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Genetics and Molecular Biology  
of Mesothelioma

Dean A. Fennell

9.1  
 Apoptosis as a Tumor Suppressor Mechanism

Mesothelioma remains an incurable cancer due 
to the ineffectiveness of conventional cytotoxic 
chemotherapy. This is reflected in the prepon-
derance of mostly negative phase II clinical tri-
als over the last 30 years [32]. Resistance to 
apoptosis is a hallmark of cancer in general [48], 
accounts for multidrug resistance [58], and is a 
signature of mesothelioma [31]. During tumori-
genesis, it is now understood that as in common 
with other solid cancers, somatic genetic altera-
tion is a frequent event predisposing to apoptosis 
resistance. These changes include the activation 
of oncogenic cell survival pathways, and the 
inactivation of tumor suppressors.

This chapter will focus on how apoptosis 
susceptibility in mesothelioma is, in general, 
inhibited by the acquisition of multiple somatic 
alterations in oncogenic and tumor suppressor 

protein expression. Growing knowledge of 
these key genetic changes and their requirement 
for sustaining the malignant mesothelioma 
phenotype provide insights into potential vul-
nerabilities that may be successfully exploited 
using new therapeutic strategies. I will first of 
all, summarize our understanding of how the 
core death machinery is altered in mesothelioma 
(summarized in Fig. 9.1). This will be followed 
by a summary of the most frequent genetic alter-
ations driving oncogenic pathways or leading to 
dysfunction of tumor suppressors (summarized 
in Fig. 9.2). Translational research opportunities 
arising from this knowledge of mesothelioma 
pathobiology will then be highlighted.

9.2  
 Key Alterations in the Core Apoptosis 
Signaling in Mesothelioma

9.2.1  
 Regulation of the Intrinsic (Mitochondrial) 
Apoptosis Pathway in Mesothelioma

The BCL-2 family of proteins constitutes the 
pivotal molecular regulators of the core cell 
death machinery. This family is subdivided into 
proapoptotic and antiapoptotic proteins. BCL-2, 
the prototypical member of the BCL-2 family 
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was identified as a proto-oncogene associated 
with the t(14;18) translocation in follicular lym-
phoma [129]. The antiapoptotic protein subgroup 
now includes five additional proteins, MCL-1, 
BCL-X, BCL-W, A1 and BCL-B. Prosurvival 
BCL-2 family proteins regulate apoptosis at the 
level of the mitochondrial and endoplasmic retic-
ulum outer membranes. The canonical cell death 
pathway involves mitochondria; organelles 
responsible for generating ATP, the cell’s energy 
currency, through oxidative phosphorylation.

Prosurvival BCL-2 family proteins function 
to block a critical death switch which is respon-
sible for making the all-or-none decision to com-
mit a cell irreversibly to death [4,24]. This switch 
is the permeabilization of the outer mitochon-
drial membrane, induced by oligomerization 
and pore formation by the tumor suppressors 
and multidomain proapoptotic proteins BAK 
and BAX [99,115,146,147]. Mitochondrial outer 
membrane permeabilization or MOMP is a rapid, 

kinetically invariant event that results in the 
release several proteins from the mitochondria 
into the cytosol. These proteins include cyto-
chrome C [77], SMAC [27], OMI/HtrA2 [82] and 
apoptosis-inducing factor [122]. Cytochrome C 
in conjunction with APAF-1 [149] and dATP, 
triggers the activation of a family of zymogens 
called caspases, which cooperate in mediating 
cellular demolition by cleaving hundreds of sub-
strates. Bax and Bak are genetically redundant 
tumor suppressors [140]; prosurvival BCL-2 pro-
teins heterodimerize to prevent BAX and BAK 
activation, functioning as a rheostat that is depen-
dent on the ratio of pro- to antiapoptotic proteins.

In common with other tumor suppressors, 
BAX deficiency has been identified in primary 
malignancies [84]. However, low bcl-2/bax 
ratio has been reported in mesothelioma cells 
despite their apoptosis resistance, implicating a 
mechanism other than BCL-2 in regulating 
apoptosis. In vivo, MCL-1 is more commonly 
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expressed whereas BCL-2 expression is less 
frequent [96,119]. BAX and BAK require a 
subset of proapoptotic BCL-2 family proteins 
for activation which share homology in a death-
inducing BCL-2 homology 3 (BH3) domain, 
but do not contain other BH domains. Two such 
BH3 domain-only proteins, BID [136] and BIM 
[95] can directly induce the oligomerization and 
activation of BAX. Interestingly, in mesothe-
lioma, loss of expression of BH3-only proteins 
has been reported in vivo, namely, BID (37%) 
and BIM (18%). In addition, loss of BAX 
expression has been reported in one series in 
42% of primary mesotheliomas [96].

Prosurvival BCL-2 family proteins are inhib-
ited by a subset of BH3-only proteins, which 
are incapable of direct BAX/BAK activation, 
but bind directly to prosurvival counterparts. 
These so-called dissociator BH3-only proteins 
reflect a growing family and include BAD, 

NOXA, PUMA, BMF, BIK and HRK. Because 
dissociator BH3-only proteins are endogenous 
prosurvival BCL-2 family inhibitors, they rep-
resent a prototype for small molecule drug 
development, most notably ABT737 [76,98]. 
BH3 mimetics are a promising class of mito-
chondria targeted therapy with potential for 
treating mesothelioma. This is suggested by 
studies in which silencing BCl-2 and BCL-XL 
was sufficient to induce apoptosis and chemo-
sensitization [52]. However, target specificity is 
likely to be important for therapeutic efficacy. 
MCL-1 is highly expressed in mesothelioma 
and is one of the most commonly amplified 
oncogenes in human cancer [9]. It is also a 
resistance biomarker for ABT737 [68,132]. 
Nevertheless, other prosurvival BCL-2 family 
targeted agents such as obatoclax [92] are cur-
rently in clinical development, and may exhibit 
efficacy in mesothelioma.
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9.2.2  
 Extrinsic Apoptosis Pathway Regulation 
in Mesothelioma

Apoptosis can be efficiently induced in mesothe-
lioma cell lines by ligation of cell surface death 
receptors. Activation of death receptors by their 
ligands (which include TNF and FAS) leads to 
recruitment of FADD through a conserved death 
domain [22], followed by recruitment of caspase 
8 [10] activating complex known as the death-
inducing signaling complex or DISC [127]. 
Caspase 8 cleaves BID, leading to activation of 
BAX/BAK, mitochondrial apoptosis, and there-
fore signal amplification [78]. Tumor necrosis 
factor-related apoptosis inducing ligand (TRAIL) 
or TRAIL receptor agonists are currently in clin-
ical development but have yet to be evaluated in 
mesothelioma. Upon interaction, its receptors 
(TRAIL R1 or R2) can induce apoptosis in vitro. 
TRAIL also synergizes with DNA damage 
induced by etoposide in a manner that requires 
c-jun N terminal kinase [135].

FLIP is an inhibitor of TRAIL-induced 
apoptosis and is recruited to the DISC [90], 
where it inhibits caspase 8 recruitment and acti-
vation. Mesothelioma cells overexpress FLIP 
resulting in inhibition of death receptor-induced 
apoptosis [112]. Silencing of FLIP in mesothe-
lioma and other cancer models re-establishes 
sensitivity to TRAIL [112,141]. Novel, clini-
cally applicable approaches for downregulating 
FLIP in the clinical setting will be highlighted 
later in this chapter.

9.2.3  
 Inhibitors of Apoptosis in Mesothelioma

Inhibitors of apoptosis (IAPs) comprise a family 
of structurally related proteins, which share a 
common 70 amino acid baculovirus IAP (BIR ) 
repeat. IAPs interact with and inhibit caspases 9, 
3 and 7. Mesotheliomas have been shown to 
 overexpress the IAPs survivin, XIAP and IAP-1 

in vivo using immunohistochemistry [43,65]. 
IAP-1 has been shown to be associated with 
shorter survival [44]. RNAi-mediated silencing 
of IAP-1 is sufficient to reduce mesothelioma cell 
viability and induce apoptosis by activating the 
mitochondrial pathway [43]. Conversely, IAP-1, 
IAP-2 and XIAP are upregulated by tumor necro-
sis factor alpha, whereas survivin and livin are not 
[45]. Survivin is overexpressed in mesothelioma 
and its silencing in vitro is associated with induc-
tion of apoptosis suggesting that it might be a 
potential molecular target [29,144,152].

IAP proteins are inhibited by Smac, which is 
released from the mitochondria following outer 
membrane permeabilization by BAX/BAK. 
Small molecule smac mimetics offer one way of 
targeting IAPs and are currently in early devel-
opment, for example, AT406 and TL32711; 
these compounds also downregulate IAP-1 and 
IAP-2 [137]. Selective inhibitors of survivin, 
for example, YM155 are currently in clinical 
development in other cancers. Other approaches 
capable of modulating IAP proteins include his-
tone deacetylase inhibition, which is discussed 
in more detail later in this chapter.

9.3  
 Tumor Suppressor Loss in Mesothelioma

9.3.1  
 Loss of nf2 Is Frequent in Mesothelioma

The short arm of chromosome 9 (9p) is a region 
associated with frequent cytogenetic abnormali-
ties in mesothelioma [19,21,91,100,125]. Loss 
of the CDKN2b-CDKN2a locus on chromo-
some 9p21 in humans is a common event in 
cancer, in general, including mesothelioma. 
This locus includes the tumor suppressor 
p16ink4a, which is encoded by CDKN2A and is 
one of the most frequently silenced tumor sup-
pressors in mesothelioma [53]. This tumor sup-
pressor is an inhibitor of the Rb1 pathway 
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involved in cell cycle progression, and its loss 
whether by deletion (75–85%) or methylation is 
associated with poor prognosis [67,72]. There is 
frequently co-deletion of p16inka and p15ink4b, 
occurring in 75% of mesotheliomas [145]. It 
has been recently shown that p15ink4b, which 
is encoded by CDKN2b, can substitute for loss 
of p16ink4a, and that this back-up function 
could account for the frequently observed loss 
of the complete CDKN2b-CDKN2a locus [70].

Loss of expression has been shown to be 
associated with homozygous deletion of exons 
1–3 [91,102], and this is more frequently asso-
ciated with exposure to asbestos even in non-
small cell lung cancer, compared with tobacco 
exposure (which is associated with hypermeth-
ylation) [3]. In mesothelioma, hypermethyla-
tion occurs in the first exon [142]. Re-expression 
in mesothelioma cells is sufficient to induce cell 
cycle arrest, as well as reduced tumor growth 
and spread in vivo [40,41]. Because hyperm-
ethylation silences p16ink4a in approximately 
20% of mesotheliomas [142], re-expression can 
be achieved using demethylating agents such as 
cytidine analog dihydro-5-azacytidine (DHAC). 
Analysis of tissue samples from CALGB 8833 
and 9031 clinical trials employing DHAC-based 
therapy identified 4/20 tumors with methylation 
of p16ink4a. Although there was a trend to 
improved survival in this clinical trial associ-
ated with p16ink4a methylation, this was not 
statistically significant, probably as a result of 
the small sample size [69].

Around 40% mesotheliomas harbor somatic 
mutations in the neurofibromatosis type 2 gene 
(NF2) located at chromosome 22q12 [116]. 
Treatment of Nf2 (±) knockout mice with asbes-
tos causes accelerated development of mesothe-
lioma, with biallelic inactivation of the wild-type 
Nf2 allele, and loss of the CDKN2A locus [1]. 
Conditional knockout of nf2/p16ink4a in a 
murine model has been shown to exhibit more 
invasive, aggressive mesothelioma compared 
with conditional nf2/p53 knockout, with shorter 
survival [59]. Together, this implicates an 

important role in mesothelioma [59]. Mutation 
of NF2 is frequent in mesothelioma but not 
observed in non-small cell lung cancer [116]. 
Somatic mutation of NF2 is conserved across 
mesothelioma in different species, being fre-
quently detected in murine mesothelioma [73].

9.3.2  
 NF2 Encodes the Tumor Suppressor Merlin

Merlin, the gene product of NF2 is a FERM 
domain protein that functions at the plasma 
membrane where it inhibits mitogenic signaling. 
It functions as a growth inhibitor, and accumulates 
in the nucleus where it interacts with and inhibits 
the E3 ligase CRL4 (DCAF1) [79]. Loss of merlin 
has a pro-mitogenic effect, and this is lost when 
DCAF1 is depleted, or if a merlin insensitive 
mutant is expressed. Mutations of merlin disrupt 
the direct interaction with CRL4(DCAF1).

When Merlin expression is restored in NF2 
deficient mesothelioma cells, there is a marked 
inhibition of cell motility, spreading and inva-
siveness. Focal adhesion kinases (FAK) play a 
critical role in regulating invasive phenotype, 
and are negatively targeted by merlin. This 
mechanism of inhibition involves merlin depen-
dent FAK phosphorylation at a critical residue 
on tyrosine 397, resulting in a block of its 
interaction with binding partners src and the 
PI3kinase regulatory subunit p85 [106].

The transcriptional coactivator YAP1 [88] is 
an oncogene that is commonly amplified at the 
11q22 locus in mesotheliomas, and physically 
interacts with merlin, contributing to the promi-
togenic effects of NF2 deletion [148]. RNAi-
mediated suppression of YAP1 suppresses 
growth of mesothelioma cells with NF2 
homozygous deletion through induction of 
apoptosis and cell cycle arrest. Conversely, 
overexpression of YAP1 in immortalized meso-
theliomal cells is mitogenic. Merlin inhibits 
YAP1 through the induction of its phosphoryla-
tion and cytoplasmic retention.
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9.3.3  
 PLZF Is a Novel Tumor Suppressor in Mesothelioma

Focal deletion of 11q23 has been identified in 
mesothelioma, and involves a locus encompass-
ing promyelocytic leukemia zinc finger (PLZF), 
a transcriptional repressor gene. Loss of PLZF 
confirmed by analysis of transcript levels, and 
loss of protein expression has been observed in 
mesothelioma compared with mesothelial cells. 
Ectopic expression of PLZF causes reduced 
clonogenicity and initiation of apoptosis involv-
ing caspase activation; together, with the loss of 
PLZF implicates a potentially important role in 
regulating mesothelioma cell survival.

9.4  
 Therapeutic Inhibition of Survival Pathways

9.4.1  
 PI3K/AKT/mTOR Axis in Mesothelioma

Mesothelioma cells, which have been grown in 
three dimensions to more closely resemble solid 
tumors, acquire multidrug resistance, including 
resistance to TRAIL and chemotherapy [6,62]. 
The molecular basis underlying acquisition of 
multidrug resistance has not been fully delin-
eated, but involves activation of the phosphati-
dylinositol-3-kinase (PI3K)/Akt/mammalian 
target of rapamycin (mTOR) pathway since 
rapamycin or RNAi silencing of the mTOR tar-
get, S6K, can restore TRAIL sensitivity. This 
effect requires BID, since silencing using RNAi 
implicates mTOR/S6K as a major contributor 
of resistance to TRAIL in three-dimensional but 
not two-dimensional tumors. TRAIL sensitivity 
is also enhanced by inhibition of the PI3K/AKT 
pathway following heat stress, supporting a role 
for this pathway in blocking apoptosis [104]. 
Mesotheliomas exhibit an elevated level of 
activity in the PI3K/AKT/mTOR pathway both 
in mouse and human models, and its inhibition 

is associated with potentiation of cisplatin-
induced apoptosis [2].

AKT is antagonized by the endogenous 
inhibitor, phosphatase and tensin analog 
(PTEN), which acts to inhibit phosphorylation. 
When overexpressed in mesothelioma, PTEN 
induces loss of viability [87]. Not surprisingly, 
given the survival function of PTEN in regulat-
ing PI3K/AKT/mTOR signaling, the expression 
is lost in a significant proportion of mesothe-
liomas [101]. Recently it has been shown that 
PTEN is required for maintaining the integrity 
of chromosomes [117]. Loss of PTEN confers a 
defect in homologous repair which can be 
exploited by inhibition of poly ADP ribose 
polymerase (PARP) [85]. Given the recent evi-
dence that PARP inhibitors are very effective in 
inducing tumor responses under conditions of 
defective DNA double strand break repair due 
to BRCA1 mutation [30,37], the possibility 
exists that a subset of PTEN deficient mesothe-
liomas may be sensitive to PARP inhibitors.

9.4.2  
 HGF/cMET Pathway Is Activated in Mesothelioma

C-met receptor tyrosine kinase is overexpressed 
in mesothelioma by 82% compared with normal 
tissues, and in 90% of serous effusions [153]. It 
is associated with high circulating levels of its 
ligand scatter factor/HGF [57], which in turn is 
overexpressed in 40–85% of mesotheliomas. 
HGF stimulates mesothelioma cell motility 
in vitro via the c-met receptor [49,50,66,128], 
and has been shown to mediate cell survival by 
upregulating BCL-XL. The mechanism involves 
mitogen-activated protein kinase-dependent 
phosphorylation and activation of the ETS fam-
ily of transcription factors, which bind to the 
promoter of BCL-XL [17]. Because phosphory-
lated c-met and BCL-XL expression are corre-
lated in vivo, it has been proposed that the HGF/
met axis mediates survival in part through this 
interaction at the transcriptional level [17].
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The early-response proto-oncogene, fos-
related antigen or fra-1 transcriptionally regu-
lates c-met and is upregulated in preclinical 
models of mesothelioma, as evidenced by 
expression microarray analysis [109]. 
Accordingly, HGF-dependent phosphorylation 
is inhibited by Fra-1 silencing [111]. Fra-1 is a 
component of the dimeric transcription factor, 
activator protein-1 or AP-1 and is regulated by 
phosphatidyl-inositol-3-kinase, extracellular 
signal-regulated kinases ERK1 and 2, and Src-
associated pathways [110]. In addition to c-met 
being a target of Fra-1, it also directly regulates 
expression of CD44, the predominant hyaluronic 
receptor in mesothelioma expression, and thus 
potentially contributes to control of migration 
and invasive behavior.

The small molecule c-met inhibitors SU 
11274 or PHA-665752, as well as RNAi silenc-
ing of c-met, inhibits migration of mesothelioma 
cells. Susceptibility to c-met inhibition has been 
reported to depend on the presence of a Met/
HGF autocrine loop as evidenced by PHA-
665752 [89]. Specific c-met mutations have 
been identified in two domains; N375S, M431V, 
and N454I mutations in the semaphorin domain; 
T1010I and G1085X in the juxtamembrane 
domain. Interestingly, two mesothelioma cell 
lines H513 and H2596, which harbor the T1010I 
mutation, are highly sensitive to SU11274. In 
addition to c-met mutations, deletion of exon 10 
resulting in a splice variant of c-met has been 
identified in some mesothelioma specimens.

Although activation of the epidermal growth 
receptor family is observed in mesothelioma, 
activating mutations of the epidermal growth 
factor receptor (EGFR) have not been identi-
fied in patients with mesothelioma [134]. 
Targeting EGFR alone in mesothelioma cells 
has little effect, whereas simultaneous target-
ing of c-met and EGFR is associated with 
strong inhibition of proliferation and invasion, 
suggesting that blocking the coactivation of 
these two pathways may be more effective than 
targeting c-met alone [60].

9.4.3  
 WNT Pathway Activation in Mesothelioma

The Wnt signaling pathways play an important 
role in homeostasis and development [39]. It 
suppresses apoptosis through activation of beta-
catenin/Tcf-mediated transcription, and is con-
stitutively activated in mesothelioma cells [130]. 
The canonical Wnt signaling pathway cooper-
ates with loss of NF2 to promote the loss of con-
tact inhibition during proliferation [12]. Gene 
expression analysis of rat peritoneal mesothe-
lioma induced by o-nitrotoluene or bromochlo-
roacetic acid demonstrates an upregulation of 
the Wnt/beta-catenin pathway compared with 
non-transformed mesothelial cells [63]. Using 
Wnt specific microarray analysis of normal 
pleura versus mesothelioma, Wnt2 upregulation 
has been found to be the most common event in 
mesothelioma [83]. Knockdown of Wnt using 
RNAi or anti-Wnt2 antibody is sufficient to 
induce apoptosis, suggesting that Wnt2 could be 
a potential molecular target [83].

The beta-catenin gene is deleted at 3p21.3 in 
NCI-H28 cell line [14,118], and this model has 
been useful in determining the role of beta-
catenin-independent Wnt signaling in mesothe-
lioma, via the so-called noncanonical pathway. 
Wnt inhibitory factor (WIF-1) is a secreted pro-
tein that inhibits Wnt signaling and is downregu-
lated in mesotheliomas compared with adjacent 
pleura [8]. The mechanism of downregulation 
involves promoter hypermethylation which is 
seen in malignant, but not adjacent normal pleu-
ral tissue. This suggests that epigenetic silencing 
of WIF-1 could be an important mechanism 
driving Wnt activation [8]. Similarly, RNAi-
mediated knockdown has been shown to sup-
press cell growth, and colony formation [131]. 
Secreted Frizzled-related proteins (SFRPs) and 
the secreted protein dickopf-1 (Dkk-1) are nega-
tive regulators of Wnt signaling. SFRPs are 
silenced by promoter hypermethylation in meso-
thelioma [74] and re-expression of SFRP4 or 
Dkk-1 is sufficient to block Wnt signaling in 
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beta-catenin deficient mesothelioma cells. This 
implicates a beta-catenin-independent, nonca-
nonical Wnt pathway as a key regulator of cell 
survival in mesothelioma [51,75,150].

Given the potential importance of Wnt in 
maintaining mesothelioma cell survival, as well 
as other cancers (e.g., 80% of colorectal cancers 
are driven by Wnt mutations [42]), targeting 
Wnt is a promising strategy. However, no agents 
have yet entered clinical development. This is 
because drugging the Wnt pathway has proved 
difficult. Nevertheless, some small molecules 
have been identified with the potential to become 
experimental agents for future clinical studies 
[20,81]. One promising, but alternative strategy 
has been to target beta-catenin-mediated tran-
scription. The small molecule XAV939 has been 
identified by genetic screening. It induces degra-
dation of beta catenin via mechanism involving 
inhibition of the poly-ADP ribosylating enzymes 
tankyrase 1 and 2 [54]. This approach might 
provide a novel strategy for targeting the Wnt 
pathway in mesothelioma and other cancers.

9.4.4  
 Estrogen Receptor Beta

Female gender is associated with a favorable 
prognosis and estrogen receptor beta (ER beta) 
has been previously shown to be lost in other 
cancers. This loss is associated with poor prog-
nosis, implicating ER beta as a putative tumor 
suppressor [7,120]. In mesothelioma, ER beta is 
downregulated in tumor tissues compared 
with normal pleura, whereas ER alpha is not 
expressed [105]. ER beta was recently shown to 
be an independent prognostic factor for better 
survival. Activation of ER beta in vitro with 17 
beta-estradiol reduces cell proliferation associ-
ated with G2/M cell cycle arrest, downregula-
tion of p27, p21, and survivin. These findings 
suggest that selective estrogen receptor modula-
tors may have a potential role in controlling 
mesotheliomas.

9.5  
 Therapeutic Reactivation of Tumor 
Suppressors

9.5.1  
 Epigenomic Dysregulation in Mesothelioma

Transformation of normal mesothelium into 
mesothelioma involves changes to the epige-
nome. In a study interrogating 1505 CpG loci 
associated with 803 cancer-associated genes in 
158 mesothelioma specimens and 18 normal 
pleura, the methylation profile was able to effec-
tively discriminate normal pleura from meso-
thelioma, and was an independent predictor of 
shorter survival [23]. In an independent study 
that examined 6157 CpG islands in 20 mesothe-
liomas in parallel with comparative genomic 
hybridization and chromatin immunoprecipita-
tion arrays [47], 6.3% of genes were found to be 
hypermethylated in mesothelioma including 
MAPK13, KAZALD1, and TMEM30B; 11% 
of heterozygously deleted genes were affected 
by DNA methylation and/or H3K27me3. 
Furthermore, a group of genes silenced by his-
tone H3 lysine 27 methylation (H3K27me3) 
could be reactivated by histone deacetylation.

Combined epigenetic alterations in mesothe-
lioma are linked with poor prognosis, and these 
epigenetic alterations may interact coopera-
tively. In a study, which used nested methylation 
specific PCR to interrogate the promoter methy-
lation status of nine genes from serum DNA, 
high incidence of methylation of E-cadherin 
(71.4%) and FHIT (78%) [36] was measured, 
whereas intermediate methylation is associated 
with p16(INK4a) (28.2%), APC1B (32.5%), 
p14(ARF) (44.2%), and RARbeta (55.8%). Low 
methylation frequencies were seen for ACP1A 
(14.3%), RASSF1A (19.5%), and DARK (20%). 
Interestingly, although no single gene alone pre-
dicted survival, combination of RARbeta with 
either RASSF1A or DARK was associated with 
significantly shorter survival. This implicates 
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that silencing of multiple genes can cooperate to 
influence prognosis in contrast to the effects of 
these single genes alone.

MicroRNAs are associated with epigenetic 
regulation. In a study in which 98 mesothelioma 
specimens were studied using a custom micro-
RNA platform, a training set of 44 tumors and a 
test set of 98 tumors were analyzed [103]. The 
microRNA, hsa-miR-29c was shown to be a favor-
able independent predictor of time to progression 
and survival after surgical cytoreduction, and 
was selectively overexpressed in the epithelioid 
histological subtype. Overexpression of hsa-miR-
29c in cell lines was associated with a reduction 
in clonogenicity associated with reduced prolif-
eration, as well as invasiveness and motility. 
Epigenetic regulation by hsa-miR-29c was evi-
denced by its downregulation of DNA methyl-
transferases and upregulation of demethylating 
genes, suggesting its role as a prognostic bio-
marker could relate to its ability to depress tran-
scription of tumor suppressors.

9.5.2  
 Targeting the Mesothelioma Epigenome 
via Inhibition of Histone Deacetylases

Histone deacetylases (HDACs) are a class of 
enzymes that repress genes by inhibiting transcrip-
tion. As such, they function opposite to histone 
acetyltransferase which promotes transcription. 
HDACs remove acetyl groups from e-N-acetyl 
lysine amino acid on a histone; the effect is to 
remove the positive charge required for electro-
static interaction with the negatively charged 
phosphate/DNA backbone, leading to remodeling 
of chromatin (also termed chromatin expansion), 
resulting in increased transcription.

HDACs can be selectively inhibited by small 
molecules [35], and are an active molecular target 
for clinical development. Mesothelioma cells are 
sensitive to HDAC inhibition, which can directly 
modify signaling through the core apoptosis path-
way; HDAC inhibition, for example, by sodium 

butyrate [15,114], causes the downregulation of 
BCL-XL and induces apoptosis [16]. XIAP is 
downregulated by HDAC inhibition, and results 
in increased apoptosis when mesothelioma cells 
are treated with TRAIL [123]. The HDAC inhibi-
tor Panobinostat (LBH589) is active against 
mesothelioma cell lines and xenografts [25]. 
Using a mouse model of B cell lymphoma to 
explore the proapoptotic pharmacodynamics of 
vorinostat (suberoylanilide hydroxamic acid or 
SAHA), the BH3- only proteins BID and BIM 
were identified as key regulators of intrinsic apop-
tosis signaling [80]. HDAC inhibition directly 
downregulates FLIP [18,86,126], with potential 
to synergize with death receptor agonists [18].

Valproate is an HDAC inhibitor, and has been 
shown to synergistically interact with cisplatin 
and pemetrexed in both cell lines, and a xeno-
graft model of mesothelioma [133]. In cells, its 
cytotoxic activity is associated with activation of 
both the extrinsic apoptosis pathway, and the 
intrinsic pathway. Hyperacetylation of histone 
H3 is induced by valproate consistent with its 
pharmacodynamics as an HDAC inhibitor. 
Induction of cell death involves the generation of 
reactive oxygen species; accordingly, cells can 
be rescued by the antioxidant N-acetylcysteine.

HDAC inhibition may be a promising new 
development in the treatment of mesothelioma. 
Although a phase II trial of belinostat (PXD101) 
which targets class I and II HDACs was shown 
to be inactive [108], vorinostat exhibited signifi-
cant activity in a phase I trial, in which mono-
therapy achieved partial responses [71]. A 
randomized phase II/III comparing oral vorinos-
tat versus placebo is currently enrolling patients 
who have relapsed following first line therapy 
[143]. Given the lack of standard therapy in this 
clinical setting, this large randomized trial has 
potential to change practice if it is positive. 
Recent evidence implicates HR23B as a resis-
tance biomarker of HDAC inhibitors, albeit in 
cutaneous T cell lymphoma, an indication for 
which vorinostat has received FDA approval. 
HR23B shuttles ubiquitinated proteins to the 
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proteasome. Loss of expression confers resis-
tance to HDAC inhibitors as originally identi-
fied by genome-wide RNAi screen. As such, 
HR23B may represent a potential biomarker for 
vorinostat in other indications such as treatment 
of mesothelioma [38,61,113,121,138,151].

9.5.3  
 Targeting the Ubiquitin Proteasome Pathway

Protein degradation is an essential cellular pro-
cess which involves tagging with ubiquitin by 
enzymes called ubiquitin ligases. Proteins are 
then ferried to the proteasome where degradation 
to peptides occurs. Small molecule proteasome 
inhibitors such as bortezomib (velcade) activates 
BCL-2 family tumor suppressors, leading to 
induction of apoptosis [33]. These include myc-
dependent upregulation of the MCL-1 inhibitor 
NOXA [34,93,107,139], and other BH3 only 
proteins such as BIK and BIM [94]. Gene expres-
sion studies have implicated dysregulation of the 
ubiquitin proteasome pathway in mesothelioma 
[11], and preclinical studies have demonstrated 
proapoptotic efficacy of proteasome inhibitors 
in vitro and in vivo [46,113,121,138,151]. This 
promising activity has led to completion of phase 
II trials of bortezomib in mesothelioma; EORTC 
08052 exploring combination with cisplatin in 
the first-line setting, and bortezomib monother-
apy in the relapsed setting. Mutation and overex-
pression of proteasome subunit B5 (PSMB5) has 
been previously identified as a cause of resis-
tance to bortezomib. However, the existence of 
such mutations in mesothelioma has not yet been 
established [97].

9.6  
 Synthetic Lethal Strategies

Mutation of a putative tumor suppressor gene 
may expose vulnerabilities in a cancer that can 
be exploited therapeutically. This has been most 

dramatically demonstrated in the case of somatic 
BRCA1/BRCA2 mutations, which through 
inactivation of DNA repair render cancers vul-
nerable to DNA damage resulting from PARP 
inhibition [30,85]. Two examples of synthetic 
lethality associated with dysfunctions in tumor 
metabolism in mesothelioma will now be con-
sidered, where loss of function due to genetic or 
epigenetic alterations may be exploited, with 
translation into the clinical setting.

Homozygous codeletion of CDKN2A is 
 frequently associated (90%) with loss of meth-
ylthioadenosine phosphorylase (MTAP) [55]. 
MTAP deficient tumors are responsive to 
 inhibitors of de novo AMP synthesis in the 
 preclinical setting, suggesting a strategy for 
mediating synthetic lethality. In a multicenter 
phase II trial to test this concept, patients with 
MTAP deficient tumors including mesothe-
lioma (as well as non-small cell lung cancer, 
soft tissue sarcoma, osteosarcoma or pancreatic 
cancer) were treated with L-alanosine at a dose 
of 180 mg/m2 by continuous intravenous infu-
sion daily for 5 out of 21 days. However, no 
objective responses to therapy were observed 
leading the investigators to conclude a lack of 
efficacy [64].

The gene encoding argininosuccinate syn-
thetase (AS), a rate-limiting enzyme involved 
in arginine metabolism is epigenetically silenced 
in mesotheliomas, implicating it as a tumor sup-
pressor and highlighting a potential vulnerabil-
ity which may be exploited therapeutically [26]. 
AS was shown to be downregulated both in 
mesothelioma cell lines and a high proportion 
(63%) of primary mesothelioma specimens 
[124]. Cell lines lacking AS were unable to syn-
thesize arginine following depletion of arginine 
from the medium, and underwent apoptosis 
associated with activation of BAX and mito-
chondrial depolarization. Silencing of AS was 
associated with gene methylation.

Induction of apoptosis in AS negative cells 
following withdrawal of arginine is selective, 
and not observed in AS positive cell lines, 
reflecting arginine auxotrophy of AS deficient 
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cells. Accordingly, lack of AS presents a poten-
tial metabolic Achilles’ heel in mesothelioma. 
This phenotype can be targeted pharmacologi-
cally, by removing arginine from the circulation 
using pegylated arginine deiminase, an agent 
that has received orphan drug status from the 
FDA for the treatment of hepatocellular carci-
noma, and has shown efficacy in melanoma 
[5,13,28,56]. Because of the high frequency of 
AS deficiency in mesothelioma, a phase II trial 
will be evaluating this strategy in patients, tai-
loring treatment to patients with AS negative 
mesothelioma [26,124].

9.7  
 Summary

In recent years, it has become clear that meso-
thelioma is characterized by frequent activa-
tion of survival pathways and inactivation of 
tumor suppressors. This has opened the door 
to a growing number of new, rational treat-
ment strategies for targeting vulnerabilities in 
 mesothelioma, that for the first time have real 
potential for significantly improving treatment 
response in this chemoresistant cancer, and 
improving survival outcomes, particularly in 
the relapsed setting where it is still an unmet 
clinical need.
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