawkes in 2002 [21]. It is based on the same
LFSR as Sober-128 and uses a fixed non-linear filter function on the internal state
of the LFSR to generate the keystream. In particular the cache timing part is
exactly the same as for Sober-128. As the internal state of Turing consists only
of the LFSR state, no additional bits have to be recovered and in particular no
keystream bits are needed to perform the attack.

5 Conclusions

We have shown how to mount cache timing attacks against all word-based LFSR
implementations that use lookup tables to speed up multiplications. As described
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above such ciphers are especially vulnerable to cache timing attacks. All of them
we are aware of can be broken very efficiently within our theoretical model.

What is more, our attack is tolerant with respect to noisy measurements: the
information delivered by the cache timings may be few (1 bit once in a while is
enough) and far between (the distances between the bits can be arbitrary). This
is due to the fact that a noise-free measurement always reveals a linear equation
for the internal state. Thus, as long as we can detect errors, we can simply
discard noisy measurements without significantly increasing the complexity of
the equation system to be solved.

Clearly, implementing cache timing attacks on real life systems is a difficult
and cumbersome task that requires dedicated skills. However, due to the reasons
outlined above, we anticipate that it is significantly easier to implement our attack
on the above mentioned stream ciphers than most other cache timing attacks.

Countermeasures. A possible countermeasure is to split the lookup table into
several, smaller tables such that each table fits into one cache line. Here is a short
example using C notation. Suppose LinTab[256] is a lookup table with 32-bit en-
tries and our processor has cache lines of 64 bytes, so each cache line can contain
at most 16 table entries. The linearity of the table can be exploited to compute
LinTab[x] using two smaller tables LinTabUpper[16] and LinTabLower[16]
with entries defined as:

for(y=0; y<16; y++) LinTabUpper[ y ] = LinTab[ y << 4 ];
for(y=0; y<16; y++) LinTabLower[ y ] = LinTab[ y ];

The linearity of LinTab[] means that we can generate the value of LinTab[x]
at compute time using five operations:

LinTabUpper[ x >> 4 ] ^ LinTabLower[ x & 0xF ];

This way, no information about the cache entries can be obtained by timing
measurements because LinTabUpper[] and LinTabLower[] each fit within one
cache line. It should be noted that there is a performance penalty since the
one table-lookup operation is replaced by five operations, and this performance
penalty might be prohibitively large for the speed-sensitive stream ciphers.
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A Cache Timing Attack Basics

In the following, we give a short introduction to cache timing attacks. For more
detailed information, the reader is referred to the introductory papers by Bern-
stein [2] and Osvik, Shamir, and Tromer [17,18].

Cache motivation: Modern processors store data in different types of storage.
Data that is currently being processed is stored in the so-called registers; how-
ever, only few of these are available. Instead, reasonably large amounts of data
(such as look-up tables or S-boxes) are stored in RAM. Since access to RAM is
relatively slow compared to executing an arithmetic operation, frequently used
data is also stored in an intermediate type of memory, the so-called cache.

Cache workings: The CPU cache of modern processors is organised into blocks –
so-called lines – of λ bytes. Correspondingly, RAM is considered to be (virtually)
divided into λ-byte lines. When loading data from RAM into a CPU register, the
system first checks whether the corresponding RAM line already lies in cache. If
yes, it is loaded directly from cache, which is very fast. If not, it is first loaded
from RAM to cache, which takes longer. Mapping from RAM to cache is typically
by a simple modulo operation, i.e. if the cache can hold n lines and if the data
lies in RAM line a, then it is loaded into cache block a mod n. This means that
neighbouring data in RAM (e.g. tables) stays clustered in cache.

A simple attack: As an example, consider the prime-then-probe method pre-
sented in [18]. The adversary starts by filling all the cache with his own data.
Then the legitimate user U gets the read/write token. U loads the data required
for his own computations into cache, where it evicts the adversary’s data. When
the adversary reobtains the read/write token, he tries to reload his own data
from cache. For each cache line, if this takes long, it means that U has evicted
the corresponding data.

From this analysis, the adversary obtains a profile of cache blocks that have
been used by U . This profile is a noisy version of the cache lines that have been
used for the encryption. By repeating the experiment a number of times, a good
approximation of the real cache access profile can be obtained.

Note that the adversary does not learn the data that was written in the cache by
U – he learns something about the addresses of the data that was used. In the case
of an LFSR, this corresponds to the indices of the LFSR cells that were accessed.
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Abstract. It should be difficult to extract secret keys using weak side
channel leakage from embedded crypto-systems which employ standard
counter-measures. Here we consider the case of key re-use with random-
ised exponent recoding. An optimum strategy is presented and proved,
but it has the disadvantage of impracticality for realistic key sizes. De-
veloped from the basis of an optimal decision strategy, some modified,
computationally feasible versions are studied for effectiveness. This shows
how to modify existing algorithms and pick their parameters for the best
results.

Keywords: Side channel leakage, power analysis, optimal strategy.

1 Introduction

The academic parents of this work are the optimal strategies of Schindler [10]
and the algorithms of Walter [13] for deducing secret keys using weak side chan-
nel leakage from an exponentially based public key crypto-system in which the
key is re-used a number of times in some form. The optimal decision strategy
is practically feasible if the key can be guessed in small parts as in [10], for in-
stance, while under the present conditions it remains feasible only for artificially
small key sizes. However, the algorithms discussed in [13] still remain feasible for
typical cryptographic key sizes. Here a comparison of the two approaches leads
to i) the determination of the best parameters to choose in existing computation-
ally feasible algorithms and ii) the identification of points in the development
of the algorithm where it seems impossible to derive a computationally feasi-
ble method from the optimal algorithm. Although standard hardware counter-
measures nowadays make side channels extremely weak in embedded systems,
the methods here were used in simulations to recover keys using substantially
weaker leakage than has been reported in the past.

The earliest published work on such secret key recovery is that of Kocher et
al. [6,7]. For RSA and similar crypto-systems, (unprotected) classical exponent-
iation algorithms employ the same sequence of multiplicative operations every
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time the key is re-used, and this allows leakage (in a certain sense) to be av-
eraged over many traces to guess the key in small portions, such as bit by bit.
With enough data, the operation types can be determined as squarings or multi-
plications, and this is sufficient to yield the key for the binary exponentiation
algorithm. Randomised recoding of the exponent causes operations correspond-
ing to the same key bit to be mis-aligned and variable for different uses of the
key. A number of such re-codings exist [9,8,4,15] and they were generally be-
lieved to lead to much more secure systems – attacks on such re-codings seemed
to require significantly stronger side channel leakage to succeed than is the case
where Kocher’s attack applies. However, this no longer seems to be the case.
Karlof & Wagner [5], Green et al. [3] and Walter [13] provide increasingly robust
details for attacking such systems without using such strong leakage, thereby
emphasising the need to combine a number of counter-measures rather than re-
lying on just one or two to defeat the opponent. None of these works provides
justification for the efficacy of their algorithms. Thus there is a gap between
what has been achieved at a computationally feasible level and what has been
derived theoretically. Here we describe a search to bridge that gap by explaining
the computationally efficient choices in terms of the optimal strategies described
by Schindler in [10]. As a result, much more powerful means of exploiting the
leakage are now identified.

2 The Leakage Model

The context of the side channel attack is the repeated use of a randomised
exponentiation algorithm for computing CK in any cryptographic group where
K is a fixed secret key which is not blinded by a random multiple of the group
order1, and C is an unknown ciphertext (or unknown plaintext) which may vary
and may be blinded2. Of course, all the following considerations apply equally
well to randomised scalar multiplications in additive groups (as in ECC).

The adversary is assumed to know all the details of the exponentiation al-
gorithm. Use of the key provides him with a side channel trace for the expo-
nentiation itself, but no further information is assumed: in particular, he is not
expected to be able to choose or see any direct input to the exponentiation, nor
view any output, nor usefully observe any pre- or post-processing.

It is assumed that occurrences of multiplicative operations in the exponentia-
tion can be identified accurately from the corresponding side channel trace, but
that their identities as squares or multiplications (and, in the case of methods
with pre-computed tables, multiplications by particular table entries) can only
be determined with a substantial degree of inaccuracy [1]. The adversary’s aim
is to discover K using computationally feasible resources. The multiplicative op-
erations are assigned probabilities that they represent squares or multiplications
as a result of previous experience by the adversary. For this he uses knowledge
1 Another standard counter-measure to Kocher’s averaging of side channel traces.
2 The base in the exponentiation is frequently unknown due, for example, to “Rivest”

blinding [2] or because of an unknown modular reduction when applying the CRT.
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of the stochastic behaviour of the operations in the side channel, and the extent
to which this behaviour varies.

In order to model noisy measurement data in the simulations we assumed that
these probabilities were distributed binomially and independently for all multi-
plications with mean probabilities depending on the true type of the operation,
so that some were known correctly with high probability, but most were known
with little confidence. However, Theorem 1 also covers more general leakage
scenarios.

3 The Randomised Exponentiation

Examples of the randomised exponentiation algorithms which can be attacked
in the way described here include those of Liardet-Smart [8], Oswald-Aigner [9]
and Ha-Moon [4,15]. Their common, underlying basis is a recoding of the binary
representation of the key K into a form

R = ((...(rm−12mm−2 + rm−2)2mm−3 + ... + r2)2m1 + r1)2m0 + r0

for digits ri and exponents mi in some fixed, pre-determined sets D ⊆ Z (which,
for convenience, contains 03) and M ⊆ N+ respectively. In this recoding, both
ri and mi are selected according to some finite state automaton (FA) which has
the bits of K and the output from a random number generator (RNG) as inputs.
For convenience, we assume the bits of K are consumed by the FA from least to
most significant. Different bit streams from the RNG result in different recodings
R of K.

The exponentiation CR begins with the pre-calculation of the table {Cd | d ∈
D, d�= 0}. Then for i = m−2,m−3, ...2, 1, 0 the main iterative step of the exp-
onentiation consists of mi squarings followed by a multiplication by the table
entry Cri when ri �= 0. This results in a sequence of multiplicative operations
which is most easily presented using ri to denote multiplication by Cri and mi

copies of 0 to denote the mi squarings. We call this the recoding sequence for
R, and it belongs to D*. For example, the exponent K = 1310 = 11012 may
have a recoding R = (1.22+3)21+1̄ which gives the operation sequence 100301̄,
the recoding sequence associated with the recoding R. For convenience (e.g. in
Section 7), the leading recoded digit is translated in the same way as the others
into multiplicative operations of the recoding sequence even when that digit is
0; alternatives in processing the leading bits are ignored. (This matches the situ-
ation where the exponentiation algorithm begins with 1 instead of C.) However,
the leading digits are invariably treated differently in practice, and appropriate
modifications need to be made in the methods here to handle them properly.

Thus, we are using the same set D to represent both the set of recoding digits
and the set of corresponding recoding operations. In our examples, we will make
the distinction clearer by using, for example, ‘S’ for the squaring operation and
3 Recodings which do not allow 0 in representations are not excluded here, but we

want to include it for another use, namely to represent a squaring operation.
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reserving ‘0’ for the digit. We will rarely be working with recodings. It will be
much more frequently be with recoding sequences.

The exponentiation algorithms of interest are assumed to have the property
that perfect knowledge of the multiplication/squaring sequences (without nec-
essarily knowledge of the choice of respective table entries in the case of multi-
plications) for a small number of recodings R of K yields enough information to
reconstruct the secret key K with at most a small number of ambiguities. This is
the case for the algorithms listed above: attacks on them using such information
are described in [11], [12] and [15] respectively. The theory here, however, allows
for the possibility of distinguishing between the use of different table entries in
the multiplications, and this enables one to deal with recodings for which only
non-zero digits are used.

4 The Optimal Decision Strategy

The optimal decision strategy for discovering the secret key K begins by iden-
tifying a key K∗ with the highest probability of having generated the observed
side channel leakage. If the most likely key candidate fails the attacker tries
the key candidates that are ranked 2, 3, . . .. This maximises the use of known
information about K and hence minimises the effort in searching for K.

For each use of the secret key K, the side channel leakage leads to a best
guess G at the recoding that was used: the locations of multiplicative operations
are identified, and the most likely digit values are selected for those operations.
Associated with a set of these recoding guesses there are optimal choices K∗ for
the key value – those which maximise how well the key collectively matches the
guessed recodings.

Remark 1. To be successful in real-world attacks we must assume there is enough
leakage to ensure that the correct key is among the best, i.e. most probable, fits
to the recoding guesses for otherwise it will be computationally infeasible to find
it. If not correct, the most plausible keys typically are at least related to the
correct one, which means that their bit representations or their recodings are
similar to that of the correct key in some sense. E.g., long sequences of bits in
these most probable keys may either be identical to those in the correct key or,
depending on the recoding scheme, related to them in very specific, predictable
ways4. Hence the errors in using a most probable key to predict the correct
key should also be relatively few in number, generally isolated, and effectively
independent. Consequently, virtually all errors will be equally easy to correct
although finding them may not be so easy.

Definition 1
(i) Let K ⊆ F2* denote the set of all admissible keys in binary representation and
R ⊆ D* the set of all possible recoding sequences of keys for the chosen recoding

4 E.g. two keys which are bit-wise complements of each other can have almost identical
recodings, as may two keys of which one is almost the same as a shift of the other.
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scheme. Recoding to an operation sequence is defined by a map φ: K×Z → R
where z ∈ Z denotes a random number in a finite set Z. The set φ(K,Z) ⊆ R
of possible recoding sequences of K is denoted R(K) or RK .

(ii) The set of possible recoding sequence guesses which can be deduced from side
channel leakage is denoted by G where R ⊆ G ⊆ D*, and len(G) is the number of
elements in a guess G ∈ G when viewed as a sequence over D. The ith element
of G is gi where the index runs from len(G)−1 (the most significant operation)
down to 0 (the least significant operation).

(iii) The random variable XQ assumes values in the set Q.

Clearly the subsets R(K) are disjoint for different K’s – each recoding sequence
specifies exponentiation to a particular power, and that power is K. We seek to
determine K ∈ K from guesses G1, . . . , GN ∈ G based on side channel leakage
with the disadvantage that the Gj are probably inconsistent because of erroneous
operation deductions, i.e. they may not all represent the same key K; some Gj
may even represent ‘impossible’ recoding sequences (i.e. not belonging to any K).

Starting with key K ∈ K a guessed recoding sequence G may be interpreted
as the result of two consecutive random experiments. The first step (recoding to
an operation sequence) is determined by a random number z (and K, of course).
The second step (adding noise), namely recoded operation sequence → recoding
guess, is determined by a hidden parameter y ∈ Y which represents the influence
of noise of various forms such as that arising from the measurement process itself
or from implemented countermeasures. Formally, the guessing step R �→ G can
be expressed by a function ψ: R×Y → G, (R, y) �→ ψ(R, y) since the guessed
recoding sequence G depends on the actual recoding sequence R = φ(K, z) ∈ R
but not directly on K ∈ K or z.

The random variable XK describes the selection of the key K during initiali-
sation of the attacked cryptosystem. Without loss of generality we may assume
the probability η(K) of each key is non-zero:

η(K) def= Prob(XK = K) > 0 for all K ∈ K. (1)

The distributions of XK and XZ and, of course, the applied recoding scheme
determine the distribution ν of the random variable XR

def= φ(XK, XZ). The
random variable XG quantifies the distribution of random recoding sequences
that are guessed by the attacker. Theorem 1 considers the situation where an
attacker observes N re-uses of the key K. We assume that the associated random
variables XK, XZ,1, . . . , XZ,N , XY,1, . . . , XY,N are independent.

Theorem 1. (i) Given recoding sequence guesses G1, . . . , GN ∈ G, the opti-
mal decision strategy τ∗ : GN → K selects a key K∗ ∈ K that maximises the
expression

N∑
j=1

log

⎛⎝ ∑
R∈R(K)

ν(R)Prob(XG,j=Gj | XR=R)

⎞⎠− (N−1) log (η(K)) = (2)
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N∑
j=1

log

⎛⎝ ∑
R∈R(K)

ν(R | XK=K)Prob(XG,j=Gj | XR=R)

⎞⎠+ log (η(K)) . (3)

If this maximum is attained for several keys the first key is chosen under any
pre-selected order on K.

(ii) Assume that the adversary is able to detect whenever an operation of the
recoded sequence R is carried out and guesses the types of these operations in-
dependently to obtain G ∈ G. Assume also that the conditional probabilities
p(g|r) def= Prob(guessed opn type is g given the true opn type is r) for guessed
operations g do not depend on the position of the operation r but only on the
operation types g, r ∈ D. Then len(R) = len(G), and the optimal decision K∗

with respect to the N such guesses G1, . . . , GN maximises

N∑
j=1

log

⎛⎜⎝ ∑
R∈R(K):

len(R)=len(Gj )

ν(R)
len(Gj)−1∏
i = 0

p(gj,i | ri)

⎞⎟⎠− (N−1) log (η(K)) = (4)

N∑
j=1

log

⎛⎜⎝ ∑
R∈R(K):

len(R)=len(Gj )

ν(R | XK=K)
len(Gj)−1∏
i = 0

p(gj,i | ri)

⎞⎟⎠+ log (η(K)) . (5)

(iii) Assume that D = {0, 1, 1}. Suppose also that (ii) holds with p(0|0) = 1,
p(1|1) = p(1|1) = q ∈ [0, 0.5] and p(0|1) = p(0|1) = 0. Then the optimal
decision K∗ maximises

N∑
j=1

log

⎛⎜⎜⎜⎜⎝
∑

R∈R(K):
len(R)=len(Gj ),

supp0(R)=supp0(Gj )

ν(R)
(

q

1 − q

)Ham(R,Gj)

⎞⎟⎟⎟⎟⎠− (N−1) log (η(K)) = (6)

N∑
j=1

log

⎛⎜⎜⎜⎜⎝
∑

R∈R(K):
len(R)=len(Gj ),

supp0(R)=supp0(Gj )

ν(R | XK=K)
(

q

1 − q

)Ham(R,Gj)

⎞⎟⎟⎟⎟⎠+ log (η(K)) (7)

where supp0(R) and supp0(Gj) are the sets of positions in R = (rlen(R)−1, . . . , r0)
and Gj = (gj,len(R)−1, . . . , gj,0) for which the type of operation is a squaring,
i.e. ri = 0. Further, Ham(R,Gj) denotes Hamming distance, viz. the number of
positions for which the operations in R and Gj differ.

(iv) If XK is uniformly distributed on K the terms “(N−1) log (η(K))” in (2),
(4), (6) and “log (η(K))” in (3), (5), (7) may be omitted.

(v) For any constant c > 0, multiplying the probability ν(R) in (2), (4) or (6)
(resp. the conditional probability ν(R | XK = K) in (3), (5) or (7)) by c for all
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R ∈ R does not change the optimal decision strategy in (i), (ii), (iii) or (iv),
respectively, but may simplify concrete calculations.

Proof. To prove (2) we apply Theorem 3(i) from the Appendix (originally proved
as Theorem 1(i) in [10]) with Θ = K, Ω = GN , µ = the counting measure on GN ,
and the loss function s(θ, a) def= 0 if θ = a and s(θ, a) def= 1 otherwise since, as
noted at the start of this section, any kind of false key guess is equally harmful.

Let ProbK(A) be the probability of the event A if K is the correct key.
Then the optimal decision strategy τ∗: GN → K assigns to the guess tuple ω =
(G1, . . . , GN ) a key K∗ ∈ K which minimises∑
K′∈K

s(K ′,K∗)η(K ′)ProbK′((XG,1, . . . , XG,N) = ω) =∑
K′∈K

η(K ′)ProbK′((XG,1, . . . , XG,N)=ω) − η(K∗)ProbK∗((XG,1, . . . , XG,N)=ω)

or, equivalently, maximises η(K∗)ProbK∗((XG,1, . . . , XG,N )=ω). Recall that XK,
XZ,1, . . . , XZ,N , YZ,1, . . . , YZ,N are independent and XG,j = ψ(φ(XK, XZ,j),
XY,j). For each fixed K ∈ K and ω = (G1, . . . , GN ) ∈ GN we have

ProbK((XG,1, . . . , XG,N) = ω) =
N∏
j=1

ProbK(XG,j = Gj)

=
N∏
j=1

∑
zj∈Z

Prob(XZ,j = zj) Prob(XG,j = Gj | XZ,j = zj , XK = K)

=
N∏
j=1

∑
zj∈Z

Prob(XZ,j = zj) Prob(XG,j = Gj | XR = φ(K, zj))

= η(K)−N
N∏
j=1

∑
zj∈Z

Prob(XK=K,XZ,j=zj) Prob(XG,j=Gj | XR=φ(K, zj))

= η(K)−N
N∏
j=1

∑
R∈R(K)

ν(R) Prob(XG,j = Gj | XR = R)

since φ(K,Z) = R(K) and the sets R(K ′) are mutually disjoint for different keys
K ′. As the logarithm function is strictly increasing, the last formula implies (2).
Moreover, since the sets R(K ′) are mutually disjoint, for any R ∈ R(K) we have
ν(R | XK = K) = ν(R)/η(K), which proves (3). Substituting the additional
conditions from (ii) into (2) and (3) yields (4) and (5).

Assertion (iii) follows from (ii) since, when supp0(R) = supp0(Gj),

len(Gj)−1∏
i = 0

p(gj,i, ri) = q Ham(R,Gj)(1 − q)len(Gj)−|supp0(Gj)|−Ham(R,Gj)

=
(

q

1 − q

)Ham(R,Gj)

(1 − q)len(Gj)−|supp0(Gj)| .
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Otherwise the product is zero. Since the last factor only depends on Gj (fixed)
but not on R it can be factored out in (4) and (5). In particular, it has no
impact on the location of the maximum, and thus may be dropped. Simi-
larly, in (iv) η(K) is assumed to be the same for all K ∈ K and thus may
be dropped. Assertion (v) follows immediately from the functional property
log(ab) = log(a)+ log(b) of the logarithm function.

Remark 2. (i) Theorem 1(i) is very general. It covers any recoding scheme as long
as the random variables XK, XZ,1, . . . , XZ,N , XY,1, . . . , XY,N are independent.
In particular, there are no restrictions on maps φ: K × Z → R or ψ: R × Y → G.
(ii) In the case of several best candidates in Theorem 1 (which should be a rare
event in practice) the rule that one of them is selected according to some pre-
defined order has ‘technical reasons’, namely, to ensure the measurability of the
decision strategy. Alternatively, one could pick one of the best key candidates at
random (defining a randomised decision strategy).

Definition 2. With regard to expression (2), define the (weighted) “credibility”
function cred: G × K → R by

cred(G,K) def=
∑

R∈R(K)

ν(R)Prob(XG = G | XR = R). (8)

A large value for this credibility function implies that G is a likely recoding
sequence guess for key K.

Corollary 1. If η is uniformly distributed on K (i.e. if all keys are equally likely)
for recoding sequence guesses G1, . . . , GN the optimal decision strategy selects a
key K∗ ∈ K that maximises

∑N
j=1 log(cred(Gj ,K)) for K ∈ K.

As in theorem Theorem 1(ii), suppose that Prob(XG = G | XR = R) =∏
0≤i<len(G) p(gi|ri). Then the computation of cred(G,K) is computationally

feasible because recodings are performed by a finite automaton (FA) which typ-
ically has very few states. The state of the finite automaton incorporates the
difference between the key suffix which has been read and the recoded key suffix
which has been generated. The finite automaton reads the next key bit and uses
a random input to decide the next recoded digit to output and which transition
to make to its next state. For each state s of the automaton, define

cred(G,K ′, s) def=
∑

R∈R(K′)

ν(R, s)Prob(XG=G|XR=R) (9)

where ν(R, s) corresponds to the FA reaching state s after generating the recod-
ing R of key suffix K ′. All the component functions can be evaluated iteratively
by processing the bits of K sequentially (here from right to left): ν(R, s) is given
by the product of the state transition probabilities for the path through the FA
to s which yields R, and, if K ′′ = d||K ′ has leading (i.e. most significant) bit
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d, then cred(G,K ′′, s′) can be expressed easily as a linear combination of values
cred(G,K ′, s) for the suffix K ′′ of K. The work is then proportional to the length
of K and the number of FA states. Algorithm 1 (in the Appendix) provides a
concrete example for the Ha-Moon recoding scheme.

5 Traces

The rest of this paper investigates the extent to which the main theorem (The-
orem 1) applies to real-world scenarios and, in subsequent sections, enables the
computationally feasible recovery of a secret key K. From here on, it is assumed
that side channel leakage is sufficient to identify the trace sections which corre-
spond to individual long integer multiplicative operations (or elliptic curve point
operations) when the key is used. Given that a standard counter-measure to tim-
ing attacks is to ensure that these operations always take the same number of
clock cycles, it should be relatively straight-forward to divide the trace correctly
from knowledge of the expected number of operations.

The decision about whether a section of side channel leakage represents a
particular type of multiplicative operation is not clear cut. As a result of noise,
the decision can only be made with a certain probability of correctness. Initial
processing of the leakage from each operation uses templates of the expected
leakage from each operation type and takes account of the relative probabilities
with which the particular digits of D occur in the given recoding scheme. This
yields a set of probabilities, one for each r ∈ D and summing to 1, that the
operation involved digit r. For convenience, we define a trace to be the result of
this pre-processing:

Definition 3. T ⊆ ([0, 1]|D|)* denotes the set of traces considered by an at-
tacker. The ith element ti of T ∈ T is a list of probabilities, one for each r ∈ D,
that the corresponding side channel measurement represents the operation r.

Formally, for power attacks for example, each operation r ∈ D induces a proba-
bility distribution on the set of all possible power traces. The exact probability
vector ti follows from the convex combination of these probability distributions
with regard to the probabilities with which the particular operations occur (gen-
erally) in the recoding scheme. In real-world scenarios the probability vectors ti
can hardly be determined exactly, but roughly estimated.

Using the above definition of a trace, we need to convert each trace Tj ∈ T into
a guess Gj ∈ G before applying Theorem 1(ii) to this situation. The straight-
forward strategy is to treat each operation separately and to select the most
likely candidate gj,i ∈ D, i.e. the operation that maximises tj,i. Formally, the
conditional probabilities p(g...|r...) used in Theorem 1 are given by first averaging
over sections of side channel traces (such as those described in the previous para-
graph) which correspond to the execution of the same multiplicative operation
r... ∈ D at the same position within the recoding sequence. Then, secondly, these
conditional probabilities are averaged over the different positions in the recoding
sequence. Practically, these conditional probabilities can simply be estimated by
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applying this procedure (assigning trace sections, deciding on the most probable
operation etc.) to a sample of side channel traces with known recodings.

For many applications this strategy should be appropriate. However, depend-
ing on the concrete scenario it may have two difficulties. The first is that the
probabilities in Theorem 1(ii) neither depend on the particular side channel
trace nor (which may be of less importance) on the position i. In contrast to
Theorem 2 below, Theorem 1(ii) applies averaged probabilities. An advantage of
Theorem 1(ii) and, in particular, of Theorem 1(iii) is their simple formulae. But
using Theorem 2 and traces avoids the second difficulty, namely that of explicitly
determining the best values Gj to use in advance5.

Formally, for N = 1, Theorem 2 may be viewed as a special case of Theo-
rem 1(i), which considers the whole recoding sequence R1 and the guess G1 at
the same time. (Note that each tj,i,ri may formally be replaced by a trace- and
position-dependent conditional probability pj,i(gj,i | ri) with some guess gj,i.) A
straight-forward generalisation of Theorem 1(i), allowing trace-dependent condi-
tional probabilities Probj(XG,j=Gj | XR=R), comprises the general case N ≥ 1.
In particular, the proof of Theorem 1 can easily be adapted to Theorem 2. The-
orem 1(iv) and (v) also remain valid for traces.

Theorem 2. Given traces T1, . . . , TN ∈ T , the optimal decision strategy τ∗ : T N

→ K selects a key K∗ ∈ K that maximises the expression

N∑
j=1

log

⎛⎜⎝ ∑
R∈R(K):

len(R)=len(Tj)

ν(R)
len(Tj)−1∏

i=0

tj,i,ri

⎞⎟⎠ − (N−1) log (η(K)) . (10)

If this maximum is attained for several keys the first is chosen under any pre-
selected order on K.

6 Application of the Main Theorem

In Sections 4 and 5 we determined optimal decision strategies. To demonstrate
the power of its optimal decision strategy, Theorem 1(ii) was applied to small
key sizes with the Ha-Moon recoding scheme using Algorithm 1 of the Appendix.
Algorithm 1 allows one to compute efficiently the credibility function cred(G,K)
for any required (G,K) and key size. The Ha-Moon recoding scheme maps the
binary representation of key K into a representation that uses the digits 0, 1 and
−1. Rather than using D = {0, 1, 1} also for the recoding sequences, to avoid
confusion we will write these operation sequences using ‘S’ to denote a squaring,
‘M ’ a multiplication by the base C, and ‘M ’ a multiplication by C−1. Then
digits 0, 1, and −1 in the recoding correspond to the operation sequences ‘S’,
‘SM ’ and ‘SM ’ respectively.

5 Indeed, choosing the gj,i first and independently for all positions may lead to im-
possible guesses which are not recoding sequences of any key.
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A large number of stochastic simulations were performed. In each simula-
tion we generated: a random key K ∈ K def= {0, 1}n \ {(0, . . . , 0)} where n de-
notes the length of K, N random recodings which delivered operation sequences
R1, . . . , RN and some related recoding guesses G1, . . . , GN . More precisely, the
guess Gj was derived from the operation sequence Rj by replacing the correct
operations independently with the conditional probabilities p(‘M ’|‘S’) = 0.2,
p(‘M ’|‘S’) = 0.1, p(‘M ’|‘M ’) = 0.2, p(‘S’|‘M ’) = 0.1, p(‘M ’|‘M ’) = 0.2 and
p(‘S’|‘M ’) = 0.1, which corresponds to noise in the side channel traces. Hence
p(‘Y ’|‘Y ’) = 0.7 for each operation ‘Y ’. Given G1, . . . , GN we applied Algo-
rithm 1 exhaustively to all 2n−1 admissible keys K ′. For each row in Table 1 we
performed 100 simulations. The integers in the column entitled “The correct key
was ranked 2”, for instance, give the number of simulations out of 100 for which
the correct key was ranked second for the given parameter set (Key length, N),
e.g. 5 out of 100 for key length 15 and N = 10.

Table 1. Ha-Moon recoding scheme: simulation results for short keys

The correct key was ranked
Key length N 1 2 3-9 10-99 100-999 > 1000

15 2 9 2 19 38 27 7
15 3 10 7 26 36 19 2
15 5 45 12 20 18 4 1
15 10 84 5 9 1 1 0
20 10 57 20 20 2 1 0

These results clearly underline the strength of the optimal decision strategy.
However, a major problem with the optimal decision strategy is that it is com-
putationally infeasible for keys of cryptographic size – there are too many keys
to search for the best one. Unlike in, e.g., [6,7] or in several examples in [10] we
cannot handle single key bits or small blocks of key bits either independently
or at least sequentially. Instead, the optimal strategy does not describe how to
recover part of a key, only how to recover the whole key. In general it is not
possible to associate the key bits independently yet correctly with recoding op-
erations. Where such an association is possible, the key bits might be recovered
independently and in parallel or sequentially with effort which is linear rather
than exponential in the key length.

7 Incremental Key Construction

General complexity and other issues (see [13], §1) seem to dictate that the best fit
(i.e. most probable) key that it is feasible to find has to be generated sequentially
bit by bit. We take this approach here, following [13], and this enables the
processing of partial keys to be closely related to the theory already presented
for full length keys.



Optimal Recovery of Secret Keys from Weak Side Channel Traces 457

It makes sense to determine the bits in the order that recoding takes place,
which is assumed here, for convenience, to start at the least significant (right-
most) end. So key suffixes of increasing length will be generated. This is done
using corresponding suffixes of ‘traces’ in the sense of Definition 3. In order to
maximise the expression in Theorem 2, each key suffix must normally have, for
each trace, a very good fit between one (or more) of its recoding sequences and
the suffix of the trace with the same length. In subsequent sections we try to
justify this reasonable assumption while working out its implications. If a suffi-
ciently large set of good key suffixes are processed the best fit key suffix should
always be included, so that the best key emerges at the end of the algorithm.
However, the longer the key the more likely there is to be a suffix which is too
poor a fit to be retained, and our algorithm will fail more frequently in these
cases.

Suppose we select a key suffix K(n) of length n which yields the best match
to all the leakage from that point onwards, i.e. the best match to trace suf-
fixes. Formally, under the optimal decision strategy model K(n) provides the
maximum of

N∑
j=1

log

⎛⎜⎜⎝ ∑
R∈R(K′):

len(R)≤len(Tj)

ν(R)
len(R)−1∏
i=0

tj,i,ri

⎞⎟⎟⎠− (N−1) log (η(K ′)) (11)

over all keysK ′ of n bits. (There are some minor issues with end conditions which
we will ignore.) If all bits of K(n) are accepted as belonging to the near best-fit
full length key K then a decision is being made on the initial, i.e. leftmost, bits of
K(n) which does not take into account all available information. Recoding choices
are not made independently of previous input; they depend on the state of the
recoding finite automaton arising from the previous input, and the influence can
persist measurably for several bits. Hence we should ignore the first λ bits, say,
of K(n) and choose only its last n−λ bits. Thus, the obvious algorithm is to
compute iteratively for n = 1, 2, 3... the fitness of every K(n) which extends the
previously chosen K(n−λ−1), select the best, and use that to determine K(n−λ).

This algorithm with the above formula was applied to the (first) Ha-Moon
recoding scheme [4], but so far without success. Even worse, under the leakage
model described in [13], the resulting “best fit” full length key was indistinguish-
able from a randomly chosen key – on average half the bits were incorrect. This
spurred an investigation into what modifications are necessary to obtain useful
results as it is known (e.g. from [3,5,13]) that it is possible to recover the secret
key when leakage is weak. It was hoped that the optimal decision strategy would
lead to a much more powerful algorithm.

8 Simulation Experiments

With the Ha-Moon scheme [4] as a test case, the formula (11) was modified in a
large number of ways to discover what choices lead to a useful, computationally
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feasible algorithm. By Theorem 1(iv) choice of a uniform key space K allowed
the formula to be simplified by ignoring the log(η(K)) term.

Of all the modifications attempted, only one seemed essential to obtain any-
thing better than how a random key choice would perform, and that was substi-
tuting Max for the second

∑
in (11). Thus we became interested in iteratively

finding the n-bit suffix K(n) which closely maximises

N∑
j=1

log

⎛⎝Max{ ν(R)
len(R)−1∏
i=0

tj,i,ri | R ∈ R(K(n)), len(R) ≤ len(Tj)}

⎞⎠ . (12)

(Note that (12) moves the search for a maximum within subsets of recoding
sequences to individual recoding sequences. This is computationally more easy.)
With sufficiently strong leakage and enough traces, this change results in a sig-
nificant portion of the predicted bits of K being correct. However, it exposes
the factor ν(R) which gives undue weight to shorter recoding sequences. In the
original formula (10) recoding sequences which were too short could not arise
because of the constraint len(R) = len(Tj). Now, with only an upper bound on
the length, some re-balancing is necessary. Normalising using len(R) yields the
much more frequently successful formula

N∑
j=1

log

⎛⎝Max{
len(R)−1∏
i=0

tj,i,ri

1/len(R) | R ∈ R(K(n)), len(R) ≤ len(Tj) }

⎞⎠ .

(13)
We could have added a weighting that accounted more for the expected length
of a recoding sequence for an n-bit key which has given trace length for the full
key, but did not do so.

It was noted above that only the final n−λ bits should be chosen from K(n).
This provides the possibility of treating the first λ bits differently from the later
ones. In particular, the two modifications described for (11) can be applied only
to the recoding operations corresponding to the last n−λ bits or only to the
operations corresponding to the first λ bits. However, this different treatment of
the two sequences of bits did not give better results.

The formula (13) and related algorithm are now close to what was used in [13].
The main difference is that here we have a product of probabilities to maximise
rather than the following sum of distances to minimise:

N∑
j=1

Min{ 1
len(R)

len(R)−1∑
i=0

(1−tj,i,ri) | R ∈ R(K(n)), len(R) ≤ len(Tj) }. (14)

However, the absence of the “log” from this formula suggests that the con-
tributions from each trace might be either multiplied or added together. So a
promising alternative to (13) might be found in

1
N

N∑
j=1

Max{
len(R)−1∏
i=0

tj,i,ri

1/len(R) | R ∈ R(K(n)), len(R) ≤ len(Tj) } (15)
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which is normalised with respect to the number of traces N . In practice, the
simulations did work a little better for this formula than for (13), so that it
became our final choice. Moreover, this “most probable” version proved to be
significantly better than the “best fit” version (14) which appears in [13] unless
a very specific choice of parameters is made in [13].

9 An Ordered Search

The algorithm of the previous section rarely identifies the correct key although,
with enough traces and sufficiently strong leakage, the resulting key K∗ =
K(len(K)) should yield a close to maximal value for (2), as should the correct
key. The remaining problem is therefore to organise a computationally feasible
ordered search of the key space to find the correct key K from K∗.

In a simulation, a quick scan of this close-to-most-probable key K∗ shows
that, unless the strategy failed, most of the key bits are correct, or differ from
the correct ones according to specific patterns which make no difference to the
likelihood of the key (such as a sequence of one or more inverted bits). Thus,
the correct key might be found by allowing for all the related patterns of equal
probability and by looking at each bit and obtaining an estimate of confidence
in its correctness. This estimate is naturally based on the values returned by the
expression (15) which was used to choose the bit initially. Then the search of
the key space is performed by changing more and more of those bits for which
confidence is lowest (and any subsequent related pattern) until the correct key
is found.

With the last n−λ−1 bits of K∗ already chosen, there are 2λ+1 choices for
K(n) which are supplied to (15). There are 2λ cases for which bit n−λ is 0,
and 2λ cases for which bit n−λ is 1. Let cred(0, n−λ) and cred(1, n−λ) denote
the maximum values returned by (15) when evaluated over these two partial
key subsets. Whichever is larger determines the choice of bit n−λ, and so it is
natural to use some measure of their proximity to provide a confidence value for
the bit decision. Out of several possibilities,

• an effective discriminant was found to be the larger of the two ratios
cred(1, n−λ)/cred(0, n−λ) or cred(0, n−λ)/cred(1, n−λ).

The larger this ratio, the greater the confidence that the bit is chosen correctly.
When evaluating (15) over the 2λ keys of interest, the variance of cred(b, n−λ)

decreases as n increases. This implies that, on average, the confidence function
will return smaller values with increasing key size. Of course, this is what hap-
pens, and it corresponds to the fact that bits are predicted with decreasing accu-
racy as n becomes larger. A re-scaling to compensate for this is the modification
to (15) which results in the following expression for maximising:

1
N

N∑
j=1

Max{
len(R)−1∏
i=0

tj,i,ri

n/len(R) | R ∈ R(K(n)), len(R) ≤ len(Tj) } (16)



460 W. Schindler and C.D. Walter

This re-scaling may give some benefit when applied, but was usually marginally
poorer than (15) over all the choices of parameters we tried, such as variations
in the level of leakage and in the key lengths.

10 Complexity

This section considers the space and time complexity for obtaining a near best-fit
key K∗ using expression (15). We are assuming that all necessary pre-processing
has already been performed to derive traces in the sense of Definition 3 from the
side channel measurements and template information.

Our model assumes 1 unit of time for any arithmetic operation involving one
or two bits. It also assumes one unit of time for moving (reading, writing etc.) or
copying a single bit and one unit of space to store a single bit. This is not quite
realistic since address sizes and wire connect grow as the logarithm of the volume
of data, but is adequate for the quantities of data under consideration. Moreover,
since most bits are effectively random and we avoid storing multiple copies of data,
there are no data compression techniques which are likely to be useful.

For convenience, we further assume that all probabilities can be stored with
sufficient accuracy using O(1) bits. In practice our simulations worked using 32-
bit real arithmetic without any hint of problems. Overall this complexity model
enables one to run small trial cases first, and scale up using the complexity
results to obtain good approximations to the space and time requirements for
an attack on secret keys of cryptographic size.

Following earlier notation, we have a key K∗ of nK bits which is constructed
bit by bit, N traces, and λ leading bits of the suffixes which we ignore when
selecting the next bit of K∗. At any one time we have decided the least significant
n − λ − 1 bits of K∗. We have 2λ+1 possibilities for the remaining bits of the
n-bit suffix and hence that number of keys to consider when determining the
next bit of K∗.

Recall our assumption that recodings are converted into sequences of oper-
ations with digit 0 generating one operation (a squaring) and non-zero digits
generating two (a squaring and a multiplication). Consequently, when the re-
coding finite automaton (FA) has read a suffix of n bits, the resulting recoding
sequences may have any length from n up to 2n. Suppose also that the recoding
FA has F possible states. These states include, but are not limited to, storing
the shifted difference (i.e. carry or borrow) between the value of the key suffix
read by the FA and the recoding output by it. (For the Ha-Moon scheme this is
always 0 or 1, and the corresponding FA has two states.) Whenever two recoding
sequences have the same length and left the FA in the same state, we can ignore
the one with the smaller value of the product of trace values in (15). It cannot
give the maximum, nor contribute to any maximum when the FA recodes more
bits. Hence there are only up to F (n+1) sequences which need to be maintained
in order to select the best recoding.

The iterative step starts at n = λ + 1 in order to determine the bit of index
0. If there were just one trace then, after incrementing n, the general induction
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step would start with a set of best recoding sequences for the least significant
n − λ − 1 bits of K∗ and the corresponding values for the product of traces
values needed in (15). There are up to (n−λ)F of these, so O((n−λ)F ) space is
required for this. In fact, this is needed for all N traces, so O((n−λ)FN) space is
used to hold the data required by the induction step. A three dimensional array
is used for this in order to have direct access in unit time to the data elements.
The total space order is also enough to include the decided bits of K∗.

Extending the recoding sequences from representing a suffix of length n−λ−1
to a suffix of length n just means generating the same set of data incrementally
for longer suffixes. A depth first traversal is made of the binary tree of depth λ+1
representing the remaining choices for the n-bit suffix of K∗. Along each branch
of the tree one such data set needs to be stored at each node. So O(nFNλ) space
is required for data storage during the induction step. At each node in the tree,
each recoding sequence of the parent node’s data set is extended by processing
the key bit value which labels the current node. The FA generates O(F ) choices
which are used to create or update the items in the data set of this node. This
means O(F ) time per recoding sequence, and a total of O(nF 2N) per node of
the tree. With 2λ+2 − 2 nodes to treat, the time order is O(2λnF 2N).

If, instead, we are able to hold all the data sets for all the nodes in the above
tree simultaneously, then we do not need to regenerate the same data for up to
λ consecutive values of n. Instead we traverse the leaves of the tree from the
preceding value of n and generate the data for the leaves of the tree for the
current value of n. However, as this still means traversing 2λ+1 nodes, the time
order is not reduced although there will be a speed-up by a factor of about 2.

Whenever the data set for a leaf of the tree has been generated, we have the value
of the product term in (15) for all the O(Fn) recoding sequences associated with
each trace. Hence the maximum value can be obtained for each trace, and the sum
over all traces calculated. This does not add to the time complexity as it requires
O(1) time per sequence. Finally, we must obtain the maximum value of (15) over
the 2λ+1 key choices in order to determine bit n − λ of K∗. Again, this does not
add to the time order. If we want to rank the bits in order of certainty, then the
ratio of credibility values is obtained at this point by taking the maximums over
the two sub-trees corresponding to the two choices for bit n − λ.

Thus, neglecting special processing for the most significant λ bits of K∗ (when
we must decrease λ rather than increase n), the iterative process to compute K∗

takes O(nKFN) space and O(2λnKF 2N) time.

11 Numerical Results

Direct comparison of the improved algorithms here with the results of [13] is
made difficult by the fact that [13] limits the key search to a fixed maximum
number of recoding states6 whereas here the number is not limited. Specifically,
in (15) the maximum is given by incrementally extending a set of best recoding
6 The recoding state is a pair consisting of the state of the recoding finite automaton

and the number of operations it has generated.
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Table 2. Fraction of key guesses with all bit errors in the 24 most dubious positions
for Ha-Moon recoding [4]. 1= original for 10 recodings, 2= improved version (see text).

Method Leakage Key No. of Av. No. Fraction with all Fraction for 10%
Level L Length Traces Bit Errors errors in worst 24 best-fitting Keys

[13]1 0.7 192 5 − 0.0027 −
[13]2 0.7 192 5 23.2 0.011 0.020
Here 0.7 192 5 20.7 0.013 0.014
[13]2 0.7 384 10 19.0 0.003 0.002
Here 0.7 384 10 18.2 0.003 0.010
[13]2 0.7 1024 40 13.5 0.3 0.3
Here 0.7 1024 40 13.4 0.28 0.28

” 0.6 192 64 30.9 0.19 0.43
” 0.6 384 128 39.4 0.12 0.24

sequences whenever another key bit is decided, and there must be a best recoding
sequence for every recoding state that might have been reached so far. For an n-
bit key suffix, the Ha-Moon algorithm could have generated a recoding sequence
of up to 2n operations and left the recoding finite automaton in one of two states.
Hence there are up to 4n best recoding sequences per trace which need to be
extended in order to extract the maximum, and restricting this number turns out
to be detrimental. Hence, in order to generate comparative values we modified
our simulation to use Walter’s metric but without his bound on recoding states.
On its own, this modification arising from the optimal strategy approach led to
the majority of the improvement in performance tabulated below – witness the
first two rows in Table 2.

Unlike the example in Section 6 we assume a side-channel leakage which only
allows us to distinguish between squarings and multiplications with some cer-
tainty but not between the two multiplicative operations ‘M ’ and ‘M ’ corre-
sponding to digits 1 and −1. This is easy to model. The ith element ti of a trace
T is a set of three probabilities, one for each operation type: ti = {pi0, pi1, pi1}
in which we ensure that pi1 = pi1. We selected this scenario to have a fair
comparison with the results in [13].

Let L denote the average level of side channel leakage, that is, the fraction of
square or multiply operations which are independently guessed correctly. So L= ½
means no leakage, when blind guessing makes half the bits correct, and L = 1 cor-
responds to full leakage, when all operations and hence all bits are completely de-
termined7. For several realistic cryptographic key lengths and numbers of traces,
Table 2 gives the probability that all the incorrectly guessed bits of the most likely
key are among the 24 bits which the credibility metric shows are most likely to
be in error (see Section 9). It is computationally feasible to correct all errors in

7 Guessing all operations to be squarings in the binary exponentiation algorithm makes
two thirds of the operations correct (on average), not a half. Here we are modelling
the noise which is added to the actual recoding sequence, changing the average cor-
rectness of the decision between squaring or multiplication from 1 to L.
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such guessed keys and thereby recover the true key. The last column explores the
possibility that the most probable key guesses are those for which the bit errors
are confined to the 24 most dubious positions. This new measure is not in previ-
ous literature, and clearly indicates that the adversary can select cases for which
the method is more likely to succeed. He collects sets of side channel data for a
number of different keys, computes the best-fitting key in each case, and then se-
lects the 10%, say, which yield the highest value for (15). Then, in parallel for
the selected keys, he modifies more and more of the most dubious bit values in
decreasing order of likelihood until a correct key is found.

12 Conclusion

A computationally feasible algorithm has been presented for determining the
secret key used repeatedly in exponentiations where there is weak side channel
leakage and randomised recoding has been employed in an attempt to nullify
the effect of that leakage. The algorithm was derived from an optimal decision
strategy and is an improvement over prior techniques. Using it, it is easy both to
determine which results have few bit errors, and to locate the potential bit errors.
Hence it is frequently possible to recover the key using much weaker leaked data
than before. The derivation also highlights points where significant modifications
had to be made to the optimal strategy to obtain a computationally feasible
algorithm.
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A Appendix

A.1 Algorithmic Treatment of Ha-Moon Recodings

In this subsection we provide an efficient algorithm to compute cred(G,K), de-
fined by (8), for the Ha-Moon recoding scheme [4] for any fixed G ∈ G and
K ∈ K. In the recoding step the binary representation K is mapped onto a re-
coding which is a sequence of digits in {−1, 0, 1} with length len(K) or len(K)+1.
Again, we follow a standard convention in which the letters ‘S’, ‘M ’, and ‘M ’
denote a squaring, a multiplication by the base C, and a multiplication by C−1,
respectively. So, to obtain the corresponding operation sequence, apart from the
most significant digit (= 1), each digit of the recoding is substituted as follows:
0 �→ ‘S’, 1 �→ (‘S’,‘M ’), and −1 �→ (‘S’,‘M ’), yielding an element R ∈ R(K). In
particular, the recoding sequence has length ≤ 2len(K). Note that the probabil-
ities ν(R) are not identical for all R ∈ R(K) in the Ha-Moon recoding scheme.

Assumption 1: We consider the scenario from Theorem 1(ii). We assume fur-
ther that K ∈ K def= {0, 1}n, and that XK is uniformly distributed on K, i.e.,
each admissible key is equally likely. If the next recoding step is not unique the
recoding algorithm decides with probability ½ for one of the two alternatives.

Definition 4. (Ha-Moon recoding scheme [4].) For 0 ≤ v ≤ len(K) and K ∈ K
the term R(K, v, len, cv) ⊆ R(K) denotes the subset of recoding sequences that
require exactly len operations (‘S’, ‘M ’, ‘M ’) and the carry bit cv to encode the
v least significant bits of K. Guesses of recoding sequences G = (gj)0≤j<len(G)
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and recoding sequences R = (rj)0≤j<len(R) are extended to length 2n by defining

a further symbol, ∞, and setting gj
def= ∞ for j ≥ len(G) and rj

def= ∞ for
j ≥ len(R). Further, the conditional probability function p(· | ·) is extended so
that p(∞|∞) def= 1 and p(a|∞) def= p(∞|a) def= 0 for a ∈ {‘S’,‘M ’,‘M ’}. This
allows one to increase the upper bound of the product in (4) beyond len(R) − 1
to 2n − 1. For v ≥ 0 the ‘intermediate’ credibility function associated with the
guess G and any subset M ⊆ R(K) =

⋃
v≤len≤2v; c∈{0,1} R(K, v, len, c) is

credv(G,M) def=
∑
R∈M

ν(R)
lenv(R)−1∏

i=0

p(gi | ri). (17)

The term lenv(R) denotes the number of operations in R which are used to
encode the key bits kv−1, ..., k0. (In particular, for all R ∈ R(K, v, len, c) it is
lenv(R) = len.)

During recoding, the Ha-Moon scheme generates either one or two operations
per bit of K, and a carry bit equal to 0 or 1. Hence for given v the length of
a recoding sequence ranges from v to 2v, and so R(K) is the disjoint union
of 2(v + 1) (possibly empty) subsets R(K, v, len, c) with v ≤ len ≤ 2v and
c ∈ {0, 1}. Algorithm 1 below computes sequentially the credv(G, ·)-values for
increasing parameters v and subsets R(K, v, len, c) ⊆ R(K), which finally yields
the desired value cred(G,K). The definition of the subsets R(K, v, len, c) and
the credv(·, ·)-function are closely related to the components of definition (9)
used in the generic description of an algorithm for the efficient computation
of cred(G,K). Indeed, both approaches are essentially equivalent. In definition
(9) ‘truncated’ recoding sequences are considered, and the product in (17) only
considers these operations. The recoding sequences are elements of R(K) but
the probabilities of all recoding sequences with a fixed suffix add up to the
probability of the truncated recoding sequence. However, the approach chosen
in the appendix is more convenient for Algorithm 1 which splits and merges
subsets of R(K).

The goal of Algorithm 1 is the efficient computation of cred(G,K) for arbitrary
but fixed G ∈ G and K ∈ K.

Remark 3. Our implementation of Algorithm 1 requires the binary representa-
tion of key K to contain at least one ‘1’, while Theorems 1 and 2 clearly also
cover the zero key. In our simulation experiments presented in Section 6 we
restricted the key space to {0, 1}n \ {(0, . . . , 0)} for simplicity.

Algorithm 1. Initialise by setting cred0(G,R(K, 0, 0, 0)) def= Prob(XK = K).
(Note that R(K) = R(K, 0, 0, 0).) Assume that we know the ‘truncated’ credi-
bilities credv(G,R(K, v, u, cv)) for all u ∈ {v, . . . , 2v} and cv ∈ {0, 1}. The next
task is therefore to consider key bit kv and to determine the values credv+1(G,
R(K, v + 1, u, cv+1)) for v + 1 ≤ u ≤ 2(v + 1) and cv+1 ∈ {0, 1}.
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Induction Step (over v):
For each len ∈ {v, . . . , 2v} and cv ∈ {0, 1}:
Case A: If (kv, cv) = (0, 0) the next digit (viewed from right to left) in any recod-
ing is 0 and thus ‘S’ is the next operation in the recoding sequence. In particular,
credv+1(G,R(K, v+1, len+1, 0)∩R(K, v, len, 0)) = p(glen |‘S’)credv(G,R(K, v,
len, 0)).
Case B: If (kv, cv) = (1, 0) the next digit of the recoding is 1 or −1 (and thus
cv+1 = 0 or cv+1 = 1, respectively), each with probability ½. Consequently,
credv+1(G,R(K, v+1, len+2, 0)∩R(K, v, len, 0)) = ½p(glen+1 | ‘S’)p(glen | ‘M ’)×
credv(G,R(K, v, len, 0)) and credv+1(G,R(K, v+1, len+2, 1)∩R(K, v, len, 0)) =
½p(glen+1 | ‘S’)p(glen | ‘M ’)credv(G,R(K, v, len, 0)).
Cases C and D: The cases (kv, cv) = (0, 1) and (kv, cv) = (1, 1) are treated anal-
ogously with R(K, v, len, 1) in place of R(K, v, len, 0). As in Case B above the
set R(K, v, len, 1) splits into two subsets if (kv, cv) = (0, 1), i.e. in Case C.
When this has been completed for all values len ∈ {v, . . . , 2v} and cv ∈ {0, 1},
the credibility values for the subsets R(K, v+1, len′, cv+1) are easily computed.
For each v+1 ≤ len′ ≤ 2(v+1) and cv+1 ∈ {0, 1} ‘related’ subsets are merged to
give: credv+1(G,R(K, v+1, len′, cv+1)) =

∑
credv+1(G,R(K, v+1, len′, cv+1) ∩

R(K, v, len′′, c′′)), where the sum extends over all (len′′, c′′) ∈ {len′−1, len′−2}
× {0, 1}. This equality holds because the subsets on the right side of the equation
have a disjoint union equal to the set on the left side. Clearly, credv(G, ∅) = 0 and
credv+1(G, ∅) = 0, and this enables instances of credv+1 (G,R(K, v+1, len′, c′))
to be evaluated without taking a sum over subsets when the second parameter
is the empty set.
This completes the induction step from v to v + 1.

This procedure is continued until v = len(K) − 2 (inclusively). The most
significant bit of K then needs special treatment because different operations
are used to initialise the exponentiation. Finally, cred(G,K) = credlen(K)(G,
R(K, len(K), len(G), 0)). ��
Note that for R ∈ R(K) we have ν(R) = Prob(XK = K)2−bif(R) where bif(R)
stands for the number of ‘bifurcations’ in generating the recoding sequence R
from K, i.e. the number of positions where two recoding choices are possible, i.e.
when (kv, cv) = (0, 1) or (1, 0). This causes the factor ½ for Cases B and C.

A.2 Statistical Decision Theory

This subsection provides a brief introduction to statistical decision theory as
far as is relevant to understand the concepts of Theorems 1 and 2. We omit all
mathematical details. For a more comprehensive treatment we refer the inter-
ested reader to [10], Section 2, or to textbooks in this field (e.g. [14]). Reference
[10] illustrates the merits of statistical decision theory for side-channel analysis
by several examples.

Our focus is side-channel analysis. We interpret side-channel measurements
as realisations of random variables, i.e. as values assumed by these random
variables. The relevant part of the information is covered by noise but an attacker
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clearly aims to exploit the available information in an optimal way. Statistical
decision theory quantifies the impact of the particular pieces of information on
the strength of a decision strategy, and so the search for the optimal decision
strategy can be formalised.

Formally, a statistical decision problem is given by a 5-tuple (Θ,Ω, s,DST , A).
The statistician (in our context the attacker) observes a sample ω ∈ Ω that he
interprets as a realisation of a random variable X with unknown distribution
pθ. On basis of this observation he guesses the parameter θ ∈ Θ where Θ de-
notes the parameter space, i.e., the set of all admissible hypotheses (= possible
parameters). Further, the set Ω is called the observation space, and the letter A
denotes the set of all admissible alternatives the statistician can choose. In the
following we assume Θ = A with finite sets Θ and A.

Example 1. ([10], Example 1)
(i) Assume that the attacker guesses a particular (single) RSA key bit and that
his decision is based upon N measurements. Then Θ = A = {0, 1}. For timing
attacks, we may assume Ω = RN while Ω = RTN for power attacks where T is
the number of relevant measurement points per power trace.
(ii) Consider a power attack on a DES implementation where the attacker guesses
a particular 6-bit subkey that affects a single S-box in the first round. Then
Θ = A = {0, 1}6.

The term DST denotes the set of all decision strategies between which the
statistician can choose. A (deterministic) decision strategy is given by a mapping
τ :Ω → A. This means that if the statistician applies decision strategy τ he
decides on τ(ω) ∈ A = Θ whenever he observes ω ∈ Ω. (It may be noted that
for certain statistical applications it is reasonable to consider the more general
class of randomised decision strategies ([10], Remark 1(i)). For our purposes we
need only concentrate on deterministic decision strategies.)

Finally, the loss function s:Θ × A → [0,∞) quantifies the harm of a wrong
decision, i.e., s(θ, a) gives the loss if the statistician decides on a ∈ A although
θ ∈ Θ = A is the correct parameter. In the context of side-channel attacks the
loss function quantifies the efforts to detect, to localise and to correct a wrong
decision, usually a wrong guess of a key part. Clearly, s(θ, θ) def= 0 since a correct
guess does not cause any loss. We point out that for some side-channel attacks
certain types of errors are easier to detect and correct than others ([10], Sect. 6).
The optimal decision strategy takes such phenomena into account.

Assume that the statistician uses the deterministic decision strategy τ :Ω → A
and that θ is the correct parameter. The expected loss (= average loss if the
hypothesis θ is true) is given by the r isk function

r(θ, τ) def=
∫
Ω

s(θ, τ(ω)) pθ(dω). (18)

In the context of side-channel attacks one can usually determine (at least approx-
imate) probabilities with which the particular parameters occur. This is quan-
tified by the so-called a priori distribution η, a probability measure on the
parameter space Θ.
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Example 2. ([10], Example 2)
(i) (Continuation of Example 1(i).) Assume that k exponent bits remain to be
guessed and that the attacker knows that r of them are 1. If the secret key was
selected randomly it is reasonable to assume that a particular exponent bit is 1
with probability η(1) = r/k.
(ii) (Continuation of Example 1(ii).) Here η(x) = 2−6 for all x ∈ {0, 1}6.

Assume that η denotes the a priori distribution. If the statistician applies the
deterministic decision strategy τ :Ω → A the expected loss is given by

R(η, τ) def=
∑
θ∈Θ

r(θ, τ)η(θ) =
∑
θ∈Θ

∫
Ω

s(θ, τ(ω)) pθ(dω) η(θ). (19)

A decision strategy τ ′ is optimal against η if it minimises the right-hand term.
Such a decision strategy is also called a Bayes strategy against η.

Theorem 3. ([10], Theorem 1(i), (iii))
Assume that (Θ,Ω, s,DST , A) defines a statistical decision problem with finite
parameter space Θ = {θ1, . . . , θt} = A where DST contains all deterministic
decision strategies. Further, let µ denote a σ-finite measure on Ω with pθi =
fθi · µ, i.e. pθi has µ-density fθi , for each i ≤ t.
(i) The deterministic decision strategy τ :Ω → A,

τ(ω) def= a if
t∑
i=1

s(θi, a)η(θi)fθi(ω) = min
a′∈A

{
t∑
i=1

s(θi, a′)η(θi)fθi(ω)

}
(20)

is optimal against the a priori distribution η. (If the minimum is attained for
several decisions, we chose a ∈ A according to any pre-selected order on A.)
(ii) Assume that C ⊆ Ω with pθi(C) = p > 0 for all θi ∈ Θ. Then (i) and (ii)
remain valid if fθ is replaced by the conditional density fθ|C.

Remark 4. ([10], Remark 2)
(i) A σ-finite measure µ on Ω with the properties claimed in Theorem 3 always
exists (e.g. µ = pθ1 + · · · + pθt).
(ii) For Ω = Rn the well-known Lebesgue measure λn is σ-finite. (The Lebesgue
measure on Rn is given by λn([a1, b1] × · · · × [an, bn]) =

∏n
i=1(bi − ai) if bi ≥ ai

for all i ≤ n.) If Ω is finite or countable the counting measure µC is σ-finite.
The counting measure is given by µC(ω) = 1 for all ω ∈ Ω. In particular, the
probabilities Probθ(X = ω) = pθ(ω) can be interpreted as densities with respect
to µC .
(iii) The examples mentioned in (ii) and combinations thereof cover the cases
that are relevant in the context of side-channel analysis.

The probability densities fθ, the a priori distribution η, and the loss function
s have an impact on the optimal decision strategy. The probability densities fθ
clearly have most influence, and usually their determination is the tough part of
the work.
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Abstract. Showing that a circuit is satisfiable without revealing infor-
mation is a key problem in modern cryptography. The related (and more
general) problem of showing that a circuit evaluates to a particular value
if executed on the input contained in a public commitment has poten-
tially multiple practical applications. Although numerous solutions for
the problem had been proposed, their practical applicability is poorly
understood.

In this paper, we take an important step towards moving existent so-
lutions to practice. We implement and evaluate four solutions for the
problem. We investigate solutions both in the common reference string
model and the random oracle model. In particular, in the CRS model
we use the recent techniques of Groth–Sahai for proofs that use bilinear
groups in the asymmetric pairings environment. We provide various op-
timizations to the different solutions we investigate. We present timing
results for two circuits the larger of which is an implementation of AES
that uses about 30000 gates.

1 Introduction

Background. Consider the problem where given a function f , a value y and a
commitment C(x) to x, some party A wants to prove to a party B that f(x) = y.
The proofs should be convincing, but no additional information on x (but f(x))
should be revealed. For the case when f is given by an arithmetic circuit, Cramer
and Damgard call the problem the Arithmetic Circuit Problem [10]. Since in this
paper we consider the case when f is given by a binary circuit, we refer to the
problem described above as the Binary Circuit Problem (BCP in short). Note,
that BCP and the standard problem of circuit satisfiability are similar; in circuit
satisfiability the problem is to present the satisfying input x such that f(x) = y
from which the validity of the statement can be proved “in the open”; in the
BCP problem the inputs are given as commitments and then the proof of the
validity of the statements needs to be presented so that it reveals no information
on the underlying value of x.
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There are countless practical and theoretical applications of solutions to this
problem. For example, if y is a bit and f is described by a circuit, then a solution
for the above problem would allow A to prove that f is satisfiable without re-
vealing information about the (private) satisfying assignment x. Another possible
application is the hedge funds scenario where it is often the case that managers
need to convince investors that their portfolio has certain properties (e.g. that
it meets a certain risk profile) [28]. All this needs to be done without disclosing
sensitive information about the particularities of the investments. This problem
is again an instance of the above generic problem for appropriate choices of f , x
and y. Another way to look at the problem is as a particular case of two-party
secure function evaluation where only one party has the input x to the function
f and the second party has to learn the output y = f(x) but nothing more;
yet unlike standard two-party function evaluation we require a non-interactive
solution in this situation.

Due to its importance, the problem has received a lot of attention especially
in the case of proofs for circuit satisfiability and numerous solutions exist for
both the interactive and non-interactive cases [4,6,10,12,13,14,15,20,23]. In the
case of non-interactive proofs, which is the setting that we focus on in this
paper, the first definition and solution was proposed by Blum, Feldman and Mi-
cali [4]. Their construction assumes some specific number-theoretic assumption.
The theoretical efficiency of protocols based on number theoretic assumptions
has subsequently been improved [6,12]. Feige, Lapidot and Shamir [15] and later
Kilian and Petrank [23] give solutions based on general assumptions. All of the
above solutions are in the CRS model. A set of techniques that use the CRS
in a very different way than the works above has been developed by Groth et
al [20,21]. Their approach is based on various assumptions in bilinear groups and
is currently the state-of-the-art for solutions not based on random oracles.

All of the work mentioned above concerns possibility results with only limited
interest in the actual practical efficiency of the solutions. Complexity is always
stated in terms of big-Oh notation, and determining the precise hidden constants
is almost never of interest. An important first step towards the use of solutions for
BCP (and circuit satisfiability) in practice is to understand to what extent the
proposed solutions are actually feasible and this is precisely the goal of this paper.
We emphasize that we are concerned with the BCP problem in its full generality,
and that we do not investigate implementations for particular classes of functions
f . When f comes from a certain class, solutions can exploit particular structures
and can therefore be made more efficient. For example Szyldo [28] gives a solution
for the above fund manager problem when the function is quite particular. Groth
and Sahai [21] give proofs for the case when the witness satisfies a set of equations
of a certain form. Although we are not explicitly concerned with this case, our
results do shed some light on the efficiency of the techniques of [21].
This paper. We implement and evaluate a general solution that goes back at
least to the work of Cramer and Damgard [10]. The idea is that given binary cir-
cuit f , and commitments to the values on the input wires, the prover computes
the values on all of the remaining wires of the circuit. The prover then sends
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commitments to all of those values to the verifier. Furthermore, for each indi-
vidual gate in the circuit, the prover computes a non-interactive zero-knowledge
gate consistency proof: the proof should convince the verifier that the commit-
ments to the input and the output wires are consistent with the description of
the gate. That is, the value on the output wire has been honestly computed by
the prover. Finally, the prover decommits the values on the output wires of the
circuit.

We consider two methods for computing the gate consistency proofs. These
methods correspond to alternative characterizations of boolean gates. One char-
acterization is based on linear relations between the inputs and the outputs; this
is essentially the technique underlying the method of [20]. The second method
is based on quadratic equations, and is essentially the “classical” technique un-
derlying the work of [10] and others. The equations and their use are detailed
later in the paper. We refer to the resulting proof as the LEq method and the
QEq method respectively. For each method in turn we consider gate consistency
proofs in the random oracle model and in the common reference string model.
Note that the LEq method was originally considered only in the context of pair-
ing based NIZK proofs in the CRS, whereas the QEq method was originally
considered in the context of ROM based proofs derived from Σ-protocols; we
however look at both techniques in both settings. The proofs in the random or-
acle model are obtained through a transform attributed to Blum (via [3]) from
standard Σ-protocols for the relations associated to the gate equations. The
proofs in the CRS model use the techniques of Groth et al. [20,21]. We note that
although the techniques for which Groth et al. give full details in their papers
are for the case of symmetric pairings we choose an implementation based on
asymmetric pairings. These pairings are more efficient and are amenable to a
series of known optimizations.

We present a number of optimizations of the basic proof constructions for the
gate consistency proofs, which apply in both the ROM and the CRS implemen-
tations, and we provide a practical performance comparison of the four resulting
algorithms. Also by implementing the witness-indistinguishable non-interactive
proofs recently introduced by Groth and Sahai [21] our evaluation should be of
interest independent of the particular application to BCP, since these proofs
are used in other settings as well. In particular we notice that constructing the
Groth–Sahai proofs in the CRS model is only 7-9 times less efficient than the
equivalent proofs derived from the Blum transform being applied to a Σ-protocol
in the random oracle model. However, the relative performance of the verifier
is much worse, being around 10-20 times less efficient for the CRS based proofs
compared to the ROM based proofs, when batch verification is used. This lack
of performance is due to the verification algorithm in the Groth–Sahai situation
requiring many pairing evaluation.

We evaluate the efficiency of our implementation in the case of two circuits
with potential practical applications. The first circuit compares two 32-bit com-
mitted integers (a functionality needed for example in proving a desired relation
between two committed bids in auctions). The second circuit takes as input a
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128-bit key K and a 128-bit public message M and computes AES(K,M). The
associated BCP is thus to show that a particular ciphertext C is obtained by
enciphering a public message M , with a key K that is held by a publicly avail-
able commitment. The first circuit is in the range of hundreds of gates, whereas
the second one is in the range of tens of thousands of gates. To cope with this
large size we have developed a series of optimizations that reduce the overall
cost of the computation.

The paper is organized as follows. We start with an overview of binary and
arithmetic circuits in Section 2. We describe the two solutions based on different
characterizations for the boolean gates of a circuit in Section 3. The different
ways of implementing the gate consistency proofs for both the CRS and the
ROM, together with theoretical estimates for the resulting running time when
these proofs are plugged in the protocols of Section 3 are in Section 4. We present
batch verification techniques for the different proofs in Section 5. We conclude
with the practical experimental results in Section 6.

2 Binary and Arithmetic Circuits

To facilitate the description of the proofs that we consider, we introduce some
notation regarding binary and arithmetic circuits.
Binary circuits. We write W = {wi} for the set of wires of the circuit. These
are variables with values in {0, 1}. We write G = {gi} for the set of gates of the
circuit. We only consider binary gates (gates with two inputs and one output),
so each gate gi ∈ G is given by a triple

gi = (Ii, oi, Ti)

with Ii ∈ W × W a pair of elements of W that define the input wires of gi and
oi ∈ W is an element of W \ Ii that defines the output wire. Ti is the table
of a mapping from {0, 1} × {0, 1} → {0, 1}, that defines the output of the gate
for each possible input. By a slight abuse of notation we may occasionally write
Ti(wi, wj) for the output of the gate for specific values for the input wires.

A binary circuit C = {W,G} consists of a set of wires and of a set of gates.
We identify special subsets of wires O ⊂ W that defines the output wires of the
circuit and I ⊂ W that defines the input wires of the circuit. We require that
for any wi ∈ I it holds that wi �= oj whenever gj = (Ij , oj , Tj) ∈ G for some gj .
Furthermore, we insist that the circuit can be evaluated in the sense that there
are no cyclic dependencies. In particular this requirement implies that the circuit
C can be topologically ordered: there exists an order on the gates in G such that
evaluation of a gate g only depends on the output wires of the gates before g.
By this we mean that we order the set G such that for each i ∈ {0, . . . , |G|} we
can define a set Ai such that

– A0 = I.
– A|G| = W .
– For all gj = (Ij , oj , Tj) ∈ G we have Ij ⊂ Aj−1.
– For all gj = (Ij , oj , Tj) ∈ G we set Aj = Aj−1 ∪ {oj}.
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The intuition in the above description is that set Aj is the set of wires for which
their associated value had already been determined, before gate gj is evaluated.

An important observation [20] useful in proving statements about gates (and
therefore circuits) is that any binary gate g = ((wi, wj), wk, T ) can be repre-
sented by a linear arithmetic equation L(wi, wj , wk) over the input and output
wires in the sense that L(wi, wj , wk) ∈ {0, 1} if and only if T (wi, wj) = wk. For
example, for the NAND gate, i.e. the gate that outputs 1 if and only if at least
one of its input wires is 0, the associated linear equation is:

wi + wj + 2(wk − 1) ∈ {0, 1}.

In the remainder of the paper we write Lr(wi, wj , wk) for the linear equation
associated to gate gr.
Arithmetic circuits. An arithmetic circuit over a finite field Fq is defined in
a similar way. The difference is that wires assume values in Fq instead of {0, 1}
and the gates can only evaluate either addition/subtraction or multiplication
(over Fq) of their input values. In other words, the truth table of the gate is
replaced by a polynomial function of the input wires.

It is clear that any arithmetic circuit can be converted into a binary circuit by
replacing the arithmetic gates with their binary circuit equivalents. We will now
show that every binary circuit can also be represented as an arithmetic circuit.
Suppose we have a binary gate with two binary inputs wi, wj and one binary
output wk. Then there is always a quadratic equation such that

wk = Q(wi, wj).

For example a NAND gate is described by the equation:

wk = 1 − wi · wj .

Therefore, every binary gate on two inputs can be represented by a quadratic
equation in the inputs. In the remainder of the paper we write Qj for the
quadratic equation that describes gate gj .

The two methods for representing gates yield two basic methods for proving
BCP. Both methods also require commitments schemes. For message space M
and randomness space R, we write comm�(x, r) ∈ Comm, for the commitment
to x ∈ M using randomness r ∈ R. We require that sets M,R, and Comm be
abelian groups and that the commitment scheme when regarded as a function
comm� : M × R → Comm be homomorphic:

comm�(m1 +m2; r1 + r2) = comm�(m1, r1) + comm�(m2, r2).

We consider several instantiations of the commitment scheme and we differenti-
ate them by replacing # with representative mnemonics.

3 Two Solutions for the Binary Circuit Problem

In this section, we describe two methods for BCP. Both methods are based on
the idea presented in the introduction: the prover computes commitments to
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the values assumed by the wires of the circuits (given the value of the input x)
and then, for each gate produces a gate consistency proof which shows that the
commitments to the values of the input wires and the output wires are in the
desired relation. The difference between the methods lies in the method used to
prove the consistency of the commitments to the wires of a gate. We use two
methods, one based on the characterization of gates via linear equations and the
other one based on quadratic equations, presented in the previous section.

We describe the methods at a high level; we do not specialize the commitment
schemes that are used and we do not detail how the prover computes the proofs
for the relation between the committed values on the wires. In the next section we
specify the precise methods through which the prover ensures gate consistency,
and for each case we determine the computational requirements for the prover
and the verifier.

3.1 Linear Equation Based Method (LEq)

As already mentioned this method underlies the techniques in [20], however we
present it in generality as we will be examining its efficiency in the ROM as well
as the CRS. Recall that to each gate gr = ((wi, wj), wk, Tr) one can associate a
linear equation Lr(wi, wj , wk) = awi + bwj + cwk + d such that if wi, wj are
in {0, 1}, then Lr(wi, wj , wl) ∈ {0, 1} if and only if Tr(wi, wj) = wk. Proving
consistency of committed values for the wires wi, wj and wk can be ensured in two
steps: show that each of the commitments is a bit commitment, and then show
that the desired linear equation between the committed bits holds. The last step
can be implemented when the commitment scheme is homomorphic via another
proof that a particular commitment is to a bit. The algorithm of the prover that
we give below uses a commitment comm�0 = comm�(1, 0) to the value 1.

1. Given circuit C = (W,G), and a given input x (which determines the values
for the input wires in I) the prover first determines the value of each wire
wi ∈ W .

2. The prover computes a commitment comm�i = comm�(wi, ri) to each of the
value of wi ∈ W .

3. For each wi ∈ W , the prover produces a proof πi that each commitment
comm�i opens to an element in the set {0, 1}.

4. If Lr(wi, wj , wk) = awi+bwj+cwk+d is the linear equation associated with
gate gr, the prover computes

comm�
′
r = a · comm�i + b · comm�j + c · comm�k + d · comm�0,

for each gate gr. Here the prover uses the homomorphic property of the
commitment scheme to compute the randomness underlying comm�

′
r. For

each gr ∈ G the prover produces a proof π′
r that commitment comm�

′
r opens

to an element in {0, 1}.
5. Finally, the prover outputs the decommitment values for the circuit’s output

wires.
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The proof that the prover outputs consists of commitments comm�i for i =
0, . . . , |W |, the proofs πi (for i ∈ W ) that the commitments associated to wires
are to valid values (i.e. 0,1), the proofs π′

r (for r ∈ G) that the gates satisfy
their associated linear equation, and the decommitments to the wires in O. The
verifier computes the commitments comm�

′
r on his own (for each 1, . . . , |G|),

verifies all the individual proofs, and correctness of the decommited values. The
total communication required is therefore |W | commitments, |W | + |G| proofs
and |O| decommitment information.

3.2 The Quadratic Equation Based Method (QEq)

The second method that we investigate uses the representation of the output
of a gate as a quadratic polynomial of its input wires. This is the classical
method underlying the ROM methods in many papers such as [10]. However,
our presentation involves a number of optimizations; in particular note below our
division of the sets of quadratic monomials into subsets. When we instantiate the
proofs this forms an important optimization. However, in the ROM this turns
out to only produce an optimization when batch verification techniques are not
desirable (such techniques produce more efficient verification, but less efficient
provers and also increase the size of the underlying proof).

At a high level here the prover starts out with commitments to the bits on
the input wires of the circuits and uses the homomorphic property of the com-
mitment scheme to compute commitments to the remaining ones. Notice that
since the equation is quadratic (and thus not sufficiently compatible with the
commitment scheme to use the method of the previous section) one also needs
to supply commitments to the monomials that occur in the gate equation and
a proof that these commitments are well formed. Given these, the verifier can
check the validity of the computation on its own.

We implemented this method with a number of significant optimizations.
To give the details we need a little more notation. We first identify the set
of quadratic monomials that occur in the quadratic equations that define the
gates of the circuit. We define

Mon = {(i, j) : gk = ((xi, xj), xk, Tk) ∈ G, } .

The set Mon represents the set of products of two terms which are needed to
derive the output of a gate.

We divide Mon into t disjoint subsets Mon1, . . . ,Mont, where each subset
Monk is indexed by a value sk such that

∀(i, j) ∈ Monk either sk = i or sk = j.

This is done in a way so as to heuristically mimimize the number of disjoint
subsets. Each subset of Mon represents a combination of proofs which can be
executed together. Thus by minimizing the number of disjoint subsets, we min-
imize the number of proofs which need to be executed.

We can now give the second method for solving BCP. We use a commitment
comm�0 = comm�(1, 0) to the value 1.
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1. Given circuit C = (W,G), and a given input x (which determines the values
for the input wires in I) the prover first determines the value of each wire
wi ∈ W .

2. The prover computes a commitment comm�i = comm�(wi, ri) to each of the
value of wi ∈ I.

3. For each wi ∈ I, the prover produces a proof πi that each commitment
comm�i opens to an element in the set {0, 1}.

4. For every element (i, j) ∈ Mon, the prover commits to the to the product
wiwj , via comm�i,j = comm�(wi · wj , ri,j).

5. For each gate g represented by the quadratic equation wk = Q(wi, wj) =
awi · wj + bwi + cwj + d , he computes a commitment comm�k to wk via

comm�(wk, rk) = a · comm�i,j + b · comm�i + c · comm�j + d · comm�0

6. For l = 1, . . . , t the prover generates a proof π′
l that the commitments

comm�i,j to the products in Monl are consistent with the wires’
commitments.

7. Finally, the prover outputs the decommitment values for the circuit’s output
wires.

The output of the prover consists of the commitments comm�i for i = 0, . . . , |I|,
the commitments to the products used, the proofs πi for i ∈ I and the proofs
π′
l for l ∈ 1, . . . , t, as well as decommitments to the output wires. The veri-

fier can then compute comm�k himself for k = |I|, . . . , |W | and verify all the
proofs. We are thus required to transmit |I| + |Mon| commitments, |I| proofs
that each commitment is to a bit, t monomial consistency proofs, and the |O|
decommitments.

4 Proofs for Relations between Committed Values

The methods described in Section 3 make use of various subproofs: proofs that a
committed value is either 0 or 1, that a committed value is product of two other
committed values, etc. In this section, we detail the proofs and the particular
commitment schemes that we use in our implementation. We then estimate the
the efficiency of the protocol(s) that result by plugging in these particular proofs
in the general solutions of the previous section.

4.1 Relations between Committed Values

In this subsection, we summarize the statements for which we require zero-
knowledge proofs. These proofs essentially allow us to prove that certain com-
mitments hold a bit value, and that certain relations between committed bits
hold. Using a commitment scheme that is homomorphic, we can then prove that
each gate is computed correctly and reveal the values on the output wires. Below,
we use comm�(·, ·) for the commitment algorithm. The statements for which we
need proofs are as follows:



Practical Zero-Knowledge Proofs for Circuit Evaluation 477

The first kind of statement specifies that the prover knows the opening of
a commitment A, and the value committed to is 0 or 1. In Camenisch–Stadler
notation [9], this statement is

POK{(x) : ∃rx ∈ Zq ∧ A = comm�(x, rx) ∧ x ∈ {0, 1}} ,

Since we use such proofs to show that commitments to values for wires are well-
formed, we refer to this statement as WFComm. The second kind of statements
involves a commitment A to some x, and 2 · s commitments Bi and Ci to some
values y(i) and z(i) respectively, for i = 1, 2, . . . , s. These commitments are known
to both the prover and the verifier. The prover wants then to convince the verifier
that he knows x, rx, y(i), r

(i)
y , z(i) and r

(i)
z , such that

A = comm�(x, rx)
s∧
i=1

Si

where Si is the statement

Bi = comm�(y(i), r(i)y ) ∧ Ci = comm�(z(i), r(i)z ) ∧ z(i) = x · y(i).

That is, for each i, the value committed in Ci is the product of the values
committed in A and Bi. Since the statement regards the well-formedness of
certain products we refer to this statement as WFProd .

4.2 Non-interactive Proofs in the Random Oracle Model

The first instantiation that we investigate uses Pedersen commitments and non-
interactive proofs in the random oracle model. The proofs are obtained from
standard Σ-protocols for the relations that we prove by using a transform pro-
posed by Blum. All of the following proofs use standard techniques, and many
are essentially “folklore”.

Let (G,+) be a finite abelian group of prime order p, P a generator of G
and Q an arbitrary element in G such that no party knows discrete logarithm
of Q with respect to P . Also, assume that H : {0, 1}∗ → Zp is a random oracle.
Our random oracle implementation uses the Pedersen commitment scheme that
allows to commit to an element x ∈ Zp, using randomness r ∈ Zp as follows:

commROM :
{

Zp × Zp −→ G
(x, r) �−→ x · P + r · Q

Proofs for WFComm in the RO Model: To prove knowledge of a committed
value that is either 0 or 1, we use the standard OR-proofs [11] obtained from
Schnorr proofs [26]. The computation of the prover is summarized below.

– If x = 0, the prover proceeds as follows:
• Select w, z1, e1 ∈R Zp and compute A0 = w · Q and A1 = z1 · Q − e1 ·

(A − P ).
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• Compute e = H(A0‖A1).
• Compute e0 = e − e1 and z0 = w − rx · e0.

– If x = 1, the prover proceeds as follows:
• Select w, z0, e0 ∈R Zp and compute A0 = z0 ·Q+ e0 ·A and A1 = w ·Q.
• Compute e = H(A0‖A1).
• Compute e1 = e − e0 and z1 = w + rx · e1.

The proof in both cases is given by the tuple (e, e0, e1, z0, z1). To verify the proof,
the verifier computes the two values

A′
0 = z0 · Q+ e0 · A and A′

1 = z1 · Q − e1 · (A − P )

and then verifies that e = e0 + e1 and e = H(A′
0‖A′

1).
In the above description, proof generation requires one multiplication and one

“double multiplication”. We write this as: 1 ·G+1 ·G2. We preserve this conven-
tion in the remainder of the paper. Proof verification requires 2 · G2 operations,
i.e. two double multiplications.

Proof for WFProd in the RO Model: Next we give the protocol that we
use in order to show the relation

A = commROM(x, rx)
s∧
i=1

Si

where Si is the statement

Bi = commROM(y(i), r(i)y ) ∧ Ci = commROM(z(i), r(i)z ) ∧ z(i) = x · y(i).

Our proof is based on executing, s-times in parallel, the serial proof protocol
from [24], which is itself based on Okamoto’s identification protocol [25]. Hence,
the prover executes the following statements:

– Select a, b ∈R Zp and compute A0 = a · P + b · Q and for i = 1, . . . , s
Ai = a · Bi + b · Q

– Compute e = H(A0‖A1‖ . . . ‖An).
– Computes s0 = a + e · x, s1 = b + e · rx and for i = 1, . . . , s, si+1 =
b+ e · (r(i)z − r

(i)
y · x).

The proof is given by the tuple (e, s0, s1, . . . , sn+1). To verify the proof the verifier
computes

A′
0 = s0 · P + s1 · Q − e · A

A′
i = s0 · Bi + si+1 · Q − e · Ci for i = 1, . . . , s.

Then the verifier accepts the proof if e = H(A′
0‖A′

1‖ . . . ‖A′
n).

Proof generation requires (s+1) ·G2 operations (although it might be simpler
to compute this using (s + 3) · G operations.) Verification requires (s + 1) · G3

operations.
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Complexity of LEq in the RO Model: Using the above proofs for gates in
the general protocol of Section 3.1 leads to the following computational effort
for the prover.

1. Negligible
2. (|W | + 1) · G2.
3. Here we execute |W | times the proof for WFComm . The computation time

is |W | · (G + G2).
4. The prover computes the values of commROM

′
r; since a, b, c, d are “small” this

computation is relatively cheap so we ignore this cost. The prover computes
|G| proofs for WFComm which requires |G| · (G + ·G2) computation time.

5. Negligible.

Hence, the total cost for the prover (obtained by summing the cost for each step
above) is

(|W | + |G|) · G + (2 · |W | + |G| + 1) · G2.

In a similar manner we obtain that the verifier performs

(2 · |W | + 2 · |G| + |O| + 1) · G2

operations.

Complexity of QEq in the RO Model: When we use the proofs devel-
oped in this section in conjunction with the general protocol of Section 3.2 the
computation cost for the prover can be estimated as follows:

1. Negligible.
2. |I| · G2.
3. This requires |I| invocations of WFComm . This requires |I| · (G + G2)

operations.
4. |Mon| · G2.
5. This is negligible cost as the values of a, b, c and d are very small.
6. For each i ∈ [1, . . . , t] this requires an invocation of WFProd with s =

|Moni|. Thus the cost of this step for the prover is
∑t
i=1(|Mont| + 3) · G =

(|Mon| + 3 · t) · G.
7. Negligible.

Thus the total cost for the prover is

(|Mon| + |I| + 3 · t) · G + (|Mon| + 2 · |I| + 1) · G2,

and the cost for the verifier is

(|I| + |O|) · G2 + (|Mon| + t) · G3.
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4.3 Non-interactive Proofs in the Common Reference String Model

We also study an efficient implementation in the CRS model. The implemen-
tation is based on the techniques proposed by Groth et al. [20,21]. Their tech-
niques crucially rely on groups that benefit from cryptographic pairings and are
presented in three different settings. Each setting is based on a particular as-
sumption which translates in particular types of elliptic curves. The assumptions
and the pairing functions that they consider are as follows.

– Subgroup Decision Problem: The implementation uses a symmetric pair-
ing over groups of unknown order, such as those in [5].

– Decision Linear Problem: The implementation uses a symmetric pairing
over a group of known prime order q. These are often called Type-1 pairings
[16].

– Symmetric External Diffie–Hellman Problem: The implementation
uses an asymmetric pairing over a group of known prime order q in which
the external DDH problem is hard in both domain groups. These are often
called Type-3 pairings [16].

We note that although [20] already presents a NIZK proof of circuit satisfiability
for the first two cases above, it does not treat the third case. Clearly however,
it is this third case that should lead to more practical result since the pairings
used in this setting can benefit from techniques that lead to significantly im-
proved implementations such as sextic twists, the ate-pairing [22]. Furthermore,
security scales better in the asymmetric pairing setting [16]. The proofs that we
implement use this setting and we give the details below.

We comment that our presentation departs from that in [21] in terms of no-
tation. The notation of [21] is sufficiently comprehensive to deal with all of the
three cases considered. Instead, in this paper we use notation tailored for the
third case. The result is that our presentation exhibits the structure of their
proofs in much clearer way for the case of asymmetric pairings, which are the
pairings that we use in our implementation. In addition, in [21] the proofs are
presented for four possible types of equations, we will only be interested in equa-
tions between commitments to integer values, which again allows us to simplify
the notation from [21] somewhat. In the sequel we detail the proofs that we have
implemented and, when appropriate, we highlight how our presentation departs
from the one in the original paper.

We consider a Type-3 pairing, t̂ : G1 × G2 −→ GT , between finite groups of
prime order p, such that the Diffie–Hellman problem is hard in both G1 and G2.
We assume generators Pi of Gi are given and we set

B1 = G1 × G1, B2 = G2 × G2, BT = G4
T .

We denote integer variables by lower case letters, elements in Gi by upper case
letters, elements in GT by lower case Greek letters, and elements of Bi by calli-
graphic letters U ,V . We keep Groth/Sahai’s convention that a proof is given by
a pair (Π,Θ) ∈ B2 × B1, but we use capital Greek letters for these two elements,
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the other exception relating to namely of functions. In these exceptional cases
type inference should be clear from the context. We index by subscripts 1 and
2 elements of G1 or G2, this is the major benefit of our notation as it is now
simpler to see to which of the two groups in the asymmetric pairing situation
an element belongs to. Vectors are indicated by underlying them, as in a and
we write a(i) for the i’th position of vector a. Sets/modules/groups etc will be
denoted by blackboard font, as in B,Z,G.

We can now describe the basic Groth and Sahai proofs which we use.

Setup
Generate a1, a2, t1, t2 ∈ Zp and for i = 1, 2 define

Qi = [ai]Pi, Ui = [ti]Pi, Vi = [ti]Qi.

We now set

Ui = (Pi, Qi) ∈ Bi, Vi = ti · Ui = (Ui, Vi) ∈ Bi, Wi = Vi + (O, Pi) ∈ Bi.

The functions that we define next extend naturally to vectors of input values in
a component-wise manner. We let

F :
{

B1 × B2 −→ BT
(X1, Y1), (X2, Y2) �−→

(
t̂(X1, X2), t̂(X1, Y2), t̂(Y1, X2), t̂(Y1, Y2)

)
Note that unlike in [21] we present elements of BT as vectors of length four,
as opposed to 2 × 2 matrices. This emphasizes that the group operation in
BT is component wise multiplication and not matrix multiplication. Since the
underlying pairing t̂ is bilinear, it follows that map F is also bilinear. We also
define the maps

ι′i :
{

Zp −→ Bi
x �−→ x · Wi,

ι′T :
{

Zp −→ BT
z �−→

(
1, 1, 1, t̂(P1, P2)z

)
The Commitment Scheme
We now define a commitment scheme to elements x ∈ Zp, using randomness
r ∈ Zp as follows:

commCRSi :
{

Zp × Zp −→ Bi
(x, r) �−→ x · Wi + r · Ui

Note that we have commCRSi(x; r) = (xUi + rPi, x(Vi +Pi)+ rQi). We will also
need to make use of the “combined” commitment which we define as

commCRS :
{

Zp × Zp × Zp −→ B1 × B2
(x, r1, r2) �−→ (commCRS1(x, r1), commCRS2(x, r2)) .
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One can think of these commitments schemes as analogues of Pederson commit-
ments in the groups Bi and B1 × B2, with appropriately chosen generators, due
to the form x · Wi + r · Ui.

The Proof
Assume that values xi are committed to by selecting random vectors ri ∈ Zni

p

and then forming the vector of commitments Ci via

Ci(j) = commCRSi(xi
(j); ri(j)) for j = 1, . . . , ni, i = 1, 2.

Groth and Sahai allow one to prove that given commitments as above, the prover
knows an opening of the commitments as variables x1 ∈ Zn1

p , x2 ∈ Zn2
p such that

the following equation holds:

a2 · x2
t + x1 · a1

t + x1 · Γ · x2
t = t

where ai ∈ Zni
p , t ∈ Zp and Γ ∈ Zn1×n2

p .
A proof is simply given by two elements (Θ,Π) ∈ B1 × B2. These are formed

by computing, for some random value s ∈ Zp.

Θ = r2 · ι′1(a2)t + r2 · Γ t · ι′1(x1)t + s · U1,

Π = r1 · ι′2(a1)t + r1 · Γ · ι′2(x2)t +
(
r1 · Γ · r2t − s

)
· U2.

Verification
To verify a proof the prover checks whether

n1∏
i=1

F

(
C1

(j), ι′2(a1
(j)) +

n2∑
k=1

Γj,k · C2
(k)

)
·
n2∏
j=1

F
(
ι′1(a2

(j)), C2
(j)
)

= ι′T (t) · F (U1, Π) · F (Θ,U2).

We now examine the communication and computational cost of the above
method for the equation specified above. The size of the commitments is equal to
2·(n1 · G1 + n2 · G2). To compute the commitments requires 4·(n1 · G1 + n2 · G2)
operations. Whilst, the size of a proof for one equation is equal to 2 · (G1 + G2).
To compute a proof depends on the number of non-zero entries in a1, a2 and Γ .
An upper bound is given by

2 · (n1 + n2 + 1) · (G1 + G2) .

To evaluate the cost for verifying a proof we assume that the most expensive
cost of the basic operations, i.e. group scalar multiplication or pairing, is the
pairing operation. This might not always be true in practice, but it should give
a good idea. Each F operation requires four pairings. However, each product of
F values can be implemented using the standard “product of pairings” trick[17],
the cost of evaluating a product of t application of F (resp. pairings) we shall
denote by F t (resp. P t). Thus to verify a proof we require at most Fn1+n2+2

operations, or equivalently 4 ·P 2·n1+n2+2. Clearly, the exact number depends on
the number of non-zero entries in a1, a2 and Γ .
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Particular Instantiations
Our solution uses proofs for the following three instantiations for the equation
above (the proofs are presented in the appendix). For all of these proofs there
are publicly known commitments to three values x1

(1), x1
(2) and x2

(1). The
commitments are computed via:

C1
(1) = commCRS1(x1

(1), r1
(1)) = x1

(1) · W1 + r1
(1) · U1 ∈ B1,

C1
(2) = commCRS1(x1

(2), r1
(2)) = x1

(2) · W1 + r1
(2) · U1 ∈ B1,

C2
(1) = commCRS2(x2

(1), r2
(1)) = x2

(1) · W2 + r2
(1) · U2 ∈ B2.

Recall our convention that a subscript on a group element denotes which of
the two domains of the pairing it belongs to. The proofs are for the following
equations:

– Product: x(2)
1 = x

(1)
1 · x(1)

2 .
– BitProof: x(1)

1 = x
(1)
1 · x(1)

2 .
– Equality: x(1)

1 = x
(1)
2 .

Using proofs for the above equations, to be found in the Appendix, we develop
instantiations for WFComm and WFProd as follows:

Proofs of WFComm in the CRS Model: We actually require two such
proofs, the first is to prove the following statement:

POK{(x) : ∃rx ∈ Zq ∧ C1 = commCRS1(x, rx) ∧ x ∈ {0, 1}} .

Here we execute the following steps:

– Compute C2 = commCRS2(x, r′x).
– Show that x · (x − 1) = 0 by using a proof for BitProof
– Show that C1 and C2 are commitments to the same value via a proof for

Equality.

The cost of producing this proof is therefore equal to 2·B2
1+3·B2

2 = 4·G2
1+6·G2

2,
whereas the cost of verification requires 8 ·P 4. It may at first sight appear, from
examining the verification equations associated to BitProof and Equality that
a speed-up may be possible by exploiting that one of the F terms is the same
in the two equations. However, because we are using products of pairings to
perform the verification, this observation does not provide us with any efficiency
gain.

For the commitment scheme commCRS things are a bit different. For the same
statement

POK {(x) : ∃rx, r′x ∈ Zq ∧ C = commCRS(x, rx, r′x) ∧ x ∈ {0, 1}} .

if we can ensure somehow that the commitment is well-formed it is sufficient to
only execute a proof for BitProof. One way to ensure that the commitment is
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well formed is through a proof for Equality. This is an important observation for
justifying the optimizations that we propose later in the paper. For evaluating
efficiency in the case of commitment scheme commCRS we refer to WFComm
as the proof which only executes a proof for BitProof. We ensure that through
separate proofs that the commitments involved are well formed (if this cannot
be deduced from other information). In this case, each of these proofs require
B2

1 +B2
2 = 2G2

1 +2G2
2 operations to produce them and 4 ·P 4 operations to verify

them.

Proofs for WFProd in the CRS Model: We implement a proof for the
statement

POK

{
(·) : A = commCRS1(x, rx)

s∧
i=1

Si

}
where Si is the statement

Bi = commCRS1(y
(i), r(i)y ) ∧ Ci = commCRS1(z

(i), r(i)z ) ∧ z(i) = x · y(i).

via the following steps:
– Compute A′ = commCRS2(x, r′x).
– Show that A and A′ are commitments to the same value by using the proof

for Equality.
– Execute z(i) = x · y(i) for i = 1, . . . , s by executing s proofs for Product.

The total cost for producing the proof is 2 · (1 + s) · G2
1 + 2 · (2 + s) · G2

2 and the
cost to verify it is 4 · (s + 1) · P 4.

We can now put the above together and estimate the computational costs for
the proofs obtained via the two methods discussed above in the CRS model.

Complexity of LEq in the CRS Model: We use commCRS, i.e. the one
which commits into B1 × B2, as the commitment scheme. We perform the same
analysis as in the ROM case for each stage;
1. Negligible
2. 2 · (|W | + 1) · (G2

1 + G2
2).

3. Here we execute |W | times a proof for WFComm plus |W | operations
which show that the commitments in the first stage are well formed. Thus
the prover computes 4 · |W | · (G2

1 + G2
2).

4. As before computing commCRS
′
r is cheap. The prover then needs to execute

|G| versions of WFComm for commCRS
′
r, but does not need to prove that

the values of commCRS
′
r are well formed, since the verifier will already know

this. This step therefore requires a cost of 2 · |G| · (G2
1 + G2

2).
5. Negligible.

The total cost for the prover is therefore

2 · (3 · |W | + |G| + 1) · (G2
1 + G2

2),

and the cost for the verifier is

4 · (2 · |W | + |G|) · P 4 + 2 · |O| · (G2
1 + G2

2).
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Complexity of QEq in the CRS Model: In this method we take as our
basic commitment scheme the commitment commCRS1, which represents com-
mitments in B1. Performing an analysis as above we find at each step the prover
needs to compute

1. Negligible.
2. 2 · |I| · G2

1.
3. To execute this proof the prover needs to first make the same commitments in

B2, prove they are equivalent and then execute the proof that the committed
value is in {0, 1}. This in total requires |I| · (4 · G2

1 + 6 · G2
2).

4. 2 · |Mon| · G2
1.

5. This is negligible cost as the values of a, b, c and d are very small.
6. Here we execute WFProd in this format which has a cost of 2 ·(t+ |Mon|)·

G2
1 + 2 · (2 · t+ |Mon|) · G2

2.
7. Negligible.

Thus the total cost for the prover is

2 · (3 · |I| + 2 · |Mon| + t+ 1) · G2
1 + 2 · (3 · |I| + 2 · t+ |Mon|) · G2

2,

and the cost for the verifier is

4 · (t+ |Mon| + 2 · |I|) · P 4 + 2 · |O| · G2
1.

5 Batch Verification

In order to speed up the times the different verifiers take, we can use batch
techniques and in particular the small exponents test from [2] in the ROM model;
In the CRS while a similar batch verification to the one used by Camenish et al.
[8], for batch verifying BLS signature scheme, can be used to batch verify our
CRS proofs.

5.1 Small Exponent Test

Choose γ1, . . . , γn at random where l is the bit length of γi. We then compute
x =

∑n
i=1 (xi · γi) and y =

∏n
i=1 y

γi

i . The verification is done by checking that
gx = y. We set the small exponent test’s error rate at 2−l by choosing exponents
such that |γi| = l. To compute y, there are fast methods that can compute
product of powers like the one in [7] which requires a total of l(n+2)

2 on average.
The precise value depending of the hamming weight of the exponents.

5.2 Batch Verification in the ROM Model

Since WFComm and WFProd are the main building blocks in our proofs in
the ROM model, we will introduce the bacth verification in respect to them.
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WFComm
As we have seen earlier, to verify a single WFComm proof, the verifier needs
to check that the following two equations hold:

A0 = z0 · Q+ e0 · A
A1 = z1 · Q − e1 · (A − P )

So if we have n WFComm proofs, then we need to verify n pairs of the above
equations. However, if we use the small exponent test to batch verify those n
WFComm proofs, the verification reduces to checking the following equation
only:

n∑
i=1

(γ1,i · A0,i) +
n∑
i=1

(γ2,i · A1,i) =

(
n∑
i=1

(γ1,i · z0,i) +
n∑
i=1

(γ2,i · z1,i)
)

· Q

+
n∑
i=1

((e0,i · γ1,i − e1,i · γ2,i) · Ai)

+

(
n∑
i=1

(e1,i · γ2,i)

)
· P

Again here we can use the product of powers algorithm to efficiently compute∑n
i=1 ((e0,i · γ1,i − e1,i · γ2,i) · Ai) and (

∑n
i=1 (γ1,i · A0,i) +

∑n
i=1 (γ2,i · A1,i)).

Thus batch verification of n WFComm would in total require l(2n+2)+q(n+2)
2

point additions and 2 scalar multiplications (or one double multiplication), where
q is the bit length of the group order.

WFProd
We note that the optimization we used in 3.2 in which we generate a proof for
all the monomials in each subset Moni in one go would not really help tak-
ing advantage of the batch verification as n (i.e. the size of the batch) in this
case is very small and batch verification in general is meant to save time as
n grows. This is because (in terms of the underlying Σ-protocol) we send the
challenge value, and get the verifier to recompute the individual commitments,
then a proof is verified by checking the challenge is obtained from hashing the
commitments. This saves bandwidth, but stops one being able to perform batch
verification techniques efficiently. If we instead send the commitments, the veri-
fier then computes the challenge (via the hash), and verifies the equations, as one
would for an interactive Σ-protocol, one can apply batch verification techniques.
However, this not only increases the size of the proof significantly, we obtain no
benefit in treating each subset Moni in a seperate manner.

We therefore ran another experiment in which we did not divide the set Mon
into t disjoint subsets and instead generated a proof for each element in the big
set Mon individually, using the above technique for transmitting the proof. As
we will see from the results in Section 6 it is actually a matter of a trade off
between the speed of the prover and the verifier and choosing the appropriate
method accordingly.
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Since we adapted the way the quadratic equations method are evaluated to
verify a single product proof, the verifier needs to check the following two equa-
tions for each element in the set Mon:

A0 = s0 · P + s1 · Q − e · A
A1 = s0 · B + s2 · Q − e · C

Applying the batch verification to verify n WFProd proofs then requires check-
ing the following equation only:
n∑
i=1

(γ1,i · A0,i) +
n∑
i=1

(γ2,i · A1,i) =

(
n∑
i=1

(γ1,i · s0,i)
)

· P

+

(
n∑
i=1

(γ1,i · s1,i) +
n∑
i=1

(γ2,i · s2,i)
)

· Q

−
n∑
i=1

((γ1,i · ei) · Ai) +
n∑
i=1

((γ2,i · s0,i) · Bi)

−
n∑
i=1

((γ2,i · ei) · Ci)

Thus batch verification of n WFProd would in total require l(2n+2)+q(3n+2)
2

point additions and 2 scalar multiplications (or one double multiplication), where
q is the bit length of the group order.

5.3 Batch Verification in the CRS Model

As we see from the experiments’ results in Section 6, the times of the verifiers
of the two methods in the CRS model are slower than their counterparts in
the ROM model and that comes as no surprise because pairing, which is the
main operation in the CRS model, is an expensive one and hence using batch
verification to reduce the number of pairings required would greatly reduce the
time needed. We will explain our batch verification in respect to the three main
proofs we use in the CRS model which are:

Product
As we see in A.1, to verify a single Product proof, the verifier needs to check :

F
(
C1

(2),−W2

)
· F

(
C1

(1), C2
(1)
)

= F (U1, Π) · F (Θ,U2)

Batch verifying n Product proofs would only require checking the following
equation:

F

(
n∑
i=1

(
γi · C1,i

(2)
)
,−W2

)
·

n∏
i=1

F
(
γi · C1,i

(1), C2,i
(1)
)

= F (U1,

n∑
i=1

(γi · Πi)) · F (
n∑
i=1

(γi · Θi) ,U2)
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Thus batch verifying n Product proofs would require only n + 3 products of
four lots of standard pairings compared to 4n products of four lots of standard
pairings if the proofs are verified individually.

BitProof
As we see in A.2, to verify a single BitProof, the verifier needs to check :

F
(
C1

(1),−W2

)
· F

(
C1

(1), C2
(1)
)

= F (U1, Π) · F (Θ,U2)

Batch verifying n BitProof proofs would only require checking the following
equation:

F

(
n∑
i=1

(
γi · C1,i

(1)
)
,−W2

)
·

n∏
i=1

F
(
γi · C1,i

(1), C2,i
(1)
)

= F (U1,

n∑
i=1

(γi · Πi)) · F (
n∑
i=1

(γi · Θi) ,U2)

Again, batch verifying n BisProofs would only require n+3 products of four lots
of standard pairings compared to 4n products of four lots of standard pairings
when the proofs are verified individually.

Equality
As we see in A.3, to verify a single Equality proof, the verifier needs to check :

F
(
C1

(1),−W2

)
· F

(
W1, C2

(1)
)

= F (U1, Π) · F (Θ,U2)

Batch verifying n Equality proofs would only require checking the following equa-
tion:

F

(
n∑
i=1

(
γi · C1,i

(1)
)
,−W2

)
· F

(
W1,

n∑
i=1

(
γi · C2,i

(1)
))

= F (U1,

n∑
i=1

(γi · Πi)) · F (
n∑
i=1

(γi · Θi) ,U2)

Batch verifying n Equality proofs would therefore require only 4 products of
four lots of standard pairings compared to 4n products of four lots of standard
pairings if the proofs are verified individually.

As we will see, using batch verification in the CRS model greatly reduces the
number of pairings to be executed which in turn considerably minimizes the time
needed for verifying the proofsW

6 Experimental Results

In this section, we present the results and the timings we have achieved for our
different implementations. We first describe the two types of groups that we
used, we then present the two circuits, and finally we present our timings.
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In the random oracle model, we based our commitment scheme on the elliptic
curve secp256r1 from the SECG standard [27]. This is a 256-bit elliptic curve
defined over the prime finite field with

p = 2224 · (232 − 1) + 2192 + 296 − 1

elements.
In the CRS model, we used a 256-bit Barreto–Naehrig curve [1] defined over

the finite field of

p = 36 · z4 + 36 · z3 + 24 · z2 + 6 · z + 1

elements, where z = 0X6800000000000112. The curve is given by E : Y 2 =
X3 + 18. Such a curve allows one to use efficient implementation tricks such as
sextic twists and the Ate-pairing etc. [22]. In addition having a sparse value of
z (in binary form) allows for more efficient implementation of the Ate-pairing.

Our batch verification techniques were implemented using the small exponent
method with small-exponents of 128-bits in length.

For the two circuits we first used a small circuit in which the prover com-
mits to two 32-bit integers, and then proves that one is smaller than the other.
In the second circuit, the prover commits to a 128-bit cryptographic key, and
then proves that a public 128-bit message and 128-bit ciphertext block arise
from applying the AES cipher to the message under the hidden key (similar
timings result from proving a hidden key and hidden message produce a given
ciphertext). In Table 1 we present the details of the two circuits. The last two
lines in the table refer to the parameters related to our optimization in QEq
described earlier. Namely, the value t related to the number of parallel multipli-
cation proofs which need to be performed, whilst |Mon| denotes the number of
products which need to be proved to be correct.

Table 1. Details of the two circuits used in the experiments

Parameter Circuit-1 Circuit-2
No. Gates 184 33880

No. Input Wires 64 128
No. Output Wires 1 128
Total No. Wires 248 34136

t 93 15596
|Mon| 154 32244

We can now present our timings. In Figures 1 and 2 we summarize the execu-
tion time for producing and verifying proofs for the two circuits that we consider.
In each case we specify the model in which the proof is designed (ROM or CRS)
and we specify which of the two methods is used (LEq or QEq). We present
timings for when each sub-proof is verified individually and when the sub-proofs
are evaluated in a batch manner. All our timings are in seconds and were tested
on a Linux machine with Intel Core Duo 3.00GHz processor.



490 E. Ghadafi, N.P. Smart, and B. Warinschi

Model LEq method QEq method
ROM 4.7 2.25 1.95
CRS 44 15.23

Model
LEq method QEq method

Individual Batch Individual Batch
ROM 5.3 1.97 2.5 1.28 2.01
CRS 450 64 163 29.5

Fig. 1. Timing (in seconds) for the running time of the prover (left) and the verifier
(right) for Circuit 1

Model LEq method QEq method
ROM 729 380 296
CRS 7174 2406

Model
LEq method QEq method

Individual Batch Individual Batch
ROM 839 321 372 253 360
CRS 70300 9431 24861 4200

Fig. 2. Timing (in seconds) for the running time of the prover (left) and the verifier
(right) for Circuit 2

In the QEq and ROM model case (i.e. the last column of the first row in each
table) we provided two times which represent the time when our optimization by
dividing the set Mon into t disjoint subsets is not used and the timings when it
is used respectively. We needed this in order to compare both approaches when
using Batch verification.

We see, as is to be expected, that the timings for the Groth et al proofs in the
CRS are slower than the equivalent proofs using Σ-protocols turned into NIZK’s
using the Blum transform. But we notice that constructing the Groth–Sahai
proofs in the CRS model is only 7-9 times less efficient than the equivalent proofs
derived from the Blum transform being applied to a Σ-protocol in the random
oracle model. However, the relative performance of the verifier is much worse,
being around 10-20 times less efficient for the CRS based method compared to
the ROM based method for the QEq method.

We also see that QEq for performing the proof is always significantly more
efficient. Of particular interest is that proving, in the random oracle model, a
significantly large circuit, such as knowledge of an AES encryption key, is a
relatively simple task.

As for batch verification, we see that batch verification provides better time
saving in the CRS model than it does in the ROM model as it made verifying
LEq about 7 times faster than individual verification and made verifying QEq
about 6 times faster compared to about 2.5 times faster for LEq and twice as
fast for QEq in the ROM model.

As a by-product of our experiments using the above circuits we obtain the
first timings of the Groth et al proof techniques. In Table 2 we present these for
the three example proofs given in the Appendix. It should come as no surprise
that the timings are all remarkably similar, since the equations we are using are
all very similar. Increasing the complexity of the quadratic equations will lead
to an increase in the number of terms in the four pairing products which need
to be evaluated by the verifier, which will impact significantly on the overall
run times. However, we hope that these initial timings for Groth–Sahai proofs
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Table 2. Timings for the different examples of Groth–Sahai[21]

Proof Name Prover Time Verifier Time
Product 0.035 0.52
BitProof 0.035 0.52
Equality 0.04 0.52

in the asymmetric pairing setting will be useful for other researchers wishing to
use them in practical schemes. We note (for completeness) for such researchers,
that the time needed to compute a commitment in the Groth–Sahai setting we
found to be 0.005, 0.025, 0.030 seconds respectively, for commitments in B1, B2
and B1 × B2.
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A Example Pairing Based Proofs

We now present three examples. These have been chosen as they are ones which
we will need quite a lot of in our comparisons. Bellare at all in their paper
suggested a way to com

A.1 Product

Consider the equation x1
(1) · x2

(1) − x1
(2) = 0. i.e. we want to show that one

committed value is product of two other committed values. We have

n1 = 2, n2 = 1, t = 0, a1 = (0,−1), a2 = (0), Γ =
(

1
0

)
.

The commitments are given by C1
(1), C1

(2) and C2
(1) and the proof is given by

Θ = r2 · ι′1(a2)t + r2 · Γ t · ι′1(x1)t + s · U1

= r2
(1) · (1, 0) · (x1

(1) · W1, x1
(2) · W1)t + s · U1

=
(
r2

(1) · x1
(1)
)

· W1 + s · U1,

Π = r1 · ι′2(a1)t + r1 · Γ · ι′2(x2)t +
(
r1 · Γ · r2t − s

)
· U2

= (r1(1), r1
(2)) · ι′2((0,−1))t + (r1(1), r1

(2)) ·
(

1
0

)
· ι′2(x2

(1))

+
(

(r1(1), r1
(2)) ·

(
1
0

)
· r2(1) − s

)
· U2

= (r1(1), r1
(2)) · (0,−W2)t + r1

(1) · x2
(1) · W2 +

(
r1

(1) · r2(1) − s
)

· U2

=
(
r1

(1) · x2
(1) − r1

(2)
)

· W2 +
(
r1

(1) · r2(1) − s
)

· U2.

Creating the proof therefore requires one double multiplication in B1 and one
double multiplication in B2. This reduces to only a single multiplication in B1
and one double multiplication in B2 when x1

(1) = 0. To verify the proof we
simply check that

F
(
C1

(2),−W2

)
· F

(
C1

(1), C2
(1)
)

= F (U1, Π) · F (Θ,U2)

To verify the proof we simply need to compute a product of four evaluations of
F . Thus to verify the proof we need to execute four products of four standard
pairings.

http://www.secg.org
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A.2 BitProof

Now consider the equation x1
(1) · x2

(1) − x1
(1) = 0. We have

n1 = 1, n2 = 1, t = 0, a1 = (−1), a2 = (0), Γ =
(
1
)
.

The commitments are given by C1
(1) and C2

(1) and the proof is given by

Θ = r2 · ι′1(a2)t + r2 · Γ t · ι′1(x1)t + s · U1

=
(
r2

(1) · x1
(1)
)

· W1 + s · U1,

Π = r1 · ι′2(a1)t + r1 · Γ · ι′2(x2)t +
(
r1 · Γ · r2t − s

)
· U2

= r1
(1) · ι′2(−1)t + r1

(1) ·
(
1
)

· ι′2(x2
(1)) +

(
r1

(1) ·
(
1
)

· r2(1) − s
)

· U2

= −r1(1) · W2 + r1
(1) · x2

(1) · W2 +
(
r1

(1) · r2(1) − s
)

· U2

=
(
r1

(1) · x2
(1) − r1

(1)
)

· W2 +
(
r1

(1) · r2(1) − s
)

· U2.

Creating the proof therefore requires one double multiplication in B1 and one
double multiplication in B2. This reduces to only a single multiplication in B1
and one double multiplication in B2 when x1

(1) = 0. To verify the proof we
simply check that:

F
(
C1

(1),−W2

)
· F

(
C1

(1), C2
(1)
)

= F (U1, Π) · F (Θ,U2).

Again to verify the proof we require four products of four standard pairings.

A.3 Equality

As our final example, consider the equation x2
(1) − x1

(1) = 0. i.e. we want to
show that one two committed values are equal where the commitments lie in
different groups. We have

n1 = 1, n2 = 1, t = 0, a1 = (−1), a2 = (1), Γ =
(
0
)
.

The commitments are given by C1
(1) and C2

(1) and the proof is given by

Θ = r2 · ι′1(a2)t + r2 · Γ t · ι′1(x1)t + s · U1

= r2
(1) · W1 + s · U1,

Π = r1 · ι′2(a1)t + r1 · Γ · ι′2(x2)t +
(
r1 · Γ · r2t − s

)
· U2

= −r1(1) · W2 − s · U2.

Creating the proof therefore requires one double multiplication in B1 and one
double multiplication in B2. To verify the proof we simply check that

F
(
C1

(1),−W2

)
· F

(
W1, C2

(1)
)

= F (U1, Π) · F (Θ,U2).

Which is again four products of four standard pairings.
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