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Abstract. In the matroid buyback problem, an algorithm observes a
sequence of bids and must decide whether to accept each bid at the mo-
ment it arrives, subject to a matroid constraint on the set of accepted
bids. Decisions to reject bids are irrevocable, whereas decisions to accept
bids may be canceled at a cost which is a fixed fraction of the bid value.
We present a new randomized algorithm for this problem, and we prove
matching upper and lower bounds to establish that the competitive ra-
tio of this algorithm, against an oblivious adversary, is the best possible.
We also observe that when the adversary is adaptive, no randomized al-
gorithm can improve the competitive ratio of the optimal deterministic
algorithm. Thus, our work completely resolves the question of what com-
petitive ratios can be achieved by randomized algorithms for the matroid
buyback problem.

1 Introduction

Imagine a seller allocating a limited inventory (e.g. impressions of a banner
ad on a specified website at a specified time in the future) to a sequence of
potential buyers who arrive sequentially, submit bids at their arrival time, and
expect allocation decisions to be made immediately after submitting their bid.
An informed seller who knows the entire bid sequence can achieve much higher
profits than an uninformed seller who discovers the bids online, because of the
possibility that a very large bid is received after the uninformed seller has already
allocated the inventory. A number of recent papers [1,2] have proposed a model
that offsets this possibility by allowing the uninformed seller to cancel earlier
allocation decisions, subject to a penalty which is a fixed fraction of the canceled
bid value. This option of canceling an allocation and paying a penalty is referred
to as buyback, and we refer to online allocation problems with a buyback option
as buyback problems.

Buyback problems have both theoretical and practical appeal. In fact,
Babaioff et al. [1] report that this model of selling was described to them
by the ad marketing group at a major Internet software company. Constantin
et al. [2] cite numerous other applications including allocation of TV, radio, and
newsprint advertisements; they also observe that advance booking with cancel-
lations is a common practice in the airline industry, where limited inventory is
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oversold and then, if necessary, passengers are “bumped” from flights and com-
pensated with a penalty payment, often in the form of credit for future flights.

Different buyback problems are distinguished from each other by the con-
straints that express which sets of bids can be simultaneously accepted. In the
simplest case, the only constraint is a fixed upper bound on the total number of
accepted bids. Alternatively, there may be a bipartite graph whose two vertex
sets are called bids and slots, and a set of bids may be simultaneously accepted
if and only if each bid in the set can be matched to a different slot using edges of
the bipartite graph. Both of these examples are special cases of the matroid buy-
back problem, in which there is a matroid structure on the bids, and a set of bids
may be simultaneously accepted if and only if they constitute an independent
set in this matroid. Other types of constraints (e.g. knapsack constraints) have
also been studied in the context of buyback problems [1], but the matroid buy-
back problem has received the most study. This is partly because of its desirable
theoretical properties — the offline version of the problem is computationally
tractable, and the online version admits an online algorithm whose payoff is
identical to that of the omniscient seller when the buyback penalty is zero —
and partly because of its well-motivated special cases, such as the problem of
matching bids to slots described above.

As is customary in the analysis of online algorithms, we evaluate algorithms
according to their competitive ratio: the worst-case upper bound on the ratio
between the algorithm’s (expected) payoff and that of an informed seller who
knows the entire bid sequence and always allocates to an optimal feasible subset
without paying any penalties. The problem of deterministic matroid buyback
algorithms has been completely solved: a simple algorithm was proposed and
analyzed by Constantin et al. [2,3] and, independently, Babaioff et al. [4], and
it was recently shown [1] that the competitive ratio of this algorithm is opti-
mal for deterministic matroid buyback algorithms, even for the case of rank-one
matroids (i.e., selling a single indivisible good). However, this competitive ratio
can be strictly improved by using a randomized algorithm against an oblivious
adversary. Babaioff et al. [1] showed that this result holds when the buyback
penalty factor is sufficiently small, and they left open the question of determin-
ing the optimal competitive ratio of randomized algorithms — or even whether
randomized algorithms can improve on the competitive ratio of the optimal de-
terministic algorithm when the buyback factor is large.

Our work resolves this open question by supplying a randomized algorithm
whose competitive ratio (against an oblivious adversary) is optimal for all values
of the buyback penalty factor. We present the algorithm and the upper bound on
its competitive ratio in Section 3 and the matching lower bound in Section 4. Our
algorithm is also much simpler than the randomized algorithm of [1], avoiding
the use of stationary renewal processes. It may be viewed as an online random-
ized reduction that transforms an arbitrary instance of the matroid buyback
problem into a specially structured instance on which deterministic algorithms
are guaranteed to perform well. Our matching lower bound relies on defining
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and analyzing a suitable continuous-time analogue of the single-item buyback
problem.

Adaptive adversaries. In this paper we analyze randomized algorithms with an
oblivious adversary. If the adversary is adaptive1, then no randomized algorithm
can achieve a better competitive ratio than that achieved by the optimal deter-
ministic algorithm. This fact is a direct consequence of a more general theorem
asserting the same equivalence for the class of request answer games (Theorem
2.1 of [5] or Theorem 7.3 of [6]), a class of online problems that includes the
buyback problem.2

Strategic considerations. In keeping with [1,4], we treat the buyback problem
as a pure online optimization with non-strategic bidders. For an examination of
strategic aspects of the buyback problem, we refer the reader to [2].

Related work. We have already discussed the work of Babaioff et al. [1,4] and
of Constantin et al. [2,3] on buyback problems. Prior to this aforementioned
work, several earlier papers considered models in which allocations, or other
commitments, could be cancelled at a cost. Biyalogorsky et al. [7] studied such
“opportunistic cancellations” in the setting of a seller allocating N units of
a good in a two-period model, demonstrating that opportunistic cancellations
could improve allocative efficiency as well as the seller’s revenue. Sandholm and
Lesser [8] analyzed a more general model of “leveled commitment contracts” and
proved that leveled commitment never decreases the expected payoff to either
contract party. However, to the best of our knowledge, the buyback problem
studied in this paper and its direct precursors [1,2,3,4] is the first to analyze
commitments with cancellation costs in the framework of worst-case competitive
analysis rather than average-case Bayesian analysis.

2 Preliminaries

Consider a matroid3 (U , I) where U is the ground set and I is the set of inde-
pendent subsets of U . We will assume that the ground set U is identified with the
set {1, . . . , n}. There is a bid value vi ≥ 0 associated to each element i ∈ U . The
information available to the algorithm at time k (1 ≤ k ≤ n) consists of the first
k elements of the bid sequence — i.e. the subsequence v1, v2, . . . , vk — and the
restriction of the matroid structure to the first k elements. (In other words, for
every subset S ⊆ {1, 2, . . . , k}, the algorithm knows at time k whether S ∈ I.)
1 A distinction between adaptive offline and adaptive online adversaries is made

in [5,6]. When we refer to an adaptive adversary in this paper, we mean an adaptive
offline adversary.

2 The definition of request answer games in [6] requires that the game must have a
minimization objective, whereas ours has a maximization objective. However, the
proof of Theorem 7.3 in [6] goes through, with only trivial modifications, for request
answer games with a maximization objective.

3 See [9] for the definition of a matroid.
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At any step the algorithm can choose a subset Sk ⊆ Sk−1 ∪ {k}. This set
Sk must be an independent set, i.e Sk ∈ I. Hence the final set held by the
algorithm is R = Sn. The algorithm must perform a buyback for every element
of B =

(∪n
i=1S

i
) \Sn. For any set S ⊆ U let val(S) =

∑
i∈S vi. Finally we define

the payoff of the algorithm as val(R) − f · val(B).

3 Randomized Algorithm against Oblivious Adversary

This section gives a randomized algorithm with competitive ratio −W
(

−1
e(1+f)

)

against an oblivious adversary. Here W is Lambert’s W function4, defined as
the inverse of the function z �→ zez. The design of our randomized algorithm is
based on two insights:

1. Although the standard greedy online algorithm for picking a maximum-
weight basis of a matroid can perform arbitrarily poorly on a worst-case
instance of the buyback problem, it performs well when the ratios between
values of different matroid elements are powers of some scalar r > 1 + f .
(We call such instances “r-structured.”)

2. There is a randomized reduction from arbitrary instances of the buyback
problem to instances that are r-structured.

3.1 The Greedy Algorithm and r-Structured Instances

Definition 1. Let r > 1 be a constant. An instance of the matroid buyback
problem is r-structured if for every pair of elements i, j, the ratio vi/vj is equal
to rl for some l ∈ Z.

Lemma 1. Consider the greedy matroid algorithm GMA that always sells ele-
ments and buys them back as necessary to maintain the invariant that the set Sk

is a maximum-weight basis of {1, 2, . . . , k}. For r > 1 + f , when the greedy al-
gorithm is executed on an r-structured instance of the matroid buyback problem,
its competitive ratio is at most r−1

r−1−f .

Proof. As is well known, at termination the set S selected by GMA is a maximum-
weight basis of the matroid. To give an upper bound on the total buyback
payment, we define a set B(i) for each i ∈ U recursively as follows: if GMA
never sold to i, or sold to i without simultaneously buyback back any element,
then B(i) = ∅. If GMA sold to i while buying back j, then B(i) = {j} ∪ B(j).
By induction on the cardinality of B(i), we find that the set {vx/vi |x ∈ B(i)}
consists of distinct negative powers of r, so

∑

x∈B(i)

vx ≤ vi ·
∞∑

i=1

r−i =
vi

r − 1
.

4 Lambert’s W function is multivalued for our domain. We restrict to the case where
W

(
−1

e(1+f)

)
≤ −1.
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Algorithm Filter(ALG):

1: Initialize S = ∅.
2: for i = 1, 2, . . . , n do
3: Observe vi, wi.
4: Let xi = 1 with probability wi/vi,

else xi = 0.
5: Present i with value wi to ALG.
6: if ALG sells to i and xi = 1 then
7: Sell to i.
8: end if
9: if ALG buys back j and xj = 1 then

10: Buy back j.
11: end if
12: end for

Algorithm RandAlg(r):

1: Given: a parameter r > 1 + f .
2: Sample uniformly random u ∈ [0, 1].
3: for all elements i do
4: Let zi = u + �lnr(vi) − u�.
5: Let wi = rzi .
6: end for
7: Run Filter(GMA) on instances v,w.

Fig. 1. Randomized algorithms Filter(ALG) and RandAlg(r)

By induction on the number of iterations of the main loop, the set
⋃

i∈S B(i) con-
sists of all the elements ever bought back by GMA; consequently, the total buyback
payment is bounded by f ·∑i∈S

∑
x∈B(i) vx ≤ f

r−1

∑
i∈S vi. Thus, the algorithm’s

net payoff is at least 1 − f
r−1 times the value of the maximum weight basis.

3.2 The Random Filtering Reduction

Consider two instances v,w of the matroid buyback problem, consisting of the
same matroid (U , I), with its elements presented in the same order, but with dif-
ferent values: element i has values vi, wi in instances v,w, respectively. Assume
furthermore that vi ≥ wi for all i, and that both values vi, wi are revealed to the
algorithm at the time element i arrives. Given a (deterministic or randomized)
algorithm ALG which achieves expected payoff P on instance w, we present in
Figure 1 an algorithm Filter(ALG) achieving expected payoff P on instance v.

Lemma 2. The expected payoff of Filter(ALG) on instance v equals the expected
payoff of ALG on instance w.

Proof. For each element i ∈ U , let σi = 1 if ALG sells to i, and let βi = 1 if
ALG buys back i. Similarly, let σ′

i = 1 if Filter(ALG) sells to i, and let β′
i = 1 if

Filter(ALG) buys back i. Observe that σ′
i = σixi and β′

i = βixi for all i ∈ U , and
that the random variable xi is independent of (σi, βi). Thus,

E

[
∑

i∈U
σ′

ivi − (1 + f)β′
ivi

]

= E

[
∑

i∈U
σixivi − (1 + f)βixivi

]

=
∑

i∈U
E[σi − (1 + f)βi]E[xivi] =

∑

i∈U
E[σi − (1 + f)βi]wi

= E

[
∑

i∈U
σiwi − (1 + f)βiwi

]

.
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The left side is the expected payoff of Filter(ALG) on instance v while the right
side is the expected payoff of ALG on instance w.

3.3 A Randomized Algorithm with Optimal Competitive Ratio

In this section we put the pieces together, to obtain a randomized algorithm
with competitive ratio −W

(
−1

e(1+f)

)
against oblivious adversary5. The algorithm

RandAlg(r) is presented in Figure 1.

Lemma 3. For all i ∈ U , we have vi ≥ wi and E[wi] = r−1
r ln(r)vi.

Proof. The random variable lnr(vi) − zi is equal to the fractional part of the
number lnr(vi) − u, which is uniformly distributed in [0, 1] since u is uniformly
distributed in [0, 1]. It follows that wi/vi has the same distribution as r−u, which
proves that vi ≥ wi and also that

E
[
wi

vi

]
=

∫ 1

0

r−u du = − 1
ln(r)

· r−u

∣
∣
∣
∣

1

0

=
r − 1
r ln(r)

.

Theorem 1. The competitive ratio of RandAlg(r) is r ln(r)
r−1−f .

Proof. Let S∗ ⊆ U denote the maximum-weight basis of (U , I) with respect to
the weights v. Since the mapping from vi to wi is monotonic (i.e., vi ≥ vj implies
wi ≥ wj), we know that S∗ is also a maximum-weight basis of (U , I) with respect
to the weights w6. Let v(S∗) =

∑
i∈S∗ vi and let w(S∗) =

∑
i∈S∗ wi.

The input instance w is r-structured, so the payoff of GMA on instance w is
at least r−1−f

r−1 w(S∗). The modified weights wi satisfy two properties that allow
application of algorithm Filter(ALG): the value of wi can be computed online
when vi is revealed at the arrival time of element i, and it satisfies wi ≤ vi.
By Lemma 2, the expected payoff of Filter(GMA) on instance v, conditional on
the values {wi : i ∈ U}, is at least

(
r−1−f

r−1

)
· w(S∗). Finally, by Lemma 3 and

linearity of expectation, E [w(S∗)] ≥
(

r−1
r ln(r)

)
· v(S∗). The theorem follows by

combining these bounds.

The function f(r) = r ln(r)
r−1−f on the interval r ∈ (1 + f,∞) is minimized when

− r
1+f = W

(
−1

e(1+f)

)
and f(r) = −W

(
−1

e(1+f)

)
. This completes our analysis of

the randomized algorithm RandAlg(r).

4 Lower Bound

We prove the lower bound against an oblivious adversary. The proof first reduces
to a continuous version of the problem and then applies Yao’s Principle [10]. A
detailed version of the proof sketches can be found at [11].
5 Note that the algorithm is written in an offline manner just for convenience and can

be implemented as an online algorithm.
6 There may be other maximum-weight basis of w which were not maximum-weight

basis of v.
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4.1 Reduction to Continuous Version

Consider a new problem. Time starts at t = 1 and stops at time t = x, where x
is not known to the algorithm. The algorithm at any instant in time can make a
mark. The payoff of the algorithm is equal to the time at which it made its final
mark minus f times the sum of times of marks before the final mark. We note
that any algorithm for the single item buyback problem with competitive ratio
c can be transformed into an algorithm for the continuous case with competitive
ratio c × (1 + ε) for arbitrarily small ε > 0, by discretizing time into small
intervals. We prove lower bound for this new problem.

4.2 Lower Bound against Oblivious Adversaries

Theorem 2. Any randomized algorithm for the continuous version of the single
item buyback problem has competitive ratio at least −W

(
−1

e(1+f)

)
.

The proof is an application of Yao’s Principle [10]. We give a one-parameter fam-
ily of input distributions (parametrized by a number y > 1) for the continuous
version and prove that any deterministic algorithm for the continuous version
of the problem must have a competitive ratio which tends to −W

(
−1

e(1+f)

)
as

y → ∞. Note that for the continuous version of the problem input is just stop-
ping time x. For a given y > 1, let the probability density for the stopping times
be defined as follows.

f(x) = 1/x2 if x < y

f(x) = 0 if x > y (1)

Note that the above definition is not a valid probability density function, so we
place a point mass at x = y of probability 1

y . Hence our distribution is a mixture
of discrete and continuous probability. For notational convenience let d(F (x)) =
f(x) where F is the cumulative distribution function. Also let G(x) = 1 − F (x).
Any deterministic algorithm is defined by a set T = {u1, u2, . . . , uk} of times at
which it makes a mark (given that it does not stop before that time).

Lemma 4. There exists an optimal deterministic algorithm described by the set
T = {1, w, w2, . . . , wk−1} for some w,k.

Proof. Let T = {u1, u2, . . . , uk}. We prove that ui = u
(i−1)/i
i+1 for i ∈ [k − 1]

by induction and it is easy to see that the claim follows from this. For lack of
space we just prove the inductive case. Let u0 = 0 and uk+1 = ∞. Let P be the
expected payoff of the algorithm.

Note that P =
∑k

i=1

∫ ui+1

ui
(ui − f · ∑i−1

j=1 uj) d(F (y)). We can rewrite the

equation as P =
∑k

i=1(ui−(1+f)·ui−1)·G(ui). If we differentiate P with respect
to ui, equate to 0, and solve, then we obtain the equation u2

i = ui−1 · ui+1. By
induction we know that ui−1 = u

(i−2)/(i−1)
i . Substituting and solving we get the

necessary equation.



536 B.V. Ashwinkumar and R. Kleinberg

Lemma 5. For any algorithm described by T = {1, w, w2, . . . , wk−1}, the com-
petitive ratio is bounded below by a number which tends to −W

(
−1

e(1+f)

)
as y

tends to ∞.

Proof. For lack of space we just give a sketch here. Note that if V is the expected
payoff of a prophet who knows the stopping time x, then V = 1 + ln(y). Also
for any algorithm described by T = {1, w, w2, . . . , wk−1} we have that P =
1 + (k − 1) · w−1−f

w . Hence if c is the competitive ratio then c = V/P . By
simple manipulation we see that this is larger than a number which tends to
−W

(
−1

e(1+f)

)
as y tends to ∞.
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