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Abstract. We study an online weighted assignment problem with a set
of fixed nodes corresponding to advertisers and online arrival of nodes
corresponding to ad impressions. Advertiser a has a contract for n(a)
impressions, and each impression has a set of weighted edges to adver-
tisers. The problem is to assign the impressions online so that while each
advertiser a gets n(a) impressions, the total weight of edges assigned is
maximized.

Our insight is that ad impressions allow for free disposal, that is, adver-
tisers are indifferent to, or prefer being assigned more than n(a) impres-
sions without changing the contract terms. This means that the value of
an assignment only includes the n(a) highest-weighted items assigned to
each node a. With free disposal, we provide an algorithm for this problem
that achieves a competitive ratio of 1− 1/e against the offline optimum,
and show that this is the best possible ratio. We use a primal/dual frame-
work to derive our results, applying a novel exponentially-weighted dual
update rule. Furthermore, our algorithm can be applied to a general set
of assignment problems including the ad words problem as a special case,
matching the previously known 1 − 1/e competitive ratio.

1 Introduction

Motivation: Display Ads Allocation. Many web publishers (e.g., news sites) have
multiple pages (sports, arts, real estate, etc) where they show image, video or
text ads. When a visitor to such a web site is exposed to an ad, this is called
an “impression.” Advertisers typically buy blocks of impressions ahead of time
via contracts, choosing blocks carefully to target a particular market segment,
typically as part of a more general advertising campaign across various web
sites and other media outlets. Once the contract is agreed upon, the advertiser
expects a particular number of impressions to be delivered by the publisher over
an agreed-upon time period.

The publisher enters all such impression contracts into an ad delivery system.
Such systems are typically provided as a service by third party companies, but
sophisticated publishers may develop their own software. When a user views one
of the pages with ad slots, this system determines the set of eligible ads for that
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slot, and selects an ad to be shown, all in real time. Because traffic to the site
is not known beforehand, it must solve an online matching problem to satisfy
the impression contracts. However, before committing to a set of contracts, it
would have been already determined using traffic forecasts that the contracts are
likely to be fulfillable. Thus, if this were purely a cardinality matching problem,
it would typically be easy to solve; what makes the problem challenging is the
fact that not all impressions are of equal value to an advertiser (e.g., top vs.
side slots, sports vs. arts pages). The publisher is interested not only in filling
the impression contracts, but also delivering well-targeted impressions to its
advertisers (as measured, e.g., by click-throughs). Thus the ADS, when deciding
which ad to serve, has the additional goal of maximizing the overall quality
of impressions used to fill the contracts. We formulate and study this online
optimization problem.

Online Ad Allocation Problem. We have a set of advertisers A known in advance,
together with an integer impression contract n(a) for each advertiser a ∈ A. Each
a ∈ A corresponds to a node in one partition of the bipartite graph we define. The
set of impressions I forms the nodes of the other partition and they arrive online.
When an impression i ∈ I arrives, its value wia ≥ 0 to each advertiser a becomes
known (some of the wia’s are possibly zero). The value wia might be a prediction
of click-through probability, an estimate of targeting quality, or even the output of
a function given by the advertiser; we treat this abstractly for the purposes of this
work. The impression i must be assigned immediately to some advertiser a ∈ A.

Let Ia ⊆ I be the set of impressions assigned to a during the run of the algo-
rithm. The goal of the algorithm is to maximize overall advertiser satisfaction,
i.e.,

∑
a∈A S(a, Ia) for some satisfaction function S. To encode the impression

contracts n(a) as part of S, one possible choice is to say S(a, Ia) =
∑

i∈Ia wia

if |Ia| ≤ n(a) (and S(a, Ia) = −∞ otherwise). In other words, maximize overall
quality without exceeding any of the contracts n(a). As stated, no bounded com-
petitive ratio can be obtained for this problem: just consider the simple case of
a single advertiser, n(a) = 1, and two items arriving. The first item that arrives
has value 100. If it is assigned, then the next item has value 10000; if it is not
assigned, the next item has value 1. (In both cases the algorithm achieves less
than 1/100th the value of the optimal solution.)

The main insight that inspires our model is that the strict enforcement of
the impression contract as an upper bound is inappropriate, since impressions
exhibit what is known as the property of free disposal in Economics. That is, in
the presence of a contract for n(a) impressions, the advertiser is only pleased —
or is at least indifferent to — getting more than n(a) impressions. Therefore, a
more appropriate formulation of the problem is the following. We let Ia

k be the
k impressions i ∈ Ia with the largest wia. Then, define

S(a, Ia) =
∑

i∈Ia
n(a)

wia.

In other words, each advertiser draws its value from its top n(a) impressions,
and draws zero value from its remaining impressions (yielding free disposal).
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We call this the display ads (DA) problem. Free disposal makes the problem
tractable; e.g., for the counterexample above with a single advertiser a, the
trivial algorithm that assigns all the impressions to that advertiser is optimal.
(The general problem with multiple advertisers is, of course, nontrivial.) This
choice of S also allows us to tradeoff between quality and contract fulfillment by
adding a constant W to each wia; for large W the problem becomes closer to a
pure maximum-cardinality matching.

Our Results and Techniques. Our main technical contribution is an online algo-
rithm for the DA problem with competitive ratio of 1−1/e, as long as n(a) → ∞.
Further, this is the best possible for any (even randomized) online algorithm.

We generalize our algorithm to the case of non-uniform item sizes, the so-
called Generalized Assignment Problem (GAP). More specifically, we can add
“sizes” sia to the model, where the contract then refers to the total size of im-
pressions assigned to an advertiser (and the function S is defined appropriately;
see Section 3 for more details). This generalization captures both the DA problem
as well as the well-studied ad words (AW) problem [19], where the advertisers
express budgets Ba (simply set sia = wia). Our bound of 1 − 1/e when sizes
are “small” matches the best known ratio for the AW problem. Furthermore,
GAP is a unifying generalization that can handle hybrid instances where some
advertisers are budget-constrained, and some are inventory constrained.

Our algorithm for the DA problem is inspired by the techniques developed
for the online Ad Words (AW) allocation problem in [19], as well as the general
primal-dual framework for online allocation problems [4]. The key element of this
technique is to develop a dual update rule that will maintain dual feasibility as
well as a good bound on the gap between the primal and dual solutions. Previous
algorithms for related online packing problems such as AW [5] typically update
dual (covering) variables by multiplying them by a small factor (such as 1+1/n)
at each step, and adding a term proportional to the increase in primal value.
By contrast, our update rule sets the dual variable for each advertiser a to be a
carefully weighted average of the weights of the top n(a) impressions currently
assigned to a. In fact, the value of the dual variable for an advertiser with a set
of impressions Ia is the same as it would be if we re-ordered the impressions in
increasing order of weight and used the update rules of previous algorithms (as
in [4]) on Ia. By choosing our exponentially-weighted update rule, we balance
the primal and dual objectives effectively and obtain an optimal algorithm for
the DA problem.

Related Work. The related AW problem discussed above is NP-Hard in the of-
fline setting, and several approximations have been designed [6,22,2]. For the
online setting, it is typically assumed that every weight is very small compared
to the corresponding budget, in which case there exist (1 − 1/e)-factor online
algorithms [19,4,15,1], and this factor is tight. In order to go beyond the com-
petitive ratio of 1− 1

e in the adversarial model, stochastic online variants of the
problem have been studied, such as the random order and i.i.d models [15]. In
particular, for any ε, a primal-dual 1 − ε-approximation has been developed for
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this problem in the random order model with the assumption that opt is larger
than O(n2

ε3 ) times each bid [9]. Moreover, a 0.67-competitive algorithm has been
recently developed for the (unweighted) max-cardinality version of this problem
in the i.i.d. model (without any extra assumption) [12]. Previously, a random-
ized (1− 1

e )-competitive algorithm for the max-cardinality problem was known in
the adversarial model [16]. The online maximum weighted b-matching problem
without free disposal in the random permutation model has also been studied,
and a 1

8 -approximation algorithm has been developed for this problem [17].
Prior to the development of the (1 − 1

e )-approximation algorithm for the
offline GAP, various 1

2 -approximation algorithms had been obtained for this
problem [8,21,13]. It has been observed that beating the approximation ra-
tio 1 − 1

e for more general packing constraints is not possible unless NP⊆
DTIME(nO(log log n)). However, for GAP with simple knapsack constraints, an
improved 1− 1

e +δ-approximation (with δ ≈ 10−180) was developed by Feige and
Vondrak [11]. In the online model with small sizes, our approximation factor of
1 − 1

e is tight.
The offline variants of DA, AW, and GAP are special cases of the problem of

maximizing a monotone submodular function subject to a matroid constraint [13].
Recently, the approximation factor for this problem has been improved from 1

2 to
1 − 1

e [23], but these algorithms do not work in the online model. The algorithm
in [18], although studied for the offline setting, works for the online DA problem
and gives a 1

2 -competitive algorithm (discussion below).

2 The Display Ads Problem

In this section, we provide online algorithms for the DA problem with small
competitive ratios. Recall that the competitive ratio of an online algorithm for
a maximization problem is defined as the minimum, over all possible input se-
quences, of the ratio between the value obtained by the algorithm and the opti-
mum value on that sequence. We first give a simple upper bound:

Lemma 1. No deterministic algorithm for the Display Ads problem achieves a
competitive ratio better than 1/2.

Proof. Consider an instance in which there are two advertisers a1, a2 each with
capacity 1, and two impressions i1, i2. Impression i1 has value w for both adver-
tisers, and arrives first. Once it has been assigned, i2 arrives, and has value w
for the same advertiser to which i1 was assigned. Thus we obtain a value of w,
while the optimal solution has value 2w. 	

In this section, we show that a greedy algorithm is always 1/2-competitive,
matching the bound of Lemma 1. On real instances of the Display Ads problem,
though, advertisers request far more than a single impression, and so a natural
question is whether one can obtain better deterministic algorithms if n(a) is large
for each advertiser a. Also in this section, we answer this question affirmatively,
giving an algorithm that achieves a competitive ratio tending to 1− 1/e as n(a)
tends to infinity.
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The Greedy Algorithm. Consider an algorithm for the DA problem, assigning
impressions online. When impression i arrives, what is the benefit of assigning
it to advertiser a? This impression can contribute wia to the value obtained by
the algorithm, but if advertiser a already has n(a) impressions assigned to it,
one of these impressions cannot be counted towards the value. Let v(a) denote
the value of the least valuable impression currently assigned to a (if there are
fewer than n(a) such impressions, v(a) = 0). Clearly, if wia ≤ v(a), there is no
benefit to assigning impression i to advertiser a. Let Ai = {a : wia > v(a)}; any
algorithm should only assign i to an impression in Ai.

Perhaps the simplest algorithm is to assign an impression i to the advertiser
a ∈ Ai that maximizes wia. The competitive ratio of this naive algorithm is ar-
bitrarily bad: Consider a set of advertisers {a∗, a1, a2, . . . an} each with capacity
1, and impressions {i1, i2, . . . in} that appear in that order. Impression ij has
value 1+ jε for a∗, and value 1 for aj . The algorithm above obtains value 1+nε,
while the optimal solution has value n + nε.

One can do better by noticing that the increase in value by assigning impres-
sion i to a is wia − v(a), and therefore greedily assigning i to the advertiser a
maximizing this quantity, which we call the marginal gain from assigning i to a.

The following theorem shows that the greedy algorithm (maximizing the
marginal gain at each step) is 1/2-competitive:

Theorem 1. The greedy algorithm is 1
2 -competitive for display ad allocation.

This theorem is a special case of Theorem 8 in [18] which studies combinatorial
allocation problems with submodular valuation functions. This follows from the
fact that the valuation function of each advertiser in the online DA problem is
submodular in terms of the set of impressions assigned to it, i.e.,

∑
i∈Ia

n(a)
wia is

submodular in Ia. Though [18] studied this problem in the offline setting, their
greedy algorithm can be implemented as an online algorithm. Other offline 1

2
and 1 − 1

e -approximation algorithms for a more general problem of submodular
maximization under matroid constraints are known [13,23], but these offline
algorithms do not provide an online solution.

When n(a) is large for each advertiser a, the upper bound of Lemma 1 does
not hold; it is possible to achieve competitive ratios better than 1/2. However,
even in this setting, the performance of the greedy algorithm does not improve.

Lemma 2. The competitive ratio of the greedy algorithm is 1/2 even when n(a)
is large for each advertiser a ∈ A.

Proof. Let each of advertisers a1, a2 have capacity n; suppose there are n copies
of impression i1 with value w to a1 and w − 1/n to a2. The greedy algorithm
assigns all of these impressions to a1, obtaining value wn. Subsequently, n copies
of impression i2 arrive, with value w to a1 and 0 to a2. Thus, the optimal solution
has value 2nw − 1, while the greedy algorithm only obtains a value of nw. 	


The greedy algorithm does badly on the instance in Lemma 2 because it does
not take the capacity constraints into account when assigning impressions.
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Primal-Dual algorithms for the DA problem. We write a linear program where
for each we have variables xia to denote whether impression i is one of the n(a)
most valuable impressions assigned to advertiser a.

Primal: max
∑

i,a

wiaxia

∑

a

xia ≤ 1 (∀ i)

∑

i

xia ≤ n(a) (∀ a)

Dual: min
∑

a

n(a)βa +
∑

i

zi

βa + zi ≥ wia(∀i, a)

[xia, βa, zi ≥ 0]

The algorithms we consider simultaneously construct feasible solutions to the
primal and dual LPs, using the following outline:

– Initialize the dual variables βa to 0 for each advertiser.
– Subsequently, when an impression i arrives online, assign i to the advertiser

a′ ∈ A that maximizes wia − βa. (If this value is negative for each a, leave
impression i unassigned.)

– Set xia′ = 1. If a′ previously had n(a′) impressions assigned, let i′ be the
least valuable of these; set xi′a′ = 0.

– In the dual solution, set zi = wia′ − βa′ and increase βa′ using an appro-
priate update rule (see below); different update rules give rise to different
algorithms/assignments.

The outline above results in a valid integral assignment (primal solution) and a
feasible dual solution; to completely describe such an algorithm, we only need
to specify the update rule used. We consider the following update rules:

1. Greedy: For each advertiser a, βa is the weight of the lightest impression
among the n(a) heaviest impressions currently assigned to a. That is, βa

is the weight of the impression which will be discarded if a receives a new
high-value impression.

2. Uniform Weighting: For each advertiser a, βa is the average weight of
the n(a) most valuable impressions currently assigned to a. If a has fewer
than n(a) assigned impressions, βa is the ratio between the total weight of
assigned impressions and n(a).

3. Exponential Weighting: For each advertiser a, βa is an “exponentially
weighted average” (see Def. 1) of the n(a) most valuable impressions.

It is easy to see that the Greedy rule simply gives rise to the greedy algorithm
that assigns each impression to the advertiser that maximizes marginal gain. Us-
ing Uniform Weighting, one can obtain an improved ratio ≈ 3/4 on the instance
of Lemma 2, as the first n copies of impression i1 are split evenly between ad-
vertisers a1 and a2, and thus half the copies of impression i2 can be assigned to
a1. We state and analyze the Exponential Weighting rule in more detail below,
but as a warm-up, we use the primal-dual technique to show that the Uniform
Weighting rule gives a 1/2-competitive algorithm.
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Lemma 3. The primal-dual algorithm with Uniform Weighting is 1
2 -competitive.

Proof. We show that the value of the feasible dual solution constructed by the
algorithm is at most twice the value of the assignment; by weak duality, this
implies that the algorithm is 1/2-competitive. It suffices to show that in any
step, the increase in value of the assignment is at least 1/2 of the increase in
value of the dual solution. If impression i is assigned to advertiser a, let v be the
value of the least valuable impression among the best n(a) impressions previously
assigned to a. Thus, the increase in value of the assignment is wia − v. We set
zi = wia − βa ≤ wia − v, as the least valuable impression is worth no more
than the average. The increase in βa is precisely 1

n (wia − v), and hence the total
increase in the dual objective function is at most 2(wia − v). 	

Using the Greedy Rule, βa is simply the weight of the edge/impression that will
be discarded, while with Uniform Weighting, βa is the average of all the best
n(a) weights currently assigned to a. The disadvantage of the first approach is
that it only takes into account the least valuable impression, ignoring how much
capacity is unused. For Uniform Weighting, Lemma 3 showed that the increase
in dual value is (wia − v) + (wia − βa), but as one can only use the fact that
v ≤ βa, we get a ratio of 2. To obtain a (1 − 1/e)-competitive algorithm, we
use an intermediate exponentially-weighted average in which the less valuable
impressions are weighted more than the more valuable ones, as follows:

Definition 1 (Exponential Weighting). Let w1, w2, . . . wn(a) be the weights
of impressions currently assigned to advertiser a, sorted in non-increasing order.

Let βa = 1

n(a)·((1+1/n(a))n(a)−1)
∑n(a)

j=1 wj

(
1 + 1

n(a)

)j−1

.

Theorem 2. The primal-dual algorithm with the Exponential Weighting update
rule has a competitive ratio of (1 − 1/e) as n(a) → ∞ for each advertiser a.

Proof. Let en = (1 + 1/n)n; we have limn→∞ en = e. Analogous to the proof
of Lemma 3, it suffices to show that at each impression/step of the algorithm,
the increase in the value of the assignment is at least (1 − 1/en(a)) times the
increase in value of the feasible dual solution, where a is the advertiser to which
this impression is assigned.

As before, let impression i be assigned to advertiser a, and let v be the value
of the least valuable impression among the best n(a) impressions previously
assigned to a. Thus, the increase in value of the assignment is wia − v, and we
set zi = wia−βa. It remains to bound the increase in βa, which we do as follows.

Let βo, βn denote the old and new values of βa respectively. Suppose that after
i is assigned to a, it becomes the most valuable impression assigned to a. Then,
we have βn = (1+1/n)βo− ven

n(en−1)+
wia

n(en−1) . Thus, n(βn−βo) = βo− ven

en−1+ wia

en−1 .
Therefore, the total dual increase, which is the sum of zi and n times the increase
in βa is (wia −βo)+βo − ven

en−1 + wia

en−1 = (wia−v)en

en−1 . Therefore, the ratio between
the increase in assignment value and dual objective function is 1 − 1/en.

We assumed above that i became the most valuable impression assigned to
a; what if this is not true? It is not difficult to verify that in this case, the
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increase in βa is less than otherwise; to see this, note that if it is the jth most
valuable impression, the contribution of wia to βa must be multiplied by a factor
of (1 + 1/n)j−1 compared to the previous case, but the contributions of j − 1
more valuable impressions will be decreased by a factor of (1 + 1/n). 	


Theorem 3 ([19]). No algorithm achieves a competitive ratio of greater than
1 − 1/e for the display ad allocation problem. This is true even with weights in
{0, 1}, and for randomized algorithms against oblivious adversaries.

The lower bound of Theorem 3 was proved by [19] for the Ad words problem; the
example they give is a valid instance of the Display Ads problem, and hence the
same lower bound applies. Thus, our primal-dual algorithm with the Exponential
Weighting update rule is optimal for the DA problem.

3 The Generalized Assignment Problem

In the Generalized Assignment Problem (GAP), a set A of bins/machines and
a set I of items/jobs is given. Each bin a ∈ A has a capacity Ca; for each item i
and bin a, we have a size sia that item i occupies in bin a and a weight/profit wia

obtained from placing i in a. (Alternately, one can think of GAP as a scheduling
problem with sia as the processing time job i takes on machine a, and with
wia being the value gained from scheduling job i on machine a.) Note that the
special case of GAP with a single bin/machine is simply the Knapsack problem.

We first note that GAP captures both the Display Ads problem and the Ad
Words problem as special cases, where bins correspond to advertisers and items
to impressions. The DA problem is simply the special case in which sia = 1 for
all i, a, and the AW problem is the special case in which wia = sia for all i, a.

For the offline GAP, the best approximation ratio known is 1−1/e+ δ, where
δ ≈ 10−180 [11]; this improves on the previous (1−1/e)-approximation of [14]. In
an online instance of GAP, the set of bins A is known in advance, together with
the capacity of each bin. Items arrive online, and when item i arrives, wia and
sia are revealed for each a ∈ A. The only previous work on online GAP appears
to have been for the special case corresponding to the Knapsack problem [3].

Recall that without free disposal, the online Display Ads problem was in-
tractable. We make a similar assumption to solve GAP online; here, we assume
that we can assign items of total size more than Ca to bin a, but that the total
value derived by bin a is given by the most profitable set of assigned items that
actually fits within capacity Ca. (Note that such an assumption is not necessary
for the easier Ad Words problem, in which the value/weight of an item in a bin
is equal to its size; thus, there is never a need for over-assignment.) Thus, an on-
line algorithm for GAP immediately gives algorithms with the same competitive
ratio for the DA and AW problems. In fact, an algorithm for GAP allows one to
simultaneously handle ad allocation problems in which some bidders have bud-
get constraints and others have inventory constraints. Unfortunately, we have:
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Lemma 4. No deterministic online algorithm for GAP with free disposal can
achieve a competitive ratio better than n−1/2.

Given this lower bound, for the rest of this section, we consider the case of small
items ; that is, we assume that for each item i and bin a such that wia > 0,
sia ≤ εCa.1 This is a reasonable assumption for both the DA and AW problems,
where contracts are for large numbers of impressions or individual bids are small
compared to budgets. We refer to GAP restricted to such instances – where no
individual item can occupy more than an ε fraction of any bin – as ε-GAP. Let
e1/ε = (1 + ε)1/ε; we prove the following theorem:

Theorem 4. There is a (1 − 1/e)-competitive algorithm for ε-GAP as ε → 0.2

Proof Sketch. We construct a feasible dual solution (primal and dual linear pro-
grams for GAP are given below) as in the proof of Theorem 2, but a problem
arises in dealing with non-uniform sizes. It may sometimes be necessary for the
algorithm to place an item in a bin even when doing so would decrease the value
of the solution; this holds even when item sizes are all less than ε times the bin
capacities. The intuition is as follows: Suppose an item i arrives with value/size
ratio significantly better than the average for a given bin a; it is clear that we
should take it, and discard the existing items. (The inability to do this provides
the lower bound of Lemma 4.) But if the items already in the bin are larger than
the new item, one may lose value by discarding the existing items. This diffi-
culty appears because in integral solutions an item cannot continuously move
from being in the bin to outside. We deal with this issue by having the algorithm
act as though it could derive value from such fractional solutions, in which the
item of lowest value/size ratio is partly in the bin, and the value obtained from
this item depends on how much of it is in the bin. Under this metric, we show
the algorithm’s (fractional) value is at least (1− 1/e1/ε) times that of a feasible
dual solution. Since the algorithm does not truly obtain any integral value from
such partially assigned items, it loses at most the value of these items, which
is an ε fraction of its overall value. Thus, we obtain an integral solution which
achieves an approximation ratio of (1 − 1/e1/ε)(1 − ε).

Primal: max
∑

i,a

wiaxia

∑

a

xia ≤ 1 (∀ i)

∑

i

siaxia ≤ Ca (∀ a)

Dual : min
∑

a

Caβa +
∑

i

zi

siaβa + zi ≥ wia(∀i, a)

[xia, βa, zi ≥ 0]

1 This lower bound does not apply to randomized algorithms; see Section 4.
2 More formally, we obtain a ratio of (1 − 1/e1/ε)(1 − ε) for ε-GAP. This is greater

than 1/2 for ε ≤ 0.17.
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4 Extensions and Future Work

Randomized Algorithms and Lower Bounds. For the basic Display Ads problem,
we showed an upper bound of (1 − 1/e) on the competitive ratio of all algo-
rithms, and a deterministic algorithm that matches this bound when n(a) is
large. Further, Lemma 1 shows that no deterministic algorithm has competitive
ratio larger than 1/2 when n(a) is small; does this bound also apply to random-
ized algorithms? The randomized algorithm of [16] gets a competitive ratio of
1−1/e for the unweighted case. Extending this result to the weighted case seems
difficult; a new approach may be necessary.

Similarly, Lemma 4 shows that no deterministic online algorithm for GAP
has a competitive ratio better than n−1/2. One can avoid this bound using
randomization: Toss a coin to determine whether bins should accept only large
items (that occupy more than 1/3 the bin), or only small items (that occupy
at most 1/3 the bin.) In the latter case, use the algorithm of Theorem 4; in
the former case, have each bin accept a single item. Since each bin can accept
only two big items, we obtain a constant-competitive algorithm in both cases.
(A similar observation was also made in [3] for the easier Knapsack problem.)
Optimizing constants, we obtain the following theorem:

Theorem 5. There is a 0.15-competitive randomized online algorithm for GAP.

Extending these results for the online GAP to more general packing problems
is an interesting subject of study. In particular, this idea may be applicable to
packing problems with sparse constraint matrices; see [20,7] for recent work on
the offline versions of these problems.

General non-linear valuation functions. The display ad business is performed
through a set of pre-determined contracts. Hence, in many settings, the number
of impressions assigned to an advertiser is an important quality measure in
addition to the total valuation (or total weight) of the impressions. In other
words, the valuation (or utility) of an advertiser a for receiving a set Ia of
impressions is va(Ia) =

∑
i∈Ia

n(a)
wia + fa(|Ia|) where fa : N → N is a non-

decreasing function of the number of impressions assigned to a. We may also
assume that fa(x) = fa(n(a)) for any x ≥ n(a). The corresponding online ad
allocation problem here is to assign impressions to advertisers and maximize∑

a∈A va(Ia).
Depending on various quality measures, this function fa could be concave or

convex. A convex function fa models the guaranteed delivery property of adver-
tisers in that receiving a number of impression close to n(a) is very important.
A concave function fa, on the other hand, captures the diminishing return prop-
erty of extra impressions for advertisers. We observe that for convex functions
f , the ad allocation problem becomes inapproximable, even in the offline case;
this hardness result uses a reduction from a banner ad allocation problem with
penalties studied in [10]. On the other hand, if all functions fa are concave,
the problem becomes a special case of submodular valuation and the greedy
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algorithm gives a 1
2 -competitive algorithm. An interesting question is whether

the competitive ratio of 1
2 can be improved to 1 − 1

e .

“Underbidding” and Incentives. One disadvantage of using the free disposal
property is that it may incentivize advertisers to declare smaller n(a), in the
hope of getting more impressions in the final allocation. We can partially address
this concern by modifying the algorithm slightly so that the sum of weights of
all impressions assigned to a is at most twice the sum of weights of the top n(a)
impressions:

Theorem 6. There is a 1−1/e
2 -competitive algorithm for the DA problem such

that for each advertiser,
∑

i∈Ia wia ≤ 2
∑

i∈Ia
n(a)

wia.

To prove this theorem, one simply needs to use the Exponential Weighting up-
date rule but double βa for each a; we omit details from this extended abstract.

Concluding Remarks: We have used free disposal to solve the online DA
problem with a competitive ratio of 1 − 1/e. An outstanding issue is to under-
stand how free disposal affects the incentives of advertisers, who may be led to
speculate. (Note that even the sub-optimal algorithm of Theorem 6 only bounds
the total weight of impressions assigned to an advertiser, not the number of im-
pressions received.) A model for incentives must simultaneously handle contract
selection/pricing and the online ad allocation problem; this is an interesting
subject of future research.
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